]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Fix bsd-user qemu_vmalloc() host page protection code
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
53a5960a 45#endif
54936004 46
fd6ce8f6 47//#define DEBUG_TB_INVALIDATE
66e85a21 48//#define DEBUG_FLUSH
9fa3e853 49//#define DEBUG_TLB
67d3b957 50//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
51
52/* make various TB consistency checks */
5fafdf24
TS
53//#define DEBUG_TB_CHECK
54//#define DEBUG_TLB_CHECK
fd6ce8f6 55
1196be37 56//#define DEBUG_IOPORT
db7b5426 57//#define DEBUG_SUBPAGE
1196be37 58
99773bd4
PB
59#if !defined(CONFIG_USER_ONLY)
60/* TB consistency checks only implemented for usermode emulation. */
61#undef DEBUG_TB_CHECK
62#endif
63
9fa3e853
FB
64#define SMC_BITMAP_USE_THRESHOLD 10
65
bdaf78e0 66static TranslationBlock *tbs;
26a5f13b 67int code_gen_max_blocks;
9fa3e853 68TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 69static int nb_tbs;
eb51d102 70/* any access to the tbs or the page table must use this lock */
c227f099 71spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 72
141ac468
BS
73#if defined(__arm__) || defined(__sparc_v9__)
74/* The prologue must be reachable with a direct jump. ARM and Sparc64
75 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
76 section close to code segment. */
77#define code_gen_section \
78 __attribute__((__section__(".gen_code"))) \
79 __attribute__((aligned (32)))
f8e2af11
SW
80#elif defined(_WIN32)
81/* Maximum alignment for Win32 is 16. */
82#define code_gen_section \
83 __attribute__((aligned (16)))
d03d860b
BS
84#else
85#define code_gen_section \
86 __attribute__((aligned (32)))
87#endif
88
89uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
90static uint8_t *code_gen_buffer;
91static unsigned long code_gen_buffer_size;
26a5f13b 92/* threshold to flush the translated code buffer */
bdaf78e0 93static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
94uint8_t *code_gen_ptr;
95
e2eef170 96#if !defined(CONFIG_USER_ONLY)
9fa3e853 97int phys_ram_fd;
1ccde1cb 98uint8_t *phys_ram_dirty;
74576198 99static int in_migration;
94a6b54f
PB
100
101typedef struct RAMBlock {
102 uint8_t *host;
c227f099
AL
103 ram_addr_t offset;
104 ram_addr_t length;
94a6b54f
PB
105 struct RAMBlock *next;
106} RAMBlock;
107
108static RAMBlock *ram_blocks;
109/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 110 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 111 of this variable will break. */
c227f099 112ram_addr_t last_ram_offset;
e2eef170 113#endif
9fa3e853 114
6a00d601
FB
115CPUState *first_cpu;
116/* current CPU in the current thread. It is only valid inside
117 cpu_exec() */
5fafdf24 118CPUState *cpu_single_env;
2e70f6ef 119/* 0 = Do not count executed instructions.
bf20dc07 120 1 = Precise instruction counting.
2e70f6ef
PB
121 2 = Adaptive rate instruction counting. */
122int use_icount = 0;
123/* Current instruction counter. While executing translated code this may
124 include some instructions that have not yet been executed. */
125int64_t qemu_icount;
6a00d601 126
54936004 127typedef struct PageDesc {
92e873b9 128 /* list of TBs intersecting this ram page */
fd6ce8f6 129 TranslationBlock *first_tb;
9fa3e853
FB
130 /* in order to optimize self modifying code, we count the number
131 of lookups we do to a given page to use a bitmap */
132 unsigned int code_write_count;
133 uint8_t *code_bitmap;
134#if defined(CONFIG_USER_ONLY)
135 unsigned long flags;
136#endif
54936004
FB
137} PageDesc;
138
41c1b1c9 139/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
140 while in user mode we want it to be based on virtual addresses. */
141#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
142#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
143# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
144#else
5cd2c5b6 145# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 146#endif
bedb69ea 147#else
5cd2c5b6 148# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 149#endif
54936004 150
5cd2c5b6
RH
151/* Size of the L2 (and L3, etc) page tables. */
152#define L2_BITS 10
54936004
FB
153#define L2_SIZE (1 << L2_BITS)
154
5cd2c5b6
RH
155/* The bits remaining after N lower levels of page tables. */
156#define P_L1_BITS_REM \
157 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158#define V_L1_BITS_REM \
159 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
160
161/* Size of the L1 page table. Avoid silly small sizes. */
162#if P_L1_BITS_REM < 4
163#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
164#else
165#define P_L1_BITS P_L1_BITS_REM
166#endif
167
168#if V_L1_BITS_REM < 4
169#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
170#else
171#define V_L1_BITS V_L1_BITS_REM
172#endif
173
174#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
175#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
177#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
178#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
179
83fb7adf
FB
180unsigned long qemu_real_host_page_size;
181unsigned long qemu_host_page_bits;
182unsigned long qemu_host_page_size;
183unsigned long qemu_host_page_mask;
54936004 184
5cd2c5b6
RH
185/* This is a multi-level map on the virtual address space.
186 The bottom level has pointers to PageDesc. */
187static void *l1_map[V_L1_SIZE];
54936004 188
e2eef170 189#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
190typedef struct PhysPageDesc {
191 /* offset in host memory of the page + io_index in the low bits */
192 ram_addr_t phys_offset;
193 ram_addr_t region_offset;
194} PhysPageDesc;
195
5cd2c5b6
RH
196/* This is a multi-level map on the physical address space.
197 The bottom level has pointers to PhysPageDesc. */
198static void *l1_phys_map[P_L1_SIZE];
6d9a1304 199
e2eef170
PB
200static void io_mem_init(void);
201
33417e70 202/* io memory support */
33417e70
FB
203CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
204CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 205void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 206static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
207static int io_mem_watch;
208#endif
33417e70 209
34865134 210/* log support */
1e8b27ca
JR
211#ifdef WIN32
212static const char *logfilename = "qemu.log";
213#else
d9b630fd 214static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 215#endif
34865134
FB
216FILE *logfile;
217int loglevel;
e735b91c 218static int log_append = 0;
34865134 219
e3db7226 220/* statistics */
b3755a91 221#if !defined(CONFIG_USER_ONLY)
e3db7226 222static int tlb_flush_count;
b3755a91 223#endif
e3db7226
FB
224static int tb_flush_count;
225static int tb_phys_invalidate_count;
226
7cb69cae
FB
227#ifdef _WIN32
228static void map_exec(void *addr, long size)
229{
230 DWORD old_protect;
231 VirtualProtect(addr, size,
232 PAGE_EXECUTE_READWRITE, &old_protect);
233
234}
235#else
236static void map_exec(void *addr, long size)
237{
4369415f 238 unsigned long start, end, page_size;
7cb69cae 239
4369415f 240 page_size = getpagesize();
7cb69cae 241 start = (unsigned long)addr;
4369415f 242 start &= ~(page_size - 1);
7cb69cae
FB
243
244 end = (unsigned long)addr + size;
4369415f
FB
245 end += page_size - 1;
246 end &= ~(page_size - 1);
7cb69cae
FB
247
248 mprotect((void *)start, end - start,
249 PROT_READ | PROT_WRITE | PROT_EXEC);
250}
251#endif
252
b346ff46 253static void page_init(void)
54936004 254{
83fb7adf 255 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 256 TARGET_PAGE_SIZE */
c2b48b69
AL
257#ifdef _WIN32
258 {
259 SYSTEM_INFO system_info;
260
261 GetSystemInfo(&system_info);
262 qemu_real_host_page_size = system_info.dwPageSize;
263 }
264#else
265 qemu_real_host_page_size = getpagesize();
266#endif
83fb7adf
FB
267 if (qemu_host_page_size == 0)
268 qemu_host_page_size = qemu_real_host_page_size;
269 if (qemu_host_page_size < TARGET_PAGE_SIZE)
270 qemu_host_page_size = TARGET_PAGE_SIZE;
271 qemu_host_page_bits = 0;
272 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
273 qemu_host_page_bits++;
274 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
275
276#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
277 {
50a9569b 278 FILE *f;
50a9569b 279
0776590d 280 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 281
50a9569b
AZ
282 f = fopen("/proc/self/maps", "r");
283 if (f) {
5cd2c5b6
RH
284 mmap_lock();
285
50a9569b 286 do {
5cd2c5b6
RH
287 unsigned long startaddr, endaddr;
288 int n;
289
290 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
291
292 if (n == 2 && h2g_valid(startaddr)) {
293 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
294
295 if (h2g_valid(endaddr)) {
296 endaddr = h2g(endaddr);
297 } else {
298 endaddr = ~0ul;
299 }
300 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
301 }
302 } while (!feof(f));
5cd2c5b6 303
50a9569b 304 fclose(f);
5cd2c5b6 305 mmap_unlock();
50a9569b
AZ
306 }
307 }
308#endif
54936004
FB
309}
310
41c1b1c9 311static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 312{
41c1b1c9
PB
313 PageDesc *pd;
314 void **lp;
315 int i;
316
5cd2c5b6
RH
317#if defined(CONFIG_USER_ONLY)
318 /* We can't use qemu_malloc because it may recurse into a locked mutex.
319 Neither can we record the new pages we reserve while allocating a
320 given page because that may recurse into an unallocated page table
321 entry. Stuff the allocations we do make into a queue and process
322 them after having completed one entire page table allocation. */
323
324 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
325 int reserve_idx = 0;
326
327# define ALLOC(P, SIZE) \
328 do { \
329 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
330 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
331 if (h2g_valid(P)) { \
332 reserve[reserve_idx] = h2g(P); \
333 reserve[reserve_idx + 1] = SIZE; \
334 reserve_idx += 2; \
335 } \
336 } while (0)
337#else
338# define ALLOC(P, SIZE) \
339 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 340#endif
434929bf 341
5cd2c5b6
RH
342 /* Level 1. Always allocated. */
343 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
344
345 /* Level 2..N-1. */
346 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
347 void **p = *lp;
348
349 if (p == NULL) {
350 if (!alloc) {
351 return NULL;
352 }
353 ALLOC(p, sizeof(void *) * L2_SIZE);
354 *lp = p;
17e2377a 355 }
5cd2c5b6
RH
356
357 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
358 }
359
360 pd = *lp;
361 if (pd == NULL) {
362 if (!alloc) {
363 return NULL;
364 }
365 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
366 *lp = pd;
54936004 367 }
5cd2c5b6
RH
368
369#undef ALLOC
370#if defined(CONFIG_USER_ONLY)
371 for (i = 0; i < reserve_idx; i += 2) {
372 unsigned long addr = reserve[i];
373 unsigned long len = reserve[i + 1];
374
375 page_set_flags(addr & TARGET_PAGE_MASK,
376 TARGET_PAGE_ALIGN(addr + len),
377 PAGE_RESERVED);
378 }
379#endif
380
381 return pd + (index & (L2_SIZE - 1));
54936004
FB
382}
383
41c1b1c9 384static inline PageDesc *page_find(tb_page_addr_t index)
54936004 385{
5cd2c5b6 386 return page_find_alloc(index, 0);
fd6ce8f6
FB
387}
388
6d9a1304 389#if !defined(CONFIG_USER_ONLY)
c227f099 390static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 391{
e3f4e2a4 392 PhysPageDesc *pd;
5cd2c5b6
RH
393 void **lp;
394 int i;
92e873b9 395
5cd2c5b6
RH
396 /* Level 1. Always allocated. */
397 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 398
5cd2c5b6
RH
399 /* Level 2..N-1. */
400 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
401 void **p = *lp;
402 if (p == NULL) {
403 if (!alloc) {
404 return NULL;
405 }
406 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
407 }
408 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 409 }
5cd2c5b6 410
e3f4e2a4 411 pd = *lp;
5cd2c5b6 412 if (pd == NULL) {
e3f4e2a4 413 int i;
5cd2c5b6
RH
414
415 if (!alloc) {
108c49b8 416 return NULL;
5cd2c5b6
RH
417 }
418
419 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
420
67c4d23c 421 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
422 pd[i].phys_offset = IO_MEM_UNASSIGNED;
423 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 424 }
92e873b9 425 }
5cd2c5b6
RH
426
427 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
428}
429
c227f099 430static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 431{
108c49b8 432 return phys_page_find_alloc(index, 0);
92e873b9
FB
433}
434
c227f099
AL
435static void tlb_protect_code(ram_addr_t ram_addr);
436static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 437 target_ulong vaddr);
c8a706fe
PB
438#define mmap_lock() do { } while(0)
439#define mmap_unlock() do { } while(0)
9fa3e853 440#endif
fd6ce8f6 441
4369415f
FB
442#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
443
444#if defined(CONFIG_USER_ONLY)
ccbb4d44 445/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
446 user mode. It will change when a dedicated libc will be used */
447#define USE_STATIC_CODE_GEN_BUFFER
448#endif
449
450#ifdef USE_STATIC_CODE_GEN_BUFFER
451static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
452#endif
453
8fcd3692 454static void code_gen_alloc(unsigned long tb_size)
26a5f13b 455{
4369415f
FB
456#ifdef USE_STATIC_CODE_GEN_BUFFER
457 code_gen_buffer = static_code_gen_buffer;
458 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
459 map_exec(code_gen_buffer, code_gen_buffer_size);
460#else
26a5f13b
FB
461 code_gen_buffer_size = tb_size;
462 if (code_gen_buffer_size == 0) {
4369415f
FB
463#if defined(CONFIG_USER_ONLY)
464 /* in user mode, phys_ram_size is not meaningful */
465 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
466#else
ccbb4d44 467 /* XXX: needs adjustments */
94a6b54f 468 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 469#endif
26a5f13b
FB
470 }
471 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
472 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
473 /* The code gen buffer location may have constraints depending on
474 the host cpu and OS */
475#if defined(__linux__)
476 {
477 int flags;
141ac468
BS
478 void *start = NULL;
479
26a5f13b
FB
480 flags = MAP_PRIVATE | MAP_ANONYMOUS;
481#if defined(__x86_64__)
482 flags |= MAP_32BIT;
483 /* Cannot map more than that */
484 if (code_gen_buffer_size > (800 * 1024 * 1024))
485 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
486#elif defined(__sparc_v9__)
487 // Map the buffer below 2G, so we can use direct calls and branches
488 flags |= MAP_FIXED;
489 start = (void *) 0x60000000UL;
490 if (code_gen_buffer_size > (512 * 1024 * 1024))
491 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 492#elif defined(__arm__)
63d41246 493 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
494 flags |= MAP_FIXED;
495 start = (void *) 0x01000000UL;
496 if (code_gen_buffer_size > 16 * 1024 * 1024)
497 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 498#endif
141ac468
BS
499 code_gen_buffer = mmap(start, code_gen_buffer_size,
500 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
501 flags, -1, 0);
502 if (code_gen_buffer == MAP_FAILED) {
503 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
504 exit(1);
505 }
506 }
a167ba50 507#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
508 {
509 int flags;
510 void *addr = NULL;
511 flags = MAP_PRIVATE | MAP_ANONYMOUS;
512#if defined(__x86_64__)
513 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
514 * 0x40000000 is free */
515 flags |= MAP_FIXED;
516 addr = (void *)0x40000000;
517 /* Cannot map more than that */
518 if (code_gen_buffer_size > (800 * 1024 * 1024))
519 code_gen_buffer_size = (800 * 1024 * 1024);
520#endif
521 code_gen_buffer = mmap(addr, code_gen_buffer_size,
522 PROT_WRITE | PROT_READ | PROT_EXEC,
523 flags, -1, 0);
524 if (code_gen_buffer == MAP_FAILED) {
525 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
526 exit(1);
527 }
528 }
26a5f13b
FB
529#else
530 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
531 map_exec(code_gen_buffer, code_gen_buffer_size);
532#endif
4369415f 533#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
534 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
535 code_gen_buffer_max_size = code_gen_buffer_size -
536 code_gen_max_block_size();
537 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
538 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
539}
540
541/* Must be called before using the QEMU cpus. 'tb_size' is the size
542 (in bytes) allocated to the translation buffer. Zero means default
543 size. */
544void cpu_exec_init_all(unsigned long tb_size)
545{
26a5f13b
FB
546 cpu_gen_init();
547 code_gen_alloc(tb_size);
548 code_gen_ptr = code_gen_buffer;
4369415f 549 page_init();
e2eef170 550#if !defined(CONFIG_USER_ONLY)
26a5f13b 551 io_mem_init();
e2eef170 552#endif
26a5f13b
FB
553}
554
9656f324
PB
555#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
556
e59fb374 557static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
558{
559 CPUState *env = opaque;
9656f324 560
3098dba0
AJ
561 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
562 version_id is increased. */
563 env->interrupt_request &= ~0x01;
9656f324
PB
564 tlb_flush(env, 1);
565
566 return 0;
567}
e7f4eff7
JQ
568
569static const VMStateDescription vmstate_cpu_common = {
570 .name = "cpu_common",
571 .version_id = 1,
572 .minimum_version_id = 1,
573 .minimum_version_id_old = 1,
e7f4eff7
JQ
574 .post_load = cpu_common_post_load,
575 .fields = (VMStateField []) {
576 VMSTATE_UINT32(halted, CPUState),
577 VMSTATE_UINT32(interrupt_request, CPUState),
578 VMSTATE_END_OF_LIST()
579 }
580};
9656f324
PB
581#endif
582
950f1472
GC
583CPUState *qemu_get_cpu(int cpu)
584{
585 CPUState *env = first_cpu;
586
587 while (env) {
588 if (env->cpu_index == cpu)
589 break;
590 env = env->next_cpu;
591 }
592
593 return env;
594}
595
6a00d601 596void cpu_exec_init(CPUState *env)
fd6ce8f6 597{
6a00d601
FB
598 CPUState **penv;
599 int cpu_index;
600
c2764719
PB
601#if defined(CONFIG_USER_ONLY)
602 cpu_list_lock();
603#endif
6a00d601
FB
604 env->next_cpu = NULL;
605 penv = &first_cpu;
606 cpu_index = 0;
607 while (*penv != NULL) {
1e9fa730 608 penv = &(*penv)->next_cpu;
6a00d601
FB
609 cpu_index++;
610 }
611 env->cpu_index = cpu_index;
268a362c 612 env->numa_node = 0;
72cf2d4f
BS
613 QTAILQ_INIT(&env->breakpoints);
614 QTAILQ_INIT(&env->watchpoints);
6a00d601 615 *penv = env;
c2764719
PB
616#if defined(CONFIG_USER_ONLY)
617 cpu_list_unlock();
618#endif
b3c7724c 619#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 620 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
621 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
622 cpu_save, cpu_load, env);
623#endif
fd6ce8f6
FB
624}
625
9fa3e853
FB
626static inline void invalidate_page_bitmap(PageDesc *p)
627{
628 if (p->code_bitmap) {
59817ccb 629 qemu_free(p->code_bitmap);
9fa3e853
FB
630 p->code_bitmap = NULL;
631 }
632 p->code_write_count = 0;
633}
634
5cd2c5b6
RH
635/* Set to NULL all the 'first_tb' fields in all PageDescs. */
636
637static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 638{
5cd2c5b6 639 int i;
fd6ce8f6 640
5cd2c5b6
RH
641 if (*lp == NULL) {
642 return;
643 }
644 if (level == 0) {
645 PageDesc *pd = *lp;
7296abac 646 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
647 pd[i].first_tb = NULL;
648 invalidate_page_bitmap(pd + i);
fd6ce8f6 649 }
5cd2c5b6
RH
650 } else {
651 void **pp = *lp;
7296abac 652 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
653 page_flush_tb_1 (level - 1, pp + i);
654 }
655 }
656}
657
658static void page_flush_tb(void)
659{
660 int i;
661 for (i = 0; i < V_L1_SIZE; i++) {
662 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
663 }
664}
665
666/* flush all the translation blocks */
d4e8164f 667/* XXX: tb_flush is currently not thread safe */
6a00d601 668void tb_flush(CPUState *env1)
fd6ce8f6 669{
6a00d601 670 CPUState *env;
0124311e 671#if defined(DEBUG_FLUSH)
ab3d1727
BS
672 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
673 (unsigned long)(code_gen_ptr - code_gen_buffer),
674 nb_tbs, nb_tbs > 0 ?
675 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 676#endif
26a5f13b 677 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
678 cpu_abort(env1, "Internal error: code buffer overflow\n");
679
fd6ce8f6 680 nb_tbs = 0;
3b46e624 681
6a00d601
FB
682 for(env = first_cpu; env != NULL; env = env->next_cpu) {
683 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
684 }
9fa3e853 685
8a8a608f 686 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 687 page_flush_tb();
9fa3e853 688
fd6ce8f6 689 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
690 /* XXX: flush processor icache at this point if cache flush is
691 expensive */
e3db7226 692 tb_flush_count++;
fd6ce8f6
FB
693}
694
695#ifdef DEBUG_TB_CHECK
696
bc98a7ef 697static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
698{
699 TranslationBlock *tb;
700 int i;
701 address &= TARGET_PAGE_MASK;
99773bd4
PB
702 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
703 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
704 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
705 address >= tb->pc + tb->size)) {
0bf9e31a
BS
706 printf("ERROR invalidate: address=" TARGET_FMT_lx
707 " PC=%08lx size=%04x\n",
99773bd4 708 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
709 }
710 }
711 }
712}
713
714/* verify that all the pages have correct rights for code */
715static void tb_page_check(void)
716{
717 TranslationBlock *tb;
718 int i, flags1, flags2;
3b46e624 719
99773bd4
PB
720 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
721 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
722 flags1 = page_get_flags(tb->pc);
723 flags2 = page_get_flags(tb->pc + tb->size - 1);
724 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
725 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 726 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
727 }
728 }
729 }
730}
731
732#endif
733
734/* invalidate one TB */
735static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
736 int next_offset)
737{
738 TranslationBlock *tb1;
739 for(;;) {
740 tb1 = *ptb;
741 if (tb1 == tb) {
742 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
743 break;
744 }
745 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
746 }
747}
748
9fa3e853
FB
749static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
750{
751 TranslationBlock *tb1;
752 unsigned int n1;
753
754 for(;;) {
755 tb1 = *ptb;
756 n1 = (long)tb1 & 3;
757 tb1 = (TranslationBlock *)((long)tb1 & ~3);
758 if (tb1 == tb) {
759 *ptb = tb1->page_next[n1];
760 break;
761 }
762 ptb = &tb1->page_next[n1];
763 }
764}
765
d4e8164f
FB
766static inline void tb_jmp_remove(TranslationBlock *tb, int n)
767{
768 TranslationBlock *tb1, **ptb;
769 unsigned int n1;
770
771 ptb = &tb->jmp_next[n];
772 tb1 = *ptb;
773 if (tb1) {
774 /* find tb(n) in circular list */
775 for(;;) {
776 tb1 = *ptb;
777 n1 = (long)tb1 & 3;
778 tb1 = (TranslationBlock *)((long)tb1 & ~3);
779 if (n1 == n && tb1 == tb)
780 break;
781 if (n1 == 2) {
782 ptb = &tb1->jmp_first;
783 } else {
784 ptb = &tb1->jmp_next[n1];
785 }
786 }
787 /* now we can suppress tb(n) from the list */
788 *ptb = tb->jmp_next[n];
789
790 tb->jmp_next[n] = NULL;
791 }
792}
793
794/* reset the jump entry 'n' of a TB so that it is not chained to
795 another TB */
796static inline void tb_reset_jump(TranslationBlock *tb, int n)
797{
798 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
799}
800
41c1b1c9 801void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 802{
6a00d601 803 CPUState *env;
8a40a180 804 PageDesc *p;
d4e8164f 805 unsigned int h, n1;
41c1b1c9 806 tb_page_addr_t phys_pc;
8a40a180 807 TranslationBlock *tb1, *tb2;
3b46e624 808
8a40a180
FB
809 /* remove the TB from the hash list */
810 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
811 h = tb_phys_hash_func(phys_pc);
5fafdf24 812 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
813 offsetof(TranslationBlock, phys_hash_next));
814
815 /* remove the TB from the page list */
816 if (tb->page_addr[0] != page_addr) {
817 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
818 tb_page_remove(&p->first_tb, tb);
819 invalidate_page_bitmap(p);
820 }
821 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
822 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
823 tb_page_remove(&p->first_tb, tb);
824 invalidate_page_bitmap(p);
825 }
826
36bdbe54 827 tb_invalidated_flag = 1;
59817ccb 828
fd6ce8f6 829 /* remove the TB from the hash list */
8a40a180 830 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
831 for(env = first_cpu; env != NULL; env = env->next_cpu) {
832 if (env->tb_jmp_cache[h] == tb)
833 env->tb_jmp_cache[h] = NULL;
834 }
d4e8164f
FB
835
836 /* suppress this TB from the two jump lists */
837 tb_jmp_remove(tb, 0);
838 tb_jmp_remove(tb, 1);
839
840 /* suppress any remaining jumps to this TB */
841 tb1 = tb->jmp_first;
842 for(;;) {
843 n1 = (long)tb1 & 3;
844 if (n1 == 2)
845 break;
846 tb1 = (TranslationBlock *)((long)tb1 & ~3);
847 tb2 = tb1->jmp_next[n1];
848 tb_reset_jump(tb1, n1);
849 tb1->jmp_next[n1] = NULL;
850 tb1 = tb2;
851 }
852 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 853
e3db7226 854 tb_phys_invalidate_count++;
9fa3e853
FB
855}
856
857static inline void set_bits(uint8_t *tab, int start, int len)
858{
859 int end, mask, end1;
860
861 end = start + len;
862 tab += start >> 3;
863 mask = 0xff << (start & 7);
864 if ((start & ~7) == (end & ~7)) {
865 if (start < end) {
866 mask &= ~(0xff << (end & 7));
867 *tab |= mask;
868 }
869 } else {
870 *tab++ |= mask;
871 start = (start + 8) & ~7;
872 end1 = end & ~7;
873 while (start < end1) {
874 *tab++ = 0xff;
875 start += 8;
876 }
877 if (start < end) {
878 mask = ~(0xff << (end & 7));
879 *tab |= mask;
880 }
881 }
882}
883
884static void build_page_bitmap(PageDesc *p)
885{
886 int n, tb_start, tb_end;
887 TranslationBlock *tb;
3b46e624 888
b2a7081a 889 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
890
891 tb = p->first_tb;
892 while (tb != NULL) {
893 n = (long)tb & 3;
894 tb = (TranslationBlock *)((long)tb & ~3);
895 /* NOTE: this is subtle as a TB may span two physical pages */
896 if (n == 0) {
897 /* NOTE: tb_end may be after the end of the page, but
898 it is not a problem */
899 tb_start = tb->pc & ~TARGET_PAGE_MASK;
900 tb_end = tb_start + tb->size;
901 if (tb_end > TARGET_PAGE_SIZE)
902 tb_end = TARGET_PAGE_SIZE;
903 } else {
904 tb_start = 0;
905 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
906 }
907 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
908 tb = tb->page_next[n];
909 }
910}
911
2e70f6ef
PB
912TranslationBlock *tb_gen_code(CPUState *env,
913 target_ulong pc, target_ulong cs_base,
914 int flags, int cflags)
d720b93d
FB
915{
916 TranslationBlock *tb;
917 uint8_t *tc_ptr;
41c1b1c9
PB
918 tb_page_addr_t phys_pc, phys_page2;
919 target_ulong virt_page2;
d720b93d
FB
920 int code_gen_size;
921
41c1b1c9 922 phys_pc = get_page_addr_code(env, pc);
c27004ec 923 tb = tb_alloc(pc);
d720b93d
FB
924 if (!tb) {
925 /* flush must be done */
926 tb_flush(env);
927 /* cannot fail at this point */
c27004ec 928 tb = tb_alloc(pc);
2e70f6ef
PB
929 /* Don't forget to invalidate previous TB info. */
930 tb_invalidated_flag = 1;
d720b93d
FB
931 }
932 tc_ptr = code_gen_ptr;
933 tb->tc_ptr = tc_ptr;
934 tb->cs_base = cs_base;
935 tb->flags = flags;
936 tb->cflags = cflags;
d07bde88 937 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 938 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 939
d720b93d 940 /* check next page if needed */
c27004ec 941 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 942 phys_page2 = -1;
c27004ec 943 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 944 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 945 }
41c1b1c9 946 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 947 return tb;
d720b93d 948}
3b46e624 949
9fa3e853
FB
950/* invalidate all TBs which intersect with the target physical page
951 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
952 the same physical page. 'is_cpu_write_access' should be true if called
953 from a real cpu write access: the virtual CPU will exit the current
954 TB if code is modified inside this TB. */
41c1b1c9 955void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
956 int is_cpu_write_access)
957{
6b917547 958 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 959 CPUState *env = cpu_single_env;
41c1b1c9 960 tb_page_addr_t tb_start, tb_end;
6b917547
AL
961 PageDesc *p;
962 int n;
963#ifdef TARGET_HAS_PRECISE_SMC
964 int current_tb_not_found = is_cpu_write_access;
965 TranslationBlock *current_tb = NULL;
966 int current_tb_modified = 0;
967 target_ulong current_pc = 0;
968 target_ulong current_cs_base = 0;
969 int current_flags = 0;
970#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
971
972 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 973 if (!p)
9fa3e853 974 return;
5fafdf24 975 if (!p->code_bitmap &&
d720b93d
FB
976 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
977 is_cpu_write_access) {
9fa3e853
FB
978 /* build code bitmap */
979 build_page_bitmap(p);
980 }
981
982 /* we remove all the TBs in the range [start, end[ */
983 /* XXX: see if in some cases it could be faster to invalidate all the code */
984 tb = p->first_tb;
985 while (tb != NULL) {
986 n = (long)tb & 3;
987 tb = (TranslationBlock *)((long)tb & ~3);
988 tb_next = tb->page_next[n];
989 /* NOTE: this is subtle as a TB may span two physical pages */
990 if (n == 0) {
991 /* NOTE: tb_end may be after the end of the page, but
992 it is not a problem */
993 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
994 tb_end = tb_start + tb->size;
995 } else {
996 tb_start = tb->page_addr[1];
997 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
998 }
999 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1000#ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_not_found) {
1002 current_tb_not_found = 0;
1003 current_tb = NULL;
2e70f6ef 1004 if (env->mem_io_pc) {
d720b93d 1005 /* now we have a real cpu fault */
2e70f6ef 1006 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1007 }
1008 }
1009 if (current_tb == tb &&
2e70f6ef 1010 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1011 /* If we are modifying the current TB, we must stop
1012 its execution. We could be more precise by checking
1013 that the modification is after the current PC, but it
1014 would require a specialized function to partially
1015 restore the CPU state */
3b46e624 1016
d720b93d 1017 current_tb_modified = 1;
5fafdf24 1018 cpu_restore_state(current_tb, env,
2e70f6ef 1019 env->mem_io_pc, NULL);
6b917547
AL
1020 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1021 &current_flags);
d720b93d
FB
1022 }
1023#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1024 /* we need to do that to handle the case where a signal
1025 occurs while doing tb_phys_invalidate() */
1026 saved_tb = NULL;
1027 if (env) {
1028 saved_tb = env->current_tb;
1029 env->current_tb = NULL;
1030 }
9fa3e853 1031 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1032 if (env) {
1033 env->current_tb = saved_tb;
1034 if (env->interrupt_request && env->current_tb)
1035 cpu_interrupt(env, env->interrupt_request);
1036 }
9fa3e853
FB
1037 }
1038 tb = tb_next;
1039 }
1040#if !defined(CONFIG_USER_ONLY)
1041 /* if no code remaining, no need to continue to use slow writes */
1042 if (!p->first_tb) {
1043 invalidate_page_bitmap(p);
d720b93d 1044 if (is_cpu_write_access) {
2e70f6ef 1045 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1046 }
1047 }
1048#endif
1049#ifdef TARGET_HAS_PRECISE_SMC
1050 if (current_tb_modified) {
1051 /* we generate a block containing just the instruction
1052 modifying the memory. It will ensure that it cannot modify
1053 itself */
ea1c1802 1054 env->current_tb = NULL;
2e70f6ef 1055 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1056 cpu_resume_from_signal(env, NULL);
9fa3e853 1057 }
fd6ce8f6 1058#endif
9fa3e853 1059}
fd6ce8f6 1060
9fa3e853 1061/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1062static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1063{
1064 PageDesc *p;
1065 int offset, b;
59817ccb 1066#if 0
a4193c8a 1067 if (1) {
93fcfe39
AL
1068 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1069 cpu_single_env->mem_io_vaddr, len,
1070 cpu_single_env->eip,
1071 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1072 }
1073#endif
9fa3e853 1074 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1075 if (!p)
9fa3e853
FB
1076 return;
1077 if (p->code_bitmap) {
1078 offset = start & ~TARGET_PAGE_MASK;
1079 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1080 if (b & ((1 << len) - 1))
1081 goto do_invalidate;
1082 } else {
1083 do_invalidate:
d720b93d 1084 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1085 }
1086}
1087
9fa3e853 1088#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1089static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1090 unsigned long pc, void *puc)
9fa3e853 1091{
6b917547 1092 TranslationBlock *tb;
9fa3e853 1093 PageDesc *p;
6b917547 1094 int n;
d720b93d 1095#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1096 TranslationBlock *current_tb = NULL;
d720b93d 1097 CPUState *env = cpu_single_env;
6b917547
AL
1098 int current_tb_modified = 0;
1099 target_ulong current_pc = 0;
1100 target_ulong current_cs_base = 0;
1101 int current_flags = 0;
d720b93d 1102#endif
9fa3e853
FB
1103
1104 addr &= TARGET_PAGE_MASK;
1105 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1106 if (!p)
9fa3e853
FB
1107 return;
1108 tb = p->first_tb;
d720b93d
FB
1109#ifdef TARGET_HAS_PRECISE_SMC
1110 if (tb && pc != 0) {
1111 current_tb = tb_find_pc(pc);
1112 }
1113#endif
9fa3e853
FB
1114 while (tb != NULL) {
1115 n = (long)tb & 3;
1116 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1117#ifdef TARGET_HAS_PRECISE_SMC
1118 if (current_tb == tb &&
2e70f6ef 1119 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1120 /* If we are modifying the current TB, we must stop
1121 its execution. We could be more precise by checking
1122 that the modification is after the current PC, but it
1123 would require a specialized function to partially
1124 restore the CPU state */
3b46e624 1125
d720b93d
FB
1126 current_tb_modified = 1;
1127 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1128 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1129 &current_flags);
d720b93d
FB
1130 }
1131#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1132 tb_phys_invalidate(tb, addr);
1133 tb = tb->page_next[n];
1134 }
fd6ce8f6 1135 p->first_tb = NULL;
d720b93d
FB
1136#ifdef TARGET_HAS_PRECISE_SMC
1137 if (current_tb_modified) {
1138 /* we generate a block containing just the instruction
1139 modifying the memory. It will ensure that it cannot modify
1140 itself */
ea1c1802 1141 env->current_tb = NULL;
2e70f6ef 1142 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1143 cpu_resume_from_signal(env, puc);
1144 }
1145#endif
fd6ce8f6 1146}
9fa3e853 1147#endif
fd6ce8f6
FB
1148
1149/* add the tb in the target page and protect it if necessary */
5fafdf24 1150static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1151 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1152{
1153 PageDesc *p;
9fa3e853
FB
1154 TranslationBlock *last_first_tb;
1155
1156 tb->page_addr[n] = page_addr;
5cd2c5b6 1157 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1158 tb->page_next[n] = p->first_tb;
1159 last_first_tb = p->first_tb;
1160 p->first_tb = (TranslationBlock *)((long)tb | n);
1161 invalidate_page_bitmap(p);
fd6ce8f6 1162
107db443 1163#if defined(TARGET_HAS_SMC) || 1
d720b93d 1164
9fa3e853 1165#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1166 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1167 target_ulong addr;
1168 PageDesc *p2;
9fa3e853
FB
1169 int prot;
1170
fd6ce8f6
FB
1171 /* force the host page as non writable (writes will have a
1172 page fault + mprotect overhead) */
53a5960a 1173 page_addr &= qemu_host_page_mask;
fd6ce8f6 1174 prot = 0;
53a5960a
PB
1175 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1176 addr += TARGET_PAGE_SIZE) {
1177
1178 p2 = page_find (addr >> TARGET_PAGE_BITS);
1179 if (!p2)
1180 continue;
1181 prot |= p2->flags;
1182 p2->flags &= ~PAGE_WRITE;
53a5960a 1183 }
5fafdf24 1184 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1185 (prot & PAGE_BITS) & ~PAGE_WRITE);
1186#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1187 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1188 page_addr);
fd6ce8f6 1189#endif
fd6ce8f6 1190 }
9fa3e853
FB
1191#else
1192 /* if some code is already present, then the pages are already
1193 protected. So we handle the case where only the first TB is
1194 allocated in a physical page */
1195 if (!last_first_tb) {
6a00d601 1196 tlb_protect_code(page_addr);
9fa3e853
FB
1197 }
1198#endif
d720b93d
FB
1199
1200#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1201}
1202
1203/* Allocate a new translation block. Flush the translation buffer if
1204 too many translation blocks or too much generated code. */
c27004ec 1205TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1206{
1207 TranslationBlock *tb;
fd6ce8f6 1208
26a5f13b
FB
1209 if (nb_tbs >= code_gen_max_blocks ||
1210 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1211 return NULL;
fd6ce8f6
FB
1212 tb = &tbs[nb_tbs++];
1213 tb->pc = pc;
b448f2f3 1214 tb->cflags = 0;
d4e8164f
FB
1215 return tb;
1216}
1217
2e70f6ef
PB
1218void tb_free(TranslationBlock *tb)
1219{
bf20dc07 1220 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1221 Ignore the hard cases and just back up if this TB happens to
1222 be the last one generated. */
1223 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1224 code_gen_ptr = tb->tc_ptr;
1225 nb_tbs--;
1226 }
1227}
1228
9fa3e853
FB
1229/* add a new TB and link it to the physical page tables. phys_page2 is
1230 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1231void tb_link_page(TranslationBlock *tb,
1232 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1233{
9fa3e853
FB
1234 unsigned int h;
1235 TranslationBlock **ptb;
1236
c8a706fe
PB
1237 /* Grab the mmap lock to stop another thread invalidating this TB
1238 before we are done. */
1239 mmap_lock();
9fa3e853
FB
1240 /* add in the physical hash table */
1241 h = tb_phys_hash_func(phys_pc);
1242 ptb = &tb_phys_hash[h];
1243 tb->phys_hash_next = *ptb;
1244 *ptb = tb;
fd6ce8f6
FB
1245
1246 /* add in the page list */
9fa3e853
FB
1247 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1248 if (phys_page2 != -1)
1249 tb_alloc_page(tb, 1, phys_page2);
1250 else
1251 tb->page_addr[1] = -1;
9fa3e853 1252
d4e8164f
FB
1253 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1254 tb->jmp_next[0] = NULL;
1255 tb->jmp_next[1] = NULL;
1256
1257 /* init original jump addresses */
1258 if (tb->tb_next_offset[0] != 0xffff)
1259 tb_reset_jump(tb, 0);
1260 if (tb->tb_next_offset[1] != 0xffff)
1261 tb_reset_jump(tb, 1);
8a40a180
FB
1262
1263#ifdef DEBUG_TB_CHECK
1264 tb_page_check();
1265#endif
c8a706fe 1266 mmap_unlock();
fd6ce8f6
FB
1267}
1268
9fa3e853
FB
1269/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1270 tb[1].tc_ptr. Return NULL if not found */
1271TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1272{
9fa3e853
FB
1273 int m_min, m_max, m;
1274 unsigned long v;
1275 TranslationBlock *tb;
a513fe19
FB
1276
1277 if (nb_tbs <= 0)
1278 return NULL;
1279 if (tc_ptr < (unsigned long)code_gen_buffer ||
1280 tc_ptr >= (unsigned long)code_gen_ptr)
1281 return NULL;
1282 /* binary search (cf Knuth) */
1283 m_min = 0;
1284 m_max = nb_tbs - 1;
1285 while (m_min <= m_max) {
1286 m = (m_min + m_max) >> 1;
1287 tb = &tbs[m];
1288 v = (unsigned long)tb->tc_ptr;
1289 if (v == tc_ptr)
1290 return tb;
1291 else if (tc_ptr < v) {
1292 m_max = m - 1;
1293 } else {
1294 m_min = m + 1;
1295 }
5fafdf24 1296 }
a513fe19
FB
1297 return &tbs[m_max];
1298}
7501267e 1299
ea041c0e
FB
1300static void tb_reset_jump_recursive(TranslationBlock *tb);
1301
1302static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1303{
1304 TranslationBlock *tb1, *tb_next, **ptb;
1305 unsigned int n1;
1306
1307 tb1 = tb->jmp_next[n];
1308 if (tb1 != NULL) {
1309 /* find head of list */
1310 for(;;) {
1311 n1 = (long)tb1 & 3;
1312 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1313 if (n1 == 2)
1314 break;
1315 tb1 = tb1->jmp_next[n1];
1316 }
1317 /* we are now sure now that tb jumps to tb1 */
1318 tb_next = tb1;
1319
1320 /* remove tb from the jmp_first list */
1321 ptb = &tb_next->jmp_first;
1322 for(;;) {
1323 tb1 = *ptb;
1324 n1 = (long)tb1 & 3;
1325 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1326 if (n1 == n && tb1 == tb)
1327 break;
1328 ptb = &tb1->jmp_next[n1];
1329 }
1330 *ptb = tb->jmp_next[n];
1331 tb->jmp_next[n] = NULL;
3b46e624 1332
ea041c0e
FB
1333 /* suppress the jump to next tb in generated code */
1334 tb_reset_jump(tb, n);
1335
0124311e 1336 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1337 tb_reset_jump_recursive(tb_next);
1338 }
1339}
1340
1341static void tb_reset_jump_recursive(TranslationBlock *tb)
1342{
1343 tb_reset_jump_recursive2(tb, 0);
1344 tb_reset_jump_recursive2(tb, 1);
1345}
1346
1fddef4b 1347#if defined(TARGET_HAS_ICE)
94df27fd
PB
1348#if defined(CONFIG_USER_ONLY)
1349static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1350{
1351 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1352}
1353#else
d720b93d
FB
1354static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1355{
c227f099 1356 target_phys_addr_t addr;
9b3c35e0 1357 target_ulong pd;
c227f099 1358 ram_addr_t ram_addr;
c2f07f81 1359 PhysPageDesc *p;
d720b93d 1360
c2f07f81
PB
1361 addr = cpu_get_phys_page_debug(env, pc);
1362 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1363 if (!p) {
1364 pd = IO_MEM_UNASSIGNED;
1365 } else {
1366 pd = p->phys_offset;
1367 }
1368 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1369 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1370}
c27004ec 1371#endif
94df27fd 1372#endif /* TARGET_HAS_ICE */
d720b93d 1373
c527ee8f
PB
1374#if defined(CONFIG_USER_ONLY)
1375void cpu_watchpoint_remove_all(CPUState *env, int mask)
1376
1377{
1378}
1379
1380int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1381 int flags, CPUWatchpoint **watchpoint)
1382{
1383 return -ENOSYS;
1384}
1385#else
6658ffb8 1386/* Add a watchpoint. */
a1d1bb31
AL
1387int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1388 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1389{
b4051334 1390 target_ulong len_mask = ~(len - 1);
c0ce998e 1391 CPUWatchpoint *wp;
6658ffb8 1392
b4051334
AL
1393 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1394 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1395 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1396 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1397 return -EINVAL;
1398 }
a1d1bb31 1399 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1400
1401 wp->vaddr = addr;
b4051334 1402 wp->len_mask = len_mask;
a1d1bb31
AL
1403 wp->flags = flags;
1404
2dc9f411 1405 /* keep all GDB-injected watchpoints in front */
c0ce998e 1406 if (flags & BP_GDB)
72cf2d4f 1407 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1408 else
72cf2d4f 1409 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1410
6658ffb8 1411 tlb_flush_page(env, addr);
a1d1bb31
AL
1412
1413 if (watchpoint)
1414 *watchpoint = wp;
1415 return 0;
6658ffb8
PB
1416}
1417
a1d1bb31
AL
1418/* Remove a specific watchpoint. */
1419int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1420 int flags)
6658ffb8 1421{
b4051334 1422 target_ulong len_mask = ~(len - 1);
a1d1bb31 1423 CPUWatchpoint *wp;
6658ffb8 1424
72cf2d4f 1425 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1426 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1427 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1428 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1429 return 0;
1430 }
1431 }
a1d1bb31 1432 return -ENOENT;
6658ffb8
PB
1433}
1434
a1d1bb31
AL
1435/* Remove a specific watchpoint by reference. */
1436void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1437{
72cf2d4f 1438 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1439
a1d1bb31
AL
1440 tlb_flush_page(env, watchpoint->vaddr);
1441
1442 qemu_free(watchpoint);
1443}
1444
1445/* Remove all matching watchpoints. */
1446void cpu_watchpoint_remove_all(CPUState *env, int mask)
1447{
c0ce998e 1448 CPUWatchpoint *wp, *next;
a1d1bb31 1449
72cf2d4f 1450 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1451 if (wp->flags & mask)
1452 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1453 }
7d03f82f 1454}
c527ee8f 1455#endif
7d03f82f 1456
a1d1bb31
AL
1457/* Add a breakpoint. */
1458int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1459 CPUBreakpoint **breakpoint)
4c3a88a2 1460{
1fddef4b 1461#if defined(TARGET_HAS_ICE)
c0ce998e 1462 CPUBreakpoint *bp;
3b46e624 1463
a1d1bb31 1464 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1465
a1d1bb31
AL
1466 bp->pc = pc;
1467 bp->flags = flags;
1468
2dc9f411 1469 /* keep all GDB-injected breakpoints in front */
c0ce998e 1470 if (flags & BP_GDB)
72cf2d4f 1471 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1472 else
72cf2d4f 1473 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1474
d720b93d 1475 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1476
1477 if (breakpoint)
1478 *breakpoint = bp;
4c3a88a2
FB
1479 return 0;
1480#else
a1d1bb31 1481 return -ENOSYS;
4c3a88a2
FB
1482#endif
1483}
1484
a1d1bb31
AL
1485/* Remove a specific breakpoint. */
1486int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1487{
7d03f82f 1488#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1489 CPUBreakpoint *bp;
1490
72cf2d4f 1491 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1492 if (bp->pc == pc && bp->flags == flags) {
1493 cpu_breakpoint_remove_by_ref(env, bp);
1494 return 0;
1495 }
7d03f82f 1496 }
a1d1bb31
AL
1497 return -ENOENT;
1498#else
1499 return -ENOSYS;
7d03f82f
EI
1500#endif
1501}
1502
a1d1bb31
AL
1503/* Remove a specific breakpoint by reference. */
1504void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1505{
1fddef4b 1506#if defined(TARGET_HAS_ICE)
72cf2d4f 1507 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1508
a1d1bb31
AL
1509 breakpoint_invalidate(env, breakpoint->pc);
1510
1511 qemu_free(breakpoint);
1512#endif
1513}
1514
1515/* Remove all matching breakpoints. */
1516void cpu_breakpoint_remove_all(CPUState *env, int mask)
1517{
1518#if defined(TARGET_HAS_ICE)
c0ce998e 1519 CPUBreakpoint *bp, *next;
a1d1bb31 1520
72cf2d4f 1521 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1522 if (bp->flags & mask)
1523 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1524 }
4c3a88a2
FB
1525#endif
1526}
1527
c33a346e
FB
1528/* enable or disable single step mode. EXCP_DEBUG is returned by the
1529 CPU loop after each instruction */
1530void cpu_single_step(CPUState *env, int enabled)
1531{
1fddef4b 1532#if defined(TARGET_HAS_ICE)
c33a346e
FB
1533 if (env->singlestep_enabled != enabled) {
1534 env->singlestep_enabled = enabled;
e22a25c9
AL
1535 if (kvm_enabled())
1536 kvm_update_guest_debug(env, 0);
1537 else {
ccbb4d44 1538 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1539 /* XXX: only flush what is necessary */
1540 tb_flush(env);
1541 }
c33a346e
FB
1542 }
1543#endif
1544}
1545
34865134
FB
1546/* enable or disable low levels log */
1547void cpu_set_log(int log_flags)
1548{
1549 loglevel = log_flags;
1550 if (loglevel && !logfile) {
11fcfab4 1551 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1552 if (!logfile) {
1553 perror(logfilename);
1554 _exit(1);
1555 }
9fa3e853
FB
1556#if !defined(CONFIG_SOFTMMU)
1557 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1558 {
b55266b5 1559 static char logfile_buf[4096];
9fa3e853
FB
1560 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1561 }
bf65f53f
FN
1562#elif !defined(_WIN32)
1563 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1564 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1565#endif
e735b91c
PB
1566 log_append = 1;
1567 }
1568 if (!loglevel && logfile) {
1569 fclose(logfile);
1570 logfile = NULL;
34865134
FB
1571 }
1572}
1573
1574void cpu_set_log_filename(const char *filename)
1575{
1576 logfilename = strdup(filename);
e735b91c
PB
1577 if (logfile) {
1578 fclose(logfile);
1579 logfile = NULL;
1580 }
1581 cpu_set_log(loglevel);
34865134 1582}
c33a346e 1583
3098dba0 1584static void cpu_unlink_tb(CPUState *env)
ea041c0e 1585{
3098dba0
AJ
1586 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1587 problem and hope the cpu will stop of its own accord. For userspace
1588 emulation this often isn't actually as bad as it sounds. Often
1589 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1590 TranslationBlock *tb;
c227f099 1591 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1592
cab1b4bd 1593 spin_lock(&interrupt_lock);
3098dba0
AJ
1594 tb = env->current_tb;
1595 /* if the cpu is currently executing code, we must unlink it and
1596 all the potentially executing TB */
f76cfe56 1597 if (tb) {
3098dba0
AJ
1598 env->current_tb = NULL;
1599 tb_reset_jump_recursive(tb);
be214e6c 1600 }
cab1b4bd 1601 spin_unlock(&interrupt_lock);
3098dba0
AJ
1602}
1603
1604/* mask must never be zero, except for A20 change call */
1605void cpu_interrupt(CPUState *env, int mask)
1606{
1607 int old_mask;
be214e6c 1608
2e70f6ef 1609 old_mask = env->interrupt_request;
68a79315 1610 env->interrupt_request |= mask;
3098dba0 1611
8edac960
AL
1612#ifndef CONFIG_USER_ONLY
1613 /*
1614 * If called from iothread context, wake the target cpu in
1615 * case its halted.
1616 */
1617 if (!qemu_cpu_self(env)) {
1618 qemu_cpu_kick(env);
1619 return;
1620 }
1621#endif
1622
2e70f6ef 1623 if (use_icount) {
266910c4 1624 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1625#ifndef CONFIG_USER_ONLY
2e70f6ef 1626 if (!can_do_io(env)
be214e6c 1627 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1628 cpu_abort(env, "Raised interrupt while not in I/O function");
1629 }
1630#endif
1631 } else {
3098dba0 1632 cpu_unlink_tb(env);
ea041c0e
FB
1633 }
1634}
1635
b54ad049
FB
1636void cpu_reset_interrupt(CPUState *env, int mask)
1637{
1638 env->interrupt_request &= ~mask;
1639}
1640
3098dba0
AJ
1641void cpu_exit(CPUState *env)
1642{
1643 env->exit_request = 1;
1644 cpu_unlink_tb(env);
1645}
1646
c7cd6a37 1647const CPULogItem cpu_log_items[] = {
5fafdf24 1648 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1649 "show generated host assembly code for each compiled TB" },
1650 { CPU_LOG_TB_IN_ASM, "in_asm",
1651 "show target assembly code for each compiled TB" },
5fafdf24 1652 { CPU_LOG_TB_OP, "op",
57fec1fe 1653 "show micro ops for each compiled TB" },
f193c797 1654 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1655 "show micro ops "
1656#ifdef TARGET_I386
1657 "before eflags optimization and "
f193c797 1658#endif
e01a1157 1659 "after liveness analysis" },
f193c797
FB
1660 { CPU_LOG_INT, "int",
1661 "show interrupts/exceptions in short format" },
1662 { CPU_LOG_EXEC, "exec",
1663 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1664 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1665 "show CPU state before block translation" },
f193c797
FB
1666#ifdef TARGET_I386
1667 { CPU_LOG_PCALL, "pcall",
1668 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1669 { CPU_LOG_RESET, "cpu_reset",
1670 "show CPU state before CPU resets" },
f193c797 1671#endif
8e3a9fd2 1672#ifdef DEBUG_IOPORT
fd872598
FB
1673 { CPU_LOG_IOPORT, "ioport",
1674 "show all i/o ports accesses" },
8e3a9fd2 1675#endif
f193c797
FB
1676 { 0, NULL, NULL },
1677};
1678
f6f3fbca
MT
1679#ifndef CONFIG_USER_ONLY
1680static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1681 = QLIST_HEAD_INITIALIZER(memory_client_list);
1682
1683static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1684 ram_addr_t size,
1685 ram_addr_t phys_offset)
1686{
1687 CPUPhysMemoryClient *client;
1688 QLIST_FOREACH(client, &memory_client_list, list) {
1689 client->set_memory(client, start_addr, size, phys_offset);
1690 }
1691}
1692
1693static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1694 target_phys_addr_t end)
1695{
1696 CPUPhysMemoryClient *client;
1697 QLIST_FOREACH(client, &memory_client_list, list) {
1698 int r = client->sync_dirty_bitmap(client, start, end);
1699 if (r < 0)
1700 return r;
1701 }
1702 return 0;
1703}
1704
1705static int cpu_notify_migration_log(int enable)
1706{
1707 CPUPhysMemoryClient *client;
1708 QLIST_FOREACH(client, &memory_client_list, list) {
1709 int r = client->migration_log(client, enable);
1710 if (r < 0)
1711 return r;
1712 }
1713 return 0;
1714}
1715
5cd2c5b6
RH
1716static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1717 int level, void **lp)
f6f3fbca 1718{
5cd2c5b6 1719 int i;
f6f3fbca 1720
5cd2c5b6
RH
1721 if (*lp == NULL) {
1722 return;
1723 }
1724 if (level == 0) {
1725 PhysPageDesc *pd = *lp;
7296abac 1726 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1727 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1728 client->set_memory(client, pd[i].region_offset,
1729 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1730 }
5cd2c5b6
RH
1731 }
1732 } else {
1733 void **pp = *lp;
7296abac 1734 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1735 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1736 }
1737 }
1738}
1739
1740static void phys_page_for_each(CPUPhysMemoryClient *client)
1741{
5cd2c5b6
RH
1742 int i;
1743 for (i = 0; i < P_L1_SIZE; ++i) {
1744 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1745 l1_phys_map + 1);
f6f3fbca 1746 }
f6f3fbca
MT
1747}
1748
1749void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1750{
1751 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1752 phys_page_for_each(client);
1753}
1754
1755void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1756{
1757 QLIST_REMOVE(client, list);
1758}
1759#endif
1760
f193c797
FB
1761static int cmp1(const char *s1, int n, const char *s2)
1762{
1763 if (strlen(s2) != n)
1764 return 0;
1765 return memcmp(s1, s2, n) == 0;
1766}
3b46e624 1767
f193c797
FB
1768/* takes a comma separated list of log masks. Return 0 if error. */
1769int cpu_str_to_log_mask(const char *str)
1770{
c7cd6a37 1771 const CPULogItem *item;
f193c797
FB
1772 int mask;
1773 const char *p, *p1;
1774
1775 p = str;
1776 mask = 0;
1777 for(;;) {
1778 p1 = strchr(p, ',');
1779 if (!p1)
1780 p1 = p + strlen(p);
8e3a9fd2
FB
1781 if(cmp1(p,p1-p,"all")) {
1782 for(item = cpu_log_items; item->mask != 0; item++) {
1783 mask |= item->mask;
1784 }
1785 } else {
f193c797
FB
1786 for(item = cpu_log_items; item->mask != 0; item++) {
1787 if (cmp1(p, p1 - p, item->name))
1788 goto found;
1789 }
1790 return 0;
8e3a9fd2 1791 }
f193c797
FB
1792 found:
1793 mask |= item->mask;
1794 if (*p1 != ',')
1795 break;
1796 p = p1 + 1;
1797 }
1798 return mask;
1799}
ea041c0e 1800
7501267e
FB
1801void cpu_abort(CPUState *env, const char *fmt, ...)
1802{
1803 va_list ap;
493ae1f0 1804 va_list ap2;
7501267e
FB
1805
1806 va_start(ap, fmt);
493ae1f0 1807 va_copy(ap2, ap);
7501267e
FB
1808 fprintf(stderr, "qemu: fatal: ");
1809 vfprintf(stderr, fmt, ap);
1810 fprintf(stderr, "\n");
1811#ifdef TARGET_I386
7fe48483
FB
1812 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1813#else
1814 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1815#endif
93fcfe39
AL
1816 if (qemu_log_enabled()) {
1817 qemu_log("qemu: fatal: ");
1818 qemu_log_vprintf(fmt, ap2);
1819 qemu_log("\n");
f9373291 1820#ifdef TARGET_I386
93fcfe39 1821 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1822#else
93fcfe39 1823 log_cpu_state(env, 0);
f9373291 1824#endif
31b1a7b4 1825 qemu_log_flush();
93fcfe39 1826 qemu_log_close();
924edcae 1827 }
493ae1f0 1828 va_end(ap2);
f9373291 1829 va_end(ap);
fd052bf6
RV
1830#if defined(CONFIG_USER_ONLY)
1831 {
1832 struct sigaction act;
1833 sigfillset(&act.sa_mask);
1834 act.sa_handler = SIG_DFL;
1835 sigaction(SIGABRT, &act, NULL);
1836 }
1837#endif
7501267e
FB
1838 abort();
1839}
1840
c5be9f08
TS
1841CPUState *cpu_copy(CPUState *env)
1842{
01ba9816 1843 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1844 CPUState *next_cpu = new_env->next_cpu;
1845 int cpu_index = new_env->cpu_index;
5a38f081
AL
1846#if defined(TARGET_HAS_ICE)
1847 CPUBreakpoint *bp;
1848 CPUWatchpoint *wp;
1849#endif
1850
c5be9f08 1851 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1852
1853 /* Preserve chaining and index. */
c5be9f08
TS
1854 new_env->next_cpu = next_cpu;
1855 new_env->cpu_index = cpu_index;
5a38f081
AL
1856
1857 /* Clone all break/watchpoints.
1858 Note: Once we support ptrace with hw-debug register access, make sure
1859 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1860 QTAILQ_INIT(&env->breakpoints);
1861 QTAILQ_INIT(&env->watchpoints);
5a38f081 1862#if defined(TARGET_HAS_ICE)
72cf2d4f 1863 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1864 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1865 }
72cf2d4f 1866 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1867 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1868 wp->flags, NULL);
1869 }
1870#endif
1871
c5be9f08
TS
1872 return new_env;
1873}
1874
0124311e
FB
1875#if !defined(CONFIG_USER_ONLY)
1876
5c751e99
EI
1877static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1878{
1879 unsigned int i;
1880
1881 /* Discard jump cache entries for any tb which might potentially
1882 overlap the flushed page. */
1883 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1884 memset (&env->tb_jmp_cache[i], 0,
1885 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1886
1887 i = tb_jmp_cache_hash_page(addr);
1888 memset (&env->tb_jmp_cache[i], 0,
1889 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1890}
1891
08738984
IK
1892static CPUTLBEntry s_cputlb_empty_entry = {
1893 .addr_read = -1,
1894 .addr_write = -1,
1895 .addr_code = -1,
1896 .addend = -1,
1897};
1898
ee8b7021
FB
1899/* NOTE: if flush_global is true, also flush global entries (not
1900 implemented yet) */
1901void tlb_flush(CPUState *env, int flush_global)
33417e70 1902{
33417e70 1903 int i;
0124311e 1904
9fa3e853
FB
1905#if defined(DEBUG_TLB)
1906 printf("tlb_flush:\n");
1907#endif
0124311e
FB
1908 /* must reset current TB so that interrupts cannot modify the
1909 links while we are modifying them */
1910 env->current_tb = NULL;
1911
33417e70 1912 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1913 int mmu_idx;
1914 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1915 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1916 }
33417e70 1917 }
9fa3e853 1918
8a40a180 1919 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1920
d4c430a8
PB
1921 env->tlb_flush_addr = -1;
1922 env->tlb_flush_mask = 0;
e3db7226 1923 tlb_flush_count++;
33417e70
FB
1924}
1925
274da6b2 1926static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1927{
5fafdf24 1928 if (addr == (tlb_entry->addr_read &
84b7b8e7 1929 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1930 addr == (tlb_entry->addr_write &
84b7b8e7 1931 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1932 addr == (tlb_entry->addr_code &
84b7b8e7 1933 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1934 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1935 }
61382a50
FB
1936}
1937
2e12669a 1938void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1939{
8a40a180 1940 int i;
cfde4bd9 1941 int mmu_idx;
0124311e 1942
9fa3e853 1943#if defined(DEBUG_TLB)
108c49b8 1944 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1945#endif
d4c430a8
PB
1946 /* Check if we need to flush due to large pages. */
1947 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1948#if defined(DEBUG_TLB)
1949 printf("tlb_flush_page: forced full flush ("
1950 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1951 env->tlb_flush_addr, env->tlb_flush_mask);
1952#endif
1953 tlb_flush(env, 1);
1954 return;
1955 }
0124311e
FB
1956 /* must reset current TB so that interrupts cannot modify the
1957 links while we are modifying them */
1958 env->current_tb = NULL;
61382a50
FB
1959
1960 addr &= TARGET_PAGE_MASK;
1961 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1962 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1963 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1964
5c751e99 1965 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1966}
1967
9fa3e853
FB
1968/* update the TLBs so that writes to code in the virtual page 'addr'
1969 can be detected */
c227f099 1970static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1971{
5fafdf24 1972 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1973 ram_addr + TARGET_PAGE_SIZE,
1974 CODE_DIRTY_FLAG);
9fa3e853
FB
1975}
1976
9fa3e853 1977/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1978 tested for self modifying code */
c227f099 1979static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1980 target_ulong vaddr)
9fa3e853 1981{
3a7d929e 1982 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1983}
1984
5fafdf24 1985static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1986 unsigned long start, unsigned long length)
1987{
1988 unsigned long addr;
84b7b8e7
FB
1989 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1990 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1991 if ((addr - start) < length) {
0f459d16 1992 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1993 }
1994 }
1995}
1996
5579c7f3 1997/* Note: start and end must be within the same ram block. */
c227f099 1998void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1999 int dirty_flags)
1ccde1cb
FB
2000{
2001 CPUState *env;
4f2ac237 2002 unsigned long length, start1;
0a962c02
FB
2003 int i, mask, len;
2004 uint8_t *p;
1ccde1cb
FB
2005
2006 start &= TARGET_PAGE_MASK;
2007 end = TARGET_PAGE_ALIGN(end);
2008
2009 length = end - start;
2010 if (length == 0)
2011 return;
0a962c02 2012 len = length >> TARGET_PAGE_BITS;
f23db169
FB
2013 mask = ~dirty_flags;
2014 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2015 for(i = 0; i < len; i++)
2016 p[i] &= mask;
2017
1ccde1cb
FB
2018 /* we modify the TLB cache so that the dirty bit will be set again
2019 when accessing the range */
5579c7f3
PB
2020 start1 = (unsigned long)qemu_get_ram_ptr(start);
2021 /* Chek that we don't span multiple blocks - this breaks the
2022 address comparisons below. */
2023 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2024 != (end - 1) - start) {
2025 abort();
2026 }
2027
6a00d601 2028 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2029 int mmu_idx;
2030 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2031 for(i = 0; i < CPU_TLB_SIZE; i++)
2032 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2033 start1, length);
2034 }
6a00d601 2035 }
1ccde1cb
FB
2036}
2037
74576198
AL
2038int cpu_physical_memory_set_dirty_tracking(int enable)
2039{
f6f3fbca 2040 int ret = 0;
74576198 2041 in_migration = enable;
f6f3fbca
MT
2042 ret = cpu_notify_migration_log(!!enable);
2043 return ret;
74576198
AL
2044}
2045
2046int cpu_physical_memory_get_dirty_tracking(void)
2047{
2048 return in_migration;
2049}
2050
c227f099
AL
2051int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2052 target_phys_addr_t end_addr)
2bec46dc 2053{
7b8f3b78 2054 int ret;
151f7749 2055
f6f3fbca 2056 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2057 return ret;
2bec46dc
AL
2058}
2059
3a7d929e
FB
2060static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2061{
c227f099 2062 ram_addr_t ram_addr;
5579c7f3 2063 void *p;
3a7d929e 2064
84b7b8e7 2065 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2066 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2067 + tlb_entry->addend);
2068 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2069 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2070 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2071 }
2072 }
2073}
2074
2075/* update the TLB according to the current state of the dirty bits */
2076void cpu_tlb_update_dirty(CPUState *env)
2077{
2078 int i;
cfde4bd9
IY
2079 int mmu_idx;
2080 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2081 for(i = 0; i < CPU_TLB_SIZE; i++)
2082 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2083 }
3a7d929e
FB
2084}
2085
0f459d16 2086static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2087{
0f459d16
PB
2088 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2089 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2090}
2091
0f459d16
PB
2092/* update the TLB corresponding to virtual page vaddr
2093 so that it is no longer dirty */
2094static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2095{
1ccde1cb 2096 int i;
cfde4bd9 2097 int mmu_idx;
1ccde1cb 2098
0f459d16 2099 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2100 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2101 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2102 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2103}
2104
d4c430a8
PB
2105/* Our TLB does not support large pages, so remember the area covered by
2106 large pages and trigger a full TLB flush if these are invalidated. */
2107static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2108 target_ulong size)
2109{
2110 target_ulong mask = ~(size - 1);
2111
2112 if (env->tlb_flush_addr == (target_ulong)-1) {
2113 env->tlb_flush_addr = vaddr & mask;
2114 env->tlb_flush_mask = mask;
2115 return;
2116 }
2117 /* Extend the existing region to include the new page.
2118 This is a compromise between unnecessary flushes and the cost
2119 of maintaining a full variable size TLB. */
2120 mask &= env->tlb_flush_mask;
2121 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2122 mask <<= 1;
2123 }
2124 env->tlb_flush_addr &= mask;
2125 env->tlb_flush_mask = mask;
2126}
2127
2128/* Add a new TLB entry. At most one entry for a given virtual address
2129 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2130 supplied size is only used by tlb_flush_page. */
2131void tlb_set_page(CPUState *env, target_ulong vaddr,
2132 target_phys_addr_t paddr, int prot,
2133 int mmu_idx, target_ulong size)
9fa3e853 2134{
92e873b9 2135 PhysPageDesc *p;
4f2ac237 2136 unsigned long pd;
9fa3e853 2137 unsigned int index;
4f2ac237 2138 target_ulong address;
0f459d16 2139 target_ulong code_address;
c227f099 2140 target_phys_addr_t addend;
84b7b8e7 2141 CPUTLBEntry *te;
a1d1bb31 2142 CPUWatchpoint *wp;
c227f099 2143 target_phys_addr_t iotlb;
9fa3e853 2144
d4c430a8
PB
2145 assert(size >= TARGET_PAGE_SIZE);
2146 if (size != TARGET_PAGE_SIZE) {
2147 tlb_add_large_page(env, vaddr, size);
2148 }
92e873b9 2149 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2150 if (!p) {
2151 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2152 } else {
2153 pd = p->phys_offset;
9fa3e853
FB
2154 }
2155#if defined(DEBUG_TLB)
6ebbf390
JM
2156 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2157 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2158#endif
2159
0f459d16
PB
2160 address = vaddr;
2161 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2162 /* IO memory case (romd handled later) */
2163 address |= TLB_MMIO;
2164 }
5579c7f3 2165 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2166 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2167 /* Normal RAM. */
2168 iotlb = pd & TARGET_PAGE_MASK;
2169 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2170 iotlb |= IO_MEM_NOTDIRTY;
2171 else
2172 iotlb |= IO_MEM_ROM;
2173 } else {
ccbb4d44 2174 /* IO handlers are currently passed a physical address.
0f459d16
PB
2175 It would be nice to pass an offset from the base address
2176 of that region. This would avoid having to special case RAM,
2177 and avoid full address decoding in every device.
2178 We can't use the high bits of pd for this because
2179 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2180 iotlb = (pd & ~TARGET_PAGE_MASK);
2181 if (p) {
8da3ff18
PB
2182 iotlb += p->region_offset;
2183 } else {
2184 iotlb += paddr;
2185 }
0f459d16
PB
2186 }
2187
2188 code_address = address;
2189 /* Make accesses to pages with watchpoints go via the
2190 watchpoint trap routines. */
72cf2d4f 2191 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2192 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2193 iotlb = io_mem_watch + paddr;
2194 /* TODO: The memory case can be optimized by not trapping
2195 reads of pages with a write breakpoint. */
2196 address |= TLB_MMIO;
6658ffb8 2197 }
0f459d16 2198 }
d79acba4 2199
0f459d16
PB
2200 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2201 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2202 te = &env->tlb_table[mmu_idx][index];
2203 te->addend = addend - vaddr;
2204 if (prot & PAGE_READ) {
2205 te->addr_read = address;
2206 } else {
2207 te->addr_read = -1;
2208 }
5c751e99 2209
0f459d16
PB
2210 if (prot & PAGE_EXEC) {
2211 te->addr_code = code_address;
2212 } else {
2213 te->addr_code = -1;
2214 }
2215 if (prot & PAGE_WRITE) {
2216 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2217 (pd & IO_MEM_ROMD)) {
2218 /* Write access calls the I/O callback. */
2219 te->addr_write = address | TLB_MMIO;
2220 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2221 !cpu_physical_memory_is_dirty(pd)) {
2222 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2223 } else {
0f459d16 2224 te->addr_write = address;
9fa3e853 2225 }
0f459d16
PB
2226 } else {
2227 te->addr_write = -1;
9fa3e853 2228 }
9fa3e853
FB
2229}
2230
0124311e
FB
2231#else
2232
ee8b7021 2233void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2234{
2235}
2236
2e12669a 2237void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2238{
2239}
2240
edf8e2af
MW
2241/*
2242 * Walks guest process memory "regions" one by one
2243 * and calls callback function 'fn' for each region.
2244 */
5cd2c5b6
RH
2245
2246struct walk_memory_regions_data
2247{
2248 walk_memory_regions_fn fn;
2249 void *priv;
2250 unsigned long start;
2251 int prot;
2252};
2253
2254static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2255 abi_ulong end, int new_prot)
5cd2c5b6
RH
2256{
2257 if (data->start != -1ul) {
2258 int rc = data->fn(data->priv, data->start, end, data->prot);
2259 if (rc != 0) {
2260 return rc;
2261 }
2262 }
2263
2264 data->start = (new_prot ? end : -1ul);
2265 data->prot = new_prot;
2266
2267 return 0;
2268}
2269
2270static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2271 abi_ulong base, int level, void **lp)
5cd2c5b6 2272{
b480d9b7 2273 abi_ulong pa;
5cd2c5b6
RH
2274 int i, rc;
2275
2276 if (*lp == NULL) {
2277 return walk_memory_regions_end(data, base, 0);
2278 }
2279
2280 if (level == 0) {
2281 PageDesc *pd = *lp;
7296abac 2282 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2283 int prot = pd[i].flags;
2284
2285 pa = base | (i << TARGET_PAGE_BITS);
2286 if (prot != data->prot) {
2287 rc = walk_memory_regions_end(data, pa, prot);
2288 if (rc != 0) {
2289 return rc;
9fa3e853 2290 }
9fa3e853 2291 }
5cd2c5b6
RH
2292 }
2293 } else {
2294 void **pp = *lp;
7296abac 2295 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2296 pa = base | ((abi_ulong)i <<
2297 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2298 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2299 if (rc != 0) {
2300 return rc;
2301 }
2302 }
2303 }
2304
2305 return 0;
2306}
2307
2308int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2309{
2310 struct walk_memory_regions_data data;
2311 unsigned long i;
2312
2313 data.fn = fn;
2314 data.priv = priv;
2315 data.start = -1ul;
2316 data.prot = 0;
2317
2318 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2319 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2320 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2321 if (rc != 0) {
2322 return rc;
9fa3e853 2323 }
33417e70 2324 }
5cd2c5b6
RH
2325
2326 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2327}
2328
b480d9b7
PB
2329static int dump_region(void *priv, abi_ulong start,
2330 abi_ulong end, unsigned long prot)
edf8e2af
MW
2331{
2332 FILE *f = (FILE *)priv;
2333
b480d9b7
PB
2334 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2335 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2336 start, end, end - start,
2337 ((prot & PAGE_READ) ? 'r' : '-'),
2338 ((prot & PAGE_WRITE) ? 'w' : '-'),
2339 ((prot & PAGE_EXEC) ? 'x' : '-'));
2340
2341 return (0);
2342}
2343
2344/* dump memory mappings */
2345void page_dump(FILE *f)
2346{
2347 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2348 "start", "end", "size", "prot");
2349 walk_memory_regions(f, dump_region);
33417e70
FB
2350}
2351
53a5960a 2352int page_get_flags(target_ulong address)
33417e70 2353{
9fa3e853
FB
2354 PageDesc *p;
2355
2356 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2357 if (!p)
9fa3e853
FB
2358 return 0;
2359 return p->flags;
2360}
2361
376a7909
RH
2362/* Modify the flags of a page and invalidate the code if necessary.
2363 The flag PAGE_WRITE_ORG is positioned automatically depending
2364 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2365void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2366{
376a7909
RH
2367 target_ulong addr, len;
2368
2369 /* This function should never be called with addresses outside the
2370 guest address space. If this assert fires, it probably indicates
2371 a missing call to h2g_valid. */
b480d9b7
PB
2372#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2373 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2374#endif
2375 assert(start < end);
9fa3e853
FB
2376
2377 start = start & TARGET_PAGE_MASK;
2378 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2379
2380 if (flags & PAGE_WRITE) {
9fa3e853 2381 flags |= PAGE_WRITE_ORG;
376a7909
RH
2382 }
2383
2384 for (addr = start, len = end - start;
2385 len != 0;
2386 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2387 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2388
2389 /* If the write protection bit is set, then we invalidate
2390 the code inside. */
5fafdf24 2391 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2392 (flags & PAGE_WRITE) &&
2393 p->first_tb) {
d720b93d 2394 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2395 }
2396 p->flags = flags;
2397 }
33417e70
FB
2398}
2399
3d97b40b
TS
2400int page_check_range(target_ulong start, target_ulong len, int flags)
2401{
2402 PageDesc *p;
2403 target_ulong end;
2404 target_ulong addr;
2405
376a7909
RH
2406 /* This function should never be called with addresses outside the
2407 guest address space. If this assert fires, it probably indicates
2408 a missing call to h2g_valid. */
338e9e6c
BS
2409#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2410 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2411#endif
2412
2413 if (start + len - 1 < start) {
2414 /* We've wrapped around. */
55f280c9 2415 return -1;
376a7909 2416 }
55f280c9 2417
3d97b40b
TS
2418 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2419 start = start & TARGET_PAGE_MASK;
2420
376a7909
RH
2421 for (addr = start, len = end - start;
2422 len != 0;
2423 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2424 p = page_find(addr >> TARGET_PAGE_BITS);
2425 if( !p )
2426 return -1;
2427 if( !(p->flags & PAGE_VALID) )
2428 return -1;
2429
dae3270c 2430 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2431 return -1;
dae3270c
FB
2432 if (flags & PAGE_WRITE) {
2433 if (!(p->flags & PAGE_WRITE_ORG))
2434 return -1;
2435 /* unprotect the page if it was put read-only because it
2436 contains translated code */
2437 if (!(p->flags & PAGE_WRITE)) {
2438 if (!page_unprotect(addr, 0, NULL))
2439 return -1;
2440 }
2441 return 0;
2442 }
3d97b40b
TS
2443 }
2444 return 0;
2445}
2446
9fa3e853 2447/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2448 page. Return TRUE if the fault was successfully handled. */
53a5960a 2449int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2450{
2451 unsigned int page_index, prot, pindex;
2452 PageDesc *p, *p1;
53a5960a 2453 target_ulong host_start, host_end, addr;
9fa3e853 2454
c8a706fe
PB
2455 /* Technically this isn't safe inside a signal handler. However we
2456 know this only ever happens in a synchronous SEGV handler, so in
2457 practice it seems to be ok. */
2458 mmap_lock();
2459
83fb7adf 2460 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2461 page_index = host_start >> TARGET_PAGE_BITS;
2462 p1 = page_find(page_index);
c8a706fe
PB
2463 if (!p1) {
2464 mmap_unlock();
9fa3e853 2465 return 0;
c8a706fe 2466 }
83fb7adf 2467 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2468 p = p1;
2469 prot = 0;
2470 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2471 prot |= p->flags;
2472 p++;
2473 }
2474 /* if the page was really writable, then we change its
2475 protection back to writable */
2476 if (prot & PAGE_WRITE_ORG) {
2477 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2478 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2479 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2480 (prot & PAGE_BITS) | PAGE_WRITE);
2481 p1[pindex].flags |= PAGE_WRITE;
2482 /* and since the content will be modified, we must invalidate
2483 the corresponding translated code. */
d720b93d 2484 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2485#ifdef DEBUG_TB_CHECK
2486 tb_invalidate_check(address);
2487#endif
c8a706fe 2488 mmap_unlock();
9fa3e853
FB
2489 return 1;
2490 }
2491 }
c8a706fe 2492 mmap_unlock();
9fa3e853
FB
2493 return 0;
2494}
2495
6a00d601
FB
2496static inline void tlb_set_dirty(CPUState *env,
2497 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2498{
2499}
9fa3e853
FB
2500#endif /* defined(CONFIG_USER_ONLY) */
2501
e2eef170 2502#if !defined(CONFIG_USER_ONLY)
8da3ff18 2503
c04b2b78
PB
2504#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2505typedef struct subpage_t {
2506 target_phys_addr_t base;
2507 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2508 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2509 void *opaque[TARGET_PAGE_SIZE][2][4];
2510 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2511} subpage_t;
2512
c227f099
AL
2513static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2514 ram_addr_t memory, ram_addr_t region_offset);
2515static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2516 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2517#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2518 need_subpage) \
2519 do { \
2520 if (addr > start_addr) \
2521 start_addr2 = 0; \
2522 else { \
2523 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2524 if (start_addr2 > 0) \
2525 need_subpage = 1; \
2526 } \
2527 \
49e9fba2 2528 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2529 end_addr2 = TARGET_PAGE_SIZE - 1; \
2530 else { \
2531 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2532 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2533 need_subpage = 1; \
2534 } \
2535 } while (0)
2536
8f2498f9
MT
2537/* register physical memory.
2538 For RAM, 'size' must be a multiple of the target page size.
2539 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2540 io memory page. The address used when calling the IO function is
2541 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2542 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2543 before calculating this offset. This should not be a problem unless
2544 the low bits of start_addr and region_offset differ. */
c227f099
AL
2545void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2546 ram_addr_t size,
2547 ram_addr_t phys_offset,
2548 ram_addr_t region_offset)
33417e70 2549{
c227f099 2550 target_phys_addr_t addr, end_addr;
92e873b9 2551 PhysPageDesc *p;
9d42037b 2552 CPUState *env;
c227f099 2553 ram_addr_t orig_size = size;
db7b5426 2554 void *subpage;
33417e70 2555
f6f3fbca
MT
2556 cpu_notify_set_memory(start_addr, size, phys_offset);
2557
67c4d23c
PB
2558 if (phys_offset == IO_MEM_UNASSIGNED) {
2559 region_offset = start_addr;
2560 }
8da3ff18 2561 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2562 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2563 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2564 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2565 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2566 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2567 ram_addr_t orig_memory = p->phys_offset;
2568 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2569 int need_subpage = 0;
2570
2571 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2572 need_subpage);
4254fab8 2573 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2574 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2575 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2576 &p->phys_offset, orig_memory,
2577 p->region_offset);
db7b5426
BS
2578 } else {
2579 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2580 >> IO_MEM_SHIFT];
2581 }
8da3ff18
PB
2582 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2583 region_offset);
2584 p->region_offset = 0;
db7b5426
BS
2585 } else {
2586 p->phys_offset = phys_offset;
2587 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2588 (phys_offset & IO_MEM_ROMD))
2589 phys_offset += TARGET_PAGE_SIZE;
2590 }
2591 } else {
2592 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2593 p->phys_offset = phys_offset;
8da3ff18 2594 p->region_offset = region_offset;
db7b5426 2595 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2596 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2597 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2598 } else {
c227f099 2599 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2600 int need_subpage = 0;
2601
2602 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2603 end_addr2, need_subpage);
2604
4254fab8 2605 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2606 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2607 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2608 addr & TARGET_PAGE_MASK);
db7b5426 2609 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2610 phys_offset, region_offset);
2611 p->region_offset = 0;
db7b5426
BS
2612 }
2613 }
2614 }
8da3ff18 2615 region_offset += TARGET_PAGE_SIZE;
33417e70 2616 }
3b46e624 2617
9d42037b
FB
2618 /* since each CPU stores ram addresses in its TLB cache, we must
2619 reset the modified entries */
2620 /* XXX: slow ! */
2621 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2622 tlb_flush(env, 1);
2623 }
33417e70
FB
2624}
2625
ba863458 2626/* XXX: temporary until new memory mapping API */
c227f099 2627ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2628{
2629 PhysPageDesc *p;
2630
2631 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2632 if (!p)
2633 return IO_MEM_UNASSIGNED;
2634 return p->phys_offset;
2635}
2636
c227f099 2637void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2638{
2639 if (kvm_enabled())
2640 kvm_coalesce_mmio_region(addr, size);
2641}
2642
c227f099 2643void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2644{
2645 if (kvm_enabled())
2646 kvm_uncoalesce_mmio_region(addr, size);
2647}
2648
62a2744c
SY
2649void qemu_flush_coalesced_mmio_buffer(void)
2650{
2651 if (kvm_enabled())
2652 kvm_flush_coalesced_mmio_buffer();
2653}
2654
c902760f
MT
2655#if defined(__linux__) && !defined(TARGET_S390X)
2656
2657#include <sys/vfs.h>
2658
2659#define HUGETLBFS_MAGIC 0x958458f6
2660
2661static long gethugepagesize(const char *path)
2662{
2663 struct statfs fs;
2664 int ret;
2665
2666 do {
2667 ret = statfs(path, &fs);
2668 } while (ret != 0 && errno == EINTR);
2669
2670 if (ret != 0) {
6adc0549 2671 perror(path);
c902760f
MT
2672 return 0;
2673 }
2674
2675 if (fs.f_type != HUGETLBFS_MAGIC)
2676 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2677
2678 return fs.f_bsize;
2679}
2680
2681static void *file_ram_alloc(ram_addr_t memory, const char *path)
2682{
2683 char *filename;
2684 void *area;
2685 int fd;
2686#ifdef MAP_POPULATE
2687 int flags;
2688#endif
2689 unsigned long hpagesize;
2690
2691 hpagesize = gethugepagesize(path);
2692 if (!hpagesize) {
2693 return NULL;
2694 }
2695
2696 if (memory < hpagesize) {
2697 return NULL;
2698 }
2699
2700 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2701 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2702 return NULL;
2703 }
2704
2705 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2706 return NULL;
2707 }
2708
2709 fd = mkstemp(filename);
2710 if (fd < 0) {
6adc0549 2711 perror("unable to create backing store for hugepages");
c902760f
MT
2712 free(filename);
2713 return NULL;
2714 }
2715 unlink(filename);
2716 free(filename);
2717
2718 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2719
2720 /*
2721 * ftruncate is not supported by hugetlbfs in older
2722 * hosts, so don't bother bailing out on errors.
2723 * If anything goes wrong with it under other filesystems,
2724 * mmap will fail.
2725 */
2726 if (ftruncate(fd, memory))
2727 perror("ftruncate");
2728
2729#ifdef MAP_POPULATE
2730 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2731 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2732 * to sidestep this quirk.
2733 */
2734 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2735 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2736#else
2737 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2738#endif
2739 if (area == MAP_FAILED) {
2740 perror("file_ram_alloc: can't mmap RAM pages");
2741 close(fd);
2742 return (NULL);
2743 }
2744 return area;
2745}
2746#endif
2747
c227f099 2748ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2749{
2750 RAMBlock *new_block;
2751
94a6b54f
PB
2752 size = TARGET_PAGE_ALIGN(size);
2753 new_block = qemu_malloc(sizeof(*new_block));
2754
c902760f
MT
2755 if (mem_path) {
2756#if defined (__linux__) && !defined(TARGET_S390X)
2757 new_block->host = file_ram_alloc(size, mem_path);
2758 if (!new_block->host)
2759 exit(1);
2760#else
2761 fprintf(stderr, "-mem-path option unsupported\n");
2762 exit(1);
2763#endif
2764 } else {
6b02494d 2765#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2766 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2767 new_block->host = mmap((void*)0x1000000, size,
2768 PROT_EXEC|PROT_READ|PROT_WRITE,
2769 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2770#else
c902760f 2771 new_block->host = qemu_vmalloc(size);
6b02494d 2772#endif
ccb167e9 2773#ifdef MADV_MERGEABLE
c902760f 2774 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2775#endif
c902760f 2776 }
94a6b54f
PB
2777 new_block->offset = last_ram_offset;
2778 new_block->length = size;
2779
2780 new_block->next = ram_blocks;
2781 ram_blocks = new_block;
2782
2783 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2784 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2785 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2786 0xff, size >> TARGET_PAGE_BITS);
2787
2788 last_ram_offset += size;
2789
6f0437e8
JK
2790 if (kvm_enabled())
2791 kvm_setup_guest_memory(new_block->host, size);
2792
94a6b54f
PB
2793 return new_block->offset;
2794}
e9a1ab19 2795
c227f099 2796void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2797{
94a6b54f 2798 /* TODO: implement this. */
e9a1ab19
FB
2799}
2800
dc828ca1 2801/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2802 With the exception of the softmmu code in this file, this should
2803 only be used for local memory (e.g. video ram) that the device owns,
2804 and knows it isn't going to access beyond the end of the block.
2805
2806 It should not be used for general purpose DMA.
2807 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2808 */
c227f099 2809void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2810{
94a6b54f
PB
2811 RAMBlock *prev;
2812 RAMBlock **prevp;
2813 RAMBlock *block;
2814
94a6b54f
PB
2815 prev = NULL;
2816 prevp = &ram_blocks;
2817 block = ram_blocks;
2818 while (block && (block->offset > addr
2819 || block->offset + block->length <= addr)) {
2820 if (prev)
2821 prevp = &prev->next;
2822 prev = block;
2823 block = block->next;
2824 }
2825 if (!block) {
2826 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2827 abort();
2828 }
2829 /* Move this entry to to start of the list. */
2830 if (prev) {
2831 prev->next = block->next;
2832 block->next = *prevp;
2833 *prevp = block;
2834 }
2835 return block->host + (addr - block->offset);
dc828ca1
PB
2836}
2837
5579c7f3
PB
2838/* Some of the softmmu routines need to translate from a host pointer
2839 (typically a TLB entry) back to a ram offset. */
c227f099 2840ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2841{
94a6b54f 2842 RAMBlock *prev;
94a6b54f
PB
2843 RAMBlock *block;
2844 uint8_t *host = ptr;
2845
94a6b54f 2846 prev = NULL;
94a6b54f
PB
2847 block = ram_blocks;
2848 while (block && (block->host > host
2849 || block->host + block->length <= host)) {
94a6b54f
PB
2850 prev = block;
2851 block = block->next;
2852 }
2853 if (!block) {
2854 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2855 abort();
2856 }
2857 return block->offset + (host - block->host);
5579c7f3
PB
2858}
2859
c227f099 2860static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2861{
67d3b957 2862#ifdef DEBUG_UNASSIGNED
ab3d1727 2863 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2864#endif
faed1c2a 2865#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2866 do_unassigned_access(addr, 0, 0, 0, 1);
2867#endif
2868 return 0;
2869}
2870
c227f099 2871static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2872{
2873#ifdef DEBUG_UNASSIGNED
2874 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2875#endif
faed1c2a 2876#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2877 do_unassigned_access(addr, 0, 0, 0, 2);
2878#endif
2879 return 0;
2880}
2881
c227f099 2882static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2883{
2884#ifdef DEBUG_UNASSIGNED
2885 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2886#endif
faed1c2a 2887#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2888 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2889#endif
33417e70
FB
2890 return 0;
2891}
2892
c227f099 2893static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2894{
67d3b957 2895#ifdef DEBUG_UNASSIGNED
ab3d1727 2896 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2897#endif
faed1c2a 2898#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2899 do_unassigned_access(addr, 1, 0, 0, 1);
2900#endif
2901}
2902
c227f099 2903static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2904{
2905#ifdef DEBUG_UNASSIGNED
2906 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2907#endif
faed1c2a 2908#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2909 do_unassigned_access(addr, 1, 0, 0, 2);
2910#endif
2911}
2912
c227f099 2913static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2914{
2915#ifdef DEBUG_UNASSIGNED
2916 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2917#endif
faed1c2a 2918#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2919 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2920#endif
33417e70
FB
2921}
2922
d60efc6b 2923static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2924 unassigned_mem_readb,
e18231a3
BS
2925 unassigned_mem_readw,
2926 unassigned_mem_readl,
33417e70
FB
2927};
2928
d60efc6b 2929static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2930 unassigned_mem_writeb,
e18231a3
BS
2931 unassigned_mem_writew,
2932 unassigned_mem_writel,
33417e70
FB
2933};
2934
c227f099 2935static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2936 uint32_t val)
9fa3e853 2937{
3a7d929e 2938 int dirty_flags;
3a7d929e
FB
2939 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2940 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2941#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2942 tb_invalidate_phys_page_fast(ram_addr, 1);
2943 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2944#endif
3a7d929e 2945 }
5579c7f3 2946 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2947 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2948 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2949 /* we remove the notdirty callback only if the code has been
2950 flushed */
2951 if (dirty_flags == 0xff)
2e70f6ef 2952 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2953}
2954
c227f099 2955static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2956 uint32_t val)
9fa3e853 2957{
3a7d929e 2958 int dirty_flags;
3a7d929e
FB
2959 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2960 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2961#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2962 tb_invalidate_phys_page_fast(ram_addr, 2);
2963 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2964#endif
3a7d929e 2965 }
5579c7f3 2966 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2967 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2968 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2969 /* we remove the notdirty callback only if the code has been
2970 flushed */
2971 if (dirty_flags == 0xff)
2e70f6ef 2972 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2973}
2974
c227f099 2975static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2976 uint32_t val)
9fa3e853 2977{
3a7d929e 2978 int dirty_flags;
3a7d929e
FB
2979 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2980 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2981#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2982 tb_invalidate_phys_page_fast(ram_addr, 4);
2983 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2984#endif
3a7d929e 2985 }
5579c7f3 2986 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2987 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2988 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2989 /* we remove the notdirty callback only if the code has been
2990 flushed */
2991 if (dirty_flags == 0xff)
2e70f6ef 2992 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2993}
2994
d60efc6b 2995static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2996 NULL, /* never used */
2997 NULL, /* never used */
2998 NULL, /* never used */
2999};
3000
d60efc6b 3001static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3002 notdirty_mem_writeb,
3003 notdirty_mem_writew,
3004 notdirty_mem_writel,
3005};
3006
0f459d16 3007/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3008static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3009{
3010 CPUState *env = cpu_single_env;
06d55cc1
AL
3011 target_ulong pc, cs_base;
3012 TranslationBlock *tb;
0f459d16 3013 target_ulong vaddr;
a1d1bb31 3014 CPUWatchpoint *wp;
06d55cc1 3015 int cpu_flags;
0f459d16 3016
06d55cc1
AL
3017 if (env->watchpoint_hit) {
3018 /* We re-entered the check after replacing the TB. Now raise
3019 * the debug interrupt so that is will trigger after the
3020 * current instruction. */
3021 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3022 return;
3023 }
2e70f6ef 3024 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3025 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3026 if ((vaddr == (wp->vaddr & len_mask) ||
3027 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3028 wp->flags |= BP_WATCHPOINT_HIT;
3029 if (!env->watchpoint_hit) {
3030 env->watchpoint_hit = wp;
3031 tb = tb_find_pc(env->mem_io_pc);
3032 if (!tb) {
3033 cpu_abort(env, "check_watchpoint: could not find TB for "
3034 "pc=%p", (void *)env->mem_io_pc);
3035 }
3036 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3037 tb_phys_invalidate(tb, -1);
3038 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3039 env->exception_index = EXCP_DEBUG;
3040 } else {
3041 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3042 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3043 }
3044 cpu_resume_from_signal(env, NULL);
06d55cc1 3045 }
6e140f28
AL
3046 } else {
3047 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3048 }
3049 }
3050}
3051
6658ffb8
PB
3052/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3053 so these check for a hit then pass through to the normal out-of-line
3054 phys routines. */
c227f099 3055static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3056{
b4051334 3057 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3058 return ldub_phys(addr);
3059}
3060
c227f099 3061static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3062{
b4051334 3063 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3064 return lduw_phys(addr);
3065}
3066
c227f099 3067static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3068{
b4051334 3069 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3070 return ldl_phys(addr);
3071}
3072
c227f099 3073static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3074 uint32_t val)
3075{
b4051334 3076 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3077 stb_phys(addr, val);
3078}
3079
c227f099 3080static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3081 uint32_t val)
3082{
b4051334 3083 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3084 stw_phys(addr, val);
3085}
3086
c227f099 3087static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3088 uint32_t val)
3089{
b4051334 3090 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3091 stl_phys(addr, val);
3092}
3093
d60efc6b 3094static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3095 watch_mem_readb,
3096 watch_mem_readw,
3097 watch_mem_readl,
3098};
3099
d60efc6b 3100static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3101 watch_mem_writeb,
3102 watch_mem_writew,
3103 watch_mem_writel,
3104};
6658ffb8 3105
c227f099 3106static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3107 unsigned int len)
3108{
db7b5426
BS
3109 uint32_t ret;
3110 unsigned int idx;
3111
8da3ff18 3112 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3113#if defined(DEBUG_SUBPAGE)
3114 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3115 mmio, len, addr, idx);
3116#endif
8da3ff18
PB
3117 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3118 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3119
3120 return ret;
3121}
3122
c227f099 3123static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3124 uint32_t value, unsigned int len)
3125{
db7b5426
BS
3126 unsigned int idx;
3127
8da3ff18 3128 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3129#if defined(DEBUG_SUBPAGE)
3130 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3131 mmio, len, addr, idx, value);
3132#endif
8da3ff18
PB
3133 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3134 addr + mmio->region_offset[idx][1][len],
3135 value);
db7b5426
BS
3136}
3137
c227f099 3138static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3139{
3140#if defined(DEBUG_SUBPAGE)
3141 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3142#endif
3143
3144 return subpage_readlen(opaque, addr, 0);
3145}
3146
c227f099 3147static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3148 uint32_t value)
3149{
3150#if defined(DEBUG_SUBPAGE)
3151 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3152#endif
3153 subpage_writelen(opaque, addr, value, 0);
3154}
3155
c227f099 3156static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3157{
3158#if defined(DEBUG_SUBPAGE)
3159 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3160#endif
3161
3162 return subpage_readlen(opaque, addr, 1);
3163}
3164
c227f099 3165static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3166 uint32_t value)
3167{
3168#if defined(DEBUG_SUBPAGE)
3169 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3170#endif
3171 subpage_writelen(opaque, addr, value, 1);
3172}
3173
c227f099 3174static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3175{
3176#if defined(DEBUG_SUBPAGE)
3177 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3178#endif
3179
3180 return subpage_readlen(opaque, addr, 2);
3181}
3182
3183static void subpage_writel (void *opaque,
c227f099 3184 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3185{
3186#if defined(DEBUG_SUBPAGE)
3187 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3188#endif
3189 subpage_writelen(opaque, addr, value, 2);
3190}
3191
d60efc6b 3192static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3193 &subpage_readb,
3194 &subpage_readw,
3195 &subpage_readl,
3196};
3197
d60efc6b 3198static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3199 &subpage_writeb,
3200 &subpage_writew,
3201 &subpage_writel,
3202};
3203
c227f099
AL
3204static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3205 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3206{
3207 int idx, eidx;
4254fab8 3208 unsigned int i;
db7b5426
BS
3209
3210 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3211 return -1;
3212 idx = SUBPAGE_IDX(start);
3213 eidx = SUBPAGE_IDX(end);
3214#if defined(DEBUG_SUBPAGE)
0bf9e31a 3215 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3216 mmio, start, end, idx, eidx, memory);
3217#endif
3218 memory >>= IO_MEM_SHIFT;
3219 for (; idx <= eidx; idx++) {
4254fab8 3220 for (i = 0; i < 4; i++) {
3ee89922
BS
3221 if (io_mem_read[memory][i]) {
3222 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3223 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3224 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3225 }
3226 if (io_mem_write[memory][i]) {
3227 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3228 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3229 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3230 }
4254fab8 3231 }
db7b5426
BS
3232 }
3233
3234 return 0;
3235}
3236
c227f099
AL
3237static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3238 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3239{
c227f099 3240 subpage_t *mmio;
db7b5426
BS
3241 int subpage_memory;
3242
c227f099 3243 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3244
3245 mmio->base = base;
1eed09cb 3246 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3247#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3248 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3249 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3250#endif
1eec614b
AL
3251 *phys = subpage_memory | IO_MEM_SUBPAGE;
3252 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3253 region_offset);
db7b5426
BS
3254
3255 return mmio;
3256}
3257
88715657
AL
3258static int get_free_io_mem_idx(void)
3259{
3260 int i;
3261
3262 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3263 if (!io_mem_used[i]) {
3264 io_mem_used[i] = 1;
3265 return i;
3266 }
c6703b47 3267 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3268 return -1;
3269}
3270
33417e70
FB
3271/* mem_read and mem_write are arrays of functions containing the
3272 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3273 2). Functions can be omitted with a NULL function pointer.
3ee89922 3274 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3275 modified. If it is zero, a new io zone is allocated. The return
3276 value can be used with cpu_register_physical_memory(). (-1) is
3277 returned if error. */
1eed09cb 3278static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3279 CPUReadMemoryFunc * const *mem_read,
3280 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3281 void *opaque)
33417e70 3282{
4254fab8 3283 int i, subwidth = 0;
33417e70
FB
3284
3285 if (io_index <= 0) {
88715657
AL
3286 io_index = get_free_io_mem_idx();
3287 if (io_index == -1)
3288 return io_index;
33417e70 3289 } else {
1eed09cb 3290 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3291 if (io_index >= IO_MEM_NB_ENTRIES)
3292 return -1;
3293 }
b5ff1b31 3294
33417e70 3295 for(i = 0;i < 3; i++) {
4254fab8
BS
3296 if (!mem_read[i] || !mem_write[i])
3297 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3298 io_mem_read[io_index][i] = mem_read[i];
3299 io_mem_write[io_index][i] = mem_write[i];
3300 }
a4193c8a 3301 io_mem_opaque[io_index] = opaque;
4254fab8 3302 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3303}
61382a50 3304
d60efc6b
BS
3305int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3306 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3307 void *opaque)
3308{
3309 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3310}
3311
88715657
AL
3312void cpu_unregister_io_memory(int io_table_address)
3313{
3314 int i;
3315 int io_index = io_table_address >> IO_MEM_SHIFT;
3316
3317 for (i=0;i < 3; i++) {
3318 io_mem_read[io_index][i] = unassigned_mem_read[i];
3319 io_mem_write[io_index][i] = unassigned_mem_write[i];
3320 }
3321 io_mem_opaque[io_index] = NULL;
3322 io_mem_used[io_index] = 0;
3323}
3324
e9179ce1
AK
3325static void io_mem_init(void)
3326{
3327 int i;
3328
3329 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3330 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3331 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3332 for (i=0; i<5; i++)
3333 io_mem_used[i] = 1;
3334
3335 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3336 watch_mem_write, NULL);
e9179ce1
AK
3337}
3338
e2eef170
PB
3339#endif /* !defined(CONFIG_USER_ONLY) */
3340
13eb76e0
FB
3341/* physical memory access (slow version, mainly for debug) */
3342#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3343int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3344 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3345{
3346 int l, flags;
3347 target_ulong page;
53a5960a 3348 void * p;
13eb76e0
FB
3349
3350 while (len > 0) {
3351 page = addr & TARGET_PAGE_MASK;
3352 l = (page + TARGET_PAGE_SIZE) - addr;
3353 if (l > len)
3354 l = len;
3355 flags = page_get_flags(page);
3356 if (!(flags & PAGE_VALID))
a68fe89c 3357 return -1;
13eb76e0
FB
3358 if (is_write) {
3359 if (!(flags & PAGE_WRITE))
a68fe89c 3360 return -1;
579a97f7 3361 /* XXX: this code should not depend on lock_user */
72fb7daa 3362 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3363 return -1;
72fb7daa
AJ
3364 memcpy(p, buf, l);
3365 unlock_user(p, addr, l);
13eb76e0
FB
3366 } else {
3367 if (!(flags & PAGE_READ))
a68fe89c 3368 return -1;
579a97f7 3369 /* XXX: this code should not depend on lock_user */
72fb7daa 3370 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3371 return -1;
72fb7daa 3372 memcpy(buf, p, l);
5b257578 3373 unlock_user(p, addr, 0);
13eb76e0
FB
3374 }
3375 len -= l;
3376 buf += l;
3377 addr += l;
3378 }
a68fe89c 3379 return 0;
13eb76e0 3380}
8df1cd07 3381
13eb76e0 3382#else
c227f099 3383void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3384 int len, int is_write)
3385{
3386 int l, io_index;
3387 uint8_t *ptr;
3388 uint32_t val;
c227f099 3389 target_phys_addr_t page;
2e12669a 3390 unsigned long pd;
92e873b9 3391 PhysPageDesc *p;
3b46e624 3392
13eb76e0
FB
3393 while (len > 0) {
3394 page = addr & TARGET_PAGE_MASK;
3395 l = (page + TARGET_PAGE_SIZE) - addr;
3396 if (l > len)
3397 l = len;
92e873b9 3398 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3399 if (!p) {
3400 pd = IO_MEM_UNASSIGNED;
3401 } else {
3402 pd = p->phys_offset;
3403 }
3b46e624 3404
13eb76e0 3405 if (is_write) {
3a7d929e 3406 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3407 target_phys_addr_t addr1 = addr;
13eb76e0 3408 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3409 if (p)
6c2934db 3410 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3411 /* XXX: could force cpu_single_env to NULL to avoid
3412 potential bugs */
6c2934db 3413 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3414 /* 32 bit write access */
c27004ec 3415 val = ldl_p(buf);
6c2934db 3416 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3417 l = 4;
6c2934db 3418 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3419 /* 16 bit write access */
c27004ec 3420 val = lduw_p(buf);
6c2934db 3421 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3422 l = 2;
3423 } else {
1c213d19 3424 /* 8 bit write access */
c27004ec 3425 val = ldub_p(buf);
6c2934db 3426 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3427 l = 1;
3428 }
3429 } else {
b448f2f3
FB
3430 unsigned long addr1;
3431 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3432 /* RAM case */
5579c7f3 3433 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3434 memcpy(ptr, buf, l);
3a7d929e
FB
3435 if (!cpu_physical_memory_is_dirty(addr1)) {
3436 /* invalidate code */
3437 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3438 /* set dirty bit */
5fafdf24 3439 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3440 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3441 }
13eb76e0
FB
3442 }
3443 } else {
5fafdf24 3444 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3445 !(pd & IO_MEM_ROMD)) {
c227f099 3446 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3447 /* I/O case */
3448 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3449 if (p)
6c2934db
AJ
3450 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3451 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3452 /* 32 bit read access */
6c2934db 3453 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3454 stl_p(buf, val);
13eb76e0 3455 l = 4;
6c2934db 3456 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3457 /* 16 bit read access */
6c2934db 3458 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3459 stw_p(buf, val);
13eb76e0
FB
3460 l = 2;
3461 } else {
1c213d19 3462 /* 8 bit read access */
6c2934db 3463 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3464 stb_p(buf, val);
13eb76e0
FB
3465 l = 1;
3466 }
3467 } else {
3468 /* RAM case */
5579c7f3 3469 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3470 (addr & ~TARGET_PAGE_MASK);
3471 memcpy(buf, ptr, l);
3472 }
3473 }
3474 len -= l;
3475 buf += l;
3476 addr += l;
3477 }
3478}
8df1cd07 3479
d0ecd2aa 3480/* used for ROM loading : can write in RAM and ROM */
c227f099 3481void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3482 const uint8_t *buf, int len)
3483{
3484 int l;
3485 uint8_t *ptr;
c227f099 3486 target_phys_addr_t page;
d0ecd2aa
FB
3487 unsigned long pd;
3488 PhysPageDesc *p;
3b46e624 3489
d0ecd2aa
FB
3490 while (len > 0) {
3491 page = addr & TARGET_PAGE_MASK;
3492 l = (page + TARGET_PAGE_SIZE) - addr;
3493 if (l > len)
3494 l = len;
3495 p = phys_page_find(page >> TARGET_PAGE_BITS);
3496 if (!p) {
3497 pd = IO_MEM_UNASSIGNED;
3498 } else {
3499 pd = p->phys_offset;
3500 }
3b46e624 3501
d0ecd2aa 3502 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3503 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3504 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3505 /* do nothing */
3506 } else {
3507 unsigned long addr1;
3508 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3509 /* ROM/RAM case */
5579c7f3 3510 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3511 memcpy(ptr, buf, l);
3512 }
3513 len -= l;
3514 buf += l;
3515 addr += l;
3516 }
3517}
3518
6d16c2f8
AL
3519typedef struct {
3520 void *buffer;
c227f099
AL
3521 target_phys_addr_t addr;
3522 target_phys_addr_t len;
6d16c2f8
AL
3523} BounceBuffer;
3524
3525static BounceBuffer bounce;
3526
ba223c29
AL
3527typedef struct MapClient {
3528 void *opaque;
3529 void (*callback)(void *opaque);
72cf2d4f 3530 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3531} MapClient;
3532
72cf2d4f
BS
3533static QLIST_HEAD(map_client_list, MapClient) map_client_list
3534 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3535
3536void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3537{
3538 MapClient *client = qemu_malloc(sizeof(*client));
3539
3540 client->opaque = opaque;
3541 client->callback = callback;
72cf2d4f 3542 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3543 return client;
3544}
3545
3546void cpu_unregister_map_client(void *_client)
3547{
3548 MapClient *client = (MapClient *)_client;
3549
72cf2d4f 3550 QLIST_REMOVE(client, link);
34d5e948 3551 qemu_free(client);
ba223c29
AL
3552}
3553
3554static void cpu_notify_map_clients(void)
3555{
3556 MapClient *client;
3557
72cf2d4f
BS
3558 while (!QLIST_EMPTY(&map_client_list)) {
3559 client = QLIST_FIRST(&map_client_list);
ba223c29 3560 client->callback(client->opaque);
34d5e948 3561 cpu_unregister_map_client(client);
ba223c29
AL
3562 }
3563}
3564
6d16c2f8
AL
3565/* Map a physical memory region into a host virtual address.
3566 * May map a subset of the requested range, given by and returned in *plen.
3567 * May return NULL if resources needed to perform the mapping are exhausted.
3568 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3569 * Use cpu_register_map_client() to know when retrying the map operation is
3570 * likely to succeed.
6d16c2f8 3571 */
c227f099
AL
3572void *cpu_physical_memory_map(target_phys_addr_t addr,
3573 target_phys_addr_t *plen,
6d16c2f8
AL
3574 int is_write)
3575{
c227f099
AL
3576 target_phys_addr_t len = *plen;
3577 target_phys_addr_t done = 0;
6d16c2f8
AL
3578 int l;
3579 uint8_t *ret = NULL;
3580 uint8_t *ptr;
c227f099 3581 target_phys_addr_t page;
6d16c2f8
AL
3582 unsigned long pd;
3583 PhysPageDesc *p;
3584 unsigned long addr1;
3585
3586 while (len > 0) {
3587 page = addr & TARGET_PAGE_MASK;
3588 l = (page + TARGET_PAGE_SIZE) - addr;
3589 if (l > len)
3590 l = len;
3591 p = phys_page_find(page >> TARGET_PAGE_BITS);
3592 if (!p) {
3593 pd = IO_MEM_UNASSIGNED;
3594 } else {
3595 pd = p->phys_offset;
3596 }
3597
3598 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3599 if (done || bounce.buffer) {
3600 break;
3601 }
3602 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3603 bounce.addr = addr;
3604 bounce.len = l;
3605 if (!is_write) {
3606 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3607 }
3608 ptr = bounce.buffer;
3609 } else {
3610 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3611 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3612 }
3613 if (!done) {
3614 ret = ptr;
3615 } else if (ret + done != ptr) {
3616 break;
3617 }
3618
3619 len -= l;
3620 addr += l;
3621 done += l;
3622 }
3623 *plen = done;
3624 return ret;
3625}
3626
3627/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3628 * Will also mark the memory as dirty if is_write == 1. access_len gives
3629 * the amount of memory that was actually read or written by the caller.
3630 */
c227f099
AL
3631void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3632 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3633{
3634 if (buffer != bounce.buffer) {
3635 if (is_write) {
c227f099 3636 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3637 while (access_len) {
3638 unsigned l;
3639 l = TARGET_PAGE_SIZE;
3640 if (l > access_len)
3641 l = access_len;
3642 if (!cpu_physical_memory_is_dirty(addr1)) {
3643 /* invalidate code */
3644 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3645 /* set dirty bit */
3646 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3647 (0xff & ~CODE_DIRTY_FLAG);
3648 }
3649 addr1 += l;
3650 access_len -= l;
3651 }
3652 }
3653 return;
3654 }
3655 if (is_write) {
3656 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3657 }
f8a83245 3658 qemu_vfree(bounce.buffer);
6d16c2f8 3659 bounce.buffer = NULL;
ba223c29 3660 cpu_notify_map_clients();
6d16c2f8 3661}
d0ecd2aa 3662
8df1cd07 3663/* warning: addr must be aligned */
c227f099 3664uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3665{
3666 int io_index;
3667 uint8_t *ptr;
3668 uint32_t val;
3669 unsigned long pd;
3670 PhysPageDesc *p;
3671
3672 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3673 if (!p) {
3674 pd = IO_MEM_UNASSIGNED;
3675 } else {
3676 pd = p->phys_offset;
3677 }
3b46e624 3678
5fafdf24 3679 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3680 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3681 /* I/O case */
3682 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3683 if (p)
3684 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3685 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3686 } else {
3687 /* RAM case */
5579c7f3 3688 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3689 (addr & ~TARGET_PAGE_MASK);
3690 val = ldl_p(ptr);
3691 }
3692 return val;
3693}
3694
84b7b8e7 3695/* warning: addr must be aligned */
c227f099 3696uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3697{
3698 int io_index;
3699 uint8_t *ptr;
3700 uint64_t val;
3701 unsigned long pd;
3702 PhysPageDesc *p;
3703
3704 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3705 if (!p) {
3706 pd = IO_MEM_UNASSIGNED;
3707 } else {
3708 pd = p->phys_offset;
3709 }
3b46e624 3710
2a4188a3
FB
3711 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3712 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3713 /* I/O case */
3714 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3715 if (p)
3716 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3717#ifdef TARGET_WORDS_BIGENDIAN
3718 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3719 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3720#else
3721 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3722 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3723#endif
3724 } else {
3725 /* RAM case */
5579c7f3 3726 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3727 (addr & ~TARGET_PAGE_MASK);
3728 val = ldq_p(ptr);
3729 }
3730 return val;
3731}
3732
aab33094 3733/* XXX: optimize */
c227f099 3734uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3735{
3736 uint8_t val;
3737 cpu_physical_memory_read(addr, &val, 1);
3738 return val;
3739}
3740
3741/* XXX: optimize */
c227f099 3742uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3743{
3744 uint16_t val;
3745 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3746 return tswap16(val);
3747}
3748
8df1cd07
FB
3749/* warning: addr must be aligned. The ram page is not masked as dirty
3750 and the code inside is not invalidated. It is useful if the dirty
3751 bits are used to track modified PTEs */
c227f099 3752void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3753{
3754 int io_index;
3755 uint8_t *ptr;
3756 unsigned long pd;
3757 PhysPageDesc *p;
3758
3759 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3760 if (!p) {
3761 pd = IO_MEM_UNASSIGNED;
3762 } else {
3763 pd = p->phys_offset;
3764 }
3b46e624 3765
3a7d929e 3766 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3767 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3768 if (p)
3769 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3770 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3771 } else {
74576198 3772 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3773 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3774 stl_p(ptr, val);
74576198
AL
3775
3776 if (unlikely(in_migration)) {
3777 if (!cpu_physical_memory_is_dirty(addr1)) {
3778 /* invalidate code */
3779 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3780 /* set dirty bit */
3781 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3782 (0xff & ~CODE_DIRTY_FLAG);
3783 }
3784 }
8df1cd07
FB
3785 }
3786}
3787
c227f099 3788void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3789{
3790 int io_index;
3791 uint8_t *ptr;
3792 unsigned long pd;
3793 PhysPageDesc *p;
3794
3795 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3796 if (!p) {
3797 pd = IO_MEM_UNASSIGNED;
3798 } else {
3799 pd = p->phys_offset;
3800 }
3b46e624 3801
bc98a7ef
JM
3802 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3803 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3804 if (p)
3805 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3806#ifdef TARGET_WORDS_BIGENDIAN
3807 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3808 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3809#else
3810 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3811 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3812#endif
3813 } else {
5579c7f3 3814 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3815 (addr & ~TARGET_PAGE_MASK);
3816 stq_p(ptr, val);
3817 }
3818}
3819
8df1cd07 3820/* warning: addr must be aligned */
c227f099 3821void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3822{
3823 int io_index;
3824 uint8_t *ptr;
3825 unsigned long pd;
3826 PhysPageDesc *p;
3827
3828 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3829 if (!p) {
3830 pd = IO_MEM_UNASSIGNED;
3831 } else {
3832 pd = p->phys_offset;
3833 }
3b46e624 3834
3a7d929e 3835 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3836 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3837 if (p)
3838 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3839 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3840 } else {
3841 unsigned long addr1;
3842 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3843 /* RAM case */
5579c7f3 3844 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3845 stl_p(ptr, val);
3a7d929e
FB
3846 if (!cpu_physical_memory_is_dirty(addr1)) {
3847 /* invalidate code */
3848 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3849 /* set dirty bit */
f23db169
FB
3850 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3851 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3852 }
8df1cd07
FB
3853 }
3854}
3855
aab33094 3856/* XXX: optimize */
c227f099 3857void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3858{
3859 uint8_t v = val;
3860 cpu_physical_memory_write(addr, &v, 1);
3861}
3862
3863/* XXX: optimize */
c227f099 3864void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3865{
3866 uint16_t v = tswap16(val);
3867 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3868}
3869
3870/* XXX: optimize */
c227f099 3871void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3872{
3873 val = tswap64(val);
3874 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3875}
3876
5e2972fd 3877/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3878int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3879 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3880{
3881 int l;
c227f099 3882 target_phys_addr_t phys_addr;
9b3c35e0 3883 target_ulong page;
13eb76e0
FB
3884
3885 while (len > 0) {
3886 page = addr & TARGET_PAGE_MASK;
3887 phys_addr = cpu_get_phys_page_debug(env, page);
3888 /* if no physical page mapped, return an error */
3889 if (phys_addr == -1)
3890 return -1;
3891 l = (page + TARGET_PAGE_SIZE) - addr;
3892 if (l > len)
3893 l = len;
5e2972fd 3894 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3895 if (is_write)
3896 cpu_physical_memory_write_rom(phys_addr, buf, l);
3897 else
5e2972fd 3898 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3899 len -= l;
3900 buf += l;
3901 addr += l;
3902 }
3903 return 0;
3904}
a68fe89c 3905#endif
13eb76e0 3906
2e70f6ef
PB
3907/* in deterministic execution mode, instructions doing device I/Os
3908 must be at the end of the TB */
3909void cpu_io_recompile(CPUState *env, void *retaddr)
3910{
3911 TranslationBlock *tb;
3912 uint32_t n, cflags;
3913 target_ulong pc, cs_base;
3914 uint64_t flags;
3915
3916 tb = tb_find_pc((unsigned long)retaddr);
3917 if (!tb) {
3918 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3919 retaddr);
3920 }
3921 n = env->icount_decr.u16.low + tb->icount;
3922 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3923 /* Calculate how many instructions had been executed before the fault
bf20dc07 3924 occurred. */
2e70f6ef
PB
3925 n = n - env->icount_decr.u16.low;
3926 /* Generate a new TB ending on the I/O insn. */
3927 n++;
3928 /* On MIPS and SH, delay slot instructions can only be restarted if
3929 they were already the first instruction in the TB. If this is not
bf20dc07 3930 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3931 branch. */
3932#if defined(TARGET_MIPS)
3933 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3934 env->active_tc.PC -= 4;
3935 env->icount_decr.u16.low++;
3936 env->hflags &= ~MIPS_HFLAG_BMASK;
3937 }
3938#elif defined(TARGET_SH4)
3939 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3940 && n > 1) {
3941 env->pc -= 2;
3942 env->icount_decr.u16.low++;
3943 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3944 }
3945#endif
3946 /* This should never happen. */
3947 if (n > CF_COUNT_MASK)
3948 cpu_abort(env, "TB too big during recompile");
3949
3950 cflags = n | CF_LAST_IO;
3951 pc = tb->pc;
3952 cs_base = tb->cs_base;
3953 flags = tb->flags;
3954 tb_phys_invalidate(tb, -1);
3955 /* FIXME: In theory this could raise an exception. In practice
3956 we have already translated the block once so it's probably ok. */
3957 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3958 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3959 the first in the TB) then we end up generating a whole new TB and
3960 repeating the fault, which is horribly inefficient.
3961 Better would be to execute just this insn uncached, or generate a
3962 second new TB. */
3963 cpu_resume_from_signal(env, NULL);
3964}
3965
b3755a91
PB
3966#if !defined(CONFIG_USER_ONLY)
3967
e3db7226
FB
3968void dump_exec_info(FILE *f,
3969 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3970{
3971 int i, target_code_size, max_target_code_size;
3972 int direct_jmp_count, direct_jmp2_count, cross_page;
3973 TranslationBlock *tb;
3b46e624 3974
e3db7226
FB
3975 target_code_size = 0;
3976 max_target_code_size = 0;
3977 cross_page = 0;
3978 direct_jmp_count = 0;
3979 direct_jmp2_count = 0;
3980 for(i = 0; i < nb_tbs; i++) {
3981 tb = &tbs[i];
3982 target_code_size += tb->size;
3983 if (tb->size > max_target_code_size)
3984 max_target_code_size = tb->size;
3985 if (tb->page_addr[1] != -1)
3986 cross_page++;
3987 if (tb->tb_next_offset[0] != 0xffff) {
3988 direct_jmp_count++;
3989 if (tb->tb_next_offset[1] != 0xffff) {
3990 direct_jmp2_count++;
3991 }
3992 }
3993 }
3994 /* XXX: avoid using doubles ? */
57fec1fe 3995 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3996 cpu_fprintf(f, "gen code size %ld/%ld\n",
3997 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3998 cpu_fprintf(f, "TB count %d/%d\n",
3999 nb_tbs, code_gen_max_blocks);
5fafdf24 4000 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4001 nb_tbs ? target_code_size / nb_tbs : 0,
4002 max_target_code_size);
5fafdf24 4003 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4004 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4005 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4006 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4007 cross_page,
e3db7226
FB
4008 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4009 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4010 direct_jmp_count,
e3db7226
FB
4011 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4012 direct_jmp2_count,
4013 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4014 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4015 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4016 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4017 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4018 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4019}
4020
61382a50
FB
4021#define MMUSUFFIX _cmmu
4022#define GETPC() NULL
4023#define env cpu_single_env
b769d8fe 4024#define SOFTMMU_CODE_ACCESS
61382a50
FB
4025
4026#define SHIFT 0
4027#include "softmmu_template.h"
4028
4029#define SHIFT 1
4030#include "softmmu_template.h"
4031
4032#define SHIFT 2
4033#include "softmmu_template.h"
4034
4035#define SHIFT 3
4036#include "softmmu_template.h"
4037
4038#undef env
4039
4040#endif