]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
tcg/README: improve description of bswap*
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
290
291#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
f01576f1
JL
310 } else {
311#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
312 endaddr = ~0ul;
01c0bef1
JL
313#else
314 endaddr = ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS) - 1;
f01576f1
JL
315#endif
316 }
01c0bef1 317 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
318 }
319 }
320 free(freep);
321 mmap_unlock();
322 }
323#else
50a9569b 324 FILE *f;
50a9569b 325
0776590d 326 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 327
50a9569b
AZ
328 f = fopen("/proc/self/maps", "r");
329 if (f) {
5cd2c5b6
RH
330 mmap_lock();
331
50a9569b 332 do {
5cd2c5b6
RH
333 unsigned long startaddr, endaddr;
334 int n;
335
336 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
337
338 if (n == 2 && h2g_valid(startaddr)) {
339 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
340
341 if (h2g_valid(endaddr)) {
342 endaddr = h2g(endaddr);
343 } else {
01c0bef1 344#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
5cd2c5b6 345 endaddr = ~0ul;
01c0bef1
JL
346#else
347 endaddr = ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS) - 1;
348#endif
5cd2c5b6
RH
349 }
350 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
351 }
352 } while (!feof(f));
5cd2c5b6 353
50a9569b 354 fclose(f);
5cd2c5b6 355 mmap_unlock();
50a9569b 356 }
f01576f1 357#endif
50a9569b
AZ
358 }
359#endif
54936004
FB
360}
361
41c1b1c9 362static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 363{
41c1b1c9
PB
364 PageDesc *pd;
365 void **lp;
366 int i;
367
5cd2c5b6
RH
368#if defined(CONFIG_USER_ONLY)
369 /* We can't use qemu_malloc because it may recurse into a locked mutex.
370 Neither can we record the new pages we reserve while allocating a
371 given page because that may recurse into an unallocated page table
372 entry. Stuff the allocations we do make into a queue and process
373 them after having completed one entire page table allocation. */
374
375 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
376 int reserve_idx = 0;
377
378# define ALLOC(P, SIZE) \
379 do { \
380 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
381 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
382 if (h2g_valid(P)) { \
383 reserve[reserve_idx] = h2g(P); \
384 reserve[reserve_idx + 1] = SIZE; \
385 reserve_idx += 2; \
386 } \
387 } while (0)
388#else
389# define ALLOC(P, SIZE) \
390 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 391#endif
434929bf 392
5cd2c5b6
RH
393 /* Level 1. Always allocated. */
394 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
395
396 /* Level 2..N-1. */
397 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
398 void **p = *lp;
399
400 if (p == NULL) {
401 if (!alloc) {
402 return NULL;
403 }
404 ALLOC(p, sizeof(void *) * L2_SIZE);
405 *lp = p;
17e2377a 406 }
5cd2c5b6
RH
407
408 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
409 }
410
411 pd = *lp;
412 if (pd == NULL) {
413 if (!alloc) {
414 return NULL;
415 }
416 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
417 *lp = pd;
54936004 418 }
5cd2c5b6
RH
419
420#undef ALLOC
421#if defined(CONFIG_USER_ONLY)
422 for (i = 0; i < reserve_idx; i += 2) {
423 unsigned long addr = reserve[i];
424 unsigned long len = reserve[i + 1];
425
426 page_set_flags(addr & TARGET_PAGE_MASK,
427 TARGET_PAGE_ALIGN(addr + len),
428 PAGE_RESERVED);
429 }
430#endif
431
432 return pd + (index & (L2_SIZE - 1));
54936004
FB
433}
434
41c1b1c9 435static inline PageDesc *page_find(tb_page_addr_t index)
54936004 436{
5cd2c5b6 437 return page_find_alloc(index, 0);
fd6ce8f6
FB
438}
439
6d9a1304 440#if !defined(CONFIG_USER_ONLY)
c227f099 441static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 442{
e3f4e2a4 443 PhysPageDesc *pd;
5cd2c5b6
RH
444 void **lp;
445 int i;
92e873b9 446
5cd2c5b6
RH
447 /* Level 1. Always allocated. */
448 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 449
5cd2c5b6
RH
450 /* Level 2..N-1. */
451 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
452 void **p = *lp;
453 if (p == NULL) {
454 if (!alloc) {
455 return NULL;
456 }
457 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
458 }
459 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 460 }
5cd2c5b6 461
e3f4e2a4 462 pd = *lp;
5cd2c5b6 463 if (pd == NULL) {
e3f4e2a4 464 int i;
5cd2c5b6
RH
465
466 if (!alloc) {
108c49b8 467 return NULL;
5cd2c5b6
RH
468 }
469
470 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
471
67c4d23c 472 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
473 pd[i].phys_offset = IO_MEM_UNASSIGNED;
474 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 475 }
92e873b9 476 }
5cd2c5b6
RH
477
478 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
479}
480
c227f099 481static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 482{
108c49b8 483 return phys_page_find_alloc(index, 0);
92e873b9
FB
484}
485
c227f099
AL
486static void tlb_protect_code(ram_addr_t ram_addr);
487static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 488 target_ulong vaddr);
c8a706fe
PB
489#define mmap_lock() do { } while(0)
490#define mmap_unlock() do { } while(0)
9fa3e853 491#endif
fd6ce8f6 492
4369415f
FB
493#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
494
495#if defined(CONFIG_USER_ONLY)
ccbb4d44 496/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
497 user mode. It will change when a dedicated libc will be used */
498#define USE_STATIC_CODE_GEN_BUFFER
499#endif
500
501#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
502static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
503 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
504#endif
505
8fcd3692 506static void code_gen_alloc(unsigned long tb_size)
26a5f13b 507{
4369415f
FB
508#ifdef USE_STATIC_CODE_GEN_BUFFER
509 code_gen_buffer = static_code_gen_buffer;
510 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
511 map_exec(code_gen_buffer, code_gen_buffer_size);
512#else
26a5f13b
FB
513 code_gen_buffer_size = tb_size;
514 if (code_gen_buffer_size == 0) {
4369415f
FB
515#if defined(CONFIG_USER_ONLY)
516 /* in user mode, phys_ram_size is not meaningful */
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518#else
ccbb4d44 519 /* XXX: needs adjustments */
94a6b54f 520 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 521#endif
26a5f13b
FB
522 }
523 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
524 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
525 /* The code gen buffer location may have constraints depending on
526 the host cpu and OS */
527#if defined(__linux__)
528 {
529 int flags;
141ac468
BS
530 void *start = NULL;
531
26a5f13b
FB
532 flags = MAP_PRIVATE | MAP_ANONYMOUS;
533#if defined(__x86_64__)
534 flags |= MAP_32BIT;
535 /* Cannot map more than that */
536 if (code_gen_buffer_size > (800 * 1024 * 1024))
537 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
538#elif defined(__sparc_v9__)
539 // Map the buffer below 2G, so we can use direct calls and branches
540 flags |= MAP_FIXED;
541 start = (void *) 0x60000000UL;
542 if (code_gen_buffer_size > (512 * 1024 * 1024))
543 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 544#elif defined(__arm__)
63d41246 545 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
546 flags |= MAP_FIXED;
547 start = (void *) 0x01000000UL;
548 if (code_gen_buffer_size > 16 * 1024 * 1024)
549 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 550#endif
141ac468
BS
551 code_gen_buffer = mmap(start, code_gen_buffer_size,
552 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
553 flags, -1, 0);
554 if (code_gen_buffer == MAP_FAILED) {
555 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
556 exit(1);
557 }
558 }
a167ba50 559#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
560 {
561 int flags;
562 void *addr = NULL;
563 flags = MAP_PRIVATE | MAP_ANONYMOUS;
564#if defined(__x86_64__)
565 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
566 * 0x40000000 is free */
567 flags |= MAP_FIXED;
568 addr = (void *)0x40000000;
569 /* Cannot map more than that */
570 if (code_gen_buffer_size > (800 * 1024 * 1024))
571 code_gen_buffer_size = (800 * 1024 * 1024);
572#endif
573 code_gen_buffer = mmap(addr, code_gen_buffer_size,
574 PROT_WRITE | PROT_READ | PROT_EXEC,
575 flags, -1, 0);
576 if (code_gen_buffer == MAP_FAILED) {
577 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
578 exit(1);
579 }
580 }
26a5f13b
FB
581#else
582 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
583 map_exec(code_gen_buffer, code_gen_buffer_size);
584#endif
4369415f 585#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
586 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
587 code_gen_buffer_max_size = code_gen_buffer_size -
588 code_gen_max_block_size();
589 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
590 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
591}
592
593/* Must be called before using the QEMU cpus. 'tb_size' is the size
594 (in bytes) allocated to the translation buffer. Zero means default
595 size. */
596void cpu_exec_init_all(unsigned long tb_size)
597{
26a5f13b
FB
598 cpu_gen_init();
599 code_gen_alloc(tb_size);
600 code_gen_ptr = code_gen_buffer;
4369415f 601 page_init();
e2eef170 602#if !defined(CONFIG_USER_ONLY)
26a5f13b 603 io_mem_init();
e2eef170 604#endif
26a5f13b
FB
605}
606
9656f324
PB
607#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
608
e59fb374 609static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
610{
611 CPUState *env = opaque;
9656f324 612
3098dba0
AJ
613 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
614 version_id is increased. */
615 env->interrupt_request &= ~0x01;
9656f324
PB
616 tlb_flush(env, 1);
617
618 return 0;
619}
e7f4eff7
JQ
620
621static const VMStateDescription vmstate_cpu_common = {
622 .name = "cpu_common",
623 .version_id = 1,
624 .minimum_version_id = 1,
625 .minimum_version_id_old = 1,
e7f4eff7
JQ
626 .post_load = cpu_common_post_load,
627 .fields = (VMStateField []) {
628 VMSTATE_UINT32(halted, CPUState),
629 VMSTATE_UINT32(interrupt_request, CPUState),
630 VMSTATE_END_OF_LIST()
631 }
632};
9656f324
PB
633#endif
634
950f1472
GC
635CPUState *qemu_get_cpu(int cpu)
636{
637 CPUState *env = first_cpu;
638
639 while (env) {
640 if (env->cpu_index == cpu)
641 break;
642 env = env->next_cpu;
643 }
644
645 return env;
646}
647
6a00d601 648void cpu_exec_init(CPUState *env)
fd6ce8f6 649{
6a00d601
FB
650 CPUState **penv;
651 int cpu_index;
652
c2764719
PB
653#if defined(CONFIG_USER_ONLY)
654 cpu_list_lock();
655#endif
6a00d601
FB
656 env->next_cpu = NULL;
657 penv = &first_cpu;
658 cpu_index = 0;
659 while (*penv != NULL) {
1e9fa730 660 penv = &(*penv)->next_cpu;
6a00d601
FB
661 cpu_index++;
662 }
663 env->cpu_index = cpu_index;
268a362c 664 env->numa_node = 0;
72cf2d4f
BS
665 QTAILQ_INIT(&env->breakpoints);
666 QTAILQ_INIT(&env->watchpoints);
6a00d601 667 *penv = env;
c2764719
PB
668#if defined(CONFIG_USER_ONLY)
669 cpu_list_unlock();
670#endif
b3c7724c 671#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 672 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
673 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
674 cpu_save, cpu_load, env);
675#endif
fd6ce8f6
FB
676}
677
9fa3e853
FB
678static inline void invalidate_page_bitmap(PageDesc *p)
679{
680 if (p->code_bitmap) {
59817ccb 681 qemu_free(p->code_bitmap);
9fa3e853
FB
682 p->code_bitmap = NULL;
683 }
684 p->code_write_count = 0;
685}
686
5cd2c5b6
RH
687/* Set to NULL all the 'first_tb' fields in all PageDescs. */
688
689static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 690{
5cd2c5b6 691 int i;
fd6ce8f6 692
5cd2c5b6
RH
693 if (*lp == NULL) {
694 return;
695 }
696 if (level == 0) {
697 PageDesc *pd = *lp;
7296abac 698 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
699 pd[i].first_tb = NULL;
700 invalidate_page_bitmap(pd + i);
fd6ce8f6 701 }
5cd2c5b6
RH
702 } else {
703 void **pp = *lp;
7296abac 704 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
705 page_flush_tb_1 (level - 1, pp + i);
706 }
707 }
708}
709
710static void page_flush_tb(void)
711{
712 int i;
713 for (i = 0; i < V_L1_SIZE; i++) {
714 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
715 }
716}
717
718/* flush all the translation blocks */
d4e8164f 719/* XXX: tb_flush is currently not thread safe */
6a00d601 720void tb_flush(CPUState *env1)
fd6ce8f6 721{
6a00d601 722 CPUState *env;
0124311e 723#if defined(DEBUG_FLUSH)
ab3d1727
BS
724 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
725 (unsigned long)(code_gen_ptr - code_gen_buffer),
726 nb_tbs, nb_tbs > 0 ?
727 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 728#endif
26a5f13b 729 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
730 cpu_abort(env1, "Internal error: code buffer overflow\n");
731
fd6ce8f6 732 nb_tbs = 0;
3b46e624 733
6a00d601
FB
734 for(env = first_cpu; env != NULL; env = env->next_cpu) {
735 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
736 }
9fa3e853 737
8a8a608f 738 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 739 page_flush_tb();
9fa3e853 740
fd6ce8f6 741 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
742 /* XXX: flush processor icache at this point if cache flush is
743 expensive */
e3db7226 744 tb_flush_count++;
fd6ce8f6
FB
745}
746
747#ifdef DEBUG_TB_CHECK
748
bc98a7ef 749static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
750{
751 TranslationBlock *tb;
752 int i;
753 address &= TARGET_PAGE_MASK;
99773bd4
PB
754 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
755 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
756 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
757 address >= tb->pc + tb->size)) {
0bf9e31a
BS
758 printf("ERROR invalidate: address=" TARGET_FMT_lx
759 " PC=%08lx size=%04x\n",
99773bd4 760 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
761 }
762 }
763 }
764}
765
766/* verify that all the pages have correct rights for code */
767static void tb_page_check(void)
768{
769 TranslationBlock *tb;
770 int i, flags1, flags2;
3b46e624 771
99773bd4
PB
772 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
773 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
774 flags1 = page_get_flags(tb->pc);
775 flags2 = page_get_flags(tb->pc + tb->size - 1);
776 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
777 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 778 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
779 }
780 }
781 }
782}
783
784#endif
785
786/* invalidate one TB */
787static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
788 int next_offset)
789{
790 TranslationBlock *tb1;
791 for(;;) {
792 tb1 = *ptb;
793 if (tb1 == tb) {
794 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
795 break;
796 }
797 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
798 }
799}
800
9fa3e853
FB
801static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
802{
803 TranslationBlock *tb1;
804 unsigned int n1;
805
806 for(;;) {
807 tb1 = *ptb;
808 n1 = (long)tb1 & 3;
809 tb1 = (TranslationBlock *)((long)tb1 & ~3);
810 if (tb1 == tb) {
811 *ptb = tb1->page_next[n1];
812 break;
813 }
814 ptb = &tb1->page_next[n1];
815 }
816}
817
d4e8164f
FB
818static inline void tb_jmp_remove(TranslationBlock *tb, int n)
819{
820 TranslationBlock *tb1, **ptb;
821 unsigned int n1;
822
823 ptb = &tb->jmp_next[n];
824 tb1 = *ptb;
825 if (tb1) {
826 /* find tb(n) in circular list */
827 for(;;) {
828 tb1 = *ptb;
829 n1 = (long)tb1 & 3;
830 tb1 = (TranslationBlock *)((long)tb1 & ~3);
831 if (n1 == n && tb1 == tb)
832 break;
833 if (n1 == 2) {
834 ptb = &tb1->jmp_first;
835 } else {
836 ptb = &tb1->jmp_next[n1];
837 }
838 }
839 /* now we can suppress tb(n) from the list */
840 *ptb = tb->jmp_next[n];
841
842 tb->jmp_next[n] = NULL;
843 }
844}
845
846/* reset the jump entry 'n' of a TB so that it is not chained to
847 another TB */
848static inline void tb_reset_jump(TranslationBlock *tb, int n)
849{
850 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
851}
852
41c1b1c9 853void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 854{
6a00d601 855 CPUState *env;
8a40a180 856 PageDesc *p;
d4e8164f 857 unsigned int h, n1;
41c1b1c9 858 tb_page_addr_t phys_pc;
8a40a180 859 TranslationBlock *tb1, *tb2;
3b46e624 860
8a40a180
FB
861 /* remove the TB from the hash list */
862 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
863 h = tb_phys_hash_func(phys_pc);
5fafdf24 864 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
865 offsetof(TranslationBlock, phys_hash_next));
866
867 /* remove the TB from the page list */
868 if (tb->page_addr[0] != page_addr) {
869 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
870 tb_page_remove(&p->first_tb, tb);
871 invalidate_page_bitmap(p);
872 }
873 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
874 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
875 tb_page_remove(&p->first_tb, tb);
876 invalidate_page_bitmap(p);
877 }
878
36bdbe54 879 tb_invalidated_flag = 1;
59817ccb 880
fd6ce8f6 881 /* remove the TB from the hash list */
8a40a180 882 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
883 for(env = first_cpu; env != NULL; env = env->next_cpu) {
884 if (env->tb_jmp_cache[h] == tb)
885 env->tb_jmp_cache[h] = NULL;
886 }
d4e8164f
FB
887
888 /* suppress this TB from the two jump lists */
889 tb_jmp_remove(tb, 0);
890 tb_jmp_remove(tb, 1);
891
892 /* suppress any remaining jumps to this TB */
893 tb1 = tb->jmp_first;
894 for(;;) {
895 n1 = (long)tb1 & 3;
896 if (n1 == 2)
897 break;
898 tb1 = (TranslationBlock *)((long)tb1 & ~3);
899 tb2 = tb1->jmp_next[n1];
900 tb_reset_jump(tb1, n1);
901 tb1->jmp_next[n1] = NULL;
902 tb1 = tb2;
903 }
904 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 905
e3db7226 906 tb_phys_invalidate_count++;
9fa3e853
FB
907}
908
909static inline void set_bits(uint8_t *tab, int start, int len)
910{
911 int end, mask, end1;
912
913 end = start + len;
914 tab += start >> 3;
915 mask = 0xff << (start & 7);
916 if ((start & ~7) == (end & ~7)) {
917 if (start < end) {
918 mask &= ~(0xff << (end & 7));
919 *tab |= mask;
920 }
921 } else {
922 *tab++ |= mask;
923 start = (start + 8) & ~7;
924 end1 = end & ~7;
925 while (start < end1) {
926 *tab++ = 0xff;
927 start += 8;
928 }
929 if (start < end) {
930 mask = ~(0xff << (end & 7));
931 *tab |= mask;
932 }
933 }
934}
935
936static void build_page_bitmap(PageDesc *p)
937{
938 int n, tb_start, tb_end;
939 TranslationBlock *tb;
3b46e624 940
b2a7081a 941 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
942
943 tb = p->first_tb;
944 while (tb != NULL) {
945 n = (long)tb & 3;
946 tb = (TranslationBlock *)((long)tb & ~3);
947 /* NOTE: this is subtle as a TB may span two physical pages */
948 if (n == 0) {
949 /* NOTE: tb_end may be after the end of the page, but
950 it is not a problem */
951 tb_start = tb->pc & ~TARGET_PAGE_MASK;
952 tb_end = tb_start + tb->size;
953 if (tb_end > TARGET_PAGE_SIZE)
954 tb_end = TARGET_PAGE_SIZE;
955 } else {
956 tb_start = 0;
957 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
958 }
959 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
960 tb = tb->page_next[n];
961 }
962}
963
2e70f6ef
PB
964TranslationBlock *tb_gen_code(CPUState *env,
965 target_ulong pc, target_ulong cs_base,
966 int flags, int cflags)
d720b93d
FB
967{
968 TranslationBlock *tb;
969 uint8_t *tc_ptr;
41c1b1c9
PB
970 tb_page_addr_t phys_pc, phys_page2;
971 target_ulong virt_page2;
d720b93d
FB
972 int code_gen_size;
973
41c1b1c9 974 phys_pc = get_page_addr_code(env, pc);
c27004ec 975 tb = tb_alloc(pc);
d720b93d
FB
976 if (!tb) {
977 /* flush must be done */
978 tb_flush(env);
979 /* cannot fail at this point */
c27004ec 980 tb = tb_alloc(pc);
2e70f6ef
PB
981 /* Don't forget to invalidate previous TB info. */
982 tb_invalidated_flag = 1;
d720b93d
FB
983 }
984 tc_ptr = code_gen_ptr;
985 tb->tc_ptr = tc_ptr;
986 tb->cs_base = cs_base;
987 tb->flags = flags;
988 tb->cflags = cflags;
d07bde88 989 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 990 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 991
d720b93d 992 /* check next page if needed */
c27004ec 993 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 994 phys_page2 = -1;
c27004ec 995 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 996 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 997 }
41c1b1c9 998 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 999 return tb;
d720b93d 1000}
3b46e624 1001
9fa3e853
FB
1002/* invalidate all TBs which intersect with the target physical page
1003 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1004 the same physical page. 'is_cpu_write_access' should be true if called
1005 from a real cpu write access: the virtual CPU will exit the current
1006 TB if code is modified inside this TB. */
41c1b1c9 1007void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1008 int is_cpu_write_access)
1009{
6b917547 1010 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1011 CPUState *env = cpu_single_env;
41c1b1c9 1012 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1013 PageDesc *p;
1014 int n;
1015#ifdef TARGET_HAS_PRECISE_SMC
1016 int current_tb_not_found = is_cpu_write_access;
1017 TranslationBlock *current_tb = NULL;
1018 int current_tb_modified = 0;
1019 target_ulong current_pc = 0;
1020 target_ulong current_cs_base = 0;
1021 int current_flags = 0;
1022#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1023
1024 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1025 if (!p)
9fa3e853 1026 return;
5fafdf24 1027 if (!p->code_bitmap &&
d720b93d
FB
1028 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1029 is_cpu_write_access) {
9fa3e853
FB
1030 /* build code bitmap */
1031 build_page_bitmap(p);
1032 }
1033
1034 /* we remove all the TBs in the range [start, end[ */
1035 /* XXX: see if in some cases it could be faster to invalidate all the code */
1036 tb = p->first_tb;
1037 while (tb != NULL) {
1038 n = (long)tb & 3;
1039 tb = (TranslationBlock *)((long)tb & ~3);
1040 tb_next = tb->page_next[n];
1041 /* NOTE: this is subtle as a TB may span two physical pages */
1042 if (n == 0) {
1043 /* NOTE: tb_end may be after the end of the page, but
1044 it is not a problem */
1045 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1046 tb_end = tb_start + tb->size;
1047 } else {
1048 tb_start = tb->page_addr[1];
1049 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1050 }
1051 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1052#ifdef TARGET_HAS_PRECISE_SMC
1053 if (current_tb_not_found) {
1054 current_tb_not_found = 0;
1055 current_tb = NULL;
2e70f6ef 1056 if (env->mem_io_pc) {
d720b93d 1057 /* now we have a real cpu fault */
2e70f6ef 1058 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1059 }
1060 }
1061 if (current_tb == tb &&
2e70f6ef 1062 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1063 /* If we are modifying the current TB, we must stop
1064 its execution. We could be more precise by checking
1065 that the modification is after the current PC, but it
1066 would require a specialized function to partially
1067 restore the CPU state */
3b46e624 1068
d720b93d 1069 current_tb_modified = 1;
5fafdf24 1070 cpu_restore_state(current_tb, env,
2e70f6ef 1071 env->mem_io_pc, NULL);
6b917547
AL
1072 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1073 &current_flags);
d720b93d
FB
1074 }
1075#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1076 /* we need to do that to handle the case where a signal
1077 occurs while doing tb_phys_invalidate() */
1078 saved_tb = NULL;
1079 if (env) {
1080 saved_tb = env->current_tb;
1081 env->current_tb = NULL;
1082 }
9fa3e853 1083 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1084 if (env) {
1085 env->current_tb = saved_tb;
1086 if (env->interrupt_request && env->current_tb)
1087 cpu_interrupt(env, env->interrupt_request);
1088 }
9fa3e853
FB
1089 }
1090 tb = tb_next;
1091 }
1092#if !defined(CONFIG_USER_ONLY)
1093 /* if no code remaining, no need to continue to use slow writes */
1094 if (!p->first_tb) {
1095 invalidate_page_bitmap(p);
d720b93d 1096 if (is_cpu_write_access) {
2e70f6ef 1097 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1098 }
1099 }
1100#endif
1101#ifdef TARGET_HAS_PRECISE_SMC
1102 if (current_tb_modified) {
1103 /* we generate a block containing just the instruction
1104 modifying the memory. It will ensure that it cannot modify
1105 itself */
ea1c1802 1106 env->current_tb = NULL;
2e70f6ef 1107 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1108 cpu_resume_from_signal(env, NULL);
9fa3e853 1109 }
fd6ce8f6 1110#endif
9fa3e853 1111}
fd6ce8f6 1112
9fa3e853 1113/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1114static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1115{
1116 PageDesc *p;
1117 int offset, b;
59817ccb 1118#if 0
a4193c8a 1119 if (1) {
93fcfe39
AL
1120 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1121 cpu_single_env->mem_io_vaddr, len,
1122 cpu_single_env->eip,
1123 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1124 }
1125#endif
9fa3e853 1126 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1127 if (!p)
9fa3e853
FB
1128 return;
1129 if (p->code_bitmap) {
1130 offset = start & ~TARGET_PAGE_MASK;
1131 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1132 if (b & ((1 << len) - 1))
1133 goto do_invalidate;
1134 } else {
1135 do_invalidate:
d720b93d 1136 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1137 }
1138}
1139
9fa3e853 1140#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1141static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1142 unsigned long pc, void *puc)
9fa3e853 1143{
6b917547 1144 TranslationBlock *tb;
9fa3e853 1145 PageDesc *p;
6b917547 1146 int n;
d720b93d 1147#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1148 TranslationBlock *current_tb = NULL;
d720b93d 1149 CPUState *env = cpu_single_env;
6b917547
AL
1150 int current_tb_modified = 0;
1151 target_ulong current_pc = 0;
1152 target_ulong current_cs_base = 0;
1153 int current_flags = 0;
d720b93d 1154#endif
9fa3e853
FB
1155
1156 addr &= TARGET_PAGE_MASK;
1157 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1158 if (!p)
9fa3e853
FB
1159 return;
1160 tb = p->first_tb;
d720b93d
FB
1161#ifdef TARGET_HAS_PRECISE_SMC
1162 if (tb && pc != 0) {
1163 current_tb = tb_find_pc(pc);
1164 }
1165#endif
9fa3e853
FB
1166 while (tb != NULL) {
1167 n = (long)tb & 3;
1168 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1169#ifdef TARGET_HAS_PRECISE_SMC
1170 if (current_tb == tb &&
2e70f6ef 1171 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1172 /* If we are modifying the current TB, we must stop
1173 its execution. We could be more precise by checking
1174 that the modification is after the current PC, but it
1175 would require a specialized function to partially
1176 restore the CPU state */
3b46e624 1177
d720b93d
FB
1178 current_tb_modified = 1;
1179 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1180 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1181 &current_flags);
d720b93d
FB
1182 }
1183#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1184 tb_phys_invalidate(tb, addr);
1185 tb = tb->page_next[n];
1186 }
fd6ce8f6 1187 p->first_tb = NULL;
d720b93d
FB
1188#ifdef TARGET_HAS_PRECISE_SMC
1189 if (current_tb_modified) {
1190 /* we generate a block containing just the instruction
1191 modifying the memory. It will ensure that it cannot modify
1192 itself */
ea1c1802 1193 env->current_tb = NULL;
2e70f6ef 1194 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1195 cpu_resume_from_signal(env, puc);
1196 }
1197#endif
fd6ce8f6 1198}
9fa3e853 1199#endif
fd6ce8f6
FB
1200
1201/* add the tb in the target page and protect it if necessary */
5fafdf24 1202static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1203 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1204{
1205 PageDesc *p;
9fa3e853
FB
1206 TranslationBlock *last_first_tb;
1207
1208 tb->page_addr[n] = page_addr;
5cd2c5b6 1209 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1210 tb->page_next[n] = p->first_tb;
1211 last_first_tb = p->first_tb;
1212 p->first_tb = (TranslationBlock *)((long)tb | n);
1213 invalidate_page_bitmap(p);
fd6ce8f6 1214
107db443 1215#if defined(TARGET_HAS_SMC) || 1
d720b93d 1216
9fa3e853 1217#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1218 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1219 target_ulong addr;
1220 PageDesc *p2;
9fa3e853
FB
1221 int prot;
1222
fd6ce8f6
FB
1223 /* force the host page as non writable (writes will have a
1224 page fault + mprotect overhead) */
53a5960a 1225 page_addr &= qemu_host_page_mask;
fd6ce8f6 1226 prot = 0;
53a5960a
PB
1227 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1228 addr += TARGET_PAGE_SIZE) {
1229
1230 p2 = page_find (addr >> TARGET_PAGE_BITS);
1231 if (!p2)
1232 continue;
1233 prot |= p2->flags;
1234 p2->flags &= ~PAGE_WRITE;
53a5960a 1235 }
5fafdf24 1236 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1237 (prot & PAGE_BITS) & ~PAGE_WRITE);
1238#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1239 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1240 page_addr);
fd6ce8f6 1241#endif
fd6ce8f6 1242 }
9fa3e853
FB
1243#else
1244 /* if some code is already present, then the pages are already
1245 protected. So we handle the case where only the first TB is
1246 allocated in a physical page */
1247 if (!last_first_tb) {
6a00d601 1248 tlb_protect_code(page_addr);
9fa3e853
FB
1249 }
1250#endif
d720b93d
FB
1251
1252#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1253}
1254
1255/* Allocate a new translation block. Flush the translation buffer if
1256 too many translation blocks or too much generated code. */
c27004ec 1257TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1258{
1259 TranslationBlock *tb;
fd6ce8f6 1260
26a5f13b
FB
1261 if (nb_tbs >= code_gen_max_blocks ||
1262 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1263 return NULL;
fd6ce8f6
FB
1264 tb = &tbs[nb_tbs++];
1265 tb->pc = pc;
b448f2f3 1266 tb->cflags = 0;
d4e8164f
FB
1267 return tb;
1268}
1269
2e70f6ef
PB
1270void tb_free(TranslationBlock *tb)
1271{
bf20dc07 1272 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1273 Ignore the hard cases and just back up if this TB happens to
1274 be the last one generated. */
1275 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1276 code_gen_ptr = tb->tc_ptr;
1277 nb_tbs--;
1278 }
1279}
1280
9fa3e853
FB
1281/* add a new TB and link it to the physical page tables. phys_page2 is
1282 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1283void tb_link_page(TranslationBlock *tb,
1284 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1285{
9fa3e853
FB
1286 unsigned int h;
1287 TranslationBlock **ptb;
1288
c8a706fe
PB
1289 /* Grab the mmap lock to stop another thread invalidating this TB
1290 before we are done. */
1291 mmap_lock();
9fa3e853
FB
1292 /* add in the physical hash table */
1293 h = tb_phys_hash_func(phys_pc);
1294 ptb = &tb_phys_hash[h];
1295 tb->phys_hash_next = *ptb;
1296 *ptb = tb;
fd6ce8f6
FB
1297
1298 /* add in the page list */
9fa3e853
FB
1299 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1300 if (phys_page2 != -1)
1301 tb_alloc_page(tb, 1, phys_page2);
1302 else
1303 tb->page_addr[1] = -1;
9fa3e853 1304
d4e8164f
FB
1305 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1306 tb->jmp_next[0] = NULL;
1307 tb->jmp_next[1] = NULL;
1308
1309 /* init original jump addresses */
1310 if (tb->tb_next_offset[0] != 0xffff)
1311 tb_reset_jump(tb, 0);
1312 if (tb->tb_next_offset[1] != 0xffff)
1313 tb_reset_jump(tb, 1);
8a40a180
FB
1314
1315#ifdef DEBUG_TB_CHECK
1316 tb_page_check();
1317#endif
c8a706fe 1318 mmap_unlock();
fd6ce8f6
FB
1319}
1320
9fa3e853
FB
1321/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1322 tb[1].tc_ptr. Return NULL if not found */
1323TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1324{
9fa3e853
FB
1325 int m_min, m_max, m;
1326 unsigned long v;
1327 TranslationBlock *tb;
a513fe19
FB
1328
1329 if (nb_tbs <= 0)
1330 return NULL;
1331 if (tc_ptr < (unsigned long)code_gen_buffer ||
1332 tc_ptr >= (unsigned long)code_gen_ptr)
1333 return NULL;
1334 /* binary search (cf Knuth) */
1335 m_min = 0;
1336 m_max = nb_tbs - 1;
1337 while (m_min <= m_max) {
1338 m = (m_min + m_max) >> 1;
1339 tb = &tbs[m];
1340 v = (unsigned long)tb->tc_ptr;
1341 if (v == tc_ptr)
1342 return tb;
1343 else if (tc_ptr < v) {
1344 m_max = m - 1;
1345 } else {
1346 m_min = m + 1;
1347 }
5fafdf24 1348 }
a513fe19
FB
1349 return &tbs[m_max];
1350}
7501267e 1351
ea041c0e
FB
1352static void tb_reset_jump_recursive(TranslationBlock *tb);
1353
1354static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1355{
1356 TranslationBlock *tb1, *tb_next, **ptb;
1357 unsigned int n1;
1358
1359 tb1 = tb->jmp_next[n];
1360 if (tb1 != NULL) {
1361 /* find head of list */
1362 for(;;) {
1363 n1 = (long)tb1 & 3;
1364 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1365 if (n1 == 2)
1366 break;
1367 tb1 = tb1->jmp_next[n1];
1368 }
1369 /* we are now sure now that tb jumps to tb1 */
1370 tb_next = tb1;
1371
1372 /* remove tb from the jmp_first list */
1373 ptb = &tb_next->jmp_first;
1374 for(;;) {
1375 tb1 = *ptb;
1376 n1 = (long)tb1 & 3;
1377 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1378 if (n1 == n && tb1 == tb)
1379 break;
1380 ptb = &tb1->jmp_next[n1];
1381 }
1382 *ptb = tb->jmp_next[n];
1383 tb->jmp_next[n] = NULL;
3b46e624 1384
ea041c0e
FB
1385 /* suppress the jump to next tb in generated code */
1386 tb_reset_jump(tb, n);
1387
0124311e 1388 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1389 tb_reset_jump_recursive(tb_next);
1390 }
1391}
1392
1393static void tb_reset_jump_recursive(TranslationBlock *tb)
1394{
1395 tb_reset_jump_recursive2(tb, 0);
1396 tb_reset_jump_recursive2(tb, 1);
1397}
1398
1fddef4b 1399#if defined(TARGET_HAS_ICE)
94df27fd
PB
1400#if defined(CONFIG_USER_ONLY)
1401static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1402{
1403 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1404}
1405#else
d720b93d
FB
1406static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1407{
c227f099 1408 target_phys_addr_t addr;
9b3c35e0 1409 target_ulong pd;
c227f099 1410 ram_addr_t ram_addr;
c2f07f81 1411 PhysPageDesc *p;
d720b93d 1412
c2f07f81
PB
1413 addr = cpu_get_phys_page_debug(env, pc);
1414 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1415 if (!p) {
1416 pd = IO_MEM_UNASSIGNED;
1417 } else {
1418 pd = p->phys_offset;
1419 }
1420 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1421 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1422}
c27004ec 1423#endif
94df27fd 1424#endif /* TARGET_HAS_ICE */
d720b93d 1425
c527ee8f
PB
1426#if defined(CONFIG_USER_ONLY)
1427void cpu_watchpoint_remove_all(CPUState *env, int mask)
1428
1429{
1430}
1431
1432int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1433 int flags, CPUWatchpoint **watchpoint)
1434{
1435 return -ENOSYS;
1436}
1437#else
6658ffb8 1438/* Add a watchpoint. */
a1d1bb31
AL
1439int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1440 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1441{
b4051334 1442 target_ulong len_mask = ~(len - 1);
c0ce998e 1443 CPUWatchpoint *wp;
6658ffb8 1444
b4051334
AL
1445 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1446 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1447 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1448 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1449 return -EINVAL;
1450 }
a1d1bb31 1451 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1452
1453 wp->vaddr = addr;
b4051334 1454 wp->len_mask = len_mask;
a1d1bb31
AL
1455 wp->flags = flags;
1456
2dc9f411 1457 /* keep all GDB-injected watchpoints in front */
c0ce998e 1458 if (flags & BP_GDB)
72cf2d4f 1459 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1460 else
72cf2d4f 1461 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1462
6658ffb8 1463 tlb_flush_page(env, addr);
a1d1bb31
AL
1464
1465 if (watchpoint)
1466 *watchpoint = wp;
1467 return 0;
6658ffb8
PB
1468}
1469
a1d1bb31
AL
1470/* Remove a specific watchpoint. */
1471int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1472 int flags)
6658ffb8 1473{
b4051334 1474 target_ulong len_mask = ~(len - 1);
a1d1bb31 1475 CPUWatchpoint *wp;
6658ffb8 1476
72cf2d4f 1477 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1478 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1479 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1480 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1481 return 0;
1482 }
1483 }
a1d1bb31 1484 return -ENOENT;
6658ffb8
PB
1485}
1486
a1d1bb31
AL
1487/* Remove a specific watchpoint by reference. */
1488void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1489{
72cf2d4f 1490 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1491
a1d1bb31
AL
1492 tlb_flush_page(env, watchpoint->vaddr);
1493
1494 qemu_free(watchpoint);
1495}
1496
1497/* Remove all matching watchpoints. */
1498void cpu_watchpoint_remove_all(CPUState *env, int mask)
1499{
c0ce998e 1500 CPUWatchpoint *wp, *next;
a1d1bb31 1501
72cf2d4f 1502 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1503 if (wp->flags & mask)
1504 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1505 }
7d03f82f 1506}
c527ee8f 1507#endif
7d03f82f 1508
a1d1bb31
AL
1509/* Add a breakpoint. */
1510int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1511 CPUBreakpoint **breakpoint)
4c3a88a2 1512{
1fddef4b 1513#if defined(TARGET_HAS_ICE)
c0ce998e 1514 CPUBreakpoint *bp;
3b46e624 1515
a1d1bb31 1516 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1517
a1d1bb31
AL
1518 bp->pc = pc;
1519 bp->flags = flags;
1520
2dc9f411 1521 /* keep all GDB-injected breakpoints in front */
c0ce998e 1522 if (flags & BP_GDB)
72cf2d4f 1523 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1524 else
72cf2d4f 1525 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1526
d720b93d 1527 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1528
1529 if (breakpoint)
1530 *breakpoint = bp;
4c3a88a2
FB
1531 return 0;
1532#else
a1d1bb31 1533 return -ENOSYS;
4c3a88a2
FB
1534#endif
1535}
1536
a1d1bb31
AL
1537/* Remove a specific breakpoint. */
1538int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1539{
7d03f82f 1540#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1541 CPUBreakpoint *bp;
1542
72cf2d4f 1543 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1544 if (bp->pc == pc && bp->flags == flags) {
1545 cpu_breakpoint_remove_by_ref(env, bp);
1546 return 0;
1547 }
7d03f82f 1548 }
a1d1bb31
AL
1549 return -ENOENT;
1550#else
1551 return -ENOSYS;
7d03f82f
EI
1552#endif
1553}
1554
a1d1bb31
AL
1555/* Remove a specific breakpoint by reference. */
1556void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1557{
1fddef4b 1558#if defined(TARGET_HAS_ICE)
72cf2d4f 1559 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1560
a1d1bb31
AL
1561 breakpoint_invalidate(env, breakpoint->pc);
1562
1563 qemu_free(breakpoint);
1564#endif
1565}
1566
1567/* Remove all matching breakpoints. */
1568void cpu_breakpoint_remove_all(CPUState *env, int mask)
1569{
1570#if defined(TARGET_HAS_ICE)
c0ce998e 1571 CPUBreakpoint *bp, *next;
a1d1bb31 1572
72cf2d4f 1573 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1574 if (bp->flags & mask)
1575 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1576 }
4c3a88a2
FB
1577#endif
1578}
1579
c33a346e
FB
1580/* enable or disable single step mode. EXCP_DEBUG is returned by the
1581 CPU loop after each instruction */
1582void cpu_single_step(CPUState *env, int enabled)
1583{
1fddef4b 1584#if defined(TARGET_HAS_ICE)
c33a346e
FB
1585 if (env->singlestep_enabled != enabled) {
1586 env->singlestep_enabled = enabled;
e22a25c9
AL
1587 if (kvm_enabled())
1588 kvm_update_guest_debug(env, 0);
1589 else {
ccbb4d44 1590 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1591 /* XXX: only flush what is necessary */
1592 tb_flush(env);
1593 }
c33a346e
FB
1594 }
1595#endif
1596}
1597
34865134
FB
1598/* enable or disable low levels log */
1599void cpu_set_log(int log_flags)
1600{
1601 loglevel = log_flags;
1602 if (loglevel && !logfile) {
11fcfab4 1603 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1604 if (!logfile) {
1605 perror(logfilename);
1606 _exit(1);
1607 }
9fa3e853
FB
1608#if !defined(CONFIG_SOFTMMU)
1609 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1610 {
b55266b5 1611 static char logfile_buf[4096];
9fa3e853
FB
1612 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1613 }
bf65f53f
FN
1614#elif !defined(_WIN32)
1615 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1616 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1617#endif
e735b91c
PB
1618 log_append = 1;
1619 }
1620 if (!loglevel && logfile) {
1621 fclose(logfile);
1622 logfile = NULL;
34865134
FB
1623 }
1624}
1625
1626void cpu_set_log_filename(const char *filename)
1627{
1628 logfilename = strdup(filename);
e735b91c
PB
1629 if (logfile) {
1630 fclose(logfile);
1631 logfile = NULL;
1632 }
1633 cpu_set_log(loglevel);
34865134 1634}
c33a346e 1635
3098dba0 1636static void cpu_unlink_tb(CPUState *env)
ea041c0e 1637{
3098dba0
AJ
1638 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1639 problem and hope the cpu will stop of its own accord. For userspace
1640 emulation this often isn't actually as bad as it sounds. Often
1641 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1642 TranslationBlock *tb;
c227f099 1643 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1644
cab1b4bd 1645 spin_lock(&interrupt_lock);
3098dba0
AJ
1646 tb = env->current_tb;
1647 /* if the cpu is currently executing code, we must unlink it and
1648 all the potentially executing TB */
f76cfe56 1649 if (tb) {
3098dba0
AJ
1650 env->current_tb = NULL;
1651 tb_reset_jump_recursive(tb);
be214e6c 1652 }
cab1b4bd 1653 spin_unlock(&interrupt_lock);
3098dba0
AJ
1654}
1655
1656/* mask must never be zero, except for A20 change call */
1657void cpu_interrupt(CPUState *env, int mask)
1658{
1659 int old_mask;
be214e6c 1660
2e70f6ef 1661 old_mask = env->interrupt_request;
68a79315 1662 env->interrupt_request |= mask;
3098dba0 1663
8edac960
AL
1664#ifndef CONFIG_USER_ONLY
1665 /*
1666 * If called from iothread context, wake the target cpu in
1667 * case its halted.
1668 */
1669 if (!qemu_cpu_self(env)) {
1670 qemu_cpu_kick(env);
1671 return;
1672 }
1673#endif
1674
2e70f6ef 1675 if (use_icount) {
266910c4 1676 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1677#ifndef CONFIG_USER_ONLY
2e70f6ef 1678 if (!can_do_io(env)
be214e6c 1679 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1680 cpu_abort(env, "Raised interrupt while not in I/O function");
1681 }
1682#endif
1683 } else {
3098dba0 1684 cpu_unlink_tb(env);
ea041c0e
FB
1685 }
1686}
1687
b54ad049
FB
1688void cpu_reset_interrupt(CPUState *env, int mask)
1689{
1690 env->interrupt_request &= ~mask;
1691}
1692
3098dba0
AJ
1693void cpu_exit(CPUState *env)
1694{
1695 env->exit_request = 1;
1696 cpu_unlink_tb(env);
1697}
1698
c7cd6a37 1699const CPULogItem cpu_log_items[] = {
5fafdf24 1700 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1701 "show generated host assembly code for each compiled TB" },
1702 { CPU_LOG_TB_IN_ASM, "in_asm",
1703 "show target assembly code for each compiled TB" },
5fafdf24 1704 { CPU_LOG_TB_OP, "op",
57fec1fe 1705 "show micro ops for each compiled TB" },
f193c797 1706 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1707 "show micro ops "
1708#ifdef TARGET_I386
1709 "before eflags optimization and "
f193c797 1710#endif
e01a1157 1711 "after liveness analysis" },
f193c797
FB
1712 { CPU_LOG_INT, "int",
1713 "show interrupts/exceptions in short format" },
1714 { CPU_LOG_EXEC, "exec",
1715 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1716 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1717 "show CPU state before block translation" },
f193c797
FB
1718#ifdef TARGET_I386
1719 { CPU_LOG_PCALL, "pcall",
1720 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1721 { CPU_LOG_RESET, "cpu_reset",
1722 "show CPU state before CPU resets" },
f193c797 1723#endif
8e3a9fd2 1724#ifdef DEBUG_IOPORT
fd872598
FB
1725 { CPU_LOG_IOPORT, "ioport",
1726 "show all i/o ports accesses" },
8e3a9fd2 1727#endif
f193c797
FB
1728 { 0, NULL, NULL },
1729};
1730
f6f3fbca
MT
1731#ifndef CONFIG_USER_ONLY
1732static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1733 = QLIST_HEAD_INITIALIZER(memory_client_list);
1734
1735static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1736 ram_addr_t size,
1737 ram_addr_t phys_offset)
1738{
1739 CPUPhysMemoryClient *client;
1740 QLIST_FOREACH(client, &memory_client_list, list) {
1741 client->set_memory(client, start_addr, size, phys_offset);
1742 }
1743}
1744
1745static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1746 target_phys_addr_t end)
1747{
1748 CPUPhysMemoryClient *client;
1749 QLIST_FOREACH(client, &memory_client_list, list) {
1750 int r = client->sync_dirty_bitmap(client, start, end);
1751 if (r < 0)
1752 return r;
1753 }
1754 return 0;
1755}
1756
1757static int cpu_notify_migration_log(int enable)
1758{
1759 CPUPhysMemoryClient *client;
1760 QLIST_FOREACH(client, &memory_client_list, list) {
1761 int r = client->migration_log(client, enable);
1762 if (r < 0)
1763 return r;
1764 }
1765 return 0;
1766}
1767
5cd2c5b6
RH
1768static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1769 int level, void **lp)
f6f3fbca 1770{
5cd2c5b6 1771 int i;
f6f3fbca 1772
5cd2c5b6
RH
1773 if (*lp == NULL) {
1774 return;
1775 }
1776 if (level == 0) {
1777 PhysPageDesc *pd = *lp;
7296abac 1778 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1779 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1780 client->set_memory(client, pd[i].region_offset,
1781 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1782 }
5cd2c5b6
RH
1783 }
1784 } else {
1785 void **pp = *lp;
7296abac 1786 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1787 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1788 }
1789 }
1790}
1791
1792static void phys_page_for_each(CPUPhysMemoryClient *client)
1793{
5cd2c5b6
RH
1794 int i;
1795 for (i = 0; i < P_L1_SIZE; ++i) {
1796 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1797 l1_phys_map + 1);
f6f3fbca 1798 }
f6f3fbca
MT
1799}
1800
1801void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1802{
1803 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1804 phys_page_for_each(client);
1805}
1806
1807void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1808{
1809 QLIST_REMOVE(client, list);
1810}
1811#endif
1812
f193c797
FB
1813static int cmp1(const char *s1, int n, const char *s2)
1814{
1815 if (strlen(s2) != n)
1816 return 0;
1817 return memcmp(s1, s2, n) == 0;
1818}
3b46e624 1819
f193c797
FB
1820/* takes a comma separated list of log masks. Return 0 if error. */
1821int cpu_str_to_log_mask(const char *str)
1822{
c7cd6a37 1823 const CPULogItem *item;
f193c797
FB
1824 int mask;
1825 const char *p, *p1;
1826
1827 p = str;
1828 mask = 0;
1829 for(;;) {
1830 p1 = strchr(p, ',');
1831 if (!p1)
1832 p1 = p + strlen(p);
8e3a9fd2
FB
1833 if(cmp1(p,p1-p,"all")) {
1834 for(item = cpu_log_items; item->mask != 0; item++) {
1835 mask |= item->mask;
1836 }
1837 } else {
f193c797
FB
1838 for(item = cpu_log_items; item->mask != 0; item++) {
1839 if (cmp1(p, p1 - p, item->name))
1840 goto found;
1841 }
1842 return 0;
8e3a9fd2 1843 }
f193c797
FB
1844 found:
1845 mask |= item->mask;
1846 if (*p1 != ',')
1847 break;
1848 p = p1 + 1;
1849 }
1850 return mask;
1851}
ea041c0e 1852
7501267e
FB
1853void cpu_abort(CPUState *env, const char *fmt, ...)
1854{
1855 va_list ap;
493ae1f0 1856 va_list ap2;
7501267e
FB
1857
1858 va_start(ap, fmt);
493ae1f0 1859 va_copy(ap2, ap);
7501267e
FB
1860 fprintf(stderr, "qemu: fatal: ");
1861 vfprintf(stderr, fmt, ap);
1862 fprintf(stderr, "\n");
1863#ifdef TARGET_I386
7fe48483
FB
1864 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1865#else
1866 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1867#endif
93fcfe39
AL
1868 if (qemu_log_enabled()) {
1869 qemu_log("qemu: fatal: ");
1870 qemu_log_vprintf(fmt, ap2);
1871 qemu_log("\n");
f9373291 1872#ifdef TARGET_I386
93fcfe39 1873 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1874#else
93fcfe39 1875 log_cpu_state(env, 0);
f9373291 1876#endif
31b1a7b4 1877 qemu_log_flush();
93fcfe39 1878 qemu_log_close();
924edcae 1879 }
493ae1f0 1880 va_end(ap2);
f9373291 1881 va_end(ap);
fd052bf6
RV
1882#if defined(CONFIG_USER_ONLY)
1883 {
1884 struct sigaction act;
1885 sigfillset(&act.sa_mask);
1886 act.sa_handler = SIG_DFL;
1887 sigaction(SIGABRT, &act, NULL);
1888 }
1889#endif
7501267e
FB
1890 abort();
1891}
1892
c5be9f08
TS
1893CPUState *cpu_copy(CPUState *env)
1894{
01ba9816 1895 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1896 CPUState *next_cpu = new_env->next_cpu;
1897 int cpu_index = new_env->cpu_index;
5a38f081
AL
1898#if defined(TARGET_HAS_ICE)
1899 CPUBreakpoint *bp;
1900 CPUWatchpoint *wp;
1901#endif
1902
c5be9f08 1903 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1904
1905 /* Preserve chaining and index. */
c5be9f08
TS
1906 new_env->next_cpu = next_cpu;
1907 new_env->cpu_index = cpu_index;
5a38f081
AL
1908
1909 /* Clone all break/watchpoints.
1910 Note: Once we support ptrace with hw-debug register access, make sure
1911 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1912 QTAILQ_INIT(&env->breakpoints);
1913 QTAILQ_INIT(&env->watchpoints);
5a38f081 1914#if defined(TARGET_HAS_ICE)
72cf2d4f 1915 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1916 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1917 }
72cf2d4f 1918 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1919 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1920 wp->flags, NULL);
1921 }
1922#endif
1923
c5be9f08
TS
1924 return new_env;
1925}
1926
0124311e
FB
1927#if !defined(CONFIG_USER_ONLY)
1928
5c751e99
EI
1929static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1930{
1931 unsigned int i;
1932
1933 /* Discard jump cache entries for any tb which might potentially
1934 overlap the flushed page. */
1935 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1936 memset (&env->tb_jmp_cache[i], 0,
1937 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1938
1939 i = tb_jmp_cache_hash_page(addr);
1940 memset (&env->tb_jmp_cache[i], 0,
1941 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1942}
1943
08738984
IK
1944static CPUTLBEntry s_cputlb_empty_entry = {
1945 .addr_read = -1,
1946 .addr_write = -1,
1947 .addr_code = -1,
1948 .addend = -1,
1949};
1950
ee8b7021
FB
1951/* NOTE: if flush_global is true, also flush global entries (not
1952 implemented yet) */
1953void tlb_flush(CPUState *env, int flush_global)
33417e70 1954{
33417e70 1955 int i;
0124311e 1956
9fa3e853
FB
1957#if defined(DEBUG_TLB)
1958 printf("tlb_flush:\n");
1959#endif
0124311e
FB
1960 /* must reset current TB so that interrupts cannot modify the
1961 links while we are modifying them */
1962 env->current_tb = NULL;
1963
33417e70 1964 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1965 int mmu_idx;
1966 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1967 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1968 }
33417e70 1969 }
9fa3e853 1970
8a40a180 1971 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1972
d4c430a8
PB
1973 env->tlb_flush_addr = -1;
1974 env->tlb_flush_mask = 0;
e3db7226 1975 tlb_flush_count++;
33417e70
FB
1976}
1977
274da6b2 1978static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1979{
5fafdf24 1980 if (addr == (tlb_entry->addr_read &
84b7b8e7 1981 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1982 addr == (tlb_entry->addr_write &
84b7b8e7 1983 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1984 addr == (tlb_entry->addr_code &
84b7b8e7 1985 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1986 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1987 }
61382a50
FB
1988}
1989
2e12669a 1990void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1991{
8a40a180 1992 int i;
cfde4bd9 1993 int mmu_idx;
0124311e 1994
9fa3e853 1995#if defined(DEBUG_TLB)
108c49b8 1996 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1997#endif
d4c430a8
PB
1998 /* Check if we need to flush due to large pages. */
1999 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
2000#if defined(DEBUG_TLB)
2001 printf("tlb_flush_page: forced full flush ("
2002 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2003 env->tlb_flush_addr, env->tlb_flush_mask);
2004#endif
2005 tlb_flush(env, 1);
2006 return;
2007 }
0124311e
FB
2008 /* must reset current TB so that interrupts cannot modify the
2009 links while we are modifying them */
2010 env->current_tb = NULL;
61382a50
FB
2011
2012 addr &= TARGET_PAGE_MASK;
2013 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2015 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2016
5c751e99 2017 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2018}
2019
9fa3e853
FB
2020/* update the TLBs so that writes to code in the virtual page 'addr'
2021 can be detected */
c227f099 2022static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2023{
5fafdf24 2024 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2025 ram_addr + TARGET_PAGE_SIZE,
2026 CODE_DIRTY_FLAG);
9fa3e853
FB
2027}
2028
9fa3e853 2029/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2030 tested for self modifying code */
c227f099 2031static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2032 target_ulong vaddr)
9fa3e853 2033{
f7c11b53 2034 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2035}
2036
5fafdf24 2037static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2038 unsigned long start, unsigned long length)
2039{
2040 unsigned long addr;
84b7b8e7
FB
2041 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2042 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2043 if ((addr - start) < length) {
0f459d16 2044 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2045 }
2046 }
2047}
2048
5579c7f3 2049/* Note: start and end must be within the same ram block. */
c227f099 2050void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2051 int dirty_flags)
1ccde1cb
FB
2052{
2053 CPUState *env;
4f2ac237 2054 unsigned long length, start1;
f7c11b53 2055 int i;
1ccde1cb
FB
2056
2057 start &= TARGET_PAGE_MASK;
2058 end = TARGET_PAGE_ALIGN(end);
2059
2060 length = end - start;
2061 if (length == 0)
2062 return;
f7c11b53 2063 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2064
1ccde1cb
FB
2065 /* we modify the TLB cache so that the dirty bit will be set again
2066 when accessing the range */
5579c7f3
PB
2067 start1 = (unsigned long)qemu_get_ram_ptr(start);
2068 /* Chek that we don't span multiple blocks - this breaks the
2069 address comparisons below. */
2070 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2071 != (end - 1) - start) {
2072 abort();
2073 }
2074
6a00d601 2075 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2076 int mmu_idx;
2077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2078 for(i = 0; i < CPU_TLB_SIZE; i++)
2079 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2080 start1, length);
2081 }
6a00d601 2082 }
1ccde1cb
FB
2083}
2084
74576198
AL
2085int cpu_physical_memory_set_dirty_tracking(int enable)
2086{
f6f3fbca 2087 int ret = 0;
74576198 2088 in_migration = enable;
f6f3fbca
MT
2089 ret = cpu_notify_migration_log(!!enable);
2090 return ret;
74576198
AL
2091}
2092
2093int cpu_physical_memory_get_dirty_tracking(void)
2094{
2095 return in_migration;
2096}
2097
c227f099
AL
2098int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2099 target_phys_addr_t end_addr)
2bec46dc 2100{
7b8f3b78 2101 int ret;
151f7749 2102
f6f3fbca 2103 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2104 return ret;
2bec46dc
AL
2105}
2106
3a7d929e
FB
2107static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2108{
c227f099 2109 ram_addr_t ram_addr;
5579c7f3 2110 void *p;
3a7d929e 2111
84b7b8e7 2112 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2113 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2114 + tlb_entry->addend);
2115 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2116 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2117 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2118 }
2119 }
2120}
2121
2122/* update the TLB according to the current state of the dirty bits */
2123void cpu_tlb_update_dirty(CPUState *env)
2124{
2125 int i;
cfde4bd9
IY
2126 int mmu_idx;
2127 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2128 for(i = 0; i < CPU_TLB_SIZE; i++)
2129 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2130 }
3a7d929e
FB
2131}
2132
0f459d16 2133static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2134{
0f459d16
PB
2135 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2136 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2137}
2138
0f459d16
PB
2139/* update the TLB corresponding to virtual page vaddr
2140 so that it is no longer dirty */
2141static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2142{
1ccde1cb 2143 int i;
cfde4bd9 2144 int mmu_idx;
1ccde1cb 2145
0f459d16 2146 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2147 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2148 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2149 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2150}
2151
d4c430a8
PB
2152/* Our TLB does not support large pages, so remember the area covered by
2153 large pages and trigger a full TLB flush if these are invalidated. */
2154static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2155 target_ulong size)
2156{
2157 target_ulong mask = ~(size - 1);
2158
2159 if (env->tlb_flush_addr == (target_ulong)-1) {
2160 env->tlb_flush_addr = vaddr & mask;
2161 env->tlb_flush_mask = mask;
2162 return;
2163 }
2164 /* Extend the existing region to include the new page.
2165 This is a compromise between unnecessary flushes and the cost
2166 of maintaining a full variable size TLB. */
2167 mask &= env->tlb_flush_mask;
2168 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2169 mask <<= 1;
2170 }
2171 env->tlb_flush_addr &= mask;
2172 env->tlb_flush_mask = mask;
2173}
2174
2175/* Add a new TLB entry. At most one entry for a given virtual address
2176 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2177 supplied size is only used by tlb_flush_page. */
2178void tlb_set_page(CPUState *env, target_ulong vaddr,
2179 target_phys_addr_t paddr, int prot,
2180 int mmu_idx, target_ulong size)
9fa3e853 2181{
92e873b9 2182 PhysPageDesc *p;
4f2ac237 2183 unsigned long pd;
9fa3e853 2184 unsigned int index;
4f2ac237 2185 target_ulong address;
0f459d16 2186 target_ulong code_address;
355b1943 2187 unsigned long addend;
84b7b8e7 2188 CPUTLBEntry *te;
a1d1bb31 2189 CPUWatchpoint *wp;
c227f099 2190 target_phys_addr_t iotlb;
9fa3e853 2191
d4c430a8
PB
2192 assert(size >= TARGET_PAGE_SIZE);
2193 if (size != TARGET_PAGE_SIZE) {
2194 tlb_add_large_page(env, vaddr, size);
2195 }
92e873b9 2196 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2197 if (!p) {
2198 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2199 } else {
2200 pd = p->phys_offset;
9fa3e853
FB
2201 }
2202#if defined(DEBUG_TLB)
6ebbf390
JM
2203 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2204 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2205#endif
2206
0f459d16
PB
2207 address = vaddr;
2208 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2209 /* IO memory case (romd handled later) */
2210 address |= TLB_MMIO;
2211 }
5579c7f3 2212 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2213 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2214 /* Normal RAM. */
2215 iotlb = pd & TARGET_PAGE_MASK;
2216 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2217 iotlb |= IO_MEM_NOTDIRTY;
2218 else
2219 iotlb |= IO_MEM_ROM;
2220 } else {
ccbb4d44 2221 /* IO handlers are currently passed a physical address.
0f459d16
PB
2222 It would be nice to pass an offset from the base address
2223 of that region. This would avoid having to special case RAM,
2224 and avoid full address decoding in every device.
2225 We can't use the high bits of pd for this because
2226 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2227 iotlb = (pd & ~TARGET_PAGE_MASK);
2228 if (p) {
8da3ff18
PB
2229 iotlb += p->region_offset;
2230 } else {
2231 iotlb += paddr;
2232 }
0f459d16
PB
2233 }
2234
2235 code_address = address;
2236 /* Make accesses to pages with watchpoints go via the
2237 watchpoint trap routines. */
72cf2d4f 2238 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2239 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2240 iotlb = io_mem_watch + paddr;
2241 /* TODO: The memory case can be optimized by not trapping
2242 reads of pages with a write breakpoint. */
2243 address |= TLB_MMIO;
6658ffb8 2244 }
0f459d16 2245 }
d79acba4 2246
0f459d16
PB
2247 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2248 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2249 te = &env->tlb_table[mmu_idx][index];
2250 te->addend = addend - vaddr;
2251 if (prot & PAGE_READ) {
2252 te->addr_read = address;
2253 } else {
2254 te->addr_read = -1;
2255 }
5c751e99 2256
0f459d16
PB
2257 if (prot & PAGE_EXEC) {
2258 te->addr_code = code_address;
2259 } else {
2260 te->addr_code = -1;
2261 }
2262 if (prot & PAGE_WRITE) {
2263 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2264 (pd & IO_MEM_ROMD)) {
2265 /* Write access calls the I/O callback. */
2266 te->addr_write = address | TLB_MMIO;
2267 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2268 !cpu_physical_memory_is_dirty(pd)) {
2269 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2270 } else {
0f459d16 2271 te->addr_write = address;
9fa3e853 2272 }
0f459d16
PB
2273 } else {
2274 te->addr_write = -1;
9fa3e853 2275 }
9fa3e853
FB
2276}
2277
0124311e
FB
2278#else
2279
ee8b7021 2280void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2281{
2282}
2283
2e12669a 2284void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2285{
2286}
2287
edf8e2af
MW
2288/*
2289 * Walks guest process memory "regions" one by one
2290 * and calls callback function 'fn' for each region.
2291 */
5cd2c5b6
RH
2292
2293struct walk_memory_regions_data
2294{
2295 walk_memory_regions_fn fn;
2296 void *priv;
2297 unsigned long start;
2298 int prot;
2299};
2300
2301static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2302 abi_ulong end, int new_prot)
5cd2c5b6
RH
2303{
2304 if (data->start != -1ul) {
2305 int rc = data->fn(data->priv, data->start, end, data->prot);
2306 if (rc != 0) {
2307 return rc;
2308 }
2309 }
2310
2311 data->start = (new_prot ? end : -1ul);
2312 data->prot = new_prot;
2313
2314 return 0;
2315}
2316
2317static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2318 abi_ulong base, int level, void **lp)
5cd2c5b6 2319{
b480d9b7 2320 abi_ulong pa;
5cd2c5b6
RH
2321 int i, rc;
2322
2323 if (*lp == NULL) {
2324 return walk_memory_regions_end(data, base, 0);
2325 }
2326
2327 if (level == 0) {
2328 PageDesc *pd = *lp;
7296abac 2329 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2330 int prot = pd[i].flags;
2331
2332 pa = base | (i << TARGET_PAGE_BITS);
2333 if (prot != data->prot) {
2334 rc = walk_memory_regions_end(data, pa, prot);
2335 if (rc != 0) {
2336 return rc;
9fa3e853 2337 }
9fa3e853 2338 }
5cd2c5b6
RH
2339 }
2340 } else {
2341 void **pp = *lp;
7296abac 2342 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2343 pa = base | ((abi_ulong)i <<
2344 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2345 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2346 if (rc != 0) {
2347 return rc;
2348 }
2349 }
2350 }
2351
2352 return 0;
2353}
2354
2355int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2356{
2357 struct walk_memory_regions_data data;
2358 unsigned long i;
2359
2360 data.fn = fn;
2361 data.priv = priv;
2362 data.start = -1ul;
2363 data.prot = 0;
2364
2365 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2366 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2367 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2368 if (rc != 0) {
2369 return rc;
9fa3e853 2370 }
33417e70 2371 }
5cd2c5b6
RH
2372
2373 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2374}
2375
b480d9b7
PB
2376static int dump_region(void *priv, abi_ulong start,
2377 abi_ulong end, unsigned long prot)
edf8e2af
MW
2378{
2379 FILE *f = (FILE *)priv;
2380
b480d9b7
PB
2381 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2382 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2383 start, end, end - start,
2384 ((prot & PAGE_READ) ? 'r' : '-'),
2385 ((prot & PAGE_WRITE) ? 'w' : '-'),
2386 ((prot & PAGE_EXEC) ? 'x' : '-'));
2387
2388 return (0);
2389}
2390
2391/* dump memory mappings */
2392void page_dump(FILE *f)
2393{
2394 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2395 "start", "end", "size", "prot");
2396 walk_memory_regions(f, dump_region);
33417e70
FB
2397}
2398
53a5960a 2399int page_get_flags(target_ulong address)
33417e70 2400{
9fa3e853
FB
2401 PageDesc *p;
2402
2403 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2404 if (!p)
9fa3e853
FB
2405 return 0;
2406 return p->flags;
2407}
2408
376a7909
RH
2409/* Modify the flags of a page and invalidate the code if necessary.
2410 The flag PAGE_WRITE_ORG is positioned automatically depending
2411 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2412void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2413{
376a7909
RH
2414 target_ulong addr, len;
2415
2416 /* This function should never be called with addresses outside the
2417 guest address space. If this assert fires, it probably indicates
2418 a missing call to h2g_valid. */
b480d9b7
PB
2419#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2420 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2421#endif
2422 assert(start < end);
9fa3e853
FB
2423
2424 start = start & TARGET_PAGE_MASK;
2425 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2426
2427 if (flags & PAGE_WRITE) {
9fa3e853 2428 flags |= PAGE_WRITE_ORG;
376a7909
RH
2429 }
2430
2431 for (addr = start, len = end - start;
2432 len != 0;
2433 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2434 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2435
2436 /* If the write protection bit is set, then we invalidate
2437 the code inside. */
5fafdf24 2438 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2439 (flags & PAGE_WRITE) &&
2440 p->first_tb) {
d720b93d 2441 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2442 }
2443 p->flags = flags;
2444 }
33417e70
FB
2445}
2446
3d97b40b
TS
2447int page_check_range(target_ulong start, target_ulong len, int flags)
2448{
2449 PageDesc *p;
2450 target_ulong end;
2451 target_ulong addr;
2452
376a7909
RH
2453 /* This function should never be called with addresses outside the
2454 guest address space. If this assert fires, it probably indicates
2455 a missing call to h2g_valid. */
338e9e6c
BS
2456#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2457 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2458#endif
2459
2460 if (start + len - 1 < start) {
2461 /* We've wrapped around. */
55f280c9 2462 return -1;
376a7909 2463 }
55f280c9 2464
3d97b40b
TS
2465 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2466 start = start & TARGET_PAGE_MASK;
2467
376a7909
RH
2468 for (addr = start, len = end - start;
2469 len != 0;
2470 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2471 p = page_find(addr >> TARGET_PAGE_BITS);
2472 if( !p )
2473 return -1;
2474 if( !(p->flags & PAGE_VALID) )
2475 return -1;
2476
dae3270c 2477 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2478 return -1;
dae3270c
FB
2479 if (flags & PAGE_WRITE) {
2480 if (!(p->flags & PAGE_WRITE_ORG))
2481 return -1;
2482 /* unprotect the page if it was put read-only because it
2483 contains translated code */
2484 if (!(p->flags & PAGE_WRITE)) {
2485 if (!page_unprotect(addr, 0, NULL))
2486 return -1;
2487 }
2488 return 0;
2489 }
3d97b40b
TS
2490 }
2491 return 0;
2492}
2493
9fa3e853 2494/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2495 page. Return TRUE if the fault was successfully handled. */
53a5960a 2496int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2497{
45d679d6
AJ
2498 unsigned int prot;
2499 PageDesc *p;
53a5960a 2500 target_ulong host_start, host_end, addr;
9fa3e853 2501
c8a706fe
PB
2502 /* Technically this isn't safe inside a signal handler. However we
2503 know this only ever happens in a synchronous SEGV handler, so in
2504 practice it seems to be ok. */
2505 mmap_lock();
2506
45d679d6
AJ
2507 p = page_find(address >> TARGET_PAGE_BITS);
2508 if (!p) {
c8a706fe 2509 mmap_unlock();
9fa3e853 2510 return 0;
c8a706fe 2511 }
45d679d6 2512
9fa3e853
FB
2513 /* if the page was really writable, then we change its
2514 protection back to writable */
45d679d6
AJ
2515 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2516 host_start = address & qemu_host_page_mask;
2517 host_end = host_start + qemu_host_page_size;
2518
2519 prot = 0;
2520 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2521 p = page_find(addr >> TARGET_PAGE_BITS);
2522 p->flags |= PAGE_WRITE;
2523 prot |= p->flags;
2524
9fa3e853
FB
2525 /* and since the content will be modified, we must invalidate
2526 the corresponding translated code. */
45d679d6 2527 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2528#ifdef DEBUG_TB_CHECK
45d679d6 2529 tb_invalidate_check(addr);
9fa3e853 2530#endif
9fa3e853 2531 }
45d679d6
AJ
2532 mprotect((void *)g2h(host_start), qemu_host_page_size,
2533 prot & PAGE_BITS);
2534
2535 mmap_unlock();
2536 return 1;
9fa3e853 2537 }
c8a706fe 2538 mmap_unlock();
9fa3e853
FB
2539 return 0;
2540}
2541
6a00d601
FB
2542static inline void tlb_set_dirty(CPUState *env,
2543 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2544{
2545}
9fa3e853
FB
2546#endif /* defined(CONFIG_USER_ONLY) */
2547
e2eef170 2548#if !defined(CONFIG_USER_ONLY)
8da3ff18 2549
c04b2b78
PB
2550#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2551typedef struct subpage_t {
2552 target_phys_addr_t base;
2553 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2554 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2555 void *opaque[TARGET_PAGE_SIZE][2][4];
2556 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2557} subpage_t;
2558
c227f099
AL
2559static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2560 ram_addr_t memory, ram_addr_t region_offset);
2561static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2562 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2563#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2564 need_subpage) \
2565 do { \
2566 if (addr > start_addr) \
2567 start_addr2 = 0; \
2568 else { \
2569 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2570 if (start_addr2 > 0) \
2571 need_subpage = 1; \
2572 } \
2573 \
49e9fba2 2574 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2575 end_addr2 = TARGET_PAGE_SIZE - 1; \
2576 else { \
2577 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2578 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2579 need_subpage = 1; \
2580 } \
2581 } while (0)
2582
8f2498f9
MT
2583/* register physical memory.
2584 For RAM, 'size' must be a multiple of the target page size.
2585 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2586 io memory page. The address used when calling the IO function is
2587 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2588 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2589 before calculating this offset. This should not be a problem unless
2590 the low bits of start_addr and region_offset differ. */
c227f099
AL
2591void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2592 ram_addr_t size,
2593 ram_addr_t phys_offset,
2594 ram_addr_t region_offset)
33417e70 2595{
c227f099 2596 target_phys_addr_t addr, end_addr;
92e873b9 2597 PhysPageDesc *p;
9d42037b 2598 CPUState *env;
c227f099 2599 ram_addr_t orig_size = size;
db7b5426 2600 void *subpage;
33417e70 2601
f6f3fbca
MT
2602 cpu_notify_set_memory(start_addr, size, phys_offset);
2603
67c4d23c
PB
2604 if (phys_offset == IO_MEM_UNASSIGNED) {
2605 region_offset = start_addr;
2606 }
8da3ff18 2607 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2608 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2609 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2610 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2611 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2612 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2613 ram_addr_t orig_memory = p->phys_offset;
2614 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2615 int need_subpage = 0;
2616
2617 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2618 need_subpage);
4254fab8 2619 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2620 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2621 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2622 &p->phys_offset, orig_memory,
2623 p->region_offset);
db7b5426
BS
2624 } else {
2625 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2626 >> IO_MEM_SHIFT];
2627 }
8da3ff18
PB
2628 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2629 region_offset);
2630 p->region_offset = 0;
db7b5426
BS
2631 } else {
2632 p->phys_offset = phys_offset;
2633 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2634 (phys_offset & IO_MEM_ROMD))
2635 phys_offset += TARGET_PAGE_SIZE;
2636 }
2637 } else {
2638 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2639 p->phys_offset = phys_offset;
8da3ff18 2640 p->region_offset = region_offset;
db7b5426 2641 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2642 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2643 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2644 } else {
c227f099 2645 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2646 int need_subpage = 0;
2647
2648 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2649 end_addr2, need_subpage);
2650
4254fab8 2651 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2652 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2653 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2654 addr & TARGET_PAGE_MASK);
db7b5426 2655 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2656 phys_offset, region_offset);
2657 p->region_offset = 0;
db7b5426
BS
2658 }
2659 }
2660 }
8da3ff18 2661 region_offset += TARGET_PAGE_SIZE;
33417e70 2662 }
3b46e624 2663
9d42037b
FB
2664 /* since each CPU stores ram addresses in its TLB cache, we must
2665 reset the modified entries */
2666 /* XXX: slow ! */
2667 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2668 tlb_flush(env, 1);
2669 }
33417e70
FB
2670}
2671
ba863458 2672/* XXX: temporary until new memory mapping API */
c227f099 2673ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2674{
2675 PhysPageDesc *p;
2676
2677 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2678 if (!p)
2679 return IO_MEM_UNASSIGNED;
2680 return p->phys_offset;
2681}
2682
c227f099 2683void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2684{
2685 if (kvm_enabled())
2686 kvm_coalesce_mmio_region(addr, size);
2687}
2688
c227f099 2689void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2690{
2691 if (kvm_enabled())
2692 kvm_uncoalesce_mmio_region(addr, size);
2693}
2694
62a2744c
SY
2695void qemu_flush_coalesced_mmio_buffer(void)
2696{
2697 if (kvm_enabled())
2698 kvm_flush_coalesced_mmio_buffer();
2699}
2700
c902760f
MT
2701#if defined(__linux__) && !defined(TARGET_S390X)
2702
2703#include <sys/vfs.h>
2704
2705#define HUGETLBFS_MAGIC 0x958458f6
2706
2707static long gethugepagesize(const char *path)
2708{
2709 struct statfs fs;
2710 int ret;
2711
2712 do {
2713 ret = statfs(path, &fs);
2714 } while (ret != 0 && errno == EINTR);
2715
2716 if (ret != 0) {
6adc0549 2717 perror(path);
c902760f
MT
2718 return 0;
2719 }
2720
2721 if (fs.f_type != HUGETLBFS_MAGIC)
2722 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2723
2724 return fs.f_bsize;
2725}
2726
2727static void *file_ram_alloc(ram_addr_t memory, const char *path)
2728{
2729 char *filename;
2730 void *area;
2731 int fd;
2732#ifdef MAP_POPULATE
2733 int flags;
2734#endif
2735 unsigned long hpagesize;
2736
2737 hpagesize = gethugepagesize(path);
2738 if (!hpagesize) {
2739 return NULL;
2740 }
2741
2742 if (memory < hpagesize) {
2743 return NULL;
2744 }
2745
2746 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2747 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2748 return NULL;
2749 }
2750
2751 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2752 return NULL;
2753 }
2754
2755 fd = mkstemp(filename);
2756 if (fd < 0) {
6adc0549 2757 perror("unable to create backing store for hugepages");
c902760f
MT
2758 free(filename);
2759 return NULL;
2760 }
2761 unlink(filename);
2762 free(filename);
2763
2764 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2765
2766 /*
2767 * ftruncate is not supported by hugetlbfs in older
2768 * hosts, so don't bother bailing out on errors.
2769 * If anything goes wrong with it under other filesystems,
2770 * mmap will fail.
2771 */
2772 if (ftruncate(fd, memory))
2773 perror("ftruncate");
2774
2775#ifdef MAP_POPULATE
2776 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2777 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2778 * to sidestep this quirk.
2779 */
2780 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2781 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2782#else
2783 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2784#endif
2785 if (area == MAP_FAILED) {
2786 perror("file_ram_alloc: can't mmap RAM pages");
2787 close(fd);
2788 return (NULL);
2789 }
2790 return area;
2791}
2792#endif
2793
c227f099 2794ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2795{
2796 RAMBlock *new_block;
2797
94a6b54f
PB
2798 size = TARGET_PAGE_ALIGN(size);
2799 new_block = qemu_malloc(sizeof(*new_block));
2800
c902760f
MT
2801 if (mem_path) {
2802#if defined (__linux__) && !defined(TARGET_S390X)
2803 new_block->host = file_ram_alloc(size, mem_path);
2804 if (!new_block->host)
2805 exit(1);
2806#else
2807 fprintf(stderr, "-mem-path option unsupported\n");
2808 exit(1);
2809#endif
2810 } else {
6b02494d 2811#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2812 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2813 new_block->host = mmap((void*)0x1000000, size,
2814 PROT_EXEC|PROT_READ|PROT_WRITE,
2815 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2816#else
c902760f 2817 new_block->host = qemu_vmalloc(size);
6b02494d 2818#endif
ccb167e9 2819#ifdef MADV_MERGEABLE
c902760f 2820 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2821#endif
c902760f 2822 }
94a6b54f
PB
2823 new_block->offset = last_ram_offset;
2824 new_block->length = size;
2825
2826 new_block->next = ram_blocks;
2827 ram_blocks = new_block;
2828
2829 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2830 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2831 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2832 0xff, size >> TARGET_PAGE_BITS);
2833
2834 last_ram_offset += size;
2835
6f0437e8
JK
2836 if (kvm_enabled())
2837 kvm_setup_guest_memory(new_block->host, size);
2838
94a6b54f
PB
2839 return new_block->offset;
2840}
e9a1ab19 2841
c227f099 2842void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2843{
94a6b54f 2844 /* TODO: implement this. */
e9a1ab19
FB
2845}
2846
dc828ca1 2847/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2848 With the exception of the softmmu code in this file, this should
2849 only be used for local memory (e.g. video ram) that the device owns,
2850 and knows it isn't going to access beyond the end of the block.
2851
2852 It should not be used for general purpose DMA.
2853 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2854 */
c227f099 2855void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2856{
94a6b54f
PB
2857 RAMBlock *prev;
2858 RAMBlock **prevp;
2859 RAMBlock *block;
2860
94a6b54f
PB
2861 prev = NULL;
2862 prevp = &ram_blocks;
2863 block = ram_blocks;
2864 while (block && (block->offset > addr
2865 || block->offset + block->length <= addr)) {
2866 if (prev)
2867 prevp = &prev->next;
2868 prev = block;
2869 block = block->next;
2870 }
2871 if (!block) {
2872 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2873 abort();
2874 }
2875 /* Move this entry to to start of the list. */
2876 if (prev) {
2877 prev->next = block->next;
2878 block->next = *prevp;
2879 *prevp = block;
2880 }
2881 return block->host + (addr - block->offset);
dc828ca1
PB
2882}
2883
5579c7f3
PB
2884/* Some of the softmmu routines need to translate from a host pointer
2885 (typically a TLB entry) back to a ram offset. */
c227f099 2886ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2887{
94a6b54f 2888 RAMBlock *prev;
94a6b54f
PB
2889 RAMBlock *block;
2890 uint8_t *host = ptr;
2891
94a6b54f 2892 prev = NULL;
94a6b54f
PB
2893 block = ram_blocks;
2894 while (block && (block->host > host
2895 || block->host + block->length <= host)) {
94a6b54f
PB
2896 prev = block;
2897 block = block->next;
2898 }
2899 if (!block) {
2900 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2901 abort();
2902 }
2903 return block->offset + (host - block->host);
5579c7f3
PB
2904}
2905
c227f099 2906static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2907{
67d3b957 2908#ifdef DEBUG_UNASSIGNED
ab3d1727 2909 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2910#endif
faed1c2a 2911#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2912 do_unassigned_access(addr, 0, 0, 0, 1);
2913#endif
2914 return 0;
2915}
2916
c227f099 2917static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2918{
2919#ifdef DEBUG_UNASSIGNED
2920 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2921#endif
faed1c2a 2922#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2923 do_unassigned_access(addr, 0, 0, 0, 2);
2924#endif
2925 return 0;
2926}
2927
c227f099 2928static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2929{
2930#ifdef DEBUG_UNASSIGNED
2931 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2932#endif
faed1c2a 2933#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2934 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2935#endif
33417e70
FB
2936 return 0;
2937}
2938
c227f099 2939static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2940{
67d3b957 2941#ifdef DEBUG_UNASSIGNED
ab3d1727 2942 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2943#endif
faed1c2a 2944#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2945 do_unassigned_access(addr, 1, 0, 0, 1);
2946#endif
2947}
2948
c227f099 2949static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2950{
2951#ifdef DEBUG_UNASSIGNED
2952 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2953#endif
faed1c2a 2954#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2955 do_unassigned_access(addr, 1, 0, 0, 2);
2956#endif
2957}
2958
c227f099 2959static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2960{
2961#ifdef DEBUG_UNASSIGNED
2962 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2963#endif
faed1c2a 2964#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2965 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2966#endif
33417e70
FB
2967}
2968
d60efc6b 2969static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2970 unassigned_mem_readb,
e18231a3
BS
2971 unassigned_mem_readw,
2972 unassigned_mem_readl,
33417e70
FB
2973};
2974
d60efc6b 2975static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2976 unassigned_mem_writeb,
e18231a3
BS
2977 unassigned_mem_writew,
2978 unassigned_mem_writel,
33417e70
FB
2979};
2980
c227f099 2981static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2982 uint32_t val)
9fa3e853 2983{
3a7d929e 2984 int dirty_flags;
f7c11b53 2985 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2986 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2987#if !defined(CONFIG_USER_ONLY)
3a7d929e 2988 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2989 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2990#endif
3a7d929e 2991 }
5579c7f3 2992 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2993 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2994 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2995 /* we remove the notdirty callback only if the code has been
2996 flushed */
2997 if (dirty_flags == 0xff)
2e70f6ef 2998 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2999}
3000
c227f099 3001static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3002 uint32_t val)
9fa3e853 3003{
3a7d929e 3004 int dirty_flags;
f7c11b53 3005 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3006 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3007#if !defined(CONFIG_USER_ONLY)
3a7d929e 3008 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3009 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3010#endif
3a7d929e 3011 }
5579c7f3 3012 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3013 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3014 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3015 /* we remove the notdirty callback only if the code has been
3016 flushed */
3017 if (dirty_flags == 0xff)
2e70f6ef 3018 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3019}
3020
c227f099 3021static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3022 uint32_t val)
9fa3e853 3023{
3a7d929e 3024 int dirty_flags;
f7c11b53 3025 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3026 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3027#if !defined(CONFIG_USER_ONLY)
3a7d929e 3028 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3029 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3030#endif
3a7d929e 3031 }
5579c7f3 3032 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3033 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3034 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3035 /* we remove the notdirty callback only if the code has been
3036 flushed */
3037 if (dirty_flags == 0xff)
2e70f6ef 3038 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3039}
3040
d60efc6b 3041static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3042 NULL, /* never used */
3043 NULL, /* never used */
3044 NULL, /* never used */
3045};
3046
d60efc6b 3047static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3048 notdirty_mem_writeb,
3049 notdirty_mem_writew,
3050 notdirty_mem_writel,
3051};
3052
0f459d16 3053/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3054static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3055{
3056 CPUState *env = cpu_single_env;
06d55cc1
AL
3057 target_ulong pc, cs_base;
3058 TranslationBlock *tb;
0f459d16 3059 target_ulong vaddr;
a1d1bb31 3060 CPUWatchpoint *wp;
06d55cc1 3061 int cpu_flags;
0f459d16 3062
06d55cc1
AL
3063 if (env->watchpoint_hit) {
3064 /* We re-entered the check after replacing the TB. Now raise
3065 * the debug interrupt so that is will trigger after the
3066 * current instruction. */
3067 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3068 return;
3069 }
2e70f6ef 3070 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3071 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3072 if ((vaddr == (wp->vaddr & len_mask) ||
3073 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3074 wp->flags |= BP_WATCHPOINT_HIT;
3075 if (!env->watchpoint_hit) {
3076 env->watchpoint_hit = wp;
3077 tb = tb_find_pc(env->mem_io_pc);
3078 if (!tb) {
3079 cpu_abort(env, "check_watchpoint: could not find TB for "
3080 "pc=%p", (void *)env->mem_io_pc);
3081 }
3082 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3083 tb_phys_invalidate(tb, -1);
3084 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3085 env->exception_index = EXCP_DEBUG;
3086 } else {
3087 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3088 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3089 }
3090 cpu_resume_from_signal(env, NULL);
06d55cc1 3091 }
6e140f28
AL
3092 } else {
3093 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3094 }
3095 }
3096}
3097
6658ffb8
PB
3098/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3099 so these check for a hit then pass through to the normal out-of-line
3100 phys routines. */
c227f099 3101static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3102{
b4051334 3103 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3104 return ldub_phys(addr);
3105}
3106
c227f099 3107static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3108{
b4051334 3109 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3110 return lduw_phys(addr);
3111}
3112
c227f099 3113static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3114{
b4051334 3115 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3116 return ldl_phys(addr);
3117}
3118
c227f099 3119static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3120 uint32_t val)
3121{
b4051334 3122 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3123 stb_phys(addr, val);
3124}
3125
c227f099 3126static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3127 uint32_t val)
3128{
b4051334 3129 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3130 stw_phys(addr, val);
3131}
3132
c227f099 3133static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3134 uint32_t val)
3135{
b4051334 3136 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3137 stl_phys(addr, val);
3138}
3139
d60efc6b 3140static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3141 watch_mem_readb,
3142 watch_mem_readw,
3143 watch_mem_readl,
3144};
3145
d60efc6b 3146static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3147 watch_mem_writeb,
3148 watch_mem_writew,
3149 watch_mem_writel,
3150};
6658ffb8 3151
c227f099 3152static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3153 unsigned int len)
3154{
db7b5426
BS
3155 uint32_t ret;
3156 unsigned int idx;
3157
8da3ff18 3158 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3159#if defined(DEBUG_SUBPAGE)
3160 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3161 mmio, len, addr, idx);
3162#endif
8da3ff18
PB
3163 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3164 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3165
3166 return ret;
3167}
3168
c227f099 3169static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3170 uint32_t value, unsigned int len)
3171{
db7b5426
BS
3172 unsigned int idx;
3173
8da3ff18 3174 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3175#if defined(DEBUG_SUBPAGE)
3176 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3177 mmio, len, addr, idx, value);
3178#endif
8da3ff18
PB
3179 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3180 addr + mmio->region_offset[idx][1][len],
3181 value);
db7b5426
BS
3182}
3183
c227f099 3184static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3185{
3186#if defined(DEBUG_SUBPAGE)
3187 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3188#endif
3189
3190 return subpage_readlen(opaque, addr, 0);
3191}
3192
c227f099 3193static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3194 uint32_t value)
3195{
3196#if defined(DEBUG_SUBPAGE)
3197 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3198#endif
3199 subpage_writelen(opaque, addr, value, 0);
3200}
3201
c227f099 3202static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3203{
3204#if defined(DEBUG_SUBPAGE)
3205 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3206#endif
3207
3208 return subpage_readlen(opaque, addr, 1);
3209}
3210
c227f099 3211static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3212 uint32_t value)
3213{
3214#if defined(DEBUG_SUBPAGE)
3215 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3216#endif
3217 subpage_writelen(opaque, addr, value, 1);
3218}
3219
c227f099 3220static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3221{
3222#if defined(DEBUG_SUBPAGE)
3223 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3224#endif
3225
3226 return subpage_readlen(opaque, addr, 2);
3227}
3228
3229static void subpage_writel (void *opaque,
c227f099 3230 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3231{
3232#if defined(DEBUG_SUBPAGE)
3233 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3234#endif
3235 subpage_writelen(opaque, addr, value, 2);
3236}
3237
d60efc6b 3238static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3239 &subpage_readb,
3240 &subpage_readw,
3241 &subpage_readl,
3242};
3243
d60efc6b 3244static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3245 &subpage_writeb,
3246 &subpage_writew,
3247 &subpage_writel,
3248};
3249
c227f099
AL
3250static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3251 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3252{
3253 int idx, eidx;
4254fab8 3254 unsigned int i;
db7b5426
BS
3255
3256 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3257 return -1;
3258 idx = SUBPAGE_IDX(start);
3259 eidx = SUBPAGE_IDX(end);
3260#if defined(DEBUG_SUBPAGE)
0bf9e31a 3261 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3262 mmio, start, end, idx, eidx, memory);
3263#endif
3264 memory >>= IO_MEM_SHIFT;
3265 for (; idx <= eidx; idx++) {
4254fab8 3266 for (i = 0; i < 4; i++) {
3ee89922
BS
3267 if (io_mem_read[memory][i]) {
3268 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3269 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3270 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3271 }
3272 if (io_mem_write[memory][i]) {
3273 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3274 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3275 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3276 }
4254fab8 3277 }
db7b5426
BS
3278 }
3279
3280 return 0;
3281}
3282
c227f099
AL
3283static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3284 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3285{
c227f099 3286 subpage_t *mmio;
db7b5426
BS
3287 int subpage_memory;
3288
c227f099 3289 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3290
3291 mmio->base = base;
1eed09cb 3292 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3293#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3294 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3295 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3296#endif
1eec614b
AL
3297 *phys = subpage_memory | IO_MEM_SUBPAGE;
3298 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3299 region_offset);
db7b5426
BS
3300
3301 return mmio;
3302}
3303
88715657
AL
3304static int get_free_io_mem_idx(void)
3305{
3306 int i;
3307
3308 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3309 if (!io_mem_used[i]) {
3310 io_mem_used[i] = 1;
3311 return i;
3312 }
c6703b47 3313 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3314 return -1;
3315}
3316
33417e70
FB
3317/* mem_read and mem_write are arrays of functions containing the
3318 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3319 2). Functions can be omitted with a NULL function pointer.
3ee89922 3320 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3321 modified. If it is zero, a new io zone is allocated. The return
3322 value can be used with cpu_register_physical_memory(). (-1) is
3323 returned if error. */
1eed09cb 3324static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3325 CPUReadMemoryFunc * const *mem_read,
3326 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3327 void *opaque)
33417e70 3328{
4254fab8 3329 int i, subwidth = 0;
33417e70
FB
3330
3331 if (io_index <= 0) {
88715657
AL
3332 io_index = get_free_io_mem_idx();
3333 if (io_index == -1)
3334 return io_index;
33417e70 3335 } else {
1eed09cb 3336 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3337 if (io_index >= IO_MEM_NB_ENTRIES)
3338 return -1;
3339 }
b5ff1b31 3340
33417e70 3341 for(i = 0;i < 3; i++) {
4254fab8
BS
3342 if (!mem_read[i] || !mem_write[i])
3343 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3344 io_mem_read[io_index][i] = mem_read[i];
3345 io_mem_write[io_index][i] = mem_write[i];
3346 }
a4193c8a 3347 io_mem_opaque[io_index] = opaque;
4254fab8 3348 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3349}
61382a50 3350
d60efc6b
BS
3351int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3352 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3353 void *opaque)
3354{
3355 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3356}
3357
88715657
AL
3358void cpu_unregister_io_memory(int io_table_address)
3359{
3360 int i;
3361 int io_index = io_table_address >> IO_MEM_SHIFT;
3362
3363 for (i=0;i < 3; i++) {
3364 io_mem_read[io_index][i] = unassigned_mem_read[i];
3365 io_mem_write[io_index][i] = unassigned_mem_write[i];
3366 }
3367 io_mem_opaque[io_index] = NULL;
3368 io_mem_used[io_index] = 0;
3369}
3370
e9179ce1
AK
3371static void io_mem_init(void)
3372{
3373 int i;
3374
3375 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3376 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3377 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3378 for (i=0; i<5; i++)
3379 io_mem_used[i] = 1;
3380
3381 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3382 watch_mem_write, NULL);
e9179ce1
AK
3383}
3384
e2eef170
PB
3385#endif /* !defined(CONFIG_USER_ONLY) */
3386
13eb76e0
FB
3387/* physical memory access (slow version, mainly for debug) */
3388#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3389int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3390 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3391{
3392 int l, flags;
3393 target_ulong page;
53a5960a 3394 void * p;
13eb76e0
FB
3395
3396 while (len > 0) {
3397 page = addr & TARGET_PAGE_MASK;
3398 l = (page + TARGET_PAGE_SIZE) - addr;
3399 if (l > len)
3400 l = len;
3401 flags = page_get_flags(page);
3402 if (!(flags & PAGE_VALID))
a68fe89c 3403 return -1;
13eb76e0
FB
3404 if (is_write) {
3405 if (!(flags & PAGE_WRITE))
a68fe89c 3406 return -1;
579a97f7 3407 /* XXX: this code should not depend on lock_user */
72fb7daa 3408 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3409 return -1;
72fb7daa
AJ
3410 memcpy(p, buf, l);
3411 unlock_user(p, addr, l);
13eb76e0
FB
3412 } else {
3413 if (!(flags & PAGE_READ))
a68fe89c 3414 return -1;
579a97f7 3415 /* XXX: this code should not depend on lock_user */
72fb7daa 3416 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3417 return -1;
72fb7daa 3418 memcpy(buf, p, l);
5b257578 3419 unlock_user(p, addr, 0);
13eb76e0
FB
3420 }
3421 len -= l;
3422 buf += l;
3423 addr += l;
3424 }
a68fe89c 3425 return 0;
13eb76e0 3426}
8df1cd07 3427
13eb76e0 3428#else
c227f099 3429void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3430 int len, int is_write)
3431{
3432 int l, io_index;
3433 uint8_t *ptr;
3434 uint32_t val;
c227f099 3435 target_phys_addr_t page;
2e12669a 3436 unsigned long pd;
92e873b9 3437 PhysPageDesc *p;
3b46e624 3438
13eb76e0
FB
3439 while (len > 0) {
3440 page = addr & TARGET_PAGE_MASK;
3441 l = (page + TARGET_PAGE_SIZE) - addr;
3442 if (l > len)
3443 l = len;
92e873b9 3444 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3445 if (!p) {
3446 pd = IO_MEM_UNASSIGNED;
3447 } else {
3448 pd = p->phys_offset;
3449 }
3b46e624 3450
13eb76e0 3451 if (is_write) {
3a7d929e 3452 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3453 target_phys_addr_t addr1 = addr;
13eb76e0 3454 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3455 if (p)
6c2934db 3456 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3457 /* XXX: could force cpu_single_env to NULL to avoid
3458 potential bugs */
6c2934db 3459 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3460 /* 32 bit write access */
c27004ec 3461 val = ldl_p(buf);
6c2934db 3462 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3463 l = 4;
6c2934db 3464 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3465 /* 16 bit write access */
c27004ec 3466 val = lduw_p(buf);
6c2934db 3467 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3468 l = 2;
3469 } else {
1c213d19 3470 /* 8 bit write access */
c27004ec 3471 val = ldub_p(buf);
6c2934db 3472 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3473 l = 1;
3474 }
3475 } else {
b448f2f3
FB
3476 unsigned long addr1;
3477 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3478 /* RAM case */
5579c7f3 3479 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3480 memcpy(ptr, buf, l);
3a7d929e
FB
3481 if (!cpu_physical_memory_is_dirty(addr1)) {
3482 /* invalidate code */
3483 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3484 /* set dirty bit */
f7c11b53
YT
3485 cpu_physical_memory_set_dirty_flags(
3486 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3487 }
13eb76e0
FB
3488 }
3489 } else {
5fafdf24 3490 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3491 !(pd & IO_MEM_ROMD)) {
c227f099 3492 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3493 /* I/O case */
3494 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3495 if (p)
6c2934db
AJ
3496 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3497 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3498 /* 32 bit read access */
6c2934db 3499 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3500 stl_p(buf, val);
13eb76e0 3501 l = 4;
6c2934db 3502 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3503 /* 16 bit read access */
6c2934db 3504 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3505 stw_p(buf, val);
13eb76e0
FB
3506 l = 2;
3507 } else {
1c213d19 3508 /* 8 bit read access */
6c2934db 3509 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3510 stb_p(buf, val);
13eb76e0
FB
3511 l = 1;
3512 }
3513 } else {
3514 /* RAM case */
5579c7f3 3515 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3516 (addr & ~TARGET_PAGE_MASK);
3517 memcpy(buf, ptr, l);
3518 }
3519 }
3520 len -= l;
3521 buf += l;
3522 addr += l;
3523 }
3524}
8df1cd07 3525
d0ecd2aa 3526/* used for ROM loading : can write in RAM and ROM */
c227f099 3527void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3528 const uint8_t *buf, int len)
3529{
3530 int l;
3531 uint8_t *ptr;
c227f099 3532 target_phys_addr_t page;
d0ecd2aa
FB
3533 unsigned long pd;
3534 PhysPageDesc *p;
3b46e624 3535
d0ecd2aa
FB
3536 while (len > 0) {
3537 page = addr & TARGET_PAGE_MASK;
3538 l = (page + TARGET_PAGE_SIZE) - addr;
3539 if (l > len)
3540 l = len;
3541 p = phys_page_find(page >> TARGET_PAGE_BITS);
3542 if (!p) {
3543 pd = IO_MEM_UNASSIGNED;
3544 } else {
3545 pd = p->phys_offset;
3546 }
3b46e624 3547
d0ecd2aa 3548 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3549 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3550 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3551 /* do nothing */
3552 } else {
3553 unsigned long addr1;
3554 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3555 /* ROM/RAM case */
5579c7f3 3556 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3557 memcpy(ptr, buf, l);
3558 }
3559 len -= l;
3560 buf += l;
3561 addr += l;
3562 }
3563}
3564
6d16c2f8
AL
3565typedef struct {
3566 void *buffer;
c227f099
AL
3567 target_phys_addr_t addr;
3568 target_phys_addr_t len;
6d16c2f8
AL
3569} BounceBuffer;
3570
3571static BounceBuffer bounce;
3572
ba223c29
AL
3573typedef struct MapClient {
3574 void *opaque;
3575 void (*callback)(void *opaque);
72cf2d4f 3576 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3577} MapClient;
3578
72cf2d4f
BS
3579static QLIST_HEAD(map_client_list, MapClient) map_client_list
3580 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3581
3582void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3583{
3584 MapClient *client = qemu_malloc(sizeof(*client));
3585
3586 client->opaque = opaque;
3587 client->callback = callback;
72cf2d4f 3588 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3589 return client;
3590}
3591
3592void cpu_unregister_map_client(void *_client)
3593{
3594 MapClient *client = (MapClient *)_client;
3595
72cf2d4f 3596 QLIST_REMOVE(client, link);
34d5e948 3597 qemu_free(client);
ba223c29
AL
3598}
3599
3600static void cpu_notify_map_clients(void)
3601{
3602 MapClient *client;
3603
72cf2d4f
BS
3604 while (!QLIST_EMPTY(&map_client_list)) {
3605 client = QLIST_FIRST(&map_client_list);
ba223c29 3606 client->callback(client->opaque);
34d5e948 3607 cpu_unregister_map_client(client);
ba223c29
AL
3608 }
3609}
3610
6d16c2f8
AL
3611/* Map a physical memory region into a host virtual address.
3612 * May map a subset of the requested range, given by and returned in *plen.
3613 * May return NULL if resources needed to perform the mapping are exhausted.
3614 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3615 * Use cpu_register_map_client() to know when retrying the map operation is
3616 * likely to succeed.
6d16c2f8 3617 */
c227f099
AL
3618void *cpu_physical_memory_map(target_phys_addr_t addr,
3619 target_phys_addr_t *plen,
6d16c2f8
AL
3620 int is_write)
3621{
c227f099
AL
3622 target_phys_addr_t len = *plen;
3623 target_phys_addr_t done = 0;
6d16c2f8
AL
3624 int l;
3625 uint8_t *ret = NULL;
3626 uint8_t *ptr;
c227f099 3627 target_phys_addr_t page;
6d16c2f8
AL
3628 unsigned long pd;
3629 PhysPageDesc *p;
3630 unsigned long addr1;
3631
3632 while (len > 0) {
3633 page = addr & TARGET_PAGE_MASK;
3634 l = (page + TARGET_PAGE_SIZE) - addr;
3635 if (l > len)
3636 l = len;
3637 p = phys_page_find(page >> TARGET_PAGE_BITS);
3638 if (!p) {
3639 pd = IO_MEM_UNASSIGNED;
3640 } else {
3641 pd = p->phys_offset;
3642 }
3643
3644 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3645 if (done || bounce.buffer) {
3646 break;
3647 }
3648 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3649 bounce.addr = addr;
3650 bounce.len = l;
3651 if (!is_write) {
3652 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3653 }
3654 ptr = bounce.buffer;
3655 } else {
3656 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3657 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3658 }
3659 if (!done) {
3660 ret = ptr;
3661 } else if (ret + done != ptr) {
3662 break;
3663 }
3664
3665 len -= l;
3666 addr += l;
3667 done += l;
3668 }
3669 *plen = done;
3670 return ret;
3671}
3672
3673/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3674 * Will also mark the memory as dirty if is_write == 1. access_len gives
3675 * the amount of memory that was actually read or written by the caller.
3676 */
c227f099
AL
3677void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3678 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3679{
3680 if (buffer != bounce.buffer) {
3681 if (is_write) {
c227f099 3682 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3683 while (access_len) {
3684 unsigned l;
3685 l = TARGET_PAGE_SIZE;
3686 if (l > access_len)
3687 l = access_len;
3688 if (!cpu_physical_memory_is_dirty(addr1)) {
3689 /* invalidate code */
3690 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3691 /* set dirty bit */
f7c11b53
YT
3692 cpu_physical_memory_set_dirty_flags(
3693 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3694 }
3695 addr1 += l;
3696 access_len -= l;
3697 }
3698 }
3699 return;
3700 }
3701 if (is_write) {
3702 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3703 }
f8a83245 3704 qemu_vfree(bounce.buffer);
6d16c2f8 3705 bounce.buffer = NULL;
ba223c29 3706 cpu_notify_map_clients();
6d16c2f8 3707}
d0ecd2aa 3708
8df1cd07 3709/* warning: addr must be aligned */
c227f099 3710uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3711{
3712 int io_index;
3713 uint8_t *ptr;
3714 uint32_t val;
3715 unsigned long pd;
3716 PhysPageDesc *p;
3717
3718 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3719 if (!p) {
3720 pd = IO_MEM_UNASSIGNED;
3721 } else {
3722 pd = p->phys_offset;
3723 }
3b46e624 3724
5fafdf24 3725 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3726 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3727 /* I/O case */
3728 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3729 if (p)
3730 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3731 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3732 } else {
3733 /* RAM case */
5579c7f3 3734 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3735 (addr & ~TARGET_PAGE_MASK);
3736 val = ldl_p(ptr);
3737 }
3738 return val;
3739}
3740
84b7b8e7 3741/* warning: addr must be aligned */
c227f099 3742uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3743{
3744 int io_index;
3745 uint8_t *ptr;
3746 uint64_t val;
3747 unsigned long pd;
3748 PhysPageDesc *p;
3749
3750 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3751 if (!p) {
3752 pd = IO_MEM_UNASSIGNED;
3753 } else {
3754 pd = p->phys_offset;
3755 }
3b46e624 3756
2a4188a3
FB
3757 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3758 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3759 /* I/O case */
3760 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3761 if (p)
3762 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3763#ifdef TARGET_WORDS_BIGENDIAN
3764 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3765 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3766#else
3767 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3768 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3769#endif
3770 } else {
3771 /* RAM case */
5579c7f3 3772 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3773 (addr & ~TARGET_PAGE_MASK);
3774 val = ldq_p(ptr);
3775 }
3776 return val;
3777}
3778
aab33094 3779/* XXX: optimize */
c227f099 3780uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3781{
3782 uint8_t val;
3783 cpu_physical_memory_read(addr, &val, 1);
3784 return val;
3785}
3786
3787/* XXX: optimize */
c227f099 3788uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3789{
3790 uint16_t val;
3791 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3792 return tswap16(val);
3793}
3794
8df1cd07
FB
3795/* warning: addr must be aligned. The ram page is not masked as dirty
3796 and the code inside is not invalidated. It is useful if the dirty
3797 bits are used to track modified PTEs */
c227f099 3798void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3799{
3800 int io_index;
3801 uint8_t *ptr;
3802 unsigned long pd;
3803 PhysPageDesc *p;
3804
3805 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3806 if (!p) {
3807 pd = IO_MEM_UNASSIGNED;
3808 } else {
3809 pd = p->phys_offset;
3810 }
3b46e624 3811
3a7d929e 3812 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3813 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3814 if (p)
3815 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3816 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3817 } else {
74576198 3818 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3819 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3820 stl_p(ptr, val);
74576198
AL
3821
3822 if (unlikely(in_migration)) {
3823 if (!cpu_physical_memory_is_dirty(addr1)) {
3824 /* invalidate code */
3825 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3826 /* set dirty bit */
f7c11b53
YT
3827 cpu_physical_memory_set_dirty_flags(
3828 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3829 }
3830 }
8df1cd07
FB
3831 }
3832}
3833
c227f099 3834void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3835{
3836 int io_index;
3837 uint8_t *ptr;
3838 unsigned long pd;
3839 PhysPageDesc *p;
3840
3841 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3842 if (!p) {
3843 pd = IO_MEM_UNASSIGNED;
3844 } else {
3845 pd = p->phys_offset;
3846 }
3b46e624 3847
bc98a7ef
JM
3848 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3849 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3850 if (p)
3851 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3852#ifdef TARGET_WORDS_BIGENDIAN
3853 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3854 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3855#else
3856 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3858#endif
3859 } else {
5579c7f3 3860 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3861 (addr & ~TARGET_PAGE_MASK);
3862 stq_p(ptr, val);
3863 }
3864}
3865
8df1cd07 3866/* warning: addr must be aligned */
c227f099 3867void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3868{
3869 int io_index;
3870 uint8_t *ptr;
3871 unsigned long pd;
3872 PhysPageDesc *p;
3873
3874 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3875 if (!p) {
3876 pd = IO_MEM_UNASSIGNED;
3877 } else {
3878 pd = p->phys_offset;
3879 }
3b46e624 3880
3a7d929e 3881 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3882 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3883 if (p)
3884 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3885 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3886 } else {
3887 unsigned long addr1;
3888 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3889 /* RAM case */
5579c7f3 3890 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3891 stl_p(ptr, val);
3a7d929e
FB
3892 if (!cpu_physical_memory_is_dirty(addr1)) {
3893 /* invalidate code */
3894 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3895 /* set dirty bit */
f7c11b53
YT
3896 cpu_physical_memory_set_dirty_flags(addr1,
3897 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3898 }
8df1cd07
FB
3899 }
3900}
3901
aab33094 3902/* XXX: optimize */
c227f099 3903void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3904{
3905 uint8_t v = val;
3906 cpu_physical_memory_write(addr, &v, 1);
3907}
3908
3909/* XXX: optimize */
c227f099 3910void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3911{
3912 uint16_t v = tswap16(val);
3913 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3914}
3915
3916/* XXX: optimize */
c227f099 3917void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3918{
3919 val = tswap64(val);
3920 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3921}
3922
5e2972fd 3923/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3924int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3925 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3926{
3927 int l;
c227f099 3928 target_phys_addr_t phys_addr;
9b3c35e0 3929 target_ulong page;
13eb76e0
FB
3930
3931 while (len > 0) {
3932 page = addr & TARGET_PAGE_MASK;
3933 phys_addr = cpu_get_phys_page_debug(env, page);
3934 /* if no physical page mapped, return an error */
3935 if (phys_addr == -1)
3936 return -1;
3937 l = (page + TARGET_PAGE_SIZE) - addr;
3938 if (l > len)
3939 l = len;
5e2972fd 3940 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3941 if (is_write)
3942 cpu_physical_memory_write_rom(phys_addr, buf, l);
3943 else
5e2972fd 3944 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3945 len -= l;
3946 buf += l;
3947 addr += l;
3948 }
3949 return 0;
3950}
a68fe89c 3951#endif
13eb76e0 3952
2e70f6ef
PB
3953/* in deterministic execution mode, instructions doing device I/Os
3954 must be at the end of the TB */
3955void cpu_io_recompile(CPUState *env, void *retaddr)
3956{
3957 TranslationBlock *tb;
3958 uint32_t n, cflags;
3959 target_ulong pc, cs_base;
3960 uint64_t flags;
3961
3962 tb = tb_find_pc((unsigned long)retaddr);
3963 if (!tb) {
3964 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3965 retaddr);
3966 }
3967 n = env->icount_decr.u16.low + tb->icount;
3968 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3969 /* Calculate how many instructions had been executed before the fault
bf20dc07 3970 occurred. */
2e70f6ef
PB
3971 n = n - env->icount_decr.u16.low;
3972 /* Generate a new TB ending on the I/O insn. */
3973 n++;
3974 /* On MIPS and SH, delay slot instructions can only be restarted if
3975 they were already the first instruction in the TB. If this is not
bf20dc07 3976 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3977 branch. */
3978#if defined(TARGET_MIPS)
3979 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3980 env->active_tc.PC -= 4;
3981 env->icount_decr.u16.low++;
3982 env->hflags &= ~MIPS_HFLAG_BMASK;
3983 }
3984#elif defined(TARGET_SH4)
3985 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3986 && n > 1) {
3987 env->pc -= 2;
3988 env->icount_decr.u16.low++;
3989 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3990 }
3991#endif
3992 /* This should never happen. */
3993 if (n > CF_COUNT_MASK)
3994 cpu_abort(env, "TB too big during recompile");
3995
3996 cflags = n | CF_LAST_IO;
3997 pc = tb->pc;
3998 cs_base = tb->cs_base;
3999 flags = tb->flags;
4000 tb_phys_invalidate(tb, -1);
4001 /* FIXME: In theory this could raise an exception. In practice
4002 we have already translated the block once so it's probably ok. */
4003 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4004 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4005 the first in the TB) then we end up generating a whole new TB and
4006 repeating the fault, which is horribly inefficient.
4007 Better would be to execute just this insn uncached, or generate a
4008 second new TB. */
4009 cpu_resume_from_signal(env, NULL);
4010}
4011
b3755a91
PB
4012#if !defined(CONFIG_USER_ONLY)
4013
e3db7226
FB
4014void dump_exec_info(FILE *f,
4015 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4016{
4017 int i, target_code_size, max_target_code_size;
4018 int direct_jmp_count, direct_jmp2_count, cross_page;
4019 TranslationBlock *tb;
3b46e624 4020
e3db7226
FB
4021 target_code_size = 0;
4022 max_target_code_size = 0;
4023 cross_page = 0;
4024 direct_jmp_count = 0;
4025 direct_jmp2_count = 0;
4026 for(i = 0; i < nb_tbs; i++) {
4027 tb = &tbs[i];
4028 target_code_size += tb->size;
4029 if (tb->size > max_target_code_size)
4030 max_target_code_size = tb->size;
4031 if (tb->page_addr[1] != -1)
4032 cross_page++;
4033 if (tb->tb_next_offset[0] != 0xffff) {
4034 direct_jmp_count++;
4035 if (tb->tb_next_offset[1] != 0xffff) {
4036 direct_jmp2_count++;
4037 }
4038 }
4039 }
4040 /* XXX: avoid using doubles ? */
57fec1fe 4041 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4042 cpu_fprintf(f, "gen code size %ld/%ld\n",
4043 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4044 cpu_fprintf(f, "TB count %d/%d\n",
4045 nb_tbs, code_gen_max_blocks);
5fafdf24 4046 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4047 nb_tbs ? target_code_size / nb_tbs : 0,
4048 max_target_code_size);
5fafdf24 4049 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4050 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4051 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4052 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4053 cross_page,
e3db7226
FB
4054 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4055 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4056 direct_jmp_count,
e3db7226
FB
4057 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4058 direct_jmp2_count,
4059 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4060 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4061 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4062 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4063 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4064 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4065}
4066
61382a50
FB
4067#define MMUSUFFIX _cmmu
4068#define GETPC() NULL
4069#define env cpu_single_env
b769d8fe 4070#define SOFTMMU_CODE_ACCESS
61382a50
FB
4071
4072#define SHIFT 0
4073#include "softmmu_template.h"
4074
4075#define SHIFT 1
4076#include "softmmu_template.h"
4077
4078#define SHIFT 2
4079#include "softmmu_template.h"
4080
4081#define SHIFT 3
4082#include "softmmu_template.h"
4083
4084#undef env
4085
4086#endif