]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: defer debugging checks of pages allocated from the PCP
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
2a7684a2
WF
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
22b751c3 527 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
528 return;
529 }
530
d936cf9b
HD
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
ff8e8116 541 pr_alert(
1e9e6365 542 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
ff8e8116 551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 552 current->comm, page_to_pfn(page));
ff8e8116
VB
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
4e462112 558 dump_page_owner(page);
3dc14741 559
4f31888c 560 print_modules();
1da177e4 561 dump_stack();
d936cf9b 562out:
8cc3b392 563 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 564 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
566}
567
1da177e4
LT
568/*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
1d798ca3 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 572 *
1d798ca3
KS
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 575 *
1d798ca3
KS
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
1da177e4 578 *
1d798ca3 579 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 580 * This usage means that zero-order pages may not be compound.
1da177e4 581 */
d98c7a09 582
9a982250 583void free_compound_page(struct page *page)
d98c7a09 584{
d85f3385 585 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
586}
587
d00181b9 588void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
589{
590 int i;
591 int nr_pages = 1 << order;
592
f1e61557 593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
58a84aa9 598 set_page_count(p, 0);
1c290f64 599 p->mapping = TAIL_MAPPING;
1d798ca3 600 set_compound_head(p, page);
18229df5 601 }
53f9263b 602 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
603}
604
c0a32fc5
SG
605#ifdef CONFIG_DEBUG_PAGEALLOC
606unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
607bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 609EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
610bool _debug_guardpage_enabled __read_mostly;
611
031bc574
JK
612static int __init early_debug_pagealloc(char *buf)
613{
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
ea6eabb0
CB
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
031bc574
JK
623 return 0;
624}
625early_param("debug_pagealloc", early_debug_pagealloc);
626
e30825f1
JK
627static bool need_debug_guardpage(void)
628{
031bc574
JK
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
e30825f1
JK
633 return true;
634}
635
636static void init_debug_guardpage(void)
637{
031bc574
JK
638 if (!debug_pagealloc_enabled())
639 return;
640
e30825f1
JK
641 _debug_guardpage_enabled = true;
642}
643
644struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647};
c0a32fc5
SG
648
649static int __init debug_guardpage_minorder_setup(char *buf)
650{
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 654 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
1170532b 658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
659 return 0;
660}
661__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
2847cf95
JK
663static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
c0a32fc5 665{
e30825f1
JK
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
678}
679
2847cf95
JK
680static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
c0a32fc5 682{
e30825f1
JK
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
e30825f1 696struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
697static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13e7444b 718 * (a) the buddy is not in a hole &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
14e07298 733 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 734 return 0;
13e7444b 735
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long page_idx;
6dda9d55 792 unsigned long combined_idx;
43506fad 793 unsigned long uninitialized_var(buddy_idx);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
d9dddbf5 806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 807
309381fe
SL
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 810
d9dddbf5 811continue_merging:
3c605096 812 while (order < max_order - 1) {
43506fad
KC
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
43506fad 828 combined_idx = buddy_idx & page_idx;
1da177e4
LT
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
b7f50cfa 869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
43506fad
KC
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 874 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
4db7548c
MG
944static int free_tail_pages_check(struct page *head_page, struct page *page)
945{
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992}
993
994static bool free_pages_prepare(struct page *page, unsigned int order);
995
996#ifdef CONFIG_DEBUG_VM
997static inline bool free_pcp_prepare(struct page *page)
998{
999 return free_pages_prepare(page, 0);
1000}
1001
1002static inline bool bulkfree_pcp_prepare(struct page *page)
1003{
1004 return false;
1005}
1006#else
1007static bool free_pcp_prepare(struct page *page)
1008{
1009 VM_BUG_ON_PAGE(PageTail(page), page);
1010
1011 trace_mm_page_free(page, 0);
1012 kmemcheck_free_shadow(page, 0);
1013 kasan_free_pages(page, 0);
1014
1015 if (PageAnonHead(page))
1016 page->mapping = NULL;
1017
1018 reset_page_owner(page, 0);
1019
1020 if (!PageHighMem(page)) {
1021 debug_check_no_locks_freed(page_address(page),
1022 PAGE_SIZE);
1023 debug_check_no_obj_freed(page_address(page),
1024 PAGE_SIZE);
1025 }
1026 arch_free_page(page, 0);
1027 kernel_poison_pages(page, 0, 0);
1028 kernel_map_pages(page, 0, 0);
1029
1030 page_cpupid_reset_last(page);
1031 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1032 return true;
1033}
1034
1035static bool bulkfree_pcp_prepare(struct page *page)
1036{
1037 return free_pages_check(page);
1038}
1039#endif /* CONFIG_DEBUG_VM */
1040
1da177e4 1041/*
5f8dcc21 1042 * Frees a number of pages from the PCP lists
1da177e4 1043 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1044 * count is the number of pages to free.
1da177e4
LT
1045 *
1046 * If the zone was previously in an "all pages pinned" state then look to
1047 * see if this freeing clears that state.
1048 *
1049 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1050 * pinned" detection logic.
1051 */
5f8dcc21
MG
1052static void free_pcppages_bulk(struct zone *zone, int count,
1053 struct per_cpu_pages *pcp)
1da177e4 1054{
5f8dcc21 1055 int migratetype = 0;
a6f9edd6 1056 int batch_free = 0;
0d5d823a 1057 unsigned long nr_scanned;
3777999d 1058 bool isolated_pageblocks;
5f8dcc21 1059
c54ad30c 1060 spin_lock(&zone->lock);
3777999d 1061 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1062 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1063 if (nr_scanned)
1064 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1065
e5b31ac2 1066 while (count) {
48db57f8 1067 struct page *page;
5f8dcc21
MG
1068 struct list_head *list;
1069
1070 /*
a6f9edd6
MG
1071 * Remove pages from lists in a round-robin fashion. A
1072 * batch_free count is maintained that is incremented when an
1073 * empty list is encountered. This is so more pages are freed
1074 * off fuller lists instead of spinning excessively around empty
1075 * lists
5f8dcc21
MG
1076 */
1077 do {
a6f9edd6 1078 batch_free++;
5f8dcc21
MG
1079 if (++migratetype == MIGRATE_PCPTYPES)
1080 migratetype = 0;
1081 list = &pcp->lists[migratetype];
1082 } while (list_empty(list));
48db57f8 1083
1d16871d
NK
1084 /* This is the only non-empty list. Free them all. */
1085 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1086 batch_free = count;
1d16871d 1087
a6f9edd6 1088 do {
770c8aaa
BZ
1089 int mt; /* migratetype of the to-be-freed page */
1090
a16601c5 1091 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1092 /* must delete as __free_one_page list manipulates */
1093 list_del(&page->lru);
aa016d14 1094
bb14c2c7 1095 mt = get_pcppage_migratetype(page);
aa016d14
VB
1096 /* MIGRATE_ISOLATE page should not go to pcplists */
1097 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1098 /* Pageblock could have been isolated meanwhile */
3777999d 1099 if (unlikely(isolated_pageblocks))
51bb1a40 1100 mt = get_pageblock_migratetype(page);
51bb1a40 1101
4db7548c
MG
1102 if (bulkfree_pcp_prepare(page))
1103 continue;
1104
dc4b0caf 1105 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1106 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1107 } while (--count && --batch_free && !list_empty(list));
1da177e4 1108 }
c54ad30c 1109 spin_unlock(&zone->lock);
1da177e4
LT
1110}
1111
dc4b0caf
MG
1112static void free_one_page(struct zone *zone,
1113 struct page *page, unsigned long pfn,
7aeb09f9 1114 unsigned int order,
ed0ae21d 1115 int migratetype)
1da177e4 1116{
0d5d823a 1117 unsigned long nr_scanned;
006d22d9 1118 spin_lock(&zone->lock);
0d5d823a
MG
1119 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1120 if (nr_scanned)
1121 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1122
ad53f92e
JK
1123 if (unlikely(has_isolate_pageblock(zone) ||
1124 is_migrate_isolate(migratetype))) {
1125 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1126 }
dc4b0caf 1127 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1128 spin_unlock(&zone->lock);
48db57f8
NP
1129}
1130
1e8ce83c
RH
1131static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1132 unsigned long zone, int nid)
1133{
1e8ce83c 1134 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1135 init_page_count(page);
1136 page_mapcount_reset(page);
1137 page_cpupid_reset_last(page);
1e8ce83c 1138
1e8ce83c
RH
1139 INIT_LIST_HEAD(&page->lru);
1140#ifdef WANT_PAGE_VIRTUAL
1141 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1142 if (!is_highmem_idx(zone))
1143 set_page_address(page, __va(pfn << PAGE_SHIFT));
1144#endif
1145}
1146
1147static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1148 int nid)
1149{
1150 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1151}
1152
7e18adb4
MG
1153#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1154static void init_reserved_page(unsigned long pfn)
1155{
1156 pg_data_t *pgdat;
1157 int nid, zid;
1158
1159 if (!early_page_uninitialised(pfn))
1160 return;
1161
1162 nid = early_pfn_to_nid(pfn);
1163 pgdat = NODE_DATA(nid);
1164
1165 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1166 struct zone *zone = &pgdat->node_zones[zid];
1167
1168 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1169 break;
1170 }
1171 __init_single_pfn(pfn, zid, nid);
1172}
1173#else
1174static inline void init_reserved_page(unsigned long pfn)
1175{
1176}
1177#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1178
92923ca3
NZ
1179/*
1180 * Initialised pages do not have PageReserved set. This function is
1181 * called for each range allocated by the bootmem allocator and
1182 * marks the pages PageReserved. The remaining valid pages are later
1183 * sent to the buddy page allocator.
1184 */
7e18adb4 1185void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1186{
1187 unsigned long start_pfn = PFN_DOWN(start);
1188 unsigned long end_pfn = PFN_UP(end);
1189
7e18adb4
MG
1190 for (; start_pfn < end_pfn; start_pfn++) {
1191 if (pfn_valid(start_pfn)) {
1192 struct page *page = pfn_to_page(start_pfn);
1193
1194 init_reserved_page(start_pfn);
1d798ca3
KS
1195
1196 /* Avoid false-positive PageTail() */
1197 INIT_LIST_HEAD(&page->lru);
1198
7e18adb4
MG
1199 SetPageReserved(page);
1200 }
1201 }
92923ca3
NZ
1202}
1203
ec95f53a 1204static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1205{
d61f8590 1206 int bad = 0;
1da177e4 1207
ab1f306f 1208 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1209
b413d48a 1210 trace_mm_page_free(page, order);
b1eeab67 1211 kmemcheck_free_shadow(page, order);
b8c73fc2 1212 kasan_free_pages(page, order);
b1eeab67 1213
d61f8590
MG
1214 /*
1215 * Check tail pages before head page information is cleared to
1216 * avoid checking PageCompound for order-0 pages.
1217 */
1218 if (unlikely(order)) {
1219 bool compound = PageCompound(page);
1220 int i;
1221
1222 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1223
1224 for (i = 1; i < (1 << order); i++) {
1225 if (compound)
1226 bad += free_tail_pages_check(page, page + i);
da838d4f
MG
1227 if (unlikely(free_pages_check(page + i))) {
1228 bad++;
1229 continue;
1230 }
1231 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
d61f8590
MG
1232 }
1233 }
17514574 1234 if (PageAnonHead(page))
8dd60a3a 1235 page->mapping = NULL;
81422f29 1236 bad += free_pages_check(page);
8cc3b392 1237 if (bad)
ec95f53a 1238 return false;
689bcebf 1239
da838d4f
MG
1240 page_cpupid_reset_last(page);
1241 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
48c96a36
JK
1242 reset_page_owner(page, order);
1243
3ac7fe5a 1244 if (!PageHighMem(page)) {
b8af2941
PK
1245 debug_check_no_locks_freed(page_address(page),
1246 PAGE_SIZE << order);
3ac7fe5a
TG
1247 debug_check_no_obj_freed(page_address(page),
1248 PAGE_SIZE << order);
1249 }
dafb1367 1250 arch_free_page(page, order);
8823b1db 1251 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1252 kernel_map_pages(page, 1 << order, 0);
dafb1367 1253
ec95f53a
KM
1254 return true;
1255}
1256
1257static void __free_pages_ok(struct page *page, unsigned int order)
1258{
1259 unsigned long flags;
95e34412 1260 int migratetype;
dc4b0caf 1261 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1262
1263 if (!free_pages_prepare(page, order))
1264 return;
1265
cfc47a28 1266 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1267 local_irq_save(flags);
f8891e5e 1268 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1269 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1270 local_irq_restore(flags);
1da177e4
LT
1271}
1272
949698a3 1273static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1274{
c3993076 1275 unsigned int nr_pages = 1 << order;
e2d0bd2b 1276 struct page *p = page;
c3993076 1277 unsigned int loop;
a226f6c8 1278
e2d0bd2b
YL
1279 prefetchw(p);
1280 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1281 prefetchw(p + 1);
c3993076
JW
1282 __ClearPageReserved(p);
1283 set_page_count(p, 0);
a226f6c8 1284 }
e2d0bd2b
YL
1285 __ClearPageReserved(p);
1286 set_page_count(p, 0);
c3993076 1287
e2d0bd2b 1288 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1289 set_page_refcounted(page);
1290 __free_pages(page, order);
a226f6c8
DH
1291}
1292
75a592a4
MG
1293#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1294 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1295
75a592a4
MG
1296static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1297
1298int __meminit early_pfn_to_nid(unsigned long pfn)
1299{
7ace9917 1300 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1301 int nid;
1302
7ace9917 1303 spin_lock(&early_pfn_lock);
75a592a4 1304 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1305 if (nid < 0)
1306 nid = 0;
1307 spin_unlock(&early_pfn_lock);
1308
1309 return nid;
75a592a4
MG
1310}
1311#endif
1312
1313#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1314static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316{
1317 int nid;
1318
1319 nid = __early_pfn_to_nid(pfn, state);
1320 if (nid >= 0 && nid != node)
1321 return false;
1322 return true;
1323}
1324
1325/* Only safe to use early in boot when initialisation is single-threaded */
1326static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1327{
1328 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1329}
1330
1331#else
1332
1333static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1334{
1335 return true;
1336}
1337static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1338 struct mminit_pfnnid_cache *state)
1339{
1340 return true;
1341}
1342#endif
1343
1344
0e1cc95b 1345void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1346 unsigned int order)
1347{
1348 if (early_page_uninitialised(pfn))
1349 return;
949698a3 1350 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1351}
1352
7cf91a98
JK
1353/*
1354 * Check that the whole (or subset of) a pageblock given by the interval of
1355 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1356 * with the migration of free compaction scanner. The scanners then need to
1357 * use only pfn_valid_within() check for arches that allow holes within
1358 * pageblocks.
1359 *
1360 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361 *
1362 * It's possible on some configurations to have a setup like node0 node1 node0
1363 * i.e. it's possible that all pages within a zones range of pages do not
1364 * belong to a single zone. We assume that a border between node0 and node1
1365 * can occur within a single pageblock, but not a node0 node1 node0
1366 * interleaving within a single pageblock. It is therefore sufficient to check
1367 * the first and last page of a pageblock and avoid checking each individual
1368 * page in a pageblock.
1369 */
1370struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1371 unsigned long end_pfn, struct zone *zone)
1372{
1373 struct page *start_page;
1374 struct page *end_page;
1375
1376 /* end_pfn is one past the range we are checking */
1377 end_pfn--;
1378
1379 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1380 return NULL;
1381
1382 start_page = pfn_to_page(start_pfn);
1383
1384 if (page_zone(start_page) != zone)
1385 return NULL;
1386
1387 end_page = pfn_to_page(end_pfn);
1388
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page) != page_zone_id(end_page))
1391 return NULL;
1392
1393 return start_page;
1394}
1395
1396void set_zone_contiguous(struct zone *zone)
1397{
1398 unsigned long block_start_pfn = zone->zone_start_pfn;
1399 unsigned long block_end_pfn;
1400
1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 for (; block_start_pfn < zone_end_pfn(zone);
1403 block_start_pfn = block_end_pfn,
1404 block_end_pfn += pageblock_nr_pages) {
1405
1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407
1408 if (!__pageblock_pfn_to_page(block_start_pfn,
1409 block_end_pfn, zone))
1410 return;
1411 }
1412
1413 /* We confirm that there is no hole */
1414 zone->contiguous = true;
1415}
1416
1417void clear_zone_contiguous(struct zone *zone)
1418{
1419 zone->contiguous = false;
1420}
1421
7e18adb4 1422#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1423static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1424 unsigned long pfn, int nr_pages)
1425{
1426 int i;
1427
1428 if (!page)
1429 return;
1430
1431 /* Free a large naturally-aligned chunk if possible */
1432 if (nr_pages == MAX_ORDER_NR_PAGES &&
1433 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1434 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1435 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1436 return;
1437 }
1438
949698a3
LZ
1439 for (i = 0; i < nr_pages; i++, page++)
1440 __free_pages_boot_core(page, 0);
a4de83dd
MG
1441}
1442
d3cd131d
NS
1443/* Completion tracking for deferred_init_memmap() threads */
1444static atomic_t pgdat_init_n_undone __initdata;
1445static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1446
1447static inline void __init pgdat_init_report_one_done(void)
1448{
1449 if (atomic_dec_and_test(&pgdat_init_n_undone))
1450 complete(&pgdat_init_all_done_comp);
1451}
0e1cc95b 1452
7e18adb4 1453/* Initialise remaining memory on a node */
0e1cc95b 1454static int __init deferred_init_memmap(void *data)
7e18adb4 1455{
0e1cc95b
MG
1456 pg_data_t *pgdat = data;
1457 int nid = pgdat->node_id;
7e18adb4
MG
1458 struct mminit_pfnnid_cache nid_init_state = { };
1459 unsigned long start = jiffies;
1460 unsigned long nr_pages = 0;
1461 unsigned long walk_start, walk_end;
1462 int i, zid;
1463 struct zone *zone;
7e18adb4 1464 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1465 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1466
0e1cc95b 1467 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1468 pgdat_init_report_one_done();
0e1cc95b
MG
1469 return 0;
1470 }
1471
1472 /* Bind memory initialisation thread to a local node if possible */
1473 if (!cpumask_empty(cpumask))
1474 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1475
1476 /* Sanity check boundaries */
1477 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1478 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1479 pgdat->first_deferred_pfn = ULONG_MAX;
1480
1481 /* Only the highest zone is deferred so find it */
1482 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1483 zone = pgdat->node_zones + zid;
1484 if (first_init_pfn < zone_end_pfn(zone))
1485 break;
1486 }
1487
1488 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1489 unsigned long pfn, end_pfn;
54608c3f 1490 struct page *page = NULL;
a4de83dd
MG
1491 struct page *free_base_page = NULL;
1492 unsigned long free_base_pfn = 0;
1493 int nr_to_free = 0;
7e18adb4
MG
1494
1495 end_pfn = min(walk_end, zone_end_pfn(zone));
1496 pfn = first_init_pfn;
1497 if (pfn < walk_start)
1498 pfn = walk_start;
1499 if (pfn < zone->zone_start_pfn)
1500 pfn = zone->zone_start_pfn;
1501
1502 for (; pfn < end_pfn; pfn++) {
54608c3f 1503 if (!pfn_valid_within(pfn))
a4de83dd 1504 goto free_range;
7e18adb4 1505
54608c3f
MG
1506 /*
1507 * Ensure pfn_valid is checked every
1508 * MAX_ORDER_NR_PAGES for memory holes
1509 */
1510 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1511 if (!pfn_valid(pfn)) {
1512 page = NULL;
a4de83dd 1513 goto free_range;
54608c3f
MG
1514 }
1515 }
1516
1517 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 page = NULL;
a4de83dd 1519 goto free_range;
54608c3f
MG
1520 }
1521
1522 /* Minimise pfn page lookups and scheduler checks */
1523 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1524 page++;
1525 } else {
a4de83dd
MG
1526 nr_pages += nr_to_free;
1527 deferred_free_range(free_base_page,
1528 free_base_pfn, nr_to_free);
1529 free_base_page = NULL;
1530 free_base_pfn = nr_to_free = 0;
1531
54608c3f
MG
1532 page = pfn_to_page(pfn);
1533 cond_resched();
1534 }
7e18adb4
MG
1535
1536 if (page->flags) {
1537 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1538 goto free_range;
7e18adb4
MG
1539 }
1540
1541 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1542 if (!free_base_page) {
1543 free_base_page = page;
1544 free_base_pfn = pfn;
1545 nr_to_free = 0;
1546 }
1547 nr_to_free++;
1548
1549 /* Where possible, batch up pages for a single free */
1550 continue;
1551free_range:
1552 /* Free the current block of pages to allocator */
1553 nr_pages += nr_to_free;
1554 deferred_free_range(free_base_page, free_base_pfn,
1555 nr_to_free);
1556 free_base_page = NULL;
1557 free_base_pfn = nr_to_free = 0;
7e18adb4 1558 }
a4de83dd 1559
7e18adb4
MG
1560 first_init_pfn = max(end_pfn, first_init_pfn);
1561 }
1562
1563 /* Sanity check that the next zone really is unpopulated */
1564 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1565
0e1cc95b 1566 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1567 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1568
1569 pgdat_init_report_one_done();
0e1cc95b
MG
1570 return 0;
1571}
7cf91a98 1572#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1573
1574void __init page_alloc_init_late(void)
1575{
7cf91a98
JK
1576 struct zone *zone;
1577
1578#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1579 int nid;
1580
d3cd131d
NS
1581 /* There will be num_node_state(N_MEMORY) threads */
1582 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1583 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1584 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1585 }
1586
1587 /* Block until all are initialised */
d3cd131d 1588 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1589
1590 /* Reinit limits that are based on free pages after the kernel is up */
1591 files_maxfiles_init();
7cf91a98
JK
1592#endif
1593
1594 for_each_populated_zone(zone)
1595 set_zone_contiguous(zone);
7e18adb4 1596}
7e18adb4 1597
47118af0 1598#ifdef CONFIG_CMA
9cf510a5 1599/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1600void __init init_cma_reserved_pageblock(struct page *page)
1601{
1602 unsigned i = pageblock_nr_pages;
1603 struct page *p = page;
1604
1605 do {
1606 __ClearPageReserved(p);
1607 set_page_count(p, 0);
1608 } while (++p, --i);
1609
47118af0 1610 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1611
1612 if (pageblock_order >= MAX_ORDER) {
1613 i = pageblock_nr_pages;
1614 p = page;
1615 do {
1616 set_page_refcounted(p);
1617 __free_pages(p, MAX_ORDER - 1);
1618 p += MAX_ORDER_NR_PAGES;
1619 } while (i -= MAX_ORDER_NR_PAGES);
1620 } else {
1621 set_page_refcounted(page);
1622 __free_pages(page, pageblock_order);
1623 }
1624
3dcc0571 1625 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1626}
1627#endif
1da177e4
LT
1628
1629/*
1630 * The order of subdivision here is critical for the IO subsystem.
1631 * Please do not alter this order without good reasons and regression
1632 * testing. Specifically, as large blocks of memory are subdivided,
1633 * the order in which smaller blocks are delivered depends on the order
1634 * they're subdivided in this function. This is the primary factor
1635 * influencing the order in which pages are delivered to the IO
1636 * subsystem according to empirical testing, and this is also justified
1637 * by considering the behavior of a buddy system containing a single
1638 * large block of memory acted on by a series of small allocations.
1639 * This behavior is a critical factor in sglist merging's success.
1640 *
6d49e352 1641 * -- nyc
1da177e4 1642 */
085cc7d5 1643static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1644 int low, int high, struct free_area *area,
1645 int migratetype)
1da177e4
LT
1646{
1647 unsigned long size = 1 << high;
1648
1649 while (high > low) {
1650 area--;
1651 high--;
1652 size >>= 1;
309381fe 1653 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1654
2847cf95 1655 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1656 debug_guardpage_enabled() &&
2847cf95 1657 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1658 /*
1659 * Mark as guard pages (or page), that will allow to
1660 * merge back to allocator when buddy will be freed.
1661 * Corresponding page table entries will not be touched,
1662 * pages will stay not present in virtual address space
1663 */
2847cf95 1664 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1665 continue;
1666 }
b2a0ac88 1667 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1668 area->nr_free++;
1669 set_page_order(&page[size], high);
1670 }
1da177e4
LT
1671}
1672
1da177e4
LT
1673/*
1674 * This page is about to be returned from the page allocator
1675 */
2a7684a2 1676static inline int check_new_page(struct page *page)
1da177e4 1677{
7bfec6f4
MG
1678 const char *bad_reason;
1679 unsigned long bad_flags;
1680
1681 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1682 return 0;
f0b791a3 1683
7bfec6f4
MG
1684 bad_reason = NULL;
1685 bad_flags = 0;
53f9263b 1686 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1687 bad_reason = "nonzero mapcount";
1688 if (unlikely(page->mapping != NULL))
1689 bad_reason = "non-NULL mapping";
fe896d18 1690 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1691 bad_reason = "nonzero _count";
f4c18e6f
NH
1692 if (unlikely(page->flags & __PG_HWPOISON)) {
1693 bad_reason = "HWPoisoned (hardware-corrupted)";
1694 bad_flags = __PG_HWPOISON;
1695 }
f0b791a3
DH
1696 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1697 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1698 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1699 }
9edad6ea
JW
1700#ifdef CONFIG_MEMCG
1701 if (unlikely(page->mem_cgroup))
1702 bad_reason = "page still charged to cgroup";
1703#endif
f0b791a3
DH
1704 if (unlikely(bad_reason)) {
1705 bad_page(page, bad_reason, bad_flags);
689bcebf 1706 return 1;
8cc3b392 1707 }
2a7684a2
WF
1708 return 0;
1709}
1710
1414c7f4
LA
1711static inline bool free_pages_prezeroed(bool poisoned)
1712{
1713 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1714 page_poisoning_enabled() && poisoned;
1715}
1716
479f854a
MG
1717#ifdef CONFIG_DEBUG_VM
1718static bool check_pcp_refill(struct page *page)
1719{
1720 return false;
1721}
1722
1723static bool check_new_pcp(struct page *page)
1724{
1725 return check_new_page(page);
1726}
1727#else
1728static bool check_pcp_refill(struct page *page)
1729{
1730 return check_new_page(page);
1731}
1732static bool check_new_pcp(struct page *page)
1733{
1734 return false;
1735}
1736#endif /* CONFIG_DEBUG_VM */
1737
1738static bool check_new_pages(struct page *page, unsigned int order)
1739{
1740 int i;
1741 for (i = 0; i < (1 << order); i++) {
1742 struct page *p = page + i;
1743
1744 if (unlikely(check_new_page(p)))
1745 return true;
1746 }
1747
1748 return false;
1749}
1750
1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1752 unsigned int alloc_flags)
2a7684a2
WF
1753{
1754 int i;
1414c7f4 1755 bool poisoned = true;
2a7684a2
WF
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1414c7f4
LA
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
2a7684a2 1761 }
689bcebf 1762
4c21e2f2 1763 set_page_private(page, 0);
7835e98b 1764 set_page_refcounted(page);
cc102509
NP
1765
1766 arch_alloc_page(page, order);
1da177e4 1767 kernel_map_pages(page, 1 << order, 1);
8823b1db 1768 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1769 kasan_alloc_pages(page, order);
17cf4406 1770
1414c7f4 1771 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1772 for (i = 0; i < (1 << order); i++)
1773 clear_highpage(page + i);
17cf4406
NP
1774
1775 if (order && (gfp_flags & __GFP_COMP))
1776 prep_compound_page(page, order);
1777
48c96a36
JK
1778 set_page_owner(page, order, gfp_flags);
1779
75379191 1780 /*
2f064f34 1781 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1782 * allocate the page. The expectation is that the caller is taking
1783 * steps that will free more memory. The caller should avoid the page
1784 * being used for !PFMEMALLOC purposes.
1785 */
2f064f34
MH
1786 if (alloc_flags & ALLOC_NO_WATERMARKS)
1787 set_page_pfmemalloc(page);
1788 else
1789 clear_page_pfmemalloc(page);
1da177e4
LT
1790}
1791
56fd56b8
MG
1792/*
1793 * Go through the free lists for the given migratetype and remove
1794 * the smallest available page from the freelists
1795 */
728ec980
MG
1796static inline
1797struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1798 int migratetype)
1799{
1800 unsigned int current_order;
b8af2941 1801 struct free_area *area;
56fd56b8
MG
1802 struct page *page;
1803
1804 /* Find a page of the appropriate size in the preferred list */
1805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1806 area = &(zone->free_area[current_order]);
a16601c5 1807 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1808 struct page, lru);
a16601c5
GT
1809 if (!page)
1810 continue;
56fd56b8
MG
1811 list_del(&page->lru);
1812 rmv_page_order(page);
1813 area->nr_free--;
56fd56b8 1814 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1815 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1816 return page;
1817 }
1818
1819 return NULL;
1820}
1821
1822
b2a0ac88
MG
1823/*
1824 * This array describes the order lists are fallen back to when
1825 * the free lists for the desirable migrate type are depleted
1826 */
47118af0 1827static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1831#ifdef CONFIG_CMA
974a786e 1832 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1833#endif
194159fb 1834#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1835 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1836#endif
b2a0ac88
MG
1837};
1838
dc67647b
JK
1839#ifdef CONFIG_CMA
1840static struct page *__rmqueue_cma_fallback(struct zone *zone,
1841 unsigned int order)
1842{
1843 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1844}
1845#else
1846static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1847 unsigned int order) { return NULL; }
1848#endif
1849
c361be55
MG
1850/*
1851 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1852 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1853 * boundary. If alignment is required, use move_freepages_block()
1854 */
435b405c 1855int move_freepages(struct zone *zone,
b69a7288
AB
1856 struct page *start_page, struct page *end_page,
1857 int migratetype)
c361be55
MG
1858{
1859 struct page *page;
d00181b9 1860 unsigned int order;
d100313f 1861 int pages_moved = 0;
c361be55
MG
1862
1863#ifndef CONFIG_HOLES_IN_ZONE
1864 /*
1865 * page_zone is not safe to call in this context when
1866 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1867 * anyway as we check zone boundaries in move_freepages_block().
1868 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1869 * grouping pages by mobility
c361be55 1870 */
97ee4ba7 1871 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1872#endif
1873
1874 for (page = start_page; page <= end_page;) {
344c790e 1875 /* Make sure we are not inadvertently changing nodes */
309381fe 1876 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1877
c361be55
MG
1878 if (!pfn_valid_within(page_to_pfn(page))) {
1879 page++;
1880 continue;
1881 }
1882
1883 if (!PageBuddy(page)) {
1884 page++;
1885 continue;
1886 }
1887
1888 order = page_order(page);
84be48d8
KS
1889 list_move(&page->lru,
1890 &zone->free_area[order].free_list[migratetype]);
c361be55 1891 page += 1 << order;
d100313f 1892 pages_moved += 1 << order;
c361be55
MG
1893 }
1894
d100313f 1895 return pages_moved;
c361be55
MG
1896}
1897
ee6f509c 1898int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1899 int migratetype)
c361be55
MG
1900{
1901 unsigned long start_pfn, end_pfn;
1902 struct page *start_page, *end_page;
1903
1904 start_pfn = page_to_pfn(page);
d9c23400 1905 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1906 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1907 end_page = start_page + pageblock_nr_pages - 1;
1908 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1909
1910 /* Do not cross zone boundaries */
108bcc96 1911 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1912 start_page = page;
108bcc96 1913 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1914 return 0;
1915
1916 return move_freepages(zone, start_page, end_page, migratetype);
1917}
1918
2f66a68f
MG
1919static void change_pageblock_range(struct page *pageblock_page,
1920 int start_order, int migratetype)
1921{
1922 int nr_pageblocks = 1 << (start_order - pageblock_order);
1923
1924 while (nr_pageblocks--) {
1925 set_pageblock_migratetype(pageblock_page, migratetype);
1926 pageblock_page += pageblock_nr_pages;
1927 }
1928}
1929
fef903ef 1930/*
9c0415eb
VB
1931 * When we are falling back to another migratetype during allocation, try to
1932 * steal extra free pages from the same pageblocks to satisfy further
1933 * allocations, instead of polluting multiple pageblocks.
1934 *
1935 * If we are stealing a relatively large buddy page, it is likely there will
1936 * be more free pages in the pageblock, so try to steal them all. For
1937 * reclaimable and unmovable allocations, we steal regardless of page size,
1938 * as fragmentation caused by those allocations polluting movable pageblocks
1939 * is worse than movable allocations stealing from unmovable and reclaimable
1940 * pageblocks.
fef903ef 1941 */
4eb7dce6
JK
1942static bool can_steal_fallback(unsigned int order, int start_mt)
1943{
1944 /*
1945 * Leaving this order check is intended, although there is
1946 * relaxed order check in next check. The reason is that
1947 * we can actually steal whole pageblock if this condition met,
1948 * but, below check doesn't guarantee it and that is just heuristic
1949 * so could be changed anytime.
1950 */
1951 if (order >= pageblock_order)
1952 return true;
1953
1954 if (order >= pageblock_order / 2 ||
1955 start_mt == MIGRATE_RECLAIMABLE ||
1956 start_mt == MIGRATE_UNMOVABLE ||
1957 page_group_by_mobility_disabled)
1958 return true;
1959
1960 return false;
1961}
1962
1963/*
1964 * This function implements actual steal behaviour. If order is large enough,
1965 * we can steal whole pageblock. If not, we first move freepages in this
1966 * pageblock and check whether half of pages are moved or not. If half of
1967 * pages are moved, we can change migratetype of pageblock and permanently
1968 * use it's pages as requested migratetype in the future.
1969 */
1970static void steal_suitable_fallback(struct zone *zone, struct page *page,
1971 int start_type)
fef903ef 1972{
d00181b9 1973 unsigned int current_order = page_order(page);
4eb7dce6 1974 int pages;
fef903ef 1975
fef903ef
SB
1976 /* Take ownership for orders >= pageblock_order */
1977 if (current_order >= pageblock_order) {
1978 change_pageblock_range(page, current_order, start_type);
3a1086fb 1979 return;
fef903ef
SB
1980 }
1981
4eb7dce6 1982 pages = move_freepages_block(zone, page, start_type);
fef903ef 1983
4eb7dce6
JK
1984 /* Claim the whole block if over half of it is free */
1985 if (pages >= (1 << (pageblock_order-1)) ||
1986 page_group_by_mobility_disabled)
1987 set_pageblock_migratetype(page, start_type);
1988}
1989
2149cdae
JK
1990/*
1991 * Check whether there is a suitable fallback freepage with requested order.
1992 * If only_stealable is true, this function returns fallback_mt only if
1993 * we can steal other freepages all together. This would help to reduce
1994 * fragmentation due to mixed migratetype pages in one pageblock.
1995 */
1996int find_suitable_fallback(struct free_area *area, unsigned int order,
1997 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1998{
1999 int i;
2000 int fallback_mt;
2001
2002 if (area->nr_free == 0)
2003 return -1;
2004
2005 *can_steal = false;
2006 for (i = 0;; i++) {
2007 fallback_mt = fallbacks[migratetype][i];
974a786e 2008 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2009 break;
2010
2011 if (list_empty(&area->free_list[fallback_mt]))
2012 continue;
fef903ef 2013
4eb7dce6
JK
2014 if (can_steal_fallback(order, migratetype))
2015 *can_steal = true;
2016
2149cdae
JK
2017 if (!only_stealable)
2018 return fallback_mt;
2019
2020 if (*can_steal)
2021 return fallback_mt;
fef903ef 2022 }
4eb7dce6
JK
2023
2024 return -1;
fef903ef
SB
2025}
2026
0aaa29a5
MG
2027/*
2028 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2029 * there are no empty page blocks that contain a page with a suitable order
2030 */
2031static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2032 unsigned int alloc_order)
2033{
2034 int mt;
2035 unsigned long max_managed, flags;
2036
2037 /*
2038 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2039 * Check is race-prone but harmless.
2040 */
2041 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2042 if (zone->nr_reserved_highatomic >= max_managed)
2043 return;
2044
2045 spin_lock_irqsave(&zone->lock, flags);
2046
2047 /* Recheck the nr_reserved_highatomic limit under the lock */
2048 if (zone->nr_reserved_highatomic >= max_managed)
2049 goto out_unlock;
2050
2051 /* Yoink! */
2052 mt = get_pageblock_migratetype(page);
2053 if (mt != MIGRATE_HIGHATOMIC &&
2054 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2055 zone->nr_reserved_highatomic += pageblock_nr_pages;
2056 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2057 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2058 }
2059
2060out_unlock:
2061 spin_unlock_irqrestore(&zone->lock, flags);
2062}
2063
2064/*
2065 * Used when an allocation is about to fail under memory pressure. This
2066 * potentially hurts the reliability of high-order allocations when under
2067 * intense memory pressure but failed atomic allocations should be easier
2068 * to recover from than an OOM.
2069 */
2070static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2071{
2072 struct zonelist *zonelist = ac->zonelist;
2073 unsigned long flags;
2074 struct zoneref *z;
2075 struct zone *zone;
2076 struct page *page;
2077 int order;
2078
2079 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2080 ac->nodemask) {
2081 /* Preserve at least one pageblock */
2082 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2083 continue;
2084
2085 spin_lock_irqsave(&zone->lock, flags);
2086 for (order = 0; order < MAX_ORDER; order++) {
2087 struct free_area *area = &(zone->free_area[order]);
2088
a16601c5
GT
2089 page = list_first_entry_or_null(
2090 &area->free_list[MIGRATE_HIGHATOMIC],
2091 struct page, lru);
2092 if (!page)
0aaa29a5
MG
2093 continue;
2094
0aaa29a5
MG
2095 /*
2096 * It should never happen but changes to locking could
2097 * inadvertently allow a per-cpu drain to add pages
2098 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2099 * and watch for underflows.
2100 */
2101 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2102 zone->nr_reserved_highatomic);
2103
2104 /*
2105 * Convert to ac->migratetype and avoid the normal
2106 * pageblock stealing heuristics. Minimally, the caller
2107 * is doing the work and needs the pages. More
2108 * importantly, if the block was always converted to
2109 * MIGRATE_UNMOVABLE or another type then the number
2110 * of pageblocks that cannot be completely freed
2111 * may increase.
2112 */
2113 set_pageblock_migratetype(page, ac->migratetype);
2114 move_freepages_block(zone, page, ac->migratetype);
2115 spin_unlock_irqrestore(&zone->lock, flags);
2116 return;
2117 }
2118 spin_unlock_irqrestore(&zone->lock, flags);
2119 }
2120}
2121
b2a0ac88 2122/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2123static inline struct page *
7aeb09f9 2124__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2125{
b8af2941 2126 struct free_area *area;
7aeb09f9 2127 unsigned int current_order;
b2a0ac88 2128 struct page *page;
4eb7dce6
JK
2129 int fallback_mt;
2130 bool can_steal;
b2a0ac88
MG
2131
2132 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2133 for (current_order = MAX_ORDER-1;
2134 current_order >= order && current_order <= MAX_ORDER-1;
2135 --current_order) {
4eb7dce6
JK
2136 area = &(zone->free_area[current_order]);
2137 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2138 start_migratetype, false, &can_steal);
4eb7dce6
JK
2139 if (fallback_mt == -1)
2140 continue;
b2a0ac88 2141
a16601c5 2142 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2143 struct page, lru);
2144 if (can_steal)
2145 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2146
4eb7dce6
JK
2147 /* Remove the page from the freelists */
2148 area->nr_free--;
2149 list_del(&page->lru);
2150 rmv_page_order(page);
3a1086fb 2151
4eb7dce6
JK
2152 expand(zone, page, order, current_order, area,
2153 start_migratetype);
2154 /*
bb14c2c7 2155 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2156 * migratetype depending on the decisions in
bb14c2c7
VB
2157 * find_suitable_fallback(). This is OK as long as it does not
2158 * differ for MIGRATE_CMA pageblocks. Those can be used as
2159 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2160 */
bb14c2c7 2161 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2162
4eb7dce6
JK
2163 trace_mm_page_alloc_extfrag(page, order, current_order,
2164 start_migratetype, fallback_mt);
e0fff1bd 2165
4eb7dce6 2166 return page;
b2a0ac88
MG
2167 }
2168
728ec980 2169 return NULL;
b2a0ac88
MG
2170}
2171
56fd56b8 2172/*
1da177e4
LT
2173 * Do the hard work of removing an element from the buddy allocator.
2174 * Call me with the zone->lock already held.
2175 */
b2a0ac88 2176static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2177 int migratetype)
1da177e4 2178{
1da177e4
LT
2179 struct page *page;
2180
56fd56b8 2181 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2182 if (unlikely(!page)) {
dc67647b
JK
2183 if (migratetype == MIGRATE_MOVABLE)
2184 page = __rmqueue_cma_fallback(zone, order);
2185
2186 if (!page)
2187 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2188 }
2189
0d3d062a 2190 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2191 return page;
1da177e4
LT
2192}
2193
5f63b720 2194/*
1da177e4
LT
2195 * Obtain a specified number of elements from the buddy allocator, all under
2196 * a single hold of the lock, for efficiency. Add them to the supplied list.
2197 * Returns the number of new pages which were placed at *list.
2198 */
5f63b720 2199static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2200 unsigned long count, struct list_head *list,
b745bc85 2201 int migratetype, bool cold)
1da177e4 2202{
5bcc9f86 2203 int i;
5f63b720 2204
c54ad30c 2205 spin_lock(&zone->lock);
1da177e4 2206 for (i = 0; i < count; ++i) {
6ac0206b 2207 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2208 if (unlikely(page == NULL))
1da177e4 2209 break;
81eabcbe 2210
479f854a
MG
2211 if (unlikely(check_pcp_refill(page)))
2212 continue;
2213
81eabcbe
MG
2214 /*
2215 * Split buddy pages returned by expand() are received here
2216 * in physical page order. The page is added to the callers and
2217 * list and the list head then moves forward. From the callers
2218 * perspective, the linked list is ordered by page number in
2219 * some conditions. This is useful for IO devices that can
2220 * merge IO requests if the physical pages are ordered
2221 * properly.
2222 */
b745bc85 2223 if (likely(!cold))
e084b2d9
MG
2224 list_add(&page->lru, list);
2225 else
2226 list_add_tail(&page->lru, list);
81eabcbe 2227 list = &page->lru;
bb14c2c7 2228 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2229 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2230 -(1 << order));
1da177e4 2231 }
f2260e6b 2232 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2233 spin_unlock(&zone->lock);
085cc7d5 2234 return i;
1da177e4
LT
2235}
2236
4ae7c039 2237#ifdef CONFIG_NUMA
8fce4d8e 2238/*
4037d452
CL
2239 * Called from the vmstat counter updater to drain pagesets of this
2240 * currently executing processor on remote nodes after they have
2241 * expired.
2242 *
879336c3
CL
2243 * Note that this function must be called with the thread pinned to
2244 * a single processor.
8fce4d8e 2245 */
4037d452 2246void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2247{
4ae7c039 2248 unsigned long flags;
7be12fc9 2249 int to_drain, batch;
4ae7c039 2250
4037d452 2251 local_irq_save(flags);
4db0c3c2 2252 batch = READ_ONCE(pcp->batch);
7be12fc9 2253 to_drain = min(pcp->count, batch);
2a13515c
KM
2254 if (to_drain > 0) {
2255 free_pcppages_bulk(zone, to_drain, pcp);
2256 pcp->count -= to_drain;
2257 }
4037d452 2258 local_irq_restore(flags);
4ae7c039
CL
2259}
2260#endif
2261
9f8f2172 2262/*
93481ff0 2263 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2264 *
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2267 * is not online.
2268 */
93481ff0 2269static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2270{
c54ad30c 2271 unsigned long flags;
93481ff0
VB
2272 struct per_cpu_pageset *pset;
2273 struct per_cpu_pages *pcp;
1da177e4 2274
93481ff0
VB
2275 local_irq_save(flags);
2276 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2277
93481ff0
VB
2278 pcp = &pset->pcp;
2279 if (pcp->count) {
2280 free_pcppages_bulk(zone, pcp->count, pcp);
2281 pcp->count = 0;
2282 }
2283 local_irq_restore(flags);
2284}
3dfa5721 2285
93481ff0
VB
2286/*
2287 * Drain pcplists of all zones on the indicated processor.
2288 *
2289 * The processor must either be the current processor and the
2290 * thread pinned to the current processor or a processor that
2291 * is not online.
2292 */
2293static void drain_pages(unsigned int cpu)
2294{
2295 struct zone *zone;
2296
2297 for_each_populated_zone(zone) {
2298 drain_pages_zone(cpu, zone);
1da177e4
LT
2299 }
2300}
1da177e4 2301
9f8f2172
CL
2302/*
2303 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2304 *
2305 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2306 * the single zone's pages.
9f8f2172 2307 */
93481ff0 2308void drain_local_pages(struct zone *zone)
9f8f2172 2309{
93481ff0
VB
2310 int cpu = smp_processor_id();
2311
2312 if (zone)
2313 drain_pages_zone(cpu, zone);
2314 else
2315 drain_pages(cpu);
9f8f2172
CL
2316}
2317
2318/*
74046494
GBY
2319 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2320 *
93481ff0
VB
2321 * When zone parameter is non-NULL, spill just the single zone's pages.
2322 *
74046494
GBY
2323 * Note that this code is protected against sending an IPI to an offline
2324 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2325 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2326 * nothing keeps CPUs from showing up after we populated the cpumask and
2327 * before the call to on_each_cpu_mask().
9f8f2172 2328 */
93481ff0 2329void drain_all_pages(struct zone *zone)
9f8f2172 2330{
74046494 2331 int cpu;
74046494
GBY
2332
2333 /*
2334 * Allocate in the BSS so we wont require allocation in
2335 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2336 */
2337 static cpumask_t cpus_with_pcps;
2338
2339 /*
2340 * We don't care about racing with CPU hotplug event
2341 * as offline notification will cause the notified
2342 * cpu to drain that CPU pcps and on_each_cpu_mask
2343 * disables preemption as part of its processing
2344 */
2345 for_each_online_cpu(cpu) {
93481ff0
VB
2346 struct per_cpu_pageset *pcp;
2347 struct zone *z;
74046494 2348 bool has_pcps = false;
93481ff0
VB
2349
2350 if (zone) {
74046494 2351 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2352 if (pcp->pcp.count)
74046494 2353 has_pcps = true;
93481ff0
VB
2354 } else {
2355 for_each_populated_zone(z) {
2356 pcp = per_cpu_ptr(z->pageset, cpu);
2357 if (pcp->pcp.count) {
2358 has_pcps = true;
2359 break;
2360 }
74046494
GBY
2361 }
2362 }
93481ff0 2363
74046494
GBY
2364 if (has_pcps)
2365 cpumask_set_cpu(cpu, &cpus_with_pcps);
2366 else
2367 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2368 }
93481ff0
VB
2369 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2370 zone, 1);
9f8f2172
CL
2371}
2372
296699de 2373#ifdef CONFIG_HIBERNATION
1da177e4
LT
2374
2375void mark_free_pages(struct zone *zone)
2376{
f623f0db
RW
2377 unsigned long pfn, max_zone_pfn;
2378 unsigned long flags;
7aeb09f9 2379 unsigned int order, t;
86760a2c 2380 struct page *page;
1da177e4 2381
8080fc03 2382 if (zone_is_empty(zone))
1da177e4
LT
2383 return;
2384
2385 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2386
108bcc96 2387 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2388 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2389 if (pfn_valid(pfn)) {
86760a2c 2390 page = pfn_to_page(pfn);
ba6b0979
JK
2391
2392 if (page_zone(page) != zone)
2393 continue;
2394
7be98234
RW
2395 if (!swsusp_page_is_forbidden(page))
2396 swsusp_unset_page_free(page);
f623f0db 2397 }
1da177e4 2398
b2a0ac88 2399 for_each_migratetype_order(order, t) {
86760a2c
GT
2400 list_for_each_entry(page,
2401 &zone->free_area[order].free_list[t], lru) {
f623f0db 2402 unsigned long i;
1da177e4 2403
86760a2c 2404 pfn = page_to_pfn(page);
f623f0db 2405 for (i = 0; i < (1UL << order); i++)
7be98234 2406 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2407 }
b2a0ac88 2408 }
1da177e4
LT
2409 spin_unlock_irqrestore(&zone->lock, flags);
2410}
e2c55dc8 2411#endif /* CONFIG_PM */
1da177e4 2412
1da177e4
LT
2413/*
2414 * Free a 0-order page
b745bc85 2415 * cold == true ? free a cold page : free a hot page
1da177e4 2416 */
b745bc85 2417void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2418{
2419 struct zone *zone = page_zone(page);
2420 struct per_cpu_pages *pcp;
2421 unsigned long flags;
dc4b0caf 2422 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2423 int migratetype;
1da177e4 2424
4db7548c 2425 if (!free_pcp_prepare(page))
689bcebf
HD
2426 return;
2427
dc4b0caf 2428 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2429 set_pcppage_migratetype(page, migratetype);
1da177e4 2430 local_irq_save(flags);
f8891e5e 2431 __count_vm_event(PGFREE);
da456f14 2432
5f8dcc21
MG
2433 /*
2434 * We only track unmovable, reclaimable and movable on pcp lists.
2435 * Free ISOLATE pages back to the allocator because they are being
2436 * offlined but treat RESERVE as movable pages so we can get those
2437 * areas back if necessary. Otherwise, we may have to free
2438 * excessively into the page allocator
2439 */
2440 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2441 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2442 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2443 goto out;
2444 }
2445 migratetype = MIGRATE_MOVABLE;
2446 }
2447
99dcc3e5 2448 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2449 if (!cold)
5f8dcc21 2450 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2451 else
2452 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2453 pcp->count++;
48db57f8 2454 if (pcp->count >= pcp->high) {
4db0c3c2 2455 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2456 free_pcppages_bulk(zone, batch, pcp);
2457 pcp->count -= batch;
48db57f8 2458 }
5f8dcc21
MG
2459
2460out:
1da177e4 2461 local_irq_restore(flags);
1da177e4
LT
2462}
2463
cc59850e
KK
2464/*
2465 * Free a list of 0-order pages
2466 */
b745bc85 2467void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2468{
2469 struct page *page, *next;
2470
2471 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2472 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2473 free_hot_cold_page(page, cold);
2474 }
2475}
2476
8dfcc9ba
NP
2477/*
2478 * split_page takes a non-compound higher-order page, and splits it into
2479 * n (1<<order) sub-pages: page[0..n]
2480 * Each sub-page must be freed individually.
2481 *
2482 * Note: this is probably too low level an operation for use in drivers.
2483 * Please consult with lkml before using this in your driver.
2484 */
2485void split_page(struct page *page, unsigned int order)
2486{
2487 int i;
e2cfc911 2488 gfp_t gfp_mask;
8dfcc9ba 2489
309381fe
SL
2490 VM_BUG_ON_PAGE(PageCompound(page), page);
2491 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2492
2493#ifdef CONFIG_KMEMCHECK
2494 /*
2495 * Split shadow pages too, because free(page[0]) would
2496 * otherwise free the whole shadow.
2497 */
2498 if (kmemcheck_page_is_tracked(page))
2499 split_page(virt_to_page(page[0].shadow), order);
2500#endif
2501
e2cfc911
JK
2502 gfp_mask = get_page_owner_gfp(page);
2503 set_page_owner(page, 0, gfp_mask);
48c96a36 2504 for (i = 1; i < (1 << order); i++) {
7835e98b 2505 set_page_refcounted(page + i);
e2cfc911 2506 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2507 }
8dfcc9ba 2508}
5853ff23 2509EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2510
3c605096 2511int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2512{
748446bb
MG
2513 unsigned long watermark;
2514 struct zone *zone;
2139cbe6 2515 int mt;
748446bb
MG
2516
2517 BUG_ON(!PageBuddy(page));
2518
2519 zone = page_zone(page);
2e30abd1 2520 mt = get_pageblock_migratetype(page);
748446bb 2521
194159fb 2522 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2523 /* Obey watermarks as if the page was being allocated */
2524 watermark = low_wmark_pages(zone) + (1 << order);
2525 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2526 return 0;
2527
8fb74b9f 2528 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2529 }
748446bb
MG
2530
2531 /* Remove page from free list */
2532 list_del(&page->lru);
2533 zone->free_area[order].nr_free--;
2534 rmv_page_order(page);
2139cbe6 2535
e2cfc911 2536 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2537
8fb74b9f 2538 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2539 if (order >= pageblock_order - 1) {
2540 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2541 for (; page < endpage; page += pageblock_nr_pages) {
2542 int mt = get_pageblock_migratetype(page);
194159fb 2543 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2544 set_pageblock_migratetype(page,
2545 MIGRATE_MOVABLE);
2546 }
748446bb
MG
2547 }
2548
f3a14ced 2549
8fb74b9f 2550 return 1UL << order;
1fb3f8ca
MG
2551}
2552
2553/*
2554 * Similar to split_page except the page is already free. As this is only
2555 * being used for migration, the migratetype of the block also changes.
2556 * As this is called with interrupts disabled, the caller is responsible
2557 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2558 * are enabled.
2559 *
2560 * Note: this is probably too low level an operation for use in drivers.
2561 * Please consult with lkml before using this in your driver.
2562 */
2563int split_free_page(struct page *page)
2564{
2565 unsigned int order;
2566 int nr_pages;
2567
1fb3f8ca
MG
2568 order = page_order(page);
2569
8fb74b9f 2570 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2571 if (!nr_pages)
2572 return 0;
2573
2574 /* Split into individual pages */
2575 set_page_refcounted(page);
2576 split_page(page, order);
2577 return nr_pages;
748446bb
MG
2578}
2579
060e7417
MG
2580/*
2581 * Update NUMA hit/miss statistics
2582 *
2583 * Must be called with interrupts disabled.
2584 *
2585 * When __GFP_OTHER_NODE is set assume the node of the preferred
2586 * zone is the local node. This is useful for daemons who allocate
2587 * memory on behalf of other processes.
2588 */
2589static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2590 gfp_t flags)
2591{
2592#ifdef CONFIG_NUMA
2593 int local_nid = numa_node_id();
2594 enum zone_stat_item local_stat = NUMA_LOCAL;
2595
2596 if (unlikely(flags & __GFP_OTHER_NODE)) {
2597 local_stat = NUMA_OTHER;
2598 local_nid = preferred_zone->node;
2599 }
2600
2601 if (z->node == local_nid) {
2602 __inc_zone_state(z, NUMA_HIT);
2603 __inc_zone_state(z, local_stat);
2604 } else {
2605 __inc_zone_state(z, NUMA_MISS);
2606 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2607 }
2608#endif
2609}
2610
1da177e4 2611/*
75379191 2612 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2613 */
0a15c3e9
MG
2614static inline
2615struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2616 struct zone *zone, unsigned int order,
c603844b
MG
2617 gfp_t gfp_flags, unsigned int alloc_flags,
2618 int migratetype)
1da177e4
LT
2619{
2620 unsigned long flags;
689bcebf 2621 struct page *page;
b745bc85 2622 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2623
48db57f8 2624 if (likely(order == 0)) {
1da177e4 2625 struct per_cpu_pages *pcp;
5f8dcc21 2626 struct list_head *list;
1da177e4 2627
1da177e4 2628 local_irq_save(flags);
479f854a
MG
2629 do {
2630 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2631 list = &pcp->lists[migratetype];
2632 if (list_empty(list)) {
2633 pcp->count += rmqueue_bulk(zone, 0,
2634 pcp->batch, list,
2635 migratetype, cold);
2636 if (unlikely(list_empty(list)))
2637 goto failed;
2638 }
b92a6edd 2639
479f854a
MG
2640 if (cold)
2641 page = list_last_entry(list, struct page, lru);
2642 else
2643 page = list_first_entry(list, struct page, lru);
2644 } while (page && check_new_pcp(page));
5f8dcc21 2645
754078eb 2646 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2647 list_del(&page->lru);
2648 pcp->count--;
7fb1d9fc 2649 } else {
0f352e53
MH
2650 /*
2651 * We most definitely don't want callers attempting to
2652 * allocate greater than order-1 page units with __GFP_NOFAIL.
2653 */
2654 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2655 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2656
479f854a
MG
2657 do {
2658 page = NULL;
2659 if (alloc_flags & ALLOC_HARDER) {
2660 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2661 if (page)
2662 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2663 }
2664 if (!page)
2665 page = __rmqueue(zone, order, migratetype);
2666 } while (page && check_new_pages(page, order));
a74609fa
NP
2667 spin_unlock(&zone->lock);
2668 if (!page)
2669 goto failed;
754078eb 2670 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2671 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2672 get_pcppage_migratetype(page));
1da177e4
LT
2673 }
2674
abe5f972 2675 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2676 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2677 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2678
f8891e5e 2679 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2680 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2681 local_irq_restore(flags);
1da177e4 2682
309381fe 2683 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2684 return page;
a74609fa
NP
2685
2686failed:
2687 local_irq_restore(flags);
a74609fa 2688 return NULL;
1da177e4
LT
2689}
2690
933e312e
AM
2691#ifdef CONFIG_FAIL_PAGE_ALLOC
2692
b2588c4b 2693static struct {
933e312e
AM
2694 struct fault_attr attr;
2695
621a5f7a 2696 bool ignore_gfp_highmem;
71baba4b 2697 bool ignore_gfp_reclaim;
54114994 2698 u32 min_order;
933e312e
AM
2699} fail_page_alloc = {
2700 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2701 .ignore_gfp_reclaim = true,
621a5f7a 2702 .ignore_gfp_highmem = true,
54114994 2703 .min_order = 1,
933e312e
AM
2704};
2705
2706static int __init setup_fail_page_alloc(char *str)
2707{
2708 return setup_fault_attr(&fail_page_alloc.attr, str);
2709}
2710__setup("fail_page_alloc=", setup_fail_page_alloc);
2711
deaf386e 2712static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2713{
54114994 2714 if (order < fail_page_alloc.min_order)
deaf386e 2715 return false;
933e312e 2716 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2717 return false;
933e312e 2718 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2719 return false;
71baba4b
MG
2720 if (fail_page_alloc.ignore_gfp_reclaim &&
2721 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2722 return false;
933e312e
AM
2723
2724 return should_fail(&fail_page_alloc.attr, 1 << order);
2725}
2726
2727#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2728
2729static int __init fail_page_alloc_debugfs(void)
2730{
f4ae40a6 2731 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2732 struct dentry *dir;
933e312e 2733
dd48c085
AM
2734 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2735 &fail_page_alloc.attr);
2736 if (IS_ERR(dir))
2737 return PTR_ERR(dir);
933e312e 2738
b2588c4b 2739 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2740 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2741 goto fail;
2742 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2743 &fail_page_alloc.ignore_gfp_highmem))
2744 goto fail;
2745 if (!debugfs_create_u32("min-order", mode, dir,
2746 &fail_page_alloc.min_order))
2747 goto fail;
2748
2749 return 0;
2750fail:
dd48c085 2751 debugfs_remove_recursive(dir);
933e312e 2752
b2588c4b 2753 return -ENOMEM;
933e312e
AM
2754}
2755
2756late_initcall(fail_page_alloc_debugfs);
2757
2758#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2759
2760#else /* CONFIG_FAIL_PAGE_ALLOC */
2761
deaf386e 2762static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2763{
deaf386e 2764 return false;
933e312e
AM
2765}
2766
2767#endif /* CONFIG_FAIL_PAGE_ALLOC */
2768
1da177e4 2769/*
97a16fc8
MG
2770 * Return true if free base pages are above 'mark'. For high-order checks it
2771 * will return true of the order-0 watermark is reached and there is at least
2772 * one free page of a suitable size. Checking now avoids taking the zone lock
2773 * to check in the allocation paths if no pages are free.
1da177e4 2774 */
7aeb09f9 2775static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2776 unsigned long mark, int classzone_idx,
2777 unsigned int alloc_flags,
7aeb09f9 2778 long free_pages)
1da177e4 2779{
d23ad423 2780 long min = mark;
1da177e4 2781 int o;
c603844b 2782 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2783
0aaa29a5 2784 /* free_pages may go negative - that's OK */
df0a6daa 2785 free_pages -= (1 << order) - 1;
0aaa29a5 2786
7fb1d9fc 2787 if (alloc_flags & ALLOC_HIGH)
1da177e4 2788 min -= min / 2;
0aaa29a5
MG
2789
2790 /*
2791 * If the caller does not have rights to ALLOC_HARDER then subtract
2792 * the high-atomic reserves. This will over-estimate the size of the
2793 * atomic reserve but it avoids a search.
2794 */
97a16fc8 2795 if (likely(!alloc_harder))
0aaa29a5
MG
2796 free_pages -= z->nr_reserved_highatomic;
2797 else
1da177e4 2798 min -= min / 4;
e2b19197 2799
d95ea5d1
BZ
2800#ifdef CONFIG_CMA
2801 /* If allocation can't use CMA areas don't use free CMA pages */
2802 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2803 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2804#endif
026b0814 2805
97a16fc8
MG
2806 /*
2807 * Check watermarks for an order-0 allocation request. If these
2808 * are not met, then a high-order request also cannot go ahead
2809 * even if a suitable page happened to be free.
2810 */
2811 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2812 return false;
1da177e4 2813
97a16fc8
MG
2814 /* If this is an order-0 request then the watermark is fine */
2815 if (!order)
2816 return true;
2817
2818 /* For a high-order request, check at least one suitable page is free */
2819 for (o = order; o < MAX_ORDER; o++) {
2820 struct free_area *area = &z->free_area[o];
2821 int mt;
2822
2823 if (!area->nr_free)
2824 continue;
2825
2826 if (alloc_harder)
2827 return true;
1da177e4 2828
97a16fc8
MG
2829 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2830 if (!list_empty(&area->free_list[mt]))
2831 return true;
2832 }
2833
2834#ifdef CONFIG_CMA
2835 if ((alloc_flags & ALLOC_CMA) &&
2836 !list_empty(&area->free_list[MIGRATE_CMA])) {
2837 return true;
2838 }
2839#endif
1da177e4 2840 }
97a16fc8 2841 return false;
88f5acf8
MG
2842}
2843
7aeb09f9 2844bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2845 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2846{
2847 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2848 zone_page_state(z, NR_FREE_PAGES));
2849}
2850
48ee5f36
MG
2851static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2852 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2853{
2854 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2855 long cma_pages = 0;
2856
2857#ifdef CONFIG_CMA
2858 /* If allocation can't use CMA areas don't use free CMA pages */
2859 if (!(alloc_flags & ALLOC_CMA))
2860 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2861#endif
2862
2863 /*
2864 * Fast check for order-0 only. If this fails then the reserves
2865 * need to be calculated. There is a corner case where the check
2866 * passes but only the high-order atomic reserve are free. If
2867 * the caller is !atomic then it'll uselessly search the free
2868 * list. That corner case is then slower but it is harmless.
2869 */
2870 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2871 return true;
2872
2873 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2874 free_pages);
2875}
2876
7aeb09f9 2877bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2878 unsigned long mark, int classzone_idx)
88f5acf8
MG
2879{
2880 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2881
2882 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2883 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2884
e2b19197 2885 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2886 free_pages);
1da177e4
LT
2887}
2888
9276b1bc 2889#ifdef CONFIG_NUMA
81c0a2bb
JW
2890static bool zone_local(struct zone *local_zone, struct zone *zone)
2891{
fff4068c 2892 return local_zone->node == zone->node;
81c0a2bb
JW
2893}
2894
957f822a
DR
2895static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2896{
5f7a75ac
MG
2897 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2898 RECLAIM_DISTANCE;
957f822a 2899}
9276b1bc 2900#else /* CONFIG_NUMA */
81c0a2bb
JW
2901static bool zone_local(struct zone *local_zone, struct zone *zone)
2902{
2903 return true;
2904}
2905
957f822a
DR
2906static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2907{
2908 return true;
2909}
9276b1bc
PJ
2910#endif /* CONFIG_NUMA */
2911
4ffeaf35
MG
2912static void reset_alloc_batches(struct zone *preferred_zone)
2913{
2914 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2915
2916 do {
2917 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2918 high_wmark_pages(zone) - low_wmark_pages(zone) -
2919 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2920 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2921 } while (zone++ != preferred_zone);
2922}
2923
7fb1d9fc 2924/*
0798e519 2925 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2926 * a page.
2927 */
2928static struct page *
a9263751
VB
2929get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2930 const struct alloc_context *ac)
753ee728 2931{
c33d6c06 2932 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2933 struct zone *zone;
30534755
MG
2934 bool fair_skipped = false;
2935 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2936
9276b1bc 2937zonelist_scan:
7fb1d9fc 2938 /*
9276b1bc 2939 * Scan zonelist, looking for a zone with enough free.
344736f2 2940 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2941 */
c33d6c06 2942 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2943 ac->nodemask) {
be06af00 2944 struct page *page;
e085dbc5
JW
2945 unsigned long mark;
2946
664eedde
MG
2947 if (cpusets_enabled() &&
2948 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2949 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2950 continue;
81c0a2bb
JW
2951 /*
2952 * Distribute pages in proportion to the individual
2953 * zone size to ensure fair page aging. The zone a
2954 * page was allocated in should have no effect on the
2955 * time the page has in memory before being reclaimed.
81c0a2bb 2956 */
30534755 2957 if (apply_fair) {
57054651 2958 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2959 fair_skipped = true;
3a025760 2960 continue;
4ffeaf35 2961 }
c33d6c06 2962 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2963 if (fair_skipped)
2964 goto reset_fair;
2965 apply_fair = false;
2966 }
81c0a2bb 2967 }
a756cf59
JW
2968 /*
2969 * When allocating a page cache page for writing, we
2970 * want to get it from a zone that is within its dirty
2971 * limit, such that no single zone holds more than its
2972 * proportional share of globally allowed dirty pages.
2973 * The dirty limits take into account the zone's
2974 * lowmem reserves and high watermark so that kswapd
2975 * should be able to balance it without having to
2976 * write pages from its LRU list.
2977 *
2978 * This may look like it could increase pressure on
2979 * lower zones by failing allocations in higher zones
2980 * before they are full. But the pages that do spill
2981 * over are limited as the lower zones are protected
2982 * by this very same mechanism. It should not become
2983 * a practical burden to them.
2984 *
2985 * XXX: For now, allow allocations to potentially
2986 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2987 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2988 * which is important when on a NUMA setup the allowed
2989 * zones are together not big enough to reach the
2990 * global limit. The proper fix for these situations
2991 * will require awareness of zones in the
2992 * dirty-throttling and the flusher threads.
2993 */
c9ab0c4f 2994 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2995 continue;
7fb1d9fc 2996
e085dbc5 2997 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2998 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2999 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3000 int ret;
3001
5dab2911
MG
3002 /* Checked here to keep the fast path fast */
3003 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3004 if (alloc_flags & ALLOC_NO_WATERMARKS)
3005 goto try_this_zone;
3006
957f822a 3007 if (zone_reclaim_mode == 0 ||
c33d6c06 3008 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3009 continue;
3010
fa5e084e
MG
3011 ret = zone_reclaim(zone, gfp_mask, order);
3012 switch (ret) {
3013 case ZONE_RECLAIM_NOSCAN:
3014 /* did not scan */
cd38b115 3015 continue;
fa5e084e
MG
3016 case ZONE_RECLAIM_FULL:
3017 /* scanned but unreclaimable */
cd38b115 3018 continue;
fa5e084e
MG
3019 default:
3020 /* did we reclaim enough */
fed2719e 3021 if (zone_watermark_ok(zone, order, mark,
93ea9964 3022 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3023 goto try_this_zone;
3024
fed2719e 3025 continue;
0798e519 3026 }
7fb1d9fc
RS
3027 }
3028
fa5e084e 3029try_this_zone:
c33d6c06 3030 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3031 gfp_mask, alloc_flags, ac->migratetype);
75379191 3032 if (page) {
479f854a 3033 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3034
3035 /*
3036 * If this is a high-order atomic allocation then check
3037 * if the pageblock should be reserved for the future
3038 */
3039 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3040 reserve_highatomic_pageblock(page, zone, order);
3041
75379191
VB
3042 return page;
3043 }
54a6eb5c 3044 }
9276b1bc 3045
4ffeaf35
MG
3046 /*
3047 * The first pass makes sure allocations are spread fairly within the
3048 * local node. However, the local node might have free pages left
3049 * after the fairness batches are exhausted, and remote zones haven't
3050 * even been considered yet. Try once more without fairness, and
3051 * include remote zones now, before entering the slowpath and waking
3052 * kswapd: prefer spilling to a remote zone over swapping locally.
3053 */
30534755
MG
3054 if (fair_skipped) {
3055reset_fair:
3056 apply_fair = false;
3057 fair_skipped = false;
c33d6c06 3058 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 3059 goto zonelist_scan;
30534755 3060 }
4ffeaf35
MG
3061
3062 return NULL;
753ee728
MH
3063}
3064
29423e77
DR
3065/*
3066 * Large machines with many possible nodes should not always dump per-node
3067 * meminfo in irq context.
3068 */
3069static inline bool should_suppress_show_mem(void)
3070{
3071 bool ret = false;
3072
3073#if NODES_SHIFT > 8
3074 ret = in_interrupt();
3075#endif
3076 return ret;
3077}
3078
a238ab5b
DH
3079static DEFINE_RATELIMIT_STATE(nopage_rs,
3080 DEFAULT_RATELIMIT_INTERVAL,
3081 DEFAULT_RATELIMIT_BURST);
3082
d00181b9 3083void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3084{
a238ab5b
DH
3085 unsigned int filter = SHOW_MEM_FILTER_NODES;
3086
c0a32fc5
SG
3087 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3088 debug_guardpage_minorder() > 0)
a238ab5b
DH
3089 return;
3090
3091 /*
3092 * This documents exceptions given to allocations in certain
3093 * contexts that are allowed to allocate outside current's set
3094 * of allowed nodes.
3095 */
3096 if (!(gfp_mask & __GFP_NOMEMALLOC))
3097 if (test_thread_flag(TIF_MEMDIE) ||
3098 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3099 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3100 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3101 filter &= ~SHOW_MEM_FILTER_NODES;
3102
3103 if (fmt) {
3ee9a4f0
JP
3104 struct va_format vaf;
3105 va_list args;
3106
a238ab5b 3107 va_start(args, fmt);
3ee9a4f0
JP
3108
3109 vaf.fmt = fmt;
3110 vaf.va = &args;
3111
3112 pr_warn("%pV", &vaf);
3113
a238ab5b
DH
3114 va_end(args);
3115 }
3116
c5c990e8
VB
3117 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3118 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3119 dump_stack();
3120 if (!should_suppress_show_mem())
3121 show_mem(filter);
3122}
3123
11e33f6a
MG
3124static inline struct page *
3125__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3126 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3127{
6e0fc46d
DR
3128 struct oom_control oc = {
3129 .zonelist = ac->zonelist,
3130 .nodemask = ac->nodemask,
3131 .gfp_mask = gfp_mask,
3132 .order = order,
6e0fc46d 3133 };
11e33f6a
MG
3134 struct page *page;
3135
9879de73
JW
3136 *did_some_progress = 0;
3137
9879de73 3138 /*
dc56401f
JW
3139 * Acquire the oom lock. If that fails, somebody else is
3140 * making progress for us.
9879de73 3141 */
dc56401f 3142 if (!mutex_trylock(&oom_lock)) {
9879de73 3143 *did_some_progress = 1;
11e33f6a 3144 schedule_timeout_uninterruptible(1);
1da177e4
LT
3145 return NULL;
3146 }
6b1de916 3147
11e33f6a
MG
3148 /*
3149 * Go through the zonelist yet one more time, keep very high watermark
3150 * here, this is only to catch a parallel oom killing, we must fail if
3151 * we're still under heavy pressure.
3152 */
a9263751
VB
3153 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3154 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3155 if (page)
11e33f6a
MG
3156 goto out;
3157
4365a567 3158 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3159 /* Coredumps can quickly deplete all memory reserves */
3160 if (current->flags & PF_DUMPCORE)
3161 goto out;
4365a567
KH
3162 /* The OOM killer will not help higher order allocs */
3163 if (order > PAGE_ALLOC_COSTLY_ORDER)
3164 goto out;
03668b3c 3165 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3166 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3167 goto out;
9083905a
JW
3168 if (pm_suspended_storage())
3169 goto out;
3da88fb3
MH
3170 /*
3171 * XXX: GFP_NOFS allocations should rather fail than rely on
3172 * other request to make a forward progress.
3173 * We are in an unfortunate situation where out_of_memory cannot
3174 * do much for this context but let's try it to at least get
3175 * access to memory reserved if the current task is killed (see
3176 * out_of_memory). Once filesystems are ready to handle allocation
3177 * failures more gracefully we should just bail out here.
3178 */
3179
4167e9b2 3180 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3181 if (gfp_mask & __GFP_THISNODE)
3182 goto out;
3183 }
11e33f6a 3184 /* Exhausted what can be done so it's blamo time */
5020e285 3185 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3186 *did_some_progress = 1;
5020e285
MH
3187
3188 if (gfp_mask & __GFP_NOFAIL) {
3189 page = get_page_from_freelist(gfp_mask, order,
3190 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3191 /*
3192 * fallback to ignore cpuset restriction if our nodes
3193 * are depleted
3194 */
3195 if (!page)
3196 page = get_page_from_freelist(gfp_mask, order,
3197 ALLOC_NO_WATERMARKS, ac);
3198 }
3199 }
11e33f6a 3200out:
dc56401f 3201 mutex_unlock(&oom_lock);
11e33f6a
MG
3202 return page;
3203}
3204
56de7263
MG
3205#ifdef CONFIG_COMPACTION
3206/* Try memory compaction for high-order allocations before reclaim */
3207static struct page *
3208__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3209 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3210 enum migrate_mode mode, int *contended_compaction,
3211 bool *deferred_compaction)
56de7263 3212{
53853e2d 3213 unsigned long compact_result;
98dd3b48 3214 struct page *page;
53853e2d
VB
3215
3216 if (!order)
66199712 3217 return NULL;
66199712 3218
c06b1fca 3219 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3220 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3221 mode, contended_compaction);
c06b1fca 3222 current->flags &= ~PF_MEMALLOC;
56de7263 3223
98dd3b48
VB
3224 switch (compact_result) {
3225 case COMPACT_DEFERRED:
53853e2d 3226 *deferred_compaction = true;
98dd3b48
VB
3227 /* fall-through */
3228 case COMPACT_SKIPPED:
3229 return NULL;
3230 default:
3231 break;
3232 }
53853e2d 3233
98dd3b48
VB
3234 /*
3235 * At least in one zone compaction wasn't deferred or skipped, so let's
3236 * count a compaction stall
3237 */
3238 count_vm_event(COMPACTSTALL);
8fb74b9f 3239
a9263751
VB
3240 page = get_page_from_freelist(gfp_mask, order,
3241 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3242
98dd3b48
VB
3243 if (page) {
3244 struct zone *zone = page_zone(page);
53853e2d 3245
98dd3b48
VB
3246 zone->compact_blockskip_flush = false;
3247 compaction_defer_reset(zone, order, true);
3248 count_vm_event(COMPACTSUCCESS);
3249 return page;
3250 }
56de7263 3251
98dd3b48
VB
3252 /*
3253 * It's bad if compaction run occurs and fails. The most likely reason
3254 * is that pages exist, but not enough to satisfy watermarks.
3255 */
3256 count_vm_event(COMPACTFAIL);
66199712 3257
98dd3b48 3258 cond_resched();
56de7263
MG
3259
3260 return NULL;
3261}
3262#else
3263static inline struct page *
3264__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3265 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3266 enum migrate_mode mode, int *contended_compaction,
3267 bool *deferred_compaction)
56de7263
MG
3268{
3269 return NULL;
3270}
3271#endif /* CONFIG_COMPACTION */
3272
bba90710
MS
3273/* Perform direct synchronous page reclaim */
3274static int
a9263751
VB
3275__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3276 const struct alloc_context *ac)
11e33f6a 3277{
11e33f6a 3278 struct reclaim_state reclaim_state;
bba90710 3279 int progress;
11e33f6a
MG
3280
3281 cond_resched();
3282
3283 /* We now go into synchronous reclaim */
3284 cpuset_memory_pressure_bump();
c06b1fca 3285 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3286 lockdep_set_current_reclaim_state(gfp_mask);
3287 reclaim_state.reclaimed_slab = 0;
c06b1fca 3288 current->reclaim_state = &reclaim_state;
11e33f6a 3289
a9263751
VB
3290 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3291 ac->nodemask);
11e33f6a 3292
c06b1fca 3293 current->reclaim_state = NULL;
11e33f6a 3294 lockdep_clear_current_reclaim_state();
c06b1fca 3295 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3296
3297 cond_resched();
3298
bba90710
MS
3299 return progress;
3300}
3301
3302/* The really slow allocator path where we enter direct reclaim */
3303static inline struct page *
3304__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3305 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3306 unsigned long *did_some_progress)
bba90710
MS
3307{
3308 struct page *page = NULL;
3309 bool drained = false;
3310
a9263751 3311 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3312 if (unlikely(!(*did_some_progress)))
3313 return NULL;
11e33f6a 3314
9ee493ce 3315retry:
a9263751
VB
3316 page = get_page_from_freelist(gfp_mask, order,
3317 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3318
3319 /*
3320 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3321 * pages are pinned on the per-cpu lists or in high alloc reserves.
3322 * Shrink them them and try again
9ee493ce
MG
3323 */
3324 if (!page && !drained) {
0aaa29a5 3325 unreserve_highatomic_pageblock(ac);
93481ff0 3326 drain_all_pages(NULL);
9ee493ce
MG
3327 drained = true;
3328 goto retry;
3329 }
3330
11e33f6a
MG
3331 return page;
3332}
3333
a9263751 3334static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3335{
3336 struct zoneref *z;
3337 struct zone *zone;
3338
a9263751
VB
3339 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3340 ac->high_zoneidx, ac->nodemask)
93ea9964 3341 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3342}
3343
c603844b 3344static inline unsigned int
341ce06f
PZ
3345gfp_to_alloc_flags(gfp_t gfp_mask)
3346{
c603844b 3347 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3348
a56f57ff 3349 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3350 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3351
341ce06f
PZ
3352 /*
3353 * The caller may dip into page reserves a bit more if the caller
3354 * cannot run direct reclaim, or if the caller has realtime scheduling
3355 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3356 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3357 */
e6223a3b 3358 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3359
d0164adc 3360 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3361 /*
b104a35d
DR
3362 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3363 * if it can't schedule.
5c3240d9 3364 */
b104a35d 3365 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3366 alloc_flags |= ALLOC_HARDER;
523b9458 3367 /*
b104a35d 3368 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3369 * comment for __cpuset_node_allowed().
523b9458 3370 */
341ce06f 3371 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3372 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3373 alloc_flags |= ALLOC_HARDER;
3374
b37f1dd0
MG
3375 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3376 if (gfp_mask & __GFP_MEMALLOC)
3377 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3378 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3379 alloc_flags |= ALLOC_NO_WATERMARKS;
3380 else if (!in_interrupt() &&
3381 ((current->flags & PF_MEMALLOC) ||
3382 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3383 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3384 }
d95ea5d1 3385#ifdef CONFIG_CMA
43e7a34d 3386 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3387 alloc_flags |= ALLOC_CMA;
3388#endif
341ce06f
PZ
3389 return alloc_flags;
3390}
3391
072bb0aa
MG
3392bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3393{
b37f1dd0 3394 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3395}
3396
d0164adc
MG
3397static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3398{
3399 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3400}
3401
11e33f6a
MG
3402static inline struct page *
3403__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3404 struct alloc_context *ac)
11e33f6a 3405{
d0164adc 3406 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3407 struct page *page = NULL;
c603844b 3408 unsigned int alloc_flags;
11e33f6a
MG
3409 unsigned long pages_reclaimed = 0;
3410 unsigned long did_some_progress;
e0b9daeb 3411 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3412 bool deferred_compaction = false;
1f9efdef 3413 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3414
72807a74
MG
3415 /*
3416 * In the slowpath, we sanity check order to avoid ever trying to
3417 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3418 * be using allocators in order of preference for an area that is
3419 * too large.
3420 */
1fc28b70
MG
3421 if (order >= MAX_ORDER) {
3422 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3423 return NULL;
1fc28b70 3424 }
1da177e4 3425
d0164adc
MG
3426 /*
3427 * We also sanity check to catch abuse of atomic reserves being used by
3428 * callers that are not in atomic context.
3429 */
3430 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3431 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3432 gfp_mask &= ~__GFP_ATOMIC;
3433
9879de73 3434retry:
d0164adc 3435 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3436 wake_all_kswapds(order, ac);
1da177e4 3437
9bf2229f 3438 /*
7fb1d9fc
RS
3439 * OK, we're below the kswapd watermark and have kicked background
3440 * reclaim. Now things get more complex, so set up alloc_flags according
3441 * to how we want to proceed.
9bf2229f 3442 */
341ce06f 3443 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3444
341ce06f 3445 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3446 page = get_page_from_freelist(gfp_mask, order,
3447 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3448 if (page)
3449 goto got_pg;
1da177e4 3450
11e33f6a 3451 /* Allocate without watermarks if the context allows */
341ce06f 3452 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3453 /*
3454 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3455 * the allocation is high priority and these type of
3456 * allocations are system rather than user orientated
3457 */
a9263751 3458 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3459 page = get_page_from_freelist(gfp_mask, order,
3460 ALLOC_NO_WATERMARKS, ac);
3461 if (page)
3462 goto got_pg;
1da177e4
LT
3463 }
3464
d0164adc
MG
3465 /* Caller is not willing to reclaim, we can't balance anything */
3466 if (!can_direct_reclaim) {
aed0a0e3 3467 /*
33d53103
MH
3468 * All existing users of the __GFP_NOFAIL are blockable, so warn
3469 * of any new users that actually allow this type of allocation
3470 * to fail.
aed0a0e3
DR
3471 */
3472 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3473 goto nopage;
aed0a0e3 3474 }
1da177e4 3475
341ce06f 3476 /* Avoid recursion of direct reclaim */
33d53103
MH
3477 if (current->flags & PF_MEMALLOC) {
3478 /*
3479 * __GFP_NOFAIL request from this context is rather bizarre
3480 * because we cannot reclaim anything and only can loop waiting
3481 * for somebody to do a work for us.
3482 */
3483 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3484 cond_resched();
3485 goto retry;
3486 }
341ce06f 3487 goto nopage;
33d53103 3488 }
341ce06f 3489
6583bb64
DR
3490 /* Avoid allocations with no watermarks from looping endlessly */
3491 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3492 goto nopage;
3493
77f1fe6b
MG
3494 /*
3495 * Try direct compaction. The first pass is asynchronous. Subsequent
3496 * attempts after direct reclaim are synchronous
3497 */
a9263751
VB
3498 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3499 migration_mode,
3500 &contended_compaction,
53853e2d 3501 &deferred_compaction);
56de7263
MG
3502 if (page)
3503 goto got_pg;
75f30861 3504
1f9efdef 3505 /* Checks for THP-specific high-order allocations */
d0164adc 3506 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3507 /*
3508 * If compaction is deferred for high-order allocations, it is
3509 * because sync compaction recently failed. If this is the case
3510 * and the caller requested a THP allocation, we do not want
3511 * to heavily disrupt the system, so we fail the allocation
3512 * instead of entering direct reclaim.
3513 */
3514 if (deferred_compaction)
3515 goto nopage;
3516
3517 /*
3518 * In all zones where compaction was attempted (and not
3519 * deferred or skipped), lock contention has been detected.
3520 * For THP allocation we do not want to disrupt the others
3521 * so we fallback to base pages instead.
3522 */
3523 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3524 goto nopage;
3525
3526 /*
3527 * If compaction was aborted due to need_resched(), we do not
3528 * want to further increase allocation latency, unless it is
3529 * khugepaged trying to collapse.
3530 */
3531 if (contended_compaction == COMPACT_CONTENDED_SCHED
3532 && !(current->flags & PF_KTHREAD))
3533 goto nopage;
3534 }
66199712 3535
8fe78048
DR
3536 /*
3537 * It can become very expensive to allocate transparent hugepages at
3538 * fault, so use asynchronous memory compaction for THP unless it is
3539 * khugepaged trying to collapse.
3540 */
d0164adc 3541 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3542 migration_mode = MIGRATE_SYNC_LIGHT;
3543
11e33f6a 3544 /* Try direct reclaim and then allocating */
a9263751
VB
3545 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3546 &did_some_progress);
11e33f6a
MG
3547 if (page)
3548 goto got_pg;
1da177e4 3549
9083905a
JW
3550 /* Do not loop if specifically requested */
3551 if (gfp_mask & __GFP_NORETRY)
3552 goto noretry;
3553
3554 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3555 pages_reclaimed += did_some_progress;
9083905a
JW
3556 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3557 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3558 /* Wait for some write requests to complete then retry */
c33d6c06 3559 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3560 goto retry;
1da177e4
LT
3561 }
3562
9083905a
JW
3563 /* Reclaim has failed us, start killing things */
3564 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3565 if (page)
3566 goto got_pg;
3567
3568 /* Retry as long as the OOM killer is making progress */
3569 if (did_some_progress)
3570 goto retry;
3571
3572noretry:
3573 /*
3574 * High-order allocations do not necessarily loop after
3575 * direct reclaim and reclaim/compaction depends on compaction
3576 * being called after reclaim so call directly if necessary
3577 */
3578 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3579 ac, migration_mode,
3580 &contended_compaction,
3581 &deferred_compaction);
3582 if (page)
3583 goto got_pg;
1da177e4 3584nopage:
a238ab5b 3585 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3586got_pg:
072bb0aa 3587 return page;
1da177e4 3588}
11e33f6a
MG
3589
3590/*
3591 * This is the 'heart' of the zoned buddy allocator.
3592 */
3593struct page *
3594__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3595 struct zonelist *zonelist, nodemask_t *nodemask)
3596{
5bb1b169 3597 struct page *page;
cc9a6c87 3598 unsigned int cpuset_mems_cookie;
c603844b 3599 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3600 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3601 struct alloc_context ac = {
3602 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3603 .zonelist = zonelist,
a9263751
VB
3604 .nodemask = nodemask,
3605 .migratetype = gfpflags_to_migratetype(gfp_mask),
3606 };
11e33f6a 3607
682a3385 3608 if (cpusets_enabled()) {
83d4ca81 3609 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3610 alloc_flags |= ALLOC_CPUSET;
3611 if (!ac.nodemask)
3612 ac.nodemask = &cpuset_current_mems_allowed;
3613 }
3614
dcce284a
BH
3615 gfp_mask &= gfp_allowed_mask;
3616
11e33f6a
MG
3617 lockdep_trace_alloc(gfp_mask);
3618
d0164adc 3619 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3620
3621 if (should_fail_alloc_page(gfp_mask, order))
3622 return NULL;
3623
3624 /*
3625 * Check the zones suitable for the gfp_mask contain at least one
3626 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3627 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3628 */
3629 if (unlikely(!zonelist->_zonerefs->zone))
3630 return NULL;
3631
a9263751 3632 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3633 alloc_flags |= ALLOC_CMA;
3634
cc9a6c87 3635retry_cpuset:
d26914d1 3636 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3637
c9ab0c4f
MG
3638 /* Dirty zone balancing only done in the fast path */
3639 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3640
5117f45d 3641 /* The preferred zone is used for statistics later */
c33d6c06
MG
3642 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3643 ac.high_zoneidx, ac.nodemask);
3644 if (!ac.preferred_zoneref) {
5bb1b169 3645 page = NULL;
4fcb0971 3646 goto no_zone;
5bb1b169
MG
3647 }
3648
5117f45d 3649 /* First allocation attempt */
a9263751 3650 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3651 if (likely(page))
3652 goto out;
11e33f6a 3653
4fcb0971
MG
3654 /*
3655 * Runtime PM, block IO and its error handling path can deadlock
3656 * because I/O on the device might not complete.
3657 */
3658 alloc_mask = memalloc_noio_flags(gfp_mask);
3659 ac.spread_dirty_pages = false;
23f086f9 3660
4fcb0971 3661 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3662
4fcb0971 3663no_zone:
cc9a6c87
MG
3664 /*
3665 * When updating a task's mems_allowed, it is possible to race with
3666 * parallel threads in such a way that an allocation can fail while
3667 * the mask is being updated. If a page allocation is about to fail,
3668 * check if the cpuset changed during allocation and if so, retry.
3669 */
83d4ca81
MG
3670 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3671 alloc_mask = gfp_mask;
cc9a6c87 3672 goto retry_cpuset;
83d4ca81 3673 }
cc9a6c87 3674
4fcb0971
MG
3675out:
3676 if (kmemcheck_enabled && page)
3677 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3678
3679 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3680
11e33f6a 3681 return page;
1da177e4 3682}
d239171e 3683EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3684
3685/*
3686 * Common helper functions.
3687 */
920c7a5d 3688unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3689{
945a1113
AM
3690 struct page *page;
3691
3692 /*
3693 * __get_free_pages() returns a 32-bit address, which cannot represent
3694 * a highmem page
3695 */
3696 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3697
1da177e4
LT
3698 page = alloc_pages(gfp_mask, order);
3699 if (!page)
3700 return 0;
3701 return (unsigned long) page_address(page);
3702}
1da177e4
LT
3703EXPORT_SYMBOL(__get_free_pages);
3704
920c7a5d 3705unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3706{
945a1113 3707 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3708}
1da177e4
LT
3709EXPORT_SYMBOL(get_zeroed_page);
3710
920c7a5d 3711void __free_pages(struct page *page, unsigned int order)
1da177e4 3712{
b5810039 3713 if (put_page_testzero(page)) {
1da177e4 3714 if (order == 0)
b745bc85 3715 free_hot_cold_page(page, false);
1da177e4
LT
3716 else
3717 __free_pages_ok(page, order);
3718 }
3719}
3720
3721EXPORT_SYMBOL(__free_pages);
3722
920c7a5d 3723void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3724{
3725 if (addr != 0) {
725d704e 3726 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3727 __free_pages(virt_to_page((void *)addr), order);
3728 }
3729}
3730
3731EXPORT_SYMBOL(free_pages);
3732
b63ae8ca
AD
3733/*
3734 * Page Fragment:
3735 * An arbitrary-length arbitrary-offset area of memory which resides
3736 * within a 0 or higher order page. Multiple fragments within that page
3737 * are individually refcounted, in the page's reference counter.
3738 *
3739 * The page_frag functions below provide a simple allocation framework for
3740 * page fragments. This is used by the network stack and network device
3741 * drivers to provide a backing region of memory for use as either an
3742 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3743 */
3744static struct page *__page_frag_refill(struct page_frag_cache *nc,
3745 gfp_t gfp_mask)
3746{
3747 struct page *page = NULL;
3748 gfp_t gfp = gfp_mask;
3749
3750#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3751 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3752 __GFP_NOMEMALLOC;
3753 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3754 PAGE_FRAG_CACHE_MAX_ORDER);
3755 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3756#endif
3757 if (unlikely(!page))
3758 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3759
3760 nc->va = page ? page_address(page) : NULL;
3761
3762 return page;
3763}
3764
3765void *__alloc_page_frag(struct page_frag_cache *nc,
3766 unsigned int fragsz, gfp_t gfp_mask)
3767{
3768 unsigned int size = PAGE_SIZE;
3769 struct page *page;
3770 int offset;
3771
3772 if (unlikely(!nc->va)) {
3773refill:
3774 page = __page_frag_refill(nc, gfp_mask);
3775 if (!page)
3776 return NULL;
3777
3778#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3779 /* if size can vary use size else just use PAGE_SIZE */
3780 size = nc->size;
3781#endif
3782 /* Even if we own the page, we do not use atomic_set().
3783 * This would break get_page_unless_zero() users.
3784 */
fe896d18 3785 page_ref_add(page, size - 1);
b63ae8ca
AD
3786
3787 /* reset page count bias and offset to start of new frag */
2f064f34 3788 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3789 nc->pagecnt_bias = size;
3790 nc->offset = size;
3791 }
3792
3793 offset = nc->offset - fragsz;
3794 if (unlikely(offset < 0)) {
3795 page = virt_to_page(nc->va);
3796
fe896d18 3797 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3798 goto refill;
3799
3800#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3801 /* if size can vary use size else just use PAGE_SIZE */
3802 size = nc->size;
3803#endif
3804 /* OK, page count is 0, we can safely set it */
fe896d18 3805 set_page_count(page, size);
b63ae8ca
AD
3806
3807 /* reset page count bias and offset to start of new frag */
3808 nc->pagecnt_bias = size;
3809 offset = size - fragsz;
3810 }
3811
3812 nc->pagecnt_bias--;
3813 nc->offset = offset;
3814
3815 return nc->va + offset;
3816}
3817EXPORT_SYMBOL(__alloc_page_frag);
3818
3819/*
3820 * Frees a page fragment allocated out of either a compound or order 0 page.
3821 */
3822void __free_page_frag(void *addr)
3823{
3824 struct page *page = virt_to_head_page(addr);
3825
3826 if (unlikely(put_page_testzero(page)))
3827 __free_pages_ok(page, compound_order(page));
3828}
3829EXPORT_SYMBOL(__free_page_frag);
3830
6a1a0d3b 3831/*
52383431 3832 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3833 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3834 * equivalent to alloc_pages.
6a1a0d3b 3835 *
52383431
VD
3836 * It should be used when the caller would like to use kmalloc, but since the
3837 * allocation is large, it has to fall back to the page allocator.
3838 */
3839struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3840{
3841 struct page *page;
52383431 3842
52383431 3843 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3844 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3845 __free_pages(page, order);
3846 page = NULL;
3847 }
52383431
VD
3848 return page;
3849}
3850
3851struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3852{
3853 struct page *page;
52383431 3854
52383431 3855 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3856 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3857 __free_pages(page, order);
3858 page = NULL;
3859 }
52383431
VD
3860 return page;
3861}
3862
3863/*
3864 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3865 * alloc_kmem_pages.
6a1a0d3b 3866 */
52383431 3867void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3868{
d05e83a6 3869 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3870 __free_pages(page, order);
3871}
3872
52383431 3873void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3874{
3875 if (addr != 0) {
3876 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3877 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3878 }
3879}
3880
d00181b9
KS
3881static void *make_alloc_exact(unsigned long addr, unsigned int order,
3882 size_t size)
ee85c2e1
AK
3883{
3884 if (addr) {
3885 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3886 unsigned long used = addr + PAGE_ALIGN(size);
3887
3888 split_page(virt_to_page((void *)addr), order);
3889 while (used < alloc_end) {
3890 free_page(used);
3891 used += PAGE_SIZE;
3892 }
3893 }
3894 return (void *)addr;
3895}
3896
2be0ffe2
TT
3897/**
3898 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3899 * @size: the number of bytes to allocate
3900 * @gfp_mask: GFP flags for the allocation
3901 *
3902 * This function is similar to alloc_pages(), except that it allocates the
3903 * minimum number of pages to satisfy the request. alloc_pages() can only
3904 * allocate memory in power-of-two pages.
3905 *
3906 * This function is also limited by MAX_ORDER.
3907 *
3908 * Memory allocated by this function must be released by free_pages_exact().
3909 */
3910void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3911{
3912 unsigned int order = get_order(size);
3913 unsigned long addr;
3914
3915 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3916 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3917}
3918EXPORT_SYMBOL(alloc_pages_exact);
3919
ee85c2e1
AK
3920/**
3921 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3922 * pages on a node.
b5e6ab58 3923 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3924 * @size: the number of bytes to allocate
3925 * @gfp_mask: GFP flags for the allocation
3926 *
3927 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3928 * back.
ee85c2e1 3929 */
e1931811 3930void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3931{
d00181b9 3932 unsigned int order = get_order(size);
ee85c2e1
AK
3933 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3934 if (!p)
3935 return NULL;
3936 return make_alloc_exact((unsigned long)page_address(p), order, size);
3937}
ee85c2e1 3938
2be0ffe2
TT
3939/**
3940 * free_pages_exact - release memory allocated via alloc_pages_exact()
3941 * @virt: the value returned by alloc_pages_exact.
3942 * @size: size of allocation, same value as passed to alloc_pages_exact().
3943 *
3944 * Release the memory allocated by a previous call to alloc_pages_exact.
3945 */
3946void free_pages_exact(void *virt, size_t size)
3947{
3948 unsigned long addr = (unsigned long)virt;
3949 unsigned long end = addr + PAGE_ALIGN(size);
3950
3951 while (addr < end) {
3952 free_page(addr);
3953 addr += PAGE_SIZE;
3954 }
3955}
3956EXPORT_SYMBOL(free_pages_exact);
3957
e0fb5815
ZY
3958/**
3959 * nr_free_zone_pages - count number of pages beyond high watermark
3960 * @offset: The zone index of the highest zone
3961 *
3962 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3963 * high watermark within all zones at or below a given zone index. For each
3964 * zone, the number of pages is calculated as:
834405c3 3965 * managed_pages - high_pages
e0fb5815 3966 */
ebec3862 3967static unsigned long nr_free_zone_pages(int offset)
1da177e4 3968{
dd1a239f 3969 struct zoneref *z;
54a6eb5c
MG
3970 struct zone *zone;
3971
e310fd43 3972 /* Just pick one node, since fallback list is circular */
ebec3862 3973 unsigned long sum = 0;
1da177e4 3974
0e88460d 3975 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3976
54a6eb5c 3977 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3978 unsigned long size = zone->managed_pages;
41858966 3979 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3980 if (size > high)
3981 sum += size - high;
1da177e4
LT
3982 }
3983
3984 return sum;
3985}
3986
e0fb5815
ZY
3987/**
3988 * nr_free_buffer_pages - count number of pages beyond high watermark
3989 *
3990 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3991 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3992 */
ebec3862 3993unsigned long nr_free_buffer_pages(void)
1da177e4 3994{
af4ca457 3995 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3996}
c2f1a551 3997EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3998
e0fb5815
ZY
3999/**
4000 * nr_free_pagecache_pages - count number of pages beyond high watermark
4001 *
4002 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4003 * high watermark within all zones.
1da177e4 4004 */
ebec3862 4005unsigned long nr_free_pagecache_pages(void)
1da177e4 4006{
2a1e274a 4007 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4008}
08e0f6a9
CL
4009
4010static inline void show_node(struct zone *zone)
1da177e4 4011{
e5adfffc 4012 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4013 printk("Node %d ", zone_to_nid(zone));
1da177e4 4014}
1da177e4 4015
d02bd27b
IR
4016long si_mem_available(void)
4017{
4018 long available;
4019 unsigned long pagecache;
4020 unsigned long wmark_low = 0;
4021 unsigned long pages[NR_LRU_LISTS];
4022 struct zone *zone;
4023 int lru;
4024
4025 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4026 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4027
4028 for_each_zone(zone)
4029 wmark_low += zone->watermark[WMARK_LOW];
4030
4031 /*
4032 * Estimate the amount of memory available for userspace allocations,
4033 * without causing swapping.
4034 */
4035 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4036
4037 /*
4038 * Not all the page cache can be freed, otherwise the system will
4039 * start swapping. Assume at least half of the page cache, or the
4040 * low watermark worth of cache, needs to stay.
4041 */
4042 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4043 pagecache -= min(pagecache / 2, wmark_low);
4044 available += pagecache;
4045
4046 /*
4047 * Part of the reclaimable slab consists of items that are in use,
4048 * and cannot be freed. Cap this estimate at the low watermark.
4049 */
4050 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4051 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4052
4053 if (available < 0)
4054 available = 0;
4055 return available;
4056}
4057EXPORT_SYMBOL_GPL(si_mem_available);
4058
1da177e4
LT
4059void si_meminfo(struct sysinfo *val)
4060{
4061 val->totalram = totalram_pages;
cc7452b6 4062 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4063 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4064 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4065 val->totalhigh = totalhigh_pages;
4066 val->freehigh = nr_free_highpages();
1da177e4
LT
4067 val->mem_unit = PAGE_SIZE;
4068}
4069
4070EXPORT_SYMBOL(si_meminfo);
4071
4072#ifdef CONFIG_NUMA
4073void si_meminfo_node(struct sysinfo *val, int nid)
4074{
cdd91a77
JL
4075 int zone_type; /* needs to be signed */
4076 unsigned long managed_pages = 0;
fc2bd799
JK
4077 unsigned long managed_highpages = 0;
4078 unsigned long free_highpages = 0;
1da177e4
LT
4079 pg_data_t *pgdat = NODE_DATA(nid);
4080
cdd91a77
JL
4081 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4082 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4083 val->totalram = managed_pages;
cc7452b6 4084 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4085 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4086#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4087 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4088 struct zone *zone = &pgdat->node_zones[zone_type];
4089
4090 if (is_highmem(zone)) {
4091 managed_highpages += zone->managed_pages;
4092 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4093 }
4094 }
4095 val->totalhigh = managed_highpages;
4096 val->freehigh = free_highpages;
98d2b0eb 4097#else
fc2bd799
JK
4098 val->totalhigh = managed_highpages;
4099 val->freehigh = free_highpages;
98d2b0eb 4100#endif
1da177e4
LT
4101 val->mem_unit = PAGE_SIZE;
4102}
4103#endif
4104
ddd588b5 4105/*
7bf02ea2
DR
4106 * Determine whether the node should be displayed or not, depending on whether
4107 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4108 */
7bf02ea2 4109bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4110{
4111 bool ret = false;
cc9a6c87 4112 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4113
4114 if (!(flags & SHOW_MEM_FILTER_NODES))
4115 goto out;
4116
cc9a6c87 4117 do {
d26914d1 4118 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4119 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4120 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4121out:
4122 return ret;
4123}
4124
1da177e4
LT
4125#define K(x) ((x) << (PAGE_SHIFT-10))
4126
377e4f16
RV
4127static void show_migration_types(unsigned char type)
4128{
4129 static const char types[MIGRATE_TYPES] = {
4130 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4131 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4132 [MIGRATE_RECLAIMABLE] = 'E',
4133 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4134#ifdef CONFIG_CMA
4135 [MIGRATE_CMA] = 'C',
4136#endif
194159fb 4137#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4138 [MIGRATE_ISOLATE] = 'I',
194159fb 4139#endif
377e4f16
RV
4140 };
4141 char tmp[MIGRATE_TYPES + 1];
4142 char *p = tmp;
4143 int i;
4144
4145 for (i = 0; i < MIGRATE_TYPES; i++) {
4146 if (type & (1 << i))
4147 *p++ = types[i];
4148 }
4149
4150 *p = '\0';
4151 printk("(%s) ", tmp);
4152}
4153
1da177e4
LT
4154/*
4155 * Show free area list (used inside shift_scroll-lock stuff)
4156 * We also calculate the percentage fragmentation. We do this by counting the
4157 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4158 *
4159 * Bits in @filter:
4160 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4161 * cpuset.
1da177e4 4162 */
7bf02ea2 4163void show_free_areas(unsigned int filter)
1da177e4 4164{
d1bfcdb8 4165 unsigned long free_pcp = 0;
c7241913 4166 int cpu;
1da177e4
LT
4167 struct zone *zone;
4168
ee99c71c 4169 for_each_populated_zone(zone) {
7bf02ea2 4170 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4171 continue;
d1bfcdb8 4172
761b0677
KK
4173 for_each_online_cpu(cpu)
4174 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4175 }
4176
a731286d
KM
4177 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4178 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4179 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4180 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4181 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4182 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4183 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4184 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4185 global_page_state(NR_ISOLATED_ANON),
4186 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4187 global_page_state(NR_INACTIVE_FILE),
a731286d 4188 global_page_state(NR_ISOLATED_FILE),
7b854121 4189 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4190 global_page_state(NR_FILE_DIRTY),
ce866b34 4191 global_page_state(NR_WRITEBACK),
fd39fc85 4192 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4193 global_page_state(NR_SLAB_RECLAIMABLE),
4194 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4195 global_page_state(NR_FILE_MAPPED),
4b02108a 4196 global_page_state(NR_SHMEM),
a25700a5 4197 global_page_state(NR_PAGETABLE),
d1ce749a 4198 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4199 global_page_state(NR_FREE_PAGES),
4200 free_pcp,
d1ce749a 4201 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4202
ee99c71c 4203 for_each_populated_zone(zone) {
1da177e4
LT
4204 int i;
4205
7bf02ea2 4206 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4207 continue;
d1bfcdb8
KK
4208
4209 free_pcp = 0;
4210 for_each_online_cpu(cpu)
4211 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4212
1da177e4
LT
4213 show_node(zone);
4214 printk("%s"
4215 " free:%lukB"
4216 " min:%lukB"
4217 " low:%lukB"
4218 " high:%lukB"
4f98a2fe
RR
4219 " active_anon:%lukB"
4220 " inactive_anon:%lukB"
4221 " active_file:%lukB"
4222 " inactive_file:%lukB"
7b854121 4223 " unevictable:%lukB"
a731286d
KM
4224 " isolated(anon):%lukB"
4225 " isolated(file):%lukB"
1da177e4 4226 " present:%lukB"
9feedc9d 4227 " managed:%lukB"
4a0aa73f
KM
4228 " mlocked:%lukB"
4229 " dirty:%lukB"
4230 " writeback:%lukB"
4231 " mapped:%lukB"
4b02108a 4232 " shmem:%lukB"
4a0aa73f
KM
4233 " slab_reclaimable:%lukB"
4234 " slab_unreclaimable:%lukB"
c6a7f572 4235 " kernel_stack:%lukB"
4a0aa73f
KM
4236 " pagetables:%lukB"
4237 " unstable:%lukB"
4238 " bounce:%lukB"
d1bfcdb8
KK
4239 " free_pcp:%lukB"
4240 " local_pcp:%ukB"
d1ce749a 4241 " free_cma:%lukB"
4a0aa73f 4242 " writeback_tmp:%lukB"
1da177e4
LT
4243 " pages_scanned:%lu"
4244 " all_unreclaimable? %s"
4245 "\n",
4246 zone->name,
88f5acf8 4247 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4248 K(min_wmark_pages(zone)),
4249 K(low_wmark_pages(zone)),
4250 K(high_wmark_pages(zone)),
4f98a2fe
RR
4251 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4252 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4253 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4254 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4255 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4256 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4257 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4258 K(zone->present_pages),
9feedc9d 4259 K(zone->managed_pages),
4a0aa73f
KM
4260 K(zone_page_state(zone, NR_MLOCK)),
4261 K(zone_page_state(zone, NR_FILE_DIRTY)),
4262 K(zone_page_state(zone, NR_WRITEBACK)),
4263 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4264 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4265 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4266 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4267 zone_page_state(zone, NR_KERNEL_STACK) *
4268 THREAD_SIZE / 1024,
4a0aa73f
KM
4269 K(zone_page_state(zone, NR_PAGETABLE)),
4270 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4271 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4272 K(free_pcp),
4273 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4274 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4275 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4276 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4277 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4278 );
4279 printk("lowmem_reserve[]:");
4280 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4281 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4282 printk("\n");
4283 }
4284
ee99c71c 4285 for_each_populated_zone(zone) {
d00181b9
KS
4286 unsigned int order;
4287 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4288 unsigned char types[MAX_ORDER];
1da177e4 4289
7bf02ea2 4290 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4291 continue;
1da177e4
LT
4292 show_node(zone);
4293 printk("%s: ", zone->name);
1da177e4
LT
4294
4295 spin_lock_irqsave(&zone->lock, flags);
4296 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4297 struct free_area *area = &zone->free_area[order];
4298 int type;
4299
4300 nr[order] = area->nr_free;
8f9de51a 4301 total += nr[order] << order;
377e4f16
RV
4302
4303 types[order] = 0;
4304 for (type = 0; type < MIGRATE_TYPES; type++) {
4305 if (!list_empty(&area->free_list[type]))
4306 types[order] |= 1 << type;
4307 }
1da177e4
LT
4308 }
4309 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4310 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4311 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4312 if (nr[order])
4313 show_migration_types(types[order]);
4314 }
1da177e4
LT
4315 printk("= %lukB\n", K(total));
4316 }
4317
949f7ec5
DR
4318 hugetlb_show_meminfo();
4319
e6f3602d
LW
4320 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4321
1da177e4
LT
4322 show_swap_cache_info();
4323}
4324
19770b32
MG
4325static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4326{
4327 zoneref->zone = zone;
4328 zoneref->zone_idx = zone_idx(zone);
4329}
4330
1da177e4
LT
4331/*
4332 * Builds allocation fallback zone lists.
1a93205b
CL
4333 *
4334 * Add all populated zones of a node to the zonelist.
1da177e4 4335 */
f0c0b2b8 4336static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4337 int nr_zones)
1da177e4 4338{
1a93205b 4339 struct zone *zone;
bc732f1d 4340 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4341
4342 do {
2f6726e5 4343 zone_type--;
070f8032 4344 zone = pgdat->node_zones + zone_type;
1a93205b 4345 if (populated_zone(zone)) {
dd1a239f
MG
4346 zoneref_set_zone(zone,
4347 &zonelist->_zonerefs[nr_zones++]);
070f8032 4348 check_highest_zone(zone_type);
1da177e4 4349 }
2f6726e5 4350 } while (zone_type);
bc732f1d 4351
070f8032 4352 return nr_zones;
1da177e4
LT
4353}
4354
f0c0b2b8
KH
4355
4356/*
4357 * zonelist_order:
4358 * 0 = automatic detection of better ordering.
4359 * 1 = order by ([node] distance, -zonetype)
4360 * 2 = order by (-zonetype, [node] distance)
4361 *
4362 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4363 * the same zonelist. So only NUMA can configure this param.
4364 */
4365#define ZONELIST_ORDER_DEFAULT 0
4366#define ZONELIST_ORDER_NODE 1
4367#define ZONELIST_ORDER_ZONE 2
4368
4369/* zonelist order in the kernel.
4370 * set_zonelist_order() will set this to NODE or ZONE.
4371 */
4372static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4373static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4374
4375
1da177e4 4376#ifdef CONFIG_NUMA
f0c0b2b8
KH
4377/* The value user specified ....changed by config */
4378static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4379/* string for sysctl */
4380#define NUMA_ZONELIST_ORDER_LEN 16
4381char numa_zonelist_order[16] = "default";
4382
4383/*
4384 * interface for configure zonelist ordering.
4385 * command line option "numa_zonelist_order"
4386 * = "[dD]efault - default, automatic configuration.
4387 * = "[nN]ode - order by node locality, then by zone within node
4388 * = "[zZ]one - order by zone, then by locality within zone
4389 */
4390
4391static int __parse_numa_zonelist_order(char *s)
4392{
4393 if (*s == 'd' || *s == 'D') {
4394 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4395 } else if (*s == 'n' || *s == 'N') {
4396 user_zonelist_order = ZONELIST_ORDER_NODE;
4397 } else if (*s == 'z' || *s == 'Z') {
4398 user_zonelist_order = ZONELIST_ORDER_ZONE;
4399 } else {
1170532b 4400 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4401 return -EINVAL;
4402 }
4403 return 0;
4404}
4405
4406static __init int setup_numa_zonelist_order(char *s)
4407{
ecb256f8
VL
4408 int ret;
4409
4410 if (!s)
4411 return 0;
4412
4413 ret = __parse_numa_zonelist_order(s);
4414 if (ret == 0)
4415 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4416
4417 return ret;
f0c0b2b8
KH
4418}
4419early_param("numa_zonelist_order", setup_numa_zonelist_order);
4420
4421/*
4422 * sysctl handler for numa_zonelist_order
4423 */
cccad5b9 4424int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4425 void __user *buffer, size_t *length,
f0c0b2b8
KH
4426 loff_t *ppos)
4427{
4428 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4429 int ret;
443c6f14 4430 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4431
443c6f14 4432 mutex_lock(&zl_order_mutex);
dacbde09
CG
4433 if (write) {
4434 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4435 ret = -EINVAL;
4436 goto out;
4437 }
4438 strcpy(saved_string, (char *)table->data);
4439 }
8d65af78 4440 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4441 if (ret)
443c6f14 4442 goto out;
f0c0b2b8
KH
4443 if (write) {
4444 int oldval = user_zonelist_order;
dacbde09
CG
4445
4446 ret = __parse_numa_zonelist_order((char *)table->data);
4447 if (ret) {
f0c0b2b8
KH
4448 /*
4449 * bogus value. restore saved string
4450 */
dacbde09 4451 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4452 NUMA_ZONELIST_ORDER_LEN);
4453 user_zonelist_order = oldval;
4eaf3f64
HL
4454 } else if (oldval != user_zonelist_order) {
4455 mutex_lock(&zonelists_mutex);
9adb62a5 4456 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4457 mutex_unlock(&zonelists_mutex);
4458 }
f0c0b2b8 4459 }
443c6f14
AK
4460out:
4461 mutex_unlock(&zl_order_mutex);
4462 return ret;
f0c0b2b8
KH
4463}
4464
4465
62bc62a8 4466#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4467static int node_load[MAX_NUMNODES];
4468
1da177e4 4469/**
4dc3b16b 4470 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4471 * @node: node whose fallback list we're appending
4472 * @used_node_mask: nodemask_t of already used nodes
4473 *
4474 * We use a number of factors to determine which is the next node that should
4475 * appear on a given node's fallback list. The node should not have appeared
4476 * already in @node's fallback list, and it should be the next closest node
4477 * according to the distance array (which contains arbitrary distance values
4478 * from each node to each node in the system), and should also prefer nodes
4479 * with no CPUs, since presumably they'll have very little allocation pressure
4480 * on them otherwise.
4481 * It returns -1 if no node is found.
4482 */
f0c0b2b8 4483static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4484{
4cf808eb 4485 int n, val;
1da177e4 4486 int min_val = INT_MAX;
00ef2d2f 4487 int best_node = NUMA_NO_NODE;
a70f7302 4488 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4489
4cf808eb
LT
4490 /* Use the local node if we haven't already */
4491 if (!node_isset(node, *used_node_mask)) {
4492 node_set(node, *used_node_mask);
4493 return node;
4494 }
1da177e4 4495
4b0ef1fe 4496 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4497
4498 /* Don't want a node to appear more than once */
4499 if (node_isset(n, *used_node_mask))
4500 continue;
4501
1da177e4
LT
4502 /* Use the distance array to find the distance */
4503 val = node_distance(node, n);
4504
4cf808eb
LT
4505 /* Penalize nodes under us ("prefer the next node") */
4506 val += (n < node);
4507
1da177e4 4508 /* Give preference to headless and unused nodes */
a70f7302
RR
4509 tmp = cpumask_of_node(n);
4510 if (!cpumask_empty(tmp))
1da177e4
LT
4511 val += PENALTY_FOR_NODE_WITH_CPUS;
4512
4513 /* Slight preference for less loaded node */
4514 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4515 val += node_load[n];
4516
4517 if (val < min_val) {
4518 min_val = val;
4519 best_node = n;
4520 }
4521 }
4522
4523 if (best_node >= 0)
4524 node_set(best_node, *used_node_mask);
4525
4526 return best_node;
4527}
4528
f0c0b2b8
KH
4529
4530/*
4531 * Build zonelists ordered by node and zones within node.
4532 * This results in maximum locality--normal zone overflows into local
4533 * DMA zone, if any--but risks exhausting DMA zone.
4534 */
4535static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4536{
f0c0b2b8 4537 int j;
1da177e4 4538 struct zonelist *zonelist;
f0c0b2b8 4539
54a6eb5c 4540 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4541 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4542 ;
bc732f1d 4543 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4544 zonelist->_zonerefs[j].zone = NULL;
4545 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4546}
4547
523b9458
CL
4548/*
4549 * Build gfp_thisnode zonelists
4550 */
4551static void build_thisnode_zonelists(pg_data_t *pgdat)
4552{
523b9458
CL
4553 int j;
4554 struct zonelist *zonelist;
4555
54a6eb5c 4556 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4557 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4558 zonelist->_zonerefs[j].zone = NULL;
4559 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4560}
4561
f0c0b2b8
KH
4562/*
4563 * Build zonelists ordered by zone and nodes within zones.
4564 * This results in conserving DMA zone[s] until all Normal memory is
4565 * exhausted, but results in overflowing to remote node while memory
4566 * may still exist in local DMA zone.
4567 */
4568static int node_order[MAX_NUMNODES];
4569
4570static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4571{
f0c0b2b8
KH
4572 int pos, j, node;
4573 int zone_type; /* needs to be signed */
4574 struct zone *z;
4575 struct zonelist *zonelist;
4576
54a6eb5c
MG
4577 zonelist = &pgdat->node_zonelists[0];
4578 pos = 0;
4579 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4580 for (j = 0; j < nr_nodes; j++) {
4581 node = node_order[j];
4582 z = &NODE_DATA(node)->node_zones[zone_type];
4583 if (populated_zone(z)) {
dd1a239f
MG
4584 zoneref_set_zone(z,
4585 &zonelist->_zonerefs[pos++]);
54a6eb5c 4586 check_highest_zone(zone_type);
f0c0b2b8
KH
4587 }
4588 }
f0c0b2b8 4589 }
dd1a239f
MG
4590 zonelist->_zonerefs[pos].zone = NULL;
4591 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4592}
4593
3193913c
MG
4594#if defined(CONFIG_64BIT)
4595/*
4596 * Devices that require DMA32/DMA are relatively rare and do not justify a
4597 * penalty to every machine in case the specialised case applies. Default
4598 * to Node-ordering on 64-bit NUMA machines
4599 */
4600static int default_zonelist_order(void)
4601{
4602 return ZONELIST_ORDER_NODE;
4603}
4604#else
4605/*
4606 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4607 * by the kernel. If processes running on node 0 deplete the low memory zone
4608 * then reclaim will occur more frequency increasing stalls and potentially
4609 * be easier to OOM if a large percentage of the zone is under writeback or
4610 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4611 * Hence, default to zone ordering on 32-bit.
4612 */
f0c0b2b8
KH
4613static int default_zonelist_order(void)
4614{
f0c0b2b8
KH
4615 return ZONELIST_ORDER_ZONE;
4616}
3193913c 4617#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4618
4619static void set_zonelist_order(void)
4620{
4621 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4622 current_zonelist_order = default_zonelist_order();
4623 else
4624 current_zonelist_order = user_zonelist_order;
4625}
4626
4627static void build_zonelists(pg_data_t *pgdat)
4628{
c00eb15a 4629 int i, node, load;
1da177e4 4630 nodemask_t used_mask;
f0c0b2b8
KH
4631 int local_node, prev_node;
4632 struct zonelist *zonelist;
d00181b9 4633 unsigned int order = current_zonelist_order;
1da177e4
LT
4634
4635 /* initialize zonelists */
523b9458 4636 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4637 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4638 zonelist->_zonerefs[0].zone = NULL;
4639 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4640 }
4641
4642 /* NUMA-aware ordering of nodes */
4643 local_node = pgdat->node_id;
62bc62a8 4644 load = nr_online_nodes;
1da177e4
LT
4645 prev_node = local_node;
4646 nodes_clear(used_mask);
f0c0b2b8 4647
f0c0b2b8 4648 memset(node_order, 0, sizeof(node_order));
c00eb15a 4649 i = 0;
f0c0b2b8 4650
1da177e4
LT
4651 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4652 /*
4653 * We don't want to pressure a particular node.
4654 * So adding penalty to the first node in same
4655 * distance group to make it round-robin.
4656 */
957f822a
DR
4657 if (node_distance(local_node, node) !=
4658 node_distance(local_node, prev_node))
f0c0b2b8
KH
4659 node_load[node] = load;
4660
1da177e4
LT
4661 prev_node = node;
4662 load--;
f0c0b2b8
KH
4663 if (order == ZONELIST_ORDER_NODE)
4664 build_zonelists_in_node_order(pgdat, node);
4665 else
c00eb15a 4666 node_order[i++] = node; /* remember order */
f0c0b2b8 4667 }
1da177e4 4668
f0c0b2b8
KH
4669 if (order == ZONELIST_ORDER_ZONE) {
4670 /* calculate node order -- i.e., DMA last! */
c00eb15a 4671 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4672 }
523b9458
CL
4673
4674 build_thisnode_zonelists(pgdat);
1da177e4
LT
4675}
4676
7aac7898
LS
4677#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4678/*
4679 * Return node id of node used for "local" allocations.
4680 * I.e., first node id of first zone in arg node's generic zonelist.
4681 * Used for initializing percpu 'numa_mem', which is used primarily
4682 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4683 */
4684int local_memory_node(int node)
4685{
c33d6c06 4686 struct zoneref *z;
7aac7898 4687
c33d6c06 4688 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4689 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4690 NULL);
4691 return z->zone->node;
7aac7898
LS
4692}
4693#endif
f0c0b2b8 4694
1da177e4
LT
4695#else /* CONFIG_NUMA */
4696
f0c0b2b8
KH
4697static void set_zonelist_order(void)
4698{
4699 current_zonelist_order = ZONELIST_ORDER_ZONE;
4700}
4701
4702static void build_zonelists(pg_data_t *pgdat)
1da177e4 4703{
19655d34 4704 int node, local_node;
54a6eb5c
MG
4705 enum zone_type j;
4706 struct zonelist *zonelist;
1da177e4
LT
4707
4708 local_node = pgdat->node_id;
1da177e4 4709
54a6eb5c 4710 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4711 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4712
54a6eb5c
MG
4713 /*
4714 * Now we build the zonelist so that it contains the zones
4715 * of all the other nodes.
4716 * We don't want to pressure a particular node, so when
4717 * building the zones for node N, we make sure that the
4718 * zones coming right after the local ones are those from
4719 * node N+1 (modulo N)
4720 */
4721 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4722 if (!node_online(node))
4723 continue;
bc732f1d 4724 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4725 }
54a6eb5c
MG
4726 for (node = 0; node < local_node; node++) {
4727 if (!node_online(node))
4728 continue;
bc732f1d 4729 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4730 }
4731
dd1a239f
MG
4732 zonelist->_zonerefs[j].zone = NULL;
4733 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4734}
4735
4736#endif /* CONFIG_NUMA */
4737
99dcc3e5
CL
4738/*
4739 * Boot pageset table. One per cpu which is going to be used for all
4740 * zones and all nodes. The parameters will be set in such a way
4741 * that an item put on a list will immediately be handed over to
4742 * the buddy list. This is safe since pageset manipulation is done
4743 * with interrupts disabled.
4744 *
4745 * The boot_pagesets must be kept even after bootup is complete for
4746 * unused processors and/or zones. They do play a role for bootstrapping
4747 * hotplugged processors.
4748 *
4749 * zoneinfo_show() and maybe other functions do
4750 * not check if the processor is online before following the pageset pointer.
4751 * Other parts of the kernel may not check if the zone is available.
4752 */
4753static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4754static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4755static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4756
4eaf3f64
HL
4757/*
4758 * Global mutex to protect against size modification of zonelists
4759 * as well as to serialize pageset setup for the new populated zone.
4760 */
4761DEFINE_MUTEX(zonelists_mutex);
4762
9b1a4d38 4763/* return values int ....just for stop_machine() */
4ed7e022 4764static int __build_all_zonelists(void *data)
1da177e4 4765{
6811378e 4766 int nid;
99dcc3e5 4767 int cpu;
9adb62a5 4768 pg_data_t *self = data;
9276b1bc 4769
7f9cfb31
BL
4770#ifdef CONFIG_NUMA
4771 memset(node_load, 0, sizeof(node_load));
4772#endif
9adb62a5
JL
4773
4774 if (self && !node_online(self->node_id)) {
4775 build_zonelists(self);
9adb62a5
JL
4776 }
4777
9276b1bc 4778 for_each_online_node(nid) {
7ea1530a
CL
4779 pg_data_t *pgdat = NODE_DATA(nid);
4780
4781 build_zonelists(pgdat);
9276b1bc 4782 }
99dcc3e5
CL
4783
4784 /*
4785 * Initialize the boot_pagesets that are going to be used
4786 * for bootstrapping processors. The real pagesets for
4787 * each zone will be allocated later when the per cpu
4788 * allocator is available.
4789 *
4790 * boot_pagesets are used also for bootstrapping offline
4791 * cpus if the system is already booted because the pagesets
4792 * are needed to initialize allocators on a specific cpu too.
4793 * F.e. the percpu allocator needs the page allocator which
4794 * needs the percpu allocator in order to allocate its pagesets
4795 * (a chicken-egg dilemma).
4796 */
7aac7898 4797 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4798 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4799
7aac7898
LS
4800#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4801 /*
4802 * We now know the "local memory node" for each node--
4803 * i.e., the node of the first zone in the generic zonelist.
4804 * Set up numa_mem percpu variable for on-line cpus. During
4805 * boot, only the boot cpu should be on-line; we'll init the
4806 * secondary cpus' numa_mem as they come on-line. During
4807 * node/memory hotplug, we'll fixup all on-line cpus.
4808 */
4809 if (cpu_online(cpu))
4810 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4811#endif
4812 }
4813
6811378e
YG
4814 return 0;
4815}
4816
061f67bc
RV
4817static noinline void __init
4818build_all_zonelists_init(void)
4819{
4820 __build_all_zonelists(NULL);
4821 mminit_verify_zonelist();
4822 cpuset_init_current_mems_allowed();
4823}
4824
4eaf3f64
HL
4825/*
4826 * Called with zonelists_mutex held always
4827 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4828 *
4829 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4830 * [we're only called with non-NULL zone through __meminit paths] and
4831 * (2) call of __init annotated helper build_all_zonelists_init
4832 * [protected by SYSTEM_BOOTING].
4eaf3f64 4833 */
9adb62a5 4834void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4835{
f0c0b2b8
KH
4836 set_zonelist_order();
4837
6811378e 4838 if (system_state == SYSTEM_BOOTING) {
061f67bc 4839 build_all_zonelists_init();
6811378e 4840 } else {
e9959f0f 4841#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4842 if (zone)
4843 setup_zone_pageset(zone);
e9959f0f 4844#endif
dd1895e2
CS
4845 /* we have to stop all cpus to guarantee there is no user
4846 of zonelist */
9adb62a5 4847 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4848 /* cpuset refresh routine should be here */
4849 }
bd1e22b8 4850 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4851 /*
4852 * Disable grouping by mobility if the number of pages in the
4853 * system is too low to allow the mechanism to work. It would be
4854 * more accurate, but expensive to check per-zone. This check is
4855 * made on memory-hotadd so a system can start with mobility
4856 * disabled and enable it later
4857 */
d9c23400 4858 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4859 page_group_by_mobility_disabled = 1;
4860 else
4861 page_group_by_mobility_disabled = 0;
4862
756a025f
JP
4863 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4864 nr_online_nodes,
4865 zonelist_order_name[current_zonelist_order],
4866 page_group_by_mobility_disabled ? "off" : "on",
4867 vm_total_pages);
f0c0b2b8 4868#ifdef CONFIG_NUMA
f88dfff5 4869 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4870#endif
1da177e4
LT
4871}
4872
4873/*
4874 * Helper functions to size the waitqueue hash table.
4875 * Essentially these want to choose hash table sizes sufficiently
4876 * large so that collisions trying to wait on pages are rare.
4877 * But in fact, the number of active page waitqueues on typical
4878 * systems is ridiculously low, less than 200. So this is even
4879 * conservative, even though it seems large.
4880 *
4881 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4882 * waitqueues, i.e. the size of the waitq table given the number of pages.
4883 */
4884#define PAGES_PER_WAITQUEUE 256
4885
cca448fe 4886#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4887static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4888{
4889 unsigned long size = 1;
4890
4891 pages /= PAGES_PER_WAITQUEUE;
4892
4893 while (size < pages)
4894 size <<= 1;
4895
4896 /*
4897 * Once we have dozens or even hundreds of threads sleeping
4898 * on IO we've got bigger problems than wait queue collision.
4899 * Limit the size of the wait table to a reasonable size.
4900 */
4901 size = min(size, 4096UL);
4902
4903 return max(size, 4UL);
4904}
cca448fe
YG
4905#else
4906/*
4907 * A zone's size might be changed by hot-add, so it is not possible to determine
4908 * a suitable size for its wait_table. So we use the maximum size now.
4909 *
4910 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4911 *
4912 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4913 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4914 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4915 *
4916 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4917 * or more by the traditional way. (See above). It equals:
4918 *
4919 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4920 * ia64(16K page size) : = ( 8G + 4M)byte.
4921 * powerpc (64K page size) : = (32G +16M)byte.
4922 */
4923static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4924{
4925 return 4096UL;
4926}
4927#endif
1da177e4
LT
4928
4929/*
4930 * This is an integer logarithm so that shifts can be used later
4931 * to extract the more random high bits from the multiplicative
4932 * hash function before the remainder is taken.
4933 */
4934static inline unsigned long wait_table_bits(unsigned long size)
4935{
4936 return ffz(~size);
4937}
4938
1da177e4
LT
4939/*
4940 * Initially all pages are reserved - free ones are freed
4941 * up by free_all_bootmem() once the early boot process is
4942 * done. Non-atomic initialization, single-pass.
4943 */
c09b4240 4944void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4945 unsigned long start_pfn, enum memmap_context context)
1da177e4 4946{
4b94ffdc 4947 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4948 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4949 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4950 unsigned long pfn;
3a80a7fa 4951 unsigned long nr_initialised = 0;
342332e6
TI
4952#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4953 struct memblock_region *r = NULL, *tmp;
4954#endif
1da177e4 4955
22b31eec
HD
4956 if (highest_memmap_pfn < end_pfn - 1)
4957 highest_memmap_pfn = end_pfn - 1;
4958
4b94ffdc
DW
4959 /*
4960 * Honor reservation requested by the driver for this ZONE_DEVICE
4961 * memory
4962 */
4963 if (altmap && start_pfn == altmap->base_pfn)
4964 start_pfn += altmap->reserve;
4965
cbe8dd4a 4966 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4967 /*
b72d0ffb
AM
4968 * There can be holes in boot-time mem_map[]s handed to this
4969 * function. They do not exist on hotplugged memory.
a2f3aa02 4970 */
b72d0ffb
AM
4971 if (context != MEMMAP_EARLY)
4972 goto not_early;
4973
4974 if (!early_pfn_valid(pfn))
4975 continue;
4976 if (!early_pfn_in_nid(pfn, nid))
4977 continue;
4978 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4979 break;
342332e6
TI
4980
4981#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4982 /*
4983 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4984 * from zone_movable_pfn[nid] to end of each node should be
4985 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4986 */
4987 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4988 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4989 continue;
342332e6 4990
b72d0ffb
AM
4991 /*
4992 * Check given memblock attribute by firmware which can affect
4993 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4994 * mirrored, it's an overlapped memmap init. skip it.
4995 */
4996 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4997 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4998 for_each_memblock(memory, tmp)
4999 if (pfn < memblock_region_memory_end_pfn(tmp))
5000 break;
5001 r = tmp;
5002 }
5003 if (pfn >= memblock_region_memory_base_pfn(r) &&
5004 memblock_is_mirror(r)) {
5005 /* already initialized as NORMAL */
5006 pfn = memblock_region_memory_end_pfn(r);
5007 continue;
342332e6 5008 }
a2f3aa02 5009 }
b72d0ffb 5010#endif
ac5d2539 5011
b72d0ffb 5012not_early:
ac5d2539
MG
5013 /*
5014 * Mark the block movable so that blocks are reserved for
5015 * movable at startup. This will force kernel allocations
5016 * to reserve their blocks rather than leaking throughout
5017 * the address space during boot when many long-lived
974a786e 5018 * kernel allocations are made.
ac5d2539
MG
5019 *
5020 * bitmap is created for zone's valid pfn range. but memmap
5021 * can be created for invalid pages (for alignment)
5022 * check here not to call set_pageblock_migratetype() against
5023 * pfn out of zone.
5024 */
5025 if (!(pfn & (pageblock_nr_pages - 1))) {
5026 struct page *page = pfn_to_page(pfn);
5027
5028 __init_single_page(page, pfn, zone, nid);
5029 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5030 } else {
5031 __init_single_pfn(pfn, zone, nid);
5032 }
1da177e4
LT
5033 }
5034}
5035
1e548deb 5036static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5037{
7aeb09f9 5038 unsigned int order, t;
b2a0ac88
MG
5039 for_each_migratetype_order(order, t) {
5040 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5041 zone->free_area[order].nr_free = 0;
5042 }
5043}
5044
5045#ifndef __HAVE_ARCH_MEMMAP_INIT
5046#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5047 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5048#endif
5049
7cd2b0a3 5050static int zone_batchsize(struct zone *zone)
e7c8d5c9 5051{
3a6be87f 5052#ifdef CONFIG_MMU
e7c8d5c9
CL
5053 int batch;
5054
5055 /*
5056 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5057 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5058 *
5059 * OK, so we don't know how big the cache is. So guess.
5060 */
b40da049 5061 batch = zone->managed_pages / 1024;
ba56e91c
SR
5062 if (batch * PAGE_SIZE > 512 * 1024)
5063 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5064 batch /= 4; /* We effectively *= 4 below */
5065 if (batch < 1)
5066 batch = 1;
5067
5068 /*
0ceaacc9
NP
5069 * Clamp the batch to a 2^n - 1 value. Having a power
5070 * of 2 value was found to be more likely to have
5071 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5072 *
0ceaacc9
NP
5073 * For example if 2 tasks are alternately allocating
5074 * batches of pages, one task can end up with a lot
5075 * of pages of one half of the possible page colors
5076 * and the other with pages of the other colors.
e7c8d5c9 5077 */
9155203a 5078 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5079
e7c8d5c9 5080 return batch;
3a6be87f
DH
5081
5082#else
5083 /* The deferral and batching of frees should be suppressed under NOMMU
5084 * conditions.
5085 *
5086 * The problem is that NOMMU needs to be able to allocate large chunks
5087 * of contiguous memory as there's no hardware page translation to
5088 * assemble apparent contiguous memory from discontiguous pages.
5089 *
5090 * Queueing large contiguous runs of pages for batching, however,
5091 * causes the pages to actually be freed in smaller chunks. As there
5092 * can be a significant delay between the individual batches being
5093 * recycled, this leads to the once large chunks of space being
5094 * fragmented and becoming unavailable for high-order allocations.
5095 */
5096 return 0;
5097#endif
e7c8d5c9
CL
5098}
5099
8d7a8fa9
CS
5100/*
5101 * pcp->high and pcp->batch values are related and dependent on one another:
5102 * ->batch must never be higher then ->high.
5103 * The following function updates them in a safe manner without read side
5104 * locking.
5105 *
5106 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5107 * those fields changing asynchronously (acording the the above rule).
5108 *
5109 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5110 * outside of boot time (or some other assurance that no concurrent updaters
5111 * exist).
5112 */
5113static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5114 unsigned long batch)
5115{
5116 /* start with a fail safe value for batch */
5117 pcp->batch = 1;
5118 smp_wmb();
5119
5120 /* Update high, then batch, in order */
5121 pcp->high = high;
5122 smp_wmb();
5123
5124 pcp->batch = batch;
5125}
5126
3664033c 5127/* a companion to pageset_set_high() */
4008bab7
CS
5128static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5129{
8d7a8fa9 5130 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5131}
5132
88c90dbc 5133static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5134{
5135 struct per_cpu_pages *pcp;
5f8dcc21 5136 int migratetype;
2caaad41 5137
1c6fe946
MD
5138 memset(p, 0, sizeof(*p));
5139
3dfa5721 5140 pcp = &p->pcp;
2caaad41 5141 pcp->count = 0;
5f8dcc21
MG
5142 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5143 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5144}
5145
88c90dbc
CS
5146static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5147{
5148 pageset_init(p);
5149 pageset_set_batch(p, batch);
5150}
5151
8ad4b1fb 5152/*
3664033c 5153 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5154 * to the value high for the pageset p.
5155 */
3664033c 5156static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5157 unsigned long high)
5158{
8d7a8fa9
CS
5159 unsigned long batch = max(1UL, high / 4);
5160 if ((high / 4) > (PAGE_SHIFT * 8))
5161 batch = PAGE_SHIFT * 8;
8ad4b1fb 5162
8d7a8fa9 5163 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5164}
5165
7cd2b0a3
DR
5166static void pageset_set_high_and_batch(struct zone *zone,
5167 struct per_cpu_pageset *pcp)
56cef2b8 5168{
56cef2b8 5169 if (percpu_pagelist_fraction)
3664033c 5170 pageset_set_high(pcp,
56cef2b8
CS
5171 (zone->managed_pages /
5172 percpu_pagelist_fraction));
5173 else
5174 pageset_set_batch(pcp, zone_batchsize(zone));
5175}
5176
169f6c19
CS
5177static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5178{
5179 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5180
5181 pageset_init(pcp);
5182 pageset_set_high_and_batch(zone, pcp);
5183}
5184
4ed7e022 5185static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5186{
5187 int cpu;
319774e2 5188 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5189 for_each_possible_cpu(cpu)
5190 zone_pageset_init(zone, cpu);
319774e2
WF
5191}
5192
2caaad41 5193/*
99dcc3e5
CL
5194 * Allocate per cpu pagesets and initialize them.
5195 * Before this call only boot pagesets were available.
e7c8d5c9 5196 */
99dcc3e5 5197void __init setup_per_cpu_pageset(void)
e7c8d5c9 5198{
99dcc3e5 5199 struct zone *zone;
e7c8d5c9 5200
319774e2
WF
5201 for_each_populated_zone(zone)
5202 setup_zone_pageset(zone);
e7c8d5c9
CL
5203}
5204
577a32f6 5205static noinline __init_refok
cca448fe 5206int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5207{
5208 int i;
cca448fe 5209 size_t alloc_size;
ed8ece2e
DH
5210
5211 /*
5212 * The per-page waitqueue mechanism uses hashed waitqueues
5213 * per zone.
5214 */
02b694de
YG
5215 zone->wait_table_hash_nr_entries =
5216 wait_table_hash_nr_entries(zone_size_pages);
5217 zone->wait_table_bits =
5218 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5219 alloc_size = zone->wait_table_hash_nr_entries
5220 * sizeof(wait_queue_head_t);
5221
cd94b9db 5222 if (!slab_is_available()) {
cca448fe 5223 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5224 memblock_virt_alloc_node_nopanic(
5225 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5226 } else {
5227 /*
5228 * This case means that a zone whose size was 0 gets new memory
5229 * via memory hot-add.
5230 * But it may be the case that a new node was hot-added. In
5231 * this case vmalloc() will not be able to use this new node's
5232 * memory - this wait_table must be initialized to use this new
5233 * node itself as well.
5234 * To use this new node's memory, further consideration will be
5235 * necessary.
5236 */
8691f3a7 5237 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5238 }
5239 if (!zone->wait_table)
5240 return -ENOMEM;
ed8ece2e 5241
b8af2941 5242 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5243 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5244
5245 return 0;
ed8ece2e
DH
5246}
5247
c09b4240 5248static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5249{
99dcc3e5
CL
5250 /*
5251 * per cpu subsystem is not up at this point. The following code
5252 * relies on the ability of the linker to provide the
5253 * offset of a (static) per cpu variable into the per cpu area.
5254 */
5255 zone->pageset = &boot_pageset;
ed8ece2e 5256
b38a8725 5257 if (populated_zone(zone))
99dcc3e5
CL
5258 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5259 zone->name, zone->present_pages,
5260 zone_batchsize(zone));
ed8ece2e
DH
5261}
5262
4ed7e022 5263int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5264 unsigned long zone_start_pfn,
b171e409 5265 unsigned long size)
ed8ece2e
DH
5266{
5267 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5268 int ret;
5269 ret = zone_wait_table_init(zone, size);
5270 if (ret)
5271 return ret;
ed8ece2e
DH
5272 pgdat->nr_zones = zone_idx(zone) + 1;
5273
ed8ece2e
DH
5274 zone->zone_start_pfn = zone_start_pfn;
5275
708614e6
MG
5276 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5277 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5278 pgdat->node_id,
5279 (unsigned long)zone_idx(zone),
5280 zone_start_pfn, (zone_start_pfn + size));
5281
1e548deb 5282 zone_init_free_lists(zone);
718127cc
YG
5283
5284 return 0;
ed8ece2e
DH
5285}
5286
0ee332c1 5287#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5288#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5289
c713216d
MG
5290/*
5291 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5292 */
8a942fde
MG
5293int __meminit __early_pfn_to_nid(unsigned long pfn,
5294 struct mminit_pfnnid_cache *state)
c713216d 5295{
c13291a5 5296 unsigned long start_pfn, end_pfn;
e76b63f8 5297 int nid;
7c243c71 5298
8a942fde
MG
5299 if (state->last_start <= pfn && pfn < state->last_end)
5300 return state->last_nid;
c713216d 5301
e76b63f8
YL
5302 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5303 if (nid != -1) {
8a942fde
MG
5304 state->last_start = start_pfn;
5305 state->last_end = end_pfn;
5306 state->last_nid = nid;
e76b63f8
YL
5307 }
5308
5309 return nid;
c713216d
MG
5310}
5311#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5312
c713216d 5313/**
6782832e 5314 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5315 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5316 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5317 *
7d018176
ZZ
5318 * If an architecture guarantees that all ranges registered contain no holes
5319 * and may be freed, this this function may be used instead of calling
5320 * memblock_free_early_nid() manually.
c713216d 5321 */
c13291a5 5322void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5323{
c13291a5
TH
5324 unsigned long start_pfn, end_pfn;
5325 int i, this_nid;
edbe7d23 5326
c13291a5
TH
5327 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5328 start_pfn = min(start_pfn, max_low_pfn);
5329 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5330
c13291a5 5331 if (start_pfn < end_pfn)
6782832e
SS
5332 memblock_free_early_nid(PFN_PHYS(start_pfn),
5333 (end_pfn - start_pfn) << PAGE_SHIFT,
5334 this_nid);
edbe7d23 5335 }
edbe7d23 5336}
edbe7d23 5337
c713216d
MG
5338/**
5339 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5340 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5341 *
7d018176
ZZ
5342 * If an architecture guarantees that all ranges registered contain no holes and may
5343 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5344 */
5345void __init sparse_memory_present_with_active_regions(int nid)
5346{
c13291a5
TH
5347 unsigned long start_pfn, end_pfn;
5348 int i, this_nid;
c713216d 5349
c13291a5
TH
5350 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5351 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5352}
5353
5354/**
5355 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5356 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5357 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5358 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5359 *
5360 * It returns the start and end page frame of a node based on information
7d018176 5361 * provided by memblock_set_node(). If called for a node
c713216d 5362 * with no available memory, a warning is printed and the start and end
88ca3b94 5363 * PFNs will be 0.
c713216d 5364 */
a3142c8e 5365void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5366 unsigned long *start_pfn, unsigned long *end_pfn)
5367{
c13291a5 5368 unsigned long this_start_pfn, this_end_pfn;
c713216d 5369 int i;
c13291a5 5370
c713216d
MG
5371 *start_pfn = -1UL;
5372 *end_pfn = 0;
5373
c13291a5
TH
5374 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5375 *start_pfn = min(*start_pfn, this_start_pfn);
5376 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5377 }
5378
633c0666 5379 if (*start_pfn == -1UL)
c713216d 5380 *start_pfn = 0;
c713216d
MG
5381}
5382
2a1e274a
MG
5383/*
5384 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5385 * assumption is made that zones within a node are ordered in monotonic
5386 * increasing memory addresses so that the "highest" populated zone is used
5387 */
b69a7288 5388static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5389{
5390 int zone_index;
5391 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5392 if (zone_index == ZONE_MOVABLE)
5393 continue;
5394
5395 if (arch_zone_highest_possible_pfn[zone_index] >
5396 arch_zone_lowest_possible_pfn[zone_index])
5397 break;
5398 }
5399
5400 VM_BUG_ON(zone_index == -1);
5401 movable_zone = zone_index;
5402}
5403
5404/*
5405 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5406 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5407 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5408 * in each node depending on the size of each node and how evenly kernelcore
5409 * is distributed. This helper function adjusts the zone ranges
5410 * provided by the architecture for a given node by using the end of the
5411 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5412 * zones within a node are in order of monotonic increases memory addresses
5413 */
b69a7288 5414static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5415 unsigned long zone_type,
5416 unsigned long node_start_pfn,
5417 unsigned long node_end_pfn,
5418 unsigned long *zone_start_pfn,
5419 unsigned long *zone_end_pfn)
5420{
5421 /* Only adjust if ZONE_MOVABLE is on this node */
5422 if (zone_movable_pfn[nid]) {
5423 /* Size ZONE_MOVABLE */
5424 if (zone_type == ZONE_MOVABLE) {
5425 *zone_start_pfn = zone_movable_pfn[nid];
5426 *zone_end_pfn = min(node_end_pfn,
5427 arch_zone_highest_possible_pfn[movable_zone]);
5428
2a1e274a
MG
5429 /* Check if this whole range is within ZONE_MOVABLE */
5430 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5431 *zone_start_pfn = *zone_end_pfn;
5432 }
5433}
5434
c713216d
MG
5435/*
5436 * Return the number of pages a zone spans in a node, including holes
5437 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5438 */
6ea6e688 5439static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5440 unsigned long zone_type,
7960aedd
ZY
5441 unsigned long node_start_pfn,
5442 unsigned long node_end_pfn,
d91749c1
TI
5443 unsigned long *zone_start_pfn,
5444 unsigned long *zone_end_pfn,
c713216d
MG
5445 unsigned long *ignored)
5446{
b5685e92 5447 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5448 if (!node_start_pfn && !node_end_pfn)
5449 return 0;
5450
7960aedd 5451 /* Get the start and end of the zone */
d91749c1
TI
5452 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5453 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5454 adjust_zone_range_for_zone_movable(nid, zone_type,
5455 node_start_pfn, node_end_pfn,
d91749c1 5456 zone_start_pfn, zone_end_pfn);
c713216d
MG
5457
5458 /* Check that this node has pages within the zone's required range */
d91749c1 5459 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5460 return 0;
5461
5462 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5463 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5464 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5465
5466 /* Return the spanned pages */
d91749c1 5467 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5468}
5469
5470/*
5471 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5472 * then all holes in the requested range will be accounted for.
c713216d 5473 */
32996250 5474unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5475 unsigned long range_start_pfn,
5476 unsigned long range_end_pfn)
5477{
96e907d1
TH
5478 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5479 unsigned long start_pfn, end_pfn;
5480 int i;
c713216d 5481
96e907d1
TH
5482 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5483 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5484 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5485 nr_absent -= end_pfn - start_pfn;
c713216d 5486 }
96e907d1 5487 return nr_absent;
c713216d
MG
5488}
5489
5490/**
5491 * absent_pages_in_range - Return number of page frames in holes within a range
5492 * @start_pfn: The start PFN to start searching for holes
5493 * @end_pfn: The end PFN to stop searching for holes
5494 *
88ca3b94 5495 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5496 */
5497unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5498 unsigned long end_pfn)
5499{
5500 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5501}
5502
5503/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5504static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5505 unsigned long zone_type,
7960aedd
ZY
5506 unsigned long node_start_pfn,
5507 unsigned long node_end_pfn,
c713216d
MG
5508 unsigned long *ignored)
5509{
96e907d1
TH
5510 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5511 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5512 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5513 unsigned long nr_absent;
9c7cd687 5514
b5685e92 5515 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5516 if (!node_start_pfn && !node_end_pfn)
5517 return 0;
5518
96e907d1
TH
5519 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5520 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5521
2a1e274a
MG
5522 adjust_zone_range_for_zone_movable(nid, zone_type,
5523 node_start_pfn, node_end_pfn,
5524 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5525 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5526
5527 /*
5528 * ZONE_MOVABLE handling.
5529 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5530 * and vice versa.
5531 */
5532 if (zone_movable_pfn[nid]) {
5533 if (mirrored_kernelcore) {
5534 unsigned long start_pfn, end_pfn;
5535 struct memblock_region *r;
5536
5537 for_each_memblock(memory, r) {
5538 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5539 zone_start_pfn, zone_end_pfn);
5540 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5541 zone_start_pfn, zone_end_pfn);
5542
5543 if (zone_type == ZONE_MOVABLE &&
5544 memblock_is_mirror(r))
5545 nr_absent += end_pfn - start_pfn;
5546
5547 if (zone_type == ZONE_NORMAL &&
5548 !memblock_is_mirror(r))
5549 nr_absent += end_pfn - start_pfn;
5550 }
5551 } else {
5552 if (zone_type == ZONE_NORMAL)
5553 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5554 }
5555 }
5556
5557 return nr_absent;
c713216d 5558}
0e0b864e 5559
0ee332c1 5560#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5561static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5562 unsigned long zone_type,
7960aedd
ZY
5563 unsigned long node_start_pfn,
5564 unsigned long node_end_pfn,
d91749c1
TI
5565 unsigned long *zone_start_pfn,
5566 unsigned long *zone_end_pfn,
c713216d
MG
5567 unsigned long *zones_size)
5568{
d91749c1
TI
5569 unsigned int zone;
5570
5571 *zone_start_pfn = node_start_pfn;
5572 for (zone = 0; zone < zone_type; zone++)
5573 *zone_start_pfn += zones_size[zone];
5574
5575 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5576
c713216d
MG
5577 return zones_size[zone_type];
5578}
5579
6ea6e688 5580static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5581 unsigned long zone_type,
7960aedd
ZY
5582 unsigned long node_start_pfn,
5583 unsigned long node_end_pfn,
c713216d
MG
5584 unsigned long *zholes_size)
5585{
5586 if (!zholes_size)
5587 return 0;
5588
5589 return zholes_size[zone_type];
5590}
20e6926d 5591
0ee332c1 5592#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5593
a3142c8e 5594static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5595 unsigned long node_start_pfn,
5596 unsigned long node_end_pfn,
5597 unsigned long *zones_size,
5598 unsigned long *zholes_size)
c713216d 5599{
febd5949 5600 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5601 enum zone_type i;
5602
febd5949
GZ
5603 for (i = 0; i < MAX_NR_ZONES; i++) {
5604 struct zone *zone = pgdat->node_zones + i;
d91749c1 5605 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5606 unsigned long size, real_size;
c713216d 5607
febd5949
GZ
5608 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5609 node_start_pfn,
5610 node_end_pfn,
d91749c1
TI
5611 &zone_start_pfn,
5612 &zone_end_pfn,
febd5949
GZ
5613 zones_size);
5614 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5615 node_start_pfn, node_end_pfn,
5616 zholes_size);
d91749c1
TI
5617 if (size)
5618 zone->zone_start_pfn = zone_start_pfn;
5619 else
5620 zone->zone_start_pfn = 0;
febd5949
GZ
5621 zone->spanned_pages = size;
5622 zone->present_pages = real_size;
5623
5624 totalpages += size;
5625 realtotalpages += real_size;
5626 }
5627
5628 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5629 pgdat->node_present_pages = realtotalpages;
5630 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5631 realtotalpages);
5632}
5633
835c134e
MG
5634#ifndef CONFIG_SPARSEMEM
5635/*
5636 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5637 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5638 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5639 * round what is now in bits to nearest long in bits, then return it in
5640 * bytes.
5641 */
7c45512d 5642static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5643{
5644 unsigned long usemapsize;
5645
7c45512d 5646 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5647 usemapsize = roundup(zonesize, pageblock_nr_pages);
5648 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5649 usemapsize *= NR_PAGEBLOCK_BITS;
5650 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5651
5652 return usemapsize / 8;
5653}
5654
5655static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5656 struct zone *zone,
5657 unsigned long zone_start_pfn,
5658 unsigned long zonesize)
835c134e 5659{
7c45512d 5660 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5661 zone->pageblock_flags = NULL;
58a01a45 5662 if (usemapsize)
6782832e
SS
5663 zone->pageblock_flags =
5664 memblock_virt_alloc_node_nopanic(usemapsize,
5665 pgdat->node_id);
835c134e
MG
5666}
5667#else
7c45512d
LT
5668static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5669 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5670#endif /* CONFIG_SPARSEMEM */
5671
d9c23400 5672#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5673
d9c23400 5674/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5675void __paginginit set_pageblock_order(void)
d9c23400 5676{
955c1cd7
AM
5677 unsigned int order;
5678
d9c23400
MG
5679 /* Check that pageblock_nr_pages has not already been setup */
5680 if (pageblock_order)
5681 return;
5682
955c1cd7
AM
5683 if (HPAGE_SHIFT > PAGE_SHIFT)
5684 order = HUGETLB_PAGE_ORDER;
5685 else
5686 order = MAX_ORDER - 1;
5687
d9c23400
MG
5688 /*
5689 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5690 * This value may be variable depending on boot parameters on IA64 and
5691 * powerpc.
d9c23400
MG
5692 */
5693 pageblock_order = order;
5694}
5695#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5696
ba72cb8c
MG
5697/*
5698 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5699 * is unused as pageblock_order is set at compile-time. See
5700 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5701 * the kernel config
ba72cb8c 5702 */
15ca220e 5703void __paginginit set_pageblock_order(void)
ba72cb8c 5704{
ba72cb8c 5705}
d9c23400
MG
5706
5707#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5708
01cefaef
JL
5709static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5710 unsigned long present_pages)
5711{
5712 unsigned long pages = spanned_pages;
5713
5714 /*
5715 * Provide a more accurate estimation if there are holes within
5716 * the zone and SPARSEMEM is in use. If there are holes within the
5717 * zone, each populated memory region may cost us one or two extra
5718 * memmap pages due to alignment because memmap pages for each
5719 * populated regions may not naturally algined on page boundary.
5720 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5721 */
5722 if (spanned_pages > present_pages + (present_pages >> 4) &&
5723 IS_ENABLED(CONFIG_SPARSEMEM))
5724 pages = present_pages;
5725
5726 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5727}
5728
1da177e4
LT
5729/*
5730 * Set up the zone data structures:
5731 * - mark all pages reserved
5732 * - mark all memory queues empty
5733 * - clear the memory bitmaps
6527af5d
MK
5734 *
5735 * NOTE: pgdat should get zeroed by caller.
1da177e4 5736 */
7f3eb55b 5737static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5738{
2f1b6248 5739 enum zone_type j;
ed8ece2e 5740 int nid = pgdat->node_id;
718127cc 5741 int ret;
1da177e4 5742
208d54e5 5743 pgdat_resize_init(pgdat);
8177a420
AA
5744#ifdef CONFIG_NUMA_BALANCING
5745 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5746 pgdat->numabalancing_migrate_nr_pages = 0;
5747 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5748#endif
5749#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5750 spin_lock_init(&pgdat->split_queue_lock);
5751 INIT_LIST_HEAD(&pgdat->split_queue);
5752 pgdat->split_queue_len = 0;
8177a420 5753#endif
1da177e4 5754 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5755 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5756#ifdef CONFIG_COMPACTION
5757 init_waitqueue_head(&pgdat->kcompactd_wait);
5758#endif
eefa864b 5759 pgdat_page_ext_init(pgdat);
5f63b720 5760
1da177e4
LT
5761 for (j = 0; j < MAX_NR_ZONES; j++) {
5762 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5763 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5764 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5765
febd5949
GZ
5766 size = zone->spanned_pages;
5767 realsize = freesize = zone->present_pages;
1da177e4 5768
0e0b864e 5769 /*
9feedc9d 5770 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5771 * is used by this zone for memmap. This affects the watermark
5772 * and per-cpu initialisations
5773 */
01cefaef 5774 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5775 if (!is_highmem_idx(j)) {
5776 if (freesize >= memmap_pages) {
5777 freesize -= memmap_pages;
5778 if (memmap_pages)
5779 printk(KERN_DEBUG
5780 " %s zone: %lu pages used for memmap\n",
5781 zone_names[j], memmap_pages);
5782 } else
1170532b 5783 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5784 zone_names[j], memmap_pages, freesize);
5785 }
0e0b864e 5786
6267276f 5787 /* Account for reserved pages */
9feedc9d
JL
5788 if (j == 0 && freesize > dma_reserve) {
5789 freesize -= dma_reserve;
d903ef9f 5790 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5791 zone_names[0], dma_reserve);
0e0b864e
MG
5792 }
5793
98d2b0eb 5794 if (!is_highmem_idx(j))
9feedc9d 5795 nr_kernel_pages += freesize;
01cefaef
JL
5796 /* Charge for highmem memmap if there are enough kernel pages */
5797 else if (nr_kernel_pages > memmap_pages * 2)
5798 nr_kernel_pages -= memmap_pages;
9feedc9d 5799 nr_all_pages += freesize;
1da177e4 5800
9feedc9d
JL
5801 /*
5802 * Set an approximate value for lowmem here, it will be adjusted
5803 * when the bootmem allocator frees pages into the buddy system.
5804 * And all highmem pages will be managed by the buddy system.
5805 */
5806 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5807#ifdef CONFIG_NUMA
d5f541ed 5808 zone->node = nid;
9feedc9d 5809 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5810 / 100;
9feedc9d 5811 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5812#endif
1da177e4
LT
5813 zone->name = zone_names[j];
5814 spin_lock_init(&zone->lock);
5815 spin_lock_init(&zone->lru_lock);
bdc8cb98 5816 zone_seqlock_init(zone);
1da177e4 5817 zone->zone_pgdat = pgdat;
ed8ece2e 5818 zone_pcp_init(zone);
81c0a2bb
JW
5819
5820 /* For bootup, initialized properly in watermark setup */
5821 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5822
bea8c150 5823 lruvec_init(&zone->lruvec);
1da177e4
LT
5824 if (!size)
5825 continue;
5826
955c1cd7 5827 set_pageblock_order();
7c45512d 5828 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5829 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5830 BUG_ON(ret);
76cdd58e 5831 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5832 }
5833}
5834
577a32f6 5835static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5836{
b0aeba74 5837 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5838 unsigned long __maybe_unused offset = 0;
5839
1da177e4
LT
5840 /* Skip empty nodes */
5841 if (!pgdat->node_spanned_pages)
5842 return;
5843
d41dee36 5844#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5845 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5846 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5847 /* ia64 gets its own node_mem_map, before this, without bootmem */
5848 if (!pgdat->node_mem_map) {
b0aeba74 5849 unsigned long size, end;
d41dee36
AW
5850 struct page *map;
5851
e984bb43
BP
5852 /*
5853 * The zone's endpoints aren't required to be MAX_ORDER
5854 * aligned but the node_mem_map endpoints must be in order
5855 * for the buddy allocator to function correctly.
5856 */
108bcc96 5857 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5858 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5859 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5860 map = alloc_remap(pgdat->node_id, size);
5861 if (!map)
6782832e
SS
5862 map = memblock_virt_alloc_node_nopanic(size,
5863 pgdat->node_id);
a1c34a3b 5864 pgdat->node_mem_map = map + offset;
1da177e4 5865 }
12d810c1 5866#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5867 /*
5868 * With no DISCONTIG, the global mem_map is just set as node 0's
5869 */
c713216d 5870 if (pgdat == NODE_DATA(0)) {
1da177e4 5871 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5872#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5873 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5874 mem_map -= offset;
0ee332c1 5875#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5876 }
1da177e4 5877#endif
d41dee36 5878#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5879}
5880
9109fb7b
JW
5881void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5882 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5883{
9109fb7b 5884 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5885 unsigned long start_pfn = 0;
5886 unsigned long end_pfn = 0;
9109fb7b 5887
88fdf75d 5888 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5889 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5890
3a80a7fa 5891 reset_deferred_meminit(pgdat);
1da177e4
LT
5892 pgdat->node_id = nid;
5893 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5894#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5895 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5897 (u64)start_pfn << PAGE_SHIFT,
5898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5899#else
5900 start_pfn = node_start_pfn;
7960aedd
ZY
5901#endif
5902 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5903 zones_size, zholes_size);
1da177e4
LT
5904
5905 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5906#ifdef CONFIG_FLAT_NODE_MEM_MAP
5907 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5908 nid, (unsigned long)pgdat,
5909 (unsigned long)pgdat->node_mem_map);
5910#endif
1da177e4 5911
7f3eb55b 5912 free_area_init_core(pgdat);
1da177e4
LT
5913}
5914
0ee332c1 5915#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5916
5917#if MAX_NUMNODES > 1
5918/*
5919 * Figure out the number of possible node ids.
5920 */
f9872caf 5921void __init setup_nr_node_ids(void)
418508c1 5922{
904a9553 5923 unsigned int highest;
418508c1 5924
904a9553 5925 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5926 nr_node_ids = highest + 1;
5927}
418508c1
MS
5928#endif
5929
1e01979c
TH
5930/**
5931 * node_map_pfn_alignment - determine the maximum internode alignment
5932 *
5933 * This function should be called after node map is populated and sorted.
5934 * It calculates the maximum power of two alignment which can distinguish
5935 * all the nodes.
5936 *
5937 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5938 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5939 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5940 * shifted, 1GiB is enough and this function will indicate so.
5941 *
5942 * This is used to test whether pfn -> nid mapping of the chosen memory
5943 * model has fine enough granularity to avoid incorrect mapping for the
5944 * populated node map.
5945 *
5946 * Returns the determined alignment in pfn's. 0 if there is no alignment
5947 * requirement (single node).
5948 */
5949unsigned long __init node_map_pfn_alignment(void)
5950{
5951 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5952 unsigned long start, end, mask;
1e01979c 5953 int last_nid = -1;
c13291a5 5954 int i, nid;
1e01979c 5955
c13291a5 5956 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5957 if (!start || last_nid < 0 || last_nid == nid) {
5958 last_nid = nid;
5959 last_end = end;
5960 continue;
5961 }
5962
5963 /*
5964 * Start with a mask granular enough to pin-point to the
5965 * start pfn and tick off bits one-by-one until it becomes
5966 * too coarse to separate the current node from the last.
5967 */
5968 mask = ~((1 << __ffs(start)) - 1);
5969 while (mask && last_end <= (start & (mask << 1)))
5970 mask <<= 1;
5971
5972 /* accumulate all internode masks */
5973 accl_mask |= mask;
5974 }
5975
5976 /* convert mask to number of pages */
5977 return ~accl_mask + 1;
5978}
5979
a6af2bc3 5980/* Find the lowest pfn for a node */
b69a7288 5981static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5982{
a6af2bc3 5983 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5984 unsigned long start_pfn;
5985 int i;
1abbfb41 5986
c13291a5
TH
5987 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5988 min_pfn = min(min_pfn, start_pfn);
c713216d 5989
a6af2bc3 5990 if (min_pfn == ULONG_MAX) {
1170532b 5991 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5992 return 0;
5993 }
5994
5995 return min_pfn;
c713216d
MG
5996}
5997
5998/**
5999 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6000 *
6001 * It returns the minimum PFN based on information provided via
7d018176 6002 * memblock_set_node().
c713216d
MG
6003 */
6004unsigned long __init find_min_pfn_with_active_regions(void)
6005{
6006 return find_min_pfn_for_node(MAX_NUMNODES);
6007}
6008
37b07e41
LS
6009/*
6010 * early_calculate_totalpages()
6011 * Sum pages in active regions for movable zone.
4b0ef1fe 6012 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6013 */
484f51f8 6014static unsigned long __init early_calculate_totalpages(void)
7e63efef 6015{
7e63efef 6016 unsigned long totalpages = 0;
c13291a5
TH
6017 unsigned long start_pfn, end_pfn;
6018 int i, nid;
6019
6020 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6021 unsigned long pages = end_pfn - start_pfn;
7e63efef 6022
37b07e41
LS
6023 totalpages += pages;
6024 if (pages)
4b0ef1fe 6025 node_set_state(nid, N_MEMORY);
37b07e41 6026 }
b8af2941 6027 return totalpages;
7e63efef
MG
6028}
6029
2a1e274a
MG
6030/*
6031 * Find the PFN the Movable zone begins in each node. Kernel memory
6032 * is spread evenly between nodes as long as the nodes have enough
6033 * memory. When they don't, some nodes will have more kernelcore than
6034 * others
6035 */
b224ef85 6036static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6037{
6038 int i, nid;
6039 unsigned long usable_startpfn;
6040 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6041 /* save the state before borrow the nodemask */
4b0ef1fe 6042 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6043 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6044 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6045 struct memblock_region *r;
b2f3eebe
TC
6046
6047 /* Need to find movable_zone earlier when movable_node is specified. */
6048 find_usable_zone_for_movable();
6049
6050 /*
6051 * If movable_node is specified, ignore kernelcore and movablecore
6052 * options.
6053 */
6054 if (movable_node_is_enabled()) {
136199f0
EM
6055 for_each_memblock(memory, r) {
6056 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6057 continue;
6058
136199f0 6059 nid = r->nid;
b2f3eebe 6060
136199f0 6061 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6062 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6063 min(usable_startpfn, zone_movable_pfn[nid]) :
6064 usable_startpfn;
6065 }
6066
6067 goto out2;
6068 }
2a1e274a 6069
342332e6
TI
6070 /*
6071 * If kernelcore=mirror is specified, ignore movablecore option
6072 */
6073 if (mirrored_kernelcore) {
6074 bool mem_below_4gb_not_mirrored = false;
6075
6076 for_each_memblock(memory, r) {
6077 if (memblock_is_mirror(r))
6078 continue;
6079
6080 nid = r->nid;
6081
6082 usable_startpfn = memblock_region_memory_base_pfn(r);
6083
6084 if (usable_startpfn < 0x100000) {
6085 mem_below_4gb_not_mirrored = true;
6086 continue;
6087 }
6088
6089 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6090 min(usable_startpfn, zone_movable_pfn[nid]) :
6091 usable_startpfn;
6092 }
6093
6094 if (mem_below_4gb_not_mirrored)
6095 pr_warn("This configuration results in unmirrored kernel memory.");
6096
6097 goto out2;
6098 }
6099
7e63efef 6100 /*
b2f3eebe 6101 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6102 * kernelcore that corresponds so that memory usable for
6103 * any allocation type is evenly spread. If both kernelcore
6104 * and movablecore are specified, then the value of kernelcore
6105 * will be used for required_kernelcore if it's greater than
6106 * what movablecore would have allowed.
6107 */
6108 if (required_movablecore) {
7e63efef
MG
6109 unsigned long corepages;
6110
6111 /*
6112 * Round-up so that ZONE_MOVABLE is at least as large as what
6113 * was requested by the user
6114 */
6115 required_movablecore =
6116 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6117 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6118 corepages = totalpages - required_movablecore;
6119
6120 required_kernelcore = max(required_kernelcore, corepages);
6121 }
6122
bde304bd
XQ
6123 /*
6124 * If kernelcore was not specified or kernelcore size is larger
6125 * than totalpages, there is no ZONE_MOVABLE.
6126 */
6127 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6128 goto out;
2a1e274a
MG
6129
6130 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6131 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6132
6133restart:
6134 /* Spread kernelcore memory as evenly as possible throughout nodes */
6135 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6136 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6137 unsigned long start_pfn, end_pfn;
6138
2a1e274a
MG
6139 /*
6140 * Recalculate kernelcore_node if the division per node
6141 * now exceeds what is necessary to satisfy the requested
6142 * amount of memory for the kernel
6143 */
6144 if (required_kernelcore < kernelcore_node)
6145 kernelcore_node = required_kernelcore / usable_nodes;
6146
6147 /*
6148 * As the map is walked, we track how much memory is usable
6149 * by the kernel using kernelcore_remaining. When it is
6150 * 0, the rest of the node is usable by ZONE_MOVABLE
6151 */
6152 kernelcore_remaining = kernelcore_node;
6153
6154 /* Go through each range of PFNs within this node */
c13291a5 6155 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6156 unsigned long size_pages;
6157
c13291a5 6158 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6159 if (start_pfn >= end_pfn)
6160 continue;
6161
6162 /* Account for what is only usable for kernelcore */
6163 if (start_pfn < usable_startpfn) {
6164 unsigned long kernel_pages;
6165 kernel_pages = min(end_pfn, usable_startpfn)
6166 - start_pfn;
6167
6168 kernelcore_remaining -= min(kernel_pages,
6169 kernelcore_remaining);
6170 required_kernelcore -= min(kernel_pages,
6171 required_kernelcore);
6172
6173 /* Continue if range is now fully accounted */
6174 if (end_pfn <= usable_startpfn) {
6175
6176 /*
6177 * Push zone_movable_pfn to the end so
6178 * that if we have to rebalance
6179 * kernelcore across nodes, we will
6180 * not double account here
6181 */
6182 zone_movable_pfn[nid] = end_pfn;
6183 continue;
6184 }
6185 start_pfn = usable_startpfn;
6186 }
6187
6188 /*
6189 * The usable PFN range for ZONE_MOVABLE is from
6190 * start_pfn->end_pfn. Calculate size_pages as the
6191 * number of pages used as kernelcore
6192 */
6193 size_pages = end_pfn - start_pfn;
6194 if (size_pages > kernelcore_remaining)
6195 size_pages = kernelcore_remaining;
6196 zone_movable_pfn[nid] = start_pfn + size_pages;
6197
6198 /*
6199 * Some kernelcore has been met, update counts and
6200 * break if the kernelcore for this node has been
b8af2941 6201 * satisfied
2a1e274a
MG
6202 */
6203 required_kernelcore -= min(required_kernelcore,
6204 size_pages);
6205 kernelcore_remaining -= size_pages;
6206 if (!kernelcore_remaining)
6207 break;
6208 }
6209 }
6210
6211 /*
6212 * If there is still required_kernelcore, we do another pass with one
6213 * less node in the count. This will push zone_movable_pfn[nid] further
6214 * along on the nodes that still have memory until kernelcore is
b8af2941 6215 * satisfied
2a1e274a
MG
6216 */
6217 usable_nodes--;
6218 if (usable_nodes && required_kernelcore > usable_nodes)
6219 goto restart;
6220
b2f3eebe 6221out2:
2a1e274a
MG
6222 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6223 for (nid = 0; nid < MAX_NUMNODES; nid++)
6224 zone_movable_pfn[nid] =
6225 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6226
20e6926d 6227out:
66918dcd 6228 /* restore the node_state */
4b0ef1fe 6229 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6230}
6231
4b0ef1fe
LJ
6232/* Any regular or high memory on that node ? */
6233static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6234{
37b07e41
LS
6235 enum zone_type zone_type;
6236
4b0ef1fe
LJ
6237 if (N_MEMORY == N_NORMAL_MEMORY)
6238 return;
6239
6240 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6241 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6242 if (populated_zone(zone)) {
4b0ef1fe
LJ
6243 node_set_state(nid, N_HIGH_MEMORY);
6244 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6245 zone_type <= ZONE_NORMAL)
6246 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6247 break;
6248 }
37b07e41 6249 }
37b07e41
LS
6250}
6251
c713216d
MG
6252/**
6253 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6254 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6255 *
6256 * This will call free_area_init_node() for each active node in the system.
7d018176 6257 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6258 * zone in each node and their holes is calculated. If the maximum PFN
6259 * between two adjacent zones match, it is assumed that the zone is empty.
6260 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6261 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6262 * starts where the previous one ended. For example, ZONE_DMA32 starts
6263 * at arch_max_dma_pfn.
6264 */
6265void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6266{
c13291a5
TH
6267 unsigned long start_pfn, end_pfn;
6268 int i, nid;
a6af2bc3 6269
c713216d
MG
6270 /* Record where the zone boundaries are */
6271 memset(arch_zone_lowest_possible_pfn, 0,
6272 sizeof(arch_zone_lowest_possible_pfn));
6273 memset(arch_zone_highest_possible_pfn, 0,
6274 sizeof(arch_zone_highest_possible_pfn));
6275 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6276 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6277 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6278 if (i == ZONE_MOVABLE)
6279 continue;
c713216d
MG
6280 arch_zone_lowest_possible_pfn[i] =
6281 arch_zone_highest_possible_pfn[i-1];
6282 arch_zone_highest_possible_pfn[i] =
6283 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6284 }
2a1e274a
MG
6285 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6286 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6287
6288 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6289 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6290 find_zone_movable_pfns_for_nodes();
c713216d 6291
c713216d 6292 /* Print out the zone ranges */
f88dfff5 6293 pr_info("Zone ranges:\n");
2a1e274a
MG
6294 for (i = 0; i < MAX_NR_ZONES; i++) {
6295 if (i == ZONE_MOVABLE)
6296 continue;
f88dfff5 6297 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6298 if (arch_zone_lowest_possible_pfn[i] ==
6299 arch_zone_highest_possible_pfn[i])
f88dfff5 6300 pr_cont("empty\n");
72f0ba02 6301 else
8d29e18a
JG
6302 pr_cont("[mem %#018Lx-%#018Lx]\n",
6303 (u64)arch_zone_lowest_possible_pfn[i]
6304 << PAGE_SHIFT,
6305 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6306 << PAGE_SHIFT) - 1);
2a1e274a
MG
6307 }
6308
6309 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6310 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6311 for (i = 0; i < MAX_NUMNODES; i++) {
6312 if (zone_movable_pfn[i])
8d29e18a
JG
6313 pr_info(" Node %d: %#018Lx\n", i,
6314 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6315 }
c713216d 6316
f2d52fe5 6317 /* Print out the early node map */
f88dfff5 6318 pr_info("Early memory node ranges\n");
c13291a5 6319 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6320 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6321 (u64)start_pfn << PAGE_SHIFT,
6322 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6323
6324 /* Initialise every node */
708614e6 6325 mminit_verify_pageflags_layout();
8ef82866 6326 setup_nr_node_ids();
c713216d
MG
6327 for_each_online_node(nid) {
6328 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6329 free_area_init_node(nid, NULL,
c713216d 6330 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6331
6332 /* Any memory on that node */
6333 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6334 node_set_state(nid, N_MEMORY);
6335 check_for_memory(pgdat, nid);
c713216d
MG
6336 }
6337}
2a1e274a 6338
7e63efef 6339static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6340{
6341 unsigned long long coremem;
6342 if (!p)
6343 return -EINVAL;
6344
6345 coremem = memparse(p, &p);
7e63efef 6346 *core = coremem >> PAGE_SHIFT;
2a1e274a 6347
7e63efef 6348 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6349 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6350
6351 return 0;
6352}
ed7ed365 6353
7e63efef
MG
6354/*
6355 * kernelcore=size sets the amount of memory for use for allocations that
6356 * cannot be reclaimed or migrated.
6357 */
6358static int __init cmdline_parse_kernelcore(char *p)
6359{
342332e6
TI
6360 /* parse kernelcore=mirror */
6361 if (parse_option_str(p, "mirror")) {
6362 mirrored_kernelcore = true;
6363 return 0;
6364 }
6365
7e63efef
MG
6366 return cmdline_parse_core(p, &required_kernelcore);
6367}
6368
6369/*
6370 * movablecore=size sets the amount of memory for use for allocations that
6371 * can be reclaimed or migrated.
6372 */
6373static int __init cmdline_parse_movablecore(char *p)
6374{
6375 return cmdline_parse_core(p, &required_movablecore);
6376}
6377
ed7ed365 6378early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6379early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6380
0ee332c1 6381#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6382
c3d5f5f0
JL
6383void adjust_managed_page_count(struct page *page, long count)
6384{
6385 spin_lock(&managed_page_count_lock);
6386 page_zone(page)->managed_pages += count;
6387 totalram_pages += count;
3dcc0571
JL
6388#ifdef CONFIG_HIGHMEM
6389 if (PageHighMem(page))
6390 totalhigh_pages += count;
6391#endif
c3d5f5f0
JL
6392 spin_unlock(&managed_page_count_lock);
6393}
3dcc0571 6394EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6395
11199692 6396unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6397{
11199692
JL
6398 void *pos;
6399 unsigned long pages = 0;
69afade7 6400
11199692
JL
6401 start = (void *)PAGE_ALIGN((unsigned long)start);
6402 end = (void *)((unsigned long)end & PAGE_MASK);
6403 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6404 if ((unsigned int)poison <= 0xFF)
11199692
JL
6405 memset(pos, poison, PAGE_SIZE);
6406 free_reserved_page(virt_to_page(pos));
69afade7
JL
6407 }
6408
6409 if (pages && s)
11199692 6410 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6411 s, pages << (PAGE_SHIFT - 10), start, end);
6412
6413 return pages;
6414}
11199692 6415EXPORT_SYMBOL(free_reserved_area);
69afade7 6416
cfa11e08
JL
6417#ifdef CONFIG_HIGHMEM
6418void free_highmem_page(struct page *page)
6419{
6420 __free_reserved_page(page);
6421 totalram_pages++;
7b4b2a0d 6422 page_zone(page)->managed_pages++;
cfa11e08
JL
6423 totalhigh_pages++;
6424}
6425#endif
6426
7ee3d4e8
JL
6427
6428void __init mem_init_print_info(const char *str)
6429{
6430 unsigned long physpages, codesize, datasize, rosize, bss_size;
6431 unsigned long init_code_size, init_data_size;
6432
6433 physpages = get_num_physpages();
6434 codesize = _etext - _stext;
6435 datasize = _edata - _sdata;
6436 rosize = __end_rodata - __start_rodata;
6437 bss_size = __bss_stop - __bss_start;
6438 init_data_size = __init_end - __init_begin;
6439 init_code_size = _einittext - _sinittext;
6440
6441 /*
6442 * Detect special cases and adjust section sizes accordingly:
6443 * 1) .init.* may be embedded into .data sections
6444 * 2) .init.text.* may be out of [__init_begin, __init_end],
6445 * please refer to arch/tile/kernel/vmlinux.lds.S.
6446 * 3) .rodata.* may be embedded into .text or .data sections.
6447 */
6448#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6449 do { \
6450 if (start <= pos && pos < end && size > adj) \
6451 size -= adj; \
6452 } while (0)
7ee3d4e8
JL
6453
6454 adj_init_size(__init_begin, __init_end, init_data_size,
6455 _sinittext, init_code_size);
6456 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6457 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6458 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6459 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6460
6461#undef adj_init_size
6462
756a025f 6463 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6464#ifdef CONFIG_HIGHMEM
756a025f 6465 ", %luK highmem"
7ee3d4e8 6466#endif
756a025f
JP
6467 "%s%s)\n",
6468 nr_free_pages() << (PAGE_SHIFT - 10),
6469 physpages << (PAGE_SHIFT - 10),
6470 codesize >> 10, datasize >> 10, rosize >> 10,
6471 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6472 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6473 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6474#ifdef CONFIG_HIGHMEM
756a025f 6475 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6476#endif
756a025f 6477 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6478}
6479
0e0b864e 6480/**
88ca3b94
RD
6481 * set_dma_reserve - set the specified number of pages reserved in the first zone
6482 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6483 *
013110a7 6484 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6485 * In the DMA zone, a significant percentage may be consumed by kernel image
6486 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6487 * function may optionally be used to account for unfreeable pages in the
6488 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6489 * smaller per-cpu batchsize.
0e0b864e
MG
6490 */
6491void __init set_dma_reserve(unsigned long new_dma_reserve)
6492{
6493 dma_reserve = new_dma_reserve;
6494}
6495
1da177e4
LT
6496void __init free_area_init(unsigned long *zones_size)
6497{
9109fb7b 6498 free_area_init_node(0, zones_size,
1da177e4
LT
6499 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6500}
1da177e4 6501
1da177e4
LT
6502static int page_alloc_cpu_notify(struct notifier_block *self,
6503 unsigned long action, void *hcpu)
6504{
6505 int cpu = (unsigned long)hcpu;
1da177e4 6506
8bb78442 6507 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6508 lru_add_drain_cpu(cpu);
9f8f2172
CL
6509 drain_pages(cpu);
6510
6511 /*
6512 * Spill the event counters of the dead processor
6513 * into the current processors event counters.
6514 * This artificially elevates the count of the current
6515 * processor.
6516 */
f8891e5e 6517 vm_events_fold_cpu(cpu);
9f8f2172
CL
6518
6519 /*
6520 * Zero the differential counters of the dead processor
6521 * so that the vm statistics are consistent.
6522 *
6523 * This is only okay since the processor is dead and cannot
6524 * race with what we are doing.
6525 */
2bb921e5 6526 cpu_vm_stats_fold(cpu);
1da177e4
LT
6527 }
6528 return NOTIFY_OK;
6529}
1da177e4
LT
6530
6531void __init page_alloc_init(void)
6532{
6533 hotcpu_notifier(page_alloc_cpu_notify, 0);
6534}
6535
cb45b0e9 6536/*
34b10060 6537 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6538 * or min_free_kbytes changes.
6539 */
6540static void calculate_totalreserve_pages(void)
6541{
6542 struct pglist_data *pgdat;
6543 unsigned long reserve_pages = 0;
2f6726e5 6544 enum zone_type i, j;
cb45b0e9
HA
6545
6546 for_each_online_pgdat(pgdat) {
6547 for (i = 0; i < MAX_NR_ZONES; i++) {
6548 struct zone *zone = pgdat->node_zones + i;
3484b2de 6549 long max = 0;
cb45b0e9
HA
6550
6551 /* Find valid and maximum lowmem_reserve in the zone */
6552 for (j = i; j < MAX_NR_ZONES; j++) {
6553 if (zone->lowmem_reserve[j] > max)
6554 max = zone->lowmem_reserve[j];
6555 }
6556
41858966
MG
6557 /* we treat the high watermark as reserved pages. */
6558 max += high_wmark_pages(zone);
cb45b0e9 6559
b40da049
JL
6560 if (max > zone->managed_pages)
6561 max = zone->managed_pages;
a8d01437
JW
6562
6563 zone->totalreserve_pages = max;
6564
cb45b0e9
HA
6565 reserve_pages += max;
6566 }
6567 }
6568 totalreserve_pages = reserve_pages;
6569}
6570
1da177e4
LT
6571/*
6572 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6573 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6574 * has a correct pages reserved value, so an adequate number of
6575 * pages are left in the zone after a successful __alloc_pages().
6576 */
6577static void setup_per_zone_lowmem_reserve(void)
6578{
6579 struct pglist_data *pgdat;
2f6726e5 6580 enum zone_type j, idx;
1da177e4 6581
ec936fc5 6582 for_each_online_pgdat(pgdat) {
1da177e4
LT
6583 for (j = 0; j < MAX_NR_ZONES; j++) {
6584 struct zone *zone = pgdat->node_zones + j;
b40da049 6585 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6586
6587 zone->lowmem_reserve[j] = 0;
6588
2f6726e5
CL
6589 idx = j;
6590 while (idx) {
1da177e4
LT
6591 struct zone *lower_zone;
6592
2f6726e5
CL
6593 idx--;
6594
1da177e4
LT
6595 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6596 sysctl_lowmem_reserve_ratio[idx] = 1;
6597
6598 lower_zone = pgdat->node_zones + idx;
b40da049 6599 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6600 sysctl_lowmem_reserve_ratio[idx];
b40da049 6601 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6602 }
6603 }
6604 }
cb45b0e9
HA
6605
6606 /* update totalreserve_pages */
6607 calculate_totalreserve_pages();
1da177e4
LT
6608}
6609
cfd3da1e 6610static void __setup_per_zone_wmarks(void)
1da177e4
LT
6611{
6612 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6613 unsigned long lowmem_pages = 0;
6614 struct zone *zone;
6615 unsigned long flags;
6616
6617 /* Calculate total number of !ZONE_HIGHMEM pages */
6618 for_each_zone(zone) {
6619 if (!is_highmem(zone))
b40da049 6620 lowmem_pages += zone->managed_pages;
1da177e4
LT
6621 }
6622
6623 for_each_zone(zone) {
ac924c60
AM
6624 u64 tmp;
6625
1125b4e3 6626 spin_lock_irqsave(&zone->lock, flags);
b40da049 6627 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6628 do_div(tmp, lowmem_pages);
1da177e4
LT
6629 if (is_highmem(zone)) {
6630 /*
669ed175
NP
6631 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6632 * need highmem pages, so cap pages_min to a small
6633 * value here.
6634 *
41858966 6635 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6636 * deltas control asynch page reclaim, and so should
669ed175 6637 * not be capped for highmem.
1da177e4 6638 */
90ae8d67 6639 unsigned long min_pages;
1da177e4 6640
b40da049 6641 min_pages = zone->managed_pages / 1024;
90ae8d67 6642 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6643 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6644 } else {
669ed175
NP
6645 /*
6646 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6647 * proportionate to the zone's size.
6648 */
41858966 6649 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6650 }
6651
795ae7a0
JW
6652 /*
6653 * Set the kswapd watermarks distance according to the
6654 * scale factor in proportion to available memory, but
6655 * ensure a minimum size on small systems.
6656 */
6657 tmp = max_t(u64, tmp >> 2,
6658 mult_frac(zone->managed_pages,
6659 watermark_scale_factor, 10000));
6660
6661 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6662 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6663
81c0a2bb 6664 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6665 high_wmark_pages(zone) - low_wmark_pages(zone) -
6666 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6667
1125b4e3 6668 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6669 }
cb45b0e9
HA
6670
6671 /* update totalreserve_pages */
6672 calculate_totalreserve_pages();
1da177e4
LT
6673}
6674
cfd3da1e
MG
6675/**
6676 * setup_per_zone_wmarks - called when min_free_kbytes changes
6677 * or when memory is hot-{added|removed}
6678 *
6679 * Ensures that the watermark[min,low,high] values for each zone are set
6680 * correctly with respect to min_free_kbytes.
6681 */
6682void setup_per_zone_wmarks(void)
6683{
6684 mutex_lock(&zonelists_mutex);
6685 __setup_per_zone_wmarks();
6686 mutex_unlock(&zonelists_mutex);
6687}
6688
55a4462a 6689/*
556adecb
RR
6690 * The inactive anon list should be small enough that the VM never has to
6691 * do too much work, but large enough that each inactive page has a chance
6692 * to be referenced again before it is swapped out.
6693 *
6694 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6695 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6696 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6697 * the anonymous pages are kept on the inactive list.
6698 *
6699 * total target max
6700 * memory ratio inactive anon
6701 * -------------------------------------
6702 * 10MB 1 5MB
6703 * 100MB 1 50MB
6704 * 1GB 3 250MB
6705 * 10GB 10 0.9GB
6706 * 100GB 31 3GB
6707 * 1TB 101 10GB
6708 * 10TB 320 32GB
6709 */
1b79acc9 6710static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6711{
96cb4df5 6712 unsigned int gb, ratio;
556adecb 6713
96cb4df5 6714 /* Zone size in gigabytes */
b40da049 6715 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6716 if (gb)
556adecb 6717 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6718 else
6719 ratio = 1;
556adecb 6720
96cb4df5
MK
6721 zone->inactive_ratio = ratio;
6722}
556adecb 6723
839a4fcc 6724static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6725{
6726 struct zone *zone;
6727
6728 for_each_zone(zone)
6729 calculate_zone_inactive_ratio(zone);
556adecb
RR
6730}
6731
1da177e4
LT
6732/*
6733 * Initialise min_free_kbytes.
6734 *
6735 * For small machines we want it small (128k min). For large machines
6736 * we want it large (64MB max). But it is not linear, because network
6737 * bandwidth does not increase linearly with machine size. We use
6738 *
b8af2941 6739 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6740 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6741 *
6742 * which yields
6743 *
6744 * 16MB: 512k
6745 * 32MB: 724k
6746 * 64MB: 1024k
6747 * 128MB: 1448k
6748 * 256MB: 2048k
6749 * 512MB: 2896k
6750 * 1024MB: 4096k
6751 * 2048MB: 5792k
6752 * 4096MB: 8192k
6753 * 8192MB: 11584k
6754 * 16384MB: 16384k
6755 */
1b79acc9 6756int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6757{
6758 unsigned long lowmem_kbytes;
5f12733e 6759 int new_min_free_kbytes;
1da177e4
LT
6760
6761 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6762 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6763
6764 if (new_min_free_kbytes > user_min_free_kbytes) {
6765 min_free_kbytes = new_min_free_kbytes;
6766 if (min_free_kbytes < 128)
6767 min_free_kbytes = 128;
6768 if (min_free_kbytes > 65536)
6769 min_free_kbytes = 65536;
6770 } else {
6771 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6772 new_min_free_kbytes, user_min_free_kbytes);
6773 }
bc75d33f 6774 setup_per_zone_wmarks();
a6cccdc3 6775 refresh_zone_stat_thresholds();
1da177e4 6776 setup_per_zone_lowmem_reserve();
556adecb 6777 setup_per_zone_inactive_ratio();
1da177e4
LT
6778 return 0;
6779}
bc22af74 6780core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6781
6782/*
b8af2941 6783 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6784 * that we can call two helper functions whenever min_free_kbytes
6785 * changes.
6786 */
cccad5b9 6787int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6788 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6789{
da8c757b
HP
6790 int rc;
6791
6792 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6793 if (rc)
6794 return rc;
6795
5f12733e
MH
6796 if (write) {
6797 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6798 setup_per_zone_wmarks();
5f12733e 6799 }
1da177e4
LT
6800 return 0;
6801}
6802
795ae7a0
JW
6803int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6804 void __user *buffer, size_t *length, loff_t *ppos)
6805{
6806 int rc;
6807
6808 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6809 if (rc)
6810 return rc;
6811
6812 if (write)
6813 setup_per_zone_wmarks();
6814
6815 return 0;
6816}
6817
9614634f 6818#ifdef CONFIG_NUMA
cccad5b9 6819int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6820 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6821{
6822 struct zone *zone;
6823 int rc;
6824
8d65af78 6825 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6826 if (rc)
6827 return rc;
6828
6829 for_each_zone(zone)
b40da049 6830 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6831 sysctl_min_unmapped_ratio) / 100;
6832 return 0;
6833}
0ff38490 6834
cccad5b9 6835int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6836 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6837{
6838 struct zone *zone;
6839 int rc;
6840
8d65af78 6841 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6842 if (rc)
6843 return rc;
6844
6845 for_each_zone(zone)
b40da049 6846 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6847 sysctl_min_slab_ratio) / 100;
6848 return 0;
6849}
9614634f
CL
6850#endif
6851
1da177e4
LT
6852/*
6853 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6854 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6855 * whenever sysctl_lowmem_reserve_ratio changes.
6856 *
6857 * The reserve ratio obviously has absolutely no relation with the
41858966 6858 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6859 * if in function of the boot time zone sizes.
6860 */
cccad5b9 6861int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6862 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6863{
8d65af78 6864 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6865 setup_per_zone_lowmem_reserve();
6866 return 0;
6867}
6868
8ad4b1fb
RS
6869/*
6870 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6871 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6872 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6873 */
cccad5b9 6874int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6875 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6876{
6877 struct zone *zone;
7cd2b0a3 6878 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6879 int ret;
6880
7cd2b0a3
DR
6881 mutex_lock(&pcp_batch_high_lock);
6882 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6883
8d65af78 6884 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6885 if (!write || ret < 0)
6886 goto out;
6887
6888 /* Sanity checking to avoid pcp imbalance */
6889 if (percpu_pagelist_fraction &&
6890 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6891 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6892 ret = -EINVAL;
6893 goto out;
6894 }
6895
6896 /* No change? */
6897 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6898 goto out;
c8e251fa 6899
364df0eb 6900 for_each_populated_zone(zone) {
7cd2b0a3
DR
6901 unsigned int cpu;
6902
22a7f12b 6903 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6904 pageset_set_high_and_batch(zone,
6905 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6906 }
7cd2b0a3 6907out:
c8e251fa 6908 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6909 return ret;
8ad4b1fb
RS
6910}
6911
a9919c79 6912#ifdef CONFIG_NUMA
f034b5d4 6913int hashdist = HASHDIST_DEFAULT;
1da177e4 6914
1da177e4
LT
6915static int __init set_hashdist(char *str)
6916{
6917 if (!str)
6918 return 0;
6919 hashdist = simple_strtoul(str, &str, 0);
6920 return 1;
6921}
6922__setup("hashdist=", set_hashdist);
6923#endif
6924
6925/*
6926 * allocate a large system hash table from bootmem
6927 * - it is assumed that the hash table must contain an exact power-of-2
6928 * quantity of entries
6929 * - limit is the number of hash buckets, not the total allocation size
6930 */
6931void *__init alloc_large_system_hash(const char *tablename,
6932 unsigned long bucketsize,
6933 unsigned long numentries,
6934 int scale,
6935 int flags,
6936 unsigned int *_hash_shift,
6937 unsigned int *_hash_mask,
31fe62b9
TB
6938 unsigned long low_limit,
6939 unsigned long high_limit)
1da177e4 6940{
31fe62b9 6941 unsigned long long max = high_limit;
1da177e4
LT
6942 unsigned long log2qty, size;
6943 void *table = NULL;
6944
6945 /* allow the kernel cmdline to have a say */
6946 if (!numentries) {
6947 /* round applicable memory size up to nearest megabyte */
04903664 6948 numentries = nr_kernel_pages;
a7e83318
JZ
6949
6950 /* It isn't necessary when PAGE_SIZE >= 1MB */
6951 if (PAGE_SHIFT < 20)
6952 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6953
6954 /* limit to 1 bucket per 2^scale bytes of low memory */
6955 if (scale > PAGE_SHIFT)
6956 numentries >>= (scale - PAGE_SHIFT);
6957 else
6958 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6959
6960 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6961 if (unlikely(flags & HASH_SMALL)) {
6962 /* Makes no sense without HASH_EARLY */
6963 WARN_ON(!(flags & HASH_EARLY));
6964 if (!(numentries >> *_hash_shift)) {
6965 numentries = 1UL << *_hash_shift;
6966 BUG_ON(!numentries);
6967 }
6968 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6969 numentries = PAGE_SIZE / bucketsize;
1da177e4 6970 }
6e692ed3 6971 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6972
6973 /* limit allocation size to 1/16 total memory by default */
6974 if (max == 0) {
6975 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6976 do_div(max, bucketsize);
6977 }
074b8517 6978 max = min(max, 0x80000000ULL);
1da177e4 6979
31fe62b9
TB
6980 if (numentries < low_limit)
6981 numentries = low_limit;
1da177e4
LT
6982 if (numentries > max)
6983 numentries = max;
6984
f0d1b0b3 6985 log2qty = ilog2(numentries);
1da177e4
LT
6986
6987 do {
6988 size = bucketsize << log2qty;
6989 if (flags & HASH_EARLY)
6782832e 6990 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6991 else if (hashdist)
6992 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6993 else {
1037b83b
ED
6994 /*
6995 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6996 * some pages at the end of hash table which
6997 * alloc_pages_exact() automatically does
1037b83b 6998 */
264ef8a9 6999 if (get_order(size) < MAX_ORDER) {
a1dd268c 7000 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7001 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7002 }
1da177e4
LT
7003 }
7004 } while (!table && size > PAGE_SIZE && --log2qty);
7005
7006 if (!table)
7007 panic("Failed to allocate %s hash table\n", tablename);
7008
1170532b
JP
7009 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7010 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7011
7012 if (_hash_shift)
7013 *_hash_shift = log2qty;
7014 if (_hash_mask)
7015 *_hash_mask = (1 << log2qty) - 1;
7016
7017 return table;
7018}
a117e66e 7019
a5d76b54 7020/*
80934513
MK
7021 * This function checks whether pageblock includes unmovable pages or not.
7022 * If @count is not zero, it is okay to include less @count unmovable pages
7023 *
b8af2941 7024 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7025 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7026 * expect this function should be exact.
a5d76b54 7027 */
b023f468
WC
7028bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7029 bool skip_hwpoisoned_pages)
49ac8255
KH
7030{
7031 unsigned long pfn, iter, found;
47118af0
MN
7032 int mt;
7033
49ac8255
KH
7034 /*
7035 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7036 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7037 */
7038 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7039 return false;
47118af0
MN
7040 mt = get_pageblock_migratetype(page);
7041 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7042 return false;
49ac8255
KH
7043
7044 pfn = page_to_pfn(page);
7045 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7046 unsigned long check = pfn + iter;
7047
29723fcc 7048 if (!pfn_valid_within(check))
49ac8255 7049 continue;
29723fcc 7050
49ac8255 7051 page = pfn_to_page(check);
c8721bbb
NH
7052
7053 /*
7054 * Hugepages are not in LRU lists, but they're movable.
7055 * We need not scan over tail pages bacause we don't
7056 * handle each tail page individually in migration.
7057 */
7058 if (PageHuge(page)) {
7059 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7060 continue;
7061 }
7062
97d255c8
MK
7063 /*
7064 * We can't use page_count without pin a page
7065 * because another CPU can free compound page.
7066 * This check already skips compound tails of THP
0139aa7b 7067 * because their page->_refcount is zero at all time.
97d255c8 7068 */
fe896d18 7069 if (!page_ref_count(page)) {
49ac8255
KH
7070 if (PageBuddy(page))
7071 iter += (1 << page_order(page)) - 1;
7072 continue;
7073 }
97d255c8 7074
b023f468
WC
7075 /*
7076 * The HWPoisoned page may be not in buddy system, and
7077 * page_count() is not 0.
7078 */
7079 if (skip_hwpoisoned_pages && PageHWPoison(page))
7080 continue;
7081
49ac8255
KH
7082 if (!PageLRU(page))
7083 found++;
7084 /*
6b4f7799
JW
7085 * If there are RECLAIMABLE pages, we need to check
7086 * it. But now, memory offline itself doesn't call
7087 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7088 */
7089 /*
7090 * If the page is not RAM, page_count()should be 0.
7091 * we don't need more check. This is an _used_ not-movable page.
7092 *
7093 * The problematic thing here is PG_reserved pages. PG_reserved
7094 * is set to both of a memory hole page and a _used_ kernel
7095 * page at boot.
7096 */
7097 if (found > count)
80934513 7098 return true;
49ac8255 7099 }
80934513 7100 return false;
49ac8255
KH
7101}
7102
7103bool is_pageblock_removable_nolock(struct page *page)
7104{
656a0706
MH
7105 struct zone *zone;
7106 unsigned long pfn;
687875fb
MH
7107
7108 /*
7109 * We have to be careful here because we are iterating over memory
7110 * sections which are not zone aware so we might end up outside of
7111 * the zone but still within the section.
656a0706
MH
7112 * We have to take care about the node as well. If the node is offline
7113 * its NODE_DATA will be NULL - see page_zone.
687875fb 7114 */
656a0706
MH
7115 if (!node_online(page_to_nid(page)))
7116 return false;
7117
7118 zone = page_zone(page);
7119 pfn = page_to_pfn(page);
108bcc96 7120 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7121 return false;
7122
b023f468 7123 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7124}
0c0e6195 7125
080fe206 7126#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7127
7128static unsigned long pfn_max_align_down(unsigned long pfn)
7129{
7130 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7131 pageblock_nr_pages) - 1);
7132}
7133
7134static unsigned long pfn_max_align_up(unsigned long pfn)
7135{
7136 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7137 pageblock_nr_pages));
7138}
7139
041d3a8c 7140/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7141static int __alloc_contig_migrate_range(struct compact_control *cc,
7142 unsigned long start, unsigned long end)
041d3a8c
MN
7143{
7144 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7145 unsigned long nr_reclaimed;
041d3a8c
MN
7146 unsigned long pfn = start;
7147 unsigned int tries = 0;
7148 int ret = 0;
7149
be49a6e1 7150 migrate_prep();
041d3a8c 7151
bb13ffeb 7152 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7153 if (fatal_signal_pending(current)) {
7154 ret = -EINTR;
7155 break;
7156 }
7157
bb13ffeb
MG
7158 if (list_empty(&cc->migratepages)) {
7159 cc->nr_migratepages = 0;
edc2ca61 7160 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7161 if (!pfn) {
7162 ret = -EINTR;
7163 break;
7164 }
7165 tries = 0;
7166 } else if (++tries == 5) {
7167 ret = ret < 0 ? ret : -EBUSY;
7168 break;
7169 }
7170
beb51eaa
MK
7171 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7172 &cc->migratepages);
7173 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7174
9c620e2b 7175 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7176 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7177 }
2a6f5124
SP
7178 if (ret < 0) {
7179 putback_movable_pages(&cc->migratepages);
7180 return ret;
7181 }
7182 return 0;
041d3a8c
MN
7183}
7184
7185/**
7186 * alloc_contig_range() -- tries to allocate given range of pages
7187 * @start: start PFN to allocate
7188 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7189 * @migratetype: migratetype of the underlaying pageblocks (either
7190 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7191 * in range must have the same migratetype and it must
7192 * be either of the two.
041d3a8c
MN
7193 *
7194 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7195 * aligned, however it's the caller's responsibility to guarantee that
7196 * we are the only thread that changes migrate type of pageblocks the
7197 * pages fall in.
7198 *
7199 * The PFN range must belong to a single zone.
7200 *
7201 * Returns zero on success or negative error code. On success all
7202 * pages which PFN is in [start, end) are allocated for the caller and
7203 * need to be freed with free_contig_range().
7204 */
0815f3d8
MN
7205int alloc_contig_range(unsigned long start, unsigned long end,
7206 unsigned migratetype)
041d3a8c 7207{
041d3a8c 7208 unsigned long outer_start, outer_end;
d00181b9
KS
7209 unsigned int order;
7210 int ret = 0;
041d3a8c 7211
bb13ffeb
MG
7212 struct compact_control cc = {
7213 .nr_migratepages = 0,
7214 .order = -1,
7215 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7216 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7217 .ignore_skip_hint = true,
7218 };
7219 INIT_LIST_HEAD(&cc.migratepages);
7220
041d3a8c
MN
7221 /*
7222 * What we do here is we mark all pageblocks in range as
7223 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7224 * have different sizes, and due to the way page allocator
7225 * work, we align the range to biggest of the two pages so
7226 * that page allocator won't try to merge buddies from
7227 * different pageblocks and change MIGRATE_ISOLATE to some
7228 * other migration type.
7229 *
7230 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7231 * migrate the pages from an unaligned range (ie. pages that
7232 * we are interested in). This will put all the pages in
7233 * range back to page allocator as MIGRATE_ISOLATE.
7234 *
7235 * When this is done, we take the pages in range from page
7236 * allocator removing them from the buddy system. This way
7237 * page allocator will never consider using them.
7238 *
7239 * This lets us mark the pageblocks back as
7240 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7241 * aligned range but not in the unaligned, original range are
7242 * put back to page allocator so that buddy can use them.
7243 */
7244
7245 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7246 pfn_max_align_up(end), migratetype,
7247 false);
041d3a8c 7248 if (ret)
86a595f9 7249 return ret;
041d3a8c 7250
8ef5849f
JK
7251 /*
7252 * In case of -EBUSY, we'd like to know which page causes problem.
7253 * So, just fall through. We will check it in test_pages_isolated().
7254 */
bb13ffeb 7255 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7256 if (ret && ret != -EBUSY)
041d3a8c
MN
7257 goto done;
7258
7259 /*
7260 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7261 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7262 * more, all pages in [start, end) are free in page allocator.
7263 * What we are going to do is to allocate all pages from
7264 * [start, end) (that is remove them from page allocator).
7265 *
7266 * The only problem is that pages at the beginning and at the
7267 * end of interesting range may be not aligned with pages that
7268 * page allocator holds, ie. they can be part of higher order
7269 * pages. Because of this, we reserve the bigger range and
7270 * once this is done free the pages we are not interested in.
7271 *
7272 * We don't have to hold zone->lock here because the pages are
7273 * isolated thus they won't get removed from buddy.
7274 */
7275
7276 lru_add_drain_all();
510f5507 7277 drain_all_pages(cc.zone);
041d3a8c
MN
7278
7279 order = 0;
7280 outer_start = start;
7281 while (!PageBuddy(pfn_to_page(outer_start))) {
7282 if (++order >= MAX_ORDER) {
8ef5849f
JK
7283 outer_start = start;
7284 break;
041d3a8c
MN
7285 }
7286 outer_start &= ~0UL << order;
7287 }
7288
8ef5849f
JK
7289 if (outer_start != start) {
7290 order = page_order(pfn_to_page(outer_start));
7291
7292 /*
7293 * outer_start page could be small order buddy page and
7294 * it doesn't include start page. Adjust outer_start
7295 * in this case to report failed page properly
7296 * on tracepoint in test_pages_isolated()
7297 */
7298 if (outer_start + (1UL << order) <= start)
7299 outer_start = start;
7300 }
7301
041d3a8c 7302 /* Make sure the range is really isolated. */
b023f468 7303 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7304 pr_info("%s: [%lx, %lx) PFNs busy\n",
7305 __func__, outer_start, end);
041d3a8c
MN
7306 ret = -EBUSY;
7307 goto done;
7308 }
7309
49f223a9 7310 /* Grab isolated pages from freelists. */
bb13ffeb 7311 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7312 if (!outer_end) {
7313 ret = -EBUSY;
7314 goto done;
7315 }
7316
7317 /* Free head and tail (if any) */
7318 if (start != outer_start)
7319 free_contig_range(outer_start, start - outer_start);
7320 if (end != outer_end)
7321 free_contig_range(end, outer_end - end);
7322
7323done:
7324 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7325 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7326 return ret;
7327}
7328
7329void free_contig_range(unsigned long pfn, unsigned nr_pages)
7330{
bcc2b02f
MS
7331 unsigned int count = 0;
7332
7333 for (; nr_pages--; pfn++) {
7334 struct page *page = pfn_to_page(pfn);
7335
7336 count += page_count(page) != 1;
7337 __free_page(page);
7338 }
7339 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7340}
7341#endif
7342
4ed7e022 7343#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7344/*
7345 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7346 * page high values need to be recalulated.
7347 */
4ed7e022
JL
7348void __meminit zone_pcp_update(struct zone *zone)
7349{
0a647f38 7350 unsigned cpu;
c8e251fa 7351 mutex_lock(&pcp_batch_high_lock);
0a647f38 7352 for_each_possible_cpu(cpu)
169f6c19
CS
7353 pageset_set_high_and_batch(zone,
7354 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7355 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7356}
7357#endif
7358
340175b7
JL
7359void zone_pcp_reset(struct zone *zone)
7360{
7361 unsigned long flags;
5a883813
MK
7362 int cpu;
7363 struct per_cpu_pageset *pset;
340175b7
JL
7364
7365 /* avoid races with drain_pages() */
7366 local_irq_save(flags);
7367 if (zone->pageset != &boot_pageset) {
5a883813
MK
7368 for_each_online_cpu(cpu) {
7369 pset = per_cpu_ptr(zone->pageset, cpu);
7370 drain_zonestat(zone, pset);
7371 }
340175b7
JL
7372 free_percpu(zone->pageset);
7373 zone->pageset = &boot_pageset;
7374 }
7375 local_irq_restore(flags);
7376}
7377
6dcd73d7 7378#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7379/*
b9eb6319
JK
7380 * All pages in the range must be in a single zone and isolated
7381 * before calling this.
0c0e6195
KH
7382 */
7383void
7384__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7385{
7386 struct page *page;
7387 struct zone *zone;
7aeb09f9 7388 unsigned int order, i;
0c0e6195
KH
7389 unsigned long pfn;
7390 unsigned long flags;
7391 /* find the first valid pfn */
7392 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7393 if (pfn_valid(pfn))
7394 break;
7395 if (pfn == end_pfn)
7396 return;
7397 zone = page_zone(pfn_to_page(pfn));
7398 spin_lock_irqsave(&zone->lock, flags);
7399 pfn = start_pfn;
7400 while (pfn < end_pfn) {
7401 if (!pfn_valid(pfn)) {
7402 pfn++;
7403 continue;
7404 }
7405 page = pfn_to_page(pfn);
b023f468
WC
7406 /*
7407 * The HWPoisoned page may be not in buddy system, and
7408 * page_count() is not 0.
7409 */
7410 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7411 pfn++;
7412 SetPageReserved(page);
7413 continue;
7414 }
7415
0c0e6195
KH
7416 BUG_ON(page_count(page));
7417 BUG_ON(!PageBuddy(page));
7418 order = page_order(page);
7419#ifdef CONFIG_DEBUG_VM
1170532b
JP
7420 pr_info("remove from free list %lx %d %lx\n",
7421 pfn, 1 << order, end_pfn);
0c0e6195
KH
7422#endif
7423 list_del(&page->lru);
7424 rmv_page_order(page);
7425 zone->free_area[order].nr_free--;
0c0e6195
KH
7426 for (i = 0; i < (1 << order); i++)
7427 SetPageReserved((page+i));
7428 pfn += (1 << order);
7429 }
7430 spin_unlock_irqrestore(&zone->lock, flags);
7431}
7432#endif
8d22ba1b 7433
8d22ba1b
WF
7434bool is_free_buddy_page(struct page *page)
7435{
7436 struct zone *zone = page_zone(page);
7437 unsigned long pfn = page_to_pfn(page);
7438 unsigned long flags;
7aeb09f9 7439 unsigned int order;
8d22ba1b
WF
7440
7441 spin_lock_irqsave(&zone->lock, flags);
7442 for (order = 0; order < MAX_ORDER; order++) {
7443 struct page *page_head = page - (pfn & ((1 << order) - 1));
7444
7445 if (PageBuddy(page_head) && page_order(page_head) >= order)
7446 break;
7447 }
7448 spin_unlock_irqrestore(&zone->lock, flags);
7449
7450 return order < MAX_ORDER;
7451}