]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
new helper: dentry_free()
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
f0023bc6
SW
398/*
399 * Remove a dentry with references from the LRU.
dd1f6b2e
DC
400 *
401 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
402 * lose our last reference through the parent walk. In this case, we need to
403 * remove ourselves from the shrink list, not the LRU.
f0023bc6 404 */
da3bbdd4
KM
405static void dentry_lru_del(struct dentry *dentry)
406{
89dc77bc
LT
407 if (dentry->d_flags & DCACHE_LRU_LIST) {
408 if (dentry->d_flags & DCACHE_SHRINK_LIST)
409 return d_shrink_del(dentry);
410 d_lru_del(dentry);
da3bbdd4 411 }
da3bbdd4
KM
412}
413
789680d1
NP
414/**
415 * d_drop - drop a dentry
416 * @dentry: dentry to drop
417 *
418 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
419 * be found through a VFS lookup any more. Note that this is different from
420 * deleting the dentry - d_delete will try to mark the dentry negative if
421 * possible, giving a successful _negative_ lookup, while d_drop will
422 * just make the cache lookup fail.
423 *
424 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
425 * reason (NFS timeouts or autofs deletes).
426 *
427 * __d_drop requires dentry->d_lock.
428 */
429void __d_drop(struct dentry *dentry)
430{
dea3667b 431 if (!d_unhashed(dentry)) {
b61625d2 432 struct hlist_bl_head *b;
7632e465
BF
433 /*
434 * Hashed dentries are normally on the dentry hashtable,
435 * with the exception of those newly allocated by
436 * d_obtain_alias, which are always IS_ROOT:
437 */
438 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
439 b = &dentry->d_sb->s_anon;
440 else
441 b = d_hash(dentry->d_parent, dentry->d_name.hash);
442
443 hlist_bl_lock(b);
444 __hlist_bl_del(&dentry->d_hash);
445 dentry->d_hash.pprev = NULL;
446 hlist_bl_unlock(b);
dea3667b 447 dentry_rcuwalk_barrier(dentry);
789680d1
NP
448 }
449}
450EXPORT_SYMBOL(__d_drop);
451
452void d_drop(struct dentry *dentry)
453{
789680d1
NP
454 spin_lock(&dentry->d_lock);
455 __d_drop(dentry);
456 spin_unlock(&dentry->d_lock);
789680d1
NP
457}
458EXPORT_SYMBOL(d_drop);
459
77812a1e
NP
460/*
461 * Finish off a dentry we've decided to kill.
462 * dentry->d_lock must be held, returns with it unlocked.
463 * If ref is non-zero, then decrement the refcount too.
464 * Returns dentry requiring refcount drop, or NULL if we're done.
465 */
358eec18 466static struct dentry *
dd1f6b2e 467dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
468 __releases(dentry->d_lock)
469{
873feea0 470 struct inode *inode;
77812a1e
NP
471 struct dentry *parent;
472
873feea0
NP
473 inode = dentry->d_inode;
474 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 475relock:
dd1f6b2e
DC
476 if (unlock_on_failure) {
477 spin_unlock(&dentry->d_lock);
478 cpu_relax();
479 }
77812a1e
NP
480 return dentry; /* try again with same dentry */
481 }
482 if (IS_ROOT(dentry))
483 parent = NULL;
484 else
485 parent = dentry->d_parent;
486 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
487 if (inode)
488 spin_unlock(&inode->i_lock);
77812a1e
NP
489 goto relock;
490 }
31e6b01f 491
0d98439e
LT
492 /*
493 * The dentry is now unrecoverably dead to the world.
494 */
495 lockref_mark_dead(&dentry->d_lockref);
496
f0023bc6 497 /*
f0023bc6
SW
498 * inform the fs via d_prune that this dentry is about to be
499 * unhashed and destroyed.
500 */
590fb51f 501 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
502 dentry->d_op->d_prune(dentry);
503
504 dentry_lru_del(dentry);
77812a1e
NP
505 /* if it was on the hash then remove it */
506 __d_drop(dentry);
03b3b889
AV
507 list_del(&dentry->d_u.d_child);
508 /*
509 * Inform d_walk() that we are no longer attached to the
510 * dentry tree
511 */
512 dentry->d_flags |= DCACHE_DENTRY_KILLED;
513 if (parent)
514 spin_unlock(&parent->d_lock);
515 dentry_iput(dentry);
516 /*
517 * dentry_iput drops the locks, at which point nobody (except
518 * transient RCU lookups) can reach this dentry.
519 */
520 BUG_ON((int)dentry->d_lockref.count > 0);
521 this_cpu_dec(nr_dentry);
522 if (dentry->d_op && dentry->d_op->d_release)
523 dentry->d_op->d_release(dentry);
524
b4f0354e 525 dentry_free(dentry);
03b3b889 526 return parent;
77812a1e
NP
527}
528
1da177e4
LT
529/*
530 * This is dput
531 *
532 * This is complicated by the fact that we do not want to put
533 * dentries that are no longer on any hash chain on the unused
534 * list: we'd much rather just get rid of them immediately.
535 *
536 * However, that implies that we have to traverse the dentry
537 * tree upwards to the parents which might _also_ now be
538 * scheduled for deletion (it may have been only waiting for
539 * its last child to go away).
540 *
541 * This tail recursion is done by hand as we don't want to depend
542 * on the compiler to always get this right (gcc generally doesn't).
543 * Real recursion would eat up our stack space.
544 */
545
546/*
547 * dput - release a dentry
548 * @dentry: dentry to release
549 *
550 * Release a dentry. This will drop the usage count and if appropriate
551 * call the dentry unlink method as well as removing it from the queues and
552 * releasing its resources. If the parent dentries were scheduled for release
553 * they too may now get deleted.
1da177e4 554 */
1da177e4
LT
555void dput(struct dentry *dentry)
556{
8aab6a27 557 if (unlikely(!dentry))
1da177e4
LT
558 return;
559
560repeat:
98474236 561 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 562 return;
1da177e4 563
8aab6a27
LT
564 /* Unreachable? Get rid of it */
565 if (unlikely(d_unhashed(dentry)))
566 goto kill_it;
567
568 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 569 if (dentry->d_op->d_delete(dentry))
61f3dee4 570 goto kill_it;
1da177e4 571 }
265ac902 572
358eec18
LT
573 if (!(dentry->d_flags & DCACHE_REFERENCED))
574 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 575 dentry_lru_add(dentry);
265ac902 576
98474236 577 dentry->d_lockref.count--;
61f3dee4 578 spin_unlock(&dentry->d_lock);
1da177e4
LT
579 return;
580
d52b9086 581kill_it:
dd1f6b2e 582 dentry = dentry_kill(dentry, 1);
d52b9086
MS
583 if (dentry)
584 goto repeat;
1da177e4 585}
ec4f8605 586EXPORT_SYMBOL(dput);
1da177e4
LT
587
588/**
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
591 *
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
596 *
597 * no dcache lock.
598 */
599
600int d_invalidate(struct dentry * dentry)
601{
602 /*
603 * If it's already been dropped, return OK.
604 */
da502956 605 spin_lock(&dentry->d_lock);
1da177e4 606 if (d_unhashed(dentry)) {
da502956 607 spin_unlock(&dentry->d_lock);
1da177e4
LT
608 return 0;
609 }
610 /*
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
613 */
614 if (!list_empty(&dentry->d_subdirs)) {
da502956 615 spin_unlock(&dentry->d_lock);
1da177e4 616 shrink_dcache_parent(dentry);
da502956 617 spin_lock(&dentry->d_lock);
1da177e4
LT
618 }
619
620 /*
621 * Somebody else still using it?
622 *
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
50e69630
AV
629 * We also need to leave mountpoints alone,
630 * directory or not.
1da177e4 631 */
98474236 632 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 634 spin_unlock(&dentry->d_lock);
1da177e4
LT
635 return -EBUSY;
636 }
637 }
638
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
1da177e4
LT
641 return 0;
642}
ec4f8605 643EXPORT_SYMBOL(d_invalidate);
1da177e4 644
b5c84bf6 645/* This must be called with d_lock held */
dc0474be 646static inline void __dget_dlock(struct dentry *dentry)
23044507 647{
98474236 648 dentry->d_lockref.count++;
23044507
NP
649}
650
dc0474be 651static inline void __dget(struct dentry *dentry)
1da177e4 652{
98474236 653 lockref_get(&dentry->d_lockref);
1da177e4
LT
654}
655
b7ab39f6
NP
656struct dentry *dget_parent(struct dentry *dentry)
657{
df3d0bbc 658 int gotref;
b7ab39f6
NP
659 struct dentry *ret;
660
df3d0bbc
WL
661 /*
662 * Do optimistic parent lookup without any
663 * locking.
664 */
665 rcu_read_lock();
666 ret = ACCESS_ONCE(dentry->d_parent);
667 gotref = lockref_get_not_zero(&ret->d_lockref);
668 rcu_read_unlock();
669 if (likely(gotref)) {
670 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
671 return ret;
672 dput(ret);
673 }
674
b7ab39f6 675repeat:
a734eb45
NP
676 /*
677 * Don't need rcu_dereference because we re-check it was correct under
678 * the lock.
679 */
680 rcu_read_lock();
b7ab39f6 681 ret = dentry->d_parent;
a734eb45
NP
682 spin_lock(&ret->d_lock);
683 if (unlikely(ret != dentry->d_parent)) {
684 spin_unlock(&ret->d_lock);
685 rcu_read_unlock();
b7ab39f6
NP
686 goto repeat;
687 }
a734eb45 688 rcu_read_unlock();
98474236
WL
689 BUG_ON(!ret->d_lockref.count);
690 ret->d_lockref.count++;
b7ab39f6 691 spin_unlock(&ret->d_lock);
b7ab39f6
NP
692 return ret;
693}
694EXPORT_SYMBOL(dget_parent);
695
1da177e4
LT
696/**
697 * d_find_alias - grab a hashed alias of inode
698 * @inode: inode in question
32ba9c3f
LT
699 * @want_discon: flag, used by d_splice_alias, to request
700 * that only a DISCONNECTED alias be returned.
1da177e4
LT
701 *
702 * If inode has a hashed alias, or is a directory and has any alias,
703 * acquire the reference to alias and return it. Otherwise return NULL.
704 * Notice that if inode is a directory there can be only one alias and
705 * it can be unhashed only if it has no children, or if it is the root
706 * of a filesystem.
707 *
21c0d8fd 708 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
709 * any other hashed alias over that one unless @want_discon is set,
710 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 711 */
32ba9c3f 712static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 713{
da502956 714 struct dentry *alias, *discon_alias;
1da177e4 715
da502956
NP
716again:
717 discon_alias = NULL;
b67bfe0d 718 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 719 spin_lock(&alias->d_lock);
1da177e4 720 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 721 if (IS_ROOT(alias) &&
da502956 722 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 723 discon_alias = alias;
32ba9c3f 724 } else if (!want_discon) {
dc0474be 725 __dget_dlock(alias);
da502956
NP
726 spin_unlock(&alias->d_lock);
727 return alias;
728 }
729 }
730 spin_unlock(&alias->d_lock);
731 }
732 if (discon_alias) {
733 alias = discon_alias;
734 spin_lock(&alias->d_lock);
735 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
736 if (IS_ROOT(alias) &&
737 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 738 __dget_dlock(alias);
da502956 739 spin_unlock(&alias->d_lock);
1da177e4
LT
740 return alias;
741 }
742 }
da502956
NP
743 spin_unlock(&alias->d_lock);
744 goto again;
1da177e4 745 }
da502956 746 return NULL;
1da177e4
LT
747}
748
da502956 749struct dentry *d_find_alias(struct inode *inode)
1da177e4 750{
214fda1f
DH
751 struct dentry *de = NULL;
752
b3d9b7a3 753 if (!hlist_empty(&inode->i_dentry)) {
873feea0 754 spin_lock(&inode->i_lock);
32ba9c3f 755 de = __d_find_alias(inode, 0);
873feea0 756 spin_unlock(&inode->i_lock);
214fda1f 757 }
1da177e4
LT
758 return de;
759}
ec4f8605 760EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
761
762/*
763 * Try to kill dentries associated with this inode.
764 * WARNING: you must own a reference to inode.
765 */
766void d_prune_aliases(struct inode *inode)
767{
0cdca3f9 768 struct dentry *dentry;
1da177e4 769restart:
873feea0 770 spin_lock(&inode->i_lock);
b67bfe0d 771 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 772 spin_lock(&dentry->d_lock);
98474236 773 if (!dentry->d_lockref.count) {
590fb51f
YZ
774 /*
775 * inform the fs via d_prune that this dentry
776 * is about to be unhashed and destroyed.
777 */
778 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
779 !d_unhashed(dentry))
780 dentry->d_op->d_prune(dentry);
781
dc0474be 782 __dget_dlock(dentry);
1da177e4
LT
783 __d_drop(dentry);
784 spin_unlock(&dentry->d_lock);
873feea0 785 spin_unlock(&inode->i_lock);
1da177e4
LT
786 dput(dentry);
787 goto restart;
788 }
789 spin_unlock(&dentry->d_lock);
790 }
873feea0 791 spin_unlock(&inode->i_lock);
1da177e4 792}
ec4f8605 793EXPORT_SYMBOL(d_prune_aliases);
1da177e4 794
3049cfe2 795static void shrink_dentry_list(struct list_head *list)
1da177e4 796{
5c47e6d0 797 struct dentry *dentry, *parent;
da3bbdd4 798
ec33679d
NP
799 rcu_read_lock();
800 for (;;) {
ec33679d
NP
801 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
802 if (&dentry->d_lru == list)
803 break; /* empty */
89dc77bc
LT
804
805 /*
806 * Get the dentry lock, and re-verify that the dentry is
807 * this on the shrinking list. If it is, we know that
808 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
809 */
ec33679d
NP
810 spin_lock(&dentry->d_lock);
811 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
812 spin_unlock(&dentry->d_lock);
23044507
NP
813 continue;
814 }
815
dd1f6b2e
DC
816 /*
817 * The dispose list is isolated and dentries are not accounted
818 * to the LRU here, so we can simply remove it from the list
819 * here regardless of whether it is referenced or not.
820 */
89dc77bc 821 d_shrink_del(dentry);
dd1f6b2e 822
1da177e4
LT
823 /*
824 * We found an inuse dentry which was not removed from
dd1f6b2e 825 * the LRU because of laziness during lookup. Do not free it.
1da177e4 826 */
98474236 827 if (dentry->d_lockref.count) {
da3bbdd4 828 spin_unlock(&dentry->d_lock);
1da177e4
LT
829 continue;
830 }
ec33679d 831 rcu_read_unlock();
77812a1e 832
5c47e6d0 833 parent = dentry_kill(dentry, 0);
89dc77bc 834 /*
5c47e6d0 835 * If dentry_kill returns NULL, we have nothing more to do.
89dc77bc 836 */
5c47e6d0
AV
837 if (!parent) {
838 rcu_read_lock();
839 continue;
840 }
841 if (unlikely(parent == dentry)) {
842 /*
843 * trylocks have failed and d_lock has been held the
844 * whole time, so it could not have been added to any
845 * other lists. Just add it back to the shrink list.
846 */
847 rcu_read_lock();
89dc77bc 848 d_shrink_add(dentry, list);
dd1f6b2e 849 spin_unlock(&dentry->d_lock);
5c47e6d0 850 continue;
dd1f6b2e 851 }
5c47e6d0
AV
852 /*
853 * We need to prune ancestors too. This is necessary to prevent
854 * quadratic behavior of shrink_dcache_parent(), but is also
855 * expected to be beneficial in reducing dentry cache
856 * fragmentation.
857 */
858 dentry = parent;
859 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
860 dentry = dentry_kill(dentry, 1);
861 rcu_read_lock();
da3bbdd4 862 }
ec33679d 863 rcu_read_unlock();
3049cfe2
CH
864}
865
f6041567
DC
866static enum lru_status
867dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
868{
869 struct list_head *freeable = arg;
870 struct dentry *dentry = container_of(item, struct dentry, d_lru);
871
872
873 /*
874 * we are inverting the lru lock/dentry->d_lock here,
875 * so use a trylock. If we fail to get the lock, just skip
876 * it
877 */
878 if (!spin_trylock(&dentry->d_lock))
879 return LRU_SKIP;
880
881 /*
882 * Referenced dentries are still in use. If they have active
883 * counts, just remove them from the LRU. Otherwise give them
884 * another pass through the LRU.
885 */
886 if (dentry->d_lockref.count) {
89dc77bc 887 d_lru_isolate(dentry);
f6041567
DC
888 spin_unlock(&dentry->d_lock);
889 return LRU_REMOVED;
890 }
891
892 if (dentry->d_flags & DCACHE_REFERENCED) {
893 dentry->d_flags &= ~DCACHE_REFERENCED;
894 spin_unlock(&dentry->d_lock);
895
896 /*
897 * The list move itself will be made by the common LRU code. At
898 * this point, we've dropped the dentry->d_lock but keep the
899 * lru lock. This is safe to do, since every list movement is
900 * protected by the lru lock even if both locks are held.
901 *
902 * This is guaranteed by the fact that all LRU management
903 * functions are intermediated by the LRU API calls like
904 * list_lru_add and list_lru_del. List movement in this file
905 * only ever occur through this functions or through callbacks
906 * like this one, that are called from the LRU API.
907 *
908 * The only exceptions to this are functions like
909 * shrink_dentry_list, and code that first checks for the
910 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
911 * operating only with stack provided lists after they are
912 * properly isolated from the main list. It is thus, always a
913 * local access.
914 */
915 return LRU_ROTATE;
916 }
917
89dc77bc 918 d_lru_shrink_move(dentry, freeable);
f6041567
DC
919 spin_unlock(&dentry->d_lock);
920
921 return LRU_REMOVED;
922}
923
3049cfe2 924/**
b48f03b3
DC
925 * prune_dcache_sb - shrink the dcache
926 * @sb: superblock
f6041567 927 * @nr_to_scan : number of entries to try to free
9b17c623 928 * @nid: which node to scan for freeable entities
b48f03b3 929 *
f6041567 930 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
931 * done when we need more memory an called from the superblock shrinker
932 * function.
3049cfe2 933 *
b48f03b3
DC
934 * This function may fail to free any resources if all the dentries are in
935 * use.
3049cfe2 936 */
9b17c623
DC
937long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
938 int nid)
3049cfe2 939{
f6041567
DC
940 LIST_HEAD(dispose);
941 long freed;
3049cfe2 942
9b17c623
DC
943 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
944 &dispose, &nr_to_scan);
f6041567 945 shrink_dentry_list(&dispose);
0a234c6d 946 return freed;
da3bbdd4 947}
23044507 948
4e717f5c
GC
949static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
950 spinlock_t *lru_lock, void *arg)
dd1f6b2e 951{
4e717f5c
GC
952 struct list_head *freeable = arg;
953 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 954
4e717f5c
GC
955 /*
956 * we are inverting the lru lock/dentry->d_lock here,
957 * so use a trylock. If we fail to get the lock, just skip
958 * it
959 */
960 if (!spin_trylock(&dentry->d_lock))
961 return LRU_SKIP;
962
89dc77bc 963 d_lru_shrink_move(dentry, freeable);
4e717f5c 964 spin_unlock(&dentry->d_lock);
ec33679d 965
4e717f5c 966 return LRU_REMOVED;
da3bbdd4
KM
967}
968
4e717f5c 969
1da177e4
LT
970/**
971 * shrink_dcache_sb - shrink dcache for a superblock
972 * @sb: superblock
973 *
3049cfe2
CH
974 * Shrink the dcache for the specified super block. This is used to free
975 * the dcache before unmounting a file system.
1da177e4 976 */
3049cfe2 977void shrink_dcache_sb(struct super_block *sb)
1da177e4 978{
4e717f5c
GC
979 long freed;
980
981 do {
982 LIST_HEAD(dispose);
983
984 freed = list_lru_walk(&sb->s_dentry_lru,
985 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 986
4e717f5c
GC
987 this_cpu_sub(nr_dentry_unused, freed);
988 shrink_dentry_list(&dispose);
989 } while (freed > 0);
1da177e4 990}
ec4f8605 991EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 992
db14fc3a
MS
993/**
994 * enum d_walk_ret - action to talke during tree walk
995 * @D_WALK_CONTINUE: contrinue walk
996 * @D_WALK_QUIT: quit walk
997 * @D_WALK_NORETRY: quit when retry is needed
998 * @D_WALK_SKIP: skip this dentry and its children
999 */
1000enum d_walk_ret {
1001 D_WALK_CONTINUE,
1002 D_WALK_QUIT,
1003 D_WALK_NORETRY,
1004 D_WALK_SKIP,
1005};
c826cb7d 1006
1da177e4 1007/**
db14fc3a
MS
1008 * d_walk - walk the dentry tree
1009 * @parent: start of walk
1010 * @data: data passed to @enter() and @finish()
1011 * @enter: callback when first entering the dentry
1012 * @finish: callback when successfully finished the walk
1da177e4 1013 *
db14fc3a 1014 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1015 */
db14fc3a
MS
1016static void d_walk(struct dentry *parent, void *data,
1017 enum d_walk_ret (*enter)(void *, struct dentry *),
1018 void (*finish)(void *))
1da177e4 1019{
949854d0 1020 struct dentry *this_parent;
1da177e4 1021 struct list_head *next;
48f5ec21 1022 unsigned seq = 0;
db14fc3a
MS
1023 enum d_walk_ret ret;
1024 bool retry = true;
949854d0 1025
58db63d0 1026again:
48f5ec21 1027 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1028 this_parent = parent;
2fd6b7f5 1029 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1030
1031 ret = enter(data, this_parent);
1032 switch (ret) {
1033 case D_WALK_CONTINUE:
1034 break;
1035 case D_WALK_QUIT:
1036 case D_WALK_SKIP:
1037 goto out_unlock;
1038 case D_WALK_NORETRY:
1039 retry = false;
1040 break;
1041 }
1da177e4
LT
1042repeat:
1043 next = this_parent->d_subdirs.next;
1044resume:
1045 while (next != &this_parent->d_subdirs) {
1046 struct list_head *tmp = next;
5160ee6f 1047 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1048 next = tmp->next;
2fd6b7f5
NP
1049
1050 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1051
1052 ret = enter(data, dentry);
1053 switch (ret) {
1054 case D_WALK_CONTINUE:
1055 break;
1056 case D_WALK_QUIT:
2fd6b7f5 1057 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1058 goto out_unlock;
1059 case D_WALK_NORETRY:
1060 retry = false;
1061 break;
1062 case D_WALK_SKIP:
1063 spin_unlock(&dentry->d_lock);
1064 continue;
2fd6b7f5 1065 }
db14fc3a 1066
1da177e4 1067 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1068 spin_unlock(&this_parent->d_lock);
1069 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1070 this_parent = dentry;
2fd6b7f5 1071 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1072 goto repeat;
1073 }
2fd6b7f5 1074 spin_unlock(&dentry->d_lock);
1da177e4
LT
1075 }
1076 /*
1077 * All done at this level ... ascend and resume the search.
1078 */
1079 if (this_parent != parent) {
c826cb7d 1080 struct dentry *child = this_parent;
31dec132
AV
1081 this_parent = child->d_parent;
1082
1083 rcu_read_lock();
1084 spin_unlock(&child->d_lock);
1085 spin_lock(&this_parent->d_lock);
1086
1087 /*
1088 * might go back up the wrong parent if we have had a rename
1089 * or deletion
1090 */
1091 if (this_parent != child->d_parent ||
1092 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1093 need_seqretry(&rename_lock, seq)) {
1094 spin_unlock(&this_parent->d_lock);
1095 rcu_read_unlock();
949854d0 1096 goto rename_retry;
31dec132
AV
1097 }
1098 rcu_read_unlock();
949854d0 1099 next = child->d_u.d_child.next;
1da177e4
LT
1100 goto resume;
1101 }
48f5ec21 1102 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1103 spin_unlock(&this_parent->d_lock);
949854d0 1104 goto rename_retry;
db14fc3a
MS
1105 }
1106 if (finish)
1107 finish(data);
1108
1109out_unlock:
1110 spin_unlock(&this_parent->d_lock);
48f5ec21 1111 done_seqretry(&rename_lock, seq);
db14fc3a 1112 return;
58db63d0
NP
1113
1114rename_retry:
db14fc3a
MS
1115 if (!retry)
1116 return;
48f5ec21 1117 seq = 1;
58db63d0 1118 goto again;
1da177e4 1119}
db14fc3a
MS
1120
1121/*
1122 * Search for at least 1 mount point in the dentry's subdirs.
1123 * We descend to the next level whenever the d_subdirs
1124 * list is non-empty and continue searching.
1125 */
1126
db14fc3a
MS
1127static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1128{
1129 int *ret = data;
1130 if (d_mountpoint(dentry)) {
1131 *ret = 1;
1132 return D_WALK_QUIT;
1133 }
1134 return D_WALK_CONTINUE;
1135}
1136
69c88dc7
RD
1137/**
1138 * have_submounts - check for mounts over a dentry
1139 * @parent: dentry to check.
1140 *
1141 * Return true if the parent or its subdirectories contain
1142 * a mount point
1143 */
db14fc3a
MS
1144int have_submounts(struct dentry *parent)
1145{
1146 int ret = 0;
1147
1148 d_walk(parent, &ret, check_mount, NULL);
1149
1150 return ret;
1151}
ec4f8605 1152EXPORT_SYMBOL(have_submounts);
1da177e4 1153
eed81007
MS
1154/*
1155 * Called by mount code to set a mountpoint and check if the mountpoint is
1156 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1157 * subtree can become unreachable).
1158 *
1159 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1160 * this reason take rename_lock and d_lock on dentry and ancestors.
1161 */
1162int d_set_mounted(struct dentry *dentry)
1163{
1164 struct dentry *p;
1165 int ret = -ENOENT;
1166 write_seqlock(&rename_lock);
1167 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1168 /* Need exclusion wrt. check_submounts_and_drop() */
1169 spin_lock(&p->d_lock);
1170 if (unlikely(d_unhashed(p))) {
1171 spin_unlock(&p->d_lock);
1172 goto out;
1173 }
1174 spin_unlock(&p->d_lock);
1175 }
1176 spin_lock(&dentry->d_lock);
1177 if (!d_unlinked(dentry)) {
1178 dentry->d_flags |= DCACHE_MOUNTED;
1179 ret = 0;
1180 }
1181 spin_unlock(&dentry->d_lock);
1182out:
1183 write_sequnlock(&rename_lock);
1184 return ret;
1185}
1186
1da177e4 1187/*
fd517909 1188 * Search the dentry child list of the specified parent,
1da177e4
LT
1189 * and move any unused dentries to the end of the unused
1190 * list for prune_dcache(). We descend to the next level
1191 * whenever the d_subdirs list is non-empty and continue
1192 * searching.
1193 *
1194 * It returns zero iff there are no unused children,
1195 * otherwise it returns the number of children moved to
1196 * the end of the unused list. This may not be the total
1197 * number of unused children, because select_parent can
1198 * drop the lock and return early due to latency
1199 * constraints.
1200 */
1da177e4 1201
db14fc3a
MS
1202struct select_data {
1203 struct dentry *start;
1204 struct list_head dispose;
1205 int found;
1206};
23044507 1207
db14fc3a
MS
1208static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1209{
1210 struct select_data *data = _data;
1211 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1212
db14fc3a
MS
1213 if (data->start == dentry)
1214 goto out;
2fd6b7f5 1215
1da177e4 1216 /*
db14fc3a
MS
1217 * move only zero ref count dentries to the dispose list.
1218 *
1219 * Those which are presently on the shrink list, being processed
1220 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1221 * loop in shrink_dcache_parent() might not make any progress
1222 * and loop forever.
1da177e4 1223 */
db14fc3a
MS
1224 if (dentry->d_lockref.count) {
1225 dentry_lru_del(dentry);
1226 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
89dc77bc
LT
1227 /*
1228 * We can't use d_lru_shrink_move() because we
1229 * need to get the global LRU lock and do the
05a8252b 1230 * LRU accounting.
89dc77bc
LT
1231 */
1232 d_lru_del(dentry);
1233 d_shrink_add(dentry, &data->dispose);
db14fc3a
MS
1234 data->found++;
1235 ret = D_WALK_NORETRY;
1da177e4 1236 }
db14fc3a
MS
1237 /*
1238 * We can return to the caller if we have found some (this
1239 * ensures forward progress). We'll be coming back to find
1240 * the rest.
1241 */
1242 if (data->found && need_resched())
1243 ret = D_WALK_QUIT;
1da177e4 1244out:
db14fc3a 1245 return ret;
1da177e4
LT
1246}
1247
1248/**
1249 * shrink_dcache_parent - prune dcache
1250 * @parent: parent of entries to prune
1251 *
1252 * Prune the dcache to remove unused children of the parent dentry.
1253 */
db14fc3a 1254void shrink_dcache_parent(struct dentry *parent)
1da177e4 1255{
db14fc3a
MS
1256 for (;;) {
1257 struct select_data data;
1da177e4 1258
db14fc3a
MS
1259 INIT_LIST_HEAD(&data.dispose);
1260 data.start = parent;
1261 data.found = 0;
1262
1263 d_walk(parent, &data, select_collect, NULL);
1264 if (!data.found)
1265 break;
1266
1267 shrink_dentry_list(&data.dispose);
421348f1
GT
1268 cond_resched();
1269 }
1da177e4 1270}
ec4f8605 1271EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1272
42c32608
AV
1273static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1274{
1275 struct select_data *data = _data;
1276 enum d_walk_ret ret = D_WALK_CONTINUE;
1277
1278 if (dentry->d_lockref.count) {
1279 dentry_lru_del(dentry);
1280 if (likely(!list_empty(&dentry->d_subdirs)))
1281 goto out;
1282 if (dentry == data->start && dentry->d_lockref.count == 1)
1283 goto out;
1284 printk(KERN_ERR
1285 "BUG: Dentry %p{i=%lx,n=%s}"
1286 " still in use (%d)"
1287 " [unmount of %s %s]\n",
1288 dentry,
1289 dentry->d_inode ?
1290 dentry->d_inode->i_ino : 0UL,
1291 dentry->d_name.name,
1292 dentry->d_lockref.count,
1293 dentry->d_sb->s_type->name,
1294 dentry->d_sb->s_id);
1295 BUG();
1296 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1297 /*
1298 * We can't use d_lru_shrink_move() because we
1299 * need to get the global LRU lock and do the
1300 * LRU accounting.
1301 */
1302 if (dentry->d_flags & DCACHE_LRU_LIST)
1303 d_lru_del(dentry);
1304 d_shrink_add(dentry, &data->dispose);
1305 data->found++;
1306 ret = D_WALK_NORETRY;
1307 }
1308out:
1309 if (data->found && need_resched())
1310 ret = D_WALK_QUIT;
1311 return ret;
1312}
1313
1314/*
1315 * destroy the dentries attached to a superblock on unmounting
1316 */
1317void shrink_dcache_for_umount(struct super_block *sb)
1318{
1319 struct dentry *dentry;
1320
1321 if (down_read_trylock(&sb->s_umount))
1322 BUG();
1323
1324 dentry = sb->s_root;
1325 sb->s_root = NULL;
1326 for (;;) {
1327 struct select_data data;
1328
1329 INIT_LIST_HEAD(&data.dispose);
1330 data.start = dentry;
1331 data.found = 0;
1332
1333 d_walk(dentry, &data, umount_collect, NULL);
1334 if (!data.found)
1335 break;
1336
1337 shrink_dentry_list(&data.dispose);
1338 cond_resched();
1339 }
1340 d_drop(dentry);
1341 dput(dentry);
1342
1343 while (!hlist_bl_empty(&sb->s_anon)) {
1344 struct select_data data;
1345 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1346
1347 INIT_LIST_HEAD(&data.dispose);
1348 data.start = NULL;
1349 data.found = 0;
1350
1351 d_walk(dentry, &data, umount_collect, NULL);
1352 if (data.found)
1353 shrink_dentry_list(&data.dispose);
1354 cond_resched();
1355 }
1356}
1357
848ac114
MS
1358static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1359{
1360 struct select_data *data = _data;
1361
1362 if (d_mountpoint(dentry)) {
1363 data->found = -EBUSY;
1364 return D_WALK_QUIT;
1365 }
1366
1367 return select_collect(_data, dentry);
1368}
1369
1370static void check_and_drop(void *_data)
1371{
1372 struct select_data *data = _data;
1373
1374 if (d_mountpoint(data->start))
1375 data->found = -EBUSY;
1376 if (!data->found)
1377 __d_drop(data->start);
1378}
1379
1380/**
1381 * check_submounts_and_drop - prune dcache, check for submounts and drop
1382 *
1383 * All done as a single atomic operation relative to has_unlinked_ancestor().
1384 * Returns 0 if successfully unhashed @parent. If there were submounts then
1385 * return -EBUSY.
1386 *
1387 * @dentry: dentry to prune and drop
1388 */
1389int check_submounts_and_drop(struct dentry *dentry)
1390{
1391 int ret = 0;
1392
1393 /* Negative dentries can be dropped without further checks */
1394 if (!dentry->d_inode) {
1395 d_drop(dentry);
1396 goto out;
1397 }
1398
1399 for (;;) {
1400 struct select_data data;
1401
1402 INIT_LIST_HEAD(&data.dispose);
1403 data.start = dentry;
1404 data.found = 0;
1405
1406 d_walk(dentry, &data, check_and_collect, check_and_drop);
1407 ret = data.found;
1408
1409 if (!list_empty(&data.dispose))
1410 shrink_dentry_list(&data.dispose);
1411
1412 if (ret <= 0)
1413 break;
1414
1415 cond_resched();
1416 }
1417
1418out:
1419 return ret;
1420}
1421EXPORT_SYMBOL(check_submounts_and_drop);
1422
1da177e4 1423/**
a4464dbc
AV
1424 * __d_alloc - allocate a dcache entry
1425 * @sb: filesystem it will belong to
1da177e4
LT
1426 * @name: qstr of the name
1427 *
1428 * Allocates a dentry. It returns %NULL if there is insufficient memory
1429 * available. On a success the dentry is returned. The name passed in is
1430 * copied and the copy passed in may be reused after this call.
1431 */
1432
a4464dbc 1433struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1434{
1435 struct dentry *dentry;
1436 char *dname;
1437
e12ba74d 1438 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1439 if (!dentry)
1440 return NULL;
1441
6326c71f
LT
1442 /*
1443 * We guarantee that the inline name is always NUL-terminated.
1444 * This way the memcpy() done by the name switching in rename
1445 * will still always have a NUL at the end, even if we might
1446 * be overwriting an internal NUL character
1447 */
1448 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1449 if (name->len > DNAME_INLINE_LEN-1) {
1450 dname = kmalloc(name->len + 1, GFP_KERNEL);
1451 if (!dname) {
1452 kmem_cache_free(dentry_cache, dentry);
1453 return NULL;
1454 }
1455 } else {
1456 dname = dentry->d_iname;
1457 }
1da177e4
LT
1458
1459 dentry->d_name.len = name->len;
1460 dentry->d_name.hash = name->hash;
1461 memcpy(dname, name->name, name->len);
1462 dname[name->len] = 0;
1463
6326c71f
LT
1464 /* Make sure we always see the terminating NUL character */
1465 smp_wmb();
1466 dentry->d_name.name = dname;
1467
98474236 1468 dentry->d_lockref.count = 1;
dea3667b 1469 dentry->d_flags = 0;
1da177e4 1470 spin_lock_init(&dentry->d_lock);
31e6b01f 1471 seqcount_init(&dentry->d_seq);
1da177e4 1472 dentry->d_inode = NULL;
a4464dbc
AV
1473 dentry->d_parent = dentry;
1474 dentry->d_sb = sb;
1da177e4
LT
1475 dentry->d_op = NULL;
1476 dentry->d_fsdata = NULL;
ceb5bdc2 1477 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1478 INIT_LIST_HEAD(&dentry->d_lru);
1479 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1480 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1481 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1482 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1483
3e880fb5 1484 this_cpu_inc(nr_dentry);
312d3ca8 1485
1da177e4
LT
1486 return dentry;
1487}
a4464dbc
AV
1488
1489/**
1490 * d_alloc - allocate a dcache entry
1491 * @parent: parent of entry to allocate
1492 * @name: qstr of the name
1493 *
1494 * Allocates a dentry. It returns %NULL if there is insufficient memory
1495 * available. On a success the dentry is returned. The name passed in is
1496 * copied and the copy passed in may be reused after this call.
1497 */
1498struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1499{
1500 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1501 if (!dentry)
1502 return NULL;
1503
1504 spin_lock(&parent->d_lock);
1505 /*
1506 * don't need child lock because it is not subject
1507 * to concurrency here
1508 */
1509 __dget_dlock(parent);
1510 dentry->d_parent = parent;
1511 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1512 spin_unlock(&parent->d_lock);
1513
1514 return dentry;
1515}
ec4f8605 1516EXPORT_SYMBOL(d_alloc);
1da177e4 1517
e1a24bb0
BF
1518/**
1519 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1520 * @sb: the superblock
1521 * @name: qstr of the name
1522 *
1523 * For a filesystem that just pins its dentries in memory and never
1524 * performs lookups at all, return an unhashed IS_ROOT dentry.
1525 */
4b936885
NP
1526struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1527{
e1a24bb0 1528 return __d_alloc(sb, name);
4b936885
NP
1529}
1530EXPORT_SYMBOL(d_alloc_pseudo);
1531
1da177e4
LT
1532struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1533{
1534 struct qstr q;
1535
1536 q.name = name;
1537 q.len = strlen(name);
1538 q.hash = full_name_hash(q.name, q.len);
1539 return d_alloc(parent, &q);
1540}
ef26ca97 1541EXPORT_SYMBOL(d_alloc_name);
1da177e4 1542
fb045adb
NP
1543void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1544{
6f7f7caa
LT
1545 WARN_ON_ONCE(dentry->d_op);
1546 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1547 DCACHE_OP_COMPARE |
1548 DCACHE_OP_REVALIDATE |
ecf3d1f1 1549 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1550 DCACHE_OP_DELETE ));
1551 dentry->d_op = op;
1552 if (!op)
1553 return;
1554 if (op->d_hash)
1555 dentry->d_flags |= DCACHE_OP_HASH;
1556 if (op->d_compare)
1557 dentry->d_flags |= DCACHE_OP_COMPARE;
1558 if (op->d_revalidate)
1559 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1560 if (op->d_weak_revalidate)
1561 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1562 if (op->d_delete)
1563 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1564 if (op->d_prune)
1565 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1566
1567}
1568EXPORT_SYMBOL(d_set_d_op);
1569
b18825a7
DH
1570static unsigned d_flags_for_inode(struct inode *inode)
1571{
1572 unsigned add_flags = DCACHE_FILE_TYPE;
1573
1574 if (!inode)
1575 return DCACHE_MISS_TYPE;
1576
1577 if (S_ISDIR(inode->i_mode)) {
1578 add_flags = DCACHE_DIRECTORY_TYPE;
1579 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1580 if (unlikely(!inode->i_op->lookup))
1581 add_flags = DCACHE_AUTODIR_TYPE;
1582 else
1583 inode->i_opflags |= IOP_LOOKUP;
1584 }
1585 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1586 if (unlikely(inode->i_op->follow_link))
1587 add_flags = DCACHE_SYMLINK_TYPE;
1588 else
1589 inode->i_opflags |= IOP_NOFOLLOW;
1590 }
1591
1592 if (unlikely(IS_AUTOMOUNT(inode)))
1593 add_flags |= DCACHE_NEED_AUTOMOUNT;
1594 return add_flags;
1595}
1596
360da900
OH
1597static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1598{
b18825a7
DH
1599 unsigned add_flags = d_flags_for_inode(inode);
1600
b23fb0a6 1601 spin_lock(&dentry->d_lock);
22213318 1602 __d_set_type(dentry, add_flags);
b18825a7 1603 if (inode)
b3d9b7a3 1604 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1605 dentry->d_inode = inode;
31e6b01f 1606 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1607 spin_unlock(&dentry->d_lock);
360da900
OH
1608 fsnotify_d_instantiate(dentry, inode);
1609}
1610
1da177e4
LT
1611/**
1612 * d_instantiate - fill in inode information for a dentry
1613 * @entry: dentry to complete
1614 * @inode: inode to attach to this dentry
1615 *
1616 * Fill in inode information in the entry.
1617 *
1618 * This turns negative dentries into productive full members
1619 * of society.
1620 *
1621 * NOTE! This assumes that the inode count has been incremented
1622 * (or otherwise set) by the caller to indicate that it is now
1623 * in use by the dcache.
1624 */
1625
1626void d_instantiate(struct dentry *entry, struct inode * inode)
1627{
b3d9b7a3 1628 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1629 if (inode)
1630 spin_lock(&inode->i_lock);
360da900 1631 __d_instantiate(entry, inode);
873feea0
NP
1632 if (inode)
1633 spin_unlock(&inode->i_lock);
1da177e4
LT
1634 security_d_instantiate(entry, inode);
1635}
ec4f8605 1636EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1637
1638/**
1639 * d_instantiate_unique - instantiate a non-aliased dentry
1640 * @entry: dentry to instantiate
1641 * @inode: inode to attach to this dentry
1642 *
1643 * Fill in inode information in the entry. On success, it returns NULL.
1644 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1645 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1646 *
1647 * Note that in order to avoid conflicts with rename() etc, the caller
1648 * had better be holding the parent directory semaphore.
e866cfa9
OD
1649 *
1650 * This also assumes that the inode count has been incremented
1651 * (or otherwise set) by the caller to indicate that it is now
1652 * in use by the dcache.
1da177e4 1653 */
770bfad8
DH
1654static struct dentry *__d_instantiate_unique(struct dentry *entry,
1655 struct inode *inode)
1da177e4
LT
1656{
1657 struct dentry *alias;
1658 int len = entry->d_name.len;
1659 const char *name = entry->d_name.name;
1660 unsigned int hash = entry->d_name.hash;
1661
770bfad8 1662 if (!inode) {
360da900 1663 __d_instantiate(entry, NULL);
770bfad8
DH
1664 return NULL;
1665 }
1666
b67bfe0d 1667 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1668 /*
1669 * Don't need alias->d_lock here, because aliases with
1670 * d_parent == entry->d_parent are not subject to name or
1671 * parent changes, because the parent inode i_mutex is held.
1672 */
12f8ad4b 1673 if (alias->d_name.hash != hash)
1da177e4
LT
1674 continue;
1675 if (alias->d_parent != entry->d_parent)
1676 continue;
ee983e89
LT
1677 if (alias->d_name.len != len)
1678 continue;
12f8ad4b 1679 if (dentry_cmp(alias, name, len))
1da177e4 1680 continue;
dc0474be 1681 __dget(alias);
1da177e4
LT
1682 return alias;
1683 }
770bfad8 1684
360da900 1685 __d_instantiate(entry, inode);
1da177e4
LT
1686 return NULL;
1687}
770bfad8
DH
1688
1689struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1690{
1691 struct dentry *result;
1692
b3d9b7a3 1693 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1694
873feea0
NP
1695 if (inode)
1696 spin_lock(&inode->i_lock);
770bfad8 1697 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1698 if (inode)
1699 spin_unlock(&inode->i_lock);
770bfad8
DH
1700
1701 if (!result) {
1702 security_d_instantiate(entry, inode);
1703 return NULL;
1704 }
1705
1706 BUG_ON(!d_unhashed(result));
1707 iput(inode);
1708 return result;
1709}
1710
1da177e4
LT
1711EXPORT_SYMBOL(d_instantiate_unique);
1712
b70a80e7
MS
1713/**
1714 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1715 * @entry: dentry to complete
1716 * @inode: inode to attach to this dentry
1717 *
1718 * Fill in inode information in the entry. If a directory alias is found, then
1719 * return an error (and drop inode). Together with d_materialise_unique() this
1720 * guarantees that a directory inode may never have more than one alias.
1721 */
1722int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1723{
1724 BUG_ON(!hlist_unhashed(&entry->d_alias));
1725
1726 spin_lock(&inode->i_lock);
1727 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1728 spin_unlock(&inode->i_lock);
1729 iput(inode);
1730 return -EBUSY;
1731 }
1732 __d_instantiate(entry, inode);
1733 spin_unlock(&inode->i_lock);
1734 security_d_instantiate(entry, inode);
1735
1736 return 0;
1737}
1738EXPORT_SYMBOL(d_instantiate_no_diralias);
1739
adc0e91a
AV
1740struct dentry *d_make_root(struct inode *root_inode)
1741{
1742 struct dentry *res = NULL;
1743
1744 if (root_inode) {
26fe5750 1745 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1746
1747 res = __d_alloc(root_inode->i_sb, &name);
1748 if (res)
1749 d_instantiate(res, root_inode);
1750 else
1751 iput(root_inode);
1752 }
1753 return res;
1754}
1755EXPORT_SYMBOL(d_make_root);
1756
d891eedb
BF
1757static struct dentry * __d_find_any_alias(struct inode *inode)
1758{
1759 struct dentry *alias;
1760
b3d9b7a3 1761 if (hlist_empty(&inode->i_dentry))
d891eedb 1762 return NULL;
b3d9b7a3 1763 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1764 __dget(alias);
1765 return alias;
1766}
1767
46f72b34
SW
1768/**
1769 * d_find_any_alias - find any alias for a given inode
1770 * @inode: inode to find an alias for
1771 *
1772 * If any aliases exist for the given inode, take and return a
1773 * reference for one of them. If no aliases exist, return %NULL.
1774 */
1775struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1776{
1777 struct dentry *de;
1778
1779 spin_lock(&inode->i_lock);
1780 de = __d_find_any_alias(inode);
1781 spin_unlock(&inode->i_lock);
1782 return de;
1783}
46f72b34 1784EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1785
4ea3ada2
CH
1786/**
1787 * d_obtain_alias - find or allocate a dentry for a given inode
1788 * @inode: inode to allocate the dentry for
1789 *
1790 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1791 * similar open by handle operations. The returned dentry may be anonymous,
1792 * or may have a full name (if the inode was already in the cache).
1793 *
1794 * When called on a directory inode, we must ensure that the inode only ever
1795 * has one dentry. If a dentry is found, that is returned instead of
1796 * allocating a new one.
1797 *
1798 * On successful return, the reference to the inode has been transferred
44003728
CH
1799 * to the dentry. In case of an error the reference on the inode is released.
1800 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1801 * be passed in and will be the error will be propagate to the return value,
1802 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1803 */
1804struct dentry *d_obtain_alias(struct inode *inode)
1805{
b911a6bd 1806 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1807 struct dentry *tmp;
1808 struct dentry *res;
b18825a7 1809 unsigned add_flags;
4ea3ada2
CH
1810
1811 if (!inode)
44003728 1812 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1813 if (IS_ERR(inode))
1814 return ERR_CAST(inode);
1815
d891eedb 1816 res = d_find_any_alias(inode);
9308a612
CH
1817 if (res)
1818 goto out_iput;
1819
a4464dbc 1820 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1821 if (!tmp) {
1822 res = ERR_PTR(-ENOMEM);
1823 goto out_iput;
4ea3ada2 1824 }
b5c84bf6 1825
873feea0 1826 spin_lock(&inode->i_lock);
d891eedb 1827 res = __d_find_any_alias(inode);
9308a612 1828 if (res) {
873feea0 1829 spin_unlock(&inode->i_lock);
9308a612
CH
1830 dput(tmp);
1831 goto out_iput;
1832 }
1833
1834 /* attach a disconnected dentry */
b18825a7
DH
1835 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1836
9308a612 1837 spin_lock(&tmp->d_lock);
9308a612 1838 tmp->d_inode = inode;
b18825a7 1839 tmp->d_flags |= add_flags;
b3d9b7a3 1840 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1841 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1842 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1843 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1844 spin_unlock(&tmp->d_lock);
873feea0 1845 spin_unlock(&inode->i_lock);
24ff6663 1846 security_d_instantiate(tmp, inode);
9308a612 1847
9308a612
CH
1848 return tmp;
1849
1850 out_iput:
24ff6663
JB
1851 if (res && !IS_ERR(res))
1852 security_d_instantiate(res, inode);
9308a612
CH
1853 iput(inode);
1854 return res;
4ea3ada2 1855}
adc48720 1856EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1857
1858/**
1859 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1860 * @inode: the inode which may have a disconnected dentry
1861 * @dentry: a negative dentry which we want to point to the inode.
1862 *
1863 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1864 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1865 * and return it, else simply d_add the inode to the dentry and return NULL.
1866 *
1867 * This is needed in the lookup routine of any filesystem that is exportable
1868 * (via knfsd) so that we can build dcache paths to directories effectively.
1869 *
1870 * If a dentry was found and moved, then it is returned. Otherwise NULL
1871 * is returned. This matches the expected return value of ->lookup.
1872 *
6d4ade98
SW
1873 * Cluster filesystems may call this function with a negative, hashed dentry.
1874 * In that case, we know that the inode will be a regular file, and also this
1875 * will only occur during atomic_open. So we need to check for the dentry
1876 * being already hashed only in the final case.
1da177e4
LT
1877 */
1878struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1879{
1880 struct dentry *new = NULL;
1881
a9049376
AV
1882 if (IS_ERR(inode))
1883 return ERR_CAST(inode);
1884
21c0d8fd 1885 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1886 spin_lock(&inode->i_lock);
32ba9c3f 1887 new = __d_find_alias(inode, 1);
1da177e4 1888 if (new) {
32ba9c3f 1889 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1890 spin_unlock(&inode->i_lock);
1da177e4 1891 security_d_instantiate(new, inode);
1da177e4
LT
1892 d_move(new, dentry);
1893 iput(inode);
1894 } else {
873feea0 1895 /* already taking inode->i_lock, so d_add() by hand */
360da900 1896 __d_instantiate(dentry, inode);
873feea0 1897 spin_unlock(&inode->i_lock);
1da177e4
LT
1898 security_d_instantiate(dentry, inode);
1899 d_rehash(dentry);
1900 }
6d4ade98
SW
1901 } else {
1902 d_instantiate(dentry, inode);
1903 if (d_unhashed(dentry))
1904 d_rehash(dentry);
1905 }
1da177e4
LT
1906 return new;
1907}
ec4f8605 1908EXPORT_SYMBOL(d_splice_alias);
1da177e4 1909
9403540c
BN
1910/**
1911 * d_add_ci - lookup or allocate new dentry with case-exact name
1912 * @inode: the inode case-insensitive lookup has found
1913 * @dentry: the negative dentry that was passed to the parent's lookup func
1914 * @name: the case-exact name to be associated with the returned dentry
1915 *
1916 * This is to avoid filling the dcache with case-insensitive names to the
1917 * same inode, only the actual correct case is stored in the dcache for
1918 * case-insensitive filesystems.
1919 *
1920 * For a case-insensitive lookup match and if the the case-exact dentry
1921 * already exists in in the dcache, use it and return it.
1922 *
1923 * If no entry exists with the exact case name, allocate new dentry with
1924 * the exact case, and return the spliced entry.
1925 */
e45b590b 1926struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1927 struct qstr *name)
1928{
9403540c
BN
1929 struct dentry *found;
1930 struct dentry *new;
1931
b6520c81
CH
1932 /*
1933 * First check if a dentry matching the name already exists,
1934 * if not go ahead and create it now.
1935 */
9403540c 1936 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1937 if (unlikely(IS_ERR(found)))
1938 goto err_out;
9403540c
BN
1939 if (!found) {
1940 new = d_alloc(dentry->d_parent, name);
1941 if (!new) {
4f522a24 1942 found = ERR_PTR(-ENOMEM);
9403540c
BN
1943 goto err_out;
1944 }
b6520c81 1945
9403540c
BN
1946 found = d_splice_alias(inode, new);
1947 if (found) {
1948 dput(new);
1949 return found;
1950 }
1951 return new;
1952 }
b6520c81
CH
1953
1954 /*
1955 * If a matching dentry exists, and it's not negative use it.
1956 *
1957 * Decrement the reference count to balance the iget() done
1958 * earlier on.
1959 */
9403540c
BN
1960 if (found->d_inode) {
1961 if (unlikely(found->d_inode != inode)) {
1962 /* This can't happen because bad inodes are unhashed. */
1963 BUG_ON(!is_bad_inode(inode));
1964 BUG_ON(!is_bad_inode(found->d_inode));
1965 }
9403540c
BN
1966 iput(inode);
1967 return found;
1968 }
b6520c81 1969
9403540c 1970 /*
9403540c 1971 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1972 * already has a dentry.
9403540c 1973 */
4513d899
AV
1974 new = d_splice_alias(inode, found);
1975 if (new) {
1976 dput(found);
1977 found = new;
9403540c 1978 }
4513d899 1979 return found;
9403540c
BN
1980
1981err_out:
1982 iput(inode);
4f522a24 1983 return found;
9403540c 1984}
ec4f8605 1985EXPORT_SYMBOL(d_add_ci);
1da177e4 1986
12f8ad4b
LT
1987/*
1988 * Do the slow-case of the dentry name compare.
1989 *
1990 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1991 * load the name and length information, so that the
12f8ad4b
LT
1992 * filesystem can rely on them, and can use the 'name' and
1993 * 'len' information without worrying about walking off the
1994 * end of memory etc.
1995 *
1996 * Thus the read_seqcount_retry() and the "duplicate" info
1997 * in arguments (the low-level filesystem should not look
1998 * at the dentry inode or name contents directly, since
1999 * rename can change them while we're in RCU mode).
2000 */
2001enum slow_d_compare {
2002 D_COMP_OK,
2003 D_COMP_NOMATCH,
2004 D_COMP_SEQRETRY,
2005};
2006
2007static noinline enum slow_d_compare slow_dentry_cmp(
2008 const struct dentry *parent,
12f8ad4b
LT
2009 struct dentry *dentry,
2010 unsigned int seq,
2011 const struct qstr *name)
2012{
2013 int tlen = dentry->d_name.len;
2014 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2015
2016 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2017 cpu_relax();
2018 return D_COMP_SEQRETRY;
2019 }
da53be12 2020 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2021 return D_COMP_NOMATCH;
2022 return D_COMP_OK;
2023}
2024
31e6b01f
NP
2025/**
2026 * __d_lookup_rcu - search for a dentry (racy, store-free)
2027 * @parent: parent dentry
2028 * @name: qstr of name we wish to find
1f1e6e52 2029 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2030 * Returns: dentry, or NULL
2031 *
2032 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2033 * resolution (store-free path walking) design described in
2034 * Documentation/filesystems/path-lookup.txt.
2035 *
2036 * This is not to be used outside core vfs.
2037 *
2038 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2039 * held, and rcu_read_lock held. The returned dentry must not be stored into
2040 * without taking d_lock and checking d_seq sequence count against @seq
2041 * returned here.
2042 *
15570086 2043 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2044 * function.
2045 *
2046 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2047 * the returned dentry, so long as its parent's seqlock is checked after the
2048 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2049 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2050 *
2051 * NOTE! The caller *has* to check the resulting dentry against the sequence
2052 * number we've returned before using any of the resulting dentry state!
31e6b01f 2053 */
8966be90
LT
2054struct dentry *__d_lookup_rcu(const struct dentry *parent,
2055 const struct qstr *name,
da53be12 2056 unsigned *seqp)
31e6b01f 2057{
26fe5750 2058 u64 hashlen = name->hash_len;
31e6b01f 2059 const unsigned char *str = name->name;
26fe5750 2060 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2061 struct hlist_bl_node *node;
31e6b01f
NP
2062 struct dentry *dentry;
2063
2064 /*
2065 * Note: There is significant duplication with __d_lookup_rcu which is
2066 * required to prevent single threaded performance regressions
2067 * especially on architectures where smp_rmb (in seqcounts) are costly.
2068 * Keep the two functions in sync.
2069 */
2070
2071 /*
2072 * The hash list is protected using RCU.
2073 *
2074 * Carefully use d_seq when comparing a candidate dentry, to avoid
2075 * races with d_move().
2076 *
2077 * It is possible that concurrent renames can mess up our list
2078 * walk here and result in missing our dentry, resulting in the
2079 * false-negative result. d_lookup() protects against concurrent
2080 * renames using rename_lock seqlock.
2081 *
b0a4bb83 2082 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2083 */
b07ad996 2084 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2085 unsigned seq;
31e6b01f 2086
31e6b01f 2087seqretry:
12f8ad4b
LT
2088 /*
2089 * The dentry sequence count protects us from concurrent
da53be12 2090 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2091 *
2092 * The caller must perform a seqcount check in order
da53be12 2093 * to do anything useful with the returned dentry.
12f8ad4b
LT
2094 *
2095 * NOTE! We do a "raw" seqcount_begin here. That means that
2096 * we don't wait for the sequence count to stabilize if it
2097 * is in the middle of a sequence change. If we do the slow
2098 * dentry compare, we will do seqretries until it is stable,
2099 * and if we end up with a successful lookup, we actually
2100 * want to exit RCU lookup anyway.
2101 */
2102 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2103 if (dentry->d_parent != parent)
2104 continue;
2e321806
LT
2105 if (d_unhashed(dentry))
2106 continue;
12f8ad4b 2107
830c0f0e 2108 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2109 if (dentry->d_name.hash != hashlen_hash(hashlen))
2110 continue;
da53be12
LT
2111 *seqp = seq;
2112 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2113 case D_COMP_OK:
2114 return dentry;
2115 case D_COMP_NOMATCH:
31e6b01f 2116 continue;
12f8ad4b
LT
2117 default:
2118 goto seqretry;
2119 }
31e6b01f 2120 }
12f8ad4b 2121
26fe5750 2122 if (dentry->d_name.hash_len != hashlen)
ee983e89 2123 continue;
da53be12 2124 *seqp = seq;
26fe5750 2125 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2126 return dentry;
31e6b01f
NP
2127 }
2128 return NULL;
2129}
2130
1da177e4
LT
2131/**
2132 * d_lookup - search for a dentry
2133 * @parent: parent dentry
2134 * @name: qstr of name we wish to find
b04f784e 2135 * Returns: dentry, or NULL
1da177e4 2136 *
b04f784e
NP
2137 * d_lookup searches the children of the parent dentry for the name in
2138 * question. If the dentry is found its reference count is incremented and the
2139 * dentry is returned. The caller must use dput to free the entry when it has
2140 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2141 */
da2d8455 2142struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2143{
31e6b01f 2144 struct dentry *dentry;
949854d0 2145 unsigned seq;
1da177e4
LT
2146
2147 do {
2148 seq = read_seqbegin(&rename_lock);
2149 dentry = __d_lookup(parent, name);
2150 if (dentry)
2151 break;
2152 } while (read_seqretry(&rename_lock, seq));
2153 return dentry;
2154}
ec4f8605 2155EXPORT_SYMBOL(d_lookup);
1da177e4 2156
31e6b01f 2157/**
b04f784e
NP
2158 * __d_lookup - search for a dentry (racy)
2159 * @parent: parent dentry
2160 * @name: qstr of name we wish to find
2161 * Returns: dentry, or NULL
2162 *
2163 * __d_lookup is like d_lookup, however it may (rarely) return a
2164 * false-negative result due to unrelated rename activity.
2165 *
2166 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2167 * however it must be used carefully, eg. with a following d_lookup in
2168 * the case of failure.
2169 *
2170 * __d_lookup callers must be commented.
2171 */
a713ca2a 2172struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2173{
2174 unsigned int len = name->len;
2175 unsigned int hash = name->hash;
2176 const unsigned char *str = name->name;
b07ad996 2177 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2178 struct hlist_bl_node *node;
31e6b01f 2179 struct dentry *found = NULL;
665a7583 2180 struct dentry *dentry;
1da177e4 2181
31e6b01f
NP
2182 /*
2183 * Note: There is significant duplication with __d_lookup_rcu which is
2184 * required to prevent single threaded performance regressions
2185 * especially on architectures where smp_rmb (in seqcounts) are costly.
2186 * Keep the two functions in sync.
2187 */
2188
b04f784e
NP
2189 /*
2190 * The hash list is protected using RCU.
2191 *
2192 * Take d_lock when comparing a candidate dentry, to avoid races
2193 * with d_move().
2194 *
2195 * It is possible that concurrent renames can mess up our list
2196 * walk here and result in missing our dentry, resulting in the
2197 * false-negative result. d_lookup() protects against concurrent
2198 * renames using rename_lock seqlock.
2199 *
b0a4bb83 2200 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2201 */
1da177e4
LT
2202 rcu_read_lock();
2203
b07ad996 2204 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2205
1da177e4
LT
2206 if (dentry->d_name.hash != hash)
2207 continue;
1da177e4
LT
2208
2209 spin_lock(&dentry->d_lock);
1da177e4
LT
2210 if (dentry->d_parent != parent)
2211 goto next;
d0185c08
LT
2212 if (d_unhashed(dentry))
2213 goto next;
2214
1da177e4
LT
2215 /*
2216 * It is safe to compare names since d_move() cannot
2217 * change the qstr (protected by d_lock).
2218 */
fb045adb 2219 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2220 int tlen = dentry->d_name.len;
2221 const char *tname = dentry->d_name.name;
da53be12 2222 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2223 goto next;
2224 } else {
ee983e89
LT
2225 if (dentry->d_name.len != len)
2226 goto next;
12f8ad4b 2227 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2228 goto next;
2229 }
2230
98474236 2231 dentry->d_lockref.count++;
d0185c08 2232 found = dentry;
1da177e4
LT
2233 spin_unlock(&dentry->d_lock);
2234 break;
2235next:
2236 spin_unlock(&dentry->d_lock);
2237 }
2238 rcu_read_unlock();
2239
2240 return found;
2241}
2242
3e7e241f
EB
2243/**
2244 * d_hash_and_lookup - hash the qstr then search for a dentry
2245 * @dir: Directory to search in
2246 * @name: qstr of name we wish to find
2247 *
4f522a24 2248 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2249 */
2250struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2251{
3e7e241f
EB
2252 /*
2253 * Check for a fs-specific hash function. Note that we must
2254 * calculate the standard hash first, as the d_op->d_hash()
2255 * routine may choose to leave the hash value unchanged.
2256 */
2257 name->hash = full_name_hash(name->name, name->len);
fb045adb 2258 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2259 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2260 if (unlikely(err < 0))
2261 return ERR_PTR(err);
3e7e241f 2262 }
4f522a24 2263 return d_lookup(dir, name);
3e7e241f 2264}
4f522a24 2265EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2266
1da177e4 2267/**
786a5e15 2268 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2269 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2270 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2271 *
2272 * An insecure source has sent us a dentry, here we verify it and dget() it.
2273 * This is used by ncpfs in its readdir implementation.
2274 * Zero is returned in the dentry is invalid.
786a5e15
NP
2275 *
2276 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2277 */
d3a23e16 2278int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2279{
786a5e15 2280 struct dentry *child;
d3a23e16 2281
2fd6b7f5 2282 spin_lock(&dparent->d_lock);
786a5e15
NP
2283 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2284 if (dentry == child) {
2fd6b7f5 2285 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2286 __dget_dlock(dentry);
2fd6b7f5
NP
2287 spin_unlock(&dentry->d_lock);
2288 spin_unlock(&dparent->d_lock);
1da177e4
LT
2289 return 1;
2290 }
2291 }
2fd6b7f5 2292 spin_unlock(&dparent->d_lock);
786a5e15 2293
1da177e4
LT
2294 return 0;
2295}
ec4f8605 2296EXPORT_SYMBOL(d_validate);
1da177e4
LT
2297
2298/*
2299 * When a file is deleted, we have two options:
2300 * - turn this dentry into a negative dentry
2301 * - unhash this dentry and free it.
2302 *
2303 * Usually, we want to just turn this into
2304 * a negative dentry, but if anybody else is
2305 * currently using the dentry or the inode
2306 * we can't do that and we fall back on removing
2307 * it from the hash queues and waiting for
2308 * it to be deleted later when it has no users
2309 */
2310
2311/**
2312 * d_delete - delete a dentry
2313 * @dentry: The dentry to delete
2314 *
2315 * Turn the dentry into a negative dentry if possible, otherwise
2316 * remove it from the hash queues so it can be deleted later
2317 */
2318
2319void d_delete(struct dentry * dentry)
2320{
873feea0 2321 struct inode *inode;
7a91bf7f 2322 int isdir = 0;
1da177e4
LT
2323 /*
2324 * Are we the only user?
2325 */
357f8e65 2326again:
1da177e4 2327 spin_lock(&dentry->d_lock);
873feea0
NP
2328 inode = dentry->d_inode;
2329 isdir = S_ISDIR(inode->i_mode);
98474236 2330 if (dentry->d_lockref.count == 1) {
1fe0c023 2331 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2332 spin_unlock(&dentry->d_lock);
2333 cpu_relax();
2334 goto again;
2335 }
13e3c5e5 2336 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2337 dentry_unlink_inode(dentry);
7a91bf7f 2338 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2339 return;
2340 }
2341
2342 if (!d_unhashed(dentry))
2343 __d_drop(dentry);
2344
2345 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2346
2347 fsnotify_nameremove(dentry, isdir);
1da177e4 2348}
ec4f8605 2349EXPORT_SYMBOL(d_delete);
1da177e4 2350
b07ad996 2351static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2352{
ceb5bdc2 2353 BUG_ON(!d_unhashed(entry));
1879fd6a 2354 hlist_bl_lock(b);
dea3667b 2355 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2356 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2357 hlist_bl_unlock(b);
1da177e4
LT
2358}
2359
770bfad8
DH
2360static void _d_rehash(struct dentry * entry)
2361{
2362 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2363}
2364
1da177e4
LT
2365/**
2366 * d_rehash - add an entry back to the hash
2367 * @entry: dentry to add to the hash
2368 *
2369 * Adds a dentry to the hash according to its name.
2370 */
2371
2372void d_rehash(struct dentry * entry)
2373{
1da177e4 2374 spin_lock(&entry->d_lock);
770bfad8 2375 _d_rehash(entry);
1da177e4 2376 spin_unlock(&entry->d_lock);
1da177e4 2377}
ec4f8605 2378EXPORT_SYMBOL(d_rehash);
1da177e4 2379
fb2d5b86
NP
2380/**
2381 * dentry_update_name_case - update case insensitive dentry with a new name
2382 * @dentry: dentry to be updated
2383 * @name: new name
2384 *
2385 * Update a case insensitive dentry with new case of name.
2386 *
2387 * dentry must have been returned by d_lookup with name @name. Old and new
2388 * name lengths must match (ie. no d_compare which allows mismatched name
2389 * lengths).
2390 *
2391 * Parent inode i_mutex must be held over d_lookup and into this call (to
2392 * keep renames and concurrent inserts, and readdir(2) away).
2393 */
2394void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2395{
7ebfa57f 2396 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2397 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2398
fb2d5b86 2399 spin_lock(&dentry->d_lock);
31e6b01f 2400 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2401 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2402 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2403 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2404}
2405EXPORT_SYMBOL(dentry_update_name_case);
2406
1da177e4
LT
2407static void switch_names(struct dentry *dentry, struct dentry *target)
2408{
2409 if (dname_external(target)) {
2410 if (dname_external(dentry)) {
2411 /*
2412 * Both external: swap the pointers
2413 */
9a8d5bb4 2414 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2415 } else {
2416 /*
2417 * dentry:internal, target:external. Steal target's
2418 * storage and make target internal.
2419 */
321bcf92
BF
2420 memcpy(target->d_iname, dentry->d_name.name,
2421 dentry->d_name.len + 1);
1da177e4
LT
2422 dentry->d_name.name = target->d_name.name;
2423 target->d_name.name = target->d_iname;
2424 }
2425 } else {
2426 if (dname_external(dentry)) {
2427 /*
2428 * dentry:external, target:internal. Give dentry's
2429 * storage to target and make dentry internal
2430 */
2431 memcpy(dentry->d_iname, target->d_name.name,
2432 target->d_name.len + 1);
2433 target->d_name.name = dentry->d_name.name;
2434 dentry->d_name.name = dentry->d_iname;
2435 } else {
2436 /*
da1ce067 2437 * Both are internal.
1da177e4 2438 */
da1ce067
MS
2439 unsigned int i;
2440 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2441 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2442 swap(((long *) &dentry->d_iname)[i],
2443 ((long *) &target->d_iname)[i]);
2444 }
1da177e4
LT
2445 }
2446 }
9a8d5bb4 2447 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2448}
2449
2fd6b7f5
NP
2450static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2451{
2452 /*
2453 * XXXX: do we really need to take target->d_lock?
2454 */
2455 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2456 spin_lock(&target->d_parent->d_lock);
2457 else {
2458 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2459 spin_lock(&dentry->d_parent->d_lock);
2460 spin_lock_nested(&target->d_parent->d_lock,
2461 DENTRY_D_LOCK_NESTED);
2462 } else {
2463 spin_lock(&target->d_parent->d_lock);
2464 spin_lock_nested(&dentry->d_parent->d_lock,
2465 DENTRY_D_LOCK_NESTED);
2466 }
2467 }
2468 if (target < dentry) {
2469 spin_lock_nested(&target->d_lock, 2);
2470 spin_lock_nested(&dentry->d_lock, 3);
2471 } else {
2472 spin_lock_nested(&dentry->d_lock, 2);
2473 spin_lock_nested(&target->d_lock, 3);
2474 }
2475}
2476
2477static void dentry_unlock_parents_for_move(struct dentry *dentry,
2478 struct dentry *target)
2479{
2480 if (target->d_parent != dentry->d_parent)
2481 spin_unlock(&dentry->d_parent->d_lock);
2482 if (target->d_parent != target)
2483 spin_unlock(&target->d_parent->d_lock);
2484}
2485
1da177e4 2486/*
2fd6b7f5
NP
2487 * When switching names, the actual string doesn't strictly have to
2488 * be preserved in the target - because we're dropping the target
2489 * anyway. As such, we can just do a simple memcpy() to copy over
2490 * the new name before we switch.
2491 *
2492 * Note that we have to be a lot more careful about getting the hash
2493 * switched - we have to switch the hash value properly even if it
2494 * then no longer matches the actual (corrupted) string of the target.
2495 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2496 */
9eaef27b 2497/*
18367501 2498 * __d_move - move a dentry
1da177e4
LT
2499 * @dentry: entry to move
2500 * @target: new dentry
da1ce067 2501 * @exchange: exchange the two dentries
1da177e4
LT
2502 *
2503 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2504 * dcache entries should not be moved in this way. Caller must hold
2505 * rename_lock, the i_mutex of the source and target directories,
2506 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2507 */
da1ce067
MS
2508static void __d_move(struct dentry *dentry, struct dentry *target,
2509 bool exchange)
1da177e4 2510{
1da177e4
LT
2511 if (!dentry->d_inode)
2512 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2513
2fd6b7f5
NP
2514 BUG_ON(d_ancestor(dentry, target));
2515 BUG_ON(d_ancestor(target, dentry));
2516
2fd6b7f5 2517 dentry_lock_for_move(dentry, target);
1da177e4 2518
31e6b01f 2519 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2520 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2521
ceb5bdc2
NP
2522 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2523
2524 /*
2525 * Move the dentry to the target hash queue. Don't bother checking
2526 * for the same hash queue because of how unlikely it is.
2527 */
2528 __d_drop(dentry);
789680d1 2529 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2530
da1ce067
MS
2531 /*
2532 * Unhash the target (d_delete() is not usable here). If exchanging
2533 * the two dentries, then rehash onto the other's hash queue.
2534 */
1da177e4 2535 __d_drop(target);
da1ce067
MS
2536 if (exchange) {
2537 __d_rehash(target,
2538 d_hash(dentry->d_parent, dentry->d_name.hash));
2539 }
1da177e4 2540
5160ee6f
ED
2541 list_del(&dentry->d_u.d_child);
2542 list_del(&target->d_u.d_child);
1da177e4
LT
2543
2544 /* Switch the names.. */
2545 switch_names(dentry, target);
9a8d5bb4 2546 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2547
2548 /* ... and switch the parents */
2549 if (IS_ROOT(dentry)) {
2550 dentry->d_parent = target->d_parent;
2551 target->d_parent = target;
5160ee6f 2552 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2553 } else {
9a8d5bb4 2554 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2555
2556 /* And add them back to the (new) parent lists */
5160ee6f 2557 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2558 }
2559
5160ee6f 2560 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2561
31e6b01f
NP
2562 write_seqcount_end(&target->d_seq);
2563 write_seqcount_end(&dentry->d_seq);
2564
2fd6b7f5 2565 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2566 if (exchange)
2567 fsnotify_d_move(target);
1da177e4 2568 spin_unlock(&target->d_lock);
c32ccd87 2569 fsnotify_d_move(dentry);
1da177e4 2570 spin_unlock(&dentry->d_lock);
18367501
AV
2571}
2572
2573/*
2574 * d_move - move a dentry
2575 * @dentry: entry to move
2576 * @target: new dentry
2577 *
2578 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2579 * dcache entries should not be moved in this way. See the locking
2580 * requirements for __d_move.
18367501
AV
2581 */
2582void d_move(struct dentry *dentry, struct dentry *target)
2583{
2584 write_seqlock(&rename_lock);
da1ce067 2585 __d_move(dentry, target, false);
1da177e4 2586 write_sequnlock(&rename_lock);
9eaef27b 2587}
ec4f8605 2588EXPORT_SYMBOL(d_move);
1da177e4 2589
da1ce067
MS
2590/*
2591 * d_exchange - exchange two dentries
2592 * @dentry1: first dentry
2593 * @dentry2: second dentry
2594 */
2595void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2596{
2597 write_seqlock(&rename_lock);
2598
2599 WARN_ON(!dentry1->d_inode);
2600 WARN_ON(!dentry2->d_inode);
2601 WARN_ON(IS_ROOT(dentry1));
2602 WARN_ON(IS_ROOT(dentry2));
2603
2604 __d_move(dentry1, dentry2, true);
2605
2606 write_sequnlock(&rename_lock);
2607}
2608
e2761a11
OH
2609/**
2610 * d_ancestor - search for an ancestor
2611 * @p1: ancestor dentry
2612 * @p2: child dentry
2613 *
2614 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2615 * an ancestor of p2, else NULL.
9eaef27b 2616 */
e2761a11 2617struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2618{
2619 struct dentry *p;
2620
871c0067 2621 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2622 if (p->d_parent == p1)
e2761a11 2623 return p;
9eaef27b 2624 }
e2761a11 2625 return NULL;
9eaef27b
TM
2626}
2627
2628/*
2629 * This helper attempts to cope with remotely renamed directories
2630 *
2631 * It assumes that the caller is already holding
18367501 2632 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2633 *
2634 * Note: If ever the locking in lock_rename() changes, then please
2635 * remember to update this too...
9eaef27b 2636 */
873feea0
NP
2637static struct dentry *__d_unalias(struct inode *inode,
2638 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2639{
2640 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2641 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2642
2643 /* If alias and dentry share a parent, then no extra locks required */
2644 if (alias->d_parent == dentry->d_parent)
2645 goto out_unalias;
2646
9eaef27b 2647 /* See lock_rename() */
9eaef27b
TM
2648 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2649 goto out_err;
2650 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2651 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2652 goto out_err;
2653 m2 = &alias->d_parent->d_inode->i_mutex;
2654out_unalias:
ee3efa91 2655 if (likely(!d_mountpoint(alias))) {
da1ce067 2656 __d_move(alias, dentry, false);
ee3efa91
AV
2657 ret = alias;
2658 }
9eaef27b 2659out_err:
873feea0 2660 spin_unlock(&inode->i_lock);
9eaef27b
TM
2661 if (m2)
2662 mutex_unlock(m2);
2663 if (m1)
2664 mutex_unlock(m1);
2665 return ret;
2666}
2667
770bfad8
DH
2668/*
2669 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2670 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2671 * returns with anon->d_lock held!
770bfad8
DH
2672 */
2673static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2674{
740da42e 2675 struct dentry *dparent;
770bfad8 2676
2fd6b7f5 2677 dentry_lock_for_move(anon, dentry);
770bfad8 2678
31e6b01f 2679 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2680 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2681
770bfad8 2682 dparent = dentry->d_parent;
770bfad8 2683
2fd6b7f5
NP
2684 switch_names(dentry, anon);
2685 swap(dentry->d_name.hash, anon->d_name.hash);
2686
740da42e
AV
2687 dentry->d_parent = dentry;
2688 list_del_init(&dentry->d_u.d_child);
2689 anon->d_parent = dparent;
9ed53b12 2690 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2691
31e6b01f
NP
2692 write_seqcount_end(&dentry->d_seq);
2693 write_seqcount_end(&anon->d_seq);
2694
2fd6b7f5
NP
2695 dentry_unlock_parents_for_move(anon, dentry);
2696 spin_unlock(&dentry->d_lock);
2697
2698 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2699}
2700
2701/**
2702 * d_materialise_unique - introduce an inode into the tree
2703 * @dentry: candidate dentry
2704 * @inode: inode to bind to the dentry, to which aliases may be attached
2705 *
2706 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2707 * root directory alias in its place if there is one. Caller must hold the
2708 * i_mutex of the parent directory.
770bfad8
DH
2709 */
2710struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2711{
9eaef27b 2712 struct dentry *actual;
770bfad8
DH
2713
2714 BUG_ON(!d_unhashed(dentry));
2715
770bfad8
DH
2716 if (!inode) {
2717 actual = dentry;
360da900 2718 __d_instantiate(dentry, NULL);
357f8e65
NP
2719 d_rehash(actual);
2720 goto out_nolock;
770bfad8
DH
2721 }
2722
873feea0 2723 spin_lock(&inode->i_lock);
357f8e65 2724
9eaef27b
TM
2725 if (S_ISDIR(inode->i_mode)) {
2726 struct dentry *alias;
2727
2728 /* Does an aliased dentry already exist? */
32ba9c3f 2729 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2730 if (alias) {
2731 actual = alias;
18367501
AV
2732 write_seqlock(&rename_lock);
2733
2734 if (d_ancestor(alias, dentry)) {
2735 /* Check for loops */
2736 actual = ERR_PTR(-ELOOP);
b18dafc8 2737 spin_unlock(&inode->i_lock);
18367501
AV
2738 } else if (IS_ROOT(alias)) {
2739 /* Is this an anonymous mountpoint that we
2740 * could splice into our tree? */
9eaef27b 2741 __d_materialise_dentry(dentry, alias);
18367501 2742 write_sequnlock(&rename_lock);
9eaef27b
TM
2743 __d_drop(alias);
2744 goto found;
18367501
AV
2745 } else {
2746 /* Nope, but we must(!) avoid directory
b18dafc8 2747 * aliasing. This drops inode->i_lock */
18367501 2748 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2749 }
18367501 2750 write_sequnlock(&rename_lock);
dd179946
DH
2751 if (IS_ERR(actual)) {
2752 if (PTR_ERR(actual) == -ELOOP)
2753 pr_warn_ratelimited(
2754 "VFS: Lookup of '%s' in %s %s"
2755 " would have caused loop\n",
2756 dentry->d_name.name,
2757 inode->i_sb->s_type->name,
2758 inode->i_sb->s_id);
9eaef27b 2759 dput(alias);
dd179946 2760 }
9eaef27b
TM
2761 goto out_nolock;
2762 }
770bfad8
DH
2763 }
2764
2765 /* Add a unique reference */
2766 actual = __d_instantiate_unique(dentry, inode);
2767 if (!actual)
2768 actual = dentry;
357f8e65
NP
2769 else
2770 BUG_ON(!d_unhashed(actual));
770bfad8 2771
770bfad8
DH
2772 spin_lock(&actual->d_lock);
2773found:
2774 _d_rehash(actual);
2775 spin_unlock(&actual->d_lock);
873feea0 2776 spin_unlock(&inode->i_lock);
9eaef27b 2777out_nolock:
770bfad8
DH
2778 if (actual == dentry) {
2779 security_d_instantiate(dentry, inode);
2780 return NULL;
2781 }
2782
2783 iput(inode);
2784 return actual;
770bfad8 2785}
ec4f8605 2786EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2787
cdd16d02 2788static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2789{
2790 *buflen -= namelen;
2791 if (*buflen < 0)
2792 return -ENAMETOOLONG;
2793 *buffer -= namelen;
2794 memcpy(*buffer, str, namelen);
2795 return 0;
2796}
2797
232d2d60
WL
2798/**
2799 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2800 * @buffer: buffer pointer
2801 * @buflen: allocated length of the buffer
2802 * @name: name string and length qstr structure
232d2d60
WL
2803 *
2804 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2805 * make sure that either the old or the new name pointer and length are
2806 * fetched. However, there may be mismatch between length and pointer.
2807 * The length cannot be trusted, we need to copy it byte-by-byte until
2808 * the length is reached or a null byte is found. It also prepends "/" at
2809 * the beginning of the name. The sequence number check at the caller will
2810 * retry it again when a d_move() does happen. So any garbage in the buffer
2811 * due to mismatched pointer and length will be discarded.
2812 */
cdd16d02
MS
2813static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2814{
232d2d60
WL
2815 const char *dname = ACCESS_ONCE(name->name);
2816 u32 dlen = ACCESS_ONCE(name->len);
2817 char *p;
2818
232d2d60 2819 *buflen -= dlen + 1;
e825196d
AV
2820 if (*buflen < 0)
2821 return -ENAMETOOLONG;
232d2d60
WL
2822 p = *buffer -= dlen + 1;
2823 *p++ = '/';
2824 while (dlen--) {
2825 char c = *dname++;
2826 if (!c)
2827 break;
2828 *p++ = c;
2829 }
2830 return 0;
cdd16d02
MS
2831}
2832
1da177e4 2833/**
208898c1 2834 * prepend_path - Prepend path string to a buffer
9d1bc601 2835 * @path: the dentry/vfsmount to report
02125a82 2836 * @root: root vfsmnt/dentry
f2eb6575
MS
2837 * @buffer: pointer to the end of the buffer
2838 * @buflen: pointer to buffer length
552ce544 2839 *
18129977
WL
2840 * The function will first try to write out the pathname without taking any
2841 * lock other than the RCU read lock to make sure that dentries won't go away.
2842 * It only checks the sequence number of the global rename_lock as any change
2843 * in the dentry's d_seq will be preceded by changes in the rename_lock
2844 * sequence number. If the sequence number had been changed, it will restart
2845 * the whole pathname back-tracing sequence again by taking the rename_lock.
2846 * In this case, there is no need to take the RCU read lock as the recursive
2847 * parent pointer references will keep the dentry chain alive as long as no
2848 * rename operation is performed.
1da177e4 2849 */
02125a82
AV
2850static int prepend_path(const struct path *path,
2851 const struct path *root,
f2eb6575 2852 char **buffer, int *buflen)
1da177e4 2853{
ede4cebc
AV
2854 struct dentry *dentry;
2855 struct vfsmount *vfsmnt;
2856 struct mount *mnt;
f2eb6575 2857 int error = 0;
48a066e7 2858 unsigned seq, m_seq = 0;
232d2d60
WL
2859 char *bptr;
2860 int blen;
6092d048 2861
48f5ec21 2862 rcu_read_lock();
48a066e7
AV
2863restart_mnt:
2864 read_seqbegin_or_lock(&mount_lock, &m_seq);
2865 seq = 0;
4ec6c2ae 2866 rcu_read_lock();
232d2d60
WL
2867restart:
2868 bptr = *buffer;
2869 blen = *buflen;
48a066e7 2870 error = 0;
ede4cebc
AV
2871 dentry = path->dentry;
2872 vfsmnt = path->mnt;
2873 mnt = real_mount(vfsmnt);
232d2d60 2874 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2875 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2876 struct dentry * parent;
2877
1da177e4 2878 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2879 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2880 /* Global root? */
48a066e7
AV
2881 if (mnt != parent) {
2882 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2883 mnt = parent;
232d2d60
WL
2884 vfsmnt = &mnt->mnt;
2885 continue;
2886 }
2887 /*
2888 * Filesystems needing to implement special "root names"
2889 * should do so with ->d_dname()
2890 */
2891 if (IS_ROOT(dentry) &&
2892 (dentry->d_name.len != 1 ||
2893 dentry->d_name.name[0] != '/')) {
2894 WARN(1, "Root dentry has weird name <%.*s>\n",
2895 (int) dentry->d_name.len,
2896 dentry->d_name.name);
2897 }
2898 if (!error)
2899 error = is_mounted(vfsmnt) ? 1 : 2;
2900 break;
1da177e4
LT
2901 }
2902 parent = dentry->d_parent;
2903 prefetch(parent);
232d2d60 2904 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2905 if (error)
2906 break;
2907
1da177e4
LT
2908 dentry = parent;
2909 }
48f5ec21
AV
2910 if (!(seq & 1))
2911 rcu_read_unlock();
2912 if (need_seqretry(&rename_lock, seq)) {
2913 seq = 1;
232d2d60 2914 goto restart;
48f5ec21
AV
2915 }
2916 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2917
2918 if (!(m_seq & 1))
2919 rcu_read_unlock();
48a066e7
AV
2920 if (need_seqretry(&mount_lock, m_seq)) {
2921 m_seq = 1;
2922 goto restart_mnt;
2923 }
2924 done_seqretry(&mount_lock, m_seq);
1da177e4 2925
232d2d60
WL
2926 if (error >= 0 && bptr == *buffer) {
2927 if (--blen < 0)
2928 error = -ENAMETOOLONG;
2929 else
2930 *--bptr = '/';
2931 }
2932 *buffer = bptr;
2933 *buflen = blen;
7ea600b5 2934 return error;
f2eb6575 2935}
be285c71 2936
f2eb6575
MS
2937/**
2938 * __d_path - return the path of a dentry
2939 * @path: the dentry/vfsmount to report
02125a82 2940 * @root: root vfsmnt/dentry
cd956a1c 2941 * @buf: buffer to return value in
f2eb6575
MS
2942 * @buflen: buffer length
2943 *
ffd1f4ed 2944 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2945 *
2946 * Returns a pointer into the buffer or an error code if the
2947 * path was too long.
2948 *
be148247 2949 * "buflen" should be positive.
f2eb6575 2950 *
02125a82 2951 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2952 */
02125a82
AV
2953char *__d_path(const struct path *path,
2954 const struct path *root,
f2eb6575
MS
2955 char *buf, int buflen)
2956{
2957 char *res = buf + buflen;
2958 int error;
2959
2960 prepend(&res, &buflen, "\0", 1);
f2eb6575 2961 error = prepend_path(path, root, &res, &buflen);
be148247 2962
02125a82
AV
2963 if (error < 0)
2964 return ERR_PTR(error);
2965 if (error > 0)
2966 return NULL;
2967 return res;
2968}
2969
2970char *d_absolute_path(const struct path *path,
2971 char *buf, int buflen)
2972{
2973 struct path root = {};
2974 char *res = buf + buflen;
2975 int error;
2976
2977 prepend(&res, &buflen, "\0", 1);
02125a82 2978 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2979
2980 if (error > 1)
2981 error = -EINVAL;
2982 if (error < 0)
f2eb6575 2983 return ERR_PTR(error);
f2eb6575 2984 return res;
1da177e4
LT
2985}
2986
ffd1f4ed
MS
2987/*
2988 * same as __d_path but appends "(deleted)" for unlinked files.
2989 */
02125a82
AV
2990static int path_with_deleted(const struct path *path,
2991 const struct path *root,
2992 char **buf, int *buflen)
ffd1f4ed
MS
2993{
2994 prepend(buf, buflen, "\0", 1);
2995 if (d_unlinked(path->dentry)) {
2996 int error = prepend(buf, buflen, " (deleted)", 10);
2997 if (error)
2998 return error;
2999 }
3000
3001 return prepend_path(path, root, buf, buflen);
3002}
3003
8df9d1a4
MS
3004static int prepend_unreachable(char **buffer, int *buflen)
3005{
3006 return prepend(buffer, buflen, "(unreachable)", 13);
3007}
3008
68f0d9d9
LT
3009static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3010{
3011 unsigned seq;
3012
3013 do {
3014 seq = read_seqcount_begin(&fs->seq);
3015 *root = fs->root;
3016 } while (read_seqcount_retry(&fs->seq, seq));
3017}
3018
a03a8a70
JB
3019/**
3020 * d_path - return the path of a dentry
cf28b486 3021 * @path: path to report
a03a8a70
JB
3022 * @buf: buffer to return value in
3023 * @buflen: buffer length
3024 *
3025 * Convert a dentry into an ASCII path name. If the entry has been deleted
3026 * the string " (deleted)" is appended. Note that this is ambiguous.
3027 *
52afeefb
AV
3028 * Returns a pointer into the buffer or an error code if the path was
3029 * too long. Note: Callers should use the returned pointer, not the passed
3030 * in buffer, to use the name! The implementation often starts at an offset
3031 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3032 *
31f3e0b3 3033 * "buflen" should be positive.
a03a8a70 3034 */
20d4fdc1 3035char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3036{
ffd1f4ed 3037 char *res = buf + buflen;
6ac08c39 3038 struct path root;
ffd1f4ed 3039 int error;
1da177e4 3040
c23fbb6b
ED
3041 /*
3042 * We have various synthetic filesystems that never get mounted. On
3043 * these filesystems dentries are never used for lookup purposes, and
3044 * thus don't need to be hashed. They also don't need a name until a
3045 * user wants to identify the object in /proc/pid/fd/. The little hack
3046 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3047 *
3048 * Some pseudo inodes are mountable. When they are mounted
3049 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3050 * and instead have d_path return the mounted path.
c23fbb6b 3051 */
f48cfddc
EB
3052 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3053 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3054 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3055
68f0d9d9
LT
3056 rcu_read_lock();
3057 get_fs_root_rcu(current->fs, &root);
02125a82 3058 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3059 rcu_read_unlock();
3060
02125a82 3061 if (error < 0)
ffd1f4ed 3062 res = ERR_PTR(error);
1da177e4
LT
3063 return res;
3064}
ec4f8605 3065EXPORT_SYMBOL(d_path);
1da177e4 3066
c23fbb6b
ED
3067/*
3068 * Helper function for dentry_operations.d_dname() members
3069 */
3070char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3071 const char *fmt, ...)
3072{
3073 va_list args;
3074 char temp[64];
3075 int sz;
3076
3077 va_start(args, fmt);
3078 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3079 va_end(args);
3080
3081 if (sz > sizeof(temp) || sz > buflen)
3082 return ERR_PTR(-ENAMETOOLONG);
3083
3084 buffer += buflen - sz;
3085 return memcpy(buffer, temp, sz);
3086}
3087
118b2302
AV
3088char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3089{
3090 char *end = buffer + buflen;
3091 /* these dentries are never renamed, so d_lock is not needed */
3092 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3093 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3094 prepend(&end, &buflen, "/", 1))
3095 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3096 return end;
118b2302 3097}
31bbe16f 3098EXPORT_SYMBOL(simple_dname);
118b2302 3099
6092d048
RP
3100/*
3101 * Write full pathname from the root of the filesystem into the buffer.
3102 */
f6500801 3103static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3104{
f6500801 3105 struct dentry *dentry;
232d2d60
WL
3106 char *end, *retval;
3107 int len, seq = 0;
3108 int error = 0;
6092d048 3109
f6500801
AV
3110 if (buflen < 2)
3111 goto Elong;
3112
48f5ec21 3113 rcu_read_lock();
232d2d60 3114restart:
f6500801 3115 dentry = d;
232d2d60
WL
3116 end = buf + buflen;
3117 len = buflen;
3118 prepend(&end, &len, "\0", 1);
6092d048
RP
3119 /* Get '/' right */
3120 retval = end-1;
3121 *retval = '/';
232d2d60 3122 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3123 while (!IS_ROOT(dentry)) {
3124 struct dentry *parent = dentry->d_parent;
6092d048 3125
6092d048 3126 prefetch(parent);
232d2d60
WL
3127 error = prepend_name(&end, &len, &dentry->d_name);
3128 if (error)
3129 break;
6092d048
RP
3130
3131 retval = end;
3132 dentry = parent;
3133 }
48f5ec21
AV
3134 if (!(seq & 1))
3135 rcu_read_unlock();
3136 if (need_seqretry(&rename_lock, seq)) {
3137 seq = 1;
232d2d60 3138 goto restart;
48f5ec21
AV
3139 }
3140 done_seqretry(&rename_lock, seq);
232d2d60
WL
3141 if (error)
3142 goto Elong;
c103135c
AV
3143 return retval;
3144Elong:
3145 return ERR_PTR(-ENAMETOOLONG);
3146}
ec2447c2
NP
3147
3148char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3149{
232d2d60 3150 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3151}
3152EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3153
3154char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3155{
3156 char *p = NULL;
3157 char *retval;
3158
c103135c
AV
3159 if (d_unlinked(dentry)) {
3160 p = buf + buflen;
3161 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3162 goto Elong;
3163 buflen++;
3164 }
3165 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3166 if (!IS_ERR(retval) && p)
3167 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3168 return retval;
3169Elong:
6092d048
RP
3170 return ERR_PTR(-ENAMETOOLONG);
3171}
3172
8b19e341
LT
3173static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3174 struct path *pwd)
5762482f 3175{
8b19e341
LT
3176 unsigned seq;
3177
3178 do {
3179 seq = read_seqcount_begin(&fs->seq);
3180 *root = fs->root;
3181 *pwd = fs->pwd;
3182 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3183}
3184
1da177e4
LT
3185/*
3186 * NOTE! The user-level library version returns a
3187 * character pointer. The kernel system call just
3188 * returns the length of the buffer filled (which
3189 * includes the ending '\0' character), or a negative
3190 * error value. So libc would do something like
3191 *
3192 * char *getcwd(char * buf, size_t size)
3193 * {
3194 * int retval;
3195 *
3196 * retval = sys_getcwd(buf, size);
3197 * if (retval >= 0)
3198 * return buf;
3199 * errno = -retval;
3200 * return NULL;
3201 * }
3202 */
3cdad428 3203SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3204{
552ce544 3205 int error;
6ac08c39 3206 struct path pwd, root;
3272c544 3207 char *page = __getname();
1da177e4
LT
3208
3209 if (!page)
3210 return -ENOMEM;
3211
8b19e341
LT
3212 rcu_read_lock();
3213 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3214
552ce544 3215 error = -ENOENT;
f3da392e 3216 if (!d_unlinked(pwd.dentry)) {
552ce544 3217 unsigned long len;
3272c544
LT
3218 char *cwd = page + PATH_MAX;
3219 int buflen = PATH_MAX;
1da177e4 3220
8df9d1a4 3221 prepend(&cwd, &buflen, "\0", 1);
02125a82 3222 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3223 rcu_read_unlock();
552ce544 3224
02125a82 3225 if (error < 0)
552ce544
LT
3226 goto out;
3227
8df9d1a4 3228 /* Unreachable from current root */
02125a82 3229 if (error > 0) {
8df9d1a4
MS
3230 error = prepend_unreachable(&cwd, &buflen);
3231 if (error)
3232 goto out;
3233 }
3234
552ce544 3235 error = -ERANGE;
3272c544 3236 len = PATH_MAX + page - cwd;
552ce544
LT
3237 if (len <= size) {
3238 error = len;
3239 if (copy_to_user(buf, cwd, len))
3240 error = -EFAULT;
3241 }
949854d0 3242 } else {
ff812d72 3243 rcu_read_unlock();
949854d0 3244 }
1da177e4
LT
3245
3246out:
3272c544 3247 __putname(page);
1da177e4
LT
3248 return error;
3249}
3250
3251/*
3252 * Test whether new_dentry is a subdirectory of old_dentry.
3253 *
3254 * Trivially implemented using the dcache structure
3255 */
3256
3257/**
3258 * is_subdir - is new dentry a subdirectory of old_dentry
3259 * @new_dentry: new dentry
3260 * @old_dentry: old dentry
3261 *
3262 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3263 * Returns 0 otherwise.
3264 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3265 */
3266
e2761a11 3267int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3268{
3269 int result;
949854d0 3270 unsigned seq;
1da177e4 3271
e2761a11
OH
3272 if (new_dentry == old_dentry)
3273 return 1;
3274
e2761a11 3275 do {
1da177e4 3276 /* for restarting inner loop in case of seq retry */
1da177e4 3277 seq = read_seqbegin(&rename_lock);
949854d0
NP
3278 /*
3279 * Need rcu_readlock to protect against the d_parent trashing
3280 * due to d_move
3281 */
3282 rcu_read_lock();
e2761a11 3283 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3284 result = 1;
e2761a11
OH
3285 else
3286 result = 0;
949854d0 3287 rcu_read_unlock();
1da177e4 3288 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3289
3290 return result;
3291}
3292
db14fc3a 3293static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3294{
db14fc3a
MS
3295 struct dentry *root = data;
3296 if (dentry != root) {
3297 if (d_unhashed(dentry) || !dentry->d_inode)
3298 return D_WALK_SKIP;
1da177e4 3299
01ddc4ed
MS
3300 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3301 dentry->d_flags |= DCACHE_GENOCIDE;
3302 dentry->d_lockref.count--;
3303 }
1da177e4 3304 }
db14fc3a
MS
3305 return D_WALK_CONTINUE;
3306}
58db63d0 3307
db14fc3a
MS
3308void d_genocide(struct dentry *parent)
3309{
3310 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3311}
3312
60545d0d 3313void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3314{
60545d0d
AV
3315 inode_dec_link_count(inode);
3316 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3317 !hlist_unhashed(&dentry->d_alias) ||
3318 !d_unlinked(dentry));
3319 spin_lock(&dentry->d_parent->d_lock);
3320 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3321 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3322 (unsigned long long)inode->i_ino);
3323 spin_unlock(&dentry->d_lock);
3324 spin_unlock(&dentry->d_parent->d_lock);
3325 d_instantiate(dentry, inode);
1da177e4 3326}
60545d0d 3327EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3328
3329static __initdata unsigned long dhash_entries;
3330static int __init set_dhash_entries(char *str)
3331{
3332 if (!str)
3333 return 0;
3334 dhash_entries = simple_strtoul(str, &str, 0);
3335 return 1;
3336}
3337__setup("dhash_entries=", set_dhash_entries);
3338
3339static void __init dcache_init_early(void)
3340{
074b8517 3341 unsigned int loop;
1da177e4
LT
3342
3343 /* If hashes are distributed across NUMA nodes, defer
3344 * hash allocation until vmalloc space is available.
3345 */
3346 if (hashdist)
3347 return;
3348
3349 dentry_hashtable =
3350 alloc_large_system_hash("Dentry cache",
b07ad996 3351 sizeof(struct hlist_bl_head),
1da177e4
LT
3352 dhash_entries,
3353 13,
3354 HASH_EARLY,
3355 &d_hash_shift,
3356 &d_hash_mask,
31fe62b9 3357 0,
1da177e4
LT
3358 0);
3359
074b8517 3360 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3361 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3362}
3363
74bf17cf 3364static void __init dcache_init(void)
1da177e4 3365{
074b8517 3366 unsigned int loop;
1da177e4
LT
3367
3368 /*
3369 * A constructor could be added for stable state like the lists,
3370 * but it is probably not worth it because of the cache nature
3371 * of the dcache.
3372 */
0a31bd5f
CL
3373 dentry_cache = KMEM_CACHE(dentry,
3374 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3375
3376 /* Hash may have been set up in dcache_init_early */
3377 if (!hashdist)
3378 return;
3379
3380 dentry_hashtable =
3381 alloc_large_system_hash("Dentry cache",
b07ad996 3382 sizeof(struct hlist_bl_head),
1da177e4
LT
3383 dhash_entries,
3384 13,
3385 0,
3386 &d_hash_shift,
3387 &d_hash_mask,
31fe62b9 3388 0,
1da177e4
LT
3389 0);
3390
074b8517 3391 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3392 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3393}
3394
3395/* SLAB cache for __getname() consumers */
e18b890b 3396struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3397EXPORT_SYMBOL(names_cachep);
1da177e4 3398
1da177e4
LT
3399EXPORT_SYMBOL(d_genocide);
3400
1da177e4
LT
3401void __init vfs_caches_init_early(void)
3402{
3403 dcache_init_early();
3404 inode_init_early();
3405}
3406
3407void __init vfs_caches_init(unsigned long mempages)
3408{
3409 unsigned long reserve;
3410
3411 /* Base hash sizes on available memory, with a reserve equal to
3412 150% of current kernel size */
3413
3414 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3415 mempages -= reserve;
3416
3417 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3418 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3419
74bf17cf
DC
3420 dcache_init();
3421 inode_init();
1da177e4 3422 files_init(mempages);
74bf17cf 3423 mnt_init();
1da177e4
LT
3424 bdev_cache_init();
3425 chrdev_init();
3426}