]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm/page_alloc.c: introduce kernelcore=mirror option
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
f1e61557
KS
226compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229#ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231#endif
9a982250
KS
232#ifdef CONFIG_TRANSPARENT_HUGEPAGE
233 free_transhuge_page,
234#endif
f1e61557
KS
235};
236
1da177e4 237int min_free_kbytes = 1024;
42aa83cb 238int user_min_free_kbytes = -1;
1da177e4 239
2c85f51d
JB
240static unsigned long __meminitdata nr_kernel_pages;
241static unsigned long __meminitdata nr_all_pages;
a3142c8e 242static unsigned long __meminitdata dma_reserve;
1da177e4 243
0ee332c1
TH
244#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
245static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
246static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
247static unsigned long __initdata required_kernelcore;
248static unsigned long __initdata required_movablecore;
249static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 250static bool mirrored_kernelcore;
0ee332c1
TH
251
252/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
253int movable_zone;
254EXPORT_SYMBOL(movable_zone);
255#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 256
418508c1
MS
257#if MAX_NUMNODES > 1
258int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 259int nr_online_nodes __read_mostly = 1;
418508c1 260EXPORT_SYMBOL(nr_node_ids);
62bc62a8 261EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
262#endif
263
9ef9acb0
MG
264int page_group_by_mobility_disabled __read_mostly;
265
3a80a7fa
MG
266#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
267static inline void reset_deferred_meminit(pg_data_t *pgdat)
268{
269 pgdat->first_deferred_pfn = ULONG_MAX;
270}
271
272/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 273static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 274{
ae026b2a 275 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
276 return true;
277
278 return false;
279}
280
7e18adb4
MG
281static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
282{
283 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
284 return true;
285
286 return false;
287}
288
3a80a7fa
MG
289/*
290 * Returns false when the remaining initialisation should be deferred until
291 * later in the boot cycle when it can be parallelised.
292 */
293static inline bool update_defer_init(pg_data_t *pgdat,
294 unsigned long pfn, unsigned long zone_end,
295 unsigned long *nr_initialised)
296{
297 /* Always populate low zones for address-contrained allocations */
298 if (zone_end < pgdat_end_pfn(pgdat))
299 return true;
300
301 /* Initialise at least 2G of the highest zone */
302 (*nr_initialised)++;
303 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
304 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
305 pgdat->first_deferred_pfn = pfn;
306 return false;
307 }
308
309 return true;
310}
311#else
312static inline void reset_deferred_meminit(pg_data_t *pgdat)
313{
314}
315
316static inline bool early_page_uninitialised(unsigned long pfn)
317{
318 return false;
319}
320
7e18adb4
MG
321static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
322{
323 return false;
324}
325
3a80a7fa
MG
326static inline bool update_defer_init(pg_data_t *pgdat,
327 unsigned long pfn, unsigned long zone_end,
328 unsigned long *nr_initialised)
329{
330 return true;
331}
332#endif
333
334
ee6f509c 335void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 336{
5d0f3f72
KM
337 if (unlikely(page_group_by_mobility_disabled &&
338 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
339 migratetype = MIGRATE_UNMOVABLE;
340
b2a0ac88
MG
341 set_pageblock_flags_group(page, (unsigned long)migratetype,
342 PB_migrate, PB_migrate_end);
343}
344
13e7444b 345#ifdef CONFIG_DEBUG_VM
c6a57e19 346static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 347{
bdc8cb98
DH
348 int ret = 0;
349 unsigned seq;
350 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 351 unsigned long sp, start_pfn;
c6a57e19 352
bdc8cb98
DH
353 do {
354 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
355 start_pfn = zone->zone_start_pfn;
356 sp = zone->spanned_pages;
108bcc96 357 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
358 ret = 1;
359 } while (zone_span_seqretry(zone, seq));
360
b5e6a5a2 361 if (ret)
613813e8
DH
362 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
363 pfn, zone_to_nid(zone), zone->name,
364 start_pfn, start_pfn + sp);
b5e6a5a2 365
bdc8cb98 366 return ret;
c6a57e19
DH
367}
368
369static int page_is_consistent(struct zone *zone, struct page *page)
370{
14e07298 371 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 372 return 0;
1da177e4 373 if (zone != page_zone(page))
c6a57e19
DH
374 return 0;
375
376 return 1;
377}
378/*
379 * Temporary debugging check for pages not lying within a given zone.
380 */
381static int bad_range(struct zone *zone, struct page *page)
382{
383 if (page_outside_zone_boundaries(zone, page))
1da177e4 384 return 1;
c6a57e19
DH
385 if (!page_is_consistent(zone, page))
386 return 1;
387
1da177e4
LT
388 return 0;
389}
13e7444b
NP
390#else
391static inline int bad_range(struct zone *zone, struct page *page)
392{
393 return 0;
394}
395#endif
396
d230dec1
KS
397static void bad_page(struct page *page, const char *reason,
398 unsigned long bad_flags)
1da177e4 399{
d936cf9b
HD
400 static unsigned long resume;
401 static unsigned long nr_shown;
402 static unsigned long nr_unshown;
403
2a7684a2
WF
404 /* Don't complain about poisoned pages */
405 if (PageHWPoison(page)) {
22b751c3 406 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
407 return;
408 }
409
d936cf9b
HD
410 /*
411 * Allow a burst of 60 reports, then keep quiet for that minute;
412 * or allow a steady drip of one report per second.
413 */
414 if (nr_shown == 60) {
415 if (time_before(jiffies, resume)) {
416 nr_unshown++;
417 goto out;
418 }
419 if (nr_unshown) {
1e9e6365
HD
420 printk(KERN_ALERT
421 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
422 nr_unshown);
423 nr_unshown = 0;
424 }
425 nr_shown = 0;
426 }
427 if (nr_shown++ == 0)
428 resume = jiffies + 60 * HZ;
429
1e9e6365 430 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 431 current->comm, page_to_pfn(page));
f0b791a3 432 dump_page_badflags(page, reason, bad_flags);
3dc14741 433
4f31888c 434 print_modules();
1da177e4 435 dump_stack();
d936cf9b 436out:
8cc3b392 437 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 438 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 439 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
440}
441
1da177e4
LT
442/*
443 * Higher-order pages are called "compound pages". They are structured thusly:
444 *
1d798ca3 445 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 446 *
1d798ca3
KS
447 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
448 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 449 *
1d798ca3
KS
450 * The first tail page's ->compound_dtor holds the offset in array of compound
451 * page destructors. See compound_page_dtors.
1da177e4 452 *
1d798ca3 453 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 454 * This usage means that zero-order pages may not be compound.
1da177e4 455 */
d98c7a09 456
9a982250 457void free_compound_page(struct page *page)
d98c7a09 458{
d85f3385 459 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
460}
461
d00181b9 462void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
463{
464 int i;
465 int nr_pages = 1 << order;
466
f1e61557 467 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
468 set_compound_order(page, order);
469 __SetPageHead(page);
470 for (i = 1; i < nr_pages; i++) {
471 struct page *p = page + i;
58a84aa9 472 set_page_count(p, 0);
1c290f64 473 p->mapping = TAIL_MAPPING;
1d798ca3 474 set_compound_head(p, page);
18229df5 475 }
53f9263b 476 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
477}
478
c0a32fc5
SG
479#ifdef CONFIG_DEBUG_PAGEALLOC
480unsigned int _debug_guardpage_minorder;
031bc574 481bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
482bool _debug_guardpage_enabled __read_mostly;
483
031bc574
JK
484static int __init early_debug_pagealloc(char *buf)
485{
486 if (!buf)
487 return -EINVAL;
488
489 if (strcmp(buf, "on") == 0)
490 _debug_pagealloc_enabled = true;
491
492 return 0;
493}
494early_param("debug_pagealloc", early_debug_pagealloc);
495
e30825f1
JK
496static bool need_debug_guardpage(void)
497{
031bc574
JK
498 /* If we don't use debug_pagealloc, we don't need guard page */
499 if (!debug_pagealloc_enabled())
500 return false;
501
e30825f1
JK
502 return true;
503}
504
505static void init_debug_guardpage(void)
506{
031bc574
JK
507 if (!debug_pagealloc_enabled())
508 return;
509
e30825f1
JK
510 _debug_guardpage_enabled = true;
511}
512
513struct page_ext_operations debug_guardpage_ops = {
514 .need = need_debug_guardpage,
515 .init = init_debug_guardpage,
516};
c0a32fc5
SG
517
518static int __init debug_guardpage_minorder_setup(char *buf)
519{
520 unsigned long res;
521
522 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
523 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
524 return 0;
525 }
526 _debug_guardpage_minorder = res;
527 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
528 return 0;
529}
530__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
531
2847cf95
JK
532static inline void set_page_guard(struct zone *zone, struct page *page,
533 unsigned int order, int migratetype)
c0a32fc5 534{
e30825f1
JK
535 struct page_ext *page_ext;
536
537 if (!debug_guardpage_enabled())
538 return;
539
540 page_ext = lookup_page_ext(page);
541 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
542
2847cf95
JK
543 INIT_LIST_HEAD(&page->lru);
544 set_page_private(page, order);
545 /* Guard pages are not available for any usage */
546 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
547}
548
2847cf95
JK
549static inline void clear_page_guard(struct zone *zone, struct page *page,
550 unsigned int order, int migratetype)
c0a32fc5 551{
e30825f1
JK
552 struct page_ext *page_ext;
553
554 if (!debug_guardpage_enabled())
555 return;
556
557 page_ext = lookup_page_ext(page);
558 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
559
2847cf95
JK
560 set_page_private(page, 0);
561 if (!is_migrate_isolate(migratetype))
562 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
563}
564#else
e30825f1 565struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
566static inline void set_page_guard(struct zone *zone, struct page *page,
567 unsigned int order, int migratetype) {}
568static inline void clear_page_guard(struct zone *zone, struct page *page,
569 unsigned int order, int migratetype) {}
c0a32fc5
SG
570#endif
571
7aeb09f9 572static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 573{
4c21e2f2 574 set_page_private(page, order);
676165a8 575 __SetPageBuddy(page);
1da177e4
LT
576}
577
578static inline void rmv_page_order(struct page *page)
579{
676165a8 580 __ClearPageBuddy(page);
4c21e2f2 581 set_page_private(page, 0);
1da177e4
LT
582}
583
1da177e4
LT
584/*
585 * This function checks whether a page is free && is the buddy
586 * we can do coalesce a page and its buddy if
13e7444b 587 * (a) the buddy is not in a hole &&
676165a8 588 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
589 * (c) a page and its buddy have the same order &&
590 * (d) a page and its buddy are in the same zone.
676165a8 591 *
cf6fe945
WSH
592 * For recording whether a page is in the buddy system, we set ->_mapcount
593 * PAGE_BUDDY_MAPCOUNT_VALUE.
594 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
595 * serialized by zone->lock.
1da177e4 596 *
676165a8 597 * For recording page's order, we use page_private(page).
1da177e4 598 */
cb2b95e1 599static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 600 unsigned int order)
1da177e4 601{
14e07298 602 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 603 return 0;
13e7444b 604
c0a32fc5 605 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
606 if (page_zone_id(page) != page_zone_id(buddy))
607 return 0;
608
4c5018ce
WY
609 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
610
c0a32fc5
SG
611 return 1;
612 }
613
cb2b95e1 614 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
615 /*
616 * zone check is done late to avoid uselessly
617 * calculating zone/node ids for pages that could
618 * never merge.
619 */
620 if (page_zone_id(page) != page_zone_id(buddy))
621 return 0;
622
4c5018ce
WY
623 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
624
6aa3001b 625 return 1;
676165a8 626 }
6aa3001b 627 return 0;
1da177e4
LT
628}
629
630/*
631 * Freeing function for a buddy system allocator.
632 *
633 * The concept of a buddy system is to maintain direct-mapped table
634 * (containing bit values) for memory blocks of various "orders".
635 * The bottom level table contains the map for the smallest allocatable
636 * units of memory (here, pages), and each level above it describes
637 * pairs of units from the levels below, hence, "buddies".
638 * At a high level, all that happens here is marking the table entry
639 * at the bottom level available, and propagating the changes upward
640 * as necessary, plus some accounting needed to play nicely with other
641 * parts of the VM system.
642 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
643 * free pages of length of (1 << order) and marked with _mapcount
644 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
645 * field.
1da177e4 646 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
647 * other. That is, if we allocate a small block, and both were
648 * free, the remainder of the region must be split into blocks.
1da177e4 649 * If a block is freed, and its buddy is also free, then this
5f63b720 650 * triggers coalescing into a block of larger size.
1da177e4 651 *
6d49e352 652 * -- nyc
1da177e4
LT
653 */
654
48db57f8 655static inline void __free_one_page(struct page *page,
dc4b0caf 656 unsigned long pfn,
ed0ae21d
MG
657 struct zone *zone, unsigned int order,
658 int migratetype)
1da177e4
LT
659{
660 unsigned long page_idx;
6dda9d55 661 unsigned long combined_idx;
43506fad 662 unsigned long uninitialized_var(buddy_idx);
6dda9d55 663 struct page *buddy;
d00181b9 664 unsigned int max_order = MAX_ORDER;
1da177e4 665
d29bb978 666 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 667 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 668
ed0ae21d 669 VM_BUG_ON(migratetype == -1);
3c605096
JK
670 if (is_migrate_isolate(migratetype)) {
671 /*
672 * We restrict max order of merging to prevent merge
673 * between freepages on isolate pageblock and normal
674 * pageblock. Without this, pageblock isolation
675 * could cause incorrect freepage accounting.
676 */
d00181b9 677 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 678 } else {
8f82b55d 679 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 680 }
ed0ae21d 681
3c605096 682 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 683
309381fe
SL
684 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
685 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 686
3c605096 687 while (order < max_order - 1) {
43506fad
KC
688 buddy_idx = __find_buddy_index(page_idx, order);
689 buddy = page + (buddy_idx - page_idx);
cb2b95e1 690 if (!page_is_buddy(page, buddy, order))
3c82d0ce 691 break;
c0a32fc5
SG
692 /*
693 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
694 * merge with it and move up one order.
695 */
696 if (page_is_guard(buddy)) {
2847cf95 697 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
698 } else {
699 list_del(&buddy->lru);
700 zone->free_area[order].nr_free--;
701 rmv_page_order(buddy);
702 }
43506fad 703 combined_idx = buddy_idx & page_idx;
1da177e4
LT
704 page = page + (combined_idx - page_idx);
705 page_idx = combined_idx;
706 order++;
707 }
708 set_page_order(page, order);
6dda9d55
CZ
709
710 /*
711 * If this is not the largest possible page, check if the buddy
712 * of the next-highest order is free. If it is, it's possible
713 * that pages are being freed that will coalesce soon. In case,
714 * that is happening, add the free page to the tail of the list
715 * so it's less likely to be used soon and more likely to be merged
716 * as a higher order page
717 */
b7f50cfa 718 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 719 struct page *higher_page, *higher_buddy;
43506fad
KC
720 combined_idx = buddy_idx & page_idx;
721 higher_page = page + (combined_idx - page_idx);
722 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 723 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
724 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
725 list_add_tail(&page->lru,
726 &zone->free_area[order].free_list[migratetype]);
727 goto out;
728 }
729 }
730
731 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
732out:
1da177e4
LT
733 zone->free_area[order].nr_free++;
734}
735
224abf92 736static inline int free_pages_check(struct page *page)
1da177e4 737{
d230dec1 738 const char *bad_reason = NULL;
f0b791a3
DH
739 unsigned long bad_flags = 0;
740
53f9263b 741 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
742 bad_reason = "nonzero mapcount";
743 if (unlikely(page->mapping != NULL))
744 bad_reason = "non-NULL mapping";
745 if (unlikely(atomic_read(&page->_count) != 0))
746 bad_reason = "nonzero _count";
747 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
748 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
749 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
750 }
9edad6ea
JW
751#ifdef CONFIG_MEMCG
752 if (unlikely(page->mem_cgroup))
753 bad_reason = "page still charged to cgroup";
754#endif
f0b791a3
DH
755 if (unlikely(bad_reason)) {
756 bad_page(page, bad_reason, bad_flags);
79f4b7bf 757 return 1;
8cc3b392 758 }
90572890 759 page_cpupid_reset_last(page);
79f4b7bf
HD
760 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
761 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
762 return 0;
1da177e4
LT
763}
764
765/*
5f8dcc21 766 * Frees a number of pages from the PCP lists
1da177e4 767 * Assumes all pages on list are in same zone, and of same order.
207f36ee 768 * count is the number of pages to free.
1da177e4
LT
769 *
770 * If the zone was previously in an "all pages pinned" state then look to
771 * see if this freeing clears that state.
772 *
773 * And clear the zone's pages_scanned counter, to hold off the "all pages are
774 * pinned" detection logic.
775 */
5f8dcc21
MG
776static void free_pcppages_bulk(struct zone *zone, int count,
777 struct per_cpu_pages *pcp)
1da177e4 778{
5f8dcc21 779 int migratetype = 0;
a6f9edd6 780 int batch_free = 0;
72853e29 781 int to_free = count;
0d5d823a 782 unsigned long nr_scanned;
5f8dcc21 783
c54ad30c 784 spin_lock(&zone->lock);
0d5d823a
MG
785 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
786 if (nr_scanned)
787 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 788
72853e29 789 while (to_free) {
48db57f8 790 struct page *page;
5f8dcc21
MG
791 struct list_head *list;
792
793 /*
a6f9edd6
MG
794 * Remove pages from lists in a round-robin fashion. A
795 * batch_free count is maintained that is incremented when an
796 * empty list is encountered. This is so more pages are freed
797 * off fuller lists instead of spinning excessively around empty
798 * lists
5f8dcc21
MG
799 */
800 do {
a6f9edd6 801 batch_free++;
5f8dcc21
MG
802 if (++migratetype == MIGRATE_PCPTYPES)
803 migratetype = 0;
804 list = &pcp->lists[migratetype];
805 } while (list_empty(list));
48db57f8 806
1d16871d
NK
807 /* This is the only non-empty list. Free them all. */
808 if (batch_free == MIGRATE_PCPTYPES)
809 batch_free = to_free;
810
a6f9edd6 811 do {
770c8aaa
BZ
812 int mt; /* migratetype of the to-be-freed page */
813
a16601c5 814 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
815 /* must delete as __free_one_page list manipulates */
816 list_del(&page->lru);
aa016d14 817
bb14c2c7 818 mt = get_pcppage_migratetype(page);
aa016d14
VB
819 /* MIGRATE_ISOLATE page should not go to pcplists */
820 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
821 /* Pageblock could have been isolated meanwhile */
8f82b55d 822 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 823 mt = get_pageblock_migratetype(page);
51bb1a40 824
dc4b0caf 825 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 826 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 827 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 828 }
c54ad30c 829 spin_unlock(&zone->lock);
1da177e4
LT
830}
831
dc4b0caf
MG
832static void free_one_page(struct zone *zone,
833 struct page *page, unsigned long pfn,
7aeb09f9 834 unsigned int order,
ed0ae21d 835 int migratetype)
1da177e4 836{
0d5d823a 837 unsigned long nr_scanned;
006d22d9 838 spin_lock(&zone->lock);
0d5d823a
MG
839 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
840 if (nr_scanned)
841 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 842
ad53f92e
JK
843 if (unlikely(has_isolate_pageblock(zone) ||
844 is_migrate_isolate(migratetype))) {
845 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 846 }
dc4b0caf 847 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 848 spin_unlock(&zone->lock);
48db57f8
NP
849}
850
81422f29
KS
851static int free_tail_pages_check(struct page *head_page, struct page *page)
852{
1d798ca3
KS
853 int ret = 1;
854
855 /*
856 * We rely page->lru.next never has bit 0 set, unless the page
857 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
858 */
859 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
860
861 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
862 ret = 0;
863 goto out;
864 }
9a982250
KS
865 switch (page - head_page) {
866 case 1:
867 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
868 if (unlikely(compound_mapcount(page))) {
869 bad_page(page, "nonzero compound_mapcount", 0);
870 goto out;
871 }
9a982250
KS
872 break;
873 case 2:
874 /*
875 * the second tail page: ->mapping is
876 * page_deferred_list().next -- ignore value.
877 */
878 break;
879 default:
880 if (page->mapping != TAIL_MAPPING) {
881 bad_page(page, "corrupted mapping in tail page", 0);
882 goto out;
883 }
884 break;
1c290f64 885 }
81422f29
KS
886 if (unlikely(!PageTail(page))) {
887 bad_page(page, "PageTail not set", 0);
1d798ca3 888 goto out;
81422f29 889 }
1d798ca3
KS
890 if (unlikely(compound_head(page) != head_page)) {
891 bad_page(page, "compound_head not consistent", 0);
892 goto out;
81422f29 893 }
1d798ca3
KS
894 ret = 0;
895out:
1c290f64 896 page->mapping = NULL;
1d798ca3
KS
897 clear_compound_head(page);
898 return ret;
81422f29
KS
899}
900
1e8ce83c
RH
901static void __meminit __init_single_page(struct page *page, unsigned long pfn,
902 unsigned long zone, int nid)
903{
1e8ce83c 904 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
905 init_page_count(page);
906 page_mapcount_reset(page);
907 page_cpupid_reset_last(page);
1e8ce83c 908
1e8ce83c
RH
909 INIT_LIST_HEAD(&page->lru);
910#ifdef WANT_PAGE_VIRTUAL
911 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
912 if (!is_highmem_idx(zone))
913 set_page_address(page, __va(pfn << PAGE_SHIFT));
914#endif
915}
916
917static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
918 int nid)
919{
920 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
921}
922
7e18adb4
MG
923#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
924static void init_reserved_page(unsigned long pfn)
925{
926 pg_data_t *pgdat;
927 int nid, zid;
928
929 if (!early_page_uninitialised(pfn))
930 return;
931
932 nid = early_pfn_to_nid(pfn);
933 pgdat = NODE_DATA(nid);
934
935 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
936 struct zone *zone = &pgdat->node_zones[zid];
937
938 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
939 break;
940 }
941 __init_single_pfn(pfn, zid, nid);
942}
943#else
944static inline void init_reserved_page(unsigned long pfn)
945{
946}
947#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
948
92923ca3
NZ
949/*
950 * Initialised pages do not have PageReserved set. This function is
951 * called for each range allocated by the bootmem allocator and
952 * marks the pages PageReserved. The remaining valid pages are later
953 * sent to the buddy page allocator.
954 */
7e18adb4 955void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
956{
957 unsigned long start_pfn = PFN_DOWN(start);
958 unsigned long end_pfn = PFN_UP(end);
959
7e18adb4
MG
960 for (; start_pfn < end_pfn; start_pfn++) {
961 if (pfn_valid(start_pfn)) {
962 struct page *page = pfn_to_page(start_pfn);
963
964 init_reserved_page(start_pfn);
1d798ca3
KS
965
966 /* Avoid false-positive PageTail() */
967 INIT_LIST_HEAD(&page->lru);
968
7e18adb4
MG
969 SetPageReserved(page);
970 }
971 }
92923ca3
NZ
972}
973
ec95f53a 974static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 975{
81422f29
KS
976 bool compound = PageCompound(page);
977 int i, bad = 0;
1da177e4 978
ab1f306f 979 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 980 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 981
b413d48a 982 trace_mm_page_free(page, order);
b1eeab67 983 kmemcheck_free_shadow(page, order);
b8c73fc2 984 kasan_free_pages(page, order);
b1eeab67 985
8dd60a3a
AA
986 if (PageAnon(page))
987 page->mapping = NULL;
81422f29
KS
988 bad += free_pages_check(page);
989 for (i = 1; i < (1 << order); i++) {
990 if (compound)
991 bad += free_tail_pages_check(page, page + i);
8dd60a3a 992 bad += free_pages_check(page + i);
81422f29 993 }
8cc3b392 994 if (bad)
ec95f53a 995 return false;
689bcebf 996
48c96a36
JK
997 reset_page_owner(page, order);
998
3ac7fe5a 999 if (!PageHighMem(page)) {
b8af2941
PK
1000 debug_check_no_locks_freed(page_address(page),
1001 PAGE_SIZE << order);
3ac7fe5a
TG
1002 debug_check_no_obj_freed(page_address(page),
1003 PAGE_SIZE << order);
1004 }
dafb1367 1005 arch_free_page(page, order);
48db57f8 1006 kernel_map_pages(page, 1 << order, 0);
dafb1367 1007
ec95f53a
KM
1008 return true;
1009}
1010
1011static void __free_pages_ok(struct page *page, unsigned int order)
1012{
1013 unsigned long flags;
95e34412 1014 int migratetype;
dc4b0caf 1015 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1016
1017 if (!free_pages_prepare(page, order))
1018 return;
1019
cfc47a28 1020 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1021 local_irq_save(flags);
f8891e5e 1022 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1023 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1024 local_irq_restore(flags);
1da177e4
LT
1025}
1026
0e1cc95b 1027static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1028 unsigned long pfn, unsigned int order)
a226f6c8 1029{
c3993076 1030 unsigned int nr_pages = 1 << order;
e2d0bd2b 1031 struct page *p = page;
c3993076 1032 unsigned int loop;
a226f6c8 1033
e2d0bd2b
YL
1034 prefetchw(p);
1035 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1036 prefetchw(p + 1);
c3993076
JW
1037 __ClearPageReserved(p);
1038 set_page_count(p, 0);
a226f6c8 1039 }
e2d0bd2b
YL
1040 __ClearPageReserved(p);
1041 set_page_count(p, 0);
c3993076 1042
e2d0bd2b 1043 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1044 set_page_refcounted(page);
1045 __free_pages(page, order);
a226f6c8
DH
1046}
1047
75a592a4
MG
1048#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1049 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1050
75a592a4
MG
1051static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1052
1053int __meminit early_pfn_to_nid(unsigned long pfn)
1054{
7ace9917 1055 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1056 int nid;
1057
7ace9917 1058 spin_lock(&early_pfn_lock);
75a592a4 1059 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1060 if (nid < 0)
1061 nid = 0;
1062 spin_unlock(&early_pfn_lock);
1063
1064 return nid;
75a592a4
MG
1065}
1066#endif
1067
1068#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1069static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1070 struct mminit_pfnnid_cache *state)
1071{
1072 int nid;
1073
1074 nid = __early_pfn_to_nid(pfn, state);
1075 if (nid >= 0 && nid != node)
1076 return false;
1077 return true;
1078}
1079
1080/* Only safe to use early in boot when initialisation is single-threaded */
1081static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1082{
1083 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1084}
1085
1086#else
1087
1088static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1089{
1090 return true;
1091}
1092static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1093 struct mminit_pfnnid_cache *state)
1094{
1095 return true;
1096}
1097#endif
1098
1099
0e1cc95b 1100void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1101 unsigned int order)
1102{
1103 if (early_page_uninitialised(pfn))
1104 return;
1105 return __free_pages_boot_core(page, pfn, order);
1106}
1107
7e18adb4 1108#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1109static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1110 unsigned long pfn, int nr_pages)
1111{
1112 int i;
1113
1114 if (!page)
1115 return;
1116
1117 /* Free a large naturally-aligned chunk if possible */
1118 if (nr_pages == MAX_ORDER_NR_PAGES &&
1119 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1120 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1121 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1122 return;
1123 }
1124
1125 for (i = 0; i < nr_pages; i++, page++, pfn++)
1126 __free_pages_boot_core(page, pfn, 0);
1127}
1128
d3cd131d
NS
1129/* Completion tracking for deferred_init_memmap() threads */
1130static atomic_t pgdat_init_n_undone __initdata;
1131static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1132
1133static inline void __init pgdat_init_report_one_done(void)
1134{
1135 if (atomic_dec_and_test(&pgdat_init_n_undone))
1136 complete(&pgdat_init_all_done_comp);
1137}
0e1cc95b 1138
7e18adb4 1139/* Initialise remaining memory on a node */
0e1cc95b 1140static int __init deferred_init_memmap(void *data)
7e18adb4 1141{
0e1cc95b
MG
1142 pg_data_t *pgdat = data;
1143 int nid = pgdat->node_id;
7e18adb4
MG
1144 struct mminit_pfnnid_cache nid_init_state = { };
1145 unsigned long start = jiffies;
1146 unsigned long nr_pages = 0;
1147 unsigned long walk_start, walk_end;
1148 int i, zid;
1149 struct zone *zone;
7e18adb4 1150 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1151 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1152
0e1cc95b 1153 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1154 pgdat_init_report_one_done();
0e1cc95b
MG
1155 return 0;
1156 }
1157
1158 /* Bind memory initialisation thread to a local node if possible */
1159 if (!cpumask_empty(cpumask))
1160 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1161
1162 /* Sanity check boundaries */
1163 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1164 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1165 pgdat->first_deferred_pfn = ULONG_MAX;
1166
1167 /* Only the highest zone is deferred so find it */
1168 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1169 zone = pgdat->node_zones + zid;
1170 if (first_init_pfn < zone_end_pfn(zone))
1171 break;
1172 }
1173
1174 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1175 unsigned long pfn, end_pfn;
54608c3f 1176 struct page *page = NULL;
a4de83dd
MG
1177 struct page *free_base_page = NULL;
1178 unsigned long free_base_pfn = 0;
1179 int nr_to_free = 0;
7e18adb4
MG
1180
1181 end_pfn = min(walk_end, zone_end_pfn(zone));
1182 pfn = first_init_pfn;
1183 if (pfn < walk_start)
1184 pfn = walk_start;
1185 if (pfn < zone->zone_start_pfn)
1186 pfn = zone->zone_start_pfn;
1187
1188 for (; pfn < end_pfn; pfn++) {
54608c3f 1189 if (!pfn_valid_within(pfn))
a4de83dd 1190 goto free_range;
7e18adb4 1191
54608c3f
MG
1192 /*
1193 * Ensure pfn_valid is checked every
1194 * MAX_ORDER_NR_PAGES for memory holes
1195 */
1196 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1197 if (!pfn_valid(pfn)) {
1198 page = NULL;
a4de83dd 1199 goto free_range;
54608c3f
MG
1200 }
1201 }
1202
1203 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1204 page = NULL;
a4de83dd 1205 goto free_range;
54608c3f
MG
1206 }
1207
1208 /* Minimise pfn page lookups and scheduler checks */
1209 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1210 page++;
1211 } else {
a4de83dd
MG
1212 nr_pages += nr_to_free;
1213 deferred_free_range(free_base_page,
1214 free_base_pfn, nr_to_free);
1215 free_base_page = NULL;
1216 free_base_pfn = nr_to_free = 0;
1217
54608c3f
MG
1218 page = pfn_to_page(pfn);
1219 cond_resched();
1220 }
7e18adb4
MG
1221
1222 if (page->flags) {
1223 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1224 goto free_range;
7e18adb4
MG
1225 }
1226
1227 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1228 if (!free_base_page) {
1229 free_base_page = page;
1230 free_base_pfn = pfn;
1231 nr_to_free = 0;
1232 }
1233 nr_to_free++;
1234
1235 /* Where possible, batch up pages for a single free */
1236 continue;
1237free_range:
1238 /* Free the current block of pages to allocator */
1239 nr_pages += nr_to_free;
1240 deferred_free_range(free_base_page, free_base_pfn,
1241 nr_to_free);
1242 free_base_page = NULL;
1243 free_base_pfn = nr_to_free = 0;
7e18adb4 1244 }
a4de83dd 1245
7e18adb4
MG
1246 first_init_pfn = max(end_pfn, first_init_pfn);
1247 }
1248
1249 /* Sanity check that the next zone really is unpopulated */
1250 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1251
0e1cc95b 1252 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1253 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1254
1255 pgdat_init_report_one_done();
0e1cc95b
MG
1256 return 0;
1257}
1258
1259void __init page_alloc_init_late(void)
1260{
1261 int nid;
1262
d3cd131d
NS
1263 /* There will be num_node_state(N_MEMORY) threads */
1264 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1265 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1266 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1267 }
1268
1269 /* Block until all are initialised */
d3cd131d 1270 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1271
1272 /* Reinit limits that are based on free pages after the kernel is up */
1273 files_maxfiles_init();
7e18adb4
MG
1274}
1275#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1276
47118af0 1277#ifdef CONFIG_CMA
9cf510a5 1278/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1279void __init init_cma_reserved_pageblock(struct page *page)
1280{
1281 unsigned i = pageblock_nr_pages;
1282 struct page *p = page;
1283
1284 do {
1285 __ClearPageReserved(p);
1286 set_page_count(p, 0);
1287 } while (++p, --i);
1288
47118af0 1289 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1290
1291 if (pageblock_order >= MAX_ORDER) {
1292 i = pageblock_nr_pages;
1293 p = page;
1294 do {
1295 set_page_refcounted(p);
1296 __free_pages(p, MAX_ORDER - 1);
1297 p += MAX_ORDER_NR_PAGES;
1298 } while (i -= MAX_ORDER_NR_PAGES);
1299 } else {
1300 set_page_refcounted(page);
1301 __free_pages(page, pageblock_order);
1302 }
1303
3dcc0571 1304 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1305}
1306#endif
1da177e4
LT
1307
1308/*
1309 * The order of subdivision here is critical for the IO subsystem.
1310 * Please do not alter this order without good reasons and regression
1311 * testing. Specifically, as large blocks of memory are subdivided,
1312 * the order in which smaller blocks are delivered depends on the order
1313 * they're subdivided in this function. This is the primary factor
1314 * influencing the order in which pages are delivered to the IO
1315 * subsystem according to empirical testing, and this is also justified
1316 * by considering the behavior of a buddy system containing a single
1317 * large block of memory acted on by a series of small allocations.
1318 * This behavior is a critical factor in sglist merging's success.
1319 *
6d49e352 1320 * -- nyc
1da177e4 1321 */
085cc7d5 1322static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1323 int low, int high, struct free_area *area,
1324 int migratetype)
1da177e4
LT
1325{
1326 unsigned long size = 1 << high;
1327
1328 while (high > low) {
1329 area--;
1330 high--;
1331 size >>= 1;
309381fe 1332 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1333
2847cf95 1334 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1335 debug_guardpage_enabled() &&
2847cf95 1336 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1337 /*
1338 * Mark as guard pages (or page), that will allow to
1339 * merge back to allocator when buddy will be freed.
1340 * Corresponding page table entries will not be touched,
1341 * pages will stay not present in virtual address space
1342 */
2847cf95 1343 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1344 continue;
1345 }
b2a0ac88 1346 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1347 area->nr_free++;
1348 set_page_order(&page[size], high);
1349 }
1da177e4
LT
1350}
1351
1da177e4
LT
1352/*
1353 * This page is about to be returned from the page allocator
1354 */
2a7684a2 1355static inline int check_new_page(struct page *page)
1da177e4 1356{
d230dec1 1357 const char *bad_reason = NULL;
f0b791a3
DH
1358 unsigned long bad_flags = 0;
1359
53f9263b 1360 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1361 bad_reason = "nonzero mapcount";
1362 if (unlikely(page->mapping != NULL))
1363 bad_reason = "non-NULL mapping";
1364 if (unlikely(atomic_read(&page->_count) != 0))
1365 bad_reason = "nonzero _count";
f4c18e6f
NH
1366 if (unlikely(page->flags & __PG_HWPOISON)) {
1367 bad_reason = "HWPoisoned (hardware-corrupted)";
1368 bad_flags = __PG_HWPOISON;
1369 }
f0b791a3
DH
1370 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1371 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1372 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1373 }
9edad6ea
JW
1374#ifdef CONFIG_MEMCG
1375 if (unlikely(page->mem_cgroup))
1376 bad_reason = "page still charged to cgroup";
1377#endif
f0b791a3
DH
1378 if (unlikely(bad_reason)) {
1379 bad_page(page, bad_reason, bad_flags);
689bcebf 1380 return 1;
8cc3b392 1381 }
2a7684a2
WF
1382 return 0;
1383}
1384
75379191
VB
1385static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1386 int alloc_flags)
2a7684a2
WF
1387{
1388 int i;
1389
1390 for (i = 0; i < (1 << order); i++) {
1391 struct page *p = page + i;
1392 if (unlikely(check_new_page(p)))
1393 return 1;
1394 }
689bcebf 1395
4c21e2f2 1396 set_page_private(page, 0);
7835e98b 1397 set_page_refcounted(page);
cc102509
NP
1398
1399 arch_alloc_page(page, order);
1da177e4 1400 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1401 kasan_alloc_pages(page, order);
17cf4406
NP
1402
1403 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1404 for (i = 0; i < (1 << order); i++)
1405 clear_highpage(page + i);
17cf4406
NP
1406
1407 if (order && (gfp_flags & __GFP_COMP))
1408 prep_compound_page(page, order);
1409
48c96a36
JK
1410 set_page_owner(page, order, gfp_flags);
1411
75379191 1412 /*
2f064f34 1413 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1414 * allocate the page. The expectation is that the caller is taking
1415 * steps that will free more memory. The caller should avoid the page
1416 * being used for !PFMEMALLOC purposes.
1417 */
2f064f34
MH
1418 if (alloc_flags & ALLOC_NO_WATERMARKS)
1419 set_page_pfmemalloc(page);
1420 else
1421 clear_page_pfmemalloc(page);
75379191 1422
689bcebf 1423 return 0;
1da177e4
LT
1424}
1425
56fd56b8
MG
1426/*
1427 * Go through the free lists for the given migratetype and remove
1428 * the smallest available page from the freelists
1429 */
728ec980
MG
1430static inline
1431struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1432 int migratetype)
1433{
1434 unsigned int current_order;
b8af2941 1435 struct free_area *area;
56fd56b8
MG
1436 struct page *page;
1437
1438 /* Find a page of the appropriate size in the preferred list */
1439 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1440 area = &(zone->free_area[current_order]);
a16601c5 1441 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1442 struct page, lru);
a16601c5
GT
1443 if (!page)
1444 continue;
56fd56b8
MG
1445 list_del(&page->lru);
1446 rmv_page_order(page);
1447 area->nr_free--;
56fd56b8 1448 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1449 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1450 return page;
1451 }
1452
1453 return NULL;
1454}
1455
1456
b2a0ac88
MG
1457/*
1458 * This array describes the order lists are fallen back to when
1459 * the free lists for the desirable migrate type are depleted
1460 */
47118af0 1461static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1462 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1463 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1464 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1465#ifdef CONFIG_CMA
974a786e 1466 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1467#endif
194159fb 1468#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1469 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1470#endif
b2a0ac88
MG
1471};
1472
dc67647b
JK
1473#ifdef CONFIG_CMA
1474static struct page *__rmqueue_cma_fallback(struct zone *zone,
1475 unsigned int order)
1476{
1477 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1478}
1479#else
1480static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1481 unsigned int order) { return NULL; }
1482#endif
1483
c361be55
MG
1484/*
1485 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1486 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1487 * boundary. If alignment is required, use move_freepages_block()
1488 */
435b405c 1489int move_freepages(struct zone *zone,
b69a7288
AB
1490 struct page *start_page, struct page *end_page,
1491 int migratetype)
c361be55
MG
1492{
1493 struct page *page;
d00181b9 1494 unsigned int order;
d100313f 1495 int pages_moved = 0;
c361be55
MG
1496
1497#ifndef CONFIG_HOLES_IN_ZONE
1498 /*
1499 * page_zone is not safe to call in this context when
1500 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1501 * anyway as we check zone boundaries in move_freepages_block().
1502 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1503 * grouping pages by mobility
c361be55 1504 */
97ee4ba7 1505 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1506#endif
1507
1508 for (page = start_page; page <= end_page;) {
344c790e 1509 /* Make sure we are not inadvertently changing nodes */
309381fe 1510 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1511
c361be55
MG
1512 if (!pfn_valid_within(page_to_pfn(page))) {
1513 page++;
1514 continue;
1515 }
1516
1517 if (!PageBuddy(page)) {
1518 page++;
1519 continue;
1520 }
1521
1522 order = page_order(page);
84be48d8
KS
1523 list_move(&page->lru,
1524 &zone->free_area[order].free_list[migratetype]);
c361be55 1525 page += 1 << order;
d100313f 1526 pages_moved += 1 << order;
c361be55
MG
1527 }
1528
d100313f 1529 return pages_moved;
c361be55
MG
1530}
1531
ee6f509c 1532int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1533 int migratetype)
c361be55
MG
1534{
1535 unsigned long start_pfn, end_pfn;
1536 struct page *start_page, *end_page;
1537
1538 start_pfn = page_to_pfn(page);
d9c23400 1539 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1540 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1541 end_page = start_page + pageblock_nr_pages - 1;
1542 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1543
1544 /* Do not cross zone boundaries */
108bcc96 1545 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1546 start_page = page;
108bcc96 1547 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1548 return 0;
1549
1550 return move_freepages(zone, start_page, end_page, migratetype);
1551}
1552
2f66a68f
MG
1553static void change_pageblock_range(struct page *pageblock_page,
1554 int start_order, int migratetype)
1555{
1556 int nr_pageblocks = 1 << (start_order - pageblock_order);
1557
1558 while (nr_pageblocks--) {
1559 set_pageblock_migratetype(pageblock_page, migratetype);
1560 pageblock_page += pageblock_nr_pages;
1561 }
1562}
1563
fef903ef 1564/*
9c0415eb
VB
1565 * When we are falling back to another migratetype during allocation, try to
1566 * steal extra free pages from the same pageblocks to satisfy further
1567 * allocations, instead of polluting multiple pageblocks.
1568 *
1569 * If we are stealing a relatively large buddy page, it is likely there will
1570 * be more free pages in the pageblock, so try to steal them all. For
1571 * reclaimable and unmovable allocations, we steal regardless of page size,
1572 * as fragmentation caused by those allocations polluting movable pageblocks
1573 * is worse than movable allocations stealing from unmovable and reclaimable
1574 * pageblocks.
fef903ef 1575 */
4eb7dce6
JK
1576static bool can_steal_fallback(unsigned int order, int start_mt)
1577{
1578 /*
1579 * Leaving this order check is intended, although there is
1580 * relaxed order check in next check. The reason is that
1581 * we can actually steal whole pageblock if this condition met,
1582 * but, below check doesn't guarantee it and that is just heuristic
1583 * so could be changed anytime.
1584 */
1585 if (order >= pageblock_order)
1586 return true;
1587
1588 if (order >= pageblock_order / 2 ||
1589 start_mt == MIGRATE_RECLAIMABLE ||
1590 start_mt == MIGRATE_UNMOVABLE ||
1591 page_group_by_mobility_disabled)
1592 return true;
1593
1594 return false;
1595}
1596
1597/*
1598 * This function implements actual steal behaviour. If order is large enough,
1599 * we can steal whole pageblock. If not, we first move freepages in this
1600 * pageblock and check whether half of pages are moved or not. If half of
1601 * pages are moved, we can change migratetype of pageblock and permanently
1602 * use it's pages as requested migratetype in the future.
1603 */
1604static void steal_suitable_fallback(struct zone *zone, struct page *page,
1605 int start_type)
fef903ef 1606{
d00181b9 1607 unsigned int current_order = page_order(page);
4eb7dce6 1608 int pages;
fef903ef 1609
fef903ef
SB
1610 /* Take ownership for orders >= pageblock_order */
1611 if (current_order >= pageblock_order) {
1612 change_pageblock_range(page, current_order, start_type);
3a1086fb 1613 return;
fef903ef
SB
1614 }
1615
4eb7dce6 1616 pages = move_freepages_block(zone, page, start_type);
fef903ef 1617
4eb7dce6
JK
1618 /* Claim the whole block if over half of it is free */
1619 if (pages >= (1 << (pageblock_order-1)) ||
1620 page_group_by_mobility_disabled)
1621 set_pageblock_migratetype(page, start_type);
1622}
1623
2149cdae
JK
1624/*
1625 * Check whether there is a suitable fallback freepage with requested order.
1626 * If only_stealable is true, this function returns fallback_mt only if
1627 * we can steal other freepages all together. This would help to reduce
1628 * fragmentation due to mixed migratetype pages in one pageblock.
1629 */
1630int find_suitable_fallback(struct free_area *area, unsigned int order,
1631 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1632{
1633 int i;
1634 int fallback_mt;
1635
1636 if (area->nr_free == 0)
1637 return -1;
1638
1639 *can_steal = false;
1640 for (i = 0;; i++) {
1641 fallback_mt = fallbacks[migratetype][i];
974a786e 1642 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1643 break;
1644
1645 if (list_empty(&area->free_list[fallback_mt]))
1646 continue;
fef903ef 1647
4eb7dce6
JK
1648 if (can_steal_fallback(order, migratetype))
1649 *can_steal = true;
1650
2149cdae
JK
1651 if (!only_stealable)
1652 return fallback_mt;
1653
1654 if (*can_steal)
1655 return fallback_mt;
fef903ef 1656 }
4eb7dce6
JK
1657
1658 return -1;
fef903ef
SB
1659}
1660
0aaa29a5
MG
1661/*
1662 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1663 * there are no empty page blocks that contain a page with a suitable order
1664 */
1665static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1666 unsigned int alloc_order)
1667{
1668 int mt;
1669 unsigned long max_managed, flags;
1670
1671 /*
1672 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1673 * Check is race-prone but harmless.
1674 */
1675 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1676 if (zone->nr_reserved_highatomic >= max_managed)
1677 return;
1678
1679 spin_lock_irqsave(&zone->lock, flags);
1680
1681 /* Recheck the nr_reserved_highatomic limit under the lock */
1682 if (zone->nr_reserved_highatomic >= max_managed)
1683 goto out_unlock;
1684
1685 /* Yoink! */
1686 mt = get_pageblock_migratetype(page);
1687 if (mt != MIGRATE_HIGHATOMIC &&
1688 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1689 zone->nr_reserved_highatomic += pageblock_nr_pages;
1690 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1691 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1692 }
1693
1694out_unlock:
1695 spin_unlock_irqrestore(&zone->lock, flags);
1696}
1697
1698/*
1699 * Used when an allocation is about to fail under memory pressure. This
1700 * potentially hurts the reliability of high-order allocations when under
1701 * intense memory pressure but failed atomic allocations should be easier
1702 * to recover from than an OOM.
1703 */
1704static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1705{
1706 struct zonelist *zonelist = ac->zonelist;
1707 unsigned long flags;
1708 struct zoneref *z;
1709 struct zone *zone;
1710 struct page *page;
1711 int order;
1712
1713 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1714 ac->nodemask) {
1715 /* Preserve at least one pageblock */
1716 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1717 continue;
1718
1719 spin_lock_irqsave(&zone->lock, flags);
1720 for (order = 0; order < MAX_ORDER; order++) {
1721 struct free_area *area = &(zone->free_area[order]);
1722
a16601c5
GT
1723 page = list_first_entry_or_null(
1724 &area->free_list[MIGRATE_HIGHATOMIC],
1725 struct page, lru);
1726 if (!page)
0aaa29a5
MG
1727 continue;
1728
0aaa29a5
MG
1729 /*
1730 * It should never happen but changes to locking could
1731 * inadvertently allow a per-cpu drain to add pages
1732 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1733 * and watch for underflows.
1734 */
1735 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1736 zone->nr_reserved_highatomic);
1737
1738 /*
1739 * Convert to ac->migratetype and avoid the normal
1740 * pageblock stealing heuristics. Minimally, the caller
1741 * is doing the work and needs the pages. More
1742 * importantly, if the block was always converted to
1743 * MIGRATE_UNMOVABLE or another type then the number
1744 * of pageblocks that cannot be completely freed
1745 * may increase.
1746 */
1747 set_pageblock_migratetype(page, ac->migratetype);
1748 move_freepages_block(zone, page, ac->migratetype);
1749 spin_unlock_irqrestore(&zone->lock, flags);
1750 return;
1751 }
1752 spin_unlock_irqrestore(&zone->lock, flags);
1753 }
1754}
1755
b2a0ac88 1756/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1757static inline struct page *
7aeb09f9 1758__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1759{
b8af2941 1760 struct free_area *area;
7aeb09f9 1761 unsigned int current_order;
b2a0ac88 1762 struct page *page;
4eb7dce6
JK
1763 int fallback_mt;
1764 bool can_steal;
b2a0ac88
MG
1765
1766 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1767 for (current_order = MAX_ORDER-1;
1768 current_order >= order && current_order <= MAX_ORDER-1;
1769 --current_order) {
4eb7dce6
JK
1770 area = &(zone->free_area[current_order]);
1771 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1772 start_migratetype, false, &can_steal);
4eb7dce6
JK
1773 if (fallback_mt == -1)
1774 continue;
b2a0ac88 1775
a16601c5 1776 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1777 struct page, lru);
1778 if (can_steal)
1779 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1780
4eb7dce6
JK
1781 /* Remove the page from the freelists */
1782 area->nr_free--;
1783 list_del(&page->lru);
1784 rmv_page_order(page);
3a1086fb 1785
4eb7dce6
JK
1786 expand(zone, page, order, current_order, area,
1787 start_migratetype);
1788 /*
bb14c2c7 1789 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1790 * migratetype depending on the decisions in
bb14c2c7
VB
1791 * find_suitable_fallback(). This is OK as long as it does not
1792 * differ for MIGRATE_CMA pageblocks. Those can be used as
1793 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1794 */
bb14c2c7 1795 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1796
4eb7dce6
JK
1797 trace_mm_page_alloc_extfrag(page, order, current_order,
1798 start_migratetype, fallback_mt);
e0fff1bd 1799
4eb7dce6 1800 return page;
b2a0ac88
MG
1801 }
1802
728ec980 1803 return NULL;
b2a0ac88
MG
1804}
1805
56fd56b8 1806/*
1da177e4
LT
1807 * Do the hard work of removing an element from the buddy allocator.
1808 * Call me with the zone->lock already held.
1809 */
b2a0ac88 1810static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1811 int migratetype)
1da177e4 1812{
1da177e4
LT
1813 struct page *page;
1814
56fd56b8 1815 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1816 if (unlikely(!page)) {
dc67647b
JK
1817 if (migratetype == MIGRATE_MOVABLE)
1818 page = __rmqueue_cma_fallback(zone, order);
1819
1820 if (!page)
1821 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1822 }
1823
0d3d062a 1824 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1825 return page;
1da177e4
LT
1826}
1827
5f63b720 1828/*
1da177e4
LT
1829 * Obtain a specified number of elements from the buddy allocator, all under
1830 * a single hold of the lock, for efficiency. Add them to the supplied list.
1831 * Returns the number of new pages which were placed at *list.
1832 */
5f63b720 1833static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1834 unsigned long count, struct list_head *list,
b745bc85 1835 int migratetype, bool cold)
1da177e4 1836{
5bcc9f86 1837 int i;
5f63b720 1838
c54ad30c 1839 spin_lock(&zone->lock);
1da177e4 1840 for (i = 0; i < count; ++i) {
6ac0206b 1841 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1842 if (unlikely(page == NULL))
1da177e4 1843 break;
81eabcbe
MG
1844
1845 /*
1846 * Split buddy pages returned by expand() are received here
1847 * in physical page order. The page is added to the callers and
1848 * list and the list head then moves forward. From the callers
1849 * perspective, the linked list is ordered by page number in
1850 * some conditions. This is useful for IO devices that can
1851 * merge IO requests if the physical pages are ordered
1852 * properly.
1853 */
b745bc85 1854 if (likely(!cold))
e084b2d9
MG
1855 list_add(&page->lru, list);
1856 else
1857 list_add_tail(&page->lru, list);
81eabcbe 1858 list = &page->lru;
bb14c2c7 1859 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1860 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1861 -(1 << order));
1da177e4 1862 }
f2260e6b 1863 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1864 spin_unlock(&zone->lock);
085cc7d5 1865 return i;
1da177e4
LT
1866}
1867
4ae7c039 1868#ifdef CONFIG_NUMA
8fce4d8e 1869/*
4037d452
CL
1870 * Called from the vmstat counter updater to drain pagesets of this
1871 * currently executing processor on remote nodes after they have
1872 * expired.
1873 *
879336c3
CL
1874 * Note that this function must be called with the thread pinned to
1875 * a single processor.
8fce4d8e 1876 */
4037d452 1877void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1878{
4ae7c039 1879 unsigned long flags;
7be12fc9 1880 int to_drain, batch;
4ae7c039 1881
4037d452 1882 local_irq_save(flags);
4db0c3c2 1883 batch = READ_ONCE(pcp->batch);
7be12fc9 1884 to_drain = min(pcp->count, batch);
2a13515c
KM
1885 if (to_drain > 0) {
1886 free_pcppages_bulk(zone, to_drain, pcp);
1887 pcp->count -= to_drain;
1888 }
4037d452 1889 local_irq_restore(flags);
4ae7c039
CL
1890}
1891#endif
1892
9f8f2172 1893/*
93481ff0 1894 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1895 *
1896 * The processor must either be the current processor and the
1897 * thread pinned to the current processor or a processor that
1898 * is not online.
1899 */
93481ff0 1900static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1901{
c54ad30c 1902 unsigned long flags;
93481ff0
VB
1903 struct per_cpu_pageset *pset;
1904 struct per_cpu_pages *pcp;
1da177e4 1905
93481ff0
VB
1906 local_irq_save(flags);
1907 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1908
93481ff0
VB
1909 pcp = &pset->pcp;
1910 if (pcp->count) {
1911 free_pcppages_bulk(zone, pcp->count, pcp);
1912 pcp->count = 0;
1913 }
1914 local_irq_restore(flags);
1915}
3dfa5721 1916
93481ff0
VB
1917/*
1918 * Drain pcplists of all zones on the indicated processor.
1919 *
1920 * The processor must either be the current processor and the
1921 * thread pinned to the current processor or a processor that
1922 * is not online.
1923 */
1924static void drain_pages(unsigned int cpu)
1925{
1926 struct zone *zone;
1927
1928 for_each_populated_zone(zone) {
1929 drain_pages_zone(cpu, zone);
1da177e4
LT
1930 }
1931}
1da177e4 1932
9f8f2172
CL
1933/*
1934 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1935 *
1936 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1937 * the single zone's pages.
9f8f2172 1938 */
93481ff0 1939void drain_local_pages(struct zone *zone)
9f8f2172 1940{
93481ff0
VB
1941 int cpu = smp_processor_id();
1942
1943 if (zone)
1944 drain_pages_zone(cpu, zone);
1945 else
1946 drain_pages(cpu);
9f8f2172
CL
1947}
1948
1949/*
74046494
GBY
1950 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1951 *
93481ff0
VB
1952 * When zone parameter is non-NULL, spill just the single zone's pages.
1953 *
74046494
GBY
1954 * Note that this code is protected against sending an IPI to an offline
1955 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1956 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1957 * nothing keeps CPUs from showing up after we populated the cpumask and
1958 * before the call to on_each_cpu_mask().
9f8f2172 1959 */
93481ff0 1960void drain_all_pages(struct zone *zone)
9f8f2172 1961{
74046494 1962 int cpu;
74046494
GBY
1963
1964 /*
1965 * Allocate in the BSS so we wont require allocation in
1966 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1967 */
1968 static cpumask_t cpus_with_pcps;
1969
1970 /*
1971 * We don't care about racing with CPU hotplug event
1972 * as offline notification will cause the notified
1973 * cpu to drain that CPU pcps and on_each_cpu_mask
1974 * disables preemption as part of its processing
1975 */
1976 for_each_online_cpu(cpu) {
93481ff0
VB
1977 struct per_cpu_pageset *pcp;
1978 struct zone *z;
74046494 1979 bool has_pcps = false;
93481ff0
VB
1980
1981 if (zone) {
74046494 1982 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1983 if (pcp->pcp.count)
74046494 1984 has_pcps = true;
93481ff0
VB
1985 } else {
1986 for_each_populated_zone(z) {
1987 pcp = per_cpu_ptr(z->pageset, cpu);
1988 if (pcp->pcp.count) {
1989 has_pcps = true;
1990 break;
1991 }
74046494
GBY
1992 }
1993 }
93481ff0 1994
74046494
GBY
1995 if (has_pcps)
1996 cpumask_set_cpu(cpu, &cpus_with_pcps);
1997 else
1998 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1999 }
93481ff0
VB
2000 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2001 zone, 1);
9f8f2172
CL
2002}
2003
296699de 2004#ifdef CONFIG_HIBERNATION
1da177e4
LT
2005
2006void mark_free_pages(struct zone *zone)
2007{
f623f0db
RW
2008 unsigned long pfn, max_zone_pfn;
2009 unsigned long flags;
7aeb09f9 2010 unsigned int order, t;
86760a2c 2011 struct page *page;
1da177e4 2012
8080fc03 2013 if (zone_is_empty(zone))
1da177e4
LT
2014 return;
2015
2016 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2017
108bcc96 2018 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2019 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2020 if (pfn_valid(pfn)) {
86760a2c 2021 page = pfn_to_page(pfn);
7be98234
RW
2022 if (!swsusp_page_is_forbidden(page))
2023 swsusp_unset_page_free(page);
f623f0db 2024 }
1da177e4 2025
b2a0ac88 2026 for_each_migratetype_order(order, t) {
86760a2c
GT
2027 list_for_each_entry(page,
2028 &zone->free_area[order].free_list[t], lru) {
f623f0db 2029 unsigned long i;
1da177e4 2030
86760a2c 2031 pfn = page_to_pfn(page);
f623f0db 2032 for (i = 0; i < (1UL << order); i++)
7be98234 2033 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2034 }
b2a0ac88 2035 }
1da177e4
LT
2036 spin_unlock_irqrestore(&zone->lock, flags);
2037}
e2c55dc8 2038#endif /* CONFIG_PM */
1da177e4 2039
1da177e4
LT
2040/*
2041 * Free a 0-order page
b745bc85 2042 * cold == true ? free a cold page : free a hot page
1da177e4 2043 */
b745bc85 2044void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2045{
2046 struct zone *zone = page_zone(page);
2047 struct per_cpu_pages *pcp;
2048 unsigned long flags;
dc4b0caf 2049 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2050 int migratetype;
1da177e4 2051
ec95f53a 2052 if (!free_pages_prepare(page, 0))
689bcebf
HD
2053 return;
2054
dc4b0caf 2055 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2056 set_pcppage_migratetype(page, migratetype);
1da177e4 2057 local_irq_save(flags);
f8891e5e 2058 __count_vm_event(PGFREE);
da456f14 2059
5f8dcc21
MG
2060 /*
2061 * We only track unmovable, reclaimable and movable on pcp lists.
2062 * Free ISOLATE pages back to the allocator because they are being
2063 * offlined but treat RESERVE as movable pages so we can get those
2064 * areas back if necessary. Otherwise, we may have to free
2065 * excessively into the page allocator
2066 */
2067 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2068 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2069 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2070 goto out;
2071 }
2072 migratetype = MIGRATE_MOVABLE;
2073 }
2074
99dcc3e5 2075 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2076 if (!cold)
5f8dcc21 2077 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2078 else
2079 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2080 pcp->count++;
48db57f8 2081 if (pcp->count >= pcp->high) {
4db0c3c2 2082 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2083 free_pcppages_bulk(zone, batch, pcp);
2084 pcp->count -= batch;
48db57f8 2085 }
5f8dcc21
MG
2086
2087out:
1da177e4 2088 local_irq_restore(flags);
1da177e4
LT
2089}
2090
cc59850e
KK
2091/*
2092 * Free a list of 0-order pages
2093 */
b745bc85 2094void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2095{
2096 struct page *page, *next;
2097
2098 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2099 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2100 free_hot_cold_page(page, cold);
2101 }
2102}
2103
8dfcc9ba
NP
2104/*
2105 * split_page takes a non-compound higher-order page, and splits it into
2106 * n (1<<order) sub-pages: page[0..n]
2107 * Each sub-page must be freed individually.
2108 *
2109 * Note: this is probably too low level an operation for use in drivers.
2110 * Please consult with lkml before using this in your driver.
2111 */
2112void split_page(struct page *page, unsigned int order)
2113{
2114 int i;
e2cfc911 2115 gfp_t gfp_mask;
8dfcc9ba 2116
309381fe
SL
2117 VM_BUG_ON_PAGE(PageCompound(page), page);
2118 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2119
2120#ifdef CONFIG_KMEMCHECK
2121 /*
2122 * Split shadow pages too, because free(page[0]) would
2123 * otherwise free the whole shadow.
2124 */
2125 if (kmemcheck_page_is_tracked(page))
2126 split_page(virt_to_page(page[0].shadow), order);
2127#endif
2128
e2cfc911
JK
2129 gfp_mask = get_page_owner_gfp(page);
2130 set_page_owner(page, 0, gfp_mask);
48c96a36 2131 for (i = 1; i < (1 << order); i++) {
7835e98b 2132 set_page_refcounted(page + i);
e2cfc911 2133 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2134 }
8dfcc9ba 2135}
5853ff23 2136EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2137
3c605096 2138int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2139{
748446bb
MG
2140 unsigned long watermark;
2141 struct zone *zone;
2139cbe6 2142 int mt;
748446bb
MG
2143
2144 BUG_ON(!PageBuddy(page));
2145
2146 zone = page_zone(page);
2e30abd1 2147 mt = get_pageblock_migratetype(page);
748446bb 2148
194159fb 2149 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2150 /* Obey watermarks as if the page was being allocated */
2151 watermark = low_wmark_pages(zone) + (1 << order);
2152 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2153 return 0;
2154
8fb74b9f 2155 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2156 }
748446bb
MG
2157
2158 /* Remove page from free list */
2159 list_del(&page->lru);
2160 zone->free_area[order].nr_free--;
2161 rmv_page_order(page);
2139cbe6 2162
e2cfc911 2163 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2164
8fb74b9f 2165 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2166 if (order >= pageblock_order - 1) {
2167 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2168 for (; page < endpage; page += pageblock_nr_pages) {
2169 int mt = get_pageblock_migratetype(page);
194159fb 2170 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2171 set_pageblock_migratetype(page,
2172 MIGRATE_MOVABLE);
2173 }
748446bb
MG
2174 }
2175
f3a14ced 2176
8fb74b9f 2177 return 1UL << order;
1fb3f8ca
MG
2178}
2179
2180/*
2181 * Similar to split_page except the page is already free. As this is only
2182 * being used for migration, the migratetype of the block also changes.
2183 * As this is called with interrupts disabled, the caller is responsible
2184 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2185 * are enabled.
2186 *
2187 * Note: this is probably too low level an operation for use in drivers.
2188 * Please consult with lkml before using this in your driver.
2189 */
2190int split_free_page(struct page *page)
2191{
2192 unsigned int order;
2193 int nr_pages;
2194
1fb3f8ca
MG
2195 order = page_order(page);
2196
8fb74b9f 2197 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2198 if (!nr_pages)
2199 return 0;
2200
2201 /* Split into individual pages */
2202 set_page_refcounted(page);
2203 split_page(page, order);
2204 return nr_pages;
748446bb
MG
2205}
2206
1da177e4 2207/*
75379191 2208 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2209 */
0a15c3e9
MG
2210static inline
2211struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2212 struct zone *zone, unsigned int order,
0aaa29a5 2213 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2214{
2215 unsigned long flags;
689bcebf 2216 struct page *page;
b745bc85 2217 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2218
48db57f8 2219 if (likely(order == 0)) {
1da177e4 2220 struct per_cpu_pages *pcp;
5f8dcc21 2221 struct list_head *list;
1da177e4 2222
1da177e4 2223 local_irq_save(flags);
99dcc3e5
CL
2224 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2225 list = &pcp->lists[migratetype];
5f8dcc21 2226 if (list_empty(list)) {
535131e6 2227 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2228 pcp->batch, list,
e084b2d9 2229 migratetype, cold);
5f8dcc21 2230 if (unlikely(list_empty(list)))
6fb332fa 2231 goto failed;
535131e6 2232 }
b92a6edd 2233
5f8dcc21 2234 if (cold)
a16601c5 2235 page = list_last_entry(list, struct page, lru);
5f8dcc21 2236 else
a16601c5 2237 page = list_first_entry(list, struct page, lru);
5f8dcc21 2238
b92a6edd
MG
2239 list_del(&page->lru);
2240 pcp->count--;
7fb1d9fc 2241 } else {
dab48dab
AM
2242 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2243 /*
2244 * __GFP_NOFAIL is not to be used in new code.
2245 *
2246 * All __GFP_NOFAIL callers should be fixed so that they
2247 * properly detect and handle allocation failures.
2248 *
2249 * We most definitely don't want callers attempting to
4923abf9 2250 * allocate greater than order-1 page units with
dab48dab
AM
2251 * __GFP_NOFAIL.
2252 */
4923abf9 2253 WARN_ON_ONCE(order > 1);
dab48dab 2254 }
1da177e4 2255 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2256
2257 page = NULL;
2258 if (alloc_flags & ALLOC_HARDER) {
2259 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2260 if (page)
2261 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2262 }
2263 if (!page)
6ac0206b 2264 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2265 spin_unlock(&zone->lock);
2266 if (!page)
2267 goto failed;
d1ce749a 2268 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2269 get_pcppage_migratetype(page));
1da177e4
LT
2270 }
2271
3a025760 2272 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2273 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2274 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2275 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2276
f8891e5e 2277 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2278 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2279 local_irq_restore(flags);
1da177e4 2280
309381fe 2281 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2282 return page;
a74609fa
NP
2283
2284failed:
2285 local_irq_restore(flags);
a74609fa 2286 return NULL;
1da177e4
LT
2287}
2288
933e312e
AM
2289#ifdef CONFIG_FAIL_PAGE_ALLOC
2290
b2588c4b 2291static struct {
933e312e
AM
2292 struct fault_attr attr;
2293
621a5f7a 2294 bool ignore_gfp_highmem;
71baba4b 2295 bool ignore_gfp_reclaim;
54114994 2296 u32 min_order;
933e312e
AM
2297} fail_page_alloc = {
2298 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2299 .ignore_gfp_reclaim = true,
621a5f7a 2300 .ignore_gfp_highmem = true,
54114994 2301 .min_order = 1,
933e312e
AM
2302};
2303
2304static int __init setup_fail_page_alloc(char *str)
2305{
2306 return setup_fault_attr(&fail_page_alloc.attr, str);
2307}
2308__setup("fail_page_alloc=", setup_fail_page_alloc);
2309
deaf386e 2310static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2311{
54114994 2312 if (order < fail_page_alloc.min_order)
deaf386e 2313 return false;
933e312e 2314 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2315 return false;
933e312e 2316 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2317 return false;
71baba4b
MG
2318 if (fail_page_alloc.ignore_gfp_reclaim &&
2319 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2320 return false;
933e312e
AM
2321
2322 return should_fail(&fail_page_alloc.attr, 1 << order);
2323}
2324
2325#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2326
2327static int __init fail_page_alloc_debugfs(void)
2328{
f4ae40a6 2329 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2330 struct dentry *dir;
933e312e 2331
dd48c085
AM
2332 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2333 &fail_page_alloc.attr);
2334 if (IS_ERR(dir))
2335 return PTR_ERR(dir);
933e312e 2336
b2588c4b 2337 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2338 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2339 goto fail;
2340 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2341 &fail_page_alloc.ignore_gfp_highmem))
2342 goto fail;
2343 if (!debugfs_create_u32("min-order", mode, dir,
2344 &fail_page_alloc.min_order))
2345 goto fail;
2346
2347 return 0;
2348fail:
dd48c085 2349 debugfs_remove_recursive(dir);
933e312e 2350
b2588c4b 2351 return -ENOMEM;
933e312e
AM
2352}
2353
2354late_initcall(fail_page_alloc_debugfs);
2355
2356#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2357
2358#else /* CONFIG_FAIL_PAGE_ALLOC */
2359
deaf386e 2360static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2361{
deaf386e 2362 return false;
933e312e
AM
2363}
2364
2365#endif /* CONFIG_FAIL_PAGE_ALLOC */
2366
1da177e4 2367/*
97a16fc8
MG
2368 * Return true if free base pages are above 'mark'. For high-order checks it
2369 * will return true of the order-0 watermark is reached and there is at least
2370 * one free page of a suitable size. Checking now avoids taking the zone lock
2371 * to check in the allocation paths if no pages are free.
1da177e4 2372 */
7aeb09f9
MG
2373static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2374 unsigned long mark, int classzone_idx, int alloc_flags,
2375 long free_pages)
1da177e4 2376{
d23ad423 2377 long min = mark;
1da177e4 2378 int o;
97a16fc8 2379 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2380
0aaa29a5 2381 /* free_pages may go negative - that's OK */
df0a6daa 2382 free_pages -= (1 << order) - 1;
0aaa29a5 2383
7fb1d9fc 2384 if (alloc_flags & ALLOC_HIGH)
1da177e4 2385 min -= min / 2;
0aaa29a5
MG
2386
2387 /*
2388 * If the caller does not have rights to ALLOC_HARDER then subtract
2389 * the high-atomic reserves. This will over-estimate the size of the
2390 * atomic reserve but it avoids a search.
2391 */
97a16fc8 2392 if (likely(!alloc_harder))
0aaa29a5
MG
2393 free_pages -= z->nr_reserved_highatomic;
2394 else
1da177e4 2395 min -= min / 4;
e2b19197 2396
d95ea5d1
BZ
2397#ifdef CONFIG_CMA
2398 /* If allocation can't use CMA areas don't use free CMA pages */
2399 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2400 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2401#endif
026b0814 2402
97a16fc8
MG
2403 /*
2404 * Check watermarks for an order-0 allocation request. If these
2405 * are not met, then a high-order request also cannot go ahead
2406 * even if a suitable page happened to be free.
2407 */
2408 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2409 return false;
1da177e4 2410
97a16fc8
MG
2411 /* If this is an order-0 request then the watermark is fine */
2412 if (!order)
2413 return true;
2414
2415 /* For a high-order request, check at least one suitable page is free */
2416 for (o = order; o < MAX_ORDER; o++) {
2417 struct free_area *area = &z->free_area[o];
2418 int mt;
2419
2420 if (!area->nr_free)
2421 continue;
2422
2423 if (alloc_harder)
2424 return true;
1da177e4 2425
97a16fc8
MG
2426 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2427 if (!list_empty(&area->free_list[mt]))
2428 return true;
2429 }
2430
2431#ifdef CONFIG_CMA
2432 if ((alloc_flags & ALLOC_CMA) &&
2433 !list_empty(&area->free_list[MIGRATE_CMA])) {
2434 return true;
2435 }
2436#endif
1da177e4 2437 }
97a16fc8 2438 return false;
88f5acf8
MG
2439}
2440
7aeb09f9 2441bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2442 int classzone_idx, int alloc_flags)
2443{
2444 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2445 zone_page_state(z, NR_FREE_PAGES));
2446}
2447
7aeb09f9 2448bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2449 unsigned long mark, int classzone_idx)
88f5acf8
MG
2450{
2451 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2452
2453 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2454 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2455
e2b19197 2456 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2457 free_pages);
1da177e4
LT
2458}
2459
9276b1bc 2460#ifdef CONFIG_NUMA
81c0a2bb
JW
2461static bool zone_local(struct zone *local_zone, struct zone *zone)
2462{
fff4068c 2463 return local_zone->node == zone->node;
81c0a2bb
JW
2464}
2465
957f822a
DR
2466static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2467{
5f7a75ac
MG
2468 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2469 RECLAIM_DISTANCE;
957f822a 2470}
9276b1bc 2471#else /* CONFIG_NUMA */
81c0a2bb
JW
2472static bool zone_local(struct zone *local_zone, struct zone *zone)
2473{
2474 return true;
2475}
2476
957f822a
DR
2477static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2478{
2479 return true;
2480}
9276b1bc
PJ
2481#endif /* CONFIG_NUMA */
2482
4ffeaf35
MG
2483static void reset_alloc_batches(struct zone *preferred_zone)
2484{
2485 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2486
2487 do {
2488 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2489 high_wmark_pages(zone) - low_wmark_pages(zone) -
2490 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2491 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2492 } while (zone++ != preferred_zone);
2493}
2494
7fb1d9fc 2495/*
0798e519 2496 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2497 * a page.
2498 */
2499static struct page *
a9263751
VB
2500get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2501 const struct alloc_context *ac)
753ee728 2502{
a9263751 2503 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2504 struct zoneref *z;
7fb1d9fc 2505 struct page *page = NULL;
5117f45d 2506 struct zone *zone;
4ffeaf35
MG
2507 int nr_fair_skipped = 0;
2508 bool zonelist_rescan;
54a6eb5c 2509
9276b1bc 2510zonelist_scan:
4ffeaf35
MG
2511 zonelist_rescan = false;
2512
7fb1d9fc 2513 /*
9276b1bc 2514 * Scan zonelist, looking for a zone with enough free.
344736f2 2515 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2516 */
a9263751
VB
2517 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2518 ac->nodemask) {
e085dbc5
JW
2519 unsigned long mark;
2520
664eedde
MG
2521 if (cpusets_enabled() &&
2522 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2523 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2524 continue;
81c0a2bb
JW
2525 /*
2526 * Distribute pages in proportion to the individual
2527 * zone size to ensure fair page aging. The zone a
2528 * page was allocated in should have no effect on the
2529 * time the page has in memory before being reclaimed.
81c0a2bb 2530 */
3a025760 2531 if (alloc_flags & ALLOC_FAIR) {
a9263751 2532 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2533 break;
57054651 2534 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2535 nr_fair_skipped++;
3a025760 2536 continue;
4ffeaf35 2537 }
81c0a2bb 2538 }
a756cf59
JW
2539 /*
2540 * When allocating a page cache page for writing, we
2541 * want to get it from a zone that is within its dirty
2542 * limit, such that no single zone holds more than its
2543 * proportional share of globally allowed dirty pages.
2544 * The dirty limits take into account the zone's
2545 * lowmem reserves and high watermark so that kswapd
2546 * should be able to balance it without having to
2547 * write pages from its LRU list.
2548 *
2549 * This may look like it could increase pressure on
2550 * lower zones by failing allocations in higher zones
2551 * before they are full. But the pages that do spill
2552 * over are limited as the lower zones are protected
2553 * by this very same mechanism. It should not become
2554 * a practical burden to them.
2555 *
2556 * XXX: For now, allow allocations to potentially
2557 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2558 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2559 * which is important when on a NUMA setup the allowed
2560 * zones are together not big enough to reach the
2561 * global limit. The proper fix for these situations
2562 * will require awareness of zones in the
2563 * dirty-throttling and the flusher threads.
2564 */
c9ab0c4f 2565 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2566 continue;
7fb1d9fc 2567
e085dbc5
JW
2568 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2569 if (!zone_watermark_ok(zone, order, mark,
a9263751 2570 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2571 int ret;
2572
5dab2911
MG
2573 /* Checked here to keep the fast path fast */
2574 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2575 if (alloc_flags & ALLOC_NO_WATERMARKS)
2576 goto try_this_zone;
2577
957f822a 2578 if (zone_reclaim_mode == 0 ||
a9263751 2579 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2580 continue;
2581
fa5e084e
MG
2582 ret = zone_reclaim(zone, gfp_mask, order);
2583 switch (ret) {
2584 case ZONE_RECLAIM_NOSCAN:
2585 /* did not scan */
cd38b115 2586 continue;
fa5e084e
MG
2587 case ZONE_RECLAIM_FULL:
2588 /* scanned but unreclaimable */
cd38b115 2589 continue;
fa5e084e
MG
2590 default:
2591 /* did we reclaim enough */
fed2719e 2592 if (zone_watermark_ok(zone, order, mark,
a9263751 2593 ac->classzone_idx, alloc_flags))
fed2719e
MG
2594 goto try_this_zone;
2595
fed2719e 2596 continue;
0798e519 2597 }
7fb1d9fc
RS
2598 }
2599
fa5e084e 2600try_this_zone:
a9263751 2601 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2602 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2603 if (page) {
2604 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2605 goto try_this_zone;
0aaa29a5
MG
2606
2607 /*
2608 * If this is a high-order atomic allocation then check
2609 * if the pageblock should be reserved for the future
2610 */
2611 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2612 reserve_highatomic_pageblock(page, zone, order);
2613
75379191
VB
2614 return page;
2615 }
54a6eb5c 2616 }
9276b1bc 2617
4ffeaf35
MG
2618 /*
2619 * The first pass makes sure allocations are spread fairly within the
2620 * local node. However, the local node might have free pages left
2621 * after the fairness batches are exhausted, and remote zones haven't
2622 * even been considered yet. Try once more without fairness, and
2623 * include remote zones now, before entering the slowpath and waking
2624 * kswapd: prefer spilling to a remote zone over swapping locally.
2625 */
2626 if (alloc_flags & ALLOC_FAIR) {
2627 alloc_flags &= ~ALLOC_FAIR;
2628 if (nr_fair_skipped) {
2629 zonelist_rescan = true;
a9263751 2630 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2631 }
2632 if (nr_online_nodes > 1)
2633 zonelist_rescan = true;
2634 }
2635
4ffeaf35
MG
2636 if (zonelist_rescan)
2637 goto zonelist_scan;
2638
2639 return NULL;
753ee728
MH
2640}
2641
29423e77
DR
2642/*
2643 * Large machines with many possible nodes should not always dump per-node
2644 * meminfo in irq context.
2645 */
2646static inline bool should_suppress_show_mem(void)
2647{
2648 bool ret = false;
2649
2650#if NODES_SHIFT > 8
2651 ret = in_interrupt();
2652#endif
2653 return ret;
2654}
2655
a238ab5b
DH
2656static DEFINE_RATELIMIT_STATE(nopage_rs,
2657 DEFAULT_RATELIMIT_INTERVAL,
2658 DEFAULT_RATELIMIT_BURST);
2659
d00181b9 2660void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2661{
a238ab5b
DH
2662 unsigned int filter = SHOW_MEM_FILTER_NODES;
2663
c0a32fc5
SG
2664 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2665 debug_guardpage_minorder() > 0)
a238ab5b
DH
2666 return;
2667
2668 /*
2669 * This documents exceptions given to allocations in certain
2670 * contexts that are allowed to allocate outside current's set
2671 * of allowed nodes.
2672 */
2673 if (!(gfp_mask & __GFP_NOMEMALLOC))
2674 if (test_thread_flag(TIF_MEMDIE) ||
2675 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2676 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2677 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2678 filter &= ~SHOW_MEM_FILTER_NODES;
2679
2680 if (fmt) {
3ee9a4f0
JP
2681 struct va_format vaf;
2682 va_list args;
2683
a238ab5b 2684 va_start(args, fmt);
3ee9a4f0
JP
2685
2686 vaf.fmt = fmt;
2687 vaf.va = &args;
2688
2689 pr_warn("%pV", &vaf);
2690
a238ab5b
DH
2691 va_end(args);
2692 }
2693
d00181b9 2694 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
3ee9a4f0 2695 current->comm, order, gfp_mask);
a238ab5b
DH
2696
2697 dump_stack();
2698 if (!should_suppress_show_mem())
2699 show_mem(filter);
2700}
2701
11e33f6a
MG
2702static inline struct page *
2703__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2704 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2705{
6e0fc46d
DR
2706 struct oom_control oc = {
2707 .zonelist = ac->zonelist,
2708 .nodemask = ac->nodemask,
2709 .gfp_mask = gfp_mask,
2710 .order = order,
6e0fc46d 2711 };
11e33f6a
MG
2712 struct page *page;
2713
9879de73
JW
2714 *did_some_progress = 0;
2715
9879de73 2716 /*
dc56401f
JW
2717 * Acquire the oom lock. If that fails, somebody else is
2718 * making progress for us.
9879de73 2719 */
dc56401f 2720 if (!mutex_trylock(&oom_lock)) {
9879de73 2721 *did_some_progress = 1;
11e33f6a 2722 schedule_timeout_uninterruptible(1);
1da177e4
LT
2723 return NULL;
2724 }
6b1de916 2725
11e33f6a
MG
2726 /*
2727 * Go through the zonelist yet one more time, keep very high watermark
2728 * here, this is only to catch a parallel oom killing, we must fail if
2729 * we're still under heavy pressure.
2730 */
a9263751
VB
2731 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2732 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2733 if (page)
11e33f6a
MG
2734 goto out;
2735
4365a567 2736 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2737 /* Coredumps can quickly deplete all memory reserves */
2738 if (current->flags & PF_DUMPCORE)
2739 goto out;
4365a567
KH
2740 /* The OOM killer will not help higher order allocs */
2741 if (order > PAGE_ALLOC_COSTLY_ORDER)
2742 goto out;
03668b3c 2743 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2744 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2745 goto out;
9083905a 2746 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2747 if (!(gfp_mask & __GFP_FS)) {
2748 /*
2749 * XXX: Page reclaim didn't yield anything,
2750 * and the OOM killer can't be invoked, but
9083905a 2751 * keep looping as per tradition.
cc873177
JW
2752 */
2753 *did_some_progress = 1;
9879de73 2754 goto out;
cc873177 2755 }
9083905a
JW
2756 if (pm_suspended_storage())
2757 goto out;
4167e9b2 2758 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2759 if (gfp_mask & __GFP_THISNODE)
2760 goto out;
2761 }
11e33f6a 2762 /* Exhausted what can be done so it's blamo time */
5020e285 2763 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2764 *did_some_progress = 1;
5020e285
MH
2765
2766 if (gfp_mask & __GFP_NOFAIL) {
2767 page = get_page_from_freelist(gfp_mask, order,
2768 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2769 /*
2770 * fallback to ignore cpuset restriction if our nodes
2771 * are depleted
2772 */
2773 if (!page)
2774 page = get_page_from_freelist(gfp_mask, order,
2775 ALLOC_NO_WATERMARKS, ac);
2776 }
2777 }
11e33f6a 2778out:
dc56401f 2779 mutex_unlock(&oom_lock);
11e33f6a
MG
2780 return page;
2781}
2782
56de7263
MG
2783#ifdef CONFIG_COMPACTION
2784/* Try memory compaction for high-order allocations before reclaim */
2785static struct page *
2786__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2787 int alloc_flags, const struct alloc_context *ac,
2788 enum migrate_mode mode, int *contended_compaction,
2789 bool *deferred_compaction)
56de7263 2790{
53853e2d 2791 unsigned long compact_result;
98dd3b48 2792 struct page *page;
53853e2d
VB
2793
2794 if (!order)
66199712 2795 return NULL;
66199712 2796
c06b1fca 2797 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2798 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2799 mode, contended_compaction);
c06b1fca 2800 current->flags &= ~PF_MEMALLOC;
56de7263 2801
98dd3b48
VB
2802 switch (compact_result) {
2803 case COMPACT_DEFERRED:
53853e2d 2804 *deferred_compaction = true;
98dd3b48
VB
2805 /* fall-through */
2806 case COMPACT_SKIPPED:
2807 return NULL;
2808 default:
2809 break;
2810 }
53853e2d 2811
98dd3b48
VB
2812 /*
2813 * At least in one zone compaction wasn't deferred or skipped, so let's
2814 * count a compaction stall
2815 */
2816 count_vm_event(COMPACTSTALL);
8fb74b9f 2817
a9263751
VB
2818 page = get_page_from_freelist(gfp_mask, order,
2819 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2820
98dd3b48
VB
2821 if (page) {
2822 struct zone *zone = page_zone(page);
53853e2d 2823
98dd3b48
VB
2824 zone->compact_blockskip_flush = false;
2825 compaction_defer_reset(zone, order, true);
2826 count_vm_event(COMPACTSUCCESS);
2827 return page;
2828 }
56de7263 2829
98dd3b48
VB
2830 /*
2831 * It's bad if compaction run occurs and fails. The most likely reason
2832 * is that pages exist, but not enough to satisfy watermarks.
2833 */
2834 count_vm_event(COMPACTFAIL);
66199712 2835
98dd3b48 2836 cond_resched();
56de7263
MG
2837
2838 return NULL;
2839}
2840#else
2841static inline struct page *
2842__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2843 int alloc_flags, const struct alloc_context *ac,
2844 enum migrate_mode mode, int *contended_compaction,
2845 bool *deferred_compaction)
56de7263
MG
2846{
2847 return NULL;
2848}
2849#endif /* CONFIG_COMPACTION */
2850
bba90710
MS
2851/* Perform direct synchronous page reclaim */
2852static int
a9263751
VB
2853__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2854 const struct alloc_context *ac)
11e33f6a 2855{
11e33f6a 2856 struct reclaim_state reclaim_state;
bba90710 2857 int progress;
11e33f6a
MG
2858
2859 cond_resched();
2860
2861 /* We now go into synchronous reclaim */
2862 cpuset_memory_pressure_bump();
c06b1fca 2863 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2864 lockdep_set_current_reclaim_state(gfp_mask);
2865 reclaim_state.reclaimed_slab = 0;
c06b1fca 2866 current->reclaim_state = &reclaim_state;
11e33f6a 2867
a9263751
VB
2868 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2869 ac->nodemask);
11e33f6a 2870
c06b1fca 2871 current->reclaim_state = NULL;
11e33f6a 2872 lockdep_clear_current_reclaim_state();
c06b1fca 2873 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2874
2875 cond_resched();
2876
bba90710
MS
2877 return progress;
2878}
2879
2880/* The really slow allocator path where we enter direct reclaim */
2881static inline struct page *
2882__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2883 int alloc_flags, const struct alloc_context *ac,
2884 unsigned long *did_some_progress)
bba90710
MS
2885{
2886 struct page *page = NULL;
2887 bool drained = false;
2888
a9263751 2889 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2890 if (unlikely(!(*did_some_progress)))
2891 return NULL;
11e33f6a 2892
9ee493ce 2893retry:
a9263751
VB
2894 page = get_page_from_freelist(gfp_mask, order,
2895 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2896
2897 /*
2898 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2899 * pages are pinned on the per-cpu lists or in high alloc reserves.
2900 * Shrink them them and try again
9ee493ce
MG
2901 */
2902 if (!page && !drained) {
0aaa29a5 2903 unreserve_highatomic_pageblock(ac);
93481ff0 2904 drain_all_pages(NULL);
9ee493ce
MG
2905 drained = true;
2906 goto retry;
2907 }
2908
11e33f6a
MG
2909 return page;
2910}
2911
a9263751 2912static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2913{
2914 struct zoneref *z;
2915 struct zone *zone;
2916
a9263751
VB
2917 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2918 ac->high_zoneidx, ac->nodemask)
2919 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2920}
2921
341ce06f
PZ
2922static inline int
2923gfp_to_alloc_flags(gfp_t gfp_mask)
2924{
341ce06f 2925 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2926
a56f57ff 2927 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2928 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2929
341ce06f
PZ
2930 /*
2931 * The caller may dip into page reserves a bit more if the caller
2932 * cannot run direct reclaim, or if the caller has realtime scheduling
2933 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2934 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2935 */
e6223a3b 2936 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2937
d0164adc 2938 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2939 /*
b104a35d
DR
2940 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2941 * if it can't schedule.
5c3240d9 2942 */
b104a35d 2943 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2944 alloc_flags |= ALLOC_HARDER;
523b9458 2945 /*
b104a35d 2946 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2947 * comment for __cpuset_node_allowed().
523b9458 2948 */
341ce06f 2949 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2950 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2951 alloc_flags |= ALLOC_HARDER;
2952
b37f1dd0
MG
2953 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2954 if (gfp_mask & __GFP_MEMALLOC)
2955 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2956 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2957 alloc_flags |= ALLOC_NO_WATERMARKS;
2958 else if (!in_interrupt() &&
2959 ((current->flags & PF_MEMALLOC) ||
2960 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2961 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2962 }
d95ea5d1 2963#ifdef CONFIG_CMA
43e7a34d 2964 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2965 alloc_flags |= ALLOC_CMA;
2966#endif
341ce06f
PZ
2967 return alloc_flags;
2968}
2969
072bb0aa
MG
2970bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2971{
b37f1dd0 2972 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2973}
2974
d0164adc
MG
2975static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2976{
2977 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2978}
2979
11e33f6a
MG
2980static inline struct page *
2981__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2982 struct alloc_context *ac)
11e33f6a 2983{
d0164adc 2984 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
2985 struct page *page = NULL;
2986 int alloc_flags;
2987 unsigned long pages_reclaimed = 0;
2988 unsigned long did_some_progress;
e0b9daeb 2989 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2990 bool deferred_compaction = false;
1f9efdef 2991 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2992
72807a74
MG
2993 /*
2994 * In the slowpath, we sanity check order to avoid ever trying to
2995 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2996 * be using allocators in order of preference for an area that is
2997 * too large.
2998 */
1fc28b70
MG
2999 if (order >= MAX_ORDER) {
3000 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3001 return NULL;
1fc28b70 3002 }
1da177e4 3003
d0164adc
MG
3004 /*
3005 * We also sanity check to catch abuse of atomic reserves being used by
3006 * callers that are not in atomic context.
3007 */
3008 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3009 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3010 gfp_mask &= ~__GFP_ATOMIC;
3011
952f3b51 3012 /*
4167e9b2
DR
3013 * If this allocation cannot block and it is for a specific node, then
3014 * fail early. There's no need to wakeup kswapd or retry for a
3015 * speculative node-specific allocation.
952f3b51 3016 */
d0164adc 3017 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
3018 goto nopage;
3019
9879de73 3020retry:
d0164adc 3021 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3022 wake_all_kswapds(order, ac);
1da177e4 3023
9bf2229f 3024 /*
7fb1d9fc
RS
3025 * OK, we're below the kswapd watermark and have kicked background
3026 * reclaim. Now things get more complex, so set up alloc_flags according
3027 * to how we want to proceed.
9bf2229f 3028 */
341ce06f 3029 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3030
f33261d7
DR
3031 /*
3032 * Find the true preferred zone if the allocation is unconstrained by
3033 * cpusets.
3034 */
a9263751 3035 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3036 struct zoneref *preferred_zoneref;
a9263751
VB
3037 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3038 ac->high_zoneidx, NULL, &ac->preferred_zone);
3039 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3040 }
f33261d7 3041
341ce06f 3042 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3043 page = get_page_from_freelist(gfp_mask, order,
3044 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3045 if (page)
3046 goto got_pg;
1da177e4 3047
11e33f6a 3048 /* Allocate without watermarks if the context allows */
341ce06f 3049 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3050 /*
3051 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3052 * the allocation is high priority and these type of
3053 * allocations are system rather than user orientated
3054 */
a9263751 3055 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3056 page = get_page_from_freelist(gfp_mask, order,
3057 ALLOC_NO_WATERMARKS, ac);
3058 if (page)
3059 goto got_pg;
1da177e4
LT
3060 }
3061
d0164adc
MG
3062 /* Caller is not willing to reclaim, we can't balance anything */
3063 if (!can_direct_reclaim) {
aed0a0e3 3064 /*
33d53103
MH
3065 * All existing users of the __GFP_NOFAIL are blockable, so warn
3066 * of any new users that actually allow this type of allocation
3067 * to fail.
aed0a0e3
DR
3068 */
3069 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3070 goto nopage;
aed0a0e3 3071 }
1da177e4 3072
341ce06f 3073 /* Avoid recursion of direct reclaim */
33d53103
MH
3074 if (current->flags & PF_MEMALLOC) {
3075 /*
3076 * __GFP_NOFAIL request from this context is rather bizarre
3077 * because we cannot reclaim anything and only can loop waiting
3078 * for somebody to do a work for us.
3079 */
3080 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3081 cond_resched();
3082 goto retry;
3083 }
341ce06f 3084 goto nopage;
33d53103 3085 }
341ce06f 3086
6583bb64
DR
3087 /* Avoid allocations with no watermarks from looping endlessly */
3088 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3089 goto nopage;
3090
77f1fe6b
MG
3091 /*
3092 * Try direct compaction. The first pass is asynchronous. Subsequent
3093 * attempts after direct reclaim are synchronous
3094 */
a9263751
VB
3095 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3096 migration_mode,
3097 &contended_compaction,
53853e2d 3098 &deferred_compaction);
56de7263
MG
3099 if (page)
3100 goto got_pg;
75f30861 3101
1f9efdef 3102 /* Checks for THP-specific high-order allocations */
d0164adc 3103 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3104 /*
3105 * If compaction is deferred for high-order allocations, it is
3106 * because sync compaction recently failed. If this is the case
3107 * and the caller requested a THP allocation, we do not want
3108 * to heavily disrupt the system, so we fail the allocation
3109 * instead of entering direct reclaim.
3110 */
3111 if (deferred_compaction)
3112 goto nopage;
3113
3114 /*
3115 * In all zones where compaction was attempted (and not
3116 * deferred or skipped), lock contention has been detected.
3117 * For THP allocation we do not want to disrupt the others
3118 * so we fallback to base pages instead.
3119 */
3120 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3121 goto nopage;
3122
3123 /*
3124 * If compaction was aborted due to need_resched(), we do not
3125 * want to further increase allocation latency, unless it is
3126 * khugepaged trying to collapse.
3127 */
3128 if (contended_compaction == COMPACT_CONTENDED_SCHED
3129 && !(current->flags & PF_KTHREAD))
3130 goto nopage;
3131 }
66199712 3132
8fe78048
DR
3133 /*
3134 * It can become very expensive to allocate transparent hugepages at
3135 * fault, so use asynchronous memory compaction for THP unless it is
3136 * khugepaged trying to collapse.
3137 */
d0164adc 3138 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3139 migration_mode = MIGRATE_SYNC_LIGHT;
3140
11e33f6a 3141 /* Try direct reclaim and then allocating */
a9263751
VB
3142 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3143 &did_some_progress);
11e33f6a
MG
3144 if (page)
3145 goto got_pg;
1da177e4 3146
9083905a
JW
3147 /* Do not loop if specifically requested */
3148 if (gfp_mask & __GFP_NORETRY)
3149 goto noretry;
3150
3151 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3152 pages_reclaimed += did_some_progress;
9083905a
JW
3153 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3154 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3155 /* Wait for some write requests to complete then retry */
a9263751 3156 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3157 goto retry;
1da177e4
LT
3158 }
3159
9083905a
JW
3160 /* Reclaim has failed us, start killing things */
3161 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3162 if (page)
3163 goto got_pg;
3164
3165 /* Retry as long as the OOM killer is making progress */
3166 if (did_some_progress)
3167 goto retry;
3168
3169noretry:
3170 /*
3171 * High-order allocations do not necessarily loop after
3172 * direct reclaim and reclaim/compaction depends on compaction
3173 * being called after reclaim so call directly if necessary
3174 */
3175 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3176 ac, migration_mode,
3177 &contended_compaction,
3178 &deferred_compaction);
3179 if (page)
3180 goto got_pg;
1da177e4 3181nopage:
a238ab5b 3182 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3183got_pg:
072bb0aa 3184 return page;
1da177e4 3185}
11e33f6a
MG
3186
3187/*
3188 * This is the 'heart' of the zoned buddy allocator.
3189 */
3190struct page *
3191__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3192 struct zonelist *zonelist, nodemask_t *nodemask)
3193{
d8846374 3194 struct zoneref *preferred_zoneref;
cc9a6c87 3195 struct page *page = NULL;
cc9a6c87 3196 unsigned int cpuset_mems_cookie;
3a025760 3197 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3198 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3199 struct alloc_context ac = {
3200 .high_zoneidx = gfp_zone(gfp_mask),
3201 .nodemask = nodemask,
3202 .migratetype = gfpflags_to_migratetype(gfp_mask),
3203 };
11e33f6a 3204
dcce284a
BH
3205 gfp_mask &= gfp_allowed_mask;
3206
11e33f6a
MG
3207 lockdep_trace_alloc(gfp_mask);
3208
d0164adc 3209 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3210
3211 if (should_fail_alloc_page(gfp_mask, order))
3212 return NULL;
3213
3214 /*
3215 * Check the zones suitable for the gfp_mask contain at least one
3216 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3217 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3218 */
3219 if (unlikely(!zonelist->_zonerefs->zone))
3220 return NULL;
3221
a9263751 3222 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3223 alloc_flags |= ALLOC_CMA;
3224
cc9a6c87 3225retry_cpuset:
d26914d1 3226 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3227
a9263751
VB
3228 /* We set it here, as __alloc_pages_slowpath might have changed it */
3229 ac.zonelist = zonelist;
c9ab0c4f
MG
3230
3231 /* Dirty zone balancing only done in the fast path */
3232 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3233
5117f45d 3234 /* The preferred zone is used for statistics later */
a9263751
VB
3235 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3236 ac.nodemask ? : &cpuset_current_mems_allowed,
3237 &ac.preferred_zone);
3238 if (!ac.preferred_zone)
cc9a6c87 3239 goto out;
a9263751 3240 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3241
3242 /* First allocation attempt */
91fbdc0f 3243 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3244 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3245 if (unlikely(!page)) {
3246 /*
3247 * Runtime PM, block IO and its error handling path
3248 * can deadlock because I/O on the device might not
3249 * complete.
3250 */
91fbdc0f 3251 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3252 ac.spread_dirty_pages = false;
91fbdc0f 3253
a9263751 3254 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3255 }
11e33f6a 3256
23f086f9
XQ
3257 if (kmemcheck_enabled && page)
3258 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3259
a9263751 3260 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3261
3262out:
3263 /*
3264 * When updating a task's mems_allowed, it is possible to race with
3265 * parallel threads in such a way that an allocation can fail while
3266 * the mask is being updated. If a page allocation is about to fail,
3267 * check if the cpuset changed during allocation and if so, retry.
3268 */
d26914d1 3269 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3270 goto retry_cpuset;
3271
11e33f6a 3272 return page;
1da177e4 3273}
d239171e 3274EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3275
3276/*
3277 * Common helper functions.
3278 */
920c7a5d 3279unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3280{
945a1113
AM
3281 struct page *page;
3282
3283 /*
3284 * __get_free_pages() returns a 32-bit address, which cannot represent
3285 * a highmem page
3286 */
3287 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3288
1da177e4
LT
3289 page = alloc_pages(gfp_mask, order);
3290 if (!page)
3291 return 0;
3292 return (unsigned long) page_address(page);
3293}
1da177e4
LT
3294EXPORT_SYMBOL(__get_free_pages);
3295
920c7a5d 3296unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3297{
945a1113 3298 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3299}
1da177e4
LT
3300EXPORT_SYMBOL(get_zeroed_page);
3301
920c7a5d 3302void __free_pages(struct page *page, unsigned int order)
1da177e4 3303{
b5810039 3304 if (put_page_testzero(page)) {
1da177e4 3305 if (order == 0)
b745bc85 3306 free_hot_cold_page(page, false);
1da177e4
LT
3307 else
3308 __free_pages_ok(page, order);
3309 }
3310}
3311
3312EXPORT_SYMBOL(__free_pages);
3313
920c7a5d 3314void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3315{
3316 if (addr != 0) {
725d704e 3317 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3318 __free_pages(virt_to_page((void *)addr), order);
3319 }
3320}
3321
3322EXPORT_SYMBOL(free_pages);
3323
b63ae8ca
AD
3324/*
3325 * Page Fragment:
3326 * An arbitrary-length arbitrary-offset area of memory which resides
3327 * within a 0 or higher order page. Multiple fragments within that page
3328 * are individually refcounted, in the page's reference counter.
3329 *
3330 * The page_frag functions below provide a simple allocation framework for
3331 * page fragments. This is used by the network stack and network device
3332 * drivers to provide a backing region of memory for use as either an
3333 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3334 */
3335static struct page *__page_frag_refill(struct page_frag_cache *nc,
3336 gfp_t gfp_mask)
3337{
3338 struct page *page = NULL;
3339 gfp_t gfp = gfp_mask;
3340
3341#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3342 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3343 __GFP_NOMEMALLOC;
3344 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3345 PAGE_FRAG_CACHE_MAX_ORDER);
3346 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3347#endif
3348 if (unlikely(!page))
3349 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3350
3351 nc->va = page ? page_address(page) : NULL;
3352
3353 return page;
3354}
3355
3356void *__alloc_page_frag(struct page_frag_cache *nc,
3357 unsigned int fragsz, gfp_t gfp_mask)
3358{
3359 unsigned int size = PAGE_SIZE;
3360 struct page *page;
3361 int offset;
3362
3363 if (unlikely(!nc->va)) {
3364refill:
3365 page = __page_frag_refill(nc, gfp_mask);
3366 if (!page)
3367 return NULL;
3368
3369#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3370 /* if size can vary use size else just use PAGE_SIZE */
3371 size = nc->size;
3372#endif
3373 /* Even if we own the page, we do not use atomic_set().
3374 * This would break get_page_unless_zero() users.
3375 */
3376 atomic_add(size - 1, &page->_count);
3377
3378 /* reset page count bias and offset to start of new frag */
2f064f34 3379 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3380 nc->pagecnt_bias = size;
3381 nc->offset = size;
3382 }
3383
3384 offset = nc->offset - fragsz;
3385 if (unlikely(offset < 0)) {
3386 page = virt_to_page(nc->va);
3387
3388 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3389 goto refill;
3390
3391#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3392 /* if size can vary use size else just use PAGE_SIZE */
3393 size = nc->size;
3394#endif
3395 /* OK, page count is 0, we can safely set it */
3396 atomic_set(&page->_count, size);
3397
3398 /* reset page count bias and offset to start of new frag */
3399 nc->pagecnt_bias = size;
3400 offset = size - fragsz;
3401 }
3402
3403 nc->pagecnt_bias--;
3404 nc->offset = offset;
3405
3406 return nc->va + offset;
3407}
3408EXPORT_SYMBOL(__alloc_page_frag);
3409
3410/*
3411 * Frees a page fragment allocated out of either a compound or order 0 page.
3412 */
3413void __free_page_frag(void *addr)
3414{
3415 struct page *page = virt_to_head_page(addr);
3416
3417 if (unlikely(put_page_testzero(page)))
3418 __free_pages_ok(page, compound_order(page));
3419}
3420EXPORT_SYMBOL(__free_page_frag);
3421
6a1a0d3b 3422/*
52383431 3423 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3424 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3425 * equivalent to alloc_pages.
6a1a0d3b 3426 *
52383431
VD
3427 * It should be used when the caller would like to use kmalloc, but since the
3428 * allocation is large, it has to fall back to the page allocator.
3429 */
3430struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3431{
3432 struct page *page;
52383431 3433
52383431 3434 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3435 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3436 __free_pages(page, order);
3437 page = NULL;
3438 }
52383431
VD
3439 return page;
3440}
3441
3442struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3443{
3444 struct page *page;
52383431 3445
52383431 3446 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3447 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3448 __free_pages(page, order);
3449 page = NULL;
3450 }
52383431
VD
3451 return page;
3452}
3453
3454/*
3455 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3456 * alloc_kmem_pages.
6a1a0d3b 3457 */
52383431 3458void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3459{
d05e83a6 3460 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3461 __free_pages(page, order);
3462}
3463
52383431 3464void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3465{
3466 if (addr != 0) {
3467 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3468 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3469 }
3470}
3471
d00181b9
KS
3472static void *make_alloc_exact(unsigned long addr, unsigned int order,
3473 size_t size)
ee85c2e1
AK
3474{
3475 if (addr) {
3476 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3477 unsigned long used = addr + PAGE_ALIGN(size);
3478
3479 split_page(virt_to_page((void *)addr), order);
3480 while (used < alloc_end) {
3481 free_page(used);
3482 used += PAGE_SIZE;
3483 }
3484 }
3485 return (void *)addr;
3486}
3487
2be0ffe2
TT
3488/**
3489 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3490 * @size: the number of bytes to allocate
3491 * @gfp_mask: GFP flags for the allocation
3492 *
3493 * This function is similar to alloc_pages(), except that it allocates the
3494 * minimum number of pages to satisfy the request. alloc_pages() can only
3495 * allocate memory in power-of-two pages.
3496 *
3497 * This function is also limited by MAX_ORDER.
3498 *
3499 * Memory allocated by this function must be released by free_pages_exact().
3500 */
3501void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3502{
3503 unsigned int order = get_order(size);
3504 unsigned long addr;
3505
3506 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3507 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3508}
3509EXPORT_SYMBOL(alloc_pages_exact);
3510
ee85c2e1
AK
3511/**
3512 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3513 * pages on a node.
b5e6ab58 3514 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3515 * @size: the number of bytes to allocate
3516 * @gfp_mask: GFP flags for the allocation
3517 *
3518 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3519 * back.
ee85c2e1 3520 */
e1931811 3521void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3522{
d00181b9 3523 unsigned int order = get_order(size);
ee85c2e1
AK
3524 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3525 if (!p)
3526 return NULL;
3527 return make_alloc_exact((unsigned long)page_address(p), order, size);
3528}
ee85c2e1 3529
2be0ffe2
TT
3530/**
3531 * free_pages_exact - release memory allocated via alloc_pages_exact()
3532 * @virt: the value returned by alloc_pages_exact.
3533 * @size: size of allocation, same value as passed to alloc_pages_exact().
3534 *
3535 * Release the memory allocated by a previous call to alloc_pages_exact.
3536 */
3537void free_pages_exact(void *virt, size_t size)
3538{
3539 unsigned long addr = (unsigned long)virt;
3540 unsigned long end = addr + PAGE_ALIGN(size);
3541
3542 while (addr < end) {
3543 free_page(addr);
3544 addr += PAGE_SIZE;
3545 }
3546}
3547EXPORT_SYMBOL(free_pages_exact);
3548
e0fb5815
ZY
3549/**
3550 * nr_free_zone_pages - count number of pages beyond high watermark
3551 * @offset: The zone index of the highest zone
3552 *
3553 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3554 * high watermark within all zones at or below a given zone index. For each
3555 * zone, the number of pages is calculated as:
834405c3 3556 * managed_pages - high_pages
e0fb5815 3557 */
ebec3862 3558static unsigned long nr_free_zone_pages(int offset)
1da177e4 3559{
dd1a239f 3560 struct zoneref *z;
54a6eb5c
MG
3561 struct zone *zone;
3562
e310fd43 3563 /* Just pick one node, since fallback list is circular */
ebec3862 3564 unsigned long sum = 0;
1da177e4 3565
0e88460d 3566 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3567
54a6eb5c 3568 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3569 unsigned long size = zone->managed_pages;
41858966 3570 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3571 if (size > high)
3572 sum += size - high;
1da177e4
LT
3573 }
3574
3575 return sum;
3576}
3577
e0fb5815
ZY
3578/**
3579 * nr_free_buffer_pages - count number of pages beyond high watermark
3580 *
3581 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3582 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3583 */
ebec3862 3584unsigned long nr_free_buffer_pages(void)
1da177e4 3585{
af4ca457 3586 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3587}
c2f1a551 3588EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3589
e0fb5815
ZY
3590/**
3591 * nr_free_pagecache_pages - count number of pages beyond high watermark
3592 *
3593 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3594 * high watermark within all zones.
1da177e4 3595 */
ebec3862 3596unsigned long nr_free_pagecache_pages(void)
1da177e4 3597{
2a1e274a 3598 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3599}
08e0f6a9
CL
3600
3601static inline void show_node(struct zone *zone)
1da177e4 3602{
e5adfffc 3603 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3604 printk("Node %d ", zone_to_nid(zone));
1da177e4 3605}
1da177e4 3606
1da177e4
LT
3607void si_meminfo(struct sysinfo *val)
3608{
3609 val->totalram = totalram_pages;
cc7452b6 3610 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3611 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3612 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3613 val->totalhigh = totalhigh_pages;
3614 val->freehigh = nr_free_highpages();
1da177e4
LT
3615 val->mem_unit = PAGE_SIZE;
3616}
3617
3618EXPORT_SYMBOL(si_meminfo);
3619
3620#ifdef CONFIG_NUMA
3621void si_meminfo_node(struct sysinfo *val, int nid)
3622{
cdd91a77
JL
3623 int zone_type; /* needs to be signed */
3624 unsigned long managed_pages = 0;
1da177e4
LT
3625 pg_data_t *pgdat = NODE_DATA(nid);
3626
cdd91a77
JL
3627 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3628 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3629 val->totalram = managed_pages;
cc7452b6 3630 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3631 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3632#ifdef CONFIG_HIGHMEM
b40da049 3633 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3634 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3635 NR_FREE_PAGES);
98d2b0eb
CL
3636#else
3637 val->totalhigh = 0;
3638 val->freehigh = 0;
3639#endif
1da177e4
LT
3640 val->mem_unit = PAGE_SIZE;
3641}
3642#endif
3643
ddd588b5 3644/*
7bf02ea2
DR
3645 * Determine whether the node should be displayed or not, depending on whether
3646 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3647 */
7bf02ea2 3648bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3649{
3650 bool ret = false;
cc9a6c87 3651 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3652
3653 if (!(flags & SHOW_MEM_FILTER_NODES))
3654 goto out;
3655
cc9a6c87 3656 do {
d26914d1 3657 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3658 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3659 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3660out:
3661 return ret;
3662}
3663
1da177e4
LT
3664#define K(x) ((x) << (PAGE_SHIFT-10))
3665
377e4f16
RV
3666static void show_migration_types(unsigned char type)
3667{
3668 static const char types[MIGRATE_TYPES] = {
3669 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3670 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3671 [MIGRATE_RECLAIMABLE] = 'E',
3672 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3673#ifdef CONFIG_CMA
3674 [MIGRATE_CMA] = 'C',
3675#endif
194159fb 3676#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3677 [MIGRATE_ISOLATE] = 'I',
194159fb 3678#endif
377e4f16
RV
3679 };
3680 char tmp[MIGRATE_TYPES + 1];
3681 char *p = tmp;
3682 int i;
3683
3684 for (i = 0; i < MIGRATE_TYPES; i++) {
3685 if (type & (1 << i))
3686 *p++ = types[i];
3687 }
3688
3689 *p = '\0';
3690 printk("(%s) ", tmp);
3691}
3692
1da177e4
LT
3693/*
3694 * Show free area list (used inside shift_scroll-lock stuff)
3695 * We also calculate the percentage fragmentation. We do this by counting the
3696 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3697 *
3698 * Bits in @filter:
3699 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3700 * cpuset.
1da177e4 3701 */
7bf02ea2 3702void show_free_areas(unsigned int filter)
1da177e4 3703{
d1bfcdb8 3704 unsigned long free_pcp = 0;
c7241913 3705 int cpu;
1da177e4
LT
3706 struct zone *zone;
3707
ee99c71c 3708 for_each_populated_zone(zone) {
7bf02ea2 3709 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3710 continue;
d1bfcdb8 3711
761b0677
KK
3712 for_each_online_cpu(cpu)
3713 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3714 }
3715
a731286d
KM
3716 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3717 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3718 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3719 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3720 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3721 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3722 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3723 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3724 global_page_state(NR_ISOLATED_ANON),
3725 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3726 global_page_state(NR_INACTIVE_FILE),
a731286d 3727 global_page_state(NR_ISOLATED_FILE),
7b854121 3728 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3729 global_page_state(NR_FILE_DIRTY),
ce866b34 3730 global_page_state(NR_WRITEBACK),
fd39fc85 3731 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3732 global_page_state(NR_SLAB_RECLAIMABLE),
3733 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3734 global_page_state(NR_FILE_MAPPED),
4b02108a 3735 global_page_state(NR_SHMEM),
a25700a5 3736 global_page_state(NR_PAGETABLE),
d1ce749a 3737 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3738 global_page_state(NR_FREE_PAGES),
3739 free_pcp,
d1ce749a 3740 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3741
ee99c71c 3742 for_each_populated_zone(zone) {
1da177e4
LT
3743 int i;
3744
7bf02ea2 3745 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3746 continue;
d1bfcdb8
KK
3747
3748 free_pcp = 0;
3749 for_each_online_cpu(cpu)
3750 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3751
1da177e4
LT
3752 show_node(zone);
3753 printk("%s"
3754 " free:%lukB"
3755 " min:%lukB"
3756 " low:%lukB"
3757 " high:%lukB"
4f98a2fe
RR
3758 " active_anon:%lukB"
3759 " inactive_anon:%lukB"
3760 " active_file:%lukB"
3761 " inactive_file:%lukB"
7b854121 3762 " unevictable:%lukB"
a731286d
KM
3763 " isolated(anon):%lukB"
3764 " isolated(file):%lukB"
1da177e4 3765 " present:%lukB"
9feedc9d 3766 " managed:%lukB"
4a0aa73f
KM
3767 " mlocked:%lukB"
3768 " dirty:%lukB"
3769 " writeback:%lukB"
3770 " mapped:%lukB"
4b02108a 3771 " shmem:%lukB"
4a0aa73f
KM
3772 " slab_reclaimable:%lukB"
3773 " slab_unreclaimable:%lukB"
c6a7f572 3774 " kernel_stack:%lukB"
4a0aa73f
KM
3775 " pagetables:%lukB"
3776 " unstable:%lukB"
3777 " bounce:%lukB"
d1bfcdb8
KK
3778 " free_pcp:%lukB"
3779 " local_pcp:%ukB"
d1ce749a 3780 " free_cma:%lukB"
4a0aa73f 3781 " writeback_tmp:%lukB"
1da177e4
LT
3782 " pages_scanned:%lu"
3783 " all_unreclaimable? %s"
3784 "\n",
3785 zone->name,
88f5acf8 3786 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3787 K(min_wmark_pages(zone)),
3788 K(low_wmark_pages(zone)),
3789 K(high_wmark_pages(zone)),
4f98a2fe
RR
3790 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3791 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3792 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3793 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3794 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3795 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3796 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3797 K(zone->present_pages),
9feedc9d 3798 K(zone->managed_pages),
4a0aa73f
KM
3799 K(zone_page_state(zone, NR_MLOCK)),
3800 K(zone_page_state(zone, NR_FILE_DIRTY)),
3801 K(zone_page_state(zone, NR_WRITEBACK)),
3802 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3803 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3804 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3805 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3806 zone_page_state(zone, NR_KERNEL_STACK) *
3807 THREAD_SIZE / 1024,
4a0aa73f
KM
3808 K(zone_page_state(zone, NR_PAGETABLE)),
3809 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3810 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3811 K(free_pcp),
3812 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3813 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3814 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3815 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3816 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3817 );
3818 printk("lowmem_reserve[]:");
3819 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3820 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3821 printk("\n");
3822 }
3823
ee99c71c 3824 for_each_populated_zone(zone) {
d00181b9
KS
3825 unsigned int order;
3826 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3827 unsigned char types[MAX_ORDER];
1da177e4 3828
7bf02ea2 3829 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3830 continue;
1da177e4
LT
3831 show_node(zone);
3832 printk("%s: ", zone->name);
1da177e4
LT
3833
3834 spin_lock_irqsave(&zone->lock, flags);
3835 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3836 struct free_area *area = &zone->free_area[order];
3837 int type;
3838
3839 nr[order] = area->nr_free;
8f9de51a 3840 total += nr[order] << order;
377e4f16
RV
3841
3842 types[order] = 0;
3843 for (type = 0; type < MIGRATE_TYPES; type++) {
3844 if (!list_empty(&area->free_list[type]))
3845 types[order] |= 1 << type;
3846 }
1da177e4
LT
3847 }
3848 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3849 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3850 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3851 if (nr[order])
3852 show_migration_types(types[order]);
3853 }
1da177e4
LT
3854 printk("= %lukB\n", K(total));
3855 }
3856
949f7ec5
DR
3857 hugetlb_show_meminfo();
3858
e6f3602d
LW
3859 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3860
1da177e4
LT
3861 show_swap_cache_info();
3862}
3863
19770b32
MG
3864static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3865{
3866 zoneref->zone = zone;
3867 zoneref->zone_idx = zone_idx(zone);
3868}
3869
1da177e4
LT
3870/*
3871 * Builds allocation fallback zone lists.
1a93205b
CL
3872 *
3873 * Add all populated zones of a node to the zonelist.
1da177e4 3874 */
f0c0b2b8 3875static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3876 int nr_zones)
1da177e4 3877{
1a93205b 3878 struct zone *zone;
bc732f1d 3879 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3880
3881 do {
2f6726e5 3882 zone_type--;
070f8032 3883 zone = pgdat->node_zones + zone_type;
1a93205b 3884 if (populated_zone(zone)) {
dd1a239f
MG
3885 zoneref_set_zone(zone,
3886 &zonelist->_zonerefs[nr_zones++]);
070f8032 3887 check_highest_zone(zone_type);
1da177e4 3888 }
2f6726e5 3889 } while (zone_type);
bc732f1d 3890
070f8032 3891 return nr_zones;
1da177e4
LT
3892}
3893
f0c0b2b8
KH
3894
3895/*
3896 * zonelist_order:
3897 * 0 = automatic detection of better ordering.
3898 * 1 = order by ([node] distance, -zonetype)
3899 * 2 = order by (-zonetype, [node] distance)
3900 *
3901 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3902 * the same zonelist. So only NUMA can configure this param.
3903 */
3904#define ZONELIST_ORDER_DEFAULT 0
3905#define ZONELIST_ORDER_NODE 1
3906#define ZONELIST_ORDER_ZONE 2
3907
3908/* zonelist order in the kernel.
3909 * set_zonelist_order() will set this to NODE or ZONE.
3910 */
3911static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3912static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3913
3914
1da177e4 3915#ifdef CONFIG_NUMA
f0c0b2b8
KH
3916/* The value user specified ....changed by config */
3917static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3918/* string for sysctl */
3919#define NUMA_ZONELIST_ORDER_LEN 16
3920char numa_zonelist_order[16] = "default";
3921
3922/*
3923 * interface for configure zonelist ordering.
3924 * command line option "numa_zonelist_order"
3925 * = "[dD]efault - default, automatic configuration.
3926 * = "[nN]ode - order by node locality, then by zone within node
3927 * = "[zZ]one - order by zone, then by locality within zone
3928 */
3929
3930static int __parse_numa_zonelist_order(char *s)
3931{
3932 if (*s == 'd' || *s == 'D') {
3933 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3934 } else if (*s == 'n' || *s == 'N') {
3935 user_zonelist_order = ZONELIST_ORDER_NODE;
3936 } else if (*s == 'z' || *s == 'Z') {
3937 user_zonelist_order = ZONELIST_ORDER_ZONE;
3938 } else {
3939 printk(KERN_WARNING
3940 "Ignoring invalid numa_zonelist_order value: "
3941 "%s\n", s);
3942 return -EINVAL;
3943 }
3944 return 0;
3945}
3946
3947static __init int setup_numa_zonelist_order(char *s)
3948{
ecb256f8
VL
3949 int ret;
3950
3951 if (!s)
3952 return 0;
3953
3954 ret = __parse_numa_zonelist_order(s);
3955 if (ret == 0)
3956 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3957
3958 return ret;
f0c0b2b8
KH
3959}
3960early_param("numa_zonelist_order", setup_numa_zonelist_order);
3961
3962/*
3963 * sysctl handler for numa_zonelist_order
3964 */
cccad5b9 3965int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3966 void __user *buffer, size_t *length,
f0c0b2b8
KH
3967 loff_t *ppos)
3968{
3969 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3970 int ret;
443c6f14 3971 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3972
443c6f14 3973 mutex_lock(&zl_order_mutex);
dacbde09
CG
3974 if (write) {
3975 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3976 ret = -EINVAL;
3977 goto out;
3978 }
3979 strcpy(saved_string, (char *)table->data);
3980 }
8d65af78 3981 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3982 if (ret)
443c6f14 3983 goto out;
f0c0b2b8
KH
3984 if (write) {
3985 int oldval = user_zonelist_order;
dacbde09
CG
3986
3987 ret = __parse_numa_zonelist_order((char *)table->data);
3988 if (ret) {
f0c0b2b8
KH
3989 /*
3990 * bogus value. restore saved string
3991 */
dacbde09 3992 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3993 NUMA_ZONELIST_ORDER_LEN);
3994 user_zonelist_order = oldval;
4eaf3f64
HL
3995 } else if (oldval != user_zonelist_order) {
3996 mutex_lock(&zonelists_mutex);
9adb62a5 3997 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3998 mutex_unlock(&zonelists_mutex);
3999 }
f0c0b2b8 4000 }
443c6f14
AK
4001out:
4002 mutex_unlock(&zl_order_mutex);
4003 return ret;
f0c0b2b8
KH
4004}
4005
4006
62bc62a8 4007#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4008static int node_load[MAX_NUMNODES];
4009
1da177e4 4010/**
4dc3b16b 4011 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4012 * @node: node whose fallback list we're appending
4013 * @used_node_mask: nodemask_t of already used nodes
4014 *
4015 * We use a number of factors to determine which is the next node that should
4016 * appear on a given node's fallback list. The node should not have appeared
4017 * already in @node's fallback list, and it should be the next closest node
4018 * according to the distance array (which contains arbitrary distance values
4019 * from each node to each node in the system), and should also prefer nodes
4020 * with no CPUs, since presumably they'll have very little allocation pressure
4021 * on them otherwise.
4022 * It returns -1 if no node is found.
4023 */
f0c0b2b8 4024static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4025{
4cf808eb 4026 int n, val;
1da177e4 4027 int min_val = INT_MAX;
00ef2d2f 4028 int best_node = NUMA_NO_NODE;
a70f7302 4029 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4030
4cf808eb
LT
4031 /* Use the local node if we haven't already */
4032 if (!node_isset(node, *used_node_mask)) {
4033 node_set(node, *used_node_mask);
4034 return node;
4035 }
1da177e4 4036
4b0ef1fe 4037 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4038
4039 /* Don't want a node to appear more than once */
4040 if (node_isset(n, *used_node_mask))
4041 continue;
4042
1da177e4
LT
4043 /* Use the distance array to find the distance */
4044 val = node_distance(node, n);
4045
4cf808eb
LT
4046 /* Penalize nodes under us ("prefer the next node") */
4047 val += (n < node);
4048
1da177e4 4049 /* Give preference to headless and unused nodes */
a70f7302
RR
4050 tmp = cpumask_of_node(n);
4051 if (!cpumask_empty(tmp))
1da177e4
LT
4052 val += PENALTY_FOR_NODE_WITH_CPUS;
4053
4054 /* Slight preference for less loaded node */
4055 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4056 val += node_load[n];
4057
4058 if (val < min_val) {
4059 min_val = val;
4060 best_node = n;
4061 }
4062 }
4063
4064 if (best_node >= 0)
4065 node_set(best_node, *used_node_mask);
4066
4067 return best_node;
4068}
4069
f0c0b2b8
KH
4070
4071/*
4072 * Build zonelists ordered by node and zones within node.
4073 * This results in maximum locality--normal zone overflows into local
4074 * DMA zone, if any--but risks exhausting DMA zone.
4075 */
4076static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4077{
f0c0b2b8 4078 int j;
1da177e4 4079 struct zonelist *zonelist;
f0c0b2b8 4080
54a6eb5c 4081 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4082 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4083 ;
bc732f1d 4084 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4085 zonelist->_zonerefs[j].zone = NULL;
4086 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4087}
4088
523b9458
CL
4089/*
4090 * Build gfp_thisnode zonelists
4091 */
4092static void build_thisnode_zonelists(pg_data_t *pgdat)
4093{
523b9458
CL
4094 int j;
4095 struct zonelist *zonelist;
4096
54a6eb5c 4097 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4098 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4099 zonelist->_zonerefs[j].zone = NULL;
4100 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4101}
4102
f0c0b2b8
KH
4103/*
4104 * Build zonelists ordered by zone and nodes within zones.
4105 * This results in conserving DMA zone[s] until all Normal memory is
4106 * exhausted, but results in overflowing to remote node while memory
4107 * may still exist in local DMA zone.
4108 */
4109static int node_order[MAX_NUMNODES];
4110
4111static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4112{
f0c0b2b8
KH
4113 int pos, j, node;
4114 int zone_type; /* needs to be signed */
4115 struct zone *z;
4116 struct zonelist *zonelist;
4117
54a6eb5c
MG
4118 zonelist = &pgdat->node_zonelists[0];
4119 pos = 0;
4120 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4121 for (j = 0; j < nr_nodes; j++) {
4122 node = node_order[j];
4123 z = &NODE_DATA(node)->node_zones[zone_type];
4124 if (populated_zone(z)) {
dd1a239f
MG
4125 zoneref_set_zone(z,
4126 &zonelist->_zonerefs[pos++]);
54a6eb5c 4127 check_highest_zone(zone_type);
f0c0b2b8
KH
4128 }
4129 }
f0c0b2b8 4130 }
dd1a239f
MG
4131 zonelist->_zonerefs[pos].zone = NULL;
4132 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4133}
4134
3193913c
MG
4135#if defined(CONFIG_64BIT)
4136/*
4137 * Devices that require DMA32/DMA are relatively rare and do not justify a
4138 * penalty to every machine in case the specialised case applies. Default
4139 * to Node-ordering on 64-bit NUMA machines
4140 */
4141static int default_zonelist_order(void)
4142{
4143 return ZONELIST_ORDER_NODE;
4144}
4145#else
4146/*
4147 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4148 * by the kernel. If processes running on node 0 deplete the low memory zone
4149 * then reclaim will occur more frequency increasing stalls and potentially
4150 * be easier to OOM if a large percentage of the zone is under writeback or
4151 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4152 * Hence, default to zone ordering on 32-bit.
4153 */
f0c0b2b8
KH
4154static int default_zonelist_order(void)
4155{
f0c0b2b8
KH
4156 return ZONELIST_ORDER_ZONE;
4157}
3193913c 4158#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4159
4160static void set_zonelist_order(void)
4161{
4162 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4163 current_zonelist_order = default_zonelist_order();
4164 else
4165 current_zonelist_order = user_zonelist_order;
4166}
4167
4168static void build_zonelists(pg_data_t *pgdat)
4169{
c00eb15a 4170 int i, node, load;
1da177e4 4171 nodemask_t used_mask;
f0c0b2b8
KH
4172 int local_node, prev_node;
4173 struct zonelist *zonelist;
d00181b9 4174 unsigned int order = current_zonelist_order;
1da177e4
LT
4175
4176 /* initialize zonelists */
523b9458 4177 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4178 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4179 zonelist->_zonerefs[0].zone = NULL;
4180 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4181 }
4182
4183 /* NUMA-aware ordering of nodes */
4184 local_node = pgdat->node_id;
62bc62a8 4185 load = nr_online_nodes;
1da177e4
LT
4186 prev_node = local_node;
4187 nodes_clear(used_mask);
f0c0b2b8 4188
f0c0b2b8 4189 memset(node_order, 0, sizeof(node_order));
c00eb15a 4190 i = 0;
f0c0b2b8 4191
1da177e4
LT
4192 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4193 /*
4194 * We don't want to pressure a particular node.
4195 * So adding penalty to the first node in same
4196 * distance group to make it round-robin.
4197 */
957f822a
DR
4198 if (node_distance(local_node, node) !=
4199 node_distance(local_node, prev_node))
f0c0b2b8
KH
4200 node_load[node] = load;
4201
1da177e4
LT
4202 prev_node = node;
4203 load--;
f0c0b2b8
KH
4204 if (order == ZONELIST_ORDER_NODE)
4205 build_zonelists_in_node_order(pgdat, node);
4206 else
c00eb15a 4207 node_order[i++] = node; /* remember order */
f0c0b2b8 4208 }
1da177e4 4209
f0c0b2b8
KH
4210 if (order == ZONELIST_ORDER_ZONE) {
4211 /* calculate node order -- i.e., DMA last! */
c00eb15a 4212 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4213 }
523b9458
CL
4214
4215 build_thisnode_zonelists(pgdat);
1da177e4
LT
4216}
4217
7aac7898
LS
4218#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4219/*
4220 * Return node id of node used for "local" allocations.
4221 * I.e., first node id of first zone in arg node's generic zonelist.
4222 * Used for initializing percpu 'numa_mem', which is used primarily
4223 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4224 */
4225int local_memory_node(int node)
4226{
4227 struct zone *zone;
4228
4229 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4230 gfp_zone(GFP_KERNEL),
4231 NULL,
4232 &zone);
4233 return zone->node;
4234}
4235#endif
f0c0b2b8 4236
1da177e4
LT
4237#else /* CONFIG_NUMA */
4238
f0c0b2b8
KH
4239static void set_zonelist_order(void)
4240{
4241 current_zonelist_order = ZONELIST_ORDER_ZONE;
4242}
4243
4244static void build_zonelists(pg_data_t *pgdat)
1da177e4 4245{
19655d34 4246 int node, local_node;
54a6eb5c
MG
4247 enum zone_type j;
4248 struct zonelist *zonelist;
1da177e4
LT
4249
4250 local_node = pgdat->node_id;
1da177e4 4251
54a6eb5c 4252 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4253 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4254
54a6eb5c
MG
4255 /*
4256 * Now we build the zonelist so that it contains the zones
4257 * of all the other nodes.
4258 * We don't want to pressure a particular node, so when
4259 * building the zones for node N, we make sure that the
4260 * zones coming right after the local ones are those from
4261 * node N+1 (modulo N)
4262 */
4263 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4264 if (!node_online(node))
4265 continue;
bc732f1d 4266 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4267 }
54a6eb5c
MG
4268 for (node = 0; node < local_node; node++) {
4269 if (!node_online(node))
4270 continue;
bc732f1d 4271 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4272 }
4273
dd1a239f
MG
4274 zonelist->_zonerefs[j].zone = NULL;
4275 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4276}
4277
4278#endif /* CONFIG_NUMA */
4279
99dcc3e5
CL
4280/*
4281 * Boot pageset table. One per cpu which is going to be used for all
4282 * zones and all nodes. The parameters will be set in such a way
4283 * that an item put on a list will immediately be handed over to
4284 * the buddy list. This is safe since pageset manipulation is done
4285 * with interrupts disabled.
4286 *
4287 * The boot_pagesets must be kept even after bootup is complete for
4288 * unused processors and/or zones. They do play a role for bootstrapping
4289 * hotplugged processors.
4290 *
4291 * zoneinfo_show() and maybe other functions do
4292 * not check if the processor is online before following the pageset pointer.
4293 * Other parts of the kernel may not check if the zone is available.
4294 */
4295static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4296static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4297static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4298
4eaf3f64
HL
4299/*
4300 * Global mutex to protect against size modification of zonelists
4301 * as well as to serialize pageset setup for the new populated zone.
4302 */
4303DEFINE_MUTEX(zonelists_mutex);
4304
9b1a4d38 4305/* return values int ....just for stop_machine() */
4ed7e022 4306static int __build_all_zonelists(void *data)
1da177e4 4307{
6811378e 4308 int nid;
99dcc3e5 4309 int cpu;
9adb62a5 4310 pg_data_t *self = data;
9276b1bc 4311
7f9cfb31
BL
4312#ifdef CONFIG_NUMA
4313 memset(node_load, 0, sizeof(node_load));
4314#endif
9adb62a5
JL
4315
4316 if (self && !node_online(self->node_id)) {
4317 build_zonelists(self);
9adb62a5
JL
4318 }
4319
9276b1bc 4320 for_each_online_node(nid) {
7ea1530a
CL
4321 pg_data_t *pgdat = NODE_DATA(nid);
4322
4323 build_zonelists(pgdat);
9276b1bc 4324 }
99dcc3e5
CL
4325
4326 /*
4327 * Initialize the boot_pagesets that are going to be used
4328 * for bootstrapping processors. The real pagesets for
4329 * each zone will be allocated later when the per cpu
4330 * allocator is available.
4331 *
4332 * boot_pagesets are used also for bootstrapping offline
4333 * cpus if the system is already booted because the pagesets
4334 * are needed to initialize allocators on a specific cpu too.
4335 * F.e. the percpu allocator needs the page allocator which
4336 * needs the percpu allocator in order to allocate its pagesets
4337 * (a chicken-egg dilemma).
4338 */
7aac7898 4339 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4340 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4341
7aac7898
LS
4342#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4343 /*
4344 * We now know the "local memory node" for each node--
4345 * i.e., the node of the first zone in the generic zonelist.
4346 * Set up numa_mem percpu variable for on-line cpus. During
4347 * boot, only the boot cpu should be on-line; we'll init the
4348 * secondary cpus' numa_mem as they come on-line. During
4349 * node/memory hotplug, we'll fixup all on-line cpus.
4350 */
4351 if (cpu_online(cpu))
4352 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4353#endif
4354 }
4355
6811378e
YG
4356 return 0;
4357}
4358
061f67bc
RV
4359static noinline void __init
4360build_all_zonelists_init(void)
4361{
4362 __build_all_zonelists(NULL);
4363 mminit_verify_zonelist();
4364 cpuset_init_current_mems_allowed();
4365}
4366
4eaf3f64
HL
4367/*
4368 * Called with zonelists_mutex held always
4369 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4370 *
4371 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4372 * [we're only called with non-NULL zone through __meminit paths] and
4373 * (2) call of __init annotated helper build_all_zonelists_init
4374 * [protected by SYSTEM_BOOTING].
4eaf3f64 4375 */
9adb62a5 4376void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4377{
f0c0b2b8
KH
4378 set_zonelist_order();
4379
6811378e 4380 if (system_state == SYSTEM_BOOTING) {
061f67bc 4381 build_all_zonelists_init();
6811378e 4382 } else {
e9959f0f 4383#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4384 if (zone)
4385 setup_zone_pageset(zone);
e9959f0f 4386#endif
dd1895e2
CS
4387 /* we have to stop all cpus to guarantee there is no user
4388 of zonelist */
9adb62a5 4389 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4390 /* cpuset refresh routine should be here */
4391 }
bd1e22b8 4392 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4393 /*
4394 * Disable grouping by mobility if the number of pages in the
4395 * system is too low to allow the mechanism to work. It would be
4396 * more accurate, but expensive to check per-zone. This check is
4397 * made on memory-hotadd so a system can start with mobility
4398 * disabled and enable it later
4399 */
d9c23400 4400 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4401 page_group_by_mobility_disabled = 1;
4402 else
4403 page_group_by_mobility_disabled = 0;
4404
f88dfff5 4405 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4406 "Total pages: %ld\n",
62bc62a8 4407 nr_online_nodes,
f0c0b2b8 4408 zonelist_order_name[current_zonelist_order],
9ef9acb0 4409 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4410 vm_total_pages);
4411#ifdef CONFIG_NUMA
f88dfff5 4412 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4413#endif
1da177e4
LT
4414}
4415
4416/*
4417 * Helper functions to size the waitqueue hash table.
4418 * Essentially these want to choose hash table sizes sufficiently
4419 * large so that collisions trying to wait on pages are rare.
4420 * But in fact, the number of active page waitqueues on typical
4421 * systems is ridiculously low, less than 200. So this is even
4422 * conservative, even though it seems large.
4423 *
4424 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4425 * waitqueues, i.e. the size of the waitq table given the number of pages.
4426 */
4427#define PAGES_PER_WAITQUEUE 256
4428
cca448fe 4429#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4430static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4431{
4432 unsigned long size = 1;
4433
4434 pages /= PAGES_PER_WAITQUEUE;
4435
4436 while (size < pages)
4437 size <<= 1;
4438
4439 /*
4440 * Once we have dozens or even hundreds of threads sleeping
4441 * on IO we've got bigger problems than wait queue collision.
4442 * Limit the size of the wait table to a reasonable size.
4443 */
4444 size = min(size, 4096UL);
4445
4446 return max(size, 4UL);
4447}
cca448fe
YG
4448#else
4449/*
4450 * A zone's size might be changed by hot-add, so it is not possible to determine
4451 * a suitable size for its wait_table. So we use the maximum size now.
4452 *
4453 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4454 *
4455 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4456 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4457 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4458 *
4459 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4460 * or more by the traditional way. (See above). It equals:
4461 *
4462 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4463 * ia64(16K page size) : = ( 8G + 4M)byte.
4464 * powerpc (64K page size) : = (32G +16M)byte.
4465 */
4466static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4467{
4468 return 4096UL;
4469}
4470#endif
1da177e4
LT
4471
4472/*
4473 * This is an integer logarithm so that shifts can be used later
4474 * to extract the more random high bits from the multiplicative
4475 * hash function before the remainder is taken.
4476 */
4477static inline unsigned long wait_table_bits(unsigned long size)
4478{
4479 return ffz(~size);
4480}
4481
1da177e4
LT
4482/*
4483 * Initially all pages are reserved - free ones are freed
4484 * up by free_all_bootmem() once the early boot process is
4485 * done. Non-atomic initialization, single-pass.
4486 */
c09b4240 4487void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4488 unsigned long start_pfn, enum memmap_context context)
1da177e4 4489{
4b94ffdc 4490 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4491 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4492 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4493 unsigned long pfn;
3a80a7fa 4494 unsigned long nr_initialised = 0;
342332e6
TI
4495#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4496 struct memblock_region *r = NULL, *tmp;
4497#endif
1da177e4 4498
22b31eec
HD
4499 if (highest_memmap_pfn < end_pfn - 1)
4500 highest_memmap_pfn = end_pfn - 1;
4501
4b94ffdc
DW
4502 /*
4503 * Honor reservation requested by the driver for this ZONE_DEVICE
4504 * memory
4505 */
4506 if (altmap && start_pfn == altmap->base_pfn)
4507 start_pfn += altmap->reserve;
4508
cbe8dd4a 4509 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4510 /*
4511 * There can be holes in boot-time mem_map[]s
4512 * handed to this function. They do not
4513 * exist on hotplugged memory.
4514 */
4515 if (context == MEMMAP_EARLY) {
4516 if (!early_pfn_valid(pfn))
4517 continue;
4518 if (!early_pfn_in_nid(pfn, nid))
4519 continue;
3a80a7fa
MG
4520 if (!update_defer_init(pgdat, pfn, end_pfn,
4521 &nr_initialised))
4522 break;
342332e6
TI
4523
4524#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4525 /*
4526 * if not mirrored_kernelcore and ZONE_MOVABLE exists,
4527 * range from zone_movable_pfn[nid] to end of each node
4528 * should be ZONE_MOVABLE not ZONE_NORMAL. skip it.
4529 */
4530 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4531 if (zone == ZONE_NORMAL &&
4532 pfn >= zone_movable_pfn[nid])
4533 continue;
4534
4535 /*
4536 * check given memblock attribute by firmware which
4537 * can affect kernel memory layout.
4538 * if zone==ZONE_MOVABLE but memory is mirrored,
4539 * it's an overlapped memmap init. skip it.
4540 */
4541 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4542 if (!r ||
4543 pfn >= memblock_region_memory_end_pfn(r)) {
4544 for_each_memblock(memory, tmp)
4545 if (pfn < memblock_region_memory_end_pfn(tmp))
4546 break;
4547 r = tmp;
4548 }
4549 if (pfn >= memblock_region_memory_base_pfn(r) &&
4550 memblock_is_mirror(r)) {
4551 /* already initialized as NORMAL */
4552 pfn = memblock_region_memory_end_pfn(r);
4553 continue;
4554 }
4555 }
4556#endif
a2f3aa02 4557 }
ac5d2539
MG
4558
4559 /*
4560 * Mark the block movable so that blocks are reserved for
4561 * movable at startup. This will force kernel allocations
4562 * to reserve their blocks rather than leaking throughout
4563 * the address space during boot when many long-lived
974a786e 4564 * kernel allocations are made.
ac5d2539
MG
4565 *
4566 * bitmap is created for zone's valid pfn range. but memmap
4567 * can be created for invalid pages (for alignment)
4568 * check here not to call set_pageblock_migratetype() against
4569 * pfn out of zone.
4570 */
4571 if (!(pfn & (pageblock_nr_pages - 1))) {
4572 struct page *page = pfn_to_page(pfn);
4573
4574 __init_single_page(page, pfn, zone, nid);
4575 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4576 } else {
4577 __init_single_pfn(pfn, zone, nid);
4578 }
1da177e4
LT
4579 }
4580}
4581
1e548deb 4582static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4583{
7aeb09f9 4584 unsigned int order, t;
b2a0ac88
MG
4585 for_each_migratetype_order(order, t) {
4586 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4587 zone->free_area[order].nr_free = 0;
4588 }
4589}
4590
4591#ifndef __HAVE_ARCH_MEMMAP_INIT
4592#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4593 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4594#endif
4595
7cd2b0a3 4596static int zone_batchsize(struct zone *zone)
e7c8d5c9 4597{
3a6be87f 4598#ifdef CONFIG_MMU
e7c8d5c9
CL
4599 int batch;
4600
4601 /*
4602 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4603 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4604 *
4605 * OK, so we don't know how big the cache is. So guess.
4606 */
b40da049 4607 batch = zone->managed_pages / 1024;
ba56e91c
SR
4608 if (batch * PAGE_SIZE > 512 * 1024)
4609 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4610 batch /= 4; /* We effectively *= 4 below */
4611 if (batch < 1)
4612 batch = 1;
4613
4614 /*
0ceaacc9
NP
4615 * Clamp the batch to a 2^n - 1 value. Having a power
4616 * of 2 value was found to be more likely to have
4617 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4618 *
0ceaacc9
NP
4619 * For example if 2 tasks are alternately allocating
4620 * batches of pages, one task can end up with a lot
4621 * of pages of one half of the possible page colors
4622 * and the other with pages of the other colors.
e7c8d5c9 4623 */
9155203a 4624 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4625
e7c8d5c9 4626 return batch;
3a6be87f
DH
4627
4628#else
4629 /* The deferral and batching of frees should be suppressed under NOMMU
4630 * conditions.
4631 *
4632 * The problem is that NOMMU needs to be able to allocate large chunks
4633 * of contiguous memory as there's no hardware page translation to
4634 * assemble apparent contiguous memory from discontiguous pages.
4635 *
4636 * Queueing large contiguous runs of pages for batching, however,
4637 * causes the pages to actually be freed in smaller chunks. As there
4638 * can be a significant delay between the individual batches being
4639 * recycled, this leads to the once large chunks of space being
4640 * fragmented and becoming unavailable for high-order allocations.
4641 */
4642 return 0;
4643#endif
e7c8d5c9
CL
4644}
4645
8d7a8fa9
CS
4646/*
4647 * pcp->high and pcp->batch values are related and dependent on one another:
4648 * ->batch must never be higher then ->high.
4649 * The following function updates them in a safe manner without read side
4650 * locking.
4651 *
4652 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4653 * those fields changing asynchronously (acording the the above rule).
4654 *
4655 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4656 * outside of boot time (or some other assurance that no concurrent updaters
4657 * exist).
4658 */
4659static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4660 unsigned long batch)
4661{
4662 /* start with a fail safe value for batch */
4663 pcp->batch = 1;
4664 smp_wmb();
4665
4666 /* Update high, then batch, in order */
4667 pcp->high = high;
4668 smp_wmb();
4669
4670 pcp->batch = batch;
4671}
4672
3664033c 4673/* a companion to pageset_set_high() */
4008bab7
CS
4674static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4675{
8d7a8fa9 4676 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4677}
4678
88c90dbc 4679static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4680{
4681 struct per_cpu_pages *pcp;
5f8dcc21 4682 int migratetype;
2caaad41 4683
1c6fe946
MD
4684 memset(p, 0, sizeof(*p));
4685
3dfa5721 4686 pcp = &p->pcp;
2caaad41 4687 pcp->count = 0;
5f8dcc21
MG
4688 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4689 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4690}
4691
88c90dbc
CS
4692static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4693{
4694 pageset_init(p);
4695 pageset_set_batch(p, batch);
4696}
4697
8ad4b1fb 4698/*
3664033c 4699 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4700 * to the value high for the pageset p.
4701 */
3664033c 4702static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4703 unsigned long high)
4704{
8d7a8fa9
CS
4705 unsigned long batch = max(1UL, high / 4);
4706 if ((high / 4) > (PAGE_SHIFT * 8))
4707 batch = PAGE_SHIFT * 8;
8ad4b1fb 4708
8d7a8fa9 4709 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4710}
4711
7cd2b0a3
DR
4712static void pageset_set_high_and_batch(struct zone *zone,
4713 struct per_cpu_pageset *pcp)
56cef2b8 4714{
56cef2b8 4715 if (percpu_pagelist_fraction)
3664033c 4716 pageset_set_high(pcp,
56cef2b8
CS
4717 (zone->managed_pages /
4718 percpu_pagelist_fraction));
4719 else
4720 pageset_set_batch(pcp, zone_batchsize(zone));
4721}
4722
169f6c19
CS
4723static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4724{
4725 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4726
4727 pageset_init(pcp);
4728 pageset_set_high_and_batch(zone, pcp);
4729}
4730
4ed7e022 4731static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4732{
4733 int cpu;
319774e2 4734 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4735 for_each_possible_cpu(cpu)
4736 zone_pageset_init(zone, cpu);
319774e2
WF
4737}
4738
2caaad41 4739/*
99dcc3e5
CL
4740 * Allocate per cpu pagesets and initialize them.
4741 * Before this call only boot pagesets were available.
e7c8d5c9 4742 */
99dcc3e5 4743void __init setup_per_cpu_pageset(void)
e7c8d5c9 4744{
99dcc3e5 4745 struct zone *zone;
e7c8d5c9 4746
319774e2
WF
4747 for_each_populated_zone(zone)
4748 setup_zone_pageset(zone);
e7c8d5c9
CL
4749}
4750
577a32f6 4751static noinline __init_refok
cca448fe 4752int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4753{
4754 int i;
cca448fe 4755 size_t alloc_size;
ed8ece2e
DH
4756
4757 /*
4758 * The per-page waitqueue mechanism uses hashed waitqueues
4759 * per zone.
4760 */
02b694de
YG
4761 zone->wait_table_hash_nr_entries =
4762 wait_table_hash_nr_entries(zone_size_pages);
4763 zone->wait_table_bits =
4764 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4765 alloc_size = zone->wait_table_hash_nr_entries
4766 * sizeof(wait_queue_head_t);
4767
cd94b9db 4768 if (!slab_is_available()) {
cca448fe 4769 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4770 memblock_virt_alloc_node_nopanic(
4771 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4772 } else {
4773 /*
4774 * This case means that a zone whose size was 0 gets new memory
4775 * via memory hot-add.
4776 * But it may be the case that a new node was hot-added. In
4777 * this case vmalloc() will not be able to use this new node's
4778 * memory - this wait_table must be initialized to use this new
4779 * node itself as well.
4780 * To use this new node's memory, further consideration will be
4781 * necessary.
4782 */
8691f3a7 4783 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4784 }
4785 if (!zone->wait_table)
4786 return -ENOMEM;
ed8ece2e 4787
b8af2941 4788 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4789 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4790
4791 return 0;
ed8ece2e
DH
4792}
4793
c09b4240 4794static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4795{
99dcc3e5
CL
4796 /*
4797 * per cpu subsystem is not up at this point. The following code
4798 * relies on the ability of the linker to provide the
4799 * offset of a (static) per cpu variable into the per cpu area.
4800 */
4801 zone->pageset = &boot_pageset;
ed8ece2e 4802
b38a8725 4803 if (populated_zone(zone))
99dcc3e5
CL
4804 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4805 zone->name, zone->present_pages,
4806 zone_batchsize(zone));
ed8ece2e
DH
4807}
4808
4ed7e022 4809int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4810 unsigned long zone_start_pfn,
b171e409 4811 unsigned long size)
ed8ece2e
DH
4812{
4813 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4814 int ret;
4815 ret = zone_wait_table_init(zone, size);
4816 if (ret)
4817 return ret;
ed8ece2e
DH
4818 pgdat->nr_zones = zone_idx(zone) + 1;
4819
ed8ece2e
DH
4820 zone->zone_start_pfn = zone_start_pfn;
4821
708614e6
MG
4822 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4823 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4824 pgdat->node_id,
4825 (unsigned long)zone_idx(zone),
4826 zone_start_pfn, (zone_start_pfn + size));
4827
1e548deb 4828 zone_init_free_lists(zone);
718127cc
YG
4829
4830 return 0;
ed8ece2e
DH
4831}
4832
0ee332c1 4833#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4834#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4835
c713216d
MG
4836/*
4837 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4838 */
8a942fde
MG
4839int __meminit __early_pfn_to_nid(unsigned long pfn,
4840 struct mminit_pfnnid_cache *state)
c713216d 4841{
c13291a5 4842 unsigned long start_pfn, end_pfn;
e76b63f8 4843 int nid;
7c243c71 4844
8a942fde
MG
4845 if (state->last_start <= pfn && pfn < state->last_end)
4846 return state->last_nid;
c713216d 4847
e76b63f8
YL
4848 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4849 if (nid != -1) {
8a942fde
MG
4850 state->last_start = start_pfn;
4851 state->last_end = end_pfn;
4852 state->last_nid = nid;
e76b63f8
YL
4853 }
4854
4855 return nid;
c713216d
MG
4856}
4857#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4858
c713216d 4859/**
6782832e 4860 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4861 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4862 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4863 *
7d018176
ZZ
4864 * If an architecture guarantees that all ranges registered contain no holes
4865 * and may be freed, this this function may be used instead of calling
4866 * memblock_free_early_nid() manually.
c713216d 4867 */
c13291a5 4868void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4869{
c13291a5
TH
4870 unsigned long start_pfn, end_pfn;
4871 int i, this_nid;
edbe7d23 4872
c13291a5
TH
4873 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4874 start_pfn = min(start_pfn, max_low_pfn);
4875 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4876
c13291a5 4877 if (start_pfn < end_pfn)
6782832e
SS
4878 memblock_free_early_nid(PFN_PHYS(start_pfn),
4879 (end_pfn - start_pfn) << PAGE_SHIFT,
4880 this_nid);
edbe7d23 4881 }
edbe7d23 4882}
edbe7d23 4883
c713216d
MG
4884/**
4885 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4886 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4887 *
7d018176
ZZ
4888 * If an architecture guarantees that all ranges registered contain no holes and may
4889 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4890 */
4891void __init sparse_memory_present_with_active_regions(int nid)
4892{
c13291a5
TH
4893 unsigned long start_pfn, end_pfn;
4894 int i, this_nid;
c713216d 4895
c13291a5
TH
4896 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4897 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4898}
4899
4900/**
4901 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4902 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4903 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4904 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4905 *
4906 * It returns the start and end page frame of a node based on information
7d018176 4907 * provided by memblock_set_node(). If called for a node
c713216d 4908 * with no available memory, a warning is printed and the start and end
88ca3b94 4909 * PFNs will be 0.
c713216d 4910 */
a3142c8e 4911void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4912 unsigned long *start_pfn, unsigned long *end_pfn)
4913{
c13291a5 4914 unsigned long this_start_pfn, this_end_pfn;
c713216d 4915 int i;
c13291a5 4916
c713216d
MG
4917 *start_pfn = -1UL;
4918 *end_pfn = 0;
4919
c13291a5
TH
4920 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4921 *start_pfn = min(*start_pfn, this_start_pfn);
4922 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4923 }
4924
633c0666 4925 if (*start_pfn == -1UL)
c713216d 4926 *start_pfn = 0;
c713216d
MG
4927}
4928
2a1e274a
MG
4929/*
4930 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4931 * assumption is made that zones within a node are ordered in monotonic
4932 * increasing memory addresses so that the "highest" populated zone is used
4933 */
b69a7288 4934static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4935{
4936 int zone_index;
4937 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4938 if (zone_index == ZONE_MOVABLE)
4939 continue;
4940
4941 if (arch_zone_highest_possible_pfn[zone_index] >
4942 arch_zone_lowest_possible_pfn[zone_index])
4943 break;
4944 }
4945
4946 VM_BUG_ON(zone_index == -1);
4947 movable_zone = zone_index;
4948}
4949
4950/*
4951 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4952 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4953 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4954 * in each node depending on the size of each node and how evenly kernelcore
4955 * is distributed. This helper function adjusts the zone ranges
4956 * provided by the architecture for a given node by using the end of the
4957 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4958 * zones within a node are in order of monotonic increases memory addresses
4959 */
b69a7288 4960static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4961 unsigned long zone_type,
4962 unsigned long node_start_pfn,
4963 unsigned long node_end_pfn,
4964 unsigned long *zone_start_pfn,
4965 unsigned long *zone_end_pfn)
4966{
4967 /* Only adjust if ZONE_MOVABLE is on this node */
4968 if (zone_movable_pfn[nid]) {
4969 /* Size ZONE_MOVABLE */
4970 if (zone_type == ZONE_MOVABLE) {
4971 *zone_start_pfn = zone_movable_pfn[nid];
4972 *zone_end_pfn = min(node_end_pfn,
4973 arch_zone_highest_possible_pfn[movable_zone]);
4974
2a1e274a
MG
4975 /* Check if this whole range is within ZONE_MOVABLE */
4976 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4977 *zone_start_pfn = *zone_end_pfn;
4978 }
4979}
4980
c713216d
MG
4981/*
4982 * Return the number of pages a zone spans in a node, including holes
4983 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4984 */
6ea6e688 4985static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4986 unsigned long zone_type,
7960aedd
ZY
4987 unsigned long node_start_pfn,
4988 unsigned long node_end_pfn,
d91749c1
TI
4989 unsigned long *zone_start_pfn,
4990 unsigned long *zone_end_pfn,
c713216d
MG
4991 unsigned long *ignored)
4992{
b5685e92 4993 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4994 if (!node_start_pfn && !node_end_pfn)
4995 return 0;
4996
7960aedd 4997 /* Get the start and end of the zone */
d91749c1
TI
4998 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4999 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5000 adjust_zone_range_for_zone_movable(nid, zone_type,
5001 node_start_pfn, node_end_pfn,
d91749c1 5002 zone_start_pfn, zone_end_pfn);
c713216d
MG
5003
5004 /* Check that this node has pages within the zone's required range */
d91749c1 5005 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5006 return 0;
5007
5008 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5009 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5010 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5011
5012 /* Return the spanned pages */
d91749c1 5013 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5014}
5015
5016/*
5017 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5018 * then all holes in the requested range will be accounted for.
c713216d 5019 */
32996250 5020unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5021 unsigned long range_start_pfn,
5022 unsigned long range_end_pfn)
5023{
96e907d1
TH
5024 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5025 unsigned long start_pfn, end_pfn;
5026 int i;
c713216d 5027
96e907d1
TH
5028 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5029 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5030 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5031 nr_absent -= end_pfn - start_pfn;
c713216d 5032 }
96e907d1 5033 return nr_absent;
c713216d
MG
5034}
5035
5036/**
5037 * absent_pages_in_range - Return number of page frames in holes within a range
5038 * @start_pfn: The start PFN to start searching for holes
5039 * @end_pfn: The end PFN to stop searching for holes
5040 *
88ca3b94 5041 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5042 */
5043unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5044 unsigned long end_pfn)
5045{
5046 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5047}
5048
5049/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5050static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5051 unsigned long zone_type,
7960aedd
ZY
5052 unsigned long node_start_pfn,
5053 unsigned long node_end_pfn,
c713216d
MG
5054 unsigned long *ignored)
5055{
96e907d1
TH
5056 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5057 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5058 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5059 unsigned long nr_absent;
9c7cd687 5060
b5685e92 5061 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5062 if (!node_start_pfn && !node_end_pfn)
5063 return 0;
5064
96e907d1
TH
5065 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5066 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5067
2a1e274a
MG
5068 adjust_zone_range_for_zone_movable(nid, zone_type,
5069 node_start_pfn, node_end_pfn,
5070 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5071 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5072
5073 /*
5074 * ZONE_MOVABLE handling.
5075 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5076 * and vice versa.
5077 */
5078 if (zone_movable_pfn[nid]) {
5079 if (mirrored_kernelcore) {
5080 unsigned long start_pfn, end_pfn;
5081 struct memblock_region *r;
5082
5083 for_each_memblock(memory, r) {
5084 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5085 zone_start_pfn, zone_end_pfn);
5086 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5087 zone_start_pfn, zone_end_pfn);
5088
5089 if (zone_type == ZONE_MOVABLE &&
5090 memblock_is_mirror(r))
5091 nr_absent += end_pfn - start_pfn;
5092
5093 if (zone_type == ZONE_NORMAL &&
5094 !memblock_is_mirror(r))
5095 nr_absent += end_pfn - start_pfn;
5096 }
5097 } else {
5098 if (zone_type == ZONE_NORMAL)
5099 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5100 }
5101 }
5102
5103 return nr_absent;
c713216d 5104}
0e0b864e 5105
0ee332c1 5106#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5107static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5108 unsigned long zone_type,
7960aedd
ZY
5109 unsigned long node_start_pfn,
5110 unsigned long node_end_pfn,
d91749c1
TI
5111 unsigned long *zone_start_pfn,
5112 unsigned long *zone_end_pfn,
c713216d
MG
5113 unsigned long *zones_size)
5114{
d91749c1
TI
5115 unsigned int zone;
5116
5117 *zone_start_pfn = node_start_pfn;
5118 for (zone = 0; zone < zone_type; zone++)
5119 *zone_start_pfn += zones_size[zone];
5120
5121 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5122
c713216d
MG
5123 return zones_size[zone_type];
5124}
5125
6ea6e688 5126static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5127 unsigned long zone_type,
7960aedd
ZY
5128 unsigned long node_start_pfn,
5129 unsigned long node_end_pfn,
c713216d
MG
5130 unsigned long *zholes_size)
5131{
5132 if (!zholes_size)
5133 return 0;
5134
5135 return zholes_size[zone_type];
5136}
20e6926d 5137
0ee332c1 5138#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5139
a3142c8e 5140static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5141 unsigned long node_start_pfn,
5142 unsigned long node_end_pfn,
5143 unsigned long *zones_size,
5144 unsigned long *zholes_size)
c713216d 5145{
febd5949 5146 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5147 enum zone_type i;
5148
febd5949
GZ
5149 for (i = 0; i < MAX_NR_ZONES; i++) {
5150 struct zone *zone = pgdat->node_zones + i;
d91749c1 5151 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5152 unsigned long size, real_size;
c713216d 5153
febd5949
GZ
5154 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5155 node_start_pfn,
5156 node_end_pfn,
d91749c1
TI
5157 &zone_start_pfn,
5158 &zone_end_pfn,
febd5949
GZ
5159 zones_size);
5160 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5161 node_start_pfn, node_end_pfn,
5162 zholes_size);
d91749c1
TI
5163 if (size)
5164 zone->zone_start_pfn = zone_start_pfn;
5165 else
5166 zone->zone_start_pfn = 0;
febd5949
GZ
5167 zone->spanned_pages = size;
5168 zone->present_pages = real_size;
5169
5170 totalpages += size;
5171 realtotalpages += real_size;
5172 }
5173
5174 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5175 pgdat->node_present_pages = realtotalpages;
5176 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5177 realtotalpages);
5178}
5179
835c134e
MG
5180#ifndef CONFIG_SPARSEMEM
5181/*
5182 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5183 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5184 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5185 * round what is now in bits to nearest long in bits, then return it in
5186 * bytes.
5187 */
7c45512d 5188static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5189{
5190 unsigned long usemapsize;
5191
7c45512d 5192 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5193 usemapsize = roundup(zonesize, pageblock_nr_pages);
5194 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5195 usemapsize *= NR_PAGEBLOCK_BITS;
5196 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5197
5198 return usemapsize / 8;
5199}
5200
5201static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5202 struct zone *zone,
5203 unsigned long zone_start_pfn,
5204 unsigned long zonesize)
835c134e 5205{
7c45512d 5206 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5207 zone->pageblock_flags = NULL;
58a01a45 5208 if (usemapsize)
6782832e
SS
5209 zone->pageblock_flags =
5210 memblock_virt_alloc_node_nopanic(usemapsize,
5211 pgdat->node_id);
835c134e
MG
5212}
5213#else
7c45512d
LT
5214static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5215 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5216#endif /* CONFIG_SPARSEMEM */
5217
d9c23400 5218#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5219
d9c23400 5220/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5221void __paginginit set_pageblock_order(void)
d9c23400 5222{
955c1cd7
AM
5223 unsigned int order;
5224
d9c23400
MG
5225 /* Check that pageblock_nr_pages has not already been setup */
5226 if (pageblock_order)
5227 return;
5228
955c1cd7
AM
5229 if (HPAGE_SHIFT > PAGE_SHIFT)
5230 order = HUGETLB_PAGE_ORDER;
5231 else
5232 order = MAX_ORDER - 1;
5233
d9c23400
MG
5234 /*
5235 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5236 * This value may be variable depending on boot parameters on IA64 and
5237 * powerpc.
d9c23400
MG
5238 */
5239 pageblock_order = order;
5240}
5241#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5242
ba72cb8c
MG
5243/*
5244 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5245 * is unused as pageblock_order is set at compile-time. See
5246 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5247 * the kernel config
ba72cb8c 5248 */
15ca220e 5249void __paginginit set_pageblock_order(void)
ba72cb8c 5250{
ba72cb8c 5251}
d9c23400
MG
5252
5253#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5254
01cefaef
JL
5255static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5256 unsigned long present_pages)
5257{
5258 unsigned long pages = spanned_pages;
5259
5260 /*
5261 * Provide a more accurate estimation if there are holes within
5262 * the zone and SPARSEMEM is in use. If there are holes within the
5263 * zone, each populated memory region may cost us one or two extra
5264 * memmap pages due to alignment because memmap pages for each
5265 * populated regions may not naturally algined on page boundary.
5266 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5267 */
5268 if (spanned_pages > present_pages + (present_pages >> 4) &&
5269 IS_ENABLED(CONFIG_SPARSEMEM))
5270 pages = present_pages;
5271
5272 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5273}
5274
1da177e4
LT
5275/*
5276 * Set up the zone data structures:
5277 * - mark all pages reserved
5278 * - mark all memory queues empty
5279 * - clear the memory bitmaps
6527af5d
MK
5280 *
5281 * NOTE: pgdat should get zeroed by caller.
1da177e4 5282 */
7f3eb55b 5283static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5284{
2f1b6248 5285 enum zone_type j;
ed8ece2e 5286 int nid = pgdat->node_id;
718127cc 5287 int ret;
1da177e4 5288
208d54e5 5289 pgdat_resize_init(pgdat);
8177a420
AA
5290#ifdef CONFIG_NUMA_BALANCING
5291 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5292 pgdat->numabalancing_migrate_nr_pages = 0;
5293 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5294#endif
5295#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5296 spin_lock_init(&pgdat->split_queue_lock);
5297 INIT_LIST_HEAD(&pgdat->split_queue);
5298 pgdat->split_queue_len = 0;
8177a420 5299#endif
1da177e4 5300 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5301 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5302 pgdat_page_ext_init(pgdat);
5f63b720 5303
1da177e4
LT
5304 for (j = 0; j < MAX_NR_ZONES; j++) {
5305 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5306 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5307 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5308
febd5949
GZ
5309 size = zone->spanned_pages;
5310 realsize = freesize = zone->present_pages;
1da177e4 5311
0e0b864e 5312 /*
9feedc9d 5313 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5314 * is used by this zone for memmap. This affects the watermark
5315 * and per-cpu initialisations
5316 */
01cefaef 5317 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5318 if (!is_highmem_idx(j)) {
5319 if (freesize >= memmap_pages) {
5320 freesize -= memmap_pages;
5321 if (memmap_pages)
5322 printk(KERN_DEBUG
5323 " %s zone: %lu pages used for memmap\n",
5324 zone_names[j], memmap_pages);
5325 } else
5326 printk(KERN_WARNING
5327 " %s zone: %lu pages exceeds freesize %lu\n",
5328 zone_names[j], memmap_pages, freesize);
5329 }
0e0b864e 5330
6267276f 5331 /* Account for reserved pages */
9feedc9d
JL
5332 if (j == 0 && freesize > dma_reserve) {
5333 freesize -= dma_reserve;
d903ef9f 5334 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5335 zone_names[0], dma_reserve);
0e0b864e
MG
5336 }
5337
98d2b0eb 5338 if (!is_highmem_idx(j))
9feedc9d 5339 nr_kernel_pages += freesize;
01cefaef
JL
5340 /* Charge for highmem memmap if there are enough kernel pages */
5341 else if (nr_kernel_pages > memmap_pages * 2)
5342 nr_kernel_pages -= memmap_pages;
9feedc9d 5343 nr_all_pages += freesize;
1da177e4 5344
9feedc9d
JL
5345 /*
5346 * Set an approximate value for lowmem here, it will be adjusted
5347 * when the bootmem allocator frees pages into the buddy system.
5348 * And all highmem pages will be managed by the buddy system.
5349 */
5350 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5351#ifdef CONFIG_NUMA
d5f541ed 5352 zone->node = nid;
9feedc9d 5353 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5354 / 100;
9feedc9d 5355 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5356#endif
1da177e4
LT
5357 zone->name = zone_names[j];
5358 spin_lock_init(&zone->lock);
5359 spin_lock_init(&zone->lru_lock);
bdc8cb98 5360 zone_seqlock_init(zone);
1da177e4 5361 zone->zone_pgdat = pgdat;
ed8ece2e 5362 zone_pcp_init(zone);
81c0a2bb
JW
5363
5364 /* For bootup, initialized properly in watermark setup */
5365 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5366
bea8c150 5367 lruvec_init(&zone->lruvec);
1da177e4
LT
5368 if (!size)
5369 continue;
5370
955c1cd7 5371 set_pageblock_order();
7c45512d 5372 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5373 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5374 BUG_ON(ret);
76cdd58e 5375 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5376 }
5377}
5378
577a32f6 5379static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5380{
b0aeba74 5381 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5382 unsigned long __maybe_unused offset = 0;
5383
1da177e4
LT
5384 /* Skip empty nodes */
5385 if (!pgdat->node_spanned_pages)
5386 return;
5387
d41dee36 5388#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5389 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5390 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5391 /* ia64 gets its own node_mem_map, before this, without bootmem */
5392 if (!pgdat->node_mem_map) {
b0aeba74 5393 unsigned long size, end;
d41dee36
AW
5394 struct page *map;
5395
e984bb43
BP
5396 /*
5397 * The zone's endpoints aren't required to be MAX_ORDER
5398 * aligned but the node_mem_map endpoints must be in order
5399 * for the buddy allocator to function correctly.
5400 */
108bcc96 5401 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5402 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5403 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5404 map = alloc_remap(pgdat->node_id, size);
5405 if (!map)
6782832e
SS
5406 map = memblock_virt_alloc_node_nopanic(size,
5407 pgdat->node_id);
a1c34a3b 5408 pgdat->node_mem_map = map + offset;
1da177e4 5409 }
12d810c1 5410#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5411 /*
5412 * With no DISCONTIG, the global mem_map is just set as node 0's
5413 */
c713216d 5414 if (pgdat == NODE_DATA(0)) {
1da177e4 5415 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5416#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5417 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5418 mem_map -= offset;
0ee332c1 5419#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5420 }
1da177e4 5421#endif
d41dee36 5422#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5423}
5424
9109fb7b
JW
5425void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5426 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5427{
9109fb7b 5428 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5429 unsigned long start_pfn = 0;
5430 unsigned long end_pfn = 0;
9109fb7b 5431
88fdf75d 5432 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5433 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5434
3a80a7fa 5435 reset_deferred_meminit(pgdat);
1da177e4
LT
5436 pgdat->node_id = nid;
5437 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5438#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5439 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5440 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5441 (u64)start_pfn << PAGE_SHIFT,
5442 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5443#else
5444 start_pfn = node_start_pfn;
7960aedd
ZY
5445#endif
5446 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5447 zones_size, zholes_size);
1da177e4
LT
5448
5449 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5450#ifdef CONFIG_FLAT_NODE_MEM_MAP
5451 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5452 nid, (unsigned long)pgdat,
5453 (unsigned long)pgdat->node_mem_map);
5454#endif
1da177e4 5455
7f3eb55b 5456 free_area_init_core(pgdat);
1da177e4
LT
5457}
5458
0ee332c1 5459#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5460
5461#if MAX_NUMNODES > 1
5462/*
5463 * Figure out the number of possible node ids.
5464 */
f9872caf 5465void __init setup_nr_node_ids(void)
418508c1 5466{
904a9553 5467 unsigned int highest;
418508c1 5468
904a9553 5469 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5470 nr_node_ids = highest + 1;
5471}
418508c1
MS
5472#endif
5473
1e01979c
TH
5474/**
5475 * node_map_pfn_alignment - determine the maximum internode alignment
5476 *
5477 * This function should be called after node map is populated and sorted.
5478 * It calculates the maximum power of two alignment which can distinguish
5479 * all the nodes.
5480 *
5481 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5482 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5483 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5484 * shifted, 1GiB is enough and this function will indicate so.
5485 *
5486 * This is used to test whether pfn -> nid mapping of the chosen memory
5487 * model has fine enough granularity to avoid incorrect mapping for the
5488 * populated node map.
5489 *
5490 * Returns the determined alignment in pfn's. 0 if there is no alignment
5491 * requirement (single node).
5492 */
5493unsigned long __init node_map_pfn_alignment(void)
5494{
5495 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5496 unsigned long start, end, mask;
1e01979c 5497 int last_nid = -1;
c13291a5 5498 int i, nid;
1e01979c 5499
c13291a5 5500 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5501 if (!start || last_nid < 0 || last_nid == nid) {
5502 last_nid = nid;
5503 last_end = end;
5504 continue;
5505 }
5506
5507 /*
5508 * Start with a mask granular enough to pin-point to the
5509 * start pfn and tick off bits one-by-one until it becomes
5510 * too coarse to separate the current node from the last.
5511 */
5512 mask = ~((1 << __ffs(start)) - 1);
5513 while (mask && last_end <= (start & (mask << 1)))
5514 mask <<= 1;
5515
5516 /* accumulate all internode masks */
5517 accl_mask |= mask;
5518 }
5519
5520 /* convert mask to number of pages */
5521 return ~accl_mask + 1;
5522}
5523
a6af2bc3 5524/* Find the lowest pfn for a node */
b69a7288 5525static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5526{
a6af2bc3 5527 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5528 unsigned long start_pfn;
5529 int i;
1abbfb41 5530
c13291a5
TH
5531 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5532 min_pfn = min(min_pfn, start_pfn);
c713216d 5533
a6af2bc3
MG
5534 if (min_pfn == ULONG_MAX) {
5535 printk(KERN_WARNING
2bc0d261 5536 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5537 return 0;
5538 }
5539
5540 return min_pfn;
c713216d
MG
5541}
5542
5543/**
5544 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5545 *
5546 * It returns the minimum PFN based on information provided via
7d018176 5547 * memblock_set_node().
c713216d
MG
5548 */
5549unsigned long __init find_min_pfn_with_active_regions(void)
5550{
5551 return find_min_pfn_for_node(MAX_NUMNODES);
5552}
5553
37b07e41
LS
5554/*
5555 * early_calculate_totalpages()
5556 * Sum pages in active regions for movable zone.
4b0ef1fe 5557 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5558 */
484f51f8 5559static unsigned long __init early_calculate_totalpages(void)
7e63efef 5560{
7e63efef 5561 unsigned long totalpages = 0;
c13291a5
TH
5562 unsigned long start_pfn, end_pfn;
5563 int i, nid;
5564
5565 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5566 unsigned long pages = end_pfn - start_pfn;
7e63efef 5567
37b07e41
LS
5568 totalpages += pages;
5569 if (pages)
4b0ef1fe 5570 node_set_state(nid, N_MEMORY);
37b07e41 5571 }
b8af2941 5572 return totalpages;
7e63efef
MG
5573}
5574
2a1e274a
MG
5575/*
5576 * Find the PFN the Movable zone begins in each node. Kernel memory
5577 * is spread evenly between nodes as long as the nodes have enough
5578 * memory. When they don't, some nodes will have more kernelcore than
5579 * others
5580 */
b224ef85 5581static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5582{
5583 int i, nid;
5584 unsigned long usable_startpfn;
5585 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5586 /* save the state before borrow the nodemask */
4b0ef1fe 5587 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5588 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5589 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5590 struct memblock_region *r;
b2f3eebe
TC
5591
5592 /* Need to find movable_zone earlier when movable_node is specified. */
5593 find_usable_zone_for_movable();
5594
5595 /*
5596 * If movable_node is specified, ignore kernelcore and movablecore
5597 * options.
5598 */
5599 if (movable_node_is_enabled()) {
136199f0
EM
5600 for_each_memblock(memory, r) {
5601 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5602 continue;
5603
136199f0 5604 nid = r->nid;
b2f3eebe 5605
136199f0 5606 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5607 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5608 min(usable_startpfn, zone_movable_pfn[nid]) :
5609 usable_startpfn;
5610 }
5611
5612 goto out2;
5613 }
2a1e274a 5614
342332e6
TI
5615 /*
5616 * If kernelcore=mirror is specified, ignore movablecore option
5617 */
5618 if (mirrored_kernelcore) {
5619 bool mem_below_4gb_not_mirrored = false;
5620
5621 for_each_memblock(memory, r) {
5622 if (memblock_is_mirror(r))
5623 continue;
5624
5625 nid = r->nid;
5626
5627 usable_startpfn = memblock_region_memory_base_pfn(r);
5628
5629 if (usable_startpfn < 0x100000) {
5630 mem_below_4gb_not_mirrored = true;
5631 continue;
5632 }
5633
5634 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5635 min(usable_startpfn, zone_movable_pfn[nid]) :
5636 usable_startpfn;
5637 }
5638
5639 if (mem_below_4gb_not_mirrored)
5640 pr_warn("This configuration results in unmirrored kernel memory.");
5641
5642 goto out2;
5643 }
5644
7e63efef 5645 /*
b2f3eebe 5646 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5647 * kernelcore that corresponds so that memory usable for
5648 * any allocation type is evenly spread. If both kernelcore
5649 * and movablecore are specified, then the value of kernelcore
5650 * will be used for required_kernelcore if it's greater than
5651 * what movablecore would have allowed.
5652 */
5653 if (required_movablecore) {
7e63efef
MG
5654 unsigned long corepages;
5655
5656 /*
5657 * Round-up so that ZONE_MOVABLE is at least as large as what
5658 * was requested by the user
5659 */
5660 required_movablecore =
5661 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5662 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5663 corepages = totalpages - required_movablecore;
5664
5665 required_kernelcore = max(required_kernelcore, corepages);
5666 }
5667
bde304bd
XQ
5668 /*
5669 * If kernelcore was not specified or kernelcore size is larger
5670 * than totalpages, there is no ZONE_MOVABLE.
5671 */
5672 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5673 goto out;
2a1e274a
MG
5674
5675 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5676 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5677
5678restart:
5679 /* Spread kernelcore memory as evenly as possible throughout nodes */
5680 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5681 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5682 unsigned long start_pfn, end_pfn;
5683
2a1e274a
MG
5684 /*
5685 * Recalculate kernelcore_node if the division per node
5686 * now exceeds what is necessary to satisfy the requested
5687 * amount of memory for the kernel
5688 */
5689 if (required_kernelcore < kernelcore_node)
5690 kernelcore_node = required_kernelcore / usable_nodes;
5691
5692 /*
5693 * As the map is walked, we track how much memory is usable
5694 * by the kernel using kernelcore_remaining. When it is
5695 * 0, the rest of the node is usable by ZONE_MOVABLE
5696 */
5697 kernelcore_remaining = kernelcore_node;
5698
5699 /* Go through each range of PFNs within this node */
c13291a5 5700 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5701 unsigned long size_pages;
5702
c13291a5 5703 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5704 if (start_pfn >= end_pfn)
5705 continue;
5706
5707 /* Account for what is only usable for kernelcore */
5708 if (start_pfn < usable_startpfn) {
5709 unsigned long kernel_pages;
5710 kernel_pages = min(end_pfn, usable_startpfn)
5711 - start_pfn;
5712
5713 kernelcore_remaining -= min(kernel_pages,
5714 kernelcore_remaining);
5715 required_kernelcore -= min(kernel_pages,
5716 required_kernelcore);
5717
5718 /* Continue if range is now fully accounted */
5719 if (end_pfn <= usable_startpfn) {
5720
5721 /*
5722 * Push zone_movable_pfn to the end so
5723 * that if we have to rebalance
5724 * kernelcore across nodes, we will
5725 * not double account here
5726 */
5727 zone_movable_pfn[nid] = end_pfn;
5728 continue;
5729 }
5730 start_pfn = usable_startpfn;
5731 }
5732
5733 /*
5734 * The usable PFN range for ZONE_MOVABLE is from
5735 * start_pfn->end_pfn. Calculate size_pages as the
5736 * number of pages used as kernelcore
5737 */
5738 size_pages = end_pfn - start_pfn;
5739 if (size_pages > kernelcore_remaining)
5740 size_pages = kernelcore_remaining;
5741 zone_movable_pfn[nid] = start_pfn + size_pages;
5742
5743 /*
5744 * Some kernelcore has been met, update counts and
5745 * break if the kernelcore for this node has been
b8af2941 5746 * satisfied
2a1e274a
MG
5747 */
5748 required_kernelcore -= min(required_kernelcore,
5749 size_pages);
5750 kernelcore_remaining -= size_pages;
5751 if (!kernelcore_remaining)
5752 break;
5753 }
5754 }
5755
5756 /*
5757 * If there is still required_kernelcore, we do another pass with one
5758 * less node in the count. This will push zone_movable_pfn[nid] further
5759 * along on the nodes that still have memory until kernelcore is
b8af2941 5760 * satisfied
2a1e274a
MG
5761 */
5762 usable_nodes--;
5763 if (usable_nodes && required_kernelcore > usable_nodes)
5764 goto restart;
5765
b2f3eebe 5766out2:
2a1e274a
MG
5767 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5768 for (nid = 0; nid < MAX_NUMNODES; nid++)
5769 zone_movable_pfn[nid] =
5770 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5771
20e6926d 5772out:
66918dcd 5773 /* restore the node_state */
4b0ef1fe 5774 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5775}
5776
4b0ef1fe
LJ
5777/* Any regular or high memory on that node ? */
5778static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5779{
37b07e41
LS
5780 enum zone_type zone_type;
5781
4b0ef1fe
LJ
5782 if (N_MEMORY == N_NORMAL_MEMORY)
5783 return;
5784
5785 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5786 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5787 if (populated_zone(zone)) {
4b0ef1fe
LJ
5788 node_set_state(nid, N_HIGH_MEMORY);
5789 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5790 zone_type <= ZONE_NORMAL)
5791 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5792 break;
5793 }
37b07e41 5794 }
37b07e41
LS
5795}
5796
c713216d
MG
5797/**
5798 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5799 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5800 *
5801 * This will call free_area_init_node() for each active node in the system.
7d018176 5802 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5803 * zone in each node and their holes is calculated. If the maximum PFN
5804 * between two adjacent zones match, it is assumed that the zone is empty.
5805 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5806 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5807 * starts where the previous one ended. For example, ZONE_DMA32 starts
5808 * at arch_max_dma_pfn.
5809 */
5810void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5811{
c13291a5
TH
5812 unsigned long start_pfn, end_pfn;
5813 int i, nid;
a6af2bc3 5814
c713216d
MG
5815 /* Record where the zone boundaries are */
5816 memset(arch_zone_lowest_possible_pfn, 0,
5817 sizeof(arch_zone_lowest_possible_pfn));
5818 memset(arch_zone_highest_possible_pfn, 0,
5819 sizeof(arch_zone_highest_possible_pfn));
5820 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5821 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5822 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5823 if (i == ZONE_MOVABLE)
5824 continue;
c713216d
MG
5825 arch_zone_lowest_possible_pfn[i] =
5826 arch_zone_highest_possible_pfn[i-1];
5827 arch_zone_highest_possible_pfn[i] =
5828 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5829 }
2a1e274a
MG
5830 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5831 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5832
5833 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5834 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5835 find_zone_movable_pfns_for_nodes();
c713216d 5836
c713216d 5837 /* Print out the zone ranges */
f88dfff5 5838 pr_info("Zone ranges:\n");
2a1e274a
MG
5839 for (i = 0; i < MAX_NR_ZONES; i++) {
5840 if (i == ZONE_MOVABLE)
5841 continue;
f88dfff5 5842 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5843 if (arch_zone_lowest_possible_pfn[i] ==
5844 arch_zone_highest_possible_pfn[i])
f88dfff5 5845 pr_cont("empty\n");
72f0ba02 5846 else
8d29e18a
JG
5847 pr_cont("[mem %#018Lx-%#018Lx]\n",
5848 (u64)arch_zone_lowest_possible_pfn[i]
5849 << PAGE_SHIFT,
5850 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5851 << PAGE_SHIFT) - 1);
2a1e274a
MG
5852 }
5853
5854 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5855 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5856 for (i = 0; i < MAX_NUMNODES; i++) {
5857 if (zone_movable_pfn[i])
8d29e18a
JG
5858 pr_info(" Node %d: %#018Lx\n", i,
5859 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5860 }
c713216d 5861
f2d52fe5 5862 /* Print out the early node map */
f88dfff5 5863 pr_info("Early memory node ranges\n");
c13291a5 5864 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5865 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5866 (u64)start_pfn << PAGE_SHIFT,
5867 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5868
5869 /* Initialise every node */
708614e6 5870 mminit_verify_pageflags_layout();
8ef82866 5871 setup_nr_node_ids();
c713216d
MG
5872 for_each_online_node(nid) {
5873 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5874 free_area_init_node(nid, NULL,
c713216d 5875 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5876
5877 /* Any memory on that node */
5878 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5879 node_set_state(nid, N_MEMORY);
5880 check_for_memory(pgdat, nid);
c713216d
MG
5881 }
5882}
2a1e274a 5883
7e63efef 5884static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5885{
5886 unsigned long long coremem;
5887 if (!p)
5888 return -EINVAL;
5889
5890 coremem = memparse(p, &p);
7e63efef 5891 *core = coremem >> PAGE_SHIFT;
2a1e274a 5892
7e63efef 5893 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5894 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5895
5896 return 0;
5897}
ed7ed365 5898
7e63efef
MG
5899/*
5900 * kernelcore=size sets the amount of memory for use for allocations that
5901 * cannot be reclaimed or migrated.
5902 */
5903static int __init cmdline_parse_kernelcore(char *p)
5904{
342332e6
TI
5905 /* parse kernelcore=mirror */
5906 if (parse_option_str(p, "mirror")) {
5907 mirrored_kernelcore = true;
5908 return 0;
5909 }
5910
7e63efef
MG
5911 return cmdline_parse_core(p, &required_kernelcore);
5912}
5913
5914/*
5915 * movablecore=size sets the amount of memory for use for allocations that
5916 * can be reclaimed or migrated.
5917 */
5918static int __init cmdline_parse_movablecore(char *p)
5919{
5920 return cmdline_parse_core(p, &required_movablecore);
5921}
5922
ed7ed365 5923early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5924early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5925
0ee332c1 5926#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5927
c3d5f5f0
JL
5928void adjust_managed_page_count(struct page *page, long count)
5929{
5930 spin_lock(&managed_page_count_lock);
5931 page_zone(page)->managed_pages += count;
5932 totalram_pages += count;
3dcc0571
JL
5933#ifdef CONFIG_HIGHMEM
5934 if (PageHighMem(page))
5935 totalhigh_pages += count;
5936#endif
c3d5f5f0
JL
5937 spin_unlock(&managed_page_count_lock);
5938}
3dcc0571 5939EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5940
11199692 5941unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5942{
11199692
JL
5943 void *pos;
5944 unsigned long pages = 0;
69afade7 5945
11199692
JL
5946 start = (void *)PAGE_ALIGN((unsigned long)start);
5947 end = (void *)((unsigned long)end & PAGE_MASK);
5948 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5949 if ((unsigned int)poison <= 0xFF)
11199692
JL
5950 memset(pos, poison, PAGE_SIZE);
5951 free_reserved_page(virt_to_page(pos));
69afade7
JL
5952 }
5953
5954 if (pages && s)
11199692 5955 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5956 s, pages << (PAGE_SHIFT - 10), start, end);
5957
5958 return pages;
5959}
11199692 5960EXPORT_SYMBOL(free_reserved_area);
69afade7 5961
cfa11e08
JL
5962#ifdef CONFIG_HIGHMEM
5963void free_highmem_page(struct page *page)
5964{
5965 __free_reserved_page(page);
5966 totalram_pages++;
7b4b2a0d 5967 page_zone(page)->managed_pages++;
cfa11e08
JL
5968 totalhigh_pages++;
5969}
5970#endif
5971
7ee3d4e8
JL
5972
5973void __init mem_init_print_info(const char *str)
5974{
5975 unsigned long physpages, codesize, datasize, rosize, bss_size;
5976 unsigned long init_code_size, init_data_size;
5977
5978 physpages = get_num_physpages();
5979 codesize = _etext - _stext;
5980 datasize = _edata - _sdata;
5981 rosize = __end_rodata - __start_rodata;
5982 bss_size = __bss_stop - __bss_start;
5983 init_data_size = __init_end - __init_begin;
5984 init_code_size = _einittext - _sinittext;
5985
5986 /*
5987 * Detect special cases and adjust section sizes accordingly:
5988 * 1) .init.* may be embedded into .data sections
5989 * 2) .init.text.* may be out of [__init_begin, __init_end],
5990 * please refer to arch/tile/kernel/vmlinux.lds.S.
5991 * 3) .rodata.* may be embedded into .text or .data sections.
5992 */
5993#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5994 do { \
5995 if (start <= pos && pos < end && size > adj) \
5996 size -= adj; \
5997 } while (0)
7ee3d4e8
JL
5998
5999 adj_init_size(__init_begin, __init_end, init_data_size,
6000 _sinittext, init_code_size);
6001 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6002 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6003 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6004 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6005
6006#undef adj_init_size
6007
f88dfff5 6008 pr_info("Memory: %luK/%luK available "
7ee3d4e8 6009 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 6010 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
6011#ifdef CONFIG_HIGHMEM
6012 ", %luK highmem"
6013#endif
6014 "%s%s)\n",
6015 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
6016 codesize >> 10, datasize >> 10, rosize >> 10,
6017 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
6018 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
6019 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
6020#ifdef CONFIG_HIGHMEM
6021 totalhigh_pages << (PAGE_SHIFT-10),
6022#endif
6023 str ? ", " : "", str ? str : "");
6024}
6025
0e0b864e 6026/**
88ca3b94
RD
6027 * set_dma_reserve - set the specified number of pages reserved in the first zone
6028 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6029 *
013110a7 6030 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6031 * In the DMA zone, a significant percentage may be consumed by kernel image
6032 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6033 * function may optionally be used to account for unfreeable pages in the
6034 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6035 * smaller per-cpu batchsize.
0e0b864e
MG
6036 */
6037void __init set_dma_reserve(unsigned long new_dma_reserve)
6038{
6039 dma_reserve = new_dma_reserve;
6040}
6041
1da177e4
LT
6042void __init free_area_init(unsigned long *zones_size)
6043{
9109fb7b 6044 free_area_init_node(0, zones_size,
1da177e4
LT
6045 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6046}
1da177e4 6047
1da177e4
LT
6048static int page_alloc_cpu_notify(struct notifier_block *self,
6049 unsigned long action, void *hcpu)
6050{
6051 int cpu = (unsigned long)hcpu;
1da177e4 6052
8bb78442 6053 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6054 lru_add_drain_cpu(cpu);
9f8f2172
CL
6055 drain_pages(cpu);
6056
6057 /*
6058 * Spill the event counters of the dead processor
6059 * into the current processors event counters.
6060 * This artificially elevates the count of the current
6061 * processor.
6062 */
f8891e5e 6063 vm_events_fold_cpu(cpu);
9f8f2172
CL
6064
6065 /*
6066 * Zero the differential counters of the dead processor
6067 * so that the vm statistics are consistent.
6068 *
6069 * This is only okay since the processor is dead and cannot
6070 * race with what we are doing.
6071 */
2bb921e5 6072 cpu_vm_stats_fold(cpu);
1da177e4
LT
6073 }
6074 return NOTIFY_OK;
6075}
1da177e4
LT
6076
6077void __init page_alloc_init(void)
6078{
6079 hotcpu_notifier(page_alloc_cpu_notify, 0);
6080}
6081
cb45b0e9 6082/*
34b10060 6083 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6084 * or min_free_kbytes changes.
6085 */
6086static void calculate_totalreserve_pages(void)
6087{
6088 struct pglist_data *pgdat;
6089 unsigned long reserve_pages = 0;
2f6726e5 6090 enum zone_type i, j;
cb45b0e9
HA
6091
6092 for_each_online_pgdat(pgdat) {
6093 for (i = 0; i < MAX_NR_ZONES; i++) {
6094 struct zone *zone = pgdat->node_zones + i;
3484b2de 6095 long max = 0;
cb45b0e9
HA
6096
6097 /* Find valid and maximum lowmem_reserve in the zone */
6098 for (j = i; j < MAX_NR_ZONES; j++) {
6099 if (zone->lowmem_reserve[j] > max)
6100 max = zone->lowmem_reserve[j];
6101 }
6102
41858966
MG
6103 /* we treat the high watermark as reserved pages. */
6104 max += high_wmark_pages(zone);
cb45b0e9 6105
b40da049
JL
6106 if (max > zone->managed_pages)
6107 max = zone->managed_pages;
a8d01437
JW
6108
6109 zone->totalreserve_pages = max;
6110
cb45b0e9
HA
6111 reserve_pages += max;
6112 }
6113 }
6114 totalreserve_pages = reserve_pages;
6115}
6116
1da177e4
LT
6117/*
6118 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6119 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6120 * has a correct pages reserved value, so an adequate number of
6121 * pages are left in the zone after a successful __alloc_pages().
6122 */
6123static void setup_per_zone_lowmem_reserve(void)
6124{
6125 struct pglist_data *pgdat;
2f6726e5 6126 enum zone_type j, idx;
1da177e4 6127
ec936fc5 6128 for_each_online_pgdat(pgdat) {
1da177e4
LT
6129 for (j = 0; j < MAX_NR_ZONES; j++) {
6130 struct zone *zone = pgdat->node_zones + j;
b40da049 6131 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6132
6133 zone->lowmem_reserve[j] = 0;
6134
2f6726e5
CL
6135 idx = j;
6136 while (idx) {
1da177e4
LT
6137 struct zone *lower_zone;
6138
2f6726e5
CL
6139 idx--;
6140
1da177e4
LT
6141 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6142 sysctl_lowmem_reserve_ratio[idx] = 1;
6143
6144 lower_zone = pgdat->node_zones + idx;
b40da049 6145 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6146 sysctl_lowmem_reserve_ratio[idx];
b40da049 6147 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6148 }
6149 }
6150 }
cb45b0e9
HA
6151
6152 /* update totalreserve_pages */
6153 calculate_totalreserve_pages();
1da177e4
LT
6154}
6155
cfd3da1e 6156static void __setup_per_zone_wmarks(void)
1da177e4
LT
6157{
6158 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6159 unsigned long lowmem_pages = 0;
6160 struct zone *zone;
6161 unsigned long flags;
6162
6163 /* Calculate total number of !ZONE_HIGHMEM pages */
6164 for_each_zone(zone) {
6165 if (!is_highmem(zone))
b40da049 6166 lowmem_pages += zone->managed_pages;
1da177e4
LT
6167 }
6168
6169 for_each_zone(zone) {
ac924c60
AM
6170 u64 tmp;
6171
1125b4e3 6172 spin_lock_irqsave(&zone->lock, flags);
b40da049 6173 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6174 do_div(tmp, lowmem_pages);
1da177e4
LT
6175 if (is_highmem(zone)) {
6176 /*
669ed175
NP
6177 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6178 * need highmem pages, so cap pages_min to a small
6179 * value here.
6180 *
41858966 6181 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6182 * deltas control asynch page reclaim, and so should
669ed175 6183 * not be capped for highmem.
1da177e4 6184 */
90ae8d67 6185 unsigned long min_pages;
1da177e4 6186
b40da049 6187 min_pages = zone->managed_pages / 1024;
90ae8d67 6188 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6189 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6190 } else {
669ed175
NP
6191 /*
6192 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6193 * proportionate to the zone's size.
6194 */
41858966 6195 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6196 }
6197
41858966
MG
6198 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6199 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6200
81c0a2bb 6201 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6202 high_wmark_pages(zone) - low_wmark_pages(zone) -
6203 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6204
1125b4e3 6205 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6206 }
cb45b0e9
HA
6207
6208 /* update totalreserve_pages */
6209 calculate_totalreserve_pages();
1da177e4
LT
6210}
6211
cfd3da1e
MG
6212/**
6213 * setup_per_zone_wmarks - called when min_free_kbytes changes
6214 * or when memory is hot-{added|removed}
6215 *
6216 * Ensures that the watermark[min,low,high] values for each zone are set
6217 * correctly with respect to min_free_kbytes.
6218 */
6219void setup_per_zone_wmarks(void)
6220{
6221 mutex_lock(&zonelists_mutex);
6222 __setup_per_zone_wmarks();
6223 mutex_unlock(&zonelists_mutex);
6224}
6225
55a4462a 6226/*
556adecb
RR
6227 * The inactive anon list should be small enough that the VM never has to
6228 * do too much work, but large enough that each inactive page has a chance
6229 * to be referenced again before it is swapped out.
6230 *
6231 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6232 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6233 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6234 * the anonymous pages are kept on the inactive list.
6235 *
6236 * total target max
6237 * memory ratio inactive anon
6238 * -------------------------------------
6239 * 10MB 1 5MB
6240 * 100MB 1 50MB
6241 * 1GB 3 250MB
6242 * 10GB 10 0.9GB
6243 * 100GB 31 3GB
6244 * 1TB 101 10GB
6245 * 10TB 320 32GB
6246 */
1b79acc9 6247static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6248{
96cb4df5 6249 unsigned int gb, ratio;
556adecb 6250
96cb4df5 6251 /* Zone size in gigabytes */
b40da049 6252 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6253 if (gb)
556adecb 6254 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6255 else
6256 ratio = 1;
556adecb 6257
96cb4df5
MK
6258 zone->inactive_ratio = ratio;
6259}
556adecb 6260
839a4fcc 6261static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6262{
6263 struct zone *zone;
6264
6265 for_each_zone(zone)
6266 calculate_zone_inactive_ratio(zone);
556adecb
RR
6267}
6268
1da177e4
LT
6269/*
6270 * Initialise min_free_kbytes.
6271 *
6272 * For small machines we want it small (128k min). For large machines
6273 * we want it large (64MB max). But it is not linear, because network
6274 * bandwidth does not increase linearly with machine size. We use
6275 *
b8af2941 6276 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6277 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6278 *
6279 * which yields
6280 *
6281 * 16MB: 512k
6282 * 32MB: 724k
6283 * 64MB: 1024k
6284 * 128MB: 1448k
6285 * 256MB: 2048k
6286 * 512MB: 2896k
6287 * 1024MB: 4096k
6288 * 2048MB: 5792k
6289 * 4096MB: 8192k
6290 * 8192MB: 11584k
6291 * 16384MB: 16384k
6292 */
1b79acc9 6293int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6294{
6295 unsigned long lowmem_kbytes;
5f12733e 6296 int new_min_free_kbytes;
1da177e4
LT
6297
6298 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6299 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6300
6301 if (new_min_free_kbytes > user_min_free_kbytes) {
6302 min_free_kbytes = new_min_free_kbytes;
6303 if (min_free_kbytes < 128)
6304 min_free_kbytes = 128;
6305 if (min_free_kbytes > 65536)
6306 min_free_kbytes = 65536;
6307 } else {
6308 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6309 new_min_free_kbytes, user_min_free_kbytes);
6310 }
bc75d33f 6311 setup_per_zone_wmarks();
a6cccdc3 6312 refresh_zone_stat_thresholds();
1da177e4 6313 setup_per_zone_lowmem_reserve();
556adecb 6314 setup_per_zone_inactive_ratio();
1da177e4
LT
6315 return 0;
6316}
bc75d33f 6317module_init(init_per_zone_wmark_min)
1da177e4
LT
6318
6319/*
b8af2941 6320 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6321 * that we can call two helper functions whenever min_free_kbytes
6322 * changes.
6323 */
cccad5b9 6324int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6325 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6326{
da8c757b
HP
6327 int rc;
6328
6329 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6330 if (rc)
6331 return rc;
6332
5f12733e
MH
6333 if (write) {
6334 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6335 setup_per_zone_wmarks();
5f12733e 6336 }
1da177e4
LT
6337 return 0;
6338}
6339
9614634f 6340#ifdef CONFIG_NUMA
cccad5b9 6341int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6342 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6343{
6344 struct zone *zone;
6345 int rc;
6346
8d65af78 6347 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6348 if (rc)
6349 return rc;
6350
6351 for_each_zone(zone)
b40da049 6352 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6353 sysctl_min_unmapped_ratio) / 100;
6354 return 0;
6355}
0ff38490 6356
cccad5b9 6357int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6358 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6359{
6360 struct zone *zone;
6361 int rc;
6362
8d65af78 6363 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6364 if (rc)
6365 return rc;
6366
6367 for_each_zone(zone)
b40da049 6368 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6369 sysctl_min_slab_ratio) / 100;
6370 return 0;
6371}
9614634f
CL
6372#endif
6373
1da177e4
LT
6374/*
6375 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6376 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6377 * whenever sysctl_lowmem_reserve_ratio changes.
6378 *
6379 * The reserve ratio obviously has absolutely no relation with the
41858966 6380 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6381 * if in function of the boot time zone sizes.
6382 */
cccad5b9 6383int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6384 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6385{
8d65af78 6386 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6387 setup_per_zone_lowmem_reserve();
6388 return 0;
6389}
6390
8ad4b1fb
RS
6391/*
6392 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6393 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6394 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6395 */
cccad5b9 6396int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6397 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6398{
6399 struct zone *zone;
7cd2b0a3 6400 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6401 int ret;
6402
7cd2b0a3
DR
6403 mutex_lock(&pcp_batch_high_lock);
6404 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6405
8d65af78 6406 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6407 if (!write || ret < 0)
6408 goto out;
6409
6410 /* Sanity checking to avoid pcp imbalance */
6411 if (percpu_pagelist_fraction &&
6412 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6413 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6414 ret = -EINVAL;
6415 goto out;
6416 }
6417
6418 /* No change? */
6419 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6420 goto out;
c8e251fa 6421
364df0eb 6422 for_each_populated_zone(zone) {
7cd2b0a3
DR
6423 unsigned int cpu;
6424
22a7f12b 6425 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6426 pageset_set_high_and_batch(zone,
6427 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6428 }
7cd2b0a3 6429out:
c8e251fa 6430 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6431 return ret;
8ad4b1fb
RS
6432}
6433
a9919c79 6434#ifdef CONFIG_NUMA
f034b5d4 6435int hashdist = HASHDIST_DEFAULT;
1da177e4 6436
1da177e4
LT
6437static int __init set_hashdist(char *str)
6438{
6439 if (!str)
6440 return 0;
6441 hashdist = simple_strtoul(str, &str, 0);
6442 return 1;
6443}
6444__setup("hashdist=", set_hashdist);
6445#endif
6446
6447/*
6448 * allocate a large system hash table from bootmem
6449 * - it is assumed that the hash table must contain an exact power-of-2
6450 * quantity of entries
6451 * - limit is the number of hash buckets, not the total allocation size
6452 */
6453void *__init alloc_large_system_hash(const char *tablename,
6454 unsigned long bucketsize,
6455 unsigned long numentries,
6456 int scale,
6457 int flags,
6458 unsigned int *_hash_shift,
6459 unsigned int *_hash_mask,
31fe62b9
TB
6460 unsigned long low_limit,
6461 unsigned long high_limit)
1da177e4 6462{
31fe62b9 6463 unsigned long long max = high_limit;
1da177e4
LT
6464 unsigned long log2qty, size;
6465 void *table = NULL;
6466
6467 /* allow the kernel cmdline to have a say */
6468 if (!numentries) {
6469 /* round applicable memory size up to nearest megabyte */
04903664 6470 numentries = nr_kernel_pages;
a7e83318
JZ
6471
6472 /* It isn't necessary when PAGE_SIZE >= 1MB */
6473 if (PAGE_SHIFT < 20)
6474 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6475
6476 /* limit to 1 bucket per 2^scale bytes of low memory */
6477 if (scale > PAGE_SHIFT)
6478 numentries >>= (scale - PAGE_SHIFT);
6479 else
6480 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6481
6482 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6483 if (unlikely(flags & HASH_SMALL)) {
6484 /* Makes no sense without HASH_EARLY */
6485 WARN_ON(!(flags & HASH_EARLY));
6486 if (!(numentries >> *_hash_shift)) {
6487 numentries = 1UL << *_hash_shift;
6488 BUG_ON(!numentries);
6489 }
6490 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6491 numentries = PAGE_SIZE / bucketsize;
1da177e4 6492 }
6e692ed3 6493 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6494
6495 /* limit allocation size to 1/16 total memory by default */
6496 if (max == 0) {
6497 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6498 do_div(max, bucketsize);
6499 }
074b8517 6500 max = min(max, 0x80000000ULL);
1da177e4 6501
31fe62b9
TB
6502 if (numentries < low_limit)
6503 numentries = low_limit;
1da177e4
LT
6504 if (numentries > max)
6505 numentries = max;
6506
f0d1b0b3 6507 log2qty = ilog2(numentries);
1da177e4
LT
6508
6509 do {
6510 size = bucketsize << log2qty;
6511 if (flags & HASH_EARLY)
6782832e 6512 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6513 else if (hashdist)
6514 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6515 else {
1037b83b
ED
6516 /*
6517 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6518 * some pages at the end of hash table which
6519 * alloc_pages_exact() automatically does
1037b83b 6520 */
264ef8a9 6521 if (get_order(size) < MAX_ORDER) {
a1dd268c 6522 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6523 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6524 }
1da177e4
LT
6525 }
6526 } while (!table && size > PAGE_SIZE && --log2qty);
6527
6528 if (!table)
6529 panic("Failed to allocate %s hash table\n", tablename);
6530
f241e660 6531 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6532 tablename,
f241e660 6533 (1UL << log2qty),
f0d1b0b3 6534 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6535 size);
6536
6537 if (_hash_shift)
6538 *_hash_shift = log2qty;
6539 if (_hash_mask)
6540 *_hash_mask = (1 << log2qty) - 1;
6541
6542 return table;
6543}
a117e66e 6544
835c134e
MG
6545/* Return a pointer to the bitmap storing bits affecting a block of pages */
6546static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6547 unsigned long pfn)
6548{
6549#ifdef CONFIG_SPARSEMEM
6550 return __pfn_to_section(pfn)->pageblock_flags;
6551#else
6552 return zone->pageblock_flags;
6553#endif /* CONFIG_SPARSEMEM */
6554}
6555
6556static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6557{
6558#ifdef CONFIG_SPARSEMEM
6559 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6560 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6561#else
c060f943 6562 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6563 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6564#endif /* CONFIG_SPARSEMEM */
6565}
6566
6567/**
1aab4d77 6568 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6569 * @page: The page within the block of interest
1aab4d77
RD
6570 * @pfn: The target page frame number
6571 * @end_bitidx: The last bit of interest to retrieve
6572 * @mask: mask of bits that the caller is interested in
6573 *
6574 * Return: pageblock_bits flags
835c134e 6575 */
dc4b0caf 6576unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6577 unsigned long end_bitidx,
6578 unsigned long mask)
835c134e
MG
6579{
6580 struct zone *zone;
6581 unsigned long *bitmap;
dc4b0caf 6582 unsigned long bitidx, word_bitidx;
e58469ba 6583 unsigned long word;
835c134e
MG
6584
6585 zone = page_zone(page);
835c134e
MG
6586 bitmap = get_pageblock_bitmap(zone, pfn);
6587 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6588 word_bitidx = bitidx / BITS_PER_LONG;
6589 bitidx &= (BITS_PER_LONG-1);
835c134e 6590
e58469ba
MG
6591 word = bitmap[word_bitidx];
6592 bitidx += end_bitidx;
6593 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6594}
6595
6596/**
dc4b0caf 6597 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6598 * @page: The page within the block of interest
835c134e 6599 * @flags: The flags to set
1aab4d77
RD
6600 * @pfn: The target page frame number
6601 * @end_bitidx: The last bit of interest
6602 * @mask: mask of bits that the caller is interested in
835c134e 6603 */
dc4b0caf
MG
6604void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6605 unsigned long pfn,
e58469ba
MG
6606 unsigned long end_bitidx,
6607 unsigned long mask)
835c134e
MG
6608{
6609 struct zone *zone;
6610 unsigned long *bitmap;
dc4b0caf 6611 unsigned long bitidx, word_bitidx;
e58469ba
MG
6612 unsigned long old_word, word;
6613
6614 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6615
6616 zone = page_zone(page);
835c134e
MG
6617 bitmap = get_pageblock_bitmap(zone, pfn);
6618 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6619 word_bitidx = bitidx / BITS_PER_LONG;
6620 bitidx &= (BITS_PER_LONG-1);
6621
309381fe 6622 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6623
e58469ba
MG
6624 bitidx += end_bitidx;
6625 mask <<= (BITS_PER_LONG - bitidx - 1);
6626 flags <<= (BITS_PER_LONG - bitidx - 1);
6627
4db0c3c2 6628 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6629 for (;;) {
6630 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6631 if (word == old_word)
6632 break;
6633 word = old_word;
6634 }
835c134e 6635}
a5d76b54
KH
6636
6637/*
80934513
MK
6638 * This function checks whether pageblock includes unmovable pages or not.
6639 * If @count is not zero, it is okay to include less @count unmovable pages
6640 *
b8af2941 6641 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6642 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6643 * expect this function should be exact.
a5d76b54 6644 */
b023f468
WC
6645bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6646 bool skip_hwpoisoned_pages)
49ac8255
KH
6647{
6648 unsigned long pfn, iter, found;
47118af0
MN
6649 int mt;
6650
49ac8255
KH
6651 /*
6652 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6653 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6654 */
6655 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6656 return false;
47118af0
MN
6657 mt = get_pageblock_migratetype(page);
6658 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6659 return false;
49ac8255
KH
6660
6661 pfn = page_to_pfn(page);
6662 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6663 unsigned long check = pfn + iter;
6664
29723fcc 6665 if (!pfn_valid_within(check))
49ac8255 6666 continue;
29723fcc 6667
49ac8255 6668 page = pfn_to_page(check);
c8721bbb
NH
6669
6670 /*
6671 * Hugepages are not in LRU lists, but they're movable.
6672 * We need not scan over tail pages bacause we don't
6673 * handle each tail page individually in migration.
6674 */
6675 if (PageHuge(page)) {
6676 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6677 continue;
6678 }
6679
97d255c8
MK
6680 /*
6681 * We can't use page_count without pin a page
6682 * because another CPU can free compound page.
6683 * This check already skips compound tails of THP
6684 * because their page->_count is zero at all time.
6685 */
6686 if (!atomic_read(&page->_count)) {
49ac8255
KH
6687 if (PageBuddy(page))
6688 iter += (1 << page_order(page)) - 1;
6689 continue;
6690 }
97d255c8 6691
b023f468
WC
6692 /*
6693 * The HWPoisoned page may be not in buddy system, and
6694 * page_count() is not 0.
6695 */
6696 if (skip_hwpoisoned_pages && PageHWPoison(page))
6697 continue;
6698
49ac8255
KH
6699 if (!PageLRU(page))
6700 found++;
6701 /*
6b4f7799
JW
6702 * If there are RECLAIMABLE pages, we need to check
6703 * it. But now, memory offline itself doesn't call
6704 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6705 */
6706 /*
6707 * If the page is not RAM, page_count()should be 0.
6708 * we don't need more check. This is an _used_ not-movable page.
6709 *
6710 * The problematic thing here is PG_reserved pages. PG_reserved
6711 * is set to both of a memory hole page and a _used_ kernel
6712 * page at boot.
6713 */
6714 if (found > count)
80934513 6715 return true;
49ac8255 6716 }
80934513 6717 return false;
49ac8255
KH
6718}
6719
6720bool is_pageblock_removable_nolock(struct page *page)
6721{
656a0706
MH
6722 struct zone *zone;
6723 unsigned long pfn;
687875fb
MH
6724
6725 /*
6726 * We have to be careful here because we are iterating over memory
6727 * sections which are not zone aware so we might end up outside of
6728 * the zone but still within the section.
656a0706
MH
6729 * We have to take care about the node as well. If the node is offline
6730 * its NODE_DATA will be NULL - see page_zone.
687875fb 6731 */
656a0706
MH
6732 if (!node_online(page_to_nid(page)))
6733 return false;
6734
6735 zone = page_zone(page);
6736 pfn = page_to_pfn(page);
108bcc96 6737 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6738 return false;
6739
b023f468 6740 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6741}
0c0e6195 6742
080fe206 6743#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6744
6745static unsigned long pfn_max_align_down(unsigned long pfn)
6746{
6747 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6748 pageblock_nr_pages) - 1);
6749}
6750
6751static unsigned long pfn_max_align_up(unsigned long pfn)
6752{
6753 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6754 pageblock_nr_pages));
6755}
6756
041d3a8c 6757/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6758static int __alloc_contig_migrate_range(struct compact_control *cc,
6759 unsigned long start, unsigned long end)
041d3a8c
MN
6760{
6761 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6762 unsigned long nr_reclaimed;
041d3a8c
MN
6763 unsigned long pfn = start;
6764 unsigned int tries = 0;
6765 int ret = 0;
6766
be49a6e1 6767 migrate_prep();
041d3a8c 6768
bb13ffeb 6769 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6770 if (fatal_signal_pending(current)) {
6771 ret = -EINTR;
6772 break;
6773 }
6774
bb13ffeb
MG
6775 if (list_empty(&cc->migratepages)) {
6776 cc->nr_migratepages = 0;
edc2ca61 6777 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6778 if (!pfn) {
6779 ret = -EINTR;
6780 break;
6781 }
6782 tries = 0;
6783 } else if (++tries == 5) {
6784 ret = ret < 0 ? ret : -EBUSY;
6785 break;
6786 }
6787
beb51eaa
MK
6788 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6789 &cc->migratepages);
6790 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6791
9c620e2b 6792 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6793 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6794 }
2a6f5124
SP
6795 if (ret < 0) {
6796 putback_movable_pages(&cc->migratepages);
6797 return ret;
6798 }
6799 return 0;
041d3a8c
MN
6800}
6801
6802/**
6803 * alloc_contig_range() -- tries to allocate given range of pages
6804 * @start: start PFN to allocate
6805 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6806 * @migratetype: migratetype of the underlaying pageblocks (either
6807 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6808 * in range must have the same migratetype and it must
6809 * be either of the two.
041d3a8c
MN
6810 *
6811 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6812 * aligned, however it's the caller's responsibility to guarantee that
6813 * we are the only thread that changes migrate type of pageblocks the
6814 * pages fall in.
6815 *
6816 * The PFN range must belong to a single zone.
6817 *
6818 * Returns zero on success or negative error code. On success all
6819 * pages which PFN is in [start, end) are allocated for the caller and
6820 * need to be freed with free_contig_range().
6821 */
0815f3d8
MN
6822int alloc_contig_range(unsigned long start, unsigned long end,
6823 unsigned migratetype)
041d3a8c 6824{
041d3a8c 6825 unsigned long outer_start, outer_end;
d00181b9
KS
6826 unsigned int order;
6827 int ret = 0;
041d3a8c 6828
bb13ffeb
MG
6829 struct compact_control cc = {
6830 .nr_migratepages = 0,
6831 .order = -1,
6832 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6833 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6834 .ignore_skip_hint = true,
6835 };
6836 INIT_LIST_HEAD(&cc.migratepages);
6837
041d3a8c
MN
6838 /*
6839 * What we do here is we mark all pageblocks in range as
6840 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6841 * have different sizes, and due to the way page allocator
6842 * work, we align the range to biggest of the two pages so
6843 * that page allocator won't try to merge buddies from
6844 * different pageblocks and change MIGRATE_ISOLATE to some
6845 * other migration type.
6846 *
6847 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6848 * migrate the pages from an unaligned range (ie. pages that
6849 * we are interested in). This will put all the pages in
6850 * range back to page allocator as MIGRATE_ISOLATE.
6851 *
6852 * When this is done, we take the pages in range from page
6853 * allocator removing them from the buddy system. This way
6854 * page allocator will never consider using them.
6855 *
6856 * This lets us mark the pageblocks back as
6857 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6858 * aligned range but not in the unaligned, original range are
6859 * put back to page allocator so that buddy can use them.
6860 */
6861
6862 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6863 pfn_max_align_up(end), migratetype,
6864 false);
041d3a8c 6865 if (ret)
86a595f9 6866 return ret;
041d3a8c 6867
8ef5849f
JK
6868 /*
6869 * In case of -EBUSY, we'd like to know which page causes problem.
6870 * So, just fall through. We will check it in test_pages_isolated().
6871 */
bb13ffeb 6872 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6873 if (ret && ret != -EBUSY)
041d3a8c
MN
6874 goto done;
6875
6876 /*
6877 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6878 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6879 * more, all pages in [start, end) are free in page allocator.
6880 * What we are going to do is to allocate all pages from
6881 * [start, end) (that is remove them from page allocator).
6882 *
6883 * The only problem is that pages at the beginning and at the
6884 * end of interesting range may be not aligned with pages that
6885 * page allocator holds, ie. they can be part of higher order
6886 * pages. Because of this, we reserve the bigger range and
6887 * once this is done free the pages we are not interested in.
6888 *
6889 * We don't have to hold zone->lock here because the pages are
6890 * isolated thus they won't get removed from buddy.
6891 */
6892
6893 lru_add_drain_all();
510f5507 6894 drain_all_pages(cc.zone);
041d3a8c
MN
6895
6896 order = 0;
6897 outer_start = start;
6898 while (!PageBuddy(pfn_to_page(outer_start))) {
6899 if (++order >= MAX_ORDER) {
8ef5849f
JK
6900 outer_start = start;
6901 break;
041d3a8c
MN
6902 }
6903 outer_start &= ~0UL << order;
6904 }
6905
8ef5849f
JK
6906 if (outer_start != start) {
6907 order = page_order(pfn_to_page(outer_start));
6908
6909 /*
6910 * outer_start page could be small order buddy page and
6911 * it doesn't include start page. Adjust outer_start
6912 * in this case to report failed page properly
6913 * on tracepoint in test_pages_isolated()
6914 */
6915 if (outer_start + (1UL << order) <= start)
6916 outer_start = start;
6917 }
6918
041d3a8c 6919 /* Make sure the range is really isolated. */
b023f468 6920 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6921 pr_info("%s: [%lx, %lx) PFNs busy\n",
6922 __func__, outer_start, end);
041d3a8c
MN
6923 ret = -EBUSY;
6924 goto done;
6925 }
6926
49f223a9 6927 /* Grab isolated pages from freelists. */
bb13ffeb 6928 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6929 if (!outer_end) {
6930 ret = -EBUSY;
6931 goto done;
6932 }
6933
6934 /* Free head and tail (if any) */
6935 if (start != outer_start)
6936 free_contig_range(outer_start, start - outer_start);
6937 if (end != outer_end)
6938 free_contig_range(end, outer_end - end);
6939
6940done:
6941 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6942 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6943 return ret;
6944}
6945
6946void free_contig_range(unsigned long pfn, unsigned nr_pages)
6947{
bcc2b02f
MS
6948 unsigned int count = 0;
6949
6950 for (; nr_pages--; pfn++) {
6951 struct page *page = pfn_to_page(pfn);
6952
6953 count += page_count(page) != 1;
6954 __free_page(page);
6955 }
6956 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6957}
6958#endif
6959
4ed7e022 6960#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6961/*
6962 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6963 * page high values need to be recalulated.
6964 */
4ed7e022
JL
6965void __meminit zone_pcp_update(struct zone *zone)
6966{
0a647f38 6967 unsigned cpu;
c8e251fa 6968 mutex_lock(&pcp_batch_high_lock);
0a647f38 6969 for_each_possible_cpu(cpu)
169f6c19
CS
6970 pageset_set_high_and_batch(zone,
6971 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6972 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6973}
6974#endif
6975
340175b7
JL
6976void zone_pcp_reset(struct zone *zone)
6977{
6978 unsigned long flags;
5a883813
MK
6979 int cpu;
6980 struct per_cpu_pageset *pset;
340175b7
JL
6981
6982 /* avoid races with drain_pages() */
6983 local_irq_save(flags);
6984 if (zone->pageset != &boot_pageset) {
5a883813
MK
6985 for_each_online_cpu(cpu) {
6986 pset = per_cpu_ptr(zone->pageset, cpu);
6987 drain_zonestat(zone, pset);
6988 }
340175b7
JL
6989 free_percpu(zone->pageset);
6990 zone->pageset = &boot_pageset;
6991 }
6992 local_irq_restore(flags);
6993}
6994
6dcd73d7 6995#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6996/*
6997 * All pages in the range must be isolated before calling this.
6998 */
6999void
7000__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7001{
7002 struct page *page;
7003 struct zone *zone;
7aeb09f9 7004 unsigned int order, i;
0c0e6195
KH
7005 unsigned long pfn;
7006 unsigned long flags;
7007 /* find the first valid pfn */
7008 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7009 if (pfn_valid(pfn))
7010 break;
7011 if (pfn == end_pfn)
7012 return;
7013 zone = page_zone(pfn_to_page(pfn));
7014 spin_lock_irqsave(&zone->lock, flags);
7015 pfn = start_pfn;
7016 while (pfn < end_pfn) {
7017 if (!pfn_valid(pfn)) {
7018 pfn++;
7019 continue;
7020 }
7021 page = pfn_to_page(pfn);
b023f468
WC
7022 /*
7023 * The HWPoisoned page may be not in buddy system, and
7024 * page_count() is not 0.
7025 */
7026 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7027 pfn++;
7028 SetPageReserved(page);
7029 continue;
7030 }
7031
0c0e6195
KH
7032 BUG_ON(page_count(page));
7033 BUG_ON(!PageBuddy(page));
7034 order = page_order(page);
7035#ifdef CONFIG_DEBUG_VM
7036 printk(KERN_INFO "remove from free list %lx %d %lx\n",
7037 pfn, 1 << order, end_pfn);
7038#endif
7039 list_del(&page->lru);
7040 rmv_page_order(page);
7041 zone->free_area[order].nr_free--;
0c0e6195
KH
7042 for (i = 0; i < (1 << order); i++)
7043 SetPageReserved((page+i));
7044 pfn += (1 << order);
7045 }
7046 spin_unlock_irqrestore(&zone->lock, flags);
7047}
7048#endif
8d22ba1b
WF
7049
7050#ifdef CONFIG_MEMORY_FAILURE
7051bool is_free_buddy_page(struct page *page)
7052{
7053 struct zone *zone = page_zone(page);
7054 unsigned long pfn = page_to_pfn(page);
7055 unsigned long flags;
7aeb09f9 7056 unsigned int order;
8d22ba1b
WF
7057
7058 spin_lock_irqsave(&zone->lock, flags);
7059 for (order = 0; order < MAX_ORDER; order++) {
7060 struct page *page_head = page - (pfn & ((1 << order) - 1));
7061
7062 if (PageBuddy(page_head) && page_order(page_head) >= order)
7063 break;
7064 }
7065 spin_unlock_irqrestore(&zone->lock, flags);
7066
7067 return order < MAX_ORDER;
7068}
7069#endif