]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Introduce wrapper functions to access phys_ram_dirty.
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
290
291#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
f01576f1
JL
327#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329#else
50a9569b 330 f = fopen("/proc/self/maps", "r");
f01576f1 331#endif
50a9569b 332 if (f) {
5cd2c5b6
RH
333 mmap_lock();
334
50a9569b 335 do {
5cd2c5b6
RH
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
350 }
351 } while (!feof(f));
5cd2c5b6 352
50a9569b 353 fclose(f);
5cd2c5b6 354 mmap_unlock();
50a9569b 355 }
f01576f1 356#endif
50a9569b
AZ
357 }
358#endif
54936004
FB
359}
360
41c1b1c9 361static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 362{
41c1b1c9
PB
363 PageDesc *pd;
364 void **lp;
365 int i;
366
5cd2c5b6
RH
367#if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377# define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387#else
388# define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 390#endif
434929bf 391
5cd2c5b6
RH
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
17e2377a 405 }
5cd2c5b6
RH
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
54936004 417 }
5cd2c5b6
RH
418
419#undef ALLOC
420#if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429#endif
430
431 return pd + (index & (L2_SIZE - 1));
54936004
FB
432}
433
41c1b1c9 434static inline PageDesc *page_find(tb_page_addr_t index)
54936004 435{
5cd2c5b6 436 return page_find_alloc(index, 0);
fd6ce8f6
FB
437}
438
6d9a1304 439#if !defined(CONFIG_USER_ONLY)
c227f099 440static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 441{
e3f4e2a4 442 PhysPageDesc *pd;
5cd2c5b6
RH
443 void **lp;
444 int i;
92e873b9 445
5cd2c5b6
RH
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 448
5cd2c5b6
RH
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 459 }
5cd2c5b6 460
e3f4e2a4 461 pd = *lp;
5cd2c5b6 462 if (pd == NULL) {
e3f4e2a4 463 int i;
5cd2c5b6
RH
464
465 if (!alloc) {
108c49b8 466 return NULL;
5cd2c5b6
RH
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
67c4d23c 471 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 474 }
92e873b9 475 }
5cd2c5b6
RH
476
477 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
478}
479
c227f099 480static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 481{
108c49b8 482 return phys_page_find_alloc(index, 0);
92e873b9
FB
483}
484
c227f099
AL
485static void tlb_protect_code(ram_addr_t ram_addr);
486static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 487 target_ulong vaddr);
c8a706fe
PB
488#define mmap_lock() do { } while(0)
489#define mmap_unlock() do { } while(0)
9fa3e853 490#endif
fd6ce8f6 491
4369415f
FB
492#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494#if defined(CONFIG_USER_ONLY)
ccbb4d44 495/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
496 user mode. It will change when a dedicated libc will be used */
497#define USE_STATIC_CODE_GEN_BUFFER
498#endif
499
500#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
501static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
502 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
503#endif
504
8fcd3692 505static void code_gen_alloc(unsigned long tb_size)
26a5f13b 506{
4369415f
FB
507#ifdef USE_STATIC_CODE_GEN_BUFFER
508 code_gen_buffer = static_code_gen_buffer;
509 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
510 map_exec(code_gen_buffer, code_gen_buffer_size);
511#else
26a5f13b
FB
512 code_gen_buffer_size = tb_size;
513 if (code_gen_buffer_size == 0) {
4369415f
FB
514#if defined(CONFIG_USER_ONLY)
515 /* in user mode, phys_ram_size is not meaningful */
516 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
517#else
ccbb4d44 518 /* XXX: needs adjustments */
94a6b54f 519 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 520#endif
26a5f13b
FB
521 }
522 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
523 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
524 /* The code gen buffer location may have constraints depending on
525 the host cpu and OS */
526#if defined(__linux__)
527 {
528 int flags;
141ac468
BS
529 void *start = NULL;
530
26a5f13b
FB
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532#if defined(__x86_64__)
533 flags |= MAP_32BIT;
534 /* Cannot map more than that */
535 if (code_gen_buffer_size > (800 * 1024 * 1024))
536 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
537#elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
539 flags |= MAP_FIXED;
540 start = (void *) 0x60000000UL;
541 if (code_gen_buffer_size > (512 * 1024 * 1024))
542 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 543#elif defined(__arm__)
63d41246 544 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
545 flags |= MAP_FIXED;
546 start = (void *) 0x01000000UL;
547 if (code_gen_buffer_size > 16 * 1024 * 1024)
548 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 549#endif
141ac468
BS
550 code_gen_buffer = mmap(start, code_gen_buffer_size,
551 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
552 flags, -1, 0);
553 if (code_gen_buffer == MAP_FAILED) {
554 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
555 exit(1);
556 }
557 }
a167ba50 558#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
559 {
560 int flags;
561 void *addr = NULL;
562 flags = MAP_PRIVATE | MAP_ANONYMOUS;
563#if defined(__x86_64__)
564 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
565 * 0x40000000 is free */
566 flags |= MAP_FIXED;
567 addr = (void *)0x40000000;
568 /* Cannot map more than that */
569 if (code_gen_buffer_size > (800 * 1024 * 1024))
570 code_gen_buffer_size = (800 * 1024 * 1024);
571#endif
572 code_gen_buffer = mmap(addr, code_gen_buffer_size,
573 PROT_WRITE | PROT_READ | PROT_EXEC,
574 flags, -1, 0);
575 if (code_gen_buffer == MAP_FAILED) {
576 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
577 exit(1);
578 }
579 }
26a5f13b
FB
580#else
581 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
582 map_exec(code_gen_buffer, code_gen_buffer_size);
583#endif
4369415f 584#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
585 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
586 code_gen_buffer_max_size = code_gen_buffer_size -
587 code_gen_max_block_size();
588 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
589 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
590}
591
592/* Must be called before using the QEMU cpus. 'tb_size' is the size
593 (in bytes) allocated to the translation buffer. Zero means default
594 size. */
595void cpu_exec_init_all(unsigned long tb_size)
596{
26a5f13b
FB
597 cpu_gen_init();
598 code_gen_alloc(tb_size);
599 code_gen_ptr = code_gen_buffer;
4369415f 600 page_init();
e2eef170 601#if !defined(CONFIG_USER_ONLY)
26a5f13b 602 io_mem_init();
e2eef170 603#endif
26a5f13b
FB
604}
605
9656f324
PB
606#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
607
e59fb374 608static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
609{
610 CPUState *env = opaque;
9656f324 611
3098dba0
AJ
612 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
613 version_id is increased. */
614 env->interrupt_request &= ~0x01;
9656f324
PB
615 tlb_flush(env, 1);
616
617 return 0;
618}
e7f4eff7
JQ
619
620static const VMStateDescription vmstate_cpu_common = {
621 .name = "cpu_common",
622 .version_id = 1,
623 .minimum_version_id = 1,
624 .minimum_version_id_old = 1,
e7f4eff7
JQ
625 .post_load = cpu_common_post_load,
626 .fields = (VMStateField []) {
627 VMSTATE_UINT32(halted, CPUState),
628 VMSTATE_UINT32(interrupt_request, CPUState),
629 VMSTATE_END_OF_LIST()
630 }
631};
9656f324
PB
632#endif
633
950f1472
GC
634CPUState *qemu_get_cpu(int cpu)
635{
636 CPUState *env = first_cpu;
637
638 while (env) {
639 if (env->cpu_index == cpu)
640 break;
641 env = env->next_cpu;
642 }
643
644 return env;
645}
646
6a00d601 647void cpu_exec_init(CPUState *env)
fd6ce8f6 648{
6a00d601
FB
649 CPUState **penv;
650 int cpu_index;
651
c2764719
PB
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_lock();
654#endif
6a00d601
FB
655 env->next_cpu = NULL;
656 penv = &first_cpu;
657 cpu_index = 0;
658 while (*penv != NULL) {
1e9fa730 659 penv = &(*penv)->next_cpu;
6a00d601
FB
660 cpu_index++;
661 }
662 env->cpu_index = cpu_index;
268a362c 663 env->numa_node = 0;
72cf2d4f
BS
664 QTAILQ_INIT(&env->breakpoints);
665 QTAILQ_INIT(&env->watchpoints);
6a00d601 666 *penv = env;
c2764719
PB
667#if defined(CONFIG_USER_ONLY)
668 cpu_list_unlock();
669#endif
b3c7724c 670#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 671 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
672 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
673 cpu_save, cpu_load, env);
674#endif
fd6ce8f6
FB
675}
676
9fa3e853
FB
677static inline void invalidate_page_bitmap(PageDesc *p)
678{
679 if (p->code_bitmap) {
59817ccb 680 qemu_free(p->code_bitmap);
9fa3e853
FB
681 p->code_bitmap = NULL;
682 }
683 p->code_write_count = 0;
684}
685
5cd2c5b6
RH
686/* Set to NULL all the 'first_tb' fields in all PageDescs. */
687
688static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 689{
5cd2c5b6 690 int i;
fd6ce8f6 691
5cd2c5b6
RH
692 if (*lp == NULL) {
693 return;
694 }
695 if (level == 0) {
696 PageDesc *pd = *lp;
7296abac 697 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
698 pd[i].first_tb = NULL;
699 invalidate_page_bitmap(pd + i);
fd6ce8f6 700 }
5cd2c5b6
RH
701 } else {
702 void **pp = *lp;
7296abac 703 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
704 page_flush_tb_1 (level - 1, pp + i);
705 }
706 }
707}
708
709static void page_flush_tb(void)
710{
711 int i;
712 for (i = 0; i < V_L1_SIZE; i++) {
713 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
714 }
715}
716
717/* flush all the translation blocks */
d4e8164f 718/* XXX: tb_flush is currently not thread safe */
6a00d601 719void tb_flush(CPUState *env1)
fd6ce8f6 720{
6a00d601 721 CPUState *env;
0124311e 722#if defined(DEBUG_FLUSH)
ab3d1727
BS
723 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
724 (unsigned long)(code_gen_ptr - code_gen_buffer),
725 nb_tbs, nb_tbs > 0 ?
726 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 727#endif
26a5f13b 728 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
729 cpu_abort(env1, "Internal error: code buffer overflow\n");
730
fd6ce8f6 731 nb_tbs = 0;
3b46e624 732
6a00d601
FB
733 for(env = first_cpu; env != NULL; env = env->next_cpu) {
734 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
735 }
9fa3e853 736
8a8a608f 737 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 738 page_flush_tb();
9fa3e853 739
fd6ce8f6 740 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
741 /* XXX: flush processor icache at this point if cache flush is
742 expensive */
e3db7226 743 tb_flush_count++;
fd6ce8f6
FB
744}
745
746#ifdef DEBUG_TB_CHECK
747
bc98a7ef 748static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
749{
750 TranslationBlock *tb;
751 int i;
752 address &= TARGET_PAGE_MASK;
99773bd4
PB
753 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
754 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
755 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
756 address >= tb->pc + tb->size)) {
0bf9e31a
BS
757 printf("ERROR invalidate: address=" TARGET_FMT_lx
758 " PC=%08lx size=%04x\n",
99773bd4 759 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
760 }
761 }
762 }
763}
764
765/* verify that all the pages have correct rights for code */
766static void tb_page_check(void)
767{
768 TranslationBlock *tb;
769 int i, flags1, flags2;
3b46e624 770
99773bd4
PB
771 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
772 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
773 flags1 = page_get_flags(tb->pc);
774 flags2 = page_get_flags(tb->pc + tb->size - 1);
775 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
776 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 777 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
778 }
779 }
780 }
781}
782
783#endif
784
785/* invalidate one TB */
786static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
787 int next_offset)
788{
789 TranslationBlock *tb1;
790 for(;;) {
791 tb1 = *ptb;
792 if (tb1 == tb) {
793 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
794 break;
795 }
796 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
797 }
798}
799
9fa3e853
FB
800static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
801{
802 TranslationBlock *tb1;
803 unsigned int n1;
804
805 for(;;) {
806 tb1 = *ptb;
807 n1 = (long)tb1 & 3;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 if (tb1 == tb) {
810 *ptb = tb1->page_next[n1];
811 break;
812 }
813 ptb = &tb1->page_next[n1];
814 }
815}
816
d4e8164f
FB
817static inline void tb_jmp_remove(TranslationBlock *tb, int n)
818{
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843}
844
845/* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847static inline void tb_reset_jump(TranslationBlock *tb, int n)
848{
849 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
850}
851
41c1b1c9 852void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 853{
6a00d601 854 CPUState *env;
8a40a180 855 PageDesc *p;
d4e8164f 856 unsigned int h, n1;
41c1b1c9 857 tb_page_addr_t phys_pc;
8a40a180 858 TranslationBlock *tb1, *tb2;
3b46e624 859
8a40a180
FB
860 /* remove the TB from the hash list */
861 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
862 h = tb_phys_hash_func(phys_pc);
5fafdf24 863 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
864 offsetof(TranslationBlock, phys_hash_next));
865
866 /* remove the TB from the page list */
867 if (tb->page_addr[0] != page_addr) {
868 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
869 tb_page_remove(&p->first_tb, tb);
870 invalidate_page_bitmap(p);
871 }
872 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
873 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
874 tb_page_remove(&p->first_tb, tb);
875 invalidate_page_bitmap(p);
876 }
877
36bdbe54 878 tb_invalidated_flag = 1;
59817ccb 879
fd6ce8f6 880 /* remove the TB from the hash list */
8a40a180 881 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
883 if (env->tb_jmp_cache[h] == tb)
884 env->tb_jmp_cache[h] = NULL;
885 }
d4e8164f
FB
886
887 /* suppress this TB from the two jump lists */
888 tb_jmp_remove(tb, 0);
889 tb_jmp_remove(tb, 1);
890
891 /* suppress any remaining jumps to this TB */
892 tb1 = tb->jmp_first;
893 for(;;) {
894 n1 = (long)tb1 & 3;
895 if (n1 == 2)
896 break;
897 tb1 = (TranslationBlock *)((long)tb1 & ~3);
898 tb2 = tb1->jmp_next[n1];
899 tb_reset_jump(tb1, n1);
900 tb1->jmp_next[n1] = NULL;
901 tb1 = tb2;
902 }
903 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 904
e3db7226 905 tb_phys_invalidate_count++;
9fa3e853
FB
906}
907
908static inline void set_bits(uint8_t *tab, int start, int len)
909{
910 int end, mask, end1;
911
912 end = start + len;
913 tab += start >> 3;
914 mask = 0xff << (start & 7);
915 if ((start & ~7) == (end & ~7)) {
916 if (start < end) {
917 mask &= ~(0xff << (end & 7));
918 *tab |= mask;
919 }
920 } else {
921 *tab++ |= mask;
922 start = (start + 8) & ~7;
923 end1 = end & ~7;
924 while (start < end1) {
925 *tab++ = 0xff;
926 start += 8;
927 }
928 if (start < end) {
929 mask = ~(0xff << (end & 7));
930 *tab |= mask;
931 }
932 }
933}
934
935static void build_page_bitmap(PageDesc *p)
936{
937 int n, tb_start, tb_end;
938 TranslationBlock *tb;
3b46e624 939
b2a7081a 940 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
941
942 tb = p->first_tb;
943 while (tb != NULL) {
944 n = (long)tb & 3;
945 tb = (TranslationBlock *)((long)tb & ~3);
946 /* NOTE: this is subtle as a TB may span two physical pages */
947 if (n == 0) {
948 /* NOTE: tb_end may be after the end of the page, but
949 it is not a problem */
950 tb_start = tb->pc & ~TARGET_PAGE_MASK;
951 tb_end = tb_start + tb->size;
952 if (tb_end > TARGET_PAGE_SIZE)
953 tb_end = TARGET_PAGE_SIZE;
954 } else {
955 tb_start = 0;
956 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
957 }
958 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
959 tb = tb->page_next[n];
960 }
961}
962
2e70f6ef
PB
963TranslationBlock *tb_gen_code(CPUState *env,
964 target_ulong pc, target_ulong cs_base,
965 int flags, int cflags)
d720b93d
FB
966{
967 TranslationBlock *tb;
968 uint8_t *tc_ptr;
41c1b1c9
PB
969 tb_page_addr_t phys_pc, phys_page2;
970 target_ulong virt_page2;
d720b93d
FB
971 int code_gen_size;
972
41c1b1c9 973 phys_pc = get_page_addr_code(env, pc);
c27004ec 974 tb = tb_alloc(pc);
d720b93d
FB
975 if (!tb) {
976 /* flush must be done */
977 tb_flush(env);
978 /* cannot fail at this point */
c27004ec 979 tb = tb_alloc(pc);
2e70f6ef
PB
980 /* Don't forget to invalidate previous TB info. */
981 tb_invalidated_flag = 1;
d720b93d
FB
982 }
983 tc_ptr = code_gen_ptr;
984 tb->tc_ptr = tc_ptr;
985 tb->cs_base = cs_base;
986 tb->flags = flags;
987 tb->cflags = cflags;
d07bde88 988 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 989 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 990
d720b93d 991 /* check next page if needed */
c27004ec 992 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 993 phys_page2 = -1;
c27004ec 994 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 995 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 996 }
41c1b1c9 997 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 998 return tb;
d720b93d 999}
3b46e624 1000
9fa3e853
FB
1001/* invalidate all TBs which intersect with the target physical page
1002 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1003 the same physical page. 'is_cpu_write_access' should be true if called
1004 from a real cpu write access: the virtual CPU will exit the current
1005 TB if code is modified inside this TB. */
41c1b1c9 1006void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1007 int is_cpu_write_access)
1008{
6b917547 1009 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1010 CPUState *env = cpu_single_env;
41c1b1c9 1011 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1012 PageDesc *p;
1013 int n;
1014#ifdef TARGET_HAS_PRECISE_SMC
1015 int current_tb_not_found = is_cpu_write_access;
1016 TranslationBlock *current_tb = NULL;
1017 int current_tb_modified = 0;
1018 target_ulong current_pc = 0;
1019 target_ulong current_cs_base = 0;
1020 int current_flags = 0;
1021#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1022
1023 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1024 if (!p)
9fa3e853 1025 return;
5fafdf24 1026 if (!p->code_bitmap &&
d720b93d
FB
1027 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1028 is_cpu_write_access) {
9fa3e853
FB
1029 /* build code bitmap */
1030 build_page_bitmap(p);
1031 }
1032
1033 /* we remove all the TBs in the range [start, end[ */
1034 /* XXX: see if in some cases it could be faster to invalidate all the code */
1035 tb = p->first_tb;
1036 while (tb != NULL) {
1037 n = (long)tb & 3;
1038 tb = (TranslationBlock *)((long)tb & ~3);
1039 tb_next = tb->page_next[n];
1040 /* NOTE: this is subtle as a TB may span two physical pages */
1041 if (n == 0) {
1042 /* NOTE: tb_end may be after the end of the page, but
1043 it is not a problem */
1044 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1045 tb_end = tb_start + tb->size;
1046 } else {
1047 tb_start = tb->page_addr[1];
1048 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 }
1050 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1051#ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb_not_found) {
1053 current_tb_not_found = 0;
1054 current_tb = NULL;
2e70f6ef 1055 if (env->mem_io_pc) {
d720b93d 1056 /* now we have a real cpu fault */
2e70f6ef 1057 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1058 }
1059 }
1060 if (current_tb == tb &&
2e70f6ef 1061 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
3b46e624 1067
d720b93d 1068 current_tb_modified = 1;
5fafdf24 1069 cpu_restore_state(current_tb, env,
2e70f6ef 1070 env->mem_io_pc, NULL);
6b917547
AL
1071 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1072 &current_flags);
d720b93d
FB
1073 }
1074#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1075 /* we need to do that to handle the case where a signal
1076 occurs while doing tb_phys_invalidate() */
1077 saved_tb = NULL;
1078 if (env) {
1079 saved_tb = env->current_tb;
1080 env->current_tb = NULL;
1081 }
9fa3e853 1082 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1083 if (env) {
1084 env->current_tb = saved_tb;
1085 if (env->interrupt_request && env->current_tb)
1086 cpu_interrupt(env, env->interrupt_request);
1087 }
9fa3e853
FB
1088 }
1089 tb = tb_next;
1090 }
1091#if !defined(CONFIG_USER_ONLY)
1092 /* if no code remaining, no need to continue to use slow writes */
1093 if (!p->first_tb) {
1094 invalidate_page_bitmap(p);
d720b93d 1095 if (is_cpu_write_access) {
2e70f6ef 1096 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1097 }
1098 }
1099#endif
1100#ifdef TARGET_HAS_PRECISE_SMC
1101 if (current_tb_modified) {
1102 /* we generate a block containing just the instruction
1103 modifying the memory. It will ensure that it cannot modify
1104 itself */
ea1c1802 1105 env->current_tb = NULL;
2e70f6ef 1106 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1107 cpu_resume_from_signal(env, NULL);
9fa3e853 1108 }
fd6ce8f6 1109#endif
9fa3e853 1110}
fd6ce8f6 1111
9fa3e853 1112/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1113static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1114{
1115 PageDesc *p;
1116 int offset, b;
59817ccb 1117#if 0
a4193c8a 1118 if (1) {
93fcfe39
AL
1119 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1120 cpu_single_env->mem_io_vaddr, len,
1121 cpu_single_env->eip,
1122 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1123 }
1124#endif
9fa3e853 1125 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1126 if (!p)
9fa3e853
FB
1127 return;
1128 if (p->code_bitmap) {
1129 offset = start & ~TARGET_PAGE_MASK;
1130 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1131 if (b & ((1 << len) - 1))
1132 goto do_invalidate;
1133 } else {
1134 do_invalidate:
d720b93d 1135 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1136 }
1137}
1138
9fa3e853 1139#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1140static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1141 unsigned long pc, void *puc)
9fa3e853 1142{
6b917547 1143 TranslationBlock *tb;
9fa3e853 1144 PageDesc *p;
6b917547 1145 int n;
d720b93d 1146#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1147 TranslationBlock *current_tb = NULL;
d720b93d 1148 CPUState *env = cpu_single_env;
6b917547
AL
1149 int current_tb_modified = 0;
1150 target_ulong current_pc = 0;
1151 target_ulong current_cs_base = 0;
1152 int current_flags = 0;
d720b93d 1153#endif
9fa3e853
FB
1154
1155 addr &= TARGET_PAGE_MASK;
1156 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1157 if (!p)
9fa3e853
FB
1158 return;
1159 tb = p->first_tb;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (tb && pc != 0) {
1162 current_tb = tb_find_pc(pc);
1163 }
1164#endif
9fa3e853
FB
1165 while (tb != NULL) {
1166 n = (long)tb & 3;
1167 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1168#ifdef TARGET_HAS_PRECISE_SMC
1169 if (current_tb == tb &&
2e70f6ef 1170 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1171 /* If we are modifying the current TB, we must stop
1172 its execution. We could be more precise by checking
1173 that the modification is after the current PC, but it
1174 would require a specialized function to partially
1175 restore the CPU state */
3b46e624 1176
d720b93d
FB
1177 current_tb_modified = 1;
1178 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1179 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1180 &current_flags);
d720b93d
FB
1181 }
1182#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1183 tb_phys_invalidate(tb, addr);
1184 tb = tb->page_next[n];
1185 }
fd6ce8f6 1186 p->first_tb = NULL;
d720b93d
FB
1187#ifdef TARGET_HAS_PRECISE_SMC
1188 if (current_tb_modified) {
1189 /* we generate a block containing just the instruction
1190 modifying the memory. It will ensure that it cannot modify
1191 itself */
ea1c1802 1192 env->current_tb = NULL;
2e70f6ef 1193 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1194 cpu_resume_from_signal(env, puc);
1195 }
1196#endif
fd6ce8f6 1197}
9fa3e853 1198#endif
fd6ce8f6
FB
1199
1200/* add the tb in the target page and protect it if necessary */
5fafdf24 1201static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1202 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1203{
1204 PageDesc *p;
9fa3e853
FB
1205 TranslationBlock *last_first_tb;
1206
1207 tb->page_addr[n] = page_addr;
5cd2c5b6 1208 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1209 tb->page_next[n] = p->first_tb;
1210 last_first_tb = p->first_tb;
1211 p->first_tb = (TranslationBlock *)((long)tb | n);
1212 invalidate_page_bitmap(p);
fd6ce8f6 1213
107db443 1214#if defined(TARGET_HAS_SMC) || 1
d720b93d 1215
9fa3e853 1216#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1217 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1218 target_ulong addr;
1219 PageDesc *p2;
9fa3e853
FB
1220 int prot;
1221
fd6ce8f6
FB
1222 /* force the host page as non writable (writes will have a
1223 page fault + mprotect overhead) */
53a5960a 1224 page_addr &= qemu_host_page_mask;
fd6ce8f6 1225 prot = 0;
53a5960a
PB
1226 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1227 addr += TARGET_PAGE_SIZE) {
1228
1229 p2 = page_find (addr >> TARGET_PAGE_BITS);
1230 if (!p2)
1231 continue;
1232 prot |= p2->flags;
1233 p2->flags &= ~PAGE_WRITE;
53a5960a 1234 }
5fafdf24 1235 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1236 (prot & PAGE_BITS) & ~PAGE_WRITE);
1237#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1238 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1239 page_addr);
fd6ce8f6 1240#endif
fd6ce8f6 1241 }
9fa3e853
FB
1242#else
1243 /* if some code is already present, then the pages are already
1244 protected. So we handle the case where only the first TB is
1245 allocated in a physical page */
1246 if (!last_first_tb) {
6a00d601 1247 tlb_protect_code(page_addr);
9fa3e853
FB
1248 }
1249#endif
d720b93d
FB
1250
1251#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1252}
1253
1254/* Allocate a new translation block. Flush the translation buffer if
1255 too many translation blocks or too much generated code. */
c27004ec 1256TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1257{
1258 TranslationBlock *tb;
fd6ce8f6 1259
26a5f13b
FB
1260 if (nb_tbs >= code_gen_max_blocks ||
1261 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1262 return NULL;
fd6ce8f6
FB
1263 tb = &tbs[nb_tbs++];
1264 tb->pc = pc;
b448f2f3 1265 tb->cflags = 0;
d4e8164f
FB
1266 return tb;
1267}
1268
2e70f6ef
PB
1269void tb_free(TranslationBlock *tb)
1270{
bf20dc07 1271 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1272 Ignore the hard cases and just back up if this TB happens to
1273 be the last one generated. */
1274 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1275 code_gen_ptr = tb->tc_ptr;
1276 nb_tbs--;
1277 }
1278}
1279
9fa3e853
FB
1280/* add a new TB and link it to the physical page tables. phys_page2 is
1281 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1282void tb_link_page(TranslationBlock *tb,
1283 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1284{
9fa3e853
FB
1285 unsigned int h;
1286 TranslationBlock **ptb;
1287
c8a706fe
PB
1288 /* Grab the mmap lock to stop another thread invalidating this TB
1289 before we are done. */
1290 mmap_lock();
9fa3e853
FB
1291 /* add in the physical hash table */
1292 h = tb_phys_hash_func(phys_pc);
1293 ptb = &tb_phys_hash[h];
1294 tb->phys_hash_next = *ptb;
1295 *ptb = tb;
fd6ce8f6
FB
1296
1297 /* add in the page list */
9fa3e853
FB
1298 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1299 if (phys_page2 != -1)
1300 tb_alloc_page(tb, 1, phys_page2);
1301 else
1302 tb->page_addr[1] = -1;
9fa3e853 1303
d4e8164f
FB
1304 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1305 tb->jmp_next[0] = NULL;
1306 tb->jmp_next[1] = NULL;
1307
1308 /* init original jump addresses */
1309 if (tb->tb_next_offset[0] != 0xffff)
1310 tb_reset_jump(tb, 0);
1311 if (tb->tb_next_offset[1] != 0xffff)
1312 tb_reset_jump(tb, 1);
8a40a180
FB
1313
1314#ifdef DEBUG_TB_CHECK
1315 tb_page_check();
1316#endif
c8a706fe 1317 mmap_unlock();
fd6ce8f6
FB
1318}
1319
9fa3e853
FB
1320/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1321 tb[1].tc_ptr. Return NULL if not found */
1322TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1323{
9fa3e853
FB
1324 int m_min, m_max, m;
1325 unsigned long v;
1326 TranslationBlock *tb;
a513fe19
FB
1327
1328 if (nb_tbs <= 0)
1329 return NULL;
1330 if (tc_ptr < (unsigned long)code_gen_buffer ||
1331 tc_ptr >= (unsigned long)code_gen_ptr)
1332 return NULL;
1333 /* binary search (cf Knuth) */
1334 m_min = 0;
1335 m_max = nb_tbs - 1;
1336 while (m_min <= m_max) {
1337 m = (m_min + m_max) >> 1;
1338 tb = &tbs[m];
1339 v = (unsigned long)tb->tc_ptr;
1340 if (v == tc_ptr)
1341 return tb;
1342 else if (tc_ptr < v) {
1343 m_max = m - 1;
1344 } else {
1345 m_min = m + 1;
1346 }
5fafdf24 1347 }
a513fe19
FB
1348 return &tbs[m_max];
1349}
7501267e 1350
ea041c0e
FB
1351static void tb_reset_jump_recursive(TranslationBlock *tb);
1352
1353static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1354{
1355 TranslationBlock *tb1, *tb_next, **ptb;
1356 unsigned int n1;
1357
1358 tb1 = tb->jmp_next[n];
1359 if (tb1 != NULL) {
1360 /* find head of list */
1361 for(;;) {
1362 n1 = (long)tb1 & 3;
1363 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1364 if (n1 == 2)
1365 break;
1366 tb1 = tb1->jmp_next[n1];
1367 }
1368 /* we are now sure now that tb jumps to tb1 */
1369 tb_next = tb1;
1370
1371 /* remove tb from the jmp_first list */
1372 ptb = &tb_next->jmp_first;
1373 for(;;) {
1374 tb1 = *ptb;
1375 n1 = (long)tb1 & 3;
1376 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1377 if (n1 == n && tb1 == tb)
1378 break;
1379 ptb = &tb1->jmp_next[n1];
1380 }
1381 *ptb = tb->jmp_next[n];
1382 tb->jmp_next[n] = NULL;
3b46e624 1383
ea041c0e
FB
1384 /* suppress the jump to next tb in generated code */
1385 tb_reset_jump(tb, n);
1386
0124311e 1387 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1388 tb_reset_jump_recursive(tb_next);
1389 }
1390}
1391
1392static void tb_reset_jump_recursive(TranslationBlock *tb)
1393{
1394 tb_reset_jump_recursive2(tb, 0);
1395 tb_reset_jump_recursive2(tb, 1);
1396}
1397
1fddef4b 1398#if defined(TARGET_HAS_ICE)
94df27fd
PB
1399#if defined(CONFIG_USER_ONLY)
1400static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401{
1402 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1403}
1404#else
d720b93d
FB
1405static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1406{
c227f099 1407 target_phys_addr_t addr;
9b3c35e0 1408 target_ulong pd;
c227f099 1409 ram_addr_t ram_addr;
c2f07f81 1410 PhysPageDesc *p;
d720b93d 1411
c2f07f81
PB
1412 addr = cpu_get_phys_page_debug(env, pc);
1413 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1414 if (!p) {
1415 pd = IO_MEM_UNASSIGNED;
1416 } else {
1417 pd = p->phys_offset;
1418 }
1419 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1420 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1421}
c27004ec 1422#endif
94df27fd 1423#endif /* TARGET_HAS_ICE */
d720b93d 1424
c527ee8f
PB
1425#if defined(CONFIG_USER_ONLY)
1426void cpu_watchpoint_remove_all(CPUState *env, int mask)
1427
1428{
1429}
1430
1431int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
1433{
1434 return -ENOSYS;
1435}
1436#else
6658ffb8 1437/* Add a watchpoint. */
a1d1bb31
AL
1438int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1439 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1440{
b4051334 1441 target_ulong len_mask = ~(len - 1);
c0ce998e 1442 CPUWatchpoint *wp;
6658ffb8 1443
b4051334
AL
1444 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1445 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1446 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1447 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1448 return -EINVAL;
1449 }
a1d1bb31 1450 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1451
1452 wp->vaddr = addr;
b4051334 1453 wp->len_mask = len_mask;
a1d1bb31
AL
1454 wp->flags = flags;
1455
2dc9f411 1456 /* keep all GDB-injected watchpoints in front */
c0ce998e 1457 if (flags & BP_GDB)
72cf2d4f 1458 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1459 else
72cf2d4f 1460 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1461
6658ffb8 1462 tlb_flush_page(env, addr);
a1d1bb31
AL
1463
1464 if (watchpoint)
1465 *watchpoint = wp;
1466 return 0;
6658ffb8
PB
1467}
1468
a1d1bb31
AL
1469/* Remove a specific watchpoint. */
1470int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1471 int flags)
6658ffb8 1472{
b4051334 1473 target_ulong len_mask = ~(len - 1);
a1d1bb31 1474 CPUWatchpoint *wp;
6658ffb8 1475
72cf2d4f 1476 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1477 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1478 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1479 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1480 return 0;
1481 }
1482 }
a1d1bb31 1483 return -ENOENT;
6658ffb8
PB
1484}
1485
a1d1bb31
AL
1486/* Remove a specific watchpoint by reference. */
1487void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1488{
72cf2d4f 1489 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1490
a1d1bb31
AL
1491 tlb_flush_page(env, watchpoint->vaddr);
1492
1493 qemu_free(watchpoint);
1494}
1495
1496/* Remove all matching watchpoints. */
1497void cpu_watchpoint_remove_all(CPUState *env, int mask)
1498{
c0ce998e 1499 CPUWatchpoint *wp, *next;
a1d1bb31 1500
72cf2d4f 1501 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1502 if (wp->flags & mask)
1503 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1504 }
7d03f82f 1505}
c527ee8f 1506#endif
7d03f82f 1507
a1d1bb31
AL
1508/* Add a breakpoint. */
1509int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1510 CPUBreakpoint **breakpoint)
4c3a88a2 1511{
1fddef4b 1512#if defined(TARGET_HAS_ICE)
c0ce998e 1513 CPUBreakpoint *bp;
3b46e624 1514
a1d1bb31 1515 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1516
a1d1bb31
AL
1517 bp->pc = pc;
1518 bp->flags = flags;
1519
2dc9f411 1520 /* keep all GDB-injected breakpoints in front */
c0ce998e 1521 if (flags & BP_GDB)
72cf2d4f 1522 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1523 else
72cf2d4f 1524 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1525
d720b93d 1526 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1527
1528 if (breakpoint)
1529 *breakpoint = bp;
4c3a88a2
FB
1530 return 0;
1531#else
a1d1bb31 1532 return -ENOSYS;
4c3a88a2
FB
1533#endif
1534}
1535
a1d1bb31
AL
1536/* Remove a specific breakpoint. */
1537int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1538{
7d03f82f 1539#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1540 CPUBreakpoint *bp;
1541
72cf2d4f 1542 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1543 if (bp->pc == pc && bp->flags == flags) {
1544 cpu_breakpoint_remove_by_ref(env, bp);
1545 return 0;
1546 }
7d03f82f 1547 }
a1d1bb31
AL
1548 return -ENOENT;
1549#else
1550 return -ENOSYS;
7d03f82f
EI
1551#endif
1552}
1553
a1d1bb31
AL
1554/* Remove a specific breakpoint by reference. */
1555void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1556{
1fddef4b 1557#if defined(TARGET_HAS_ICE)
72cf2d4f 1558 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1559
a1d1bb31
AL
1560 breakpoint_invalidate(env, breakpoint->pc);
1561
1562 qemu_free(breakpoint);
1563#endif
1564}
1565
1566/* Remove all matching breakpoints. */
1567void cpu_breakpoint_remove_all(CPUState *env, int mask)
1568{
1569#if defined(TARGET_HAS_ICE)
c0ce998e 1570 CPUBreakpoint *bp, *next;
a1d1bb31 1571
72cf2d4f 1572 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1573 if (bp->flags & mask)
1574 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1575 }
4c3a88a2
FB
1576#endif
1577}
1578
c33a346e
FB
1579/* enable or disable single step mode. EXCP_DEBUG is returned by the
1580 CPU loop after each instruction */
1581void cpu_single_step(CPUState *env, int enabled)
1582{
1fddef4b 1583#if defined(TARGET_HAS_ICE)
c33a346e
FB
1584 if (env->singlestep_enabled != enabled) {
1585 env->singlestep_enabled = enabled;
e22a25c9
AL
1586 if (kvm_enabled())
1587 kvm_update_guest_debug(env, 0);
1588 else {
ccbb4d44 1589 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1590 /* XXX: only flush what is necessary */
1591 tb_flush(env);
1592 }
c33a346e
FB
1593 }
1594#endif
1595}
1596
34865134
FB
1597/* enable or disable low levels log */
1598void cpu_set_log(int log_flags)
1599{
1600 loglevel = log_flags;
1601 if (loglevel && !logfile) {
11fcfab4 1602 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1603 if (!logfile) {
1604 perror(logfilename);
1605 _exit(1);
1606 }
9fa3e853
FB
1607#if !defined(CONFIG_SOFTMMU)
1608 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1609 {
b55266b5 1610 static char logfile_buf[4096];
9fa3e853
FB
1611 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1612 }
bf65f53f
FN
1613#elif !defined(_WIN32)
1614 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1615 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1616#endif
e735b91c
PB
1617 log_append = 1;
1618 }
1619 if (!loglevel && logfile) {
1620 fclose(logfile);
1621 logfile = NULL;
34865134
FB
1622 }
1623}
1624
1625void cpu_set_log_filename(const char *filename)
1626{
1627 logfilename = strdup(filename);
e735b91c
PB
1628 if (logfile) {
1629 fclose(logfile);
1630 logfile = NULL;
1631 }
1632 cpu_set_log(loglevel);
34865134 1633}
c33a346e 1634
3098dba0 1635static void cpu_unlink_tb(CPUState *env)
ea041c0e 1636{
3098dba0
AJ
1637 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1638 problem and hope the cpu will stop of its own accord. For userspace
1639 emulation this often isn't actually as bad as it sounds. Often
1640 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1641 TranslationBlock *tb;
c227f099 1642 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1643
cab1b4bd 1644 spin_lock(&interrupt_lock);
3098dba0
AJ
1645 tb = env->current_tb;
1646 /* if the cpu is currently executing code, we must unlink it and
1647 all the potentially executing TB */
f76cfe56 1648 if (tb) {
3098dba0
AJ
1649 env->current_tb = NULL;
1650 tb_reset_jump_recursive(tb);
be214e6c 1651 }
cab1b4bd 1652 spin_unlock(&interrupt_lock);
3098dba0
AJ
1653}
1654
1655/* mask must never be zero, except for A20 change call */
1656void cpu_interrupt(CPUState *env, int mask)
1657{
1658 int old_mask;
be214e6c 1659
2e70f6ef 1660 old_mask = env->interrupt_request;
68a79315 1661 env->interrupt_request |= mask;
3098dba0 1662
8edac960
AL
1663#ifndef CONFIG_USER_ONLY
1664 /*
1665 * If called from iothread context, wake the target cpu in
1666 * case its halted.
1667 */
1668 if (!qemu_cpu_self(env)) {
1669 qemu_cpu_kick(env);
1670 return;
1671 }
1672#endif
1673
2e70f6ef 1674 if (use_icount) {
266910c4 1675 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1676#ifndef CONFIG_USER_ONLY
2e70f6ef 1677 if (!can_do_io(env)
be214e6c 1678 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1679 cpu_abort(env, "Raised interrupt while not in I/O function");
1680 }
1681#endif
1682 } else {
3098dba0 1683 cpu_unlink_tb(env);
ea041c0e
FB
1684 }
1685}
1686
b54ad049
FB
1687void cpu_reset_interrupt(CPUState *env, int mask)
1688{
1689 env->interrupt_request &= ~mask;
1690}
1691
3098dba0
AJ
1692void cpu_exit(CPUState *env)
1693{
1694 env->exit_request = 1;
1695 cpu_unlink_tb(env);
1696}
1697
c7cd6a37 1698const CPULogItem cpu_log_items[] = {
5fafdf24 1699 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1700 "show generated host assembly code for each compiled TB" },
1701 { CPU_LOG_TB_IN_ASM, "in_asm",
1702 "show target assembly code for each compiled TB" },
5fafdf24 1703 { CPU_LOG_TB_OP, "op",
57fec1fe 1704 "show micro ops for each compiled TB" },
f193c797 1705 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1706 "show micro ops "
1707#ifdef TARGET_I386
1708 "before eflags optimization and "
f193c797 1709#endif
e01a1157 1710 "after liveness analysis" },
f193c797
FB
1711 { CPU_LOG_INT, "int",
1712 "show interrupts/exceptions in short format" },
1713 { CPU_LOG_EXEC, "exec",
1714 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1715 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1716 "show CPU state before block translation" },
f193c797
FB
1717#ifdef TARGET_I386
1718 { CPU_LOG_PCALL, "pcall",
1719 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1720 { CPU_LOG_RESET, "cpu_reset",
1721 "show CPU state before CPU resets" },
f193c797 1722#endif
8e3a9fd2 1723#ifdef DEBUG_IOPORT
fd872598
FB
1724 { CPU_LOG_IOPORT, "ioport",
1725 "show all i/o ports accesses" },
8e3a9fd2 1726#endif
f193c797
FB
1727 { 0, NULL, NULL },
1728};
1729
f6f3fbca
MT
1730#ifndef CONFIG_USER_ONLY
1731static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1732 = QLIST_HEAD_INITIALIZER(memory_client_list);
1733
1734static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1735 ram_addr_t size,
1736 ram_addr_t phys_offset)
1737{
1738 CPUPhysMemoryClient *client;
1739 QLIST_FOREACH(client, &memory_client_list, list) {
1740 client->set_memory(client, start_addr, size, phys_offset);
1741 }
1742}
1743
1744static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1745 target_phys_addr_t end)
1746{
1747 CPUPhysMemoryClient *client;
1748 QLIST_FOREACH(client, &memory_client_list, list) {
1749 int r = client->sync_dirty_bitmap(client, start, end);
1750 if (r < 0)
1751 return r;
1752 }
1753 return 0;
1754}
1755
1756static int cpu_notify_migration_log(int enable)
1757{
1758 CPUPhysMemoryClient *client;
1759 QLIST_FOREACH(client, &memory_client_list, list) {
1760 int r = client->migration_log(client, enable);
1761 if (r < 0)
1762 return r;
1763 }
1764 return 0;
1765}
1766
5cd2c5b6
RH
1767static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1768 int level, void **lp)
f6f3fbca 1769{
5cd2c5b6 1770 int i;
f6f3fbca 1771
5cd2c5b6
RH
1772 if (*lp == NULL) {
1773 return;
1774 }
1775 if (level == 0) {
1776 PhysPageDesc *pd = *lp;
7296abac 1777 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1778 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1779 client->set_memory(client, pd[i].region_offset,
1780 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1781 }
5cd2c5b6
RH
1782 }
1783 } else {
1784 void **pp = *lp;
7296abac 1785 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1786 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1787 }
1788 }
1789}
1790
1791static void phys_page_for_each(CPUPhysMemoryClient *client)
1792{
5cd2c5b6
RH
1793 int i;
1794 for (i = 0; i < P_L1_SIZE; ++i) {
1795 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1796 l1_phys_map + 1);
f6f3fbca 1797 }
f6f3fbca
MT
1798}
1799
1800void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1801{
1802 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1803 phys_page_for_each(client);
1804}
1805
1806void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1807{
1808 QLIST_REMOVE(client, list);
1809}
1810#endif
1811
f193c797
FB
1812static int cmp1(const char *s1, int n, const char *s2)
1813{
1814 if (strlen(s2) != n)
1815 return 0;
1816 return memcmp(s1, s2, n) == 0;
1817}
3b46e624 1818
f193c797
FB
1819/* takes a comma separated list of log masks. Return 0 if error. */
1820int cpu_str_to_log_mask(const char *str)
1821{
c7cd6a37 1822 const CPULogItem *item;
f193c797
FB
1823 int mask;
1824 const char *p, *p1;
1825
1826 p = str;
1827 mask = 0;
1828 for(;;) {
1829 p1 = strchr(p, ',');
1830 if (!p1)
1831 p1 = p + strlen(p);
8e3a9fd2
FB
1832 if(cmp1(p,p1-p,"all")) {
1833 for(item = cpu_log_items; item->mask != 0; item++) {
1834 mask |= item->mask;
1835 }
1836 } else {
f193c797
FB
1837 for(item = cpu_log_items; item->mask != 0; item++) {
1838 if (cmp1(p, p1 - p, item->name))
1839 goto found;
1840 }
1841 return 0;
8e3a9fd2 1842 }
f193c797
FB
1843 found:
1844 mask |= item->mask;
1845 if (*p1 != ',')
1846 break;
1847 p = p1 + 1;
1848 }
1849 return mask;
1850}
ea041c0e 1851
7501267e
FB
1852void cpu_abort(CPUState *env, const char *fmt, ...)
1853{
1854 va_list ap;
493ae1f0 1855 va_list ap2;
7501267e
FB
1856
1857 va_start(ap, fmt);
493ae1f0 1858 va_copy(ap2, ap);
7501267e
FB
1859 fprintf(stderr, "qemu: fatal: ");
1860 vfprintf(stderr, fmt, ap);
1861 fprintf(stderr, "\n");
1862#ifdef TARGET_I386
7fe48483
FB
1863 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1864#else
1865 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1866#endif
93fcfe39
AL
1867 if (qemu_log_enabled()) {
1868 qemu_log("qemu: fatal: ");
1869 qemu_log_vprintf(fmt, ap2);
1870 qemu_log("\n");
f9373291 1871#ifdef TARGET_I386
93fcfe39 1872 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1873#else
93fcfe39 1874 log_cpu_state(env, 0);
f9373291 1875#endif
31b1a7b4 1876 qemu_log_flush();
93fcfe39 1877 qemu_log_close();
924edcae 1878 }
493ae1f0 1879 va_end(ap2);
f9373291 1880 va_end(ap);
fd052bf6
RV
1881#if defined(CONFIG_USER_ONLY)
1882 {
1883 struct sigaction act;
1884 sigfillset(&act.sa_mask);
1885 act.sa_handler = SIG_DFL;
1886 sigaction(SIGABRT, &act, NULL);
1887 }
1888#endif
7501267e
FB
1889 abort();
1890}
1891
c5be9f08
TS
1892CPUState *cpu_copy(CPUState *env)
1893{
01ba9816 1894 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1895 CPUState *next_cpu = new_env->next_cpu;
1896 int cpu_index = new_env->cpu_index;
5a38f081
AL
1897#if defined(TARGET_HAS_ICE)
1898 CPUBreakpoint *bp;
1899 CPUWatchpoint *wp;
1900#endif
1901
c5be9f08 1902 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1903
1904 /* Preserve chaining and index. */
c5be9f08
TS
1905 new_env->next_cpu = next_cpu;
1906 new_env->cpu_index = cpu_index;
5a38f081
AL
1907
1908 /* Clone all break/watchpoints.
1909 Note: Once we support ptrace with hw-debug register access, make sure
1910 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1911 QTAILQ_INIT(&env->breakpoints);
1912 QTAILQ_INIT(&env->watchpoints);
5a38f081 1913#if defined(TARGET_HAS_ICE)
72cf2d4f 1914 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1915 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1916 }
72cf2d4f 1917 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1918 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1919 wp->flags, NULL);
1920 }
1921#endif
1922
c5be9f08
TS
1923 return new_env;
1924}
1925
0124311e
FB
1926#if !defined(CONFIG_USER_ONLY)
1927
5c751e99
EI
1928static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1929{
1930 unsigned int i;
1931
1932 /* Discard jump cache entries for any tb which might potentially
1933 overlap the flushed page. */
1934 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1935 memset (&env->tb_jmp_cache[i], 0,
1936 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1937
1938 i = tb_jmp_cache_hash_page(addr);
1939 memset (&env->tb_jmp_cache[i], 0,
1940 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1941}
1942
08738984
IK
1943static CPUTLBEntry s_cputlb_empty_entry = {
1944 .addr_read = -1,
1945 .addr_write = -1,
1946 .addr_code = -1,
1947 .addend = -1,
1948};
1949
ee8b7021
FB
1950/* NOTE: if flush_global is true, also flush global entries (not
1951 implemented yet) */
1952void tlb_flush(CPUState *env, int flush_global)
33417e70 1953{
33417e70 1954 int i;
0124311e 1955
9fa3e853
FB
1956#if defined(DEBUG_TLB)
1957 printf("tlb_flush:\n");
1958#endif
0124311e
FB
1959 /* must reset current TB so that interrupts cannot modify the
1960 links while we are modifying them */
1961 env->current_tb = NULL;
1962
33417e70 1963 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1964 int mmu_idx;
1965 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1966 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1967 }
33417e70 1968 }
9fa3e853 1969
8a40a180 1970 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1971
d4c430a8
PB
1972 env->tlb_flush_addr = -1;
1973 env->tlb_flush_mask = 0;
e3db7226 1974 tlb_flush_count++;
33417e70
FB
1975}
1976
274da6b2 1977static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1978{
5fafdf24 1979 if (addr == (tlb_entry->addr_read &
84b7b8e7 1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1981 addr == (tlb_entry->addr_write &
84b7b8e7 1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1983 addr == (tlb_entry->addr_code &
84b7b8e7 1984 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1985 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1986 }
61382a50
FB
1987}
1988
2e12669a 1989void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1990{
8a40a180 1991 int i;
cfde4bd9 1992 int mmu_idx;
0124311e 1993
9fa3e853 1994#if defined(DEBUG_TLB)
108c49b8 1995 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1996#endif
d4c430a8
PB
1997 /* Check if we need to flush due to large pages. */
1998 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1999#if defined(DEBUG_TLB)
2000 printf("tlb_flush_page: forced full flush ("
2001 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2002 env->tlb_flush_addr, env->tlb_flush_mask);
2003#endif
2004 tlb_flush(env, 1);
2005 return;
2006 }
0124311e
FB
2007 /* must reset current TB so that interrupts cannot modify the
2008 links while we are modifying them */
2009 env->current_tb = NULL;
61382a50
FB
2010
2011 addr &= TARGET_PAGE_MASK;
2012 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2013 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2014 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2015
5c751e99 2016 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2017}
2018
9fa3e853
FB
2019/* update the TLBs so that writes to code in the virtual page 'addr'
2020 can be detected */
c227f099 2021static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2022{
5fafdf24 2023 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2024 ram_addr + TARGET_PAGE_SIZE,
2025 CODE_DIRTY_FLAG);
9fa3e853
FB
2026}
2027
9fa3e853 2028/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2029 tested for self modifying code */
c227f099 2030static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2031 target_ulong vaddr)
9fa3e853 2032{
3a7d929e 2033 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
2034}
2035
5fafdf24 2036static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2037 unsigned long start, unsigned long length)
2038{
2039 unsigned long addr;
84b7b8e7
FB
2040 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2041 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2042 if ((addr - start) < length) {
0f459d16 2043 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2044 }
2045 }
2046}
2047
5579c7f3 2048/* Note: start and end must be within the same ram block. */
c227f099 2049void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2050 int dirty_flags)
1ccde1cb
FB
2051{
2052 CPUState *env;
4f2ac237 2053 unsigned long length, start1;
0a962c02
FB
2054 int i, mask, len;
2055 uint8_t *p;
1ccde1cb
FB
2056
2057 start &= TARGET_PAGE_MASK;
2058 end = TARGET_PAGE_ALIGN(end);
2059
2060 length = end - start;
2061 if (length == 0)
2062 return;
0a962c02 2063 len = length >> TARGET_PAGE_BITS;
f23db169
FB
2064 mask = ~dirty_flags;
2065 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2066 for(i = 0; i < len; i++)
2067 p[i] &= mask;
2068
1ccde1cb
FB
2069 /* we modify the TLB cache so that the dirty bit will be set again
2070 when accessing the range */
5579c7f3
PB
2071 start1 = (unsigned long)qemu_get_ram_ptr(start);
2072 /* Chek that we don't span multiple blocks - this breaks the
2073 address comparisons below. */
2074 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2075 != (end - 1) - start) {
2076 abort();
2077 }
2078
6a00d601 2079 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2080 int mmu_idx;
2081 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2082 for(i = 0; i < CPU_TLB_SIZE; i++)
2083 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2084 start1, length);
2085 }
6a00d601 2086 }
1ccde1cb
FB
2087}
2088
74576198
AL
2089int cpu_physical_memory_set_dirty_tracking(int enable)
2090{
f6f3fbca 2091 int ret = 0;
74576198 2092 in_migration = enable;
f6f3fbca
MT
2093 ret = cpu_notify_migration_log(!!enable);
2094 return ret;
74576198
AL
2095}
2096
2097int cpu_physical_memory_get_dirty_tracking(void)
2098{
2099 return in_migration;
2100}
2101
c227f099
AL
2102int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2103 target_phys_addr_t end_addr)
2bec46dc 2104{
7b8f3b78 2105 int ret;
151f7749 2106
f6f3fbca 2107 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2108 return ret;
2bec46dc
AL
2109}
2110
3a7d929e
FB
2111static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2112{
c227f099 2113 ram_addr_t ram_addr;
5579c7f3 2114 void *p;
3a7d929e 2115
84b7b8e7 2116 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2117 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2118 + tlb_entry->addend);
2119 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2120 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2121 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2122 }
2123 }
2124}
2125
2126/* update the TLB according to the current state of the dirty bits */
2127void cpu_tlb_update_dirty(CPUState *env)
2128{
2129 int i;
cfde4bd9
IY
2130 int mmu_idx;
2131 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2132 for(i = 0; i < CPU_TLB_SIZE; i++)
2133 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2134 }
3a7d929e
FB
2135}
2136
0f459d16 2137static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2138{
0f459d16
PB
2139 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2140 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2141}
2142
0f459d16
PB
2143/* update the TLB corresponding to virtual page vaddr
2144 so that it is no longer dirty */
2145static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2146{
1ccde1cb 2147 int i;
cfde4bd9 2148 int mmu_idx;
1ccde1cb 2149
0f459d16 2150 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2151 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2152 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2153 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2154}
2155
d4c430a8
PB
2156/* Our TLB does not support large pages, so remember the area covered by
2157 large pages and trigger a full TLB flush if these are invalidated. */
2158static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2159 target_ulong size)
2160{
2161 target_ulong mask = ~(size - 1);
2162
2163 if (env->tlb_flush_addr == (target_ulong)-1) {
2164 env->tlb_flush_addr = vaddr & mask;
2165 env->tlb_flush_mask = mask;
2166 return;
2167 }
2168 /* Extend the existing region to include the new page.
2169 This is a compromise between unnecessary flushes and the cost
2170 of maintaining a full variable size TLB. */
2171 mask &= env->tlb_flush_mask;
2172 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2173 mask <<= 1;
2174 }
2175 env->tlb_flush_addr &= mask;
2176 env->tlb_flush_mask = mask;
2177}
2178
2179/* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
2182void tlb_set_page(CPUState *env, target_ulong vaddr,
2183 target_phys_addr_t paddr, int prot,
2184 int mmu_idx, target_ulong size)
9fa3e853 2185{
92e873b9 2186 PhysPageDesc *p;
4f2ac237 2187 unsigned long pd;
9fa3e853 2188 unsigned int index;
4f2ac237 2189 target_ulong address;
0f459d16 2190 target_ulong code_address;
355b1943 2191 unsigned long addend;
84b7b8e7 2192 CPUTLBEntry *te;
a1d1bb31 2193 CPUWatchpoint *wp;
c227f099 2194 target_phys_addr_t iotlb;
9fa3e853 2195
d4c430a8
PB
2196 assert(size >= TARGET_PAGE_SIZE);
2197 if (size != TARGET_PAGE_SIZE) {
2198 tlb_add_large_page(env, vaddr, size);
2199 }
92e873b9 2200 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2201 if (!p) {
2202 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2203 } else {
2204 pd = p->phys_offset;
9fa3e853
FB
2205 }
2206#if defined(DEBUG_TLB)
6ebbf390
JM
2207 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2208 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2209#endif
2210
0f459d16
PB
2211 address = vaddr;
2212 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2213 /* IO memory case (romd handled later) */
2214 address |= TLB_MMIO;
2215 }
5579c7f3 2216 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2217 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2218 /* Normal RAM. */
2219 iotlb = pd & TARGET_PAGE_MASK;
2220 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2221 iotlb |= IO_MEM_NOTDIRTY;
2222 else
2223 iotlb |= IO_MEM_ROM;
2224 } else {
ccbb4d44 2225 /* IO handlers are currently passed a physical address.
0f459d16
PB
2226 It would be nice to pass an offset from the base address
2227 of that region. This would avoid having to special case RAM,
2228 and avoid full address decoding in every device.
2229 We can't use the high bits of pd for this because
2230 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2231 iotlb = (pd & ~TARGET_PAGE_MASK);
2232 if (p) {
8da3ff18
PB
2233 iotlb += p->region_offset;
2234 } else {
2235 iotlb += paddr;
2236 }
0f459d16
PB
2237 }
2238
2239 code_address = address;
2240 /* Make accesses to pages with watchpoints go via the
2241 watchpoint trap routines. */
72cf2d4f 2242 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2243 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2244 iotlb = io_mem_watch + paddr;
2245 /* TODO: The memory case can be optimized by not trapping
2246 reads of pages with a write breakpoint. */
2247 address |= TLB_MMIO;
6658ffb8 2248 }
0f459d16 2249 }
d79acba4 2250
0f459d16
PB
2251 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2252 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2253 te = &env->tlb_table[mmu_idx][index];
2254 te->addend = addend - vaddr;
2255 if (prot & PAGE_READ) {
2256 te->addr_read = address;
2257 } else {
2258 te->addr_read = -1;
2259 }
5c751e99 2260
0f459d16
PB
2261 if (prot & PAGE_EXEC) {
2262 te->addr_code = code_address;
2263 } else {
2264 te->addr_code = -1;
2265 }
2266 if (prot & PAGE_WRITE) {
2267 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2268 (pd & IO_MEM_ROMD)) {
2269 /* Write access calls the I/O callback. */
2270 te->addr_write = address | TLB_MMIO;
2271 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2272 !cpu_physical_memory_is_dirty(pd)) {
2273 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2274 } else {
0f459d16 2275 te->addr_write = address;
9fa3e853 2276 }
0f459d16
PB
2277 } else {
2278 te->addr_write = -1;
9fa3e853 2279 }
9fa3e853
FB
2280}
2281
0124311e
FB
2282#else
2283
ee8b7021 2284void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2285{
2286}
2287
2e12669a 2288void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2289{
2290}
2291
edf8e2af
MW
2292/*
2293 * Walks guest process memory "regions" one by one
2294 * and calls callback function 'fn' for each region.
2295 */
5cd2c5b6
RH
2296
2297struct walk_memory_regions_data
2298{
2299 walk_memory_regions_fn fn;
2300 void *priv;
2301 unsigned long start;
2302 int prot;
2303};
2304
2305static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2306 abi_ulong end, int new_prot)
5cd2c5b6
RH
2307{
2308 if (data->start != -1ul) {
2309 int rc = data->fn(data->priv, data->start, end, data->prot);
2310 if (rc != 0) {
2311 return rc;
2312 }
2313 }
2314
2315 data->start = (new_prot ? end : -1ul);
2316 data->prot = new_prot;
2317
2318 return 0;
2319}
2320
2321static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2322 abi_ulong base, int level, void **lp)
5cd2c5b6 2323{
b480d9b7 2324 abi_ulong pa;
5cd2c5b6
RH
2325 int i, rc;
2326
2327 if (*lp == NULL) {
2328 return walk_memory_regions_end(data, base, 0);
2329 }
2330
2331 if (level == 0) {
2332 PageDesc *pd = *lp;
7296abac 2333 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2334 int prot = pd[i].flags;
2335
2336 pa = base | (i << TARGET_PAGE_BITS);
2337 if (prot != data->prot) {
2338 rc = walk_memory_regions_end(data, pa, prot);
2339 if (rc != 0) {
2340 return rc;
9fa3e853 2341 }
9fa3e853 2342 }
5cd2c5b6
RH
2343 }
2344 } else {
2345 void **pp = *lp;
7296abac 2346 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2347 pa = base | ((abi_ulong)i <<
2348 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2349 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2350 if (rc != 0) {
2351 return rc;
2352 }
2353 }
2354 }
2355
2356 return 0;
2357}
2358
2359int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2360{
2361 struct walk_memory_regions_data data;
2362 unsigned long i;
2363
2364 data.fn = fn;
2365 data.priv = priv;
2366 data.start = -1ul;
2367 data.prot = 0;
2368
2369 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2370 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2371 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2372 if (rc != 0) {
2373 return rc;
9fa3e853 2374 }
33417e70 2375 }
5cd2c5b6
RH
2376
2377 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2378}
2379
b480d9b7
PB
2380static int dump_region(void *priv, abi_ulong start,
2381 abi_ulong end, unsigned long prot)
edf8e2af
MW
2382{
2383 FILE *f = (FILE *)priv;
2384
b480d9b7
PB
2385 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2386 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2387 start, end, end - start,
2388 ((prot & PAGE_READ) ? 'r' : '-'),
2389 ((prot & PAGE_WRITE) ? 'w' : '-'),
2390 ((prot & PAGE_EXEC) ? 'x' : '-'));
2391
2392 return (0);
2393}
2394
2395/* dump memory mappings */
2396void page_dump(FILE *f)
2397{
2398 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2399 "start", "end", "size", "prot");
2400 walk_memory_regions(f, dump_region);
33417e70
FB
2401}
2402
53a5960a 2403int page_get_flags(target_ulong address)
33417e70 2404{
9fa3e853
FB
2405 PageDesc *p;
2406
2407 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2408 if (!p)
9fa3e853
FB
2409 return 0;
2410 return p->flags;
2411}
2412
376a7909
RH
2413/* Modify the flags of a page and invalidate the code if necessary.
2414 The flag PAGE_WRITE_ORG is positioned automatically depending
2415 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2416void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2417{
376a7909
RH
2418 target_ulong addr, len;
2419
2420 /* This function should never be called with addresses outside the
2421 guest address space. If this assert fires, it probably indicates
2422 a missing call to h2g_valid. */
b480d9b7
PB
2423#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2424 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2425#endif
2426 assert(start < end);
9fa3e853
FB
2427
2428 start = start & TARGET_PAGE_MASK;
2429 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2430
2431 if (flags & PAGE_WRITE) {
9fa3e853 2432 flags |= PAGE_WRITE_ORG;
376a7909
RH
2433 }
2434
2435 for (addr = start, len = end - start;
2436 len != 0;
2437 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2438 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2439
2440 /* If the write protection bit is set, then we invalidate
2441 the code inside. */
5fafdf24 2442 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2443 (flags & PAGE_WRITE) &&
2444 p->first_tb) {
d720b93d 2445 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2446 }
2447 p->flags = flags;
2448 }
33417e70
FB
2449}
2450
3d97b40b
TS
2451int page_check_range(target_ulong start, target_ulong len, int flags)
2452{
2453 PageDesc *p;
2454 target_ulong end;
2455 target_ulong addr;
2456
376a7909
RH
2457 /* This function should never be called with addresses outside the
2458 guest address space. If this assert fires, it probably indicates
2459 a missing call to h2g_valid. */
338e9e6c
BS
2460#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2461 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2462#endif
2463
2464 if (start + len - 1 < start) {
2465 /* We've wrapped around. */
55f280c9 2466 return -1;
376a7909 2467 }
55f280c9 2468
3d97b40b
TS
2469 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2470 start = start & TARGET_PAGE_MASK;
2471
376a7909
RH
2472 for (addr = start, len = end - start;
2473 len != 0;
2474 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2475 p = page_find(addr >> TARGET_PAGE_BITS);
2476 if( !p )
2477 return -1;
2478 if( !(p->flags & PAGE_VALID) )
2479 return -1;
2480
dae3270c 2481 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2482 return -1;
dae3270c
FB
2483 if (flags & PAGE_WRITE) {
2484 if (!(p->flags & PAGE_WRITE_ORG))
2485 return -1;
2486 /* unprotect the page if it was put read-only because it
2487 contains translated code */
2488 if (!(p->flags & PAGE_WRITE)) {
2489 if (!page_unprotect(addr, 0, NULL))
2490 return -1;
2491 }
2492 return 0;
2493 }
3d97b40b
TS
2494 }
2495 return 0;
2496}
2497
9fa3e853 2498/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2499 page. Return TRUE if the fault was successfully handled. */
53a5960a 2500int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2501{
45d679d6
AJ
2502 unsigned int prot;
2503 PageDesc *p;
53a5960a 2504 target_ulong host_start, host_end, addr;
9fa3e853 2505
c8a706fe
PB
2506 /* Technically this isn't safe inside a signal handler. However we
2507 know this only ever happens in a synchronous SEGV handler, so in
2508 practice it seems to be ok. */
2509 mmap_lock();
2510
45d679d6
AJ
2511 p = page_find(address >> TARGET_PAGE_BITS);
2512 if (!p) {
c8a706fe 2513 mmap_unlock();
9fa3e853 2514 return 0;
c8a706fe 2515 }
45d679d6 2516
9fa3e853
FB
2517 /* if the page was really writable, then we change its
2518 protection back to writable */
45d679d6
AJ
2519 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2520 host_start = address & qemu_host_page_mask;
2521 host_end = host_start + qemu_host_page_size;
2522
2523 prot = 0;
2524 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2525 p = page_find(addr >> TARGET_PAGE_BITS);
2526 p->flags |= PAGE_WRITE;
2527 prot |= p->flags;
2528
9fa3e853
FB
2529 /* and since the content will be modified, we must invalidate
2530 the corresponding translated code. */
45d679d6 2531 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2532#ifdef DEBUG_TB_CHECK
45d679d6 2533 tb_invalidate_check(addr);
9fa3e853 2534#endif
9fa3e853 2535 }
45d679d6
AJ
2536 mprotect((void *)g2h(host_start), qemu_host_page_size,
2537 prot & PAGE_BITS);
2538
2539 mmap_unlock();
2540 return 1;
9fa3e853 2541 }
c8a706fe 2542 mmap_unlock();
9fa3e853
FB
2543 return 0;
2544}
2545
6a00d601
FB
2546static inline void tlb_set_dirty(CPUState *env,
2547 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2548{
2549}
9fa3e853
FB
2550#endif /* defined(CONFIG_USER_ONLY) */
2551
e2eef170 2552#if !defined(CONFIG_USER_ONLY)
8da3ff18 2553
c04b2b78
PB
2554#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2555typedef struct subpage_t {
2556 target_phys_addr_t base;
2557 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
2558 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
2559 void *opaque[TARGET_PAGE_SIZE][2][4];
2560 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
2561} subpage_t;
2562
c227f099
AL
2563static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2564 ram_addr_t memory, ram_addr_t region_offset);
2565static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2566 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2567#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2568 need_subpage) \
2569 do { \
2570 if (addr > start_addr) \
2571 start_addr2 = 0; \
2572 else { \
2573 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2574 if (start_addr2 > 0) \
2575 need_subpage = 1; \
2576 } \
2577 \
49e9fba2 2578 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2579 end_addr2 = TARGET_PAGE_SIZE - 1; \
2580 else { \
2581 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2582 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2583 need_subpage = 1; \
2584 } \
2585 } while (0)
2586
8f2498f9
MT
2587/* register physical memory.
2588 For RAM, 'size' must be a multiple of the target page size.
2589 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2590 io memory page. The address used when calling the IO function is
2591 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2592 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2593 before calculating this offset. This should not be a problem unless
2594 the low bits of start_addr and region_offset differ. */
c227f099
AL
2595void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2596 ram_addr_t size,
2597 ram_addr_t phys_offset,
2598 ram_addr_t region_offset)
33417e70 2599{
c227f099 2600 target_phys_addr_t addr, end_addr;
92e873b9 2601 PhysPageDesc *p;
9d42037b 2602 CPUState *env;
c227f099 2603 ram_addr_t orig_size = size;
db7b5426 2604 void *subpage;
33417e70 2605
f6f3fbca
MT
2606 cpu_notify_set_memory(start_addr, size, phys_offset);
2607
67c4d23c
PB
2608 if (phys_offset == IO_MEM_UNASSIGNED) {
2609 region_offset = start_addr;
2610 }
8da3ff18 2611 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2612 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2613 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2614 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2615 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2616 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2617 ram_addr_t orig_memory = p->phys_offset;
2618 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2619 int need_subpage = 0;
2620
2621 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2622 need_subpage);
4254fab8 2623 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2624 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2625 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2626 &p->phys_offset, orig_memory,
2627 p->region_offset);
db7b5426
BS
2628 } else {
2629 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2630 >> IO_MEM_SHIFT];
2631 }
8da3ff18
PB
2632 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2633 region_offset);
2634 p->region_offset = 0;
db7b5426
BS
2635 } else {
2636 p->phys_offset = phys_offset;
2637 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2638 (phys_offset & IO_MEM_ROMD))
2639 phys_offset += TARGET_PAGE_SIZE;
2640 }
2641 } else {
2642 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2643 p->phys_offset = phys_offset;
8da3ff18 2644 p->region_offset = region_offset;
db7b5426 2645 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2646 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2647 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2648 } else {
c227f099 2649 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2650 int need_subpage = 0;
2651
2652 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2653 end_addr2, need_subpage);
2654
4254fab8 2655 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2656 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2657 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2658 addr & TARGET_PAGE_MASK);
db7b5426 2659 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2660 phys_offset, region_offset);
2661 p->region_offset = 0;
db7b5426
BS
2662 }
2663 }
2664 }
8da3ff18 2665 region_offset += TARGET_PAGE_SIZE;
33417e70 2666 }
3b46e624 2667
9d42037b
FB
2668 /* since each CPU stores ram addresses in its TLB cache, we must
2669 reset the modified entries */
2670 /* XXX: slow ! */
2671 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2672 tlb_flush(env, 1);
2673 }
33417e70
FB
2674}
2675
ba863458 2676/* XXX: temporary until new memory mapping API */
c227f099 2677ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2678{
2679 PhysPageDesc *p;
2680
2681 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2682 if (!p)
2683 return IO_MEM_UNASSIGNED;
2684 return p->phys_offset;
2685}
2686
c227f099 2687void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2688{
2689 if (kvm_enabled())
2690 kvm_coalesce_mmio_region(addr, size);
2691}
2692
c227f099 2693void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2694{
2695 if (kvm_enabled())
2696 kvm_uncoalesce_mmio_region(addr, size);
2697}
2698
62a2744c
SY
2699void qemu_flush_coalesced_mmio_buffer(void)
2700{
2701 if (kvm_enabled())
2702 kvm_flush_coalesced_mmio_buffer();
2703}
2704
c902760f
MT
2705#if defined(__linux__) && !defined(TARGET_S390X)
2706
2707#include <sys/vfs.h>
2708
2709#define HUGETLBFS_MAGIC 0x958458f6
2710
2711static long gethugepagesize(const char *path)
2712{
2713 struct statfs fs;
2714 int ret;
2715
2716 do {
2717 ret = statfs(path, &fs);
2718 } while (ret != 0 && errno == EINTR);
2719
2720 if (ret != 0) {
6adc0549 2721 perror(path);
c902760f
MT
2722 return 0;
2723 }
2724
2725 if (fs.f_type != HUGETLBFS_MAGIC)
2726 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2727
2728 return fs.f_bsize;
2729}
2730
2731static void *file_ram_alloc(ram_addr_t memory, const char *path)
2732{
2733 char *filename;
2734 void *area;
2735 int fd;
2736#ifdef MAP_POPULATE
2737 int flags;
2738#endif
2739 unsigned long hpagesize;
2740
2741 hpagesize = gethugepagesize(path);
2742 if (!hpagesize) {
2743 return NULL;
2744 }
2745
2746 if (memory < hpagesize) {
2747 return NULL;
2748 }
2749
2750 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2751 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2752 return NULL;
2753 }
2754
2755 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2756 return NULL;
2757 }
2758
2759 fd = mkstemp(filename);
2760 if (fd < 0) {
6adc0549 2761 perror("unable to create backing store for hugepages");
c902760f
MT
2762 free(filename);
2763 return NULL;
2764 }
2765 unlink(filename);
2766 free(filename);
2767
2768 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2769
2770 /*
2771 * ftruncate is not supported by hugetlbfs in older
2772 * hosts, so don't bother bailing out on errors.
2773 * If anything goes wrong with it under other filesystems,
2774 * mmap will fail.
2775 */
2776 if (ftruncate(fd, memory))
2777 perror("ftruncate");
2778
2779#ifdef MAP_POPULATE
2780 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2781 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2782 * to sidestep this quirk.
2783 */
2784 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2785 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2786#else
2787 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2788#endif
2789 if (area == MAP_FAILED) {
2790 perror("file_ram_alloc: can't mmap RAM pages");
2791 close(fd);
2792 return (NULL);
2793 }
2794 return area;
2795}
2796#endif
2797
c227f099 2798ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2799{
2800 RAMBlock *new_block;
2801
94a6b54f
PB
2802 size = TARGET_PAGE_ALIGN(size);
2803 new_block = qemu_malloc(sizeof(*new_block));
2804
c902760f
MT
2805 if (mem_path) {
2806#if defined (__linux__) && !defined(TARGET_S390X)
2807 new_block->host = file_ram_alloc(size, mem_path);
2808 if (!new_block->host)
2809 exit(1);
2810#else
2811 fprintf(stderr, "-mem-path option unsupported\n");
2812 exit(1);
2813#endif
2814 } else {
6b02494d 2815#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2816 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2817 new_block->host = mmap((void*)0x1000000, size,
2818 PROT_EXEC|PROT_READ|PROT_WRITE,
2819 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2820#else
c902760f 2821 new_block->host = qemu_vmalloc(size);
6b02494d 2822#endif
ccb167e9 2823#ifdef MADV_MERGEABLE
c902760f 2824 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2825#endif
c902760f 2826 }
94a6b54f
PB
2827 new_block->offset = last_ram_offset;
2828 new_block->length = size;
2829
2830 new_block->next = ram_blocks;
2831 ram_blocks = new_block;
2832
2833 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2834 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2835 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2836 0xff, size >> TARGET_PAGE_BITS);
2837
2838 last_ram_offset += size;
2839
6f0437e8
JK
2840 if (kvm_enabled())
2841 kvm_setup_guest_memory(new_block->host, size);
2842
94a6b54f
PB
2843 return new_block->offset;
2844}
e9a1ab19 2845
c227f099 2846void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2847{
94a6b54f 2848 /* TODO: implement this. */
e9a1ab19
FB
2849}
2850
dc828ca1 2851/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2852 With the exception of the softmmu code in this file, this should
2853 only be used for local memory (e.g. video ram) that the device owns,
2854 and knows it isn't going to access beyond the end of the block.
2855
2856 It should not be used for general purpose DMA.
2857 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2858 */
c227f099 2859void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2860{
94a6b54f
PB
2861 RAMBlock *prev;
2862 RAMBlock **prevp;
2863 RAMBlock *block;
2864
94a6b54f
PB
2865 prev = NULL;
2866 prevp = &ram_blocks;
2867 block = ram_blocks;
2868 while (block && (block->offset > addr
2869 || block->offset + block->length <= addr)) {
2870 if (prev)
2871 prevp = &prev->next;
2872 prev = block;
2873 block = block->next;
2874 }
2875 if (!block) {
2876 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2877 abort();
2878 }
2879 /* Move this entry to to start of the list. */
2880 if (prev) {
2881 prev->next = block->next;
2882 block->next = *prevp;
2883 *prevp = block;
2884 }
2885 return block->host + (addr - block->offset);
dc828ca1
PB
2886}
2887
5579c7f3
PB
2888/* Some of the softmmu routines need to translate from a host pointer
2889 (typically a TLB entry) back to a ram offset. */
c227f099 2890ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2891{
94a6b54f 2892 RAMBlock *prev;
94a6b54f
PB
2893 RAMBlock *block;
2894 uint8_t *host = ptr;
2895
94a6b54f 2896 prev = NULL;
94a6b54f
PB
2897 block = ram_blocks;
2898 while (block && (block->host > host
2899 || block->host + block->length <= host)) {
94a6b54f
PB
2900 prev = block;
2901 block = block->next;
2902 }
2903 if (!block) {
2904 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2905 abort();
2906 }
2907 return block->offset + (host - block->host);
5579c7f3
PB
2908}
2909
c227f099 2910static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2911{
67d3b957 2912#ifdef DEBUG_UNASSIGNED
ab3d1727 2913 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2914#endif
faed1c2a 2915#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2916 do_unassigned_access(addr, 0, 0, 0, 1);
2917#endif
2918 return 0;
2919}
2920
c227f099 2921static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2922{
2923#ifdef DEBUG_UNASSIGNED
2924 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2925#endif
faed1c2a 2926#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2927 do_unassigned_access(addr, 0, 0, 0, 2);
2928#endif
2929 return 0;
2930}
2931
c227f099 2932static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2933{
2934#ifdef DEBUG_UNASSIGNED
2935 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2936#endif
faed1c2a 2937#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2938 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2939#endif
33417e70
FB
2940 return 0;
2941}
2942
c227f099 2943static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2944{
67d3b957 2945#ifdef DEBUG_UNASSIGNED
ab3d1727 2946 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2947#endif
faed1c2a 2948#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2949 do_unassigned_access(addr, 1, 0, 0, 1);
2950#endif
2951}
2952
c227f099 2953static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2954{
2955#ifdef DEBUG_UNASSIGNED
2956 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2957#endif
faed1c2a 2958#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2959 do_unassigned_access(addr, 1, 0, 0, 2);
2960#endif
2961}
2962
c227f099 2963static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2964{
2965#ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2967#endif
faed1c2a 2968#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2969 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2970#endif
33417e70
FB
2971}
2972
d60efc6b 2973static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2974 unassigned_mem_readb,
e18231a3
BS
2975 unassigned_mem_readw,
2976 unassigned_mem_readl,
33417e70
FB
2977};
2978
d60efc6b 2979static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2980 unassigned_mem_writeb,
e18231a3
BS
2981 unassigned_mem_writew,
2982 unassigned_mem_writel,
33417e70
FB
2983};
2984
c227f099 2985static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2986 uint32_t val)
9fa3e853 2987{
3a7d929e 2988 int dirty_flags;
3a7d929e
FB
2989 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2990 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2991#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2992 tb_invalidate_phys_page_fast(ram_addr, 1);
2993 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2994#endif
3a7d929e 2995 }
5579c7f3 2996 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2997 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2998 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2999 /* we remove the notdirty callback only if the code has been
3000 flushed */
3001 if (dirty_flags == 0xff)
2e70f6ef 3002 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3003}
3004
c227f099 3005static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3006 uint32_t val)
9fa3e853 3007{
3a7d929e 3008 int dirty_flags;
3a7d929e
FB
3009 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3010 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3011#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
3012 tb_invalidate_phys_page_fast(ram_addr, 2);
3013 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 3014#endif
3a7d929e 3015 }
5579c7f3 3016 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
3017 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3018 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3019 /* we remove the notdirty callback only if the code has been
3020 flushed */
3021 if (dirty_flags == 0xff)
2e70f6ef 3022 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3023}
3024
c227f099 3025static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3026 uint32_t val)
9fa3e853 3027{
3a7d929e 3028 int dirty_flags;
3a7d929e
FB
3029 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
3030 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3031#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
3032 tb_invalidate_phys_page_fast(ram_addr, 4);
3033 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 3034#endif
3a7d929e 3035 }
5579c7f3 3036 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
3037 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3038 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
3039 /* we remove the notdirty callback only if the code has been
3040 flushed */
3041 if (dirty_flags == 0xff)
2e70f6ef 3042 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3043}
3044
d60efc6b 3045static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3046 NULL, /* never used */
3047 NULL, /* never used */
3048 NULL, /* never used */
3049};
3050
d60efc6b 3051static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3052 notdirty_mem_writeb,
3053 notdirty_mem_writew,
3054 notdirty_mem_writel,
3055};
3056
0f459d16 3057/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3058static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3059{
3060 CPUState *env = cpu_single_env;
06d55cc1
AL
3061 target_ulong pc, cs_base;
3062 TranslationBlock *tb;
0f459d16 3063 target_ulong vaddr;
a1d1bb31 3064 CPUWatchpoint *wp;
06d55cc1 3065 int cpu_flags;
0f459d16 3066
06d55cc1
AL
3067 if (env->watchpoint_hit) {
3068 /* We re-entered the check after replacing the TB. Now raise
3069 * the debug interrupt so that is will trigger after the
3070 * current instruction. */
3071 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3072 return;
3073 }
2e70f6ef 3074 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3075 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3076 if ((vaddr == (wp->vaddr & len_mask) ||
3077 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3078 wp->flags |= BP_WATCHPOINT_HIT;
3079 if (!env->watchpoint_hit) {
3080 env->watchpoint_hit = wp;
3081 tb = tb_find_pc(env->mem_io_pc);
3082 if (!tb) {
3083 cpu_abort(env, "check_watchpoint: could not find TB for "
3084 "pc=%p", (void *)env->mem_io_pc);
3085 }
3086 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3087 tb_phys_invalidate(tb, -1);
3088 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3089 env->exception_index = EXCP_DEBUG;
3090 } else {
3091 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3092 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3093 }
3094 cpu_resume_from_signal(env, NULL);
06d55cc1 3095 }
6e140f28
AL
3096 } else {
3097 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3098 }
3099 }
3100}
3101
6658ffb8
PB
3102/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3103 so these check for a hit then pass through to the normal out-of-line
3104 phys routines. */
c227f099 3105static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3106{
b4051334 3107 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3108 return ldub_phys(addr);
3109}
3110
c227f099 3111static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3112{
b4051334 3113 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3114 return lduw_phys(addr);
3115}
3116
c227f099 3117static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3118{
b4051334 3119 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3120 return ldl_phys(addr);
3121}
3122
c227f099 3123static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3124 uint32_t val)
3125{
b4051334 3126 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3127 stb_phys(addr, val);
3128}
3129
c227f099 3130static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3131 uint32_t val)
3132{
b4051334 3133 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3134 stw_phys(addr, val);
3135}
3136
c227f099 3137static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3138 uint32_t val)
3139{
b4051334 3140 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3141 stl_phys(addr, val);
3142}
3143
d60efc6b 3144static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3145 watch_mem_readb,
3146 watch_mem_readw,
3147 watch_mem_readl,
3148};
3149
d60efc6b 3150static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3151 watch_mem_writeb,
3152 watch_mem_writew,
3153 watch_mem_writel,
3154};
6658ffb8 3155
c227f099 3156static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3157 unsigned int len)
3158{
db7b5426
BS
3159 uint32_t ret;
3160 unsigned int idx;
3161
8da3ff18 3162 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3163#if defined(DEBUG_SUBPAGE)
3164 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3165 mmio, len, addr, idx);
3166#endif
8da3ff18
PB
3167 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
3168 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
3169
3170 return ret;
3171}
3172
c227f099 3173static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
3174 uint32_t value, unsigned int len)
3175{
db7b5426
BS
3176 unsigned int idx;
3177
8da3ff18 3178 idx = SUBPAGE_IDX(addr);
db7b5426
BS
3179#if defined(DEBUG_SUBPAGE)
3180 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
3181 mmio, len, addr, idx, value);
3182#endif
8da3ff18
PB
3183 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
3184 addr + mmio->region_offset[idx][1][len],
3185 value);
db7b5426
BS
3186}
3187
c227f099 3188static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3189{
3190#if defined(DEBUG_SUBPAGE)
3191 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3192#endif
3193
3194 return subpage_readlen(opaque, addr, 0);
3195}
3196
c227f099 3197static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3198 uint32_t value)
3199{
3200#if defined(DEBUG_SUBPAGE)
3201 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3202#endif
3203 subpage_writelen(opaque, addr, value, 0);
3204}
3205
c227f099 3206static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3207{
3208#if defined(DEBUG_SUBPAGE)
3209 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3210#endif
3211
3212 return subpage_readlen(opaque, addr, 1);
3213}
3214
c227f099 3215static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3216 uint32_t value)
3217{
3218#if defined(DEBUG_SUBPAGE)
3219 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3220#endif
3221 subpage_writelen(opaque, addr, value, 1);
3222}
3223
c227f099 3224static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
3225{
3226#if defined(DEBUG_SUBPAGE)
3227 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3228#endif
3229
3230 return subpage_readlen(opaque, addr, 2);
3231}
3232
3233static void subpage_writel (void *opaque,
c227f099 3234 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
3235{
3236#if defined(DEBUG_SUBPAGE)
3237 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3238#endif
3239 subpage_writelen(opaque, addr, value, 2);
3240}
3241
d60efc6b 3242static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3243 &subpage_readb,
3244 &subpage_readw,
3245 &subpage_readl,
3246};
3247
d60efc6b 3248static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3249 &subpage_writeb,
3250 &subpage_writew,
3251 &subpage_writel,
3252};
3253
c227f099
AL
3254static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3255 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3256{
3257 int idx, eidx;
4254fab8 3258 unsigned int i;
db7b5426
BS
3259
3260 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3261 return -1;
3262 idx = SUBPAGE_IDX(start);
3263 eidx = SUBPAGE_IDX(end);
3264#if defined(DEBUG_SUBPAGE)
0bf9e31a 3265 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3266 mmio, start, end, idx, eidx, memory);
3267#endif
3268 memory >>= IO_MEM_SHIFT;
3269 for (; idx <= eidx; idx++) {
4254fab8 3270 for (i = 0; i < 4; i++) {
3ee89922
BS
3271 if (io_mem_read[memory][i]) {
3272 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3273 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 3274 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
3275 }
3276 if (io_mem_write[memory][i]) {
3277 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3278 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3279 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3280 }
4254fab8 3281 }
db7b5426
BS
3282 }
3283
3284 return 0;
3285}
3286
c227f099
AL
3287static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3288 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3289{
c227f099 3290 subpage_t *mmio;
db7b5426
BS
3291 int subpage_memory;
3292
c227f099 3293 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3294
3295 mmio->base = base;
1eed09cb 3296 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3297#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3298 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3299 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3300#endif
1eec614b
AL
3301 *phys = subpage_memory | IO_MEM_SUBPAGE;
3302 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3303 region_offset);
db7b5426
BS
3304
3305 return mmio;
3306}
3307
88715657
AL
3308static int get_free_io_mem_idx(void)
3309{
3310 int i;
3311
3312 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3313 if (!io_mem_used[i]) {
3314 io_mem_used[i] = 1;
3315 return i;
3316 }
c6703b47 3317 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3318 return -1;
3319}
3320
33417e70
FB
3321/* mem_read and mem_write are arrays of functions containing the
3322 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3323 2). Functions can be omitted with a NULL function pointer.
3ee89922 3324 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3325 modified. If it is zero, a new io zone is allocated. The return
3326 value can be used with cpu_register_physical_memory(). (-1) is
3327 returned if error. */
1eed09cb 3328static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3329 CPUReadMemoryFunc * const *mem_read,
3330 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3331 void *opaque)
33417e70 3332{
4254fab8 3333 int i, subwidth = 0;
33417e70
FB
3334
3335 if (io_index <= 0) {
88715657
AL
3336 io_index = get_free_io_mem_idx();
3337 if (io_index == -1)
3338 return io_index;
33417e70 3339 } else {
1eed09cb 3340 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3341 if (io_index >= IO_MEM_NB_ENTRIES)
3342 return -1;
3343 }
b5ff1b31 3344
33417e70 3345 for(i = 0;i < 3; i++) {
4254fab8
BS
3346 if (!mem_read[i] || !mem_write[i])
3347 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3348 io_mem_read[io_index][i] = mem_read[i];
3349 io_mem_write[io_index][i] = mem_write[i];
3350 }
a4193c8a 3351 io_mem_opaque[io_index] = opaque;
4254fab8 3352 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3353}
61382a50 3354
d60efc6b
BS
3355int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3356 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3357 void *opaque)
3358{
3359 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3360}
3361
88715657
AL
3362void cpu_unregister_io_memory(int io_table_address)
3363{
3364 int i;
3365 int io_index = io_table_address >> IO_MEM_SHIFT;
3366
3367 for (i=0;i < 3; i++) {
3368 io_mem_read[io_index][i] = unassigned_mem_read[i];
3369 io_mem_write[io_index][i] = unassigned_mem_write[i];
3370 }
3371 io_mem_opaque[io_index] = NULL;
3372 io_mem_used[io_index] = 0;
3373}
3374
e9179ce1
AK
3375static void io_mem_init(void)
3376{
3377 int i;
3378
3379 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3380 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3381 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3382 for (i=0; i<5; i++)
3383 io_mem_used[i] = 1;
3384
3385 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3386 watch_mem_write, NULL);
e9179ce1
AK
3387}
3388
e2eef170
PB
3389#endif /* !defined(CONFIG_USER_ONLY) */
3390
13eb76e0
FB
3391/* physical memory access (slow version, mainly for debug) */
3392#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3393int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3394 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3395{
3396 int l, flags;
3397 target_ulong page;
53a5960a 3398 void * p;
13eb76e0
FB
3399
3400 while (len > 0) {
3401 page = addr & TARGET_PAGE_MASK;
3402 l = (page + TARGET_PAGE_SIZE) - addr;
3403 if (l > len)
3404 l = len;
3405 flags = page_get_flags(page);
3406 if (!(flags & PAGE_VALID))
a68fe89c 3407 return -1;
13eb76e0
FB
3408 if (is_write) {
3409 if (!(flags & PAGE_WRITE))
a68fe89c 3410 return -1;
579a97f7 3411 /* XXX: this code should not depend on lock_user */
72fb7daa 3412 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3413 return -1;
72fb7daa
AJ
3414 memcpy(p, buf, l);
3415 unlock_user(p, addr, l);
13eb76e0
FB
3416 } else {
3417 if (!(flags & PAGE_READ))
a68fe89c 3418 return -1;
579a97f7 3419 /* XXX: this code should not depend on lock_user */
72fb7daa 3420 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3421 return -1;
72fb7daa 3422 memcpy(buf, p, l);
5b257578 3423 unlock_user(p, addr, 0);
13eb76e0
FB
3424 }
3425 len -= l;
3426 buf += l;
3427 addr += l;
3428 }
a68fe89c 3429 return 0;
13eb76e0 3430}
8df1cd07 3431
13eb76e0 3432#else
c227f099 3433void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3434 int len, int is_write)
3435{
3436 int l, io_index;
3437 uint8_t *ptr;
3438 uint32_t val;
c227f099 3439 target_phys_addr_t page;
2e12669a 3440 unsigned long pd;
92e873b9 3441 PhysPageDesc *p;
3b46e624 3442
13eb76e0
FB
3443 while (len > 0) {
3444 page = addr & TARGET_PAGE_MASK;
3445 l = (page + TARGET_PAGE_SIZE) - addr;
3446 if (l > len)
3447 l = len;
92e873b9 3448 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3449 if (!p) {
3450 pd = IO_MEM_UNASSIGNED;
3451 } else {
3452 pd = p->phys_offset;
3453 }
3b46e624 3454
13eb76e0 3455 if (is_write) {
3a7d929e 3456 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3457 target_phys_addr_t addr1 = addr;
13eb76e0 3458 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3459 if (p)
6c2934db 3460 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3461 /* XXX: could force cpu_single_env to NULL to avoid
3462 potential bugs */
6c2934db 3463 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3464 /* 32 bit write access */
c27004ec 3465 val = ldl_p(buf);
6c2934db 3466 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3467 l = 4;
6c2934db 3468 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3469 /* 16 bit write access */
c27004ec 3470 val = lduw_p(buf);
6c2934db 3471 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3472 l = 2;
3473 } else {
1c213d19 3474 /* 8 bit write access */
c27004ec 3475 val = ldub_p(buf);
6c2934db 3476 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3477 l = 1;
3478 }
3479 } else {
b448f2f3
FB
3480 unsigned long addr1;
3481 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3482 /* RAM case */
5579c7f3 3483 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3484 memcpy(ptr, buf, l);
3a7d929e
FB
3485 if (!cpu_physical_memory_is_dirty(addr1)) {
3486 /* invalidate code */
3487 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3488 /* set dirty bit */
5fafdf24 3489 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3490 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3491 }
13eb76e0
FB
3492 }
3493 } else {
5fafdf24 3494 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3495 !(pd & IO_MEM_ROMD)) {
c227f099 3496 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3497 /* I/O case */
3498 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3499 if (p)
6c2934db
AJ
3500 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3501 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3502 /* 32 bit read access */
6c2934db 3503 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3504 stl_p(buf, val);
13eb76e0 3505 l = 4;
6c2934db 3506 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3507 /* 16 bit read access */
6c2934db 3508 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3509 stw_p(buf, val);
13eb76e0
FB
3510 l = 2;
3511 } else {
1c213d19 3512 /* 8 bit read access */
6c2934db 3513 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3514 stb_p(buf, val);
13eb76e0
FB
3515 l = 1;
3516 }
3517 } else {
3518 /* RAM case */
5579c7f3 3519 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3520 (addr & ~TARGET_PAGE_MASK);
3521 memcpy(buf, ptr, l);
3522 }
3523 }
3524 len -= l;
3525 buf += l;
3526 addr += l;
3527 }
3528}
8df1cd07 3529
d0ecd2aa 3530/* used for ROM loading : can write in RAM and ROM */
c227f099 3531void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3532 const uint8_t *buf, int len)
3533{
3534 int l;
3535 uint8_t *ptr;
c227f099 3536 target_phys_addr_t page;
d0ecd2aa
FB
3537 unsigned long pd;
3538 PhysPageDesc *p;
3b46e624 3539
d0ecd2aa
FB
3540 while (len > 0) {
3541 page = addr & TARGET_PAGE_MASK;
3542 l = (page + TARGET_PAGE_SIZE) - addr;
3543 if (l > len)
3544 l = len;
3545 p = phys_page_find(page >> TARGET_PAGE_BITS);
3546 if (!p) {
3547 pd = IO_MEM_UNASSIGNED;
3548 } else {
3549 pd = p->phys_offset;
3550 }
3b46e624 3551
d0ecd2aa 3552 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3553 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3554 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3555 /* do nothing */
3556 } else {
3557 unsigned long addr1;
3558 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3559 /* ROM/RAM case */
5579c7f3 3560 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3561 memcpy(ptr, buf, l);
3562 }
3563 len -= l;
3564 buf += l;
3565 addr += l;
3566 }
3567}
3568
6d16c2f8
AL
3569typedef struct {
3570 void *buffer;
c227f099
AL
3571 target_phys_addr_t addr;
3572 target_phys_addr_t len;
6d16c2f8
AL
3573} BounceBuffer;
3574
3575static BounceBuffer bounce;
3576
ba223c29
AL
3577typedef struct MapClient {
3578 void *opaque;
3579 void (*callback)(void *opaque);
72cf2d4f 3580 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3581} MapClient;
3582
72cf2d4f
BS
3583static QLIST_HEAD(map_client_list, MapClient) map_client_list
3584 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3585
3586void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3587{
3588 MapClient *client = qemu_malloc(sizeof(*client));
3589
3590 client->opaque = opaque;
3591 client->callback = callback;
72cf2d4f 3592 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3593 return client;
3594}
3595
3596void cpu_unregister_map_client(void *_client)
3597{
3598 MapClient *client = (MapClient *)_client;
3599
72cf2d4f 3600 QLIST_REMOVE(client, link);
34d5e948 3601 qemu_free(client);
ba223c29
AL
3602}
3603
3604static void cpu_notify_map_clients(void)
3605{
3606 MapClient *client;
3607
72cf2d4f
BS
3608 while (!QLIST_EMPTY(&map_client_list)) {
3609 client = QLIST_FIRST(&map_client_list);
ba223c29 3610 client->callback(client->opaque);
34d5e948 3611 cpu_unregister_map_client(client);
ba223c29
AL
3612 }
3613}
3614
6d16c2f8
AL
3615/* Map a physical memory region into a host virtual address.
3616 * May map a subset of the requested range, given by and returned in *plen.
3617 * May return NULL if resources needed to perform the mapping are exhausted.
3618 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3619 * Use cpu_register_map_client() to know when retrying the map operation is
3620 * likely to succeed.
6d16c2f8 3621 */
c227f099
AL
3622void *cpu_physical_memory_map(target_phys_addr_t addr,
3623 target_phys_addr_t *plen,
6d16c2f8
AL
3624 int is_write)
3625{
c227f099
AL
3626 target_phys_addr_t len = *plen;
3627 target_phys_addr_t done = 0;
6d16c2f8
AL
3628 int l;
3629 uint8_t *ret = NULL;
3630 uint8_t *ptr;
c227f099 3631 target_phys_addr_t page;
6d16c2f8
AL
3632 unsigned long pd;
3633 PhysPageDesc *p;
3634 unsigned long addr1;
3635
3636 while (len > 0) {
3637 page = addr & TARGET_PAGE_MASK;
3638 l = (page + TARGET_PAGE_SIZE) - addr;
3639 if (l > len)
3640 l = len;
3641 p = phys_page_find(page >> TARGET_PAGE_BITS);
3642 if (!p) {
3643 pd = IO_MEM_UNASSIGNED;
3644 } else {
3645 pd = p->phys_offset;
3646 }
3647
3648 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3649 if (done || bounce.buffer) {
3650 break;
3651 }
3652 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3653 bounce.addr = addr;
3654 bounce.len = l;
3655 if (!is_write) {
3656 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3657 }
3658 ptr = bounce.buffer;
3659 } else {
3660 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3661 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3662 }
3663 if (!done) {
3664 ret = ptr;
3665 } else if (ret + done != ptr) {
3666 break;
3667 }
3668
3669 len -= l;
3670 addr += l;
3671 done += l;
3672 }
3673 *plen = done;
3674 return ret;
3675}
3676
3677/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3678 * Will also mark the memory as dirty if is_write == 1. access_len gives
3679 * the amount of memory that was actually read or written by the caller.
3680 */
c227f099
AL
3681void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3682 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3683{
3684 if (buffer != bounce.buffer) {
3685 if (is_write) {
c227f099 3686 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3687 while (access_len) {
3688 unsigned l;
3689 l = TARGET_PAGE_SIZE;
3690 if (l > access_len)
3691 l = access_len;
3692 if (!cpu_physical_memory_is_dirty(addr1)) {
3693 /* invalidate code */
3694 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3695 /* set dirty bit */
3696 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3697 (0xff & ~CODE_DIRTY_FLAG);
3698 }
3699 addr1 += l;
3700 access_len -= l;
3701 }
3702 }
3703 return;
3704 }
3705 if (is_write) {
3706 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3707 }
f8a83245 3708 qemu_vfree(bounce.buffer);
6d16c2f8 3709 bounce.buffer = NULL;
ba223c29 3710 cpu_notify_map_clients();
6d16c2f8 3711}
d0ecd2aa 3712
8df1cd07 3713/* warning: addr must be aligned */
c227f099 3714uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3715{
3716 int io_index;
3717 uint8_t *ptr;
3718 uint32_t val;
3719 unsigned long pd;
3720 PhysPageDesc *p;
3721
3722 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3723 if (!p) {
3724 pd = IO_MEM_UNASSIGNED;
3725 } else {
3726 pd = p->phys_offset;
3727 }
3b46e624 3728
5fafdf24 3729 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3730 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3731 /* I/O case */
3732 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3733 if (p)
3734 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3735 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3736 } else {
3737 /* RAM case */
5579c7f3 3738 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3739 (addr & ~TARGET_PAGE_MASK);
3740 val = ldl_p(ptr);
3741 }
3742 return val;
3743}
3744
84b7b8e7 3745/* warning: addr must be aligned */
c227f099 3746uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3747{
3748 int io_index;
3749 uint8_t *ptr;
3750 uint64_t val;
3751 unsigned long pd;
3752 PhysPageDesc *p;
3753
3754 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3755 if (!p) {
3756 pd = IO_MEM_UNASSIGNED;
3757 } else {
3758 pd = p->phys_offset;
3759 }
3b46e624 3760
2a4188a3
FB
3761 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3762 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3763 /* I/O case */
3764 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3765 if (p)
3766 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3767#ifdef TARGET_WORDS_BIGENDIAN
3768 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3769 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3770#else
3771 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3772 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3773#endif
3774 } else {
3775 /* RAM case */
5579c7f3 3776 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3777 (addr & ~TARGET_PAGE_MASK);
3778 val = ldq_p(ptr);
3779 }
3780 return val;
3781}
3782
aab33094 3783/* XXX: optimize */
c227f099 3784uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3785{
3786 uint8_t val;
3787 cpu_physical_memory_read(addr, &val, 1);
3788 return val;
3789}
3790
3791/* XXX: optimize */
c227f099 3792uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3793{
3794 uint16_t val;
3795 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3796 return tswap16(val);
3797}
3798
8df1cd07
FB
3799/* warning: addr must be aligned. The ram page is not masked as dirty
3800 and the code inside is not invalidated. It is useful if the dirty
3801 bits are used to track modified PTEs */
c227f099 3802void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3803{
3804 int io_index;
3805 uint8_t *ptr;
3806 unsigned long pd;
3807 PhysPageDesc *p;
3808
3809 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3810 if (!p) {
3811 pd = IO_MEM_UNASSIGNED;
3812 } else {
3813 pd = p->phys_offset;
3814 }
3b46e624 3815
3a7d929e 3816 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3817 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3818 if (p)
3819 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3820 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3821 } else {
74576198 3822 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3823 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3824 stl_p(ptr, val);
74576198
AL
3825
3826 if (unlikely(in_migration)) {
3827 if (!cpu_physical_memory_is_dirty(addr1)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3830 /* set dirty bit */
3831 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3832 (0xff & ~CODE_DIRTY_FLAG);
3833 }
3834 }
8df1cd07
FB
3835 }
3836}
3837
c227f099 3838void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3839{
3840 int io_index;
3841 uint8_t *ptr;
3842 unsigned long pd;
3843 PhysPageDesc *p;
3844
3845 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3846 if (!p) {
3847 pd = IO_MEM_UNASSIGNED;
3848 } else {
3849 pd = p->phys_offset;
3850 }
3b46e624 3851
bc98a7ef
JM
3852 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3853 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3854 if (p)
3855 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3856#ifdef TARGET_WORDS_BIGENDIAN
3857 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3858 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3859#else
3860 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3861 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3862#endif
3863 } else {
5579c7f3 3864 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3865 (addr & ~TARGET_PAGE_MASK);
3866 stq_p(ptr, val);
3867 }
3868}
3869
8df1cd07 3870/* warning: addr must be aligned */
c227f099 3871void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3872{
3873 int io_index;
3874 uint8_t *ptr;
3875 unsigned long pd;
3876 PhysPageDesc *p;
3877
3878 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3879 if (!p) {
3880 pd = IO_MEM_UNASSIGNED;
3881 } else {
3882 pd = p->phys_offset;
3883 }
3b46e624 3884
3a7d929e 3885 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3886 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3887 if (p)
3888 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3889 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3890 } else {
3891 unsigned long addr1;
3892 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3893 /* RAM case */
5579c7f3 3894 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3895 stl_p(ptr, val);
3a7d929e
FB
3896 if (!cpu_physical_memory_is_dirty(addr1)) {
3897 /* invalidate code */
3898 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3899 /* set dirty bit */
f23db169
FB
3900 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3901 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3902 }
8df1cd07
FB
3903 }
3904}
3905
aab33094 3906/* XXX: optimize */
c227f099 3907void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3908{
3909 uint8_t v = val;
3910 cpu_physical_memory_write(addr, &v, 1);
3911}
3912
3913/* XXX: optimize */
c227f099 3914void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3915{
3916 uint16_t v = tswap16(val);
3917 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3918}
3919
3920/* XXX: optimize */
c227f099 3921void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3922{
3923 val = tswap64(val);
3924 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3925}
3926
5e2972fd 3927/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3928int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3929 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3930{
3931 int l;
c227f099 3932 target_phys_addr_t phys_addr;
9b3c35e0 3933 target_ulong page;
13eb76e0
FB
3934
3935 while (len > 0) {
3936 page = addr & TARGET_PAGE_MASK;
3937 phys_addr = cpu_get_phys_page_debug(env, page);
3938 /* if no physical page mapped, return an error */
3939 if (phys_addr == -1)
3940 return -1;
3941 l = (page + TARGET_PAGE_SIZE) - addr;
3942 if (l > len)
3943 l = len;
5e2972fd 3944 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3945 if (is_write)
3946 cpu_physical_memory_write_rom(phys_addr, buf, l);
3947 else
5e2972fd 3948 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3949 len -= l;
3950 buf += l;
3951 addr += l;
3952 }
3953 return 0;
3954}
a68fe89c 3955#endif
13eb76e0 3956
2e70f6ef
PB
3957/* in deterministic execution mode, instructions doing device I/Os
3958 must be at the end of the TB */
3959void cpu_io_recompile(CPUState *env, void *retaddr)
3960{
3961 TranslationBlock *tb;
3962 uint32_t n, cflags;
3963 target_ulong pc, cs_base;
3964 uint64_t flags;
3965
3966 tb = tb_find_pc((unsigned long)retaddr);
3967 if (!tb) {
3968 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3969 retaddr);
3970 }
3971 n = env->icount_decr.u16.low + tb->icount;
3972 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3973 /* Calculate how many instructions had been executed before the fault
bf20dc07 3974 occurred. */
2e70f6ef
PB
3975 n = n - env->icount_decr.u16.low;
3976 /* Generate a new TB ending on the I/O insn. */
3977 n++;
3978 /* On MIPS and SH, delay slot instructions can only be restarted if
3979 they were already the first instruction in the TB. If this is not
bf20dc07 3980 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3981 branch. */
3982#if defined(TARGET_MIPS)
3983 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3984 env->active_tc.PC -= 4;
3985 env->icount_decr.u16.low++;
3986 env->hflags &= ~MIPS_HFLAG_BMASK;
3987 }
3988#elif defined(TARGET_SH4)
3989 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3990 && n > 1) {
3991 env->pc -= 2;
3992 env->icount_decr.u16.low++;
3993 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3994 }
3995#endif
3996 /* This should never happen. */
3997 if (n > CF_COUNT_MASK)
3998 cpu_abort(env, "TB too big during recompile");
3999
4000 cflags = n | CF_LAST_IO;
4001 pc = tb->pc;
4002 cs_base = tb->cs_base;
4003 flags = tb->flags;
4004 tb_phys_invalidate(tb, -1);
4005 /* FIXME: In theory this could raise an exception. In practice
4006 we have already translated the block once so it's probably ok. */
4007 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4008 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4009 the first in the TB) then we end up generating a whole new TB and
4010 repeating the fault, which is horribly inefficient.
4011 Better would be to execute just this insn uncached, or generate a
4012 second new TB. */
4013 cpu_resume_from_signal(env, NULL);
4014}
4015
b3755a91
PB
4016#if !defined(CONFIG_USER_ONLY)
4017
e3db7226
FB
4018void dump_exec_info(FILE *f,
4019 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
4020{
4021 int i, target_code_size, max_target_code_size;
4022 int direct_jmp_count, direct_jmp2_count, cross_page;
4023 TranslationBlock *tb;
3b46e624 4024
e3db7226
FB
4025 target_code_size = 0;
4026 max_target_code_size = 0;
4027 cross_page = 0;
4028 direct_jmp_count = 0;
4029 direct_jmp2_count = 0;
4030 for(i = 0; i < nb_tbs; i++) {
4031 tb = &tbs[i];
4032 target_code_size += tb->size;
4033 if (tb->size > max_target_code_size)
4034 max_target_code_size = tb->size;
4035 if (tb->page_addr[1] != -1)
4036 cross_page++;
4037 if (tb->tb_next_offset[0] != 0xffff) {
4038 direct_jmp_count++;
4039 if (tb->tb_next_offset[1] != 0xffff) {
4040 direct_jmp2_count++;
4041 }
4042 }
4043 }
4044 /* XXX: avoid using doubles ? */
57fec1fe 4045 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
4046 cpu_fprintf(f, "gen code size %ld/%ld\n",
4047 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4048 cpu_fprintf(f, "TB count %d/%d\n",
4049 nb_tbs, code_gen_max_blocks);
5fafdf24 4050 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4051 nb_tbs ? target_code_size / nb_tbs : 0,
4052 max_target_code_size);
5fafdf24 4053 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4054 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4055 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4056 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4057 cross_page,
e3db7226
FB
4058 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4059 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4060 direct_jmp_count,
e3db7226
FB
4061 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4062 direct_jmp2_count,
4063 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4064 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4065 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4066 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4067 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4068 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4069}
4070
61382a50
FB
4071#define MMUSUFFIX _cmmu
4072#define GETPC() NULL
4073#define env cpu_single_env
b769d8fe 4074#define SOFTMMU_CODE_ACCESS
61382a50
FB
4075
4076#define SHIFT 0
4077#include "softmmu_template.h"
4078
4079#define SHIFT 1
4080#include "softmmu_template.h"
4081
4082#define SHIFT 2
4083#include "softmmu_template.h"
4084
4085#define SHIFT 3
4086#include "softmmu_template.h"
4087
4088#undef env
4089
4090#endif