]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: inline pageblock lookup in page free fast paths
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
2a7684a2
WF
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
22b751c3 527 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
528 return;
529 }
530
d936cf9b
HD
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
ff8e8116 541 pr_alert(
1e9e6365 542 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
ff8e8116 551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 552 current->comm, page_to_pfn(page));
ff8e8116
VB
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
4e462112 558 dump_page_owner(page);
3dc14741 559
4f31888c 560 print_modules();
1da177e4 561 dump_stack();
d936cf9b 562out:
8cc3b392 563 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 564 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
566}
567
1da177e4
LT
568/*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
1d798ca3 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 572 *
1d798ca3
KS
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 575 *
1d798ca3
KS
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
1da177e4 578 *
1d798ca3 579 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 580 * This usage means that zero-order pages may not be compound.
1da177e4 581 */
d98c7a09 582
9a982250 583void free_compound_page(struct page *page)
d98c7a09 584{
d85f3385 585 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
586}
587
d00181b9 588void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
589{
590 int i;
591 int nr_pages = 1 << order;
592
f1e61557 593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
58a84aa9 598 set_page_count(p, 0);
1c290f64 599 p->mapping = TAIL_MAPPING;
1d798ca3 600 set_compound_head(p, page);
18229df5 601 }
53f9263b 602 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
603}
604
c0a32fc5
SG
605#ifdef CONFIG_DEBUG_PAGEALLOC
606unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
607bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 609EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
610bool _debug_guardpage_enabled __read_mostly;
611
031bc574
JK
612static int __init early_debug_pagealloc(char *buf)
613{
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
ea6eabb0
CB
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
031bc574
JK
623 return 0;
624}
625early_param("debug_pagealloc", early_debug_pagealloc);
626
e30825f1
JK
627static bool need_debug_guardpage(void)
628{
031bc574
JK
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
e30825f1
JK
633 return true;
634}
635
636static void init_debug_guardpage(void)
637{
031bc574
JK
638 if (!debug_pagealloc_enabled())
639 return;
640
e30825f1
JK
641 _debug_guardpage_enabled = true;
642}
643
644struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647};
c0a32fc5
SG
648
649static int __init debug_guardpage_minorder_setup(char *buf)
650{
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 654 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
1170532b 658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
659 return 0;
660}
661__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
2847cf95
JK
663static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
c0a32fc5 665{
e30825f1
JK
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
678}
679
2847cf95
JK
680static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
c0a32fc5 682{
e30825f1
JK
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
e30825f1 696struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
697static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13e7444b 718 * (a) the buddy is not in a hole &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
14e07298 733 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 734 return 0;
13e7444b 735
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long page_idx;
6dda9d55 792 unsigned long combined_idx;
43506fad 793 unsigned long uninitialized_var(buddy_idx);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
d9dddbf5 806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 807
309381fe
SL
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 810
d9dddbf5 811continue_merging:
3c605096 812 while (order < max_order - 1) {
43506fad
KC
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
43506fad 828 combined_idx = buddy_idx & page_idx;
1da177e4
LT
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
b7f50cfa 869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
43506fad
KC
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 874 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
944/*
5f8dcc21 945 * Frees a number of pages from the PCP lists
1da177e4 946 * Assumes all pages on list are in same zone, and of same order.
207f36ee 947 * count is the number of pages to free.
1da177e4
LT
948 *
949 * If the zone was previously in an "all pages pinned" state then look to
950 * see if this freeing clears that state.
951 *
952 * And clear the zone's pages_scanned counter, to hold off the "all pages are
953 * pinned" detection logic.
954 */
5f8dcc21
MG
955static void free_pcppages_bulk(struct zone *zone, int count,
956 struct per_cpu_pages *pcp)
1da177e4 957{
5f8dcc21 958 int migratetype = 0;
a6f9edd6 959 int batch_free = 0;
0d5d823a 960 unsigned long nr_scanned;
3777999d 961 bool isolated_pageblocks;
5f8dcc21 962
c54ad30c 963 spin_lock(&zone->lock);
3777999d 964 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
965 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
966 if (nr_scanned)
967 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 968
e5b31ac2 969 while (count) {
48db57f8 970 struct page *page;
5f8dcc21
MG
971 struct list_head *list;
972
973 /*
a6f9edd6
MG
974 * Remove pages from lists in a round-robin fashion. A
975 * batch_free count is maintained that is incremented when an
976 * empty list is encountered. This is so more pages are freed
977 * off fuller lists instead of spinning excessively around empty
978 * lists
5f8dcc21
MG
979 */
980 do {
a6f9edd6 981 batch_free++;
5f8dcc21
MG
982 if (++migratetype == MIGRATE_PCPTYPES)
983 migratetype = 0;
984 list = &pcp->lists[migratetype];
985 } while (list_empty(list));
48db57f8 986
1d16871d
NK
987 /* This is the only non-empty list. Free them all. */
988 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 989 batch_free = count;
1d16871d 990
a6f9edd6 991 do {
770c8aaa
BZ
992 int mt; /* migratetype of the to-be-freed page */
993
a16601c5 994 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
995 /* must delete as __free_one_page list manipulates */
996 list_del(&page->lru);
aa016d14 997
bb14c2c7 998 mt = get_pcppage_migratetype(page);
aa016d14
VB
999 /* MIGRATE_ISOLATE page should not go to pcplists */
1000 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1001 /* Pageblock could have been isolated meanwhile */
3777999d 1002 if (unlikely(isolated_pageblocks))
51bb1a40 1003 mt = get_pageblock_migratetype(page);
51bb1a40 1004
dc4b0caf 1005 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1006 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1007 } while (--count && --batch_free && !list_empty(list));
1da177e4 1008 }
c54ad30c 1009 spin_unlock(&zone->lock);
1da177e4
LT
1010}
1011
dc4b0caf
MG
1012static void free_one_page(struct zone *zone,
1013 struct page *page, unsigned long pfn,
7aeb09f9 1014 unsigned int order,
ed0ae21d 1015 int migratetype)
1da177e4 1016{
0d5d823a 1017 unsigned long nr_scanned;
006d22d9 1018 spin_lock(&zone->lock);
0d5d823a
MG
1019 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1020 if (nr_scanned)
1021 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1022
ad53f92e
JK
1023 if (unlikely(has_isolate_pageblock(zone) ||
1024 is_migrate_isolate(migratetype))) {
1025 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1026 }
dc4b0caf 1027 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1028 spin_unlock(&zone->lock);
48db57f8
NP
1029}
1030
81422f29
KS
1031static int free_tail_pages_check(struct page *head_page, struct page *page)
1032{
1d798ca3
KS
1033 int ret = 1;
1034
1035 /*
1036 * We rely page->lru.next never has bit 0 set, unless the page
1037 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1038 */
1039 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1040
1041 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1042 ret = 0;
1043 goto out;
1044 }
9a982250
KS
1045 switch (page - head_page) {
1046 case 1:
1047 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
1048 if (unlikely(compound_mapcount(page))) {
1049 bad_page(page, "nonzero compound_mapcount", 0);
1050 goto out;
1051 }
9a982250
KS
1052 break;
1053 case 2:
1054 /*
1055 * the second tail page: ->mapping is
1056 * page_deferred_list().next -- ignore value.
1057 */
1058 break;
1059 default:
1060 if (page->mapping != TAIL_MAPPING) {
1061 bad_page(page, "corrupted mapping in tail page", 0);
1062 goto out;
1063 }
1064 break;
1c290f64 1065 }
81422f29
KS
1066 if (unlikely(!PageTail(page))) {
1067 bad_page(page, "PageTail not set", 0);
1d798ca3 1068 goto out;
81422f29 1069 }
1d798ca3
KS
1070 if (unlikely(compound_head(page) != head_page)) {
1071 bad_page(page, "compound_head not consistent", 0);
1072 goto out;
81422f29 1073 }
1d798ca3
KS
1074 ret = 0;
1075out:
1c290f64 1076 page->mapping = NULL;
1d798ca3
KS
1077 clear_compound_head(page);
1078 return ret;
81422f29
KS
1079}
1080
1e8ce83c
RH
1081static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1082 unsigned long zone, int nid)
1083{
1e8ce83c 1084 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1085 init_page_count(page);
1086 page_mapcount_reset(page);
1087 page_cpupid_reset_last(page);
1e8ce83c 1088
1e8ce83c
RH
1089 INIT_LIST_HEAD(&page->lru);
1090#ifdef WANT_PAGE_VIRTUAL
1091 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1092 if (!is_highmem_idx(zone))
1093 set_page_address(page, __va(pfn << PAGE_SHIFT));
1094#endif
1095}
1096
1097static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1098 int nid)
1099{
1100 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1101}
1102
7e18adb4
MG
1103#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1104static void init_reserved_page(unsigned long pfn)
1105{
1106 pg_data_t *pgdat;
1107 int nid, zid;
1108
1109 if (!early_page_uninitialised(pfn))
1110 return;
1111
1112 nid = early_pfn_to_nid(pfn);
1113 pgdat = NODE_DATA(nid);
1114
1115 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1116 struct zone *zone = &pgdat->node_zones[zid];
1117
1118 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1119 break;
1120 }
1121 __init_single_pfn(pfn, zid, nid);
1122}
1123#else
1124static inline void init_reserved_page(unsigned long pfn)
1125{
1126}
1127#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1128
92923ca3
NZ
1129/*
1130 * Initialised pages do not have PageReserved set. This function is
1131 * called for each range allocated by the bootmem allocator and
1132 * marks the pages PageReserved. The remaining valid pages are later
1133 * sent to the buddy page allocator.
1134 */
7e18adb4 1135void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1136{
1137 unsigned long start_pfn = PFN_DOWN(start);
1138 unsigned long end_pfn = PFN_UP(end);
1139
7e18adb4
MG
1140 for (; start_pfn < end_pfn; start_pfn++) {
1141 if (pfn_valid(start_pfn)) {
1142 struct page *page = pfn_to_page(start_pfn);
1143
1144 init_reserved_page(start_pfn);
1d798ca3
KS
1145
1146 /* Avoid false-positive PageTail() */
1147 INIT_LIST_HEAD(&page->lru);
1148
7e18adb4
MG
1149 SetPageReserved(page);
1150 }
1151 }
92923ca3
NZ
1152}
1153
ec95f53a 1154static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1155{
d61f8590 1156 int bad = 0;
1da177e4 1157
ab1f306f 1158 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1159
b413d48a 1160 trace_mm_page_free(page, order);
b1eeab67 1161 kmemcheck_free_shadow(page, order);
b8c73fc2 1162 kasan_free_pages(page, order);
b1eeab67 1163
d61f8590
MG
1164 /*
1165 * Check tail pages before head page information is cleared to
1166 * avoid checking PageCompound for order-0 pages.
1167 */
1168 if (unlikely(order)) {
1169 bool compound = PageCompound(page);
1170 int i;
1171
1172 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1173
1174 for (i = 1; i < (1 << order); i++) {
1175 if (compound)
1176 bad += free_tail_pages_check(page, page + i);
da838d4f
MG
1177 if (unlikely(free_pages_check(page + i))) {
1178 bad++;
1179 continue;
1180 }
1181 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
d61f8590
MG
1182 }
1183 }
17514574 1184 if (PageAnonHead(page))
8dd60a3a 1185 page->mapping = NULL;
81422f29 1186 bad += free_pages_check(page);
8cc3b392 1187 if (bad)
ec95f53a 1188 return false;
689bcebf 1189
da838d4f
MG
1190 page_cpupid_reset_last(page);
1191 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
48c96a36
JK
1192 reset_page_owner(page, order);
1193
3ac7fe5a 1194 if (!PageHighMem(page)) {
b8af2941
PK
1195 debug_check_no_locks_freed(page_address(page),
1196 PAGE_SIZE << order);
3ac7fe5a
TG
1197 debug_check_no_obj_freed(page_address(page),
1198 PAGE_SIZE << order);
1199 }
dafb1367 1200 arch_free_page(page, order);
8823b1db 1201 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1202 kernel_map_pages(page, 1 << order, 0);
dafb1367 1203
ec95f53a
KM
1204 return true;
1205}
1206
1207static void __free_pages_ok(struct page *page, unsigned int order)
1208{
1209 unsigned long flags;
95e34412 1210 int migratetype;
dc4b0caf 1211 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1212
1213 if (!free_pages_prepare(page, order))
1214 return;
1215
cfc47a28 1216 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1217 local_irq_save(flags);
f8891e5e 1218 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1219 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1220 local_irq_restore(flags);
1da177e4
LT
1221}
1222
949698a3 1223static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1224{
c3993076 1225 unsigned int nr_pages = 1 << order;
e2d0bd2b 1226 struct page *p = page;
c3993076 1227 unsigned int loop;
a226f6c8 1228
e2d0bd2b
YL
1229 prefetchw(p);
1230 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1231 prefetchw(p + 1);
c3993076
JW
1232 __ClearPageReserved(p);
1233 set_page_count(p, 0);
a226f6c8 1234 }
e2d0bd2b
YL
1235 __ClearPageReserved(p);
1236 set_page_count(p, 0);
c3993076 1237
e2d0bd2b 1238 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1239 set_page_refcounted(page);
1240 __free_pages(page, order);
a226f6c8
DH
1241}
1242
75a592a4
MG
1243#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1244 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1245
75a592a4
MG
1246static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1247
1248int __meminit early_pfn_to_nid(unsigned long pfn)
1249{
7ace9917 1250 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1251 int nid;
1252
7ace9917 1253 spin_lock(&early_pfn_lock);
75a592a4 1254 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1255 if (nid < 0)
1256 nid = 0;
1257 spin_unlock(&early_pfn_lock);
1258
1259 return nid;
75a592a4
MG
1260}
1261#endif
1262
1263#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1264static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1265 struct mminit_pfnnid_cache *state)
1266{
1267 int nid;
1268
1269 nid = __early_pfn_to_nid(pfn, state);
1270 if (nid >= 0 && nid != node)
1271 return false;
1272 return true;
1273}
1274
1275/* Only safe to use early in boot when initialisation is single-threaded */
1276static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1277{
1278 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1279}
1280
1281#else
1282
1283static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1284{
1285 return true;
1286}
1287static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1288 struct mminit_pfnnid_cache *state)
1289{
1290 return true;
1291}
1292#endif
1293
1294
0e1cc95b 1295void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1296 unsigned int order)
1297{
1298 if (early_page_uninitialised(pfn))
1299 return;
949698a3 1300 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1301}
1302
7cf91a98
JK
1303/*
1304 * Check that the whole (or subset of) a pageblock given by the interval of
1305 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1306 * with the migration of free compaction scanner. The scanners then need to
1307 * use only pfn_valid_within() check for arches that allow holes within
1308 * pageblocks.
1309 *
1310 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1311 *
1312 * It's possible on some configurations to have a setup like node0 node1 node0
1313 * i.e. it's possible that all pages within a zones range of pages do not
1314 * belong to a single zone. We assume that a border between node0 and node1
1315 * can occur within a single pageblock, but not a node0 node1 node0
1316 * interleaving within a single pageblock. It is therefore sufficient to check
1317 * the first and last page of a pageblock and avoid checking each individual
1318 * page in a pageblock.
1319 */
1320struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1321 unsigned long end_pfn, struct zone *zone)
1322{
1323 struct page *start_page;
1324 struct page *end_page;
1325
1326 /* end_pfn is one past the range we are checking */
1327 end_pfn--;
1328
1329 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1330 return NULL;
1331
1332 start_page = pfn_to_page(start_pfn);
1333
1334 if (page_zone(start_page) != zone)
1335 return NULL;
1336
1337 end_page = pfn_to_page(end_pfn);
1338
1339 /* This gives a shorter code than deriving page_zone(end_page) */
1340 if (page_zone_id(start_page) != page_zone_id(end_page))
1341 return NULL;
1342
1343 return start_page;
1344}
1345
1346void set_zone_contiguous(struct zone *zone)
1347{
1348 unsigned long block_start_pfn = zone->zone_start_pfn;
1349 unsigned long block_end_pfn;
1350
1351 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1352 for (; block_start_pfn < zone_end_pfn(zone);
1353 block_start_pfn = block_end_pfn,
1354 block_end_pfn += pageblock_nr_pages) {
1355
1356 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1357
1358 if (!__pageblock_pfn_to_page(block_start_pfn,
1359 block_end_pfn, zone))
1360 return;
1361 }
1362
1363 /* We confirm that there is no hole */
1364 zone->contiguous = true;
1365}
1366
1367void clear_zone_contiguous(struct zone *zone)
1368{
1369 zone->contiguous = false;
1370}
1371
7e18adb4 1372#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1373static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1374 unsigned long pfn, int nr_pages)
1375{
1376 int i;
1377
1378 if (!page)
1379 return;
1380
1381 /* Free a large naturally-aligned chunk if possible */
1382 if (nr_pages == MAX_ORDER_NR_PAGES &&
1383 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1384 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1385 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1386 return;
1387 }
1388
949698a3
LZ
1389 for (i = 0; i < nr_pages; i++, page++)
1390 __free_pages_boot_core(page, 0);
a4de83dd
MG
1391}
1392
d3cd131d
NS
1393/* Completion tracking for deferred_init_memmap() threads */
1394static atomic_t pgdat_init_n_undone __initdata;
1395static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1396
1397static inline void __init pgdat_init_report_one_done(void)
1398{
1399 if (atomic_dec_and_test(&pgdat_init_n_undone))
1400 complete(&pgdat_init_all_done_comp);
1401}
0e1cc95b 1402
7e18adb4 1403/* Initialise remaining memory on a node */
0e1cc95b 1404static int __init deferred_init_memmap(void *data)
7e18adb4 1405{
0e1cc95b
MG
1406 pg_data_t *pgdat = data;
1407 int nid = pgdat->node_id;
7e18adb4
MG
1408 struct mminit_pfnnid_cache nid_init_state = { };
1409 unsigned long start = jiffies;
1410 unsigned long nr_pages = 0;
1411 unsigned long walk_start, walk_end;
1412 int i, zid;
1413 struct zone *zone;
7e18adb4 1414 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1415 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1416
0e1cc95b 1417 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1418 pgdat_init_report_one_done();
0e1cc95b
MG
1419 return 0;
1420 }
1421
1422 /* Bind memory initialisation thread to a local node if possible */
1423 if (!cpumask_empty(cpumask))
1424 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1425
1426 /* Sanity check boundaries */
1427 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1428 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1429 pgdat->first_deferred_pfn = ULONG_MAX;
1430
1431 /* Only the highest zone is deferred so find it */
1432 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1433 zone = pgdat->node_zones + zid;
1434 if (first_init_pfn < zone_end_pfn(zone))
1435 break;
1436 }
1437
1438 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1439 unsigned long pfn, end_pfn;
54608c3f 1440 struct page *page = NULL;
a4de83dd
MG
1441 struct page *free_base_page = NULL;
1442 unsigned long free_base_pfn = 0;
1443 int nr_to_free = 0;
7e18adb4
MG
1444
1445 end_pfn = min(walk_end, zone_end_pfn(zone));
1446 pfn = first_init_pfn;
1447 if (pfn < walk_start)
1448 pfn = walk_start;
1449 if (pfn < zone->zone_start_pfn)
1450 pfn = zone->zone_start_pfn;
1451
1452 for (; pfn < end_pfn; pfn++) {
54608c3f 1453 if (!pfn_valid_within(pfn))
a4de83dd 1454 goto free_range;
7e18adb4 1455
54608c3f
MG
1456 /*
1457 * Ensure pfn_valid is checked every
1458 * MAX_ORDER_NR_PAGES for memory holes
1459 */
1460 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1461 if (!pfn_valid(pfn)) {
1462 page = NULL;
a4de83dd 1463 goto free_range;
54608c3f
MG
1464 }
1465 }
1466
1467 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1468 page = NULL;
a4de83dd 1469 goto free_range;
54608c3f
MG
1470 }
1471
1472 /* Minimise pfn page lookups and scheduler checks */
1473 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1474 page++;
1475 } else {
a4de83dd
MG
1476 nr_pages += nr_to_free;
1477 deferred_free_range(free_base_page,
1478 free_base_pfn, nr_to_free);
1479 free_base_page = NULL;
1480 free_base_pfn = nr_to_free = 0;
1481
54608c3f
MG
1482 page = pfn_to_page(pfn);
1483 cond_resched();
1484 }
7e18adb4
MG
1485
1486 if (page->flags) {
1487 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1488 goto free_range;
7e18adb4
MG
1489 }
1490
1491 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1492 if (!free_base_page) {
1493 free_base_page = page;
1494 free_base_pfn = pfn;
1495 nr_to_free = 0;
1496 }
1497 nr_to_free++;
1498
1499 /* Where possible, batch up pages for a single free */
1500 continue;
1501free_range:
1502 /* Free the current block of pages to allocator */
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page, free_base_pfn,
1505 nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
7e18adb4 1508 }
a4de83dd 1509
7e18adb4
MG
1510 first_init_pfn = max(end_pfn, first_init_pfn);
1511 }
1512
1513 /* Sanity check that the next zone really is unpopulated */
1514 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1515
0e1cc95b 1516 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1517 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1518
1519 pgdat_init_report_one_done();
0e1cc95b
MG
1520 return 0;
1521}
7cf91a98 1522#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1523
1524void __init page_alloc_init_late(void)
1525{
7cf91a98
JK
1526 struct zone *zone;
1527
1528#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1529 int nid;
1530
d3cd131d
NS
1531 /* There will be num_node_state(N_MEMORY) threads */
1532 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1533 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1534 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1535 }
1536
1537 /* Block until all are initialised */
d3cd131d 1538 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1539
1540 /* Reinit limits that are based on free pages after the kernel is up */
1541 files_maxfiles_init();
7cf91a98
JK
1542#endif
1543
1544 for_each_populated_zone(zone)
1545 set_zone_contiguous(zone);
7e18adb4 1546}
7e18adb4 1547
47118af0 1548#ifdef CONFIG_CMA
9cf510a5 1549/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1550void __init init_cma_reserved_pageblock(struct page *page)
1551{
1552 unsigned i = pageblock_nr_pages;
1553 struct page *p = page;
1554
1555 do {
1556 __ClearPageReserved(p);
1557 set_page_count(p, 0);
1558 } while (++p, --i);
1559
47118af0 1560 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1561
1562 if (pageblock_order >= MAX_ORDER) {
1563 i = pageblock_nr_pages;
1564 p = page;
1565 do {
1566 set_page_refcounted(p);
1567 __free_pages(p, MAX_ORDER - 1);
1568 p += MAX_ORDER_NR_PAGES;
1569 } while (i -= MAX_ORDER_NR_PAGES);
1570 } else {
1571 set_page_refcounted(page);
1572 __free_pages(page, pageblock_order);
1573 }
1574
3dcc0571 1575 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1576}
1577#endif
1da177e4
LT
1578
1579/*
1580 * The order of subdivision here is critical for the IO subsystem.
1581 * Please do not alter this order without good reasons and regression
1582 * testing. Specifically, as large blocks of memory are subdivided,
1583 * the order in which smaller blocks are delivered depends on the order
1584 * they're subdivided in this function. This is the primary factor
1585 * influencing the order in which pages are delivered to the IO
1586 * subsystem according to empirical testing, and this is also justified
1587 * by considering the behavior of a buddy system containing a single
1588 * large block of memory acted on by a series of small allocations.
1589 * This behavior is a critical factor in sglist merging's success.
1590 *
6d49e352 1591 * -- nyc
1da177e4 1592 */
085cc7d5 1593static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1594 int low, int high, struct free_area *area,
1595 int migratetype)
1da177e4
LT
1596{
1597 unsigned long size = 1 << high;
1598
1599 while (high > low) {
1600 area--;
1601 high--;
1602 size >>= 1;
309381fe 1603 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1604
2847cf95 1605 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1606 debug_guardpage_enabled() &&
2847cf95 1607 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1608 /*
1609 * Mark as guard pages (or page), that will allow to
1610 * merge back to allocator when buddy will be freed.
1611 * Corresponding page table entries will not be touched,
1612 * pages will stay not present in virtual address space
1613 */
2847cf95 1614 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1615 continue;
1616 }
b2a0ac88 1617 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1618 area->nr_free++;
1619 set_page_order(&page[size], high);
1620 }
1da177e4
LT
1621}
1622
1da177e4
LT
1623/*
1624 * This page is about to be returned from the page allocator
1625 */
2a7684a2 1626static inline int check_new_page(struct page *page)
1da177e4 1627{
7bfec6f4
MG
1628 const char *bad_reason;
1629 unsigned long bad_flags;
1630
1631 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1632 return 0;
f0b791a3 1633
7bfec6f4
MG
1634 bad_reason = NULL;
1635 bad_flags = 0;
53f9263b 1636 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1637 bad_reason = "nonzero mapcount";
1638 if (unlikely(page->mapping != NULL))
1639 bad_reason = "non-NULL mapping";
fe896d18 1640 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1641 bad_reason = "nonzero _count";
f4c18e6f
NH
1642 if (unlikely(page->flags & __PG_HWPOISON)) {
1643 bad_reason = "HWPoisoned (hardware-corrupted)";
1644 bad_flags = __PG_HWPOISON;
1645 }
f0b791a3
DH
1646 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1647 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1648 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1649 }
9edad6ea
JW
1650#ifdef CONFIG_MEMCG
1651 if (unlikely(page->mem_cgroup))
1652 bad_reason = "page still charged to cgroup";
1653#endif
f0b791a3
DH
1654 if (unlikely(bad_reason)) {
1655 bad_page(page, bad_reason, bad_flags);
689bcebf 1656 return 1;
8cc3b392 1657 }
2a7684a2
WF
1658 return 0;
1659}
1660
1414c7f4
LA
1661static inline bool free_pages_prezeroed(bool poisoned)
1662{
1663 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1664 page_poisoning_enabled() && poisoned;
1665}
1666
75379191 1667static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1668 unsigned int alloc_flags)
2a7684a2
WF
1669{
1670 int i;
1414c7f4 1671 bool poisoned = true;
2a7684a2
WF
1672
1673 for (i = 0; i < (1 << order); i++) {
1674 struct page *p = page + i;
1675 if (unlikely(check_new_page(p)))
1676 return 1;
1414c7f4
LA
1677 if (poisoned)
1678 poisoned &= page_is_poisoned(p);
2a7684a2 1679 }
689bcebf 1680
4c21e2f2 1681 set_page_private(page, 0);
7835e98b 1682 set_page_refcounted(page);
cc102509
NP
1683
1684 arch_alloc_page(page, order);
1da177e4 1685 kernel_map_pages(page, 1 << order, 1);
8823b1db 1686 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1687 kasan_alloc_pages(page, order);
17cf4406 1688
1414c7f4 1689 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1690 for (i = 0; i < (1 << order); i++)
1691 clear_highpage(page + i);
17cf4406
NP
1692
1693 if (order && (gfp_flags & __GFP_COMP))
1694 prep_compound_page(page, order);
1695
48c96a36
JK
1696 set_page_owner(page, order, gfp_flags);
1697
75379191 1698 /*
2f064f34 1699 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1700 * allocate the page. The expectation is that the caller is taking
1701 * steps that will free more memory. The caller should avoid the page
1702 * being used for !PFMEMALLOC purposes.
1703 */
2f064f34
MH
1704 if (alloc_flags & ALLOC_NO_WATERMARKS)
1705 set_page_pfmemalloc(page);
1706 else
1707 clear_page_pfmemalloc(page);
75379191 1708
689bcebf 1709 return 0;
1da177e4
LT
1710}
1711
56fd56b8
MG
1712/*
1713 * Go through the free lists for the given migratetype and remove
1714 * the smallest available page from the freelists
1715 */
728ec980
MG
1716static inline
1717struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1718 int migratetype)
1719{
1720 unsigned int current_order;
b8af2941 1721 struct free_area *area;
56fd56b8
MG
1722 struct page *page;
1723
1724 /* Find a page of the appropriate size in the preferred list */
1725 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1726 area = &(zone->free_area[current_order]);
a16601c5 1727 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1728 struct page, lru);
a16601c5
GT
1729 if (!page)
1730 continue;
56fd56b8
MG
1731 list_del(&page->lru);
1732 rmv_page_order(page);
1733 area->nr_free--;
56fd56b8 1734 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1735 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1736 return page;
1737 }
1738
1739 return NULL;
1740}
1741
1742
b2a0ac88
MG
1743/*
1744 * This array describes the order lists are fallen back to when
1745 * the free lists for the desirable migrate type are depleted
1746 */
47118af0 1747static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1748 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1749 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1750 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1751#ifdef CONFIG_CMA
974a786e 1752 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1753#endif
194159fb 1754#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1755 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1756#endif
b2a0ac88
MG
1757};
1758
dc67647b
JK
1759#ifdef CONFIG_CMA
1760static struct page *__rmqueue_cma_fallback(struct zone *zone,
1761 unsigned int order)
1762{
1763 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1764}
1765#else
1766static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1767 unsigned int order) { return NULL; }
1768#endif
1769
c361be55
MG
1770/*
1771 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1772 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1773 * boundary. If alignment is required, use move_freepages_block()
1774 */
435b405c 1775int move_freepages(struct zone *zone,
b69a7288
AB
1776 struct page *start_page, struct page *end_page,
1777 int migratetype)
c361be55
MG
1778{
1779 struct page *page;
d00181b9 1780 unsigned int order;
d100313f 1781 int pages_moved = 0;
c361be55
MG
1782
1783#ifndef CONFIG_HOLES_IN_ZONE
1784 /*
1785 * page_zone is not safe to call in this context when
1786 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1787 * anyway as we check zone boundaries in move_freepages_block().
1788 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1789 * grouping pages by mobility
c361be55 1790 */
97ee4ba7 1791 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1792#endif
1793
1794 for (page = start_page; page <= end_page;) {
344c790e 1795 /* Make sure we are not inadvertently changing nodes */
309381fe 1796 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1797
c361be55
MG
1798 if (!pfn_valid_within(page_to_pfn(page))) {
1799 page++;
1800 continue;
1801 }
1802
1803 if (!PageBuddy(page)) {
1804 page++;
1805 continue;
1806 }
1807
1808 order = page_order(page);
84be48d8
KS
1809 list_move(&page->lru,
1810 &zone->free_area[order].free_list[migratetype]);
c361be55 1811 page += 1 << order;
d100313f 1812 pages_moved += 1 << order;
c361be55
MG
1813 }
1814
d100313f 1815 return pages_moved;
c361be55
MG
1816}
1817
ee6f509c 1818int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1819 int migratetype)
c361be55
MG
1820{
1821 unsigned long start_pfn, end_pfn;
1822 struct page *start_page, *end_page;
1823
1824 start_pfn = page_to_pfn(page);
d9c23400 1825 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1826 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1827 end_page = start_page + pageblock_nr_pages - 1;
1828 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1829
1830 /* Do not cross zone boundaries */
108bcc96 1831 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1832 start_page = page;
108bcc96 1833 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1834 return 0;
1835
1836 return move_freepages(zone, start_page, end_page, migratetype);
1837}
1838
2f66a68f
MG
1839static void change_pageblock_range(struct page *pageblock_page,
1840 int start_order, int migratetype)
1841{
1842 int nr_pageblocks = 1 << (start_order - pageblock_order);
1843
1844 while (nr_pageblocks--) {
1845 set_pageblock_migratetype(pageblock_page, migratetype);
1846 pageblock_page += pageblock_nr_pages;
1847 }
1848}
1849
fef903ef 1850/*
9c0415eb
VB
1851 * When we are falling back to another migratetype during allocation, try to
1852 * steal extra free pages from the same pageblocks to satisfy further
1853 * allocations, instead of polluting multiple pageblocks.
1854 *
1855 * If we are stealing a relatively large buddy page, it is likely there will
1856 * be more free pages in the pageblock, so try to steal them all. For
1857 * reclaimable and unmovable allocations, we steal regardless of page size,
1858 * as fragmentation caused by those allocations polluting movable pageblocks
1859 * is worse than movable allocations stealing from unmovable and reclaimable
1860 * pageblocks.
fef903ef 1861 */
4eb7dce6
JK
1862static bool can_steal_fallback(unsigned int order, int start_mt)
1863{
1864 /*
1865 * Leaving this order check is intended, although there is
1866 * relaxed order check in next check. The reason is that
1867 * we can actually steal whole pageblock if this condition met,
1868 * but, below check doesn't guarantee it and that is just heuristic
1869 * so could be changed anytime.
1870 */
1871 if (order >= pageblock_order)
1872 return true;
1873
1874 if (order >= pageblock_order / 2 ||
1875 start_mt == MIGRATE_RECLAIMABLE ||
1876 start_mt == MIGRATE_UNMOVABLE ||
1877 page_group_by_mobility_disabled)
1878 return true;
1879
1880 return false;
1881}
1882
1883/*
1884 * This function implements actual steal behaviour. If order is large enough,
1885 * we can steal whole pageblock. If not, we first move freepages in this
1886 * pageblock and check whether half of pages are moved or not. If half of
1887 * pages are moved, we can change migratetype of pageblock and permanently
1888 * use it's pages as requested migratetype in the future.
1889 */
1890static void steal_suitable_fallback(struct zone *zone, struct page *page,
1891 int start_type)
fef903ef 1892{
d00181b9 1893 unsigned int current_order = page_order(page);
4eb7dce6 1894 int pages;
fef903ef 1895
fef903ef
SB
1896 /* Take ownership for orders >= pageblock_order */
1897 if (current_order >= pageblock_order) {
1898 change_pageblock_range(page, current_order, start_type);
3a1086fb 1899 return;
fef903ef
SB
1900 }
1901
4eb7dce6 1902 pages = move_freepages_block(zone, page, start_type);
fef903ef 1903
4eb7dce6
JK
1904 /* Claim the whole block if over half of it is free */
1905 if (pages >= (1 << (pageblock_order-1)) ||
1906 page_group_by_mobility_disabled)
1907 set_pageblock_migratetype(page, start_type);
1908}
1909
2149cdae
JK
1910/*
1911 * Check whether there is a suitable fallback freepage with requested order.
1912 * If only_stealable is true, this function returns fallback_mt only if
1913 * we can steal other freepages all together. This would help to reduce
1914 * fragmentation due to mixed migratetype pages in one pageblock.
1915 */
1916int find_suitable_fallback(struct free_area *area, unsigned int order,
1917 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1918{
1919 int i;
1920 int fallback_mt;
1921
1922 if (area->nr_free == 0)
1923 return -1;
1924
1925 *can_steal = false;
1926 for (i = 0;; i++) {
1927 fallback_mt = fallbacks[migratetype][i];
974a786e 1928 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1929 break;
1930
1931 if (list_empty(&area->free_list[fallback_mt]))
1932 continue;
fef903ef 1933
4eb7dce6
JK
1934 if (can_steal_fallback(order, migratetype))
1935 *can_steal = true;
1936
2149cdae
JK
1937 if (!only_stealable)
1938 return fallback_mt;
1939
1940 if (*can_steal)
1941 return fallback_mt;
fef903ef 1942 }
4eb7dce6
JK
1943
1944 return -1;
fef903ef
SB
1945}
1946
0aaa29a5
MG
1947/*
1948 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1949 * there are no empty page blocks that contain a page with a suitable order
1950 */
1951static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1952 unsigned int alloc_order)
1953{
1954 int mt;
1955 unsigned long max_managed, flags;
1956
1957 /*
1958 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1959 * Check is race-prone but harmless.
1960 */
1961 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1962 if (zone->nr_reserved_highatomic >= max_managed)
1963 return;
1964
1965 spin_lock_irqsave(&zone->lock, flags);
1966
1967 /* Recheck the nr_reserved_highatomic limit under the lock */
1968 if (zone->nr_reserved_highatomic >= max_managed)
1969 goto out_unlock;
1970
1971 /* Yoink! */
1972 mt = get_pageblock_migratetype(page);
1973 if (mt != MIGRATE_HIGHATOMIC &&
1974 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1975 zone->nr_reserved_highatomic += pageblock_nr_pages;
1976 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1977 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1978 }
1979
1980out_unlock:
1981 spin_unlock_irqrestore(&zone->lock, flags);
1982}
1983
1984/*
1985 * Used when an allocation is about to fail under memory pressure. This
1986 * potentially hurts the reliability of high-order allocations when under
1987 * intense memory pressure but failed atomic allocations should be easier
1988 * to recover from than an OOM.
1989 */
1990static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1991{
1992 struct zonelist *zonelist = ac->zonelist;
1993 unsigned long flags;
1994 struct zoneref *z;
1995 struct zone *zone;
1996 struct page *page;
1997 int order;
1998
1999 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2000 ac->nodemask) {
2001 /* Preserve at least one pageblock */
2002 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2003 continue;
2004
2005 spin_lock_irqsave(&zone->lock, flags);
2006 for (order = 0; order < MAX_ORDER; order++) {
2007 struct free_area *area = &(zone->free_area[order]);
2008
a16601c5
GT
2009 page = list_first_entry_or_null(
2010 &area->free_list[MIGRATE_HIGHATOMIC],
2011 struct page, lru);
2012 if (!page)
0aaa29a5
MG
2013 continue;
2014
0aaa29a5
MG
2015 /*
2016 * It should never happen but changes to locking could
2017 * inadvertently allow a per-cpu drain to add pages
2018 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2019 * and watch for underflows.
2020 */
2021 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2022 zone->nr_reserved_highatomic);
2023
2024 /*
2025 * Convert to ac->migratetype and avoid the normal
2026 * pageblock stealing heuristics. Minimally, the caller
2027 * is doing the work and needs the pages. More
2028 * importantly, if the block was always converted to
2029 * MIGRATE_UNMOVABLE or another type then the number
2030 * of pageblocks that cannot be completely freed
2031 * may increase.
2032 */
2033 set_pageblock_migratetype(page, ac->migratetype);
2034 move_freepages_block(zone, page, ac->migratetype);
2035 spin_unlock_irqrestore(&zone->lock, flags);
2036 return;
2037 }
2038 spin_unlock_irqrestore(&zone->lock, flags);
2039 }
2040}
2041
b2a0ac88 2042/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2043static inline struct page *
7aeb09f9 2044__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2045{
b8af2941 2046 struct free_area *area;
7aeb09f9 2047 unsigned int current_order;
b2a0ac88 2048 struct page *page;
4eb7dce6
JK
2049 int fallback_mt;
2050 bool can_steal;
b2a0ac88
MG
2051
2052 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2053 for (current_order = MAX_ORDER-1;
2054 current_order >= order && current_order <= MAX_ORDER-1;
2055 --current_order) {
4eb7dce6
JK
2056 area = &(zone->free_area[current_order]);
2057 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2058 start_migratetype, false, &can_steal);
4eb7dce6
JK
2059 if (fallback_mt == -1)
2060 continue;
b2a0ac88 2061
a16601c5 2062 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2063 struct page, lru);
2064 if (can_steal)
2065 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2066
4eb7dce6
JK
2067 /* Remove the page from the freelists */
2068 area->nr_free--;
2069 list_del(&page->lru);
2070 rmv_page_order(page);
3a1086fb 2071
4eb7dce6
JK
2072 expand(zone, page, order, current_order, area,
2073 start_migratetype);
2074 /*
bb14c2c7 2075 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2076 * migratetype depending on the decisions in
bb14c2c7
VB
2077 * find_suitable_fallback(). This is OK as long as it does not
2078 * differ for MIGRATE_CMA pageblocks. Those can be used as
2079 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2080 */
bb14c2c7 2081 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2082
4eb7dce6
JK
2083 trace_mm_page_alloc_extfrag(page, order, current_order,
2084 start_migratetype, fallback_mt);
e0fff1bd 2085
4eb7dce6 2086 return page;
b2a0ac88
MG
2087 }
2088
728ec980 2089 return NULL;
b2a0ac88
MG
2090}
2091
56fd56b8 2092/*
1da177e4
LT
2093 * Do the hard work of removing an element from the buddy allocator.
2094 * Call me with the zone->lock already held.
2095 */
b2a0ac88 2096static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2097 int migratetype)
1da177e4 2098{
1da177e4
LT
2099 struct page *page;
2100
56fd56b8 2101 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2102 if (unlikely(!page)) {
dc67647b
JK
2103 if (migratetype == MIGRATE_MOVABLE)
2104 page = __rmqueue_cma_fallback(zone, order);
2105
2106 if (!page)
2107 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2108 }
2109
0d3d062a 2110 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2111 return page;
1da177e4
LT
2112}
2113
5f63b720 2114/*
1da177e4
LT
2115 * Obtain a specified number of elements from the buddy allocator, all under
2116 * a single hold of the lock, for efficiency. Add them to the supplied list.
2117 * Returns the number of new pages which were placed at *list.
2118 */
5f63b720 2119static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2120 unsigned long count, struct list_head *list,
b745bc85 2121 int migratetype, bool cold)
1da177e4 2122{
5bcc9f86 2123 int i;
5f63b720 2124
c54ad30c 2125 spin_lock(&zone->lock);
1da177e4 2126 for (i = 0; i < count; ++i) {
6ac0206b 2127 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2128 if (unlikely(page == NULL))
1da177e4 2129 break;
81eabcbe
MG
2130
2131 /*
2132 * Split buddy pages returned by expand() are received here
2133 * in physical page order. The page is added to the callers and
2134 * list and the list head then moves forward. From the callers
2135 * perspective, the linked list is ordered by page number in
2136 * some conditions. This is useful for IO devices that can
2137 * merge IO requests if the physical pages are ordered
2138 * properly.
2139 */
b745bc85 2140 if (likely(!cold))
e084b2d9
MG
2141 list_add(&page->lru, list);
2142 else
2143 list_add_tail(&page->lru, list);
81eabcbe 2144 list = &page->lru;
bb14c2c7 2145 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2147 -(1 << order));
1da177e4 2148 }
f2260e6b 2149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2150 spin_unlock(&zone->lock);
085cc7d5 2151 return i;
1da177e4
LT
2152}
2153
4ae7c039 2154#ifdef CONFIG_NUMA
8fce4d8e 2155/*
4037d452
CL
2156 * Called from the vmstat counter updater to drain pagesets of this
2157 * currently executing processor on remote nodes after they have
2158 * expired.
2159 *
879336c3
CL
2160 * Note that this function must be called with the thread pinned to
2161 * a single processor.
8fce4d8e 2162 */
4037d452 2163void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2164{
4ae7c039 2165 unsigned long flags;
7be12fc9 2166 int to_drain, batch;
4ae7c039 2167
4037d452 2168 local_irq_save(flags);
4db0c3c2 2169 batch = READ_ONCE(pcp->batch);
7be12fc9 2170 to_drain = min(pcp->count, batch);
2a13515c
KM
2171 if (to_drain > 0) {
2172 free_pcppages_bulk(zone, to_drain, pcp);
2173 pcp->count -= to_drain;
2174 }
4037d452 2175 local_irq_restore(flags);
4ae7c039
CL
2176}
2177#endif
2178
9f8f2172 2179/*
93481ff0 2180 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2181 *
2182 * The processor must either be the current processor and the
2183 * thread pinned to the current processor or a processor that
2184 * is not online.
2185 */
93481ff0 2186static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2187{
c54ad30c 2188 unsigned long flags;
93481ff0
VB
2189 struct per_cpu_pageset *pset;
2190 struct per_cpu_pages *pcp;
1da177e4 2191
93481ff0
VB
2192 local_irq_save(flags);
2193 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2194
93481ff0
VB
2195 pcp = &pset->pcp;
2196 if (pcp->count) {
2197 free_pcppages_bulk(zone, pcp->count, pcp);
2198 pcp->count = 0;
2199 }
2200 local_irq_restore(flags);
2201}
3dfa5721 2202
93481ff0
VB
2203/*
2204 * Drain pcplists of all zones on the indicated processor.
2205 *
2206 * The processor must either be the current processor and the
2207 * thread pinned to the current processor or a processor that
2208 * is not online.
2209 */
2210static void drain_pages(unsigned int cpu)
2211{
2212 struct zone *zone;
2213
2214 for_each_populated_zone(zone) {
2215 drain_pages_zone(cpu, zone);
1da177e4
LT
2216 }
2217}
1da177e4 2218
9f8f2172
CL
2219/*
2220 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2221 *
2222 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2223 * the single zone's pages.
9f8f2172 2224 */
93481ff0 2225void drain_local_pages(struct zone *zone)
9f8f2172 2226{
93481ff0
VB
2227 int cpu = smp_processor_id();
2228
2229 if (zone)
2230 drain_pages_zone(cpu, zone);
2231 else
2232 drain_pages(cpu);
9f8f2172
CL
2233}
2234
2235/*
74046494
GBY
2236 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2237 *
93481ff0
VB
2238 * When zone parameter is non-NULL, spill just the single zone's pages.
2239 *
74046494
GBY
2240 * Note that this code is protected against sending an IPI to an offline
2241 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2242 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2243 * nothing keeps CPUs from showing up after we populated the cpumask and
2244 * before the call to on_each_cpu_mask().
9f8f2172 2245 */
93481ff0 2246void drain_all_pages(struct zone *zone)
9f8f2172 2247{
74046494 2248 int cpu;
74046494
GBY
2249
2250 /*
2251 * Allocate in the BSS so we wont require allocation in
2252 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2253 */
2254 static cpumask_t cpus_with_pcps;
2255
2256 /*
2257 * We don't care about racing with CPU hotplug event
2258 * as offline notification will cause the notified
2259 * cpu to drain that CPU pcps and on_each_cpu_mask
2260 * disables preemption as part of its processing
2261 */
2262 for_each_online_cpu(cpu) {
93481ff0
VB
2263 struct per_cpu_pageset *pcp;
2264 struct zone *z;
74046494 2265 bool has_pcps = false;
93481ff0
VB
2266
2267 if (zone) {
74046494 2268 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2269 if (pcp->pcp.count)
74046494 2270 has_pcps = true;
93481ff0
VB
2271 } else {
2272 for_each_populated_zone(z) {
2273 pcp = per_cpu_ptr(z->pageset, cpu);
2274 if (pcp->pcp.count) {
2275 has_pcps = true;
2276 break;
2277 }
74046494
GBY
2278 }
2279 }
93481ff0 2280
74046494
GBY
2281 if (has_pcps)
2282 cpumask_set_cpu(cpu, &cpus_with_pcps);
2283 else
2284 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2285 }
93481ff0
VB
2286 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2287 zone, 1);
9f8f2172
CL
2288}
2289
296699de 2290#ifdef CONFIG_HIBERNATION
1da177e4
LT
2291
2292void mark_free_pages(struct zone *zone)
2293{
f623f0db
RW
2294 unsigned long pfn, max_zone_pfn;
2295 unsigned long flags;
7aeb09f9 2296 unsigned int order, t;
86760a2c 2297 struct page *page;
1da177e4 2298
8080fc03 2299 if (zone_is_empty(zone))
1da177e4
LT
2300 return;
2301
2302 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2303
108bcc96 2304 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2305 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2306 if (pfn_valid(pfn)) {
86760a2c 2307 page = pfn_to_page(pfn);
ba6b0979
JK
2308
2309 if (page_zone(page) != zone)
2310 continue;
2311
7be98234
RW
2312 if (!swsusp_page_is_forbidden(page))
2313 swsusp_unset_page_free(page);
f623f0db 2314 }
1da177e4 2315
b2a0ac88 2316 for_each_migratetype_order(order, t) {
86760a2c
GT
2317 list_for_each_entry(page,
2318 &zone->free_area[order].free_list[t], lru) {
f623f0db 2319 unsigned long i;
1da177e4 2320
86760a2c 2321 pfn = page_to_pfn(page);
f623f0db 2322 for (i = 0; i < (1UL << order); i++)
7be98234 2323 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2324 }
b2a0ac88 2325 }
1da177e4
LT
2326 spin_unlock_irqrestore(&zone->lock, flags);
2327}
e2c55dc8 2328#endif /* CONFIG_PM */
1da177e4 2329
1da177e4
LT
2330/*
2331 * Free a 0-order page
b745bc85 2332 * cold == true ? free a cold page : free a hot page
1da177e4 2333 */
b745bc85 2334void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2335{
2336 struct zone *zone = page_zone(page);
2337 struct per_cpu_pages *pcp;
2338 unsigned long flags;
dc4b0caf 2339 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2340 int migratetype;
1da177e4 2341
ec95f53a 2342 if (!free_pages_prepare(page, 0))
689bcebf
HD
2343 return;
2344
dc4b0caf 2345 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2346 set_pcppage_migratetype(page, migratetype);
1da177e4 2347 local_irq_save(flags);
f8891e5e 2348 __count_vm_event(PGFREE);
da456f14 2349
5f8dcc21
MG
2350 /*
2351 * We only track unmovable, reclaimable and movable on pcp lists.
2352 * Free ISOLATE pages back to the allocator because they are being
2353 * offlined but treat RESERVE as movable pages so we can get those
2354 * areas back if necessary. Otherwise, we may have to free
2355 * excessively into the page allocator
2356 */
2357 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2358 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2359 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2360 goto out;
2361 }
2362 migratetype = MIGRATE_MOVABLE;
2363 }
2364
99dcc3e5 2365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2366 if (!cold)
5f8dcc21 2367 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2368 else
2369 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2370 pcp->count++;
48db57f8 2371 if (pcp->count >= pcp->high) {
4db0c3c2 2372 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2373 free_pcppages_bulk(zone, batch, pcp);
2374 pcp->count -= batch;
48db57f8 2375 }
5f8dcc21
MG
2376
2377out:
1da177e4 2378 local_irq_restore(flags);
1da177e4
LT
2379}
2380
cc59850e
KK
2381/*
2382 * Free a list of 0-order pages
2383 */
b745bc85 2384void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2385{
2386 struct page *page, *next;
2387
2388 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2389 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2390 free_hot_cold_page(page, cold);
2391 }
2392}
2393
8dfcc9ba
NP
2394/*
2395 * split_page takes a non-compound higher-order page, and splits it into
2396 * n (1<<order) sub-pages: page[0..n]
2397 * Each sub-page must be freed individually.
2398 *
2399 * Note: this is probably too low level an operation for use in drivers.
2400 * Please consult with lkml before using this in your driver.
2401 */
2402void split_page(struct page *page, unsigned int order)
2403{
2404 int i;
e2cfc911 2405 gfp_t gfp_mask;
8dfcc9ba 2406
309381fe
SL
2407 VM_BUG_ON_PAGE(PageCompound(page), page);
2408 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2409
2410#ifdef CONFIG_KMEMCHECK
2411 /*
2412 * Split shadow pages too, because free(page[0]) would
2413 * otherwise free the whole shadow.
2414 */
2415 if (kmemcheck_page_is_tracked(page))
2416 split_page(virt_to_page(page[0].shadow), order);
2417#endif
2418
e2cfc911
JK
2419 gfp_mask = get_page_owner_gfp(page);
2420 set_page_owner(page, 0, gfp_mask);
48c96a36 2421 for (i = 1; i < (1 << order); i++) {
7835e98b 2422 set_page_refcounted(page + i);
e2cfc911 2423 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2424 }
8dfcc9ba 2425}
5853ff23 2426EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2427
3c605096 2428int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2429{
748446bb
MG
2430 unsigned long watermark;
2431 struct zone *zone;
2139cbe6 2432 int mt;
748446bb
MG
2433
2434 BUG_ON(!PageBuddy(page));
2435
2436 zone = page_zone(page);
2e30abd1 2437 mt = get_pageblock_migratetype(page);
748446bb 2438
194159fb 2439 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2440 /* Obey watermarks as if the page was being allocated */
2441 watermark = low_wmark_pages(zone) + (1 << order);
2442 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2443 return 0;
2444
8fb74b9f 2445 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2446 }
748446bb
MG
2447
2448 /* Remove page from free list */
2449 list_del(&page->lru);
2450 zone->free_area[order].nr_free--;
2451 rmv_page_order(page);
2139cbe6 2452
e2cfc911 2453 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2454
8fb74b9f 2455 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2456 if (order >= pageblock_order - 1) {
2457 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2458 for (; page < endpage; page += pageblock_nr_pages) {
2459 int mt = get_pageblock_migratetype(page);
194159fb 2460 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2461 set_pageblock_migratetype(page,
2462 MIGRATE_MOVABLE);
2463 }
748446bb
MG
2464 }
2465
f3a14ced 2466
8fb74b9f 2467 return 1UL << order;
1fb3f8ca
MG
2468}
2469
2470/*
2471 * Similar to split_page except the page is already free. As this is only
2472 * being used for migration, the migratetype of the block also changes.
2473 * As this is called with interrupts disabled, the caller is responsible
2474 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2475 * are enabled.
2476 *
2477 * Note: this is probably too low level an operation for use in drivers.
2478 * Please consult with lkml before using this in your driver.
2479 */
2480int split_free_page(struct page *page)
2481{
2482 unsigned int order;
2483 int nr_pages;
2484
1fb3f8ca
MG
2485 order = page_order(page);
2486
8fb74b9f 2487 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2488 if (!nr_pages)
2489 return 0;
2490
2491 /* Split into individual pages */
2492 set_page_refcounted(page);
2493 split_page(page, order);
2494 return nr_pages;
748446bb
MG
2495}
2496
060e7417
MG
2497/*
2498 * Update NUMA hit/miss statistics
2499 *
2500 * Must be called with interrupts disabled.
2501 *
2502 * When __GFP_OTHER_NODE is set assume the node of the preferred
2503 * zone is the local node. This is useful for daemons who allocate
2504 * memory on behalf of other processes.
2505 */
2506static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2507 gfp_t flags)
2508{
2509#ifdef CONFIG_NUMA
2510 int local_nid = numa_node_id();
2511 enum zone_stat_item local_stat = NUMA_LOCAL;
2512
2513 if (unlikely(flags & __GFP_OTHER_NODE)) {
2514 local_stat = NUMA_OTHER;
2515 local_nid = preferred_zone->node;
2516 }
2517
2518 if (z->node == local_nid) {
2519 __inc_zone_state(z, NUMA_HIT);
2520 __inc_zone_state(z, local_stat);
2521 } else {
2522 __inc_zone_state(z, NUMA_MISS);
2523 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2524 }
2525#endif
2526}
2527
1da177e4 2528/*
75379191 2529 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2530 */
0a15c3e9
MG
2531static inline
2532struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2533 struct zone *zone, unsigned int order,
c603844b
MG
2534 gfp_t gfp_flags, unsigned int alloc_flags,
2535 int migratetype)
1da177e4
LT
2536{
2537 unsigned long flags;
689bcebf 2538 struct page *page;
b745bc85 2539 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2540
48db57f8 2541 if (likely(order == 0)) {
1da177e4 2542 struct per_cpu_pages *pcp;
5f8dcc21 2543 struct list_head *list;
1da177e4 2544
1da177e4 2545 local_irq_save(flags);
99dcc3e5
CL
2546 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2547 list = &pcp->lists[migratetype];
5f8dcc21 2548 if (list_empty(list)) {
535131e6 2549 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2550 pcp->batch, list,
e084b2d9 2551 migratetype, cold);
5f8dcc21 2552 if (unlikely(list_empty(list)))
6fb332fa 2553 goto failed;
535131e6 2554 }
b92a6edd 2555
5f8dcc21 2556 if (cold)
a16601c5 2557 page = list_last_entry(list, struct page, lru);
5f8dcc21 2558 else
a16601c5 2559 page = list_first_entry(list, struct page, lru);
5f8dcc21 2560
754078eb 2561 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2562 list_del(&page->lru);
2563 pcp->count--;
7fb1d9fc 2564 } else {
0f352e53
MH
2565 /*
2566 * We most definitely don't want callers attempting to
2567 * allocate greater than order-1 page units with __GFP_NOFAIL.
2568 */
2569 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2570 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2571
2572 page = NULL;
2573 if (alloc_flags & ALLOC_HARDER) {
2574 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2575 if (page)
2576 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2577 }
2578 if (!page)
6ac0206b 2579 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2580 spin_unlock(&zone->lock);
2581 if (!page)
2582 goto failed;
754078eb 2583 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2584 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2585 get_pcppage_migratetype(page));
1da177e4
LT
2586 }
2587
abe5f972 2588 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2589 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2590 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2591
f8891e5e 2592 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2593 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2594 local_irq_restore(flags);
1da177e4 2595
309381fe 2596 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2597 return page;
a74609fa
NP
2598
2599failed:
2600 local_irq_restore(flags);
a74609fa 2601 return NULL;
1da177e4
LT
2602}
2603
933e312e
AM
2604#ifdef CONFIG_FAIL_PAGE_ALLOC
2605
b2588c4b 2606static struct {
933e312e
AM
2607 struct fault_attr attr;
2608
621a5f7a 2609 bool ignore_gfp_highmem;
71baba4b 2610 bool ignore_gfp_reclaim;
54114994 2611 u32 min_order;
933e312e
AM
2612} fail_page_alloc = {
2613 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2614 .ignore_gfp_reclaim = true,
621a5f7a 2615 .ignore_gfp_highmem = true,
54114994 2616 .min_order = 1,
933e312e
AM
2617};
2618
2619static int __init setup_fail_page_alloc(char *str)
2620{
2621 return setup_fault_attr(&fail_page_alloc.attr, str);
2622}
2623__setup("fail_page_alloc=", setup_fail_page_alloc);
2624
deaf386e 2625static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2626{
54114994 2627 if (order < fail_page_alloc.min_order)
deaf386e 2628 return false;
933e312e 2629 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2630 return false;
933e312e 2631 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2632 return false;
71baba4b
MG
2633 if (fail_page_alloc.ignore_gfp_reclaim &&
2634 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2635 return false;
933e312e
AM
2636
2637 return should_fail(&fail_page_alloc.attr, 1 << order);
2638}
2639
2640#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2641
2642static int __init fail_page_alloc_debugfs(void)
2643{
f4ae40a6 2644 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2645 struct dentry *dir;
933e312e 2646
dd48c085
AM
2647 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2648 &fail_page_alloc.attr);
2649 if (IS_ERR(dir))
2650 return PTR_ERR(dir);
933e312e 2651
b2588c4b 2652 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2653 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2654 goto fail;
2655 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2656 &fail_page_alloc.ignore_gfp_highmem))
2657 goto fail;
2658 if (!debugfs_create_u32("min-order", mode, dir,
2659 &fail_page_alloc.min_order))
2660 goto fail;
2661
2662 return 0;
2663fail:
dd48c085 2664 debugfs_remove_recursive(dir);
933e312e 2665
b2588c4b 2666 return -ENOMEM;
933e312e
AM
2667}
2668
2669late_initcall(fail_page_alloc_debugfs);
2670
2671#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2672
2673#else /* CONFIG_FAIL_PAGE_ALLOC */
2674
deaf386e 2675static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2676{
deaf386e 2677 return false;
933e312e
AM
2678}
2679
2680#endif /* CONFIG_FAIL_PAGE_ALLOC */
2681
1da177e4 2682/*
97a16fc8
MG
2683 * Return true if free base pages are above 'mark'. For high-order checks it
2684 * will return true of the order-0 watermark is reached and there is at least
2685 * one free page of a suitable size. Checking now avoids taking the zone lock
2686 * to check in the allocation paths if no pages are free.
1da177e4 2687 */
7aeb09f9 2688static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2689 unsigned long mark, int classzone_idx,
2690 unsigned int alloc_flags,
7aeb09f9 2691 long free_pages)
1da177e4 2692{
d23ad423 2693 long min = mark;
1da177e4 2694 int o;
c603844b 2695 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2696
0aaa29a5 2697 /* free_pages may go negative - that's OK */
df0a6daa 2698 free_pages -= (1 << order) - 1;
0aaa29a5 2699
7fb1d9fc 2700 if (alloc_flags & ALLOC_HIGH)
1da177e4 2701 min -= min / 2;
0aaa29a5
MG
2702
2703 /*
2704 * If the caller does not have rights to ALLOC_HARDER then subtract
2705 * the high-atomic reserves. This will over-estimate the size of the
2706 * atomic reserve but it avoids a search.
2707 */
97a16fc8 2708 if (likely(!alloc_harder))
0aaa29a5
MG
2709 free_pages -= z->nr_reserved_highatomic;
2710 else
1da177e4 2711 min -= min / 4;
e2b19197 2712
d95ea5d1
BZ
2713#ifdef CONFIG_CMA
2714 /* If allocation can't use CMA areas don't use free CMA pages */
2715 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2716 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2717#endif
026b0814 2718
97a16fc8
MG
2719 /*
2720 * Check watermarks for an order-0 allocation request. If these
2721 * are not met, then a high-order request also cannot go ahead
2722 * even if a suitable page happened to be free.
2723 */
2724 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2725 return false;
1da177e4 2726
97a16fc8
MG
2727 /* If this is an order-0 request then the watermark is fine */
2728 if (!order)
2729 return true;
2730
2731 /* For a high-order request, check at least one suitable page is free */
2732 for (o = order; o < MAX_ORDER; o++) {
2733 struct free_area *area = &z->free_area[o];
2734 int mt;
2735
2736 if (!area->nr_free)
2737 continue;
2738
2739 if (alloc_harder)
2740 return true;
1da177e4 2741
97a16fc8
MG
2742 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2743 if (!list_empty(&area->free_list[mt]))
2744 return true;
2745 }
2746
2747#ifdef CONFIG_CMA
2748 if ((alloc_flags & ALLOC_CMA) &&
2749 !list_empty(&area->free_list[MIGRATE_CMA])) {
2750 return true;
2751 }
2752#endif
1da177e4 2753 }
97a16fc8 2754 return false;
88f5acf8
MG
2755}
2756
7aeb09f9 2757bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2758 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2759{
2760 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2761 zone_page_state(z, NR_FREE_PAGES));
2762}
2763
48ee5f36
MG
2764static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2765 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2766{
2767 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2768 long cma_pages = 0;
2769
2770#ifdef CONFIG_CMA
2771 /* If allocation can't use CMA areas don't use free CMA pages */
2772 if (!(alloc_flags & ALLOC_CMA))
2773 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2774#endif
2775
2776 /*
2777 * Fast check for order-0 only. If this fails then the reserves
2778 * need to be calculated. There is a corner case where the check
2779 * passes but only the high-order atomic reserve are free. If
2780 * the caller is !atomic then it'll uselessly search the free
2781 * list. That corner case is then slower but it is harmless.
2782 */
2783 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2784 return true;
2785
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 free_pages);
2788}
2789
7aeb09f9 2790bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2791 unsigned long mark, int classzone_idx)
88f5acf8
MG
2792{
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794
2795 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2796 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2797
e2b19197 2798 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2799 free_pages);
1da177e4
LT
2800}
2801
9276b1bc 2802#ifdef CONFIG_NUMA
81c0a2bb
JW
2803static bool zone_local(struct zone *local_zone, struct zone *zone)
2804{
fff4068c 2805 return local_zone->node == zone->node;
81c0a2bb
JW
2806}
2807
957f822a
DR
2808static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2809{
5f7a75ac
MG
2810 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2811 RECLAIM_DISTANCE;
957f822a 2812}
9276b1bc 2813#else /* CONFIG_NUMA */
81c0a2bb
JW
2814static bool zone_local(struct zone *local_zone, struct zone *zone)
2815{
2816 return true;
2817}
2818
957f822a
DR
2819static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2820{
2821 return true;
2822}
9276b1bc
PJ
2823#endif /* CONFIG_NUMA */
2824
4ffeaf35
MG
2825static void reset_alloc_batches(struct zone *preferred_zone)
2826{
2827 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2828
2829 do {
2830 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2831 high_wmark_pages(zone) - low_wmark_pages(zone) -
2832 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2833 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2834 } while (zone++ != preferred_zone);
2835}
2836
7fb1d9fc 2837/*
0798e519 2838 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2839 * a page.
2840 */
2841static struct page *
a9263751
VB
2842get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2843 const struct alloc_context *ac)
753ee728 2844{
c33d6c06 2845 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2846 struct zone *zone;
30534755
MG
2847 bool fair_skipped = false;
2848 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2849
9276b1bc 2850zonelist_scan:
7fb1d9fc 2851 /*
9276b1bc 2852 * Scan zonelist, looking for a zone with enough free.
344736f2 2853 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2854 */
c33d6c06 2855 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2856 ac->nodemask) {
be06af00 2857 struct page *page;
e085dbc5
JW
2858 unsigned long mark;
2859
664eedde
MG
2860 if (cpusets_enabled() &&
2861 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2862 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2863 continue;
81c0a2bb
JW
2864 /*
2865 * Distribute pages in proportion to the individual
2866 * zone size to ensure fair page aging. The zone a
2867 * page was allocated in should have no effect on the
2868 * time the page has in memory before being reclaimed.
81c0a2bb 2869 */
30534755 2870 if (apply_fair) {
57054651 2871 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2872 fair_skipped = true;
3a025760 2873 continue;
4ffeaf35 2874 }
c33d6c06 2875 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2876 if (fair_skipped)
2877 goto reset_fair;
2878 apply_fair = false;
2879 }
81c0a2bb 2880 }
a756cf59
JW
2881 /*
2882 * When allocating a page cache page for writing, we
2883 * want to get it from a zone that is within its dirty
2884 * limit, such that no single zone holds more than its
2885 * proportional share of globally allowed dirty pages.
2886 * The dirty limits take into account the zone's
2887 * lowmem reserves and high watermark so that kswapd
2888 * should be able to balance it without having to
2889 * write pages from its LRU list.
2890 *
2891 * This may look like it could increase pressure on
2892 * lower zones by failing allocations in higher zones
2893 * before they are full. But the pages that do spill
2894 * over are limited as the lower zones are protected
2895 * by this very same mechanism. It should not become
2896 * a practical burden to them.
2897 *
2898 * XXX: For now, allow allocations to potentially
2899 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2900 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2901 * which is important when on a NUMA setup the allowed
2902 * zones are together not big enough to reach the
2903 * global limit. The proper fix for these situations
2904 * will require awareness of zones in the
2905 * dirty-throttling and the flusher threads.
2906 */
c9ab0c4f 2907 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2908 continue;
7fb1d9fc 2909
e085dbc5 2910 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2911 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2912 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2913 int ret;
2914
5dab2911
MG
2915 /* Checked here to keep the fast path fast */
2916 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2917 if (alloc_flags & ALLOC_NO_WATERMARKS)
2918 goto try_this_zone;
2919
957f822a 2920 if (zone_reclaim_mode == 0 ||
c33d6c06 2921 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2922 continue;
2923
fa5e084e
MG
2924 ret = zone_reclaim(zone, gfp_mask, order);
2925 switch (ret) {
2926 case ZONE_RECLAIM_NOSCAN:
2927 /* did not scan */
cd38b115 2928 continue;
fa5e084e
MG
2929 case ZONE_RECLAIM_FULL:
2930 /* scanned but unreclaimable */
cd38b115 2931 continue;
fa5e084e
MG
2932 default:
2933 /* did we reclaim enough */
fed2719e 2934 if (zone_watermark_ok(zone, order, mark,
93ea9964 2935 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2936 goto try_this_zone;
2937
fed2719e 2938 continue;
0798e519 2939 }
7fb1d9fc
RS
2940 }
2941
fa5e084e 2942try_this_zone:
c33d6c06 2943 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2944 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2945 if (page) {
2946 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2947 goto try_this_zone;
0aaa29a5
MG
2948
2949 /*
2950 * If this is a high-order atomic allocation then check
2951 * if the pageblock should be reserved for the future
2952 */
2953 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2954 reserve_highatomic_pageblock(page, zone, order);
2955
75379191
VB
2956 return page;
2957 }
54a6eb5c 2958 }
9276b1bc 2959
4ffeaf35
MG
2960 /*
2961 * The first pass makes sure allocations are spread fairly within the
2962 * local node. However, the local node might have free pages left
2963 * after the fairness batches are exhausted, and remote zones haven't
2964 * even been considered yet. Try once more without fairness, and
2965 * include remote zones now, before entering the slowpath and waking
2966 * kswapd: prefer spilling to a remote zone over swapping locally.
2967 */
30534755
MG
2968 if (fair_skipped) {
2969reset_fair:
2970 apply_fair = false;
2971 fair_skipped = false;
c33d6c06 2972 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 2973 goto zonelist_scan;
30534755 2974 }
4ffeaf35
MG
2975
2976 return NULL;
753ee728
MH
2977}
2978
29423e77
DR
2979/*
2980 * Large machines with many possible nodes should not always dump per-node
2981 * meminfo in irq context.
2982 */
2983static inline bool should_suppress_show_mem(void)
2984{
2985 bool ret = false;
2986
2987#if NODES_SHIFT > 8
2988 ret = in_interrupt();
2989#endif
2990 return ret;
2991}
2992
a238ab5b
DH
2993static DEFINE_RATELIMIT_STATE(nopage_rs,
2994 DEFAULT_RATELIMIT_INTERVAL,
2995 DEFAULT_RATELIMIT_BURST);
2996
d00181b9 2997void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2998{
a238ab5b
DH
2999 unsigned int filter = SHOW_MEM_FILTER_NODES;
3000
c0a32fc5
SG
3001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3002 debug_guardpage_minorder() > 0)
a238ab5b
DH
3003 return;
3004
3005 /*
3006 * This documents exceptions given to allocations in certain
3007 * contexts that are allowed to allocate outside current's set
3008 * of allowed nodes.
3009 */
3010 if (!(gfp_mask & __GFP_NOMEMALLOC))
3011 if (test_thread_flag(TIF_MEMDIE) ||
3012 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3013 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3014 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3015 filter &= ~SHOW_MEM_FILTER_NODES;
3016
3017 if (fmt) {
3ee9a4f0
JP
3018 struct va_format vaf;
3019 va_list args;
3020
a238ab5b 3021 va_start(args, fmt);
3ee9a4f0
JP
3022
3023 vaf.fmt = fmt;
3024 vaf.va = &args;
3025
3026 pr_warn("%pV", &vaf);
3027
a238ab5b
DH
3028 va_end(args);
3029 }
3030
c5c990e8
VB
3031 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3032 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3033 dump_stack();
3034 if (!should_suppress_show_mem())
3035 show_mem(filter);
3036}
3037
11e33f6a
MG
3038static inline struct page *
3039__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3040 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3041{
6e0fc46d
DR
3042 struct oom_control oc = {
3043 .zonelist = ac->zonelist,
3044 .nodemask = ac->nodemask,
3045 .gfp_mask = gfp_mask,
3046 .order = order,
6e0fc46d 3047 };
11e33f6a
MG
3048 struct page *page;
3049
9879de73
JW
3050 *did_some_progress = 0;
3051
9879de73 3052 /*
dc56401f
JW
3053 * Acquire the oom lock. If that fails, somebody else is
3054 * making progress for us.
9879de73 3055 */
dc56401f 3056 if (!mutex_trylock(&oom_lock)) {
9879de73 3057 *did_some_progress = 1;
11e33f6a 3058 schedule_timeout_uninterruptible(1);
1da177e4
LT
3059 return NULL;
3060 }
6b1de916 3061
11e33f6a
MG
3062 /*
3063 * Go through the zonelist yet one more time, keep very high watermark
3064 * here, this is only to catch a parallel oom killing, we must fail if
3065 * we're still under heavy pressure.
3066 */
a9263751
VB
3067 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3068 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3069 if (page)
11e33f6a
MG
3070 goto out;
3071
4365a567 3072 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3073 /* Coredumps can quickly deplete all memory reserves */
3074 if (current->flags & PF_DUMPCORE)
3075 goto out;
4365a567
KH
3076 /* The OOM killer will not help higher order allocs */
3077 if (order > PAGE_ALLOC_COSTLY_ORDER)
3078 goto out;
03668b3c 3079 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3080 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3081 goto out;
9083905a
JW
3082 if (pm_suspended_storage())
3083 goto out;
3da88fb3
MH
3084 /*
3085 * XXX: GFP_NOFS allocations should rather fail than rely on
3086 * other request to make a forward progress.
3087 * We are in an unfortunate situation where out_of_memory cannot
3088 * do much for this context but let's try it to at least get
3089 * access to memory reserved if the current task is killed (see
3090 * out_of_memory). Once filesystems are ready to handle allocation
3091 * failures more gracefully we should just bail out here.
3092 */
3093
4167e9b2 3094 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3095 if (gfp_mask & __GFP_THISNODE)
3096 goto out;
3097 }
11e33f6a 3098 /* Exhausted what can be done so it's blamo time */
5020e285 3099 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3100 *did_some_progress = 1;
5020e285
MH
3101
3102 if (gfp_mask & __GFP_NOFAIL) {
3103 page = get_page_from_freelist(gfp_mask, order,
3104 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3105 /*
3106 * fallback to ignore cpuset restriction if our nodes
3107 * are depleted
3108 */
3109 if (!page)
3110 page = get_page_from_freelist(gfp_mask, order,
3111 ALLOC_NO_WATERMARKS, ac);
3112 }
3113 }
11e33f6a 3114out:
dc56401f 3115 mutex_unlock(&oom_lock);
11e33f6a
MG
3116 return page;
3117}
3118
56de7263
MG
3119#ifdef CONFIG_COMPACTION
3120/* Try memory compaction for high-order allocations before reclaim */
3121static struct page *
3122__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3123 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3124 enum migrate_mode mode, int *contended_compaction,
3125 bool *deferred_compaction)
56de7263 3126{
53853e2d 3127 unsigned long compact_result;
98dd3b48 3128 struct page *page;
53853e2d
VB
3129
3130 if (!order)
66199712 3131 return NULL;
66199712 3132
c06b1fca 3133 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3134 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3135 mode, contended_compaction);
c06b1fca 3136 current->flags &= ~PF_MEMALLOC;
56de7263 3137
98dd3b48
VB
3138 switch (compact_result) {
3139 case COMPACT_DEFERRED:
53853e2d 3140 *deferred_compaction = true;
98dd3b48
VB
3141 /* fall-through */
3142 case COMPACT_SKIPPED:
3143 return NULL;
3144 default:
3145 break;
3146 }
53853e2d 3147
98dd3b48
VB
3148 /*
3149 * At least in one zone compaction wasn't deferred or skipped, so let's
3150 * count a compaction stall
3151 */
3152 count_vm_event(COMPACTSTALL);
8fb74b9f 3153
a9263751
VB
3154 page = get_page_from_freelist(gfp_mask, order,
3155 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3156
98dd3b48
VB
3157 if (page) {
3158 struct zone *zone = page_zone(page);
53853e2d 3159
98dd3b48
VB
3160 zone->compact_blockskip_flush = false;
3161 compaction_defer_reset(zone, order, true);
3162 count_vm_event(COMPACTSUCCESS);
3163 return page;
3164 }
56de7263 3165
98dd3b48
VB
3166 /*
3167 * It's bad if compaction run occurs and fails. The most likely reason
3168 * is that pages exist, but not enough to satisfy watermarks.
3169 */
3170 count_vm_event(COMPACTFAIL);
66199712 3171
98dd3b48 3172 cond_resched();
56de7263
MG
3173
3174 return NULL;
3175}
3176#else
3177static inline struct page *
3178__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3179 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3180 enum migrate_mode mode, int *contended_compaction,
3181 bool *deferred_compaction)
56de7263
MG
3182{
3183 return NULL;
3184}
3185#endif /* CONFIG_COMPACTION */
3186
bba90710
MS
3187/* Perform direct synchronous page reclaim */
3188static int
a9263751
VB
3189__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3190 const struct alloc_context *ac)
11e33f6a 3191{
11e33f6a 3192 struct reclaim_state reclaim_state;
bba90710 3193 int progress;
11e33f6a
MG
3194
3195 cond_resched();
3196
3197 /* We now go into synchronous reclaim */
3198 cpuset_memory_pressure_bump();
c06b1fca 3199 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3200 lockdep_set_current_reclaim_state(gfp_mask);
3201 reclaim_state.reclaimed_slab = 0;
c06b1fca 3202 current->reclaim_state = &reclaim_state;
11e33f6a 3203
a9263751
VB
3204 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3205 ac->nodemask);
11e33f6a 3206
c06b1fca 3207 current->reclaim_state = NULL;
11e33f6a 3208 lockdep_clear_current_reclaim_state();
c06b1fca 3209 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3210
3211 cond_resched();
3212
bba90710
MS
3213 return progress;
3214}
3215
3216/* The really slow allocator path where we enter direct reclaim */
3217static inline struct page *
3218__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3219 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3220 unsigned long *did_some_progress)
bba90710
MS
3221{
3222 struct page *page = NULL;
3223 bool drained = false;
3224
a9263751 3225 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3226 if (unlikely(!(*did_some_progress)))
3227 return NULL;
11e33f6a 3228
9ee493ce 3229retry:
a9263751
VB
3230 page = get_page_from_freelist(gfp_mask, order,
3231 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3232
3233 /*
3234 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3235 * pages are pinned on the per-cpu lists or in high alloc reserves.
3236 * Shrink them them and try again
9ee493ce
MG
3237 */
3238 if (!page && !drained) {
0aaa29a5 3239 unreserve_highatomic_pageblock(ac);
93481ff0 3240 drain_all_pages(NULL);
9ee493ce
MG
3241 drained = true;
3242 goto retry;
3243 }
3244
11e33f6a
MG
3245 return page;
3246}
3247
a9263751 3248static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3249{
3250 struct zoneref *z;
3251 struct zone *zone;
3252
a9263751
VB
3253 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3254 ac->high_zoneidx, ac->nodemask)
93ea9964 3255 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3256}
3257
c603844b 3258static inline unsigned int
341ce06f
PZ
3259gfp_to_alloc_flags(gfp_t gfp_mask)
3260{
c603844b 3261 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3262
a56f57ff 3263 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3264 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3265
341ce06f
PZ
3266 /*
3267 * The caller may dip into page reserves a bit more if the caller
3268 * cannot run direct reclaim, or if the caller has realtime scheduling
3269 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3270 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3271 */
e6223a3b 3272 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3273
d0164adc 3274 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3275 /*
b104a35d
DR
3276 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3277 * if it can't schedule.
5c3240d9 3278 */
b104a35d 3279 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3280 alloc_flags |= ALLOC_HARDER;
523b9458 3281 /*
b104a35d 3282 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3283 * comment for __cpuset_node_allowed().
523b9458 3284 */
341ce06f 3285 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3286 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3287 alloc_flags |= ALLOC_HARDER;
3288
b37f1dd0
MG
3289 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3290 if (gfp_mask & __GFP_MEMALLOC)
3291 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3292 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3293 alloc_flags |= ALLOC_NO_WATERMARKS;
3294 else if (!in_interrupt() &&
3295 ((current->flags & PF_MEMALLOC) ||
3296 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3297 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3298 }
d95ea5d1 3299#ifdef CONFIG_CMA
43e7a34d 3300 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3301 alloc_flags |= ALLOC_CMA;
3302#endif
341ce06f
PZ
3303 return alloc_flags;
3304}
3305
072bb0aa
MG
3306bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3307{
b37f1dd0 3308 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3309}
3310
d0164adc
MG
3311static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3312{
3313 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3314}
3315
11e33f6a
MG
3316static inline struct page *
3317__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3318 struct alloc_context *ac)
11e33f6a 3319{
d0164adc 3320 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3321 struct page *page = NULL;
c603844b 3322 unsigned int alloc_flags;
11e33f6a
MG
3323 unsigned long pages_reclaimed = 0;
3324 unsigned long did_some_progress;
e0b9daeb 3325 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3326 bool deferred_compaction = false;
1f9efdef 3327 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3328
72807a74
MG
3329 /*
3330 * In the slowpath, we sanity check order to avoid ever trying to
3331 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3332 * be using allocators in order of preference for an area that is
3333 * too large.
3334 */
1fc28b70
MG
3335 if (order >= MAX_ORDER) {
3336 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3337 return NULL;
1fc28b70 3338 }
1da177e4 3339
d0164adc
MG
3340 /*
3341 * We also sanity check to catch abuse of atomic reserves being used by
3342 * callers that are not in atomic context.
3343 */
3344 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3345 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3346 gfp_mask &= ~__GFP_ATOMIC;
3347
9879de73 3348retry:
d0164adc 3349 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3350 wake_all_kswapds(order, ac);
1da177e4 3351
9bf2229f 3352 /*
7fb1d9fc
RS
3353 * OK, we're below the kswapd watermark and have kicked background
3354 * reclaim. Now things get more complex, so set up alloc_flags according
3355 * to how we want to proceed.
9bf2229f 3356 */
341ce06f 3357 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3358
341ce06f 3359 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3360 page = get_page_from_freelist(gfp_mask, order,
3361 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3362 if (page)
3363 goto got_pg;
1da177e4 3364
11e33f6a 3365 /* Allocate without watermarks if the context allows */
341ce06f 3366 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3367 /*
3368 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3369 * the allocation is high priority and these type of
3370 * allocations are system rather than user orientated
3371 */
a9263751 3372 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3373 page = get_page_from_freelist(gfp_mask, order,
3374 ALLOC_NO_WATERMARKS, ac);
3375 if (page)
3376 goto got_pg;
1da177e4
LT
3377 }
3378
d0164adc
MG
3379 /* Caller is not willing to reclaim, we can't balance anything */
3380 if (!can_direct_reclaim) {
aed0a0e3 3381 /*
33d53103
MH
3382 * All existing users of the __GFP_NOFAIL are blockable, so warn
3383 * of any new users that actually allow this type of allocation
3384 * to fail.
aed0a0e3
DR
3385 */
3386 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3387 goto nopage;
aed0a0e3 3388 }
1da177e4 3389
341ce06f 3390 /* Avoid recursion of direct reclaim */
33d53103
MH
3391 if (current->flags & PF_MEMALLOC) {
3392 /*
3393 * __GFP_NOFAIL request from this context is rather bizarre
3394 * because we cannot reclaim anything and only can loop waiting
3395 * for somebody to do a work for us.
3396 */
3397 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3398 cond_resched();
3399 goto retry;
3400 }
341ce06f 3401 goto nopage;
33d53103 3402 }
341ce06f 3403
6583bb64
DR
3404 /* Avoid allocations with no watermarks from looping endlessly */
3405 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3406 goto nopage;
3407
77f1fe6b
MG
3408 /*
3409 * Try direct compaction. The first pass is asynchronous. Subsequent
3410 * attempts after direct reclaim are synchronous
3411 */
a9263751
VB
3412 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3413 migration_mode,
3414 &contended_compaction,
53853e2d 3415 &deferred_compaction);
56de7263
MG
3416 if (page)
3417 goto got_pg;
75f30861 3418
1f9efdef 3419 /* Checks for THP-specific high-order allocations */
d0164adc 3420 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3421 /*
3422 * If compaction is deferred for high-order allocations, it is
3423 * because sync compaction recently failed. If this is the case
3424 * and the caller requested a THP allocation, we do not want
3425 * to heavily disrupt the system, so we fail the allocation
3426 * instead of entering direct reclaim.
3427 */
3428 if (deferred_compaction)
3429 goto nopage;
3430
3431 /*
3432 * In all zones where compaction was attempted (and not
3433 * deferred or skipped), lock contention has been detected.
3434 * For THP allocation we do not want to disrupt the others
3435 * so we fallback to base pages instead.
3436 */
3437 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3438 goto nopage;
3439
3440 /*
3441 * If compaction was aborted due to need_resched(), we do not
3442 * want to further increase allocation latency, unless it is
3443 * khugepaged trying to collapse.
3444 */
3445 if (contended_compaction == COMPACT_CONTENDED_SCHED
3446 && !(current->flags & PF_KTHREAD))
3447 goto nopage;
3448 }
66199712 3449
8fe78048
DR
3450 /*
3451 * It can become very expensive to allocate transparent hugepages at
3452 * fault, so use asynchronous memory compaction for THP unless it is
3453 * khugepaged trying to collapse.
3454 */
d0164adc 3455 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3456 migration_mode = MIGRATE_SYNC_LIGHT;
3457
11e33f6a 3458 /* Try direct reclaim and then allocating */
a9263751
VB
3459 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3460 &did_some_progress);
11e33f6a
MG
3461 if (page)
3462 goto got_pg;
1da177e4 3463
9083905a
JW
3464 /* Do not loop if specifically requested */
3465 if (gfp_mask & __GFP_NORETRY)
3466 goto noretry;
3467
3468 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3469 pages_reclaimed += did_some_progress;
9083905a
JW
3470 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3471 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3472 /* Wait for some write requests to complete then retry */
c33d6c06 3473 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3474 goto retry;
1da177e4
LT
3475 }
3476
9083905a
JW
3477 /* Reclaim has failed us, start killing things */
3478 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3479 if (page)
3480 goto got_pg;
3481
3482 /* Retry as long as the OOM killer is making progress */
3483 if (did_some_progress)
3484 goto retry;
3485
3486noretry:
3487 /*
3488 * High-order allocations do not necessarily loop after
3489 * direct reclaim and reclaim/compaction depends on compaction
3490 * being called after reclaim so call directly if necessary
3491 */
3492 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3493 ac, migration_mode,
3494 &contended_compaction,
3495 &deferred_compaction);
3496 if (page)
3497 goto got_pg;
1da177e4 3498nopage:
a238ab5b 3499 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3500got_pg:
072bb0aa 3501 return page;
1da177e4 3502}
11e33f6a
MG
3503
3504/*
3505 * This is the 'heart' of the zoned buddy allocator.
3506 */
3507struct page *
3508__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3509 struct zonelist *zonelist, nodemask_t *nodemask)
3510{
5bb1b169 3511 struct page *page;
cc9a6c87 3512 unsigned int cpuset_mems_cookie;
c603844b 3513 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3514 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3515 struct alloc_context ac = {
3516 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3517 .zonelist = zonelist,
a9263751
VB
3518 .nodemask = nodemask,
3519 .migratetype = gfpflags_to_migratetype(gfp_mask),
3520 };
11e33f6a 3521
682a3385 3522 if (cpusets_enabled()) {
83d4ca81 3523 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3524 alloc_flags |= ALLOC_CPUSET;
3525 if (!ac.nodemask)
3526 ac.nodemask = &cpuset_current_mems_allowed;
3527 }
3528
dcce284a
BH
3529 gfp_mask &= gfp_allowed_mask;
3530
11e33f6a
MG
3531 lockdep_trace_alloc(gfp_mask);
3532
d0164adc 3533 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3534
3535 if (should_fail_alloc_page(gfp_mask, order))
3536 return NULL;
3537
3538 /*
3539 * Check the zones suitable for the gfp_mask contain at least one
3540 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3541 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3542 */
3543 if (unlikely(!zonelist->_zonerefs->zone))
3544 return NULL;
3545
a9263751 3546 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3547 alloc_flags |= ALLOC_CMA;
3548
cc9a6c87 3549retry_cpuset:
d26914d1 3550 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3551
c9ab0c4f
MG
3552 /* Dirty zone balancing only done in the fast path */
3553 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3554
5117f45d 3555 /* The preferred zone is used for statistics later */
c33d6c06
MG
3556 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3557 ac.high_zoneidx, ac.nodemask);
3558 if (!ac.preferred_zoneref) {
5bb1b169 3559 page = NULL;
4fcb0971 3560 goto no_zone;
5bb1b169
MG
3561 }
3562
5117f45d 3563 /* First allocation attempt */
a9263751 3564 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3565 if (likely(page))
3566 goto out;
11e33f6a 3567
4fcb0971
MG
3568 /*
3569 * Runtime PM, block IO and its error handling path can deadlock
3570 * because I/O on the device might not complete.
3571 */
3572 alloc_mask = memalloc_noio_flags(gfp_mask);
3573 ac.spread_dirty_pages = false;
23f086f9 3574
4fcb0971 3575 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3576
4fcb0971 3577no_zone:
cc9a6c87
MG
3578 /*
3579 * When updating a task's mems_allowed, it is possible to race with
3580 * parallel threads in such a way that an allocation can fail while
3581 * the mask is being updated. If a page allocation is about to fail,
3582 * check if the cpuset changed during allocation and if so, retry.
3583 */
83d4ca81
MG
3584 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3585 alloc_mask = gfp_mask;
cc9a6c87 3586 goto retry_cpuset;
83d4ca81 3587 }
cc9a6c87 3588
4fcb0971
MG
3589out:
3590 if (kmemcheck_enabled && page)
3591 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3592
3593 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3594
11e33f6a 3595 return page;
1da177e4 3596}
d239171e 3597EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3598
3599/*
3600 * Common helper functions.
3601 */
920c7a5d 3602unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3603{
945a1113
AM
3604 struct page *page;
3605
3606 /*
3607 * __get_free_pages() returns a 32-bit address, which cannot represent
3608 * a highmem page
3609 */
3610 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3611
1da177e4
LT
3612 page = alloc_pages(gfp_mask, order);
3613 if (!page)
3614 return 0;
3615 return (unsigned long) page_address(page);
3616}
1da177e4
LT
3617EXPORT_SYMBOL(__get_free_pages);
3618
920c7a5d 3619unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3620{
945a1113 3621 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3622}
1da177e4
LT
3623EXPORT_SYMBOL(get_zeroed_page);
3624
920c7a5d 3625void __free_pages(struct page *page, unsigned int order)
1da177e4 3626{
b5810039 3627 if (put_page_testzero(page)) {
1da177e4 3628 if (order == 0)
b745bc85 3629 free_hot_cold_page(page, false);
1da177e4
LT
3630 else
3631 __free_pages_ok(page, order);
3632 }
3633}
3634
3635EXPORT_SYMBOL(__free_pages);
3636
920c7a5d 3637void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3638{
3639 if (addr != 0) {
725d704e 3640 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3641 __free_pages(virt_to_page((void *)addr), order);
3642 }
3643}
3644
3645EXPORT_SYMBOL(free_pages);
3646
b63ae8ca
AD
3647/*
3648 * Page Fragment:
3649 * An arbitrary-length arbitrary-offset area of memory which resides
3650 * within a 0 or higher order page. Multiple fragments within that page
3651 * are individually refcounted, in the page's reference counter.
3652 *
3653 * The page_frag functions below provide a simple allocation framework for
3654 * page fragments. This is used by the network stack and network device
3655 * drivers to provide a backing region of memory for use as either an
3656 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3657 */
3658static struct page *__page_frag_refill(struct page_frag_cache *nc,
3659 gfp_t gfp_mask)
3660{
3661 struct page *page = NULL;
3662 gfp_t gfp = gfp_mask;
3663
3664#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3665 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3666 __GFP_NOMEMALLOC;
3667 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3668 PAGE_FRAG_CACHE_MAX_ORDER);
3669 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3670#endif
3671 if (unlikely(!page))
3672 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3673
3674 nc->va = page ? page_address(page) : NULL;
3675
3676 return page;
3677}
3678
3679void *__alloc_page_frag(struct page_frag_cache *nc,
3680 unsigned int fragsz, gfp_t gfp_mask)
3681{
3682 unsigned int size = PAGE_SIZE;
3683 struct page *page;
3684 int offset;
3685
3686 if (unlikely(!nc->va)) {
3687refill:
3688 page = __page_frag_refill(nc, gfp_mask);
3689 if (!page)
3690 return NULL;
3691
3692#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3693 /* if size can vary use size else just use PAGE_SIZE */
3694 size = nc->size;
3695#endif
3696 /* Even if we own the page, we do not use atomic_set().
3697 * This would break get_page_unless_zero() users.
3698 */
fe896d18 3699 page_ref_add(page, size - 1);
b63ae8ca
AD
3700
3701 /* reset page count bias and offset to start of new frag */
2f064f34 3702 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3703 nc->pagecnt_bias = size;
3704 nc->offset = size;
3705 }
3706
3707 offset = nc->offset - fragsz;
3708 if (unlikely(offset < 0)) {
3709 page = virt_to_page(nc->va);
3710
fe896d18 3711 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3712 goto refill;
3713
3714#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3715 /* if size can vary use size else just use PAGE_SIZE */
3716 size = nc->size;
3717#endif
3718 /* OK, page count is 0, we can safely set it */
fe896d18 3719 set_page_count(page, size);
b63ae8ca
AD
3720
3721 /* reset page count bias and offset to start of new frag */
3722 nc->pagecnt_bias = size;
3723 offset = size - fragsz;
3724 }
3725
3726 nc->pagecnt_bias--;
3727 nc->offset = offset;
3728
3729 return nc->va + offset;
3730}
3731EXPORT_SYMBOL(__alloc_page_frag);
3732
3733/*
3734 * Frees a page fragment allocated out of either a compound or order 0 page.
3735 */
3736void __free_page_frag(void *addr)
3737{
3738 struct page *page = virt_to_head_page(addr);
3739
3740 if (unlikely(put_page_testzero(page)))
3741 __free_pages_ok(page, compound_order(page));
3742}
3743EXPORT_SYMBOL(__free_page_frag);
3744
6a1a0d3b 3745/*
52383431 3746 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3747 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3748 * equivalent to alloc_pages.
6a1a0d3b 3749 *
52383431
VD
3750 * It should be used when the caller would like to use kmalloc, but since the
3751 * allocation is large, it has to fall back to the page allocator.
3752 */
3753struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3754{
3755 struct page *page;
52383431 3756
52383431 3757 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3758 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3759 __free_pages(page, order);
3760 page = NULL;
3761 }
52383431
VD
3762 return page;
3763}
3764
3765struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3766{
3767 struct page *page;
52383431 3768
52383431 3769 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3770 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3771 __free_pages(page, order);
3772 page = NULL;
3773 }
52383431
VD
3774 return page;
3775}
3776
3777/*
3778 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3779 * alloc_kmem_pages.
6a1a0d3b 3780 */
52383431 3781void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3782{
d05e83a6 3783 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3784 __free_pages(page, order);
3785}
3786
52383431 3787void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3788{
3789 if (addr != 0) {
3790 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3791 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3792 }
3793}
3794
d00181b9
KS
3795static void *make_alloc_exact(unsigned long addr, unsigned int order,
3796 size_t size)
ee85c2e1
AK
3797{
3798 if (addr) {
3799 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3800 unsigned long used = addr + PAGE_ALIGN(size);
3801
3802 split_page(virt_to_page((void *)addr), order);
3803 while (used < alloc_end) {
3804 free_page(used);
3805 used += PAGE_SIZE;
3806 }
3807 }
3808 return (void *)addr;
3809}
3810
2be0ffe2
TT
3811/**
3812 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3813 * @size: the number of bytes to allocate
3814 * @gfp_mask: GFP flags for the allocation
3815 *
3816 * This function is similar to alloc_pages(), except that it allocates the
3817 * minimum number of pages to satisfy the request. alloc_pages() can only
3818 * allocate memory in power-of-two pages.
3819 *
3820 * This function is also limited by MAX_ORDER.
3821 *
3822 * Memory allocated by this function must be released by free_pages_exact().
3823 */
3824void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3825{
3826 unsigned int order = get_order(size);
3827 unsigned long addr;
3828
3829 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3830 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3831}
3832EXPORT_SYMBOL(alloc_pages_exact);
3833
ee85c2e1
AK
3834/**
3835 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3836 * pages on a node.
b5e6ab58 3837 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3838 * @size: the number of bytes to allocate
3839 * @gfp_mask: GFP flags for the allocation
3840 *
3841 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3842 * back.
ee85c2e1 3843 */
e1931811 3844void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3845{
d00181b9 3846 unsigned int order = get_order(size);
ee85c2e1
AK
3847 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3848 if (!p)
3849 return NULL;
3850 return make_alloc_exact((unsigned long)page_address(p), order, size);
3851}
ee85c2e1 3852
2be0ffe2
TT
3853/**
3854 * free_pages_exact - release memory allocated via alloc_pages_exact()
3855 * @virt: the value returned by alloc_pages_exact.
3856 * @size: size of allocation, same value as passed to alloc_pages_exact().
3857 *
3858 * Release the memory allocated by a previous call to alloc_pages_exact.
3859 */
3860void free_pages_exact(void *virt, size_t size)
3861{
3862 unsigned long addr = (unsigned long)virt;
3863 unsigned long end = addr + PAGE_ALIGN(size);
3864
3865 while (addr < end) {
3866 free_page(addr);
3867 addr += PAGE_SIZE;
3868 }
3869}
3870EXPORT_SYMBOL(free_pages_exact);
3871
e0fb5815
ZY
3872/**
3873 * nr_free_zone_pages - count number of pages beyond high watermark
3874 * @offset: The zone index of the highest zone
3875 *
3876 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3877 * high watermark within all zones at or below a given zone index. For each
3878 * zone, the number of pages is calculated as:
834405c3 3879 * managed_pages - high_pages
e0fb5815 3880 */
ebec3862 3881static unsigned long nr_free_zone_pages(int offset)
1da177e4 3882{
dd1a239f 3883 struct zoneref *z;
54a6eb5c
MG
3884 struct zone *zone;
3885
e310fd43 3886 /* Just pick one node, since fallback list is circular */
ebec3862 3887 unsigned long sum = 0;
1da177e4 3888
0e88460d 3889 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3890
54a6eb5c 3891 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3892 unsigned long size = zone->managed_pages;
41858966 3893 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3894 if (size > high)
3895 sum += size - high;
1da177e4
LT
3896 }
3897
3898 return sum;
3899}
3900
e0fb5815
ZY
3901/**
3902 * nr_free_buffer_pages - count number of pages beyond high watermark
3903 *
3904 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3905 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3906 */
ebec3862 3907unsigned long nr_free_buffer_pages(void)
1da177e4 3908{
af4ca457 3909 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3910}
c2f1a551 3911EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3912
e0fb5815
ZY
3913/**
3914 * nr_free_pagecache_pages - count number of pages beyond high watermark
3915 *
3916 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3917 * high watermark within all zones.
1da177e4 3918 */
ebec3862 3919unsigned long nr_free_pagecache_pages(void)
1da177e4 3920{
2a1e274a 3921 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3922}
08e0f6a9
CL
3923
3924static inline void show_node(struct zone *zone)
1da177e4 3925{
e5adfffc 3926 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3927 printk("Node %d ", zone_to_nid(zone));
1da177e4 3928}
1da177e4 3929
d02bd27b
IR
3930long si_mem_available(void)
3931{
3932 long available;
3933 unsigned long pagecache;
3934 unsigned long wmark_low = 0;
3935 unsigned long pages[NR_LRU_LISTS];
3936 struct zone *zone;
3937 int lru;
3938
3939 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3940 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3941
3942 for_each_zone(zone)
3943 wmark_low += zone->watermark[WMARK_LOW];
3944
3945 /*
3946 * Estimate the amount of memory available for userspace allocations,
3947 * without causing swapping.
3948 */
3949 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3950
3951 /*
3952 * Not all the page cache can be freed, otherwise the system will
3953 * start swapping. Assume at least half of the page cache, or the
3954 * low watermark worth of cache, needs to stay.
3955 */
3956 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3957 pagecache -= min(pagecache / 2, wmark_low);
3958 available += pagecache;
3959
3960 /*
3961 * Part of the reclaimable slab consists of items that are in use,
3962 * and cannot be freed. Cap this estimate at the low watermark.
3963 */
3964 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3965 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3966
3967 if (available < 0)
3968 available = 0;
3969 return available;
3970}
3971EXPORT_SYMBOL_GPL(si_mem_available);
3972
1da177e4
LT
3973void si_meminfo(struct sysinfo *val)
3974{
3975 val->totalram = totalram_pages;
cc7452b6 3976 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3977 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3978 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3979 val->totalhigh = totalhigh_pages;
3980 val->freehigh = nr_free_highpages();
1da177e4
LT
3981 val->mem_unit = PAGE_SIZE;
3982}
3983
3984EXPORT_SYMBOL(si_meminfo);
3985
3986#ifdef CONFIG_NUMA
3987void si_meminfo_node(struct sysinfo *val, int nid)
3988{
cdd91a77
JL
3989 int zone_type; /* needs to be signed */
3990 unsigned long managed_pages = 0;
fc2bd799
JK
3991 unsigned long managed_highpages = 0;
3992 unsigned long free_highpages = 0;
1da177e4
LT
3993 pg_data_t *pgdat = NODE_DATA(nid);
3994
cdd91a77
JL
3995 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3996 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3997 val->totalram = managed_pages;
cc7452b6 3998 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3999 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4000#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4001 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4002 struct zone *zone = &pgdat->node_zones[zone_type];
4003
4004 if (is_highmem(zone)) {
4005 managed_highpages += zone->managed_pages;
4006 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4007 }
4008 }
4009 val->totalhigh = managed_highpages;
4010 val->freehigh = free_highpages;
98d2b0eb 4011#else
fc2bd799
JK
4012 val->totalhigh = managed_highpages;
4013 val->freehigh = free_highpages;
98d2b0eb 4014#endif
1da177e4
LT
4015 val->mem_unit = PAGE_SIZE;
4016}
4017#endif
4018
ddd588b5 4019/*
7bf02ea2
DR
4020 * Determine whether the node should be displayed or not, depending on whether
4021 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4022 */
7bf02ea2 4023bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4024{
4025 bool ret = false;
cc9a6c87 4026 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4027
4028 if (!(flags & SHOW_MEM_FILTER_NODES))
4029 goto out;
4030
cc9a6c87 4031 do {
d26914d1 4032 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4033 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4034 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4035out:
4036 return ret;
4037}
4038
1da177e4
LT
4039#define K(x) ((x) << (PAGE_SHIFT-10))
4040
377e4f16
RV
4041static void show_migration_types(unsigned char type)
4042{
4043 static const char types[MIGRATE_TYPES] = {
4044 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4045 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4046 [MIGRATE_RECLAIMABLE] = 'E',
4047 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4048#ifdef CONFIG_CMA
4049 [MIGRATE_CMA] = 'C',
4050#endif
194159fb 4051#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4052 [MIGRATE_ISOLATE] = 'I',
194159fb 4053#endif
377e4f16
RV
4054 };
4055 char tmp[MIGRATE_TYPES + 1];
4056 char *p = tmp;
4057 int i;
4058
4059 for (i = 0; i < MIGRATE_TYPES; i++) {
4060 if (type & (1 << i))
4061 *p++ = types[i];
4062 }
4063
4064 *p = '\0';
4065 printk("(%s) ", tmp);
4066}
4067
1da177e4
LT
4068/*
4069 * Show free area list (used inside shift_scroll-lock stuff)
4070 * We also calculate the percentage fragmentation. We do this by counting the
4071 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4072 *
4073 * Bits in @filter:
4074 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4075 * cpuset.
1da177e4 4076 */
7bf02ea2 4077void show_free_areas(unsigned int filter)
1da177e4 4078{
d1bfcdb8 4079 unsigned long free_pcp = 0;
c7241913 4080 int cpu;
1da177e4
LT
4081 struct zone *zone;
4082
ee99c71c 4083 for_each_populated_zone(zone) {
7bf02ea2 4084 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4085 continue;
d1bfcdb8 4086
761b0677
KK
4087 for_each_online_cpu(cpu)
4088 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4089 }
4090
a731286d
KM
4091 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4092 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4093 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4094 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4095 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4096 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4097 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4098 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4099 global_page_state(NR_ISOLATED_ANON),
4100 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4101 global_page_state(NR_INACTIVE_FILE),
a731286d 4102 global_page_state(NR_ISOLATED_FILE),
7b854121 4103 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4104 global_page_state(NR_FILE_DIRTY),
ce866b34 4105 global_page_state(NR_WRITEBACK),
fd39fc85 4106 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4107 global_page_state(NR_SLAB_RECLAIMABLE),
4108 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4109 global_page_state(NR_FILE_MAPPED),
4b02108a 4110 global_page_state(NR_SHMEM),
a25700a5 4111 global_page_state(NR_PAGETABLE),
d1ce749a 4112 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4113 global_page_state(NR_FREE_PAGES),
4114 free_pcp,
d1ce749a 4115 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4116
ee99c71c 4117 for_each_populated_zone(zone) {
1da177e4
LT
4118 int i;
4119
7bf02ea2 4120 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4121 continue;
d1bfcdb8
KK
4122
4123 free_pcp = 0;
4124 for_each_online_cpu(cpu)
4125 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4126
1da177e4
LT
4127 show_node(zone);
4128 printk("%s"
4129 " free:%lukB"
4130 " min:%lukB"
4131 " low:%lukB"
4132 " high:%lukB"
4f98a2fe
RR
4133 " active_anon:%lukB"
4134 " inactive_anon:%lukB"
4135 " active_file:%lukB"
4136 " inactive_file:%lukB"
7b854121 4137 " unevictable:%lukB"
a731286d
KM
4138 " isolated(anon):%lukB"
4139 " isolated(file):%lukB"
1da177e4 4140 " present:%lukB"
9feedc9d 4141 " managed:%lukB"
4a0aa73f
KM
4142 " mlocked:%lukB"
4143 " dirty:%lukB"
4144 " writeback:%lukB"
4145 " mapped:%lukB"
4b02108a 4146 " shmem:%lukB"
4a0aa73f
KM
4147 " slab_reclaimable:%lukB"
4148 " slab_unreclaimable:%lukB"
c6a7f572 4149 " kernel_stack:%lukB"
4a0aa73f
KM
4150 " pagetables:%lukB"
4151 " unstable:%lukB"
4152 " bounce:%lukB"
d1bfcdb8
KK
4153 " free_pcp:%lukB"
4154 " local_pcp:%ukB"
d1ce749a 4155 " free_cma:%lukB"
4a0aa73f 4156 " writeback_tmp:%lukB"
1da177e4
LT
4157 " pages_scanned:%lu"
4158 " all_unreclaimable? %s"
4159 "\n",
4160 zone->name,
88f5acf8 4161 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4162 K(min_wmark_pages(zone)),
4163 K(low_wmark_pages(zone)),
4164 K(high_wmark_pages(zone)),
4f98a2fe
RR
4165 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4166 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4167 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4168 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4169 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4170 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4171 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4172 K(zone->present_pages),
9feedc9d 4173 K(zone->managed_pages),
4a0aa73f
KM
4174 K(zone_page_state(zone, NR_MLOCK)),
4175 K(zone_page_state(zone, NR_FILE_DIRTY)),
4176 K(zone_page_state(zone, NR_WRITEBACK)),
4177 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4178 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4179 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4180 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4181 zone_page_state(zone, NR_KERNEL_STACK) *
4182 THREAD_SIZE / 1024,
4a0aa73f
KM
4183 K(zone_page_state(zone, NR_PAGETABLE)),
4184 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4185 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4186 K(free_pcp),
4187 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4188 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4189 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4190 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4191 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4192 );
4193 printk("lowmem_reserve[]:");
4194 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4195 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4196 printk("\n");
4197 }
4198
ee99c71c 4199 for_each_populated_zone(zone) {
d00181b9
KS
4200 unsigned int order;
4201 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4202 unsigned char types[MAX_ORDER];
1da177e4 4203
7bf02ea2 4204 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4205 continue;
1da177e4
LT
4206 show_node(zone);
4207 printk("%s: ", zone->name);
1da177e4
LT
4208
4209 spin_lock_irqsave(&zone->lock, flags);
4210 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4211 struct free_area *area = &zone->free_area[order];
4212 int type;
4213
4214 nr[order] = area->nr_free;
8f9de51a 4215 total += nr[order] << order;
377e4f16
RV
4216
4217 types[order] = 0;
4218 for (type = 0; type < MIGRATE_TYPES; type++) {
4219 if (!list_empty(&area->free_list[type]))
4220 types[order] |= 1 << type;
4221 }
1da177e4
LT
4222 }
4223 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4224 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4225 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4226 if (nr[order])
4227 show_migration_types(types[order]);
4228 }
1da177e4
LT
4229 printk("= %lukB\n", K(total));
4230 }
4231
949f7ec5
DR
4232 hugetlb_show_meminfo();
4233
e6f3602d
LW
4234 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4235
1da177e4
LT
4236 show_swap_cache_info();
4237}
4238
19770b32
MG
4239static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4240{
4241 zoneref->zone = zone;
4242 zoneref->zone_idx = zone_idx(zone);
4243}
4244
1da177e4
LT
4245/*
4246 * Builds allocation fallback zone lists.
1a93205b
CL
4247 *
4248 * Add all populated zones of a node to the zonelist.
1da177e4 4249 */
f0c0b2b8 4250static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4251 int nr_zones)
1da177e4 4252{
1a93205b 4253 struct zone *zone;
bc732f1d 4254 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4255
4256 do {
2f6726e5 4257 zone_type--;
070f8032 4258 zone = pgdat->node_zones + zone_type;
1a93205b 4259 if (populated_zone(zone)) {
dd1a239f
MG
4260 zoneref_set_zone(zone,
4261 &zonelist->_zonerefs[nr_zones++]);
070f8032 4262 check_highest_zone(zone_type);
1da177e4 4263 }
2f6726e5 4264 } while (zone_type);
bc732f1d 4265
070f8032 4266 return nr_zones;
1da177e4
LT
4267}
4268
f0c0b2b8
KH
4269
4270/*
4271 * zonelist_order:
4272 * 0 = automatic detection of better ordering.
4273 * 1 = order by ([node] distance, -zonetype)
4274 * 2 = order by (-zonetype, [node] distance)
4275 *
4276 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4277 * the same zonelist. So only NUMA can configure this param.
4278 */
4279#define ZONELIST_ORDER_DEFAULT 0
4280#define ZONELIST_ORDER_NODE 1
4281#define ZONELIST_ORDER_ZONE 2
4282
4283/* zonelist order in the kernel.
4284 * set_zonelist_order() will set this to NODE or ZONE.
4285 */
4286static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4287static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4288
4289
1da177e4 4290#ifdef CONFIG_NUMA
f0c0b2b8
KH
4291/* The value user specified ....changed by config */
4292static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4293/* string for sysctl */
4294#define NUMA_ZONELIST_ORDER_LEN 16
4295char numa_zonelist_order[16] = "default";
4296
4297/*
4298 * interface for configure zonelist ordering.
4299 * command line option "numa_zonelist_order"
4300 * = "[dD]efault - default, automatic configuration.
4301 * = "[nN]ode - order by node locality, then by zone within node
4302 * = "[zZ]one - order by zone, then by locality within zone
4303 */
4304
4305static int __parse_numa_zonelist_order(char *s)
4306{
4307 if (*s == 'd' || *s == 'D') {
4308 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4309 } else if (*s == 'n' || *s == 'N') {
4310 user_zonelist_order = ZONELIST_ORDER_NODE;
4311 } else if (*s == 'z' || *s == 'Z') {
4312 user_zonelist_order = ZONELIST_ORDER_ZONE;
4313 } else {
1170532b 4314 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4315 return -EINVAL;
4316 }
4317 return 0;
4318}
4319
4320static __init int setup_numa_zonelist_order(char *s)
4321{
ecb256f8
VL
4322 int ret;
4323
4324 if (!s)
4325 return 0;
4326
4327 ret = __parse_numa_zonelist_order(s);
4328 if (ret == 0)
4329 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4330
4331 return ret;
f0c0b2b8
KH
4332}
4333early_param("numa_zonelist_order", setup_numa_zonelist_order);
4334
4335/*
4336 * sysctl handler for numa_zonelist_order
4337 */
cccad5b9 4338int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4339 void __user *buffer, size_t *length,
f0c0b2b8
KH
4340 loff_t *ppos)
4341{
4342 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4343 int ret;
443c6f14 4344 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4345
443c6f14 4346 mutex_lock(&zl_order_mutex);
dacbde09
CG
4347 if (write) {
4348 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4349 ret = -EINVAL;
4350 goto out;
4351 }
4352 strcpy(saved_string, (char *)table->data);
4353 }
8d65af78 4354 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4355 if (ret)
443c6f14 4356 goto out;
f0c0b2b8
KH
4357 if (write) {
4358 int oldval = user_zonelist_order;
dacbde09
CG
4359
4360 ret = __parse_numa_zonelist_order((char *)table->data);
4361 if (ret) {
f0c0b2b8
KH
4362 /*
4363 * bogus value. restore saved string
4364 */
dacbde09 4365 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4366 NUMA_ZONELIST_ORDER_LEN);
4367 user_zonelist_order = oldval;
4eaf3f64
HL
4368 } else if (oldval != user_zonelist_order) {
4369 mutex_lock(&zonelists_mutex);
9adb62a5 4370 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4371 mutex_unlock(&zonelists_mutex);
4372 }
f0c0b2b8 4373 }
443c6f14
AK
4374out:
4375 mutex_unlock(&zl_order_mutex);
4376 return ret;
f0c0b2b8
KH
4377}
4378
4379
62bc62a8 4380#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4381static int node_load[MAX_NUMNODES];
4382
1da177e4 4383/**
4dc3b16b 4384 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4385 * @node: node whose fallback list we're appending
4386 * @used_node_mask: nodemask_t of already used nodes
4387 *
4388 * We use a number of factors to determine which is the next node that should
4389 * appear on a given node's fallback list. The node should not have appeared
4390 * already in @node's fallback list, and it should be the next closest node
4391 * according to the distance array (which contains arbitrary distance values
4392 * from each node to each node in the system), and should also prefer nodes
4393 * with no CPUs, since presumably they'll have very little allocation pressure
4394 * on them otherwise.
4395 * It returns -1 if no node is found.
4396 */
f0c0b2b8 4397static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4398{
4cf808eb 4399 int n, val;
1da177e4 4400 int min_val = INT_MAX;
00ef2d2f 4401 int best_node = NUMA_NO_NODE;
a70f7302 4402 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4403
4cf808eb
LT
4404 /* Use the local node if we haven't already */
4405 if (!node_isset(node, *used_node_mask)) {
4406 node_set(node, *used_node_mask);
4407 return node;
4408 }
1da177e4 4409
4b0ef1fe 4410 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4411
4412 /* Don't want a node to appear more than once */
4413 if (node_isset(n, *used_node_mask))
4414 continue;
4415
1da177e4
LT
4416 /* Use the distance array to find the distance */
4417 val = node_distance(node, n);
4418
4cf808eb
LT
4419 /* Penalize nodes under us ("prefer the next node") */
4420 val += (n < node);
4421
1da177e4 4422 /* Give preference to headless and unused nodes */
a70f7302
RR
4423 tmp = cpumask_of_node(n);
4424 if (!cpumask_empty(tmp))
1da177e4
LT
4425 val += PENALTY_FOR_NODE_WITH_CPUS;
4426
4427 /* Slight preference for less loaded node */
4428 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4429 val += node_load[n];
4430
4431 if (val < min_val) {
4432 min_val = val;
4433 best_node = n;
4434 }
4435 }
4436
4437 if (best_node >= 0)
4438 node_set(best_node, *used_node_mask);
4439
4440 return best_node;
4441}
4442
f0c0b2b8
KH
4443
4444/*
4445 * Build zonelists ordered by node and zones within node.
4446 * This results in maximum locality--normal zone overflows into local
4447 * DMA zone, if any--but risks exhausting DMA zone.
4448 */
4449static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4450{
f0c0b2b8 4451 int j;
1da177e4 4452 struct zonelist *zonelist;
f0c0b2b8 4453
54a6eb5c 4454 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4455 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4456 ;
bc732f1d 4457 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4458 zonelist->_zonerefs[j].zone = NULL;
4459 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4460}
4461
523b9458
CL
4462/*
4463 * Build gfp_thisnode zonelists
4464 */
4465static void build_thisnode_zonelists(pg_data_t *pgdat)
4466{
523b9458
CL
4467 int j;
4468 struct zonelist *zonelist;
4469
54a6eb5c 4470 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4471 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4472 zonelist->_zonerefs[j].zone = NULL;
4473 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4474}
4475
f0c0b2b8
KH
4476/*
4477 * Build zonelists ordered by zone and nodes within zones.
4478 * This results in conserving DMA zone[s] until all Normal memory is
4479 * exhausted, but results in overflowing to remote node while memory
4480 * may still exist in local DMA zone.
4481 */
4482static int node_order[MAX_NUMNODES];
4483
4484static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4485{
f0c0b2b8
KH
4486 int pos, j, node;
4487 int zone_type; /* needs to be signed */
4488 struct zone *z;
4489 struct zonelist *zonelist;
4490
54a6eb5c
MG
4491 zonelist = &pgdat->node_zonelists[0];
4492 pos = 0;
4493 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4494 for (j = 0; j < nr_nodes; j++) {
4495 node = node_order[j];
4496 z = &NODE_DATA(node)->node_zones[zone_type];
4497 if (populated_zone(z)) {
dd1a239f
MG
4498 zoneref_set_zone(z,
4499 &zonelist->_zonerefs[pos++]);
54a6eb5c 4500 check_highest_zone(zone_type);
f0c0b2b8
KH
4501 }
4502 }
f0c0b2b8 4503 }
dd1a239f
MG
4504 zonelist->_zonerefs[pos].zone = NULL;
4505 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4506}
4507
3193913c
MG
4508#if defined(CONFIG_64BIT)
4509/*
4510 * Devices that require DMA32/DMA are relatively rare and do not justify a
4511 * penalty to every machine in case the specialised case applies. Default
4512 * to Node-ordering on 64-bit NUMA machines
4513 */
4514static int default_zonelist_order(void)
4515{
4516 return ZONELIST_ORDER_NODE;
4517}
4518#else
4519/*
4520 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4521 * by the kernel. If processes running on node 0 deplete the low memory zone
4522 * then reclaim will occur more frequency increasing stalls and potentially
4523 * be easier to OOM if a large percentage of the zone is under writeback or
4524 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4525 * Hence, default to zone ordering on 32-bit.
4526 */
f0c0b2b8
KH
4527static int default_zonelist_order(void)
4528{
f0c0b2b8
KH
4529 return ZONELIST_ORDER_ZONE;
4530}
3193913c 4531#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4532
4533static void set_zonelist_order(void)
4534{
4535 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4536 current_zonelist_order = default_zonelist_order();
4537 else
4538 current_zonelist_order = user_zonelist_order;
4539}
4540
4541static void build_zonelists(pg_data_t *pgdat)
4542{
c00eb15a 4543 int i, node, load;
1da177e4 4544 nodemask_t used_mask;
f0c0b2b8
KH
4545 int local_node, prev_node;
4546 struct zonelist *zonelist;
d00181b9 4547 unsigned int order = current_zonelist_order;
1da177e4
LT
4548
4549 /* initialize zonelists */
523b9458 4550 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4551 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4552 zonelist->_zonerefs[0].zone = NULL;
4553 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4554 }
4555
4556 /* NUMA-aware ordering of nodes */
4557 local_node = pgdat->node_id;
62bc62a8 4558 load = nr_online_nodes;
1da177e4
LT
4559 prev_node = local_node;
4560 nodes_clear(used_mask);
f0c0b2b8 4561
f0c0b2b8 4562 memset(node_order, 0, sizeof(node_order));
c00eb15a 4563 i = 0;
f0c0b2b8 4564
1da177e4
LT
4565 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4566 /*
4567 * We don't want to pressure a particular node.
4568 * So adding penalty to the first node in same
4569 * distance group to make it round-robin.
4570 */
957f822a
DR
4571 if (node_distance(local_node, node) !=
4572 node_distance(local_node, prev_node))
f0c0b2b8
KH
4573 node_load[node] = load;
4574
1da177e4
LT
4575 prev_node = node;
4576 load--;
f0c0b2b8
KH
4577 if (order == ZONELIST_ORDER_NODE)
4578 build_zonelists_in_node_order(pgdat, node);
4579 else
c00eb15a 4580 node_order[i++] = node; /* remember order */
f0c0b2b8 4581 }
1da177e4 4582
f0c0b2b8
KH
4583 if (order == ZONELIST_ORDER_ZONE) {
4584 /* calculate node order -- i.e., DMA last! */
c00eb15a 4585 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4586 }
523b9458
CL
4587
4588 build_thisnode_zonelists(pgdat);
1da177e4
LT
4589}
4590
7aac7898
LS
4591#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4592/*
4593 * Return node id of node used for "local" allocations.
4594 * I.e., first node id of first zone in arg node's generic zonelist.
4595 * Used for initializing percpu 'numa_mem', which is used primarily
4596 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4597 */
4598int local_memory_node(int node)
4599{
c33d6c06 4600 struct zoneref *z;
7aac7898 4601
c33d6c06 4602 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4603 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4604 NULL);
4605 return z->zone->node;
7aac7898
LS
4606}
4607#endif
f0c0b2b8 4608
1da177e4
LT
4609#else /* CONFIG_NUMA */
4610
f0c0b2b8
KH
4611static void set_zonelist_order(void)
4612{
4613 current_zonelist_order = ZONELIST_ORDER_ZONE;
4614}
4615
4616static void build_zonelists(pg_data_t *pgdat)
1da177e4 4617{
19655d34 4618 int node, local_node;
54a6eb5c
MG
4619 enum zone_type j;
4620 struct zonelist *zonelist;
1da177e4
LT
4621
4622 local_node = pgdat->node_id;
1da177e4 4623
54a6eb5c 4624 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4625 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4626
54a6eb5c
MG
4627 /*
4628 * Now we build the zonelist so that it contains the zones
4629 * of all the other nodes.
4630 * We don't want to pressure a particular node, so when
4631 * building the zones for node N, we make sure that the
4632 * zones coming right after the local ones are those from
4633 * node N+1 (modulo N)
4634 */
4635 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4636 if (!node_online(node))
4637 continue;
bc732f1d 4638 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4639 }
54a6eb5c
MG
4640 for (node = 0; node < local_node; node++) {
4641 if (!node_online(node))
4642 continue;
bc732f1d 4643 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4644 }
4645
dd1a239f
MG
4646 zonelist->_zonerefs[j].zone = NULL;
4647 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4648}
4649
4650#endif /* CONFIG_NUMA */
4651
99dcc3e5
CL
4652/*
4653 * Boot pageset table. One per cpu which is going to be used for all
4654 * zones and all nodes. The parameters will be set in such a way
4655 * that an item put on a list will immediately be handed over to
4656 * the buddy list. This is safe since pageset manipulation is done
4657 * with interrupts disabled.
4658 *
4659 * The boot_pagesets must be kept even after bootup is complete for
4660 * unused processors and/or zones. They do play a role for bootstrapping
4661 * hotplugged processors.
4662 *
4663 * zoneinfo_show() and maybe other functions do
4664 * not check if the processor is online before following the pageset pointer.
4665 * Other parts of the kernel may not check if the zone is available.
4666 */
4667static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4668static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4669static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4670
4eaf3f64
HL
4671/*
4672 * Global mutex to protect against size modification of zonelists
4673 * as well as to serialize pageset setup for the new populated zone.
4674 */
4675DEFINE_MUTEX(zonelists_mutex);
4676
9b1a4d38 4677/* return values int ....just for stop_machine() */
4ed7e022 4678static int __build_all_zonelists(void *data)
1da177e4 4679{
6811378e 4680 int nid;
99dcc3e5 4681 int cpu;
9adb62a5 4682 pg_data_t *self = data;
9276b1bc 4683
7f9cfb31
BL
4684#ifdef CONFIG_NUMA
4685 memset(node_load, 0, sizeof(node_load));
4686#endif
9adb62a5
JL
4687
4688 if (self && !node_online(self->node_id)) {
4689 build_zonelists(self);
9adb62a5
JL
4690 }
4691
9276b1bc 4692 for_each_online_node(nid) {
7ea1530a
CL
4693 pg_data_t *pgdat = NODE_DATA(nid);
4694
4695 build_zonelists(pgdat);
9276b1bc 4696 }
99dcc3e5
CL
4697
4698 /*
4699 * Initialize the boot_pagesets that are going to be used
4700 * for bootstrapping processors. The real pagesets for
4701 * each zone will be allocated later when the per cpu
4702 * allocator is available.
4703 *
4704 * boot_pagesets are used also for bootstrapping offline
4705 * cpus if the system is already booted because the pagesets
4706 * are needed to initialize allocators on a specific cpu too.
4707 * F.e. the percpu allocator needs the page allocator which
4708 * needs the percpu allocator in order to allocate its pagesets
4709 * (a chicken-egg dilemma).
4710 */
7aac7898 4711 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4712 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4713
7aac7898
LS
4714#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4715 /*
4716 * We now know the "local memory node" for each node--
4717 * i.e., the node of the first zone in the generic zonelist.
4718 * Set up numa_mem percpu variable for on-line cpus. During
4719 * boot, only the boot cpu should be on-line; we'll init the
4720 * secondary cpus' numa_mem as they come on-line. During
4721 * node/memory hotplug, we'll fixup all on-line cpus.
4722 */
4723 if (cpu_online(cpu))
4724 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4725#endif
4726 }
4727
6811378e
YG
4728 return 0;
4729}
4730
061f67bc
RV
4731static noinline void __init
4732build_all_zonelists_init(void)
4733{
4734 __build_all_zonelists(NULL);
4735 mminit_verify_zonelist();
4736 cpuset_init_current_mems_allowed();
4737}
4738
4eaf3f64
HL
4739/*
4740 * Called with zonelists_mutex held always
4741 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4742 *
4743 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4744 * [we're only called with non-NULL zone through __meminit paths] and
4745 * (2) call of __init annotated helper build_all_zonelists_init
4746 * [protected by SYSTEM_BOOTING].
4eaf3f64 4747 */
9adb62a5 4748void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4749{
f0c0b2b8
KH
4750 set_zonelist_order();
4751
6811378e 4752 if (system_state == SYSTEM_BOOTING) {
061f67bc 4753 build_all_zonelists_init();
6811378e 4754 } else {
e9959f0f 4755#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4756 if (zone)
4757 setup_zone_pageset(zone);
e9959f0f 4758#endif
dd1895e2
CS
4759 /* we have to stop all cpus to guarantee there is no user
4760 of zonelist */
9adb62a5 4761 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4762 /* cpuset refresh routine should be here */
4763 }
bd1e22b8 4764 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4765 /*
4766 * Disable grouping by mobility if the number of pages in the
4767 * system is too low to allow the mechanism to work. It would be
4768 * more accurate, but expensive to check per-zone. This check is
4769 * made on memory-hotadd so a system can start with mobility
4770 * disabled and enable it later
4771 */
d9c23400 4772 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4773 page_group_by_mobility_disabled = 1;
4774 else
4775 page_group_by_mobility_disabled = 0;
4776
756a025f
JP
4777 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4778 nr_online_nodes,
4779 zonelist_order_name[current_zonelist_order],
4780 page_group_by_mobility_disabled ? "off" : "on",
4781 vm_total_pages);
f0c0b2b8 4782#ifdef CONFIG_NUMA
f88dfff5 4783 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4784#endif
1da177e4
LT
4785}
4786
4787/*
4788 * Helper functions to size the waitqueue hash table.
4789 * Essentially these want to choose hash table sizes sufficiently
4790 * large so that collisions trying to wait on pages are rare.
4791 * But in fact, the number of active page waitqueues on typical
4792 * systems is ridiculously low, less than 200. So this is even
4793 * conservative, even though it seems large.
4794 *
4795 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4796 * waitqueues, i.e. the size of the waitq table given the number of pages.
4797 */
4798#define PAGES_PER_WAITQUEUE 256
4799
cca448fe 4800#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4801static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4802{
4803 unsigned long size = 1;
4804
4805 pages /= PAGES_PER_WAITQUEUE;
4806
4807 while (size < pages)
4808 size <<= 1;
4809
4810 /*
4811 * Once we have dozens or even hundreds of threads sleeping
4812 * on IO we've got bigger problems than wait queue collision.
4813 * Limit the size of the wait table to a reasonable size.
4814 */
4815 size = min(size, 4096UL);
4816
4817 return max(size, 4UL);
4818}
cca448fe
YG
4819#else
4820/*
4821 * A zone's size might be changed by hot-add, so it is not possible to determine
4822 * a suitable size for its wait_table. So we use the maximum size now.
4823 *
4824 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4825 *
4826 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4827 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4828 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4829 *
4830 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4831 * or more by the traditional way. (See above). It equals:
4832 *
4833 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4834 * ia64(16K page size) : = ( 8G + 4M)byte.
4835 * powerpc (64K page size) : = (32G +16M)byte.
4836 */
4837static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4838{
4839 return 4096UL;
4840}
4841#endif
1da177e4
LT
4842
4843/*
4844 * This is an integer logarithm so that shifts can be used later
4845 * to extract the more random high bits from the multiplicative
4846 * hash function before the remainder is taken.
4847 */
4848static inline unsigned long wait_table_bits(unsigned long size)
4849{
4850 return ffz(~size);
4851}
4852
1da177e4
LT
4853/*
4854 * Initially all pages are reserved - free ones are freed
4855 * up by free_all_bootmem() once the early boot process is
4856 * done. Non-atomic initialization, single-pass.
4857 */
c09b4240 4858void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4859 unsigned long start_pfn, enum memmap_context context)
1da177e4 4860{
4b94ffdc 4861 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4862 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4863 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4864 unsigned long pfn;
3a80a7fa 4865 unsigned long nr_initialised = 0;
342332e6
TI
4866#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4867 struct memblock_region *r = NULL, *tmp;
4868#endif
1da177e4 4869
22b31eec
HD
4870 if (highest_memmap_pfn < end_pfn - 1)
4871 highest_memmap_pfn = end_pfn - 1;
4872
4b94ffdc
DW
4873 /*
4874 * Honor reservation requested by the driver for this ZONE_DEVICE
4875 * memory
4876 */
4877 if (altmap && start_pfn == altmap->base_pfn)
4878 start_pfn += altmap->reserve;
4879
cbe8dd4a 4880 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4881 /*
b72d0ffb
AM
4882 * There can be holes in boot-time mem_map[]s handed to this
4883 * function. They do not exist on hotplugged memory.
a2f3aa02 4884 */
b72d0ffb
AM
4885 if (context != MEMMAP_EARLY)
4886 goto not_early;
4887
4888 if (!early_pfn_valid(pfn))
4889 continue;
4890 if (!early_pfn_in_nid(pfn, nid))
4891 continue;
4892 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4893 break;
342332e6
TI
4894
4895#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4896 /*
4897 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4898 * from zone_movable_pfn[nid] to end of each node should be
4899 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4900 */
4901 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4902 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4903 continue;
342332e6 4904
b72d0ffb
AM
4905 /*
4906 * Check given memblock attribute by firmware which can affect
4907 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4908 * mirrored, it's an overlapped memmap init. skip it.
4909 */
4910 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4911 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4912 for_each_memblock(memory, tmp)
4913 if (pfn < memblock_region_memory_end_pfn(tmp))
4914 break;
4915 r = tmp;
4916 }
4917 if (pfn >= memblock_region_memory_base_pfn(r) &&
4918 memblock_is_mirror(r)) {
4919 /* already initialized as NORMAL */
4920 pfn = memblock_region_memory_end_pfn(r);
4921 continue;
342332e6 4922 }
a2f3aa02 4923 }
b72d0ffb 4924#endif
ac5d2539 4925
b72d0ffb 4926not_early:
ac5d2539
MG
4927 /*
4928 * Mark the block movable so that blocks are reserved for
4929 * movable at startup. This will force kernel allocations
4930 * to reserve their blocks rather than leaking throughout
4931 * the address space during boot when many long-lived
974a786e 4932 * kernel allocations are made.
ac5d2539
MG
4933 *
4934 * bitmap is created for zone's valid pfn range. but memmap
4935 * can be created for invalid pages (for alignment)
4936 * check here not to call set_pageblock_migratetype() against
4937 * pfn out of zone.
4938 */
4939 if (!(pfn & (pageblock_nr_pages - 1))) {
4940 struct page *page = pfn_to_page(pfn);
4941
4942 __init_single_page(page, pfn, zone, nid);
4943 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4944 } else {
4945 __init_single_pfn(pfn, zone, nid);
4946 }
1da177e4
LT
4947 }
4948}
4949
1e548deb 4950static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4951{
7aeb09f9 4952 unsigned int order, t;
b2a0ac88
MG
4953 for_each_migratetype_order(order, t) {
4954 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4955 zone->free_area[order].nr_free = 0;
4956 }
4957}
4958
4959#ifndef __HAVE_ARCH_MEMMAP_INIT
4960#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4961 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4962#endif
4963
7cd2b0a3 4964static int zone_batchsize(struct zone *zone)
e7c8d5c9 4965{
3a6be87f 4966#ifdef CONFIG_MMU
e7c8d5c9
CL
4967 int batch;
4968
4969 /*
4970 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4971 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4972 *
4973 * OK, so we don't know how big the cache is. So guess.
4974 */
b40da049 4975 batch = zone->managed_pages / 1024;
ba56e91c
SR
4976 if (batch * PAGE_SIZE > 512 * 1024)
4977 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4978 batch /= 4; /* We effectively *= 4 below */
4979 if (batch < 1)
4980 batch = 1;
4981
4982 /*
0ceaacc9
NP
4983 * Clamp the batch to a 2^n - 1 value. Having a power
4984 * of 2 value was found to be more likely to have
4985 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4986 *
0ceaacc9
NP
4987 * For example if 2 tasks are alternately allocating
4988 * batches of pages, one task can end up with a lot
4989 * of pages of one half of the possible page colors
4990 * and the other with pages of the other colors.
e7c8d5c9 4991 */
9155203a 4992 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4993
e7c8d5c9 4994 return batch;
3a6be87f
DH
4995
4996#else
4997 /* The deferral and batching of frees should be suppressed under NOMMU
4998 * conditions.
4999 *
5000 * The problem is that NOMMU needs to be able to allocate large chunks
5001 * of contiguous memory as there's no hardware page translation to
5002 * assemble apparent contiguous memory from discontiguous pages.
5003 *
5004 * Queueing large contiguous runs of pages for batching, however,
5005 * causes the pages to actually be freed in smaller chunks. As there
5006 * can be a significant delay between the individual batches being
5007 * recycled, this leads to the once large chunks of space being
5008 * fragmented and becoming unavailable for high-order allocations.
5009 */
5010 return 0;
5011#endif
e7c8d5c9
CL
5012}
5013
8d7a8fa9
CS
5014/*
5015 * pcp->high and pcp->batch values are related and dependent on one another:
5016 * ->batch must never be higher then ->high.
5017 * The following function updates them in a safe manner without read side
5018 * locking.
5019 *
5020 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5021 * those fields changing asynchronously (acording the the above rule).
5022 *
5023 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5024 * outside of boot time (or some other assurance that no concurrent updaters
5025 * exist).
5026 */
5027static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5028 unsigned long batch)
5029{
5030 /* start with a fail safe value for batch */
5031 pcp->batch = 1;
5032 smp_wmb();
5033
5034 /* Update high, then batch, in order */
5035 pcp->high = high;
5036 smp_wmb();
5037
5038 pcp->batch = batch;
5039}
5040
3664033c 5041/* a companion to pageset_set_high() */
4008bab7
CS
5042static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5043{
8d7a8fa9 5044 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5045}
5046
88c90dbc 5047static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5048{
5049 struct per_cpu_pages *pcp;
5f8dcc21 5050 int migratetype;
2caaad41 5051
1c6fe946
MD
5052 memset(p, 0, sizeof(*p));
5053
3dfa5721 5054 pcp = &p->pcp;
2caaad41 5055 pcp->count = 0;
5f8dcc21
MG
5056 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5057 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5058}
5059
88c90dbc
CS
5060static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5061{
5062 pageset_init(p);
5063 pageset_set_batch(p, batch);
5064}
5065
8ad4b1fb 5066/*
3664033c 5067 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5068 * to the value high for the pageset p.
5069 */
3664033c 5070static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5071 unsigned long high)
5072{
8d7a8fa9
CS
5073 unsigned long batch = max(1UL, high / 4);
5074 if ((high / 4) > (PAGE_SHIFT * 8))
5075 batch = PAGE_SHIFT * 8;
8ad4b1fb 5076
8d7a8fa9 5077 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5078}
5079
7cd2b0a3
DR
5080static void pageset_set_high_and_batch(struct zone *zone,
5081 struct per_cpu_pageset *pcp)
56cef2b8 5082{
56cef2b8 5083 if (percpu_pagelist_fraction)
3664033c 5084 pageset_set_high(pcp,
56cef2b8
CS
5085 (zone->managed_pages /
5086 percpu_pagelist_fraction));
5087 else
5088 pageset_set_batch(pcp, zone_batchsize(zone));
5089}
5090
169f6c19
CS
5091static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5092{
5093 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5094
5095 pageset_init(pcp);
5096 pageset_set_high_and_batch(zone, pcp);
5097}
5098
4ed7e022 5099static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5100{
5101 int cpu;
319774e2 5102 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5103 for_each_possible_cpu(cpu)
5104 zone_pageset_init(zone, cpu);
319774e2
WF
5105}
5106
2caaad41 5107/*
99dcc3e5
CL
5108 * Allocate per cpu pagesets and initialize them.
5109 * Before this call only boot pagesets were available.
e7c8d5c9 5110 */
99dcc3e5 5111void __init setup_per_cpu_pageset(void)
e7c8d5c9 5112{
99dcc3e5 5113 struct zone *zone;
e7c8d5c9 5114
319774e2
WF
5115 for_each_populated_zone(zone)
5116 setup_zone_pageset(zone);
e7c8d5c9
CL
5117}
5118
577a32f6 5119static noinline __init_refok
cca448fe 5120int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5121{
5122 int i;
cca448fe 5123 size_t alloc_size;
ed8ece2e
DH
5124
5125 /*
5126 * The per-page waitqueue mechanism uses hashed waitqueues
5127 * per zone.
5128 */
02b694de
YG
5129 zone->wait_table_hash_nr_entries =
5130 wait_table_hash_nr_entries(zone_size_pages);
5131 zone->wait_table_bits =
5132 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5133 alloc_size = zone->wait_table_hash_nr_entries
5134 * sizeof(wait_queue_head_t);
5135
cd94b9db 5136 if (!slab_is_available()) {
cca448fe 5137 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5138 memblock_virt_alloc_node_nopanic(
5139 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5140 } else {
5141 /*
5142 * This case means that a zone whose size was 0 gets new memory
5143 * via memory hot-add.
5144 * But it may be the case that a new node was hot-added. In
5145 * this case vmalloc() will not be able to use this new node's
5146 * memory - this wait_table must be initialized to use this new
5147 * node itself as well.
5148 * To use this new node's memory, further consideration will be
5149 * necessary.
5150 */
8691f3a7 5151 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5152 }
5153 if (!zone->wait_table)
5154 return -ENOMEM;
ed8ece2e 5155
b8af2941 5156 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5157 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5158
5159 return 0;
ed8ece2e
DH
5160}
5161
c09b4240 5162static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5163{
99dcc3e5
CL
5164 /*
5165 * per cpu subsystem is not up at this point. The following code
5166 * relies on the ability of the linker to provide the
5167 * offset of a (static) per cpu variable into the per cpu area.
5168 */
5169 zone->pageset = &boot_pageset;
ed8ece2e 5170
b38a8725 5171 if (populated_zone(zone))
99dcc3e5
CL
5172 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5173 zone->name, zone->present_pages,
5174 zone_batchsize(zone));
ed8ece2e
DH
5175}
5176
4ed7e022 5177int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5178 unsigned long zone_start_pfn,
b171e409 5179 unsigned long size)
ed8ece2e
DH
5180{
5181 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5182 int ret;
5183 ret = zone_wait_table_init(zone, size);
5184 if (ret)
5185 return ret;
ed8ece2e
DH
5186 pgdat->nr_zones = zone_idx(zone) + 1;
5187
ed8ece2e
DH
5188 zone->zone_start_pfn = zone_start_pfn;
5189
708614e6
MG
5190 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5191 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5192 pgdat->node_id,
5193 (unsigned long)zone_idx(zone),
5194 zone_start_pfn, (zone_start_pfn + size));
5195
1e548deb 5196 zone_init_free_lists(zone);
718127cc
YG
5197
5198 return 0;
ed8ece2e
DH
5199}
5200
0ee332c1 5201#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5202#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5203
c713216d
MG
5204/*
5205 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5206 */
8a942fde
MG
5207int __meminit __early_pfn_to_nid(unsigned long pfn,
5208 struct mminit_pfnnid_cache *state)
c713216d 5209{
c13291a5 5210 unsigned long start_pfn, end_pfn;
e76b63f8 5211 int nid;
7c243c71 5212
8a942fde
MG
5213 if (state->last_start <= pfn && pfn < state->last_end)
5214 return state->last_nid;
c713216d 5215
e76b63f8
YL
5216 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5217 if (nid != -1) {
8a942fde
MG
5218 state->last_start = start_pfn;
5219 state->last_end = end_pfn;
5220 state->last_nid = nid;
e76b63f8
YL
5221 }
5222
5223 return nid;
c713216d
MG
5224}
5225#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5226
c713216d 5227/**
6782832e 5228 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5229 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5230 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5231 *
7d018176
ZZ
5232 * If an architecture guarantees that all ranges registered contain no holes
5233 * and may be freed, this this function may be used instead of calling
5234 * memblock_free_early_nid() manually.
c713216d 5235 */
c13291a5 5236void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5237{
c13291a5
TH
5238 unsigned long start_pfn, end_pfn;
5239 int i, this_nid;
edbe7d23 5240
c13291a5
TH
5241 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5242 start_pfn = min(start_pfn, max_low_pfn);
5243 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5244
c13291a5 5245 if (start_pfn < end_pfn)
6782832e
SS
5246 memblock_free_early_nid(PFN_PHYS(start_pfn),
5247 (end_pfn - start_pfn) << PAGE_SHIFT,
5248 this_nid);
edbe7d23 5249 }
edbe7d23 5250}
edbe7d23 5251
c713216d
MG
5252/**
5253 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5254 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5255 *
7d018176
ZZ
5256 * If an architecture guarantees that all ranges registered contain no holes and may
5257 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5258 */
5259void __init sparse_memory_present_with_active_regions(int nid)
5260{
c13291a5
TH
5261 unsigned long start_pfn, end_pfn;
5262 int i, this_nid;
c713216d 5263
c13291a5
TH
5264 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5265 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5266}
5267
5268/**
5269 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5270 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5271 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5272 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5273 *
5274 * It returns the start and end page frame of a node based on information
7d018176 5275 * provided by memblock_set_node(). If called for a node
c713216d 5276 * with no available memory, a warning is printed and the start and end
88ca3b94 5277 * PFNs will be 0.
c713216d 5278 */
a3142c8e 5279void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5280 unsigned long *start_pfn, unsigned long *end_pfn)
5281{
c13291a5 5282 unsigned long this_start_pfn, this_end_pfn;
c713216d 5283 int i;
c13291a5 5284
c713216d
MG
5285 *start_pfn = -1UL;
5286 *end_pfn = 0;
5287
c13291a5
TH
5288 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5289 *start_pfn = min(*start_pfn, this_start_pfn);
5290 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5291 }
5292
633c0666 5293 if (*start_pfn == -1UL)
c713216d 5294 *start_pfn = 0;
c713216d
MG
5295}
5296
2a1e274a
MG
5297/*
5298 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5299 * assumption is made that zones within a node are ordered in monotonic
5300 * increasing memory addresses so that the "highest" populated zone is used
5301 */
b69a7288 5302static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5303{
5304 int zone_index;
5305 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5306 if (zone_index == ZONE_MOVABLE)
5307 continue;
5308
5309 if (arch_zone_highest_possible_pfn[zone_index] >
5310 arch_zone_lowest_possible_pfn[zone_index])
5311 break;
5312 }
5313
5314 VM_BUG_ON(zone_index == -1);
5315 movable_zone = zone_index;
5316}
5317
5318/*
5319 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5320 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5321 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5322 * in each node depending on the size of each node and how evenly kernelcore
5323 * is distributed. This helper function adjusts the zone ranges
5324 * provided by the architecture for a given node by using the end of the
5325 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5326 * zones within a node are in order of monotonic increases memory addresses
5327 */
b69a7288 5328static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5329 unsigned long zone_type,
5330 unsigned long node_start_pfn,
5331 unsigned long node_end_pfn,
5332 unsigned long *zone_start_pfn,
5333 unsigned long *zone_end_pfn)
5334{
5335 /* Only adjust if ZONE_MOVABLE is on this node */
5336 if (zone_movable_pfn[nid]) {
5337 /* Size ZONE_MOVABLE */
5338 if (zone_type == ZONE_MOVABLE) {
5339 *zone_start_pfn = zone_movable_pfn[nid];
5340 *zone_end_pfn = min(node_end_pfn,
5341 arch_zone_highest_possible_pfn[movable_zone]);
5342
2a1e274a
MG
5343 /* Check if this whole range is within ZONE_MOVABLE */
5344 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5345 *zone_start_pfn = *zone_end_pfn;
5346 }
5347}
5348
c713216d
MG
5349/*
5350 * Return the number of pages a zone spans in a node, including holes
5351 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5352 */
6ea6e688 5353static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5354 unsigned long zone_type,
7960aedd
ZY
5355 unsigned long node_start_pfn,
5356 unsigned long node_end_pfn,
d91749c1
TI
5357 unsigned long *zone_start_pfn,
5358 unsigned long *zone_end_pfn,
c713216d
MG
5359 unsigned long *ignored)
5360{
b5685e92 5361 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5362 if (!node_start_pfn && !node_end_pfn)
5363 return 0;
5364
7960aedd 5365 /* Get the start and end of the zone */
d91749c1
TI
5366 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5367 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5368 adjust_zone_range_for_zone_movable(nid, zone_type,
5369 node_start_pfn, node_end_pfn,
d91749c1 5370 zone_start_pfn, zone_end_pfn);
c713216d
MG
5371
5372 /* Check that this node has pages within the zone's required range */
d91749c1 5373 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5374 return 0;
5375
5376 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5377 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5378 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5379
5380 /* Return the spanned pages */
d91749c1 5381 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5382}
5383
5384/*
5385 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5386 * then all holes in the requested range will be accounted for.
c713216d 5387 */
32996250 5388unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5389 unsigned long range_start_pfn,
5390 unsigned long range_end_pfn)
5391{
96e907d1
TH
5392 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5393 unsigned long start_pfn, end_pfn;
5394 int i;
c713216d 5395
96e907d1
TH
5396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5397 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5398 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5399 nr_absent -= end_pfn - start_pfn;
c713216d 5400 }
96e907d1 5401 return nr_absent;
c713216d
MG
5402}
5403
5404/**
5405 * absent_pages_in_range - Return number of page frames in holes within a range
5406 * @start_pfn: The start PFN to start searching for holes
5407 * @end_pfn: The end PFN to stop searching for holes
5408 *
88ca3b94 5409 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5410 */
5411unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5412 unsigned long end_pfn)
5413{
5414 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5415}
5416
5417/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5418static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5419 unsigned long zone_type,
7960aedd
ZY
5420 unsigned long node_start_pfn,
5421 unsigned long node_end_pfn,
c713216d
MG
5422 unsigned long *ignored)
5423{
96e907d1
TH
5424 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5425 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5426 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5427 unsigned long nr_absent;
9c7cd687 5428
b5685e92 5429 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5430 if (!node_start_pfn && !node_end_pfn)
5431 return 0;
5432
96e907d1
TH
5433 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5434 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5435
2a1e274a
MG
5436 adjust_zone_range_for_zone_movable(nid, zone_type,
5437 node_start_pfn, node_end_pfn,
5438 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5439 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5440
5441 /*
5442 * ZONE_MOVABLE handling.
5443 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5444 * and vice versa.
5445 */
5446 if (zone_movable_pfn[nid]) {
5447 if (mirrored_kernelcore) {
5448 unsigned long start_pfn, end_pfn;
5449 struct memblock_region *r;
5450
5451 for_each_memblock(memory, r) {
5452 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5453 zone_start_pfn, zone_end_pfn);
5454 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5455 zone_start_pfn, zone_end_pfn);
5456
5457 if (zone_type == ZONE_MOVABLE &&
5458 memblock_is_mirror(r))
5459 nr_absent += end_pfn - start_pfn;
5460
5461 if (zone_type == ZONE_NORMAL &&
5462 !memblock_is_mirror(r))
5463 nr_absent += end_pfn - start_pfn;
5464 }
5465 } else {
5466 if (zone_type == ZONE_NORMAL)
5467 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5468 }
5469 }
5470
5471 return nr_absent;
c713216d 5472}
0e0b864e 5473
0ee332c1 5474#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5475static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5476 unsigned long zone_type,
7960aedd
ZY
5477 unsigned long node_start_pfn,
5478 unsigned long node_end_pfn,
d91749c1
TI
5479 unsigned long *zone_start_pfn,
5480 unsigned long *zone_end_pfn,
c713216d
MG
5481 unsigned long *zones_size)
5482{
d91749c1
TI
5483 unsigned int zone;
5484
5485 *zone_start_pfn = node_start_pfn;
5486 for (zone = 0; zone < zone_type; zone++)
5487 *zone_start_pfn += zones_size[zone];
5488
5489 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5490
c713216d
MG
5491 return zones_size[zone_type];
5492}
5493
6ea6e688 5494static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5495 unsigned long zone_type,
7960aedd
ZY
5496 unsigned long node_start_pfn,
5497 unsigned long node_end_pfn,
c713216d
MG
5498 unsigned long *zholes_size)
5499{
5500 if (!zholes_size)
5501 return 0;
5502
5503 return zholes_size[zone_type];
5504}
20e6926d 5505
0ee332c1 5506#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5507
a3142c8e 5508static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5509 unsigned long node_start_pfn,
5510 unsigned long node_end_pfn,
5511 unsigned long *zones_size,
5512 unsigned long *zholes_size)
c713216d 5513{
febd5949 5514 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5515 enum zone_type i;
5516
febd5949
GZ
5517 for (i = 0; i < MAX_NR_ZONES; i++) {
5518 struct zone *zone = pgdat->node_zones + i;
d91749c1 5519 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5520 unsigned long size, real_size;
c713216d 5521
febd5949
GZ
5522 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5523 node_start_pfn,
5524 node_end_pfn,
d91749c1
TI
5525 &zone_start_pfn,
5526 &zone_end_pfn,
febd5949
GZ
5527 zones_size);
5528 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5529 node_start_pfn, node_end_pfn,
5530 zholes_size);
d91749c1
TI
5531 if (size)
5532 zone->zone_start_pfn = zone_start_pfn;
5533 else
5534 zone->zone_start_pfn = 0;
febd5949
GZ
5535 zone->spanned_pages = size;
5536 zone->present_pages = real_size;
5537
5538 totalpages += size;
5539 realtotalpages += real_size;
5540 }
5541
5542 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5543 pgdat->node_present_pages = realtotalpages;
5544 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5545 realtotalpages);
5546}
5547
835c134e
MG
5548#ifndef CONFIG_SPARSEMEM
5549/*
5550 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5551 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5552 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5553 * round what is now in bits to nearest long in bits, then return it in
5554 * bytes.
5555 */
7c45512d 5556static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5557{
5558 unsigned long usemapsize;
5559
7c45512d 5560 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5561 usemapsize = roundup(zonesize, pageblock_nr_pages);
5562 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5563 usemapsize *= NR_PAGEBLOCK_BITS;
5564 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5565
5566 return usemapsize / 8;
5567}
5568
5569static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5570 struct zone *zone,
5571 unsigned long zone_start_pfn,
5572 unsigned long zonesize)
835c134e 5573{
7c45512d 5574 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5575 zone->pageblock_flags = NULL;
58a01a45 5576 if (usemapsize)
6782832e
SS
5577 zone->pageblock_flags =
5578 memblock_virt_alloc_node_nopanic(usemapsize,
5579 pgdat->node_id);
835c134e
MG
5580}
5581#else
7c45512d
LT
5582static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5583 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5584#endif /* CONFIG_SPARSEMEM */
5585
d9c23400 5586#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5587
d9c23400 5588/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5589void __paginginit set_pageblock_order(void)
d9c23400 5590{
955c1cd7
AM
5591 unsigned int order;
5592
d9c23400
MG
5593 /* Check that pageblock_nr_pages has not already been setup */
5594 if (pageblock_order)
5595 return;
5596
955c1cd7
AM
5597 if (HPAGE_SHIFT > PAGE_SHIFT)
5598 order = HUGETLB_PAGE_ORDER;
5599 else
5600 order = MAX_ORDER - 1;
5601
d9c23400
MG
5602 /*
5603 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5604 * This value may be variable depending on boot parameters on IA64 and
5605 * powerpc.
d9c23400
MG
5606 */
5607 pageblock_order = order;
5608}
5609#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5610
ba72cb8c
MG
5611/*
5612 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5613 * is unused as pageblock_order is set at compile-time. See
5614 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5615 * the kernel config
ba72cb8c 5616 */
15ca220e 5617void __paginginit set_pageblock_order(void)
ba72cb8c 5618{
ba72cb8c 5619}
d9c23400
MG
5620
5621#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5622
01cefaef
JL
5623static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5624 unsigned long present_pages)
5625{
5626 unsigned long pages = spanned_pages;
5627
5628 /*
5629 * Provide a more accurate estimation if there are holes within
5630 * the zone and SPARSEMEM is in use. If there are holes within the
5631 * zone, each populated memory region may cost us one or two extra
5632 * memmap pages due to alignment because memmap pages for each
5633 * populated regions may not naturally algined on page boundary.
5634 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5635 */
5636 if (spanned_pages > present_pages + (present_pages >> 4) &&
5637 IS_ENABLED(CONFIG_SPARSEMEM))
5638 pages = present_pages;
5639
5640 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5641}
5642
1da177e4
LT
5643/*
5644 * Set up the zone data structures:
5645 * - mark all pages reserved
5646 * - mark all memory queues empty
5647 * - clear the memory bitmaps
6527af5d
MK
5648 *
5649 * NOTE: pgdat should get zeroed by caller.
1da177e4 5650 */
7f3eb55b 5651static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5652{
2f1b6248 5653 enum zone_type j;
ed8ece2e 5654 int nid = pgdat->node_id;
718127cc 5655 int ret;
1da177e4 5656
208d54e5 5657 pgdat_resize_init(pgdat);
8177a420
AA
5658#ifdef CONFIG_NUMA_BALANCING
5659 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5660 pgdat->numabalancing_migrate_nr_pages = 0;
5661 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5662#endif
5663#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5664 spin_lock_init(&pgdat->split_queue_lock);
5665 INIT_LIST_HEAD(&pgdat->split_queue);
5666 pgdat->split_queue_len = 0;
8177a420 5667#endif
1da177e4 5668 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5669 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5670#ifdef CONFIG_COMPACTION
5671 init_waitqueue_head(&pgdat->kcompactd_wait);
5672#endif
eefa864b 5673 pgdat_page_ext_init(pgdat);
5f63b720 5674
1da177e4
LT
5675 for (j = 0; j < MAX_NR_ZONES; j++) {
5676 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5677 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5678 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5679
febd5949
GZ
5680 size = zone->spanned_pages;
5681 realsize = freesize = zone->present_pages;
1da177e4 5682
0e0b864e 5683 /*
9feedc9d 5684 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5685 * is used by this zone for memmap. This affects the watermark
5686 * and per-cpu initialisations
5687 */
01cefaef 5688 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5689 if (!is_highmem_idx(j)) {
5690 if (freesize >= memmap_pages) {
5691 freesize -= memmap_pages;
5692 if (memmap_pages)
5693 printk(KERN_DEBUG
5694 " %s zone: %lu pages used for memmap\n",
5695 zone_names[j], memmap_pages);
5696 } else
1170532b 5697 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5698 zone_names[j], memmap_pages, freesize);
5699 }
0e0b864e 5700
6267276f 5701 /* Account for reserved pages */
9feedc9d
JL
5702 if (j == 0 && freesize > dma_reserve) {
5703 freesize -= dma_reserve;
d903ef9f 5704 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5705 zone_names[0], dma_reserve);
0e0b864e
MG
5706 }
5707
98d2b0eb 5708 if (!is_highmem_idx(j))
9feedc9d 5709 nr_kernel_pages += freesize;
01cefaef
JL
5710 /* Charge for highmem memmap if there are enough kernel pages */
5711 else if (nr_kernel_pages > memmap_pages * 2)
5712 nr_kernel_pages -= memmap_pages;
9feedc9d 5713 nr_all_pages += freesize;
1da177e4 5714
9feedc9d
JL
5715 /*
5716 * Set an approximate value for lowmem here, it will be adjusted
5717 * when the bootmem allocator frees pages into the buddy system.
5718 * And all highmem pages will be managed by the buddy system.
5719 */
5720 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5721#ifdef CONFIG_NUMA
d5f541ed 5722 zone->node = nid;
9feedc9d 5723 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5724 / 100;
9feedc9d 5725 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5726#endif
1da177e4
LT
5727 zone->name = zone_names[j];
5728 spin_lock_init(&zone->lock);
5729 spin_lock_init(&zone->lru_lock);
bdc8cb98 5730 zone_seqlock_init(zone);
1da177e4 5731 zone->zone_pgdat = pgdat;
ed8ece2e 5732 zone_pcp_init(zone);
81c0a2bb
JW
5733
5734 /* For bootup, initialized properly in watermark setup */
5735 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5736
bea8c150 5737 lruvec_init(&zone->lruvec);
1da177e4
LT
5738 if (!size)
5739 continue;
5740
955c1cd7 5741 set_pageblock_order();
7c45512d 5742 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5743 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5744 BUG_ON(ret);
76cdd58e 5745 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5746 }
5747}
5748
577a32f6 5749static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5750{
b0aeba74 5751 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5752 unsigned long __maybe_unused offset = 0;
5753
1da177e4
LT
5754 /* Skip empty nodes */
5755 if (!pgdat->node_spanned_pages)
5756 return;
5757
d41dee36 5758#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5759 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5760 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5761 /* ia64 gets its own node_mem_map, before this, without bootmem */
5762 if (!pgdat->node_mem_map) {
b0aeba74 5763 unsigned long size, end;
d41dee36
AW
5764 struct page *map;
5765
e984bb43
BP
5766 /*
5767 * The zone's endpoints aren't required to be MAX_ORDER
5768 * aligned but the node_mem_map endpoints must be in order
5769 * for the buddy allocator to function correctly.
5770 */
108bcc96 5771 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5772 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5773 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5774 map = alloc_remap(pgdat->node_id, size);
5775 if (!map)
6782832e
SS
5776 map = memblock_virt_alloc_node_nopanic(size,
5777 pgdat->node_id);
a1c34a3b 5778 pgdat->node_mem_map = map + offset;
1da177e4 5779 }
12d810c1 5780#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5781 /*
5782 * With no DISCONTIG, the global mem_map is just set as node 0's
5783 */
c713216d 5784 if (pgdat == NODE_DATA(0)) {
1da177e4 5785 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5786#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5787 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5788 mem_map -= offset;
0ee332c1 5789#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5790 }
1da177e4 5791#endif
d41dee36 5792#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5793}
5794
9109fb7b
JW
5795void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5796 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5797{
9109fb7b 5798 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5799 unsigned long start_pfn = 0;
5800 unsigned long end_pfn = 0;
9109fb7b 5801
88fdf75d 5802 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5803 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5804
3a80a7fa 5805 reset_deferred_meminit(pgdat);
1da177e4
LT
5806 pgdat->node_id = nid;
5807 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5808#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5809 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5810 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5811 (u64)start_pfn << PAGE_SHIFT,
5812 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5813#else
5814 start_pfn = node_start_pfn;
7960aedd
ZY
5815#endif
5816 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5817 zones_size, zholes_size);
1da177e4
LT
5818
5819 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5820#ifdef CONFIG_FLAT_NODE_MEM_MAP
5821 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5822 nid, (unsigned long)pgdat,
5823 (unsigned long)pgdat->node_mem_map);
5824#endif
1da177e4 5825
7f3eb55b 5826 free_area_init_core(pgdat);
1da177e4
LT
5827}
5828
0ee332c1 5829#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5830
5831#if MAX_NUMNODES > 1
5832/*
5833 * Figure out the number of possible node ids.
5834 */
f9872caf 5835void __init setup_nr_node_ids(void)
418508c1 5836{
904a9553 5837 unsigned int highest;
418508c1 5838
904a9553 5839 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5840 nr_node_ids = highest + 1;
5841}
418508c1
MS
5842#endif
5843
1e01979c
TH
5844/**
5845 * node_map_pfn_alignment - determine the maximum internode alignment
5846 *
5847 * This function should be called after node map is populated and sorted.
5848 * It calculates the maximum power of two alignment which can distinguish
5849 * all the nodes.
5850 *
5851 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5852 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5853 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5854 * shifted, 1GiB is enough and this function will indicate so.
5855 *
5856 * This is used to test whether pfn -> nid mapping of the chosen memory
5857 * model has fine enough granularity to avoid incorrect mapping for the
5858 * populated node map.
5859 *
5860 * Returns the determined alignment in pfn's. 0 if there is no alignment
5861 * requirement (single node).
5862 */
5863unsigned long __init node_map_pfn_alignment(void)
5864{
5865 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5866 unsigned long start, end, mask;
1e01979c 5867 int last_nid = -1;
c13291a5 5868 int i, nid;
1e01979c 5869
c13291a5 5870 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5871 if (!start || last_nid < 0 || last_nid == nid) {
5872 last_nid = nid;
5873 last_end = end;
5874 continue;
5875 }
5876
5877 /*
5878 * Start with a mask granular enough to pin-point to the
5879 * start pfn and tick off bits one-by-one until it becomes
5880 * too coarse to separate the current node from the last.
5881 */
5882 mask = ~((1 << __ffs(start)) - 1);
5883 while (mask && last_end <= (start & (mask << 1)))
5884 mask <<= 1;
5885
5886 /* accumulate all internode masks */
5887 accl_mask |= mask;
5888 }
5889
5890 /* convert mask to number of pages */
5891 return ~accl_mask + 1;
5892}
5893
a6af2bc3 5894/* Find the lowest pfn for a node */
b69a7288 5895static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5896{
a6af2bc3 5897 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5898 unsigned long start_pfn;
5899 int i;
1abbfb41 5900
c13291a5
TH
5901 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5902 min_pfn = min(min_pfn, start_pfn);
c713216d 5903
a6af2bc3 5904 if (min_pfn == ULONG_MAX) {
1170532b 5905 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5906 return 0;
5907 }
5908
5909 return min_pfn;
c713216d
MG
5910}
5911
5912/**
5913 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5914 *
5915 * It returns the minimum PFN based on information provided via
7d018176 5916 * memblock_set_node().
c713216d
MG
5917 */
5918unsigned long __init find_min_pfn_with_active_regions(void)
5919{
5920 return find_min_pfn_for_node(MAX_NUMNODES);
5921}
5922
37b07e41
LS
5923/*
5924 * early_calculate_totalpages()
5925 * Sum pages in active regions for movable zone.
4b0ef1fe 5926 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5927 */
484f51f8 5928static unsigned long __init early_calculate_totalpages(void)
7e63efef 5929{
7e63efef 5930 unsigned long totalpages = 0;
c13291a5
TH
5931 unsigned long start_pfn, end_pfn;
5932 int i, nid;
5933
5934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5935 unsigned long pages = end_pfn - start_pfn;
7e63efef 5936
37b07e41
LS
5937 totalpages += pages;
5938 if (pages)
4b0ef1fe 5939 node_set_state(nid, N_MEMORY);
37b07e41 5940 }
b8af2941 5941 return totalpages;
7e63efef
MG
5942}
5943
2a1e274a
MG
5944/*
5945 * Find the PFN the Movable zone begins in each node. Kernel memory
5946 * is spread evenly between nodes as long as the nodes have enough
5947 * memory. When they don't, some nodes will have more kernelcore than
5948 * others
5949 */
b224ef85 5950static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5951{
5952 int i, nid;
5953 unsigned long usable_startpfn;
5954 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5955 /* save the state before borrow the nodemask */
4b0ef1fe 5956 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5957 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5958 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5959 struct memblock_region *r;
b2f3eebe
TC
5960
5961 /* Need to find movable_zone earlier when movable_node is specified. */
5962 find_usable_zone_for_movable();
5963
5964 /*
5965 * If movable_node is specified, ignore kernelcore and movablecore
5966 * options.
5967 */
5968 if (movable_node_is_enabled()) {
136199f0
EM
5969 for_each_memblock(memory, r) {
5970 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5971 continue;
5972
136199f0 5973 nid = r->nid;
b2f3eebe 5974
136199f0 5975 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5976 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5977 min(usable_startpfn, zone_movable_pfn[nid]) :
5978 usable_startpfn;
5979 }
5980
5981 goto out2;
5982 }
2a1e274a 5983
342332e6
TI
5984 /*
5985 * If kernelcore=mirror is specified, ignore movablecore option
5986 */
5987 if (mirrored_kernelcore) {
5988 bool mem_below_4gb_not_mirrored = false;
5989
5990 for_each_memblock(memory, r) {
5991 if (memblock_is_mirror(r))
5992 continue;
5993
5994 nid = r->nid;
5995
5996 usable_startpfn = memblock_region_memory_base_pfn(r);
5997
5998 if (usable_startpfn < 0x100000) {
5999 mem_below_4gb_not_mirrored = true;
6000 continue;
6001 }
6002
6003 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6004 min(usable_startpfn, zone_movable_pfn[nid]) :
6005 usable_startpfn;
6006 }
6007
6008 if (mem_below_4gb_not_mirrored)
6009 pr_warn("This configuration results in unmirrored kernel memory.");
6010
6011 goto out2;
6012 }
6013
7e63efef 6014 /*
b2f3eebe 6015 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6016 * kernelcore that corresponds so that memory usable for
6017 * any allocation type is evenly spread. If both kernelcore
6018 * and movablecore are specified, then the value of kernelcore
6019 * will be used for required_kernelcore if it's greater than
6020 * what movablecore would have allowed.
6021 */
6022 if (required_movablecore) {
7e63efef
MG
6023 unsigned long corepages;
6024
6025 /*
6026 * Round-up so that ZONE_MOVABLE is at least as large as what
6027 * was requested by the user
6028 */
6029 required_movablecore =
6030 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6031 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6032 corepages = totalpages - required_movablecore;
6033
6034 required_kernelcore = max(required_kernelcore, corepages);
6035 }
6036
bde304bd
XQ
6037 /*
6038 * If kernelcore was not specified or kernelcore size is larger
6039 * than totalpages, there is no ZONE_MOVABLE.
6040 */
6041 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6042 goto out;
2a1e274a
MG
6043
6044 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6045 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6046
6047restart:
6048 /* Spread kernelcore memory as evenly as possible throughout nodes */
6049 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6050 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6051 unsigned long start_pfn, end_pfn;
6052
2a1e274a
MG
6053 /*
6054 * Recalculate kernelcore_node if the division per node
6055 * now exceeds what is necessary to satisfy the requested
6056 * amount of memory for the kernel
6057 */
6058 if (required_kernelcore < kernelcore_node)
6059 kernelcore_node = required_kernelcore / usable_nodes;
6060
6061 /*
6062 * As the map is walked, we track how much memory is usable
6063 * by the kernel using kernelcore_remaining. When it is
6064 * 0, the rest of the node is usable by ZONE_MOVABLE
6065 */
6066 kernelcore_remaining = kernelcore_node;
6067
6068 /* Go through each range of PFNs within this node */
c13291a5 6069 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6070 unsigned long size_pages;
6071
c13291a5 6072 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6073 if (start_pfn >= end_pfn)
6074 continue;
6075
6076 /* Account for what is only usable for kernelcore */
6077 if (start_pfn < usable_startpfn) {
6078 unsigned long kernel_pages;
6079 kernel_pages = min(end_pfn, usable_startpfn)
6080 - start_pfn;
6081
6082 kernelcore_remaining -= min(kernel_pages,
6083 kernelcore_remaining);
6084 required_kernelcore -= min(kernel_pages,
6085 required_kernelcore);
6086
6087 /* Continue if range is now fully accounted */
6088 if (end_pfn <= usable_startpfn) {
6089
6090 /*
6091 * Push zone_movable_pfn to the end so
6092 * that if we have to rebalance
6093 * kernelcore across nodes, we will
6094 * not double account here
6095 */
6096 zone_movable_pfn[nid] = end_pfn;
6097 continue;
6098 }
6099 start_pfn = usable_startpfn;
6100 }
6101
6102 /*
6103 * The usable PFN range for ZONE_MOVABLE is from
6104 * start_pfn->end_pfn. Calculate size_pages as the
6105 * number of pages used as kernelcore
6106 */
6107 size_pages = end_pfn - start_pfn;
6108 if (size_pages > kernelcore_remaining)
6109 size_pages = kernelcore_remaining;
6110 zone_movable_pfn[nid] = start_pfn + size_pages;
6111
6112 /*
6113 * Some kernelcore has been met, update counts and
6114 * break if the kernelcore for this node has been
b8af2941 6115 * satisfied
2a1e274a
MG
6116 */
6117 required_kernelcore -= min(required_kernelcore,
6118 size_pages);
6119 kernelcore_remaining -= size_pages;
6120 if (!kernelcore_remaining)
6121 break;
6122 }
6123 }
6124
6125 /*
6126 * If there is still required_kernelcore, we do another pass with one
6127 * less node in the count. This will push zone_movable_pfn[nid] further
6128 * along on the nodes that still have memory until kernelcore is
b8af2941 6129 * satisfied
2a1e274a
MG
6130 */
6131 usable_nodes--;
6132 if (usable_nodes && required_kernelcore > usable_nodes)
6133 goto restart;
6134
b2f3eebe 6135out2:
2a1e274a
MG
6136 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6137 for (nid = 0; nid < MAX_NUMNODES; nid++)
6138 zone_movable_pfn[nid] =
6139 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6140
20e6926d 6141out:
66918dcd 6142 /* restore the node_state */
4b0ef1fe 6143 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6144}
6145
4b0ef1fe
LJ
6146/* Any regular or high memory on that node ? */
6147static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6148{
37b07e41
LS
6149 enum zone_type zone_type;
6150
4b0ef1fe
LJ
6151 if (N_MEMORY == N_NORMAL_MEMORY)
6152 return;
6153
6154 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6155 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6156 if (populated_zone(zone)) {
4b0ef1fe
LJ
6157 node_set_state(nid, N_HIGH_MEMORY);
6158 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6159 zone_type <= ZONE_NORMAL)
6160 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6161 break;
6162 }
37b07e41 6163 }
37b07e41
LS
6164}
6165
c713216d
MG
6166/**
6167 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6168 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6169 *
6170 * This will call free_area_init_node() for each active node in the system.
7d018176 6171 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6172 * zone in each node and their holes is calculated. If the maximum PFN
6173 * between two adjacent zones match, it is assumed that the zone is empty.
6174 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6175 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6176 * starts where the previous one ended. For example, ZONE_DMA32 starts
6177 * at arch_max_dma_pfn.
6178 */
6179void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6180{
c13291a5
TH
6181 unsigned long start_pfn, end_pfn;
6182 int i, nid;
a6af2bc3 6183
c713216d
MG
6184 /* Record where the zone boundaries are */
6185 memset(arch_zone_lowest_possible_pfn, 0,
6186 sizeof(arch_zone_lowest_possible_pfn));
6187 memset(arch_zone_highest_possible_pfn, 0,
6188 sizeof(arch_zone_highest_possible_pfn));
6189 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6190 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6191 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6192 if (i == ZONE_MOVABLE)
6193 continue;
c713216d
MG
6194 arch_zone_lowest_possible_pfn[i] =
6195 arch_zone_highest_possible_pfn[i-1];
6196 arch_zone_highest_possible_pfn[i] =
6197 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6198 }
2a1e274a
MG
6199 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6200 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6201
6202 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6203 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6204 find_zone_movable_pfns_for_nodes();
c713216d 6205
c713216d 6206 /* Print out the zone ranges */
f88dfff5 6207 pr_info("Zone ranges:\n");
2a1e274a
MG
6208 for (i = 0; i < MAX_NR_ZONES; i++) {
6209 if (i == ZONE_MOVABLE)
6210 continue;
f88dfff5 6211 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6212 if (arch_zone_lowest_possible_pfn[i] ==
6213 arch_zone_highest_possible_pfn[i])
f88dfff5 6214 pr_cont("empty\n");
72f0ba02 6215 else
8d29e18a
JG
6216 pr_cont("[mem %#018Lx-%#018Lx]\n",
6217 (u64)arch_zone_lowest_possible_pfn[i]
6218 << PAGE_SHIFT,
6219 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6220 << PAGE_SHIFT) - 1);
2a1e274a
MG
6221 }
6222
6223 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6224 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6225 for (i = 0; i < MAX_NUMNODES; i++) {
6226 if (zone_movable_pfn[i])
8d29e18a
JG
6227 pr_info(" Node %d: %#018Lx\n", i,
6228 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6229 }
c713216d 6230
f2d52fe5 6231 /* Print out the early node map */
f88dfff5 6232 pr_info("Early memory node ranges\n");
c13291a5 6233 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6234 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6235 (u64)start_pfn << PAGE_SHIFT,
6236 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6237
6238 /* Initialise every node */
708614e6 6239 mminit_verify_pageflags_layout();
8ef82866 6240 setup_nr_node_ids();
c713216d
MG
6241 for_each_online_node(nid) {
6242 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6243 free_area_init_node(nid, NULL,
c713216d 6244 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6245
6246 /* Any memory on that node */
6247 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6248 node_set_state(nid, N_MEMORY);
6249 check_for_memory(pgdat, nid);
c713216d
MG
6250 }
6251}
2a1e274a 6252
7e63efef 6253static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6254{
6255 unsigned long long coremem;
6256 if (!p)
6257 return -EINVAL;
6258
6259 coremem = memparse(p, &p);
7e63efef 6260 *core = coremem >> PAGE_SHIFT;
2a1e274a 6261
7e63efef 6262 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6263 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6264
6265 return 0;
6266}
ed7ed365 6267
7e63efef
MG
6268/*
6269 * kernelcore=size sets the amount of memory for use for allocations that
6270 * cannot be reclaimed or migrated.
6271 */
6272static int __init cmdline_parse_kernelcore(char *p)
6273{
342332e6
TI
6274 /* parse kernelcore=mirror */
6275 if (parse_option_str(p, "mirror")) {
6276 mirrored_kernelcore = true;
6277 return 0;
6278 }
6279
7e63efef
MG
6280 return cmdline_parse_core(p, &required_kernelcore);
6281}
6282
6283/*
6284 * movablecore=size sets the amount of memory for use for allocations that
6285 * can be reclaimed or migrated.
6286 */
6287static int __init cmdline_parse_movablecore(char *p)
6288{
6289 return cmdline_parse_core(p, &required_movablecore);
6290}
6291
ed7ed365 6292early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6293early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6294
0ee332c1 6295#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6296
c3d5f5f0
JL
6297void adjust_managed_page_count(struct page *page, long count)
6298{
6299 spin_lock(&managed_page_count_lock);
6300 page_zone(page)->managed_pages += count;
6301 totalram_pages += count;
3dcc0571
JL
6302#ifdef CONFIG_HIGHMEM
6303 if (PageHighMem(page))
6304 totalhigh_pages += count;
6305#endif
c3d5f5f0
JL
6306 spin_unlock(&managed_page_count_lock);
6307}
3dcc0571 6308EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6309
11199692 6310unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6311{
11199692
JL
6312 void *pos;
6313 unsigned long pages = 0;
69afade7 6314
11199692
JL
6315 start = (void *)PAGE_ALIGN((unsigned long)start);
6316 end = (void *)((unsigned long)end & PAGE_MASK);
6317 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6318 if ((unsigned int)poison <= 0xFF)
11199692
JL
6319 memset(pos, poison, PAGE_SIZE);
6320 free_reserved_page(virt_to_page(pos));
69afade7
JL
6321 }
6322
6323 if (pages && s)
11199692 6324 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6325 s, pages << (PAGE_SHIFT - 10), start, end);
6326
6327 return pages;
6328}
11199692 6329EXPORT_SYMBOL(free_reserved_area);
69afade7 6330
cfa11e08
JL
6331#ifdef CONFIG_HIGHMEM
6332void free_highmem_page(struct page *page)
6333{
6334 __free_reserved_page(page);
6335 totalram_pages++;
7b4b2a0d 6336 page_zone(page)->managed_pages++;
cfa11e08
JL
6337 totalhigh_pages++;
6338}
6339#endif
6340
7ee3d4e8
JL
6341
6342void __init mem_init_print_info(const char *str)
6343{
6344 unsigned long physpages, codesize, datasize, rosize, bss_size;
6345 unsigned long init_code_size, init_data_size;
6346
6347 physpages = get_num_physpages();
6348 codesize = _etext - _stext;
6349 datasize = _edata - _sdata;
6350 rosize = __end_rodata - __start_rodata;
6351 bss_size = __bss_stop - __bss_start;
6352 init_data_size = __init_end - __init_begin;
6353 init_code_size = _einittext - _sinittext;
6354
6355 /*
6356 * Detect special cases and adjust section sizes accordingly:
6357 * 1) .init.* may be embedded into .data sections
6358 * 2) .init.text.* may be out of [__init_begin, __init_end],
6359 * please refer to arch/tile/kernel/vmlinux.lds.S.
6360 * 3) .rodata.* may be embedded into .text or .data sections.
6361 */
6362#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6363 do { \
6364 if (start <= pos && pos < end && size > adj) \
6365 size -= adj; \
6366 } while (0)
7ee3d4e8
JL
6367
6368 adj_init_size(__init_begin, __init_end, init_data_size,
6369 _sinittext, init_code_size);
6370 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6371 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6372 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6373 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6374
6375#undef adj_init_size
6376
756a025f 6377 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6378#ifdef CONFIG_HIGHMEM
756a025f 6379 ", %luK highmem"
7ee3d4e8 6380#endif
756a025f
JP
6381 "%s%s)\n",
6382 nr_free_pages() << (PAGE_SHIFT - 10),
6383 physpages << (PAGE_SHIFT - 10),
6384 codesize >> 10, datasize >> 10, rosize >> 10,
6385 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6386 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6387 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6388#ifdef CONFIG_HIGHMEM
756a025f 6389 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6390#endif
756a025f 6391 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6392}
6393
0e0b864e 6394/**
88ca3b94
RD
6395 * set_dma_reserve - set the specified number of pages reserved in the first zone
6396 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6397 *
013110a7 6398 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6399 * In the DMA zone, a significant percentage may be consumed by kernel image
6400 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6401 * function may optionally be used to account for unfreeable pages in the
6402 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6403 * smaller per-cpu batchsize.
0e0b864e
MG
6404 */
6405void __init set_dma_reserve(unsigned long new_dma_reserve)
6406{
6407 dma_reserve = new_dma_reserve;
6408}
6409
1da177e4
LT
6410void __init free_area_init(unsigned long *zones_size)
6411{
9109fb7b 6412 free_area_init_node(0, zones_size,
1da177e4
LT
6413 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6414}
1da177e4 6415
1da177e4
LT
6416static int page_alloc_cpu_notify(struct notifier_block *self,
6417 unsigned long action, void *hcpu)
6418{
6419 int cpu = (unsigned long)hcpu;
1da177e4 6420
8bb78442 6421 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6422 lru_add_drain_cpu(cpu);
9f8f2172
CL
6423 drain_pages(cpu);
6424
6425 /*
6426 * Spill the event counters of the dead processor
6427 * into the current processors event counters.
6428 * This artificially elevates the count of the current
6429 * processor.
6430 */
f8891e5e 6431 vm_events_fold_cpu(cpu);
9f8f2172
CL
6432
6433 /*
6434 * Zero the differential counters of the dead processor
6435 * so that the vm statistics are consistent.
6436 *
6437 * This is only okay since the processor is dead and cannot
6438 * race with what we are doing.
6439 */
2bb921e5 6440 cpu_vm_stats_fold(cpu);
1da177e4
LT
6441 }
6442 return NOTIFY_OK;
6443}
1da177e4
LT
6444
6445void __init page_alloc_init(void)
6446{
6447 hotcpu_notifier(page_alloc_cpu_notify, 0);
6448}
6449
cb45b0e9 6450/*
34b10060 6451 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6452 * or min_free_kbytes changes.
6453 */
6454static void calculate_totalreserve_pages(void)
6455{
6456 struct pglist_data *pgdat;
6457 unsigned long reserve_pages = 0;
2f6726e5 6458 enum zone_type i, j;
cb45b0e9
HA
6459
6460 for_each_online_pgdat(pgdat) {
6461 for (i = 0; i < MAX_NR_ZONES; i++) {
6462 struct zone *zone = pgdat->node_zones + i;
3484b2de 6463 long max = 0;
cb45b0e9
HA
6464
6465 /* Find valid and maximum lowmem_reserve in the zone */
6466 for (j = i; j < MAX_NR_ZONES; j++) {
6467 if (zone->lowmem_reserve[j] > max)
6468 max = zone->lowmem_reserve[j];
6469 }
6470
41858966
MG
6471 /* we treat the high watermark as reserved pages. */
6472 max += high_wmark_pages(zone);
cb45b0e9 6473
b40da049
JL
6474 if (max > zone->managed_pages)
6475 max = zone->managed_pages;
a8d01437
JW
6476
6477 zone->totalreserve_pages = max;
6478
cb45b0e9
HA
6479 reserve_pages += max;
6480 }
6481 }
6482 totalreserve_pages = reserve_pages;
6483}
6484
1da177e4
LT
6485/*
6486 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6487 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6488 * has a correct pages reserved value, so an adequate number of
6489 * pages are left in the zone after a successful __alloc_pages().
6490 */
6491static void setup_per_zone_lowmem_reserve(void)
6492{
6493 struct pglist_data *pgdat;
2f6726e5 6494 enum zone_type j, idx;
1da177e4 6495
ec936fc5 6496 for_each_online_pgdat(pgdat) {
1da177e4
LT
6497 for (j = 0; j < MAX_NR_ZONES; j++) {
6498 struct zone *zone = pgdat->node_zones + j;
b40da049 6499 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6500
6501 zone->lowmem_reserve[j] = 0;
6502
2f6726e5
CL
6503 idx = j;
6504 while (idx) {
1da177e4
LT
6505 struct zone *lower_zone;
6506
2f6726e5
CL
6507 idx--;
6508
1da177e4
LT
6509 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6510 sysctl_lowmem_reserve_ratio[idx] = 1;
6511
6512 lower_zone = pgdat->node_zones + idx;
b40da049 6513 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6514 sysctl_lowmem_reserve_ratio[idx];
b40da049 6515 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6516 }
6517 }
6518 }
cb45b0e9
HA
6519
6520 /* update totalreserve_pages */
6521 calculate_totalreserve_pages();
1da177e4
LT
6522}
6523
cfd3da1e 6524static void __setup_per_zone_wmarks(void)
1da177e4
LT
6525{
6526 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6527 unsigned long lowmem_pages = 0;
6528 struct zone *zone;
6529 unsigned long flags;
6530
6531 /* Calculate total number of !ZONE_HIGHMEM pages */
6532 for_each_zone(zone) {
6533 if (!is_highmem(zone))
b40da049 6534 lowmem_pages += zone->managed_pages;
1da177e4
LT
6535 }
6536
6537 for_each_zone(zone) {
ac924c60
AM
6538 u64 tmp;
6539
1125b4e3 6540 spin_lock_irqsave(&zone->lock, flags);
b40da049 6541 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6542 do_div(tmp, lowmem_pages);
1da177e4
LT
6543 if (is_highmem(zone)) {
6544 /*
669ed175
NP
6545 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6546 * need highmem pages, so cap pages_min to a small
6547 * value here.
6548 *
41858966 6549 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6550 * deltas control asynch page reclaim, and so should
669ed175 6551 * not be capped for highmem.
1da177e4 6552 */
90ae8d67 6553 unsigned long min_pages;
1da177e4 6554
b40da049 6555 min_pages = zone->managed_pages / 1024;
90ae8d67 6556 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6557 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6558 } else {
669ed175
NP
6559 /*
6560 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6561 * proportionate to the zone's size.
6562 */
41858966 6563 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6564 }
6565
795ae7a0
JW
6566 /*
6567 * Set the kswapd watermarks distance according to the
6568 * scale factor in proportion to available memory, but
6569 * ensure a minimum size on small systems.
6570 */
6571 tmp = max_t(u64, tmp >> 2,
6572 mult_frac(zone->managed_pages,
6573 watermark_scale_factor, 10000));
6574
6575 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6576 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6577
81c0a2bb 6578 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6579 high_wmark_pages(zone) - low_wmark_pages(zone) -
6580 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6581
1125b4e3 6582 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6583 }
cb45b0e9
HA
6584
6585 /* update totalreserve_pages */
6586 calculate_totalreserve_pages();
1da177e4
LT
6587}
6588
cfd3da1e
MG
6589/**
6590 * setup_per_zone_wmarks - called when min_free_kbytes changes
6591 * or when memory is hot-{added|removed}
6592 *
6593 * Ensures that the watermark[min,low,high] values for each zone are set
6594 * correctly with respect to min_free_kbytes.
6595 */
6596void setup_per_zone_wmarks(void)
6597{
6598 mutex_lock(&zonelists_mutex);
6599 __setup_per_zone_wmarks();
6600 mutex_unlock(&zonelists_mutex);
6601}
6602
55a4462a 6603/*
556adecb
RR
6604 * The inactive anon list should be small enough that the VM never has to
6605 * do too much work, but large enough that each inactive page has a chance
6606 * to be referenced again before it is swapped out.
6607 *
6608 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6609 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6610 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6611 * the anonymous pages are kept on the inactive list.
6612 *
6613 * total target max
6614 * memory ratio inactive anon
6615 * -------------------------------------
6616 * 10MB 1 5MB
6617 * 100MB 1 50MB
6618 * 1GB 3 250MB
6619 * 10GB 10 0.9GB
6620 * 100GB 31 3GB
6621 * 1TB 101 10GB
6622 * 10TB 320 32GB
6623 */
1b79acc9 6624static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6625{
96cb4df5 6626 unsigned int gb, ratio;
556adecb 6627
96cb4df5 6628 /* Zone size in gigabytes */
b40da049 6629 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6630 if (gb)
556adecb 6631 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6632 else
6633 ratio = 1;
556adecb 6634
96cb4df5
MK
6635 zone->inactive_ratio = ratio;
6636}
556adecb 6637
839a4fcc 6638static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6639{
6640 struct zone *zone;
6641
6642 for_each_zone(zone)
6643 calculate_zone_inactive_ratio(zone);
556adecb
RR
6644}
6645
1da177e4
LT
6646/*
6647 * Initialise min_free_kbytes.
6648 *
6649 * For small machines we want it small (128k min). For large machines
6650 * we want it large (64MB max). But it is not linear, because network
6651 * bandwidth does not increase linearly with machine size. We use
6652 *
b8af2941 6653 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6654 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6655 *
6656 * which yields
6657 *
6658 * 16MB: 512k
6659 * 32MB: 724k
6660 * 64MB: 1024k
6661 * 128MB: 1448k
6662 * 256MB: 2048k
6663 * 512MB: 2896k
6664 * 1024MB: 4096k
6665 * 2048MB: 5792k
6666 * 4096MB: 8192k
6667 * 8192MB: 11584k
6668 * 16384MB: 16384k
6669 */
1b79acc9 6670int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6671{
6672 unsigned long lowmem_kbytes;
5f12733e 6673 int new_min_free_kbytes;
1da177e4
LT
6674
6675 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6676 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6677
6678 if (new_min_free_kbytes > user_min_free_kbytes) {
6679 min_free_kbytes = new_min_free_kbytes;
6680 if (min_free_kbytes < 128)
6681 min_free_kbytes = 128;
6682 if (min_free_kbytes > 65536)
6683 min_free_kbytes = 65536;
6684 } else {
6685 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6686 new_min_free_kbytes, user_min_free_kbytes);
6687 }
bc75d33f 6688 setup_per_zone_wmarks();
a6cccdc3 6689 refresh_zone_stat_thresholds();
1da177e4 6690 setup_per_zone_lowmem_reserve();
556adecb 6691 setup_per_zone_inactive_ratio();
1da177e4
LT
6692 return 0;
6693}
bc22af74 6694core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6695
6696/*
b8af2941 6697 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6698 * that we can call two helper functions whenever min_free_kbytes
6699 * changes.
6700 */
cccad5b9 6701int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6702 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6703{
da8c757b
HP
6704 int rc;
6705
6706 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6707 if (rc)
6708 return rc;
6709
5f12733e
MH
6710 if (write) {
6711 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6712 setup_per_zone_wmarks();
5f12733e 6713 }
1da177e4
LT
6714 return 0;
6715}
6716
795ae7a0
JW
6717int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6718 void __user *buffer, size_t *length, loff_t *ppos)
6719{
6720 int rc;
6721
6722 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6723 if (rc)
6724 return rc;
6725
6726 if (write)
6727 setup_per_zone_wmarks();
6728
6729 return 0;
6730}
6731
9614634f 6732#ifdef CONFIG_NUMA
cccad5b9 6733int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6734 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6735{
6736 struct zone *zone;
6737 int rc;
6738
8d65af78 6739 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6740 if (rc)
6741 return rc;
6742
6743 for_each_zone(zone)
b40da049 6744 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6745 sysctl_min_unmapped_ratio) / 100;
6746 return 0;
6747}
0ff38490 6748
cccad5b9 6749int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6750 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6751{
6752 struct zone *zone;
6753 int rc;
6754
8d65af78 6755 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6756 if (rc)
6757 return rc;
6758
6759 for_each_zone(zone)
b40da049 6760 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6761 sysctl_min_slab_ratio) / 100;
6762 return 0;
6763}
9614634f
CL
6764#endif
6765
1da177e4
LT
6766/*
6767 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6768 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6769 * whenever sysctl_lowmem_reserve_ratio changes.
6770 *
6771 * The reserve ratio obviously has absolutely no relation with the
41858966 6772 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6773 * if in function of the boot time zone sizes.
6774 */
cccad5b9 6775int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6776 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6777{
8d65af78 6778 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6779 setup_per_zone_lowmem_reserve();
6780 return 0;
6781}
6782
8ad4b1fb
RS
6783/*
6784 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6785 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6786 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6787 */
cccad5b9 6788int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6789 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6790{
6791 struct zone *zone;
7cd2b0a3 6792 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6793 int ret;
6794
7cd2b0a3
DR
6795 mutex_lock(&pcp_batch_high_lock);
6796 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6797
8d65af78 6798 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6799 if (!write || ret < 0)
6800 goto out;
6801
6802 /* Sanity checking to avoid pcp imbalance */
6803 if (percpu_pagelist_fraction &&
6804 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6805 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6806 ret = -EINVAL;
6807 goto out;
6808 }
6809
6810 /* No change? */
6811 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6812 goto out;
c8e251fa 6813
364df0eb 6814 for_each_populated_zone(zone) {
7cd2b0a3
DR
6815 unsigned int cpu;
6816
22a7f12b 6817 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6818 pageset_set_high_and_batch(zone,
6819 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6820 }
7cd2b0a3 6821out:
c8e251fa 6822 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6823 return ret;
8ad4b1fb
RS
6824}
6825
a9919c79 6826#ifdef CONFIG_NUMA
f034b5d4 6827int hashdist = HASHDIST_DEFAULT;
1da177e4 6828
1da177e4
LT
6829static int __init set_hashdist(char *str)
6830{
6831 if (!str)
6832 return 0;
6833 hashdist = simple_strtoul(str, &str, 0);
6834 return 1;
6835}
6836__setup("hashdist=", set_hashdist);
6837#endif
6838
6839/*
6840 * allocate a large system hash table from bootmem
6841 * - it is assumed that the hash table must contain an exact power-of-2
6842 * quantity of entries
6843 * - limit is the number of hash buckets, not the total allocation size
6844 */
6845void *__init alloc_large_system_hash(const char *tablename,
6846 unsigned long bucketsize,
6847 unsigned long numentries,
6848 int scale,
6849 int flags,
6850 unsigned int *_hash_shift,
6851 unsigned int *_hash_mask,
31fe62b9
TB
6852 unsigned long low_limit,
6853 unsigned long high_limit)
1da177e4 6854{
31fe62b9 6855 unsigned long long max = high_limit;
1da177e4
LT
6856 unsigned long log2qty, size;
6857 void *table = NULL;
6858
6859 /* allow the kernel cmdline to have a say */
6860 if (!numentries) {
6861 /* round applicable memory size up to nearest megabyte */
04903664 6862 numentries = nr_kernel_pages;
a7e83318
JZ
6863
6864 /* It isn't necessary when PAGE_SIZE >= 1MB */
6865 if (PAGE_SHIFT < 20)
6866 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6867
6868 /* limit to 1 bucket per 2^scale bytes of low memory */
6869 if (scale > PAGE_SHIFT)
6870 numentries >>= (scale - PAGE_SHIFT);
6871 else
6872 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6873
6874 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6875 if (unlikely(flags & HASH_SMALL)) {
6876 /* Makes no sense without HASH_EARLY */
6877 WARN_ON(!(flags & HASH_EARLY));
6878 if (!(numentries >> *_hash_shift)) {
6879 numentries = 1UL << *_hash_shift;
6880 BUG_ON(!numentries);
6881 }
6882 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6883 numentries = PAGE_SIZE / bucketsize;
1da177e4 6884 }
6e692ed3 6885 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6886
6887 /* limit allocation size to 1/16 total memory by default */
6888 if (max == 0) {
6889 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6890 do_div(max, bucketsize);
6891 }
074b8517 6892 max = min(max, 0x80000000ULL);
1da177e4 6893
31fe62b9
TB
6894 if (numentries < low_limit)
6895 numentries = low_limit;
1da177e4
LT
6896 if (numentries > max)
6897 numentries = max;
6898
f0d1b0b3 6899 log2qty = ilog2(numentries);
1da177e4
LT
6900
6901 do {
6902 size = bucketsize << log2qty;
6903 if (flags & HASH_EARLY)
6782832e 6904 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6905 else if (hashdist)
6906 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6907 else {
1037b83b
ED
6908 /*
6909 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6910 * some pages at the end of hash table which
6911 * alloc_pages_exact() automatically does
1037b83b 6912 */
264ef8a9 6913 if (get_order(size) < MAX_ORDER) {
a1dd268c 6914 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6915 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6916 }
1da177e4
LT
6917 }
6918 } while (!table && size > PAGE_SIZE && --log2qty);
6919
6920 if (!table)
6921 panic("Failed to allocate %s hash table\n", tablename);
6922
1170532b
JP
6923 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6924 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6925
6926 if (_hash_shift)
6927 *_hash_shift = log2qty;
6928 if (_hash_mask)
6929 *_hash_mask = (1 << log2qty) - 1;
6930
6931 return table;
6932}
a117e66e 6933
a5d76b54 6934/*
80934513
MK
6935 * This function checks whether pageblock includes unmovable pages or not.
6936 * If @count is not zero, it is okay to include less @count unmovable pages
6937 *
b8af2941 6938 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6939 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6940 * expect this function should be exact.
a5d76b54 6941 */
b023f468
WC
6942bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6943 bool skip_hwpoisoned_pages)
49ac8255
KH
6944{
6945 unsigned long pfn, iter, found;
47118af0
MN
6946 int mt;
6947
49ac8255
KH
6948 /*
6949 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6950 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6951 */
6952 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6953 return false;
47118af0
MN
6954 mt = get_pageblock_migratetype(page);
6955 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6956 return false;
49ac8255
KH
6957
6958 pfn = page_to_pfn(page);
6959 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6960 unsigned long check = pfn + iter;
6961
29723fcc 6962 if (!pfn_valid_within(check))
49ac8255 6963 continue;
29723fcc 6964
49ac8255 6965 page = pfn_to_page(check);
c8721bbb
NH
6966
6967 /*
6968 * Hugepages are not in LRU lists, but they're movable.
6969 * We need not scan over tail pages bacause we don't
6970 * handle each tail page individually in migration.
6971 */
6972 if (PageHuge(page)) {
6973 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6974 continue;
6975 }
6976
97d255c8
MK
6977 /*
6978 * We can't use page_count without pin a page
6979 * because another CPU can free compound page.
6980 * This check already skips compound tails of THP
0139aa7b 6981 * because their page->_refcount is zero at all time.
97d255c8 6982 */
fe896d18 6983 if (!page_ref_count(page)) {
49ac8255
KH
6984 if (PageBuddy(page))
6985 iter += (1 << page_order(page)) - 1;
6986 continue;
6987 }
97d255c8 6988
b023f468
WC
6989 /*
6990 * The HWPoisoned page may be not in buddy system, and
6991 * page_count() is not 0.
6992 */
6993 if (skip_hwpoisoned_pages && PageHWPoison(page))
6994 continue;
6995
49ac8255
KH
6996 if (!PageLRU(page))
6997 found++;
6998 /*
6b4f7799
JW
6999 * If there are RECLAIMABLE pages, we need to check
7000 * it. But now, memory offline itself doesn't call
7001 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7002 */
7003 /*
7004 * If the page is not RAM, page_count()should be 0.
7005 * we don't need more check. This is an _used_ not-movable page.
7006 *
7007 * The problematic thing here is PG_reserved pages. PG_reserved
7008 * is set to both of a memory hole page and a _used_ kernel
7009 * page at boot.
7010 */
7011 if (found > count)
80934513 7012 return true;
49ac8255 7013 }
80934513 7014 return false;
49ac8255
KH
7015}
7016
7017bool is_pageblock_removable_nolock(struct page *page)
7018{
656a0706
MH
7019 struct zone *zone;
7020 unsigned long pfn;
687875fb
MH
7021
7022 /*
7023 * We have to be careful here because we are iterating over memory
7024 * sections which are not zone aware so we might end up outside of
7025 * the zone but still within the section.
656a0706
MH
7026 * We have to take care about the node as well. If the node is offline
7027 * its NODE_DATA will be NULL - see page_zone.
687875fb 7028 */
656a0706
MH
7029 if (!node_online(page_to_nid(page)))
7030 return false;
7031
7032 zone = page_zone(page);
7033 pfn = page_to_pfn(page);
108bcc96 7034 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7035 return false;
7036
b023f468 7037 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7038}
0c0e6195 7039
080fe206 7040#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7041
7042static unsigned long pfn_max_align_down(unsigned long pfn)
7043{
7044 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7045 pageblock_nr_pages) - 1);
7046}
7047
7048static unsigned long pfn_max_align_up(unsigned long pfn)
7049{
7050 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7051 pageblock_nr_pages));
7052}
7053
041d3a8c 7054/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7055static int __alloc_contig_migrate_range(struct compact_control *cc,
7056 unsigned long start, unsigned long end)
041d3a8c
MN
7057{
7058 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7059 unsigned long nr_reclaimed;
041d3a8c
MN
7060 unsigned long pfn = start;
7061 unsigned int tries = 0;
7062 int ret = 0;
7063
be49a6e1 7064 migrate_prep();
041d3a8c 7065
bb13ffeb 7066 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7067 if (fatal_signal_pending(current)) {
7068 ret = -EINTR;
7069 break;
7070 }
7071
bb13ffeb
MG
7072 if (list_empty(&cc->migratepages)) {
7073 cc->nr_migratepages = 0;
edc2ca61 7074 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7075 if (!pfn) {
7076 ret = -EINTR;
7077 break;
7078 }
7079 tries = 0;
7080 } else if (++tries == 5) {
7081 ret = ret < 0 ? ret : -EBUSY;
7082 break;
7083 }
7084
beb51eaa
MK
7085 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7086 &cc->migratepages);
7087 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7088
9c620e2b 7089 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7090 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7091 }
2a6f5124
SP
7092 if (ret < 0) {
7093 putback_movable_pages(&cc->migratepages);
7094 return ret;
7095 }
7096 return 0;
041d3a8c
MN
7097}
7098
7099/**
7100 * alloc_contig_range() -- tries to allocate given range of pages
7101 * @start: start PFN to allocate
7102 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7103 * @migratetype: migratetype of the underlaying pageblocks (either
7104 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7105 * in range must have the same migratetype and it must
7106 * be either of the two.
041d3a8c
MN
7107 *
7108 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7109 * aligned, however it's the caller's responsibility to guarantee that
7110 * we are the only thread that changes migrate type of pageblocks the
7111 * pages fall in.
7112 *
7113 * The PFN range must belong to a single zone.
7114 *
7115 * Returns zero on success or negative error code. On success all
7116 * pages which PFN is in [start, end) are allocated for the caller and
7117 * need to be freed with free_contig_range().
7118 */
0815f3d8
MN
7119int alloc_contig_range(unsigned long start, unsigned long end,
7120 unsigned migratetype)
041d3a8c 7121{
041d3a8c 7122 unsigned long outer_start, outer_end;
d00181b9
KS
7123 unsigned int order;
7124 int ret = 0;
041d3a8c 7125
bb13ffeb
MG
7126 struct compact_control cc = {
7127 .nr_migratepages = 0,
7128 .order = -1,
7129 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7130 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7131 .ignore_skip_hint = true,
7132 };
7133 INIT_LIST_HEAD(&cc.migratepages);
7134
041d3a8c
MN
7135 /*
7136 * What we do here is we mark all pageblocks in range as
7137 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7138 * have different sizes, and due to the way page allocator
7139 * work, we align the range to biggest of the two pages so
7140 * that page allocator won't try to merge buddies from
7141 * different pageblocks and change MIGRATE_ISOLATE to some
7142 * other migration type.
7143 *
7144 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7145 * migrate the pages from an unaligned range (ie. pages that
7146 * we are interested in). This will put all the pages in
7147 * range back to page allocator as MIGRATE_ISOLATE.
7148 *
7149 * When this is done, we take the pages in range from page
7150 * allocator removing them from the buddy system. This way
7151 * page allocator will never consider using them.
7152 *
7153 * This lets us mark the pageblocks back as
7154 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7155 * aligned range but not in the unaligned, original range are
7156 * put back to page allocator so that buddy can use them.
7157 */
7158
7159 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7160 pfn_max_align_up(end), migratetype,
7161 false);
041d3a8c 7162 if (ret)
86a595f9 7163 return ret;
041d3a8c 7164
8ef5849f
JK
7165 /*
7166 * In case of -EBUSY, we'd like to know which page causes problem.
7167 * So, just fall through. We will check it in test_pages_isolated().
7168 */
bb13ffeb 7169 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7170 if (ret && ret != -EBUSY)
041d3a8c
MN
7171 goto done;
7172
7173 /*
7174 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7175 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7176 * more, all pages in [start, end) are free in page allocator.
7177 * What we are going to do is to allocate all pages from
7178 * [start, end) (that is remove them from page allocator).
7179 *
7180 * The only problem is that pages at the beginning and at the
7181 * end of interesting range may be not aligned with pages that
7182 * page allocator holds, ie. they can be part of higher order
7183 * pages. Because of this, we reserve the bigger range and
7184 * once this is done free the pages we are not interested in.
7185 *
7186 * We don't have to hold zone->lock here because the pages are
7187 * isolated thus they won't get removed from buddy.
7188 */
7189
7190 lru_add_drain_all();
510f5507 7191 drain_all_pages(cc.zone);
041d3a8c
MN
7192
7193 order = 0;
7194 outer_start = start;
7195 while (!PageBuddy(pfn_to_page(outer_start))) {
7196 if (++order >= MAX_ORDER) {
8ef5849f
JK
7197 outer_start = start;
7198 break;
041d3a8c
MN
7199 }
7200 outer_start &= ~0UL << order;
7201 }
7202
8ef5849f
JK
7203 if (outer_start != start) {
7204 order = page_order(pfn_to_page(outer_start));
7205
7206 /*
7207 * outer_start page could be small order buddy page and
7208 * it doesn't include start page. Adjust outer_start
7209 * in this case to report failed page properly
7210 * on tracepoint in test_pages_isolated()
7211 */
7212 if (outer_start + (1UL << order) <= start)
7213 outer_start = start;
7214 }
7215
041d3a8c 7216 /* Make sure the range is really isolated. */
b023f468 7217 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7218 pr_info("%s: [%lx, %lx) PFNs busy\n",
7219 __func__, outer_start, end);
041d3a8c
MN
7220 ret = -EBUSY;
7221 goto done;
7222 }
7223
49f223a9 7224 /* Grab isolated pages from freelists. */
bb13ffeb 7225 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7226 if (!outer_end) {
7227 ret = -EBUSY;
7228 goto done;
7229 }
7230
7231 /* Free head and tail (if any) */
7232 if (start != outer_start)
7233 free_contig_range(outer_start, start - outer_start);
7234 if (end != outer_end)
7235 free_contig_range(end, outer_end - end);
7236
7237done:
7238 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7239 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7240 return ret;
7241}
7242
7243void free_contig_range(unsigned long pfn, unsigned nr_pages)
7244{
bcc2b02f
MS
7245 unsigned int count = 0;
7246
7247 for (; nr_pages--; pfn++) {
7248 struct page *page = pfn_to_page(pfn);
7249
7250 count += page_count(page) != 1;
7251 __free_page(page);
7252 }
7253 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7254}
7255#endif
7256
4ed7e022 7257#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7258/*
7259 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7260 * page high values need to be recalulated.
7261 */
4ed7e022
JL
7262void __meminit zone_pcp_update(struct zone *zone)
7263{
0a647f38 7264 unsigned cpu;
c8e251fa 7265 mutex_lock(&pcp_batch_high_lock);
0a647f38 7266 for_each_possible_cpu(cpu)
169f6c19
CS
7267 pageset_set_high_and_batch(zone,
7268 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7269 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7270}
7271#endif
7272
340175b7
JL
7273void zone_pcp_reset(struct zone *zone)
7274{
7275 unsigned long flags;
5a883813
MK
7276 int cpu;
7277 struct per_cpu_pageset *pset;
340175b7
JL
7278
7279 /* avoid races with drain_pages() */
7280 local_irq_save(flags);
7281 if (zone->pageset != &boot_pageset) {
5a883813
MK
7282 for_each_online_cpu(cpu) {
7283 pset = per_cpu_ptr(zone->pageset, cpu);
7284 drain_zonestat(zone, pset);
7285 }
340175b7
JL
7286 free_percpu(zone->pageset);
7287 zone->pageset = &boot_pageset;
7288 }
7289 local_irq_restore(flags);
7290}
7291
6dcd73d7 7292#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7293/*
b9eb6319
JK
7294 * All pages in the range must be in a single zone and isolated
7295 * before calling this.
0c0e6195
KH
7296 */
7297void
7298__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7299{
7300 struct page *page;
7301 struct zone *zone;
7aeb09f9 7302 unsigned int order, i;
0c0e6195
KH
7303 unsigned long pfn;
7304 unsigned long flags;
7305 /* find the first valid pfn */
7306 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7307 if (pfn_valid(pfn))
7308 break;
7309 if (pfn == end_pfn)
7310 return;
7311 zone = page_zone(pfn_to_page(pfn));
7312 spin_lock_irqsave(&zone->lock, flags);
7313 pfn = start_pfn;
7314 while (pfn < end_pfn) {
7315 if (!pfn_valid(pfn)) {
7316 pfn++;
7317 continue;
7318 }
7319 page = pfn_to_page(pfn);
b023f468
WC
7320 /*
7321 * The HWPoisoned page may be not in buddy system, and
7322 * page_count() is not 0.
7323 */
7324 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7325 pfn++;
7326 SetPageReserved(page);
7327 continue;
7328 }
7329
0c0e6195
KH
7330 BUG_ON(page_count(page));
7331 BUG_ON(!PageBuddy(page));
7332 order = page_order(page);
7333#ifdef CONFIG_DEBUG_VM
1170532b
JP
7334 pr_info("remove from free list %lx %d %lx\n",
7335 pfn, 1 << order, end_pfn);
0c0e6195
KH
7336#endif
7337 list_del(&page->lru);
7338 rmv_page_order(page);
7339 zone->free_area[order].nr_free--;
0c0e6195
KH
7340 for (i = 0; i < (1 << order); i++)
7341 SetPageReserved((page+i));
7342 pfn += (1 << order);
7343 }
7344 spin_unlock_irqrestore(&zone->lock, flags);
7345}
7346#endif
8d22ba1b 7347
8d22ba1b
WF
7348bool is_free_buddy_page(struct page *page)
7349{
7350 struct zone *zone = page_zone(page);
7351 unsigned long pfn = page_to_pfn(page);
7352 unsigned long flags;
7aeb09f9 7353 unsigned int order;
8d22ba1b
WF
7354
7355 spin_lock_irqsave(&zone->lock, flags);
7356 for (order = 0; order < MAX_ORDER; order++) {
7357 struct page *page_head = page - (pfn & ((1 << order) - 1));
7358
7359 if (PageBuddy(page_head) && page_order(page_head) >= order)
7360 break;
7361 }
7362 spin_unlock_irqrestore(&zone->lock, flags);
7363
7364 return order < MAX_ORDER;
7365}