]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Move page_size_init earlier
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
1de7afc9 33#include "qemu/osdep.h"
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
0d09e41a 36#include "hw/xen/xen.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
022c62cb 40#include "exec/memory.h"
9c17d615 41#include "sysemu/dma.h"
022c62cb 42#include "exec/address-spaces.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
432d268c 45#else /* !CONFIG_USER_ONLY */
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
67d95c15 57
b35ba30f 58#include "qemu/range.h"
794e8f30
MT
59#ifndef _WIN32
60#include "qemu/mmap-alloc.h"
61#endif
b35ba30f 62
db7b5426 63//#define DEBUG_SUBPAGE
1196be37 64
e2eef170 65#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
66/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
67 * are protected by the ramlist lock.
68 */
0d53d9fe 69RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
70
71static MemoryRegion *system_memory;
309cb471 72static MemoryRegion *system_io;
62152b8a 73
f6790af6
AK
74AddressSpace address_space_io;
75AddressSpace address_space_memory;
2673a5da 76
0844e007 77MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 78static MemoryRegion io_mem_unassigned;
0e0df1e2 79
7bd4f430
PB
80/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
81#define RAM_PREALLOC (1 << 0)
82
dbcb8981
PB
83/* RAM is mmap-ed with MAP_SHARED */
84#define RAM_SHARED (1 << 1)
85
62be4e3a
MT
86/* Only a portion of RAM (used_length) is actually used, and migrated.
87 * This used_length size can change across reboots.
88 */
89#define RAM_RESIZEABLE (1 << 2)
90
794e8f30 91/* RAM is backed by an mmapped file.
8561c924 92 */
794e8f30 93#define RAM_FILE (1 << 3)
e2eef170 94#endif
9fa3e853 95
bdc44640 96struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
97/* current CPU in the current thread. It is only valid inside
98 cpu_exec() */
f240eb6f 99__thread CPUState *current_cpu;
2e70f6ef 100/* 0 = Do not count executed instructions.
bf20dc07 101 1 = Precise instruction counting.
2e70f6ef 102 2 = Adaptive rate instruction counting. */
5708fc66 103int use_icount;
6a00d601 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
4346ae3e 106
1db8abb1
PB
107typedef struct PhysPageEntry PhysPageEntry;
108
109struct PhysPageEntry {
9736e55b 110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 111 uint32_t skip : 6;
9736e55b 112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 113 uint32_t ptr : 26;
1db8abb1
PB
114};
115
8b795765
MT
116#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117
03f49957 118/* Size of the L2 (and L3, etc) page tables. */
57271d63 119#define ADDR_SPACE_BITS 64
03f49957 120
026736ce 121#define P_L2_BITS 9
03f49957
PB
122#define P_L2_SIZE (1 << P_L2_BITS)
123
124#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125
126typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 127
53cb28cb 128typedef struct PhysPageMap {
79e2b9ae
PB
129 struct rcu_head rcu;
130
53cb28cb
MA
131 unsigned sections_nb;
132 unsigned sections_nb_alloc;
133 unsigned nodes_nb;
134 unsigned nodes_nb_alloc;
135 Node *nodes;
136 MemoryRegionSection *sections;
137} PhysPageMap;
138
1db8abb1 139struct AddressSpaceDispatch {
79e2b9ae
PB
140 struct rcu_head rcu;
141
1db8abb1
PB
142 /* This is a multi-level map on the physical address space.
143 * The bottom level has pointers to MemoryRegionSections.
144 */
145 PhysPageEntry phys_map;
53cb28cb 146 PhysPageMap map;
acc9d80b 147 AddressSpace *as;
1db8abb1
PB
148};
149
90260c6c
JK
150#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
151typedef struct subpage_t {
152 MemoryRegion iomem;
acc9d80b 153 AddressSpace *as;
90260c6c
JK
154 hwaddr base;
155 uint16_t sub_section[TARGET_PAGE_SIZE];
156} subpage_t;
157
b41aac4f
LPF
158#define PHYS_SECTION_UNASSIGNED 0
159#define PHYS_SECTION_NOTDIRTY 1
160#define PHYS_SECTION_ROM 2
161#define PHYS_SECTION_WATCH 3
5312bd8b 162
e2eef170 163static void io_mem_init(void);
62152b8a 164static void memory_map_init(void);
09daed84 165static void tcg_commit(MemoryListener *listener);
e2eef170 166
1ec9b909 167static MemoryRegion io_mem_watch;
32857f4d
PM
168
169/**
170 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
171 * @cpu: the CPU whose AddressSpace this is
172 * @as: the AddressSpace itself
173 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
174 * @tcg_as_listener: listener for tracking changes to the AddressSpace
175 */
176struct CPUAddressSpace {
177 CPUState *cpu;
178 AddressSpace *as;
179 struct AddressSpaceDispatch *memory_dispatch;
180 MemoryListener tcg_as_listener;
181};
182
6658ffb8 183#endif
fd6ce8f6 184
6d9a1304 185#if !defined(CONFIG_USER_ONLY)
d6f2ea22 186
53cb28cb 187static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 188{
53cb28cb
MA
189 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
190 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
191 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
192 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 193 }
f7bf5461
AK
194}
195
db94604b 196static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
197{
198 unsigned i;
8b795765 199 uint32_t ret;
db94604b
PB
200 PhysPageEntry e;
201 PhysPageEntry *p;
f7bf5461 202
53cb28cb 203 ret = map->nodes_nb++;
db94604b 204 p = map->nodes[ret];
f7bf5461 205 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 206 assert(ret != map->nodes_nb_alloc);
db94604b
PB
207
208 e.skip = leaf ? 0 : 1;
209 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 210 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 211 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 212 }
f7bf5461 213 return ret;
d6f2ea22
AK
214}
215
53cb28cb
MA
216static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
217 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 218 int level)
f7bf5461
AK
219{
220 PhysPageEntry *p;
03f49957 221 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 222
9736e55b 223 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 224 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 225 }
db94604b 226 p = map->nodes[lp->ptr];
03f49957 227 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 228
03f49957 229 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 230 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 231 lp->skip = 0;
c19e8800 232 lp->ptr = leaf;
07f07b31
AK
233 *index += step;
234 *nb -= step;
2999097b 235 } else {
53cb28cb 236 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
237 }
238 ++lp;
f7bf5461
AK
239 }
240}
241
ac1970fb 242static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 243 hwaddr index, hwaddr nb,
2999097b 244 uint16_t leaf)
f7bf5461 245{
2999097b 246 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 247 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 248
53cb28cb 249 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
250}
251
b35ba30f
MT
252/* Compact a non leaf page entry. Simply detect that the entry has a single child,
253 * and update our entry so we can skip it and go directly to the destination.
254 */
255static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
256{
257 unsigned valid_ptr = P_L2_SIZE;
258 int valid = 0;
259 PhysPageEntry *p;
260 int i;
261
262 if (lp->ptr == PHYS_MAP_NODE_NIL) {
263 return;
264 }
265
266 p = nodes[lp->ptr];
267 for (i = 0; i < P_L2_SIZE; i++) {
268 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
269 continue;
270 }
271
272 valid_ptr = i;
273 valid++;
274 if (p[i].skip) {
275 phys_page_compact(&p[i], nodes, compacted);
276 }
277 }
278
279 /* We can only compress if there's only one child. */
280 if (valid != 1) {
281 return;
282 }
283
284 assert(valid_ptr < P_L2_SIZE);
285
286 /* Don't compress if it won't fit in the # of bits we have. */
287 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
288 return;
289 }
290
291 lp->ptr = p[valid_ptr].ptr;
292 if (!p[valid_ptr].skip) {
293 /* If our only child is a leaf, make this a leaf. */
294 /* By design, we should have made this node a leaf to begin with so we
295 * should never reach here.
296 * But since it's so simple to handle this, let's do it just in case we
297 * change this rule.
298 */
299 lp->skip = 0;
300 } else {
301 lp->skip += p[valid_ptr].skip;
302 }
303}
304
305static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
306{
307 DECLARE_BITMAP(compacted, nodes_nb);
308
309 if (d->phys_map.skip) {
53cb28cb 310 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
311 }
312}
313
97115a8d 314static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 315 Node *nodes, MemoryRegionSection *sections)
92e873b9 316{
31ab2b4a 317 PhysPageEntry *p;
97115a8d 318 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 319 int i;
f1f6e3b8 320
9736e55b 321 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 322 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 323 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 324 }
9affd6fc 325 p = nodes[lp.ptr];
03f49957 326 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 327 }
b35ba30f
MT
328
329 if (sections[lp.ptr].size.hi ||
330 range_covers_byte(sections[lp.ptr].offset_within_address_space,
331 sections[lp.ptr].size.lo, addr)) {
332 return &sections[lp.ptr];
333 } else {
334 return &sections[PHYS_SECTION_UNASSIGNED];
335 }
f3705d53
AK
336}
337
e5548617
BS
338bool memory_region_is_unassigned(MemoryRegion *mr)
339{
2a8e7499 340 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 341 && mr != &io_mem_watch;
fd6ce8f6 342}
149f54b5 343
79e2b9ae 344/* Called from RCU critical section */
c7086b4a 345static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
346 hwaddr addr,
347 bool resolve_subpage)
9f029603 348{
90260c6c
JK
349 MemoryRegionSection *section;
350 subpage_t *subpage;
351
53cb28cb 352 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
353 if (resolve_subpage && section->mr->subpage) {
354 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 355 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
356 }
357 return section;
9f029603
JK
358}
359
79e2b9ae 360/* Called from RCU critical section */
90260c6c 361static MemoryRegionSection *
c7086b4a 362address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 363 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
364{
365 MemoryRegionSection *section;
965eb2fc 366 MemoryRegion *mr;
a87f3954 367 Int128 diff;
149f54b5 368
c7086b4a 369 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
370 /* Compute offset within MemoryRegionSection */
371 addr -= section->offset_within_address_space;
372
373 /* Compute offset within MemoryRegion */
374 *xlat = addr + section->offset_within_region;
375
965eb2fc 376 mr = section->mr;
b242e0e0
PB
377
378 /* MMIO registers can be expected to perform full-width accesses based only
379 * on their address, without considering adjacent registers that could
380 * decode to completely different MemoryRegions. When such registers
381 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
382 * regions overlap wildly. For this reason we cannot clamp the accesses
383 * here.
384 *
385 * If the length is small (as is the case for address_space_ldl/stl),
386 * everything works fine. If the incoming length is large, however,
387 * the caller really has to do the clamping through memory_access_size.
388 */
965eb2fc 389 if (memory_region_is_ram(mr)) {
e4a511f8 390 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
391 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
392 }
149f54b5
PB
393 return section;
394}
90260c6c 395
a87f3954
PB
396static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
397{
398 if (memory_region_is_ram(mr)) {
399 return !(is_write && mr->readonly);
400 }
401 if (memory_region_is_romd(mr)) {
402 return !is_write;
403 }
404
405 return false;
406}
407
41063e1e 408/* Called from RCU critical section */
5c8a00ce
PB
409MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
410 hwaddr *xlat, hwaddr *plen,
411 bool is_write)
90260c6c 412{
30951157
AK
413 IOMMUTLBEntry iotlb;
414 MemoryRegionSection *section;
415 MemoryRegion *mr;
30951157
AK
416
417 for (;;) {
79e2b9ae
PB
418 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
419 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
420 mr = section->mr;
421
422 if (!mr->iommu_ops) {
423 break;
424 }
425
8d7b8cb9 426 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
427 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
428 | (addr & iotlb.addr_mask));
23820dbf 429 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
430 if (!(iotlb.perm & (1 << is_write))) {
431 mr = &io_mem_unassigned;
432 break;
433 }
434
435 as = iotlb.target_as;
436 }
437
fe680d0d 438 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 439 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 440 *plen = MIN(page, *plen);
a87f3954
PB
441 }
442
30951157
AK
443 *xlat = addr;
444 return mr;
90260c6c
JK
445}
446
79e2b9ae 447/* Called from RCU critical section */
90260c6c 448MemoryRegionSection *
9d82b5a7
PB
449address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
450 hwaddr *xlat, hwaddr *plen)
90260c6c 451{
30951157 452 MemoryRegionSection *section;
32857f4d 453 section = address_space_translate_internal(cpu->cpu_ases[0].memory_dispatch,
9d82b5a7 454 addr, xlat, plen, false);
30951157
AK
455
456 assert(!section->mr->iommu_ops);
457 return section;
90260c6c 458}
5b6dd868 459#endif
fd6ce8f6 460
b170fce3 461#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
462
463static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 464{
259186a7 465 CPUState *cpu = opaque;
a513fe19 466
5b6dd868
BS
467 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
468 version_id is increased. */
259186a7 469 cpu->interrupt_request &= ~0x01;
c01a71c1 470 tlb_flush(cpu, 1);
5b6dd868
BS
471
472 return 0;
a513fe19 473}
7501267e 474
6c3bff0e
PD
475static int cpu_common_pre_load(void *opaque)
476{
477 CPUState *cpu = opaque;
478
adee6424 479 cpu->exception_index = -1;
6c3bff0e
PD
480
481 return 0;
482}
483
484static bool cpu_common_exception_index_needed(void *opaque)
485{
486 CPUState *cpu = opaque;
487
adee6424 488 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
489}
490
491static const VMStateDescription vmstate_cpu_common_exception_index = {
492 .name = "cpu_common/exception_index",
493 .version_id = 1,
494 .minimum_version_id = 1,
5cd8cada 495 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
496 .fields = (VMStateField[]) {
497 VMSTATE_INT32(exception_index, CPUState),
498 VMSTATE_END_OF_LIST()
499 }
500};
501
bac05aa9
AS
502static bool cpu_common_crash_occurred_needed(void *opaque)
503{
504 CPUState *cpu = opaque;
505
506 return cpu->crash_occurred;
507}
508
509static const VMStateDescription vmstate_cpu_common_crash_occurred = {
510 .name = "cpu_common/crash_occurred",
511 .version_id = 1,
512 .minimum_version_id = 1,
513 .needed = cpu_common_crash_occurred_needed,
514 .fields = (VMStateField[]) {
515 VMSTATE_BOOL(crash_occurred, CPUState),
516 VMSTATE_END_OF_LIST()
517 }
518};
519
1a1562f5 520const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
521 .name = "cpu_common",
522 .version_id = 1,
523 .minimum_version_id = 1,
6c3bff0e 524 .pre_load = cpu_common_pre_load,
5b6dd868 525 .post_load = cpu_common_post_load,
35d08458 526 .fields = (VMStateField[]) {
259186a7
AF
527 VMSTATE_UINT32(halted, CPUState),
528 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 529 VMSTATE_END_OF_LIST()
6c3bff0e 530 },
5cd8cada
JQ
531 .subsections = (const VMStateDescription*[]) {
532 &vmstate_cpu_common_exception_index,
bac05aa9 533 &vmstate_cpu_common_crash_occurred,
5cd8cada 534 NULL
5b6dd868
BS
535 }
536};
1a1562f5 537
5b6dd868 538#endif
ea041c0e 539
38d8f5c8 540CPUState *qemu_get_cpu(int index)
ea041c0e 541{
bdc44640 542 CPUState *cpu;
ea041c0e 543
bdc44640 544 CPU_FOREACH(cpu) {
55e5c285 545 if (cpu->cpu_index == index) {
bdc44640 546 return cpu;
55e5c285 547 }
ea041c0e 548 }
5b6dd868 549
bdc44640 550 return NULL;
ea041c0e
FB
551}
552
09daed84
EI
553#if !defined(CONFIG_USER_ONLY)
554void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
555{
556 /* We only support one address space per cpu at the moment. */
557 assert(cpu->as == as);
558
32857f4d
PM
559 if (cpu->cpu_ases) {
560 /* We've already registered the listener for our only AS */
561 return;
09daed84 562 }
32857f4d
PM
563
564 cpu->cpu_ases = g_new0(CPUAddressSpace, 1);
565 cpu->cpu_ases[0].cpu = cpu;
566 cpu->cpu_ases[0].as = as;
567 cpu->cpu_ases[0].tcg_as_listener.commit = tcg_commit;
568 memory_listener_register(&cpu->cpu_ases[0].tcg_as_listener, as);
09daed84
EI
569}
570#endif
571
b7bca733
BR
572#ifndef CONFIG_USER_ONLY
573static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
574
575static int cpu_get_free_index(Error **errp)
576{
577 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
578
579 if (cpu >= MAX_CPUMASK_BITS) {
580 error_setg(errp, "Trying to use more CPUs than max of %d",
581 MAX_CPUMASK_BITS);
582 return -1;
583 }
584
585 bitmap_set(cpu_index_map, cpu, 1);
586 return cpu;
587}
588
589void cpu_exec_exit(CPUState *cpu)
590{
591 if (cpu->cpu_index == -1) {
592 /* cpu_index was never allocated by this @cpu or was already freed. */
593 return;
594 }
595
596 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
597 cpu->cpu_index = -1;
598}
599#else
600
601static int cpu_get_free_index(Error **errp)
602{
603 CPUState *some_cpu;
604 int cpu_index = 0;
605
606 CPU_FOREACH(some_cpu) {
607 cpu_index++;
608 }
609 return cpu_index;
610}
611
612void cpu_exec_exit(CPUState *cpu)
613{
614}
615#endif
616
4bad9e39 617void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 618{
b170fce3 619 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 620 int cpu_index;
b7bca733 621 Error *local_err = NULL;
5b6dd868 622
291135b5
EH
623#ifndef CONFIG_USER_ONLY
624 cpu->as = &address_space_memory;
625 cpu->thread_id = qemu_get_thread_id();
291135b5
EH
626#endif
627
5b6dd868
BS
628#if defined(CONFIG_USER_ONLY)
629 cpu_list_lock();
630#endif
b7bca733
BR
631 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
632 if (local_err) {
633 error_propagate(errp, local_err);
634#if defined(CONFIG_USER_ONLY)
635 cpu_list_unlock();
636#endif
637 return;
5b6dd868 638 }
bdc44640 639 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
640#if defined(CONFIG_USER_ONLY)
641 cpu_list_unlock();
642#endif
e0d47944
AF
643 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
644 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
645 }
5b6dd868 646#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868 647 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
4bad9e39 648 cpu_save, cpu_load, cpu->env_ptr);
b170fce3 649 assert(cc->vmsd == NULL);
e0d47944 650 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 651#endif
b170fce3
AF
652 if (cc->vmsd != NULL) {
653 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
654 }
ea041c0e
FB
655}
656
94df27fd 657#if defined(CONFIG_USER_ONLY)
00b941e5 658static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
659{
660 tb_invalidate_phys_page_range(pc, pc + 1, 0);
661}
662#else
00b941e5 663static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 664{
e8262a1b
MF
665 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
666 if (phys != -1) {
09daed84 667 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 668 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 669 }
1e7855a5 670}
c27004ec 671#endif
d720b93d 672
c527ee8f 673#if defined(CONFIG_USER_ONLY)
75a34036 674void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
675
676{
677}
678
3ee887e8
PM
679int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
680 int flags)
681{
682 return -ENOSYS;
683}
684
685void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
686{
687}
688
75a34036 689int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
690 int flags, CPUWatchpoint **watchpoint)
691{
692 return -ENOSYS;
693}
694#else
6658ffb8 695/* Add a watchpoint. */
75a34036 696int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 697 int flags, CPUWatchpoint **watchpoint)
6658ffb8 698{
c0ce998e 699 CPUWatchpoint *wp;
6658ffb8 700
05068c0d 701 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 702 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
703 error_report("tried to set invalid watchpoint at %"
704 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
705 return -EINVAL;
706 }
7267c094 707 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
708
709 wp->vaddr = addr;
05068c0d 710 wp->len = len;
a1d1bb31
AL
711 wp->flags = flags;
712
2dc9f411 713 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
714 if (flags & BP_GDB) {
715 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
716 } else {
717 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
718 }
6658ffb8 719
31b030d4 720 tlb_flush_page(cpu, addr);
a1d1bb31
AL
721
722 if (watchpoint)
723 *watchpoint = wp;
724 return 0;
6658ffb8
PB
725}
726
a1d1bb31 727/* Remove a specific watchpoint. */
75a34036 728int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 729 int flags)
6658ffb8 730{
a1d1bb31 731 CPUWatchpoint *wp;
6658ffb8 732
ff4700b0 733 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 734 if (addr == wp->vaddr && len == wp->len
6e140f28 735 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 736 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
737 return 0;
738 }
739 }
a1d1bb31 740 return -ENOENT;
6658ffb8
PB
741}
742
a1d1bb31 743/* Remove a specific watchpoint by reference. */
75a34036 744void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 745{
ff4700b0 746 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 747
31b030d4 748 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 749
7267c094 750 g_free(watchpoint);
a1d1bb31
AL
751}
752
753/* Remove all matching watchpoints. */
75a34036 754void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 755{
c0ce998e 756 CPUWatchpoint *wp, *next;
a1d1bb31 757
ff4700b0 758 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
759 if (wp->flags & mask) {
760 cpu_watchpoint_remove_by_ref(cpu, wp);
761 }
c0ce998e 762 }
7d03f82f 763}
05068c0d
PM
764
765/* Return true if this watchpoint address matches the specified
766 * access (ie the address range covered by the watchpoint overlaps
767 * partially or completely with the address range covered by the
768 * access).
769 */
770static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
771 vaddr addr,
772 vaddr len)
773{
774 /* We know the lengths are non-zero, but a little caution is
775 * required to avoid errors in the case where the range ends
776 * exactly at the top of the address space and so addr + len
777 * wraps round to zero.
778 */
779 vaddr wpend = wp->vaddr + wp->len - 1;
780 vaddr addrend = addr + len - 1;
781
782 return !(addr > wpend || wp->vaddr > addrend);
783}
784
c527ee8f 785#endif
7d03f82f 786
a1d1bb31 787/* Add a breakpoint. */
b3310ab3 788int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 789 CPUBreakpoint **breakpoint)
4c3a88a2 790{
c0ce998e 791 CPUBreakpoint *bp;
3b46e624 792
7267c094 793 bp = g_malloc(sizeof(*bp));
4c3a88a2 794
a1d1bb31
AL
795 bp->pc = pc;
796 bp->flags = flags;
797
2dc9f411 798 /* keep all GDB-injected breakpoints in front */
00b941e5 799 if (flags & BP_GDB) {
f0c3c505 800 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 801 } else {
f0c3c505 802 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 803 }
3b46e624 804
f0c3c505 805 breakpoint_invalidate(cpu, pc);
a1d1bb31 806
00b941e5 807 if (breakpoint) {
a1d1bb31 808 *breakpoint = bp;
00b941e5 809 }
4c3a88a2 810 return 0;
4c3a88a2
FB
811}
812
a1d1bb31 813/* Remove a specific breakpoint. */
b3310ab3 814int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 815{
a1d1bb31
AL
816 CPUBreakpoint *bp;
817
f0c3c505 818 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 819 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 820 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
821 return 0;
822 }
7d03f82f 823 }
a1d1bb31 824 return -ENOENT;
7d03f82f
EI
825}
826
a1d1bb31 827/* Remove a specific breakpoint by reference. */
b3310ab3 828void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 829{
f0c3c505
AF
830 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
831
832 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 833
7267c094 834 g_free(breakpoint);
a1d1bb31
AL
835}
836
837/* Remove all matching breakpoints. */
b3310ab3 838void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 839{
c0ce998e 840 CPUBreakpoint *bp, *next;
a1d1bb31 841
f0c3c505 842 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
843 if (bp->flags & mask) {
844 cpu_breakpoint_remove_by_ref(cpu, bp);
845 }
c0ce998e 846 }
4c3a88a2
FB
847}
848
c33a346e
FB
849/* enable or disable single step mode. EXCP_DEBUG is returned by the
850 CPU loop after each instruction */
3825b28f 851void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 852{
ed2803da
AF
853 if (cpu->singlestep_enabled != enabled) {
854 cpu->singlestep_enabled = enabled;
855 if (kvm_enabled()) {
38e478ec 856 kvm_update_guest_debug(cpu, 0);
ed2803da 857 } else {
ccbb4d44 858 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 859 /* XXX: only flush what is necessary */
bbd77c18 860 tb_flush(cpu);
e22a25c9 861 }
c33a346e 862 }
c33a346e
FB
863}
864
a47dddd7 865void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
866{
867 va_list ap;
493ae1f0 868 va_list ap2;
7501267e
FB
869
870 va_start(ap, fmt);
493ae1f0 871 va_copy(ap2, ap);
7501267e
FB
872 fprintf(stderr, "qemu: fatal: ");
873 vfprintf(stderr, fmt, ap);
874 fprintf(stderr, "\n");
878096ee 875 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
876 if (qemu_log_enabled()) {
877 qemu_log("qemu: fatal: ");
878 qemu_log_vprintf(fmt, ap2);
879 qemu_log("\n");
a0762859 880 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 881 qemu_log_flush();
93fcfe39 882 qemu_log_close();
924edcae 883 }
493ae1f0 884 va_end(ap2);
f9373291 885 va_end(ap);
7615936e 886 replay_finish();
fd052bf6
RV
887#if defined(CONFIG_USER_ONLY)
888 {
889 struct sigaction act;
890 sigfillset(&act.sa_mask);
891 act.sa_handler = SIG_DFL;
892 sigaction(SIGABRT, &act, NULL);
893 }
894#endif
7501267e
FB
895 abort();
896}
897
0124311e 898#if !defined(CONFIG_USER_ONLY)
0dc3f44a 899/* Called from RCU critical section */
041603fe
PB
900static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
901{
902 RAMBlock *block;
903
43771539 904 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 905 if (block && addr - block->offset < block->max_length) {
68851b98 906 return block;
041603fe 907 }
0dc3f44a 908 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 909 if (addr - block->offset < block->max_length) {
041603fe
PB
910 goto found;
911 }
912 }
913
914 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
915 abort();
916
917found:
43771539
PB
918 /* It is safe to write mru_block outside the iothread lock. This
919 * is what happens:
920 *
921 * mru_block = xxx
922 * rcu_read_unlock()
923 * xxx removed from list
924 * rcu_read_lock()
925 * read mru_block
926 * mru_block = NULL;
927 * call_rcu(reclaim_ramblock, xxx);
928 * rcu_read_unlock()
929 *
930 * atomic_rcu_set is not needed here. The block was already published
931 * when it was placed into the list. Here we're just making an extra
932 * copy of the pointer.
933 */
041603fe
PB
934 ram_list.mru_block = block;
935 return block;
936}
937
a2f4d5be 938static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 939{
9a13565d 940 CPUState *cpu;
041603fe 941 ram_addr_t start1;
a2f4d5be
JQ
942 RAMBlock *block;
943 ram_addr_t end;
944
945 end = TARGET_PAGE_ALIGN(start + length);
946 start &= TARGET_PAGE_MASK;
d24981d3 947
0dc3f44a 948 rcu_read_lock();
041603fe
PB
949 block = qemu_get_ram_block(start);
950 assert(block == qemu_get_ram_block(end - 1));
1240be24 951 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
952 CPU_FOREACH(cpu) {
953 tlb_reset_dirty(cpu, start1, length);
954 }
0dc3f44a 955 rcu_read_unlock();
d24981d3
JQ
956}
957
5579c7f3 958/* Note: start and end must be within the same ram block. */
03eebc9e
SH
959bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
960 ram_addr_t length,
961 unsigned client)
1ccde1cb 962{
03eebc9e
SH
963 unsigned long end, page;
964 bool dirty;
965
966 if (length == 0) {
967 return false;
968 }
f23db169 969
03eebc9e
SH
970 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
971 page = start >> TARGET_PAGE_BITS;
972 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
973 page, end - page);
974
975 if (dirty && tcg_enabled()) {
a2f4d5be 976 tlb_reset_dirty_range_all(start, length);
5579c7f3 977 }
03eebc9e
SH
978
979 return dirty;
1ccde1cb
FB
980}
981
79e2b9ae 982/* Called from RCU critical section */
bb0e627a 983hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
984 MemoryRegionSection *section,
985 target_ulong vaddr,
986 hwaddr paddr, hwaddr xlat,
987 int prot,
988 target_ulong *address)
e5548617 989{
a8170e5e 990 hwaddr iotlb;
e5548617
BS
991 CPUWatchpoint *wp;
992
cc5bea60 993 if (memory_region_is_ram(section->mr)) {
e5548617
BS
994 /* Normal RAM. */
995 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 996 + xlat;
e5548617 997 if (!section->readonly) {
b41aac4f 998 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 999 } else {
b41aac4f 1000 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1001 }
1002 } else {
0b8e2c10
PM
1003 AddressSpaceDispatch *d;
1004
1005 d = atomic_rcu_read(&section->address_space->dispatch);
1006 iotlb = section - d->map.sections;
149f54b5 1007 iotlb += xlat;
e5548617
BS
1008 }
1009
1010 /* Make accesses to pages with watchpoints go via the
1011 watchpoint trap routines. */
ff4700b0 1012 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1013 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1014 /* Avoid trapping reads of pages with a write breakpoint. */
1015 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1016 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1017 *address |= TLB_MMIO;
1018 break;
1019 }
1020 }
1021 }
1022
1023 return iotlb;
1024}
9fa3e853
FB
1025#endif /* defined(CONFIG_USER_ONLY) */
1026
e2eef170 1027#if !defined(CONFIG_USER_ONLY)
8da3ff18 1028
c227f099 1029static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1030 uint16_t section);
acc9d80b 1031static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1032
a2b257d6
IM
1033static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1034 qemu_anon_ram_alloc;
91138037
MA
1035
1036/*
1037 * Set a custom physical guest memory alloator.
1038 * Accelerators with unusual needs may need this. Hopefully, we can
1039 * get rid of it eventually.
1040 */
a2b257d6 1041void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1042{
1043 phys_mem_alloc = alloc;
1044}
1045
53cb28cb
MA
1046static uint16_t phys_section_add(PhysPageMap *map,
1047 MemoryRegionSection *section)
5312bd8b 1048{
68f3f65b
PB
1049 /* The physical section number is ORed with a page-aligned
1050 * pointer to produce the iotlb entries. Thus it should
1051 * never overflow into the page-aligned value.
1052 */
53cb28cb 1053 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1054
53cb28cb
MA
1055 if (map->sections_nb == map->sections_nb_alloc) {
1056 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1057 map->sections = g_renew(MemoryRegionSection, map->sections,
1058 map->sections_nb_alloc);
5312bd8b 1059 }
53cb28cb 1060 map->sections[map->sections_nb] = *section;
dfde4e6e 1061 memory_region_ref(section->mr);
53cb28cb 1062 return map->sections_nb++;
5312bd8b
AK
1063}
1064
058bc4b5
PB
1065static void phys_section_destroy(MemoryRegion *mr)
1066{
dfde4e6e
PB
1067 memory_region_unref(mr);
1068
058bc4b5
PB
1069 if (mr->subpage) {
1070 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1071 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1072 g_free(subpage);
1073 }
1074}
1075
6092666e 1076static void phys_sections_free(PhysPageMap *map)
5312bd8b 1077{
9affd6fc
PB
1078 while (map->sections_nb > 0) {
1079 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1080 phys_section_destroy(section->mr);
1081 }
9affd6fc
PB
1082 g_free(map->sections);
1083 g_free(map->nodes);
5312bd8b
AK
1084}
1085
ac1970fb 1086static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1087{
1088 subpage_t *subpage;
a8170e5e 1089 hwaddr base = section->offset_within_address_space
0f0cb164 1090 & TARGET_PAGE_MASK;
97115a8d 1091 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1092 d->map.nodes, d->map.sections);
0f0cb164
AK
1093 MemoryRegionSection subsection = {
1094 .offset_within_address_space = base,
052e87b0 1095 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1096 };
a8170e5e 1097 hwaddr start, end;
0f0cb164 1098
f3705d53 1099 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1100
f3705d53 1101 if (!(existing->mr->subpage)) {
acc9d80b 1102 subpage = subpage_init(d->as, base);
3be91e86 1103 subsection.address_space = d->as;
0f0cb164 1104 subsection.mr = &subpage->iomem;
ac1970fb 1105 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1106 phys_section_add(&d->map, &subsection));
0f0cb164 1107 } else {
f3705d53 1108 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1109 }
1110 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1111 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1112 subpage_register(subpage, start, end,
1113 phys_section_add(&d->map, section));
0f0cb164
AK
1114}
1115
1116
052e87b0
PB
1117static void register_multipage(AddressSpaceDispatch *d,
1118 MemoryRegionSection *section)
33417e70 1119{
a8170e5e 1120 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1121 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1122 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1123 TARGET_PAGE_BITS));
dd81124b 1124
733d5ef5
PB
1125 assert(num_pages);
1126 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1127}
1128
ac1970fb 1129static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1130{
89ae337a 1131 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1132 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1133 MemoryRegionSection now = *section, remain = *section;
052e87b0 1134 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1135
733d5ef5
PB
1136 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1137 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1138 - now.offset_within_address_space;
1139
052e87b0 1140 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1141 register_subpage(d, &now);
733d5ef5 1142 } else {
052e87b0 1143 now.size = int128_zero();
733d5ef5 1144 }
052e87b0
PB
1145 while (int128_ne(remain.size, now.size)) {
1146 remain.size = int128_sub(remain.size, now.size);
1147 remain.offset_within_address_space += int128_get64(now.size);
1148 remain.offset_within_region += int128_get64(now.size);
69b67646 1149 now = remain;
052e87b0 1150 if (int128_lt(remain.size, page_size)) {
733d5ef5 1151 register_subpage(d, &now);
88266249 1152 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1153 now.size = page_size;
ac1970fb 1154 register_subpage(d, &now);
69b67646 1155 } else {
052e87b0 1156 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1157 register_multipage(d, &now);
69b67646 1158 }
0f0cb164
AK
1159 }
1160}
1161
62a2744c
SY
1162void qemu_flush_coalesced_mmio_buffer(void)
1163{
1164 if (kvm_enabled())
1165 kvm_flush_coalesced_mmio_buffer();
1166}
1167
b2a8658e
UD
1168void qemu_mutex_lock_ramlist(void)
1169{
1170 qemu_mutex_lock(&ram_list.mutex);
1171}
1172
1173void qemu_mutex_unlock_ramlist(void)
1174{
1175 qemu_mutex_unlock(&ram_list.mutex);
1176}
1177
e1e84ba0 1178#ifdef __linux__
c902760f
MT
1179
1180#include <sys/vfs.h>
1181
1182#define HUGETLBFS_MAGIC 0x958458f6
1183
fc7a5800 1184static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1185{
1186 struct statfs fs;
1187 int ret;
1188
1189 do {
9742bf26 1190 ret = statfs(path, &fs);
c902760f
MT
1191 } while (ret != 0 && errno == EINTR);
1192
1193 if (ret != 0) {
fc7a5800
HT
1194 error_setg_errno(errp, errno, "failed to get page size of file %s",
1195 path);
9742bf26 1196 return 0;
c902760f
MT
1197 }
1198
1199 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1200 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1201
1202 return fs.f_bsize;
1203}
1204
04b16653
AW
1205static void *file_ram_alloc(RAMBlock *block,
1206 ram_addr_t memory,
7f56e740
PB
1207 const char *path,
1208 Error **errp)
c902760f 1209{
8d31d6b6 1210 struct stat st;
c902760f 1211 char *filename;
8ca761f6
PF
1212 char *sanitized_name;
1213 char *c;
794e8f30 1214 void *area;
c902760f 1215 int fd;
557529dd 1216 uint64_t hpagesize;
fc7a5800 1217 Error *local_err = NULL;
c902760f 1218
fc7a5800
HT
1219 hpagesize = gethugepagesize(path, &local_err);
1220 if (local_err) {
1221 error_propagate(errp, local_err);
f9a49dfa 1222 goto error;
c902760f 1223 }
a2b257d6 1224 block->mr->align = hpagesize;
c902760f
MT
1225
1226 if (memory < hpagesize) {
557529dd
HT
1227 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1228 "or larger than huge page size 0x%" PRIx64,
1229 memory, hpagesize);
1230 goto error;
c902760f
MT
1231 }
1232
1233 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1234 error_setg(errp,
1235 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1236 goto error;
c902760f
MT
1237 }
1238
8d31d6b6
PF
1239 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1240 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1241 sanitized_name = g_strdup(memory_region_name(block->mr));
1242 for (c = sanitized_name; *c != '\0'; c++) {
1243 if (*c == '/') {
1244 *c = '_';
1245 }
1246 }
8ca761f6 1247
8d31d6b6
PF
1248 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1249 sanitized_name);
1250 g_free(sanitized_name);
1251
1252 fd = mkstemp(filename);
1253 if (fd >= 0) {
1254 unlink(filename);
1255 }
1256 g_free(filename);
1257 } else {
1258 fd = open(path, O_RDWR | O_CREAT, 0644);
1259 }
c902760f 1260
c902760f 1261 if (fd < 0) {
7f56e740
PB
1262 error_setg_errno(errp, errno,
1263 "unable to create backing store for hugepages");
f9a49dfa 1264 goto error;
c902760f 1265 }
c902760f 1266
9284f319 1267 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1268
1269 /*
1270 * ftruncate is not supported by hugetlbfs in older
1271 * hosts, so don't bother bailing out on errors.
1272 * If anything goes wrong with it under other filesystems,
1273 * mmap will fail.
1274 */
7f56e740 1275 if (ftruncate(fd, memory)) {
9742bf26 1276 perror("ftruncate");
7f56e740 1277 }
c902760f 1278
794e8f30 1279 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1280 if (area == MAP_FAILED) {
7f56e740
PB
1281 error_setg_errno(errp, errno,
1282 "unable to map backing store for hugepages");
9742bf26 1283 close(fd);
f9a49dfa 1284 goto error;
c902760f 1285 }
ef36fa14
MT
1286
1287 if (mem_prealloc) {
38183310 1288 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1289 }
1290
04b16653 1291 block->fd = fd;
c902760f 1292 return area;
f9a49dfa
MT
1293
1294error:
f9a49dfa 1295 return NULL;
c902760f
MT
1296}
1297#endif
1298
0dc3f44a 1299/* Called with the ramlist lock held. */
d17b5288 1300static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1301{
1302 RAMBlock *block, *next_block;
3e837b2c 1303 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1304
49cd9ac6
SH
1305 assert(size != 0); /* it would hand out same offset multiple times */
1306
0dc3f44a 1307 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1308 return 0;
0d53d9fe 1309 }
04b16653 1310
0dc3f44a 1311 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1312 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1313
62be4e3a 1314 end = block->offset + block->max_length;
04b16653 1315
0dc3f44a 1316 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1317 if (next_block->offset >= end) {
1318 next = MIN(next, next_block->offset);
1319 }
1320 }
1321 if (next - end >= size && next - end < mingap) {
3e837b2c 1322 offset = end;
04b16653
AW
1323 mingap = next - end;
1324 }
1325 }
3e837b2c
AW
1326
1327 if (offset == RAM_ADDR_MAX) {
1328 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1329 (uint64_t)size);
1330 abort();
1331 }
1332
04b16653
AW
1333 return offset;
1334}
1335
652d7ec2 1336ram_addr_t last_ram_offset(void)
d17b5288
AW
1337{
1338 RAMBlock *block;
1339 ram_addr_t last = 0;
1340
0dc3f44a
MD
1341 rcu_read_lock();
1342 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1343 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1344 }
0dc3f44a 1345 rcu_read_unlock();
d17b5288
AW
1346 return last;
1347}
1348
ddb97f1d
JB
1349static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1350{
1351 int ret;
ddb97f1d
JB
1352
1353 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1354 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1355 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1356 if (ret) {
1357 perror("qemu_madvise");
1358 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1359 "but dump_guest_core=off specified\n");
1360 }
1361 }
1362}
1363
0dc3f44a
MD
1364/* Called within an RCU critical section, or while the ramlist lock
1365 * is held.
1366 */
20cfe881 1367static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1368{
20cfe881 1369 RAMBlock *block;
84b89d78 1370
0dc3f44a 1371 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1372 if (block->offset == addr) {
20cfe881 1373 return block;
c5705a77
AK
1374 }
1375 }
20cfe881
HT
1376
1377 return NULL;
1378}
1379
ae3a7047 1380/* Called with iothread lock held. */
20cfe881
HT
1381void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1382{
ae3a7047 1383 RAMBlock *new_block, *block;
20cfe881 1384
0dc3f44a 1385 rcu_read_lock();
ae3a7047 1386 new_block = find_ram_block(addr);
c5705a77
AK
1387 assert(new_block);
1388 assert(!new_block->idstr[0]);
84b89d78 1389
09e5ab63
AL
1390 if (dev) {
1391 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1392 if (id) {
1393 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1394 g_free(id);
84b89d78
CM
1395 }
1396 }
1397 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1398
0dc3f44a 1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1400 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1401 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1402 new_block->idstr);
1403 abort();
1404 }
1405 }
0dc3f44a 1406 rcu_read_unlock();
c5705a77
AK
1407}
1408
ae3a7047 1409/* Called with iothread lock held. */
20cfe881
HT
1410void qemu_ram_unset_idstr(ram_addr_t addr)
1411{
ae3a7047 1412 RAMBlock *block;
20cfe881 1413
ae3a7047
MD
1414 /* FIXME: arch_init.c assumes that this is not called throughout
1415 * migration. Ignore the problem since hot-unplug during migration
1416 * does not work anyway.
1417 */
1418
0dc3f44a 1419 rcu_read_lock();
ae3a7047 1420 block = find_ram_block(addr);
20cfe881
HT
1421 if (block) {
1422 memset(block->idstr, 0, sizeof(block->idstr));
1423 }
0dc3f44a 1424 rcu_read_unlock();
20cfe881
HT
1425}
1426
8490fc78
LC
1427static int memory_try_enable_merging(void *addr, size_t len)
1428{
75cc7f01 1429 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1430 /* disabled by the user */
1431 return 0;
1432 }
1433
1434 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1435}
1436
62be4e3a
MT
1437/* Only legal before guest might have detected the memory size: e.g. on
1438 * incoming migration, or right after reset.
1439 *
1440 * As memory core doesn't know how is memory accessed, it is up to
1441 * resize callback to update device state and/or add assertions to detect
1442 * misuse, if necessary.
1443 */
1444int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1445{
1446 RAMBlock *block = find_ram_block(base);
1447
1448 assert(block);
1449
129ddaf3
MT
1450 newsize = TARGET_PAGE_ALIGN(newsize);
1451
62be4e3a
MT
1452 if (block->used_length == newsize) {
1453 return 0;
1454 }
1455
1456 if (!(block->flags & RAM_RESIZEABLE)) {
1457 error_setg_errno(errp, EINVAL,
1458 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1459 " in != 0x" RAM_ADDR_FMT, block->idstr,
1460 newsize, block->used_length);
1461 return -EINVAL;
1462 }
1463
1464 if (block->max_length < newsize) {
1465 error_setg_errno(errp, EINVAL,
1466 "Length too large: %s: 0x" RAM_ADDR_FMT
1467 " > 0x" RAM_ADDR_FMT, block->idstr,
1468 newsize, block->max_length);
1469 return -EINVAL;
1470 }
1471
1472 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1473 block->used_length = newsize;
58d2707e
PB
1474 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1475 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1476 memory_region_set_size(block->mr, newsize);
1477 if (block->resized) {
1478 block->resized(block->idstr, newsize, block->host);
1479 }
1480 return 0;
1481}
1482
ef701d7b 1483static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1484{
e1c57ab8 1485 RAMBlock *block;
0d53d9fe 1486 RAMBlock *last_block = NULL;
2152f5ca
JQ
1487 ram_addr_t old_ram_size, new_ram_size;
1488
1489 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1490
b2a8658e 1491 qemu_mutex_lock_ramlist();
9b8424d5 1492 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1493
1494 if (!new_block->host) {
1495 if (xen_enabled()) {
9b8424d5
MT
1496 xen_ram_alloc(new_block->offset, new_block->max_length,
1497 new_block->mr);
e1c57ab8 1498 } else {
9b8424d5 1499 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1500 &new_block->mr->align);
39228250 1501 if (!new_block->host) {
ef701d7b
HT
1502 error_setg_errno(errp, errno,
1503 "cannot set up guest memory '%s'",
1504 memory_region_name(new_block->mr));
1505 qemu_mutex_unlock_ramlist();
1506 return -1;
39228250 1507 }
9b8424d5 1508 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1509 }
c902760f 1510 }
94a6b54f 1511
dd631697
LZ
1512 new_ram_size = MAX(old_ram_size,
1513 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1514 if (new_ram_size > old_ram_size) {
1515 migration_bitmap_extend(old_ram_size, new_ram_size);
1516 }
0d53d9fe
MD
1517 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1518 * QLIST (which has an RCU-friendly variant) does not have insertion at
1519 * tail, so save the last element in last_block.
1520 */
0dc3f44a 1521 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1522 last_block = block;
9b8424d5 1523 if (block->max_length < new_block->max_length) {
abb26d63
PB
1524 break;
1525 }
1526 }
1527 if (block) {
0dc3f44a 1528 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1529 } else if (last_block) {
0dc3f44a 1530 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1531 } else { /* list is empty */
0dc3f44a 1532 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1533 }
0d6d3c87 1534 ram_list.mru_block = NULL;
94a6b54f 1535
0dc3f44a
MD
1536 /* Write list before version */
1537 smp_wmb();
f798b07f 1538 ram_list.version++;
b2a8658e 1539 qemu_mutex_unlock_ramlist();
f798b07f 1540
2152f5ca
JQ
1541 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1542
1543 if (new_ram_size > old_ram_size) {
1ab4c8ce 1544 int i;
ae3a7047
MD
1545
1546 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1ab4c8ce
JQ
1547 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1548 ram_list.dirty_memory[i] =
1549 bitmap_zero_extend(ram_list.dirty_memory[i],
1550 old_ram_size, new_ram_size);
1551 }
2152f5ca 1552 }
9b8424d5 1553 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1554 new_block->used_length,
1555 DIRTY_CLIENTS_ALL);
94a6b54f 1556
a904c911
PB
1557 if (new_block->host) {
1558 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1559 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1560 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1561 if (kvm_enabled()) {
1562 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1563 }
e1c57ab8 1564 }
6f0437e8 1565
94a6b54f
PB
1566 return new_block->offset;
1567}
e9a1ab19 1568
0b183fc8 1569#ifdef __linux__
e1c57ab8 1570ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1571 bool share, const char *mem_path,
7f56e740 1572 Error **errp)
e1c57ab8
PB
1573{
1574 RAMBlock *new_block;
ef701d7b
HT
1575 ram_addr_t addr;
1576 Error *local_err = NULL;
e1c57ab8
PB
1577
1578 if (xen_enabled()) {
7f56e740
PB
1579 error_setg(errp, "-mem-path not supported with Xen");
1580 return -1;
e1c57ab8
PB
1581 }
1582
1583 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1584 /*
1585 * file_ram_alloc() needs to allocate just like
1586 * phys_mem_alloc, but we haven't bothered to provide
1587 * a hook there.
1588 */
7f56e740
PB
1589 error_setg(errp,
1590 "-mem-path not supported with this accelerator");
1591 return -1;
e1c57ab8
PB
1592 }
1593
1594 size = TARGET_PAGE_ALIGN(size);
1595 new_block = g_malloc0(sizeof(*new_block));
1596 new_block->mr = mr;
9b8424d5
MT
1597 new_block->used_length = size;
1598 new_block->max_length = size;
dbcb8981 1599 new_block->flags = share ? RAM_SHARED : 0;
794e8f30 1600 new_block->flags |= RAM_FILE;
7f56e740
PB
1601 new_block->host = file_ram_alloc(new_block, size,
1602 mem_path, errp);
1603 if (!new_block->host) {
1604 g_free(new_block);
1605 return -1;
1606 }
1607
ef701d7b
HT
1608 addr = ram_block_add(new_block, &local_err);
1609 if (local_err) {
1610 g_free(new_block);
1611 error_propagate(errp, local_err);
1612 return -1;
1613 }
1614 return addr;
e1c57ab8 1615}
0b183fc8 1616#endif
e1c57ab8 1617
62be4e3a
MT
1618static
1619ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1620 void (*resized)(const char*,
1621 uint64_t length,
1622 void *host),
1623 void *host, bool resizeable,
ef701d7b 1624 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1625{
1626 RAMBlock *new_block;
ef701d7b
HT
1627 ram_addr_t addr;
1628 Error *local_err = NULL;
e1c57ab8
PB
1629
1630 size = TARGET_PAGE_ALIGN(size);
62be4e3a 1631 max_size = TARGET_PAGE_ALIGN(max_size);
e1c57ab8
PB
1632 new_block = g_malloc0(sizeof(*new_block));
1633 new_block->mr = mr;
62be4e3a 1634 new_block->resized = resized;
9b8424d5
MT
1635 new_block->used_length = size;
1636 new_block->max_length = max_size;
62be4e3a 1637 assert(max_size >= size);
e1c57ab8
PB
1638 new_block->fd = -1;
1639 new_block->host = host;
1640 if (host) {
7bd4f430 1641 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1642 }
62be4e3a
MT
1643 if (resizeable) {
1644 new_block->flags |= RAM_RESIZEABLE;
1645 }
ef701d7b
HT
1646 addr = ram_block_add(new_block, &local_err);
1647 if (local_err) {
1648 g_free(new_block);
1649 error_propagate(errp, local_err);
1650 return -1;
1651 }
1652 return addr;
e1c57ab8
PB
1653}
1654
62be4e3a
MT
1655ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1656 MemoryRegion *mr, Error **errp)
1657{
1658 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1659}
1660
ef701d7b 1661ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1662{
62be4e3a
MT
1663 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1664}
1665
1666ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1667 void (*resized)(const char*,
1668 uint64_t length,
1669 void *host),
1670 MemoryRegion *mr, Error **errp)
1671{
1672 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1673}
1674
1f2e98b6
AW
1675void qemu_ram_free_from_ptr(ram_addr_t addr)
1676{
1677 RAMBlock *block;
1678
b2a8658e 1679 qemu_mutex_lock_ramlist();
0dc3f44a 1680 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1f2e98b6 1681 if (addr == block->offset) {
0dc3f44a 1682 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1683 ram_list.mru_block = NULL;
0dc3f44a
MD
1684 /* Write list before version */
1685 smp_wmb();
f798b07f 1686 ram_list.version++;
43771539 1687 g_free_rcu(block, rcu);
b2a8658e 1688 break;
1f2e98b6
AW
1689 }
1690 }
b2a8658e 1691 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1692}
1693
43771539
PB
1694static void reclaim_ramblock(RAMBlock *block)
1695{
1696 if (block->flags & RAM_PREALLOC) {
1697 ;
1698 } else if (xen_enabled()) {
1699 xen_invalidate_map_cache_entry(block->host);
1700#ifndef _WIN32
1701 } else if (block->fd >= 0) {
794e8f30
MT
1702 if (block->flags & RAM_FILE) {
1703 qemu_ram_munmap(block->host, block->max_length);
8561c924
MT
1704 } else {
1705 munmap(block->host, block->max_length);
1706 }
43771539
PB
1707 close(block->fd);
1708#endif
1709 } else {
1710 qemu_anon_ram_free(block->host, block->max_length);
1711 }
1712 g_free(block);
1713}
1714
c227f099 1715void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1716{
04b16653
AW
1717 RAMBlock *block;
1718
b2a8658e 1719 qemu_mutex_lock_ramlist();
0dc3f44a 1720 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1721 if (addr == block->offset) {
0dc3f44a 1722 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1723 ram_list.mru_block = NULL;
0dc3f44a
MD
1724 /* Write list before version */
1725 smp_wmb();
f798b07f 1726 ram_list.version++;
43771539 1727 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1728 break;
04b16653
AW
1729 }
1730 }
b2a8658e 1731 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1732}
1733
cd19cfa2
HY
1734#ifndef _WIN32
1735void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1736{
1737 RAMBlock *block;
1738 ram_addr_t offset;
1739 int flags;
1740 void *area, *vaddr;
1741
0dc3f44a 1742 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1743 offset = addr - block->offset;
9b8424d5 1744 if (offset < block->max_length) {
1240be24 1745 vaddr = ramblock_ptr(block, offset);
7bd4f430 1746 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1747 ;
dfeaf2ab
MA
1748 } else if (xen_enabled()) {
1749 abort();
cd19cfa2
HY
1750 } else {
1751 flags = MAP_FIXED;
3435f395 1752 if (block->fd >= 0) {
dbcb8981
PB
1753 flags |= (block->flags & RAM_SHARED ?
1754 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1755 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1756 flags, block->fd, offset);
cd19cfa2 1757 } else {
2eb9fbaa
MA
1758 /*
1759 * Remap needs to match alloc. Accelerators that
1760 * set phys_mem_alloc never remap. If they did,
1761 * we'd need a remap hook here.
1762 */
1763 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1764
cd19cfa2
HY
1765 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1766 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1767 flags, -1, 0);
cd19cfa2
HY
1768 }
1769 if (area != vaddr) {
f15fbc4b
AP
1770 fprintf(stderr, "Could not remap addr: "
1771 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1772 length, addr);
1773 exit(1);
1774 }
8490fc78 1775 memory_try_enable_merging(vaddr, length);
ddb97f1d 1776 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1777 }
cd19cfa2
HY
1778 }
1779 }
1780}
1781#endif /* !_WIN32 */
1782
a35ba7be
PB
1783int qemu_get_ram_fd(ram_addr_t addr)
1784{
ae3a7047
MD
1785 RAMBlock *block;
1786 int fd;
a35ba7be 1787
0dc3f44a 1788 rcu_read_lock();
ae3a7047
MD
1789 block = qemu_get_ram_block(addr);
1790 fd = block->fd;
0dc3f44a 1791 rcu_read_unlock();
ae3a7047 1792 return fd;
a35ba7be
PB
1793}
1794
3fd74b84
DM
1795void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1796{
ae3a7047
MD
1797 RAMBlock *block;
1798 void *ptr;
3fd74b84 1799
0dc3f44a 1800 rcu_read_lock();
ae3a7047
MD
1801 block = qemu_get_ram_block(addr);
1802 ptr = ramblock_ptr(block, 0);
0dc3f44a 1803 rcu_read_unlock();
ae3a7047 1804 return ptr;
3fd74b84
DM
1805}
1806
1b5ec234 1807/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1808 * This should not be used for general purpose DMA. Use address_space_map
1809 * or address_space_rw instead. For local memory (e.g. video ram) that the
1810 * device owns, use memory_region_get_ram_ptr.
0dc3f44a
MD
1811 *
1812 * By the time this function returns, the returned pointer is not protected
1813 * by RCU anymore. If the caller is not within an RCU critical section and
1814 * does not hold the iothread lock, it must have other means of protecting the
1815 * pointer, such as a reference to the region that includes the incoming
1816 * ram_addr_t.
1b5ec234
PB
1817 */
1818void *qemu_get_ram_ptr(ram_addr_t addr)
1819{
ae3a7047
MD
1820 RAMBlock *block;
1821 void *ptr;
1b5ec234 1822
0dc3f44a 1823 rcu_read_lock();
ae3a7047
MD
1824 block = qemu_get_ram_block(addr);
1825
1826 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1827 /* We need to check if the requested address is in the RAM
1828 * because we don't want to map the entire memory in QEMU.
1829 * In that case just map until the end of the page.
1830 */
1831 if (block->offset == 0) {
ae3a7047 1832 ptr = xen_map_cache(addr, 0, 0);
0dc3f44a 1833 goto unlock;
0d6d3c87 1834 }
ae3a7047
MD
1835
1836 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1837 }
ae3a7047
MD
1838 ptr = ramblock_ptr(block, addr - block->offset);
1839
0dc3f44a
MD
1840unlock:
1841 rcu_read_unlock();
ae3a7047 1842 return ptr;
dc828ca1
PB
1843}
1844
38bee5dc 1845/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1846 * but takes a size argument.
0dc3f44a
MD
1847 *
1848 * By the time this function returns, the returned pointer is not protected
1849 * by RCU anymore. If the caller is not within an RCU critical section and
1850 * does not hold the iothread lock, it must have other means of protecting the
1851 * pointer, such as a reference to the region that includes the incoming
1852 * ram_addr_t.
ae3a7047 1853 */
cb85f7ab 1854static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1855{
ae3a7047 1856 void *ptr;
8ab934f9
SS
1857 if (*size == 0) {
1858 return NULL;
1859 }
868bb33f 1860 if (xen_enabled()) {
e41d7c69 1861 return xen_map_cache(addr, *size, 1);
868bb33f 1862 } else {
38bee5dc 1863 RAMBlock *block;
0dc3f44a
MD
1864 rcu_read_lock();
1865 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5
MT
1866 if (addr - block->offset < block->max_length) {
1867 if (addr - block->offset + *size > block->max_length)
1868 *size = block->max_length - addr + block->offset;
ae3a7047 1869 ptr = ramblock_ptr(block, addr - block->offset);
0dc3f44a 1870 rcu_read_unlock();
ae3a7047 1871 return ptr;
38bee5dc
SS
1872 }
1873 }
1874
1875 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1876 abort();
38bee5dc
SS
1877 }
1878}
1879
7443b437 1880/* Some of the softmmu routines need to translate from a host pointer
ae3a7047
MD
1881 * (typically a TLB entry) back to a ram offset.
1882 *
1883 * By the time this function returns, the returned pointer is not protected
1884 * by RCU anymore. If the caller is not within an RCU critical section and
1885 * does not hold the iothread lock, it must have other means of protecting the
1886 * pointer, such as a reference to the region that includes the incoming
1887 * ram_addr_t.
1888 */
1b5ec234 1889MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1890{
94a6b54f
PB
1891 RAMBlock *block;
1892 uint8_t *host = ptr;
ae3a7047 1893 MemoryRegion *mr;
94a6b54f 1894
868bb33f 1895 if (xen_enabled()) {
0dc3f44a 1896 rcu_read_lock();
e41d7c69 1897 *ram_addr = xen_ram_addr_from_mapcache(ptr);
ae3a7047 1898 mr = qemu_get_ram_block(*ram_addr)->mr;
0dc3f44a 1899 rcu_read_unlock();
ae3a7047 1900 return mr;
712c2b41
SS
1901 }
1902
0dc3f44a
MD
1903 rcu_read_lock();
1904 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1905 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1906 goto found;
1907 }
1908
0dc3f44a 1909 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1910 /* This case append when the block is not mapped. */
1911 if (block->host == NULL) {
1912 continue;
1913 }
9b8424d5 1914 if (host - block->host < block->max_length) {
23887b79 1915 goto found;
f471a17e 1916 }
94a6b54f 1917 }
432d268c 1918
0dc3f44a 1919 rcu_read_unlock();
1b5ec234 1920 return NULL;
23887b79
PB
1921
1922found:
1923 *ram_addr = block->offset + (host - block->host);
ae3a7047 1924 mr = block->mr;
0dc3f44a 1925 rcu_read_unlock();
ae3a7047 1926 return mr;
e890261f 1927}
f471a17e 1928
a8170e5e 1929static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1930 uint64_t val, unsigned size)
9fa3e853 1931{
52159192 1932 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1933 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1934 }
0e0df1e2
AK
1935 switch (size) {
1936 case 1:
1937 stb_p(qemu_get_ram_ptr(ram_addr), val);
1938 break;
1939 case 2:
1940 stw_p(qemu_get_ram_ptr(ram_addr), val);
1941 break;
1942 case 4:
1943 stl_p(qemu_get_ram_ptr(ram_addr), val);
1944 break;
1945 default:
1946 abort();
3a7d929e 1947 }
58d2707e
PB
1948 /* Set both VGA and migration bits for simplicity and to remove
1949 * the notdirty callback faster.
1950 */
1951 cpu_physical_memory_set_dirty_range(ram_addr, size,
1952 DIRTY_CLIENTS_NOCODE);
f23db169
FB
1953 /* we remove the notdirty callback only if the code has been
1954 flushed */
a2cd8c85 1955 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 1956 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 1957 }
9fa3e853
FB
1958}
1959
b018ddf6
PB
1960static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1961 unsigned size, bool is_write)
1962{
1963 return is_write;
1964}
1965
0e0df1e2 1966static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1967 .write = notdirty_mem_write,
b018ddf6 1968 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1969 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1970};
1971
0f459d16 1972/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 1973static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 1974{
93afeade
AF
1975 CPUState *cpu = current_cpu;
1976 CPUArchState *env = cpu->env_ptr;
06d55cc1 1977 target_ulong pc, cs_base;
0f459d16 1978 target_ulong vaddr;
a1d1bb31 1979 CPUWatchpoint *wp;
06d55cc1 1980 int cpu_flags;
0f459d16 1981
ff4700b0 1982 if (cpu->watchpoint_hit) {
06d55cc1
AL
1983 /* We re-entered the check after replacing the TB. Now raise
1984 * the debug interrupt so that is will trigger after the
1985 * current instruction. */
93afeade 1986 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1987 return;
1988 }
93afeade 1989 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 1990 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
1991 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1992 && (wp->flags & flags)) {
08225676
PM
1993 if (flags == BP_MEM_READ) {
1994 wp->flags |= BP_WATCHPOINT_HIT_READ;
1995 } else {
1996 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1997 }
1998 wp->hitaddr = vaddr;
66b9b43c 1999 wp->hitattrs = attrs;
ff4700b0
AF
2000 if (!cpu->watchpoint_hit) {
2001 cpu->watchpoint_hit = wp;
239c51a5 2002 tb_check_watchpoint(cpu);
6e140f28 2003 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2004 cpu->exception_index = EXCP_DEBUG;
5638d180 2005 cpu_loop_exit(cpu);
6e140f28
AL
2006 } else {
2007 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2008 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2009 cpu_resume_from_signal(cpu, NULL);
6e140f28 2010 }
06d55cc1 2011 }
6e140f28
AL
2012 } else {
2013 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2014 }
2015 }
2016}
2017
6658ffb8
PB
2018/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2019 so these check for a hit then pass through to the normal out-of-line
2020 phys routines. */
66b9b43c
PM
2021static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2022 unsigned size, MemTxAttrs attrs)
6658ffb8 2023{
66b9b43c
PM
2024 MemTxResult res;
2025 uint64_t data;
2026
2027 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2028 switch (size) {
66b9b43c
PM
2029 case 1:
2030 data = address_space_ldub(&address_space_memory, addr, attrs, &res);
2031 break;
2032 case 2:
2033 data = address_space_lduw(&address_space_memory, addr, attrs, &res);
2034 break;
2035 case 4:
2036 data = address_space_ldl(&address_space_memory, addr, attrs, &res);
2037 break;
1ec9b909
AK
2038 default: abort();
2039 }
66b9b43c
PM
2040 *pdata = data;
2041 return res;
6658ffb8
PB
2042}
2043
66b9b43c
PM
2044static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2045 uint64_t val, unsigned size,
2046 MemTxAttrs attrs)
6658ffb8 2047{
66b9b43c
PM
2048 MemTxResult res;
2049
2050 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2051 switch (size) {
67364150 2052 case 1:
66b9b43c 2053 address_space_stb(&address_space_memory, addr, val, attrs, &res);
67364150
MF
2054 break;
2055 case 2:
66b9b43c 2056 address_space_stw(&address_space_memory, addr, val, attrs, &res);
67364150
MF
2057 break;
2058 case 4:
66b9b43c 2059 address_space_stl(&address_space_memory, addr, val, attrs, &res);
67364150 2060 break;
1ec9b909
AK
2061 default: abort();
2062 }
66b9b43c 2063 return res;
6658ffb8
PB
2064}
2065
1ec9b909 2066static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2067 .read_with_attrs = watch_mem_read,
2068 .write_with_attrs = watch_mem_write,
1ec9b909 2069 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2070};
6658ffb8 2071
f25a49e0
PM
2072static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2073 unsigned len, MemTxAttrs attrs)
db7b5426 2074{
acc9d80b 2075 subpage_t *subpage = opaque;
ff6cff75 2076 uint8_t buf[8];
5c9eb028 2077 MemTxResult res;
791af8c8 2078
db7b5426 2079#if defined(DEBUG_SUBPAGE)
016e9d62 2080 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2081 subpage, len, addr);
db7b5426 2082#endif
5c9eb028
PM
2083 res = address_space_read(subpage->as, addr + subpage->base,
2084 attrs, buf, len);
2085 if (res) {
2086 return res;
f25a49e0 2087 }
acc9d80b
JK
2088 switch (len) {
2089 case 1:
f25a49e0
PM
2090 *data = ldub_p(buf);
2091 return MEMTX_OK;
acc9d80b 2092 case 2:
f25a49e0
PM
2093 *data = lduw_p(buf);
2094 return MEMTX_OK;
acc9d80b 2095 case 4:
f25a49e0
PM
2096 *data = ldl_p(buf);
2097 return MEMTX_OK;
ff6cff75 2098 case 8:
f25a49e0
PM
2099 *data = ldq_p(buf);
2100 return MEMTX_OK;
acc9d80b
JK
2101 default:
2102 abort();
2103 }
db7b5426
BS
2104}
2105
f25a49e0
PM
2106static MemTxResult subpage_write(void *opaque, hwaddr addr,
2107 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2108{
acc9d80b 2109 subpage_t *subpage = opaque;
ff6cff75 2110 uint8_t buf[8];
acc9d80b 2111
db7b5426 2112#if defined(DEBUG_SUBPAGE)
016e9d62 2113 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2114 " value %"PRIx64"\n",
2115 __func__, subpage, len, addr, value);
db7b5426 2116#endif
acc9d80b
JK
2117 switch (len) {
2118 case 1:
2119 stb_p(buf, value);
2120 break;
2121 case 2:
2122 stw_p(buf, value);
2123 break;
2124 case 4:
2125 stl_p(buf, value);
2126 break;
ff6cff75
PB
2127 case 8:
2128 stq_p(buf, value);
2129 break;
acc9d80b
JK
2130 default:
2131 abort();
2132 }
5c9eb028
PM
2133 return address_space_write(subpage->as, addr + subpage->base,
2134 attrs, buf, len);
db7b5426
BS
2135}
2136
c353e4cc 2137static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2138 unsigned len, bool is_write)
c353e4cc 2139{
acc9d80b 2140 subpage_t *subpage = opaque;
c353e4cc 2141#if defined(DEBUG_SUBPAGE)
016e9d62 2142 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2143 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2144#endif
2145
acc9d80b 2146 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2147 len, is_write);
c353e4cc
PB
2148}
2149
70c68e44 2150static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2151 .read_with_attrs = subpage_read,
2152 .write_with_attrs = subpage_write,
ff6cff75
PB
2153 .impl.min_access_size = 1,
2154 .impl.max_access_size = 8,
2155 .valid.min_access_size = 1,
2156 .valid.max_access_size = 8,
c353e4cc 2157 .valid.accepts = subpage_accepts,
70c68e44 2158 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2159};
2160
c227f099 2161static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2162 uint16_t section)
db7b5426
BS
2163{
2164 int idx, eidx;
2165
2166 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2167 return -1;
2168 idx = SUBPAGE_IDX(start);
2169 eidx = SUBPAGE_IDX(end);
2170#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2171 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2172 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2173#endif
db7b5426 2174 for (; idx <= eidx; idx++) {
5312bd8b 2175 mmio->sub_section[idx] = section;
db7b5426
BS
2176 }
2177
2178 return 0;
2179}
2180
acc9d80b 2181static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2182{
c227f099 2183 subpage_t *mmio;
db7b5426 2184
7267c094 2185 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2186
acc9d80b 2187 mmio->as = as;
1eec614b 2188 mmio->base = base;
2c9b15ca 2189 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2190 NULL, TARGET_PAGE_SIZE);
b3b00c78 2191 mmio->iomem.subpage = true;
db7b5426 2192#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2193 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2194 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2195#endif
b41aac4f 2196 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2197
2198 return mmio;
2199}
2200
a656e22f
PC
2201static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2202 MemoryRegion *mr)
5312bd8b 2203{
a656e22f 2204 assert(as);
5312bd8b 2205 MemoryRegionSection section = {
a656e22f 2206 .address_space = as,
5312bd8b
AK
2207 .mr = mr,
2208 .offset_within_address_space = 0,
2209 .offset_within_region = 0,
052e87b0 2210 .size = int128_2_64(),
5312bd8b
AK
2211 };
2212
53cb28cb 2213 return phys_section_add(map, &section);
5312bd8b
AK
2214}
2215
9d82b5a7 2216MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
aa102231 2217{
32857f4d
PM
2218 CPUAddressSpace *cpuas = &cpu->cpu_ases[0];
2219 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2220 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2221
2222 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2223}
2224
e9179ce1
AK
2225static void io_mem_init(void)
2226{
1f6245e5 2227 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2228 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2229 NULL, UINT64_MAX);
2c9b15ca 2230 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2231 NULL, UINT64_MAX);
2c9b15ca 2232 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2233 NULL, UINT64_MAX);
e9179ce1
AK
2234}
2235
ac1970fb 2236static void mem_begin(MemoryListener *listener)
00752703
PB
2237{
2238 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2239 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2240 uint16_t n;
2241
a656e22f 2242 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2243 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2244 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2245 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2246 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2247 assert(n == PHYS_SECTION_ROM);
a656e22f 2248 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2249 assert(n == PHYS_SECTION_WATCH);
00752703 2250
9736e55b 2251 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2252 d->as = as;
2253 as->next_dispatch = d;
2254}
2255
79e2b9ae
PB
2256static void address_space_dispatch_free(AddressSpaceDispatch *d)
2257{
2258 phys_sections_free(&d->map);
2259 g_free(d);
2260}
2261
00752703 2262static void mem_commit(MemoryListener *listener)
ac1970fb 2263{
89ae337a 2264 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2265 AddressSpaceDispatch *cur = as->dispatch;
2266 AddressSpaceDispatch *next = as->next_dispatch;
2267
53cb28cb 2268 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2269
79e2b9ae 2270 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2271 if (cur) {
79e2b9ae 2272 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2273 }
9affd6fc
PB
2274}
2275
1d71148e 2276static void tcg_commit(MemoryListener *listener)
50c1e149 2277{
32857f4d
PM
2278 CPUAddressSpace *cpuas;
2279 AddressSpaceDispatch *d;
117712c3
AK
2280
2281 /* since each CPU stores ram addresses in its TLB cache, we must
2282 reset the modified entries */
32857f4d
PM
2283 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2284 cpu_reloading_memory_map();
2285 /* The CPU and TLB are protected by the iothread lock.
2286 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2287 * may have split the RCU critical section.
2288 */
2289 d = atomic_rcu_read(&cpuas->as->dispatch);
2290 cpuas->memory_dispatch = d;
2291 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2292}
2293
ac1970fb
AK
2294void address_space_init_dispatch(AddressSpace *as)
2295{
00752703 2296 as->dispatch = NULL;
89ae337a 2297 as->dispatch_listener = (MemoryListener) {
ac1970fb 2298 .begin = mem_begin,
00752703 2299 .commit = mem_commit,
ac1970fb
AK
2300 .region_add = mem_add,
2301 .region_nop = mem_add,
2302 .priority = 0,
2303 };
89ae337a 2304 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2305}
2306
6e48e8f9
PB
2307void address_space_unregister(AddressSpace *as)
2308{
2309 memory_listener_unregister(&as->dispatch_listener);
2310}
2311
83f3c251
AK
2312void address_space_destroy_dispatch(AddressSpace *as)
2313{
2314 AddressSpaceDispatch *d = as->dispatch;
2315
79e2b9ae
PB
2316 atomic_rcu_set(&as->dispatch, NULL);
2317 if (d) {
2318 call_rcu(d, address_space_dispatch_free, rcu);
2319 }
83f3c251
AK
2320}
2321
62152b8a
AK
2322static void memory_map_init(void)
2323{
7267c094 2324 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2325
57271d63 2326 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2327 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2328
7267c094 2329 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2330 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2331 65536);
7dca8043 2332 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2333}
2334
2335MemoryRegion *get_system_memory(void)
2336{
2337 return system_memory;
2338}
2339
309cb471
AK
2340MemoryRegion *get_system_io(void)
2341{
2342 return system_io;
2343}
2344
e2eef170
PB
2345#endif /* !defined(CONFIG_USER_ONLY) */
2346
13eb76e0
FB
2347/* physical memory access (slow version, mainly for debug) */
2348#if defined(CONFIG_USER_ONLY)
f17ec444 2349int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2350 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2351{
2352 int l, flags;
2353 target_ulong page;
53a5960a 2354 void * p;
13eb76e0
FB
2355
2356 while (len > 0) {
2357 page = addr & TARGET_PAGE_MASK;
2358 l = (page + TARGET_PAGE_SIZE) - addr;
2359 if (l > len)
2360 l = len;
2361 flags = page_get_flags(page);
2362 if (!(flags & PAGE_VALID))
a68fe89c 2363 return -1;
13eb76e0
FB
2364 if (is_write) {
2365 if (!(flags & PAGE_WRITE))
a68fe89c 2366 return -1;
579a97f7 2367 /* XXX: this code should not depend on lock_user */
72fb7daa 2368 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2369 return -1;
72fb7daa
AJ
2370 memcpy(p, buf, l);
2371 unlock_user(p, addr, l);
13eb76e0
FB
2372 } else {
2373 if (!(flags & PAGE_READ))
a68fe89c 2374 return -1;
579a97f7 2375 /* XXX: this code should not depend on lock_user */
72fb7daa 2376 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2377 return -1;
72fb7daa 2378 memcpy(buf, p, l);
5b257578 2379 unlock_user(p, addr, 0);
13eb76e0
FB
2380 }
2381 len -= l;
2382 buf += l;
2383 addr += l;
2384 }
a68fe89c 2385 return 0;
13eb76e0 2386}
8df1cd07 2387
13eb76e0 2388#else
51d7a9eb 2389
845b6214 2390static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2391 hwaddr length)
51d7a9eb 2392{
e87f7778
PB
2393 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2394 /* No early return if dirty_log_mask is or becomes 0, because
2395 * cpu_physical_memory_set_dirty_range will still call
2396 * xen_modified_memory.
2397 */
2398 if (dirty_log_mask) {
2399 dirty_log_mask =
2400 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2401 }
2402 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2403 tb_invalidate_phys_range(addr, addr + length);
2404 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2405 }
e87f7778 2406 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2407}
2408
23326164 2409static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2410{
e1622f4b 2411 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2412
2413 /* Regions are assumed to support 1-4 byte accesses unless
2414 otherwise specified. */
23326164
RH
2415 if (access_size_max == 0) {
2416 access_size_max = 4;
2417 }
2418
2419 /* Bound the maximum access by the alignment of the address. */
2420 if (!mr->ops->impl.unaligned) {
2421 unsigned align_size_max = addr & -addr;
2422 if (align_size_max != 0 && align_size_max < access_size_max) {
2423 access_size_max = align_size_max;
2424 }
82f2563f 2425 }
23326164
RH
2426
2427 /* Don't attempt accesses larger than the maximum. */
2428 if (l > access_size_max) {
2429 l = access_size_max;
82f2563f 2430 }
6554f5c0 2431 l = pow2floor(l);
23326164
RH
2432
2433 return l;
82f2563f
PB
2434}
2435
4840f10e 2436static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2437{
4840f10e
JK
2438 bool unlocked = !qemu_mutex_iothread_locked();
2439 bool release_lock = false;
2440
2441 if (unlocked && mr->global_locking) {
2442 qemu_mutex_lock_iothread();
2443 unlocked = false;
2444 release_lock = true;
2445 }
125b3806 2446 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2447 if (unlocked) {
2448 qemu_mutex_lock_iothread();
2449 }
125b3806 2450 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2451 if (unlocked) {
2452 qemu_mutex_unlock_iothread();
2453 }
125b3806 2454 }
4840f10e
JK
2455
2456 return release_lock;
125b3806
PB
2457}
2458
5c9eb028
PM
2459MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2460 uint8_t *buf, int len, bool is_write)
13eb76e0 2461{
149f54b5 2462 hwaddr l;
13eb76e0 2463 uint8_t *ptr;
791af8c8 2464 uint64_t val;
149f54b5 2465 hwaddr addr1;
5c8a00ce 2466 MemoryRegion *mr;
3b643495 2467 MemTxResult result = MEMTX_OK;
4840f10e 2468 bool release_lock = false;
3b46e624 2469
41063e1e 2470 rcu_read_lock();
13eb76e0 2471 while (len > 0) {
149f54b5 2472 l = len;
5c8a00ce 2473 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2474
13eb76e0 2475 if (is_write) {
5c8a00ce 2476 if (!memory_access_is_direct(mr, is_write)) {
4840f10e 2477 release_lock |= prepare_mmio_access(mr);
5c8a00ce 2478 l = memory_access_size(mr, l, addr1);
4917cf44 2479 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2480 potential bugs */
23326164
RH
2481 switch (l) {
2482 case 8:
2483 /* 64 bit write access */
2484 val = ldq_p(buf);
3b643495
PM
2485 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2486 attrs);
23326164
RH
2487 break;
2488 case 4:
1c213d19 2489 /* 32 bit write access */
c27004ec 2490 val = ldl_p(buf);
3b643495
PM
2491 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2492 attrs);
23326164
RH
2493 break;
2494 case 2:
1c213d19 2495 /* 16 bit write access */
c27004ec 2496 val = lduw_p(buf);
3b643495
PM
2497 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2498 attrs);
23326164
RH
2499 break;
2500 case 1:
1c213d19 2501 /* 8 bit write access */
c27004ec 2502 val = ldub_p(buf);
3b643495
PM
2503 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2504 attrs);
23326164
RH
2505 break;
2506 default:
2507 abort();
13eb76e0 2508 }
2bbfa05d 2509 } else {
5c8a00ce 2510 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2511 /* RAM case */
5579c7f3 2512 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2513 memcpy(ptr, buf, l);
845b6214 2514 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0
FB
2515 }
2516 } else {
5c8a00ce 2517 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2518 /* I/O case */
4840f10e 2519 release_lock |= prepare_mmio_access(mr);
5c8a00ce 2520 l = memory_access_size(mr, l, addr1);
23326164
RH
2521 switch (l) {
2522 case 8:
2523 /* 64 bit read access */
3b643495
PM
2524 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2525 attrs);
23326164
RH
2526 stq_p(buf, val);
2527 break;
2528 case 4:
13eb76e0 2529 /* 32 bit read access */
3b643495
PM
2530 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2531 attrs);
c27004ec 2532 stl_p(buf, val);
23326164
RH
2533 break;
2534 case 2:
13eb76e0 2535 /* 16 bit read access */
3b643495
PM
2536 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2537 attrs);
c27004ec 2538 stw_p(buf, val);
23326164
RH
2539 break;
2540 case 1:
1c213d19 2541 /* 8 bit read access */
3b643495
PM
2542 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2543 attrs);
c27004ec 2544 stb_p(buf, val);
23326164
RH
2545 break;
2546 default:
2547 abort();
13eb76e0
FB
2548 }
2549 } else {
2550 /* RAM case */
5c8a00ce 2551 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2552 memcpy(buf, ptr, l);
13eb76e0
FB
2553 }
2554 }
4840f10e
JK
2555
2556 if (release_lock) {
2557 qemu_mutex_unlock_iothread();
2558 release_lock = false;
2559 }
2560
13eb76e0
FB
2561 len -= l;
2562 buf += l;
2563 addr += l;
2564 }
41063e1e 2565 rcu_read_unlock();
fd8aaa76 2566
3b643495 2567 return result;
13eb76e0 2568}
8df1cd07 2569
5c9eb028
PM
2570MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2571 const uint8_t *buf, int len)
ac1970fb 2572{
5c9eb028 2573 return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
ac1970fb
AK
2574}
2575
5c9eb028
PM
2576MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2577 uint8_t *buf, int len)
ac1970fb 2578{
5c9eb028 2579 return address_space_rw(as, addr, attrs, buf, len, false);
ac1970fb
AK
2580}
2581
2582
a8170e5e 2583void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2584 int len, int is_write)
2585{
5c9eb028
PM
2586 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2587 buf, len, is_write);
ac1970fb
AK
2588}
2589
582b55a9
AG
2590enum write_rom_type {
2591 WRITE_DATA,
2592 FLUSH_CACHE,
2593};
2594
2a221651 2595static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2596 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2597{
149f54b5 2598 hwaddr l;
d0ecd2aa 2599 uint8_t *ptr;
149f54b5 2600 hwaddr addr1;
5c8a00ce 2601 MemoryRegion *mr;
3b46e624 2602
41063e1e 2603 rcu_read_lock();
d0ecd2aa 2604 while (len > 0) {
149f54b5 2605 l = len;
2a221651 2606 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2607
5c8a00ce
PB
2608 if (!(memory_region_is_ram(mr) ||
2609 memory_region_is_romd(mr))) {
b242e0e0 2610 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2611 } else {
5c8a00ce 2612 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2613 /* ROM/RAM case */
5579c7f3 2614 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2615 switch (type) {
2616 case WRITE_DATA:
2617 memcpy(ptr, buf, l);
845b6214 2618 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2619 break;
2620 case FLUSH_CACHE:
2621 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2622 break;
2623 }
d0ecd2aa
FB
2624 }
2625 len -= l;
2626 buf += l;
2627 addr += l;
2628 }
41063e1e 2629 rcu_read_unlock();
d0ecd2aa
FB
2630}
2631
582b55a9 2632/* used for ROM loading : can write in RAM and ROM */
2a221651 2633void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2634 const uint8_t *buf, int len)
2635{
2a221651 2636 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2637}
2638
2639void cpu_flush_icache_range(hwaddr start, int len)
2640{
2641 /*
2642 * This function should do the same thing as an icache flush that was
2643 * triggered from within the guest. For TCG we are always cache coherent,
2644 * so there is no need to flush anything. For KVM / Xen we need to flush
2645 * the host's instruction cache at least.
2646 */
2647 if (tcg_enabled()) {
2648 return;
2649 }
2650
2a221651
EI
2651 cpu_physical_memory_write_rom_internal(&address_space_memory,
2652 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2653}
2654
6d16c2f8 2655typedef struct {
d3e71559 2656 MemoryRegion *mr;
6d16c2f8 2657 void *buffer;
a8170e5e
AK
2658 hwaddr addr;
2659 hwaddr len;
c2cba0ff 2660 bool in_use;
6d16c2f8
AL
2661} BounceBuffer;
2662
2663static BounceBuffer bounce;
2664
ba223c29 2665typedef struct MapClient {
e95205e1 2666 QEMUBH *bh;
72cf2d4f 2667 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2668} MapClient;
2669
38e047b5 2670QemuMutex map_client_list_lock;
72cf2d4f
BS
2671static QLIST_HEAD(map_client_list, MapClient) map_client_list
2672 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2673
e95205e1
FZ
2674static void cpu_unregister_map_client_do(MapClient *client)
2675{
2676 QLIST_REMOVE(client, link);
2677 g_free(client);
2678}
2679
33b6c2ed
FZ
2680static void cpu_notify_map_clients_locked(void)
2681{
2682 MapClient *client;
2683
2684 while (!QLIST_EMPTY(&map_client_list)) {
2685 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2686 qemu_bh_schedule(client->bh);
2687 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2688 }
2689}
2690
e95205e1 2691void cpu_register_map_client(QEMUBH *bh)
ba223c29 2692{
7267c094 2693 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2694
38e047b5 2695 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2696 client->bh = bh;
72cf2d4f 2697 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2698 if (!atomic_read(&bounce.in_use)) {
2699 cpu_notify_map_clients_locked();
2700 }
38e047b5 2701 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2702}
2703
38e047b5 2704void cpu_exec_init_all(void)
ba223c29 2705{
38e047b5 2706 qemu_mutex_init(&ram_list.mutex);
38e047b5 2707 io_mem_init();
680a4783 2708 memory_map_init();
38e047b5 2709 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2710}
2711
e95205e1 2712void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2713{
2714 MapClient *client;
2715
e95205e1
FZ
2716 qemu_mutex_lock(&map_client_list_lock);
2717 QLIST_FOREACH(client, &map_client_list, link) {
2718 if (client->bh == bh) {
2719 cpu_unregister_map_client_do(client);
2720 break;
2721 }
ba223c29 2722 }
e95205e1 2723 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2724}
2725
2726static void cpu_notify_map_clients(void)
2727{
38e047b5 2728 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2729 cpu_notify_map_clients_locked();
38e047b5 2730 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2731}
2732
51644ab7
PB
2733bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2734{
5c8a00ce 2735 MemoryRegion *mr;
51644ab7
PB
2736 hwaddr l, xlat;
2737
41063e1e 2738 rcu_read_lock();
51644ab7
PB
2739 while (len > 0) {
2740 l = len;
5c8a00ce
PB
2741 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2742 if (!memory_access_is_direct(mr, is_write)) {
2743 l = memory_access_size(mr, l, addr);
2744 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2745 return false;
2746 }
2747 }
2748
2749 len -= l;
2750 addr += l;
2751 }
41063e1e 2752 rcu_read_unlock();
51644ab7
PB
2753 return true;
2754}
2755
6d16c2f8
AL
2756/* Map a physical memory region into a host virtual address.
2757 * May map a subset of the requested range, given by and returned in *plen.
2758 * May return NULL if resources needed to perform the mapping are exhausted.
2759 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2760 * Use cpu_register_map_client() to know when retrying the map operation is
2761 * likely to succeed.
6d16c2f8 2762 */
ac1970fb 2763void *address_space_map(AddressSpace *as,
a8170e5e
AK
2764 hwaddr addr,
2765 hwaddr *plen,
ac1970fb 2766 bool is_write)
6d16c2f8 2767{
a8170e5e 2768 hwaddr len = *plen;
e3127ae0
PB
2769 hwaddr done = 0;
2770 hwaddr l, xlat, base;
2771 MemoryRegion *mr, *this_mr;
2772 ram_addr_t raddr;
6d16c2f8 2773
e3127ae0
PB
2774 if (len == 0) {
2775 return NULL;
2776 }
38bee5dc 2777
e3127ae0 2778 l = len;
41063e1e 2779 rcu_read_lock();
e3127ae0 2780 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2781
e3127ae0 2782 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2783 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2784 rcu_read_unlock();
e3127ae0 2785 return NULL;
6d16c2f8 2786 }
e85d9db5
KW
2787 /* Avoid unbounded allocations */
2788 l = MIN(l, TARGET_PAGE_SIZE);
2789 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2790 bounce.addr = addr;
2791 bounce.len = l;
d3e71559
PB
2792
2793 memory_region_ref(mr);
2794 bounce.mr = mr;
e3127ae0 2795 if (!is_write) {
5c9eb028
PM
2796 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2797 bounce.buffer, l);
8ab934f9 2798 }
6d16c2f8 2799
41063e1e 2800 rcu_read_unlock();
e3127ae0
PB
2801 *plen = l;
2802 return bounce.buffer;
2803 }
2804
2805 base = xlat;
2806 raddr = memory_region_get_ram_addr(mr);
2807
2808 for (;;) {
6d16c2f8
AL
2809 len -= l;
2810 addr += l;
e3127ae0
PB
2811 done += l;
2812 if (len == 0) {
2813 break;
2814 }
2815
2816 l = len;
2817 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2818 if (this_mr != mr || xlat != base + done) {
2819 break;
2820 }
6d16c2f8 2821 }
e3127ae0 2822
d3e71559 2823 memory_region_ref(mr);
41063e1e 2824 rcu_read_unlock();
e3127ae0
PB
2825 *plen = done;
2826 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2827}
2828
ac1970fb 2829/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2830 * Will also mark the memory as dirty if is_write == 1. access_len gives
2831 * the amount of memory that was actually read or written by the caller.
2832 */
a8170e5e
AK
2833void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2834 int is_write, hwaddr access_len)
6d16c2f8
AL
2835{
2836 if (buffer != bounce.buffer) {
d3e71559
PB
2837 MemoryRegion *mr;
2838 ram_addr_t addr1;
2839
2840 mr = qemu_ram_addr_from_host(buffer, &addr1);
2841 assert(mr != NULL);
6d16c2f8 2842 if (is_write) {
845b6214 2843 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2844 }
868bb33f 2845 if (xen_enabled()) {
e41d7c69 2846 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2847 }
d3e71559 2848 memory_region_unref(mr);
6d16c2f8
AL
2849 return;
2850 }
2851 if (is_write) {
5c9eb028
PM
2852 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2853 bounce.buffer, access_len);
6d16c2f8 2854 }
f8a83245 2855 qemu_vfree(bounce.buffer);
6d16c2f8 2856 bounce.buffer = NULL;
d3e71559 2857 memory_region_unref(bounce.mr);
c2cba0ff 2858 atomic_mb_set(&bounce.in_use, false);
ba223c29 2859 cpu_notify_map_clients();
6d16c2f8 2860}
d0ecd2aa 2861
a8170e5e
AK
2862void *cpu_physical_memory_map(hwaddr addr,
2863 hwaddr *plen,
ac1970fb
AK
2864 int is_write)
2865{
2866 return address_space_map(&address_space_memory, addr, plen, is_write);
2867}
2868
a8170e5e
AK
2869void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2870 int is_write, hwaddr access_len)
ac1970fb
AK
2871{
2872 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2873}
2874
8df1cd07 2875/* warning: addr must be aligned */
50013115
PM
2876static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2877 MemTxAttrs attrs,
2878 MemTxResult *result,
2879 enum device_endian endian)
8df1cd07 2880{
8df1cd07 2881 uint8_t *ptr;
791af8c8 2882 uint64_t val;
5c8a00ce 2883 MemoryRegion *mr;
149f54b5
PB
2884 hwaddr l = 4;
2885 hwaddr addr1;
50013115 2886 MemTxResult r;
4840f10e 2887 bool release_lock = false;
8df1cd07 2888
41063e1e 2889 rcu_read_lock();
fdfba1a2 2890 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2891 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 2892 release_lock |= prepare_mmio_access(mr);
125b3806 2893
8df1cd07 2894 /* I/O case */
50013115 2895 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
2896#if defined(TARGET_WORDS_BIGENDIAN)
2897 if (endian == DEVICE_LITTLE_ENDIAN) {
2898 val = bswap32(val);
2899 }
2900#else
2901 if (endian == DEVICE_BIG_ENDIAN) {
2902 val = bswap32(val);
2903 }
2904#endif
8df1cd07
FB
2905 } else {
2906 /* RAM case */
5c8a00ce 2907 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2908 & TARGET_PAGE_MASK)
149f54b5 2909 + addr1);
1e78bcc1
AG
2910 switch (endian) {
2911 case DEVICE_LITTLE_ENDIAN:
2912 val = ldl_le_p(ptr);
2913 break;
2914 case DEVICE_BIG_ENDIAN:
2915 val = ldl_be_p(ptr);
2916 break;
2917 default:
2918 val = ldl_p(ptr);
2919 break;
2920 }
50013115
PM
2921 r = MEMTX_OK;
2922 }
2923 if (result) {
2924 *result = r;
8df1cd07 2925 }
4840f10e
JK
2926 if (release_lock) {
2927 qemu_mutex_unlock_iothread();
2928 }
41063e1e 2929 rcu_read_unlock();
8df1cd07
FB
2930 return val;
2931}
2932
50013115
PM
2933uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
2934 MemTxAttrs attrs, MemTxResult *result)
2935{
2936 return address_space_ldl_internal(as, addr, attrs, result,
2937 DEVICE_NATIVE_ENDIAN);
2938}
2939
2940uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
2941 MemTxAttrs attrs, MemTxResult *result)
2942{
2943 return address_space_ldl_internal(as, addr, attrs, result,
2944 DEVICE_LITTLE_ENDIAN);
2945}
2946
2947uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
2948 MemTxAttrs attrs, MemTxResult *result)
2949{
2950 return address_space_ldl_internal(as, addr, attrs, result,
2951 DEVICE_BIG_ENDIAN);
2952}
2953
fdfba1a2 2954uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2955{
50013115 2956 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2957}
2958
fdfba1a2 2959uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2960{
50013115 2961 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2962}
2963
fdfba1a2 2964uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2965{
50013115 2966 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2967}
2968
84b7b8e7 2969/* warning: addr must be aligned */
50013115
PM
2970static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
2971 MemTxAttrs attrs,
2972 MemTxResult *result,
2973 enum device_endian endian)
84b7b8e7 2974{
84b7b8e7
FB
2975 uint8_t *ptr;
2976 uint64_t val;
5c8a00ce 2977 MemoryRegion *mr;
149f54b5
PB
2978 hwaddr l = 8;
2979 hwaddr addr1;
50013115 2980 MemTxResult r;
4840f10e 2981 bool release_lock = false;
84b7b8e7 2982
41063e1e 2983 rcu_read_lock();
2c17449b 2984 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2985 false);
2986 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 2987 release_lock |= prepare_mmio_access(mr);
125b3806 2988
84b7b8e7 2989 /* I/O case */
50013115 2990 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
2991#if defined(TARGET_WORDS_BIGENDIAN)
2992 if (endian == DEVICE_LITTLE_ENDIAN) {
2993 val = bswap64(val);
2994 }
2995#else
2996 if (endian == DEVICE_BIG_ENDIAN) {
2997 val = bswap64(val);
2998 }
84b7b8e7
FB
2999#endif
3000 } else {
3001 /* RAM case */
5c8a00ce 3002 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3003 & TARGET_PAGE_MASK)
149f54b5 3004 + addr1);
1e78bcc1
AG
3005 switch (endian) {
3006 case DEVICE_LITTLE_ENDIAN:
3007 val = ldq_le_p(ptr);
3008 break;
3009 case DEVICE_BIG_ENDIAN:
3010 val = ldq_be_p(ptr);
3011 break;
3012 default:
3013 val = ldq_p(ptr);
3014 break;
3015 }
50013115
PM
3016 r = MEMTX_OK;
3017 }
3018 if (result) {
3019 *result = r;
84b7b8e7 3020 }
4840f10e
JK
3021 if (release_lock) {
3022 qemu_mutex_unlock_iothread();
3023 }
41063e1e 3024 rcu_read_unlock();
84b7b8e7
FB
3025 return val;
3026}
3027
50013115
PM
3028uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3029 MemTxAttrs attrs, MemTxResult *result)
3030{
3031 return address_space_ldq_internal(as, addr, attrs, result,
3032 DEVICE_NATIVE_ENDIAN);
3033}
3034
3035uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3036 MemTxAttrs attrs, MemTxResult *result)
3037{
3038 return address_space_ldq_internal(as, addr, attrs, result,
3039 DEVICE_LITTLE_ENDIAN);
3040}
3041
3042uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3043 MemTxAttrs attrs, MemTxResult *result)
3044{
3045 return address_space_ldq_internal(as, addr, attrs, result,
3046 DEVICE_BIG_ENDIAN);
3047}
3048
2c17449b 3049uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3050{
50013115 3051 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3052}
3053
2c17449b 3054uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3055{
50013115 3056 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3057}
3058
2c17449b 3059uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3060{
50013115 3061 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3062}
3063
aab33094 3064/* XXX: optimize */
50013115
PM
3065uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3066 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3067{
3068 uint8_t val;
50013115
PM
3069 MemTxResult r;
3070
3071 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3072 if (result) {
3073 *result = r;
3074 }
aab33094
FB
3075 return val;
3076}
3077
50013115
PM
3078uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3079{
3080 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3081}
3082
733f0b02 3083/* warning: addr must be aligned */
50013115
PM
3084static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3085 hwaddr addr,
3086 MemTxAttrs attrs,
3087 MemTxResult *result,
3088 enum device_endian endian)
aab33094 3089{
733f0b02
MT
3090 uint8_t *ptr;
3091 uint64_t val;
5c8a00ce 3092 MemoryRegion *mr;
149f54b5
PB
3093 hwaddr l = 2;
3094 hwaddr addr1;
50013115 3095 MemTxResult r;
4840f10e 3096 bool release_lock = false;
733f0b02 3097
41063e1e 3098 rcu_read_lock();
41701aa4 3099 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3100 false);
3101 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3102 release_lock |= prepare_mmio_access(mr);
125b3806 3103
733f0b02 3104 /* I/O case */
50013115 3105 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3106#if defined(TARGET_WORDS_BIGENDIAN)
3107 if (endian == DEVICE_LITTLE_ENDIAN) {
3108 val = bswap16(val);
3109 }
3110#else
3111 if (endian == DEVICE_BIG_ENDIAN) {
3112 val = bswap16(val);
3113 }
3114#endif
733f0b02
MT
3115 } else {
3116 /* RAM case */
5c8a00ce 3117 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3118 & TARGET_PAGE_MASK)
149f54b5 3119 + addr1);
1e78bcc1
AG
3120 switch (endian) {
3121 case DEVICE_LITTLE_ENDIAN:
3122 val = lduw_le_p(ptr);
3123 break;
3124 case DEVICE_BIG_ENDIAN:
3125 val = lduw_be_p(ptr);
3126 break;
3127 default:
3128 val = lduw_p(ptr);
3129 break;
3130 }
50013115
PM
3131 r = MEMTX_OK;
3132 }
3133 if (result) {
3134 *result = r;
733f0b02 3135 }
4840f10e
JK
3136 if (release_lock) {
3137 qemu_mutex_unlock_iothread();
3138 }
41063e1e 3139 rcu_read_unlock();
733f0b02 3140 return val;
aab33094
FB
3141}
3142
50013115
PM
3143uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3144 MemTxAttrs attrs, MemTxResult *result)
3145{
3146 return address_space_lduw_internal(as, addr, attrs, result,
3147 DEVICE_NATIVE_ENDIAN);
3148}
3149
3150uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3151 MemTxAttrs attrs, MemTxResult *result)
3152{
3153 return address_space_lduw_internal(as, addr, attrs, result,
3154 DEVICE_LITTLE_ENDIAN);
3155}
3156
3157uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3158 MemTxAttrs attrs, MemTxResult *result)
3159{
3160 return address_space_lduw_internal(as, addr, attrs, result,
3161 DEVICE_BIG_ENDIAN);
3162}
3163
41701aa4 3164uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3165{
50013115 3166 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3167}
3168
41701aa4 3169uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3170{
50013115 3171 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3172}
3173
41701aa4 3174uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3175{
50013115 3176 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3177}
3178
8df1cd07
FB
3179/* warning: addr must be aligned. The ram page is not masked as dirty
3180 and the code inside is not invalidated. It is useful if the dirty
3181 bits are used to track modified PTEs */
50013115
PM
3182void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3183 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3184{
8df1cd07 3185 uint8_t *ptr;
5c8a00ce 3186 MemoryRegion *mr;
149f54b5
PB
3187 hwaddr l = 4;
3188 hwaddr addr1;
50013115 3189 MemTxResult r;
845b6214 3190 uint8_t dirty_log_mask;
4840f10e 3191 bool release_lock = false;
8df1cd07 3192
41063e1e 3193 rcu_read_lock();
2198a121 3194 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3195 true);
3196 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3197 release_lock |= prepare_mmio_access(mr);
125b3806 3198
50013115 3199 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3200 } else {
5c8a00ce 3201 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3202 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3203 stl_p(ptr, val);
74576198 3204
845b6214
PB
3205 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3206 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3207 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3208 r = MEMTX_OK;
3209 }
3210 if (result) {
3211 *result = r;
8df1cd07 3212 }
4840f10e
JK
3213 if (release_lock) {
3214 qemu_mutex_unlock_iothread();
3215 }
41063e1e 3216 rcu_read_unlock();
8df1cd07
FB
3217}
3218
50013115
PM
3219void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3220{
3221 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3222}
3223
8df1cd07 3224/* warning: addr must be aligned */
50013115
PM
3225static inline void address_space_stl_internal(AddressSpace *as,
3226 hwaddr addr, uint32_t val,
3227 MemTxAttrs attrs,
3228 MemTxResult *result,
3229 enum device_endian endian)
8df1cd07 3230{
8df1cd07 3231 uint8_t *ptr;
5c8a00ce 3232 MemoryRegion *mr;
149f54b5
PB
3233 hwaddr l = 4;
3234 hwaddr addr1;
50013115 3235 MemTxResult r;
4840f10e 3236 bool release_lock = false;
8df1cd07 3237
41063e1e 3238 rcu_read_lock();
ab1da857 3239 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3240 true);
3241 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3242 release_lock |= prepare_mmio_access(mr);
125b3806 3243
1e78bcc1
AG
3244#if defined(TARGET_WORDS_BIGENDIAN)
3245 if (endian == DEVICE_LITTLE_ENDIAN) {
3246 val = bswap32(val);
3247 }
3248#else
3249 if (endian == DEVICE_BIG_ENDIAN) {
3250 val = bswap32(val);
3251 }
3252#endif
50013115 3253 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3254 } else {
8df1cd07 3255 /* RAM case */
5c8a00ce 3256 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3257 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3258 switch (endian) {
3259 case DEVICE_LITTLE_ENDIAN:
3260 stl_le_p(ptr, val);
3261 break;
3262 case DEVICE_BIG_ENDIAN:
3263 stl_be_p(ptr, val);
3264 break;
3265 default:
3266 stl_p(ptr, val);
3267 break;
3268 }
845b6214 3269 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3270 r = MEMTX_OK;
3271 }
3272 if (result) {
3273 *result = r;
8df1cd07 3274 }
4840f10e
JK
3275 if (release_lock) {
3276 qemu_mutex_unlock_iothread();
3277 }
41063e1e 3278 rcu_read_unlock();
8df1cd07
FB
3279}
3280
50013115
PM
3281void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3282 MemTxAttrs attrs, MemTxResult *result)
3283{
3284 address_space_stl_internal(as, addr, val, attrs, result,
3285 DEVICE_NATIVE_ENDIAN);
3286}
3287
3288void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3289 MemTxAttrs attrs, MemTxResult *result)
3290{
3291 address_space_stl_internal(as, addr, val, attrs, result,
3292 DEVICE_LITTLE_ENDIAN);
3293}
3294
3295void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3296 MemTxAttrs attrs, MemTxResult *result)
3297{
3298 address_space_stl_internal(as, addr, val, attrs, result,
3299 DEVICE_BIG_ENDIAN);
3300}
3301
ab1da857 3302void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3303{
50013115 3304 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3305}
3306
ab1da857 3307void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3308{
50013115 3309 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3310}
3311
ab1da857 3312void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3313{
50013115 3314 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3315}
3316
aab33094 3317/* XXX: optimize */
50013115
PM
3318void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3319 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3320{
3321 uint8_t v = val;
50013115
PM
3322 MemTxResult r;
3323
3324 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3325 if (result) {
3326 *result = r;
3327 }
3328}
3329
3330void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3331{
3332 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3333}
3334
733f0b02 3335/* warning: addr must be aligned */
50013115
PM
3336static inline void address_space_stw_internal(AddressSpace *as,
3337 hwaddr addr, uint32_t val,
3338 MemTxAttrs attrs,
3339 MemTxResult *result,
3340 enum device_endian endian)
aab33094 3341{
733f0b02 3342 uint8_t *ptr;
5c8a00ce 3343 MemoryRegion *mr;
149f54b5
PB
3344 hwaddr l = 2;
3345 hwaddr addr1;
50013115 3346 MemTxResult r;
4840f10e 3347 bool release_lock = false;
733f0b02 3348
41063e1e 3349 rcu_read_lock();
5ce5944d 3350 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3351 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3352 release_lock |= prepare_mmio_access(mr);
125b3806 3353
1e78bcc1
AG
3354#if defined(TARGET_WORDS_BIGENDIAN)
3355 if (endian == DEVICE_LITTLE_ENDIAN) {
3356 val = bswap16(val);
3357 }
3358#else
3359 if (endian == DEVICE_BIG_ENDIAN) {
3360 val = bswap16(val);
3361 }
3362#endif
50013115 3363 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3364 } else {
733f0b02 3365 /* RAM case */
5c8a00ce 3366 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 3367 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3368 switch (endian) {
3369 case DEVICE_LITTLE_ENDIAN:
3370 stw_le_p(ptr, val);
3371 break;
3372 case DEVICE_BIG_ENDIAN:
3373 stw_be_p(ptr, val);
3374 break;
3375 default:
3376 stw_p(ptr, val);
3377 break;
3378 }
845b6214 3379 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3380 r = MEMTX_OK;
3381 }
3382 if (result) {
3383 *result = r;
733f0b02 3384 }
4840f10e
JK
3385 if (release_lock) {
3386 qemu_mutex_unlock_iothread();
3387 }
41063e1e 3388 rcu_read_unlock();
aab33094
FB
3389}
3390
50013115
PM
3391void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3392 MemTxAttrs attrs, MemTxResult *result)
3393{
3394 address_space_stw_internal(as, addr, val, attrs, result,
3395 DEVICE_NATIVE_ENDIAN);
3396}
3397
3398void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3399 MemTxAttrs attrs, MemTxResult *result)
3400{
3401 address_space_stw_internal(as, addr, val, attrs, result,
3402 DEVICE_LITTLE_ENDIAN);
3403}
3404
3405void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3406 MemTxAttrs attrs, MemTxResult *result)
3407{
3408 address_space_stw_internal(as, addr, val, attrs, result,
3409 DEVICE_BIG_ENDIAN);
3410}
3411
5ce5944d 3412void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3413{
50013115 3414 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3415}
3416
5ce5944d 3417void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3418{
50013115 3419 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3420}
3421
5ce5944d 3422void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3423{
50013115 3424 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3425}
3426
aab33094 3427/* XXX: optimize */
50013115
PM
3428void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3429 MemTxAttrs attrs, MemTxResult *result)
aab33094 3430{
50013115 3431 MemTxResult r;
aab33094 3432 val = tswap64(val);
50013115
PM
3433 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3434 if (result) {
3435 *result = r;
3436 }
aab33094
FB
3437}
3438
50013115
PM
3439void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3440 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3441{
50013115 3442 MemTxResult r;
1e78bcc1 3443 val = cpu_to_le64(val);
50013115
PM
3444 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3445 if (result) {
3446 *result = r;
3447 }
3448}
3449void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3450 MemTxAttrs attrs, MemTxResult *result)
3451{
3452 MemTxResult r;
3453 val = cpu_to_be64(val);
3454 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3455 if (result) {
3456 *result = r;
3457 }
3458}
3459
3460void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3461{
3462 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3463}
3464
3465void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3466{
3467 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3468}
3469
f606604f 3470void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3471{
50013115 3472 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3473}
3474
5e2972fd 3475/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3476int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3477 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3478{
3479 int l;
a8170e5e 3480 hwaddr phys_addr;
9b3c35e0 3481 target_ulong page;
13eb76e0
FB
3482
3483 while (len > 0) {
3484 page = addr & TARGET_PAGE_MASK;
f17ec444 3485 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
3486 /* if no physical page mapped, return an error */
3487 if (phys_addr == -1)
3488 return -1;
3489 l = (page + TARGET_PAGE_SIZE) - addr;
3490 if (l > len)
3491 l = len;
5e2972fd 3492 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b
EI
3493 if (is_write) {
3494 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3495 } else {
5c9eb028
PM
3496 address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED,
3497 buf, l, 0);
2e38847b 3498 }
13eb76e0
FB
3499 len -= l;
3500 buf += l;
3501 addr += l;
3502 }
3503 return 0;
3504}
038629a6
DDAG
3505
3506/*
3507 * Allows code that needs to deal with migration bitmaps etc to still be built
3508 * target independent.
3509 */
3510size_t qemu_target_page_bits(void)
3511{
3512 return TARGET_PAGE_BITS;
3513}
3514
a68fe89c 3515#endif
13eb76e0 3516
8e4a424b
BS
3517/*
3518 * A helper function for the _utterly broken_ virtio device model to find out if
3519 * it's running on a big endian machine. Don't do this at home kids!
3520 */
98ed8ecf
GK
3521bool target_words_bigendian(void);
3522bool target_words_bigendian(void)
8e4a424b
BS
3523{
3524#if defined(TARGET_WORDS_BIGENDIAN)
3525 return true;
3526#else
3527 return false;
3528#endif
3529}
3530
76f35538 3531#ifndef CONFIG_USER_ONLY
a8170e5e 3532bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3533{
5c8a00ce 3534 MemoryRegion*mr;
149f54b5 3535 hwaddr l = 1;
41063e1e 3536 bool res;
76f35538 3537
41063e1e 3538 rcu_read_lock();
5c8a00ce
PB
3539 mr = address_space_translate(&address_space_memory,
3540 phys_addr, &phys_addr, &l, false);
76f35538 3541
41063e1e
PB
3542 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3543 rcu_read_unlock();
3544 return res;
76f35538 3545}
bd2fa51f 3546
e3807054 3547int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3548{
3549 RAMBlock *block;
e3807054 3550 int ret = 0;
bd2fa51f 3551
0dc3f44a
MD
3552 rcu_read_lock();
3553 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3554 ret = func(block->idstr, block->host, block->offset,
3555 block->used_length, opaque);
3556 if (ret) {
3557 break;
3558 }
bd2fa51f 3559 }
0dc3f44a 3560 rcu_read_unlock();
e3807054 3561 return ret;
bd2fa51f 3562}
ec3f8c99 3563#endif