]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Move subpage definitions
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 74#elif defined(TARGET_X86_64)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 76#elif defined(TARGET_I386)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 78#else
108c49b8
FB
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
c227f099
AL
119 ram_addr_t offset;
120 ram_addr_t length;
94a6b54f
PB
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 127 of this variable will break. */
c227f099 128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004
FB
181static PageDesc *l1_map[L1_SIZE];
182
e2eef170 183#if !defined(CONFIG_USER_ONLY)
6d9a1304
PB
184static PhysPageDesc **l1_phys_map;
185
e2eef170
PB
186static void io_mem_init(void);
187
33417e70 188/* io memory support */
33417e70
FB
189CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
190CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 191void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 192static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
193static int io_mem_watch;
194#endif
33417e70 195
34865134 196/* log support */
1e8b27ca
JR
197#ifdef WIN32
198static const char *logfilename = "qemu.log";
199#else
d9b630fd 200static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 201#endif
34865134
FB
202FILE *logfile;
203int loglevel;
e735b91c 204static int log_append = 0;
34865134 205
e3db7226
FB
206/* statistics */
207static int tlb_flush_count;
208static int tb_flush_count;
209static int tb_phys_invalidate_count;
210
7cb69cae
FB
211#ifdef _WIN32
212static void map_exec(void *addr, long size)
213{
214 DWORD old_protect;
215 VirtualProtect(addr, size,
216 PAGE_EXECUTE_READWRITE, &old_protect);
217
218}
219#else
220static void map_exec(void *addr, long size)
221{
4369415f 222 unsigned long start, end, page_size;
7cb69cae 223
4369415f 224 page_size = getpagesize();
7cb69cae 225 start = (unsigned long)addr;
4369415f 226 start &= ~(page_size - 1);
7cb69cae
FB
227
228 end = (unsigned long)addr + size;
4369415f
FB
229 end += page_size - 1;
230 end &= ~(page_size - 1);
7cb69cae
FB
231
232 mprotect((void *)start, end - start,
233 PROT_READ | PROT_WRITE | PROT_EXEC);
234}
235#endif
236
b346ff46 237static void page_init(void)
54936004 238{
83fb7adf 239 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 240 TARGET_PAGE_SIZE */
c2b48b69
AL
241#ifdef _WIN32
242 {
243 SYSTEM_INFO system_info;
244
245 GetSystemInfo(&system_info);
246 qemu_real_host_page_size = system_info.dwPageSize;
247 }
248#else
249 qemu_real_host_page_size = getpagesize();
250#endif
83fb7adf
FB
251 if (qemu_host_page_size == 0)
252 qemu_host_page_size = qemu_real_host_page_size;
253 if (qemu_host_page_size < TARGET_PAGE_SIZE)
254 qemu_host_page_size = TARGET_PAGE_SIZE;
255 qemu_host_page_bits = 0;
256 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
257 qemu_host_page_bits++;
258 qemu_host_page_mask = ~(qemu_host_page_size - 1);
6d9a1304 259#if !defined(CONFIG_USER_ONLY)
108c49b8
FB
260 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
261 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
6d9a1304 262#endif
50a9569b
AZ
263
264#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
265 {
266 long long startaddr, endaddr;
267 FILE *f;
268 int n;
269
c8a706fe 270 mmap_lock();
0776590d 271 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
272 f = fopen("/proc/self/maps", "r");
273 if (f) {
274 do {
275 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
276 if (n == 2) {
e0b8d65a
BS
277 startaddr = MIN(startaddr,
278 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
279 endaddr = MIN(endaddr,
280 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 281 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
282 TARGET_PAGE_ALIGN(endaddr),
283 PAGE_RESERVED);
284 }
285 } while (!feof(f));
286 fclose(f);
287 }
c8a706fe 288 mmap_unlock();
50a9569b
AZ
289 }
290#endif
54936004
FB
291}
292
434929bf 293static inline PageDesc **page_l1_map(target_ulong index)
54936004 294{
17e2377a
PB
295#if TARGET_LONG_BITS > 32
296 /* Host memory outside guest VM. For 32-bit targets we have already
297 excluded high addresses. */
d8173e0f 298 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
299 return NULL;
300#endif
434929bf
AL
301 return &l1_map[index >> L2_BITS];
302}
303
304static inline PageDesc *page_find_alloc(target_ulong index)
305{
306 PageDesc **lp, *p;
307 lp = page_l1_map(index);
308 if (!lp)
309 return NULL;
310
54936004
FB
311 p = *lp;
312 if (!p) {
313 /* allocate if not found */
17e2377a 314#if defined(CONFIG_USER_ONLY)
17e2377a
PB
315 size_t len = sizeof(PageDesc) * L2_SIZE;
316 /* Don't use qemu_malloc because it may recurse. */
660f11be 317 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 318 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 319 *lp = p;
fb1c2cd7
AJ
320 if (h2g_valid(p)) {
321 unsigned long addr = h2g(p);
17e2377a
PB
322 page_set_flags(addr & TARGET_PAGE_MASK,
323 TARGET_PAGE_ALIGN(addr + len),
324 PAGE_RESERVED);
325 }
326#else
327 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
328 *lp = p;
329#endif
54936004
FB
330 }
331 return p + (index & (L2_SIZE - 1));
332}
333
00f82b8a 334static inline PageDesc *page_find(target_ulong index)
54936004 335{
434929bf
AL
336 PageDesc **lp, *p;
337 lp = page_l1_map(index);
338 if (!lp)
339 return NULL;
54936004 340
434929bf 341 p = *lp;
660f11be
BS
342 if (!p) {
343 return NULL;
344 }
fd6ce8f6
FB
345 return p + (index & (L2_SIZE - 1));
346}
347
6d9a1304 348#if !defined(CONFIG_USER_ONLY)
c227f099 349static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
c227f099 388static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
c227f099
AL
393static void tlb_protect_code(ram_addr_t ram_addr);
394static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 395 target_ulong vaddr);
c8a706fe
PB
396#define mmap_lock() do { } while(0)
397#define mmap_unlock() do { } while(0)
9fa3e853 398#endif
fd6ce8f6 399
4369415f
FB
400#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
401
402#if defined(CONFIG_USER_ONLY)
ccbb4d44 403/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
404 user mode. It will change when a dedicated libc will be used */
405#define USE_STATIC_CODE_GEN_BUFFER
406#endif
407
408#ifdef USE_STATIC_CODE_GEN_BUFFER
409static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
410#endif
411
8fcd3692 412static void code_gen_alloc(unsigned long tb_size)
26a5f13b 413{
4369415f
FB
414#ifdef USE_STATIC_CODE_GEN_BUFFER
415 code_gen_buffer = static_code_gen_buffer;
416 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
417 map_exec(code_gen_buffer, code_gen_buffer_size);
418#else
26a5f13b
FB
419 code_gen_buffer_size = tb_size;
420 if (code_gen_buffer_size == 0) {
4369415f
FB
421#if defined(CONFIG_USER_ONLY)
422 /* in user mode, phys_ram_size is not meaningful */
423 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
424#else
ccbb4d44 425 /* XXX: needs adjustments */
94a6b54f 426 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 427#endif
26a5f13b
FB
428 }
429 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
430 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
431 /* The code gen buffer location may have constraints depending on
432 the host cpu and OS */
433#if defined(__linux__)
434 {
435 int flags;
141ac468
BS
436 void *start = NULL;
437
26a5f13b
FB
438 flags = MAP_PRIVATE | MAP_ANONYMOUS;
439#if defined(__x86_64__)
440 flags |= MAP_32BIT;
441 /* Cannot map more than that */
442 if (code_gen_buffer_size > (800 * 1024 * 1024))
443 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
444#elif defined(__sparc_v9__)
445 // Map the buffer below 2G, so we can use direct calls and branches
446 flags |= MAP_FIXED;
447 start = (void *) 0x60000000UL;
448 if (code_gen_buffer_size > (512 * 1024 * 1024))
449 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 450#elif defined(__arm__)
63d41246 451 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
452 flags |= MAP_FIXED;
453 start = (void *) 0x01000000UL;
454 if (code_gen_buffer_size > 16 * 1024 * 1024)
455 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 456#endif
141ac468
BS
457 code_gen_buffer = mmap(start, code_gen_buffer_size,
458 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
459 flags, -1, 0);
460 if (code_gen_buffer == MAP_FAILED) {
461 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
462 exit(1);
463 }
464 }
a167ba50 465#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
466 {
467 int flags;
468 void *addr = NULL;
469 flags = MAP_PRIVATE | MAP_ANONYMOUS;
470#if defined(__x86_64__)
471 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
472 * 0x40000000 is free */
473 flags |= MAP_FIXED;
474 addr = (void *)0x40000000;
475 /* Cannot map more than that */
476 if (code_gen_buffer_size > (800 * 1024 * 1024))
477 code_gen_buffer_size = (800 * 1024 * 1024);
478#endif
479 code_gen_buffer = mmap(addr, code_gen_buffer_size,
480 PROT_WRITE | PROT_READ | PROT_EXEC,
481 flags, -1, 0);
482 if (code_gen_buffer == MAP_FAILED) {
483 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
484 exit(1);
485 }
486 }
26a5f13b
FB
487#else
488 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
489 map_exec(code_gen_buffer, code_gen_buffer_size);
490#endif
4369415f 491#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
492 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
493 code_gen_buffer_max_size = code_gen_buffer_size -
494 code_gen_max_block_size();
495 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
496 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
497}
498
499/* Must be called before using the QEMU cpus. 'tb_size' is the size
500 (in bytes) allocated to the translation buffer. Zero means default
501 size. */
502void cpu_exec_init_all(unsigned long tb_size)
503{
26a5f13b
FB
504 cpu_gen_init();
505 code_gen_alloc(tb_size);
506 code_gen_ptr = code_gen_buffer;
4369415f 507 page_init();
e2eef170 508#if !defined(CONFIG_USER_ONLY)
26a5f13b 509 io_mem_init();
e2eef170 510#endif
26a5f13b
FB
511}
512
9656f324
PB
513#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
514
d4bfa4d7 515static void cpu_common_pre_save(void *opaque)
9656f324 516{
d4bfa4d7 517 CPUState *env = opaque;
9656f324 518
4c0960c0 519 cpu_synchronize_state(env);
9656f324
PB
520}
521
e7f4eff7 522static int cpu_common_pre_load(void *opaque)
9656f324
PB
523{
524 CPUState *env = opaque;
525
4c0960c0 526 cpu_synchronize_state(env);
e7f4eff7
JQ
527 return 0;
528}
529
e59fb374 530static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
531{
532 CPUState *env = opaque;
9656f324 533
3098dba0
AJ
534 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
535 version_id is increased. */
536 env->interrupt_request &= ~0x01;
9656f324
PB
537 tlb_flush(env, 1);
538
539 return 0;
540}
e7f4eff7
JQ
541
542static const VMStateDescription vmstate_cpu_common = {
543 .name = "cpu_common",
544 .version_id = 1,
545 .minimum_version_id = 1,
546 .minimum_version_id_old = 1,
547 .pre_save = cpu_common_pre_save,
548 .pre_load = cpu_common_pre_load,
549 .post_load = cpu_common_post_load,
550 .fields = (VMStateField []) {
551 VMSTATE_UINT32(halted, CPUState),
552 VMSTATE_UINT32(interrupt_request, CPUState),
553 VMSTATE_END_OF_LIST()
554 }
555};
9656f324
PB
556#endif
557
950f1472
GC
558CPUState *qemu_get_cpu(int cpu)
559{
560 CPUState *env = first_cpu;
561
562 while (env) {
563 if (env->cpu_index == cpu)
564 break;
565 env = env->next_cpu;
566 }
567
568 return env;
569}
570
6a00d601 571void cpu_exec_init(CPUState *env)
fd6ce8f6 572{
6a00d601
FB
573 CPUState **penv;
574 int cpu_index;
575
c2764719
PB
576#if defined(CONFIG_USER_ONLY)
577 cpu_list_lock();
578#endif
6a00d601
FB
579 env->next_cpu = NULL;
580 penv = &first_cpu;
581 cpu_index = 0;
582 while (*penv != NULL) {
1e9fa730 583 penv = &(*penv)->next_cpu;
6a00d601
FB
584 cpu_index++;
585 }
586 env->cpu_index = cpu_index;
268a362c 587 env->numa_node = 0;
72cf2d4f
BS
588 QTAILQ_INIT(&env->breakpoints);
589 QTAILQ_INIT(&env->watchpoints);
6a00d601 590 *penv = env;
c2764719
PB
591#if defined(CONFIG_USER_ONLY)
592 cpu_list_unlock();
593#endif
b3c7724c 594#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 595 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
596 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
597 cpu_save, cpu_load, env);
598#endif
fd6ce8f6
FB
599}
600
9fa3e853
FB
601static inline void invalidate_page_bitmap(PageDesc *p)
602{
603 if (p->code_bitmap) {
59817ccb 604 qemu_free(p->code_bitmap);
9fa3e853
FB
605 p->code_bitmap = NULL;
606 }
607 p->code_write_count = 0;
608}
609
fd6ce8f6
FB
610/* set to NULL all the 'first_tb' fields in all PageDescs */
611static void page_flush_tb(void)
612{
613 int i, j;
614 PageDesc *p;
615
616 for(i = 0; i < L1_SIZE; i++) {
617 p = l1_map[i];
618 if (p) {
9fa3e853
FB
619 for(j = 0; j < L2_SIZE; j++) {
620 p->first_tb = NULL;
621 invalidate_page_bitmap(p);
622 p++;
623 }
fd6ce8f6
FB
624 }
625 }
626}
627
628/* flush all the translation blocks */
d4e8164f 629/* XXX: tb_flush is currently not thread safe */
6a00d601 630void tb_flush(CPUState *env1)
fd6ce8f6 631{
6a00d601 632 CPUState *env;
0124311e 633#if defined(DEBUG_FLUSH)
ab3d1727
BS
634 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
635 (unsigned long)(code_gen_ptr - code_gen_buffer),
636 nb_tbs, nb_tbs > 0 ?
637 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 638#endif
26a5f13b 639 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
640 cpu_abort(env1, "Internal error: code buffer overflow\n");
641
fd6ce8f6 642 nb_tbs = 0;
3b46e624 643
6a00d601
FB
644 for(env = first_cpu; env != NULL; env = env->next_cpu) {
645 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
646 }
9fa3e853 647
8a8a608f 648 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 649 page_flush_tb();
9fa3e853 650
fd6ce8f6 651 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
652 /* XXX: flush processor icache at this point if cache flush is
653 expensive */
e3db7226 654 tb_flush_count++;
fd6ce8f6
FB
655}
656
657#ifdef DEBUG_TB_CHECK
658
bc98a7ef 659static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
660{
661 TranslationBlock *tb;
662 int i;
663 address &= TARGET_PAGE_MASK;
99773bd4
PB
664 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
665 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
666 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
667 address >= tb->pc + tb->size)) {
0bf9e31a
BS
668 printf("ERROR invalidate: address=" TARGET_FMT_lx
669 " PC=%08lx size=%04x\n",
99773bd4 670 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
671 }
672 }
673 }
674}
675
676/* verify that all the pages have correct rights for code */
677static void tb_page_check(void)
678{
679 TranslationBlock *tb;
680 int i, flags1, flags2;
3b46e624 681
99773bd4
PB
682 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
683 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
684 flags1 = page_get_flags(tb->pc);
685 flags2 = page_get_flags(tb->pc + tb->size - 1);
686 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
687 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 688 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
689 }
690 }
691 }
692}
693
694#endif
695
696/* invalidate one TB */
697static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
698 int next_offset)
699{
700 TranslationBlock *tb1;
701 for(;;) {
702 tb1 = *ptb;
703 if (tb1 == tb) {
704 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
705 break;
706 }
707 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
708 }
709}
710
9fa3e853
FB
711static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
712{
713 TranslationBlock *tb1;
714 unsigned int n1;
715
716 for(;;) {
717 tb1 = *ptb;
718 n1 = (long)tb1 & 3;
719 tb1 = (TranslationBlock *)((long)tb1 & ~3);
720 if (tb1 == tb) {
721 *ptb = tb1->page_next[n1];
722 break;
723 }
724 ptb = &tb1->page_next[n1];
725 }
726}
727
d4e8164f
FB
728static inline void tb_jmp_remove(TranslationBlock *tb, int n)
729{
730 TranslationBlock *tb1, **ptb;
731 unsigned int n1;
732
733 ptb = &tb->jmp_next[n];
734 tb1 = *ptb;
735 if (tb1) {
736 /* find tb(n) in circular list */
737 for(;;) {
738 tb1 = *ptb;
739 n1 = (long)tb1 & 3;
740 tb1 = (TranslationBlock *)((long)tb1 & ~3);
741 if (n1 == n && tb1 == tb)
742 break;
743 if (n1 == 2) {
744 ptb = &tb1->jmp_first;
745 } else {
746 ptb = &tb1->jmp_next[n1];
747 }
748 }
749 /* now we can suppress tb(n) from the list */
750 *ptb = tb->jmp_next[n];
751
752 tb->jmp_next[n] = NULL;
753 }
754}
755
756/* reset the jump entry 'n' of a TB so that it is not chained to
757 another TB */
758static inline void tb_reset_jump(TranslationBlock *tb, int n)
759{
760 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
761}
762
2e70f6ef 763void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 764{
6a00d601 765 CPUState *env;
8a40a180 766 PageDesc *p;
d4e8164f 767 unsigned int h, n1;
c227f099 768 target_phys_addr_t phys_pc;
8a40a180 769 TranslationBlock *tb1, *tb2;
3b46e624 770
8a40a180
FB
771 /* remove the TB from the hash list */
772 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
773 h = tb_phys_hash_func(phys_pc);
5fafdf24 774 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
775 offsetof(TranslationBlock, phys_hash_next));
776
777 /* remove the TB from the page list */
778 if (tb->page_addr[0] != page_addr) {
779 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
780 tb_page_remove(&p->first_tb, tb);
781 invalidate_page_bitmap(p);
782 }
783 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
784 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
785 tb_page_remove(&p->first_tb, tb);
786 invalidate_page_bitmap(p);
787 }
788
36bdbe54 789 tb_invalidated_flag = 1;
59817ccb 790
fd6ce8f6 791 /* remove the TB from the hash list */
8a40a180 792 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
793 for(env = first_cpu; env != NULL; env = env->next_cpu) {
794 if (env->tb_jmp_cache[h] == tb)
795 env->tb_jmp_cache[h] = NULL;
796 }
d4e8164f
FB
797
798 /* suppress this TB from the two jump lists */
799 tb_jmp_remove(tb, 0);
800 tb_jmp_remove(tb, 1);
801
802 /* suppress any remaining jumps to this TB */
803 tb1 = tb->jmp_first;
804 for(;;) {
805 n1 = (long)tb1 & 3;
806 if (n1 == 2)
807 break;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 tb2 = tb1->jmp_next[n1];
810 tb_reset_jump(tb1, n1);
811 tb1->jmp_next[n1] = NULL;
812 tb1 = tb2;
813 }
814 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 815
e3db7226 816 tb_phys_invalidate_count++;
9fa3e853
FB
817}
818
819static inline void set_bits(uint8_t *tab, int start, int len)
820{
821 int end, mask, end1;
822
823 end = start + len;
824 tab += start >> 3;
825 mask = 0xff << (start & 7);
826 if ((start & ~7) == (end & ~7)) {
827 if (start < end) {
828 mask &= ~(0xff << (end & 7));
829 *tab |= mask;
830 }
831 } else {
832 *tab++ |= mask;
833 start = (start + 8) & ~7;
834 end1 = end & ~7;
835 while (start < end1) {
836 *tab++ = 0xff;
837 start += 8;
838 }
839 if (start < end) {
840 mask = ~(0xff << (end & 7));
841 *tab |= mask;
842 }
843 }
844}
845
846static void build_page_bitmap(PageDesc *p)
847{
848 int n, tb_start, tb_end;
849 TranslationBlock *tb;
3b46e624 850
b2a7081a 851 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
852
853 tb = p->first_tb;
854 while (tb != NULL) {
855 n = (long)tb & 3;
856 tb = (TranslationBlock *)((long)tb & ~3);
857 /* NOTE: this is subtle as a TB may span two physical pages */
858 if (n == 0) {
859 /* NOTE: tb_end may be after the end of the page, but
860 it is not a problem */
861 tb_start = tb->pc & ~TARGET_PAGE_MASK;
862 tb_end = tb_start + tb->size;
863 if (tb_end > TARGET_PAGE_SIZE)
864 tb_end = TARGET_PAGE_SIZE;
865 } else {
866 tb_start = 0;
867 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
868 }
869 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
870 tb = tb->page_next[n];
871 }
872}
873
2e70f6ef
PB
874TranslationBlock *tb_gen_code(CPUState *env,
875 target_ulong pc, target_ulong cs_base,
876 int flags, int cflags)
d720b93d
FB
877{
878 TranslationBlock *tb;
879 uint8_t *tc_ptr;
880 target_ulong phys_pc, phys_page2, virt_page2;
881 int code_gen_size;
882
c27004ec
FB
883 phys_pc = get_phys_addr_code(env, pc);
884 tb = tb_alloc(pc);
d720b93d
FB
885 if (!tb) {
886 /* flush must be done */
887 tb_flush(env);
888 /* cannot fail at this point */
c27004ec 889 tb = tb_alloc(pc);
2e70f6ef
PB
890 /* Don't forget to invalidate previous TB info. */
891 tb_invalidated_flag = 1;
d720b93d
FB
892 }
893 tc_ptr = code_gen_ptr;
894 tb->tc_ptr = tc_ptr;
895 tb->cs_base = cs_base;
896 tb->flags = flags;
897 tb->cflags = cflags;
d07bde88 898 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 899 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 900
d720b93d 901 /* check next page if needed */
c27004ec 902 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 903 phys_page2 = -1;
c27004ec 904 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
905 phys_page2 = get_phys_addr_code(env, virt_page2);
906 }
907 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 908 return tb;
d720b93d 909}
3b46e624 910
9fa3e853
FB
911/* invalidate all TBs which intersect with the target physical page
912 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
913 the same physical page. 'is_cpu_write_access' should be true if called
914 from a real cpu write access: the virtual CPU will exit the current
915 TB if code is modified inside this TB. */
c227f099 916void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
917 int is_cpu_write_access)
918{
6b917547 919 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 920 CPUState *env = cpu_single_env;
9fa3e853 921 target_ulong tb_start, tb_end;
6b917547
AL
922 PageDesc *p;
923 int n;
924#ifdef TARGET_HAS_PRECISE_SMC
925 int current_tb_not_found = is_cpu_write_access;
926 TranslationBlock *current_tb = NULL;
927 int current_tb_modified = 0;
928 target_ulong current_pc = 0;
929 target_ulong current_cs_base = 0;
930 int current_flags = 0;
931#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
932
933 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 934 if (!p)
9fa3e853 935 return;
5fafdf24 936 if (!p->code_bitmap &&
d720b93d
FB
937 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
938 is_cpu_write_access) {
9fa3e853
FB
939 /* build code bitmap */
940 build_page_bitmap(p);
941 }
942
943 /* we remove all the TBs in the range [start, end[ */
944 /* XXX: see if in some cases it could be faster to invalidate all the code */
945 tb = p->first_tb;
946 while (tb != NULL) {
947 n = (long)tb & 3;
948 tb = (TranslationBlock *)((long)tb & ~3);
949 tb_next = tb->page_next[n];
950 /* NOTE: this is subtle as a TB may span two physical pages */
951 if (n == 0) {
952 /* NOTE: tb_end may be after the end of the page, but
953 it is not a problem */
954 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
955 tb_end = tb_start + tb->size;
956 } else {
957 tb_start = tb->page_addr[1];
958 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
959 }
960 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
961#ifdef TARGET_HAS_PRECISE_SMC
962 if (current_tb_not_found) {
963 current_tb_not_found = 0;
964 current_tb = NULL;
2e70f6ef 965 if (env->mem_io_pc) {
d720b93d 966 /* now we have a real cpu fault */
2e70f6ef 967 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
968 }
969 }
970 if (current_tb == tb &&
2e70f6ef 971 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
972 /* If we are modifying the current TB, we must stop
973 its execution. We could be more precise by checking
974 that the modification is after the current PC, but it
975 would require a specialized function to partially
976 restore the CPU state */
3b46e624 977
d720b93d 978 current_tb_modified = 1;
5fafdf24 979 cpu_restore_state(current_tb, env,
2e70f6ef 980 env->mem_io_pc, NULL);
6b917547
AL
981 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
982 &current_flags);
d720b93d
FB
983 }
984#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
985 /* we need to do that to handle the case where a signal
986 occurs while doing tb_phys_invalidate() */
987 saved_tb = NULL;
988 if (env) {
989 saved_tb = env->current_tb;
990 env->current_tb = NULL;
991 }
9fa3e853 992 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
993 if (env) {
994 env->current_tb = saved_tb;
995 if (env->interrupt_request && env->current_tb)
996 cpu_interrupt(env, env->interrupt_request);
997 }
9fa3e853
FB
998 }
999 tb = tb_next;
1000 }
1001#if !defined(CONFIG_USER_ONLY)
1002 /* if no code remaining, no need to continue to use slow writes */
1003 if (!p->first_tb) {
1004 invalidate_page_bitmap(p);
d720b93d 1005 if (is_cpu_write_access) {
2e70f6ef 1006 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1007 }
1008 }
1009#endif
1010#ifdef TARGET_HAS_PRECISE_SMC
1011 if (current_tb_modified) {
1012 /* we generate a block containing just the instruction
1013 modifying the memory. It will ensure that it cannot modify
1014 itself */
ea1c1802 1015 env->current_tb = NULL;
2e70f6ef 1016 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1017 cpu_resume_from_signal(env, NULL);
9fa3e853 1018 }
fd6ce8f6 1019#endif
9fa3e853 1020}
fd6ce8f6 1021
9fa3e853 1022/* len must be <= 8 and start must be a multiple of len */
c227f099 1023static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1024{
1025 PageDesc *p;
1026 int offset, b;
59817ccb 1027#if 0
a4193c8a 1028 if (1) {
93fcfe39
AL
1029 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1030 cpu_single_env->mem_io_vaddr, len,
1031 cpu_single_env->eip,
1032 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1033 }
1034#endif
9fa3e853 1035 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1036 if (!p)
9fa3e853
FB
1037 return;
1038 if (p->code_bitmap) {
1039 offset = start & ~TARGET_PAGE_MASK;
1040 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1041 if (b & ((1 << len) - 1))
1042 goto do_invalidate;
1043 } else {
1044 do_invalidate:
d720b93d 1045 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1046 }
1047}
1048
9fa3e853 1049#if !defined(CONFIG_SOFTMMU)
c227f099 1050static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1051 unsigned long pc, void *puc)
9fa3e853 1052{
6b917547 1053 TranslationBlock *tb;
9fa3e853 1054 PageDesc *p;
6b917547 1055 int n;
d720b93d 1056#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1057 TranslationBlock *current_tb = NULL;
d720b93d 1058 CPUState *env = cpu_single_env;
6b917547
AL
1059 int current_tb_modified = 0;
1060 target_ulong current_pc = 0;
1061 target_ulong current_cs_base = 0;
1062 int current_flags = 0;
d720b93d 1063#endif
9fa3e853
FB
1064
1065 addr &= TARGET_PAGE_MASK;
1066 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1067 if (!p)
9fa3e853
FB
1068 return;
1069 tb = p->first_tb;
d720b93d
FB
1070#ifdef TARGET_HAS_PRECISE_SMC
1071 if (tb && pc != 0) {
1072 current_tb = tb_find_pc(pc);
1073 }
1074#endif
9fa3e853
FB
1075 while (tb != NULL) {
1076 n = (long)tb & 3;
1077 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1078#ifdef TARGET_HAS_PRECISE_SMC
1079 if (current_tb == tb &&
2e70f6ef 1080 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1081 /* If we are modifying the current TB, we must stop
1082 its execution. We could be more precise by checking
1083 that the modification is after the current PC, but it
1084 would require a specialized function to partially
1085 restore the CPU state */
3b46e624 1086
d720b93d
FB
1087 current_tb_modified = 1;
1088 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1089 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1090 &current_flags);
d720b93d
FB
1091 }
1092#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1093 tb_phys_invalidate(tb, addr);
1094 tb = tb->page_next[n];
1095 }
fd6ce8f6 1096 p->first_tb = NULL;
d720b93d
FB
1097#ifdef TARGET_HAS_PRECISE_SMC
1098 if (current_tb_modified) {
1099 /* we generate a block containing just the instruction
1100 modifying the memory. It will ensure that it cannot modify
1101 itself */
ea1c1802 1102 env->current_tb = NULL;
2e70f6ef 1103 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1104 cpu_resume_from_signal(env, puc);
1105 }
1106#endif
fd6ce8f6 1107}
9fa3e853 1108#endif
fd6ce8f6
FB
1109
1110/* add the tb in the target page and protect it if necessary */
5fafdf24 1111static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1112 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1113{
1114 PageDesc *p;
9fa3e853
FB
1115 TranslationBlock *last_first_tb;
1116
1117 tb->page_addr[n] = page_addr;
3a7d929e 1118 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1119 tb->page_next[n] = p->first_tb;
1120 last_first_tb = p->first_tb;
1121 p->first_tb = (TranslationBlock *)((long)tb | n);
1122 invalidate_page_bitmap(p);
fd6ce8f6 1123
107db443 1124#if defined(TARGET_HAS_SMC) || 1
d720b93d 1125
9fa3e853 1126#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1127 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1128 target_ulong addr;
1129 PageDesc *p2;
9fa3e853
FB
1130 int prot;
1131
fd6ce8f6
FB
1132 /* force the host page as non writable (writes will have a
1133 page fault + mprotect overhead) */
53a5960a 1134 page_addr &= qemu_host_page_mask;
fd6ce8f6 1135 prot = 0;
53a5960a
PB
1136 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1137 addr += TARGET_PAGE_SIZE) {
1138
1139 p2 = page_find (addr >> TARGET_PAGE_BITS);
1140 if (!p2)
1141 continue;
1142 prot |= p2->flags;
1143 p2->flags &= ~PAGE_WRITE;
1144 page_get_flags(addr);
1145 }
5fafdf24 1146 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1147 (prot & PAGE_BITS) & ~PAGE_WRITE);
1148#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1149 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1150 page_addr);
fd6ce8f6 1151#endif
fd6ce8f6 1152 }
9fa3e853
FB
1153#else
1154 /* if some code is already present, then the pages are already
1155 protected. So we handle the case where only the first TB is
1156 allocated in a physical page */
1157 if (!last_first_tb) {
6a00d601 1158 tlb_protect_code(page_addr);
9fa3e853
FB
1159 }
1160#endif
d720b93d
FB
1161
1162#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1163}
1164
1165/* Allocate a new translation block. Flush the translation buffer if
1166 too many translation blocks or too much generated code. */
c27004ec 1167TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1168{
1169 TranslationBlock *tb;
fd6ce8f6 1170
26a5f13b
FB
1171 if (nb_tbs >= code_gen_max_blocks ||
1172 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1173 return NULL;
fd6ce8f6
FB
1174 tb = &tbs[nb_tbs++];
1175 tb->pc = pc;
b448f2f3 1176 tb->cflags = 0;
d4e8164f
FB
1177 return tb;
1178}
1179
2e70f6ef
PB
1180void tb_free(TranslationBlock *tb)
1181{
bf20dc07 1182 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1183 Ignore the hard cases and just back up if this TB happens to
1184 be the last one generated. */
1185 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1186 code_gen_ptr = tb->tc_ptr;
1187 nb_tbs--;
1188 }
1189}
1190
9fa3e853
FB
1191/* add a new TB and link it to the physical page tables. phys_page2 is
1192 (-1) to indicate that only one page contains the TB. */
5fafdf24 1193void tb_link_phys(TranslationBlock *tb,
9fa3e853 1194 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1195{
9fa3e853
FB
1196 unsigned int h;
1197 TranslationBlock **ptb;
1198
c8a706fe
PB
1199 /* Grab the mmap lock to stop another thread invalidating this TB
1200 before we are done. */
1201 mmap_lock();
9fa3e853
FB
1202 /* add in the physical hash table */
1203 h = tb_phys_hash_func(phys_pc);
1204 ptb = &tb_phys_hash[h];
1205 tb->phys_hash_next = *ptb;
1206 *ptb = tb;
fd6ce8f6
FB
1207
1208 /* add in the page list */
9fa3e853
FB
1209 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1210 if (phys_page2 != -1)
1211 tb_alloc_page(tb, 1, phys_page2);
1212 else
1213 tb->page_addr[1] = -1;
9fa3e853 1214
d4e8164f
FB
1215 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1216 tb->jmp_next[0] = NULL;
1217 tb->jmp_next[1] = NULL;
1218
1219 /* init original jump addresses */
1220 if (tb->tb_next_offset[0] != 0xffff)
1221 tb_reset_jump(tb, 0);
1222 if (tb->tb_next_offset[1] != 0xffff)
1223 tb_reset_jump(tb, 1);
8a40a180
FB
1224
1225#ifdef DEBUG_TB_CHECK
1226 tb_page_check();
1227#endif
c8a706fe 1228 mmap_unlock();
fd6ce8f6
FB
1229}
1230
9fa3e853
FB
1231/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1232 tb[1].tc_ptr. Return NULL if not found */
1233TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1234{
9fa3e853
FB
1235 int m_min, m_max, m;
1236 unsigned long v;
1237 TranslationBlock *tb;
a513fe19
FB
1238
1239 if (nb_tbs <= 0)
1240 return NULL;
1241 if (tc_ptr < (unsigned long)code_gen_buffer ||
1242 tc_ptr >= (unsigned long)code_gen_ptr)
1243 return NULL;
1244 /* binary search (cf Knuth) */
1245 m_min = 0;
1246 m_max = nb_tbs - 1;
1247 while (m_min <= m_max) {
1248 m = (m_min + m_max) >> 1;
1249 tb = &tbs[m];
1250 v = (unsigned long)tb->tc_ptr;
1251 if (v == tc_ptr)
1252 return tb;
1253 else if (tc_ptr < v) {
1254 m_max = m - 1;
1255 } else {
1256 m_min = m + 1;
1257 }
5fafdf24 1258 }
a513fe19
FB
1259 return &tbs[m_max];
1260}
7501267e 1261
ea041c0e
FB
1262static void tb_reset_jump_recursive(TranslationBlock *tb);
1263
1264static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1265{
1266 TranslationBlock *tb1, *tb_next, **ptb;
1267 unsigned int n1;
1268
1269 tb1 = tb->jmp_next[n];
1270 if (tb1 != NULL) {
1271 /* find head of list */
1272 for(;;) {
1273 n1 = (long)tb1 & 3;
1274 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1275 if (n1 == 2)
1276 break;
1277 tb1 = tb1->jmp_next[n1];
1278 }
1279 /* we are now sure now that tb jumps to tb1 */
1280 tb_next = tb1;
1281
1282 /* remove tb from the jmp_first list */
1283 ptb = &tb_next->jmp_first;
1284 for(;;) {
1285 tb1 = *ptb;
1286 n1 = (long)tb1 & 3;
1287 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1288 if (n1 == n && tb1 == tb)
1289 break;
1290 ptb = &tb1->jmp_next[n1];
1291 }
1292 *ptb = tb->jmp_next[n];
1293 tb->jmp_next[n] = NULL;
3b46e624 1294
ea041c0e
FB
1295 /* suppress the jump to next tb in generated code */
1296 tb_reset_jump(tb, n);
1297
0124311e 1298 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1299 tb_reset_jump_recursive(tb_next);
1300 }
1301}
1302
1303static void tb_reset_jump_recursive(TranslationBlock *tb)
1304{
1305 tb_reset_jump_recursive2(tb, 0);
1306 tb_reset_jump_recursive2(tb, 1);
1307}
1308
1fddef4b 1309#if defined(TARGET_HAS_ICE)
94df27fd
PB
1310#if defined(CONFIG_USER_ONLY)
1311static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1312{
1313 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1314}
1315#else
d720b93d
FB
1316static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317{
c227f099 1318 target_phys_addr_t addr;
9b3c35e0 1319 target_ulong pd;
c227f099 1320 ram_addr_t ram_addr;
c2f07f81 1321 PhysPageDesc *p;
d720b93d 1322
c2f07f81
PB
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1332}
c27004ec 1333#endif
94df27fd 1334#endif /* TARGET_HAS_ICE */
d720b93d 1335
6658ffb8 1336/* Add a watchpoint. */
a1d1bb31
AL
1337int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1338 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1339{
b4051334 1340 target_ulong len_mask = ~(len - 1);
c0ce998e 1341 CPUWatchpoint *wp;
6658ffb8 1342
b4051334
AL
1343 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1344 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1345 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1346 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1347 return -EINVAL;
1348 }
a1d1bb31 1349 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1350
1351 wp->vaddr = addr;
b4051334 1352 wp->len_mask = len_mask;
a1d1bb31
AL
1353 wp->flags = flags;
1354
2dc9f411 1355 /* keep all GDB-injected watchpoints in front */
c0ce998e 1356 if (flags & BP_GDB)
72cf2d4f 1357 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1358 else
72cf2d4f 1359 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1360
6658ffb8 1361 tlb_flush_page(env, addr);
a1d1bb31
AL
1362
1363 if (watchpoint)
1364 *watchpoint = wp;
1365 return 0;
6658ffb8
PB
1366}
1367
a1d1bb31
AL
1368/* Remove a specific watchpoint. */
1369int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1370 int flags)
6658ffb8 1371{
b4051334 1372 target_ulong len_mask = ~(len - 1);
a1d1bb31 1373 CPUWatchpoint *wp;
6658ffb8 1374
72cf2d4f 1375 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1376 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1377 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1378 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1379 return 0;
1380 }
1381 }
a1d1bb31 1382 return -ENOENT;
6658ffb8
PB
1383}
1384
a1d1bb31
AL
1385/* Remove a specific watchpoint by reference. */
1386void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1387{
72cf2d4f 1388 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1389
a1d1bb31
AL
1390 tlb_flush_page(env, watchpoint->vaddr);
1391
1392 qemu_free(watchpoint);
1393}
1394
1395/* Remove all matching watchpoints. */
1396void cpu_watchpoint_remove_all(CPUState *env, int mask)
1397{
c0ce998e 1398 CPUWatchpoint *wp, *next;
a1d1bb31 1399
72cf2d4f 1400 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1401 if (wp->flags & mask)
1402 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1403 }
7d03f82f
EI
1404}
1405
a1d1bb31
AL
1406/* Add a breakpoint. */
1407int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1408 CPUBreakpoint **breakpoint)
4c3a88a2 1409{
1fddef4b 1410#if defined(TARGET_HAS_ICE)
c0ce998e 1411 CPUBreakpoint *bp;
3b46e624 1412
a1d1bb31 1413 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1414
a1d1bb31
AL
1415 bp->pc = pc;
1416 bp->flags = flags;
1417
2dc9f411 1418 /* keep all GDB-injected breakpoints in front */
c0ce998e 1419 if (flags & BP_GDB)
72cf2d4f 1420 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1421 else
72cf2d4f 1422 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1423
d720b93d 1424 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1425
1426 if (breakpoint)
1427 *breakpoint = bp;
4c3a88a2
FB
1428 return 0;
1429#else
a1d1bb31 1430 return -ENOSYS;
4c3a88a2
FB
1431#endif
1432}
1433
a1d1bb31
AL
1434/* Remove a specific breakpoint. */
1435int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1436{
7d03f82f 1437#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1438 CPUBreakpoint *bp;
1439
72cf2d4f 1440 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1441 if (bp->pc == pc && bp->flags == flags) {
1442 cpu_breakpoint_remove_by_ref(env, bp);
1443 return 0;
1444 }
7d03f82f 1445 }
a1d1bb31
AL
1446 return -ENOENT;
1447#else
1448 return -ENOSYS;
7d03f82f
EI
1449#endif
1450}
1451
a1d1bb31
AL
1452/* Remove a specific breakpoint by reference. */
1453void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1454{
1fddef4b 1455#if defined(TARGET_HAS_ICE)
72cf2d4f 1456 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1457
a1d1bb31
AL
1458 breakpoint_invalidate(env, breakpoint->pc);
1459
1460 qemu_free(breakpoint);
1461#endif
1462}
1463
1464/* Remove all matching breakpoints. */
1465void cpu_breakpoint_remove_all(CPUState *env, int mask)
1466{
1467#if defined(TARGET_HAS_ICE)
c0ce998e 1468 CPUBreakpoint *bp, *next;
a1d1bb31 1469
72cf2d4f 1470 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1471 if (bp->flags & mask)
1472 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1473 }
4c3a88a2
FB
1474#endif
1475}
1476
c33a346e
FB
1477/* enable or disable single step mode. EXCP_DEBUG is returned by the
1478 CPU loop after each instruction */
1479void cpu_single_step(CPUState *env, int enabled)
1480{
1fddef4b 1481#if defined(TARGET_HAS_ICE)
c33a346e
FB
1482 if (env->singlestep_enabled != enabled) {
1483 env->singlestep_enabled = enabled;
e22a25c9
AL
1484 if (kvm_enabled())
1485 kvm_update_guest_debug(env, 0);
1486 else {
ccbb4d44 1487 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1488 /* XXX: only flush what is necessary */
1489 tb_flush(env);
1490 }
c33a346e
FB
1491 }
1492#endif
1493}
1494
34865134
FB
1495/* enable or disable low levels log */
1496void cpu_set_log(int log_flags)
1497{
1498 loglevel = log_flags;
1499 if (loglevel && !logfile) {
11fcfab4 1500 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1501 if (!logfile) {
1502 perror(logfilename);
1503 _exit(1);
1504 }
9fa3e853
FB
1505#if !defined(CONFIG_SOFTMMU)
1506 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1507 {
b55266b5 1508 static char logfile_buf[4096];
9fa3e853
FB
1509 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1510 }
bf65f53f
FN
1511#elif !defined(_WIN32)
1512 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1513 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1514#endif
e735b91c
PB
1515 log_append = 1;
1516 }
1517 if (!loglevel && logfile) {
1518 fclose(logfile);
1519 logfile = NULL;
34865134
FB
1520 }
1521}
1522
1523void cpu_set_log_filename(const char *filename)
1524{
1525 logfilename = strdup(filename);
e735b91c
PB
1526 if (logfile) {
1527 fclose(logfile);
1528 logfile = NULL;
1529 }
1530 cpu_set_log(loglevel);
34865134 1531}
c33a346e 1532
3098dba0 1533static void cpu_unlink_tb(CPUState *env)
ea041c0e 1534{
3098dba0
AJ
1535 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1536 problem and hope the cpu will stop of its own accord. For userspace
1537 emulation this often isn't actually as bad as it sounds. Often
1538 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1539 TranslationBlock *tb;
c227f099 1540 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1541
cab1b4bd 1542 spin_lock(&interrupt_lock);
3098dba0
AJ
1543 tb = env->current_tb;
1544 /* if the cpu is currently executing code, we must unlink it and
1545 all the potentially executing TB */
f76cfe56 1546 if (tb) {
3098dba0
AJ
1547 env->current_tb = NULL;
1548 tb_reset_jump_recursive(tb);
be214e6c 1549 }
cab1b4bd 1550 spin_unlock(&interrupt_lock);
3098dba0
AJ
1551}
1552
1553/* mask must never be zero, except for A20 change call */
1554void cpu_interrupt(CPUState *env, int mask)
1555{
1556 int old_mask;
be214e6c 1557
2e70f6ef 1558 old_mask = env->interrupt_request;
68a79315 1559 env->interrupt_request |= mask;
3098dba0 1560
8edac960
AL
1561#ifndef CONFIG_USER_ONLY
1562 /*
1563 * If called from iothread context, wake the target cpu in
1564 * case its halted.
1565 */
1566 if (!qemu_cpu_self(env)) {
1567 qemu_cpu_kick(env);
1568 return;
1569 }
1570#endif
1571
2e70f6ef 1572 if (use_icount) {
266910c4 1573 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1574#ifndef CONFIG_USER_ONLY
2e70f6ef 1575 if (!can_do_io(env)
be214e6c 1576 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1577 cpu_abort(env, "Raised interrupt while not in I/O function");
1578 }
1579#endif
1580 } else {
3098dba0 1581 cpu_unlink_tb(env);
ea041c0e
FB
1582 }
1583}
1584
b54ad049
FB
1585void cpu_reset_interrupt(CPUState *env, int mask)
1586{
1587 env->interrupt_request &= ~mask;
1588}
1589
3098dba0
AJ
1590void cpu_exit(CPUState *env)
1591{
1592 env->exit_request = 1;
1593 cpu_unlink_tb(env);
1594}
1595
c7cd6a37 1596const CPULogItem cpu_log_items[] = {
5fafdf24 1597 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1598 "show generated host assembly code for each compiled TB" },
1599 { CPU_LOG_TB_IN_ASM, "in_asm",
1600 "show target assembly code for each compiled TB" },
5fafdf24 1601 { CPU_LOG_TB_OP, "op",
57fec1fe 1602 "show micro ops for each compiled TB" },
f193c797 1603 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1604 "show micro ops "
1605#ifdef TARGET_I386
1606 "before eflags optimization and "
f193c797 1607#endif
e01a1157 1608 "after liveness analysis" },
f193c797
FB
1609 { CPU_LOG_INT, "int",
1610 "show interrupts/exceptions in short format" },
1611 { CPU_LOG_EXEC, "exec",
1612 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1613 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1614 "show CPU state before block translation" },
f193c797
FB
1615#ifdef TARGET_I386
1616 { CPU_LOG_PCALL, "pcall",
1617 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1618 { CPU_LOG_RESET, "cpu_reset",
1619 "show CPU state before CPU resets" },
f193c797 1620#endif
8e3a9fd2 1621#ifdef DEBUG_IOPORT
fd872598
FB
1622 { CPU_LOG_IOPORT, "ioport",
1623 "show all i/o ports accesses" },
8e3a9fd2 1624#endif
f193c797
FB
1625 { 0, NULL, NULL },
1626};
1627
f6f3fbca
MT
1628#ifndef CONFIG_USER_ONLY
1629static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1630 = QLIST_HEAD_INITIALIZER(memory_client_list);
1631
1632static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1633 ram_addr_t size,
1634 ram_addr_t phys_offset)
1635{
1636 CPUPhysMemoryClient *client;
1637 QLIST_FOREACH(client, &memory_client_list, list) {
1638 client->set_memory(client, start_addr, size, phys_offset);
1639 }
1640}
1641
1642static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1643 target_phys_addr_t end)
1644{
1645 CPUPhysMemoryClient *client;
1646 QLIST_FOREACH(client, &memory_client_list, list) {
1647 int r = client->sync_dirty_bitmap(client, start, end);
1648 if (r < 0)
1649 return r;
1650 }
1651 return 0;
1652}
1653
1654static int cpu_notify_migration_log(int enable)
1655{
1656 CPUPhysMemoryClient *client;
1657 QLIST_FOREACH(client, &memory_client_list, list) {
1658 int r = client->migration_log(client, enable);
1659 if (r < 0)
1660 return r;
1661 }
1662 return 0;
1663}
1664
1665static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1666 CPUPhysMemoryClient *client)
1667{
1668 PhysPageDesc *pd;
1669 int l1, l2;
1670
1671 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1672 pd = phys_map[l1];
1673 if (!pd) {
1674 continue;
1675 }
1676 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1677 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1678 continue;
1679 }
1680 client->set_memory(client, pd[l2].region_offset,
1681 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1682 }
1683 }
1684}
1685
1686static void phys_page_for_each(CPUPhysMemoryClient *client)
1687{
1688#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1689
1690#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1691#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1692#endif
1693 void **phys_map = (void **)l1_phys_map;
1694 int l1;
1695 if (!l1_phys_map) {
1696 return;
1697 }
1698 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1699 if (phys_map[l1]) {
1700 phys_page_for_each_in_l1_map(phys_map[l1], client);
1701 }
1702 }
1703#else
1704 if (!l1_phys_map) {
1705 return;
1706 }
1707 phys_page_for_each_in_l1_map(l1_phys_map, client);
1708#endif
1709}
1710
1711void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1712{
1713 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1714 phys_page_for_each(client);
1715}
1716
1717void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1718{
1719 QLIST_REMOVE(client, list);
1720}
1721#endif
1722
f193c797
FB
1723static int cmp1(const char *s1, int n, const char *s2)
1724{
1725 if (strlen(s2) != n)
1726 return 0;
1727 return memcmp(s1, s2, n) == 0;
1728}
3b46e624 1729
f193c797
FB
1730/* takes a comma separated list of log masks. Return 0 if error. */
1731int cpu_str_to_log_mask(const char *str)
1732{
c7cd6a37 1733 const CPULogItem *item;
f193c797
FB
1734 int mask;
1735 const char *p, *p1;
1736
1737 p = str;
1738 mask = 0;
1739 for(;;) {
1740 p1 = strchr(p, ',');
1741 if (!p1)
1742 p1 = p + strlen(p);
8e3a9fd2
FB
1743 if(cmp1(p,p1-p,"all")) {
1744 for(item = cpu_log_items; item->mask != 0; item++) {
1745 mask |= item->mask;
1746 }
1747 } else {
f193c797
FB
1748 for(item = cpu_log_items; item->mask != 0; item++) {
1749 if (cmp1(p, p1 - p, item->name))
1750 goto found;
1751 }
1752 return 0;
8e3a9fd2 1753 }
f193c797
FB
1754 found:
1755 mask |= item->mask;
1756 if (*p1 != ',')
1757 break;
1758 p = p1 + 1;
1759 }
1760 return mask;
1761}
ea041c0e 1762
7501267e
FB
1763void cpu_abort(CPUState *env, const char *fmt, ...)
1764{
1765 va_list ap;
493ae1f0 1766 va_list ap2;
7501267e
FB
1767
1768 va_start(ap, fmt);
493ae1f0 1769 va_copy(ap2, ap);
7501267e
FB
1770 fprintf(stderr, "qemu: fatal: ");
1771 vfprintf(stderr, fmt, ap);
1772 fprintf(stderr, "\n");
1773#ifdef TARGET_I386
7fe48483
FB
1774 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1775#else
1776 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1777#endif
93fcfe39
AL
1778 if (qemu_log_enabled()) {
1779 qemu_log("qemu: fatal: ");
1780 qemu_log_vprintf(fmt, ap2);
1781 qemu_log("\n");
f9373291 1782#ifdef TARGET_I386
93fcfe39 1783 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1784#else
93fcfe39 1785 log_cpu_state(env, 0);
f9373291 1786#endif
31b1a7b4 1787 qemu_log_flush();
93fcfe39 1788 qemu_log_close();
924edcae 1789 }
493ae1f0 1790 va_end(ap2);
f9373291 1791 va_end(ap);
fd052bf6
RV
1792#if defined(CONFIG_USER_ONLY)
1793 {
1794 struct sigaction act;
1795 sigfillset(&act.sa_mask);
1796 act.sa_handler = SIG_DFL;
1797 sigaction(SIGABRT, &act, NULL);
1798 }
1799#endif
7501267e
FB
1800 abort();
1801}
1802
c5be9f08
TS
1803CPUState *cpu_copy(CPUState *env)
1804{
01ba9816 1805 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1806 CPUState *next_cpu = new_env->next_cpu;
1807 int cpu_index = new_env->cpu_index;
5a38f081
AL
1808#if defined(TARGET_HAS_ICE)
1809 CPUBreakpoint *bp;
1810 CPUWatchpoint *wp;
1811#endif
1812
c5be9f08 1813 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1814
1815 /* Preserve chaining and index. */
c5be9f08
TS
1816 new_env->next_cpu = next_cpu;
1817 new_env->cpu_index = cpu_index;
5a38f081
AL
1818
1819 /* Clone all break/watchpoints.
1820 Note: Once we support ptrace with hw-debug register access, make sure
1821 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1822 QTAILQ_INIT(&env->breakpoints);
1823 QTAILQ_INIT(&env->watchpoints);
5a38f081 1824#if defined(TARGET_HAS_ICE)
72cf2d4f 1825 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1826 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1827 }
72cf2d4f 1828 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1829 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1830 wp->flags, NULL);
1831 }
1832#endif
1833
c5be9f08
TS
1834 return new_env;
1835}
1836
0124311e
FB
1837#if !defined(CONFIG_USER_ONLY)
1838
5c751e99
EI
1839static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1840{
1841 unsigned int i;
1842
1843 /* Discard jump cache entries for any tb which might potentially
1844 overlap the flushed page. */
1845 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1846 memset (&env->tb_jmp_cache[i], 0,
1847 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1848
1849 i = tb_jmp_cache_hash_page(addr);
1850 memset (&env->tb_jmp_cache[i], 0,
1851 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1852}
1853
08738984
IK
1854static CPUTLBEntry s_cputlb_empty_entry = {
1855 .addr_read = -1,
1856 .addr_write = -1,
1857 .addr_code = -1,
1858 .addend = -1,
1859};
1860
ee8b7021
FB
1861/* NOTE: if flush_global is true, also flush global entries (not
1862 implemented yet) */
1863void tlb_flush(CPUState *env, int flush_global)
33417e70 1864{
33417e70 1865 int i;
0124311e 1866
9fa3e853
FB
1867#if defined(DEBUG_TLB)
1868 printf("tlb_flush:\n");
1869#endif
0124311e
FB
1870 /* must reset current TB so that interrupts cannot modify the
1871 links while we are modifying them */
1872 env->current_tb = NULL;
1873
33417e70 1874 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1875 int mmu_idx;
1876 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1877 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1878 }
33417e70 1879 }
9fa3e853 1880
8a40a180 1881 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1882
e3db7226 1883 tlb_flush_count++;
33417e70
FB
1884}
1885
274da6b2 1886static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1887{
5fafdf24 1888 if (addr == (tlb_entry->addr_read &
84b7b8e7 1889 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1890 addr == (tlb_entry->addr_write &
84b7b8e7 1891 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1892 addr == (tlb_entry->addr_code &
84b7b8e7 1893 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1894 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1895 }
61382a50
FB
1896}
1897
2e12669a 1898void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1899{
8a40a180 1900 int i;
cfde4bd9 1901 int mmu_idx;
0124311e 1902
9fa3e853 1903#if defined(DEBUG_TLB)
108c49b8 1904 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1905#endif
0124311e
FB
1906 /* must reset current TB so that interrupts cannot modify the
1907 links while we are modifying them */
1908 env->current_tb = NULL;
61382a50
FB
1909
1910 addr &= TARGET_PAGE_MASK;
1911 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1912 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1913 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1914
5c751e99 1915 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1916}
1917
9fa3e853
FB
1918/* update the TLBs so that writes to code in the virtual page 'addr'
1919 can be detected */
c227f099 1920static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1921{
5fafdf24 1922 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1923 ram_addr + TARGET_PAGE_SIZE,
1924 CODE_DIRTY_FLAG);
9fa3e853
FB
1925}
1926
9fa3e853 1927/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1928 tested for self modifying code */
c227f099 1929static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1930 target_ulong vaddr)
9fa3e853 1931{
3a7d929e 1932 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1933}
1934
5fafdf24 1935static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1936 unsigned long start, unsigned long length)
1937{
1938 unsigned long addr;
84b7b8e7
FB
1939 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1940 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1941 if ((addr - start) < length) {
0f459d16 1942 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1943 }
1944 }
1945}
1946
5579c7f3 1947/* Note: start and end must be within the same ram block. */
c227f099 1948void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1949 int dirty_flags)
1ccde1cb
FB
1950{
1951 CPUState *env;
4f2ac237 1952 unsigned long length, start1;
0a962c02
FB
1953 int i, mask, len;
1954 uint8_t *p;
1ccde1cb
FB
1955
1956 start &= TARGET_PAGE_MASK;
1957 end = TARGET_PAGE_ALIGN(end);
1958
1959 length = end - start;
1960 if (length == 0)
1961 return;
0a962c02 1962 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1963 mask = ~dirty_flags;
1964 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1965 for(i = 0; i < len; i++)
1966 p[i] &= mask;
1967
1ccde1cb
FB
1968 /* we modify the TLB cache so that the dirty bit will be set again
1969 when accessing the range */
5579c7f3
PB
1970 start1 = (unsigned long)qemu_get_ram_ptr(start);
1971 /* Chek that we don't span multiple blocks - this breaks the
1972 address comparisons below. */
1973 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1974 != (end - 1) - start) {
1975 abort();
1976 }
1977
6a00d601 1978 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1979 int mmu_idx;
1980 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1981 for(i = 0; i < CPU_TLB_SIZE; i++)
1982 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1983 start1, length);
1984 }
6a00d601 1985 }
1ccde1cb
FB
1986}
1987
74576198
AL
1988int cpu_physical_memory_set_dirty_tracking(int enable)
1989{
f6f3fbca 1990 int ret = 0;
74576198 1991 in_migration = enable;
f6f3fbca
MT
1992 ret = cpu_notify_migration_log(!!enable);
1993 return ret;
74576198
AL
1994}
1995
1996int cpu_physical_memory_get_dirty_tracking(void)
1997{
1998 return in_migration;
1999}
2000
c227f099
AL
2001int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2002 target_phys_addr_t end_addr)
2bec46dc 2003{
7b8f3b78 2004 int ret;
151f7749 2005
f6f3fbca 2006 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2007 return ret;
2bec46dc
AL
2008}
2009
3a7d929e
FB
2010static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2011{
c227f099 2012 ram_addr_t ram_addr;
5579c7f3 2013 void *p;
3a7d929e 2014
84b7b8e7 2015 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2016 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2017 + tlb_entry->addend);
2018 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2019 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2020 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2021 }
2022 }
2023}
2024
2025/* update the TLB according to the current state of the dirty bits */
2026void cpu_tlb_update_dirty(CPUState *env)
2027{
2028 int i;
cfde4bd9
IY
2029 int mmu_idx;
2030 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2031 for(i = 0; i < CPU_TLB_SIZE; i++)
2032 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2033 }
3a7d929e
FB
2034}
2035
0f459d16 2036static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2037{
0f459d16
PB
2038 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2039 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2040}
2041
0f459d16
PB
2042/* update the TLB corresponding to virtual page vaddr
2043 so that it is no longer dirty */
2044static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2045{
1ccde1cb 2046 int i;
cfde4bd9 2047 int mmu_idx;
1ccde1cb 2048
0f459d16 2049 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2050 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2051 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2052 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2053}
2054
59817ccb
FB
2055/* add a new TLB entry. At most one entry for a given virtual address
2056 is permitted. Return 0 if OK or 2 if the page could not be mapped
2057 (can only happen in non SOFTMMU mode for I/O pages or pages
2058 conflicting with the host address space). */
5fafdf24 2059int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2060 target_phys_addr_t paddr, int prot,
6ebbf390 2061 int mmu_idx, int is_softmmu)
9fa3e853 2062{
92e873b9 2063 PhysPageDesc *p;
4f2ac237 2064 unsigned long pd;
9fa3e853 2065 unsigned int index;
4f2ac237 2066 target_ulong address;
0f459d16 2067 target_ulong code_address;
c227f099 2068 target_phys_addr_t addend;
9fa3e853 2069 int ret;
84b7b8e7 2070 CPUTLBEntry *te;
a1d1bb31 2071 CPUWatchpoint *wp;
c227f099 2072 target_phys_addr_t iotlb;
9fa3e853 2073
92e873b9 2074 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2075 if (!p) {
2076 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2077 } else {
2078 pd = p->phys_offset;
9fa3e853
FB
2079 }
2080#if defined(DEBUG_TLB)
6ebbf390
JM
2081 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2082 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2083#endif
2084
2085 ret = 0;
0f459d16
PB
2086 address = vaddr;
2087 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2088 /* IO memory case (romd handled later) */
2089 address |= TLB_MMIO;
2090 }
5579c7f3 2091 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2092 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2093 /* Normal RAM. */
2094 iotlb = pd & TARGET_PAGE_MASK;
2095 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2096 iotlb |= IO_MEM_NOTDIRTY;
2097 else
2098 iotlb |= IO_MEM_ROM;
2099 } else {
ccbb4d44 2100 /* IO handlers are currently passed a physical address.
0f459d16
PB
2101 It would be nice to pass an offset from the base address
2102 of that region. This would avoid having to special case RAM,
2103 and avoid full address decoding in every device.
2104 We can't use the high bits of pd for this because
2105 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2106 iotlb = (pd & ~TARGET_PAGE_MASK);
2107 if (p) {
8da3ff18
PB
2108 iotlb += p->region_offset;
2109 } else {
2110 iotlb += paddr;
2111 }
0f459d16
PB
2112 }
2113
2114 code_address = address;
2115 /* Make accesses to pages with watchpoints go via the
2116 watchpoint trap routines. */
72cf2d4f 2117 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2118 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2119 iotlb = io_mem_watch + paddr;
2120 /* TODO: The memory case can be optimized by not trapping
2121 reads of pages with a write breakpoint. */
2122 address |= TLB_MMIO;
6658ffb8 2123 }
0f459d16 2124 }
d79acba4 2125
0f459d16
PB
2126 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2127 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2128 te = &env->tlb_table[mmu_idx][index];
2129 te->addend = addend - vaddr;
2130 if (prot & PAGE_READ) {
2131 te->addr_read = address;
2132 } else {
2133 te->addr_read = -1;
2134 }
5c751e99 2135
0f459d16
PB
2136 if (prot & PAGE_EXEC) {
2137 te->addr_code = code_address;
2138 } else {
2139 te->addr_code = -1;
2140 }
2141 if (prot & PAGE_WRITE) {
2142 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2143 (pd & IO_MEM_ROMD)) {
2144 /* Write access calls the I/O callback. */
2145 te->addr_write = address | TLB_MMIO;
2146 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2147 !cpu_physical_memory_is_dirty(pd)) {
2148 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2149 } else {
0f459d16 2150 te->addr_write = address;
9fa3e853 2151 }
0f459d16
PB
2152 } else {
2153 te->addr_write = -1;
9fa3e853 2154 }
9fa3e853
FB
2155 return ret;
2156}
2157
0124311e
FB
2158#else
2159
ee8b7021 2160void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2161{
2162}
2163
2e12669a 2164void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2165{
2166}
2167
5fafdf24 2168int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2169 target_phys_addr_t paddr, int prot,
6ebbf390 2170 int mmu_idx, int is_softmmu)
9fa3e853
FB
2171{
2172 return 0;
2173}
0124311e 2174
edf8e2af
MW
2175/*
2176 * Walks guest process memory "regions" one by one
2177 * and calls callback function 'fn' for each region.
2178 */
2179int walk_memory_regions(void *priv,
2180 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2181{
9fa3e853 2182 unsigned long start, end;
edf8e2af 2183 PageDesc *p = NULL;
9fa3e853 2184 int i, j, prot, prot1;
edf8e2af 2185 int rc = 0;
33417e70 2186
edf8e2af 2187 start = end = -1;
9fa3e853 2188 prot = 0;
edf8e2af
MW
2189
2190 for (i = 0; i <= L1_SIZE; i++) {
2191 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2192 for (j = 0; j < L2_SIZE; j++) {
2193 prot1 = (p == NULL) ? 0 : p[j].flags;
2194 /*
2195 * "region" is one continuous chunk of memory
2196 * that has same protection flags set.
2197 */
9fa3e853
FB
2198 if (prot1 != prot) {
2199 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2200 if (start != -1) {
edf8e2af
MW
2201 rc = (*fn)(priv, start, end, prot);
2202 /* callback can stop iteration by returning != 0 */
2203 if (rc != 0)
2204 return (rc);
9fa3e853
FB
2205 }
2206 if (prot1 != 0)
2207 start = end;
2208 else
2209 start = -1;
2210 prot = prot1;
2211 }
edf8e2af 2212 if (p == NULL)
9fa3e853
FB
2213 break;
2214 }
33417e70 2215 }
edf8e2af
MW
2216 return (rc);
2217}
2218
2219static int dump_region(void *priv, unsigned long start,
2220 unsigned long end, unsigned long prot)
2221{
2222 FILE *f = (FILE *)priv;
2223
2224 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2225 start, end, end - start,
2226 ((prot & PAGE_READ) ? 'r' : '-'),
2227 ((prot & PAGE_WRITE) ? 'w' : '-'),
2228 ((prot & PAGE_EXEC) ? 'x' : '-'));
2229
2230 return (0);
2231}
2232
2233/* dump memory mappings */
2234void page_dump(FILE *f)
2235{
2236 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2237 "start", "end", "size", "prot");
2238 walk_memory_regions(f, dump_region);
33417e70
FB
2239}
2240
53a5960a 2241int page_get_flags(target_ulong address)
33417e70 2242{
9fa3e853
FB
2243 PageDesc *p;
2244
2245 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2246 if (!p)
9fa3e853
FB
2247 return 0;
2248 return p->flags;
2249}
2250
2251/* modify the flags of a page and invalidate the code if
ccbb4d44 2252 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2253 depending on PAGE_WRITE */
53a5960a 2254void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2255{
2256 PageDesc *p;
53a5960a 2257 target_ulong addr;
9fa3e853 2258
c8a706fe 2259 /* mmap_lock should already be held. */
9fa3e853
FB
2260 start = start & TARGET_PAGE_MASK;
2261 end = TARGET_PAGE_ALIGN(end);
2262 if (flags & PAGE_WRITE)
2263 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2264 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2265 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2266 /* We may be called for host regions that are outside guest
2267 address space. */
2268 if (!p)
2269 return;
9fa3e853
FB
2270 /* if the write protection is set, then we invalidate the code
2271 inside */
5fafdf24 2272 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2273 (flags & PAGE_WRITE) &&
2274 p->first_tb) {
d720b93d 2275 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2276 }
2277 p->flags = flags;
2278 }
33417e70
FB
2279}
2280
3d97b40b
TS
2281int page_check_range(target_ulong start, target_ulong len, int flags)
2282{
2283 PageDesc *p;
2284 target_ulong end;
2285 target_ulong addr;
2286
55f280c9
AZ
2287 if (start + len < start)
2288 /* we've wrapped around */
2289 return -1;
2290
3d97b40b
TS
2291 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2292 start = start & TARGET_PAGE_MASK;
2293
3d97b40b
TS
2294 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2295 p = page_find(addr >> TARGET_PAGE_BITS);
2296 if( !p )
2297 return -1;
2298 if( !(p->flags & PAGE_VALID) )
2299 return -1;
2300
dae3270c 2301 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2302 return -1;
dae3270c
FB
2303 if (flags & PAGE_WRITE) {
2304 if (!(p->flags & PAGE_WRITE_ORG))
2305 return -1;
2306 /* unprotect the page if it was put read-only because it
2307 contains translated code */
2308 if (!(p->flags & PAGE_WRITE)) {
2309 if (!page_unprotect(addr, 0, NULL))
2310 return -1;
2311 }
2312 return 0;
2313 }
3d97b40b
TS
2314 }
2315 return 0;
2316}
2317
9fa3e853 2318/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2319 page. Return TRUE if the fault was successfully handled. */
53a5960a 2320int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2321{
2322 unsigned int page_index, prot, pindex;
2323 PageDesc *p, *p1;
53a5960a 2324 target_ulong host_start, host_end, addr;
9fa3e853 2325
c8a706fe
PB
2326 /* Technically this isn't safe inside a signal handler. However we
2327 know this only ever happens in a synchronous SEGV handler, so in
2328 practice it seems to be ok. */
2329 mmap_lock();
2330
83fb7adf 2331 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2332 page_index = host_start >> TARGET_PAGE_BITS;
2333 p1 = page_find(page_index);
c8a706fe
PB
2334 if (!p1) {
2335 mmap_unlock();
9fa3e853 2336 return 0;
c8a706fe 2337 }
83fb7adf 2338 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2339 p = p1;
2340 prot = 0;
2341 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2342 prot |= p->flags;
2343 p++;
2344 }
2345 /* if the page was really writable, then we change its
2346 protection back to writable */
2347 if (prot & PAGE_WRITE_ORG) {
2348 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2349 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2350 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2351 (prot & PAGE_BITS) | PAGE_WRITE);
2352 p1[pindex].flags |= PAGE_WRITE;
2353 /* and since the content will be modified, we must invalidate
2354 the corresponding translated code. */
d720b93d 2355 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2356#ifdef DEBUG_TB_CHECK
2357 tb_invalidate_check(address);
2358#endif
c8a706fe 2359 mmap_unlock();
9fa3e853
FB
2360 return 1;
2361 }
2362 }
c8a706fe 2363 mmap_unlock();
9fa3e853
FB
2364 return 0;
2365}
2366
6a00d601
FB
2367static inline void tlb_set_dirty(CPUState *env,
2368 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2369{
2370}
9fa3e853
FB
2371#endif /* defined(CONFIG_USER_ONLY) */
2372
e2eef170 2373#if !defined(CONFIG_USER_ONLY)
8da3ff18 2374
c04b2b78
PB
2375#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2376typedef struct subpage_t {
2377 target_phys_addr_t base;
2378 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2379 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2380 void *opaque[TARGET_PAGE_SIZE][2][4];
2381 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2382} subpage_t;
2383
c227f099
AL
2384static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2385 ram_addr_t memory, ram_addr_t region_offset);
2386static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2387 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2388#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2389 need_subpage) \
2390 do { \
2391 if (addr > start_addr) \
2392 start_addr2 = 0; \
2393 else { \
2394 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2395 if (start_addr2 > 0) \
2396 need_subpage = 1; \
2397 } \
2398 \
49e9fba2 2399 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2400 end_addr2 = TARGET_PAGE_SIZE - 1; \
2401 else { \
2402 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2403 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2404 need_subpage = 1; \
2405 } \
2406 } while (0)
2407
8f2498f9
MT
2408/* register physical memory.
2409 For RAM, 'size' must be a multiple of the target page size.
2410 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2411 io memory page. The address used when calling the IO function is
2412 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2413 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2414 before calculating this offset. This should not be a problem unless
2415 the low bits of start_addr and region_offset differ. */
c227f099
AL
2416void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2417 ram_addr_t size,
2418 ram_addr_t phys_offset,
2419 ram_addr_t region_offset)
33417e70 2420{
c227f099 2421 target_phys_addr_t addr, end_addr;
92e873b9 2422 PhysPageDesc *p;
9d42037b 2423 CPUState *env;
c227f099 2424 ram_addr_t orig_size = size;
db7b5426 2425 void *subpage;
33417e70 2426
f6f3fbca
MT
2427 cpu_notify_set_memory(start_addr, size, phys_offset);
2428
67c4d23c
PB
2429 if (phys_offset == IO_MEM_UNASSIGNED) {
2430 region_offset = start_addr;
2431 }
8da3ff18 2432 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2433 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2434 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2435 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2436 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2437 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2438 ram_addr_t orig_memory = p->phys_offset;
2439 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2440 int need_subpage = 0;
2441
2442 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2443 need_subpage);
4254fab8 2444 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2445 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2446 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2447 &p->phys_offset, orig_memory,
2448 p->region_offset);
db7b5426
BS
2449 } else {
2450 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2451 >> IO_MEM_SHIFT];
2452 }
8da3ff18
PB
2453 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2454 region_offset);
2455 p->region_offset = 0;
db7b5426
BS
2456 } else {
2457 p->phys_offset = phys_offset;
2458 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2459 (phys_offset & IO_MEM_ROMD))
2460 phys_offset += TARGET_PAGE_SIZE;
2461 }
2462 } else {
2463 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2464 p->phys_offset = phys_offset;
8da3ff18 2465 p->region_offset = region_offset;
db7b5426 2466 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2467 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2468 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2469 } else {
c227f099 2470 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2471 int need_subpage = 0;
2472
2473 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2474 end_addr2, need_subpage);
2475
4254fab8 2476 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2477 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2478 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2479 addr & TARGET_PAGE_MASK);
db7b5426 2480 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2481 phys_offset, region_offset);
2482 p->region_offset = 0;
db7b5426
BS
2483 }
2484 }
2485 }
8da3ff18 2486 region_offset += TARGET_PAGE_SIZE;
33417e70 2487 }
3b46e624 2488
9d42037b
FB
2489 /* since each CPU stores ram addresses in its TLB cache, we must
2490 reset the modified entries */
2491 /* XXX: slow ! */
2492 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2493 tlb_flush(env, 1);
2494 }
33417e70
FB
2495}
2496
ba863458 2497/* XXX: temporary until new memory mapping API */
c227f099 2498ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2499{
2500 PhysPageDesc *p;
2501
2502 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2503 if (!p)
2504 return IO_MEM_UNASSIGNED;
2505 return p->phys_offset;
2506}
2507
c227f099 2508void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2509{
2510 if (kvm_enabled())
2511 kvm_coalesce_mmio_region(addr, size);
2512}
2513
c227f099 2514void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2515{
2516 if (kvm_enabled())
2517 kvm_uncoalesce_mmio_region(addr, size);
2518}
2519
62a2744c
SY
2520void qemu_flush_coalesced_mmio_buffer(void)
2521{
2522 if (kvm_enabled())
2523 kvm_flush_coalesced_mmio_buffer();
2524}
2525
c227f099 2526ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2527{
2528 RAMBlock *new_block;
2529
94a6b54f
PB
2530 size = TARGET_PAGE_ALIGN(size);
2531 new_block = qemu_malloc(sizeof(*new_block));
2532
6b02494d
AG
2533#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2534 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2535 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2536 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2537#else
94a6b54f 2538 new_block->host = qemu_vmalloc(size);
6b02494d 2539#endif
ccb167e9
IE
2540#ifdef MADV_MERGEABLE
2541 madvise(new_block->host, size, MADV_MERGEABLE);
2542#endif
94a6b54f
PB
2543 new_block->offset = last_ram_offset;
2544 new_block->length = size;
2545
2546 new_block->next = ram_blocks;
2547 ram_blocks = new_block;
2548
2549 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2550 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2551 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2552 0xff, size >> TARGET_PAGE_BITS);
2553
2554 last_ram_offset += size;
2555
6f0437e8
JK
2556 if (kvm_enabled())
2557 kvm_setup_guest_memory(new_block->host, size);
2558
94a6b54f
PB
2559 return new_block->offset;
2560}
e9a1ab19 2561
c227f099 2562void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2563{
94a6b54f 2564 /* TODO: implement this. */
e9a1ab19
FB
2565}
2566
dc828ca1 2567/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2568 With the exception of the softmmu code in this file, this should
2569 only be used for local memory (e.g. video ram) that the device owns,
2570 and knows it isn't going to access beyond the end of the block.
2571
2572 It should not be used for general purpose DMA.
2573 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2574 */
c227f099 2575void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2576{
94a6b54f
PB
2577 RAMBlock *prev;
2578 RAMBlock **prevp;
2579 RAMBlock *block;
2580
94a6b54f
PB
2581 prev = NULL;
2582 prevp = &ram_blocks;
2583 block = ram_blocks;
2584 while (block && (block->offset > addr
2585 || block->offset + block->length <= addr)) {
2586 if (prev)
2587 prevp = &prev->next;
2588 prev = block;
2589 block = block->next;
2590 }
2591 if (!block) {
2592 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2593 abort();
2594 }
2595 /* Move this entry to to start of the list. */
2596 if (prev) {
2597 prev->next = block->next;
2598 block->next = *prevp;
2599 *prevp = block;
2600 }
2601 return block->host + (addr - block->offset);
dc828ca1
PB
2602}
2603
5579c7f3
PB
2604/* Some of the softmmu routines need to translate from a host pointer
2605 (typically a TLB entry) back to a ram offset. */
c227f099 2606ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2607{
94a6b54f 2608 RAMBlock *prev;
94a6b54f
PB
2609 RAMBlock *block;
2610 uint8_t *host = ptr;
2611
94a6b54f 2612 prev = NULL;
94a6b54f
PB
2613 block = ram_blocks;
2614 while (block && (block->host > host
2615 || block->host + block->length <= host)) {
94a6b54f
PB
2616 prev = block;
2617 block = block->next;
2618 }
2619 if (!block) {
2620 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2621 abort();
2622 }
2623 return block->offset + (host - block->host);
5579c7f3
PB
2624}
2625
c227f099 2626static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2627{
67d3b957 2628#ifdef DEBUG_UNASSIGNED
ab3d1727 2629 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2630#endif
faed1c2a 2631#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2632 do_unassigned_access(addr, 0, 0, 0, 1);
2633#endif
2634 return 0;
2635}
2636
c227f099 2637static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2638{
2639#ifdef DEBUG_UNASSIGNED
2640 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2641#endif
faed1c2a 2642#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2643 do_unassigned_access(addr, 0, 0, 0, 2);
2644#endif
2645 return 0;
2646}
2647
c227f099 2648static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2649{
2650#ifdef DEBUG_UNASSIGNED
2651 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2652#endif
faed1c2a 2653#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2654 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2655#endif
33417e70
FB
2656 return 0;
2657}
2658
c227f099 2659static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2660{
67d3b957 2661#ifdef DEBUG_UNASSIGNED
ab3d1727 2662 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2663#endif
faed1c2a 2664#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2665 do_unassigned_access(addr, 1, 0, 0, 1);
2666#endif
2667}
2668
c227f099 2669static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2670{
2671#ifdef DEBUG_UNASSIGNED
2672 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2673#endif
faed1c2a 2674#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2675 do_unassigned_access(addr, 1, 0, 0, 2);
2676#endif
2677}
2678
c227f099 2679static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2680{
2681#ifdef DEBUG_UNASSIGNED
2682 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2683#endif
faed1c2a 2684#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2685 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2686#endif
33417e70
FB
2687}
2688
d60efc6b 2689static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2690 unassigned_mem_readb,
e18231a3
BS
2691 unassigned_mem_readw,
2692 unassigned_mem_readl,
33417e70
FB
2693};
2694
d60efc6b 2695static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2696 unassigned_mem_writeb,
e18231a3
BS
2697 unassigned_mem_writew,
2698 unassigned_mem_writel,
33417e70
FB
2699};
2700
c227f099 2701static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2702 uint32_t val)
9fa3e853 2703{
3a7d929e 2704 int dirty_flags;
3a7d929e
FB
2705 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2706 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2707#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2708 tb_invalidate_phys_page_fast(ram_addr, 1);
2709 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2710#endif
3a7d929e 2711 }
5579c7f3 2712 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2713 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2714 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2715 /* we remove the notdirty callback only if the code has been
2716 flushed */
2717 if (dirty_flags == 0xff)
2e70f6ef 2718 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2719}
2720
c227f099 2721static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2722 uint32_t val)
9fa3e853 2723{
3a7d929e 2724 int dirty_flags;
3a7d929e
FB
2725 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2726 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2727#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2728 tb_invalidate_phys_page_fast(ram_addr, 2);
2729 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2730#endif
3a7d929e 2731 }
5579c7f3 2732 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2733 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2734 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2735 /* we remove the notdirty callback only if the code has been
2736 flushed */
2737 if (dirty_flags == 0xff)
2e70f6ef 2738 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2739}
2740
c227f099 2741static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2742 uint32_t val)
9fa3e853 2743{
3a7d929e 2744 int dirty_flags;
3a7d929e
FB
2745 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2746 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2747#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2748 tb_invalidate_phys_page_fast(ram_addr, 4);
2749 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2750#endif
3a7d929e 2751 }
5579c7f3 2752 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2753 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2754 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2755 /* we remove the notdirty callback only if the code has been
2756 flushed */
2757 if (dirty_flags == 0xff)
2e70f6ef 2758 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2759}
2760
d60efc6b 2761static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2762 NULL, /* never used */
2763 NULL, /* never used */
2764 NULL, /* never used */
2765};
2766
d60efc6b 2767static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2768 notdirty_mem_writeb,
2769 notdirty_mem_writew,
2770 notdirty_mem_writel,
2771};
2772
0f459d16 2773/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2774static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2775{
2776 CPUState *env = cpu_single_env;
06d55cc1
AL
2777 target_ulong pc, cs_base;
2778 TranslationBlock *tb;
0f459d16 2779 target_ulong vaddr;
a1d1bb31 2780 CPUWatchpoint *wp;
06d55cc1 2781 int cpu_flags;
0f459d16 2782
06d55cc1
AL
2783 if (env->watchpoint_hit) {
2784 /* We re-entered the check after replacing the TB. Now raise
2785 * the debug interrupt so that is will trigger after the
2786 * current instruction. */
2787 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2788 return;
2789 }
2e70f6ef 2790 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2791 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2792 if ((vaddr == (wp->vaddr & len_mask) ||
2793 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2794 wp->flags |= BP_WATCHPOINT_HIT;
2795 if (!env->watchpoint_hit) {
2796 env->watchpoint_hit = wp;
2797 tb = tb_find_pc(env->mem_io_pc);
2798 if (!tb) {
2799 cpu_abort(env, "check_watchpoint: could not find TB for "
2800 "pc=%p", (void *)env->mem_io_pc);
2801 }
2802 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2803 tb_phys_invalidate(tb, -1);
2804 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2805 env->exception_index = EXCP_DEBUG;
2806 } else {
2807 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2808 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2809 }
2810 cpu_resume_from_signal(env, NULL);
06d55cc1 2811 }
6e140f28
AL
2812 } else {
2813 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2814 }
2815 }
2816}
2817
6658ffb8
PB
2818/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2819 so these check for a hit then pass through to the normal out-of-line
2820 phys routines. */
c227f099 2821static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2822{
b4051334 2823 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2824 return ldub_phys(addr);
2825}
2826
c227f099 2827static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2828{
b4051334 2829 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2830 return lduw_phys(addr);
2831}
2832
c227f099 2833static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2834{
b4051334 2835 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2836 return ldl_phys(addr);
2837}
2838
c227f099 2839static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2840 uint32_t val)
2841{
b4051334 2842 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2843 stb_phys(addr, val);
2844}
2845
c227f099 2846static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2847 uint32_t val)
2848{
b4051334 2849 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2850 stw_phys(addr, val);
2851}
2852
c227f099 2853static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2854 uint32_t val)
2855{
b4051334 2856 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2857 stl_phys(addr, val);
2858}
2859
d60efc6b 2860static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2861 watch_mem_readb,
2862 watch_mem_readw,
2863 watch_mem_readl,
2864};
2865
d60efc6b 2866static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2867 watch_mem_writeb,
2868 watch_mem_writew,
2869 watch_mem_writel,
2870};
6658ffb8 2871
c227f099 2872static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2873 unsigned int len)
2874{
db7b5426
BS
2875 uint32_t ret;
2876 unsigned int idx;
2877
8da3ff18 2878 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2879#if defined(DEBUG_SUBPAGE)
2880 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2881 mmio, len, addr, idx);
2882#endif
8da3ff18
PB
2883 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2884 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2885
2886 return ret;
2887}
2888
c227f099 2889static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2890 uint32_t value, unsigned int len)
2891{
db7b5426
BS
2892 unsigned int idx;
2893
8da3ff18 2894 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2895#if defined(DEBUG_SUBPAGE)
2896 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2897 mmio, len, addr, idx, value);
2898#endif
8da3ff18
PB
2899 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2900 addr + mmio->region_offset[idx][1][len],
2901 value);
db7b5426
BS
2902}
2903
c227f099 2904static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2905{
2906#if defined(DEBUG_SUBPAGE)
2907 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2908#endif
2909
2910 return subpage_readlen(opaque, addr, 0);
2911}
2912
c227f099 2913static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2914 uint32_t value)
2915{
2916#if defined(DEBUG_SUBPAGE)
2917 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2918#endif
2919 subpage_writelen(opaque, addr, value, 0);
2920}
2921
c227f099 2922static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2923{
2924#if defined(DEBUG_SUBPAGE)
2925 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2926#endif
2927
2928 return subpage_readlen(opaque, addr, 1);
2929}
2930
c227f099 2931static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2932 uint32_t value)
2933{
2934#if defined(DEBUG_SUBPAGE)
2935 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2936#endif
2937 subpage_writelen(opaque, addr, value, 1);
2938}
2939
c227f099 2940static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2941{
2942#if defined(DEBUG_SUBPAGE)
2943 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2944#endif
2945
2946 return subpage_readlen(opaque, addr, 2);
2947}
2948
2949static void subpage_writel (void *opaque,
c227f099 2950 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2951{
2952#if defined(DEBUG_SUBPAGE)
2953 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2954#endif
2955 subpage_writelen(opaque, addr, value, 2);
2956}
2957
d60efc6b 2958static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2959 &subpage_readb,
2960 &subpage_readw,
2961 &subpage_readl,
2962};
2963
d60efc6b 2964static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2965 &subpage_writeb,
2966 &subpage_writew,
2967 &subpage_writel,
2968};
2969
c227f099
AL
2970static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2971 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2972{
2973 int idx, eidx;
4254fab8 2974 unsigned int i;
db7b5426
BS
2975
2976 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2977 return -1;
2978 idx = SUBPAGE_IDX(start);
2979 eidx = SUBPAGE_IDX(end);
2980#if defined(DEBUG_SUBPAGE)
0bf9e31a 2981 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2982 mmio, start, end, idx, eidx, memory);
2983#endif
2984 memory >>= IO_MEM_SHIFT;
2985 for (; idx <= eidx; idx++) {
4254fab8 2986 for (i = 0; i < 4; i++) {
3ee89922
BS
2987 if (io_mem_read[memory][i]) {
2988 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2989 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2990 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2991 }
2992 if (io_mem_write[memory][i]) {
2993 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2994 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2995 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2996 }
4254fab8 2997 }
db7b5426
BS
2998 }
2999
3000 return 0;
3001}
3002
c227f099
AL
3003static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3004 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3005{
c227f099 3006 subpage_t *mmio;
db7b5426
BS
3007 int subpage_memory;
3008
c227f099 3009 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3010
3011 mmio->base = base;
1eed09cb 3012 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3013#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3014 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3015 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3016#endif
1eec614b
AL
3017 *phys = subpage_memory | IO_MEM_SUBPAGE;
3018 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3019 region_offset);
db7b5426
BS
3020
3021 return mmio;
3022}
3023
88715657
AL
3024static int get_free_io_mem_idx(void)
3025{
3026 int i;
3027
3028 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3029 if (!io_mem_used[i]) {
3030 io_mem_used[i] = 1;
3031 return i;
3032 }
c6703b47 3033 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3034 return -1;
3035}
3036
33417e70
FB
3037/* mem_read and mem_write are arrays of functions containing the
3038 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3039 2). Functions can be omitted with a NULL function pointer.
3ee89922 3040 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3041 modified. If it is zero, a new io zone is allocated. The return
3042 value can be used with cpu_register_physical_memory(). (-1) is
3043 returned if error. */
1eed09cb 3044static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3045 CPUReadMemoryFunc * const *mem_read,
3046 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3047 void *opaque)
33417e70 3048{
4254fab8 3049 int i, subwidth = 0;
33417e70
FB
3050
3051 if (io_index <= 0) {
88715657
AL
3052 io_index = get_free_io_mem_idx();
3053 if (io_index == -1)
3054 return io_index;
33417e70 3055 } else {
1eed09cb 3056 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3057 if (io_index >= IO_MEM_NB_ENTRIES)
3058 return -1;
3059 }
b5ff1b31 3060
33417e70 3061 for(i = 0;i < 3; i++) {
4254fab8
BS
3062 if (!mem_read[i] || !mem_write[i])
3063 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3064 io_mem_read[io_index][i] = mem_read[i];
3065 io_mem_write[io_index][i] = mem_write[i];
3066 }
a4193c8a 3067 io_mem_opaque[io_index] = opaque;
4254fab8 3068 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3069}
61382a50 3070
d60efc6b
BS
3071int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3072 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3073 void *opaque)
3074{
3075 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3076}
3077
88715657
AL
3078void cpu_unregister_io_memory(int io_table_address)
3079{
3080 int i;
3081 int io_index = io_table_address >> IO_MEM_SHIFT;
3082
3083 for (i=0;i < 3; i++) {
3084 io_mem_read[io_index][i] = unassigned_mem_read[i];
3085 io_mem_write[io_index][i] = unassigned_mem_write[i];
3086 }
3087 io_mem_opaque[io_index] = NULL;
3088 io_mem_used[io_index] = 0;
3089}
3090
e9179ce1
AK
3091static void io_mem_init(void)
3092{
3093 int i;
3094
3095 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3096 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3097 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3098 for (i=0; i<5; i++)
3099 io_mem_used[i] = 1;
3100
3101 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3102 watch_mem_write, NULL);
e9179ce1
AK
3103}
3104
e2eef170
PB
3105#endif /* !defined(CONFIG_USER_ONLY) */
3106
13eb76e0
FB
3107/* physical memory access (slow version, mainly for debug) */
3108#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3109int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3110 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3111{
3112 int l, flags;
3113 target_ulong page;
53a5960a 3114 void * p;
13eb76e0
FB
3115
3116 while (len > 0) {
3117 page = addr & TARGET_PAGE_MASK;
3118 l = (page + TARGET_PAGE_SIZE) - addr;
3119 if (l > len)
3120 l = len;
3121 flags = page_get_flags(page);
3122 if (!(flags & PAGE_VALID))
a68fe89c 3123 return -1;
13eb76e0
FB
3124 if (is_write) {
3125 if (!(flags & PAGE_WRITE))
a68fe89c 3126 return -1;
579a97f7 3127 /* XXX: this code should not depend on lock_user */
72fb7daa 3128 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3129 return -1;
72fb7daa
AJ
3130 memcpy(p, buf, l);
3131 unlock_user(p, addr, l);
13eb76e0
FB
3132 } else {
3133 if (!(flags & PAGE_READ))
a68fe89c 3134 return -1;
579a97f7 3135 /* XXX: this code should not depend on lock_user */
72fb7daa 3136 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3137 return -1;
72fb7daa 3138 memcpy(buf, p, l);
5b257578 3139 unlock_user(p, addr, 0);
13eb76e0
FB
3140 }
3141 len -= l;
3142 buf += l;
3143 addr += l;
3144 }
a68fe89c 3145 return 0;
13eb76e0 3146}
8df1cd07 3147
13eb76e0 3148#else
c227f099 3149void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3150 int len, int is_write)
3151{
3152 int l, io_index;
3153 uint8_t *ptr;
3154 uint32_t val;
c227f099 3155 target_phys_addr_t page;
2e12669a 3156 unsigned long pd;
92e873b9 3157 PhysPageDesc *p;
3b46e624 3158
13eb76e0
FB
3159 while (len > 0) {
3160 page = addr & TARGET_PAGE_MASK;
3161 l = (page + TARGET_PAGE_SIZE) - addr;
3162 if (l > len)
3163 l = len;
92e873b9 3164 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3165 if (!p) {
3166 pd = IO_MEM_UNASSIGNED;
3167 } else {
3168 pd = p->phys_offset;
3169 }
3b46e624 3170
13eb76e0 3171 if (is_write) {
3a7d929e 3172 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3173 target_phys_addr_t addr1 = addr;
13eb76e0 3174 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3175 if (p)
6c2934db 3176 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3177 /* XXX: could force cpu_single_env to NULL to avoid
3178 potential bugs */
6c2934db 3179 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3180 /* 32 bit write access */
c27004ec 3181 val = ldl_p(buf);
6c2934db 3182 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3183 l = 4;
6c2934db 3184 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3185 /* 16 bit write access */
c27004ec 3186 val = lduw_p(buf);
6c2934db 3187 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3188 l = 2;
3189 } else {
1c213d19 3190 /* 8 bit write access */
c27004ec 3191 val = ldub_p(buf);
6c2934db 3192 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3193 l = 1;
3194 }
3195 } else {
b448f2f3
FB
3196 unsigned long addr1;
3197 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3198 /* RAM case */
5579c7f3 3199 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3200 memcpy(ptr, buf, l);
3a7d929e
FB
3201 if (!cpu_physical_memory_is_dirty(addr1)) {
3202 /* invalidate code */
3203 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3204 /* set dirty bit */
5fafdf24 3205 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3206 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3207 }
13eb76e0
FB
3208 }
3209 } else {
5fafdf24 3210 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3211 !(pd & IO_MEM_ROMD)) {
c227f099 3212 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3213 /* I/O case */
3214 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3215 if (p)
6c2934db
AJ
3216 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3217 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3218 /* 32 bit read access */
6c2934db 3219 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3220 stl_p(buf, val);
13eb76e0 3221 l = 4;
6c2934db 3222 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3223 /* 16 bit read access */
6c2934db 3224 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3225 stw_p(buf, val);
13eb76e0
FB
3226 l = 2;
3227 } else {
1c213d19 3228 /* 8 bit read access */
6c2934db 3229 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3230 stb_p(buf, val);
13eb76e0
FB
3231 l = 1;
3232 }
3233 } else {
3234 /* RAM case */
5579c7f3 3235 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3236 (addr & ~TARGET_PAGE_MASK);
3237 memcpy(buf, ptr, l);
3238 }
3239 }
3240 len -= l;
3241 buf += l;
3242 addr += l;
3243 }
3244}
8df1cd07 3245
d0ecd2aa 3246/* used for ROM loading : can write in RAM and ROM */
c227f099 3247void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3248 const uint8_t *buf, int len)
3249{
3250 int l;
3251 uint8_t *ptr;
c227f099 3252 target_phys_addr_t page;
d0ecd2aa
FB
3253 unsigned long pd;
3254 PhysPageDesc *p;
3b46e624 3255
d0ecd2aa
FB
3256 while (len > 0) {
3257 page = addr & TARGET_PAGE_MASK;
3258 l = (page + TARGET_PAGE_SIZE) - addr;
3259 if (l > len)
3260 l = len;
3261 p = phys_page_find(page >> TARGET_PAGE_BITS);
3262 if (!p) {
3263 pd = IO_MEM_UNASSIGNED;
3264 } else {
3265 pd = p->phys_offset;
3266 }
3b46e624 3267
d0ecd2aa 3268 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3269 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3270 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3271 /* do nothing */
3272 } else {
3273 unsigned long addr1;
3274 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3275 /* ROM/RAM case */
5579c7f3 3276 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3277 memcpy(ptr, buf, l);
3278 }
3279 len -= l;
3280 buf += l;
3281 addr += l;
3282 }
3283}
3284
6d16c2f8
AL
3285typedef struct {
3286 void *buffer;
c227f099
AL
3287 target_phys_addr_t addr;
3288 target_phys_addr_t len;
6d16c2f8
AL
3289} BounceBuffer;
3290
3291static BounceBuffer bounce;
3292
ba223c29
AL
3293typedef struct MapClient {
3294 void *opaque;
3295 void (*callback)(void *opaque);
72cf2d4f 3296 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3297} MapClient;
3298
72cf2d4f
BS
3299static QLIST_HEAD(map_client_list, MapClient) map_client_list
3300 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3301
3302void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3303{
3304 MapClient *client = qemu_malloc(sizeof(*client));
3305
3306 client->opaque = opaque;
3307 client->callback = callback;
72cf2d4f 3308 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3309 return client;
3310}
3311
3312void cpu_unregister_map_client(void *_client)
3313{
3314 MapClient *client = (MapClient *)_client;
3315
72cf2d4f 3316 QLIST_REMOVE(client, link);
34d5e948 3317 qemu_free(client);
ba223c29
AL
3318}
3319
3320static void cpu_notify_map_clients(void)
3321{
3322 MapClient *client;
3323
72cf2d4f
BS
3324 while (!QLIST_EMPTY(&map_client_list)) {
3325 client = QLIST_FIRST(&map_client_list);
ba223c29 3326 client->callback(client->opaque);
34d5e948 3327 cpu_unregister_map_client(client);
ba223c29
AL
3328 }
3329}
3330
6d16c2f8
AL
3331/* Map a physical memory region into a host virtual address.
3332 * May map a subset of the requested range, given by and returned in *plen.
3333 * May return NULL if resources needed to perform the mapping are exhausted.
3334 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3335 * Use cpu_register_map_client() to know when retrying the map operation is
3336 * likely to succeed.
6d16c2f8 3337 */
c227f099
AL
3338void *cpu_physical_memory_map(target_phys_addr_t addr,
3339 target_phys_addr_t *plen,
6d16c2f8
AL
3340 int is_write)
3341{
c227f099
AL
3342 target_phys_addr_t len = *plen;
3343 target_phys_addr_t done = 0;
6d16c2f8
AL
3344 int l;
3345 uint8_t *ret = NULL;
3346 uint8_t *ptr;
c227f099 3347 target_phys_addr_t page;
6d16c2f8
AL
3348 unsigned long pd;
3349 PhysPageDesc *p;
3350 unsigned long addr1;
3351
3352 while (len > 0) {
3353 page = addr & TARGET_PAGE_MASK;
3354 l = (page + TARGET_PAGE_SIZE) - addr;
3355 if (l > len)
3356 l = len;
3357 p = phys_page_find(page >> TARGET_PAGE_BITS);
3358 if (!p) {
3359 pd = IO_MEM_UNASSIGNED;
3360 } else {
3361 pd = p->phys_offset;
3362 }
3363
3364 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3365 if (done || bounce.buffer) {
3366 break;
3367 }
3368 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3369 bounce.addr = addr;
3370 bounce.len = l;
3371 if (!is_write) {
3372 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3373 }
3374 ptr = bounce.buffer;
3375 } else {
3376 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3377 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3378 }
3379 if (!done) {
3380 ret = ptr;
3381 } else if (ret + done != ptr) {
3382 break;
3383 }
3384
3385 len -= l;
3386 addr += l;
3387 done += l;
3388 }
3389 *plen = done;
3390 return ret;
3391}
3392
3393/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3394 * Will also mark the memory as dirty if is_write == 1. access_len gives
3395 * the amount of memory that was actually read or written by the caller.
3396 */
c227f099
AL
3397void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3398 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3399{
3400 if (buffer != bounce.buffer) {
3401 if (is_write) {
c227f099 3402 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3403 while (access_len) {
3404 unsigned l;
3405 l = TARGET_PAGE_SIZE;
3406 if (l > access_len)
3407 l = access_len;
3408 if (!cpu_physical_memory_is_dirty(addr1)) {
3409 /* invalidate code */
3410 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3411 /* set dirty bit */
3412 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3413 (0xff & ~CODE_DIRTY_FLAG);
3414 }
3415 addr1 += l;
3416 access_len -= l;
3417 }
3418 }
3419 return;
3420 }
3421 if (is_write) {
3422 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3423 }
f8a83245 3424 qemu_vfree(bounce.buffer);
6d16c2f8 3425 bounce.buffer = NULL;
ba223c29 3426 cpu_notify_map_clients();
6d16c2f8 3427}
d0ecd2aa 3428
8df1cd07 3429/* warning: addr must be aligned */
c227f099 3430uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3431{
3432 int io_index;
3433 uint8_t *ptr;
3434 uint32_t val;
3435 unsigned long pd;
3436 PhysPageDesc *p;
3437
3438 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3439 if (!p) {
3440 pd = IO_MEM_UNASSIGNED;
3441 } else {
3442 pd = p->phys_offset;
3443 }
3b46e624 3444
5fafdf24 3445 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3446 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3447 /* I/O case */
3448 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3449 if (p)
3450 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3451 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3452 } else {
3453 /* RAM case */
5579c7f3 3454 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3455 (addr & ~TARGET_PAGE_MASK);
3456 val = ldl_p(ptr);
3457 }
3458 return val;
3459}
3460
84b7b8e7 3461/* warning: addr must be aligned */
c227f099 3462uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3463{
3464 int io_index;
3465 uint8_t *ptr;
3466 uint64_t val;
3467 unsigned long pd;
3468 PhysPageDesc *p;
3469
3470 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3471 if (!p) {
3472 pd = IO_MEM_UNASSIGNED;
3473 } else {
3474 pd = p->phys_offset;
3475 }
3b46e624 3476
2a4188a3
FB
3477 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3478 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3479 /* I/O case */
3480 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3481 if (p)
3482 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3483#ifdef TARGET_WORDS_BIGENDIAN
3484 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3485 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3486#else
3487 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3488 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3489#endif
3490 } else {
3491 /* RAM case */
5579c7f3 3492 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3493 (addr & ~TARGET_PAGE_MASK);
3494 val = ldq_p(ptr);
3495 }
3496 return val;
3497}
3498
aab33094 3499/* XXX: optimize */
c227f099 3500uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3501{
3502 uint8_t val;
3503 cpu_physical_memory_read(addr, &val, 1);
3504 return val;
3505}
3506
3507/* XXX: optimize */
c227f099 3508uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3509{
3510 uint16_t val;
3511 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3512 return tswap16(val);
3513}
3514
8df1cd07
FB
3515/* warning: addr must be aligned. The ram page is not masked as dirty
3516 and the code inside is not invalidated. It is useful if the dirty
3517 bits are used to track modified PTEs */
c227f099 3518void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3519{
3520 int io_index;
3521 uint8_t *ptr;
3522 unsigned long pd;
3523 PhysPageDesc *p;
3524
3525 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3526 if (!p) {
3527 pd = IO_MEM_UNASSIGNED;
3528 } else {
3529 pd = p->phys_offset;
3530 }
3b46e624 3531
3a7d929e 3532 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3533 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3534 if (p)
3535 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3536 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3537 } else {
74576198 3538 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3539 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3540 stl_p(ptr, val);
74576198
AL
3541
3542 if (unlikely(in_migration)) {
3543 if (!cpu_physical_memory_is_dirty(addr1)) {
3544 /* invalidate code */
3545 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3546 /* set dirty bit */
3547 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3548 (0xff & ~CODE_DIRTY_FLAG);
3549 }
3550 }
8df1cd07
FB
3551 }
3552}
3553
c227f099 3554void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3555{
3556 int io_index;
3557 uint8_t *ptr;
3558 unsigned long pd;
3559 PhysPageDesc *p;
3560
3561 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3562 if (!p) {
3563 pd = IO_MEM_UNASSIGNED;
3564 } else {
3565 pd = p->phys_offset;
3566 }
3b46e624 3567
bc98a7ef
JM
3568 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3569 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3570 if (p)
3571 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3572#ifdef TARGET_WORDS_BIGENDIAN
3573 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3574 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3575#else
3576 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3577 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3578#endif
3579 } else {
5579c7f3 3580 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3581 (addr & ~TARGET_PAGE_MASK);
3582 stq_p(ptr, val);
3583 }
3584}
3585
8df1cd07 3586/* warning: addr must be aligned */
c227f099 3587void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3588{
3589 int io_index;
3590 uint8_t *ptr;
3591 unsigned long pd;
3592 PhysPageDesc *p;
3593
3594 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3595 if (!p) {
3596 pd = IO_MEM_UNASSIGNED;
3597 } else {
3598 pd = p->phys_offset;
3599 }
3b46e624 3600
3a7d929e 3601 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3602 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3603 if (p)
3604 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3605 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3606 } else {
3607 unsigned long addr1;
3608 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3609 /* RAM case */
5579c7f3 3610 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3611 stl_p(ptr, val);
3a7d929e
FB
3612 if (!cpu_physical_memory_is_dirty(addr1)) {
3613 /* invalidate code */
3614 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3615 /* set dirty bit */
f23db169
FB
3616 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3617 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3618 }
8df1cd07
FB
3619 }
3620}
3621
aab33094 3622/* XXX: optimize */
c227f099 3623void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3624{
3625 uint8_t v = val;
3626 cpu_physical_memory_write(addr, &v, 1);
3627}
3628
3629/* XXX: optimize */
c227f099 3630void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3631{
3632 uint16_t v = tswap16(val);
3633 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3634}
3635
3636/* XXX: optimize */
c227f099 3637void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3638{
3639 val = tswap64(val);
3640 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3641}
3642
5e2972fd 3643/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3644int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3645 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3646{
3647 int l;
c227f099 3648 target_phys_addr_t phys_addr;
9b3c35e0 3649 target_ulong page;
13eb76e0
FB
3650
3651 while (len > 0) {
3652 page = addr & TARGET_PAGE_MASK;
3653 phys_addr = cpu_get_phys_page_debug(env, page);
3654 /* if no physical page mapped, return an error */
3655 if (phys_addr == -1)
3656 return -1;
3657 l = (page + TARGET_PAGE_SIZE) - addr;
3658 if (l > len)
3659 l = len;
5e2972fd 3660 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3661 if (is_write)
3662 cpu_physical_memory_write_rom(phys_addr, buf, l);
3663 else
5e2972fd 3664 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3665 len -= l;
3666 buf += l;
3667 addr += l;
3668 }
3669 return 0;
3670}
a68fe89c 3671#endif
13eb76e0 3672
2e70f6ef
PB
3673/* in deterministic execution mode, instructions doing device I/Os
3674 must be at the end of the TB */
3675void cpu_io_recompile(CPUState *env, void *retaddr)
3676{
3677 TranslationBlock *tb;
3678 uint32_t n, cflags;
3679 target_ulong pc, cs_base;
3680 uint64_t flags;
3681
3682 tb = tb_find_pc((unsigned long)retaddr);
3683 if (!tb) {
3684 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3685 retaddr);
3686 }
3687 n = env->icount_decr.u16.low + tb->icount;
3688 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3689 /* Calculate how many instructions had been executed before the fault
bf20dc07 3690 occurred. */
2e70f6ef
PB
3691 n = n - env->icount_decr.u16.low;
3692 /* Generate a new TB ending on the I/O insn. */
3693 n++;
3694 /* On MIPS and SH, delay slot instructions can only be restarted if
3695 they were already the first instruction in the TB. If this is not
bf20dc07 3696 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3697 branch. */
3698#if defined(TARGET_MIPS)
3699 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3700 env->active_tc.PC -= 4;
3701 env->icount_decr.u16.low++;
3702 env->hflags &= ~MIPS_HFLAG_BMASK;
3703 }
3704#elif defined(TARGET_SH4)
3705 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3706 && n > 1) {
3707 env->pc -= 2;
3708 env->icount_decr.u16.low++;
3709 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3710 }
3711#endif
3712 /* This should never happen. */
3713 if (n > CF_COUNT_MASK)
3714 cpu_abort(env, "TB too big during recompile");
3715
3716 cflags = n | CF_LAST_IO;
3717 pc = tb->pc;
3718 cs_base = tb->cs_base;
3719 flags = tb->flags;
3720 tb_phys_invalidate(tb, -1);
3721 /* FIXME: In theory this could raise an exception. In practice
3722 we have already translated the block once so it's probably ok. */
3723 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3724 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3725 the first in the TB) then we end up generating a whole new TB and
3726 repeating the fault, which is horribly inefficient.
3727 Better would be to execute just this insn uncached, or generate a
3728 second new TB. */
3729 cpu_resume_from_signal(env, NULL);
3730}
3731
e3db7226
FB
3732void dump_exec_info(FILE *f,
3733 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3734{
3735 int i, target_code_size, max_target_code_size;
3736 int direct_jmp_count, direct_jmp2_count, cross_page;
3737 TranslationBlock *tb;
3b46e624 3738
e3db7226
FB
3739 target_code_size = 0;
3740 max_target_code_size = 0;
3741 cross_page = 0;
3742 direct_jmp_count = 0;
3743 direct_jmp2_count = 0;
3744 for(i = 0; i < nb_tbs; i++) {
3745 tb = &tbs[i];
3746 target_code_size += tb->size;
3747 if (tb->size > max_target_code_size)
3748 max_target_code_size = tb->size;
3749 if (tb->page_addr[1] != -1)
3750 cross_page++;
3751 if (tb->tb_next_offset[0] != 0xffff) {
3752 direct_jmp_count++;
3753 if (tb->tb_next_offset[1] != 0xffff) {
3754 direct_jmp2_count++;
3755 }
3756 }
3757 }
3758 /* XXX: avoid using doubles ? */
57fec1fe 3759 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3760 cpu_fprintf(f, "gen code size %ld/%ld\n",
3761 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3762 cpu_fprintf(f, "TB count %d/%d\n",
3763 nb_tbs, code_gen_max_blocks);
5fafdf24 3764 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3765 nb_tbs ? target_code_size / nb_tbs : 0,
3766 max_target_code_size);
5fafdf24 3767 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3768 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3769 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3770 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3771 cross_page,
e3db7226
FB
3772 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3773 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3774 direct_jmp_count,
e3db7226
FB
3775 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3776 direct_jmp2_count,
3777 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3778 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3779 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3780 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3781 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3782 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3783}
3784
5fafdf24 3785#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3786
3787#define MMUSUFFIX _cmmu
3788#define GETPC() NULL
3789#define env cpu_single_env
b769d8fe 3790#define SOFTMMU_CODE_ACCESS
61382a50
FB
3791
3792#define SHIFT 0
3793#include "softmmu_template.h"
3794
3795#define SHIFT 1
3796#include "softmmu_template.h"
3797
3798#define SHIFT 2
3799#include "softmmu_template.h"
3800
3801#define SHIFT 3
3802#include "softmmu_template.h"
3803
3804#undef env
3805
3806#endif