]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
qemu: memory notifiers
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
fd052bf6 43#include <signal.h>
53a5960a 44#endif
54936004 45
fd6ce8f6 46//#define DEBUG_TB_INVALIDATE
66e85a21 47//#define DEBUG_FLUSH
9fa3e853 48//#define DEBUG_TLB
67d3b957 49//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
50
51/* make various TB consistency checks */
5fafdf24
TS
52//#define DEBUG_TB_CHECK
53//#define DEBUG_TLB_CHECK
fd6ce8f6 54
1196be37 55//#define DEBUG_IOPORT
db7b5426 56//#define DEBUG_SUBPAGE
1196be37 57
99773bd4
PB
58#if !defined(CONFIG_USER_ONLY)
59/* TB consistency checks only implemented for usermode emulation. */
60#undef DEBUG_TB_CHECK
61#endif
62
9fa3e853
FB
63#define SMC_BITMAP_USE_THRESHOLD 10
64
108c49b8
FB
65#if defined(TARGET_SPARC64)
66#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
67#elif defined(TARGET_SPARC)
68#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
69#elif defined(TARGET_ALPHA)
70#define TARGET_PHYS_ADDR_SPACE_BITS 42
71#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
72#elif defined(TARGET_PPC64)
73#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 74#elif defined(TARGET_X86_64)
00f82b8a 75#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 76#elif defined(TARGET_I386)
00f82b8a 77#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 78#else
108c49b8
FB
79#define TARGET_PHYS_ADDR_SPACE_BITS 32
80#endif
81
bdaf78e0 82static TranslationBlock *tbs;
26a5f13b 83int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
141ac468
BS
89#if defined(__arm__) || defined(__sparc_v9__)
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
f8e2af11
SW
96#elif defined(_WIN32)
97/* Maximum alignment for Win32 is 16. */
98#define code_gen_section \
99 __attribute__((aligned (16)))
d03d860b
BS
100#else
101#define code_gen_section \
102 __attribute__((aligned (32)))
103#endif
104
105uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
106static uint8_t *code_gen_buffer;
107static unsigned long code_gen_buffer_size;
26a5f13b 108/* threshold to flush the translated code buffer */
bdaf78e0 109static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
110uint8_t *code_gen_ptr;
111
e2eef170 112#if !defined(CONFIG_USER_ONLY)
9fa3e853 113int phys_ram_fd;
1ccde1cb 114uint8_t *phys_ram_dirty;
74576198 115static int in_migration;
94a6b54f
PB
116
117typedef struct RAMBlock {
118 uint8_t *host;
c227f099
AL
119 ram_addr_t offset;
120 ram_addr_t length;
94a6b54f
PB
121 struct RAMBlock *next;
122} RAMBlock;
123
124static RAMBlock *ram_blocks;
125/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 126 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 127 of this variable will break. */
c227f099 128ram_addr_t last_ram_offset;
e2eef170 129#endif
9fa3e853 130
6a00d601
FB
131CPUState *first_cpu;
132/* current CPU in the current thread. It is only valid inside
133 cpu_exec() */
5fafdf24 134CPUState *cpu_single_env;
2e70f6ef 135/* 0 = Do not count executed instructions.
bf20dc07 136 1 = Precise instruction counting.
2e70f6ef
PB
137 2 = Adaptive rate instruction counting. */
138int use_icount = 0;
139/* Current instruction counter. While executing translated code this may
140 include some instructions that have not yet been executed. */
141int64_t qemu_icount;
6a00d601 142
54936004 143typedef struct PageDesc {
92e873b9 144 /* list of TBs intersecting this ram page */
fd6ce8f6 145 TranslationBlock *first_tb;
9fa3e853
FB
146 /* in order to optimize self modifying code, we count the number
147 of lookups we do to a given page to use a bitmap */
148 unsigned int code_write_count;
149 uint8_t *code_bitmap;
150#if defined(CONFIG_USER_ONLY)
151 unsigned long flags;
152#endif
54936004
FB
153} PageDesc;
154
92e873b9 155typedef struct PhysPageDesc {
0f459d16 156 /* offset in host memory of the page + io_index in the low bits */
c227f099
AL
157 ram_addr_t phys_offset;
158 ram_addr_t region_offset;
92e873b9
FB
159} PhysPageDesc;
160
54936004 161#define L2_BITS 10
bedb69ea
JM
162#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
163/* XXX: this is a temporary hack for alpha target.
164 * In the future, this is to be replaced by a multi-level table
165 * to actually be able to handle the complete 64 bits address space.
166 */
167#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
168#else
03875444 169#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 170#endif
54936004
FB
171
172#define L1_SIZE (1 << L1_BITS)
173#define L2_SIZE (1 << L2_BITS)
174
83fb7adf
FB
175unsigned long qemu_real_host_page_size;
176unsigned long qemu_host_page_bits;
177unsigned long qemu_host_page_size;
178unsigned long qemu_host_page_mask;
54936004 179
92e873b9 180/* XXX: for system emulation, it could just be an array */
54936004 181static PageDesc *l1_map[L1_SIZE];
bdaf78e0 182static PhysPageDesc **l1_phys_map;
54936004 183
e2eef170
PB
184#if !defined(CONFIG_USER_ONLY)
185static void io_mem_init(void);
186
33417e70 187/* io memory support */
33417e70
FB
188CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
189CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 190void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 191static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
192static int io_mem_watch;
193#endif
33417e70 194
34865134 195/* log support */
1e8b27ca
JR
196#ifdef WIN32
197static const char *logfilename = "qemu.log";
198#else
d9b630fd 199static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 200#endif
34865134
FB
201FILE *logfile;
202int loglevel;
e735b91c 203static int log_append = 0;
34865134 204
e3db7226
FB
205/* statistics */
206static int tlb_flush_count;
207static int tb_flush_count;
208static int tb_phys_invalidate_count;
209
db7b5426 210#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
c227f099
AL
211typedef struct subpage_t {
212 target_phys_addr_t base;
d60efc6b
BS
213 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
214 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 215 void *opaque[TARGET_PAGE_SIZE][2][4];
c227f099
AL
216 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
217} subpage_t;
db7b5426 218
7cb69cae
FB
219#ifdef _WIN32
220static void map_exec(void *addr, long size)
221{
222 DWORD old_protect;
223 VirtualProtect(addr, size,
224 PAGE_EXECUTE_READWRITE, &old_protect);
225
226}
227#else
228static void map_exec(void *addr, long size)
229{
4369415f 230 unsigned long start, end, page_size;
7cb69cae 231
4369415f 232 page_size = getpagesize();
7cb69cae 233 start = (unsigned long)addr;
4369415f 234 start &= ~(page_size - 1);
7cb69cae
FB
235
236 end = (unsigned long)addr + size;
4369415f
FB
237 end += page_size - 1;
238 end &= ~(page_size - 1);
7cb69cae
FB
239
240 mprotect((void *)start, end - start,
241 PROT_READ | PROT_WRITE | PROT_EXEC);
242}
243#endif
244
b346ff46 245static void page_init(void)
54936004 246{
83fb7adf 247 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 248 TARGET_PAGE_SIZE */
c2b48b69
AL
249#ifdef _WIN32
250 {
251 SYSTEM_INFO system_info;
252
253 GetSystemInfo(&system_info);
254 qemu_real_host_page_size = system_info.dwPageSize;
255 }
256#else
257 qemu_real_host_page_size = getpagesize();
258#endif
83fb7adf
FB
259 if (qemu_host_page_size == 0)
260 qemu_host_page_size = qemu_real_host_page_size;
261 if (qemu_host_page_size < TARGET_PAGE_SIZE)
262 qemu_host_page_size = TARGET_PAGE_SIZE;
263 qemu_host_page_bits = 0;
264 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
265 qemu_host_page_bits++;
266 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
267 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
268 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
269
270#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
271 {
272 long long startaddr, endaddr;
273 FILE *f;
274 int n;
275
c8a706fe 276 mmap_lock();
0776590d 277 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
278 f = fopen("/proc/self/maps", "r");
279 if (f) {
280 do {
281 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
282 if (n == 2) {
e0b8d65a
BS
283 startaddr = MIN(startaddr,
284 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
285 endaddr = MIN(endaddr,
286 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 287 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
288 TARGET_PAGE_ALIGN(endaddr),
289 PAGE_RESERVED);
290 }
291 } while (!feof(f));
292 fclose(f);
293 }
c8a706fe 294 mmap_unlock();
50a9569b
AZ
295 }
296#endif
54936004
FB
297}
298
434929bf 299static inline PageDesc **page_l1_map(target_ulong index)
54936004 300{
17e2377a
PB
301#if TARGET_LONG_BITS > 32
302 /* Host memory outside guest VM. For 32-bit targets we have already
303 excluded high addresses. */
d8173e0f 304 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
305 return NULL;
306#endif
434929bf
AL
307 return &l1_map[index >> L2_BITS];
308}
309
310static inline PageDesc *page_find_alloc(target_ulong index)
311{
312 PageDesc **lp, *p;
313 lp = page_l1_map(index);
314 if (!lp)
315 return NULL;
316
54936004
FB
317 p = *lp;
318 if (!p) {
319 /* allocate if not found */
17e2377a 320#if defined(CONFIG_USER_ONLY)
17e2377a
PB
321 size_t len = sizeof(PageDesc) * L2_SIZE;
322 /* Don't use qemu_malloc because it may recurse. */
660f11be 323 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 324 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 325 *lp = p;
fb1c2cd7
AJ
326 if (h2g_valid(p)) {
327 unsigned long addr = h2g(p);
17e2377a
PB
328 page_set_flags(addr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(addr + len),
330 PAGE_RESERVED);
331 }
332#else
333 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
334 *lp = p;
335#endif
54936004
FB
336 }
337 return p + (index & (L2_SIZE - 1));
338}
339
00f82b8a 340static inline PageDesc *page_find(target_ulong index)
54936004 341{
434929bf
AL
342 PageDesc **lp, *p;
343 lp = page_l1_map(index);
344 if (!lp)
345 return NULL;
54936004 346
434929bf 347 p = *lp;
660f11be
BS
348 if (!p) {
349 return NULL;
350 }
fd6ce8f6
FB
351 return p + (index & (L2_SIZE - 1));
352}
353
c227f099 354static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 355{
108c49b8 356 void **lp, **p;
e3f4e2a4 357 PhysPageDesc *pd;
92e873b9 358
108c49b8
FB
359 p = (void **)l1_phys_map;
360#if TARGET_PHYS_ADDR_SPACE_BITS > 32
361
362#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
363#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
364#endif
365 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
366 p = *lp;
367 if (!p) {
368 /* allocate if not found */
108c49b8
FB
369 if (!alloc)
370 return NULL;
371 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
372 memset(p, 0, sizeof(void *) * L1_SIZE);
373 *lp = p;
374 }
375#endif
376 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
377 pd = *lp;
378 if (!pd) {
379 int i;
108c49b8
FB
380 /* allocate if not found */
381 if (!alloc)
382 return NULL;
e3f4e2a4
PB
383 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
384 *lp = pd;
67c4d23c 385 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 386 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
387 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
388 }
92e873b9 389 }
e3f4e2a4 390 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
391}
392
c227f099 393static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 394{
108c49b8 395 return phys_page_find_alloc(index, 0);
92e873b9
FB
396}
397
9fa3e853 398#if !defined(CONFIG_USER_ONLY)
c227f099
AL
399static void tlb_protect_code(ram_addr_t ram_addr);
400static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 401 target_ulong vaddr);
c8a706fe
PB
402#define mmap_lock() do { } while(0)
403#define mmap_unlock() do { } while(0)
9fa3e853 404#endif
fd6ce8f6 405
4369415f
FB
406#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
407
408#if defined(CONFIG_USER_ONLY)
ccbb4d44 409/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
410 user mode. It will change when a dedicated libc will be used */
411#define USE_STATIC_CODE_GEN_BUFFER
412#endif
413
414#ifdef USE_STATIC_CODE_GEN_BUFFER
415static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
416#endif
417
8fcd3692 418static void code_gen_alloc(unsigned long tb_size)
26a5f13b 419{
4369415f
FB
420#ifdef USE_STATIC_CODE_GEN_BUFFER
421 code_gen_buffer = static_code_gen_buffer;
422 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
423 map_exec(code_gen_buffer, code_gen_buffer_size);
424#else
26a5f13b
FB
425 code_gen_buffer_size = tb_size;
426 if (code_gen_buffer_size == 0) {
4369415f
FB
427#if defined(CONFIG_USER_ONLY)
428 /* in user mode, phys_ram_size is not meaningful */
429 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
430#else
ccbb4d44 431 /* XXX: needs adjustments */
94a6b54f 432 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 433#endif
26a5f13b
FB
434 }
435 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
436 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
437 /* The code gen buffer location may have constraints depending on
438 the host cpu and OS */
439#if defined(__linux__)
440 {
441 int flags;
141ac468
BS
442 void *start = NULL;
443
26a5f13b
FB
444 flags = MAP_PRIVATE | MAP_ANONYMOUS;
445#if defined(__x86_64__)
446 flags |= MAP_32BIT;
447 /* Cannot map more than that */
448 if (code_gen_buffer_size > (800 * 1024 * 1024))
449 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
450#elif defined(__sparc_v9__)
451 // Map the buffer below 2G, so we can use direct calls and branches
452 flags |= MAP_FIXED;
453 start = (void *) 0x60000000UL;
454 if (code_gen_buffer_size > (512 * 1024 * 1024))
455 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 456#elif defined(__arm__)
63d41246 457 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
458 flags |= MAP_FIXED;
459 start = (void *) 0x01000000UL;
460 if (code_gen_buffer_size > 16 * 1024 * 1024)
461 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 462#endif
141ac468
BS
463 code_gen_buffer = mmap(start, code_gen_buffer_size,
464 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
465 flags, -1, 0);
466 if (code_gen_buffer == MAP_FAILED) {
467 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
468 exit(1);
469 }
470 }
a167ba50 471#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
472 {
473 int flags;
474 void *addr = NULL;
475 flags = MAP_PRIVATE | MAP_ANONYMOUS;
476#if defined(__x86_64__)
477 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
478 * 0x40000000 is free */
479 flags |= MAP_FIXED;
480 addr = (void *)0x40000000;
481 /* Cannot map more than that */
482 if (code_gen_buffer_size > (800 * 1024 * 1024))
483 code_gen_buffer_size = (800 * 1024 * 1024);
484#endif
485 code_gen_buffer = mmap(addr, code_gen_buffer_size,
486 PROT_WRITE | PROT_READ | PROT_EXEC,
487 flags, -1, 0);
488 if (code_gen_buffer == MAP_FAILED) {
489 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
490 exit(1);
491 }
492 }
26a5f13b
FB
493#else
494 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
495 map_exec(code_gen_buffer, code_gen_buffer_size);
496#endif
4369415f 497#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
498 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
499 code_gen_buffer_max_size = code_gen_buffer_size -
500 code_gen_max_block_size();
501 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
502 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
503}
504
505/* Must be called before using the QEMU cpus. 'tb_size' is the size
506 (in bytes) allocated to the translation buffer. Zero means default
507 size. */
508void cpu_exec_init_all(unsigned long tb_size)
509{
26a5f13b
FB
510 cpu_gen_init();
511 code_gen_alloc(tb_size);
512 code_gen_ptr = code_gen_buffer;
4369415f 513 page_init();
e2eef170 514#if !defined(CONFIG_USER_ONLY)
26a5f13b 515 io_mem_init();
e2eef170 516#endif
26a5f13b
FB
517}
518
9656f324
PB
519#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
520
d4bfa4d7 521static void cpu_common_pre_save(void *opaque)
9656f324 522{
d4bfa4d7 523 CPUState *env = opaque;
9656f324 524
4c0960c0 525 cpu_synchronize_state(env);
9656f324
PB
526}
527
e7f4eff7 528static int cpu_common_pre_load(void *opaque)
9656f324
PB
529{
530 CPUState *env = opaque;
531
4c0960c0 532 cpu_synchronize_state(env);
e7f4eff7
JQ
533 return 0;
534}
535
e59fb374 536static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
537{
538 CPUState *env = opaque;
9656f324 539
3098dba0
AJ
540 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
541 version_id is increased. */
542 env->interrupt_request &= ~0x01;
9656f324
PB
543 tlb_flush(env, 1);
544
545 return 0;
546}
e7f4eff7
JQ
547
548static const VMStateDescription vmstate_cpu_common = {
549 .name = "cpu_common",
550 .version_id = 1,
551 .minimum_version_id = 1,
552 .minimum_version_id_old = 1,
553 .pre_save = cpu_common_pre_save,
554 .pre_load = cpu_common_pre_load,
555 .post_load = cpu_common_post_load,
556 .fields = (VMStateField []) {
557 VMSTATE_UINT32(halted, CPUState),
558 VMSTATE_UINT32(interrupt_request, CPUState),
559 VMSTATE_END_OF_LIST()
560 }
561};
9656f324
PB
562#endif
563
950f1472
GC
564CPUState *qemu_get_cpu(int cpu)
565{
566 CPUState *env = first_cpu;
567
568 while (env) {
569 if (env->cpu_index == cpu)
570 break;
571 env = env->next_cpu;
572 }
573
574 return env;
575}
576
6a00d601 577void cpu_exec_init(CPUState *env)
fd6ce8f6 578{
6a00d601
FB
579 CPUState **penv;
580 int cpu_index;
581
c2764719
PB
582#if defined(CONFIG_USER_ONLY)
583 cpu_list_lock();
584#endif
6a00d601
FB
585 env->next_cpu = NULL;
586 penv = &first_cpu;
587 cpu_index = 0;
588 while (*penv != NULL) {
1e9fa730 589 penv = &(*penv)->next_cpu;
6a00d601
FB
590 cpu_index++;
591 }
592 env->cpu_index = cpu_index;
268a362c 593 env->numa_node = 0;
72cf2d4f
BS
594 QTAILQ_INIT(&env->breakpoints);
595 QTAILQ_INIT(&env->watchpoints);
6a00d601 596 *penv = env;
c2764719
PB
597#if defined(CONFIG_USER_ONLY)
598 cpu_list_unlock();
599#endif
b3c7724c 600#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 601 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
602 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
603 cpu_save, cpu_load, env);
604#endif
fd6ce8f6
FB
605}
606
9fa3e853
FB
607static inline void invalidate_page_bitmap(PageDesc *p)
608{
609 if (p->code_bitmap) {
59817ccb 610 qemu_free(p->code_bitmap);
9fa3e853
FB
611 p->code_bitmap = NULL;
612 }
613 p->code_write_count = 0;
614}
615
fd6ce8f6
FB
616/* set to NULL all the 'first_tb' fields in all PageDescs */
617static void page_flush_tb(void)
618{
619 int i, j;
620 PageDesc *p;
621
622 for(i = 0; i < L1_SIZE; i++) {
623 p = l1_map[i];
624 if (p) {
9fa3e853
FB
625 for(j = 0; j < L2_SIZE; j++) {
626 p->first_tb = NULL;
627 invalidate_page_bitmap(p);
628 p++;
629 }
fd6ce8f6
FB
630 }
631 }
632}
633
634/* flush all the translation blocks */
d4e8164f 635/* XXX: tb_flush is currently not thread safe */
6a00d601 636void tb_flush(CPUState *env1)
fd6ce8f6 637{
6a00d601 638 CPUState *env;
0124311e 639#if defined(DEBUG_FLUSH)
ab3d1727
BS
640 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
641 (unsigned long)(code_gen_ptr - code_gen_buffer),
642 nb_tbs, nb_tbs > 0 ?
643 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 644#endif
26a5f13b 645 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
646 cpu_abort(env1, "Internal error: code buffer overflow\n");
647
fd6ce8f6 648 nb_tbs = 0;
3b46e624 649
6a00d601
FB
650 for(env = first_cpu; env != NULL; env = env->next_cpu) {
651 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
652 }
9fa3e853 653
8a8a608f 654 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 655 page_flush_tb();
9fa3e853 656
fd6ce8f6 657 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
658 /* XXX: flush processor icache at this point if cache flush is
659 expensive */
e3db7226 660 tb_flush_count++;
fd6ce8f6
FB
661}
662
663#ifdef DEBUG_TB_CHECK
664
bc98a7ef 665static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
666{
667 TranslationBlock *tb;
668 int i;
669 address &= TARGET_PAGE_MASK;
99773bd4
PB
670 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
671 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
672 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
673 address >= tb->pc + tb->size)) {
0bf9e31a
BS
674 printf("ERROR invalidate: address=" TARGET_FMT_lx
675 " PC=%08lx size=%04x\n",
99773bd4 676 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
677 }
678 }
679 }
680}
681
682/* verify that all the pages have correct rights for code */
683static void tb_page_check(void)
684{
685 TranslationBlock *tb;
686 int i, flags1, flags2;
3b46e624 687
99773bd4
PB
688 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
689 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
690 flags1 = page_get_flags(tb->pc);
691 flags2 = page_get_flags(tb->pc + tb->size - 1);
692 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
693 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 694 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
695 }
696 }
697 }
698}
699
700#endif
701
702/* invalidate one TB */
703static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
704 int next_offset)
705{
706 TranslationBlock *tb1;
707 for(;;) {
708 tb1 = *ptb;
709 if (tb1 == tb) {
710 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
711 break;
712 }
713 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
714 }
715}
716
9fa3e853
FB
717static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
718{
719 TranslationBlock *tb1;
720 unsigned int n1;
721
722 for(;;) {
723 tb1 = *ptb;
724 n1 = (long)tb1 & 3;
725 tb1 = (TranslationBlock *)((long)tb1 & ~3);
726 if (tb1 == tb) {
727 *ptb = tb1->page_next[n1];
728 break;
729 }
730 ptb = &tb1->page_next[n1];
731 }
732}
733
d4e8164f
FB
734static inline void tb_jmp_remove(TranslationBlock *tb, int n)
735{
736 TranslationBlock *tb1, **ptb;
737 unsigned int n1;
738
739 ptb = &tb->jmp_next[n];
740 tb1 = *ptb;
741 if (tb1) {
742 /* find tb(n) in circular list */
743 for(;;) {
744 tb1 = *ptb;
745 n1 = (long)tb1 & 3;
746 tb1 = (TranslationBlock *)((long)tb1 & ~3);
747 if (n1 == n && tb1 == tb)
748 break;
749 if (n1 == 2) {
750 ptb = &tb1->jmp_first;
751 } else {
752 ptb = &tb1->jmp_next[n1];
753 }
754 }
755 /* now we can suppress tb(n) from the list */
756 *ptb = tb->jmp_next[n];
757
758 tb->jmp_next[n] = NULL;
759 }
760}
761
762/* reset the jump entry 'n' of a TB so that it is not chained to
763 another TB */
764static inline void tb_reset_jump(TranslationBlock *tb, int n)
765{
766 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
767}
768
2e70f6ef 769void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 770{
6a00d601 771 CPUState *env;
8a40a180 772 PageDesc *p;
d4e8164f 773 unsigned int h, n1;
c227f099 774 target_phys_addr_t phys_pc;
8a40a180 775 TranslationBlock *tb1, *tb2;
3b46e624 776
8a40a180
FB
777 /* remove the TB from the hash list */
778 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
779 h = tb_phys_hash_func(phys_pc);
5fafdf24 780 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
781 offsetof(TranslationBlock, phys_hash_next));
782
783 /* remove the TB from the page list */
784 if (tb->page_addr[0] != page_addr) {
785 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
786 tb_page_remove(&p->first_tb, tb);
787 invalidate_page_bitmap(p);
788 }
789 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
790 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
791 tb_page_remove(&p->first_tb, tb);
792 invalidate_page_bitmap(p);
793 }
794
36bdbe54 795 tb_invalidated_flag = 1;
59817ccb 796
fd6ce8f6 797 /* remove the TB from the hash list */
8a40a180 798 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
799 for(env = first_cpu; env != NULL; env = env->next_cpu) {
800 if (env->tb_jmp_cache[h] == tb)
801 env->tb_jmp_cache[h] = NULL;
802 }
d4e8164f
FB
803
804 /* suppress this TB from the two jump lists */
805 tb_jmp_remove(tb, 0);
806 tb_jmp_remove(tb, 1);
807
808 /* suppress any remaining jumps to this TB */
809 tb1 = tb->jmp_first;
810 for(;;) {
811 n1 = (long)tb1 & 3;
812 if (n1 == 2)
813 break;
814 tb1 = (TranslationBlock *)((long)tb1 & ~3);
815 tb2 = tb1->jmp_next[n1];
816 tb_reset_jump(tb1, n1);
817 tb1->jmp_next[n1] = NULL;
818 tb1 = tb2;
819 }
820 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 821
e3db7226 822 tb_phys_invalidate_count++;
9fa3e853
FB
823}
824
825static inline void set_bits(uint8_t *tab, int start, int len)
826{
827 int end, mask, end1;
828
829 end = start + len;
830 tab += start >> 3;
831 mask = 0xff << (start & 7);
832 if ((start & ~7) == (end & ~7)) {
833 if (start < end) {
834 mask &= ~(0xff << (end & 7));
835 *tab |= mask;
836 }
837 } else {
838 *tab++ |= mask;
839 start = (start + 8) & ~7;
840 end1 = end & ~7;
841 while (start < end1) {
842 *tab++ = 0xff;
843 start += 8;
844 }
845 if (start < end) {
846 mask = ~(0xff << (end & 7));
847 *tab |= mask;
848 }
849 }
850}
851
852static void build_page_bitmap(PageDesc *p)
853{
854 int n, tb_start, tb_end;
855 TranslationBlock *tb;
3b46e624 856
b2a7081a 857 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
858
859 tb = p->first_tb;
860 while (tb != NULL) {
861 n = (long)tb & 3;
862 tb = (TranslationBlock *)((long)tb & ~3);
863 /* NOTE: this is subtle as a TB may span two physical pages */
864 if (n == 0) {
865 /* NOTE: tb_end may be after the end of the page, but
866 it is not a problem */
867 tb_start = tb->pc & ~TARGET_PAGE_MASK;
868 tb_end = tb_start + tb->size;
869 if (tb_end > TARGET_PAGE_SIZE)
870 tb_end = TARGET_PAGE_SIZE;
871 } else {
872 tb_start = 0;
873 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
874 }
875 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
876 tb = tb->page_next[n];
877 }
878}
879
2e70f6ef
PB
880TranslationBlock *tb_gen_code(CPUState *env,
881 target_ulong pc, target_ulong cs_base,
882 int flags, int cflags)
d720b93d
FB
883{
884 TranslationBlock *tb;
885 uint8_t *tc_ptr;
886 target_ulong phys_pc, phys_page2, virt_page2;
887 int code_gen_size;
888
c27004ec
FB
889 phys_pc = get_phys_addr_code(env, pc);
890 tb = tb_alloc(pc);
d720b93d
FB
891 if (!tb) {
892 /* flush must be done */
893 tb_flush(env);
894 /* cannot fail at this point */
c27004ec 895 tb = tb_alloc(pc);
2e70f6ef
PB
896 /* Don't forget to invalidate previous TB info. */
897 tb_invalidated_flag = 1;
d720b93d
FB
898 }
899 tc_ptr = code_gen_ptr;
900 tb->tc_ptr = tc_ptr;
901 tb->cs_base = cs_base;
902 tb->flags = flags;
903 tb->cflags = cflags;
d07bde88 904 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 905 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 906
d720b93d 907 /* check next page if needed */
c27004ec 908 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 909 phys_page2 = -1;
c27004ec 910 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
911 phys_page2 = get_phys_addr_code(env, virt_page2);
912 }
913 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 914 return tb;
d720b93d 915}
3b46e624 916
9fa3e853
FB
917/* invalidate all TBs which intersect with the target physical page
918 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
919 the same physical page. 'is_cpu_write_access' should be true if called
920 from a real cpu write access: the virtual CPU will exit the current
921 TB if code is modified inside this TB. */
c227f099 922void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
923 int is_cpu_write_access)
924{
6b917547 925 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 926 CPUState *env = cpu_single_env;
9fa3e853 927 target_ulong tb_start, tb_end;
6b917547
AL
928 PageDesc *p;
929 int n;
930#ifdef TARGET_HAS_PRECISE_SMC
931 int current_tb_not_found = is_cpu_write_access;
932 TranslationBlock *current_tb = NULL;
933 int current_tb_modified = 0;
934 target_ulong current_pc = 0;
935 target_ulong current_cs_base = 0;
936 int current_flags = 0;
937#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
938
939 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 940 if (!p)
9fa3e853 941 return;
5fafdf24 942 if (!p->code_bitmap &&
d720b93d
FB
943 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
944 is_cpu_write_access) {
9fa3e853
FB
945 /* build code bitmap */
946 build_page_bitmap(p);
947 }
948
949 /* we remove all the TBs in the range [start, end[ */
950 /* XXX: see if in some cases it could be faster to invalidate all the code */
951 tb = p->first_tb;
952 while (tb != NULL) {
953 n = (long)tb & 3;
954 tb = (TranslationBlock *)((long)tb & ~3);
955 tb_next = tb->page_next[n];
956 /* NOTE: this is subtle as a TB may span two physical pages */
957 if (n == 0) {
958 /* NOTE: tb_end may be after the end of the page, but
959 it is not a problem */
960 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
961 tb_end = tb_start + tb->size;
962 } else {
963 tb_start = tb->page_addr[1];
964 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
965 }
966 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
967#ifdef TARGET_HAS_PRECISE_SMC
968 if (current_tb_not_found) {
969 current_tb_not_found = 0;
970 current_tb = NULL;
2e70f6ef 971 if (env->mem_io_pc) {
d720b93d 972 /* now we have a real cpu fault */
2e70f6ef 973 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
974 }
975 }
976 if (current_tb == tb &&
2e70f6ef 977 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
978 /* If we are modifying the current TB, we must stop
979 its execution. We could be more precise by checking
980 that the modification is after the current PC, but it
981 would require a specialized function to partially
982 restore the CPU state */
3b46e624 983
d720b93d 984 current_tb_modified = 1;
5fafdf24 985 cpu_restore_state(current_tb, env,
2e70f6ef 986 env->mem_io_pc, NULL);
6b917547
AL
987 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
988 &current_flags);
d720b93d
FB
989 }
990#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
991 /* we need to do that to handle the case where a signal
992 occurs while doing tb_phys_invalidate() */
993 saved_tb = NULL;
994 if (env) {
995 saved_tb = env->current_tb;
996 env->current_tb = NULL;
997 }
9fa3e853 998 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
999 if (env) {
1000 env->current_tb = saved_tb;
1001 if (env->interrupt_request && env->current_tb)
1002 cpu_interrupt(env, env->interrupt_request);
1003 }
9fa3e853
FB
1004 }
1005 tb = tb_next;
1006 }
1007#if !defined(CONFIG_USER_ONLY)
1008 /* if no code remaining, no need to continue to use slow writes */
1009 if (!p->first_tb) {
1010 invalidate_page_bitmap(p);
d720b93d 1011 if (is_cpu_write_access) {
2e70f6ef 1012 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1013 }
1014 }
1015#endif
1016#ifdef TARGET_HAS_PRECISE_SMC
1017 if (current_tb_modified) {
1018 /* we generate a block containing just the instruction
1019 modifying the memory. It will ensure that it cannot modify
1020 itself */
ea1c1802 1021 env->current_tb = NULL;
2e70f6ef 1022 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1023 cpu_resume_from_signal(env, NULL);
9fa3e853 1024 }
fd6ce8f6 1025#endif
9fa3e853 1026}
fd6ce8f6 1027
9fa3e853 1028/* len must be <= 8 and start must be a multiple of len */
c227f099 1029static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1030{
1031 PageDesc *p;
1032 int offset, b;
59817ccb 1033#if 0
a4193c8a 1034 if (1) {
93fcfe39
AL
1035 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1036 cpu_single_env->mem_io_vaddr, len,
1037 cpu_single_env->eip,
1038 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1039 }
1040#endif
9fa3e853 1041 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1042 if (!p)
9fa3e853
FB
1043 return;
1044 if (p->code_bitmap) {
1045 offset = start & ~TARGET_PAGE_MASK;
1046 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1047 if (b & ((1 << len) - 1))
1048 goto do_invalidate;
1049 } else {
1050 do_invalidate:
d720b93d 1051 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1052 }
1053}
1054
9fa3e853 1055#if !defined(CONFIG_SOFTMMU)
c227f099 1056static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1057 unsigned long pc, void *puc)
9fa3e853 1058{
6b917547 1059 TranslationBlock *tb;
9fa3e853 1060 PageDesc *p;
6b917547 1061 int n;
d720b93d 1062#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1063 TranslationBlock *current_tb = NULL;
d720b93d 1064 CPUState *env = cpu_single_env;
6b917547
AL
1065 int current_tb_modified = 0;
1066 target_ulong current_pc = 0;
1067 target_ulong current_cs_base = 0;
1068 int current_flags = 0;
d720b93d 1069#endif
9fa3e853
FB
1070
1071 addr &= TARGET_PAGE_MASK;
1072 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1073 if (!p)
9fa3e853
FB
1074 return;
1075 tb = p->first_tb;
d720b93d
FB
1076#ifdef TARGET_HAS_PRECISE_SMC
1077 if (tb && pc != 0) {
1078 current_tb = tb_find_pc(pc);
1079 }
1080#endif
9fa3e853
FB
1081 while (tb != NULL) {
1082 n = (long)tb & 3;
1083 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1084#ifdef TARGET_HAS_PRECISE_SMC
1085 if (current_tb == tb &&
2e70f6ef 1086 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1087 /* If we are modifying the current TB, we must stop
1088 its execution. We could be more precise by checking
1089 that the modification is after the current PC, but it
1090 would require a specialized function to partially
1091 restore the CPU state */
3b46e624 1092
d720b93d
FB
1093 current_tb_modified = 1;
1094 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1095 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1096 &current_flags);
d720b93d
FB
1097 }
1098#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1099 tb_phys_invalidate(tb, addr);
1100 tb = tb->page_next[n];
1101 }
fd6ce8f6 1102 p->first_tb = NULL;
d720b93d
FB
1103#ifdef TARGET_HAS_PRECISE_SMC
1104 if (current_tb_modified) {
1105 /* we generate a block containing just the instruction
1106 modifying the memory. It will ensure that it cannot modify
1107 itself */
ea1c1802 1108 env->current_tb = NULL;
2e70f6ef 1109 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1110 cpu_resume_from_signal(env, puc);
1111 }
1112#endif
fd6ce8f6 1113}
9fa3e853 1114#endif
fd6ce8f6
FB
1115
1116/* add the tb in the target page and protect it if necessary */
5fafdf24 1117static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1118 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1119{
1120 PageDesc *p;
9fa3e853
FB
1121 TranslationBlock *last_first_tb;
1122
1123 tb->page_addr[n] = page_addr;
3a7d929e 1124 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1125 tb->page_next[n] = p->first_tb;
1126 last_first_tb = p->first_tb;
1127 p->first_tb = (TranslationBlock *)((long)tb | n);
1128 invalidate_page_bitmap(p);
fd6ce8f6 1129
107db443 1130#if defined(TARGET_HAS_SMC) || 1
d720b93d 1131
9fa3e853 1132#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1133 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1134 target_ulong addr;
1135 PageDesc *p2;
9fa3e853
FB
1136 int prot;
1137
fd6ce8f6
FB
1138 /* force the host page as non writable (writes will have a
1139 page fault + mprotect overhead) */
53a5960a 1140 page_addr &= qemu_host_page_mask;
fd6ce8f6 1141 prot = 0;
53a5960a
PB
1142 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1143 addr += TARGET_PAGE_SIZE) {
1144
1145 p2 = page_find (addr >> TARGET_PAGE_BITS);
1146 if (!p2)
1147 continue;
1148 prot |= p2->flags;
1149 p2->flags &= ~PAGE_WRITE;
1150 page_get_flags(addr);
1151 }
5fafdf24 1152 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1153 (prot & PAGE_BITS) & ~PAGE_WRITE);
1154#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1155 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1156 page_addr);
fd6ce8f6 1157#endif
fd6ce8f6 1158 }
9fa3e853
FB
1159#else
1160 /* if some code is already present, then the pages are already
1161 protected. So we handle the case where only the first TB is
1162 allocated in a physical page */
1163 if (!last_first_tb) {
6a00d601 1164 tlb_protect_code(page_addr);
9fa3e853
FB
1165 }
1166#endif
d720b93d
FB
1167
1168#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1169}
1170
1171/* Allocate a new translation block. Flush the translation buffer if
1172 too many translation blocks or too much generated code. */
c27004ec 1173TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1174{
1175 TranslationBlock *tb;
fd6ce8f6 1176
26a5f13b
FB
1177 if (nb_tbs >= code_gen_max_blocks ||
1178 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1179 return NULL;
fd6ce8f6
FB
1180 tb = &tbs[nb_tbs++];
1181 tb->pc = pc;
b448f2f3 1182 tb->cflags = 0;
d4e8164f
FB
1183 return tb;
1184}
1185
2e70f6ef
PB
1186void tb_free(TranslationBlock *tb)
1187{
bf20dc07 1188 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1189 Ignore the hard cases and just back up if this TB happens to
1190 be the last one generated. */
1191 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1192 code_gen_ptr = tb->tc_ptr;
1193 nb_tbs--;
1194 }
1195}
1196
9fa3e853
FB
1197/* add a new TB and link it to the physical page tables. phys_page2 is
1198 (-1) to indicate that only one page contains the TB. */
5fafdf24 1199void tb_link_phys(TranslationBlock *tb,
9fa3e853 1200 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1201{
9fa3e853
FB
1202 unsigned int h;
1203 TranslationBlock **ptb;
1204
c8a706fe
PB
1205 /* Grab the mmap lock to stop another thread invalidating this TB
1206 before we are done. */
1207 mmap_lock();
9fa3e853
FB
1208 /* add in the physical hash table */
1209 h = tb_phys_hash_func(phys_pc);
1210 ptb = &tb_phys_hash[h];
1211 tb->phys_hash_next = *ptb;
1212 *ptb = tb;
fd6ce8f6
FB
1213
1214 /* add in the page list */
9fa3e853
FB
1215 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1216 if (phys_page2 != -1)
1217 tb_alloc_page(tb, 1, phys_page2);
1218 else
1219 tb->page_addr[1] = -1;
9fa3e853 1220
d4e8164f
FB
1221 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1222 tb->jmp_next[0] = NULL;
1223 tb->jmp_next[1] = NULL;
1224
1225 /* init original jump addresses */
1226 if (tb->tb_next_offset[0] != 0xffff)
1227 tb_reset_jump(tb, 0);
1228 if (tb->tb_next_offset[1] != 0xffff)
1229 tb_reset_jump(tb, 1);
8a40a180
FB
1230
1231#ifdef DEBUG_TB_CHECK
1232 tb_page_check();
1233#endif
c8a706fe 1234 mmap_unlock();
fd6ce8f6
FB
1235}
1236
9fa3e853
FB
1237/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1238 tb[1].tc_ptr. Return NULL if not found */
1239TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1240{
9fa3e853
FB
1241 int m_min, m_max, m;
1242 unsigned long v;
1243 TranslationBlock *tb;
a513fe19
FB
1244
1245 if (nb_tbs <= 0)
1246 return NULL;
1247 if (tc_ptr < (unsigned long)code_gen_buffer ||
1248 tc_ptr >= (unsigned long)code_gen_ptr)
1249 return NULL;
1250 /* binary search (cf Knuth) */
1251 m_min = 0;
1252 m_max = nb_tbs - 1;
1253 while (m_min <= m_max) {
1254 m = (m_min + m_max) >> 1;
1255 tb = &tbs[m];
1256 v = (unsigned long)tb->tc_ptr;
1257 if (v == tc_ptr)
1258 return tb;
1259 else if (tc_ptr < v) {
1260 m_max = m - 1;
1261 } else {
1262 m_min = m + 1;
1263 }
5fafdf24 1264 }
a513fe19
FB
1265 return &tbs[m_max];
1266}
7501267e 1267
ea041c0e
FB
1268static void tb_reset_jump_recursive(TranslationBlock *tb);
1269
1270static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1271{
1272 TranslationBlock *tb1, *tb_next, **ptb;
1273 unsigned int n1;
1274
1275 tb1 = tb->jmp_next[n];
1276 if (tb1 != NULL) {
1277 /* find head of list */
1278 for(;;) {
1279 n1 = (long)tb1 & 3;
1280 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1281 if (n1 == 2)
1282 break;
1283 tb1 = tb1->jmp_next[n1];
1284 }
1285 /* we are now sure now that tb jumps to tb1 */
1286 tb_next = tb1;
1287
1288 /* remove tb from the jmp_first list */
1289 ptb = &tb_next->jmp_first;
1290 for(;;) {
1291 tb1 = *ptb;
1292 n1 = (long)tb1 & 3;
1293 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1294 if (n1 == n && tb1 == tb)
1295 break;
1296 ptb = &tb1->jmp_next[n1];
1297 }
1298 *ptb = tb->jmp_next[n];
1299 tb->jmp_next[n] = NULL;
3b46e624 1300
ea041c0e
FB
1301 /* suppress the jump to next tb in generated code */
1302 tb_reset_jump(tb, n);
1303
0124311e 1304 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1305 tb_reset_jump_recursive(tb_next);
1306 }
1307}
1308
1309static void tb_reset_jump_recursive(TranslationBlock *tb)
1310{
1311 tb_reset_jump_recursive2(tb, 0);
1312 tb_reset_jump_recursive2(tb, 1);
1313}
1314
1fddef4b 1315#if defined(TARGET_HAS_ICE)
d720b93d
FB
1316static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1317{
c227f099 1318 target_phys_addr_t addr;
9b3c35e0 1319 target_ulong pd;
c227f099 1320 ram_addr_t ram_addr;
c2f07f81 1321 PhysPageDesc *p;
d720b93d 1322
c2f07f81
PB
1323 addr = cpu_get_phys_page_debug(env, pc);
1324 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1325 if (!p) {
1326 pd = IO_MEM_UNASSIGNED;
1327 } else {
1328 pd = p->phys_offset;
1329 }
1330 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1331 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1332}
c27004ec 1333#endif
d720b93d 1334
6658ffb8 1335/* Add a watchpoint. */
a1d1bb31
AL
1336int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1338{
b4051334 1339 target_ulong len_mask = ~(len - 1);
c0ce998e 1340 CPUWatchpoint *wp;
6658ffb8 1341
b4051334
AL
1342 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1343 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1344 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1345 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1346 return -EINVAL;
1347 }
a1d1bb31 1348 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1349
1350 wp->vaddr = addr;
b4051334 1351 wp->len_mask = len_mask;
a1d1bb31
AL
1352 wp->flags = flags;
1353
2dc9f411 1354 /* keep all GDB-injected watchpoints in front */
c0ce998e 1355 if (flags & BP_GDB)
72cf2d4f 1356 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1357 else
72cf2d4f 1358 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1359
6658ffb8 1360 tlb_flush_page(env, addr);
a1d1bb31
AL
1361
1362 if (watchpoint)
1363 *watchpoint = wp;
1364 return 0;
6658ffb8
PB
1365}
1366
a1d1bb31
AL
1367/* Remove a specific watchpoint. */
1368int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1369 int flags)
6658ffb8 1370{
b4051334 1371 target_ulong len_mask = ~(len - 1);
a1d1bb31 1372 CPUWatchpoint *wp;
6658ffb8 1373
72cf2d4f 1374 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1375 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1376 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1377 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1378 return 0;
1379 }
1380 }
a1d1bb31 1381 return -ENOENT;
6658ffb8
PB
1382}
1383
a1d1bb31
AL
1384/* Remove a specific watchpoint by reference. */
1385void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1386{
72cf2d4f 1387 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1388
a1d1bb31
AL
1389 tlb_flush_page(env, watchpoint->vaddr);
1390
1391 qemu_free(watchpoint);
1392}
1393
1394/* Remove all matching watchpoints. */
1395void cpu_watchpoint_remove_all(CPUState *env, int mask)
1396{
c0ce998e 1397 CPUWatchpoint *wp, *next;
a1d1bb31 1398
72cf2d4f 1399 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1400 if (wp->flags & mask)
1401 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1402 }
7d03f82f
EI
1403}
1404
a1d1bb31
AL
1405/* Add a breakpoint. */
1406int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1407 CPUBreakpoint **breakpoint)
4c3a88a2 1408{
1fddef4b 1409#if defined(TARGET_HAS_ICE)
c0ce998e 1410 CPUBreakpoint *bp;
3b46e624 1411
a1d1bb31 1412 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1413
a1d1bb31
AL
1414 bp->pc = pc;
1415 bp->flags = flags;
1416
2dc9f411 1417 /* keep all GDB-injected breakpoints in front */
c0ce998e 1418 if (flags & BP_GDB)
72cf2d4f 1419 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1420 else
72cf2d4f 1421 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1422
d720b93d 1423 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1424
1425 if (breakpoint)
1426 *breakpoint = bp;
4c3a88a2
FB
1427 return 0;
1428#else
a1d1bb31 1429 return -ENOSYS;
4c3a88a2
FB
1430#endif
1431}
1432
a1d1bb31
AL
1433/* Remove a specific breakpoint. */
1434int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1435{
7d03f82f 1436#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1437 CPUBreakpoint *bp;
1438
72cf2d4f 1439 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1440 if (bp->pc == pc && bp->flags == flags) {
1441 cpu_breakpoint_remove_by_ref(env, bp);
1442 return 0;
1443 }
7d03f82f 1444 }
a1d1bb31
AL
1445 return -ENOENT;
1446#else
1447 return -ENOSYS;
7d03f82f
EI
1448#endif
1449}
1450
a1d1bb31
AL
1451/* Remove a specific breakpoint by reference. */
1452void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1453{
1fddef4b 1454#if defined(TARGET_HAS_ICE)
72cf2d4f 1455 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1456
a1d1bb31
AL
1457 breakpoint_invalidate(env, breakpoint->pc);
1458
1459 qemu_free(breakpoint);
1460#endif
1461}
1462
1463/* Remove all matching breakpoints. */
1464void cpu_breakpoint_remove_all(CPUState *env, int mask)
1465{
1466#if defined(TARGET_HAS_ICE)
c0ce998e 1467 CPUBreakpoint *bp, *next;
a1d1bb31 1468
72cf2d4f 1469 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1470 if (bp->flags & mask)
1471 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1472 }
4c3a88a2
FB
1473#endif
1474}
1475
c33a346e
FB
1476/* enable or disable single step mode. EXCP_DEBUG is returned by the
1477 CPU loop after each instruction */
1478void cpu_single_step(CPUState *env, int enabled)
1479{
1fddef4b 1480#if defined(TARGET_HAS_ICE)
c33a346e
FB
1481 if (env->singlestep_enabled != enabled) {
1482 env->singlestep_enabled = enabled;
e22a25c9
AL
1483 if (kvm_enabled())
1484 kvm_update_guest_debug(env, 0);
1485 else {
ccbb4d44 1486 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1487 /* XXX: only flush what is necessary */
1488 tb_flush(env);
1489 }
c33a346e
FB
1490 }
1491#endif
1492}
1493
34865134
FB
1494/* enable or disable low levels log */
1495void cpu_set_log(int log_flags)
1496{
1497 loglevel = log_flags;
1498 if (loglevel && !logfile) {
11fcfab4 1499 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1500 if (!logfile) {
1501 perror(logfilename);
1502 _exit(1);
1503 }
9fa3e853
FB
1504#if !defined(CONFIG_SOFTMMU)
1505 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1506 {
b55266b5 1507 static char logfile_buf[4096];
9fa3e853
FB
1508 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1509 }
bf65f53f
FN
1510#elif !defined(_WIN32)
1511 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1512 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1513#endif
e735b91c
PB
1514 log_append = 1;
1515 }
1516 if (!loglevel && logfile) {
1517 fclose(logfile);
1518 logfile = NULL;
34865134
FB
1519 }
1520}
1521
1522void cpu_set_log_filename(const char *filename)
1523{
1524 logfilename = strdup(filename);
e735b91c
PB
1525 if (logfile) {
1526 fclose(logfile);
1527 logfile = NULL;
1528 }
1529 cpu_set_log(loglevel);
34865134 1530}
c33a346e 1531
3098dba0 1532static void cpu_unlink_tb(CPUState *env)
ea041c0e 1533{
3098dba0
AJ
1534 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1535 problem and hope the cpu will stop of its own accord. For userspace
1536 emulation this often isn't actually as bad as it sounds. Often
1537 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1538 TranslationBlock *tb;
c227f099 1539 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1540
cab1b4bd 1541 spin_lock(&interrupt_lock);
3098dba0
AJ
1542 tb = env->current_tb;
1543 /* if the cpu is currently executing code, we must unlink it and
1544 all the potentially executing TB */
f76cfe56 1545 if (tb) {
3098dba0
AJ
1546 env->current_tb = NULL;
1547 tb_reset_jump_recursive(tb);
be214e6c 1548 }
cab1b4bd 1549 spin_unlock(&interrupt_lock);
3098dba0
AJ
1550}
1551
1552/* mask must never be zero, except for A20 change call */
1553void cpu_interrupt(CPUState *env, int mask)
1554{
1555 int old_mask;
be214e6c 1556
2e70f6ef 1557 old_mask = env->interrupt_request;
68a79315 1558 env->interrupt_request |= mask;
3098dba0 1559
8edac960
AL
1560#ifndef CONFIG_USER_ONLY
1561 /*
1562 * If called from iothread context, wake the target cpu in
1563 * case its halted.
1564 */
1565 if (!qemu_cpu_self(env)) {
1566 qemu_cpu_kick(env);
1567 return;
1568 }
1569#endif
1570
2e70f6ef 1571 if (use_icount) {
266910c4 1572 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1573#ifndef CONFIG_USER_ONLY
2e70f6ef 1574 if (!can_do_io(env)
be214e6c 1575 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1576 cpu_abort(env, "Raised interrupt while not in I/O function");
1577 }
1578#endif
1579 } else {
3098dba0 1580 cpu_unlink_tb(env);
ea041c0e
FB
1581 }
1582}
1583
b54ad049
FB
1584void cpu_reset_interrupt(CPUState *env, int mask)
1585{
1586 env->interrupt_request &= ~mask;
1587}
1588
3098dba0
AJ
1589void cpu_exit(CPUState *env)
1590{
1591 env->exit_request = 1;
1592 cpu_unlink_tb(env);
1593}
1594
c7cd6a37 1595const CPULogItem cpu_log_items[] = {
5fafdf24 1596 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1597 "show generated host assembly code for each compiled TB" },
1598 { CPU_LOG_TB_IN_ASM, "in_asm",
1599 "show target assembly code for each compiled TB" },
5fafdf24 1600 { CPU_LOG_TB_OP, "op",
57fec1fe 1601 "show micro ops for each compiled TB" },
f193c797 1602 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1603 "show micro ops "
1604#ifdef TARGET_I386
1605 "before eflags optimization and "
f193c797 1606#endif
e01a1157 1607 "after liveness analysis" },
f193c797
FB
1608 { CPU_LOG_INT, "int",
1609 "show interrupts/exceptions in short format" },
1610 { CPU_LOG_EXEC, "exec",
1611 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1612 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1613 "show CPU state before block translation" },
f193c797
FB
1614#ifdef TARGET_I386
1615 { CPU_LOG_PCALL, "pcall",
1616 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1617 { CPU_LOG_RESET, "cpu_reset",
1618 "show CPU state before CPU resets" },
f193c797 1619#endif
8e3a9fd2 1620#ifdef DEBUG_IOPORT
fd872598
FB
1621 { CPU_LOG_IOPORT, "ioport",
1622 "show all i/o ports accesses" },
8e3a9fd2 1623#endif
f193c797
FB
1624 { 0, NULL, NULL },
1625};
1626
f6f3fbca
MT
1627#ifndef CONFIG_USER_ONLY
1628static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1629 = QLIST_HEAD_INITIALIZER(memory_client_list);
1630
1631static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1632 ram_addr_t size,
1633 ram_addr_t phys_offset)
1634{
1635 CPUPhysMemoryClient *client;
1636 QLIST_FOREACH(client, &memory_client_list, list) {
1637 client->set_memory(client, start_addr, size, phys_offset);
1638 }
1639}
1640
1641static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1642 target_phys_addr_t end)
1643{
1644 CPUPhysMemoryClient *client;
1645 QLIST_FOREACH(client, &memory_client_list, list) {
1646 int r = client->sync_dirty_bitmap(client, start, end);
1647 if (r < 0)
1648 return r;
1649 }
1650 return 0;
1651}
1652
1653static int cpu_notify_migration_log(int enable)
1654{
1655 CPUPhysMemoryClient *client;
1656 QLIST_FOREACH(client, &memory_client_list, list) {
1657 int r = client->migration_log(client, enable);
1658 if (r < 0)
1659 return r;
1660 }
1661 return 0;
1662}
1663
1664static void phys_page_for_each_in_l1_map(PhysPageDesc **phys_map,
1665 CPUPhysMemoryClient *client)
1666{
1667 PhysPageDesc *pd;
1668 int l1, l2;
1669
1670 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1671 pd = phys_map[l1];
1672 if (!pd) {
1673 continue;
1674 }
1675 for (l2 = 0; l2 < L2_SIZE; ++l2) {
1676 if (pd[l2].phys_offset == IO_MEM_UNASSIGNED) {
1677 continue;
1678 }
1679 client->set_memory(client, pd[l2].region_offset,
1680 TARGET_PAGE_SIZE, pd[l2].phys_offset);
1681 }
1682 }
1683}
1684
1685static void phys_page_for_each(CPUPhysMemoryClient *client)
1686{
1687#if TARGET_PHYS_ADDR_SPACE_BITS > 32
1688
1689#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
1690#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
1691#endif
1692 void **phys_map = (void **)l1_phys_map;
1693 int l1;
1694 if (!l1_phys_map) {
1695 return;
1696 }
1697 for (l1 = 0; l1 < L1_SIZE; ++l1) {
1698 if (phys_map[l1]) {
1699 phys_page_for_each_in_l1_map(phys_map[l1], client);
1700 }
1701 }
1702#else
1703 if (!l1_phys_map) {
1704 return;
1705 }
1706 phys_page_for_each_in_l1_map(l1_phys_map, client);
1707#endif
1708}
1709
1710void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1711{
1712 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1713 phys_page_for_each(client);
1714}
1715
1716void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1717{
1718 QLIST_REMOVE(client, list);
1719}
1720#endif
1721
f193c797
FB
1722static int cmp1(const char *s1, int n, const char *s2)
1723{
1724 if (strlen(s2) != n)
1725 return 0;
1726 return memcmp(s1, s2, n) == 0;
1727}
3b46e624 1728
f193c797
FB
1729/* takes a comma separated list of log masks. Return 0 if error. */
1730int cpu_str_to_log_mask(const char *str)
1731{
c7cd6a37 1732 const CPULogItem *item;
f193c797
FB
1733 int mask;
1734 const char *p, *p1;
1735
1736 p = str;
1737 mask = 0;
1738 for(;;) {
1739 p1 = strchr(p, ',');
1740 if (!p1)
1741 p1 = p + strlen(p);
8e3a9fd2
FB
1742 if(cmp1(p,p1-p,"all")) {
1743 for(item = cpu_log_items; item->mask != 0; item++) {
1744 mask |= item->mask;
1745 }
1746 } else {
f193c797
FB
1747 for(item = cpu_log_items; item->mask != 0; item++) {
1748 if (cmp1(p, p1 - p, item->name))
1749 goto found;
1750 }
1751 return 0;
8e3a9fd2 1752 }
f193c797
FB
1753 found:
1754 mask |= item->mask;
1755 if (*p1 != ',')
1756 break;
1757 p = p1 + 1;
1758 }
1759 return mask;
1760}
ea041c0e 1761
7501267e
FB
1762void cpu_abort(CPUState *env, const char *fmt, ...)
1763{
1764 va_list ap;
493ae1f0 1765 va_list ap2;
7501267e
FB
1766
1767 va_start(ap, fmt);
493ae1f0 1768 va_copy(ap2, ap);
7501267e
FB
1769 fprintf(stderr, "qemu: fatal: ");
1770 vfprintf(stderr, fmt, ap);
1771 fprintf(stderr, "\n");
1772#ifdef TARGET_I386
7fe48483
FB
1773 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1774#else
1775 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1776#endif
93fcfe39
AL
1777 if (qemu_log_enabled()) {
1778 qemu_log("qemu: fatal: ");
1779 qemu_log_vprintf(fmt, ap2);
1780 qemu_log("\n");
f9373291 1781#ifdef TARGET_I386
93fcfe39 1782 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1783#else
93fcfe39 1784 log_cpu_state(env, 0);
f9373291 1785#endif
31b1a7b4 1786 qemu_log_flush();
93fcfe39 1787 qemu_log_close();
924edcae 1788 }
493ae1f0 1789 va_end(ap2);
f9373291 1790 va_end(ap);
fd052bf6
RV
1791#if defined(CONFIG_USER_ONLY)
1792 {
1793 struct sigaction act;
1794 sigfillset(&act.sa_mask);
1795 act.sa_handler = SIG_DFL;
1796 sigaction(SIGABRT, &act, NULL);
1797 }
1798#endif
7501267e
FB
1799 abort();
1800}
1801
c5be9f08
TS
1802CPUState *cpu_copy(CPUState *env)
1803{
01ba9816 1804 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1805 CPUState *next_cpu = new_env->next_cpu;
1806 int cpu_index = new_env->cpu_index;
5a38f081
AL
1807#if defined(TARGET_HAS_ICE)
1808 CPUBreakpoint *bp;
1809 CPUWatchpoint *wp;
1810#endif
1811
c5be9f08 1812 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1813
1814 /* Preserve chaining and index. */
c5be9f08
TS
1815 new_env->next_cpu = next_cpu;
1816 new_env->cpu_index = cpu_index;
5a38f081
AL
1817
1818 /* Clone all break/watchpoints.
1819 Note: Once we support ptrace with hw-debug register access, make sure
1820 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1821 QTAILQ_INIT(&env->breakpoints);
1822 QTAILQ_INIT(&env->watchpoints);
5a38f081 1823#if defined(TARGET_HAS_ICE)
72cf2d4f 1824 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1825 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1826 }
72cf2d4f 1827 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1828 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1829 wp->flags, NULL);
1830 }
1831#endif
1832
c5be9f08
TS
1833 return new_env;
1834}
1835
0124311e
FB
1836#if !defined(CONFIG_USER_ONLY)
1837
5c751e99
EI
1838static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1839{
1840 unsigned int i;
1841
1842 /* Discard jump cache entries for any tb which might potentially
1843 overlap the flushed page. */
1844 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1845 memset (&env->tb_jmp_cache[i], 0,
1846 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1847
1848 i = tb_jmp_cache_hash_page(addr);
1849 memset (&env->tb_jmp_cache[i], 0,
1850 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1851}
1852
08738984
IK
1853static CPUTLBEntry s_cputlb_empty_entry = {
1854 .addr_read = -1,
1855 .addr_write = -1,
1856 .addr_code = -1,
1857 .addend = -1,
1858};
1859
ee8b7021
FB
1860/* NOTE: if flush_global is true, also flush global entries (not
1861 implemented yet) */
1862void tlb_flush(CPUState *env, int flush_global)
33417e70 1863{
33417e70 1864 int i;
0124311e 1865
9fa3e853
FB
1866#if defined(DEBUG_TLB)
1867 printf("tlb_flush:\n");
1868#endif
0124311e
FB
1869 /* must reset current TB so that interrupts cannot modify the
1870 links while we are modifying them */
1871 env->current_tb = NULL;
1872
33417e70 1873 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1874 int mmu_idx;
1875 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1876 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1877 }
33417e70 1878 }
9fa3e853 1879
8a40a180 1880 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1881
e3db7226 1882 tlb_flush_count++;
33417e70
FB
1883}
1884
274da6b2 1885static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1886{
5fafdf24 1887 if (addr == (tlb_entry->addr_read &
84b7b8e7 1888 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1889 addr == (tlb_entry->addr_write &
84b7b8e7 1890 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1891 addr == (tlb_entry->addr_code &
84b7b8e7 1892 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1893 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1894 }
61382a50
FB
1895}
1896
2e12669a 1897void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1898{
8a40a180 1899 int i;
cfde4bd9 1900 int mmu_idx;
0124311e 1901
9fa3e853 1902#if defined(DEBUG_TLB)
108c49b8 1903 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1904#endif
0124311e
FB
1905 /* must reset current TB so that interrupts cannot modify the
1906 links while we are modifying them */
1907 env->current_tb = NULL;
61382a50
FB
1908
1909 addr &= TARGET_PAGE_MASK;
1910 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1911 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1912 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1913
5c751e99 1914 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1915}
1916
9fa3e853
FB
1917/* update the TLBs so that writes to code in the virtual page 'addr'
1918 can be detected */
c227f099 1919static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1920{
5fafdf24 1921 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1922 ram_addr + TARGET_PAGE_SIZE,
1923 CODE_DIRTY_FLAG);
9fa3e853
FB
1924}
1925
9fa3e853 1926/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1927 tested for self modifying code */
c227f099 1928static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1929 target_ulong vaddr)
9fa3e853 1930{
3a7d929e 1931 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1932}
1933
5fafdf24 1934static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1935 unsigned long start, unsigned long length)
1936{
1937 unsigned long addr;
84b7b8e7
FB
1938 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1939 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1940 if ((addr - start) < length) {
0f459d16 1941 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1942 }
1943 }
1944}
1945
5579c7f3 1946/* Note: start and end must be within the same ram block. */
c227f099 1947void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1948 int dirty_flags)
1ccde1cb
FB
1949{
1950 CPUState *env;
4f2ac237 1951 unsigned long length, start1;
0a962c02
FB
1952 int i, mask, len;
1953 uint8_t *p;
1ccde1cb
FB
1954
1955 start &= TARGET_PAGE_MASK;
1956 end = TARGET_PAGE_ALIGN(end);
1957
1958 length = end - start;
1959 if (length == 0)
1960 return;
0a962c02 1961 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1962 mask = ~dirty_flags;
1963 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1964 for(i = 0; i < len; i++)
1965 p[i] &= mask;
1966
1ccde1cb
FB
1967 /* we modify the TLB cache so that the dirty bit will be set again
1968 when accessing the range */
5579c7f3
PB
1969 start1 = (unsigned long)qemu_get_ram_ptr(start);
1970 /* Chek that we don't span multiple blocks - this breaks the
1971 address comparisons below. */
1972 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1973 != (end - 1) - start) {
1974 abort();
1975 }
1976
6a00d601 1977 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1978 int mmu_idx;
1979 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1980 for(i = 0; i < CPU_TLB_SIZE; i++)
1981 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1982 start1, length);
1983 }
6a00d601 1984 }
1ccde1cb
FB
1985}
1986
74576198
AL
1987int cpu_physical_memory_set_dirty_tracking(int enable)
1988{
f6f3fbca 1989 int ret = 0;
74576198 1990 in_migration = enable;
b0a46a33 1991 if (kvm_enabled()) {
f6f3fbca 1992 ret = kvm_set_migration_log(enable);
b0a46a33 1993 }
f6f3fbca
MT
1994 if (ret < 0) {
1995 return ret;
1996 }
1997 ret = cpu_notify_migration_log(!!enable);
1998 return ret;
74576198
AL
1999}
2000
2001int cpu_physical_memory_get_dirty_tracking(void)
2002{
2003 return in_migration;
2004}
2005
c227f099
AL
2006int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2007 target_phys_addr_t end_addr)
2bec46dc 2008{
151f7749
JK
2009 int ret = 0;
2010
f6f3fbca 2011 if (kvm_enabled()) {
151f7749 2012 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
f6f3fbca
MT
2013 }
2014 if (ret < 0) {
2015 return ret;
2016 }
2017 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2018 return ret;
2bec46dc
AL
2019}
2020
3a7d929e
FB
2021static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2022{
c227f099 2023 ram_addr_t ram_addr;
5579c7f3 2024 void *p;
3a7d929e 2025
84b7b8e7 2026 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2027 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2028 + tlb_entry->addend);
2029 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2030 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2031 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2032 }
2033 }
2034}
2035
2036/* update the TLB according to the current state of the dirty bits */
2037void cpu_tlb_update_dirty(CPUState *env)
2038{
2039 int i;
cfde4bd9
IY
2040 int mmu_idx;
2041 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2042 for(i = 0; i < CPU_TLB_SIZE; i++)
2043 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2044 }
3a7d929e
FB
2045}
2046
0f459d16 2047static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2048{
0f459d16
PB
2049 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2050 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2051}
2052
0f459d16
PB
2053/* update the TLB corresponding to virtual page vaddr
2054 so that it is no longer dirty */
2055static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2056{
1ccde1cb 2057 int i;
cfde4bd9 2058 int mmu_idx;
1ccde1cb 2059
0f459d16 2060 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2061 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2062 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2063 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2064}
2065
59817ccb
FB
2066/* add a new TLB entry. At most one entry for a given virtual address
2067 is permitted. Return 0 if OK or 2 if the page could not be mapped
2068 (can only happen in non SOFTMMU mode for I/O pages or pages
2069 conflicting with the host address space). */
5fafdf24 2070int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2071 target_phys_addr_t paddr, int prot,
6ebbf390 2072 int mmu_idx, int is_softmmu)
9fa3e853 2073{
92e873b9 2074 PhysPageDesc *p;
4f2ac237 2075 unsigned long pd;
9fa3e853 2076 unsigned int index;
4f2ac237 2077 target_ulong address;
0f459d16 2078 target_ulong code_address;
c227f099 2079 target_phys_addr_t addend;
9fa3e853 2080 int ret;
84b7b8e7 2081 CPUTLBEntry *te;
a1d1bb31 2082 CPUWatchpoint *wp;
c227f099 2083 target_phys_addr_t iotlb;
9fa3e853 2084
92e873b9 2085 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2086 if (!p) {
2087 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2088 } else {
2089 pd = p->phys_offset;
9fa3e853
FB
2090 }
2091#if defined(DEBUG_TLB)
6ebbf390
JM
2092 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2093 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2094#endif
2095
2096 ret = 0;
0f459d16
PB
2097 address = vaddr;
2098 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2099 /* IO memory case (romd handled later) */
2100 address |= TLB_MMIO;
2101 }
5579c7f3 2102 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2103 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2104 /* Normal RAM. */
2105 iotlb = pd & TARGET_PAGE_MASK;
2106 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2107 iotlb |= IO_MEM_NOTDIRTY;
2108 else
2109 iotlb |= IO_MEM_ROM;
2110 } else {
ccbb4d44 2111 /* IO handlers are currently passed a physical address.
0f459d16
PB
2112 It would be nice to pass an offset from the base address
2113 of that region. This would avoid having to special case RAM,
2114 and avoid full address decoding in every device.
2115 We can't use the high bits of pd for this because
2116 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2117 iotlb = (pd & ~TARGET_PAGE_MASK);
2118 if (p) {
8da3ff18
PB
2119 iotlb += p->region_offset;
2120 } else {
2121 iotlb += paddr;
2122 }
0f459d16
PB
2123 }
2124
2125 code_address = address;
2126 /* Make accesses to pages with watchpoints go via the
2127 watchpoint trap routines. */
72cf2d4f 2128 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2129 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2130 iotlb = io_mem_watch + paddr;
2131 /* TODO: The memory case can be optimized by not trapping
2132 reads of pages with a write breakpoint. */
2133 address |= TLB_MMIO;
6658ffb8 2134 }
0f459d16 2135 }
d79acba4 2136
0f459d16
PB
2137 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2138 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2139 te = &env->tlb_table[mmu_idx][index];
2140 te->addend = addend - vaddr;
2141 if (prot & PAGE_READ) {
2142 te->addr_read = address;
2143 } else {
2144 te->addr_read = -1;
2145 }
5c751e99 2146
0f459d16
PB
2147 if (prot & PAGE_EXEC) {
2148 te->addr_code = code_address;
2149 } else {
2150 te->addr_code = -1;
2151 }
2152 if (prot & PAGE_WRITE) {
2153 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2154 (pd & IO_MEM_ROMD)) {
2155 /* Write access calls the I/O callback. */
2156 te->addr_write = address | TLB_MMIO;
2157 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2158 !cpu_physical_memory_is_dirty(pd)) {
2159 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2160 } else {
0f459d16 2161 te->addr_write = address;
9fa3e853 2162 }
0f459d16
PB
2163 } else {
2164 te->addr_write = -1;
9fa3e853 2165 }
9fa3e853
FB
2166 return ret;
2167}
2168
0124311e
FB
2169#else
2170
ee8b7021 2171void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2172{
2173}
2174
2e12669a 2175void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2176{
2177}
2178
5fafdf24 2179int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
c227f099 2180 target_phys_addr_t paddr, int prot,
6ebbf390 2181 int mmu_idx, int is_softmmu)
9fa3e853
FB
2182{
2183 return 0;
2184}
0124311e 2185
edf8e2af
MW
2186/*
2187 * Walks guest process memory "regions" one by one
2188 * and calls callback function 'fn' for each region.
2189 */
2190int walk_memory_regions(void *priv,
2191 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2192{
9fa3e853 2193 unsigned long start, end;
edf8e2af 2194 PageDesc *p = NULL;
9fa3e853 2195 int i, j, prot, prot1;
edf8e2af 2196 int rc = 0;
33417e70 2197
edf8e2af 2198 start = end = -1;
9fa3e853 2199 prot = 0;
edf8e2af
MW
2200
2201 for (i = 0; i <= L1_SIZE; i++) {
2202 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2203 for (j = 0; j < L2_SIZE; j++) {
2204 prot1 = (p == NULL) ? 0 : p[j].flags;
2205 /*
2206 * "region" is one continuous chunk of memory
2207 * that has same protection flags set.
2208 */
9fa3e853
FB
2209 if (prot1 != prot) {
2210 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2211 if (start != -1) {
edf8e2af
MW
2212 rc = (*fn)(priv, start, end, prot);
2213 /* callback can stop iteration by returning != 0 */
2214 if (rc != 0)
2215 return (rc);
9fa3e853
FB
2216 }
2217 if (prot1 != 0)
2218 start = end;
2219 else
2220 start = -1;
2221 prot = prot1;
2222 }
edf8e2af 2223 if (p == NULL)
9fa3e853
FB
2224 break;
2225 }
33417e70 2226 }
edf8e2af
MW
2227 return (rc);
2228}
2229
2230static int dump_region(void *priv, unsigned long start,
2231 unsigned long end, unsigned long prot)
2232{
2233 FILE *f = (FILE *)priv;
2234
2235 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2236 start, end, end - start,
2237 ((prot & PAGE_READ) ? 'r' : '-'),
2238 ((prot & PAGE_WRITE) ? 'w' : '-'),
2239 ((prot & PAGE_EXEC) ? 'x' : '-'));
2240
2241 return (0);
2242}
2243
2244/* dump memory mappings */
2245void page_dump(FILE *f)
2246{
2247 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2248 "start", "end", "size", "prot");
2249 walk_memory_regions(f, dump_region);
33417e70
FB
2250}
2251
53a5960a 2252int page_get_flags(target_ulong address)
33417e70 2253{
9fa3e853
FB
2254 PageDesc *p;
2255
2256 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2257 if (!p)
9fa3e853
FB
2258 return 0;
2259 return p->flags;
2260}
2261
2262/* modify the flags of a page and invalidate the code if
ccbb4d44 2263 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2264 depending on PAGE_WRITE */
53a5960a 2265void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2266{
2267 PageDesc *p;
53a5960a 2268 target_ulong addr;
9fa3e853 2269
c8a706fe 2270 /* mmap_lock should already be held. */
9fa3e853
FB
2271 start = start & TARGET_PAGE_MASK;
2272 end = TARGET_PAGE_ALIGN(end);
2273 if (flags & PAGE_WRITE)
2274 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2275 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2276 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2277 /* We may be called for host regions that are outside guest
2278 address space. */
2279 if (!p)
2280 return;
9fa3e853
FB
2281 /* if the write protection is set, then we invalidate the code
2282 inside */
5fafdf24 2283 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2284 (flags & PAGE_WRITE) &&
2285 p->first_tb) {
d720b93d 2286 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2287 }
2288 p->flags = flags;
2289 }
33417e70
FB
2290}
2291
3d97b40b
TS
2292int page_check_range(target_ulong start, target_ulong len, int flags)
2293{
2294 PageDesc *p;
2295 target_ulong end;
2296 target_ulong addr;
2297
55f280c9
AZ
2298 if (start + len < start)
2299 /* we've wrapped around */
2300 return -1;
2301
3d97b40b
TS
2302 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2303 start = start & TARGET_PAGE_MASK;
2304
3d97b40b
TS
2305 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2306 p = page_find(addr >> TARGET_PAGE_BITS);
2307 if( !p )
2308 return -1;
2309 if( !(p->flags & PAGE_VALID) )
2310 return -1;
2311
dae3270c 2312 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2313 return -1;
dae3270c
FB
2314 if (flags & PAGE_WRITE) {
2315 if (!(p->flags & PAGE_WRITE_ORG))
2316 return -1;
2317 /* unprotect the page if it was put read-only because it
2318 contains translated code */
2319 if (!(p->flags & PAGE_WRITE)) {
2320 if (!page_unprotect(addr, 0, NULL))
2321 return -1;
2322 }
2323 return 0;
2324 }
3d97b40b
TS
2325 }
2326 return 0;
2327}
2328
9fa3e853 2329/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2330 page. Return TRUE if the fault was successfully handled. */
53a5960a 2331int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2332{
2333 unsigned int page_index, prot, pindex;
2334 PageDesc *p, *p1;
53a5960a 2335 target_ulong host_start, host_end, addr;
9fa3e853 2336
c8a706fe
PB
2337 /* Technically this isn't safe inside a signal handler. However we
2338 know this only ever happens in a synchronous SEGV handler, so in
2339 practice it seems to be ok. */
2340 mmap_lock();
2341
83fb7adf 2342 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2343 page_index = host_start >> TARGET_PAGE_BITS;
2344 p1 = page_find(page_index);
c8a706fe
PB
2345 if (!p1) {
2346 mmap_unlock();
9fa3e853 2347 return 0;
c8a706fe 2348 }
83fb7adf 2349 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2350 p = p1;
2351 prot = 0;
2352 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2353 prot |= p->flags;
2354 p++;
2355 }
2356 /* if the page was really writable, then we change its
2357 protection back to writable */
2358 if (prot & PAGE_WRITE_ORG) {
2359 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2360 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2361 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2362 (prot & PAGE_BITS) | PAGE_WRITE);
2363 p1[pindex].flags |= PAGE_WRITE;
2364 /* and since the content will be modified, we must invalidate
2365 the corresponding translated code. */
d720b93d 2366 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2367#ifdef DEBUG_TB_CHECK
2368 tb_invalidate_check(address);
2369#endif
c8a706fe 2370 mmap_unlock();
9fa3e853
FB
2371 return 1;
2372 }
2373 }
c8a706fe 2374 mmap_unlock();
9fa3e853
FB
2375 return 0;
2376}
2377
6a00d601
FB
2378static inline void tlb_set_dirty(CPUState *env,
2379 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2380{
2381}
9fa3e853
FB
2382#endif /* defined(CONFIG_USER_ONLY) */
2383
e2eef170 2384#if !defined(CONFIG_USER_ONLY)
8da3ff18 2385
c227f099
AL
2386static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2387 ram_addr_t memory, ram_addr_t region_offset);
2388static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2389 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2390#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2391 need_subpage) \
2392 do { \
2393 if (addr > start_addr) \
2394 start_addr2 = 0; \
2395 else { \
2396 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2397 if (start_addr2 > 0) \
2398 need_subpage = 1; \
2399 } \
2400 \
49e9fba2 2401 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2402 end_addr2 = TARGET_PAGE_SIZE - 1; \
2403 else { \
2404 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2405 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2406 need_subpage = 1; \
2407 } \
2408 } while (0)
2409
8f2498f9
MT
2410/* register physical memory.
2411 For RAM, 'size' must be a multiple of the target page size.
2412 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2413 io memory page. The address used when calling the IO function is
2414 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2415 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2416 before calculating this offset. This should not be a problem unless
2417 the low bits of start_addr and region_offset differ. */
c227f099
AL
2418void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2419 ram_addr_t size,
2420 ram_addr_t phys_offset,
2421 ram_addr_t region_offset)
33417e70 2422{
c227f099 2423 target_phys_addr_t addr, end_addr;
92e873b9 2424 PhysPageDesc *p;
9d42037b 2425 CPUState *env;
c227f099 2426 ram_addr_t orig_size = size;
db7b5426 2427 void *subpage;
33417e70 2428
7ba1e619
AL
2429 if (kvm_enabled())
2430 kvm_set_phys_mem(start_addr, size, phys_offset);
2431
f6f3fbca
MT
2432 cpu_notify_set_memory(start_addr, size, phys_offset);
2433
67c4d23c
PB
2434 if (phys_offset == IO_MEM_UNASSIGNED) {
2435 region_offset = start_addr;
2436 }
8da3ff18 2437 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2438 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2439 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2440 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2441 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2442 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2443 ram_addr_t orig_memory = p->phys_offset;
2444 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2445 int need_subpage = 0;
2446
2447 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2448 need_subpage);
4254fab8 2449 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2450 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2451 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2452 &p->phys_offset, orig_memory,
2453 p->region_offset);
db7b5426
BS
2454 } else {
2455 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2456 >> IO_MEM_SHIFT];
2457 }
8da3ff18
PB
2458 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2459 region_offset);
2460 p->region_offset = 0;
db7b5426
BS
2461 } else {
2462 p->phys_offset = phys_offset;
2463 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2464 (phys_offset & IO_MEM_ROMD))
2465 phys_offset += TARGET_PAGE_SIZE;
2466 }
2467 } else {
2468 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2469 p->phys_offset = phys_offset;
8da3ff18 2470 p->region_offset = region_offset;
db7b5426 2471 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2472 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2473 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2474 } else {
c227f099 2475 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2476 int need_subpage = 0;
2477
2478 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2479 end_addr2, need_subpage);
2480
4254fab8 2481 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2482 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2483 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2484 addr & TARGET_PAGE_MASK);
db7b5426 2485 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2486 phys_offset, region_offset);
2487 p->region_offset = 0;
db7b5426
BS
2488 }
2489 }
2490 }
8da3ff18 2491 region_offset += TARGET_PAGE_SIZE;
33417e70 2492 }
3b46e624 2493
9d42037b
FB
2494 /* since each CPU stores ram addresses in its TLB cache, we must
2495 reset the modified entries */
2496 /* XXX: slow ! */
2497 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2498 tlb_flush(env, 1);
2499 }
33417e70
FB
2500}
2501
ba863458 2502/* XXX: temporary until new memory mapping API */
c227f099 2503ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2504{
2505 PhysPageDesc *p;
2506
2507 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2508 if (!p)
2509 return IO_MEM_UNASSIGNED;
2510 return p->phys_offset;
2511}
2512
c227f099 2513void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2514{
2515 if (kvm_enabled())
2516 kvm_coalesce_mmio_region(addr, size);
2517}
2518
c227f099 2519void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2520{
2521 if (kvm_enabled())
2522 kvm_uncoalesce_mmio_region(addr, size);
2523}
2524
62a2744c
SY
2525void qemu_flush_coalesced_mmio_buffer(void)
2526{
2527 if (kvm_enabled())
2528 kvm_flush_coalesced_mmio_buffer();
2529}
2530
c227f099 2531ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2532{
2533 RAMBlock *new_block;
2534
94a6b54f
PB
2535 size = TARGET_PAGE_ALIGN(size);
2536 new_block = qemu_malloc(sizeof(*new_block));
2537
6b02494d
AG
2538#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2539 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2540 new_block->host = mmap((void*)0x1000000, size, PROT_EXEC|PROT_READ|PROT_WRITE,
2541 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2542#else
94a6b54f 2543 new_block->host = qemu_vmalloc(size);
6b02494d 2544#endif
ccb167e9
IE
2545#ifdef MADV_MERGEABLE
2546 madvise(new_block->host, size, MADV_MERGEABLE);
2547#endif
94a6b54f
PB
2548 new_block->offset = last_ram_offset;
2549 new_block->length = size;
2550
2551 new_block->next = ram_blocks;
2552 ram_blocks = new_block;
2553
2554 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2555 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2556 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2557 0xff, size >> TARGET_PAGE_BITS);
2558
2559 last_ram_offset += size;
2560
6f0437e8
JK
2561 if (kvm_enabled())
2562 kvm_setup_guest_memory(new_block->host, size);
2563
94a6b54f
PB
2564 return new_block->offset;
2565}
e9a1ab19 2566
c227f099 2567void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2568{
94a6b54f 2569 /* TODO: implement this. */
e9a1ab19
FB
2570}
2571
dc828ca1 2572/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2573 With the exception of the softmmu code in this file, this should
2574 only be used for local memory (e.g. video ram) that the device owns,
2575 and knows it isn't going to access beyond the end of the block.
2576
2577 It should not be used for general purpose DMA.
2578 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2579 */
c227f099 2580void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2581{
94a6b54f
PB
2582 RAMBlock *prev;
2583 RAMBlock **prevp;
2584 RAMBlock *block;
2585
94a6b54f
PB
2586 prev = NULL;
2587 prevp = &ram_blocks;
2588 block = ram_blocks;
2589 while (block && (block->offset > addr
2590 || block->offset + block->length <= addr)) {
2591 if (prev)
2592 prevp = &prev->next;
2593 prev = block;
2594 block = block->next;
2595 }
2596 if (!block) {
2597 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2598 abort();
2599 }
2600 /* Move this entry to to start of the list. */
2601 if (prev) {
2602 prev->next = block->next;
2603 block->next = *prevp;
2604 *prevp = block;
2605 }
2606 return block->host + (addr - block->offset);
dc828ca1
PB
2607}
2608
5579c7f3
PB
2609/* Some of the softmmu routines need to translate from a host pointer
2610 (typically a TLB entry) back to a ram offset. */
c227f099 2611ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2612{
94a6b54f 2613 RAMBlock *prev;
94a6b54f
PB
2614 RAMBlock *block;
2615 uint8_t *host = ptr;
2616
94a6b54f 2617 prev = NULL;
94a6b54f
PB
2618 block = ram_blocks;
2619 while (block && (block->host > host
2620 || block->host + block->length <= host)) {
94a6b54f
PB
2621 prev = block;
2622 block = block->next;
2623 }
2624 if (!block) {
2625 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2626 abort();
2627 }
2628 return block->offset + (host - block->host);
5579c7f3
PB
2629}
2630
c227f099 2631static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2632{
67d3b957 2633#ifdef DEBUG_UNASSIGNED
ab3d1727 2634 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2635#endif
faed1c2a 2636#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2637 do_unassigned_access(addr, 0, 0, 0, 1);
2638#endif
2639 return 0;
2640}
2641
c227f099 2642static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2643{
2644#ifdef DEBUG_UNASSIGNED
2645 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2646#endif
faed1c2a 2647#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2648 do_unassigned_access(addr, 0, 0, 0, 2);
2649#endif
2650 return 0;
2651}
2652
c227f099 2653static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2654{
2655#ifdef DEBUG_UNASSIGNED
2656 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2657#endif
faed1c2a 2658#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2659 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2660#endif
33417e70
FB
2661 return 0;
2662}
2663
c227f099 2664static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2665{
67d3b957 2666#ifdef DEBUG_UNASSIGNED
ab3d1727 2667 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2668#endif
faed1c2a 2669#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2670 do_unassigned_access(addr, 1, 0, 0, 1);
2671#endif
2672}
2673
c227f099 2674static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2675{
2676#ifdef DEBUG_UNASSIGNED
2677 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2678#endif
faed1c2a 2679#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2680 do_unassigned_access(addr, 1, 0, 0, 2);
2681#endif
2682}
2683
c227f099 2684static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2685{
2686#ifdef DEBUG_UNASSIGNED
2687 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2688#endif
faed1c2a 2689#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2690 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2691#endif
33417e70
FB
2692}
2693
d60efc6b 2694static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2695 unassigned_mem_readb,
e18231a3
BS
2696 unassigned_mem_readw,
2697 unassigned_mem_readl,
33417e70
FB
2698};
2699
d60efc6b 2700static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2701 unassigned_mem_writeb,
e18231a3
BS
2702 unassigned_mem_writew,
2703 unassigned_mem_writel,
33417e70
FB
2704};
2705
c227f099 2706static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2707 uint32_t val)
9fa3e853 2708{
3a7d929e 2709 int dirty_flags;
3a7d929e
FB
2710 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2711 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2712#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2713 tb_invalidate_phys_page_fast(ram_addr, 1);
2714 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2715#endif
3a7d929e 2716 }
5579c7f3 2717 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2718 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2719 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2720 /* we remove the notdirty callback only if the code has been
2721 flushed */
2722 if (dirty_flags == 0xff)
2e70f6ef 2723 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2724}
2725
c227f099 2726static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2727 uint32_t val)
9fa3e853 2728{
3a7d929e 2729 int dirty_flags;
3a7d929e
FB
2730 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2731 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2732#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2733 tb_invalidate_phys_page_fast(ram_addr, 2);
2734 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2735#endif
3a7d929e 2736 }
5579c7f3 2737 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2738 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2739 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2740 /* we remove the notdirty callback only if the code has been
2741 flushed */
2742 if (dirty_flags == 0xff)
2e70f6ef 2743 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2744}
2745
c227f099 2746static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2747 uint32_t val)
9fa3e853 2748{
3a7d929e 2749 int dirty_flags;
3a7d929e
FB
2750 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2751 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2752#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2753 tb_invalidate_phys_page_fast(ram_addr, 4);
2754 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2755#endif
3a7d929e 2756 }
5579c7f3 2757 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2758 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2759 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2760 /* we remove the notdirty callback only if the code has been
2761 flushed */
2762 if (dirty_flags == 0xff)
2e70f6ef 2763 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2764}
2765
d60efc6b 2766static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2767 NULL, /* never used */
2768 NULL, /* never used */
2769 NULL, /* never used */
2770};
2771
d60efc6b 2772static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2773 notdirty_mem_writeb,
2774 notdirty_mem_writew,
2775 notdirty_mem_writel,
2776};
2777
0f459d16 2778/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2779static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2780{
2781 CPUState *env = cpu_single_env;
06d55cc1
AL
2782 target_ulong pc, cs_base;
2783 TranslationBlock *tb;
0f459d16 2784 target_ulong vaddr;
a1d1bb31 2785 CPUWatchpoint *wp;
06d55cc1 2786 int cpu_flags;
0f459d16 2787
06d55cc1
AL
2788 if (env->watchpoint_hit) {
2789 /* We re-entered the check after replacing the TB. Now raise
2790 * the debug interrupt so that is will trigger after the
2791 * current instruction. */
2792 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2793 return;
2794 }
2e70f6ef 2795 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2796 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2797 if ((vaddr == (wp->vaddr & len_mask) ||
2798 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2799 wp->flags |= BP_WATCHPOINT_HIT;
2800 if (!env->watchpoint_hit) {
2801 env->watchpoint_hit = wp;
2802 tb = tb_find_pc(env->mem_io_pc);
2803 if (!tb) {
2804 cpu_abort(env, "check_watchpoint: could not find TB for "
2805 "pc=%p", (void *)env->mem_io_pc);
2806 }
2807 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2808 tb_phys_invalidate(tb, -1);
2809 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2810 env->exception_index = EXCP_DEBUG;
2811 } else {
2812 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2813 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2814 }
2815 cpu_resume_from_signal(env, NULL);
06d55cc1 2816 }
6e140f28
AL
2817 } else {
2818 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2819 }
2820 }
2821}
2822
6658ffb8
PB
2823/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2824 so these check for a hit then pass through to the normal out-of-line
2825 phys routines. */
c227f099 2826static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 2827{
b4051334 2828 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2829 return ldub_phys(addr);
2830}
2831
c227f099 2832static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 2833{
b4051334 2834 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2835 return lduw_phys(addr);
2836}
2837
c227f099 2838static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 2839{
b4051334 2840 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2841 return ldl_phys(addr);
2842}
2843
c227f099 2844static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2845 uint32_t val)
2846{
b4051334 2847 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2848 stb_phys(addr, val);
2849}
2850
c227f099 2851static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2852 uint32_t val)
2853{
b4051334 2854 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2855 stw_phys(addr, val);
2856}
2857
c227f099 2858static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
2859 uint32_t val)
2860{
b4051334 2861 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2862 stl_phys(addr, val);
2863}
2864
d60efc6b 2865static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2866 watch_mem_readb,
2867 watch_mem_readw,
2868 watch_mem_readl,
2869};
2870
d60efc6b 2871static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2872 watch_mem_writeb,
2873 watch_mem_writew,
2874 watch_mem_writel,
2875};
6658ffb8 2876
c227f099 2877static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2878 unsigned int len)
2879{
db7b5426
BS
2880 uint32_t ret;
2881 unsigned int idx;
2882
8da3ff18 2883 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2884#if defined(DEBUG_SUBPAGE)
2885 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2886 mmio, len, addr, idx);
2887#endif
8da3ff18
PB
2888 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2889 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2890
2891 return ret;
2892}
2893
c227f099 2894static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
db7b5426
BS
2895 uint32_t value, unsigned int len)
2896{
db7b5426
BS
2897 unsigned int idx;
2898
8da3ff18 2899 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2900#if defined(DEBUG_SUBPAGE)
2901 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2902 mmio, len, addr, idx, value);
2903#endif
8da3ff18
PB
2904 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2905 addr + mmio->region_offset[idx][1][len],
2906 value);
db7b5426
BS
2907}
2908
c227f099 2909static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2910{
2911#if defined(DEBUG_SUBPAGE)
2912 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2913#endif
2914
2915 return subpage_readlen(opaque, addr, 0);
2916}
2917
c227f099 2918static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2919 uint32_t value)
2920{
2921#if defined(DEBUG_SUBPAGE)
2922 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2923#endif
2924 subpage_writelen(opaque, addr, value, 0);
2925}
2926
c227f099 2927static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2928{
2929#if defined(DEBUG_SUBPAGE)
2930 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2931#endif
2932
2933 return subpage_readlen(opaque, addr, 1);
2934}
2935
c227f099 2936static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
2937 uint32_t value)
2938{
2939#if defined(DEBUG_SUBPAGE)
2940 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2941#endif
2942 subpage_writelen(opaque, addr, value, 1);
2943}
2944
c227f099 2945static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426
BS
2946{
2947#if defined(DEBUG_SUBPAGE)
2948 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2949#endif
2950
2951 return subpage_readlen(opaque, addr, 2);
2952}
2953
2954static void subpage_writel (void *opaque,
c227f099 2955 target_phys_addr_t addr, uint32_t value)
db7b5426
BS
2956{
2957#if defined(DEBUG_SUBPAGE)
2958 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2959#endif
2960 subpage_writelen(opaque, addr, value, 2);
2961}
2962
d60efc6b 2963static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2964 &subpage_readb,
2965 &subpage_readw,
2966 &subpage_readl,
2967};
2968
d60efc6b 2969static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2970 &subpage_writeb,
2971 &subpage_writew,
2972 &subpage_writel,
2973};
2974
c227f099
AL
2975static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2976 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2977{
2978 int idx, eidx;
4254fab8 2979 unsigned int i;
db7b5426
BS
2980
2981 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2982 return -1;
2983 idx = SUBPAGE_IDX(start);
2984 eidx = SUBPAGE_IDX(end);
2985#if defined(DEBUG_SUBPAGE)
0bf9e31a 2986 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2987 mmio, start, end, idx, eidx, memory);
2988#endif
2989 memory >>= IO_MEM_SHIFT;
2990 for (; idx <= eidx; idx++) {
4254fab8 2991 for (i = 0; i < 4; i++) {
3ee89922
BS
2992 if (io_mem_read[memory][i]) {
2993 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2994 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2995 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2996 }
2997 if (io_mem_write[memory][i]) {
2998 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2999 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 3000 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 3001 }
4254fab8 3002 }
db7b5426
BS
3003 }
3004
3005 return 0;
3006}
3007
c227f099
AL
3008static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3009 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426 3010{
c227f099 3011 subpage_t *mmio;
db7b5426
BS
3012 int subpage_memory;
3013
c227f099 3014 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3015
3016 mmio->base = base;
1eed09cb 3017 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3018#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3019 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3020 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3021#endif
1eec614b
AL
3022 *phys = subpage_memory | IO_MEM_SUBPAGE;
3023 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 3024 region_offset);
db7b5426
BS
3025
3026 return mmio;
3027}
3028
88715657
AL
3029static int get_free_io_mem_idx(void)
3030{
3031 int i;
3032
3033 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3034 if (!io_mem_used[i]) {
3035 io_mem_used[i] = 1;
3036 return i;
3037 }
c6703b47 3038 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3039 return -1;
3040}
3041
33417e70
FB
3042/* mem_read and mem_write are arrays of functions containing the
3043 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3044 2). Functions can be omitted with a NULL function pointer.
3ee89922 3045 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3046 modified. If it is zero, a new io zone is allocated. The return
3047 value can be used with cpu_register_physical_memory(). (-1) is
3048 returned if error. */
1eed09cb 3049static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3050 CPUReadMemoryFunc * const *mem_read,
3051 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3052 void *opaque)
33417e70 3053{
4254fab8 3054 int i, subwidth = 0;
33417e70
FB
3055
3056 if (io_index <= 0) {
88715657
AL
3057 io_index = get_free_io_mem_idx();
3058 if (io_index == -1)
3059 return io_index;
33417e70 3060 } else {
1eed09cb 3061 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3062 if (io_index >= IO_MEM_NB_ENTRIES)
3063 return -1;
3064 }
b5ff1b31 3065
33417e70 3066 for(i = 0;i < 3; i++) {
4254fab8
BS
3067 if (!mem_read[i] || !mem_write[i])
3068 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
3069 io_mem_read[io_index][i] = mem_read[i];
3070 io_mem_write[io_index][i] = mem_write[i];
3071 }
a4193c8a 3072 io_mem_opaque[io_index] = opaque;
4254fab8 3073 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 3074}
61382a50 3075
d60efc6b
BS
3076int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3077 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3078 void *opaque)
3079{
3080 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3081}
3082
88715657
AL
3083void cpu_unregister_io_memory(int io_table_address)
3084{
3085 int i;
3086 int io_index = io_table_address >> IO_MEM_SHIFT;
3087
3088 for (i=0;i < 3; i++) {
3089 io_mem_read[io_index][i] = unassigned_mem_read[i];
3090 io_mem_write[io_index][i] = unassigned_mem_write[i];
3091 }
3092 io_mem_opaque[io_index] = NULL;
3093 io_mem_used[io_index] = 0;
3094}
3095
e9179ce1
AK
3096static void io_mem_init(void)
3097{
3098 int i;
3099
3100 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3101 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3102 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3103 for (i=0; i<5; i++)
3104 io_mem_used[i] = 1;
3105
3106 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3107 watch_mem_write, NULL);
e9179ce1
AK
3108}
3109
e2eef170
PB
3110#endif /* !defined(CONFIG_USER_ONLY) */
3111
13eb76e0
FB
3112/* physical memory access (slow version, mainly for debug) */
3113#if defined(CONFIG_USER_ONLY)
c227f099 3114void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3115 int len, int is_write)
3116{
3117 int l, flags;
3118 target_ulong page;
53a5960a 3119 void * p;
13eb76e0
FB
3120
3121 while (len > 0) {
3122 page = addr & TARGET_PAGE_MASK;
3123 l = (page + TARGET_PAGE_SIZE) - addr;
3124 if (l > len)
3125 l = len;
3126 flags = page_get_flags(page);
3127 if (!(flags & PAGE_VALID))
3128 return;
3129 if (is_write) {
3130 if (!(flags & PAGE_WRITE))
3131 return;
579a97f7 3132 /* XXX: this code should not depend on lock_user */
72fb7daa 3133 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
3134 /* FIXME - should this return an error rather than just fail? */
3135 return;
72fb7daa
AJ
3136 memcpy(p, buf, l);
3137 unlock_user(p, addr, l);
13eb76e0
FB
3138 } else {
3139 if (!(flags & PAGE_READ))
3140 return;
579a97f7 3141 /* XXX: this code should not depend on lock_user */
72fb7daa 3142 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3143 /* FIXME - should this return an error rather than just fail? */
3144 return;
72fb7daa 3145 memcpy(buf, p, l);
5b257578 3146 unlock_user(p, addr, 0);
13eb76e0
FB
3147 }
3148 len -= l;
3149 buf += l;
3150 addr += l;
3151 }
3152}
8df1cd07 3153
13eb76e0 3154#else
c227f099 3155void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3156 int len, int is_write)
3157{
3158 int l, io_index;
3159 uint8_t *ptr;
3160 uint32_t val;
c227f099 3161 target_phys_addr_t page;
2e12669a 3162 unsigned long pd;
92e873b9 3163 PhysPageDesc *p;
3b46e624 3164
13eb76e0
FB
3165 while (len > 0) {
3166 page = addr & TARGET_PAGE_MASK;
3167 l = (page + TARGET_PAGE_SIZE) - addr;
3168 if (l > len)
3169 l = len;
92e873b9 3170 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3171 if (!p) {
3172 pd = IO_MEM_UNASSIGNED;
3173 } else {
3174 pd = p->phys_offset;
3175 }
3b46e624 3176
13eb76e0 3177 if (is_write) {
3a7d929e 3178 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3179 target_phys_addr_t addr1 = addr;
13eb76e0 3180 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3181 if (p)
6c2934db 3182 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3183 /* XXX: could force cpu_single_env to NULL to avoid
3184 potential bugs */
6c2934db 3185 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3186 /* 32 bit write access */
c27004ec 3187 val = ldl_p(buf);
6c2934db 3188 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3189 l = 4;
6c2934db 3190 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3191 /* 16 bit write access */
c27004ec 3192 val = lduw_p(buf);
6c2934db 3193 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3194 l = 2;
3195 } else {
1c213d19 3196 /* 8 bit write access */
c27004ec 3197 val = ldub_p(buf);
6c2934db 3198 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3199 l = 1;
3200 }
3201 } else {
b448f2f3
FB
3202 unsigned long addr1;
3203 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3204 /* RAM case */
5579c7f3 3205 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3206 memcpy(ptr, buf, l);
3a7d929e
FB
3207 if (!cpu_physical_memory_is_dirty(addr1)) {
3208 /* invalidate code */
3209 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3210 /* set dirty bit */
5fafdf24 3211 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3212 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3213 }
13eb76e0
FB
3214 }
3215 } else {
5fafdf24 3216 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3217 !(pd & IO_MEM_ROMD)) {
c227f099 3218 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3219 /* I/O case */
3220 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3221 if (p)
6c2934db
AJ
3222 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3223 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3224 /* 32 bit read access */
6c2934db 3225 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3226 stl_p(buf, val);
13eb76e0 3227 l = 4;
6c2934db 3228 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3229 /* 16 bit read access */
6c2934db 3230 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3231 stw_p(buf, val);
13eb76e0
FB
3232 l = 2;
3233 } else {
1c213d19 3234 /* 8 bit read access */
6c2934db 3235 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3236 stb_p(buf, val);
13eb76e0
FB
3237 l = 1;
3238 }
3239 } else {
3240 /* RAM case */
5579c7f3 3241 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3242 (addr & ~TARGET_PAGE_MASK);
3243 memcpy(buf, ptr, l);
3244 }
3245 }
3246 len -= l;
3247 buf += l;
3248 addr += l;
3249 }
3250}
8df1cd07 3251
d0ecd2aa 3252/* used for ROM loading : can write in RAM and ROM */
c227f099 3253void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3254 const uint8_t *buf, int len)
3255{
3256 int l;
3257 uint8_t *ptr;
c227f099 3258 target_phys_addr_t page;
d0ecd2aa
FB
3259 unsigned long pd;
3260 PhysPageDesc *p;
3b46e624 3261
d0ecd2aa
FB
3262 while (len > 0) {
3263 page = addr & TARGET_PAGE_MASK;
3264 l = (page + TARGET_PAGE_SIZE) - addr;
3265 if (l > len)
3266 l = len;
3267 p = phys_page_find(page >> TARGET_PAGE_BITS);
3268 if (!p) {
3269 pd = IO_MEM_UNASSIGNED;
3270 } else {
3271 pd = p->phys_offset;
3272 }
3b46e624 3273
d0ecd2aa 3274 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3275 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3276 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3277 /* do nothing */
3278 } else {
3279 unsigned long addr1;
3280 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3281 /* ROM/RAM case */
5579c7f3 3282 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3283 memcpy(ptr, buf, l);
3284 }
3285 len -= l;
3286 buf += l;
3287 addr += l;
3288 }
3289}
3290
6d16c2f8
AL
3291typedef struct {
3292 void *buffer;
c227f099
AL
3293 target_phys_addr_t addr;
3294 target_phys_addr_t len;
6d16c2f8
AL
3295} BounceBuffer;
3296
3297static BounceBuffer bounce;
3298
ba223c29
AL
3299typedef struct MapClient {
3300 void *opaque;
3301 void (*callback)(void *opaque);
72cf2d4f 3302 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3303} MapClient;
3304
72cf2d4f
BS
3305static QLIST_HEAD(map_client_list, MapClient) map_client_list
3306 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3307
3308void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3309{
3310 MapClient *client = qemu_malloc(sizeof(*client));
3311
3312 client->opaque = opaque;
3313 client->callback = callback;
72cf2d4f 3314 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3315 return client;
3316}
3317
3318void cpu_unregister_map_client(void *_client)
3319{
3320 MapClient *client = (MapClient *)_client;
3321
72cf2d4f 3322 QLIST_REMOVE(client, link);
34d5e948 3323 qemu_free(client);
ba223c29
AL
3324}
3325
3326static void cpu_notify_map_clients(void)
3327{
3328 MapClient *client;
3329
72cf2d4f
BS
3330 while (!QLIST_EMPTY(&map_client_list)) {
3331 client = QLIST_FIRST(&map_client_list);
ba223c29 3332 client->callback(client->opaque);
34d5e948 3333 cpu_unregister_map_client(client);
ba223c29
AL
3334 }
3335}
3336
6d16c2f8
AL
3337/* Map a physical memory region into a host virtual address.
3338 * May map a subset of the requested range, given by and returned in *plen.
3339 * May return NULL if resources needed to perform the mapping are exhausted.
3340 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3341 * Use cpu_register_map_client() to know when retrying the map operation is
3342 * likely to succeed.
6d16c2f8 3343 */
c227f099
AL
3344void *cpu_physical_memory_map(target_phys_addr_t addr,
3345 target_phys_addr_t *plen,
6d16c2f8
AL
3346 int is_write)
3347{
c227f099
AL
3348 target_phys_addr_t len = *plen;
3349 target_phys_addr_t done = 0;
6d16c2f8
AL
3350 int l;
3351 uint8_t *ret = NULL;
3352 uint8_t *ptr;
c227f099 3353 target_phys_addr_t page;
6d16c2f8
AL
3354 unsigned long pd;
3355 PhysPageDesc *p;
3356 unsigned long addr1;
3357
3358 while (len > 0) {
3359 page = addr & TARGET_PAGE_MASK;
3360 l = (page + TARGET_PAGE_SIZE) - addr;
3361 if (l > len)
3362 l = len;
3363 p = phys_page_find(page >> TARGET_PAGE_BITS);
3364 if (!p) {
3365 pd = IO_MEM_UNASSIGNED;
3366 } else {
3367 pd = p->phys_offset;
3368 }
3369
3370 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3371 if (done || bounce.buffer) {
3372 break;
3373 }
3374 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3375 bounce.addr = addr;
3376 bounce.len = l;
3377 if (!is_write) {
3378 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3379 }
3380 ptr = bounce.buffer;
3381 } else {
3382 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3383 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3384 }
3385 if (!done) {
3386 ret = ptr;
3387 } else if (ret + done != ptr) {
3388 break;
3389 }
3390
3391 len -= l;
3392 addr += l;
3393 done += l;
3394 }
3395 *plen = done;
3396 return ret;
3397}
3398
3399/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3400 * Will also mark the memory as dirty if is_write == 1. access_len gives
3401 * the amount of memory that was actually read or written by the caller.
3402 */
c227f099
AL
3403void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3404 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3405{
3406 if (buffer != bounce.buffer) {
3407 if (is_write) {
c227f099 3408 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3409 while (access_len) {
3410 unsigned l;
3411 l = TARGET_PAGE_SIZE;
3412 if (l > access_len)
3413 l = access_len;
3414 if (!cpu_physical_memory_is_dirty(addr1)) {
3415 /* invalidate code */
3416 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3417 /* set dirty bit */
3418 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3419 (0xff & ~CODE_DIRTY_FLAG);
3420 }
3421 addr1 += l;
3422 access_len -= l;
3423 }
3424 }
3425 return;
3426 }
3427 if (is_write) {
3428 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3429 }
f8a83245 3430 qemu_vfree(bounce.buffer);
6d16c2f8 3431 bounce.buffer = NULL;
ba223c29 3432 cpu_notify_map_clients();
6d16c2f8 3433}
d0ecd2aa 3434
8df1cd07 3435/* warning: addr must be aligned */
c227f099 3436uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3437{
3438 int io_index;
3439 uint8_t *ptr;
3440 uint32_t val;
3441 unsigned long pd;
3442 PhysPageDesc *p;
3443
3444 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3445 if (!p) {
3446 pd = IO_MEM_UNASSIGNED;
3447 } else {
3448 pd = p->phys_offset;
3449 }
3b46e624 3450
5fafdf24 3451 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3452 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3453 /* I/O case */
3454 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3455 if (p)
3456 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3457 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3458 } else {
3459 /* RAM case */
5579c7f3 3460 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3461 (addr & ~TARGET_PAGE_MASK);
3462 val = ldl_p(ptr);
3463 }
3464 return val;
3465}
3466
84b7b8e7 3467/* warning: addr must be aligned */
c227f099 3468uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3469{
3470 int io_index;
3471 uint8_t *ptr;
3472 uint64_t val;
3473 unsigned long pd;
3474 PhysPageDesc *p;
3475
3476 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3477 if (!p) {
3478 pd = IO_MEM_UNASSIGNED;
3479 } else {
3480 pd = p->phys_offset;
3481 }
3b46e624 3482
2a4188a3
FB
3483 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3484 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3485 /* I/O case */
3486 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3487 if (p)
3488 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3489#ifdef TARGET_WORDS_BIGENDIAN
3490 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3491 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3492#else
3493 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3494 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3495#endif
3496 } else {
3497 /* RAM case */
5579c7f3 3498 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3499 (addr & ~TARGET_PAGE_MASK);
3500 val = ldq_p(ptr);
3501 }
3502 return val;
3503}
3504
aab33094 3505/* XXX: optimize */
c227f099 3506uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3507{
3508 uint8_t val;
3509 cpu_physical_memory_read(addr, &val, 1);
3510 return val;
3511}
3512
3513/* XXX: optimize */
c227f099 3514uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3515{
3516 uint16_t val;
3517 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3518 return tswap16(val);
3519}
3520
8df1cd07
FB
3521/* warning: addr must be aligned. The ram page is not masked as dirty
3522 and the code inside is not invalidated. It is useful if the dirty
3523 bits are used to track modified PTEs */
c227f099 3524void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3525{
3526 int io_index;
3527 uint8_t *ptr;
3528 unsigned long pd;
3529 PhysPageDesc *p;
3530
3531 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3532 if (!p) {
3533 pd = IO_MEM_UNASSIGNED;
3534 } else {
3535 pd = p->phys_offset;
3536 }
3b46e624 3537
3a7d929e 3538 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3539 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3540 if (p)
3541 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3542 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3543 } else {
74576198 3544 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3545 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3546 stl_p(ptr, val);
74576198
AL
3547
3548 if (unlikely(in_migration)) {
3549 if (!cpu_physical_memory_is_dirty(addr1)) {
3550 /* invalidate code */
3551 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3552 /* set dirty bit */
3553 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3554 (0xff & ~CODE_DIRTY_FLAG);
3555 }
3556 }
8df1cd07
FB
3557 }
3558}
3559
c227f099 3560void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3561{
3562 int io_index;
3563 uint8_t *ptr;
3564 unsigned long pd;
3565 PhysPageDesc *p;
3566
3567 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3568 if (!p) {
3569 pd = IO_MEM_UNASSIGNED;
3570 } else {
3571 pd = p->phys_offset;
3572 }
3b46e624 3573
bc98a7ef
JM
3574 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3575 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3576 if (p)
3577 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3578#ifdef TARGET_WORDS_BIGENDIAN
3579 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3580 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3581#else
3582 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3583 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3584#endif
3585 } else {
5579c7f3 3586 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3587 (addr & ~TARGET_PAGE_MASK);
3588 stq_p(ptr, val);
3589 }
3590}
3591
8df1cd07 3592/* warning: addr must be aligned */
c227f099 3593void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3594{
3595 int io_index;
3596 uint8_t *ptr;
3597 unsigned long pd;
3598 PhysPageDesc *p;
3599
3600 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3601 if (!p) {
3602 pd = IO_MEM_UNASSIGNED;
3603 } else {
3604 pd = p->phys_offset;
3605 }
3b46e624 3606
3a7d929e 3607 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3608 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3609 if (p)
3610 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3611 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3612 } else {
3613 unsigned long addr1;
3614 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3615 /* RAM case */
5579c7f3 3616 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3617 stl_p(ptr, val);
3a7d929e
FB
3618 if (!cpu_physical_memory_is_dirty(addr1)) {
3619 /* invalidate code */
3620 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3621 /* set dirty bit */
f23db169
FB
3622 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3623 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3624 }
8df1cd07
FB
3625 }
3626}
3627
aab33094 3628/* XXX: optimize */
c227f099 3629void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3630{
3631 uint8_t v = val;
3632 cpu_physical_memory_write(addr, &v, 1);
3633}
3634
3635/* XXX: optimize */
c227f099 3636void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3637{
3638 uint16_t v = tswap16(val);
3639 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3640}
3641
3642/* XXX: optimize */
c227f099 3643void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3644{
3645 val = tswap64(val);
3646 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3647}
3648
13eb76e0
FB
3649#endif
3650
5e2972fd 3651/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3652int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3653 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3654{
3655 int l;
c227f099 3656 target_phys_addr_t phys_addr;
9b3c35e0 3657 target_ulong page;
13eb76e0
FB
3658
3659 while (len > 0) {
3660 page = addr & TARGET_PAGE_MASK;
3661 phys_addr = cpu_get_phys_page_debug(env, page);
3662 /* if no physical page mapped, return an error */
3663 if (phys_addr == -1)
3664 return -1;
3665 l = (page + TARGET_PAGE_SIZE) - addr;
3666 if (l > len)
3667 l = len;
5e2972fd
AL
3668 phys_addr += (addr & ~TARGET_PAGE_MASK);
3669#if !defined(CONFIG_USER_ONLY)
3670 if (is_write)
3671 cpu_physical_memory_write_rom(phys_addr, buf, l);
3672 else
3673#endif
3674 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3675 len -= l;
3676 buf += l;
3677 addr += l;
3678 }
3679 return 0;
3680}
3681
2e70f6ef
PB
3682/* in deterministic execution mode, instructions doing device I/Os
3683 must be at the end of the TB */
3684void cpu_io_recompile(CPUState *env, void *retaddr)
3685{
3686 TranslationBlock *tb;
3687 uint32_t n, cflags;
3688 target_ulong pc, cs_base;
3689 uint64_t flags;
3690
3691 tb = tb_find_pc((unsigned long)retaddr);
3692 if (!tb) {
3693 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3694 retaddr);
3695 }
3696 n = env->icount_decr.u16.low + tb->icount;
3697 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3698 /* Calculate how many instructions had been executed before the fault
bf20dc07 3699 occurred. */
2e70f6ef
PB
3700 n = n - env->icount_decr.u16.low;
3701 /* Generate a new TB ending on the I/O insn. */
3702 n++;
3703 /* On MIPS and SH, delay slot instructions can only be restarted if
3704 they were already the first instruction in the TB. If this is not
bf20dc07 3705 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3706 branch. */
3707#if defined(TARGET_MIPS)
3708 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3709 env->active_tc.PC -= 4;
3710 env->icount_decr.u16.low++;
3711 env->hflags &= ~MIPS_HFLAG_BMASK;
3712 }
3713#elif defined(TARGET_SH4)
3714 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3715 && n > 1) {
3716 env->pc -= 2;
3717 env->icount_decr.u16.low++;
3718 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3719 }
3720#endif
3721 /* This should never happen. */
3722 if (n > CF_COUNT_MASK)
3723 cpu_abort(env, "TB too big during recompile");
3724
3725 cflags = n | CF_LAST_IO;
3726 pc = tb->pc;
3727 cs_base = tb->cs_base;
3728 flags = tb->flags;
3729 tb_phys_invalidate(tb, -1);
3730 /* FIXME: In theory this could raise an exception. In practice
3731 we have already translated the block once so it's probably ok. */
3732 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3733 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3734 the first in the TB) then we end up generating a whole new TB and
3735 repeating the fault, which is horribly inefficient.
3736 Better would be to execute just this insn uncached, or generate a
3737 second new TB. */
3738 cpu_resume_from_signal(env, NULL);
3739}
3740
e3db7226
FB
3741void dump_exec_info(FILE *f,
3742 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3743{
3744 int i, target_code_size, max_target_code_size;
3745 int direct_jmp_count, direct_jmp2_count, cross_page;
3746 TranslationBlock *tb;
3b46e624 3747
e3db7226
FB
3748 target_code_size = 0;
3749 max_target_code_size = 0;
3750 cross_page = 0;
3751 direct_jmp_count = 0;
3752 direct_jmp2_count = 0;
3753 for(i = 0; i < nb_tbs; i++) {
3754 tb = &tbs[i];
3755 target_code_size += tb->size;
3756 if (tb->size > max_target_code_size)
3757 max_target_code_size = tb->size;
3758 if (tb->page_addr[1] != -1)
3759 cross_page++;
3760 if (tb->tb_next_offset[0] != 0xffff) {
3761 direct_jmp_count++;
3762 if (tb->tb_next_offset[1] != 0xffff) {
3763 direct_jmp2_count++;
3764 }
3765 }
3766 }
3767 /* XXX: avoid using doubles ? */
57fec1fe 3768 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3769 cpu_fprintf(f, "gen code size %ld/%ld\n",
3770 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3771 cpu_fprintf(f, "TB count %d/%d\n",
3772 nb_tbs, code_gen_max_blocks);
5fafdf24 3773 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3774 nb_tbs ? target_code_size / nb_tbs : 0,
3775 max_target_code_size);
5fafdf24 3776 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3777 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3778 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3779 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3780 cross_page,
e3db7226
FB
3781 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3782 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3783 direct_jmp_count,
e3db7226
FB
3784 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3785 direct_jmp2_count,
3786 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3787 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3788 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3789 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3790 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3791 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3792}
3793
5fafdf24 3794#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3795
3796#define MMUSUFFIX _cmmu
3797#define GETPC() NULL
3798#define env cpu_single_env
b769d8fe 3799#define SOFTMMU_CODE_ACCESS
61382a50
FB
3800
3801#define SHIFT 0
3802#include "softmmu_template.h"
3803
3804#define SHIFT 1
3805#include "softmmu_template.h"
3806
3807#define SHIFT 2
3808#include "softmmu_template.h"
3809
3810#define SHIFT 3
3811#include "softmmu_template.h"
3812
3813#undef env
3814
3815#endif