]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
memory: Drop MemoryRegion.ram_addr
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
777872e5 20#ifndef _WIN32
d5a8f07c
FB
21#include <sys/mman.h>
22#endif
54936004 23
055403b2 24#include "qemu-common.h"
6180a181 25#include "cpu.h"
b67d9a52 26#include "tcg.h"
b3c7724c 27#include "hw/hw.h"
4485bd26 28#if !defined(CONFIG_USER_ONLY)
47c8ca53 29#include "hw/boards.h"
4485bd26 30#endif
cc9e98cb 31#include "hw/qdev.h"
9c17d615 32#include "sysemu/kvm.h"
2ff3de68 33#include "sysemu/sysemu.h"
0d09e41a 34#include "hw/xen/xen.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
022c62cb 38#include "exec/memory.h"
9c17d615 39#include "sysemu/dma.h"
022c62cb 40#include "exec/address-spaces.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
432d268c 43#else /* !CONFIG_USER_ONLY */
9c17d615 44#include "sysemu/xen-mapcache.h"
6506e4f9 45#include "trace.h"
53a5960a 46#endif
0d6d3c87 47#include "exec/cpu-all.h"
0dc3f44a 48#include "qemu/rcu_queue.h"
4840f10e 49#include "qemu/main-loop.h"
5b6dd868 50#include "translate-all.h"
7615936e 51#include "sysemu/replay.h"
0cac1b66 52
022c62cb 53#include "exec/memory-internal.h"
220c3ebd 54#include "exec/ram_addr.h"
508127e2 55#include "exec/log.h"
67d95c15 56
b35ba30f 57#include "qemu/range.h"
794e8f30
MT
58#ifndef _WIN32
59#include "qemu/mmap-alloc.h"
60#endif
b35ba30f 61
db7b5426 62//#define DEBUG_SUBPAGE
1196be37 63
e2eef170 64#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
65/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
66 * are protected by the ramlist lock.
67 */
0d53d9fe 68RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
69
70static MemoryRegion *system_memory;
309cb471 71static MemoryRegion *system_io;
62152b8a 72
f6790af6
AK
73AddressSpace address_space_io;
74AddressSpace address_space_memory;
2673a5da 75
0844e007 76MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 77static MemoryRegion io_mem_unassigned;
0e0df1e2 78
7bd4f430
PB
79/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
80#define RAM_PREALLOC (1 << 0)
81
dbcb8981
PB
82/* RAM is mmap-ed with MAP_SHARED */
83#define RAM_SHARED (1 << 1)
84
62be4e3a
MT
85/* Only a portion of RAM (used_length) is actually used, and migrated.
86 * This used_length size can change across reboots.
87 */
88#define RAM_RESIZEABLE (1 << 2)
89
e2eef170 90#endif
9fa3e853 91
bdc44640 92struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
93/* current CPU in the current thread. It is only valid inside
94 cpu_exec() */
f240eb6f 95__thread CPUState *current_cpu;
2e70f6ef 96/* 0 = Do not count executed instructions.
bf20dc07 97 1 = Precise instruction counting.
2e70f6ef 98 2 = Adaptive rate instruction counting. */
5708fc66 99int use_icount;
6a00d601 100
e2eef170 101#if !defined(CONFIG_USER_ONLY)
4346ae3e 102
1db8abb1
PB
103typedef struct PhysPageEntry PhysPageEntry;
104
105struct PhysPageEntry {
9736e55b 106 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 107 uint32_t skip : 6;
9736e55b 108 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 109 uint32_t ptr : 26;
1db8abb1
PB
110};
111
8b795765
MT
112#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
113
03f49957 114/* Size of the L2 (and L3, etc) page tables. */
57271d63 115#define ADDR_SPACE_BITS 64
03f49957 116
026736ce 117#define P_L2_BITS 9
03f49957
PB
118#define P_L2_SIZE (1 << P_L2_BITS)
119
120#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
121
122typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 123
53cb28cb 124typedef struct PhysPageMap {
79e2b9ae
PB
125 struct rcu_head rcu;
126
53cb28cb
MA
127 unsigned sections_nb;
128 unsigned sections_nb_alloc;
129 unsigned nodes_nb;
130 unsigned nodes_nb_alloc;
131 Node *nodes;
132 MemoryRegionSection *sections;
133} PhysPageMap;
134
1db8abb1 135struct AddressSpaceDispatch {
79e2b9ae
PB
136 struct rcu_head rcu;
137
1db8abb1
PB
138 /* This is a multi-level map on the physical address space.
139 * The bottom level has pointers to MemoryRegionSections.
140 */
141 PhysPageEntry phys_map;
53cb28cb 142 PhysPageMap map;
acc9d80b 143 AddressSpace *as;
1db8abb1
PB
144};
145
90260c6c
JK
146#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
147typedef struct subpage_t {
148 MemoryRegion iomem;
acc9d80b 149 AddressSpace *as;
90260c6c
JK
150 hwaddr base;
151 uint16_t sub_section[TARGET_PAGE_SIZE];
152} subpage_t;
153
b41aac4f
LPF
154#define PHYS_SECTION_UNASSIGNED 0
155#define PHYS_SECTION_NOTDIRTY 1
156#define PHYS_SECTION_ROM 2
157#define PHYS_SECTION_WATCH 3
5312bd8b 158
e2eef170 159static void io_mem_init(void);
62152b8a 160static void memory_map_init(void);
09daed84 161static void tcg_commit(MemoryListener *listener);
e2eef170 162
1ec9b909 163static MemoryRegion io_mem_watch;
32857f4d
PM
164
165/**
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
171 */
172struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
177};
178
6658ffb8 179#endif
fd6ce8f6 180
6d9a1304 181#if !defined(CONFIG_USER_ONLY)
d6f2ea22 182
53cb28cb 183static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 184{
53cb28cb
MA
185 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
186 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
187 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
188 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 189 }
f7bf5461
AK
190}
191
db94604b 192static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
193{
194 unsigned i;
8b795765 195 uint32_t ret;
db94604b
PB
196 PhysPageEntry e;
197 PhysPageEntry *p;
f7bf5461 198
53cb28cb 199 ret = map->nodes_nb++;
db94604b 200 p = map->nodes[ret];
f7bf5461 201 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 202 assert(ret != map->nodes_nb_alloc);
db94604b
PB
203
204 e.skip = leaf ? 0 : 1;
205 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 206 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 207 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 208 }
f7bf5461 209 return ret;
d6f2ea22
AK
210}
211
53cb28cb
MA
212static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
213 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 214 int level)
f7bf5461
AK
215{
216 PhysPageEntry *p;
03f49957 217 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 218
9736e55b 219 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 220 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 221 }
db94604b 222 p = map->nodes[lp->ptr];
03f49957 223 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 224
03f49957 225 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 226 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 227 lp->skip = 0;
c19e8800 228 lp->ptr = leaf;
07f07b31
AK
229 *index += step;
230 *nb -= step;
2999097b 231 } else {
53cb28cb 232 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
233 }
234 ++lp;
f7bf5461
AK
235 }
236}
237
ac1970fb 238static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 239 hwaddr index, hwaddr nb,
2999097b 240 uint16_t leaf)
f7bf5461 241{
2999097b 242 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 243 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 244
53cb28cb 245 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
246}
247
b35ba30f
MT
248/* Compact a non leaf page entry. Simply detect that the entry has a single child,
249 * and update our entry so we can skip it and go directly to the destination.
250 */
251static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
252{
253 unsigned valid_ptr = P_L2_SIZE;
254 int valid = 0;
255 PhysPageEntry *p;
256 int i;
257
258 if (lp->ptr == PHYS_MAP_NODE_NIL) {
259 return;
260 }
261
262 p = nodes[lp->ptr];
263 for (i = 0; i < P_L2_SIZE; i++) {
264 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
265 continue;
266 }
267
268 valid_ptr = i;
269 valid++;
270 if (p[i].skip) {
271 phys_page_compact(&p[i], nodes, compacted);
272 }
273 }
274
275 /* We can only compress if there's only one child. */
276 if (valid != 1) {
277 return;
278 }
279
280 assert(valid_ptr < P_L2_SIZE);
281
282 /* Don't compress if it won't fit in the # of bits we have. */
283 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
284 return;
285 }
286
287 lp->ptr = p[valid_ptr].ptr;
288 if (!p[valid_ptr].skip) {
289 /* If our only child is a leaf, make this a leaf. */
290 /* By design, we should have made this node a leaf to begin with so we
291 * should never reach here.
292 * But since it's so simple to handle this, let's do it just in case we
293 * change this rule.
294 */
295 lp->skip = 0;
296 } else {
297 lp->skip += p[valid_ptr].skip;
298 }
299}
300
301static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
302{
303 DECLARE_BITMAP(compacted, nodes_nb);
304
305 if (d->phys_map.skip) {
53cb28cb 306 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
307 }
308}
309
97115a8d 310static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 311 Node *nodes, MemoryRegionSection *sections)
92e873b9 312{
31ab2b4a 313 PhysPageEntry *p;
97115a8d 314 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 315 int i;
f1f6e3b8 316
9736e55b 317 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 318 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 319 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 320 }
9affd6fc 321 p = nodes[lp.ptr];
03f49957 322 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 323 }
b35ba30f
MT
324
325 if (sections[lp.ptr].size.hi ||
326 range_covers_byte(sections[lp.ptr].offset_within_address_space,
327 sections[lp.ptr].size.lo, addr)) {
328 return &sections[lp.ptr];
329 } else {
330 return &sections[PHYS_SECTION_UNASSIGNED];
331 }
f3705d53
AK
332}
333
e5548617
BS
334bool memory_region_is_unassigned(MemoryRegion *mr)
335{
2a8e7499 336 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 337 && mr != &io_mem_watch;
fd6ce8f6 338}
149f54b5 339
79e2b9ae 340/* Called from RCU critical section */
c7086b4a 341static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
342 hwaddr addr,
343 bool resolve_subpage)
9f029603 344{
90260c6c
JK
345 MemoryRegionSection *section;
346 subpage_t *subpage;
347
53cb28cb 348 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
349 if (resolve_subpage && section->mr->subpage) {
350 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 351 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
352 }
353 return section;
9f029603
JK
354}
355
79e2b9ae 356/* Called from RCU critical section */
90260c6c 357static MemoryRegionSection *
c7086b4a 358address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 359 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
360{
361 MemoryRegionSection *section;
965eb2fc 362 MemoryRegion *mr;
a87f3954 363 Int128 diff;
149f54b5 364
c7086b4a 365 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
366 /* Compute offset within MemoryRegionSection */
367 addr -= section->offset_within_address_space;
368
369 /* Compute offset within MemoryRegion */
370 *xlat = addr + section->offset_within_region;
371
965eb2fc 372 mr = section->mr;
b242e0e0
PB
373
374 /* MMIO registers can be expected to perform full-width accesses based only
375 * on their address, without considering adjacent registers that could
376 * decode to completely different MemoryRegions. When such registers
377 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
378 * regions overlap wildly. For this reason we cannot clamp the accesses
379 * here.
380 *
381 * If the length is small (as is the case for address_space_ldl/stl),
382 * everything works fine. If the incoming length is large, however,
383 * the caller really has to do the clamping through memory_access_size.
384 */
965eb2fc 385 if (memory_region_is_ram(mr)) {
e4a511f8 386 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
387 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
388 }
149f54b5
PB
389 return section;
390}
90260c6c 391
41063e1e 392/* Called from RCU critical section */
5c8a00ce
PB
393MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
394 hwaddr *xlat, hwaddr *plen,
395 bool is_write)
90260c6c 396{
30951157
AK
397 IOMMUTLBEntry iotlb;
398 MemoryRegionSection *section;
399 MemoryRegion *mr;
30951157
AK
400
401 for (;;) {
79e2b9ae
PB
402 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
403 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
404 mr = section->mr;
405
406 if (!mr->iommu_ops) {
407 break;
408 }
409
8d7b8cb9 410 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
411 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
412 | (addr & iotlb.addr_mask));
23820dbf 413 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
414 if (!(iotlb.perm & (1 << is_write))) {
415 mr = &io_mem_unassigned;
416 break;
417 }
418
419 as = iotlb.target_as;
420 }
421
fe680d0d 422 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 423 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 424 *plen = MIN(page, *plen);
a87f3954
PB
425 }
426
30951157
AK
427 *xlat = addr;
428 return mr;
90260c6c
JK
429}
430
79e2b9ae 431/* Called from RCU critical section */
90260c6c 432MemoryRegionSection *
d7898cda 433address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 434 hwaddr *xlat, hwaddr *plen)
90260c6c 435{
30951157 436 MemoryRegionSection *section;
d7898cda
PM
437 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
438
439 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
440
441 assert(!section->mr->iommu_ops);
442 return section;
90260c6c 443}
5b6dd868 444#endif
fd6ce8f6 445
b170fce3 446#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
447
448static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 449{
259186a7 450 CPUState *cpu = opaque;
a513fe19 451
5b6dd868
BS
452 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
453 version_id is increased. */
259186a7 454 cpu->interrupt_request &= ~0x01;
c01a71c1 455 tlb_flush(cpu, 1);
5b6dd868
BS
456
457 return 0;
a513fe19 458}
7501267e 459
6c3bff0e
PD
460static int cpu_common_pre_load(void *opaque)
461{
462 CPUState *cpu = opaque;
463
adee6424 464 cpu->exception_index = -1;
6c3bff0e
PD
465
466 return 0;
467}
468
469static bool cpu_common_exception_index_needed(void *opaque)
470{
471 CPUState *cpu = opaque;
472
adee6424 473 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
474}
475
476static const VMStateDescription vmstate_cpu_common_exception_index = {
477 .name = "cpu_common/exception_index",
478 .version_id = 1,
479 .minimum_version_id = 1,
5cd8cada 480 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
481 .fields = (VMStateField[]) {
482 VMSTATE_INT32(exception_index, CPUState),
483 VMSTATE_END_OF_LIST()
484 }
485};
486
bac05aa9
AS
487static bool cpu_common_crash_occurred_needed(void *opaque)
488{
489 CPUState *cpu = opaque;
490
491 return cpu->crash_occurred;
492}
493
494static const VMStateDescription vmstate_cpu_common_crash_occurred = {
495 .name = "cpu_common/crash_occurred",
496 .version_id = 1,
497 .minimum_version_id = 1,
498 .needed = cpu_common_crash_occurred_needed,
499 .fields = (VMStateField[]) {
500 VMSTATE_BOOL(crash_occurred, CPUState),
501 VMSTATE_END_OF_LIST()
502 }
503};
504
1a1562f5 505const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
506 .name = "cpu_common",
507 .version_id = 1,
508 .minimum_version_id = 1,
6c3bff0e 509 .pre_load = cpu_common_pre_load,
5b6dd868 510 .post_load = cpu_common_post_load,
35d08458 511 .fields = (VMStateField[]) {
259186a7
AF
512 VMSTATE_UINT32(halted, CPUState),
513 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 514 VMSTATE_END_OF_LIST()
6c3bff0e 515 },
5cd8cada
JQ
516 .subsections = (const VMStateDescription*[]) {
517 &vmstate_cpu_common_exception_index,
bac05aa9 518 &vmstate_cpu_common_crash_occurred,
5cd8cada 519 NULL
5b6dd868
BS
520 }
521};
1a1562f5 522
5b6dd868 523#endif
ea041c0e 524
38d8f5c8 525CPUState *qemu_get_cpu(int index)
ea041c0e 526{
bdc44640 527 CPUState *cpu;
ea041c0e 528
bdc44640 529 CPU_FOREACH(cpu) {
55e5c285 530 if (cpu->cpu_index == index) {
bdc44640 531 return cpu;
55e5c285 532 }
ea041c0e 533 }
5b6dd868 534
bdc44640 535 return NULL;
ea041c0e
FB
536}
537
09daed84 538#if !defined(CONFIG_USER_ONLY)
56943e8c 539void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 540{
12ebc9a7
PM
541 CPUAddressSpace *newas;
542
543 /* Target code should have set num_ases before calling us */
544 assert(asidx < cpu->num_ases);
545
56943e8c
PM
546 if (asidx == 0) {
547 /* address space 0 gets the convenience alias */
548 cpu->as = as;
549 }
550
12ebc9a7
PM
551 /* KVM cannot currently support multiple address spaces. */
552 assert(asidx == 0 || !kvm_enabled());
09daed84 553
12ebc9a7
PM
554 if (!cpu->cpu_ases) {
555 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 556 }
32857f4d 557
12ebc9a7
PM
558 newas = &cpu->cpu_ases[asidx];
559 newas->cpu = cpu;
560 newas->as = as;
56943e8c 561 if (tcg_enabled()) {
12ebc9a7
PM
562 newas->tcg_as_listener.commit = tcg_commit;
563 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 564 }
09daed84 565}
651a5bc0
PM
566
567AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
568{
569 /* Return the AddressSpace corresponding to the specified index */
570 return cpu->cpu_ases[asidx].as;
571}
09daed84
EI
572#endif
573
b7bca733
BR
574#ifndef CONFIG_USER_ONLY
575static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
576
577static int cpu_get_free_index(Error **errp)
578{
579 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
580
581 if (cpu >= MAX_CPUMASK_BITS) {
582 error_setg(errp, "Trying to use more CPUs than max of %d",
583 MAX_CPUMASK_BITS);
584 return -1;
585 }
586
587 bitmap_set(cpu_index_map, cpu, 1);
588 return cpu;
589}
590
591void cpu_exec_exit(CPUState *cpu)
592{
593 if (cpu->cpu_index == -1) {
594 /* cpu_index was never allocated by this @cpu or was already freed. */
595 return;
596 }
597
598 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
599 cpu->cpu_index = -1;
600}
601#else
602
603static int cpu_get_free_index(Error **errp)
604{
605 CPUState *some_cpu;
606 int cpu_index = 0;
607
608 CPU_FOREACH(some_cpu) {
609 cpu_index++;
610 }
611 return cpu_index;
612}
613
614void cpu_exec_exit(CPUState *cpu)
615{
616}
617#endif
618
4bad9e39 619void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 620{
b170fce3 621 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 622 int cpu_index;
b7bca733 623 Error *local_err = NULL;
5b6dd868 624
56943e8c 625 cpu->as = NULL;
12ebc9a7 626 cpu->num_ases = 0;
56943e8c 627
291135b5 628#ifndef CONFIG_USER_ONLY
291135b5 629 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
630
631 /* This is a softmmu CPU object, so create a property for it
632 * so users can wire up its memory. (This can't go in qom/cpu.c
633 * because that file is compiled only once for both user-mode
634 * and system builds.) The default if no link is set up is to use
635 * the system address space.
636 */
637 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
638 (Object **)&cpu->memory,
639 qdev_prop_allow_set_link_before_realize,
640 OBJ_PROP_LINK_UNREF_ON_RELEASE,
641 &error_abort);
642 cpu->memory = system_memory;
643 object_ref(OBJECT(cpu->memory));
291135b5
EH
644#endif
645
5b6dd868
BS
646#if defined(CONFIG_USER_ONLY)
647 cpu_list_lock();
648#endif
b7bca733
BR
649 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
650 if (local_err) {
651 error_propagate(errp, local_err);
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_unlock();
654#endif
655 return;
5b6dd868 656 }
bdc44640 657 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
658#if defined(CONFIG_USER_ONLY)
659 cpu_list_unlock();
660#endif
e0d47944
AF
661 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
662 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
663 }
b170fce3
AF
664 if (cc->vmsd != NULL) {
665 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
666 }
ea041c0e
FB
667}
668
94df27fd 669#if defined(CONFIG_USER_ONLY)
00b941e5 670static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
671{
672 tb_invalidate_phys_page_range(pc, pc + 1, 0);
673}
674#else
00b941e5 675static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 676{
5232e4c7
PM
677 MemTxAttrs attrs;
678 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
679 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 680 if (phys != -1) {
5232e4c7 681 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 682 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 683 }
1e7855a5 684}
c27004ec 685#endif
d720b93d 686
c527ee8f 687#if defined(CONFIG_USER_ONLY)
75a34036 688void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
689
690{
691}
692
3ee887e8
PM
693int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
694 int flags)
695{
696 return -ENOSYS;
697}
698
699void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
700{
701}
702
75a34036 703int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
704 int flags, CPUWatchpoint **watchpoint)
705{
706 return -ENOSYS;
707}
708#else
6658ffb8 709/* Add a watchpoint. */
75a34036 710int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 711 int flags, CPUWatchpoint **watchpoint)
6658ffb8 712{
c0ce998e 713 CPUWatchpoint *wp;
6658ffb8 714
05068c0d 715 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 716 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
717 error_report("tried to set invalid watchpoint at %"
718 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
719 return -EINVAL;
720 }
7267c094 721 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
722
723 wp->vaddr = addr;
05068c0d 724 wp->len = len;
a1d1bb31
AL
725 wp->flags = flags;
726
2dc9f411 727 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
728 if (flags & BP_GDB) {
729 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
730 } else {
731 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
732 }
6658ffb8 733
31b030d4 734 tlb_flush_page(cpu, addr);
a1d1bb31
AL
735
736 if (watchpoint)
737 *watchpoint = wp;
738 return 0;
6658ffb8
PB
739}
740
a1d1bb31 741/* Remove a specific watchpoint. */
75a34036 742int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 743 int flags)
6658ffb8 744{
a1d1bb31 745 CPUWatchpoint *wp;
6658ffb8 746
ff4700b0 747 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 748 if (addr == wp->vaddr && len == wp->len
6e140f28 749 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 750 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
751 return 0;
752 }
753 }
a1d1bb31 754 return -ENOENT;
6658ffb8
PB
755}
756
a1d1bb31 757/* Remove a specific watchpoint by reference. */
75a34036 758void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 759{
ff4700b0 760 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 761
31b030d4 762 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 763
7267c094 764 g_free(watchpoint);
a1d1bb31
AL
765}
766
767/* Remove all matching watchpoints. */
75a34036 768void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 769{
c0ce998e 770 CPUWatchpoint *wp, *next;
a1d1bb31 771
ff4700b0 772 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
773 if (wp->flags & mask) {
774 cpu_watchpoint_remove_by_ref(cpu, wp);
775 }
c0ce998e 776 }
7d03f82f 777}
05068c0d
PM
778
779/* Return true if this watchpoint address matches the specified
780 * access (ie the address range covered by the watchpoint overlaps
781 * partially or completely with the address range covered by the
782 * access).
783 */
784static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
785 vaddr addr,
786 vaddr len)
787{
788 /* We know the lengths are non-zero, but a little caution is
789 * required to avoid errors in the case where the range ends
790 * exactly at the top of the address space and so addr + len
791 * wraps round to zero.
792 */
793 vaddr wpend = wp->vaddr + wp->len - 1;
794 vaddr addrend = addr + len - 1;
795
796 return !(addr > wpend || wp->vaddr > addrend);
797}
798
c527ee8f 799#endif
7d03f82f 800
a1d1bb31 801/* Add a breakpoint. */
b3310ab3 802int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 803 CPUBreakpoint **breakpoint)
4c3a88a2 804{
c0ce998e 805 CPUBreakpoint *bp;
3b46e624 806
7267c094 807 bp = g_malloc(sizeof(*bp));
4c3a88a2 808
a1d1bb31
AL
809 bp->pc = pc;
810 bp->flags = flags;
811
2dc9f411 812 /* keep all GDB-injected breakpoints in front */
00b941e5 813 if (flags & BP_GDB) {
f0c3c505 814 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 815 } else {
f0c3c505 816 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 817 }
3b46e624 818
f0c3c505 819 breakpoint_invalidate(cpu, pc);
a1d1bb31 820
00b941e5 821 if (breakpoint) {
a1d1bb31 822 *breakpoint = bp;
00b941e5 823 }
4c3a88a2 824 return 0;
4c3a88a2
FB
825}
826
a1d1bb31 827/* Remove a specific breakpoint. */
b3310ab3 828int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 829{
a1d1bb31
AL
830 CPUBreakpoint *bp;
831
f0c3c505 832 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 833 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 834 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
835 return 0;
836 }
7d03f82f 837 }
a1d1bb31 838 return -ENOENT;
7d03f82f
EI
839}
840
a1d1bb31 841/* Remove a specific breakpoint by reference. */
b3310ab3 842void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 843{
f0c3c505
AF
844 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
845
846 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 847
7267c094 848 g_free(breakpoint);
a1d1bb31
AL
849}
850
851/* Remove all matching breakpoints. */
b3310ab3 852void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 853{
c0ce998e 854 CPUBreakpoint *bp, *next;
a1d1bb31 855
f0c3c505 856 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
857 if (bp->flags & mask) {
858 cpu_breakpoint_remove_by_ref(cpu, bp);
859 }
c0ce998e 860 }
4c3a88a2
FB
861}
862
c33a346e
FB
863/* enable or disable single step mode. EXCP_DEBUG is returned by the
864 CPU loop after each instruction */
3825b28f 865void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 866{
ed2803da
AF
867 if (cpu->singlestep_enabled != enabled) {
868 cpu->singlestep_enabled = enabled;
869 if (kvm_enabled()) {
38e478ec 870 kvm_update_guest_debug(cpu, 0);
ed2803da 871 } else {
ccbb4d44 872 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 873 /* XXX: only flush what is necessary */
bbd77c18 874 tb_flush(cpu);
e22a25c9 875 }
c33a346e 876 }
c33a346e
FB
877}
878
a47dddd7 879void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
880{
881 va_list ap;
493ae1f0 882 va_list ap2;
7501267e
FB
883
884 va_start(ap, fmt);
493ae1f0 885 va_copy(ap2, ap);
7501267e
FB
886 fprintf(stderr, "qemu: fatal: ");
887 vfprintf(stderr, fmt, ap);
888 fprintf(stderr, "\n");
878096ee 889 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 890 if (qemu_log_separate()) {
93fcfe39
AL
891 qemu_log("qemu: fatal: ");
892 qemu_log_vprintf(fmt, ap2);
893 qemu_log("\n");
a0762859 894 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 895 qemu_log_flush();
93fcfe39 896 qemu_log_close();
924edcae 897 }
493ae1f0 898 va_end(ap2);
f9373291 899 va_end(ap);
7615936e 900 replay_finish();
fd052bf6
RV
901#if defined(CONFIG_USER_ONLY)
902 {
903 struct sigaction act;
904 sigfillset(&act.sa_mask);
905 act.sa_handler = SIG_DFL;
906 sigaction(SIGABRT, &act, NULL);
907 }
908#endif
7501267e
FB
909 abort();
910}
911
0124311e 912#if !defined(CONFIG_USER_ONLY)
0dc3f44a 913/* Called from RCU critical section */
041603fe
PB
914static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
915{
916 RAMBlock *block;
917
43771539 918 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 919 if (block && addr - block->offset < block->max_length) {
68851b98 920 return block;
041603fe 921 }
0dc3f44a 922 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 923 if (addr - block->offset < block->max_length) {
041603fe
PB
924 goto found;
925 }
926 }
927
928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
929 abort();
930
931found:
43771539
PB
932 /* It is safe to write mru_block outside the iothread lock. This
933 * is what happens:
934 *
935 * mru_block = xxx
936 * rcu_read_unlock()
937 * xxx removed from list
938 * rcu_read_lock()
939 * read mru_block
940 * mru_block = NULL;
941 * call_rcu(reclaim_ramblock, xxx);
942 * rcu_read_unlock()
943 *
944 * atomic_rcu_set is not needed here. The block was already published
945 * when it was placed into the list. Here we're just making an extra
946 * copy of the pointer.
947 */
041603fe
PB
948 ram_list.mru_block = block;
949 return block;
950}
951
a2f4d5be 952static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 953{
9a13565d 954 CPUState *cpu;
041603fe 955 ram_addr_t start1;
a2f4d5be
JQ
956 RAMBlock *block;
957 ram_addr_t end;
958
959 end = TARGET_PAGE_ALIGN(start + length);
960 start &= TARGET_PAGE_MASK;
d24981d3 961
0dc3f44a 962 rcu_read_lock();
041603fe
PB
963 block = qemu_get_ram_block(start);
964 assert(block == qemu_get_ram_block(end - 1));
1240be24 965 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
966 CPU_FOREACH(cpu) {
967 tlb_reset_dirty(cpu, start1, length);
968 }
0dc3f44a 969 rcu_read_unlock();
d24981d3
JQ
970}
971
5579c7f3 972/* Note: start and end must be within the same ram block. */
03eebc9e
SH
973bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
974 ram_addr_t length,
975 unsigned client)
1ccde1cb 976{
5b82b703 977 DirtyMemoryBlocks *blocks;
03eebc9e 978 unsigned long end, page;
5b82b703 979 bool dirty = false;
03eebc9e
SH
980
981 if (length == 0) {
982 return false;
983 }
f23db169 984
03eebc9e
SH
985 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
986 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
987
988 rcu_read_lock();
989
990 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
991
992 while (page < end) {
993 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
994 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
995 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
996
997 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
998 offset, num);
999 page += num;
1000 }
1001
1002 rcu_read_unlock();
03eebc9e
SH
1003
1004 if (dirty && tcg_enabled()) {
a2f4d5be 1005 tlb_reset_dirty_range_all(start, length);
5579c7f3 1006 }
03eebc9e
SH
1007
1008 return dirty;
1ccde1cb
FB
1009}
1010
79e2b9ae 1011/* Called from RCU critical section */
bb0e627a 1012hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1013 MemoryRegionSection *section,
1014 target_ulong vaddr,
1015 hwaddr paddr, hwaddr xlat,
1016 int prot,
1017 target_ulong *address)
e5548617 1018{
a8170e5e 1019 hwaddr iotlb;
e5548617
BS
1020 CPUWatchpoint *wp;
1021
cc5bea60 1022 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1023 /* Normal RAM. */
1024 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 1025 + xlat;
e5548617 1026 if (!section->readonly) {
b41aac4f 1027 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1028 } else {
b41aac4f 1029 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1030 }
1031 } else {
0b8e2c10
PM
1032 AddressSpaceDispatch *d;
1033
1034 d = atomic_rcu_read(&section->address_space->dispatch);
1035 iotlb = section - d->map.sections;
149f54b5 1036 iotlb += xlat;
e5548617
BS
1037 }
1038
1039 /* Make accesses to pages with watchpoints go via the
1040 watchpoint trap routines. */
ff4700b0 1041 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1042 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1043 /* Avoid trapping reads of pages with a write breakpoint. */
1044 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1045 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1046 *address |= TLB_MMIO;
1047 break;
1048 }
1049 }
1050 }
1051
1052 return iotlb;
1053}
9fa3e853
FB
1054#endif /* defined(CONFIG_USER_ONLY) */
1055
e2eef170 1056#if !defined(CONFIG_USER_ONLY)
8da3ff18 1057
c227f099 1058static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1059 uint16_t section);
acc9d80b 1060static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1061
a2b257d6
IM
1062static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1063 qemu_anon_ram_alloc;
91138037
MA
1064
1065/*
1066 * Set a custom physical guest memory alloator.
1067 * Accelerators with unusual needs may need this. Hopefully, we can
1068 * get rid of it eventually.
1069 */
a2b257d6 1070void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1071{
1072 phys_mem_alloc = alloc;
1073}
1074
53cb28cb
MA
1075static uint16_t phys_section_add(PhysPageMap *map,
1076 MemoryRegionSection *section)
5312bd8b 1077{
68f3f65b
PB
1078 /* The physical section number is ORed with a page-aligned
1079 * pointer to produce the iotlb entries. Thus it should
1080 * never overflow into the page-aligned value.
1081 */
53cb28cb 1082 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1083
53cb28cb
MA
1084 if (map->sections_nb == map->sections_nb_alloc) {
1085 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1086 map->sections = g_renew(MemoryRegionSection, map->sections,
1087 map->sections_nb_alloc);
5312bd8b 1088 }
53cb28cb 1089 map->sections[map->sections_nb] = *section;
dfde4e6e 1090 memory_region_ref(section->mr);
53cb28cb 1091 return map->sections_nb++;
5312bd8b
AK
1092}
1093
058bc4b5
PB
1094static void phys_section_destroy(MemoryRegion *mr)
1095{
55b4e80b
DS
1096 bool have_sub_page = mr->subpage;
1097
dfde4e6e
PB
1098 memory_region_unref(mr);
1099
55b4e80b 1100 if (have_sub_page) {
058bc4b5 1101 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1102 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1103 g_free(subpage);
1104 }
1105}
1106
6092666e 1107static void phys_sections_free(PhysPageMap *map)
5312bd8b 1108{
9affd6fc
PB
1109 while (map->sections_nb > 0) {
1110 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1111 phys_section_destroy(section->mr);
1112 }
9affd6fc
PB
1113 g_free(map->sections);
1114 g_free(map->nodes);
5312bd8b
AK
1115}
1116
ac1970fb 1117static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1118{
1119 subpage_t *subpage;
a8170e5e 1120 hwaddr base = section->offset_within_address_space
0f0cb164 1121 & TARGET_PAGE_MASK;
97115a8d 1122 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1123 d->map.nodes, d->map.sections);
0f0cb164
AK
1124 MemoryRegionSection subsection = {
1125 .offset_within_address_space = base,
052e87b0 1126 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1127 };
a8170e5e 1128 hwaddr start, end;
0f0cb164 1129
f3705d53 1130 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1131
f3705d53 1132 if (!(existing->mr->subpage)) {
acc9d80b 1133 subpage = subpage_init(d->as, base);
3be91e86 1134 subsection.address_space = d->as;
0f0cb164 1135 subsection.mr = &subpage->iomem;
ac1970fb 1136 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1137 phys_section_add(&d->map, &subsection));
0f0cb164 1138 } else {
f3705d53 1139 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1140 }
1141 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1142 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1143 subpage_register(subpage, start, end,
1144 phys_section_add(&d->map, section));
0f0cb164
AK
1145}
1146
1147
052e87b0
PB
1148static void register_multipage(AddressSpaceDispatch *d,
1149 MemoryRegionSection *section)
33417e70 1150{
a8170e5e 1151 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1152 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1153 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1154 TARGET_PAGE_BITS));
dd81124b 1155
733d5ef5
PB
1156 assert(num_pages);
1157 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1158}
1159
ac1970fb 1160static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1161{
89ae337a 1162 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1163 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1164 MemoryRegionSection now = *section, remain = *section;
052e87b0 1165 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1166
733d5ef5
PB
1167 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1168 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1169 - now.offset_within_address_space;
1170
052e87b0 1171 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1172 register_subpage(d, &now);
733d5ef5 1173 } else {
052e87b0 1174 now.size = int128_zero();
733d5ef5 1175 }
052e87b0
PB
1176 while (int128_ne(remain.size, now.size)) {
1177 remain.size = int128_sub(remain.size, now.size);
1178 remain.offset_within_address_space += int128_get64(now.size);
1179 remain.offset_within_region += int128_get64(now.size);
69b67646 1180 now = remain;
052e87b0 1181 if (int128_lt(remain.size, page_size)) {
733d5ef5 1182 register_subpage(d, &now);
88266249 1183 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1184 now.size = page_size;
ac1970fb 1185 register_subpage(d, &now);
69b67646 1186 } else {
052e87b0 1187 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1188 register_multipage(d, &now);
69b67646 1189 }
0f0cb164
AK
1190 }
1191}
1192
62a2744c
SY
1193void qemu_flush_coalesced_mmio_buffer(void)
1194{
1195 if (kvm_enabled())
1196 kvm_flush_coalesced_mmio_buffer();
1197}
1198
b2a8658e
UD
1199void qemu_mutex_lock_ramlist(void)
1200{
1201 qemu_mutex_lock(&ram_list.mutex);
1202}
1203
1204void qemu_mutex_unlock_ramlist(void)
1205{
1206 qemu_mutex_unlock(&ram_list.mutex);
1207}
1208
e1e84ba0 1209#ifdef __linux__
c902760f
MT
1210
1211#include <sys/vfs.h>
1212
1213#define HUGETLBFS_MAGIC 0x958458f6
1214
fc7a5800 1215static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1216{
1217 struct statfs fs;
1218 int ret;
1219
1220 do {
9742bf26 1221 ret = statfs(path, &fs);
c902760f
MT
1222 } while (ret != 0 && errno == EINTR);
1223
1224 if (ret != 0) {
fc7a5800
HT
1225 error_setg_errno(errp, errno, "failed to get page size of file %s",
1226 path);
9742bf26 1227 return 0;
c902760f
MT
1228 }
1229
c902760f
MT
1230 return fs.f_bsize;
1231}
1232
04b16653
AW
1233static void *file_ram_alloc(RAMBlock *block,
1234 ram_addr_t memory,
7f56e740
PB
1235 const char *path,
1236 Error **errp)
c902760f 1237{
8d31d6b6 1238 struct stat st;
c902760f 1239 char *filename;
8ca761f6
PF
1240 char *sanitized_name;
1241 char *c;
794e8f30 1242 void *area;
c902760f 1243 int fd;
557529dd 1244 uint64_t hpagesize;
fc7a5800 1245 Error *local_err = NULL;
c902760f 1246
fc7a5800
HT
1247 hpagesize = gethugepagesize(path, &local_err);
1248 if (local_err) {
1249 error_propagate(errp, local_err);
f9a49dfa 1250 goto error;
c902760f 1251 }
a2b257d6 1252 block->mr->align = hpagesize;
c902760f
MT
1253
1254 if (memory < hpagesize) {
557529dd
HT
1255 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1256 "or larger than huge page size 0x%" PRIx64,
1257 memory, hpagesize);
1258 goto error;
c902760f
MT
1259 }
1260
1261 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1262 error_setg(errp,
1263 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1264 goto error;
c902760f
MT
1265 }
1266
8d31d6b6
PF
1267 if (!stat(path, &st) && S_ISDIR(st.st_mode)) {
1268 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1269 sanitized_name = g_strdup(memory_region_name(block->mr));
1270 for (c = sanitized_name; *c != '\0'; c++) {
1271 if (*c == '/') {
1272 *c = '_';
1273 }
1274 }
8ca761f6 1275
8d31d6b6
PF
1276 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1277 sanitized_name);
1278 g_free(sanitized_name);
1279
1280 fd = mkstemp(filename);
1281 if (fd >= 0) {
1282 unlink(filename);
1283 }
1284 g_free(filename);
1285 } else {
1286 fd = open(path, O_RDWR | O_CREAT, 0644);
1287 }
c902760f 1288
c902760f 1289 if (fd < 0) {
7f56e740
PB
1290 error_setg_errno(errp, errno,
1291 "unable to create backing store for hugepages");
f9a49dfa 1292 goto error;
c902760f 1293 }
c902760f 1294
9284f319 1295 memory = ROUND_UP(memory, hpagesize);
c902760f
MT
1296
1297 /*
1298 * ftruncate is not supported by hugetlbfs in older
1299 * hosts, so don't bother bailing out on errors.
1300 * If anything goes wrong with it under other filesystems,
1301 * mmap will fail.
1302 */
7f56e740 1303 if (ftruncate(fd, memory)) {
9742bf26 1304 perror("ftruncate");
7f56e740 1305 }
c902760f 1306
794e8f30 1307 area = qemu_ram_mmap(fd, memory, hpagesize, block->flags & RAM_SHARED);
c902760f 1308 if (area == MAP_FAILED) {
7f56e740
PB
1309 error_setg_errno(errp, errno,
1310 "unable to map backing store for hugepages");
9742bf26 1311 close(fd);
f9a49dfa 1312 goto error;
c902760f 1313 }
ef36fa14
MT
1314
1315 if (mem_prealloc) {
38183310 1316 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1317 }
1318
04b16653 1319 block->fd = fd;
c902760f 1320 return area;
f9a49dfa
MT
1321
1322error:
f9a49dfa 1323 return NULL;
c902760f
MT
1324}
1325#endif
1326
0dc3f44a 1327/* Called with the ramlist lock held. */
d17b5288 1328static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1329{
1330 RAMBlock *block, *next_block;
3e837b2c 1331 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1332
49cd9ac6
SH
1333 assert(size != 0); /* it would hand out same offset multiple times */
1334
0dc3f44a 1335 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1336 return 0;
0d53d9fe 1337 }
04b16653 1338
0dc3f44a 1339 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1340 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1341
62be4e3a 1342 end = block->offset + block->max_length;
04b16653 1343
0dc3f44a 1344 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1345 if (next_block->offset >= end) {
1346 next = MIN(next, next_block->offset);
1347 }
1348 }
1349 if (next - end >= size && next - end < mingap) {
3e837b2c 1350 offset = end;
04b16653
AW
1351 mingap = next - end;
1352 }
1353 }
3e837b2c
AW
1354
1355 if (offset == RAM_ADDR_MAX) {
1356 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1357 (uint64_t)size);
1358 abort();
1359 }
1360
04b16653
AW
1361 return offset;
1362}
1363
652d7ec2 1364ram_addr_t last_ram_offset(void)
d17b5288
AW
1365{
1366 RAMBlock *block;
1367 ram_addr_t last = 0;
1368
0dc3f44a
MD
1369 rcu_read_lock();
1370 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1371 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1372 }
0dc3f44a 1373 rcu_read_unlock();
d17b5288
AW
1374 return last;
1375}
1376
ddb97f1d
JB
1377static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1378{
1379 int ret;
ddb97f1d
JB
1380
1381 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1382 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1383 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1384 if (ret) {
1385 perror("qemu_madvise");
1386 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1387 "but dump_guest_core=off specified\n");
1388 }
1389 }
1390}
1391
0dc3f44a
MD
1392/* Called within an RCU critical section, or while the ramlist lock
1393 * is held.
1394 */
20cfe881 1395static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1396{
20cfe881 1397 RAMBlock *block;
84b89d78 1398
0dc3f44a 1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1400 if (block->offset == addr) {
20cfe881 1401 return block;
c5705a77
AK
1402 }
1403 }
20cfe881
HT
1404
1405 return NULL;
1406}
1407
422148d3
DDAG
1408const char *qemu_ram_get_idstr(RAMBlock *rb)
1409{
1410 return rb->idstr;
1411}
1412
ae3a7047 1413/* Called with iothread lock held. */
20cfe881
HT
1414void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1415{
ae3a7047 1416 RAMBlock *new_block, *block;
20cfe881 1417
0dc3f44a 1418 rcu_read_lock();
ae3a7047 1419 new_block = find_ram_block(addr);
c5705a77
AK
1420 assert(new_block);
1421 assert(!new_block->idstr[0]);
84b89d78 1422
09e5ab63
AL
1423 if (dev) {
1424 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1425 if (id) {
1426 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1427 g_free(id);
84b89d78
CM
1428 }
1429 }
1430 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1431
0dc3f44a 1432 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1433 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1434 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1435 new_block->idstr);
1436 abort();
1437 }
1438 }
0dc3f44a 1439 rcu_read_unlock();
c5705a77
AK
1440}
1441
ae3a7047 1442/* Called with iothread lock held. */
20cfe881
HT
1443void qemu_ram_unset_idstr(ram_addr_t addr)
1444{
ae3a7047 1445 RAMBlock *block;
20cfe881 1446
ae3a7047
MD
1447 /* FIXME: arch_init.c assumes that this is not called throughout
1448 * migration. Ignore the problem since hot-unplug during migration
1449 * does not work anyway.
1450 */
1451
0dc3f44a 1452 rcu_read_lock();
ae3a7047 1453 block = find_ram_block(addr);
20cfe881
HT
1454 if (block) {
1455 memset(block->idstr, 0, sizeof(block->idstr));
1456 }
0dc3f44a 1457 rcu_read_unlock();
20cfe881
HT
1458}
1459
8490fc78
LC
1460static int memory_try_enable_merging(void *addr, size_t len)
1461{
75cc7f01 1462 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1463 /* disabled by the user */
1464 return 0;
1465 }
1466
1467 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1468}
1469
62be4e3a
MT
1470/* Only legal before guest might have detected the memory size: e.g. on
1471 * incoming migration, or right after reset.
1472 *
1473 * As memory core doesn't know how is memory accessed, it is up to
1474 * resize callback to update device state and/or add assertions to detect
1475 * misuse, if necessary.
1476 */
1477int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1478{
1479 RAMBlock *block = find_ram_block(base);
1480
1481 assert(block);
1482
4ed023ce 1483 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1484
62be4e3a
MT
1485 if (block->used_length == newsize) {
1486 return 0;
1487 }
1488
1489 if (!(block->flags & RAM_RESIZEABLE)) {
1490 error_setg_errno(errp, EINVAL,
1491 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1492 " in != 0x" RAM_ADDR_FMT, block->idstr,
1493 newsize, block->used_length);
1494 return -EINVAL;
1495 }
1496
1497 if (block->max_length < newsize) {
1498 error_setg_errno(errp, EINVAL,
1499 "Length too large: %s: 0x" RAM_ADDR_FMT
1500 " > 0x" RAM_ADDR_FMT, block->idstr,
1501 newsize, block->max_length);
1502 return -EINVAL;
1503 }
1504
1505 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1506 block->used_length = newsize;
58d2707e
PB
1507 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1508 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1509 memory_region_set_size(block->mr, newsize);
1510 if (block->resized) {
1511 block->resized(block->idstr, newsize, block->host);
1512 }
1513 return 0;
1514}
1515
5b82b703
SH
1516/* Called with ram_list.mutex held */
1517static void dirty_memory_extend(ram_addr_t old_ram_size,
1518 ram_addr_t new_ram_size)
1519{
1520 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1521 DIRTY_MEMORY_BLOCK_SIZE);
1522 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1523 DIRTY_MEMORY_BLOCK_SIZE);
1524 int i;
1525
1526 /* Only need to extend if block count increased */
1527 if (new_num_blocks <= old_num_blocks) {
1528 return;
1529 }
1530
1531 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1532 DirtyMemoryBlocks *old_blocks;
1533 DirtyMemoryBlocks *new_blocks;
1534 int j;
1535
1536 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1537 new_blocks = g_malloc(sizeof(*new_blocks) +
1538 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1539
1540 if (old_num_blocks) {
1541 memcpy(new_blocks->blocks, old_blocks->blocks,
1542 old_num_blocks * sizeof(old_blocks->blocks[0]));
1543 }
1544
1545 for (j = old_num_blocks; j < new_num_blocks; j++) {
1546 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1547 }
1548
1549 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1550
1551 if (old_blocks) {
1552 g_free_rcu(old_blocks, rcu);
1553 }
1554 }
1555}
1556
528f46af 1557static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1558{
e1c57ab8 1559 RAMBlock *block;
0d53d9fe 1560 RAMBlock *last_block = NULL;
2152f5ca 1561 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1562 Error *err = NULL;
2152f5ca
JQ
1563
1564 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1565
b2a8658e 1566 qemu_mutex_lock_ramlist();
9b8424d5 1567 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1568
1569 if (!new_block->host) {
1570 if (xen_enabled()) {
9b8424d5 1571 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1572 new_block->mr, &err);
1573 if (err) {
1574 error_propagate(errp, err);
1575 qemu_mutex_unlock_ramlist();
37aa7a0e 1576 }
e1c57ab8 1577 } else {
9b8424d5 1578 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1579 &new_block->mr->align);
39228250 1580 if (!new_block->host) {
ef701d7b
HT
1581 error_setg_errno(errp, errno,
1582 "cannot set up guest memory '%s'",
1583 memory_region_name(new_block->mr));
1584 qemu_mutex_unlock_ramlist();
39228250 1585 }
9b8424d5 1586 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1587 }
c902760f 1588 }
94a6b54f 1589
dd631697
LZ
1590 new_ram_size = MAX(old_ram_size,
1591 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1592 if (new_ram_size > old_ram_size) {
1593 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1594 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1595 }
0d53d9fe
MD
1596 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1597 * QLIST (which has an RCU-friendly variant) does not have insertion at
1598 * tail, so save the last element in last_block.
1599 */
0dc3f44a 1600 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1601 last_block = block;
9b8424d5 1602 if (block->max_length < new_block->max_length) {
abb26d63
PB
1603 break;
1604 }
1605 }
1606 if (block) {
0dc3f44a 1607 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1608 } else if (last_block) {
0dc3f44a 1609 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1610 } else { /* list is empty */
0dc3f44a 1611 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1612 }
0d6d3c87 1613 ram_list.mru_block = NULL;
94a6b54f 1614
0dc3f44a
MD
1615 /* Write list before version */
1616 smp_wmb();
f798b07f 1617 ram_list.version++;
b2a8658e 1618 qemu_mutex_unlock_ramlist();
f798b07f 1619
9b8424d5 1620 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1621 new_block->used_length,
1622 DIRTY_CLIENTS_ALL);
94a6b54f 1623
a904c911
PB
1624 if (new_block->host) {
1625 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1626 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1627 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1628 if (kvm_enabled()) {
1629 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1630 }
e1c57ab8 1631 }
94a6b54f 1632}
e9a1ab19 1633
0b183fc8 1634#ifdef __linux__
528f46af
FZ
1635RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1636 bool share, const char *mem_path,
1637 Error **errp)
e1c57ab8
PB
1638{
1639 RAMBlock *new_block;
ef701d7b 1640 Error *local_err = NULL;
e1c57ab8
PB
1641
1642 if (xen_enabled()) {
7f56e740 1643 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1644 return NULL;
e1c57ab8
PB
1645 }
1646
1647 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1648 /*
1649 * file_ram_alloc() needs to allocate just like
1650 * phys_mem_alloc, but we haven't bothered to provide
1651 * a hook there.
1652 */
7f56e740
PB
1653 error_setg(errp,
1654 "-mem-path not supported with this accelerator");
528f46af 1655 return NULL;
e1c57ab8
PB
1656 }
1657
4ed023ce 1658 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1659 new_block = g_malloc0(sizeof(*new_block));
1660 new_block->mr = mr;
9b8424d5
MT
1661 new_block->used_length = size;
1662 new_block->max_length = size;
dbcb8981 1663 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1664 new_block->host = file_ram_alloc(new_block, size,
1665 mem_path, errp);
1666 if (!new_block->host) {
1667 g_free(new_block);
528f46af 1668 return NULL;
7f56e740
PB
1669 }
1670
528f46af 1671 ram_block_add(new_block, &local_err);
ef701d7b
HT
1672 if (local_err) {
1673 g_free(new_block);
1674 error_propagate(errp, local_err);
528f46af 1675 return NULL;
ef701d7b 1676 }
528f46af 1677 return new_block;
e1c57ab8 1678}
0b183fc8 1679#endif
e1c57ab8 1680
62be4e3a 1681static
528f46af
FZ
1682RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1683 void (*resized)(const char*,
1684 uint64_t length,
1685 void *host),
1686 void *host, bool resizeable,
1687 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1688{
1689 RAMBlock *new_block;
ef701d7b 1690 Error *local_err = NULL;
e1c57ab8 1691
4ed023ce
DDAG
1692 size = HOST_PAGE_ALIGN(size);
1693 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1694 new_block = g_malloc0(sizeof(*new_block));
1695 new_block->mr = mr;
62be4e3a 1696 new_block->resized = resized;
9b8424d5
MT
1697 new_block->used_length = size;
1698 new_block->max_length = max_size;
62be4e3a 1699 assert(max_size >= size);
e1c57ab8
PB
1700 new_block->fd = -1;
1701 new_block->host = host;
1702 if (host) {
7bd4f430 1703 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1704 }
62be4e3a
MT
1705 if (resizeable) {
1706 new_block->flags |= RAM_RESIZEABLE;
1707 }
528f46af 1708 ram_block_add(new_block, &local_err);
ef701d7b
HT
1709 if (local_err) {
1710 g_free(new_block);
1711 error_propagate(errp, local_err);
528f46af 1712 return NULL;
ef701d7b 1713 }
528f46af 1714 return new_block;
e1c57ab8
PB
1715}
1716
528f46af 1717RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1718 MemoryRegion *mr, Error **errp)
1719{
1720 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1721}
1722
528f46af 1723RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1724{
62be4e3a
MT
1725 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1726}
1727
528f46af 1728RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1729 void (*resized)(const char*,
1730 uint64_t length,
1731 void *host),
1732 MemoryRegion *mr, Error **errp)
1733{
1734 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1735}
1736
43771539
PB
1737static void reclaim_ramblock(RAMBlock *block)
1738{
1739 if (block->flags & RAM_PREALLOC) {
1740 ;
1741 } else if (xen_enabled()) {
1742 xen_invalidate_map_cache_entry(block->host);
1743#ifndef _WIN32
1744 } else if (block->fd >= 0) {
2f3a2bb1 1745 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1746 close(block->fd);
1747#endif
1748 } else {
1749 qemu_anon_ram_free(block->host, block->max_length);
1750 }
1751 g_free(block);
1752}
1753
c227f099 1754void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1755{
04b16653
AW
1756 RAMBlock *block;
1757
b2a8658e 1758 qemu_mutex_lock_ramlist();
0dc3f44a 1759 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1760 if (addr == block->offset) {
0dc3f44a 1761 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1762 ram_list.mru_block = NULL;
0dc3f44a
MD
1763 /* Write list before version */
1764 smp_wmb();
f798b07f 1765 ram_list.version++;
43771539 1766 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1767 break;
04b16653
AW
1768 }
1769 }
b2a8658e 1770 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1771}
1772
cd19cfa2
HY
1773#ifndef _WIN32
1774void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1775{
1776 RAMBlock *block;
1777 ram_addr_t offset;
1778 int flags;
1779 void *area, *vaddr;
1780
0dc3f44a 1781 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1782 offset = addr - block->offset;
9b8424d5 1783 if (offset < block->max_length) {
1240be24 1784 vaddr = ramblock_ptr(block, offset);
7bd4f430 1785 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1786 ;
dfeaf2ab
MA
1787 } else if (xen_enabled()) {
1788 abort();
cd19cfa2
HY
1789 } else {
1790 flags = MAP_FIXED;
3435f395 1791 if (block->fd >= 0) {
dbcb8981
PB
1792 flags |= (block->flags & RAM_SHARED ?
1793 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1794 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1795 flags, block->fd, offset);
cd19cfa2 1796 } else {
2eb9fbaa
MA
1797 /*
1798 * Remap needs to match alloc. Accelerators that
1799 * set phys_mem_alloc never remap. If they did,
1800 * we'd need a remap hook here.
1801 */
1802 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1803
cd19cfa2
HY
1804 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1805 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1806 flags, -1, 0);
cd19cfa2
HY
1807 }
1808 if (area != vaddr) {
f15fbc4b
AP
1809 fprintf(stderr, "Could not remap addr: "
1810 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1811 length, addr);
1812 exit(1);
1813 }
8490fc78 1814 memory_try_enable_merging(vaddr, length);
ddb97f1d 1815 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1816 }
cd19cfa2
HY
1817 }
1818 }
1819}
1820#endif /* !_WIN32 */
1821
a35ba7be
PB
1822int qemu_get_ram_fd(ram_addr_t addr)
1823{
ae3a7047
MD
1824 RAMBlock *block;
1825 int fd;
a35ba7be 1826
0dc3f44a 1827 rcu_read_lock();
ae3a7047
MD
1828 block = qemu_get_ram_block(addr);
1829 fd = block->fd;
0dc3f44a 1830 rcu_read_unlock();
ae3a7047 1831 return fd;
a35ba7be
PB
1832}
1833
56a571d9
TM
1834void qemu_set_ram_fd(ram_addr_t addr, int fd)
1835{
1836 RAMBlock *block;
1837
1838 rcu_read_lock();
1839 block = qemu_get_ram_block(addr);
1840 block->fd = fd;
1841 rcu_read_unlock();
1842}
1843
3fd74b84
DM
1844void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1845{
ae3a7047
MD
1846 RAMBlock *block;
1847 void *ptr;
3fd74b84 1848
0dc3f44a 1849 rcu_read_lock();
ae3a7047
MD
1850 block = qemu_get_ram_block(addr);
1851 ptr = ramblock_ptr(block, 0);
0dc3f44a 1852 rcu_read_unlock();
ae3a7047 1853 return ptr;
3fd74b84
DM
1854}
1855
1b5ec234 1856/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1857 * This should not be used for general purpose DMA. Use address_space_map
1858 * or address_space_rw instead. For local memory (e.g. video ram) that the
1859 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1860 *
49b24afc 1861 * Called within RCU critical section.
1b5ec234 1862 */
3655cb9c 1863void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1864{
3655cb9c
GA
1865 RAMBlock *block = ram_block;
1866
1867 if (block == NULL) {
1868 block = qemu_get_ram_block(addr);
1869 }
ae3a7047
MD
1870
1871 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1872 /* We need to check if the requested address is in the RAM
1873 * because we don't want to map the entire memory in QEMU.
1874 * In that case just map until the end of the page.
1875 */
1876 if (block->offset == 0) {
49b24afc 1877 return xen_map_cache(addr, 0, 0);
0d6d3c87 1878 }
ae3a7047
MD
1879
1880 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1881 }
49b24afc 1882 return ramblock_ptr(block, addr - block->offset);
dc828ca1
PB
1883}
1884
38bee5dc 1885/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1886 * but takes a size argument.
0dc3f44a 1887 *
e81bcda5 1888 * Called within RCU critical section.
ae3a7047 1889 */
3655cb9c
GA
1890static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1891 hwaddr *size)
38bee5dc 1892{
3655cb9c 1893 RAMBlock *block = ram_block;
e81bcda5 1894 ram_addr_t offset_inside_block;
8ab934f9
SS
1895 if (*size == 0) {
1896 return NULL;
1897 }
e81bcda5 1898
3655cb9c
GA
1899 if (block == NULL) {
1900 block = qemu_get_ram_block(addr);
1901 }
e81bcda5
PB
1902 offset_inside_block = addr - block->offset;
1903 *size = MIN(*size, block->max_length - offset_inside_block);
1904
1905 if (xen_enabled() && block->host == NULL) {
1906 /* We need to check if the requested address is in the RAM
1907 * because we don't want to map the entire memory in QEMU.
1908 * In that case just map the requested area.
1909 */
1910 if (block->offset == 0) {
1911 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1912 }
1913
e81bcda5 1914 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1915 }
e81bcda5
PB
1916
1917 return ramblock_ptr(block, offset_inside_block);
38bee5dc
SS
1918}
1919
422148d3
DDAG
1920/*
1921 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1922 * in that RAMBlock.
1923 *
1924 * ptr: Host pointer to look up
1925 * round_offset: If true round the result offset down to a page boundary
1926 * *ram_addr: set to result ram_addr
1927 * *offset: set to result offset within the RAMBlock
1928 *
1929 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1930 *
1931 * By the time this function returns, the returned pointer is not protected
1932 * by RCU anymore. If the caller is not within an RCU critical section and
1933 * does not hold the iothread lock, it must have other means of protecting the
1934 * pointer, such as a reference to the region that includes the incoming
1935 * ram_addr_t.
1936 */
422148d3
DDAG
1937RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
1938 ram_addr_t *ram_addr,
1939 ram_addr_t *offset)
5579c7f3 1940{
94a6b54f
PB
1941 RAMBlock *block;
1942 uint8_t *host = ptr;
1943
868bb33f 1944 if (xen_enabled()) {
0dc3f44a 1945 rcu_read_lock();
e41d7c69 1946 *ram_addr = xen_ram_addr_from_mapcache(ptr);
422148d3
DDAG
1947 block = qemu_get_ram_block(*ram_addr);
1948 if (block) {
1949 *offset = (host - block->host);
1950 }
0dc3f44a 1951 rcu_read_unlock();
422148d3 1952 return block;
712c2b41
SS
1953 }
1954
0dc3f44a
MD
1955 rcu_read_lock();
1956 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1957 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1958 goto found;
1959 }
1960
0dc3f44a 1961 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1962 /* This case append when the block is not mapped. */
1963 if (block->host == NULL) {
1964 continue;
1965 }
9b8424d5 1966 if (host - block->host < block->max_length) {
23887b79 1967 goto found;
f471a17e 1968 }
94a6b54f 1969 }
432d268c 1970
0dc3f44a 1971 rcu_read_unlock();
1b5ec234 1972 return NULL;
23887b79
PB
1973
1974found:
422148d3
DDAG
1975 *offset = (host - block->host);
1976 if (round_offset) {
1977 *offset &= TARGET_PAGE_MASK;
1978 }
1979 *ram_addr = block->offset + *offset;
0dc3f44a 1980 rcu_read_unlock();
422148d3
DDAG
1981 return block;
1982}
1983
e3dd7493
DDAG
1984/*
1985 * Finds the named RAMBlock
1986 *
1987 * name: The name of RAMBlock to find
1988 *
1989 * Returns: RAMBlock (or NULL if not found)
1990 */
1991RAMBlock *qemu_ram_block_by_name(const char *name)
1992{
1993 RAMBlock *block;
1994
1995 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1996 if (!strcmp(name, block->idstr)) {
1997 return block;
1998 }
1999 }
2000
2001 return NULL;
2002}
2003
422148d3
DDAG
2004/* Some of the softmmu routines need to translate from a host pointer
2005 (typically a TLB entry) back to a ram offset. */
2006MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2007{
2008 RAMBlock *block;
2009 ram_addr_t offset; /* Not used */
2010
2011 block = qemu_ram_block_from_host(ptr, false, ram_addr, &offset);
2012
2013 if (!block) {
2014 return NULL;
2015 }
2016
2017 return block->mr;
e890261f 2018}
f471a17e 2019
49b24afc 2020/* Called within RCU critical section. */
a8170e5e 2021static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 2022 uint64_t val, unsigned size)
9fa3e853 2023{
52159192 2024 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 2025 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2026 }
0e0df1e2
AK
2027 switch (size) {
2028 case 1:
3655cb9c 2029 stb_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2030 break;
2031 case 2:
3655cb9c 2032 stw_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2033 break;
2034 case 4:
3655cb9c 2035 stl_p(qemu_get_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2036 break;
2037 default:
2038 abort();
3a7d929e 2039 }
58d2707e
PB
2040 /* Set both VGA and migration bits for simplicity and to remove
2041 * the notdirty callback faster.
2042 */
2043 cpu_physical_memory_set_dirty_range(ram_addr, size,
2044 DIRTY_CLIENTS_NOCODE);
f23db169
FB
2045 /* we remove the notdirty callback only if the code has been
2046 flushed */
a2cd8c85 2047 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 2048 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 2049 }
9fa3e853
FB
2050}
2051
b018ddf6
PB
2052static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2053 unsigned size, bool is_write)
2054{
2055 return is_write;
2056}
2057
0e0df1e2 2058static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2059 .write = notdirty_mem_write,
b018ddf6 2060 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2061 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2062};
2063
0f459d16 2064/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2065static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2066{
93afeade 2067 CPUState *cpu = current_cpu;
568496c0 2068 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 2069 CPUArchState *env = cpu->env_ptr;
06d55cc1 2070 target_ulong pc, cs_base;
0f459d16 2071 target_ulong vaddr;
a1d1bb31 2072 CPUWatchpoint *wp;
06d55cc1 2073 int cpu_flags;
0f459d16 2074
ff4700b0 2075 if (cpu->watchpoint_hit) {
06d55cc1
AL
2076 /* We re-entered the check after replacing the TB. Now raise
2077 * the debug interrupt so that is will trigger after the
2078 * current instruction. */
93afeade 2079 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2080 return;
2081 }
93afeade 2082 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2083 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2084 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2085 && (wp->flags & flags)) {
08225676
PM
2086 if (flags == BP_MEM_READ) {
2087 wp->flags |= BP_WATCHPOINT_HIT_READ;
2088 } else {
2089 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2090 }
2091 wp->hitaddr = vaddr;
66b9b43c 2092 wp->hitattrs = attrs;
ff4700b0 2093 if (!cpu->watchpoint_hit) {
568496c0
SF
2094 if (wp->flags & BP_CPU &&
2095 !cc->debug_check_watchpoint(cpu, wp)) {
2096 wp->flags &= ~BP_WATCHPOINT_HIT;
2097 continue;
2098 }
ff4700b0 2099 cpu->watchpoint_hit = wp;
239c51a5 2100 tb_check_watchpoint(cpu);
6e140f28 2101 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2102 cpu->exception_index = EXCP_DEBUG;
5638d180 2103 cpu_loop_exit(cpu);
6e140f28
AL
2104 } else {
2105 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2106 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 2107 cpu_resume_from_signal(cpu, NULL);
6e140f28 2108 }
06d55cc1 2109 }
6e140f28
AL
2110 } else {
2111 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2112 }
2113 }
2114}
2115
6658ffb8
PB
2116/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2117 so these check for a hit then pass through to the normal out-of-line
2118 phys routines. */
66b9b43c
PM
2119static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2120 unsigned size, MemTxAttrs attrs)
6658ffb8 2121{
66b9b43c
PM
2122 MemTxResult res;
2123 uint64_t data;
79ed0416
PM
2124 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2125 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2126
2127 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2128 switch (size) {
66b9b43c 2129 case 1:
79ed0416 2130 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2131 break;
2132 case 2:
79ed0416 2133 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2134 break;
2135 case 4:
79ed0416 2136 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2137 break;
1ec9b909
AK
2138 default: abort();
2139 }
66b9b43c
PM
2140 *pdata = data;
2141 return res;
6658ffb8
PB
2142}
2143
66b9b43c
PM
2144static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2145 uint64_t val, unsigned size,
2146 MemTxAttrs attrs)
6658ffb8 2147{
66b9b43c 2148 MemTxResult res;
79ed0416
PM
2149 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2150 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2151
2152 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2153 switch (size) {
67364150 2154 case 1:
79ed0416 2155 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2156 break;
2157 case 2:
79ed0416 2158 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2159 break;
2160 case 4:
79ed0416 2161 address_space_stl(as, addr, val, attrs, &res);
67364150 2162 break;
1ec9b909
AK
2163 default: abort();
2164 }
66b9b43c 2165 return res;
6658ffb8
PB
2166}
2167
1ec9b909 2168static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2169 .read_with_attrs = watch_mem_read,
2170 .write_with_attrs = watch_mem_write,
1ec9b909 2171 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2172};
6658ffb8 2173
f25a49e0
PM
2174static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2175 unsigned len, MemTxAttrs attrs)
db7b5426 2176{
acc9d80b 2177 subpage_t *subpage = opaque;
ff6cff75 2178 uint8_t buf[8];
5c9eb028 2179 MemTxResult res;
791af8c8 2180
db7b5426 2181#if defined(DEBUG_SUBPAGE)
016e9d62 2182 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2183 subpage, len, addr);
db7b5426 2184#endif
5c9eb028
PM
2185 res = address_space_read(subpage->as, addr + subpage->base,
2186 attrs, buf, len);
2187 if (res) {
2188 return res;
f25a49e0 2189 }
acc9d80b
JK
2190 switch (len) {
2191 case 1:
f25a49e0
PM
2192 *data = ldub_p(buf);
2193 return MEMTX_OK;
acc9d80b 2194 case 2:
f25a49e0
PM
2195 *data = lduw_p(buf);
2196 return MEMTX_OK;
acc9d80b 2197 case 4:
f25a49e0
PM
2198 *data = ldl_p(buf);
2199 return MEMTX_OK;
ff6cff75 2200 case 8:
f25a49e0
PM
2201 *data = ldq_p(buf);
2202 return MEMTX_OK;
acc9d80b
JK
2203 default:
2204 abort();
2205 }
db7b5426
BS
2206}
2207
f25a49e0
PM
2208static MemTxResult subpage_write(void *opaque, hwaddr addr,
2209 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2210{
acc9d80b 2211 subpage_t *subpage = opaque;
ff6cff75 2212 uint8_t buf[8];
acc9d80b 2213
db7b5426 2214#if defined(DEBUG_SUBPAGE)
016e9d62 2215 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2216 " value %"PRIx64"\n",
2217 __func__, subpage, len, addr, value);
db7b5426 2218#endif
acc9d80b
JK
2219 switch (len) {
2220 case 1:
2221 stb_p(buf, value);
2222 break;
2223 case 2:
2224 stw_p(buf, value);
2225 break;
2226 case 4:
2227 stl_p(buf, value);
2228 break;
ff6cff75
PB
2229 case 8:
2230 stq_p(buf, value);
2231 break;
acc9d80b
JK
2232 default:
2233 abort();
2234 }
5c9eb028
PM
2235 return address_space_write(subpage->as, addr + subpage->base,
2236 attrs, buf, len);
db7b5426
BS
2237}
2238
c353e4cc 2239static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2240 unsigned len, bool is_write)
c353e4cc 2241{
acc9d80b 2242 subpage_t *subpage = opaque;
c353e4cc 2243#if defined(DEBUG_SUBPAGE)
016e9d62 2244 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2245 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2246#endif
2247
acc9d80b 2248 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2249 len, is_write);
c353e4cc
PB
2250}
2251
70c68e44 2252static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2253 .read_with_attrs = subpage_read,
2254 .write_with_attrs = subpage_write,
ff6cff75
PB
2255 .impl.min_access_size = 1,
2256 .impl.max_access_size = 8,
2257 .valid.min_access_size = 1,
2258 .valid.max_access_size = 8,
c353e4cc 2259 .valid.accepts = subpage_accepts,
70c68e44 2260 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2261};
2262
c227f099 2263static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2264 uint16_t section)
db7b5426
BS
2265{
2266 int idx, eidx;
2267
2268 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2269 return -1;
2270 idx = SUBPAGE_IDX(start);
2271 eidx = SUBPAGE_IDX(end);
2272#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2273 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2274 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2275#endif
db7b5426 2276 for (; idx <= eidx; idx++) {
5312bd8b 2277 mmio->sub_section[idx] = section;
db7b5426
BS
2278 }
2279
2280 return 0;
2281}
2282
acc9d80b 2283static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2284{
c227f099 2285 subpage_t *mmio;
db7b5426 2286
7267c094 2287 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2288
acc9d80b 2289 mmio->as = as;
1eec614b 2290 mmio->base = base;
2c9b15ca 2291 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2292 NULL, TARGET_PAGE_SIZE);
b3b00c78 2293 mmio->iomem.subpage = true;
db7b5426 2294#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2295 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2296 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2297#endif
b41aac4f 2298 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2299
2300 return mmio;
2301}
2302
a656e22f
PC
2303static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2304 MemoryRegion *mr)
5312bd8b 2305{
a656e22f 2306 assert(as);
5312bd8b 2307 MemoryRegionSection section = {
a656e22f 2308 .address_space = as,
5312bd8b
AK
2309 .mr = mr,
2310 .offset_within_address_space = 0,
2311 .offset_within_region = 0,
052e87b0 2312 .size = int128_2_64(),
5312bd8b
AK
2313 };
2314
53cb28cb 2315 return phys_section_add(map, &section);
5312bd8b
AK
2316}
2317
a54c87b6 2318MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2319{
a54c87b6
PM
2320 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2321 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2322 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2323 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2324
2325 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2326}
2327
e9179ce1
AK
2328static void io_mem_init(void)
2329{
1f6245e5 2330 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2331 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2332 NULL, UINT64_MAX);
2c9b15ca 2333 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2334 NULL, UINT64_MAX);
2c9b15ca 2335 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2336 NULL, UINT64_MAX);
e9179ce1
AK
2337}
2338
ac1970fb 2339static void mem_begin(MemoryListener *listener)
00752703
PB
2340{
2341 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2342 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2343 uint16_t n;
2344
a656e22f 2345 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2346 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2347 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2348 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2349 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2350 assert(n == PHYS_SECTION_ROM);
a656e22f 2351 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2352 assert(n == PHYS_SECTION_WATCH);
00752703 2353
9736e55b 2354 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2355 d->as = as;
2356 as->next_dispatch = d;
2357}
2358
79e2b9ae
PB
2359static void address_space_dispatch_free(AddressSpaceDispatch *d)
2360{
2361 phys_sections_free(&d->map);
2362 g_free(d);
2363}
2364
00752703 2365static void mem_commit(MemoryListener *listener)
ac1970fb 2366{
89ae337a 2367 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2368 AddressSpaceDispatch *cur = as->dispatch;
2369 AddressSpaceDispatch *next = as->next_dispatch;
2370
53cb28cb 2371 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2372
79e2b9ae 2373 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2374 if (cur) {
79e2b9ae 2375 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2376 }
9affd6fc
PB
2377}
2378
1d71148e 2379static void tcg_commit(MemoryListener *listener)
50c1e149 2380{
32857f4d
PM
2381 CPUAddressSpace *cpuas;
2382 AddressSpaceDispatch *d;
117712c3
AK
2383
2384 /* since each CPU stores ram addresses in its TLB cache, we must
2385 reset the modified entries */
32857f4d
PM
2386 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2387 cpu_reloading_memory_map();
2388 /* The CPU and TLB are protected by the iothread lock.
2389 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2390 * may have split the RCU critical section.
2391 */
2392 d = atomic_rcu_read(&cpuas->as->dispatch);
2393 cpuas->memory_dispatch = d;
2394 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2395}
2396
ac1970fb
AK
2397void address_space_init_dispatch(AddressSpace *as)
2398{
00752703 2399 as->dispatch = NULL;
89ae337a 2400 as->dispatch_listener = (MemoryListener) {
ac1970fb 2401 .begin = mem_begin,
00752703 2402 .commit = mem_commit,
ac1970fb
AK
2403 .region_add = mem_add,
2404 .region_nop = mem_add,
2405 .priority = 0,
2406 };
89ae337a 2407 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2408}
2409
6e48e8f9
PB
2410void address_space_unregister(AddressSpace *as)
2411{
2412 memory_listener_unregister(&as->dispatch_listener);
2413}
2414
83f3c251
AK
2415void address_space_destroy_dispatch(AddressSpace *as)
2416{
2417 AddressSpaceDispatch *d = as->dispatch;
2418
79e2b9ae
PB
2419 atomic_rcu_set(&as->dispatch, NULL);
2420 if (d) {
2421 call_rcu(d, address_space_dispatch_free, rcu);
2422 }
83f3c251
AK
2423}
2424
62152b8a
AK
2425static void memory_map_init(void)
2426{
7267c094 2427 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2428
57271d63 2429 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2430 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2431
7267c094 2432 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2433 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2434 65536);
7dca8043 2435 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2436}
2437
2438MemoryRegion *get_system_memory(void)
2439{
2440 return system_memory;
2441}
2442
309cb471
AK
2443MemoryRegion *get_system_io(void)
2444{
2445 return system_io;
2446}
2447
e2eef170
PB
2448#endif /* !defined(CONFIG_USER_ONLY) */
2449
13eb76e0
FB
2450/* physical memory access (slow version, mainly for debug) */
2451#if defined(CONFIG_USER_ONLY)
f17ec444 2452int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2453 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2454{
2455 int l, flags;
2456 target_ulong page;
53a5960a 2457 void * p;
13eb76e0
FB
2458
2459 while (len > 0) {
2460 page = addr & TARGET_PAGE_MASK;
2461 l = (page + TARGET_PAGE_SIZE) - addr;
2462 if (l > len)
2463 l = len;
2464 flags = page_get_flags(page);
2465 if (!(flags & PAGE_VALID))
a68fe89c 2466 return -1;
13eb76e0
FB
2467 if (is_write) {
2468 if (!(flags & PAGE_WRITE))
a68fe89c 2469 return -1;
579a97f7 2470 /* XXX: this code should not depend on lock_user */
72fb7daa 2471 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2472 return -1;
72fb7daa
AJ
2473 memcpy(p, buf, l);
2474 unlock_user(p, addr, l);
13eb76e0
FB
2475 } else {
2476 if (!(flags & PAGE_READ))
a68fe89c 2477 return -1;
579a97f7 2478 /* XXX: this code should not depend on lock_user */
72fb7daa 2479 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2480 return -1;
72fb7daa 2481 memcpy(buf, p, l);
5b257578 2482 unlock_user(p, addr, 0);
13eb76e0
FB
2483 }
2484 len -= l;
2485 buf += l;
2486 addr += l;
2487 }
a68fe89c 2488 return 0;
13eb76e0 2489}
8df1cd07 2490
13eb76e0 2491#else
51d7a9eb 2492
845b6214 2493static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2494 hwaddr length)
51d7a9eb 2495{
e87f7778
PB
2496 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2497 /* No early return if dirty_log_mask is or becomes 0, because
2498 * cpu_physical_memory_set_dirty_range will still call
2499 * xen_modified_memory.
2500 */
2501 if (dirty_log_mask) {
2502 dirty_log_mask =
2503 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2504 }
2505 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2506 tb_invalidate_phys_range(addr, addr + length);
2507 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2508 }
e87f7778 2509 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2510}
2511
23326164 2512static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2513{
e1622f4b 2514 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2515
2516 /* Regions are assumed to support 1-4 byte accesses unless
2517 otherwise specified. */
23326164
RH
2518 if (access_size_max == 0) {
2519 access_size_max = 4;
2520 }
2521
2522 /* Bound the maximum access by the alignment of the address. */
2523 if (!mr->ops->impl.unaligned) {
2524 unsigned align_size_max = addr & -addr;
2525 if (align_size_max != 0 && align_size_max < access_size_max) {
2526 access_size_max = align_size_max;
2527 }
82f2563f 2528 }
23326164
RH
2529
2530 /* Don't attempt accesses larger than the maximum. */
2531 if (l > access_size_max) {
2532 l = access_size_max;
82f2563f 2533 }
6554f5c0 2534 l = pow2floor(l);
23326164
RH
2535
2536 return l;
82f2563f
PB
2537}
2538
4840f10e 2539static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2540{
4840f10e
JK
2541 bool unlocked = !qemu_mutex_iothread_locked();
2542 bool release_lock = false;
2543
2544 if (unlocked && mr->global_locking) {
2545 qemu_mutex_lock_iothread();
2546 unlocked = false;
2547 release_lock = true;
2548 }
125b3806 2549 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2550 if (unlocked) {
2551 qemu_mutex_lock_iothread();
2552 }
125b3806 2553 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2554 if (unlocked) {
2555 qemu_mutex_unlock_iothread();
2556 }
125b3806 2557 }
4840f10e
JK
2558
2559 return release_lock;
125b3806
PB
2560}
2561
a203ac70
PB
2562/* Called within RCU critical section. */
2563static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2564 MemTxAttrs attrs,
2565 const uint8_t *buf,
2566 int len, hwaddr addr1,
2567 hwaddr l, MemoryRegion *mr)
13eb76e0 2568{
13eb76e0 2569 uint8_t *ptr;
791af8c8 2570 uint64_t val;
3b643495 2571 MemTxResult result = MEMTX_OK;
4840f10e 2572 bool release_lock = false;
3b46e624 2573
a203ac70 2574 for (;;) {
eb7eeb88
PB
2575 if (!memory_access_is_direct(mr, true)) {
2576 release_lock |= prepare_mmio_access(mr);
2577 l = memory_access_size(mr, l, addr1);
2578 /* XXX: could force current_cpu to NULL to avoid
2579 potential bugs */
2580 switch (l) {
2581 case 8:
2582 /* 64 bit write access */
2583 val = ldq_p(buf);
2584 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2585 attrs);
2586 break;
2587 case 4:
2588 /* 32 bit write access */
2589 val = ldl_p(buf);
2590 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2591 attrs);
2592 break;
2593 case 2:
2594 /* 16 bit write access */
2595 val = lduw_p(buf);
2596 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2597 attrs);
2598 break;
2599 case 1:
2600 /* 8 bit write access */
2601 val = ldub_p(buf);
2602 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2603 attrs);
2604 break;
2605 default:
2606 abort();
13eb76e0
FB
2607 }
2608 } else {
eb7eeb88
PB
2609 addr1 += memory_region_get_ram_addr(mr);
2610 /* RAM case */
3655cb9c 2611 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2612 memcpy(ptr, buf, l);
2613 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2614 }
4840f10e
JK
2615
2616 if (release_lock) {
2617 qemu_mutex_unlock_iothread();
2618 release_lock = false;
2619 }
2620
13eb76e0
FB
2621 len -= l;
2622 buf += l;
2623 addr += l;
a203ac70
PB
2624
2625 if (!len) {
2626 break;
2627 }
2628
2629 l = len;
2630 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2631 }
fd8aaa76 2632
3b643495 2633 return result;
13eb76e0 2634}
8df1cd07 2635
a203ac70
PB
2636MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2637 const uint8_t *buf, int len)
ac1970fb 2638{
eb7eeb88 2639 hwaddr l;
eb7eeb88
PB
2640 hwaddr addr1;
2641 MemoryRegion *mr;
2642 MemTxResult result = MEMTX_OK;
eb7eeb88 2643
a203ac70
PB
2644 if (len > 0) {
2645 rcu_read_lock();
eb7eeb88 2646 l = len;
a203ac70
PB
2647 mr = address_space_translate(as, addr, &addr1, &l, true);
2648 result = address_space_write_continue(as, addr, attrs, buf, len,
2649 addr1, l, mr);
2650 rcu_read_unlock();
2651 }
2652
2653 return result;
2654}
2655
2656/* Called within RCU critical section. */
2657MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2658 MemTxAttrs attrs, uint8_t *buf,
2659 int len, hwaddr addr1, hwaddr l,
2660 MemoryRegion *mr)
2661{
2662 uint8_t *ptr;
2663 uint64_t val;
2664 MemTxResult result = MEMTX_OK;
2665 bool release_lock = false;
eb7eeb88 2666
a203ac70 2667 for (;;) {
eb7eeb88
PB
2668 if (!memory_access_is_direct(mr, false)) {
2669 /* I/O case */
2670 release_lock |= prepare_mmio_access(mr);
2671 l = memory_access_size(mr, l, addr1);
2672 switch (l) {
2673 case 8:
2674 /* 64 bit read access */
2675 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2676 attrs);
2677 stq_p(buf, val);
2678 break;
2679 case 4:
2680 /* 32 bit read access */
2681 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2682 attrs);
2683 stl_p(buf, val);
2684 break;
2685 case 2:
2686 /* 16 bit read access */
2687 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2688 attrs);
2689 stw_p(buf, val);
2690 break;
2691 case 1:
2692 /* 8 bit read access */
2693 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2694 attrs);
2695 stb_p(buf, val);
2696 break;
2697 default:
2698 abort();
2699 }
2700 } else {
2701 /* RAM case */
8e41fb63
FZ
2702 ptr = qemu_get_ram_ptr(mr->ram_block,
2703 memory_region_get_ram_addr(mr) + addr1);
eb7eeb88
PB
2704 memcpy(buf, ptr, l);
2705 }
2706
2707 if (release_lock) {
2708 qemu_mutex_unlock_iothread();
2709 release_lock = false;
2710 }
2711
2712 len -= l;
2713 buf += l;
2714 addr += l;
a203ac70
PB
2715
2716 if (!len) {
2717 break;
2718 }
2719
2720 l = len;
2721 mr = address_space_translate(as, addr, &addr1, &l, false);
2722 }
2723
2724 return result;
2725}
2726
3cc8f884
PB
2727MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2728 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2729{
2730 hwaddr l;
2731 hwaddr addr1;
2732 MemoryRegion *mr;
2733 MemTxResult result = MEMTX_OK;
2734
2735 if (len > 0) {
2736 rcu_read_lock();
2737 l = len;
2738 mr = address_space_translate(as, addr, &addr1, &l, false);
2739 result = address_space_read_continue(as, addr, attrs, buf, len,
2740 addr1, l, mr);
2741 rcu_read_unlock();
eb7eeb88 2742 }
eb7eeb88
PB
2743
2744 return result;
ac1970fb
AK
2745}
2746
eb7eeb88
PB
2747MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2748 uint8_t *buf, int len, bool is_write)
2749{
2750 if (is_write) {
2751 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2752 } else {
2753 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2754 }
2755}
ac1970fb 2756
a8170e5e 2757void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2758 int len, int is_write)
2759{
5c9eb028
PM
2760 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2761 buf, len, is_write);
ac1970fb
AK
2762}
2763
582b55a9
AG
2764enum write_rom_type {
2765 WRITE_DATA,
2766 FLUSH_CACHE,
2767};
2768
2a221651 2769static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2770 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2771{
149f54b5 2772 hwaddr l;
d0ecd2aa 2773 uint8_t *ptr;
149f54b5 2774 hwaddr addr1;
5c8a00ce 2775 MemoryRegion *mr;
3b46e624 2776
41063e1e 2777 rcu_read_lock();
d0ecd2aa 2778 while (len > 0) {
149f54b5 2779 l = len;
2a221651 2780 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2781
5c8a00ce
PB
2782 if (!(memory_region_is_ram(mr) ||
2783 memory_region_is_romd(mr))) {
b242e0e0 2784 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2785 } else {
5c8a00ce 2786 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2787 /* ROM/RAM case */
3655cb9c 2788 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2789 switch (type) {
2790 case WRITE_DATA:
2791 memcpy(ptr, buf, l);
845b6214 2792 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2793 break;
2794 case FLUSH_CACHE:
2795 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2796 break;
2797 }
d0ecd2aa
FB
2798 }
2799 len -= l;
2800 buf += l;
2801 addr += l;
2802 }
41063e1e 2803 rcu_read_unlock();
d0ecd2aa
FB
2804}
2805
582b55a9 2806/* used for ROM loading : can write in RAM and ROM */
2a221651 2807void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2808 const uint8_t *buf, int len)
2809{
2a221651 2810 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2811}
2812
2813void cpu_flush_icache_range(hwaddr start, int len)
2814{
2815 /*
2816 * This function should do the same thing as an icache flush that was
2817 * triggered from within the guest. For TCG we are always cache coherent,
2818 * so there is no need to flush anything. For KVM / Xen we need to flush
2819 * the host's instruction cache at least.
2820 */
2821 if (tcg_enabled()) {
2822 return;
2823 }
2824
2a221651
EI
2825 cpu_physical_memory_write_rom_internal(&address_space_memory,
2826 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2827}
2828
6d16c2f8 2829typedef struct {
d3e71559 2830 MemoryRegion *mr;
6d16c2f8 2831 void *buffer;
a8170e5e
AK
2832 hwaddr addr;
2833 hwaddr len;
c2cba0ff 2834 bool in_use;
6d16c2f8
AL
2835} BounceBuffer;
2836
2837static BounceBuffer bounce;
2838
ba223c29 2839typedef struct MapClient {
e95205e1 2840 QEMUBH *bh;
72cf2d4f 2841 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2842} MapClient;
2843
38e047b5 2844QemuMutex map_client_list_lock;
72cf2d4f
BS
2845static QLIST_HEAD(map_client_list, MapClient) map_client_list
2846 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2847
e95205e1
FZ
2848static void cpu_unregister_map_client_do(MapClient *client)
2849{
2850 QLIST_REMOVE(client, link);
2851 g_free(client);
2852}
2853
33b6c2ed
FZ
2854static void cpu_notify_map_clients_locked(void)
2855{
2856 MapClient *client;
2857
2858 while (!QLIST_EMPTY(&map_client_list)) {
2859 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2860 qemu_bh_schedule(client->bh);
2861 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2862 }
2863}
2864
e95205e1 2865void cpu_register_map_client(QEMUBH *bh)
ba223c29 2866{
7267c094 2867 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2868
38e047b5 2869 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2870 client->bh = bh;
72cf2d4f 2871 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2872 if (!atomic_read(&bounce.in_use)) {
2873 cpu_notify_map_clients_locked();
2874 }
38e047b5 2875 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2876}
2877
38e047b5 2878void cpu_exec_init_all(void)
ba223c29 2879{
38e047b5 2880 qemu_mutex_init(&ram_list.mutex);
38e047b5 2881 io_mem_init();
680a4783 2882 memory_map_init();
38e047b5 2883 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2884}
2885
e95205e1 2886void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2887{
2888 MapClient *client;
2889
e95205e1
FZ
2890 qemu_mutex_lock(&map_client_list_lock);
2891 QLIST_FOREACH(client, &map_client_list, link) {
2892 if (client->bh == bh) {
2893 cpu_unregister_map_client_do(client);
2894 break;
2895 }
ba223c29 2896 }
e95205e1 2897 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2898}
2899
2900static void cpu_notify_map_clients(void)
2901{
38e047b5 2902 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2903 cpu_notify_map_clients_locked();
38e047b5 2904 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2905}
2906
51644ab7
PB
2907bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2908{
5c8a00ce 2909 MemoryRegion *mr;
51644ab7
PB
2910 hwaddr l, xlat;
2911
41063e1e 2912 rcu_read_lock();
51644ab7
PB
2913 while (len > 0) {
2914 l = len;
5c8a00ce
PB
2915 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2916 if (!memory_access_is_direct(mr, is_write)) {
2917 l = memory_access_size(mr, l, addr);
2918 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2919 return false;
2920 }
2921 }
2922
2923 len -= l;
2924 addr += l;
2925 }
41063e1e 2926 rcu_read_unlock();
51644ab7
PB
2927 return true;
2928}
2929
6d16c2f8
AL
2930/* Map a physical memory region into a host virtual address.
2931 * May map a subset of the requested range, given by and returned in *plen.
2932 * May return NULL if resources needed to perform the mapping are exhausted.
2933 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2934 * Use cpu_register_map_client() to know when retrying the map operation is
2935 * likely to succeed.
6d16c2f8 2936 */
ac1970fb 2937void *address_space_map(AddressSpace *as,
a8170e5e
AK
2938 hwaddr addr,
2939 hwaddr *plen,
ac1970fb 2940 bool is_write)
6d16c2f8 2941{
a8170e5e 2942 hwaddr len = *plen;
e3127ae0
PB
2943 hwaddr done = 0;
2944 hwaddr l, xlat, base;
2945 MemoryRegion *mr, *this_mr;
2946 ram_addr_t raddr;
e81bcda5 2947 void *ptr;
6d16c2f8 2948
e3127ae0
PB
2949 if (len == 0) {
2950 return NULL;
2951 }
38bee5dc 2952
e3127ae0 2953 l = len;
41063e1e 2954 rcu_read_lock();
e3127ae0 2955 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2956
e3127ae0 2957 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2958 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2959 rcu_read_unlock();
e3127ae0 2960 return NULL;
6d16c2f8 2961 }
e85d9db5
KW
2962 /* Avoid unbounded allocations */
2963 l = MIN(l, TARGET_PAGE_SIZE);
2964 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2965 bounce.addr = addr;
2966 bounce.len = l;
d3e71559
PB
2967
2968 memory_region_ref(mr);
2969 bounce.mr = mr;
e3127ae0 2970 if (!is_write) {
5c9eb028
PM
2971 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2972 bounce.buffer, l);
8ab934f9 2973 }
6d16c2f8 2974
41063e1e 2975 rcu_read_unlock();
e3127ae0
PB
2976 *plen = l;
2977 return bounce.buffer;
2978 }
2979
2980 base = xlat;
2981 raddr = memory_region_get_ram_addr(mr);
2982
2983 for (;;) {
6d16c2f8
AL
2984 len -= l;
2985 addr += l;
e3127ae0
PB
2986 done += l;
2987 if (len == 0) {
2988 break;
2989 }
2990
2991 l = len;
2992 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2993 if (this_mr != mr || xlat != base + done) {
2994 break;
2995 }
6d16c2f8 2996 }
e3127ae0 2997
d3e71559 2998 memory_region_ref(mr);
e3127ae0 2999 *plen = done;
3655cb9c 3000 ptr = qemu_ram_ptr_length(mr->ram_block, raddr + base, plen);
e81bcda5
PB
3001 rcu_read_unlock();
3002
3003 return ptr;
6d16c2f8
AL
3004}
3005
ac1970fb 3006/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3007 * Will also mark the memory as dirty if is_write == 1. access_len gives
3008 * the amount of memory that was actually read or written by the caller.
3009 */
a8170e5e
AK
3010void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3011 int is_write, hwaddr access_len)
6d16c2f8
AL
3012{
3013 if (buffer != bounce.buffer) {
d3e71559
PB
3014 MemoryRegion *mr;
3015 ram_addr_t addr1;
3016
3017 mr = qemu_ram_addr_from_host(buffer, &addr1);
3018 assert(mr != NULL);
6d16c2f8 3019 if (is_write) {
845b6214 3020 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3021 }
868bb33f 3022 if (xen_enabled()) {
e41d7c69 3023 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3024 }
d3e71559 3025 memory_region_unref(mr);
6d16c2f8
AL
3026 return;
3027 }
3028 if (is_write) {
5c9eb028
PM
3029 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3030 bounce.buffer, access_len);
6d16c2f8 3031 }
f8a83245 3032 qemu_vfree(bounce.buffer);
6d16c2f8 3033 bounce.buffer = NULL;
d3e71559 3034 memory_region_unref(bounce.mr);
c2cba0ff 3035 atomic_mb_set(&bounce.in_use, false);
ba223c29 3036 cpu_notify_map_clients();
6d16c2f8 3037}
d0ecd2aa 3038
a8170e5e
AK
3039void *cpu_physical_memory_map(hwaddr addr,
3040 hwaddr *plen,
ac1970fb
AK
3041 int is_write)
3042{
3043 return address_space_map(&address_space_memory, addr, plen, is_write);
3044}
3045
a8170e5e
AK
3046void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3047 int is_write, hwaddr access_len)
ac1970fb
AK
3048{
3049 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3050}
3051
8df1cd07 3052/* warning: addr must be aligned */
50013115
PM
3053static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
3054 MemTxAttrs attrs,
3055 MemTxResult *result,
3056 enum device_endian endian)
8df1cd07 3057{
8df1cd07 3058 uint8_t *ptr;
791af8c8 3059 uint64_t val;
5c8a00ce 3060 MemoryRegion *mr;
149f54b5
PB
3061 hwaddr l = 4;
3062 hwaddr addr1;
50013115 3063 MemTxResult r;
4840f10e 3064 bool release_lock = false;
8df1cd07 3065
41063e1e 3066 rcu_read_lock();
fdfba1a2 3067 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 3068 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 3069 release_lock |= prepare_mmio_access(mr);
125b3806 3070
8df1cd07 3071 /* I/O case */
50013115 3072 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
3073#if defined(TARGET_WORDS_BIGENDIAN)
3074 if (endian == DEVICE_LITTLE_ENDIAN) {
3075 val = bswap32(val);
3076 }
3077#else
3078 if (endian == DEVICE_BIG_ENDIAN) {
3079 val = bswap32(val);
3080 }
3081#endif
8df1cd07
FB
3082 } else {
3083 /* RAM case */
3655cb9c
GA
3084 ptr = qemu_get_ram_ptr(mr->ram_block,
3085 (memory_region_get_ram_addr(mr)
06ef3525 3086 & TARGET_PAGE_MASK)
149f54b5 3087 + addr1);
1e78bcc1
AG
3088 switch (endian) {
3089 case DEVICE_LITTLE_ENDIAN:
3090 val = ldl_le_p(ptr);
3091 break;
3092 case DEVICE_BIG_ENDIAN:
3093 val = ldl_be_p(ptr);
3094 break;
3095 default:
3096 val = ldl_p(ptr);
3097 break;
3098 }
50013115
PM
3099 r = MEMTX_OK;
3100 }
3101 if (result) {
3102 *result = r;
8df1cd07 3103 }
4840f10e
JK
3104 if (release_lock) {
3105 qemu_mutex_unlock_iothread();
3106 }
41063e1e 3107 rcu_read_unlock();
8df1cd07
FB
3108 return val;
3109}
3110
50013115
PM
3111uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3112 MemTxAttrs attrs, MemTxResult *result)
3113{
3114 return address_space_ldl_internal(as, addr, attrs, result,
3115 DEVICE_NATIVE_ENDIAN);
3116}
3117
3118uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3119 MemTxAttrs attrs, MemTxResult *result)
3120{
3121 return address_space_ldl_internal(as, addr, attrs, result,
3122 DEVICE_LITTLE_ENDIAN);
3123}
3124
3125uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3126 MemTxAttrs attrs, MemTxResult *result)
3127{
3128 return address_space_ldl_internal(as, addr, attrs, result,
3129 DEVICE_BIG_ENDIAN);
3130}
3131
fdfba1a2 3132uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3133{
50013115 3134 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3135}
3136
fdfba1a2 3137uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3138{
50013115 3139 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3140}
3141
fdfba1a2 3142uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3143{
50013115 3144 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3145}
3146
84b7b8e7 3147/* warning: addr must be aligned */
50013115
PM
3148static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3149 MemTxAttrs attrs,
3150 MemTxResult *result,
3151 enum device_endian endian)
84b7b8e7 3152{
84b7b8e7
FB
3153 uint8_t *ptr;
3154 uint64_t val;
5c8a00ce 3155 MemoryRegion *mr;
149f54b5
PB
3156 hwaddr l = 8;
3157 hwaddr addr1;
50013115 3158 MemTxResult r;
4840f10e 3159 bool release_lock = false;
84b7b8e7 3160
41063e1e 3161 rcu_read_lock();
2c17449b 3162 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3163 false);
3164 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3165 release_lock |= prepare_mmio_access(mr);
125b3806 3166
84b7b8e7 3167 /* I/O case */
50013115 3168 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3169#if defined(TARGET_WORDS_BIGENDIAN)
3170 if (endian == DEVICE_LITTLE_ENDIAN) {
3171 val = bswap64(val);
3172 }
3173#else
3174 if (endian == DEVICE_BIG_ENDIAN) {
3175 val = bswap64(val);
3176 }
84b7b8e7
FB
3177#endif
3178 } else {
3179 /* RAM case */
3655cb9c
GA
3180 ptr = qemu_get_ram_ptr(mr->ram_block,
3181 (memory_region_get_ram_addr(mr)
06ef3525 3182 & TARGET_PAGE_MASK)
149f54b5 3183 + addr1);
1e78bcc1
AG
3184 switch (endian) {
3185 case DEVICE_LITTLE_ENDIAN:
3186 val = ldq_le_p(ptr);
3187 break;
3188 case DEVICE_BIG_ENDIAN:
3189 val = ldq_be_p(ptr);
3190 break;
3191 default:
3192 val = ldq_p(ptr);
3193 break;
3194 }
50013115
PM
3195 r = MEMTX_OK;
3196 }
3197 if (result) {
3198 *result = r;
84b7b8e7 3199 }
4840f10e
JK
3200 if (release_lock) {
3201 qemu_mutex_unlock_iothread();
3202 }
41063e1e 3203 rcu_read_unlock();
84b7b8e7
FB
3204 return val;
3205}
3206
50013115
PM
3207uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3208 MemTxAttrs attrs, MemTxResult *result)
3209{
3210 return address_space_ldq_internal(as, addr, attrs, result,
3211 DEVICE_NATIVE_ENDIAN);
3212}
3213
3214uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3215 MemTxAttrs attrs, MemTxResult *result)
3216{
3217 return address_space_ldq_internal(as, addr, attrs, result,
3218 DEVICE_LITTLE_ENDIAN);
3219}
3220
3221uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3222 MemTxAttrs attrs, MemTxResult *result)
3223{
3224 return address_space_ldq_internal(as, addr, attrs, result,
3225 DEVICE_BIG_ENDIAN);
3226}
3227
2c17449b 3228uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3229{
50013115 3230 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3231}
3232
2c17449b 3233uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3234{
50013115 3235 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3236}
3237
2c17449b 3238uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3239{
50013115 3240 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3241}
3242
aab33094 3243/* XXX: optimize */
50013115
PM
3244uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3245 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3246{
3247 uint8_t val;
50013115
PM
3248 MemTxResult r;
3249
3250 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3251 if (result) {
3252 *result = r;
3253 }
aab33094
FB
3254 return val;
3255}
3256
50013115
PM
3257uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3258{
3259 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3260}
3261
733f0b02 3262/* warning: addr must be aligned */
50013115
PM
3263static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3264 hwaddr addr,
3265 MemTxAttrs attrs,
3266 MemTxResult *result,
3267 enum device_endian endian)
aab33094 3268{
733f0b02
MT
3269 uint8_t *ptr;
3270 uint64_t val;
5c8a00ce 3271 MemoryRegion *mr;
149f54b5
PB
3272 hwaddr l = 2;
3273 hwaddr addr1;
50013115 3274 MemTxResult r;
4840f10e 3275 bool release_lock = false;
733f0b02 3276
41063e1e 3277 rcu_read_lock();
41701aa4 3278 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3279 false);
3280 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3281 release_lock |= prepare_mmio_access(mr);
125b3806 3282
733f0b02 3283 /* I/O case */
50013115 3284 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3285#if defined(TARGET_WORDS_BIGENDIAN)
3286 if (endian == DEVICE_LITTLE_ENDIAN) {
3287 val = bswap16(val);
3288 }
3289#else
3290 if (endian == DEVICE_BIG_ENDIAN) {
3291 val = bswap16(val);
3292 }
3293#endif
733f0b02
MT
3294 } else {
3295 /* RAM case */
3655cb9c
GA
3296 ptr = qemu_get_ram_ptr(mr->ram_block,
3297 (memory_region_get_ram_addr(mr)
06ef3525 3298 & TARGET_PAGE_MASK)
149f54b5 3299 + addr1);
1e78bcc1
AG
3300 switch (endian) {
3301 case DEVICE_LITTLE_ENDIAN:
3302 val = lduw_le_p(ptr);
3303 break;
3304 case DEVICE_BIG_ENDIAN:
3305 val = lduw_be_p(ptr);
3306 break;
3307 default:
3308 val = lduw_p(ptr);
3309 break;
3310 }
50013115
PM
3311 r = MEMTX_OK;
3312 }
3313 if (result) {
3314 *result = r;
733f0b02 3315 }
4840f10e
JK
3316 if (release_lock) {
3317 qemu_mutex_unlock_iothread();
3318 }
41063e1e 3319 rcu_read_unlock();
733f0b02 3320 return val;
aab33094
FB
3321}
3322
50013115
PM
3323uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3324 MemTxAttrs attrs, MemTxResult *result)
3325{
3326 return address_space_lduw_internal(as, addr, attrs, result,
3327 DEVICE_NATIVE_ENDIAN);
3328}
3329
3330uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3331 MemTxAttrs attrs, MemTxResult *result)
3332{
3333 return address_space_lduw_internal(as, addr, attrs, result,
3334 DEVICE_LITTLE_ENDIAN);
3335}
3336
3337uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3338 MemTxAttrs attrs, MemTxResult *result)
3339{
3340 return address_space_lduw_internal(as, addr, attrs, result,
3341 DEVICE_BIG_ENDIAN);
3342}
3343
41701aa4 3344uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3345{
50013115 3346 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3347}
3348
41701aa4 3349uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3350{
50013115 3351 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3352}
3353
41701aa4 3354uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3355{
50013115 3356 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3357}
3358
8df1cd07
FB
3359/* warning: addr must be aligned. The ram page is not masked as dirty
3360 and the code inside is not invalidated. It is useful if the dirty
3361 bits are used to track modified PTEs */
50013115
PM
3362void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3363 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3364{
8df1cd07 3365 uint8_t *ptr;
5c8a00ce 3366 MemoryRegion *mr;
149f54b5
PB
3367 hwaddr l = 4;
3368 hwaddr addr1;
50013115 3369 MemTxResult r;
845b6214 3370 uint8_t dirty_log_mask;
4840f10e 3371 bool release_lock = false;
8df1cd07 3372
41063e1e 3373 rcu_read_lock();
2198a121 3374 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3375 true);
3376 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3377 release_lock |= prepare_mmio_access(mr);
125b3806 3378
50013115 3379 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3380 } else {
5c8a00ce 3381 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3382 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
8df1cd07 3383 stl_p(ptr, val);
74576198 3384
845b6214
PB
3385 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3386 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3387 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3388 r = MEMTX_OK;
3389 }
3390 if (result) {
3391 *result = r;
8df1cd07 3392 }
4840f10e
JK
3393 if (release_lock) {
3394 qemu_mutex_unlock_iothread();
3395 }
41063e1e 3396 rcu_read_unlock();
8df1cd07
FB
3397}
3398
50013115
PM
3399void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3400{
3401 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3402}
3403
8df1cd07 3404/* warning: addr must be aligned */
50013115
PM
3405static inline void address_space_stl_internal(AddressSpace *as,
3406 hwaddr addr, uint32_t val,
3407 MemTxAttrs attrs,
3408 MemTxResult *result,
3409 enum device_endian endian)
8df1cd07 3410{
8df1cd07 3411 uint8_t *ptr;
5c8a00ce 3412 MemoryRegion *mr;
149f54b5
PB
3413 hwaddr l = 4;
3414 hwaddr addr1;
50013115 3415 MemTxResult r;
4840f10e 3416 bool release_lock = false;
8df1cd07 3417
41063e1e 3418 rcu_read_lock();
ab1da857 3419 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3420 true);
3421 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3422 release_lock |= prepare_mmio_access(mr);
125b3806 3423
1e78bcc1
AG
3424#if defined(TARGET_WORDS_BIGENDIAN)
3425 if (endian == DEVICE_LITTLE_ENDIAN) {
3426 val = bswap32(val);
3427 }
3428#else
3429 if (endian == DEVICE_BIG_ENDIAN) {
3430 val = bswap32(val);
3431 }
3432#endif
50013115 3433 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3434 } else {
8df1cd07 3435 /* RAM case */
5c8a00ce 3436 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3437 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3438 switch (endian) {
3439 case DEVICE_LITTLE_ENDIAN:
3440 stl_le_p(ptr, val);
3441 break;
3442 case DEVICE_BIG_ENDIAN:
3443 stl_be_p(ptr, val);
3444 break;
3445 default:
3446 stl_p(ptr, val);
3447 break;
3448 }
845b6214 3449 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3450 r = MEMTX_OK;
3451 }
3452 if (result) {
3453 *result = r;
8df1cd07 3454 }
4840f10e
JK
3455 if (release_lock) {
3456 qemu_mutex_unlock_iothread();
3457 }
41063e1e 3458 rcu_read_unlock();
8df1cd07
FB
3459}
3460
50013115
PM
3461void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3462 MemTxAttrs attrs, MemTxResult *result)
3463{
3464 address_space_stl_internal(as, addr, val, attrs, result,
3465 DEVICE_NATIVE_ENDIAN);
3466}
3467
3468void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3469 MemTxAttrs attrs, MemTxResult *result)
3470{
3471 address_space_stl_internal(as, addr, val, attrs, result,
3472 DEVICE_LITTLE_ENDIAN);
3473}
3474
3475void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3476 MemTxAttrs attrs, MemTxResult *result)
3477{
3478 address_space_stl_internal(as, addr, val, attrs, result,
3479 DEVICE_BIG_ENDIAN);
3480}
3481
ab1da857 3482void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3483{
50013115 3484 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3485}
3486
ab1da857 3487void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3488{
50013115 3489 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3490}
3491
ab1da857 3492void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3493{
50013115 3494 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3495}
3496
aab33094 3497/* XXX: optimize */
50013115
PM
3498void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3499 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3500{
3501 uint8_t v = val;
50013115
PM
3502 MemTxResult r;
3503
3504 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3505 if (result) {
3506 *result = r;
3507 }
3508}
3509
3510void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3511{
3512 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3513}
3514
733f0b02 3515/* warning: addr must be aligned */
50013115
PM
3516static inline void address_space_stw_internal(AddressSpace *as,
3517 hwaddr addr, uint32_t val,
3518 MemTxAttrs attrs,
3519 MemTxResult *result,
3520 enum device_endian endian)
aab33094 3521{
733f0b02 3522 uint8_t *ptr;
5c8a00ce 3523 MemoryRegion *mr;
149f54b5
PB
3524 hwaddr l = 2;
3525 hwaddr addr1;
50013115 3526 MemTxResult r;
4840f10e 3527 bool release_lock = false;
733f0b02 3528
41063e1e 3529 rcu_read_lock();
5ce5944d 3530 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3531 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3532 release_lock |= prepare_mmio_access(mr);
125b3806 3533
1e78bcc1
AG
3534#if defined(TARGET_WORDS_BIGENDIAN)
3535 if (endian == DEVICE_LITTLE_ENDIAN) {
3536 val = bswap16(val);
3537 }
3538#else
3539 if (endian == DEVICE_BIG_ENDIAN) {
3540 val = bswap16(val);
3541 }
3542#endif
50013115 3543 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3544 } else {
733f0b02 3545 /* RAM case */
5c8a00ce 3546 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
3655cb9c 3547 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3548 switch (endian) {
3549 case DEVICE_LITTLE_ENDIAN:
3550 stw_le_p(ptr, val);
3551 break;
3552 case DEVICE_BIG_ENDIAN:
3553 stw_be_p(ptr, val);
3554 break;
3555 default:
3556 stw_p(ptr, val);
3557 break;
3558 }
845b6214 3559 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3560 r = MEMTX_OK;
3561 }
3562 if (result) {
3563 *result = r;
733f0b02 3564 }
4840f10e
JK
3565 if (release_lock) {
3566 qemu_mutex_unlock_iothread();
3567 }
41063e1e 3568 rcu_read_unlock();
aab33094
FB
3569}
3570
50013115
PM
3571void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3572 MemTxAttrs attrs, MemTxResult *result)
3573{
3574 address_space_stw_internal(as, addr, val, attrs, result,
3575 DEVICE_NATIVE_ENDIAN);
3576}
3577
3578void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3579 MemTxAttrs attrs, MemTxResult *result)
3580{
3581 address_space_stw_internal(as, addr, val, attrs, result,
3582 DEVICE_LITTLE_ENDIAN);
3583}
3584
3585void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3586 MemTxAttrs attrs, MemTxResult *result)
3587{
3588 address_space_stw_internal(as, addr, val, attrs, result,
3589 DEVICE_BIG_ENDIAN);
3590}
3591
5ce5944d 3592void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3593{
50013115 3594 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3595}
3596
5ce5944d 3597void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3598{
50013115 3599 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3600}
3601
5ce5944d 3602void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3603{
50013115 3604 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3605}
3606
aab33094 3607/* XXX: optimize */
50013115
PM
3608void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3609 MemTxAttrs attrs, MemTxResult *result)
aab33094 3610{
50013115 3611 MemTxResult r;
aab33094 3612 val = tswap64(val);
50013115
PM
3613 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3614 if (result) {
3615 *result = r;
3616 }
aab33094
FB
3617}
3618
50013115
PM
3619void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3620 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3621{
50013115 3622 MemTxResult r;
1e78bcc1 3623 val = cpu_to_le64(val);
50013115
PM
3624 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3625 if (result) {
3626 *result = r;
3627 }
3628}
3629void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3630 MemTxAttrs attrs, MemTxResult *result)
3631{
3632 MemTxResult r;
3633 val = cpu_to_be64(val);
3634 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3635 if (result) {
3636 *result = r;
3637 }
3638}
3639
3640void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3641{
3642 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3643}
3644
3645void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3646{
3647 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3648}
3649
f606604f 3650void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3651{
50013115 3652 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3653}
3654
5e2972fd 3655/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3656int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3657 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3658{
3659 int l;
a8170e5e 3660 hwaddr phys_addr;
9b3c35e0 3661 target_ulong page;
13eb76e0
FB
3662
3663 while (len > 0) {
5232e4c7
PM
3664 int asidx;
3665 MemTxAttrs attrs;
3666
13eb76e0 3667 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3668 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3669 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3670 /* if no physical page mapped, return an error */
3671 if (phys_addr == -1)
3672 return -1;
3673 l = (page + TARGET_PAGE_SIZE) - addr;
3674 if (l > len)
3675 l = len;
5e2972fd 3676 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3677 if (is_write) {
5232e4c7
PM
3678 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3679 phys_addr, buf, l);
2e38847b 3680 } else {
5232e4c7
PM
3681 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3682 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3683 buf, l, 0);
2e38847b 3684 }
13eb76e0
FB
3685 len -= l;
3686 buf += l;
3687 addr += l;
3688 }
3689 return 0;
3690}
038629a6
DDAG
3691
3692/*
3693 * Allows code that needs to deal with migration bitmaps etc to still be built
3694 * target independent.
3695 */
3696size_t qemu_target_page_bits(void)
3697{
3698 return TARGET_PAGE_BITS;
3699}
3700
a68fe89c 3701#endif
13eb76e0 3702
8e4a424b
BS
3703/*
3704 * A helper function for the _utterly broken_ virtio device model to find out if
3705 * it's running on a big endian machine. Don't do this at home kids!
3706 */
98ed8ecf
GK
3707bool target_words_bigendian(void);
3708bool target_words_bigendian(void)
8e4a424b
BS
3709{
3710#if defined(TARGET_WORDS_BIGENDIAN)
3711 return true;
3712#else
3713 return false;
3714#endif
3715}
3716
76f35538 3717#ifndef CONFIG_USER_ONLY
a8170e5e 3718bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3719{
5c8a00ce 3720 MemoryRegion*mr;
149f54b5 3721 hwaddr l = 1;
41063e1e 3722 bool res;
76f35538 3723
41063e1e 3724 rcu_read_lock();
5c8a00ce
PB
3725 mr = address_space_translate(&address_space_memory,
3726 phys_addr, &phys_addr, &l, false);
76f35538 3727
41063e1e
PB
3728 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3729 rcu_read_unlock();
3730 return res;
76f35538 3731}
bd2fa51f 3732
e3807054 3733int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3734{
3735 RAMBlock *block;
e3807054 3736 int ret = 0;
bd2fa51f 3737
0dc3f44a
MD
3738 rcu_read_lock();
3739 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3740 ret = func(block->idstr, block->host, block->offset,
3741 block->used_length, opaque);
3742 if (ret) {
3743 break;
3744 }
bd2fa51f 3745 }
0dc3f44a 3746 rcu_read_unlock();
e3807054 3747 return ret;
bd2fa51f 3748}
ec3f8c99 3749#endif