]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
lockref: add 'lockref_get_or_lock() helper
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
6326c71f 195 const unsigned char *cs;
94753db5
LT
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
6326c71f
LT
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
215}
216
9c82ab9c 217static void __d_free(struct rcu_head *head)
1da177e4 218{
9c82ab9c
CH
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
b3d9b7a3 221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225}
226
227/*
b5c84bf6 228 * no locks, please.
1da177e4
LT
229 */
230static void d_free(struct dentry *dentry)
231{
98474236 232 BUG_ON(dentry->d_lockref.count);
3e880fb5 233 this_cpu_dec(nr_dentry);
1da177e4
LT
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
312d3ca8 236
dea3667b
LT
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 239 __d_free(&dentry->d_u.d_rcu);
b3423415 240 else
9c82ab9c 241 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
242}
243
31e6b01f
NP
244/**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 246 * @dentry: the target dentry
31e6b01f
NP
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252{
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256}
257
1da177e4
LT
258/*
259 * Release the dentry's inode, using the filesystem
31e6b01f
NP
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
1da177e4 262 */
858119e1 263static void dentry_iput(struct dentry * dentry)
31f3e0b3 264 __releases(dentry->d_lock)
873feea0 265 __releases(dentry->d_inode->i_lock)
1da177e4
LT
266{
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
b3d9b7a3 270 hlist_del_init(&dentry->d_alias);
1da177e4 271 spin_unlock(&dentry->d_lock);
873feea0 272 spin_unlock(&inode->i_lock);
f805fbda
LT
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
1da177e4
LT
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
1da177e4
LT
281 }
282}
283
31e6b01f
NP
284/*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
873feea0 290 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
291{
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
b3d9b7a3 294 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
873feea0 297 spin_unlock(&inode->i_lock);
31e6b01f
NP
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304}
305
da3bbdd4 306/*
f0023bc6 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
308 */
309static void dentry_lru_add(struct dentry *dentry)
310{
a4633357 311 if (list_empty(&dentry->d_lru)) {
23044507 312 spin_lock(&dcache_lru_lock);
a4633357
CH
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 315 dentry_stat.nr_unused++;
23044507 316 spin_unlock(&dcache_lru_lock);
a4633357 317 }
da3bbdd4
KM
318}
319
23044507
NP
320static void __dentry_lru_del(struct dentry *dentry)
321{
322 list_del_init(&dentry->d_lru);
eaf5f907 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326}
327
f0023bc6
SW
328/*
329 * Remove a dentry with references from the LRU.
330 */
da3bbdd4
KM
331static void dentry_lru_del(struct dentry *dentry)
332{
333 if (!list_empty(&dentry->d_lru)) {
23044507
NP
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
337 }
338}
339
b48f03b3 340static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 341{
23044507 342 spin_lock(&dcache_lru_lock);
a4633357 343 if (list_empty(&dentry->d_lru)) {
b48f03b3 344 list_add_tail(&dentry->d_lru, list);
a4633357 345 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 346 dentry_stat.nr_unused++;
a4633357 347 } else {
b48f03b3 348 list_move_tail(&dentry->d_lru, list);
da3bbdd4 349 }
23044507 350 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
351}
352
d52b9086
MS
353/**
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
ff5fdb61 356 * @parent: parent dentry
d52b9086 357 *
31f3e0b3 358 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
359 *
360 * If this is the root of the dentry tree, return NULL.
23044507 361 *
b5c84bf6
NP
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363 * d_kill.
d52b9086 364 */
2fd6b7f5 365static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 366 __releases(dentry->d_lock)
2fd6b7f5 367 __releases(parent->d_lock)
873feea0 368 __releases(dentry->d_inode->i_lock)
d52b9086 369{
d52b9086 370 list_del(&dentry->d_u.d_child);
c83ce989
TM
371 /*
372 * Inform try_to_ascend() that we are no longer attached to the
373 * dentry tree
374 */
b161dfa6 375 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
376 if (parent)
377 spin_unlock(&parent->d_lock);
d52b9086 378 dentry_iput(dentry);
b7ab39f6
NP
379 /*
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
382 */
d52b9086 383 d_free(dentry);
871c0067 384 return parent;
d52b9086
MS
385}
386
c6627c60
DH
387/*
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
390 * appropriate.
391 */
392static void __d_shrink(struct dentry *dentry)
393{
394 if (!d_unhashed(dentry)) {
395 struct hlist_bl_head *b;
396 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 b = &dentry->d_sb->s_anon;
398 else
399 b = d_hash(dentry->d_parent, dentry->d_name.hash);
400
401 hlist_bl_lock(b);
402 __hlist_bl_del(&dentry->d_hash);
403 dentry->d_hash.pprev = NULL;
404 hlist_bl_unlock(b);
405 }
406}
407
789680d1
NP
408/**
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
411 *
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
417 *
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
420 *
421 * __d_drop requires dentry->d_lock.
422 */
423void __d_drop(struct dentry *dentry)
424{
dea3667b 425 if (!d_unhashed(dentry)) {
c6627c60 426 __d_shrink(dentry);
dea3667b 427 dentry_rcuwalk_barrier(dentry);
789680d1
NP
428 }
429}
430EXPORT_SYMBOL(__d_drop);
431
432void d_drop(struct dentry *dentry)
433{
789680d1
NP
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 spin_unlock(&dentry->d_lock);
789680d1
NP
437}
438EXPORT_SYMBOL(d_drop);
439
77812a1e
NP
440/*
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
445 */
446static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 __releases(dentry->d_lock)
448{
873feea0 449 struct inode *inode;
77812a1e
NP
450 struct dentry *parent;
451
873feea0
NP
452 inode = dentry->d_inode;
453 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
454relock:
455 spin_unlock(&dentry->d_lock);
456 cpu_relax();
457 return dentry; /* try again with same dentry */
458 }
459 if (IS_ROOT(dentry))
460 parent = NULL;
461 else
462 parent = dentry->d_parent;
463 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
464 if (inode)
465 spin_unlock(&inode->i_lock);
77812a1e
NP
466 goto relock;
467 }
31e6b01f 468
77812a1e 469 if (ref)
98474236 470 dentry->d_lockref.count--;
f0023bc6 471 /*
f0023bc6
SW
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
474 */
61572bb1
YZ
475 if (dentry->d_flags & DCACHE_OP_PRUNE)
476 dentry->d_op->d_prune(dentry);
477
478 dentry_lru_del(dentry);
77812a1e
NP
479 /* if it was on the hash then remove it */
480 __d_drop(dentry);
481 return d_kill(dentry, parent);
482}
483
1da177e4
LT
484/*
485 * This is dput
486 *
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
490 *
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
495 *
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
499 */
500
501/*
502 * dput - release a dentry
503 * @dentry: dentry to release
504 *
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
1da177e4 509 */
1da177e4
LT
510void dput(struct dentry *dentry)
511{
512 if (!dentry)
513 return;
514
515repeat:
98474236 516 if (dentry->d_lockref.count == 1)
1da177e4 517 might_sleep();
98474236 518 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 519 return;
1da177e4 520
fb045adb 521 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 522 if (dentry->d_op->d_delete(dentry))
61f3dee4 523 goto kill_it;
1da177e4 524 }
265ac902 525
1da177e4
LT
526 /* Unreachable? Get rid of it */
527 if (d_unhashed(dentry))
528 goto kill_it;
265ac902 529
39e3c955 530 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 531 dentry_lru_add(dentry);
265ac902 532
98474236 533 dentry->d_lockref.count--;
61f3dee4 534 spin_unlock(&dentry->d_lock);
1da177e4
LT
535 return;
536
d52b9086 537kill_it:
77812a1e 538 dentry = dentry_kill(dentry, 1);
d52b9086
MS
539 if (dentry)
540 goto repeat;
1da177e4 541}
ec4f8605 542EXPORT_SYMBOL(dput);
1da177e4
LT
543
544/**
545 * d_invalidate - invalidate a dentry
546 * @dentry: dentry to invalidate
547 *
548 * Try to invalidate the dentry if it turns out to be
549 * possible. If there are other dentries that can be
550 * reached through this one we can't delete it and we
551 * return -EBUSY. On success we return 0.
552 *
553 * no dcache lock.
554 */
555
556int d_invalidate(struct dentry * dentry)
557{
558 /*
559 * If it's already been dropped, return OK.
560 */
da502956 561 spin_lock(&dentry->d_lock);
1da177e4 562 if (d_unhashed(dentry)) {
da502956 563 spin_unlock(&dentry->d_lock);
1da177e4
LT
564 return 0;
565 }
566 /*
567 * Check whether to do a partial shrink_dcache
568 * to get rid of unused child entries.
569 */
570 if (!list_empty(&dentry->d_subdirs)) {
da502956 571 spin_unlock(&dentry->d_lock);
1da177e4 572 shrink_dcache_parent(dentry);
da502956 573 spin_lock(&dentry->d_lock);
1da177e4
LT
574 }
575
576 /*
577 * Somebody else still using it?
578 *
579 * If it's a directory, we can't drop it
580 * for fear of somebody re-populating it
581 * with children (even though dropping it
582 * would make it unreachable from the root,
583 * we might still populate it if it was a
584 * working directory or similar).
50e69630
AV
585 * We also need to leave mountpoints alone,
586 * directory or not.
1da177e4 587 */
98474236 588 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 589 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 590 spin_unlock(&dentry->d_lock);
1da177e4
LT
591 return -EBUSY;
592 }
593 }
594
595 __d_drop(dentry);
596 spin_unlock(&dentry->d_lock);
1da177e4
LT
597 return 0;
598}
ec4f8605 599EXPORT_SYMBOL(d_invalidate);
1da177e4 600
b5c84bf6 601/* This must be called with d_lock held */
dc0474be 602static inline void __dget_dlock(struct dentry *dentry)
23044507 603{
98474236 604 dentry->d_lockref.count++;
23044507
NP
605}
606
dc0474be 607static inline void __dget(struct dentry *dentry)
1da177e4 608{
98474236 609 lockref_get(&dentry->d_lockref);
1da177e4
LT
610}
611
b7ab39f6
NP
612struct dentry *dget_parent(struct dentry *dentry)
613{
614 struct dentry *ret;
615
616repeat:
a734eb45
NP
617 /*
618 * Don't need rcu_dereference because we re-check it was correct under
619 * the lock.
620 */
621 rcu_read_lock();
b7ab39f6 622 ret = dentry->d_parent;
a734eb45
NP
623 spin_lock(&ret->d_lock);
624 if (unlikely(ret != dentry->d_parent)) {
625 spin_unlock(&ret->d_lock);
626 rcu_read_unlock();
b7ab39f6
NP
627 goto repeat;
628 }
a734eb45 629 rcu_read_unlock();
98474236
WL
630 BUG_ON(!ret->d_lockref.count);
631 ret->d_lockref.count++;
b7ab39f6 632 spin_unlock(&ret->d_lock);
b7ab39f6
NP
633 return ret;
634}
635EXPORT_SYMBOL(dget_parent);
636
1da177e4
LT
637/**
638 * d_find_alias - grab a hashed alias of inode
639 * @inode: inode in question
32ba9c3f
LT
640 * @want_discon: flag, used by d_splice_alias, to request
641 * that only a DISCONNECTED alias be returned.
1da177e4
LT
642 *
643 * If inode has a hashed alias, or is a directory and has any alias,
644 * acquire the reference to alias and return it. Otherwise return NULL.
645 * Notice that if inode is a directory there can be only one alias and
646 * it can be unhashed only if it has no children, or if it is the root
647 * of a filesystem.
648 *
21c0d8fd 649 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
650 * any other hashed alias over that one unless @want_discon is set,
651 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 652 */
32ba9c3f 653static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 654{
da502956 655 struct dentry *alias, *discon_alias;
1da177e4 656
da502956
NP
657again:
658 discon_alias = NULL;
b67bfe0d 659 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 660 spin_lock(&alias->d_lock);
1da177e4 661 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 662 if (IS_ROOT(alias) &&
da502956 663 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 664 discon_alias = alias;
32ba9c3f 665 } else if (!want_discon) {
dc0474be 666 __dget_dlock(alias);
da502956
NP
667 spin_unlock(&alias->d_lock);
668 return alias;
669 }
670 }
671 spin_unlock(&alias->d_lock);
672 }
673 if (discon_alias) {
674 alias = discon_alias;
675 spin_lock(&alias->d_lock);
676 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
677 if (IS_ROOT(alias) &&
678 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 679 __dget_dlock(alias);
da502956 680 spin_unlock(&alias->d_lock);
1da177e4
LT
681 return alias;
682 }
683 }
da502956
NP
684 spin_unlock(&alias->d_lock);
685 goto again;
1da177e4 686 }
da502956 687 return NULL;
1da177e4
LT
688}
689
da502956 690struct dentry *d_find_alias(struct inode *inode)
1da177e4 691{
214fda1f
DH
692 struct dentry *de = NULL;
693
b3d9b7a3 694 if (!hlist_empty(&inode->i_dentry)) {
873feea0 695 spin_lock(&inode->i_lock);
32ba9c3f 696 de = __d_find_alias(inode, 0);
873feea0 697 spin_unlock(&inode->i_lock);
214fda1f 698 }
1da177e4
LT
699 return de;
700}
ec4f8605 701EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
702
703/*
704 * Try to kill dentries associated with this inode.
705 * WARNING: you must own a reference to inode.
706 */
707void d_prune_aliases(struct inode *inode)
708{
0cdca3f9 709 struct dentry *dentry;
1da177e4 710restart:
873feea0 711 spin_lock(&inode->i_lock);
b67bfe0d 712 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 713 spin_lock(&dentry->d_lock);
98474236 714 if (!dentry->d_lockref.count) {
dc0474be 715 __dget_dlock(dentry);
1da177e4
LT
716 __d_drop(dentry);
717 spin_unlock(&dentry->d_lock);
873feea0 718 spin_unlock(&inode->i_lock);
1da177e4
LT
719 dput(dentry);
720 goto restart;
721 }
722 spin_unlock(&dentry->d_lock);
723 }
873feea0 724 spin_unlock(&inode->i_lock);
1da177e4 725}
ec4f8605 726EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
727
728/*
77812a1e
NP
729 * Try to throw away a dentry - free the inode, dput the parent.
730 * Requires dentry->d_lock is held, and dentry->d_count == 0.
731 * Releases dentry->d_lock.
d702ccb3 732 *
77812a1e 733 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 734 */
77812a1e 735static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 736 __releases(dentry->d_lock)
1da177e4 737{
77812a1e 738 struct dentry *parent;
d52b9086 739
77812a1e 740 parent = dentry_kill(dentry, 0);
d52b9086 741 /*
77812a1e
NP
742 * If dentry_kill returns NULL, we have nothing more to do.
743 * if it returns the same dentry, trylocks failed. In either
744 * case, just loop again.
745 *
746 * Otherwise, we need to prune ancestors too. This is necessary
747 * to prevent quadratic behavior of shrink_dcache_parent(), but
748 * is also expected to be beneficial in reducing dentry cache
749 * fragmentation.
d52b9086 750 */
77812a1e
NP
751 if (!parent)
752 return;
753 if (parent == dentry)
754 return;
755
756 /* Prune ancestors. */
757 dentry = parent;
d52b9086 758 while (dentry) {
98474236 759 if (lockref_put_or_lock(&dentry->d_lockref))
89e60548 760 return;
77812a1e 761 dentry = dentry_kill(dentry, 1);
d52b9086 762 }
1da177e4
LT
763}
764
3049cfe2 765static void shrink_dentry_list(struct list_head *list)
1da177e4 766{
da3bbdd4 767 struct dentry *dentry;
da3bbdd4 768
ec33679d
NP
769 rcu_read_lock();
770 for (;;) {
ec33679d
NP
771 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
772 if (&dentry->d_lru == list)
773 break; /* empty */
774 spin_lock(&dentry->d_lock);
775 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
776 spin_unlock(&dentry->d_lock);
23044507
NP
777 continue;
778 }
779
1da177e4
LT
780 /*
781 * We found an inuse dentry which was not removed from
da3bbdd4
KM
782 * the LRU because of laziness during lookup. Do not free
783 * it - just keep it off the LRU list.
1da177e4 784 */
98474236 785 if (dentry->d_lockref.count) {
ec33679d 786 dentry_lru_del(dentry);
da3bbdd4 787 spin_unlock(&dentry->d_lock);
1da177e4
LT
788 continue;
789 }
ec33679d 790
ec33679d 791 rcu_read_unlock();
77812a1e
NP
792
793 try_prune_one_dentry(dentry);
794
ec33679d 795 rcu_read_lock();
da3bbdd4 796 }
ec33679d 797 rcu_read_unlock();
3049cfe2
CH
798}
799
800/**
b48f03b3
DC
801 * prune_dcache_sb - shrink the dcache
802 * @sb: superblock
803 * @count: number of entries to try to free
804 *
805 * Attempt to shrink the superblock dcache LRU by @count entries. This is
806 * done when we need more memory an called from the superblock shrinker
807 * function.
3049cfe2 808 *
b48f03b3
DC
809 * This function may fail to free any resources if all the dentries are in
810 * use.
3049cfe2 811 */
b48f03b3 812void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 813{
3049cfe2
CH
814 struct dentry *dentry;
815 LIST_HEAD(referenced);
816 LIST_HEAD(tmp);
3049cfe2 817
23044507
NP
818relock:
819 spin_lock(&dcache_lru_lock);
3049cfe2
CH
820 while (!list_empty(&sb->s_dentry_lru)) {
821 dentry = list_entry(sb->s_dentry_lru.prev,
822 struct dentry, d_lru);
823 BUG_ON(dentry->d_sb != sb);
824
23044507
NP
825 if (!spin_trylock(&dentry->d_lock)) {
826 spin_unlock(&dcache_lru_lock);
827 cpu_relax();
828 goto relock;
829 }
830
b48f03b3 831 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
832 dentry->d_flags &= ~DCACHE_REFERENCED;
833 list_move(&dentry->d_lru, &referenced);
3049cfe2 834 spin_unlock(&dentry->d_lock);
23044507
NP
835 } else {
836 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 837 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 838 spin_unlock(&dentry->d_lock);
b0d40c92 839 if (!--count)
23044507 840 break;
3049cfe2 841 }
ec33679d 842 cond_resched_lock(&dcache_lru_lock);
3049cfe2 843 }
da3bbdd4
KM
844 if (!list_empty(&referenced))
845 list_splice(&referenced, &sb->s_dentry_lru);
23044507 846 spin_unlock(&dcache_lru_lock);
ec33679d
NP
847
848 shrink_dentry_list(&tmp);
da3bbdd4
KM
849}
850
1da177e4
LT
851/**
852 * shrink_dcache_sb - shrink dcache for a superblock
853 * @sb: superblock
854 *
3049cfe2
CH
855 * Shrink the dcache for the specified super block. This is used to free
856 * the dcache before unmounting a file system.
1da177e4 857 */
3049cfe2 858void shrink_dcache_sb(struct super_block *sb)
1da177e4 859{
3049cfe2
CH
860 LIST_HEAD(tmp);
861
23044507 862 spin_lock(&dcache_lru_lock);
3049cfe2
CH
863 while (!list_empty(&sb->s_dentry_lru)) {
864 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 865 spin_unlock(&dcache_lru_lock);
3049cfe2 866 shrink_dentry_list(&tmp);
ec33679d 867 spin_lock(&dcache_lru_lock);
3049cfe2 868 }
23044507 869 spin_unlock(&dcache_lru_lock);
1da177e4 870}
ec4f8605 871EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 872
c636ebdb
DH
873/*
874 * destroy a single subtree of dentries for unmount
875 * - see the comments on shrink_dcache_for_umount() for a description of the
876 * locking
877 */
878static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
879{
880 struct dentry *parent;
881
882 BUG_ON(!IS_ROOT(dentry));
883
c636ebdb
DH
884 for (;;) {
885 /* descend to the first leaf in the current subtree */
43c1c9cd 886 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
887 dentry = list_entry(dentry->d_subdirs.next,
888 struct dentry, d_u.d_child);
c636ebdb
DH
889
890 /* consume the dentries from this leaf up through its parents
891 * until we find one with children or run out altogether */
892 do {
893 struct inode *inode;
894
f0023bc6 895 /*
61572bb1 896 * inform the fs that this dentry is about to be
f0023bc6
SW
897 * unhashed and destroyed.
898 */
61572bb1
YZ
899 if (dentry->d_flags & DCACHE_OP_PRUNE)
900 dentry->d_op->d_prune(dentry);
901
902 dentry_lru_del(dentry);
43c1c9cd
DH
903 __d_shrink(dentry);
904
98474236 905 if (dentry->d_lockref.count != 0) {
c636ebdb
DH
906 printk(KERN_ERR
907 "BUG: Dentry %p{i=%lx,n=%s}"
908 " still in use (%d)"
909 " [unmount of %s %s]\n",
910 dentry,
911 dentry->d_inode ?
912 dentry->d_inode->i_ino : 0UL,
913 dentry->d_name.name,
98474236 914 dentry->d_lockref.count,
c636ebdb
DH
915 dentry->d_sb->s_type->name,
916 dentry->d_sb->s_id);
917 BUG();
918 }
919
2fd6b7f5 920 if (IS_ROOT(dentry)) {
c636ebdb 921 parent = NULL;
2fd6b7f5
NP
922 list_del(&dentry->d_u.d_child);
923 } else {
871c0067 924 parent = dentry->d_parent;
98474236 925 parent->d_lockref.count--;
2fd6b7f5 926 list_del(&dentry->d_u.d_child);
871c0067 927 }
c636ebdb 928
c636ebdb
DH
929 inode = dentry->d_inode;
930 if (inode) {
931 dentry->d_inode = NULL;
b3d9b7a3 932 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
933 if (dentry->d_op && dentry->d_op->d_iput)
934 dentry->d_op->d_iput(dentry, inode);
935 else
936 iput(inode);
937 }
938
939 d_free(dentry);
940
941 /* finished when we fall off the top of the tree,
942 * otherwise we ascend to the parent and move to the
943 * next sibling if there is one */
944 if (!parent)
312d3ca8 945 return;
c636ebdb 946 dentry = parent;
c636ebdb
DH
947 } while (list_empty(&dentry->d_subdirs));
948
949 dentry = list_entry(dentry->d_subdirs.next,
950 struct dentry, d_u.d_child);
951 }
952}
953
954/*
955 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 956 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
957 * - the superblock is detached from all mountings and open files, so the
958 * dentry trees will not be rearranged by the VFS
959 * - s_umount is write-locked, so the memory pressure shrinker will ignore
960 * any dentries belonging to this superblock that it comes across
961 * - the filesystem itself is no longer permitted to rearrange the dentries
962 * in this superblock
963 */
964void shrink_dcache_for_umount(struct super_block *sb)
965{
966 struct dentry *dentry;
967
968 if (down_read_trylock(&sb->s_umount))
969 BUG();
970
971 dentry = sb->s_root;
972 sb->s_root = NULL;
98474236 973 dentry->d_lockref.count--;
c636ebdb
DH
974 shrink_dcache_for_umount_subtree(dentry);
975
ceb5bdc2
NP
976 while (!hlist_bl_empty(&sb->s_anon)) {
977 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
978 shrink_dcache_for_umount_subtree(dentry);
979 }
980}
981
c826cb7d
LT
982/*
983 * This tries to ascend one level of parenthood, but
984 * we can race with renaming, so we need to re-check
985 * the parenthood after dropping the lock and check
986 * that the sequence number still matches.
987 */
988static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
989{
990 struct dentry *new = old->d_parent;
991
992 rcu_read_lock();
993 spin_unlock(&old->d_lock);
994 spin_lock(&new->d_lock);
995
996 /*
997 * might go back up the wrong parent if we have had a rename
998 * or deletion
999 */
1000 if (new != old->d_parent ||
b161dfa6 1001 (old->d_flags & DCACHE_DENTRY_KILLED) ||
c826cb7d
LT
1002 (!locked && read_seqretry(&rename_lock, seq))) {
1003 spin_unlock(&new->d_lock);
1004 new = NULL;
1005 }
1006 rcu_read_unlock();
1007 return new;
1008}
1009
1010
1da177e4
LT
1011/*
1012 * Search for at least 1 mount point in the dentry's subdirs.
1013 * We descend to the next level whenever the d_subdirs
1014 * list is non-empty and continue searching.
1015 */
1016
1017/**
1018 * have_submounts - check for mounts over a dentry
1019 * @parent: dentry to check.
1020 *
1021 * Return true if the parent or its subdirectories contain
1022 * a mount point
1023 */
1da177e4
LT
1024int have_submounts(struct dentry *parent)
1025{
949854d0 1026 struct dentry *this_parent;
1da177e4 1027 struct list_head *next;
949854d0 1028 unsigned seq;
58db63d0 1029 int locked = 0;
949854d0 1030
949854d0 1031 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1032again:
1033 this_parent = parent;
1da177e4 1034
1da177e4
LT
1035 if (d_mountpoint(parent))
1036 goto positive;
2fd6b7f5 1037 spin_lock(&this_parent->d_lock);
1da177e4
LT
1038repeat:
1039 next = this_parent->d_subdirs.next;
1040resume:
1041 while (next != &this_parent->d_subdirs) {
1042 struct list_head *tmp = next;
5160ee6f 1043 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1044 next = tmp->next;
2fd6b7f5
NP
1045
1046 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1047 /* Have we found a mount point ? */
2fd6b7f5
NP
1048 if (d_mountpoint(dentry)) {
1049 spin_unlock(&dentry->d_lock);
1050 spin_unlock(&this_parent->d_lock);
1da177e4 1051 goto positive;
2fd6b7f5 1052 }
1da177e4 1053 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1054 spin_unlock(&this_parent->d_lock);
1055 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1056 this_parent = dentry;
2fd6b7f5 1057 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1058 goto repeat;
1059 }
2fd6b7f5 1060 spin_unlock(&dentry->d_lock);
1da177e4
LT
1061 }
1062 /*
1063 * All done at this level ... ascend and resume the search.
1064 */
1065 if (this_parent != parent) {
c826cb7d
LT
1066 struct dentry *child = this_parent;
1067 this_parent = try_to_ascend(this_parent, locked, seq);
1068 if (!this_parent)
949854d0 1069 goto rename_retry;
949854d0 1070 next = child->d_u.d_child.next;
1da177e4
LT
1071 goto resume;
1072 }
2fd6b7f5 1073 spin_unlock(&this_parent->d_lock);
58db63d0 1074 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1075 goto rename_retry;
58db63d0
NP
1076 if (locked)
1077 write_sequnlock(&rename_lock);
1da177e4
LT
1078 return 0; /* No mount points found in tree */
1079positive:
58db63d0 1080 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1081 goto rename_retry;
58db63d0
NP
1082 if (locked)
1083 write_sequnlock(&rename_lock);
1da177e4 1084 return 1;
58db63d0
NP
1085
1086rename_retry:
8110e16d
MS
1087 if (locked)
1088 goto again;
58db63d0
NP
1089 locked = 1;
1090 write_seqlock(&rename_lock);
1091 goto again;
1da177e4 1092}
ec4f8605 1093EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1094
1095/*
fd517909 1096 * Search the dentry child list of the specified parent,
1da177e4
LT
1097 * and move any unused dentries to the end of the unused
1098 * list for prune_dcache(). We descend to the next level
1099 * whenever the d_subdirs list is non-empty and continue
1100 * searching.
1101 *
1102 * It returns zero iff there are no unused children,
1103 * otherwise it returns the number of children moved to
1104 * the end of the unused list. This may not be the total
1105 * number of unused children, because select_parent can
1106 * drop the lock and return early due to latency
1107 * constraints.
1108 */
b48f03b3 1109static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1110{
949854d0 1111 struct dentry *this_parent;
1da177e4 1112 struct list_head *next;
949854d0 1113 unsigned seq;
1da177e4 1114 int found = 0;
58db63d0 1115 int locked = 0;
1da177e4 1116
949854d0 1117 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1118again:
1119 this_parent = parent;
2fd6b7f5 1120 spin_lock(&this_parent->d_lock);
1da177e4
LT
1121repeat:
1122 next = this_parent->d_subdirs.next;
1123resume:
1124 while (next != &this_parent->d_subdirs) {
1125 struct list_head *tmp = next;
5160ee6f 1126 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1127 next = tmp->next;
1128
2fd6b7f5 1129 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1130
b48f03b3
DC
1131 /*
1132 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1133 *
1134 * Those which are presently on the shrink list, being processed
1135 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1136 * loop in shrink_dcache_parent() might not make any progress
1137 * and loop forever.
1da177e4 1138 */
98474236 1139 if (dentry->d_lockref.count) {
eaf5f907
MS
1140 dentry_lru_del(dentry);
1141 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1142 dentry_lru_move_list(dentry, dispose);
eaf5f907 1143 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1144 found++;
1145 }
1da177e4
LT
1146 /*
1147 * We can return to the caller if we have found some (this
1148 * ensures forward progress). We'll be coming back to find
1149 * the rest.
1150 */
2fd6b7f5
NP
1151 if (found && need_resched()) {
1152 spin_unlock(&dentry->d_lock);
1da177e4 1153 goto out;
2fd6b7f5 1154 }
1da177e4
LT
1155
1156 /*
1157 * Descend a level if the d_subdirs list is non-empty.
1158 */
1159 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1160 spin_unlock(&this_parent->d_lock);
1161 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1162 this_parent = dentry;
2fd6b7f5 1163 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1164 goto repeat;
1165 }
2fd6b7f5
NP
1166
1167 spin_unlock(&dentry->d_lock);
1da177e4
LT
1168 }
1169 /*
1170 * All done at this level ... ascend and resume the search.
1171 */
1172 if (this_parent != parent) {
c826cb7d
LT
1173 struct dentry *child = this_parent;
1174 this_parent = try_to_ascend(this_parent, locked, seq);
1175 if (!this_parent)
949854d0 1176 goto rename_retry;
949854d0 1177 next = child->d_u.d_child.next;
1da177e4
LT
1178 goto resume;
1179 }
1180out:
2fd6b7f5 1181 spin_unlock(&this_parent->d_lock);
58db63d0 1182 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1183 goto rename_retry;
58db63d0
NP
1184 if (locked)
1185 write_sequnlock(&rename_lock);
1da177e4 1186 return found;
58db63d0
NP
1187
1188rename_retry:
1189 if (found)
1190 return found;
8110e16d
MS
1191 if (locked)
1192 goto again;
58db63d0
NP
1193 locked = 1;
1194 write_seqlock(&rename_lock);
1195 goto again;
1da177e4
LT
1196}
1197
1198/**
1199 * shrink_dcache_parent - prune dcache
1200 * @parent: parent of entries to prune
1201 *
1202 * Prune the dcache to remove unused children of the parent dentry.
1203 */
1da177e4
LT
1204void shrink_dcache_parent(struct dentry * parent)
1205{
b48f03b3 1206 LIST_HEAD(dispose);
1da177e4
LT
1207 int found;
1208
421348f1 1209 while ((found = select_parent(parent, &dispose)) != 0) {
b48f03b3 1210 shrink_dentry_list(&dispose);
421348f1
GT
1211 cond_resched();
1212 }
1da177e4 1213}
ec4f8605 1214EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1215
1da177e4 1216/**
a4464dbc
AV
1217 * __d_alloc - allocate a dcache entry
1218 * @sb: filesystem it will belong to
1da177e4
LT
1219 * @name: qstr of the name
1220 *
1221 * Allocates a dentry. It returns %NULL if there is insufficient memory
1222 * available. On a success the dentry is returned. The name passed in is
1223 * copied and the copy passed in may be reused after this call.
1224 */
1225
a4464dbc 1226struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1227{
1228 struct dentry *dentry;
1229 char *dname;
1230
e12ba74d 1231 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1232 if (!dentry)
1233 return NULL;
1234
6326c71f
LT
1235 /*
1236 * We guarantee that the inline name is always NUL-terminated.
1237 * This way the memcpy() done by the name switching in rename
1238 * will still always have a NUL at the end, even if we might
1239 * be overwriting an internal NUL character
1240 */
1241 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1242 if (name->len > DNAME_INLINE_LEN-1) {
1243 dname = kmalloc(name->len + 1, GFP_KERNEL);
1244 if (!dname) {
1245 kmem_cache_free(dentry_cache, dentry);
1246 return NULL;
1247 }
1248 } else {
1249 dname = dentry->d_iname;
1250 }
1da177e4
LT
1251
1252 dentry->d_name.len = name->len;
1253 dentry->d_name.hash = name->hash;
1254 memcpy(dname, name->name, name->len);
1255 dname[name->len] = 0;
1256
6326c71f
LT
1257 /* Make sure we always see the terminating NUL character */
1258 smp_wmb();
1259 dentry->d_name.name = dname;
1260
98474236 1261 dentry->d_lockref.count = 1;
dea3667b 1262 dentry->d_flags = 0;
1da177e4 1263 spin_lock_init(&dentry->d_lock);
31e6b01f 1264 seqcount_init(&dentry->d_seq);
1da177e4 1265 dentry->d_inode = NULL;
a4464dbc
AV
1266 dentry->d_parent = dentry;
1267 dentry->d_sb = sb;
1da177e4
LT
1268 dentry->d_op = NULL;
1269 dentry->d_fsdata = NULL;
ceb5bdc2 1270 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1271 INIT_LIST_HEAD(&dentry->d_lru);
1272 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1273 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1274 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1275 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1276
3e880fb5 1277 this_cpu_inc(nr_dentry);
312d3ca8 1278
1da177e4
LT
1279 return dentry;
1280}
a4464dbc
AV
1281
1282/**
1283 * d_alloc - allocate a dcache entry
1284 * @parent: parent of entry to allocate
1285 * @name: qstr of the name
1286 *
1287 * Allocates a dentry. It returns %NULL if there is insufficient memory
1288 * available. On a success the dentry is returned. The name passed in is
1289 * copied and the copy passed in may be reused after this call.
1290 */
1291struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1292{
1293 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1294 if (!dentry)
1295 return NULL;
1296
1297 spin_lock(&parent->d_lock);
1298 /*
1299 * don't need child lock because it is not subject
1300 * to concurrency here
1301 */
1302 __dget_dlock(parent);
1303 dentry->d_parent = parent;
1304 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1305 spin_unlock(&parent->d_lock);
1306
1307 return dentry;
1308}
ec4f8605 1309EXPORT_SYMBOL(d_alloc);
1da177e4 1310
4b936885
NP
1311struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1312{
a4464dbc
AV
1313 struct dentry *dentry = __d_alloc(sb, name);
1314 if (dentry)
4b936885 1315 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1316 return dentry;
1317}
1318EXPORT_SYMBOL(d_alloc_pseudo);
1319
1da177e4
LT
1320struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1321{
1322 struct qstr q;
1323
1324 q.name = name;
1325 q.len = strlen(name);
1326 q.hash = full_name_hash(q.name, q.len);
1327 return d_alloc(parent, &q);
1328}
ef26ca97 1329EXPORT_SYMBOL(d_alloc_name);
1da177e4 1330
fb045adb
NP
1331void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1332{
6f7f7caa
LT
1333 WARN_ON_ONCE(dentry->d_op);
1334 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1335 DCACHE_OP_COMPARE |
1336 DCACHE_OP_REVALIDATE |
ecf3d1f1 1337 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1338 DCACHE_OP_DELETE ));
1339 dentry->d_op = op;
1340 if (!op)
1341 return;
1342 if (op->d_hash)
1343 dentry->d_flags |= DCACHE_OP_HASH;
1344 if (op->d_compare)
1345 dentry->d_flags |= DCACHE_OP_COMPARE;
1346 if (op->d_revalidate)
1347 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1348 if (op->d_weak_revalidate)
1349 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1350 if (op->d_delete)
1351 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1352 if (op->d_prune)
1353 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1354
1355}
1356EXPORT_SYMBOL(d_set_d_op);
1357
360da900
OH
1358static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1359{
b23fb0a6 1360 spin_lock(&dentry->d_lock);
9875cf80
DH
1361 if (inode) {
1362 if (unlikely(IS_AUTOMOUNT(inode)))
1363 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1364 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1365 }
360da900 1366 dentry->d_inode = inode;
31e6b01f 1367 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1368 spin_unlock(&dentry->d_lock);
360da900
OH
1369 fsnotify_d_instantiate(dentry, inode);
1370}
1371
1da177e4
LT
1372/**
1373 * d_instantiate - fill in inode information for a dentry
1374 * @entry: dentry to complete
1375 * @inode: inode to attach to this dentry
1376 *
1377 * Fill in inode information in the entry.
1378 *
1379 * This turns negative dentries into productive full members
1380 * of society.
1381 *
1382 * NOTE! This assumes that the inode count has been incremented
1383 * (or otherwise set) by the caller to indicate that it is now
1384 * in use by the dcache.
1385 */
1386
1387void d_instantiate(struct dentry *entry, struct inode * inode)
1388{
b3d9b7a3 1389 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1390 if (inode)
1391 spin_lock(&inode->i_lock);
360da900 1392 __d_instantiate(entry, inode);
873feea0
NP
1393 if (inode)
1394 spin_unlock(&inode->i_lock);
1da177e4
LT
1395 security_d_instantiate(entry, inode);
1396}
ec4f8605 1397EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1398
1399/**
1400 * d_instantiate_unique - instantiate a non-aliased dentry
1401 * @entry: dentry to instantiate
1402 * @inode: inode to attach to this dentry
1403 *
1404 * Fill in inode information in the entry. On success, it returns NULL.
1405 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1406 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1407 *
1408 * Note that in order to avoid conflicts with rename() etc, the caller
1409 * had better be holding the parent directory semaphore.
e866cfa9
OD
1410 *
1411 * This also assumes that the inode count has been incremented
1412 * (or otherwise set) by the caller to indicate that it is now
1413 * in use by the dcache.
1da177e4 1414 */
770bfad8
DH
1415static struct dentry *__d_instantiate_unique(struct dentry *entry,
1416 struct inode *inode)
1da177e4
LT
1417{
1418 struct dentry *alias;
1419 int len = entry->d_name.len;
1420 const char *name = entry->d_name.name;
1421 unsigned int hash = entry->d_name.hash;
1422
770bfad8 1423 if (!inode) {
360da900 1424 __d_instantiate(entry, NULL);
770bfad8
DH
1425 return NULL;
1426 }
1427
b67bfe0d 1428 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1429 /*
1430 * Don't need alias->d_lock here, because aliases with
1431 * d_parent == entry->d_parent are not subject to name or
1432 * parent changes, because the parent inode i_mutex is held.
1433 */
12f8ad4b 1434 if (alias->d_name.hash != hash)
1da177e4
LT
1435 continue;
1436 if (alias->d_parent != entry->d_parent)
1437 continue;
ee983e89
LT
1438 if (alias->d_name.len != len)
1439 continue;
12f8ad4b 1440 if (dentry_cmp(alias, name, len))
1da177e4 1441 continue;
dc0474be 1442 __dget(alias);
1da177e4
LT
1443 return alias;
1444 }
770bfad8 1445
360da900 1446 __d_instantiate(entry, inode);
1da177e4
LT
1447 return NULL;
1448}
770bfad8
DH
1449
1450struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1451{
1452 struct dentry *result;
1453
b3d9b7a3 1454 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1455
873feea0
NP
1456 if (inode)
1457 spin_lock(&inode->i_lock);
770bfad8 1458 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1459 if (inode)
1460 spin_unlock(&inode->i_lock);
770bfad8
DH
1461
1462 if (!result) {
1463 security_d_instantiate(entry, inode);
1464 return NULL;
1465 }
1466
1467 BUG_ON(!d_unhashed(result));
1468 iput(inode);
1469 return result;
1470}
1471
1da177e4
LT
1472EXPORT_SYMBOL(d_instantiate_unique);
1473
adc0e91a
AV
1474struct dentry *d_make_root(struct inode *root_inode)
1475{
1476 struct dentry *res = NULL;
1477
1478 if (root_inode) {
26fe5750 1479 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1480
1481 res = __d_alloc(root_inode->i_sb, &name);
1482 if (res)
1483 d_instantiate(res, root_inode);
1484 else
1485 iput(root_inode);
1486 }
1487 return res;
1488}
1489EXPORT_SYMBOL(d_make_root);
1490
d891eedb
BF
1491static struct dentry * __d_find_any_alias(struct inode *inode)
1492{
1493 struct dentry *alias;
1494
b3d9b7a3 1495 if (hlist_empty(&inode->i_dentry))
d891eedb 1496 return NULL;
b3d9b7a3 1497 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1498 __dget(alias);
1499 return alias;
1500}
1501
46f72b34
SW
1502/**
1503 * d_find_any_alias - find any alias for a given inode
1504 * @inode: inode to find an alias for
1505 *
1506 * If any aliases exist for the given inode, take and return a
1507 * reference for one of them. If no aliases exist, return %NULL.
1508 */
1509struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1510{
1511 struct dentry *de;
1512
1513 spin_lock(&inode->i_lock);
1514 de = __d_find_any_alias(inode);
1515 spin_unlock(&inode->i_lock);
1516 return de;
1517}
46f72b34 1518EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1519
4ea3ada2
CH
1520/**
1521 * d_obtain_alias - find or allocate a dentry for a given inode
1522 * @inode: inode to allocate the dentry for
1523 *
1524 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1525 * similar open by handle operations. The returned dentry may be anonymous,
1526 * or may have a full name (if the inode was already in the cache).
1527 *
1528 * When called on a directory inode, we must ensure that the inode only ever
1529 * has one dentry. If a dentry is found, that is returned instead of
1530 * allocating a new one.
1531 *
1532 * On successful return, the reference to the inode has been transferred
44003728
CH
1533 * to the dentry. In case of an error the reference on the inode is released.
1534 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1535 * be passed in and will be the error will be propagate to the return value,
1536 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1537 */
1538struct dentry *d_obtain_alias(struct inode *inode)
1539{
b911a6bd 1540 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1541 struct dentry *tmp;
1542 struct dentry *res;
4ea3ada2
CH
1543
1544 if (!inode)
44003728 1545 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1546 if (IS_ERR(inode))
1547 return ERR_CAST(inode);
1548
d891eedb 1549 res = d_find_any_alias(inode);
9308a612
CH
1550 if (res)
1551 goto out_iput;
1552
a4464dbc 1553 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1554 if (!tmp) {
1555 res = ERR_PTR(-ENOMEM);
1556 goto out_iput;
4ea3ada2 1557 }
b5c84bf6 1558
873feea0 1559 spin_lock(&inode->i_lock);
d891eedb 1560 res = __d_find_any_alias(inode);
9308a612 1561 if (res) {
873feea0 1562 spin_unlock(&inode->i_lock);
9308a612
CH
1563 dput(tmp);
1564 goto out_iput;
1565 }
1566
1567 /* attach a disconnected dentry */
1568 spin_lock(&tmp->d_lock);
9308a612
CH
1569 tmp->d_inode = inode;
1570 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1571 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1572 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1573 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1574 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1575 spin_unlock(&tmp->d_lock);
873feea0 1576 spin_unlock(&inode->i_lock);
24ff6663 1577 security_d_instantiate(tmp, inode);
9308a612 1578
9308a612
CH
1579 return tmp;
1580
1581 out_iput:
24ff6663
JB
1582 if (res && !IS_ERR(res))
1583 security_d_instantiate(res, inode);
9308a612
CH
1584 iput(inode);
1585 return res;
4ea3ada2 1586}
adc48720 1587EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1588
1589/**
1590 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1591 * @inode: the inode which may have a disconnected dentry
1592 * @dentry: a negative dentry which we want to point to the inode.
1593 *
1594 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1595 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1596 * and return it, else simply d_add the inode to the dentry and return NULL.
1597 *
1598 * This is needed in the lookup routine of any filesystem that is exportable
1599 * (via knfsd) so that we can build dcache paths to directories effectively.
1600 *
1601 * If a dentry was found and moved, then it is returned. Otherwise NULL
1602 * is returned. This matches the expected return value of ->lookup.
1603 *
6d4ade98
SW
1604 * Cluster filesystems may call this function with a negative, hashed dentry.
1605 * In that case, we know that the inode will be a regular file, and also this
1606 * will only occur during atomic_open. So we need to check for the dentry
1607 * being already hashed only in the final case.
1da177e4
LT
1608 */
1609struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1610{
1611 struct dentry *new = NULL;
1612
a9049376
AV
1613 if (IS_ERR(inode))
1614 return ERR_CAST(inode);
1615
21c0d8fd 1616 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1617 spin_lock(&inode->i_lock);
32ba9c3f 1618 new = __d_find_alias(inode, 1);
1da177e4 1619 if (new) {
32ba9c3f 1620 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1621 spin_unlock(&inode->i_lock);
1da177e4 1622 security_d_instantiate(new, inode);
1da177e4
LT
1623 d_move(new, dentry);
1624 iput(inode);
1625 } else {
873feea0 1626 /* already taking inode->i_lock, so d_add() by hand */
360da900 1627 __d_instantiate(dentry, inode);
873feea0 1628 spin_unlock(&inode->i_lock);
1da177e4
LT
1629 security_d_instantiate(dentry, inode);
1630 d_rehash(dentry);
1631 }
6d4ade98
SW
1632 } else {
1633 d_instantiate(dentry, inode);
1634 if (d_unhashed(dentry))
1635 d_rehash(dentry);
1636 }
1da177e4
LT
1637 return new;
1638}
ec4f8605 1639EXPORT_SYMBOL(d_splice_alias);
1da177e4 1640
9403540c
BN
1641/**
1642 * d_add_ci - lookup or allocate new dentry with case-exact name
1643 * @inode: the inode case-insensitive lookup has found
1644 * @dentry: the negative dentry that was passed to the parent's lookup func
1645 * @name: the case-exact name to be associated with the returned dentry
1646 *
1647 * This is to avoid filling the dcache with case-insensitive names to the
1648 * same inode, only the actual correct case is stored in the dcache for
1649 * case-insensitive filesystems.
1650 *
1651 * For a case-insensitive lookup match and if the the case-exact dentry
1652 * already exists in in the dcache, use it and return it.
1653 *
1654 * If no entry exists with the exact case name, allocate new dentry with
1655 * the exact case, and return the spliced entry.
1656 */
e45b590b 1657struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1658 struct qstr *name)
1659{
9403540c
BN
1660 struct dentry *found;
1661 struct dentry *new;
1662
b6520c81
CH
1663 /*
1664 * First check if a dentry matching the name already exists,
1665 * if not go ahead and create it now.
1666 */
9403540c 1667 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1668 if (unlikely(IS_ERR(found)))
1669 goto err_out;
9403540c
BN
1670 if (!found) {
1671 new = d_alloc(dentry->d_parent, name);
1672 if (!new) {
4f522a24 1673 found = ERR_PTR(-ENOMEM);
9403540c
BN
1674 goto err_out;
1675 }
b6520c81 1676
9403540c
BN
1677 found = d_splice_alias(inode, new);
1678 if (found) {
1679 dput(new);
1680 return found;
1681 }
1682 return new;
1683 }
b6520c81
CH
1684
1685 /*
1686 * If a matching dentry exists, and it's not negative use it.
1687 *
1688 * Decrement the reference count to balance the iget() done
1689 * earlier on.
1690 */
9403540c
BN
1691 if (found->d_inode) {
1692 if (unlikely(found->d_inode != inode)) {
1693 /* This can't happen because bad inodes are unhashed. */
1694 BUG_ON(!is_bad_inode(inode));
1695 BUG_ON(!is_bad_inode(found->d_inode));
1696 }
9403540c
BN
1697 iput(inode);
1698 return found;
1699 }
b6520c81 1700
9403540c 1701 /*
9403540c 1702 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1703 * already has a dentry.
9403540c 1704 */
4513d899
AV
1705 new = d_splice_alias(inode, found);
1706 if (new) {
1707 dput(found);
1708 found = new;
9403540c 1709 }
4513d899 1710 return found;
9403540c
BN
1711
1712err_out:
1713 iput(inode);
4f522a24 1714 return found;
9403540c 1715}
ec4f8605 1716EXPORT_SYMBOL(d_add_ci);
1da177e4 1717
12f8ad4b
LT
1718/*
1719 * Do the slow-case of the dentry name compare.
1720 *
1721 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1722 * load the name and length information, so that the
12f8ad4b
LT
1723 * filesystem can rely on them, and can use the 'name' and
1724 * 'len' information without worrying about walking off the
1725 * end of memory etc.
1726 *
1727 * Thus the read_seqcount_retry() and the "duplicate" info
1728 * in arguments (the low-level filesystem should not look
1729 * at the dentry inode or name contents directly, since
1730 * rename can change them while we're in RCU mode).
1731 */
1732enum slow_d_compare {
1733 D_COMP_OK,
1734 D_COMP_NOMATCH,
1735 D_COMP_SEQRETRY,
1736};
1737
1738static noinline enum slow_d_compare slow_dentry_cmp(
1739 const struct dentry *parent,
12f8ad4b
LT
1740 struct dentry *dentry,
1741 unsigned int seq,
1742 const struct qstr *name)
1743{
1744 int tlen = dentry->d_name.len;
1745 const char *tname = dentry->d_name.name;
12f8ad4b
LT
1746
1747 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1748 cpu_relax();
1749 return D_COMP_SEQRETRY;
1750 }
da53be12 1751 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
1752 return D_COMP_NOMATCH;
1753 return D_COMP_OK;
1754}
1755
31e6b01f
NP
1756/**
1757 * __d_lookup_rcu - search for a dentry (racy, store-free)
1758 * @parent: parent dentry
1759 * @name: qstr of name we wish to find
1f1e6e52 1760 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1761 * Returns: dentry, or NULL
1762 *
1763 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1764 * resolution (store-free path walking) design described in
1765 * Documentation/filesystems/path-lookup.txt.
1766 *
1767 * This is not to be used outside core vfs.
1768 *
1769 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1770 * held, and rcu_read_lock held. The returned dentry must not be stored into
1771 * without taking d_lock and checking d_seq sequence count against @seq
1772 * returned here.
1773 *
1774 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1775 * function.
1776 *
1777 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1778 * the returned dentry, so long as its parent's seqlock is checked after the
1779 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1780 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1781 *
1782 * NOTE! The caller *has* to check the resulting dentry against the sequence
1783 * number we've returned before using any of the resulting dentry state!
31e6b01f 1784 */
8966be90
LT
1785struct dentry *__d_lookup_rcu(const struct dentry *parent,
1786 const struct qstr *name,
da53be12 1787 unsigned *seqp)
31e6b01f 1788{
26fe5750 1789 u64 hashlen = name->hash_len;
31e6b01f 1790 const unsigned char *str = name->name;
26fe5750 1791 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1792 struct hlist_bl_node *node;
31e6b01f
NP
1793 struct dentry *dentry;
1794
1795 /*
1796 * Note: There is significant duplication with __d_lookup_rcu which is
1797 * required to prevent single threaded performance regressions
1798 * especially on architectures where smp_rmb (in seqcounts) are costly.
1799 * Keep the two functions in sync.
1800 */
1801
1802 /*
1803 * The hash list is protected using RCU.
1804 *
1805 * Carefully use d_seq when comparing a candidate dentry, to avoid
1806 * races with d_move().
1807 *
1808 * It is possible that concurrent renames can mess up our list
1809 * walk here and result in missing our dentry, resulting in the
1810 * false-negative result. d_lookup() protects against concurrent
1811 * renames using rename_lock seqlock.
1812 *
b0a4bb83 1813 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1814 */
b07ad996 1815 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1816 unsigned seq;
31e6b01f 1817
31e6b01f 1818seqretry:
12f8ad4b
LT
1819 /*
1820 * The dentry sequence count protects us from concurrent
da53be12 1821 * renames, and thus protects parent and name fields.
12f8ad4b
LT
1822 *
1823 * The caller must perform a seqcount check in order
da53be12 1824 * to do anything useful with the returned dentry.
12f8ad4b
LT
1825 *
1826 * NOTE! We do a "raw" seqcount_begin here. That means that
1827 * we don't wait for the sequence count to stabilize if it
1828 * is in the middle of a sequence change. If we do the slow
1829 * dentry compare, we will do seqretries until it is stable,
1830 * and if we end up with a successful lookup, we actually
1831 * want to exit RCU lookup anyway.
1832 */
1833 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1834 if (dentry->d_parent != parent)
1835 continue;
2e321806
LT
1836 if (d_unhashed(dentry))
1837 continue;
12f8ad4b 1838
830c0f0e 1839 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1840 if (dentry->d_name.hash != hashlen_hash(hashlen))
1841 continue;
da53be12
LT
1842 *seqp = seq;
1843 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
1844 case D_COMP_OK:
1845 return dentry;
1846 case D_COMP_NOMATCH:
31e6b01f 1847 continue;
12f8ad4b
LT
1848 default:
1849 goto seqretry;
1850 }
31e6b01f 1851 }
12f8ad4b 1852
26fe5750 1853 if (dentry->d_name.hash_len != hashlen)
ee983e89 1854 continue;
da53be12 1855 *seqp = seq;
26fe5750 1856 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1857 return dentry;
31e6b01f
NP
1858 }
1859 return NULL;
1860}
1861
1da177e4
LT
1862/**
1863 * d_lookup - search for a dentry
1864 * @parent: parent dentry
1865 * @name: qstr of name we wish to find
b04f784e 1866 * Returns: dentry, or NULL
1da177e4 1867 *
b04f784e
NP
1868 * d_lookup searches the children of the parent dentry for the name in
1869 * question. If the dentry is found its reference count is incremented and the
1870 * dentry is returned. The caller must use dput to free the entry when it has
1871 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1872 */
da2d8455 1873struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 1874{
31e6b01f 1875 struct dentry *dentry;
949854d0 1876 unsigned seq;
1da177e4
LT
1877
1878 do {
1879 seq = read_seqbegin(&rename_lock);
1880 dentry = __d_lookup(parent, name);
1881 if (dentry)
1882 break;
1883 } while (read_seqretry(&rename_lock, seq));
1884 return dentry;
1885}
ec4f8605 1886EXPORT_SYMBOL(d_lookup);
1da177e4 1887
31e6b01f 1888/**
b04f784e
NP
1889 * __d_lookup - search for a dentry (racy)
1890 * @parent: parent dentry
1891 * @name: qstr of name we wish to find
1892 * Returns: dentry, or NULL
1893 *
1894 * __d_lookup is like d_lookup, however it may (rarely) return a
1895 * false-negative result due to unrelated rename activity.
1896 *
1897 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1898 * however it must be used carefully, eg. with a following d_lookup in
1899 * the case of failure.
1900 *
1901 * __d_lookup callers must be commented.
1902 */
a713ca2a 1903struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
1904{
1905 unsigned int len = name->len;
1906 unsigned int hash = name->hash;
1907 const unsigned char *str = name->name;
b07ad996 1908 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1909 struct hlist_bl_node *node;
31e6b01f 1910 struct dentry *found = NULL;
665a7583 1911 struct dentry *dentry;
1da177e4 1912
31e6b01f
NP
1913 /*
1914 * Note: There is significant duplication with __d_lookup_rcu which is
1915 * required to prevent single threaded performance regressions
1916 * especially on architectures where smp_rmb (in seqcounts) are costly.
1917 * Keep the two functions in sync.
1918 */
1919
b04f784e
NP
1920 /*
1921 * The hash list is protected using RCU.
1922 *
1923 * Take d_lock when comparing a candidate dentry, to avoid races
1924 * with d_move().
1925 *
1926 * It is possible that concurrent renames can mess up our list
1927 * walk here and result in missing our dentry, resulting in the
1928 * false-negative result. d_lookup() protects against concurrent
1929 * renames using rename_lock seqlock.
1930 *
b0a4bb83 1931 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1932 */
1da177e4
LT
1933 rcu_read_lock();
1934
b07ad996 1935 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1936
1da177e4
LT
1937 if (dentry->d_name.hash != hash)
1938 continue;
1da177e4
LT
1939
1940 spin_lock(&dentry->d_lock);
1da177e4
LT
1941 if (dentry->d_parent != parent)
1942 goto next;
d0185c08
LT
1943 if (d_unhashed(dentry))
1944 goto next;
1945
1da177e4
LT
1946 /*
1947 * It is safe to compare names since d_move() cannot
1948 * change the qstr (protected by d_lock).
1949 */
fb045adb 1950 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1951 int tlen = dentry->d_name.len;
1952 const char *tname = dentry->d_name.name;
da53be12 1953 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
1954 goto next;
1955 } else {
ee983e89
LT
1956 if (dentry->d_name.len != len)
1957 goto next;
12f8ad4b 1958 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1959 goto next;
1960 }
1961
98474236 1962 dentry->d_lockref.count++;
d0185c08 1963 found = dentry;
1da177e4
LT
1964 spin_unlock(&dentry->d_lock);
1965 break;
1966next:
1967 spin_unlock(&dentry->d_lock);
1968 }
1969 rcu_read_unlock();
1970
1971 return found;
1972}
1973
3e7e241f
EB
1974/**
1975 * d_hash_and_lookup - hash the qstr then search for a dentry
1976 * @dir: Directory to search in
1977 * @name: qstr of name we wish to find
1978 *
4f522a24 1979 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
1980 */
1981struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1982{
3e7e241f
EB
1983 /*
1984 * Check for a fs-specific hash function. Note that we must
1985 * calculate the standard hash first, as the d_op->d_hash()
1986 * routine may choose to leave the hash value unchanged.
1987 */
1988 name->hash = full_name_hash(name->name, name->len);
fb045adb 1989 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 1990 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
1991 if (unlikely(err < 0))
1992 return ERR_PTR(err);
3e7e241f 1993 }
4f522a24 1994 return d_lookup(dir, name);
3e7e241f 1995}
4f522a24 1996EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 1997
1da177e4 1998/**
786a5e15 1999 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2000 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2001 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2002 *
2003 * An insecure source has sent us a dentry, here we verify it and dget() it.
2004 * This is used by ncpfs in its readdir implementation.
2005 * Zero is returned in the dentry is invalid.
786a5e15
NP
2006 *
2007 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2008 */
d3a23e16 2009int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2010{
786a5e15 2011 struct dentry *child;
d3a23e16 2012
2fd6b7f5 2013 spin_lock(&dparent->d_lock);
786a5e15
NP
2014 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2015 if (dentry == child) {
2fd6b7f5 2016 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2017 __dget_dlock(dentry);
2fd6b7f5
NP
2018 spin_unlock(&dentry->d_lock);
2019 spin_unlock(&dparent->d_lock);
1da177e4
LT
2020 return 1;
2021 }
2022 }
2fd6b7f5 2023 spin_unlock(&dparent->d_lock);
786a5e15 2024
1da177e4
LT
2025 return 0;
2026}
ec4f8605 2027EXPORT_SYMBOL(d_validate);
1da177e4
LT
2028
2029/*
2030 * When a file is deleted, we have two options:
2031 * - turn this dentry into a negative dentry
2032 * - unhash this dentry and free it.
2033 *
2034 * Usually, we want to just turn this into
2035 * a negative dentry, but if anybody else is
2036 * currently using the dentry or the inode
2037 * we can't do that and we fall back on removing
2038 * it from the hash queues and waiting for
2039 * it to be deleted later when it has no users
2040 */
2041
2042/**
2043 * d_delete - delete a dentry
2044 * @dentry: The dentry to delete
2045 *
2046 * Turn the dentry into a negative dentry if possible, otherwise
2047 * remove it from the hash queues so it can be deleted later
2048 */
2049
2050void d_delete(struct dentry * dentry)
2051{
873feea0 2052 struct inode *inode;
7a91bf7f 2053 int isdir = 0;
1da177e4
LT
2054 /*
2055 * Are we the only user?
2056 */
357f8e65 2057again:
1da177e4 2058 spin_lock(&dentry->d_lock);
873feea0
NP
2059 inode = dentry->d_inode;
2060 isdir = S_ISDIR(inode->i_mode);
98474236 2061 if (dentry->d_lockref.count == 1) {
1fe0c023 2062 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2063 spin_unlock(&dentry->d_lock);
2064 cpu_relax();
2065 goto again;
2066 }
13e3c5e5 2067 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2068 dentry_unlink_inode(dentry);
7a91bf7f 2069 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2070 return;
2071 }
2072
2073 if (!d_unhashed(dentry))
2074 __d_drop(dentry);
2075
2076 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2077
2078 fsnotify_nameremove(dentry, isdir);
1da177e4 2079}
ec4f8605 2080EXPORT_SYMBOL(d_delete);
1da177e4 2081
b07ad996 2082static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2083{
ceb5bdc2 2084 BUG_ON(!d_unhashed(entry));
1879fd6a 2085 hlist_bl_lock(b);
dea3667b 2086 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2087 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2088 hlist_bl_unlock(b);
1da177e4
LT
2089}
2090
770bfad8
DH
2091static void _d_rehash(struct dentry * entry)
2092{
2093 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2094}
2095
1da177e4
LT
2096/**
2097 * d_rehash - add an entry back to the hash
2098 * @entry: dentry to add to the hash
2099 *
2100 * Adds a dentry to the hash according to its name.
2101 */
2102
2103void d_rehash(struct dentry * entry)
2104{
1da177e4 2105 spin_lock(&entry->d_lock);
770bfad8 2106 _d_rehash(entry);
1da177e4 2107 spin_unlock(&entry->d_lock);
1da177e4 2108}
ec4f8605 2109EXPORT_SYMBOL(d_rehash);
1da177e4 2110
fb2d5b86
NP
2111/**
2112 * dentry_update_name_case - update case insensitive dentry with a new name
2113 * @dentry: dentry to be updated
2114 * @name: new name
2115 *
2116 * Update a case insensitive dentry with new case of name.
2117 *
2118 * dentry must have been returned by d_lookup with name @name. Old and new
2119 * name lengths must match (ie. no d_compare which allows mismatched name
2120 * lengths).
2121 *
2122 * Parent inode i_mutex must be held over d_lookup and into this call (to
2123 * keep renames and concurrent inserts, and readdir(2) away).
2124 */
2125void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2126{
7ebfa57f 2127 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2128 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2129
fb2d5b86 2130 spin_lock(&dentry->d_lock);
31e6b01f 2131 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2132 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2133 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2134 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2135}
2136EXPORT_SYMBOL(dentry_update_name_case);
2137
1da177e4
LT
2138static void switch_names(struct dentry *dentry, struct dentry *target)
2139{
2140 if (dname_external(target)) {
2141 if (dname_external(dentry)) {
2142 /*
2143 * Both external: swap the pointers
2144 */
9a8d5bb4 2145 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2146 } else {
2147 /*
2148 * dentry:internal, target:external. Steal target's
2149 * storage and make target internal.
2150 */
321bcf92
BF
2151 memcpy(target->d_iname, dentry->d_name.name,
2152 dentry->d_name.len + 1);
1da177e4
LT
2153 dentry->d_name.name = target->d_name.name;
2154 target->d_name.name = target->d_iname;
2155 }
2156 } else {
2157 if (dname_external(dentry)) {
2158 /*
2159 * dentry:external, target:internal. Give dentry's
2160 * storage to target and make dentry internal
2161 */
2162 memcpy(dentry->d_iname, target->d_name.name,
2163 target->d_name.len + 1);
2164 target->d_name.name = dentry->d_name.name;
2165 dentry->d_name.name = dentry->d_iname;
2166 } else {
2167 /*
2168 * Both are internal. Just copy target to dentry
2169 */
2170 memcpy(dentry->d_iname, target->d_name.name,
2171 target->d_name.len + 1);
dc711ca3
AV
2172 dentry->d_name.len = target->d_name.len;
2173 return;
1da177e4
LT
2174 }
2175 }
9a8d5bb4 2176 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2177}
2178
2fd6b7f5
NP
2179static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2180{
2181 /*
2182 * XXXX: do we really need to take target->d_lock?
2183 */
2184 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2185 spin_lock(&target->d_parent->d_lock);
2186 else {
2187 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2188 spin_lock(&dentry->d_parent->d_lock);
2189 spin_lock_nested(&target->d_parent->d_lock,
2190 DENTRY_D_LOCK_NESTED);
2191 } else {
2192 spin_lock(&target->d_parent->d_lock);
2193 spin_lock_nested(&dentry->d_parent->d_lock,
2194 DENTRY_D_LOCK_NESTED);
2195 }
2196 }
2197 if (target < dentry) {
2198 spin_lock_nested(&target->d_lock, 2);
2199 spin_lock_nested(&dentry->d_lock, 3);
2200 } else {
2201 spin_lock_nested(&dentry->d_lock, 2);
2202 spin_lock_nested(&target->d_lock, 3);
2203 }
2204}
2205
2206static void dentry_unlock_parents_for_move(struct dentry *dentry,
2207 struct dentry *target)
2208{
2209 if (target->d_parent != dentry->d_parent)
2210 spin_unlock(&dentry->d_parent->d_lock);
2211 if (target->d_parent != target)
2212 spin_unlock(&target->d_parent->d_lock);
2213}
2214
1da177e4 2215/*
2fd6b7f5
NP
2216 * When switching names, the actual string doesn't strictly have to
2217 * be preserved in the target - because we're dropping the target
2218 * anyway. As such, we can just do a simple memcpy() to copy over
2219 * the new name before we switch.
2220 *
2221 * Note that we have to be a lot more careful about getting the hash
2222 * switched - we have to switch the hash value properly even if it
2223 * then no longer matches the actual (corrupted) string of the target.
2224 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2225 */
9eaef27b 2226/*
18367501 2227 * __d_move - move a dentry
1da177e4
LT
2228 * @dentry: entry to move
2229 * @target: new dentry
2230 *
2231 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2232 * dcache entries should not be moved in this way. Caller must hold
2233 * rename_lock, the i_mutex of the source and target directories,
2234 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2235 */
18367501 2236static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2237{
1da177e4
LT
2238 if (!dentry->d_inode)
2239 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2240
2fd6b7f5
NP
2241 BUG_ON(d_ancestor(dentry, target));
2242 BUG_ON(d_ancestor(target, dentry));
2243
2fd6b7f5 2244 dentry_lock_for_move(dentry, target);
1da177e4 2245
31e6b01f
NP
2246 write_seqcount_begin(&dentry->d_seq);
2247 write_seqcount_begin(&target->d_seq);
2248
ceb5bdc2
NP
2249 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2250
2251 /*
2252 * Move the dentry to the target hash queue. Don't bother checking
2253 * for the same hash queue because of how unlikely it is.
2254 */
2255 __d_drop(dentry);
789680d1 2256 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2257
2258 /* Unhash the target: dput() will then get rid of it */
2259 __d_drop(target);
2260
5160ee6f
ED
2261 list_del(&dentry->d_u.d_child);
2262 list_del(&target->d_u.d_child);
1da177e4
LT
2263
2264 /* Switch the names.. */
2265 switch_names(dentry, target);
9a8d5bb4 2266 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2267
2268 /* ... and switch the parents */
2269 if (IS_ROOT(dentry)) {
2270 dentry->d_parent = target->d_parent;
2271 target->d_parent = target;
5160ee6f 2272 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2273 } else {
9a8d5bb4 2274 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2275
2276 /* And add them back to the (new) parent lists */
5160ee6f 2277 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2278 }
2279
5160ee6f 2280 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2281
31e6b01f
NP
2282 write_seqcount_end(&target->d_seq);
2283 write_seqcount_end(&dentry->d_seq);
2284
2fd6b7f5 2285 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2286 spin_unlock(&target->d_lock);
c32ccd87 2287 fsnotify_d_move(dentry);
1da177e4 2288 spin_unlock(&dentry->d_lock);
18367501
AV
2289}
2290
2291/*
2292 * d_move - move a dentry
2293 * @dentry: entry to move
2294 * @target: new dentry
2295 *
2296 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2297 * dcache entries should not be moved in this way. See the locking
2298 * requirements for __d_move.
18367501
AV
2299 */
2300void d_move(struct dentry *dentry, struct dentry *target)
2301{
2302 write_seqlock(&rename_lock);
2303 __d_move(dentry, target);
1da177e4 2304 write_sequnlock(&rename_lock);
9eaef27b 2305}
ec4f8605 2306EXPORT_SYMBOL(d_move);
1da177e4 2307
e2761a11
OH
2308/**
2309 * d_ancestor - search for an ancestor
2310 * @p1: ancestor dentry
2311 * @p2: child dentry
2312 *
2313 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2314 * an ancestor of p2, else NULL.
9eaef27b 2315 */
e2761a11 2316struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2317{
2318 struct dentry *p;
2319
871c0067 2320 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2321 if (p->d_parent == p1)
e2761a11 2322 return p;
9eaef27b 2323 }
e2761a11 2324 return NULL;
9eaef27b
TM
2325}
2326
2327/*
2328 * This helper attempts to cope with remotely renamed directories
2329 *
2330 * It assumes that the caller is already holding
18367501 2331 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2332 *
2333 * Note: If ever the locking in lock_rename() changes, then please
2334 * remember to update this too...
9eaef27b 2335 */
873feea0
NP
2336static struct dentry *__d_unalias(struct inode *inode,
2337 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2338{
2339 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2340 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2341
2342 /* If alias and dentry share a parent, then no extra locks required */
2343 if (alias->d_parent == dentry->d_parent)
2344 goto out_unalias;
2345
9eaef27b 2346 /* See lock_rename() */
9eaef27b
TM
2347 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2348 goto out_err;
2349 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2350 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2351 goto out_err;
2352 m2 = &alias->d_parent->d_inode->i_mutex;
2353out_unalias:
ee3efa91
AV
2354 if (likely(!d_mountpoint(alias))) {
2355 __d_move(alias, dentry);
2356 ret = alias;
2357 }
9eaef27b 2358out_err:
873feea0 2359 spin_unlock(&inode->i_lock);
9eaef27b
TM
2360 if (m2)
2361 mutex_unlock(m2);
2362 if (m1)
2363 mutex_unlock(m1);
2364 return ret;
2365}
2366
770bfad8
DH
2367/*
2368 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2369 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2370 * returns with anon->d_lock held!
770bfad8
DH
2371 */
2372static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2373{
740da42e 2374 struct dentry *dparent;
770bfad8 2375
2fd6b7f5 2376 dentry_lock_for_move(anon, dentry);
770bfad8 2377
31e6b01f
NP
2378 write_seqcount_begin(&dentry->d_seq);
2379 write_seqcount_begin(&anon->d_seq);
2380
770bfad8 2381 dparent = dentry->d_parent;
770bfad8 2382
2fd6b7f5
NP
2383 switch_names(dentry, anon);
2384 swap(dentry->d_name.hash, anon->d_name.hash);
2385
740da42e
AV
2386 dentry->d_parent = dentry;
2387 list_del_init(&dentry->d_u.d_child);
2388 anon->d_parent = dparent;
9ed53b12 2389 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2390
31e6b01f
NP
2391 write_seqcount_end(&dentry->d_seq);
2392 write_seqcount_end(&anon->d_seq);
2393
2fd6b7f5
NP
2394 dentry_unlock_parents_for_move(anon, dentry);
2395 spin_unlock(&dentry->d_lock);
2396
2397 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2398 anon->d_flags &= ~DCACHE_DISCONNECTED;
2399}
2400
2401/**
2402 * d_materialise_unique - introduce an inode into the tree
2403 * @dentry: candidate dentry
2404 * @inode: inode to bind to the dentry, to which aliases may be attached
2405 *
2406 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2407 * root directory alias in its place if there is one. Caller must hold the
2408 * i_mutex of the parent directory.
770bfad8
DH
2409 */
2410struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2411{
9eaef27b 2412 struct dentry *actual;
770bfad8
DH
2413
2414 BUG_ON(!d_unhashed(dentry));
2415
770bfad8
DH
2416 if (!inode) {
2417 actual = dentry;
360da900 2418 __d_instantiate(dentry, NULL);
357f8e65
NP
2419 d_rehash(actual);
2420 goto out_nolock;
770bfad8
DH
2421 }
2422
873feea0 2423 spin_lock(&inode->i_lock);
357f8e65 2424
9eaef27b
TM
2425 if (S_ISDIR(inode->i_mode)) {
2426 struct dentry *alias;
2427
2428 /* Does an aliased dentry already exist? */
32ba9c3f 2429 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2430 if (alias) {
2431 actual = alias;
18367501
AV
2432 write_seqlock(&rename_lock);
2433
2434 if (d_ancestor(alias, dentry)) {
2435 /* Check for loops */
2436 actual = ERR_PTR(-ELOOP);
b18dafc8 2437 spin_unlock(&inode->i_lock);
18367501
AV
2438 } else if (IS_ROOT(alias)) {
2439 /* Is this an anonymous mountpoint that we
2440 * could splice into our tree? */
9eaef27b 2441 __d_materialise_dentry(dentry, alias);
18367501 2442 write_sequnlock(&rename_lock);
9eaef27b
TM
2443 __d_drop(alias);
2444 goto found;
18367501
AV
2445 } else {
2446 /* Nope, but we must(!) avoid directory
b18dafc8 2447 * aliasing. This drops inode->i_lock */
18367501 2448 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2449 }
18367501 2450 write_sequnlock(&rename_lock);
dd179946
DH
2451 if (IS_ERR(actual)) {
2452 if (PTR_ERR(actual) == -ELOOP)
2453 pr_warn_ratelimited(
2454 "VFS: Lookup of '%s' in %s %s"
2455 " would have caused loop\n",
2456 dentry->d_name.name,
2457 inode->i_sb->s_type->name,
2458 inode->i_sb->s_id);
9eaef27b 2459 dput(alias);
dd179946 2460 }
9eaef27b
TM
2461 goto out_nolock;
2462 }
770bfad8
DH
2463 }
2464
2465 /* Add a unique reference */
2466 actual = __d_instantiate_unique(dentry, inode);
2467 if (!actual)
2468 actual = dentry;
357f8e65
NP
2469 else
2470 BUG_ON(!d_unhashed(actual));
770bfad8 2471
770bfad8
DH
2472 spin_lock(&actual->d_lock);
2473found:
2474 _d_rehash(actual);
2475 spin_unlock(&actual->d_lock);
873feea0 2476 spin_unlock(&inode->i_lock);
9eaef27b 2477out_nolock:
770bfad8
DH
2478 if (actual == dentry) {
2479 security_d_instantiate(dentry, inode);
2480 return NULL;
2481 }
2482
2483 iput(inode);
2484 return actual;
770bfad8 2485}
ec4f8605 2486EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2487
cdd16d02 2488static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2489{
2490 *buflen -= namelen;
2491 if (*buflen < 0)
2492 return -ENAMETOOLONG;
2493 *buffer -= namelen;
2494 memcpy(*buffer, str, namelen);
2495 return 0;
2496}
2497
cdd16d02
MS
2498static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2499{
2500 return prepend(buffer, buflen, name->name, name->len);
2501}
2502
1da177e4 2503/**
208898c1 2504 * prepend_path - Prepend path string to a buffer
9d1bc601 2505 * @path: the dentry/vfsmount to report
02125a82 2506 * @root: root vfsmnt/dentry
f2eb6575
MS
2507 * @buffer: pointer to the end of the buffer
2508 * @buflen: pointer to buffer length
552ce544 2509 *
949854d0 2510 * Caller holds the rename_lock.
1da177e4 2511 */
02125a82
AV
2512static int prepend_path(const struct path *path,
2513 const struct path *root,
f2eb6575 2514 char **buffer, int *buflen)
1da177e4 2515{
9d1bc601
MS
2516 struct dentry *dentry = path->dentry;
2517 struct vfsmount *vfsmnt = path->mnt;
0714a533 2518 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2519 bool slash = false;
2520 int error = 0;
6092d048 2521
f2eb6575 2522 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2523 struct dentry * parent;
2524
1da177e4 2525 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2526 /* Global root? */
676da58d 2527 if (!mnt_has_parent(mnt))
1da177e4 2528 goto global_root;
a73324da 2529 dentry = mnt->mnt_mountpoint;
0714a533
AV
2530 mnt = mnt->mnt_parent;
2531 vfsmnt = &mnt->mnt;
1da177e4
LT
2532 continue;
2533 }
2534 parent = dentry->d_parent;
2535 prefetch(parent);
9abca360 2536 spin_lock(&dentry->d_lock);
f2eb6575 2537 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2538 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2539 if (!error)
2540 error = prepend(buffer, buflen, "/", 1);
2541 if (error)
2542 break;
2543
2544 slash = true;
1da177e4
LT
2545 dentry = parent;
2546 }
2547
f2eb6575
MS
2548 if (!error && !slash)
2549 error = prepend(buffer, buflen, "/", 1);
2550
f2eb6575 2551 return error;
1da177e4
LT
2552
2553global_root:
98dc568b
MS
2554 /*
2555 * Filesystems needing to implement special "root names"
2556 * should do so with ->d_dname()
2557 */
2558 if (IS_ROOT(dentry) &&
2559 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2560 WARN(1, "Root dentry has weird name <%.*s>\n",
2561 (int) dentry->d_name.len, dentry->d_name.name);
2562 }
02125a82
AV
2563 if (!slash)
2564 error = prepend(buffer, buflen, "/", 1);
2565 if (!error)
f7a99c5b 2566 error = is_mounted(vfsmnt) ? 1 : 2;
7ea600b5 2567 return error;
f2eb6575 2568}
be285c71 2569
f2eb6575
MS
2570/**
2571 * __d_path - return the path of a dentry
2572 * @path: the dentry/vfsmount to report
02125a82 2573 * @root: root vfsmnt/dentry
cd956a1c 2574 * @buf: buffer to return value in
f2eb6575
MS
2575 * @buflen: buffer length
2576 *
ffd1f4ed 2577 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2578 *
2579 * Returns a pointer into the buffer or an error code if the
2580 * path was too long.
2581 *
be148247 2582 * "buflen" should be positive.
f2eb6575 2583 *
02125a82 2584 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2585 */
02125a82
AV
2586char *__d_path(const struct path *path,
2587 const struct path *root,
f2eb6575
MS
2588 char *buf, int buflen)
2589{
2590 char *res = buf + buflen;
2591 int error;
2592
2593 prepend(&res, &buflen, "\0", 1);
7ea600b5 2594 br_read_lock(&vfsmount_lock);
949854d0 2595 write_seqlock(&rename_lock);
f2eb6575 2596 error = prepend_path(path, root, &res, &buflen);
949854d0 2597 write_sequnlock(&rename_lock);
7ea600b5 2598 br_read_unlock(&vfsmount_lock);
be148247 2599
02125a82
AV
2600 if (error < 0)
2601 return ERR_PTR(error);
2602 if (error > 0)
2603 return NULL;
2604 return res;
2605}
2606
2607char *d_absolute_path(const struct path *path,
2608 char *buf, int buflen)
2609{
2610 struct path root = {};
2611 char *res = buf + buflen;
2612 int error;
2613
2614 prepend(&res, &buflen, "\0", 1);
7ea600b5 2615 br_read_lock(&vfsmount_lock);
02125a82
AV
2616 write_seqlock(&rename_lock);
2617 error = prepend_path(path, &root, &res, &buflen);
2618 write_sequnlock(&rename_lock);
7ea600b5 2619 br_read_unlock(&vfsmount_lock);
02125a82
AV
2620
2621 if (error > 1)
2622 error = -EINVAL;
2623 if (error < 0)
f2eb6575 2624 return ERR_PTR(error);
f2eb6575 2625 return res;
1da177e4
LT
2626}
2627
ffd1f4ed
MS
2628/*
2629 * same as __d_path but appends "(deleted)" for unlinked files.
2630 */
02125a82
AV
2631static int path_with_deleted(const struct path *path,
2632 const struct path *root,
2633 char **buf, int *buflen)
ffd1f4ed
MS
2634{
2635 prepend(buf, buflen, "\0", 1);
2636 if (d_unlinked(path->dentry)) {
2637 int error = prepend(buf, buflen, " (deleted)", 10);
2638 if (error)
2639 return error;
2640 }
2641
2642 return prepend_path(path, root, buf, buflen);
2643}
2644
8df9d1a4
MS
2645static int prepend_unreachable(char **buffer, int *buflen)
2646{
2647 return prepend(buffer, buflen, "(unreachable)", 13);
2648}
2649
a03a8a70
JB
2650/**
2651 * d_path - return the path of a dentry
cf28b486 2652 * @path: path to report
a03a8a70
JB
2653 * @buf: buffer to return value in
2654 * @buflen: buffer length
2655 *
2656 * Convert a dentry into an ASCII path name. If the entry has been deleted
2657 * the string " (deleted)" is appended. Note that this is ambiguous.
2658 *
52afeefb
AV
2659 * Returns a pointer into the buffer or an error code if the path was
2660 * too long. Note: Callers should use the returned pointer, not the passed
2661 * in buffer, to use the name! The implementation often starts at an offset
2662 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2663 *
31f3e0b3 2664 * "buflen" should be positive.
a03a8a70 2665 */
20d4fdc1 2666char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2667{
ffd1f4ed 2668 char *res = buf + buflen;
6ac08c39 2669 struct path root;
ffd1f4ed 2670 int error;
1da177e4 2671
c23fbb6b
ED
2672 /*
2673 * We have various synthetic filesystems that never get mounted. On
2674 * these filesystems dentries are never used for lookup purposes, and
2675 * thus don't need to be hashed. They also don't need a name until a
2676 * user wants to identify the object in /proc/pid/fd/. The little hack
2677 * below allows us to generate a name for these objects on demand:
2678 */
cf28b486
JB
2679 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2680 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2681
f7ad3c6b 2682 get_fs_root(current->fs, &root);
7ea600b5 2683 br_read_lock(&vfsmount_lock);
949854d0 2684 write_seqlock(&rename_lock);
02125a82 2685 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5
AV
2686 write_sequnlock(&rename_lock);
2687 br_read_unlock(&vfsmount_lock);
02125a82 2688 if (error < 0)
ffd1f4ed 2689 res = ERR_PTR(error);
6ac08c39 2690 path_put(&root);
1da177e4
LT
2691 return res;
2692}
ec4f8605 2693EXPORT_SYMBOL(d_path);
1da177e4 2694
c23fbb6b
ED
2695/*
2696 * Helper function for dentry_operations.d_dname() members
2697 */
2698char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2699 const char *fmt, ...)
2700{
2701 va_list args;
2702 char temp[64];
2703 int sz;
2704
2705 va_start(args, fmt);
2706 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2707 va_end(args);
2708
2709 if (sz > sizeof(temp) || sz > buflen)
2710 return ERR_PTR(-ENAMETOOLONG);
2711
2712 buffer += buflen - sz;
2713 return memcpy(buffer, temp, sz);
2714}
2715
118b2302
AV
2716char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2717{
2718 char *end = buffer + buflen;
2719 /* these dentries are never renamed, so d_lock is not needed */
2720 if (prepend(&end, &buflen, " (deleted)", 11) ||
2721 prepend_name(&end, &buflen, &dentry->d_name) ||
2722 prepend(&end, &buflen, "/", 1))
2723 end = ERR_PTR(-ENAMETOOLONG);
2724 return end;
2725}
2726
6092d048
RP
2727/*
2728 * Write full pathname from the root of the filesystem into the buffer.
2729 */
ec2447c2 2730static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2731{
2732 char *end = buf + buflen;
2733 char *retval;
2734
6092d048 2735 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2736 if (buflen < 1)
2737 goto Elong;
2738 /* Get '/' right */
2739 retval = end-1;
2740 *retval = '/';
2741
cdd16d02
MS
2742 while (!IS_ROOT(dentry)) {
2743 struct dentry *parent = dentry->d_parent;
9abca360 2744 int error;
6092d048 2745
6092d048 2746 prefetch(parent);
9abca360
NP
2747 spin_lock(&dentry->d_lock);
2748 error = prepend_name(&end, &buflen, &dentry->d_name);
2749 spin_unlock(&dentry->d_lock);
2750 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2751 goto Elong;
2752
2753 retval = end;
2754 dentry = parent;
2755 }
c103135c
AV
2756 return retval;
2757Elong:
2758 return ERR_PTR(-ENAMETOOLONG);
2759}
ec2447c2
NP
2760
2761char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2762{
2763 char *retval;
2764
949854d0 2765 write_seqlock(&rename_lock);
ec2447c2 2766 retval = __dentry_path(dentry, buf, buflen);
949854d0 2767 write_sequnlock(&rename_lock);
ec2447c2
NP
2768
2769 return retval;
2770}
2771EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2772
2773char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2774{
2775 char *p = NULL;
2776 char *retval;
2777
949854d0 2778 write_seqlock(&rename_lock);
c103135c
AV
2779 if (d_unlinked(dentry)) {
2780 p = buf + buflen;
2781 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2782 goto Elong;
2783 buflen++;
2784 }
2785 retval = __dentry_path(dentry, buf, buflen);
949854d0 2786 write_sequnlock(&rename_lock);
c103135c
AV
2787 if (!IS_ERR(retval) && p)
2788 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2789 return retval;
2790Elong:
6092d048
RP
2791 return ERR_PTR(-ENAMETOOLONG);
2792}
2793
1da177e4
LT
2794/*
2795 * NOTE! The user-level library version returns a
2796 * character pointer. The kernel system call just
2797 * returns the length of the buffer filled (which
2798 * includes the ending '\0' character), or a negative
2799 * error value. So libc would do something like
2800 *
2801 * char *getcwd(char * buf, size_t size)
2802 * {
2803 * int retval;
2804 *
2805 * retval = sys_getcwd(buf, size);
2806 * if (retval >= 0)
2807 * return buf;
2808 * errno = -retval;
2809 * return NULL;
2810 * }
2811 */
3cdad428 2812SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2813{
552ce544 2814 int error;
6ac08c39 2815 struct path pwd, root;
552ce544 2816 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2817
2818 if (!page)
2819 return -ENOMEM;
2820
f7ad3c6b 2821 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2822
552ce544 2823 error = -ENOENT;
7ea600b5 2824 br_read_lock(&vfsmount_lock);
949854d0 2825 write_seqlock(&rename_lock);
f3da392e 2826 if (!d_unlinked(pwd.dentry)) {
552ce544 2827 unsigned long len;
8df9d1a4
MS
2828 char *cwd = page + PAGE_SIZE;
2829 int buflen = PAGE_SIZE;
1da177e4 2830
8df9d1a4 2831 prepend(&cwd, &buflen, "\0", 1);
02125a82 2832 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2833 write_sequnlock(&rename_lock);
7ea600b5 2834 br_read_unlock(&vfsmount_lock);
552ce544 2835
02125a82 2836 if (error < 0)
552ce544
LT
2837 goto out;
2838
8df9d1a4 2839 /* Unreachable from current root */
02125a82 2840 if (error > 0) {
8df9d1a4
MS
2841 error = prepend_unreachable(&cwd, &buflen);
2842 if (error)
2843 goto out;
2844 }
2845
552ce544
LT
2846 error = -ERANGE;
2847 len = PAGE_SIZE + page - cwd;
2848 if (len <= size) {
2849 error = len;
2850 if (copy_to_user(buf, cwd, len))
2851 error = -EFAULT;
2852 }
949854d0
NP
2853 } else {
2854 write_sequnlock(&rename_lock);
7ea600b5 2855 br_read_unlock(&vfsmount_lock);
949854d0 2856 }
1da177e4
LT
2857
2858out:
6ac08c39
JB
2859 path_put(&pwd);
2860 path_put(&root);
1da177e4
LT
2861 free_page((unsigned long) page);
2862 return error;
2863}
2864
2865/*
2866 * Test whether new_dentry is a subdirectory of old_dentry.
2867 *
2868 * Trivially implemented using the dcache structure
2869 */
2870
2871/**
2872 * is_subdir - is new dentry a subdirectory of old_dentry
2873 * @new_dentry: new dentry
2874 * @old_dentry: old dentry
2875 *
2876 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2877 * Returns 0 otherwise.
2878 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2879 */
2880
e2761a11 2881int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2882{
2883 int result;
949854d0 2884 unsigned seq;
1da177e4 2885
e2761a11
OH
2886 if (new_dentry == old_dentry)
2887 return 1;
2888
e2761a11 2889 do {
1da177e4 2890 /* for restarting inner loop in case of seq retry */
1da177e4 2891 seq = read_seqbegin(&rename_lock);
949854d0
NP
2892 /*
2893 * Need rcu_readlock to protect against the d_parent trashing
2894 * due to d_move
2895 */
2896 rcu_read_lock();
e2761a11 2897 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2898 result = 1;
e2761a11
OH
2899 else
2900 result = 0;
949854d0 2901 rcu_read_unlock();
1da177e4 2902 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2903
2904 return result;
2905}
2906
2907void d_genocide(struct dentry *root)
2908{
949854d0 2909 struct dentry *this_parent;
1da177e4 2910 struct list_head *next;
949854d0 2911 unsigned seq;
58db63d0 2912 int locked = 0;
1da177e4 2913
949854d0 2914 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2915again:
2916 this_parent = root;
2fd6b7f5 2917 spin_lock(&this_parent->d_lock);
1da177e4
LT
2918repeat:
2919 next = this_parent->d_subdirs.next;
2920resume:
2921 while (next != &this_parent->d_subdirs) {
2922 struct list_head *tmp = next;
5160ee6f 2923 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2924 next = tmp->next;
949854d0 2925
da502956
NP
2926 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2927 if (d_unhashed(dentry) || !dentry->d_inode) {
2928 spin_unlock(&dentry->d_lock);
1da177e4 2929 continue;
da502956 2930 }
1da177e4 2931 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2932 spin_unlock(&this_parent->d_lock);
2933 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2934 this_parent = dentry;
2fd6b7f5 2935 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2936 goto repeat;
2937 }
949854d0
NP
2938 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2939 dentry->d_flags |= DCACHE_GENOCIDE;
98474236 2940 dentry->d_lockref.count--;
949854d0 2941 }
b7ab39f6 2942 spin_unlock(&dentry->d_lock);
1da177e4
LT
2943 }
2944 if (this_parent != root) {
c826cb7d 2945 struct dentry *child = this_parent;
949854d0
NP
2946 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2947 this_parent->d_flags |= DCACHE_GENOCIDE;
98474236 2948 this_parent->d_lockref.count--;
949854d0 2949 }
c826cb7d
LT
2950 this_parent = try_to_ascend(this_parent, locked, seq);
2951 if (!this_parent)
949854d0 2952 goto rename_retry;
949854d0 2953 next = child->d_u.d_child.next;
1da177e4
LT
2954 goto resume;
2955 }
2fd6b7f5 2956 spin_unlock(&this_parent->d_lock);
58db63d0 2957 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2958 goto rename_retry;
58db63d0
NP
2959 if (locked)
2960 write_sequnlock(&rename_lock);
2961 return;
2962
2963rename_retry:
8110e16d
MS
2964 if (locked)
2965 goto again;
58db63d0
NP
2966 locked = 1;
2967 write_seqlock(&rename_lock);
2968 goto again;
1da177e4
LT
2969}
2970
60545d0d 2971void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 2972{
60545d0d
AV
2973 inode_dec_link_count(inode);
2974 BUG_ON(dentry->d_name.name != dentry->d_iname ||
2975 !hlist_unhashed(&dentry->d_alias) ||
2976 !d_unlinked(dentry));
2977 spin_lock(&dentry->d_parent->d_lock);
2978 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2979 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
2980 (unsigned long long)inode->i_ino);
2981 spin_unlock(&dentry->d_lock);
2982 spin_unlock(&dentry->d_parent->d_lock);
2983 d_instantiate(dentry, inode);
1da177e4 2984}
60545d0d 2985EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
2986
2987static __initdata unsigned long dhash_entries;
2988static int __init set_dhash_entries(char *str)
2989{
2990 if (!str)
2991 return 0;
2992 dhash_entries = simple_strtoul(str, &str, 0);
2993 return 1;
2994}
2995__setup("dhash_entries=", set_dhash_entries);
2996
2997static void __init dcache_init_early(void)
2998{
074b8517 2999 unsigned int loop;
1da177e4
LT
3000
3001 /* If hashes are distributed across NUMA nodes, defer
3002 * hash allocation until vmalloc space is available.
3003 */
3004 if (hashdist)
3005 return;
3006
3007 dentry_hashtable =
3008 alloc_large_system_hash("Dentry cache",
b07ad996 3009 sizeof(struct hlist_bl_head),
1da177e4
LT
3010 dhash_entries,
3011 13,
3012 HASH_EARLY,
3013 &d_hash_shift,
3014 &d_hash_mask,
31fe62b9 3015 0,
1da177e4
LT
3016 0);
3017
074b8517 3018 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3019 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3020}
3021
74bf17cf 3022static void __init dcache_init(void)
1da177e4 3023{
074b8517 3024 unsigned int loop;
1da177e4
LT
3025
3026 /*
3027 * A constructor could be added for stable state like the lists,
3028 * but it is probably not worth it because of the cache nature
3029 * of the dcache.
3030 */
0a31bd5f
CL
3031 dentry_cache = KMEM_CACHE(dentry,
3032 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3033
3034 /* Hash may have been set up in dcache_init_early */
3035 if (!hashdist)
3036 return;
3037
3038 dentry_hashtable =
3039 alloc_large_system_hash("Dentry cache",
b07ad996 3040 sizeof(struct hlist_bl_head),
1da177e4
LT
3041 dhash_entries,
3042 13,
3043 0,
3044 &d_hash_shift,
3045 &d_hash_mask,
31fe62b9 3046 0,
1da177e4
LT
3047 0);
3048
074b8517 3049 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3050 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3051}
3052
3053/* SLAB cache for __getname() consumers */
e18b890b 3054struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3055EXPORT_SYMBOL(names_cachep);
1da177e4 3056
1da177e4
LT
3057EXPORT_SYMBOL(d_genocide);
3058
1da177e4
LT
3059void __init vfs_caches_init_early(void)
3060{
3061 dcache_init_early();
3062 inode_init_early();
3063}
3064
3065void __init vfs_caches_init(unsigned long mempages)
3066{
3067 unsigned long reserve;
3068
3069 /* Base hash sizes on available memory, with a reserve equal to
3070 150% of current kernel size */
3071
3072 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3073 mempages -= reserve;
3074
3075 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3076 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3077
74bf17cf
DC
3078 dcache_init();
3079 inode_init();
1da177e4 3080 files_init(mempages);
74bf17cf 3081 mnt_init();
1da177e4
LT
3082 bdev_cache_init();
3083 chrdev_init();
3084}