]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm/memcontrol.c: remove the useless parameter for mc_handle_swap_pte
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ef70b6f4
MG
289 int nid = early_pfn_to_nid(pfn);
290
291 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
292 return true;
293
294 return false;
295}
296
7e18adb4
MG
297static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298{
299 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 return true;
301
302 return false;
303}
304
3a80a7fa
MG
305/*
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
308 */
309static inline bool update_defer_init(pg_data_t *pgdat,
310 unsigned long pfn, unsigned long zone_end,
311 unsigned long *nr_initialised)
312{
987b3095
LZ
313 unsigned long max_initialise;
314
3a80a7fa
MG
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
317 return true;
987b3095
LZ
318 /*
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
321 */
322 max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 (pgdat->node_spanned_pages >> 8));
3a80a7fa 324
3a80a7fa 325 (*nr_initialised)++;
987b3095 326 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
327 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 pgdat->first_deferred_pfn = pfn;
329 return false;
330 }
331
332 return true;
333}
334#else
335static inline void reset_deferred_meminit(pg_data_t *pgdat)
336{
337}
338
339static inline bool early_page_uninitialised(unsigned long pfn)
340{
341 return false;
342}
343
7e18adb4
MG
344static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345{
346 return false;
347}
348
3a80a7fa
MG
349static inline bool update_defer_init(pg_data_t *pgdat,
350 unsigned long pfn, unsigned long zone_end,
351 unsigned long *nr_initialised)
352{
353 return true;
354}
355#endif
356
0b423ca2
MG
357/* Return a pointer to the bitmap storing bits affecting a block of pages */
358static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 unsigned long pfn)
360{
361#ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn)->pageblock_flags;
363#else
364 return page_zone(page)->pageblock_flags;
365#endif /* CONFIG_SPARSEMEM */
366}
367
368static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 pfn &= (PAGES_PER_SECTION-1);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373#else
374 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376#endif /* CONFIG_SPARSEMEM */
377}
378
379/**
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
385 *
386 * Return: pageblock_bits flags
387 */
388static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long pfn,
390 unsigned long end_bitidx,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 bitmap = get_pageblock_bitmap(page, pfn);
398 bitidx = pfn_to_bitidx(page, pfn);
399 word_bitidx = bitidx / BITS_PER_LONG;
400 bitidx &= (BITS_PER_LONG-1);
401
402 word = bitmap[word_bitidx];
403 bitidx += end_bitidx;
404 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405}
406
407unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410{
411 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412}
413
414static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415{
416 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417}
418
419/**
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
426 */
427void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long pfn,
429 unsigned long end_bitidx,
430 unsigned long mask)
431{
432 unsigned long *bitmap;
433 unsigned long bitidx, word_bitidx;
434 unsigned long old_word, word;
435
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437
438 bitmap = get_pageblock_bitmap(page, pfn);
439 bitidx = pfn_to_bitidx(page, pfn);
440 word_bitidx = bitidx / BITS_PER_LONG;
441 bitidx &= (BITS_PER_LONG-1);
442
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444
445 bitidx += end_bitidx;
446 mask <<= (BITS_PER_LONG - bitidx - 1);
447 flags <<= (BITS_PER_LONG - bitidx - 1);
448
449 word = READ_ONCE(bitmap[word_bitidx]);
450 for (;;) {
451 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 if (word == old_word)
453 break;
454 word = old_word;
455 }
456}
3a80a7fa 457
ee6f509c 458void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 459{
5d0f3f72
KM
460 if (unlikely(page_group_by_mobility_disabled &&
461 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
462 migratetype = MIGRATE_UNMOVABLE;
463
b2a0ac88
MG
464 set_pageblock_flags_group(page, (unsigned long)migratetype,
465 PB_migrate, PB_migrate_end);
466}
467
13e7444b 468#ifdef CONFIG_DEBUG_VM
c6a57e19 469static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 470{
bdc8cb98
DH
471 int ret = 0;
472 unsigned seq;
473 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 474 unsigned long sp, start_pfn;
c6a57e19 475
bdc8cb98
DH
476 do {
477 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
478 start_pfn = zone->zone_start_pfn;
479 sp = zone->spanned_pages;
108bcc96 480 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
481 ret = 1;
482 } while (zone_span_seqretry(zone, seq));
483
b5e6a5a2 484 if (ret)
613813e8
DH
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn, zone_to_nid(zone), zone->name,
487 start_pfn, start_pfn + sp);
b5e6a5a2 488
bdc8cb98 489 return ret;
c6a57e19
DH
490}
491
492static int page_is_consistent(struct zone *zone, struct page *page)
493{
14e07298 494 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 495 return 0;
1da177e4 496 if (zone != page_zone(page))
c6a57e19
DH
497 return 0;
498
499 return 1;
500}
501/*
502 * Temporary debugging check for pages not lying within a given zone.
503 */
504static int bad_range(struct zone *zone, struct page *page)
505{
506 if (page_outside_zone_boundaries(zone, page))
1da177e4 507 return 1;
c6a57e19
DH
508 if (!page_is_consistent(zone, page))
509 return 1;
510
1da177e4
LT
511 return 0;
512}
13e7444b
NP
513#else
514static inline int bad_range(struct zone *zone, struct page *page)
515{
516 return 0;
517}
518#endif
519
d230dec1
KS
520static void bad_page(struct page *page, const char *reason,
521 unsigned long bad_flags)
1da177e4 522{
d936cf9b
HD
523 static unsigned long resume;
524 static unsigned long nr_shown;
525 static unsigned long nr_unshown;
526
527 /*
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
530 */
531 if (nr_shown == 60) {
532 if (time_before(jiffies, resume)) {
533 nr_unshown++;
534 goto out;
535 }
536 if (nr_unshown) {
ff8e8116 537 pr_alert(
1e9e6365 538 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
539 nr_unshown);
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
546
ff8e8116 547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 548 current->comm, page_to_pfn(page));
ff8e8116
VB
549 __dump_page(page, reason);
550 bad_flags &= page->flags;
551 if (bad_flags)
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags, &bad_flags);
4e462112 554 dump_page_owner(page);
3dc14741 555
4f31888c 556 print_modules();
1da177e4 557 dump_stack();
d936cf9b 558out:
8cc3b392 559 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 560 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * Higher-order pages are called "compound pages". They are structured thusly:
566 *
1d798ca3 567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 568 *
1d798ca3
KS
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 571 *
1d798ca3
KS
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
1da177e4 574 *
1d798ca3 575 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 576 * This usage means that zero-order pages may not be compound.
1da177e4 577 */
d98c7a09 578
9a982250 579void free_compound_page(struct page *page)
d98c7a09 580{
d85f3385 581 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
582}
583
d00181b9 584void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
585{
586 int i;
587 int nr_pages = 1 << order;
588
f1e61557 589 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
590 set_compound_order(page, order);
591 __SetPageHead(page);
592 for (i = 1; i < nr_pages; i++) {
593 struct page *p = page + i;
58a84aa9 594 set_page_count(p, 0);
1c290f64 595 p->mapping = TAIL_MAPPING;
1d798ca3 596 set_compound_head(p, page);
18229df5 597 }
53f9263b 598 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
599}
600
c0a32fc5
SG
601#ifdef CONFIG_DEBUG_PAGEALLOC
602unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
603bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 605EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
606bool _debug_guardpage_enabled __read_mostly;
607
031bc574
JK
608static int __init early_debug_pagealloc(char *buf)
609{
610 if (!buf)
611 return -EINVAL;
2a138dc7 612 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
613}
614early_param("debug_pagealloc", early_debug_pagealloc);
615
e30825f1
JK
616static bool need_debug_guardpage(void)
617{
031bc574
JK
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
620 return false;
621
e30825f1
JK
622 return true;
623}
624
625static void init_debug_guardpage(void)
626{
031bc574
JK
627 if (!debug_pagealloc_enabled())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
650__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651
2847cf95
JK
652static inline void set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return;
659
660 page_ext = lookup_page_ext(page);
f86e4271
YS
661 if (unlikely(!page_ext))
662 return;
663
e30825f1
JK
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
2847cf95
JK
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
670}
671
2847cf95
JK
672static inline void clear_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
c0a32fc5 674{
e30825f1
JK
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return;
679
680 page_ext = lookup_page_ext(page);
f86e4271
YS
681 if (unlikely(!page_ext))
682 return;
683
e30825f1
JK
684 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
2847cf95
JK
686 set_page_private(page, 0);
687 if (!is_migrate_isolate(migratetype))
688 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
689}
690#else
e30825f1 691struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
692static inline void set_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) {}
c0a32fc5
SG
696#endif
697
7aeb09f9 698static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 699{
4c21e2f2 700 set_page_private(page, order);
676165a8 701 __SetPageBuddy(page);
1da177e4
LT
702}
703
704static inline void rmv_page_order(struct page *page)
705{
676165a8 706 __ClearPageBuddy(page);
4c21e2f2 707 set_page_private(page, 0);
1da177e4
LT
708}
709
1da177e4
LT
710/*
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
13e7444b 713 * (a) the buddy is not in a hole &&
676165a8 714 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
676165a8 717 *
cf6fe945
WSH
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
1da177e4 722 *
676165a8 723 * For recording page's order, we use page_private(page).
1da177e4 724 */
cb2b95e1 725static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 726 unsigned int order)
1da177e4 727{
14e07298 728 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 729 return 0;
13e7444b 730
c0a32fc5 731 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 if (page_zone_id(page) != page_zone_id(buddy))
733 return 0;
734
4c5018ce
WY
735 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736
c0a32fc5
SG
737 return 1;
738 }
739
cb2b95e1 740 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
741 /*
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
744 * never merge.
745 */
746 if (page_zone_id(page) != page_zone_id(buddy))
747 return 0;
748
4c5018ce
WY
749 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750
6aa3001b 751 return 1;
676165a8 752 }
6aa3001b 753 return 0;
1da177e4
LT
754}
755
756/*
757 * Freeing function for a buddy system allocator.
758 *
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771 * field.
1da177e4 772 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
1da177e4 775 * If a block is freed, and its buddy is also free, then this
5f63b720 776 * triggers coalescing into a block of larger size.
1da177e4 777 *
6d49e352 778 * -- nyc
1da177e4
LT
779 */
780
48db57f8 781static inline void __free_one_page(struct page *page,
dc4b0caf 782 unsigned long pfn,
ed0ae21d
MG
783 struct zone *zone, unsigned int order,
784 int migratetype)
1da177e4
LT
785{
786 unsigned long page_idx;
6dda9d55 787 unsigned long combined_idx;
43506fad 788 unsigned long uninitialized_var(buddy_idx);
6dda9d55 789 struct page *buddy;
d9dddbf5
VB
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 793
d29bb978 794 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 796
ed0ae21d 797 VM_BUG_ON(migratetype == -1);
d9dddbf5 798 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 800
d9dddbf5 801 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 802
309381fe
SL
803 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 805
d9dddbf5 806continue_merging:
3c605096 807 while (order < max_order - 1) {
43506fad
KC
808 buddy_idx = __find_buddy_index(page_idx, order);
809 buddy = page + (buddy_idx - page_idx);
cb2b95e1 810 if (!page_is_buddy(page, buddy, order))
d9dddbf5 811 goto done_merging;
c0a32fc5
SG
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy)) {
2847cf95 817 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
818 } else {
819 list_del(&buddy->lru);
820 zone->free_area[order].nr_free--;
821 rmv_page_order(buddy);
822 }
43506fad 823 combined_idx = buddy_idx & page_idx;
1da177e4
LT
824 page = page + (combined_idx - page_idx);
825 page_idx = combined_idx;
826 order++;
827 }
d9dddbf5
VB
828 if (max_order < MAX_ORDER) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
833 *
834 * We don't want to hit this code for the more frequent
835 * low-order merging.
836 */
837 if (unlikely(has_isolate_pageblock(zone))) {
838 int buddy_mt;
839
840 buddy_idx = __find_buddy_index(page_idx, order);
841 buddy = page + (buddy_idx - page_idx);
842 buddy_mt = get_pageblock_migratetype(buddy);
843
844 if (migratetype != buddy_mt
845 && (is_migrate_isolate(migratetype) ||
846 is_migrate_isolate(buddy_mt)))
847 goto done_merging;
848 }
849 max_order++;
850 goto continue_merging;
851 }
852
853done_merging:
1da177e4 854 set_page_order(page, order);
6dda9d55
CZ
855
856 /*
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
863 */
b7f50cfa 864 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 865 struct page *higher_page, *higher_buddy;
43506fad
KC
866 combined_idx = buddy_idx & page_idx;
867 higher_page = page + (combined_idx - page_idx);
868 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 869 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
870 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 list_add_tail(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 goto out;
874 }
875 }
876
877 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878out:
1da177e4
LT
879 zone->free_area[order].nr_free++;
880}
881
7bfec6f4
MG
882/*
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
886 */
887static inline bool page_expected_state(struct page *page,
888 unsigned long check_flags)
889{
890 if (unlikely(atomic_read(&page->_mapcount) != -1))
891 return false;
892
893 if (unlikely((unsigned long)page->mapping |
894 page_ref_count(page) |
895#ifdef CONFIG_MEMCG
896 (unsigned long)page->mem_cgroup |
897#endif
898 (page->flags & check_flags)))
899 return false;
900
901 return true;
902}
903
bb552ac6 904static void free_pages_check_bad(struct page *page)
1da177e4 905{
7bfec6f4
MG
906 const char *bad_reason;
907 unsigned long bad_flags;
908
7bfec6f4
MG
909 bad_reason = NULL;
910 bad_flags = 0;
f0b791a3 911
53f9263b 912 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
913 bad_reason = "nonzero mapcount";
914 if (unlikely(page->mapping != NULL))
915 bad_reason = "non-NULL mapping";
fe896d18 916 if (unlikely(page_ref_count(page) != 0))
0139aa7b 917 bad_reason = "nonzero _refcount";
f0b791a3
DH
918 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 }
9edad6ea
JW
922#ifdef CONFIG_MEMCG
923 if (unlikely(page->mem_cgroup))
924 bad_reason = "page still charged to cgroup";
925#endif
7bfec6f4 926 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
927}
928
929static inline int free_pages_check(struct page *page)
930{
da838d4f 931 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 932 return 0;
bb552ac6
MG
933
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page);
7bfec6f4 936 return 1;
1da177e4
LT
937}
938
4db7548c
MG
939static int free_tail_pages_check(struct page *head_page, struct page *page)
940{
941 int ret = 1;
942
943 /*
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 */
947 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948
949 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 ret = 0;
951 goto out;
952 }
953 switch (page - head_page) {
954 case 1:
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page))) {
957 bad_page(page, "nonzero compound_mapcount", 0);
958 goto out;
959 }
960 break;
961 case 2:
962 /*
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
965 */
966 break;
967 default:
968 if (page->mapping != TAIL_MAPPING) {
969 bad_page(page, "corrupted mapping in tail page", 0);
970 goto out;
971 }
972 break;
973 }
974 if (unlikely(!PageTail(page))) {
975 bad_page(page, "PageTail not set", 0);
976 goto out;
977 }
978 if (unlikely(compound_head(page) != head_page)) {
979 bad_page(page, "compound_head not consistent", 0);
980 goto out;
981 }
982 ret = 0;
983out:
984 page->mapping = NULL;
985 clear_compound_head(page);
986 return ret;
987}
988
e2769dbd
MG
989static __always_inline bool free_pages_prepare(struct page *page,
990 unsigned int order, bool check_free)
4db7548c 991{
e2769dbd 992 int bad = 0;
4db7548c 993
4db7548c
MG
994 VM_BUG_ON_PAGE(PageTail(page), page);
995
e2769dbd
MG
996 trace_mm_page_free(page, order);
997 kmemcheck_free_shadow(page, order);
e2769dbd
MG
998
999 /*
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1002 */
1003 if (unlikely(order)) {
1004 bool compound = PageCompound(page);
1005 int i;
1006
1007 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1008
e2769dbd
MG
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
4db7548c
MG
1019 if (PageAnonHead(page))
1020 page->mapping = NULL;
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
1da177e4 1066/*
5f8dcc21 1067 * Frees a number of pages from the PCP lists
1da177e4 1068 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1069 * count is the number of pages to free.
1da177e4
LT
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
5f8dcc21
MG
1077static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1da177e4 1079{
5f8dcc21 1080 int migratetype = 0;
a6f9edd6 1081 int batch_free = 0;
0d5d823a 1082 unsigned long nr_scanned;
3777999d 1083 bool isolated_pageblocks;
5f8dcc21 1084
c54ad30c 1085 spin_lock(&zone->lock);
3777999d 1086 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1087 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 if (nr_scanned)
1089 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1090
e5b31ac2 1091 while (count) {
48db57f8 1092 struct page *page;
5f8dcc21
MG
1093 struct list_head *list;
1094
1095 /*
a6f9edd6
MG
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
5f8dcc21
MG
1101 */
1102 do {
a6f9edd6 1103 batch_free++;
5f8dcc21
MG
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
48db57f8 1108
1d16871d
NK
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1111 batch_free = count;
1d16871d 1112
a6f9edd6 1113 do {
770c8aaa
BZ
1114 int mt; /* migratetype of the to-be-freed page */
1115
a16601c5 1116 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
aa016d14 1119
bb14c2c7 1120 mt = get_pcppage_migratetype(page);
aa016d14
VB
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
3777999d 1124 if (unlikely(isolated_pageblocks))
51bb1a40 1125 mt = get_pageblock_migratetype(page);
51bb1a40 1126
4db7548c
MG
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
dc4b0caf 1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1131 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1132 } while (--count && --batch_free && !list_empty(list));
1da177e4 1133 }
c54ad30c 1134 spin_unlock(&zone->lock);
1da177e4
LT
1135}
1136
dc4b0caf
MG
1137static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
7aeb09f9 1139 unsigned int order,
ed0ae21d 1140 int migratetype)
1da177e4 1141{
0d5d823a 1142 unsigned long nr_scanned;
006d22d9 1143 spin_lock(&zone->lock);
0d5d823a
MG
1144 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 if (nr_scanned)
1146 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1147
ad53f92e
JK
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1151 }
dc4b0caf 1152 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1153 spin_unlock(&zone->lock);
48db57f8
NP
1154}
1155
1e8ce83c
RH
1156static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158{
1e8ce83c 1159 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1e8ce83c 1163
1e8ce83c
RH
1164 INIT_LIST_HEAD(&page->lru);
1165#ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169#endif
1170}
1171
1172static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174{
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176}
1177
7e18adb4
MG
1178#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179static void init_reserved_page(unsigned long pfn)
1180{
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197}
1198#else
1199static inline void init_reserved_page(unsigned long pfn)
1200{
1201}
1202#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
92923ca3
NZ
1204/*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
4b50bcc7 1210void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1211{
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
7e18adb4
MG
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1d798ca3
KS
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
7e18adb4
MG
1224 SetPageReserved(page);
1225 }
1226 }
92923ca3
NZ
1227}
1228
ec95f53a
KM
1229static void __free_pages_ok(struct page *page, unsigned int order)
1230{
1231 unsigned long flags;
95e34412 1232 int migratetype;
dc4b0caf 1233 unsigned long pfn = page_to_pfn(page);
ec95f53a 1234
e2769dbd 1235 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1236 return;
1237
cfc47a28 1238 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1239 local_irq_save(flags);
f8891e5e 1240 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1242 local_irq_restore(flags);
1da177e4
LT
1243}
1244
949698a3 1245static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1246{
c3993076 1247 unsigned int nr_pages = 1 << order;
e2d0bd2b 1248 struct page *p = page;
c3993076 1249 unsigned int loop;
a226f6c8 1250
e2d0bd2b
YL
1251 prefetchw(p);
1252 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 prefetchw(p + 1);
c3993076
JW
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
a226f6c8 1256 }
e2d0bd2b
YL
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
c3993076 1259
e2d0bd2b 1260 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1261 set_page_refcounted(page);
1262 __free_pages(page, order);
a226f6c8
DH
1263}
1264
75a592a4
MG
1265#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1267
75a592a4
MG
1268static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269
1270int __meminit early_pfn_to_nid(unsigned long pfn)
1271{
7ace9917 1272 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1273 int nid;
1274
7ace9917 1275 spin_lock(&early_pfn_lock);
75a592a4 1276 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1277 if (nid < 0)
e4568d38 1278 nid = first_online_node;
7ace9917
MG
1279 spin_unlock(&early_pfn_lock);
1280
1281 return nid;
75a592a4
MG
1282}
1283#endif
1284
1285#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 struct mminit_pfnnid_cache *state)
1288{
1289 int nid;
1290
1291 nid = __early_pfn_to_nid(pfn, state);
1292 if (nid >= 0 && nid != node)
1293 return false;
1294 return true;
1295}
1296
1297/* Only safe to use early in boot when initialisation is single-threaded */
1298static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299{
1300 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301}
1302
1303#else
1304
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return true;
1308}
1309static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 return true;
1313}
1314#endif
1315
1316
0e1cc95b 1317void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1318 unsigned int order)
1319{
1320 if (early_page_uninitialised(pfn))
1321 return;
949698a3 1322 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1323}
1324
7cf91a98
JK
1325/*
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1330 * pageblocks.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 */
1342struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 unsigned long end_pfn, struct zone *zone)
1344{
1345 struct page *start_page;
1346 struct page *end_page;
1347
1348 /* end_pfn is one past the range we are checking */
1349 end_pfn--;
1350
1351 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 return NULL;
1353
1354 start_page = pfn_to_page(start_pfn);
1355
1356 if (page_zone(start_page) != zone)
1357 return NULL;
1358
1359 end_page = pfn_to_page(end_pfn);
1360
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 return NULL;
1364
1365 return start_page;
1366}
1367
1368void set_zone_contiguous(struct zone *zone)
1369{
1370 unsigned long block_start_pfn = zone->zone_start_pfn;
1371 unsigned long block_end_pfn;
1372
1373 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 for (; block_start_pfn < zone_end_pfn(zone);
1375 block_start_pfn = block_end_pfn,
1376 block_end_pfn += pageblock_nr_pages) {
1377
1378 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379
1380 if (!__pageblock_pfn_to_page(block_start_pfn,
1381 block_end_pfn, zone))
1382 return;
1383 }
1384
1385 /* We confirm that there is no hole */
1386 zone->contiguous = true;
1387}
1388
1389void clear_zone_contiguous(struct zone *zone)
1390{
1391 zone->contiguous = false;
1392}
1393
7e18adb4 1394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1395static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1396 unsigned long pfn, int nr_pages)
1397{
1398 int i;
1399
1400 if (!page)
1401 return;
1402
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1407 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1408 return;
1409 }
1410
949698a3
LZ
1411 for (i = 0; i < nr_pages; i++, page++)
1412 __free_pages_boot_core(page, 0);
a4de83dd
MG
1413}
1414
d3cd131d
NS
1415/* Completion tracking for deferred_init_memmap() threads */
1416static atomic_t pgdat_init_n_undone __initdata;
1417static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419static inline void __init pgdat_init_report_one_done(void)
1420{
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423}
0e1cc95b 1424
7e18adb4 1425/* Initialise remaining memory on a node */
0e1cc95b 1426static int __init deferred_init_memmap(void *data)
7e18adb4 1427{
0e1cc95b
MG
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
7e18adb4
MG
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
7e18adb4 1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1438
0e1cc95b 1439 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1440 pgdat_init_report_one_done();
0e1cc95b
MG
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
54608c3f 1462 struct page *page = NULL;
a4de83dd
MG
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
7e18adb4
MG
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
54608c3f 1475 if (!pfn_valid_within(pfn))
a4de83dd 1476 goto free_range;
7e18adb4 1477
54608c3f
MG
1478 /*
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1481 */
1482 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 page++;
1497 } else {
a4de83dd
MG
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
54608c3f
MG
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
7e18adb4
MG
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1510 goto free_range;
7e18adb4
MG
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
7e18adb4 1530 }
a4de83dd 1531
7e18adb4
MG
1532 first_init_pfn = max(end_pfn, first_init_pfn);
1533 }
1534
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537
0e1cc95b 1538 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1539 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1540
1541 pgdat_init_report_one_done();
0e1cc95b
MG
1542 return 0;
1543}
7cf91a98 1544#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1545
1546void __init page_alloc_init_late(void)
1547{
7cf91a98
JK
1548 struct zone *zone;
1549
1550#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1551 int nid;
1552
d3cd131d
NS
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1555 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1556 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 }
1558
1559 /* Block until all are initialised */
d3cd131d 1560 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1561
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
7cf91a98
JK
1564#endif
1565
1566 for_each_populated_zone(zone)
1567 set_zone_contiguous(zone);
7e18adb4 1568}
7e18adb4 1569
47118af0 1570#ifdef CONFIG_CMA
9cf510a5 1571/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1572void __init init_cma_reserved_pageblock(struct page *page)
1573{
1574 unsigned i = pageblock_nr_pages;
1575 struct page *p = page;
1576
1577 do {
1578 __ClearPageReserved(p);
1579 set_page_count(p, 0);
1580 } while (++p, --i);
1581
47118af0 1582 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1583
1584 if (pageblock_order >= MAX_ORDER) {
1585 i = pageblock_nr_pages;
1586 p = page;
1587 do {
1588 set_page_refcounted(p);
1589 __free_pages(p, MAX_ORDER - 1);
1590 p += MAX_ORDER_NR_PAGES;
1591 } while (i -= MAX_ORDER_NR_PAGES);
1592 } else {
1593 set_page_refcounted(page);
1594 __free_pages(page, pageblock_order);
1595 }
1596
3dcc0571 1597 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1598}
1599#endif
1da177e4
LT
1600
1601/*
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1612 *
6d49e352 1613 * -- nyc
1da177e4 1614 */
085cc7d5 1615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1616 int low, int high, struct free_area *area,
1617 int migratetype)
1da177e4
LT
1618{
1619 unsigned long size = 1 << high;
1620
1621 while (high > low) {
1622 area--;
1623 high--;
1624 size >>= 1;
309381fe 1625 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1626
2847cf95 1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1628 debug_guardpage_enabled() &&
2847cf95 1629 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
2847cf95 1636 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1637 continue;
1638 }
b2a0ac88 1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1da177e4
LT
1643}
1644
4e611801 1645static void check_new_page_bad(struct page *page)
1da177e4 1646{
4e611801
VB
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
7bfec6f4 1649
53f9263b 1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
fe896d18 1654 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1655 bad_reason = "nonzero _count";
f4c18e6f
NH
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
e570f56c
NH
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
f4c18e6f 1662 }
f0b791a3
DH
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
9edad6ea
JW
1667#ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670#endif
4e611801
VB
1671 bad_page(page, bad_reason, bad_flags);
1672}
1673
1674/*
1675 * This page is about to be returned from the page allocator
1676 */
1677static inline int check_new_page(struct page *page)
1678{
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
2a7684a2
WF
1685}
1686
1414c7f4
LA
1687static inline bool free_pages_prezeroed(bool poisoned)
1688{
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691}
1692
479f854a
MG
1693#ifdef CONFIG_DEBUG_VM
1694static bool check_pcp_refill(struct page *page)
1695{
1696 return false;
1697}
1698
1699static bool check_new_pcp(struct page *page)
1700{
1701 return check_new_page(page);
1702}
1703#else
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708static bool check_new_pcp(struct page *page)
1709{
1710 return false;
1711}
1712#endif /* CONFIG_DEBUG_VM */
1713
1714static bool check_new_pages(struct page *page, unsigned int order)
1715{
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726
1727static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1728 unsigned int alloc_flags)
2a7684a2
WF
1729{
1730 int i;
1414c7f4 1731 bool poisoned = true;
2a7684a2
WF
1732
1733 for (i = 0; i < (1 << order); i++) {
1734 struct page *p = page + i;
1414c7f4
LA
1735 if (poisoned)
1736 poisoned &= page_is_poisoned(p);
2a7684a2 1737 }
689bcebf 1738
4c21e2f2 1739 set_page_private(page, 0);
7835e98b 1740 set_page_refcounted(page);
cc102509
NP
1741
1742 arch_alloc_page(page, order);
1da177e4 1743 kernel_map_pages(page, 1 << order, 1);
8823b1db 1744 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1745 kasan_alloc_pages(page, order);
17cf4406 1746
1414c7f4 1747 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1748 for (i = 0; i < (1 << order); i++)
1749 clear_highpage(page + i);
17cf4406
NP
1750
1751 if (order && (gfp_flags & __GFP_COMP))
1752 prep_compound_page(page, order);
1753
48c96a36
JK
1754 set_page_owner(page, order, gfp_flags);
1755
75379191 1756 /*
2f064f34 1757 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1758 * allocate the page. The expectation is that the caller is taking
1759 * steps that will free more memory. The caller should avoid the page
1760 * being used for !PFMEMALLOC purposes.
1761 */
2f064f34
MH
1762 if (alloc_flags & ALLOC_NO_WATERMARKS)
1763 set_page_pfmemalloc(page);
1764 else
1765 clear_page_pfmemalloc(page);
1da177e4
LT
1766}
1767
56fd56b8
MG
1768/*
1769 * Go through the free lists for the given migratetype and remove
1770 * the smallest available page from the freelists
1771 */
728ec980
MG
1772static inline
1773struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1774 int migratetype)
1775{
1776 unsigned int current_order;
b8af2941 1777 struct free_area *area;
56fd56b8
MG
1778 struct page *page;
1779
1780 /* Find a page of the appropriate size in the preferred list */
1781 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1782 area = &(zone->free_area[current_order]);
a16601c5 1783 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1784 struct page, lru);
a16601c5
GT
1785 if (!page)
1786 continue;
56fd56b8
MG
1787 list_del(&page->lru);
1788 rmv_page_order(page);
1789 area->nr_free--;
56fd56b8 1790 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1791 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1792 return page;
1793 }
1794
1795 return NULL;
1796}
1797
1798
b2a0ac88
MG
1799/*
1800 * This array describes the order lists are fallen back to when
1801 * the free lists for the desirable migrate type are depleted
1802 */
47118af0 1803static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1804 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1807#ifdef CONFIG_CMA
974a786e 1808 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1809#endif
194159fb 1810#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1811 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1812#endif
b2a0ac88
MG
1813};
1814
dc67647b
JK
1815#ifdef CONFIG_CMA
1816static struct page *__rmqueue_cma_fallback(struct zone *zone,
1817 unsigned int order)
1818{
1819 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1820}
1821#else
1822static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 unsigned int order) { return NULL; }
1824#endif
1825
c361be55
MG
1826/*
1827 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1828 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1829 * boundary. If alignment is required, use move_freepages_block()
1830 */
435b405c 1831int move_freepages(struct zone *zone,
b69a7288
AB
1832 struct page *start_page, struct page *end_page,
1833 int migratetype)
c361be55
MG
1834{
1835 struct page *page;
d00181b9 1836 unsigned int order;
d100313f 1837 int pages_moved = 0;
c361be55
MG
1838
1839#ifndef CONFIG_HOLES_IN_ZONE
1840 /*
1841 * page_zone is not safe to call in this context when
1842 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 * anyway as we check zone boundaries in move_freepages_block().
1844 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1845 * grouping pages by mobility
c361be55 1846 */
97ee4ba7 1847 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1848#endif
1849
1850 for (page = start_page; page <= end_page;) {
344c790e 1851 /* Make sure we are not inadvertently changing nodes */
309381fe 1852 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1853
c361be55
MG
1854 if (!pfn_valid_within(page_to_pfn(page))) {
1855 page++;
1856 continue;
1857 }
1858
1859 if (!PageBuddy(page)) {
1860 page++;
1861 continue;
1862 }
1863
1864 order = page_order(page);
84be48d8
KS
1865 list_move(&page->lru,
1866 &zone->free_area[order].free_list[migratetype]);
c361be55 1867 page += 1 << order;
d100313f 1868 pages_moved += 1 << order;
c361be55
MG
1869 }
1870
d100313f 1871 return pages_moved;
c361be55
MG
1872}
1873
ee6f509c 1874int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1875 int migratetype)
c361be55
MG
1876{
1877 unsigned long start_pfn, end_pfn;
1878 struct page *start_page, *end_page;
1879
1880 start_pfn = page_to_pfn(page);
d9c23400 1881 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1882 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1883 end_page = start_page + pageblock_nr_pages - 1;
1884 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1885
1886 /* Do not cross zone boundaries */
108bcc96 1887 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1888 start_page = page;
108bcc96 1889 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1890 return 0;
1891
1892 return move_freepages(zone, start_page, end_page, migratetype);
1893}
1894
2f66a68f
MG
1895static void change_pageblock_range(struct page *pageblock_page,
1896 int start_order, int migratetype)
1897{
1898 int nr_pageblocks = 1 << (start_order - pageblock_order);
1899
1900 while (nr_pageblocks--) {
1901 set_pageblock_migratetype(pageblock_page, migratetype);
1902 pageblock_page += pageblock_nr_pages;
1903 }
1904}
1905
fef903ef 1906/*
9c0415eb
VB
1907 * When we are falling back to another migratetype during allocation, try to
1908 * steal extra free pages from the same pageblocks to satisfy further
1909 * allocations, instead of polluting multiple pageblocks.
1910 *
1911 * If we are stealing a relatively large buddy page, it is likely there will
1912 * be more free pages in the pageblock, so try to steal them all. For
1913 * reclaimable and unmovable allocations, we steal regardless of page size,
1914 * as fragmentation caused by those allocations polluting movable pageblocks
1915 * is worse than movable allocations stealing from unmovable and reclaimable
1916 * pageblocks.
fef903ef 1917 */
4eb7dce6
JK
1918static bool can_steal_fallback(unsigned int order, int start_mt)
1919{
1920 /*
1921 * Leaving this order check is intended, although there is
1922 * relaxed order check in next check. The reason is that
1923 * we can actually steal whole pageblock if this condition met,
1924 * but, below check doesn't guarantee it and that is just heuristic
1925 * so could be changed anytime.
1926 */
1927 if (order >= pageblock_order)
1928 return true;
1929
1930 if (order >= pageblock_order / 2 ||
1931 start_mt == MIGRATE_RECLAIMABLE ||
1932 start_mt == MIGRATE_UNMOVABLE ||
1933 page_group_by_mobility_disabled)
1934 return true;
1935
1936 return false;
1937}
1938
1939/*
1940 * This function implements actual steal behaviour. If order is large enough,
1941 * we can steal whole pageblock. If not, we first move freepages in this
1942 * pageblock and check whether half of pages are moved or not. If half of
1943 * pages are moved, we can change migratetype of pageblock and permanently
1944 * use it's pages as requested migratetype in the future.
1945 */
1946static void steal_suitable_fallback(struct zone *zone, struct page *page,
1947 int start_type)
fef903ef 1948{
d00181b9 1949 unsigned int current_order = page_order(page);
4eb7dce6 1950 int pages;
fef903ef 1951
fef903ef
SB
1952 /* Take ownership for orders >= pageblock_order */
1953 if (current_order >= pageblock_order) {
1954 change_pageblock_range(page, current_order, start_type);
3a1086fb 1955 return;
fef903ef
SB
1956 }
1957
4eb7dce6 1958 pages = move_freepages_block(zone, page, start_type);
fef903ef 1959
4eb7dce6
JK
1960 /* Claim the whole block if over half of it is free */
1961 if (pages >= (1 << (pageblock_order-1)) ||
1962 page_group_by_mobility_disabled)
1963 set_pageblock_migratetype(page, start_type);
1964}
1965
2149cdae
JK
1966/*
1967 * Check whether there is a suitable fallback freepage with requested order.
1968 * If only_stealable is true, this function returns fallback_mt only if
1969 * we can steal other freepages all together. This would help to reduce
1970 * fragmentation due to mixed migratetype pages in one pageblock.
1971 */
1972int find_suitable_fallback(struct free_area *area, unsigned int order,
1973 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1974{
1975 int i;
1976 int fallback_mt;
1977
1978 if (area->nr_free == 0)
1979 return -1;
1980
1981 *can_steal = false;
1982 for (i = 0;; i++) {
1983 fallback_mt = fallbacks[migratetype][i];
974a786e 1984 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1985 break;
1986
1987 if (list_empty(&area->free_list[fallback_mt]))
1988 continue;
fef903ef 1989
4eb7dce6
JK
1990 if (can_steal_fallback(order, migratetype))
1991 *can_steal = true;
1992
2149cdae
JK
1993 if (!only_stealable)
1994 return fallback_mt;
1995
1996 if (*can_steal)
1997 return fallback_mt;
fef903ef 1998 }
4eb7dce6
JK
1999
2000 return -1;
fef903ef
SB
2001}
2002
0aaa29a5
MG
2003/*
2004 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005 * there are no empty page blocks that contain a page with a suitable order
2006 */
2007static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2008 unsigned int alloc_order)
2009{
2010 int mt;
2011 unsigned long max_managed, flags;
2012
2013 /*
2014 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 * Check is race-prone but harmless.
2016 */
2017 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2018 if (zone->nr_reserved_highatomic >= max_managed)
2019 return;
2020
2021 spin_lock_irqsave(&zone->lock, flags);
2022
2023 /* Recheck the nr_reserved_highatomic limit under the lock */
2024 if (zone->nr_reserved_highatomic >= max_managed)
2025 goto out_unlock;
2026
2027 /* Yoink! */
2028 mt = get_pageblock_migratetype(page);
2029 if (mt != MIGRATE_HIGHATOMIC &&
2030 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2031 zone->nr_reserved_highatomic += pageblock_nr_pages;
2032 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2033 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 }
2035
2036out_unlock:
2037 spin_unlock_irqrestore(&zone->lock, flags);
2038}
2039
2040/*
2041 * Used when an allocation is about to fail under memory pressure. This
2042 * potentially hurts the reliability of high-order allocations when under
2043 * intense memory pressure but failed atomic allocations should be easier
2044 * to recover from than an OOM.
2045 */
2046static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2047{
2048 struct zonelist *zonelist = ac->zonelist;
2049 unsigned long flags;
2050 struct zoneref *z;
2051 struct zone *zone;
2052 struct page *page;
2053 int order;
2054
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
2057 /* Preserve at least one pageblock */
2058 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2059 continue;
2060
2061 spin_lock_irqsave(&zone->lock, flags);
2062 for (order = 0; order < MAX_ORDER; order++) {
2063 struct free_area *area = &(zone->free_area[order]);
2064
a16601c5
GT
2065 page = list_first_entry_or_null(
2066 &area->free_list[MIGRATE_HIGHATOMIC],
2067 struct page, lru);
2068 if (!page)
0aaa29a5
MG
2069 continue;
2070
0aaa29a5
MG
2071 /*
2072 * It should never happen but changes to locking could
2073 * inadvertently allow a per-cpu drain to add pages
2074 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 * and watch for underflows.
2076 */
2077 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2078 zone->nr_reserved_highatomic);
2079
2080 /*
2081 * Convert to ac->migratetype and avoid the normal
2082 * pageblock stealing heuristics. Minimally, the caller
2083 * is doing the work and needs the pages. More
2084 * importantly, if the block was always converted to
2085 * MIGRATE_UNMOVABLE or another type then the number
2086 * of pageblocks that cannot be completely freed
2087 * may increase.
2088 */
2089 set_pageblock_migratetype(page, ac->migratetype);
2090 move_freepages_block(zone, page, ac->migratetype);
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 return;
2093 }
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 }
2096}
2097
b2a0ac88 2098/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2099static inline struct page *
7aeb09f9 2100__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2101{
b8af2941 2102 struct free_area *area;
7aeb09f9 2103 unsigned int current_order;
b2a0ac88 2104 struct page *page;
4eb7dce6
JK
2105 int fallback_mt;
2106 bool can_steal;
b2a0ac88
MG
2107
2108 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2109 for (current_order = MAX_ORDER-1;
2110 current_order >= order && current_order <= MAX_ORDER-1;
2111 --current_order) {
4eb7dce6
JK
2112 area = &(zone->free_area[current_order]);
2113 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2114 start_migratetype, false, &can_steal);
4eb7dce6
JK
2115 if (fallback_mt == -1)
2116 continue;
b2a0ac88 2117
a16601c5 2118 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2119 struct page, lru);
2120 if (can_steal)
2121 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2122
4eb7dce6
JK
2123 /* Remove the page from the freelists */
2124 area->nr_free--;
2125 list_del(&page->lru);
2126 rmv_page_order(page);
3a1086fb 2127
4eb7dce6
JK
2128 expand(zone, page, order, current_order, area,
2129 start_migratetype);
2130 /*
bb14c2c7 2131 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2132 * migratetype depending on the decisions in
bb14c2c7
VB
2133 * find_suitable_fallback(). This is OK as long as it does not
2134 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2136 */
bb14c2c7 2137 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2138
4eb7dce6
JK
2139 trace_mm_page_alloc_extfrag(page, order, current_order,
2140 start_migratetype, fallback_mt);
e0fff1bd 2141
4eb7dce6 2142 return page;
b2a0ac88
MG
2143 }
2144
728ec980 2145 return NULL;
b2a0ac88
MG
2146}
2147
56fd56b8 2148/*
1da177e4
LT
2149 * Do the hard work of removing an element from the buddy allocator.
2150 * Call me with the zone->lock already held.
2151 */
b2a0ac88 2152static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2153 int migratetype)
1da177e4 2154{
1da177e4
LT
2155 struct page *page;
2156
56fd56b8 2157 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2158 if (unlikely(!page)) {
dc67647b
JK
2159 if (migratetype == MIGRATE_MOVABLE)
2160 page = __rmqueue_cma_fallback(zone, order);
2161
2162 if (!page)
2163 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2164 }
2165
0d3d062a 2166 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2167 return page;
1da177e4
LT
2168}
2169
5f63b720 2170/*
1da177e4
LT
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2174 */
5f63b720 2175static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2176 unsigned long count, struct list_head *list,
b745bc85 2177 int migratetype, bool cold)
1da177e4 2178{
5bcc9f86 2179 int i;
5f63b720 2180
c54ad30c 2181 spin_lock(&zone->lock);
1da177e4 2182 for (i = 0; i < count; ++i) {
6ac0206b 2183 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2184 if (unlikely(page == NULL))
1da177e4 2185 break;
81eabcbe 2186
479f854a
MG
2187 if (unlikely(check_pcp_refill(page)))
2188 continue;
2189
81eabcbe
MG
2190 /*
2191 * Split buddy pages returned by expand() are received here
2192 * in physical page order. The page is added to the callers and
2193 * list and the list head then moves forward. From the callers
2194 * perspective, the linked list is ordered by page number in
2195 * some conditions. This is useful for IO devices that can
2196 * merge IO requests if the physical pages are ordered
2197 * properly.
2198 */
b745bc85 2199 if (likely(!cold))
e084b2d9
MG
2200 list_add(&page->lru, list);
2201 else
2202 list_add_tail(&page->lru, list);
81eabcbe 2203 list = &page->lru;
bb14c2c7 2204 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2205 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2206 -(1 << order));
1da177e4 2207 }
f2260e6b 2208 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2209 spin_unlock(&zone->lock);
085cc7d5 2210 return i;
1da177e4
LT
2211}
2212
4ae7c039 2213#ifdef CONFIG_NUMA
8fce4d8e 2214/*
4037d452
CL
2215 * Called from the vmstat counter updater to drain pagesets of this
2216 * currently executing processor on remote nodes after they have
2217 * expired.
2218 *
879336c3
CL
2219 * Note that this function must be called with the thread pinned to
2220 * a single processor.
8fce4d8e 2221 */
4037d452 2222void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2223{
4ae7c039 2224 unsigned long flags;
7be12fc9 2225 int to_drain, batch;
4ae7c039 2226
4037d452 2227 local_irq_save(flags);
4db0c3c2 2228 batch = READ_ONCE(pcp->batch);
7be12fc9 2229 to_drain = min(pcp->count, batch);
2a13515c
KM
2230 if (to_drain > 0) {
2231 free_pcppages_bulk(zone, to_drain, pcp);
2232 pcp->count -= to_drain;
2233 }
4037d452 2234 local_irq_restore(flags);
4ae7c039
CL
2235}
2236#endif
2237
9f8f2172 2238/*
93481ff0 2239 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2240 *
2241 * The processor must either be the current processor and the
2242 * thread pinned to the current processor or a processor that
2243 * is not online.
2244 */
93481ff0 2245static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2246{
c54ad30c 2247 unsigned long flags;
93481ff0
VB
2248 struct per_cpu_pageset *pset;
2249 struct per_cpu_pages *pcp;
1da177e4 2250
93481ff0
VB
2251 local_irq_save(flags);
2252 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2253
93481ff0
VB
2254 pcp = &pset->pcp;
2255 if (pcp->count) {
2256 free_pcppages_bulk(zone, pcp->count, pcp);
2257 pcp->count = 0;
2258 }
2259 local_irq_restore(flags);
2260}
3dfa5721 2261
93481ff0
VB
2262/*
2263 * Drain pcplists of all zones on the indicated processor.
2264 *
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2267 * is not online.
2268 */
2269static void drain_pages(unsigned int cpu)
2270{
2271 struct zone *zone;
2272
2273 for_each_populated_zone(zone) {
2274 drain_pages_zone(cpu, zone);
1da177e4
LT
2275 }
2276}
1da177e4 2277
9f8f2172
CL
2278/*
2279 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2280 *
2281 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282 * the single zone's pages.
9f8f2172 2283 */
93481ff0 2284void drain_local_pages(struct zone *zone)
9f8f2172 2285{
93481ff0
VB
2286 int cpu = smp_processor_id();
2287
2288 if (zone)
2289 drain_pages_zone(cpu, zone);
2290 else
2291 drain_pages(cpu);
9f8f2172
CL
2292}
2293
2294/*
74046494
GBY
2295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2296 *
93481ff0
VB
2297 * When zone parameter is non-NULL, spill just the single zone's pages.
2298 *
74046494
GBY
2299 * Note that this code is protected against sending an IPI to an offline
2300 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302 * nothing keeps CPUs from showing up after we populated the cpumask and
2303 * before the call to on_each_cpu_mask().
9f8f2172 2304 */
93481ff0 2305void drain_all_pages(struct zone *zone)
9f8f2172 2306{
74046494 2307 int cpu;
74046494
GBY
2308
2309 /*
2310 * Allocate in the BSS so we wont require allocation in
2311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2312 */
2313 static cpumask_t cpus_with_pcps;
2314
2315 /*
2316 * We don't care about racing with CPU hotplug event
2317 * as offline notification will cause the notified
2318 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 * disables preemption as part of its processing
2320 */
2321 for_each_online_cpu(cpu) {
93481ff0
VB
2322 struct per_cpu_pageset *pcp;
2323 struct zone *z;
74046494 2324 bool has_pcps = false;
93481ff0
VB
2325
2326 if (zone) {
74046494 2327 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2328 if (pcp->pcp.count)
74046494 2329 has_pcps = true;
93481ff0
VB
2330 } else {
2331 for_each_populated_zone(z) {
2332 pcp = per_cpu_ptr(z->pageset, cpu);
2333 if (pcp->pcp.count) {
2334 has_pcps = true;
2335 break;
2336 }
74046494
GBY
2337 }
2338 }
93481ff0 2339
74046494
GBY
2340 if (has_pcps)
2341 cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 else
2343 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 }
93481ff0
VB
2345 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2346 zone, 1);
9f8f2172
CL
2347}
2348
296699de 2349#ifdef CONFIG_HIBERNATION
1da177e4
LT
2350
2351void mark_free_pages(struct zone *zone)
2352{
f623f0db
RW
2353 unsigned long pfn, max_zone_pfn;
2354 unsigned long flags;
7aeb09f9 2355 unsigned int order, t;
86760a2c 2356 struct page *page;
1da177e4 2357
8080fc03 2358 if (zone_is_empty(zone))
1da177e4
LT
2359 return;
2360
2361 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2362
108bcc96 2363 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2364 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2365 if (pfn_valid(pfn)) {
86760a2c 2366 page = pfn_to_page(pfn);
ba6b0979
JK
2367
2368 if (page_zone(page) != zone)
2369 continue;
2370
7be98234
RW
2371 if (!swsusp_page_is_forbidden(page))
2372 swsusp_unset_page_free(page);
f623f0db 2373 }
1da177e4 2374
b2a0ac88 2375 for_each_migratetype_order(order, t) {
86760a2c
GT
2376 list_for_each_entry(page,
2377 &zone->free_area[order].free_list[t], lru) {
f623f0db 2378 unsigned long i;
1da177e4 2379
86760a2c 2380 pfn = page_to_pfn(page);
f623f0db 2381 for (i = 0; i < (1UL << order); i++)
7be98234 2382 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2383 }
b2a0ac88 2384 }
1da177e4
LT
2385 spin_unlock_irqrestore(&zone->lock, flags);
2386}
e2c55dc8 2387#endif /* CONFIG_PM */
1da177e4 2388
1da177e4
LT
2389/*
2390 * Free a 0-order page
b745bc85 2391 * cold == true ? free a cold page : free a hot page
1da177e4 2392 */
b745bc85 2393void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2394{
2395 struct zone *zone = page_zone(page);
2396 struct per_cpu_pages *pcp;
2397 unsigned long flags;
dc4b0caf 2398 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2399 int migratetype;
1da177e4 2400
4db7548c 2401 if (!free_pcp_prepare(page))
689bcebf
HD
2402 return;
2403
dc4b0caf 2404 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2405 set_pcppage_migratetype(page, migratetype);
1da177e4 2406 local_irq_save(flags);
f8891e5e 2407 __count_vm_event(PGFREE);
da456f14 2408
5f8dcc21
MG
2409 /*
2410 * We only track unmovable, reclaimable and movable on pcp lists.
2411 * Free ISOLATE pages back to the allocator because they are being
2412 * offlined but treat RESERVE as movable pages so we can get those
2413 * areas back if necessary. Otherwise, we may have to free
2414 * excessively into the page allocator
2415 */
2416 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2417 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2418 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2419 goto out;
2420 }
2421 migratetype = MIGRATE_MOVABLE;
2422 }
2423
99dcc3e5 2424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2425 if (!cold)
5f8dcc21 2426 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2427 else
2428 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2429 pcp->count++;
48db57f8 2430 if (pcp->count >= pcp->high) {
4db0c3c2 2431 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2432 free_pcppages_bulk(zone, batch, pcp);
2433 pcp->count -= batch;
48db57f8 2434 }
5f8dcc21
MG
2435
2436out:
1da177e4 2437 local_irq_restore(flags);
1da177e4
LT
2438}
2439
cc59850e
KK
2440/*
2441 * Free a list of 0-order pages
2442 */
b745bc85 2443void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2444{
2445 struct page *page, *next;
2446
2447 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2448 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2449 free_hot_cold_page(page, cold);
2450 }
2451}
2452
8dfcc9ba
NP
2453/*
2454 * split_page takes a non-compound higher-order page, and splits it into
2455 * n (1<<order) sub-pages: page[0..n]
2456 * Each sub-page must be freed individually.
2457 *
2458 * Note: this is probably too low level an operation for use in drivers.
2459 * Please consult with lkml before using this in your driver.
2460 */
2461void split_page(struct page *page, unsigned int order)
2462{
2463 int i;
e2cfc911 2464 gfp_t gfp_mask;
8dfcc9ba 2465
309381fe
SL
2466 VM_BUG_ON_PAGE(PageCompound(page), page);
2467 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2468
2469#ifdef CONFIG_KMEMCHECK
2470 /*
2471 * Split shadow pages too, because free(page[0]) would
2472 * otherwise free the whole shadow.
2473 */
2474 if (kmemcheck_page_is_tracked(page))
2475 split_page(virt_to_page(page[0].shadow), order);
2476#endif
2477
e2cfc911
JK
2478 gfp_mask = get_page_owner_gfp(page);
2479 set_page_owner(page, 0, gfp_mask);
48c96a36 2480 for (i = 1; i < (1 << order); i++) {
7835e98b 2481 set_page_refcounted(page + i);
e2cfc911 2482 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2483 }
8dfcc9ba 2484}
5853ff23 2485EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2486
3c605096 2487int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2488{
748446bb
MG
2489 unsigned long watermark;
2490 struct zone *zone;
2139cbe6 2491 int mt;
748446bb
MG
2492
2493 BUG_ON(!PageBuddy(page));
2494
2495 zone = page_zone(page);
2e30abd1 2496 mt = get_pageblock_migratetype(page);
748446bb 2497
194159fb 2498 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2499 /* Obey watermarks as if the page was being allocated */
2500 watermark = low_wmark_pages(zone) + (1 << order);
2501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2502 return 0;
2503
8fb74b9f 2504 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2505 }
748446bb
MG
2506
2507 /* Remove page from free list */
2508 list_del(&page->lru);
2509 zone->free_area[order].nr_free--;
2510 rmv_page_order(page);
2139cbe6 2511
e2cfc911 2512 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2513
8fb74b9f 2514 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2515 if (order >= pageblock_order - 1) {
2516 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2517 for (; page < endpage; page += pageblock_nr_pages) {
2518 int mt = get_pageblock_migratetype(page);
194159fb 2519 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2520 set_pageblock_migratetype(page,
2521 MIGRATE_MOVABLE);
2522 }
748446bb
MG
2523 }
2524
f3a14ced 2525
8fb74b9f 2526 return 1UL << order;
1fb3f8ca
MG
2527}
2528
2529/*
2530 * Similar to split_page except the page is already free. As this is only
2531 * being used for migration, the migratetype of the block also changes.
2532 * As this is called with interrupts disabled, the caller is responsible
2533 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2534 * are enabled.
2535 *
2536 * Note: this is probably too low level an operation for use in drivers.
2537 * Please consult with lkml before using this in your driver.
2538 */
2539int split_free_page(struct page *page)
2540{
2541 unsigned int order;
2542 int nr_pages;
2543
1fb3f8ca
MG
2544 order = page_order(page);
2545
8fb74b9f 2546 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2547 if (!nr_pages)
2548 return 0;
2549
2550 /* Split into individual pages */
2551 set_page_refcounted(page);
2552 split_page(page, order);
2553 return nr_pages;
748446bb
MG
2554}
2555
060e7417
MG
2556/*
2557 * Update NUMA hit/miss statistics
2558 *
2559 * Must be called with interrupts disabled.
2560 *
2561 * When __GFP_OTHER_NODE is set assume the node of the preferred
2562 * zone is the local node. This is useful for daemons who allocate
2563 * memory on behalf of other processes.
2564 */
2565static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2566 gfp_t flags)
2567{
2568#ifdef CONFIG_NUMA
2569 int local_nid = numa_node_id();
2570 enum zone_stat_item local_stat = NUMA_LOCAL;
2571
2572 if (unlikely(flags & __GFP_OTHER_NODE)) {
2573 local_stat = NUMA_OTHER;
2574 local_nid = preferred_zone->node;
2575 }
2576
2577 if (z->node == local_nid) {
2578 __inc_zone_state(z, NUMA_HIT);
2579 __inc_zone_state(z, local_stat);
2580 } else {
2581 __inc_zone_state(z, NUMA_MISS);
2582 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2583 }
2584#endif
2585}
2586
1da177e4 2587/*
75379191 2588 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2589 */
0a15c3e9
MG
2590static inline
2591struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2592 struct zone *zone, unsigned int order,
c603844b
MG
2593 gfp_t gfp_flags, unsigned int alloc_flags,
2594 int migratetype)
1da177e4
LT
2595{
2596 unsigned long flags;
689bcebf 2597 struct page *page;
b745bc85 2598 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2599
48db57f8 2600 if (likely(order == 0)) {
1da177e4 2601 struct per_cpu_pages *pcp;
5f8dcc21 2602 struct list_head *list;
1da177e4 2603
1da177e4 2604 local_irq_save(flags);
479f854a
MG
2605 do {
2606 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2607 list = &pcp->lists[migratetype];
2608 if (list_empty(list)) {
2609 pcp->count += rmqueue_bulk(zone, 0,
2610 pcp->batch, list,
2611 migratetype, cold);
2612 if (unlikely(list_empty(list)))
2613 goto failed;
2614 }
b92a6edd 2615
479f854a
MG
2616 if (cold)
2617 page = list_last_entry(list, struct page, lru);
2618 else
2619 page = list_first_entry(list, struct page, lru);
5f8dcc21 2620
83b9355b
VB
2621 __dec_zone_state(zone, NR_ALLOC_BATCH);
2622 list_del(&page->lru);
2623 pcp->count--;
2624
2625 } while (check_new_pcp(page));
7fb1d9fc 2626 } else {
0f352e53
MH
2627 /*
2628 * We most definitely don't want callers attempting to
2629 * allocate greater than order-1 page units with __GFP_NOFAIL.
2630 */
2631 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2632 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2633
479f854a
MG
2634 do {
2635 page = NULL;
2636 if (alloc_flags & ALLOC_HARDER) {
2637 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2638 if (page)
2639 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2640 }
2641 if (!page)
2642 page = __rmqueue(zone, order, migratetype);
2643 } while (page && check_new_pages(page, order));
a74609fa
NP
2644 spin_unlock(&zone->lock);
2645 if (!page)
2646 goto failed;
754078eb 2647 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2648 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2649 get_pcppage_migratetype(page));
1da177e4
LT
2650 }
2651
abe5f972 2652 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2653 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2654 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2655
f8891e5e 2656 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2657 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2658 local_irq_restore(flags);
1da177e4 2659
309381fe 2660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2661 return page;
a74609fa
NP
2662
2663failed:
2664 local_irq_restore(flags);
a74609fa 2665 return NULL;
1da177e4
LT
2666}
2667
933e312e
AM
2668#ifdef CONFIG_FAIL_PAGE_ALLOC
2669
b2588c4b 2670static struct {
933e312e
AM
2671 struct fault_attr attr;
2672
621a5f7a 2673 bool ignore_gfp_highmem;
71baba4b 2674 bool ignore_gfp_reclaim;
54114994 2675 u32 min_order;
933e312e
AM
2676} fail_page_alloc = {
2677 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2678 .ignore_gfp_reclaim = true,
621a5f7a 2679 .ignore_gfp_highmem = true,
54114994 2680 .min_order = 1,
933e312e
AM
2681};
2682
2683static int __init setup_fail_page_alloc(char *str)
2684{
2685 return setup_fault_attr(&fail_page_alloc.attr, str);
2686}
2687__setup("fail_page_alloc=", setup_fail_page_alloc);
2688
deaf386e 2689static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2690{
54114994 2691 if (order < fail_page_alloc.min_order)
deaf386e 2692 return false;
933e312e 2693 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2694 return false;
933e312e 2695 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2696 return false;
71baba4b
MG
2697 if (fail_page_alloc.ignore_gfp_reclaim &&
2698 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2699 return false;
933e312e
AM
2700
2701 return should_fail(&fail_page_alloc.attr, 1 << order);
2702}
2703
2704#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2705
2706static int __init fail_page_alloc_debugfs(void)
2707{
f4ae40a6 2708 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2709 struct dentry *dir;
933e312e 2710
dd48c085
AM
2711 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2712 &fail_page_alloc.attr);
2713 if (IS_ERR(dir))
2714 return PTR_ERR(dir);
933e312e 2715
b2588c4b 2716 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2717 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2718 goto fail;
2719 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2720 &fail_page_alloc.ignore_gfp_highmem))
2721 goto fail;
2722 if (!debugfs_create_u32("min-order", mode, dir,
2723 &fail_page_alloc.min_order))
2724 goto fail;
2725
2726 return 0;
2727fail:
dd48c085 2728 debugfs_remove_recursive(dir);
933e312e 2729
b2588c4b 2730 return -ENOMEM;
933e312e
AM
2731}
2732
2733late_initcall(fail_page_alloc_debugfs);
2734
2735#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2736
2737#else /* CONFIG_FAIL_PAGE_ALLOC */
2738
deaf386e 2739static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2740{
deaf386e 2741 return false;
933e312e
AM
2742}
2743
2744#endif /* CONFIG_FAIL_PAGE_ALLOC */
2745
1da177e4 2746/*
97a16fc8
MG
2747 * Return true if free base pages are above 'mark'. For high-order checks it
2748 * will return true of the order-0 watermark is reached and there is at least
2749 * one free page of a suitable size. Checking now avoids taking the zone lock
2750 * to check in the allocation paths if no pages are free.
1da177e4 2751 */
86a294a8
MH
2752bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2753 int classzone_idx, unsigned int alloc_flags,
2754 long free_pages)
1da177e4 2755{
d23ad423 2756 long min = mark;
1da177e4 2757 int o;
c603844b 2758 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2759
0aaa29a5 2760 /* free_pages may go negative - that's OK */
df0a6daa 2761 free_pages -= (1 << order) - 1;
0aaa29a5 2762
7fb1d9fc 2763 if (alloc_flags & ALLOC_HIGH)
1da177e4 2764 min -= min / 2;
0aaa29a5
MG
2765
2766 /*
2767 * If the caller does not have rights to ALLOC_HARDER then subtract
2768 * the high-atomic reserves. This will over-estimate the size of the
2769 * atomic reserve but it avoids a search.
2770 */
97a16fc8 2771 if (likely(!alloc_harder))
0aaa29a5
MG
2772 free_pages -= z->nr_reserved_highatomic;
2773 else
1da177e4 2774 min -= min / 4;
e2b19197 2775
d95ea5d1
BZ
2776#ifdef CONFIG_CMA
2777 /* If allocation can't use CMA areas don't use free CMA pages */
2778 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2779 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2780#endif
026b0814 2781
97a16fc8
MG
2782 /*
2783 * Check watermarks for an order-0 allocation request. If these
2784 * are not met, then a high-order request also cannot go ahead
2785 * even if a suitable page happened to be free.
2786 */
2787 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2788 return false;
1da177e4 2789
97a16fc8
MG
2790 /* If this is an order-0 request then the watermark is fine */
2791 if (!order)
2792 return true;
2793
2794 /* For a high-order request, check at least one suitable page is free */
2795 for (o = order; o < MAX_ORDER; o++) {
2796 struct free_area *area = &z->free_area[o];
2797 int mt;
2798
2799 if (!area->nr_free)
2800 continue;
2801
2802 if (alloc_harder)
2803 return true;
1da177e4 2804
97a16fc8
MG
2805 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2806 if (!list_empty(&area->free_list[mt]))
2807 return true;
2808 }
2809
2810#ifdef CONFIG_CMA
2811 if ((alloc_flags & ALLOC_CMA) &&
2812 !list_empty(&area->free_list[MIGRATE_CMA])) {
2813 return true;
2814 }
2815#endif
1da177e4 2816 }
97a16fc8 2817 return false;
88f5acf8
MG
2818}
2819
7aeb09f9 2820bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2821 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2822{
2823 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2824 zone_page_state(z, NR_FREE_PAGES));
2825}
2826
48ee5f36
MG
2827static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2828 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2829{
2830 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2831 long cma_pages = 0;
2832
2833#ifdef CONFIG_CMA
2834 /* If allocation can't use CMA areas don't use free CMA pages */
2835 if (!(alloc_flags & ALLOC_CMA))
2836 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2837#endif
2838
2839 /*
2840 * Fast check for order-0 only. If this fails then the reserves
2841 * need to be calculated. There is a corner case where the check
2842 * passes but only the high-order atomic reserve are free. If
2843 * the caller is !atomic then it'll uselessly search the free
2844 * list. That corner case is then slower but it is harmless.
2845 */
2846 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2847 return true;
2848
2849 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2850 free_pages);
2851}
2852
7aeb09f9 2853bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2854 unsigned long mark, int classzone_idx)
88f5acf8
MG
2855{
2856 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2857
2858 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2859 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2860
e2b19197 2861 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2862 free_pages);
1da177e4
LT
2863}
2864
9276b1bc 2865#ifdef CONFIG_NUMA
81c0a2bb
JW
2866static bool zone_local(struct zone *local_zone, struct zone *zone)
2867{
fff4068c 2868 return local_zone->node == zone->node;
81c0a2bb
JW
2869}
2870
957f822a
DR
2871static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2872{
5f7a75ac
MG
2873 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2874 RECLAIM_DISTANCE;
957f822a 2875}
9276b1bc 2876#else /* CONFIG_NUMA */
81c0a2bb
JW
2877static bool zone_local(struct zone *local_zone, struct zone *zone)
2878{
2879 return true;
2880}
2881
957f822a
DR
2882static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2883{
2884 return true;
2885}
9276b1bc
PJ
2886#endif /* CONFIG_NUMA */
2887
4ffeaf35
MG
2888static void reset_alloc_batches(struct zone *preferred_zone)
2889{
2890 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2891
2892 do {
2893 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2894 high_wmark_pages(zone) - low_wmark_pages(zone) -
2895 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2896 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2897 } while (zone++ != preferred_zone);
2898}
2899
7fb1d9fc 2900/*
0798e519 2901 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2902 * a page.
2903 */
2904static struct page *
a9263751
VB
2905get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2906 const struct alloc_context *ac)
753ee728 2907{
c33d6c06 2908 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2909 struct zone *zone;
30534755
MG
2910 bool fair_skipped = false;
2911 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2912
9276b1bc 2913zonelist_scan:
7fb1d9fc 2914 /*
9276b1bc 2915 * Scan zonelist, looking for a zone with enough free.
344736f2 2916 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2917 */
c33d6c06 2918 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2919 ac->nodemask) {
be06af00 2920 struct page *page;
e085dbc5
JW
2921 unsigned long mark;
2922
664eedde
MG
2923 if (cpusets_enabled() &&
2924 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2925 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2926 continue;
81c0a2bb
JW
2927 /*
2928 * Distribute pages in proportion to the individual
2929 * zone size to ensure fair page aging. The zone a
2930 * page was allocated in should have no effect on the
2931 * time the page has in memory before being reclaimed.
81c0a2bb 2932 */
30534755 2933 if (apply_fair) {
57054651 2934 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2935 fair_skipped = true;
3a025760 2936 continue;
4ffeaf35 2937 }
c33d6c06 2938 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2939 if (fair_skipped)
2940 goto reset_fair;
2941 apply_fair = false;
2942 }
81c0a2bb 2943 }
a756cf59
JW
2944 /*
2945 * When allocating a page cache page for writing, we
2946 * want to get it from a zone that is within its dirty
2947 * limit, such that no single zone holds more than its
2948 * proportional share of globally allowed dirty pages.
2949 * The dirty limits take into account the zone's
2950 * lowmem reserves and high watermark so that kswapd
2951 * should be able to balance it without having to
2952 * write pages from its LRU list.
2953 *
2954 * This may look like it could increase pressure on
2955 * lower zones by failing allocations in higher zones
2956 * before they are full. But the pages that do spill
2957 * over are limited as the lower zones are protected
2958 * by this very same mechanism. It should not become
2959 * a practical burden to them.
2960 *
2961 * XXX: For now, allow allocations to potentially
2962 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2963 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2964 * which is important when on a NUMA setup the allowed
2965 * zones are together not big enough to reach the
2966 * global limit. The proper fix for these situations
2967 * will require awareness of zones in the
2968 * dirty-throttling and the flusher threads.
2969 */
c9ab0c4f 2970 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2971 continue;
7fb1d9fc 2972
e085dbc5 2973 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2974 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2975 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2976 int ret;
2977
5dab2911
MG
2978 /* Checked here to keep the fast path fast */
2979 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2980 if (alloc_flags & ALLOC_NO_WATERMARKS)
2981 goto try_this_zone;
2982
957f822a 2983 if (zone_reclaim_mode == 0 ||
c33d6c06 2984 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2985 continue;
2986
fa5e084e
MG
2987 ret = zone_reclaim(zone, gfp_mask, order);
2988 switch (ret) {
2989 case ZONE_RECLAIM_NOSCAN:
2990 /* did not scan */
cd38b115 2991 continue;
fa5e084e
MG
2992 case ZONE_RECLAIM_FULL:
2993 /* scanned but unreclaimable */
cd38b115 2994 continue;
fa5e084e
MG
2995 default:
2996 /* did we reclaim enough */
fed2719e 2997 if (zone_watermark_ok(zone, order, mark,
93ea9964 2998 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2999 goto try_this_zone;
3000
fed2719e 3001 continue;
0798e519 3002 }
7fb1d9fc
RS
3003 }
3004
fa5e084e 3005try_this_zone:
c33d6c06 3006 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3007 gfp_mask, alloc_flags, ac->migratetype);
75379191 3008 if (page) {
479f854a 3009 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3010
3011 /*
3012 * If this is a high-order atomic allocation then check
3013 * if the pageblock should be reserved for the future
3014 */
3015 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3016 reserve_highatomic_pageblock(page, zone, order);
3017
75379191
VB
3018 return page;
3019 }
54a6eb5c 3020 }
9276b1bc 3021
4ffeaf35
MG
3022 /*
3023 * The first pass makes sure allocations are spread fairly within the
3024 * local node. However, the local node might have free pages left
3025 * after the fairness batches are exhausted, and remote zones haven't
3026 * even been considered yet. Try once more without fairness, and
3027 * include remote zones now, before entering the slowpath and waking
3028 * kswapd: prefer spilling to a remote zone over swapping locally.
3029 */
30534755
MG
3030 if (fair_skipped) {
3031reset_fair:
3032 apply_fair = false;
3033 fair_skipped = false;
c33d6c06 3034 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3035 z = ac->preferred_zoneref;
4ffeaf35 3036 goto zonelist_scan;
30534755 3037 }
4ffeaf35
MG
3038
3039 return NULL;
753ee728
MH
3040}
3041
29423e77
DR
3042/*
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3045 */
3046static inline bool should_suppress_show_mem(void)
3047{
3048 bool ret = false;
3049
3050#if NODES_SHIFT > 8
3051 ret = in_interrupt();
3052#endif
3053 return ret;
3054}
3055
a238ab5b
DH
3056static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 DEFAULT_RATELIMIT_INTERVAL,
3058 DEFAULT_RATELIMIT_BURST);
3059
d00181b9 3060void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3061{
a238ab5b
DH
3062 unsigned int filter = SHOW_MEM_FILTER_NODES;
3063
c0a32fc5
SG
3064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 debug_guardpage_minorder() > 0)
a238ab5b
DH
3066 return;
3067
3068 /*
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3071 * of allowed nodes.
3072 */
3073 if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 if (test_thread_flag(TIF_MEMDIE) ||
3075 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3077 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3078 filter &= ~SHOW_MEM_FILTER_NODES;
3079
3080 if (fmt) {
3ee9a4f0
JP
3081 struct va_format vaf;
3082 va_list args;
3083
a238ab5b 3084 va_start(args, fmt);
3ee9a4f0
JP
3085
3086 vaf.fmt = fmt;
3087 vaf.va = &args;
3088
3089 pr_warn("%pV", &vaf);
3090
a238ab5b
DH
3091 va_end(args);
3092 }
3093
c5c990e8
VB
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3096 dump_stack();
3097 if (!should_suppress_show_mem())
3098 show_mem(filter);
3099}
3100
11e33f6a
MG
3101static inline struct page *
3102__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3103 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3104{
6e0fc46d
DR
3105 struct oom_control oc = {
3106 .zonelist = ac->zonelist,
3107 .nodemask = ac->nodemask,
3108 .gfp_mask = gfp_mask,
3109 .order = order,
6e0fc46d 3110 };
11e33f6a
MG
3111 struct page *page;
3112
9879de73
JW
3113 *did_some_progress = 0;
3114
9879de73 3115 /*
dc56401f
JW
3116 * Acquire the oom lock. If that fails, somebody else is
3117 * making progress for us.
9879de73 3118 */
dc56401f 3119 if (!mutex_trylock(&oom_lock)) {
9879de73 3120 *did_some_progress = 1;
11e33f6a 3121 schedule_timeout_uninterruptible(1);
1da177e4
LT
3122 return NULL;
3123 }
6b1de916 3124
11e33f6a
MG
3125 /*
3126 * Go through the zonelist yet one more time, keep very high watermark
3127 * here, this is only to catch a parallel oom killing, we must fail if
3128 * we're still under heavy pressure.
3129 */
a9263751
VB
3130 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3131 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3132 if (page)
11e33f6a
MG
3133 goto out;
3134
4365a567 3135 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3136 /* Coredumps can quickly deplete all memory reserves */
3137 if (current->flags & PF_DUMPCORE)
3138 goto out;
4365a567
KH
3139 /* The OOM killer will not help higher order allocs */
3140 if (order > PAGE_ALLOC_COSTLY_ORDER)
3141 goto out;
03668b3c 3142 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3143 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3144 goto out;
9083905a
JW
3145 if (pm_suspended_storage())
3146 goto out;
3da88fb3
MH
3147 /*
3148 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 * other request to make a forward progress.
3150 * We are in an unfortunate situation where out_of_memory cannot
3151 * do much for this context but let's try it to at least get
3152 * access to memory reserved if the current task is killed (see
3153 * out_of_memory). Once filesystems are ready to handle allocation
3154 * failures more gracefully we should just bail out here.
3155 */
3156
4167e9b2 3157 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3158 if (gfp_mask & __GFP_THISNODE)
3159 goto out;
3160 }
11e33f6a 3161 /* Exhausted what can be done so it's blamo time */
5020e285 3162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3163 *did_some_progress = 1;
5020e285
MH
3164
3165 if (gfp_mask & __GFP_NOFAIL) {
3166 page = get_page_from_freelist(gfp_mask, order,
3167 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3168 /*
3169 * fallback to ignore cpuset restriction if our nodes
3170 * are depleted
3171 */
3172 if (!page)
3173 page = get_page_from_freelist(gfp_mask, order,
3174 ALLOC_NO_WATERMARKS, ac);
3175 }
3176 }
11e33f6a 3177out:
dc56401f 3178 mutex_unlock(&oom_lock);
11e33f6a
MG
3179 return page;
3180}
3181
33c2d214
MH
3182
3183/*
3184 * Maximum number of compaction retries wit a progress before OOM
3185 * killer is consider as the only way to move forward.
3186 */
3187#define MAX_COMPACT_RETRIES 16
3188
56de7263
MG
3189#ifdef CONFIG_COMPACTION
3190/* Try memory compaction for high-order allocations before reclaim */
3191static struct page *
3192__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3193 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3194 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3195{
98dd3b48 3196 struct page *page;
c5d01d0d 3197 int contended_compaction;
53853e2d
VB
3198
3199 if (!order)
66199712 3200 return NULL;
66199712 3201
c06b1fca 3202 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3203 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3204 mode, &contended_compaction);
c06b1fca 3205 current->flags &= ~PF_MEMALLOC;
56de7263 3206
c5d01d0d 3207 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3208 return NULL;
53853e2d 3209
98dd3b48
VB
3210 /*
3211 * At least in one zone compaction wasn't deferred or skipped, so let's
3212 * count a compaction stall
3213 */
3214 count_vm_event(COMPACTSTALL);
8fb74b9f 3215
a9263751
VB
3216 page = get_page_from_freelist(gfp_mask, order,
3217 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3218
98dd3b48
VB
3219 if (page) {
3220 struct zone *zone = page_zone(page);
53853e2d 3221
98dd3b48
VB
3222 zone->compact_blockskip_flush = false;
3223 compaction_defer_reset(zone, order, true);
3224 count_vm_event(COMPACTSUCCESS);
3225 return page;
3226 }
56de7263 3227
98dd3b48
VB
3228 /*
3229 * It's bad if compaction run occurs and fails. The most likely reason
3230 * is that pages exist, but not enough to satisfy watermarks.
3231 */
3232 count_vm_event(COMPACTFAIL);
66199712 3233
c5d01d0d
MH
3234 /*
3235 * In all zones where compaction was attempted (and not
3236 * deferred or skipped), lock contention has been detected.
3237 * For THP allocation we do not want to disrupt the others
3238 * so we fallback to base pages instead.
3239 */
3240 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3241 *compact_result = COMPACT_CONTENDED;
3242
3243 /*
3244 * If compaction was aborted due to need_resched(), we do not
3245 * want to further increase allocation latency, unless it is
3246 * khugepaged trying to collapse.
3247 */
3248 if (contended_compaction == COMPACT_CONTENDED_SCHED
3249 && !(current->flags & PF_KTHREAD))
3250 *compact_result = COMPACT_CONTENDED;
3251
98dd3b48 3252 cond_resched();
56de7263
MG
3253
3254 return NULL;
3255}
33c2d214
MH
3256
3257static inline bool
86a294a8
MH
3258should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3259 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3260 int compaction_retries)
3261{
7854ea6c
MH
3262 int max_retries = MAX_COMPACT_RETRIES;
3263
33c2d214
MH
3264 if (!order)
3265 return false;
3266
3267 /*
3268 * compaction considers all the zone as desperately out of memory
3269 * so it doesn't really make much sense to retry except when the
3270 * failure could be caused by weak migration mode.
3271 */
3272 if (compaction_failed(compact_result)) {
3273 if (*migrate_mode == MIGRATE_ASYNC) {
3274 *migrate_mode = MIGRATE_SYNC_LIGHT;
3275 return true;
3276 }
3277 return false;
3278 }
3279
3280 /*
7854ea6c
MH
3281 * make sure the compaction wasn't deferred or didn't bail out early
3282 * due to locks contention before we declare that we should give up.
86a294a8
MH
3283 * But do not retry if the given zonelist is not suitable for
3284 * compaction.
33c2d214 3285 */
7854ea6c 3286 if (compaction_withdrawn(compact_result))
86a294a8 3287 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3288
3289 /*
3290 * !costly requests are much more important than __GFP_REPEAT
3291 * costly ones because they are de facto nofail and invoke OOM
3292 * killer to move on while costly can fail and users are ready
3293 * to cope with that. 1/4 retries is rather arbitrary but we
3294 * would need much more detailed feedback from compaction to
3295 * make a better decision.
3296 */
3297 if (order > PAGE_ALLOC_COSTLY_ORDER)
3298 max_retries /= 4;
3299 if (compaction_retries <= max_retries)
3300 return true;
33c2d214
MH
3301
3302 return false;
3303}
56de7263
MG
3304#else
3305static inline struct page *
3306__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3307 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3308 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3309{
33c2d214 3310 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3311 return NULL;
3312}
33c2d214
MH
3313
3314static inline bool
86a294a8
MH
3315should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3316 enum compact_result compact_result,
33c2d214
MH
3317 enum migrate_mode *migrate_mode,
3318 int compaction_retries)
3319{
31e49bfd
MH
3320 struct zone *zone;
3321 struct zoneref *z;
3322
3323 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3324 return false;
3325
3326 /*
3327 * There are setups with compaction disabled which would prefer to loop
3328 * inside the allocator rather than hit the oom killer prematurely.
3329 * Let's give them a good hope and keep retrying while the order-0
3330 * watermarks are OK.
3331 */
3332 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3333 ac->nodemask) {
3334 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3335 ac_classzone_idx(ac), alloc_flags))
3336 return true;
3337 }
33c2d214
MH
3338 return false;
3339}
56de7263
MG
3340#endif /* CONFIG_COMPACTION */
3341
bba90710
MS
3342/* Perform direct synchronous page reclaim */
3343static int
a9263751
VB
3344__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3345 const struct alloc_context *ac)
11e33f6a 3346{
11e33f6a 3347 struct reclaim_state reclaim_state;
bba90710 3348 int progress;
11e33f6a
MG
3349
3350 cond_resched();
3351
3352 /* We now go into synchronous reclaim */
3353 cpuset_memory_pressure_bump();
c06b1fca 3354 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3355 lockdep_set_current_reclaim_state(gfp_mask);
3356 reclaim_state.reclaimed_slab = 0;
c06b1fca 3357 current->reclaim_state = &reclaim_state;
11e33f6a 3358
a9263751
VB
3359 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3360 ac->nodemask);
11e33f6a 3361
c06b1fca 3362 current->reclaim_state = NULL;
11e33f6a 3363 lockdep_clear_current_reclaim_state();
c06b1fca 3364 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3365
3366 cond_resched();
3367
bba90710
MS
3368 return progress;
3369}
3370
3371/* The really slow allocator path where we enter direct reclaim */
3372static inline struct page *
3373__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3374 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3375 unsigned long *did_some_progress)
bba90710
MS
3376{
3377 struct page *page = NULL;
3378 bool drained = false;
3379
a9263751 3380 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3381 if (unlikely(!(*did_some_progress)))
3382 return NULL;
11e33f6a 3383
9ee493ce 3384retry:
a9263751
VB
3385 page = get_page_from_freelist(gfp_mask, order,
3386 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3387
3388 /*
3389 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3390 * pages are pinned on the per-cpu lists or in high alloc reserves.
3391 * Shrink them them and try again
9ee493ce
MG
3392 */
3393 if (!page && !drained) {
0aaa29a5 3394 unreserve_highatomic_pageblock(ac);
93481ff0 3395 drain_all_pages(NULL);
9ee493ce
MG
3396 drained = true;
3397 goto retry;
3398 }
3399
11e33f6a
MG
3400 return page;
3401}
3402
a9263751 3403static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3404{
3405 struct zoneref *z;
3406 struct zone *zone;
3407
a9263751
VB
3408 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3409 ac->high_zoneidx, ac->nodemask)
93ea9964 3410 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3411}
3412
c603844b 3413static inline unsigned int
341ce06f
PZ
3414gfp_to_alloc_flags(gfp_t gfp_mask)
3415{
c603844b 3416 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3417
a56f57ff 3418 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3419 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3420
341ce06f
PZ
3421 /*
3422 * The caller may dip into page reserves a bit more if the caller
3423 * cannot run direct reclaim, or if the caller has realtime scheduling
3424 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3425 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3426 */
e6223a3b 3427 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3428
d0164adc 3429 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3430 /*
b104a35d
DR
3431 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3432 * if it can't schedule.
5c3240d9 3433 */
b104a35d 3434 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3435 alloc_flags |= ALLOC_HARDER;
523b9458 3436 /*
b104a35d 3437 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3438 * comment for __cpuset_node_allowed().
523b9458 3439 */
341ce06f 3440 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3441 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3442 alloc_flags |= ALLOC_HARDER;
3443
b37f1dd0
MG
3444 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3445 if (gfp_mask & __GFP_MEMALLOC)
3446 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3447 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3448 alloc_flags |= ALLOC_NO_WATERMARKS;
3449 else if (!in_interrupt() &&
3450 ((current->flags & PF_MEMALLOC) ||
3451 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3452 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3453 }
d95ea5d1 3454#ifdef CONFIG_CMA
43e7a34d 3455 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3456 alloc_flags |= ALLOC_CMA;
3457#endif
341ce06f
PZ
3458 return alloc_flags;
3459}
3460
072bb0aa
MG
3461bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3462{
b37f1dd0 3463 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3464}
3465
d0164adc
MG
3466static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3467{
3468 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3469}
3470
0a0337e0
MH
3471/*
3472 * Maximum number of reclaim retries without any progress before OOM killer
3473 * is consider as the only way to move forward.
3474 */
3475#define MAX_RECLAIM_RETRIES 16
3476
3477/*
3478 * Checks whether it makes sense to retry the reclaim to make a forward progress
3479 * for the given allocation request.
3480 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3481 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3482 * any progress in a row) is considered as well as the reclaimable pages on the
3483 * applicable zone list (with a backoff mechanism which is a function of
3484 * no_progress_loops).
0a0337e0
MH
3485 *
3486 * Returns true if a retry is viable or false to enter the oom path.
3487 */
3488static inline bool
3489should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3490 struct alloc_context *ac, int alloc_flags,
7854ea6c 3491 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3492{
3493 struct zone *zone;
3494 struct zoneref *z;
3495
3496 /*
3497 * Make sure we converge to OOM if we cannot make any progress
3498 * several times in the row.
3499 */
3500 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3501 return false;
3502
0a0337e0
MH
3503 /*
3504 * Keep reclaiming pages while there is a chance this will lead somewhere.
3505 * If none of the target zones can satisfy our allocation request even
3506 * if all reclaimable pages are considered then we are screwed and have
3507 * to go OOM.
3508 */
3509 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3510 ac->nodemask) {
3511 unsigned long available;
ede37713 3512 unsigned long reclaimable;
0a0337e0 3513
ede37713 3514 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3515 available -= DIV_ROUND_UP(no_progress_loops * available,
3516 MAX_RECLAIM_RETRIES);
3517 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3518
3519 /*
3520 * Would the allocation succeed if we reclaimed the whole
3521 * available?
3522 */
3523 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3524 ac_classzone_idx(ac), alloc_flags, available)) {
3525 /*
3526 * If we didn't make any progress and have a lot of
3527 * dirty + writeback pages then we should wait for
3528 * an IO to complete to slow down the reclaim and
3529 * prevent from pre mature OOM
3530 */
3531 if (!did_some_progress) {
3532 unsigned long writeback;
3533 unsigned long dirty;
3534
3535 writeback = zone_page_state_snapshot(zone,
3536 NR_WRITEBACK);
3537 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3538
3539 if (2*(writeback + dirty) > reclaimable) {
3540 congestion_wait(BLK_RW_ASYNC, HZ/10);
3541 return true;
3542 }
3543 }
3544
3545 /*
3546 * Memory allocation/reclaim might be called from a WQ
3547 * context and the current implementation of the WQ
3548 * concurrency control doesn't recognize that
3549 * a particular WQ is congested if the worker thread is
3550 * looping without ever sleeping. Therefore we have to
3551 * do a short sleep here rather than calling
3552 * cond_resched().
3553 */
3554 if (current->flags & PF_WQ_WORKER)
3555 schedule_timeout_uninterruptible(1);
3556 else
3557 cond_resched();
3558
0a0337e0
MH
3559 return true;
3560 }
3561 }
3562
3563 return false;
3564}
3565
11e33f6a
MG
3566static inline struct page *
3567__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3568 struct alloc_context *ac)
11e33f6a 3569{
d0164adc 3570 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3571 struct page *page = NULL;
c603844b 3572 unsigned int alloc_flags;
11e33f6a 3573 unsigned long did_some_progress;
e0b9daeb 3574 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3575 enum compact_result compact_result;
33c2d214 3576 int compaction_retries = 0;
0a0337e0 3577 int no_progress_loops = 0;
1da177e4 3578
72807a74
MG
3579 /*
3580 * In the slowpath, we sanity check order to avoid ever trying to
3581 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3582 * be using allocators in order of preference for an area that is
3583 * too large.
3584 */
1fc28b70
MG
3585 if (order >= MAX_ORDER) {
3586 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3587 return NULL;
1fc28b70 3588 }
1da177e4 3589
d0164adc
MG
3590 /*
3591 * We also sanity check to catch abuse of atomic reserves being used by
3592 * callers that are not in atomic context.
3593 */
3594 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3595 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3596 gfp_mask &= ~__GFP_ATOMIC;
3597
9879de73 3598retry:
d0164adc 3599 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3600 wake_all_kswapds(order, ac);
1da177e4 3601
9bf2229f 3602 /*
7fb1d9fc
RS
3603 * OK, we're below the kswapd watermark and have kicked background
3604 * reclaim. Now things get more complex, so set up alloc_flags according
3605 * to how we want to proceed.
9bf2229f 3606 */
341ce06f 3607 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3608
e46e7b77
MG
3609 /*
3610 * Reset the zonelist iterators if memory policies can be ignored.
3611 * These allocations are high priority and system rather than user
3612 * orientated.
3613 */
3614 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3615 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3616 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3617 ac->high_zoneidx, ac->nodemask);
3618 }
3619
341ce06f 3620 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3621 page = get_page_from_freelist(gfp_mask, order,
3622 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3623 if (page)
3624 goto got_pg;
1da177e4 3625
11e33f6a 3626 /* Allocate without watermarks if the context allows */
341ce06f 3627 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3628 page = get_page_from_freelist(gfp_mask, order,
3629 ALLOC_NO_WATERMARKS, ac);
3630 if (page)
3631 goto got_pg;
1da177e4
LT
3632 }
3633
d0164adc
MG
3634 /* Caller is not willing to reclaim, we can't balance anything */
3635 if (!can_direct_reclaim) {
aed0a0e3 3636 /*
33d53103
MH
3637 * All existing users of the __GFP_NOFAIL are blockable, so warn
3638 * of any new users that actually allow this type of allocation
3639 * to fail.
aed0a0e3
DR
3640 */
3641 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3642 goto nopage;
aed0a0e3 3643 }
1da177e4 3644
341ce06f 3645 /* Avoid recursion of direct reclaim */
33d53103
MH
3646 if (current->flags & PF_MEMALLOC) {
3647 /*
3648 * __GFP_NOFAIL request from this context is rather bizarre
3649 * because we cannot reclaim anything and only can loop waiting
3650 * for somebody to do a work for us.
3651 */
3652 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3653 cond_resched();
3654 goto retry;
3655 }
341ce06f 3656 goto nopage;
33d53103 3657 }
341ce06f 3658
6583bb64
DR
3659 /* Avoid allocations with no watermarks from looping endlessly */
3660 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3661 goto nopage;
3662
77f1fe6b
MG
3663 /*
3664 * Try direct compaction. The first pass is asynchronous. Subsequent
3665 * attempts after direct reclaim are synchronous
3666 */
a9263751
VB
3667 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3668 migration_mode,
c5d01d0d 3669 &compact_result);
56de7263
MG
3670 if (page)
3671 goto got_pg;
75f30861 3672
1f9efdef 3673 /* Checks for THP-specific high-order allocations */
d0164adc 3674 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3675 /*
3676 * If compaction is deferred for high-order allocations, it is
3677 * because sync compaction recently failed. If this is the case
3678 * and the caller requested a THP allocation, we do not want
3679 * to heavily disrupt the system, so we fail the allocation
3680 * instead of entering direct reclaim.
3681 */
c5d01d0d 3682 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3683 goto nopage;
3684
3685 /*
c5d01d0d
MH
3686 * Compaction is contended so rather back off than cause
3687 * excessive stalls.
1f9efdef 3688 */
c5d01d0d 3689 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3690 goto nopage;
3691 }
66199712 3692
33c2d214
MH
3693 if (order && compaction_made_progress(compact_result))
3694 compaction_retries++;
8fe78048 3695
11e33f6a 3696 /* Try direct reclaim and then allocating */
a9263751
VB
3697 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3698 &did_some_progress);
11e33f6a
MG
3699 if (page)
3700 goto got_pg;
1da177e4 3701
9083905a
JW
3702 /* Do not loop if specifically requested */
3703 if (gfp_mask & __GFP_NORETRY)
3704 goto noretry;
3705
0a0337e0
MH
3706 /*
3707 * Do not retry costly high order allocations unless they are
3708 * __GFP_REPEAT
3709 */
3710 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3711 goto noretry;
3712
7854ea6c
MH
3713 /*
3714 * Costly allocations might have made a progress but this doesn't mean
3715 * their order will become available due to high fragmentation so
3716 * always increment the no progress counter for them
3717 */
3718 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3719 no_progress_loops = 0;
7854ea6c 3720 else
0a0337e0 3721 no_progress_loops++;
1da177e4 3722
0a0337e0 3723 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3724 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3725 goto retry;
3726
33c2d214
MH
3727 /*
3728 * It doesn't make any sense to retry for the compaction if the order-0
3729 * reclaim is not able to make any progress because the current
3730 * implementation of the compaction depends on the sufficient amount
3731 * of free memory (see __compaction_suitable)
3732 */
3733 if (did_some_progress > 0 &&
86a294a8
MH
3734 should_compact_retry(ac, order, alloc_flags,
3735 compact_result, &migration_mode,
3736 compaction_retries))
33c2d214
MH
3737 goto retry;
3738
9083905a
JW
3739 /* Reclaim has failed us, start killing things */
3740 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3741 if (page)
3742 goto got_pg;
3743
3744 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3745 if (did_some_progress) {
3746 no_progress_loops = 0;
9083905a 3747 goto retry;
0a0337e0 3748 }
9083905a
JW
3749
3750noretry:
3751 /*
33c2d214
MH
3752 * High-order allocations do not necessarily loop after direct reclaim
3753 * and reclaim/compaction depends on compaction being called after
3754 * reclaim so call directly if necessary.
3755 * It can become very expensive to allocate transparent hugepages at
3756 * fault, so use asynchronous memory compaction for THP unless it is
3757 * khugepaged trying to collapse. All other requests should tolerate
3758 * at least light sync migration.
9083905a 3759 */
33c2d214
MH
3760 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3761 migration_mode = MIGRATE_ASYNC;
3762 else
3763 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3764 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3765 ac, migration_mode,
c5d01d0d 3766 &compact_result);
9083905a
JW
3767 if (page)
3768 goto got_pg;
1da177e4 3769nopage:
a238ab5b 3770 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3771got_pg:
072bb0aa 3772 return page;
1da177e4 3773}
11e33f6a
MG
3774
3775/*
3776 * This is the 'heart' of the zoned buddy allocator.
3777 */
3778struct page *
3779__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3780 struct zonelist *zonelist, nodemask_t *nodemask)
3781{
5bb1b169 3782 struct page *page;
cc9a6c87 3783 unsigned int cpuset_mems_cookie;
c603844b 3784 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3785 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3786 struct alloc_context ac = {
3787 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3788 .zonelist = zonelist,
a9263751
VB
3789 .nodemask = nodemask,
3790 .migratetype = gfpflags_to_migratetype(gfp_mask),
3791 };
11e33f6a 3792
682a3385 3793 if (cpusets_enabled()) {
83d4ca81 3794 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3795 alloc_flags |= ALLOC_CPUSET;
3796 if (!ac.nodemask)
3797 ac.nodemask = &cpuset_current_mems_allowed;
3798 }
3799
dcce284a
BH
3800 gfp_mask &= gfp_allowed_mask;
3801
11e33f6a
MG
3802 lockdep_trace_alloc(gfp_mask);
3803
d0164adc 3804 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3805
3806 if (should_fail_alloc_page(gfp_mask, order))
3807 return NULL;
3808
3809 /*
3810 * Check the zones suitable for the gfp_mask contain at least one
3811 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3812 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3813 */
3814 if (unlikely(!zonelist->_zonerefs->zone))
3815 return NULL;
3816
a9263751 3817 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3818 alloc_flags |= ALLOC_CMA;
3819
cc9a6c87 3820retry_cpuset:
d26914d1 3821 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3822
c9ab0c4f
MG
3823 /* Dirty zone balancing only done in the fast path */
3824 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3825
e46e7b77
MG
3826 /*
3827 * The preferred zone is used for statistics but crucially it is
3828 * also used as the starting point for the zonelist iterator. It
3829 * may get reset for allocations that ignore memory policies.
3830 */
c33d6c06
MG
3831 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3832 ac.high_zoneidx, ac.nodemask);
3833 if (!ac.preferred_zoneref) {
5bb1b169 3834 page = NULL;
4fcb0971 3835 goto no_zone;
5bb1b169
MG
3836 }
3837
5117f45d 3838 /* First allocation attempt */
a9263751 3839 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3840 if (likely(page))
3841 goto out;
11e33f6a 3842
4fcb0971
MG
3843 /*
3844 * Runtime PM, block IO and its error handling path can deadlock
3845 * because I/O on the device might not complete.
3846 */
3847 alloc_mask = memalloc_noio_flags(gfp_mask);
3848 ac.spread_dirty_pages = false;
23f086f9 3849
4741526b
MG
3850 /*
3851 * Restore the original nodemask if it was potentially replaced with
3852 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3853 */
3854 if (cpusets_enabled())
3855 ac.nodemask = nodemask;
4fcb0971 3856 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3857
4fcb0971 3858no_zone:
cc9a6c87
MG
3859 /*
3860 * When updating a task's mems_allowed, it is possible to race with
3861 * parallel threads in such a way that an allocation can fail while
3862 * the mask is being updated. If a page allocation is about to fail,
3863 * check if the cpuset changed during allocation and if so, retry.
3864 */
83d4ca81
MG
3865 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3866 alloc_mask = gfp_mask;
cc9a6c87 3867 goto retry_cpuset;
83d4ca81 3868 }
cc9a6c87 3869
4fcb0971
MG
3870out:
3871 if (kmemcheck_enabled && page)
3872 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3873
3874 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3875
11e33f6a 3876 return page;
1da177e4 3877}
d239171e 3878EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3879
3880/*
3881 * Common helper functions.
3882 */
920c7a5d 3883unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3884{
945a1113
AM
3885 struct page *page;
3886
3887 /*
3888 * __get_free_pages() returns a 32-bit address, which cannot represent
3889 * a highmem page
3890 */
3891 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3892
1da177e4
LT
3893 page = alloc_pages(gfp_mask, order);
3894 if (!page)
3895 return 0;
3896 return (unsigned long) page_address(page);
3897}
1da177e4
LT
3898EXPORT_SYMBOL(__get_free_pages);
3899
920c7a5d 3900unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3901{
945a1113 3902 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3903}
1da177e4
LT
3904EXPORT_SYMBOL(get_zeroed_page);
3905
920c7a5d 3906void __free_pages(struct page *page, unsigned int order)
1da177e4 3907{
b5810039 3908 if (put_page_testzero(page)) {
1da177e4 3909 if (order == 0)
b745bc85 3910 free_hot_cold_page(page, false);
1da177e4
LT
3911 else
3912 __free_pages_ok(page, order);
3913 }
3914}
3915
3916EXPORT_SYMBOL(__free_pages);
3917
920c7a5d 3918void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3919{
3920 if (addr != 0) {
725d704e 3921 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3922 __free_pages(virt_to_page((void *)addr), order);
3923 }
3924}
3925
3926EXPORT_SYMBOL(free_pages);
3927
b63ae8ca
AD
3928/*
3929 * Page Fragment:
3930 * An arbitrary-length arbitrary-offset area of memory which resides
3931 * within a 0 or higher order page. Multiple fragments within that page
3932 * are individually refcounted, in the page's reference counter.
3933 *
3934 * The page_frag functions below provide a simple allocation framework for
3935 * page fragments. This is used by the network stack and network device
3936 * drivers to provide a backing region of memory for use as either an
3937 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3938 */
3939static struct page *__page_frag_refill(struct page_frag_cache *nc,
3940 gfp_t gfp_mask)
3941{
3942 struct page *page = NULL;
3943 gfp_t gfp = gfp_mask;
3944
3945#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3946 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3947 __GFP_NOMEMALLOC;
3948 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3949 PAGE_FRAG_CACHE_MAX_ORDER);
3950 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3951#endif
3952 if (unlikely(!page))
3953 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3954
3955 nc->va = page ? page_address(page) : NULL;
3956
3957 return page;
3958}
3959
3960void *__alloc_page_frag(struct page_frag_cache *nc,
3961 unsigned int fragsz, gfp_t gfp_mask)
3962{
3963 unsigned int size = PAGE_SIZE;
3964 struct page *page;
3965 int offset;
3966
3967 if (unlikely(!nc->va)) {
3968refill:
3969 page = __page_frag_refill(nc, gfp_mask);
3970 if (!page)
3971 return NULL;
3972
3973#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3974 /* if size can vary use size else just use PAGE_SIZE */
3975 size = nc->size;
3976#endif
3977 /* Even if we own the page, we do not use atomic_set().
3978 * This would break get_page_unless_zero() users.
3979 */
fe896d18 3980 page_ref_add(page, size - 1);
b63ae8ca
AD
3981
3982 /* reset page count bias and offset to start of new frag */
2f064f34 3983 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3984 nc->pagecnt_bias = size;
3985 nc->offset = size;
3986 }
3987
3988 offset = nc->offset - fragsz;
3989 if (unlikely(offset < 0)) {
3990 page = virt_to_page(nc->va);
3991
fe896d18 3992 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3993 goto refill;
3994
3995#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3996 /* if size can vary use size else just use PAGE_SIZE */
3997 size = nc->size;
3998#endif
3999 /* OK, page count is 0, we can safely set it */
fe896d18 4000 set_page_count(page, size);
b63ae8ca
AD
4001
4002 /* reset page count bias and offset to start of new frag */
4003 nc->pagecnt_bias = size;
4004 offset = size - fragsz;
4005 }
4006
4007 nc->pagecnt_bias--;
4008 nc->offset = offset;
4009
4010 return nc->va + offset;
4011}
4012EXPORT_SYMBOL(__alloc_page_frag);
4013
4014/*
4015 * Frees a page fragment allocated out of either a compound or order 0 page.
4016 */
4017void __free_page_frag(void *addr)
4018{
4019 struct page *page = virt_to_head_page(addr);
4020
4021 if (unlikely(put_page_testzero(page)))
4022 __free_pages_ok(page, compound_order(page));
4023}
4024EXPORT_SYMBOL(__free_page_frag);
4025
6a1a0d3b 4026/*
52383431 4027 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4028 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4029 * equivalent to alloc_pages.
6a1a0d3b 4030 *
52383431
VD
4031 * It should be used when the caller would like to use kmalloc, but since the
4032 * allocation is large, it has to fall back to the page allocator.
4033 */
4034struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4035{
4036 struct page *page;
52383431 4037
52383431 4038 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4039 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4040 __free_pages(page, order);
4041 page = NULL;
4042 }
52383431
VD
4043 return page;
4044}
4045
4046struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4047{
4048 struct page *page;
52383431 4049
52383431 4050 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4051 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4052 __free_pages(page, order);
4053 page = NULL;
4054 }
52383431
VD
4055 return page;
4056}
4057
4058/*
4059 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4060 * alloc_kmem_pages.
6a1a0d3b 4061 */
52383431 4062void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4063{
d05e83a6 4064 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4065 __free_pages(page, order);
4066}
4067
52383431 4068void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4069{
4070 if (addr != 0) {
4071 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4072 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4073 }
4074}
4075
d00181b9
KS
4076static void *make_alloc_exact(unsigned long addr, unsigned int order,
4077 size_t size)
ee85c2e1
AK
4078{
4079 if (addr) {
4080 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4081 unsigned long used = addr + PAGE_ALIGN(size);
4082
4083 split_page(virt_to_page((void *)addr), order);
4084 while (used < alloc_end) {
4085 free_page(used);
4086 used += PAGE_SIZE;
4087 }
4088 }
4089 return (void *)addr;
4090}
4091
2be0ffe2
TT
4092/**
4093 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4094 * @size: the number of bytes to allocate
4095 * @gfp_mask: GFP flags for the allocation
4096 *
4097 * This function is similar to alloc_pages(), except that it allocates the
4098 * minimum number of pages to satisfy the request. alloc_pages() can only
4099 * allocate memory in power-of-two pages.
4100 *
4101 * This function is also limited by MAX_ORDER.
4102 *
4103 * Memory allocated by this function must be released by free_pages_exact().
4104 */
4105void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4106{
4107 unsigned int order = get_order(size);
4108 unsigned long addr;
4109
4110 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4111 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4112}
4113EXPORT_SYMBOL(alloc_pages_exact);
4114
ee85c2e1
AK
4115/**
4116 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4117 * pages on a node.
b5e6ab58 4118 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4119 * @size: the number of bytes to allocate
4120 * @gfp_mask: GFP flags for the allocation
4121 *
4122 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4123 * back.
ee85c2e1 4124 */
e1931811 4125void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4126{
d00181b9 4127 unsigned int order = get_order(size);
ee85c2e1
AK
4128 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4129 if (!p)
4130 return NULL;
4131 return make_alloc_exact((unsigned long)page_address(p), order, size);
4132}
ee85c2e1 4133
2be0ffe2
TT
4134/**
4135 * free_pages_exact - release memory allocated via alloc_pages_exact()
4136 * @virt: the value returned by alloc_pages_exact.
4137 * @size: size of allocation, same value as passed to alloc_pages_exact().
4138 *
4139 * Release the memory allocated by a previous call to alloc_pages_exact.
4140 */
4141void free_pages_exact(void *virt, size_t size)
4142{
4143 unsigned long addr = (unsigned long)virt;
4144 unsigned long end = addr + PAGE_ALIGN(size);
4145
4146 while (addr < end) {
4147 free_page(addr);
4148 addr += PAGE_SIZE;
4149 }
4150}
4151EXPORT_SYMBOL(free_pages_exact);
4152
e0fb5815
ZY
4153/**
4154 * nr_free_zone_pages - count number of pages beyond high watermark
4155 * @offset: The zone index of the highest zone
4156 *
4157 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4158 * high watermark within all zones at or below a given zone index. For each
4159 * zone, the number of pages is calculated as:
834405c3 4160 * managed_pages - high_pages
e0fb5815 4161 */
ebec3862 4162static unsigned long nr_free_zone_pages(int offset)
1da177e4 4163{
dd1a239f 4164 struct zoneref *z;
54a6eb5c
MG
4165 struct zone *zone;
4166
e310fd43 4167 /* Just pick one node, since fallback list is circular */
ebec3862 4168 unsigned long sum = 0;
1da177e4 4169
0e88460d 4170 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4171
54a6eb5c 4172 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4173 unsigned long size = zone->managed_pages;
41858966 4174 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4175 if (size > high)
4176 sum += size - high;
1da177e4
LT
4177 }
4178
4179 return sum;
4180}
4181
e0fb5815
ZY
4182/**
4183 * nr_free_buffer_pages - count number of pages beyond high watermark
4184 *
4185 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4186 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4187 */
ebec3862 4188unsigned long nr_free_buffer_pages(void)
1da177e4 4189{
af4ca457 4190 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4191}
c2f1a551 4192EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4193
e0fb5815
ZY
4194/**
4195 * nr_free_pagecache_pages - count number of pages beyond high watermark
4196 *
4197 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4198 * high watermark within all zones.
1da177e4 4199 */
ebec3862 4200unsigned long nr_free_pagecache_pages(void)
1da177e4 4201{
2a1e274a 4202 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4203}
08e0f6a9
CL
4204
4205static inline void show_node(struct zone *zone)
1da177e4 4206{
e5adfffc 4207 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4208 printk("Node %d ", zone_to_nid(zone));
1da177e4 4209}
1da177e4 4210
d02bd27b
IR
4211long si_mem_available(void)
4212{
4213 long available;
4214 unsigned long pagecache;
4215 unsigned long wmark_low = 0;
4216 unsigned long pages[NR_LRU_LISTS];
4217 struct zone *zone;
4218 int lru;
4219
4220 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4221 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4222
4223 for_each_zone(zone)
4224 wmark_low += zone->watermark[WMARK_LOW];
4225
4226 /*
4227 * Estimate the amount of memory available for userspace allocations,
4228 * without causing swapping.
4229 */
4230 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4231
4232 /*
4233 * Not all the page cache can be freed, otherwise the system will
4234 * start swapping. Assume at least half of the page cache, or the
4235 * low watermark worth of cache, needs to stay.
4236 */
4237 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4238 pagecache -= min(pagecache / 2, wmark_low);
4239 available += pagecache;
4240
4241 /*
4242 * Part of the reclaimable slab consists of items that are in use,
4243 * and cannot be freed. Cap this estimate at the low watermark.
4244 */
4245 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4246 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4247
4248 if (available < 0)
4249 available = 0;
4250 return available;
4251}
4252EXPORT_SYMBOL_GPL(si_mem_available);
4253
1da177e4
LT
4254void si_meminfo(struct sysinfo *val)
4255{
4256 val->totalram = totalram_pages;
cc7452b6 4257 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4258 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4259 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4260 val->totalhigh = totalhigh_pages;
4261 val->freehigh = nr_free_highpages();
1da177e4
LT
4262 val->mem_unit = PAGE_SIZE;
4263}
4264
4265EXPORT_SYMBOL(si_meminfo);
4266
4267#ifdef CONFIG_NUMA
4268void si_meminfo_node(struct sysinfo *val, int nid)
4269{
cdd91a77
JL
4270 int zone_type; /* needs to be signed */
4271 unsigned long managed_pages = 0;
fc2bd799
JK
4272 unsigned long managed_highpages = 0;
4273 unsigned long free_highpages = 0;
1da177e4
LT
4274 pg_data_t *pgdat = NODE_DATA(nid);
4275
cdd91a77
JL
4276 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4277 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4278 val->totalram = managed_pages;
cc7452b6 4279 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4280 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4281#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4282 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4283 struct zone *zone = &pgdat->node_zones[zone_type];
4284
4285 if (is_highmem(zone)) {
4286 managed_highpages += zone->managed_pages;
4287 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4288 }
4289 }
4290 val->totalhigh = managed_highpages;
4291 val->freehigh = free_highpages;
98d2b0eb 4292#else
fc2bd799
JK
4293 val->totalhigh = managed_highpages;
4294 val->freehigh = free_highpages;
98d2b0eb 4295#endif
1da177e4
LT
4296 val->mem_unit = PAGE_SIZE;
4297}
4298#endif
4299
ddd588b5 4300/*
7bf02ea2
DR
4301 * Determine whether the node should be displayed or not, depending on whether
4302 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4303 */
7bf02ea2 4304bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4305{
4306 bool ret = false;
cc9a6c87 4307 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4308
4309 if (!(flags & SHOW_MEM_FILTER_NODES))
4310 goto out;
4311
cc9a6c87 4312 do {
d26914d1 4313 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4314 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4315 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4316out:
4317 return ret;
4318}
4319
1da177e4
LT
4320#define K(x) ((x) << (PAGE_SHIFT-10))
4321
377e4f16
RV
4322static void show_migration_types(unsigned char type)
4323{
4324 static const char types[MIGRATE_TYPES] = {
4325 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4326 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4327 [MIGRATE_RECLAIMABLE] = 'E',
4328 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4329#ifdef CONFIG_CMA
4330 [MIGRATE_CMA] = 'C',
4331#endif
194159fb 4332#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4333 [MIGRATE_ISOLATE] = 'I',
194159fb 4334#endif
377e4f16
RV
4335 };
4336 char tmp[MIGRATE_TYPES + 1];
4337 char *p = tmp;
4338 int i;
4339
4340 for (i = 0; i < MIGRATE_TYPES; i++) {
4341 if (type & (1 << i))
4342 *p++ = types[i];
4343 }
4344
4345 *p = '\0';
4346 printk("(%s) ", tmp);
4347}
4348
1da177e4
LT
4349/*
4350 * Show free area list (used inside shift_scroll-lock stuff)
4351 * We also calculate the percentage fragmentation. We do this by counting the
4352 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4353 *
4354 * Bits in @filter:
4355 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4356 * cpuset.
1da177e4 4357 */
7bf02ea2 4358void show_free_areas(unsigned int filter)
1da177e4 4359{
d1bfcdb8 4360 unsigned long free_pcp = 0;
c7241913 4361 int cpu;
1da177e4
LT
4362 struct zone *zone;
4363
ee99c71c 4364 for_each_populated_zone(zone) {
7bf02ea2 4365 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4366 continue;
d1bfcdb8 4367
761b0677
KK
4368 for_each_online_cpu(cpu)
4369 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4370 }
4371
a731286d
KM
4372 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4373 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4374 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4375 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4376 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4377 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4378 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4379 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4380 global_page_state(NR_ISOLATED_ANON),
4381 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4382 global_page_state(NR_INACTIVE_FILE),
a731286d 4383 global_page_state(NR_ISOLATED_FILE),
7b854121 4384 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4385 global_page_state(NR_FILE_DIRTY),
ce866b34 4386 global_page_state(NR_WRITEBACK),
fd39fc85 4387 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4388 global_page_state(NR_SLAB_RECLAIMABLE),
4389 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4390 global_page_state(NR_FILE_MAPPED),
4b02108a 4391 global_page_state(NR_SHMEM),
a25700a5 4392 global_page_state(NR_PAGETABLE),
d1ce749a 4393 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4394 global_page_state(NR_FREE_PAGES),
4395 free_pcp,
d1ce749a 4396 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4397
ee99c71c 4398 for_each_populated_zone(zone) {
1da177e4
LT
4399 int i;
4400
7bf02ea2 4401 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4402 continue;
d1bfcdb8
KK
4403
4404 free_pcp = 0;
4405 for_each_online_cpu(cpu)
4406 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4407
1da177e4
LT
4408 show_node(zone);
4409 printk("%s"
4410 " free:%lukB"
4411 " min:%lukB"
4412 " low:%lukB"
4413 " high:%lukB"
4f98a2fe
RR
4414 " active_anon:%lukB"
4415 " inactive_anon:%lukB"
4416 " active_file:%lukB"
4417 " inactive_file:%lukB"
7b854121 4418 " unevictable:%lukB"
a731286d
KM
4419 " isolated(anon):%lukB"
4420 " isolated(file):%lukB"
1da177e4 4421 " present:%lukB"
9feedc9d 4422 " managed:%lukB"
4a0aa73f
KM
4423 " mlocked:%lukB"
4424 " dirty:%lukB"
4425 " writeback:%lukB"
4426 " mapped:%lukB"
4b02108a 4427 " shmem:%lukB"
4a0aa73f
KM
4428 " slab_reclaimable:%lukB"
4429 " slab_unreclaimable:%lukB"
c6a7f572 4430 " kernel_stack:%lukB"
4a0aa73f
KM
4431 " pagetables:%lukB"
4432 " unstable:%lukB"
4433 " bounce:%lukB"
d1bfcdb8
KK
4434 " free_pcp:%lukB"
4435 " local_pcp:%ukB"
d1ce749a 4436 " free_cma:%lukB"
4a0aa73f 4437 " writeback_tmp:%lukB"
1da177e4
LT
4438 " pages_scanned:%lu"
4439 " all_unreclaimable? %s"
4440 "\n",
4441 zone->name,
88f5acf8 4442 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4443 K(min_wmark_pages(zone)),
4444 K(low_wmark_pages(zone)),
4445 K(high_wmark_pages(zone)),
4f98a2fe
RR
4446 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4447 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4448 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4449 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4450 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4451 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4452 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4453 K(zone->present_pages),
9feedc9d 4454 K(zone->managed_pages),
4a0aa73f
KM
4455 K(zone_page_state(zone, NR_MLOCK)),
4456 K(zone_page_state(zone, NR_FILE_DIRTY)),
4457 K(zone_page_state(zone, NR_WRITEBACK)),
4458 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4459 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4460 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4461 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4462 zone_page_state(zone, NR_KERNEL_STACK) *
4463 THREAD_SIZE / 1024,
4a0aa73f
KM
4464 K(zone_page_state(zone, NR_PAGETABLE)),
4465 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4466 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4467 K(free_pcp),
4468 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4469 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4470 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4471 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4472 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4473 );
4474 printk("lowmem_reserve[]:");
4475 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4476 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4477 printk("\n");
4478 }
4479
ee99c71c 4480 for_each_populated_zone(zone) {
d00181b9
KS
4481 unsigned int order;
4482 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4483 unsigned char types[MAX_ORDER];
1da177e4 4484
7bf02ea2 4485 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4486 continue;
1da177e4
LT
4487 show_node(zone);
4488 printk("%s: ", zone->name);
1da177e4
LT
4489
4490 spin_lock_irqsave(&zone->lock, flags);
4491 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4492 struct free_area *area = &zone->free_area[order];
4493 int type;
4494
4495 nr[order] = area->nr_free;
8f9de51a 4496 total += nr[order] << order;
377e4f16
RV
4497
4498 types[order] = 0;
4499 for (type = 0; type < MIGRATE_TYPES; type++) {
4500 if (!list_empty(&area->free_list[type]))
4501 types[order] |= 1 << type;
4502 }
1da177e4
LT
4503 }
4504 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4505 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4506 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4507 if (nr[order])
4508 show_migration_types(types[order]);
4509 }
1da177e4
LT
4510 printk("= %lukB\n", K(total));
4511 }
4512
949f7ec5
DR
4513 hugetlb_show_meminfo();
4514
e6f3602d
LW
4515 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4516
1da177e4
LT
4517 show_swap_cache_info();
4518}
4519
19770b32
MG
4520static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4521{
4522 zoneref->zone = zone;
4523 zoneref->zone_idx = zone_idx(zone);
4524}
4525
1da177e4
LT
4526/*
4527 * Builds allocation fallback zone lists.
1a93205b
CL
4528 *
4529 * Add all populated zones of a node to the zonelist.
1da177e4 4530 */
f0c0b2b8 4531static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4532 int nr_zones)
1da177e4 4533{
1a93205b 4534 struct zone *zone;
bc732f1d 4535 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4536
4537 do {
2f6726e5 4538 zone_type--;
070f8032 4539 zone = pgdat->node_zones + zone_type;
1a93205b 4540 if (populated_zone(zone)) {
dd1a239f
MG
4541 zoneref_set_zone(zone,
4542 &zonelist->_zonerefs[nr_zones++]);
070f8032 4543 check_highest_zone(zone_type);
1da177e4 4544 }
2f6726e5 4545 } while (zone_type);
bc732f1d 4546
070f8032 4547 return nr_zones;
1da177e4
LT
4548}
4549
f0c0b2b8
KH
4550
4551/*
4552 * zonelist_order:
4553 * 0 = automatic detection of better ordering.
4554 * 1 = order by ([node] distance, -zonetype)
4555 * 2 = order by (-zonetype, [node] distance)
4556 *
4557 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4558 * the same zonelist. So only NUMA can configure this param.
4559 */
4560#define ZONELIST_ORDER_DEFAULT 0
4561#define ZONELIST_ORDER_NODE 1
4562#define ZONELIST_ORDER_ZONE 2
4563
4564/* zonelist order in the kernel.
4565 * set_zonelist_order() will set this to NODE or ZONE.
4566 */
4567static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4568static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4569
4570
1da177e4 4571#ifdef CONFIG_NUMA
f0c0b2b8
KH
4572/* The value user specified ....changed by config */
4573static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4574/* string for sysctl */
4575#define NUMA_ZONELIST_ORDER_LEN 16
4576char numa_zonelist_order[16] = "default";
4577
4578/*
4579 * interface for configure zonelist ordering.
4580 * command line option "numa_zonelist_order"
4581 * = "[dD]efault - default, automatic configuration.
4582 * = "[nN]ode - order by node locality, then by zone within node
4583 * = "[zZ]one - order by zone, then by locality within zone
4584 */
4585
4586static int __parse_numa_zonelist_order(char *s)
4587{
4588 if (*s == 'd' || *s == 'D') {
4589 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4590 } else if (*s == 'n' || *s == 'N') {
4591 user_zonelist_order = ZONELIST_ORDER_NODE;
4592 } else if (*s == 'z' || *s == 'Z') {
4593 user_zonelist_order = ZONELIST_ORDER_ZONE;
4594 } else {
1170532b 4595 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4596 return -EINVAL;
4597 }
4598 return 0;
4599}
4600
4601static __init int setup_numa_zonelist_order(char *s)
4602{
ecb256f8
VL
4603 int ret;
4604
4605 if (!s)
4606 return 0;
4607
4608 ret = __parse_numa_zonelist_order(s);
4609 if (ret == 0)
4610 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4611
4612 return ret;
f0c0b2b8
KH
4613}
4614early_param("numa_zonelist_order", setup_numa_zonelist_order);
4615
4616/*
4617 * sysctl handler for numa_zonelist_order
4618 */
cccad5b9 4619int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4620 void __user *buffer, size_t *length,
f0c0b2b8
KH
4621 loff_t *ppos)
4622{
4623 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4624 int ret;
443c6f14 4625 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4626
443c6f14 4627 mutex_lock(&zl_order_mutex);
dacbde09
CG
4628 if (write) {
4629 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4630 ret = -EINVAL;
4631 goto out;
4632 }
4633 strcpy(saved_string, (char *)table->data);
4634 }
8d65af78 4635 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4636 if (ret)
443c6f14 4637 goto out;
f0c0b2b8
KH
4638 if (write) {
4639 int oldval = user_zonelist_order;
dacbde09
CG
4640
4641 ret = __parse_numa_zonelist_order((char *)table->data);
4642 if (ret) {
f0c0b2b8
KH
4643 /*
4644 * bogus value. restore saved string
4645 */
dacbde09 4646 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4647 NUMA_ZONELIST_ORDER_LEN);
4648 user_zonelist_order = oldval;
4eaf3f64
HL
4649 } else if (oldval != user_zonelist_order) {
4650 mutex_lock(&zonelists_mutex);
9adb62a5 4651 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4652 mutex_unlock(&zonelists_mutex);
4653 }
f0c0b2b8 4654 }
443c6f14
AK
4655out:
4656 mutex_unlock(&zl_order_mutex);
4657 return ret;
f0c0b2b8
KH
4658}
4659
4660
62bc62a8 4661#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4662static int node_load[MAX_NUMNODES];
4663
1da177e4 4664/**
4dc3b16b 4665 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4666 * @node: node whose fallback list we're appending
4667 * @used_node_mask: nodemask_t of already used nodes
4668 *
4669 * We use a number of factors to determine which is the next node that should
4670 * appear on a given node's fallback list. The node should not have appeared
4671 * already in @node's fallback list, and it should be the next closest node
4672 * according to the distance array (which contains arbitrary distance values
4673 * from each node to each node in the system), and should also prefer nodes
4674 * with no CPUs, since presumably they'll have very little allocation pressure
4675 * on them otherwise.
4676 * It returns -1 if no node is found.
4677 */
f0c0b2b8 4678static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4679{
4cf808eb 4680 int n, val;
1da177e4 4681 int min_val = INT_MAX;
00ef2d2f 4682 int best_node = NUMA_NO_NODE;
a70f7302 4683 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4684
4cf808eb
LT
4685 /* Use the local node if we haven't already */
4686 if (!node_isset(node, *used_node_mask)) {
4687 node_set(node, *used_node_mask);
4688 return node;
4689 }
1da177e4 4690
4b0ef1fe 4691 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4692
4693 /* Don't want a node to appear more than once */
4694 if (node_isset(n, *used_node_mask))
4695 continue;
4696
1da177e4
LT
4697 /* Use the distance array to find the distance */
4698 val = node_distance(node, n);
4699
4cf808eb
LT
4700 /* Penalize nodes under us ("prefer the next node") */
4701 val += (n < node);
4702
1da177e4 4703 /* Give preference to headless and unused nodes */
a70f7302
RR
4704 tmp = cpumask_of_node(n);
4705 if (!cpumask_empty(tmp))
1da177e4
LT
4706 val += PENALTY_FOR_NODE_WITH_CPUS;
4707
4708 /* Slight preference for less loaded node */
4709 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4710 val += node_load[n];
4711
4712 if (val < min_val) {
4713 min_val = val;
4714 best_node = n;
4715 }
4716 }
4717
4718 if (best_node >= 0)
4719 node_set(best_node, *used_node_mask);
4720
4721 return best_node;
4722}
4723
f0c0b2b8
KH
4724
4725/*
4726 * Build zonelists ordered by node and zones within node.
4727 * This results in maximum locality--normal zone overflows into local
4728 * DMA zone, if any--but risks exhausting DMA zone.
4729 */
4730static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4731{
f0c0b2b8 4732 int j;
1da177e4 4733 struct zonelist *zonelist;
f0c0b2b8 4734
54a6eb5c 4735 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4736 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4737 ;
bc732f1d 4738 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4739 zonelist->_zonerefs[j].zone = NULL;
4740 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4741}
4742
523b9458
CL
4743/*
4744 * Build gfp_thisnode zonelists
4745 */
4746static void build_thisnode_zonelists(pg_data_t *pgdat)
4747{
523b9458
CL
4748 int j;
4749 struct zonelist *zonelist;
4750
54a6eb5c 4751 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4752 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4753 zonelist->_zonerefs[j].zone = NULL;
4754 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4755}
4756
f0c0b2b8
KH
4757/*
4758 * Build zonelists ordered by zone and nodes within zones.
4759 * This results in conserving DMA zone[s] until all Normal memory is
4760 * exhausted, but results in overflowing to remote node while memory
4761 * may still exist in local DMA zone.
4762 */
4763static int node_order[MAX_NUMNODES];
4764
4765static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4766{
f0c0b2b8
KH
4767 int pos, j, node;
4768 int zone_type; /* needs to be signed */
4769 struct zone *z;
4770 struct zonelist *zonelist;
4771
54a6eb5c
MG
4772 zonelist = &pgdat->node_zonelists[0];
4773 pos = 0;
4774 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4775 for (j = 0; j < nr_nodes; j++) {
4776 node = node_order[j];
4777 z = &NODE_DATA(node)->node_zones[zone_type];
4778 if (populated_zone(z)) {
dd1a239f
MG
4779 zoneref_set_zone(z,
4780 &zonelist->_zonerefs[pos++]);
54a6eb5c 4781 check_highest_zone(zone_type);
f0c0b2b8
KH
4782 }
4783 }
f0c0b2b8 4784 }
dd1a239f
MG
4785 zonelist->_zonerefs[pos].zone = NULL;
4786 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4787}
4788
3193913c
MG
4789#if defined(CONFIG_64BIT)
4790/*
4791 * Devices that require DMA32/DMA are relatively rare and do not justify a
4792 * penalty to every machine in case the specialised case applies. Default
4793 * to Node-ordering on 64-bit NUMA machines
4794 */
4795static int default_zonelist_order(void)
4796{
4797 return ZONELIST_ORDER_NODE;
4798}
4799#else
4800/*
4801 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4802 * by the kernel. If processes running on node 0 deplete the low memory zone
4803 * then reclaim will occur more frequency increasing stalls and potentially
4804 * be easier to OOM if a large percentage of the zone is under writeback or
4805 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4806 * Hence, default to zone ordering on 32-bit.
4807 */
f0c0b2b8
KH
4808static int default_zonelist_order(void)
4809{
f0c0b2b8
KH
4810 return ZONELIST_ORDER_ZONE;
4811}
3193913c 4812#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4813
4814static void set_zonelist_order(void)
4815{
4816 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4817 current_zonelist_order = default_zonelist_order();
4818 else
4819 current_zonelist_order = user_zonelist_order;
4820}
4821
4822static void build_zonelists(pg_data_t *pgdat)
4823{
c00eb15a 4824 int i, node, load;
1da177e4 4825 nodemask_t used_mask;
f0c0b2b8
KH
4826 int local_node, prev_node;
4827 struct zonelist *zonelist;
d00181b9 4828 unsigned int order = current_zonelist_order;
1da177e4
LT
4829
4830 /* initialize zonelists */
523b9458 4831 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4832 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4833 zonelist->_zonerefs[0].zone = NULL;
4834 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4835 }
4836
4837 /* NUMA-aware ordering of nodes */
4838 local_node = pgdat->node_id;
62bc62a8 4839 load = nr_online_nodes;
1da177e4
LT
4840 prev_node = local_node;
4841 nodes_clear(used_mask);
f0c0b2b8 4842
f0c0b2b8 4843 memset(node_order, 0, sizeof(node_order));
c00eb15a 4844 i = 0;
f0c0b2b8 4845
1da177e4
LT
4846 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4847 /*
4848 * We don't want to pressure a particular node.
4849 * So adding penalty to the first node in same
4850 * distance group to make it round-robin.
4851 */
957f822a
DR
4852 if (node_distance(local_node, node) !=
4853 node_distance(local_node, prev_node))
f0c0b2b8
KH
4854 node_load[node] = load;
4855
1da177e4
LT
4856 prev_node = node;
4857 load--;
f0c0b2b8
KH
4858 if (order == ZONELIST_ORDER_NODE)
4859 build_zonelists_in_node_order(pgdat, node);
4860 else
c00eb15a 4861 node_order[i++] = node; /* remember order */
f0c0b2b8 4862 }
1da177e4 4863
f0c0b2b8
KH
4864 if (order == ZONELIST_ORDER_ZONE) {
4865 /* calculate node order -- i.e., DMA last! */
c00eb15a 4866 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4867 }
523b9458
CL
4868
4869 build_thisnode_zonelists(pgdat);
1da177e4
LT
4870}
4871
7aac7898
LS
4872#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4873/*
4874 * Return node id of node used for "local" allocations.
4875 * I.e., first node id of first zone in arg node's generic zonelist.
4876 * Used for initializing percpu 'numa_mem', which is used primarily
4877 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4878 */
4879int local_memory_node(int node)
4880{
c33d6c06 4881 struct zoneref *z;
7aac7898 4882
c33d6c06 4883 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4884 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4885 NULL);
4886 return z->zone->node;
7aac7898
LS
4887}
4888#endif
f0c0b2b8 4889
1da177e4
LT
4890#else /* CONFIG_NUMA */
4891
f0c0b2b8
KH
4892static void set_zonelist_order(void)
4893{
4894 current_zonelist_order = ZONELIST_ORDER_ZONE;
4895}
4896
4897static void build_zonelists(pg_data_t *pgdat)
1da177e4 4898{
19655d34 4899 int node, local_node;
54a6eb5c
MG
4900 enum zone_type j;
4901 struct zonelist *zonelist;
1da177e4
LT
4902
4903 local_node = pgdat->node_id;
1da177e4 4904
54a6eb5c 4905 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4906 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4907
54a6eb5c
MG
4908 /*
4909 * Now we build the zonelist so that it contains the zones
4910 * of all the other nodes.
4911 * We don't want to pressure a particular node, so when
4912 * building the zones for node N, we make sure that the
4913 * zones coming right after the local ones are those from
4914 * node N+1 (modulo N)
4915 */
4916 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4917 if (!node_online(node))
4918 continue;
bc732f1d 4919 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4920 }
54a6eb5c
MG
4921 for (node = 0; node < local_node; node++) {
4922 if (!node_online(node))
4923 continue;
bc732f1d 4924 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4925 }
4926
dd1a239f
MG
4927 zonelist->_zonerefs[j].zone = NULL;
4928 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4929}
4930
4931#endif /* CONFIG_NUMA */
4932
99dcc3e5
CL
4933/*
4934 * Boot pageset table. One per cpu which is going to be used for all
4935 * zones and all nodes. The parameters will be set in such a way
4936 * that an item put on a list will immediately be handed over to
4937 * the buddy list. This is safe since pageset manipulation is done
4938 * with interrupts disabled.
4939 *
4940 * The boot_pagesets must be kept even after bootup is complete for
4941 * unused processors and/or zones. They do play a role for bootstrapping
4942 * hotplugged processors.
4943 *
4944 * zoneinfo_show() and maybe other functions do
4945 * not check if the processor is online before following the pageset pointer.
4946 * Other parts of the kernel may not check if the zone is available.
4947 */
4948static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4949static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4950static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4951
4eaf3f64
HL
4952/*
4953 * Global mutex to protect against size modification of zonelists
4954 * as well as to serialize pageset setup for the new populated zone.
4955 */
4956DEFINE_MUTEX(zonelists_mutex);
4957
9b1a4d38 4958/* return values int ....just for stop_machine() */
4ed7e022 4959static int __build_all_zonelists(void *data)
1da177e4 4960{
6811378e 4961 int nid;
99dcc3e5 4962 int cpu;
9adb62a5 4963 pg_data_t *self = data;
9276b1bc 4964
7f9cfb31
BL
4965#ifdef CONFIG_NUMA
4966 memset(node_load, 0, sizeof(node_load));
4967#endif
9adb62a5
JL
4968
4969 if (self && !node_online(self->node_id)) {
4970 build_zonelists(self);
9adb62a5
JL
4971 }
4972
9276b1bc 4973 for_each_online_node(nid) {
7ea1530a
CL
4974 pg_data_t *pgdat = NODE_DATA(nid);
4975
4976 build_zonelists(pgdat);
9276b1bc 4977 }
99dcc3e5
CL
4978
4979 /*
4980 * Initialize the boot_pagesets that are going to be used
4981 * for bootstrapping processors. The real pagesets for
4982 * each zone will be allocated later when the per cpu
4983 * allocator is available.
4984 *
4985 * boot_pagesets are used also for bootstrapping offline
4986 * cpus if the system is already booted because the pagesets
4987 * are needed to initialize allocators on a specific cpu too.
4988 * F.e. the percpu allocator needs the page allocator which
4989 * needs the percpu allocator in order to allocate its pagesets
4990 * (a chicken-egg dilemma).
4991 */
7aac7898 4992 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4993 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4994
7aac7898
LS
4995#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4996 /*
4997 * We now know the "local memory node" for each node--
4998 * i.e., the node of the first zone in the generic zonelist.
4999 * Set up numa_mem percpu variable for on-line cpus. During
5000 * boot, only the boot cpu should be on-line; we'll init the
5001 * secondary cpus' numa_mem as they come on-line. During
5002 * node/memory hotplug, we'll fixup all on-line cpus.
5003 */
5004 if (cpu_online(cpu))
5005 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5006#endif
5007 }
5008
6811378e
YG
5009 return 0;
5010}
5011
061f67bc
RV
5012static noinline void __init
5013build_all_zonelists_init(void)
5014{
5015 __build_all_zonelists(NULL);
5016 mminit_verify_zonelist();
5017 cpuset_init_current_mems_allowed();
5018}
5019
4eaf3f64
HL
5020/*
5021 * Called with zonelists_mutex held always
5022 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5023 *
5024 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5025 * [we're only called with non-NULL zone through __meminit paths] and
5026 * (2) call of __init annotated helper build_all_zonelists_init
5027 * [protected by SYSTEM_BOOTING].
4eaf3f64 5028 */
9adb62a5 5029void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5030{
f0c0b2b8
KH
5031 set_zonelist_order();
5032
6811378e 5033 if (system_state == SYSTEM_BOOTING) {
061f67bc 5034 build_all_zonelists_init();
6811378e 5035 } else {
e9959f0f 5036#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5037 if (zone)
5038 setup_zone_pageset(zone);
e9959f0f 5039#endif
dd1895e2
CS
5040 /* we have to stop all cpus to guarantee there is no user
5041 of zonelist */
9adb62a5 5042 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5043 /* cpuset refresh routine should be here */
5044 }
bd1e22b8 5045 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5046 /*
5047 * Disable grouping by mobility if the number of pages in the
5048 * system is too low to allow the mechanism to work. It would be
5049 * more accurate, but expensive to check per-zone. This check is
5050 * made on memory-hotadd so a system can start with mobility
5051 * disabled and enable it later
5052 */
d9c23400 5053 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5054 page_group_by_mobility_disabled = 1;
5055 else
5056 page_group_by_mobility_disabled = 0;
5057
756a025f
JP
5058 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5059 nr_online_nodes,
5060 zonelist_order_name[current_zonelist_order],
5061 page_group_by_mobility_disabled ? "off" : "on",
5062 vm_total_pages);
f0c0b2b8 5063#ifdef CONFIG_NUMA
f88dfff5 5064 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5065#endif
1da177e4
LT
5066}
5067
5068/*
5069 * Helper functions to size the waitqueue hash table.
5070 * Essentially these want to choose hash table sizes sufficiently
5071 * large so that collisions trying to wait on pages are rare.
5072 * But in fact, the number of active page waitqueues on typical
5073 * systems is ridiculously low, less than 200. So this is even
5074 * conservative, even though it seems large.
5075 *
5076 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5077 * waitqueues, i.e. the size of the waitq table given the number of pages.
5078 */
5079#define PAGES_PER_WAITQUEUE 256
5080
cca448fe 5081#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5082static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5083{
5084 unsigned long size = 1;
5085
5086 pages /= PAGES_PER_WAITQUEUE;
5087
5088 while (size < pages)
5089 size <<= 1;
5090
5091 /*
5092 * Once we have dozens or even hundreds of threads sleeping
5093 * on IO we've got bigger problems than wait queue collision.
5094 * Limit the size of the wait table to a reasonable size.
5095 */
5096 size = min(size, 4096UL);
5097
5098 return max(size, 4UL);
5099}
cca448fe
YG
5100#else
5101/*
5102 * A zone's size might be changed by hot-add, so it is not possible to determine
5103 * a suitable size for its wait_table. So we use the maximum size now.
5104 *
5105 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5106 *
5107 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5108 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5109 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5110 *
5111 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5112 * or more by the traditional way. (See above). It equals:
5113 *
5114 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5115 * ia64(16K page size) : = ( 8G + 4M)byte.
5116 * powerpc (64K page size) : = (32G +16M)byte.
5117 */
5118static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5119{
5120 return 4096UL;
5121}
5122#endif
1da177e4
LT
5123
5124/*
5125 * This is an integer logarithm so that shifts can be used later
5126 * to extract the more random high bits from the multiplicative
5127 * hash function before the remainder is taken.
5128 */
5129static inline unsigned long wait_table_bits(unsigned long size)
5130{
5131 return ffz(~size);
5132}
5133
1da177e4
LT
5134/*
5135 * Initially all pages are reserved - free ones are freed
5136 * up by free_all_bootmem() once the early boot process is
5137 * done. Non-atomic initialization, single-pass.
5138 */
c09b4240 5139void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5140 unsigned long start_pfn, enum memmap_context context)
1da177e4 5141{
4b94ffdc 5142 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5143 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5144 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5145 unsigned long pfn;
3a80a7fa 5146 unsigned long nr_initialised = 0;
342332e6
TI
5147#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5148 struct memblock_region *r = NULL, *tmp;
5149#endif
1da177e4 5150
22b31eec
HD
5151 if (highest_memmap_pfn < end_pfn - 1)
5152 highest_memmap_pfn = end_pfn - 1;
5153
4b94ffdc
DW
5154 /*
5155 * Honor reservation requested by the driver for this ZONE_DEVICE
5156 * memory
5157 */
5158 if (altmap && start_pfn == altmap->base_pfn)
5159 start_pfn += altmap->reserve;
5160
cbe8dd4a 5161 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5162 /*
b72d0ffb
AM
5163 * There can be holes in boot-time mem_map[]s handed to this
5164 * function. They do not exist on hotplugged memory.
a2f3aa02 5165 */
b72d0ffb
AM
5166 if (context != MEMMAP_EARLY)
5167 goto not_early;
5168
5169 if (!early_pfn_valid(pfn))
5170 continue;
5171 if (!early_pfn_in_nid(pfn, nid))
5172 continue;
5173 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5174 break;
342332e6
TI
5175
5176#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5177 /*
5178 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5179 * from zone_movable_pfn[nid] to end of each node should be
5180 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5181 */
5182 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5183 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5184 continue;
342332e6 5185
b72d0ffb
AM
5186 /*
5187 * Check given memblock attribute by firmware which can affect
5188 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5189 * mirrored, it's an overlapped memmap init. skip it.
5190 */
5191 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5192 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5193 for_each_memblock(memory, tmp)
5194 if (pfn < memblock_region_memory_end_pfn(tmp))
5195 break;
5196 r = tmp;
5197 }
5198 if (pfn >= memblock_region_memory_base_pfn(r) &&
5199 memblock_is_mirror(r)) {
5200 /* already initialized as NORMAL */
5201 pfn = memblock_region_memory_end_pfn(r);
5202 continue;
342332e6 5203 }
a2f3aa02 5204 }
b72d0ffb 5205#endif
ac5d2539 5206
b72d0ffb 5207not_early:
ac5d2539
MG
5208 /*
5209 * Mark the block movable so that blocks are reserved for
5210 * movable at startup. This will force kernel allocations
5211 * to reserve their blocks rather than leaking throughout
5212 * the address space during boot when many long-lived
974a786e 5213 * kernel allocations are made.
ac5d2539
MG
5214 *
5215 * bitmap is created for zone's valid pfn range. but memmap
5216 * can be created for invalid pages (for alignment)
5217 * check here not to call set_pageblock_migratetype() against
5218 * pfn out of zone.
5219 */
5220 if (!(pfn & (pageblock_nr_pages - 1))) {
5221 struct page *page = pfn_to_page(pfn);
5222
5223 __init_single_page(page, pfn, zone, nid);
5224 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5225 } else {
5226 __init_single_pfn(pfn, zone, nid);
5227 }
1da177e4
LT
5228 }
5229}
5230
1e548deb 5231static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5232{
7aeb09f9 5233 unsigned int order, t;
b2a0ac88
MG
5234 for_each_migratetype_order(order, t) {
5235 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5236 zone->free_area[order].nr_free = 0;
5237 }
5238}
5239
5240#ifndef __HAVE_ARCH_MEMMAP_INIT
5241#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5242 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5243#endif
5244
7cd2b0a3 5245static int zone_batchsize(struct zone *zone)
e7c8d5c9 5246{
3a6be87f 5247#ifdef CONFIG_MMU
e7c8d5c9
CL
5248 int batch;
5249
5250 /*
5251 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5252 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5253 *
5254 * OK, so we don't know how big the cache is. So guess.
5255 */
b40da049 5256 batch = zone->managed_pages / 1024;
ba56e91c
SR
5257 if (batch * PAGE_SIZE > 512 * 1024)
5258 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5259 batch /= 4; /* We effectively *= 4 below */
5260 if (batch < 1)
5261 batch = 1;
5262
5263 /*
0ceaacc9
NP
5264 * Clamp the batch to a 2^n - 1 value. Having a power
5265 * of 2 value was found to be more likely to have
5266 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5267 *
0ceaacc9
NP
5268 * For example if 2 tasks are alternately allocating
5269 * batches of pages, one task can end up with a lot
5270 * of pages of one half of the possible page colors
5271 * and the other with pages of the other colors.
e7c8d5c9 5272 */
9155203a 5273 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5274
e7c8d5c9 5275 return batch;
3a6be87f
DH
5276
5277#else
5278 /* The deferral and batching of frees should be suppressed under NOMMU
5279 * conditions.
5280 *
5281 * The problem is that NOMMU needs to be able to allocate large chunks
5282 * of contiguous memory as there's no hardware page translation to
5283 * assemble apparent contiguous memory from discontiguous pages.
5284 *
5285 * Queueing large contiguous runs of pages for batching, however,
5286 * causes the pages to actually be freed in smaller chunks. As there
5287 * can be a significant delay between the individual batches being
5288 * recycled, this leads to the once large chunks of space being
5289 * fragmented and becoming unavailable for high-order allocations.
5290 */
5291 return 0;
5292#endif
e7c8d5c9
CL
5293}
5294
8d7a8fa9
CS
5295/*
5296 * pcp->high and pcp->batch values are related and dependent on one another:
5297 * ->batch must never be higher then ->high.
5298 * The following function updates them in a safe manner without read side
5299 * locking.
5300 *
5301 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5302 * those fields changing asynchronously (acording the the above rule).
5303 *
5304 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5305 * outside of boot time (or some other assurance that no concurrent updaters
5306 * exist).
5307 */
5308static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5309 unsigned long batch)
5310{
5311 /* start with a fail safe value for batch */
5312 pcp->batch = 1;
5313 smp_wmb();
5314
5315 /* Update high, then batch, in order */
5316 pcp->high = high;
5317 smp_wmb();
5318
5319 pcp->batch = batch;
5320}
5321
3664033c 5322/* a companion to pageset_set_high() */
4008bab7
CS
5323static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5324{
8d7a8fa9 5325 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5326}
5327
88c90dbc 5328static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5329{
5330 struct per_cpu_pages *pcp;
5f8dcc21 5331 int migratetype;
2caaad41 5332
1c6fe946
MD
5333 memset(p, 0, sizeof(*p));
5334
3dfa5721 5335 pcp = &p->pcp;
2caaad41 5336 pcp->count = 0;
5f8dcc21
MG
5337 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5338 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5339}
5340
88c90dbc
CS
5341static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5342{
5343 pageset_init(p);
5344 pageset_set_batch(p, batch);
5345}
5346
8ad4b1fb 5347/*
3664033c 5348 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5349 * to the value high for the pageset p.
5350 */
3664033c 5351static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5352 unsigned long high)
5353{
8d7a8fa9
CS
5354 unsigned long batch = max(1UL, high / 4);
5355 if ((high / 4) > (PAGE_SHIFT * 8))
5356 batch = PAGE_SHIFT * 8;
8ad4b1fb 5357
8d7a8fa9 5358 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5359}
5360
7cd2b0a3
DR
5361static void pageset_set_high_and_batch(struct zone *zone,
5362 struct per_cpu_pageset *pcp)
56cef2b8 5363{
56cef2b8 5364 if (percpu_pagelist_fraction)
3664033c 5365 pageset_set_high(pcp,
56cef2b8
CS
5366 (zone->managed_pages /
5367 percpu_pagelist_fraction));
5368 else
5369 pageset_set_batch(pcp, zone_batchsize(zone));
5370}
5371
169f6c19
CS
5372static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5373{
5374 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5375
5376 pageset_init(pcp);
5377 pageset_set_high_and_batch(zone, pcp);
5378}
5379
4ed7e022 5380static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5381{
5382 int cpu;
319774e2 5383 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5384 for_each_possible_cpu(cpu)
5385 zone_pageset_init(zone, cpu);
319774e2
WF
5386}
5387
2caaad41 5388/*
99dcc3e5
CL
5389 * Allocate per cpu pagesets and initialize them.
5390 * Before this call only boot pagesets were available.
e7c8d5c9 5391 */
99dcc3e5 5392void __init setup_per_cpu_pageset(void)
e7c8d5c9 5393{
99dcc3e5 5394 struct zone *zone;
e7c8d5c9 5395
319774e2
WF
5396 for_each_populated_zone(zone)
5397 setup_zone_pageset(zone);
e7c8d5c9
CL
5398}
5399
577a32f6 5400static noinline __init_refok
cca448fe 5401int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5402{
5403 int i;
cca448fe 5404 size_t alloc_size;
ed8ece2e
DH
5405
5406 /*
5407 * The per-page waitqueue mechanism uses hashed waitqueues
5408 * per zone.
5409 */
02b694de
YG
5410 zone->wait_table_hash_nr_entries =
5411 wait_table_hash_nr_entries(zone_size_pages);
5412 zone->wait_table_bits =
5413 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5414 alloc_size = zone->wait_table_hash_nr_entries
5415 * sizeof(wait_queue_head_t);
5416
cd94b9db 5417 if (!slab_is_available()) {
cca448fe 5418 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5419 memblock_virt_alloc_node_nopanic(
5420 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5421 } else {
5422 /*
5423 * This case means that a zone whose size was 0 gets new memory
5424 * via memory hot-add.
5425 * But it may be the case that a new node was hot-added. In
5426 * this case vmalloc() will not be able to use this new node's
5427 * memory - this wait_table must be initialized to use this new
5428 * node itself as well.
5429 * To use this new node's memory, further consideration will be
5430 * necessary.
5431 */
8691f3a7 5432 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5433 }
5434 if (!zone->wait_table)
5435 return -ENOMEM;
ed8ece2e 5436
b8af2941 5437 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5438 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5439
5440 return 0;
ed8ece2e
DH
5441}
5442
c09b4240 5443static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5444{
99dcc3e5
CL
5445 /*
5446 * per cpu subsystem is not up at this point. The following code
5447 * relies on the ability of the linker to provide the
5448 * offset of a (static) per cpu variable into the per cpu area.
5449 */
5450 zone->pageset = &boot_pageset;
ed8ece2e 5451
b38a8725 5452 if (populated_zone(zone))
99dcc3e5
CL
5453 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5454 zone->name, zone->present_pages,
5455 zone_batchsize(zone));
ed8ece2e
DH
5456}
5457
4ed7e022 5458int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5459 unsigned long zone_start_pfn,
b171e409 5460 unsigned long size)
ed8ece2e
DH
5461{
5462 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5463 int ret;
5464 ret = zone_wait_table_init(zone, size);
5465 if (ret)
5466 return ret;
ed8ece2e
DH
5467 pgdat->nr_zones = zone_idx(zone) + 1;
5468
ed8ece2e
DH
5469 zone->zone_start_pfn = zone_start_pfn;
5470
708614e6
MG
5471 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5472 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5473 pgdat->node_id,
5474 (unsigned long)zone_idx(zone),
5475 zone_start_pfn, (zone_start_pfn + size));
5476
1e548deb 5477 zone_init_free_lists(zone);
718127cc
YG
5478
5479 return 0;
ed8ece2e
DH
5480}
5481
0ee332c1 5482#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5483#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5484
c713216d
MG
5485/*
5486 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5487 */
8a942fde
MG
5488int __meminit __early_pfn_to_nid(unsigned long pfn,
5489 struct mminit_pfnnid_cache *state)
c713216d 5490{
c13291a5 5491 unsigned long start_pfn, end_pfn;
e76b63f8 5492 int nid;
7c243c71 5493
8a942fde
MG
5494 if (state->last_start <= pfn && pfn < state->last_end)
5495 return state->last_nid;
c713216d 5496
e76b63f8
YL
5497 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5498 if (nid != -1) {
8a942fde
MG
5499 state->last_start = start_pfn;
5500 state->last_end = end_pfn;
5501 state->last_nid = nid;
e76b63f8
YL
5502 }
5503
5504 return nid;
c713216d
MG
5505}
5506#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5507
c713216d 5508/**
6782832e 5509 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5510 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5511 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5512 *
7d018176
ZZ
5513 * If an architecture guarantees that all ranges registered contain no holes
5514 * and may be freed, this this function may be used instead of calling
5515 * memblock_free_early_nid() manually.
c713216d 5516 */
c13291a5 5517void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5518{
c13291a5
TH
5519 unsigned long start_pfn, end_pfn;
5520 int i, this_nid;
edbe7d23 5521
c13291a5
TH
5522 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5523 start_pfn = min(start_pfn, max_low_pfn);
5524 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5525
c13291a5 5526 if (start_pfn < end_pfn)
6782832e
SS
5527 memblock_free_early_nid(PFN_PHYS(start_pfn),
5528 (end_pfn - start_pfn) << PAGE_SHIFT,
5529 this_nid);
edbe7d23 5530 }
edbe7d23 5531}
edbe7d23 5532
c713216d
MG
5533/**
5534 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5535 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5536 *
7d018176
ZZ
5537 * If an architecture guarantees that all ranges registered contain no holes and may
5538 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5539 */
5540void __init sparse_memory_present_with_active_regions(int nid)
5541{
c13291a5
TH
5542 unsigned long start_pfn, end_pfn;
5543 int i, this_nid;
c713216d 5544
c13291a5
TH
5545 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5546 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5547}
5548
5549/**
5550 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5551 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5552 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5553 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5554 *
5555 * It returns the start and end page frame of a node based on information
7d018176 5556 * provided by memblock_set_node(). If called for a node
c713216d 5557 * with no available memory, a warning is printed and the start and end
88ca3b94 5558 * PFNs will be 0.
c713216d 5559 */
a3142c8e 5560void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5561 unsigned long *start_pfn, unsigned long *end_pfn)
5562{
c13291a5 5563 unsigned long this_start_pfn, this_end_pfn;
c713216d 5564 int i;
c13291a5 5565
c713216d
MG
5566 *start_pfn = -1UL;
5567 *end_pfn = 0;
5568
c13291a5
TH
5569 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5570 *start_pfn = min(*start_pfn, this_start_pfn);
5571 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5572 }
5573
633c0666 5574 if (*start_pfn == -1UL)
c713216d 5575 *start_pfn = 0;
c713216d
MG
5576}
5577
2a1e274a
MG
5578/*
5579 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5580 * assumption is made that zones within a node are ordered in monotonic
5581 * increasing memory addresses so that the "highest" populated zone is used
5582 */
b69a7288 5583static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5584{
5585 int zone_index;
5586 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5587 if (zone_index == ZONE_MOVABLE)
5588 continue;
5589
5590 if (arch_zone_highest_possible_pfn[zone_index] >
5591 arch_zone_lowest_possible_pfn[zone_index])
5592 break;
5593 }
5594
5595 VM_BUG_ON(zone_index == -1);
5596 movable_zone = zone_index;
5597}
5598
5599/*
5600 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5601 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5602 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5603 * in each node depending on the size of each node and how evenly kernelcore
5604 * is distributed. This helper function adjusts the zone ranges
5605 * provided by the architecture for a given node by using the end of the
5606 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5607 * zones within a node are in order of monotonic increases memory addresses
5608 */
b69a7288 5609static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5610 unsigned long zone_type,
5611 unsigned long node_start_pfn,
5612 unsigned long node_end_pfn,
5613 unsigned long *zone_start_pfn,
5614 unsigned long *zone_end_pfn)
5615{
5616 /* Only adjust if ZONE_MOVABLE is on this node */
5617 if (zone_movable_pfn[nid]) {
5618 /* Size ZONE_MOVABLE */
5619 if (zone_type == ZONE_MOVABLE) {
5620 *zone_start_pfn = zone_movable_pfn[nid];
5621 *zone_end_pfn = min(node_end_pfn,
5622 arch_zone_highest_possible_pfn[movable_zone]);
5623
2a1e274a
MG
5624 /* Check if this whole range is within ZONE_MOVABLE */
5625 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5626 *zone_start_pfn = *zone_end_pfn;
5627 }
5628}
5629
c713216d
MG
5630/*
5631 * Return the number of pages a zone spans in a node, including holes
5632 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5633 */
6ea6e688 5634static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5635 unsigned long zone_type,
7960aedd
ZY
5636 unsigned long node_start_pfn,
5637 unsigned long node_end_pfn,
d91749c1
TI
5638 unsigned long *zone_start_pfn,
5639 unsigned long *zone_end_pfn,
c713216d
MG
5640 unsigned long *ignored)
5641{
b5685e92 5642 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5643 if (!node_start_pfn && !node_end_pfn)
5644 return 0;
5645
7960aedd 5646 /* Get the start and end of the zone */
d91749c1
TI
5647 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5648 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5649 adjust_zone_range_for_zone_movable(nid, zone_type,
5650 node_start_pfn, node_end_pfn,
d91749c1 5651 zone_start_pfn, zone_end_pfn);
c713216d
MG
5652
5653 /* Check that this node has pages within the zone's required range */
d91749c1 5654 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5655 return 0;
5656
5657 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5658 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5659 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5660
5661 /* Return the spanned pages */
d91749c1 5662 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5663}
5664
5665/*
5666 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5667 * then all holes in the requested range will be accounted for.
c713216d 5668 */
32996250 5669unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5670 unsigned long range_start_pfn,
5671 unsigned long range_end_pfn)
5672{
96e907d1
TH
5673 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5674 unsigned long start_pfn, end_pfn;
5675 int i;
c713216d 5676
96e907d1
TH
5677 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5678 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5679 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5680 nr_absent -= end_pfn - start_pfn;
c713216d 5681 }
96e907d1 5682 return nr_absent;
c713216d
MG
5683}
5684
5685/**
5686 * absent_pages_in_range - Return number of page frames in holes within a range
5687 * @start_pfn: The start PFN to start searching for holes
5688 * @end_pfn: The end PFN to stop searching for holes
5689 *
88ca3b94 5690 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5691 */
5692unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5693 unsigned long end_pfn)
5694{
5695 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5696}
5697
5698/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5699static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5700 unsigned long zone_type,
7960aedd
ZY
5701 unsigned long node_start_pfn,
5702 unsigned long node_end_pfn,
c713216d
MG
5703 unsigned long *ignored)
5704{
96e907d1
TH
5705 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5706 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5707 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5708 unsigned long nr_absent;
9c7cd687 5709
b5685e92 5710 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5711 if (!node_start_pfn && !node_end_pfn)
5712 return 0;
5713
96e907d1
TH
5714 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5715 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5716
2a1e274a
MG
5717 adjust_zone_range_for_zone_movable(nid, zone_type,
5718 node_start_pfn, node_end_pfn,
5719 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5720 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5721
5722 /*
5723 * ZONE_MOVABLE handling.
5724 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5725 * and vice versa.
5726 */
5727 if (zone_movable_pfn[nid]) {
5728 if (mirrored_kernelcore) {
5729 unsigned long start_pfn, end_pfn;
5730 struct memblock_region *r;
5731
5732 for_each_memblock(memory, r) {
5733 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5734 zone_start_pfn, zone_end_pfn);
5735 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5736 zone_start_pfn, zone_end_pfn);
5737
5738 if (zone_type == ZONE_MOVABLE &&
5739 memblock_is_mirror(r))
5740 nr_absent += end_pfn - start_pfn;
5741
5742 if (zone_type == ZONE_NORMAL &&
5743 !memblock_is_mirror(r))
5744 nr_absent += end_pfn - start_pfn;
5745 }
5746 } else {
5747 if (zone_type == ZONE_NORMAL)
5748 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5749 }
5750 }
5751
5752 return nr_absent;
c713216d 5753}
0e0b864e 5754
0ee332c1 5755#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5756static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5757 unsigned long zone_type,
7960aedd
ZY
5758 unsigned long node_start_pfn,
5759 unsigned long node_end_pfn,
d91749c1
TI
5760 unsigned long *zone_start_pfn,
5761 unsigned long *zone_end_pfn,
c713216d
MG
5762 unsigned long *zones_size)
5763{
d91749c1
TI
5764 unsigned int zone;
5765
5766 *zone_start_pfn = node_start_pfn;
5767 for (zone = 0; zone < zone_type; zone++)
5768 *zone_start_pfn += zones_size[zone];
5769
5770 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5771
c713216d
MG
5772 return zones_size[zone_type];
5773}
5774
6ea6e688 5775static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5776 unsigned long zone_type,
7960aedd
ZY
5777 unsigned long node_start_pfn,
5778 unsigned long node_end_pfn,
c713216d
MG
5779 unsigned long *zholes_size)
5780{
5781 if (!zholes_size)
5782 return 0;
5783
5784 return zholes_size[zone_type];
5785}
20e6926d 5786
0ee332c1 5787#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5788
a3142c8e 5789static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5790 unsigned long node_start_pfn,
5791 unsigned long node_end_pfn,
5792 unsigned long *zones_size,
5793 unsigned long *zholes_size)
c713216d 5794{
febd5949 5795 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5796 enum zone_type i;
5797
febd5949
GZ
5798 for (i = 0; i < MAX_NR_ZONES; i++) {
5799 struct zone *zone = pgdat->node_zones + i;
d91749c1 5800 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5801 unsigned long size, real_size;
c713216d 5802
febd5949
GZ
5803 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5804 node_start_pfn,
5805 node_end_pfn,
d91749c1
TI
5806 &zone_start_pfn,
5807 &zone_end_pfn,
febd5949
GZ
5808 zones_size);
5809 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5810 node_start_pfn, node_end_pfn,
5811 zholes_size);
d91749c1
TI
5812 if (size)
5813 zone->zone_start_pfn = zone_start_pfn;
5814 else
5815 zone->zone_start_pfn = 0;
febd5949
GZ
5816 zone->spanned_pages = size;
5817 zone->present_pages = real_size;
5818
5819 totalpages += size;
5820 realtotalpages += real_size;
5821 }
5822
5823 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5824 pgdat->node_present_pages = realtotalpages;
5825 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5826 realtotalpages);
5827}
5828
835c134e
MG
5829#ifndef CONFIG_SPARSEMEM
5830/*
5831 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5832 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5833 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5834 * round what is now in bits to nearest long in bits, then return it in
5835 * bytes.
5836 */
7c45512d 5837static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5838{
5839 unsigned long usemapsize;
5840
7c45512d 5841 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5842 usemapsize = roundup(zonesize, pageblock_nr_pages);
5843 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5844 usemapsize *= NR_PAGEBLOCK_BITS;
5845 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5846
5847 return usemapsize / 8;
5848}
5849
5850static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5851 struct zone *zone,
5852 unsigned long zone_start_pfn,
5853 unsigned long zonesize)
835c134e 5854{
7c45512d 5855 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5856 zone->pageblock_flags = NULL;
58a01a45 5857 if (usemapsize)
6782832e
SS
5858 zone->pageblock_flags =
5859 memblock_virt_alloc_node_nopanic(usemapsize,
5860 pgdat->node_id);
835c134e
MG
5861}
5862#else
7c45512d
LT
5863static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5864 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5865#endif /* CONFIG_SPARSEMEM */
5866
d9c23400 5867#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5868
d9c23400 5869/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5870void __paginginit set_pageblock_order(void)
d9c23400 5871{
955c1cd7
AM
5872 unsigned int order;
5873
d9c23400
MG
5874 /* Check that pageblock_nr_pages has not already been setup */
5875 if (pageblock_order)
5876 return;
5877
955c1cd7
AM
5878 if (HPAGE_SHIFT > PAGE_SHIFT)
5879 order = HUGETLB_PAGE_ORDER;
5880 else
5881 order = MAX_ORDER - 1;
5882
d9c23400
MG
5883 /*
5884 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5885 * This value may be variable depending on boot parameters on IA64 and
5886 * powerpc.
d9c23400
MG
5887 */
5888 pageblock_order = order;
5889}
5890#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5891
ba72cb8c
MG
5892/*
5893 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5894 * is unused as pageblock_order is set at compile-time. See
5895 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5896 * the kernel config
ba72cb8c 5897 */
15ca220e 5898void __paginginit set_pageblock_order(void)
ba72cb8c 5899{
ba72cb8c 5900}
d9c23400
MG
5901
5902#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5903
01cefaef
JL
5904static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5905 unsigned long present_pages)
5906{
5907 unsigned long pages = spanned_pages;
5908
5909 /*
5910 * Provide a more accurate estimation if there are holes within
5911 * the zone and SPARSEMEM is in use. If there are holes within the
5912 * zone, each populated memory region may cost us one or two extra
5913 * memmap pages due to alignment because memmap pages for each
5914 * populated regions may not naturally algined on page boundary.
5915 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5916 */
5917 if (spanned_pages > present_pages + (present_pages >> 4) &&
5918 IS_ENABLED(CONFIG_SPARSEMEM))
5919 pages = present_pages;
5920
5921 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5922}
5923
1da177e4
LT
5924/*
5925 * Set up the zone data structures:
5926 * - mark all pages reserved
5927 * - mark all memory queues empty
5928 * - clear the memory bitmaps
6527af5d
MK
5929 *
5930 * NOTE: pgdat should get zeroed by caller.
1da177e4 5931 */
7f3eb55b 5932static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5933{
2f1b6248 5934 enum zone_type j;
ed8ece2e 5935 int nid = pgdat->node_id;
718127cc 5936 int ret;
1da177e4 5937
208d54e5 5938 pgdat_resize_init(pgdat);
8177a420
AA
5939#ifdef CONFIG_NUMA_BALANCING
5940 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5941 pgdat->numabalancing_migrate_nr_pages = 0;
5942 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5943#endif
5944#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5945 spin_lock_init(&pgdat->split_queue_lock);
5946 INIT_LIST_HEAD(&pgdat->split_queue);
5947 pgdat->split_queue_len = 0;
8177a420 5948#endif
1da177e4 5949 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5950 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5951#ifdef CONFIG_COMPACTION
5952 init_waitqueue_head(&pgdat->kcompactd_wait);
5953#endif
eefa864b 5954 pgdat_page_ext_init(pgdat);
5f63b720 5955
1da177e4
LT
5956 for (j = 0; j < MAX_NR_ZONES; j++) {
5957 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5958 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5959 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5960
febd5949
GZ
5961 size = zone->spanned_pages;
5962 realsize = freesize = zone->present_pages;
1da177e4 5963
0e0b864e 5964 /*
9feedc9d 5965 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5966 * is used by this zone for memmap. This affects the watermark
5967 * and per-cpu initialisations
5968 */
01cefaef 5969 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5970 if (!is_highmem_idx(j)) {
5971 if (freesize >= memmap_pages) {
5972 freesize -= memmap_pages;
5973 if (memmap_pages)
5974 printk(KERN_DEBUG
5975 " %s zone: %lu pages used for memmap\n",
5976 zone_names[j], memmap_pages);
5977 } else
1170532b 5978 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5979 zone_names[j], memmap_pages, freesize);
5980 }
0e0b864e 5981
6267276f 5982 /* Account for reserved pages */
9feedc9d
JL
5983 if (j == 0 && freesize > dma_reserve) {
5984 freesize -= dma_reserve;
d903ef9f 5985 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5986 zone_names[0], dma_reserve);
0e0b864e
MG
5987 }
5988
98d2b0eb 5989 if (!is_highmem_idx(j))
9feedc9d 5990 nr_kernel_pages += freesize;
01cefaef
JL
5991 /* Charge for highmem memmap if there are enough kernel pages */
5992 else if (nr_kernel_pages > memmap_pages * 2)
5993 nr_kernel_pages -= memmap_pages;
9feedc9d 5994 nr_all_pages += freesize;
1da177e4 5995
9feedc9d
JL
5996 /*
5997 * Set an approximate value for lowmem here, it will be adjusted
5998 * when the bootmem allocator frees pages into the buddy system.
5999 * And all highmem pages will be managed by the buddy system.
6000 */
6001 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6002#ifdef CONFIG_NUMA
d5f541ed 6003 zone->node = nid;
9feedc9d 6004 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 6005 / 100;
9feedc9d 6006 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 6007#endif
1da177e4
LT
6008 zone->name = zone_names[j];
6009 spin_lock_init(&zone->lock);
6010 spin_lock_init(&zone->lru_lock);
bdc8cb98 6011 zone_seqlock_init(zone);
1da177e4 6012 zone->zone_pgdat = pgdat;
ed8ece2e 6013 zone_pcp_init(zone);
81c0a2bb
JW
6014
6015 /* For bootup, initialized properly in watermark setup */
6016 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6017
bea8c150 6018 lruvec_init(&zone->lruvec);
1da177e4
LT
6019 if (!size)
6020 continue;
6021
955c1cd7 6022 set_pageblock_order();
7c45512d 6023 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6024 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6025 BUG_ON(ret);
76cdd58e 6026 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6027 }
6028}
6029
577a32f6 6030static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6031{
b0aeba74 6032 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6033 unsigned long __maybe_unused offset = 0;
6034
1da177e4
LT
6035 /* Skip empty nodes */
6036 if (!pgdat->node_spanned_pages)
6037 return;
6038
d41dee36 6039#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6040 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6041 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6042 /* ia64 gets its own node_mem_map, before this, without bootmem */
6043 if (!pgdat->node_mem_map) {
b0aeba74 6044 unsigned long size, end;
d41dee36
AW
6045 struct page *map;
6046
e984bb43
BP
6047 /*
6048 * The zone's endpoints aren't required to be MAX_ORDER
6049 * aligned but the node_mem_map endpoints must be in order
6050 * for the buddy allocator to function correctly.
6051 */
108bcc96 6052 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6053 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6054 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6055 map = alloc_remap(pgdat->node_id, size);
6056 if (!map)
6782832e
SS
6057 map = memblock_virt_alloc_node_nopanic(size,
6058 pgdat->node_id);
a1c34a3b 6059 pgdat->node_mem_map = map + offset;
1da177e4 6060 }
12d810c1 6061#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6062 /*
6063 * With no DISCONTIG, the global mem_map is just set as node 0's
6064 */
c713216d 6065 if (pgdat == NODE_DATA(0)) {
1da177e4 6066 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6067#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6068 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6069 mem_map -= offset;
0ee332c1 6070#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6071 }
1da177e4 6072#endif
d41dee36 6073#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6074}
6075
9109fb7b
JW
6076void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6077 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6078{
9109fb7b 6079 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6080 unsigned long start_pfn = 0;
6081 unsigned long end_pfn = 0;
9109fb7b 6082
88fdf75d 6083 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6084 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6085
3a80a7fa 6086 reset_deferred_meminit(pgdat);
1da177e4
LT
6087 pgdat->node_id = nid;
6088 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6089#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6090 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6091 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6092 (u64)start_pfn << PAGE_SHIFT,
6093 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6094#else
6095 start_pfn = node_start_pfn;
7960aedd
ZY
6096#endif
6097 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6098 zones_size, zholes_size);
1da177e4
LT
6099
6100 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6101#ifdef CONFIG_FLAT_NODE_MEM_MAP
6102 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6103 nid, (unsigned long)pgdat,
6104 (unsigned long)pgdat->node_mem_map);
6105#endif
1da177e4 6106
7f3eb55b 6107 free_area_init_core(pgdat);
1da177e4
LT
6108}
6109
0ee332c1 6110#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6111
6112#if MAX_NUMNODES > 1
6113/*
6114 * Figure out the number of possible node ids.
6115 */
f9872caf 6116void __init setup_nr_node_ids(void)
418508c1 6117{
904a9553 6118 unsigned int highest;
418508c1 6119
904a9553 6120 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6121 nr_node_ids = highest + 1;
6122}
418508c1
MS
6123#endif
6124
1e01979c
TH
6125/**
6126 * node_map_pfn_alignment - determine the maximum internode alignment
6127 *
6128 * This function should be called after node map is populated and sorted.
6129 * It calculates the maximum power of two alignment which can distinguish
6130 * all the nodes.
6131 *
6132 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6133 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6134 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6135 * shifted, 1GiB is enough and this function will indicate so.
6136 *
6137 * This is used to test whether pfn -> nid mapping of the chosen memory
6138 * model has fine enough granularity to avoid incorrect mapping for the
6139 * populated node map.
6140 *
6141 * Returns the determined alignment in pfn's. 0 if there is no alignment
6142 * requirement (single node).
6143 */
6144unsigned long __init node_map_pfn_alignment(void)
6145{
6146 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6147 unsigned long start, end, mask;
1e01979c 6148 int last_nid = -1;
c13291a5 6149 int i, nid;
1e01979c 6150
c13291a5 6151 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6152 if (!start || last_nid < 0 || last_nid == nid) {
6153 last_nid = nid;
6154 last_end = end;
6155 continue;
6156 }
6157
6158 /*
6159 * Start with a mask granular enough to pin-point to the
6160 * start pfn and tick off bits one-by-one until it becomes
6161 * too coarse to separate the current node from the last.
6162 */
6163 mask = ~((1 << __ffs(start)) - 1);
6164 while (mask && last_end <= (start & (mask << 1)))
6165 mask <<= 1;
6166
6167 /* accumulate all internode masks */
6168 accl_mask |= mask;
6169 }
6170
6171 /* convert mask to number of pages */
6172 return ~accl_mask + 1;
6173}
6174
a6af2bc3 6175/* Find the lowest pfn for a node */
b69a7288 6176static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6177{
a6af2bc3 6178 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6179 unsigned long start_pfn;
6180 int i;
1abbfb41 6181
c13291a5
TH
6182 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6183 min_pfn = min(min_pfn, start_pfn);
c713216d 6184
a6af2bc3 6185 if (min_pfn == ULONG_MAX) {
1170532b 6186 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6187 return 0;
6188 }
6189
6190 return min_pfn;
c713216d
MG
6191}
6192
6193/**
6194 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6195 *
6196 * It returns the minimum PFN based on information provided via
7d018176 6197 * memblock_set_node().
c713216d
MG
6198 */
6199unsigned long __init find_min_pfn_with_active_regions(void)
6200{
6201 return find_min_pfn_for_node(MAX_NUMNODES);
6202}
6203
37b07e41
LS
6204/*
6205 * early_calculate_totalpages()
6206 * Sum pages in active regions for movable zone.
4b0ef1fe 6207 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6208 */
484f51f8 6209static unsigned long __init early_calculate_totalpages(void)
7e63efef 6210{
7e63efef 6211 unsigned long totalpages = 0;
c13291a5
TH
6212 unsigned long start_pfn, end_pfn;
6213 int i, nid;
6214
6215 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6216 unsigned long pages = end_pfn - start_pfn;
7e63efef 6217
37b07e41
LS
6218 totalpages += pages;
6219 if (pages)
4b0ef1fe 6220 node_set_state(nid, N_MEMORY);
37b07e41 6221 }
b8af2941 6222 return totalpages;
7e63efef
MG
6223}
6224
2a1e274a
MG
6225/*
6226 * Find the PFN the Movable zone begins in each node. Kernel memory
6227 * is spread evenly between nodes as long as the nodes have enough
6228 * memory. When they don't, some nodes will have more kernelcore than
6229 * others
6230 */
b224ef85 6231static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6232{
6233 int i, nid;
6234 unsigned long usable_startpfn;
6235 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6236 /* save the state before borrow the nodemask */
4b0ef1fe 6237 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6238 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6239 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6240 struct memblock_region *r;
b2f3eebe
TC
6241
6242 /* Need to find movable_zone earlier when movable_node is specified. */
6243 find_usable_zone_for_movable();
6244
6245 /*
6246 * If movable_node is specified, ignore kernelcore and movablecore
6247 * options.
6248 */
6249 if (movable_node_is_enabled()) {
136199f0
EM
6250 for_each_memblock(memory, r) {
6251 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6252 continue;
6253
136199f0 6254 nid = r->nid;
b2f3eebe 6255
136199f0 6256 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6257 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6258 min(usable_startpfn, zone_movable_pfn[nid]) :
6259 usable_startpfn;
6260 }
6261
6262 goto out2;
6263 }
2a1e274a 6264
342332e6
TI
6265 /*
6266 * If kernelcore=mirror is specified, ignore movablecore option
6267 */
6268 if (mirrored_kernelcore) {
6269 bool mem_below_4gb_not_mirrored = false;
6270
6271 for_each_memblock(memory, r) {
6272 if (memblock_is_mirror(r))
6273 continue;
6274
6275 nid = r->nid;
6276
6277 usable_startpfn = memblock_region_memory_base_pfn(r);
6278
6279 if (usable_startpfn < 0x100000) {
6280 mem_below_4gb_not_mirrored = true;
6281 continue;
6282 }
6283
6284 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6285 min(usable_startpfn, zone_movable_pfn[nid]) :
6286 usable_startpfn;
6287 }
6288
6289 if (mem_below_4gb_not_mirrored)
6290 pr_warn("This configuration results in unmirrored kernel memory.");
6291
6292 goto out2;
6293 }
6294
7e63efef 6295 /*
b2f3eebe 6296 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6297 * kernelcore that corresponds so that memory usable for
6298 * any allocation type is evenly spread. If both kernelcore
6299 * and movablecore are specified, then the value of kernelcore
6300 * will be used for required_kernelcore if it's greater than
6301 * what movablecore would have allowed.
6302 */
6303 if (required_movablecore) {
7e63efef
MG
6304 unsigned long corepages;
6305
6306 /*
6307 * Round-up so that ZONE_MOVABLE is at least as large as what
6308 * was requested by the user
6309 */
6310 required_movablecore =
6311 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6312 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6313 corepages = totalpages - required_movablecore;
6314
6315 required_kernelcore = max(required_kernelcore, corepages);
6316 }
6317
bde304bd
XQ
6318 /*
6319 * If kernelcore was not specified or kernelcore size is larger
6320 * than totalpages, there is no ZONE_MOVABLE.
6321 */
6322 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6323 goto out;
2a1e274a
MG
6324
6325 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6326 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6327
6328restart:
6329 /* Spread kernelcore memory as evenly as possible throughout nodes */
6330 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6331 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6332 unsigned long start_pfn, end_pfn;
6333
2a1e274a
MG
6334 /*
6335 * Recalculate kernelcore_node if the division per node
6336 * now exceeds what is necessary to satisfy the requested
6337 * amount of memory for the kernel
6338 */
6339 if (required_kernelcore < kernelcore_node)
6340 kernelcore_node = required_kernelcore / usable_nodes;
6341
6342 /*
6343 * As the map is walked, we track how much memory is usable
6344 * by the kernel using kernelcore_remaining. When it is
6345 * 0, the rest of the node is usable by ZONE_MOVABLE
6346 */
6347 kernelcore_remaining = kernelcore_node;
6348
6349 /* Go through each range of PFNs within this node */
c13291a5 6350 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6351 unsigned long size_pages;
6352
c13291a5 6353 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6354 if (start_pfn >= end_pfn)
6355 continue;
6356
6357 /* Account for what is only usable for kernelcore */
6358 if (start_pfn < usable_startpfn) {
6359 unsigned long kernel_pages;
6360 kernel_pages = min(end_pfn, usable_startpfn)
6361 - start_pfn;
6362
6363 kernelcore_remaining -= min(kernel_pages,
6364 kernelcore_remaining);
6365 required_kernelcore -= min(kernel_pages,
6366 required_kernelcore);
6367
6368 /* Continue if range is now fully accounted */
6369 if (end_pfn <= usable_startpfn) {
6370
6371 /*
6372 * Push zone_movable_pfn to the end so
6373 * that if we have to rebalance
6374 * kernelcore across nodes, we will
6375 * not double account here
6376 */
6377 zone_movable_pfn[nid] = end_pfn;
6378 continue;
6379 }
6380 start_pfn = usable_startpfn;
6381 }
6382
6383 /*
6384 * The usable PFN range for ZONE_MOVABLE is from
6385 * start_pfn->end_pfn. Calculate size_pages as the
6386 * number of pages used as kernelcore
6387 */
6388 size_pages = end_pfn - start_pfn;
6389 if (size_pages > kernelcore_remaining)
6390 size_pages = kernelcore_remaining;
6391 zone_movable_pfn[nid] = start_pfn + size_pages;
6392
6393 /*
6394 * Some kernelcore has been met, update counts and
6395 * break if the kernelcore for this node has been
b8af2941 6396 * satisfied
2a1e274a
MG
6397 */
6398 required_kernelcore -= min(required_kernelcore,
6399 size_pages);
6400 kernelcore_remaining -= size_pages;
6401 if (!kernelcore_remaining)
6402 break;
6403 }
6404 }
6405
6406 /*
6407 * If there is still required_kernelcore, we do another pass with one
6408 * less node in the count. This will push zone_movable_pfn[nid] further
6409 * along on the nodes that still have memory until kernelcore is
b8af2941 6410 * satisfied
2a1e274a
MG
6411 */
6412 usable_nodes--;
6413 if (usable_nodes && required_kernelcore > usable_nodes)
6414 goto restart;
6415
b2f3eebe 6416out2:
2a1e274a
MG
6417 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6418 for (nid = 0; nid < MAX_NUMNODES; nid++)
6419 zone_movable_pfn[nid] =
6420 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6421
20e6926d 6422out:
66918dcd 6423 /* restore the node_state */
4b0ef1fe 6424 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6425}
6426
4b0ef1fe
LJ
6427/* Any regular or high memory on that node ? */
6428static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6429{
37b07e41
LS
6430 enum zone_type zone_type;
6431
4b0ef1fe
LJ
6432 if (N_MEMORY == N_NORMAL_MEMORY)
6433 return;
6434
6435 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6436 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6437 if (populated_zone(zone)) {
4b0ef1fe
LJ
6438 node_set_state(nid, N_HIGH_MEMORY);
6439 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6440 zone_type <= ZONE_NORMAL)
6441 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6442 break;
6443 }
37b07e41 6444 }
37b07e41
LS
6445}
6446
c713216d
MG
6447/**
6448 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6449 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6450 *
6451 * This will call free_area_init_node() for each active node in the system.
7d018176 6452 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6453 * zone in each node and their holes is calculated. If the maximum PFN
6454 * between two adjacent zones match, it is assumed that the zone is empty.
6455 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6456 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6457 * starts where the previous one ended. For example, ZONE_DMA32 starts
6458 * at arch_max_dma_pfn.
6459 */
6460void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6461{
c13291a5
TH
6462 unsigned long start_pfn, end_pfn;
6463 int i, nid;
a6af2bc3 6464
c713216d
MG
6465 /* Record where the zone boundaries are */
6466 memset(arch_zone_lowest_possible_pfn, 0,
6467 sizeof(arch_zone_lowest_possible_pfn));
6468 memset(arch_zone_highest_possible_pfn, 0,
6469 sizeof(arch_zone_highest_possible_pfn));
6470 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6471 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6472 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6473 if (i == ZONE_MOVABLE)
6474 continue;
c713216d
MG
6475 arch_zone_lowest_possible_pfn[i] =
6476 arch_zone_highest_possible_pfn[i-1];
6477 arch_zone_highest_possible_pfn[i] =
6478 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6479 }
2a1e274a
MG
6480 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6481 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6482
6483 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6484 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6485 find_zone_movable_pfns_for_nodes();
c713216d 6486
c713216d 6487 /* Print out the zone ranges */
f88dfff5 6488 pr_info("Zone ranges:\n");
2a1e274a
MG
6489 for (i = 0; i < MAX_NR_ZONES; i++) {
6490 if (i == ZONE_MOVABLE)
6491 continue;
f88dfff5 6492 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6493 if (arch_zone_lowest_possible_pfn[i] ==
6494 arch_zone_highest_possible_pfn[i])
f88dfff5 6495 pr_cont("empty\n");
72f0ba02 6496 else
8d29e18a
JG
6497 pr_cont("[mem %#018Lx-%#018Lx]\n",
6498 (u64)arch_zone_lowest_possible_pfn[i]
6499 << PAGE_SHIFT,
6500 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6501 << PAGE_SHIFT) - 1);
2a1e274a
MG
6502 }
6503
6504 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6505 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6506 for (i = 0; i < MAX_NUMNODES; i++) {
6507 if (zone_movable_pfn[i])
8d29e18a
JG
6508 pr_info(" Node %d: %#018Lx\n", i,
6509 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6510 }
c713216d 6511
f2d52fe5 6512 /* Print out the early node map */
f88dfff5 6513 pr_info("Early memory node ranges\n");
c13291a5 6514 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6515 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6516 (u64)start_pfn << PAGE_SHIFT,
6517 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6518
6519 /* Initialise every node */
708614e6 6520 mminit_verify_pageflags_layout();
8ef82866 6521 setup_nr_node_ids();
c713216d
MG
6522 for_each_online_node(nid) {
6523 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6524 free_area_init_node(nid, NULL,
c713216d 6525 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6526
6527 /* Any memory on that node */
6528 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6529 node_set_state(nid, N_MEMORY);
6530 check_for_memory(pgdat, nid);
c713216d
MG
6531 }
6532}
2a1e274a 6533
7e63efef 6534static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6535{
6536 unsigned long long coremem;
6537 if (!p)
6538 return -EINVAL;
6539
6540 coremem = memparse(p, &p);
7e63efef 6541 *core = coremem >> PAGE_SHIFT;
2a1e274a 6542
7e63efef 6543 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6544 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6545
6546 return 0;
6547}
ed7ed365 6548
7e63efef
MG
6549/*
6550 * kernelcore=size sets the amount of memory for use for allocations that
6551 * cannot be reclaimed or migrated.
6552 */
6553static int __init cmdline_parse_kernelcore(char *p)
6554{
342332e6
TI
6555 /* parse kernelcore=mirror */
6556 if (parse_option_str(p, "mirror")) {
6557 mirrored_kernelcore = true;
6558 return 0;
6559 }
6560
7e63efef
MG
6561 return cmdline_parse_core(p, &required_kernelcore);
6562}
6563
6564/*
6565 * movablecore=size sets the amount of memory for use for allocations that
6566 * can be reclaimed or migrated.
6567 */
6568static int __init cmdline_parse_movablecore(char *p)
6569{
6570 return cmdline_parse_core(p, &required_movablecore);
6571}
6572
ed7ed365 6573early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6574early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6575
0ee332c1 6576#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6577
c3d5f5f0
JL
6578void adjust_managed_page_count(struct page *page, long count)
6579{
6580 spin_lock(&managed_page_count_lock);
6581 page_zone(page)->managed_pages += count;
6582 totalram_pages += count;
3dcc0571
JL
6583#ifdef CONFIG_HIGHMEM
6584 if (PageHighMem(page))
6585 totalhigh_pages += count;
6586#endif
c3d5f5f0
JL
6587 spin_unlock(&managed_page_count_lock);
6588}
3dcc0571 6589EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6590
11199692 6591unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6592{
11199692
JL
6593 void *pos;
6594 unsigned long pages = 0;
69afade7 6595
11199692
JL
6596 start = (void *)PAGE_ALIGN((unsigned long)start);
6597 end = (void *)((unsigned long)end & PAGE_MASK);
6598 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6599 if ((unsigned int)poison <= 0xFF)
11199692
JL
6600 memset(pos, poison, PAGE_SIZE);
6601 free_reserved_page(virt_to_page(pos));
69afade7
JL
6602 }
6603
6604 if (pages && s)
11199692 6605 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6606 s, pages << (PAGE_SHIFT - 10), start, end);
6607
6608 return pages;
6609}
11199692 6610EXPORT_SYMBOL(free_reserved_area);
69afade7 6611
cfa11e08
JL
6612#ifdef CONFIG_HIGHMEM
6613void free_highmem_page(struct page *page)
6614{
6615 __free_reserved_page(page);
6616 totalram_pages++;
7b4b2a0d 6617 page_zone(page)->managed_pages++;
cfa11e08
JL
6618 totalhigh_pages++;
6619}
6620#endif
6621
7ee3d4e8
JL
6622
6623void __init mem_init_print_info(const char *str)
6624{
6625 unsigned long physpages, codesize, datasize, rosize, bss_size;
6626 unsigned long init_code_size, init_data_size;
6627
6628 physpages = get_num_physpages();
6629 codesize = _etext - _stext;
6630 datasize = _edata - _sdata;
6631 rosize = __end_rodata - __start_rodata;
6632 bss_size = __bss_stop - __bss_start;
6633 init_data_size = __init_end - __init_begin;
6634 init_code_size = _einittext - _sinittext;
6635
6636 /*
6637 * Detect special cases and adjust section sizes accordingly:
6638 * 1) .init.* may be embedded into .data sections
6639 * 2) .init.text.* may be out of [__init_begin, __init_end],
6640 * please refer to arch/tile/kernel/vmlinux.lds.S.
6641 * 3) .rodata.* may be embedded into .text or .data sections.
6642 */
6643#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6644 do { \
6645 if (start <= pos && pos < end && size > adj) \
6646 size -= adj; \
6647 } while (0)
7ee3d4e8
JL
6648
6649 adj_init_size(__init_begin, __init_end, init_data_size,
6650 _sinittext, init_code_size);
6651 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6652 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6653 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6654 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6655
6656#undef adj_init_size
6657
756a025f 6658 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6659#ifdef CONFIG_HIGHMEM
756a025f 6660 ", %luK highmem"
7ee3d4e8 6661#endif
756a025f
JP
6662 "%s%s)\n",
6663 nr_free_pages() << (PAGE_SHIFT - 10),
6664 physpages << (PAGE_SHIFT - 10),
6665 codesize >> 10, datasize >> 10, rosize >> 10,
6666 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6667 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6668 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6669#ifdef CONFIG_HIGHMEM
756a025f 6670 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6671#endif
756a025f 6672 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6673}
6674
0e0b864e 6675/**
88ca3b94
RD
6676 * set_dma_reserve - set the specified number of pages reserved in the first zone
6677 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6678 *
013110a7 6679 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6680 * In the DMA zone, a significant percentage may be consumed by kernel image
6681 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6682 * function may optionally be used to account for unfreeable pages in the
6683 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6684 * smaller per-cpu batchsize.
0e0b864e
MG
6685 */
6686void __init set_dma_reserve(unsigned long new_dma_reserve)
6687{
6688 dma_reserve = new_dma_reserve;
6689}
6690
1da177e4
LT
6691void __init free_area_init(unsigned long *zones_size)
6692{
9109fb7b 6693 free_area_init_node(0, zones_size,
1da177e4
LT
6694 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6695}
1da177e4 6696
1da177e4
LT
6697static int page_alloc_cpu_notify(struct notifier_block *self,
6698 unsigned long action, void *hcpu)
6699{
6700 int cpu = (unsigned long)hcpu;
1da177e4 6701
8bb78442 6702 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6703 lru_add_drain_cpu(cpu);
9f8f2172
CL
6704 drain_pages(cpu);
6705
6706 /*
6707 * Spill the event counters of the dead processor
6708 * into the current processors event counters.
6709 * This artificially elevates the count of the current
6710 * processor.
6711 */
f8891e5e 6712 vm_events_fold_cpu(cpu);
9f8f2172
CL
6713
6714 /*
6715 * Zero the differential counters of the dead processor
6716 * so that the vm statistics are consistent.
6717 *
6718 * This is only okay since the processor is dead and cannot
6719 * race with what we are doing.
6720 */
2bb921e5 6721 cpu_vm_stats_fold(cpu);
1da177e4
LT
6722 }
6723 return NOTIFY_OK;
6724}
1da177e4
LT
6725
6726void __init page_alloc_init(void)
6727{
6728 hotcpu_notifier(page_alloc_cpu_notify, 0);
6729}
6730
cb45b0e9 6731/*
34b10060 6732 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6733 * or min_free_kbytes changes.
6734 */
6735static void calculate_totalreserve_pages(void)
6736{
6737 struct pglist_data *pgdat;
6738 unsigned long reserve_pages = 0;
2f6726e5 6739 enum zone_type i, j;
cb45b0e9
HA
6740
6741 for_each_online_pgdat(pgdat) {
6742 for (i = 0; i < MAX_NR_ZONES; i++) {
6743 struct zone *zone = pgdat->node_zones + i;
3484b2de 6744 long max = 0;
cb45b0e9
HA
6745
6746 /* Find valid and maximum lowmem_reserve in the zone */
6747 for (j = i; j < MAX_NR_ZONES; j++) {
6748 if (zone->lowmem_reserve[j] > max)
6749 max = zone->lowmem_reserve[j];
6750 }
6751
41858966
MG
6752 /* we treat the high watermark as reserved pages. */
6753 max += high_wmark_pages(zone);
cb45b0e9 6754
b40da049
JL
6755 if (max > zone->managed_pages)
6756 max = zone->managed_pages;
a8d01437
JW
6757
6758 zone->totalreserve_pages = max;
6759
cb45b0e9
HA
6760 reserve_pages += max;
6761 }
6762 }
6763 totalreserve_pages = reserve_pages;
6764}
6765
1da177e4
LT
6766/*
6767 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6768 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6769 * has a correct pages reserved value, so an adequate number of
6770 * pages are left in the zone after a successful __alloc_pages().
6771 */
6772static void setup_per_zone_lowmem_reserve(void)
6773{
6774 struct pglist_data *pgdat;
2f6726e5 6775 enum zone_type j, idx;
1da177e4 6776
ec936fc5 6777 for_each_online_pgdat(pgdat) {
1da177e4
LT
6778 for (j = 0; j < MAX_NR_ZONES; j++) {
6779 struct zone *zone = pgdat->node_zones + j;
b40da049 6780 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6781
6782 zone->lowmem_reserve[j] = 0;
6783
2f6726e5
CL
6784 idx = j;
6785 while (idx) {
1da177e4
LT
6786 struct zone *lower_zone;
6787
2f6726e5
CL
6788 idx--;
6789
1da177e4
LT
6790 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6791 sysctl_lowmem_reserve_ratio[idx] = 1;
6792
6793 lower_zone = pgdat->node_zones + idx;
b40da049 6794 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6795 sysctl_lowmem_reserve_ratio[idx];
b40da049 6796 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6797 }
6798 }
6799 }
cb45b0e9
HA
6800
6801 /* update totalreserve_pages */
6802 calculate_totalreserve_pages();
1da177e4
LT
6803}
6804
cfd3da1e 6805static void __setup_per_zone_wmarks(void)
1da177e4
LT
6806{
6807 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6808 unsigned long lowmem_pages = 0;
6809 struct zone *zone;
6810 unsigned long flags;
6811
6812 /* Calculate total number of !ZONE_HIGHMEM pages */
6813 for_each_zone(zone) {
6814 if (!is_highmem(zone))
b40da049 6815 lowmem_pages += zone->managed_pages;
1da177e4
LT
6816 }
6817
6818 for_each_zone(zone) {
ac924c60
AM
6819 u64 tmp;
6820
1125b4e3 6821 spin_lock_irqsave(&zone->lock, flags);
b40da049 6822 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6823 do_div(tmp, lowmem_pages);
1da177e4
LT
6824 if (is_highmem(zone)) {
6825 /*
669ed175
NP
6826 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6827 * need highmem pages, so cap pages_min to a small
6828 * value here.
6829 *
41858966 6830 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6831 * deltas control asynch page reclaim, and so should
669ed175 6832 * not be capped for highmem.
1da177e4 6833 */
90ae8d67 6834 unsigned long min_pages;
1da177e4 6835
b40da049 6836 min_pages = zone->managed_pages / 1024;
90ae8d67 6837 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6838 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6839 } else {
669ed175
NP
6840 /*
6841 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6842 * proportionate to the zone's size.
6843 */
41858966 6844 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6845 }
6846
795ae7a0
JW
6847 /*
6848 * Set the kswapd watermarks distance according to the
6849 * scale factor in proportion to available memory, but
6850 * ensure a minimum size on small systems.
6851 */
6852 tmp = max_t(u64, tmp >> 2,
6853 mult_frac(zone->managed_pages,
6854 watermark_scale_factor, 10000));
6855
6856 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6857 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6858
81c0a2bb 6859 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6860 high_wmark_pages(zone) - low_wmark_pages(zone) -
6861 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6862
1125b4e3 6863 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6864 }
cb45b0e9
HA
6865
6866 /* update totalreserve_pages */
6867 calculate_totalreserve_pages();
1da177e4
LT
6868}
6869
cfd3da1e
MG
6870/**
6871 * setup_per_zone_wmarks - called when min_free_kbytes changes
6872 * or when memory is hot-{added|removed}
6873 *
6874 * Ensures that the watermark[min,low,high] values for each zone are set
6875 * correctly with respect to min_free_kbytes.
6876 */
6877void setup_per_zone_wmarks(void)
6878{
6879 mutex_lock(&zonelists_mutex);
6880 __setup_per_zone_wmarks();
6881 mutex_unlock(&zonelists_mutex);
6882}
6883
1da177e4
LT
6884/*
6885 * Initialise min_free_kbytes.
6886 *
6887 * For small machines we want it small (128k min). For large machines
6888 * we want it large (64MB max). But it is not linear, because network
6889 * bandwidth does not increase linearly with machine size. We use
6890 *
b8af2941 6891 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6892 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6893 *
6894 * which yields
6895 *
6896 * 16MB: 512k
6897 * 32MB: 724k
6898 * 64MB: 1024k
6899 * 128MB: 1448k
6900 * 256MB: 2048k
6901 * 512MB: 2896k
6902 * 1024MB: 4096k
6903 * 2048MB: 5792k
6904 * 4096MB: 8192k
6905 * 8192MB: 11584k
6906 * 16384MB: 16384k
6907 */
1b79acc9 6908int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6909{
6910 unsigned long lowmem_kbytes;
5f12733e 6911 int new_min_free_kbytes;
1da177e4
LT
6912
6913 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6914 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6915
6916 if (new_min_free_kbytes > user_min_free_kbytes) {
6917 min_free_kbytes = new_min_free_kbytes;
6918 if (min_free_kbytes < 128)
6919 min_free_kbytes = 128;
6920 if (min_free_kbytes > 65536)
6921 min_free_kbytes = 65536;
6922 } else {
6923 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6924 new_min_free_kbytes, user_min_free_kbytes);
6925 }
bc75d33f 6926 setup_per_zone_wmarks();
a6cccdc3 6927 refresh_zone_stat_thresholds();
1da177e4
LT
6928 setup_per_zone_lowmem_reserve();
6929 return 0;
6930}
bc22af74 6931core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6932
6933/*
b8af2941 6934 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6935 * that we can call two helper functions whenever min_free_kbytes
6936 * changes.
6937 */
cccad5b9 6938int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6939 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6940{
da8c757b
HP
6941 int rc;
6942
6943 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6944 if (rc)
6945 return rc;
6946
5f12733e
MH
6947 if (write) {
6948 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6949 setup_per_zone_wmarks();
5f12733e 6950 }
1da177e4
LT
6951 return 0;
6952}
6953
795ae7a0
JW
6954int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6955 void __user *buffer, size_t *length, loff_t *ppos)
6956{
6957 int rc;
6958
6959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6960 if (rc)
6961 return rc;
6962
6963 if (write)
6964 setup_per_zone_wmarks();
6965
6966 return 0;
6967}
6968
9614634f 6969#ifdef CONFIG_NUMA
cccad5b9 6970int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6971 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6972{
6973 struct zone *zone;
6974 int rc;
6975
8d65af78 6976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6977 if (rc)
6978 return rc;
6979
6980 for_each_zone(zone)
b40da049 6981 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6982 sysctl_min_unmapped_ratio) / 100;
6983 return 0;
6984}
0ff38490 6985
cccad5b9 6986int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6987 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6988{
6989 struct zone *zone;
6990 int rc;
6991
8d65af78 6992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6993 if (rc)
6994 return rc;
6995
6996 for_each_zone(zone)
b40da049 6997 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6998 sysctl_min_slab_ratio) / 100;
6999 return 0;
7000}
9614634f
CL
7001#endif
7002
1da177e4
LT
7003/*
7004 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7005 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7006 * whenever sysctl_lowmem_reserve_ratio changes.
7007 *
7008 * The reserve ratio obviously has absolutely no relation with the
41858966 7009 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7010 * if in function of the boot time zone sizes.
7011 */
cccad5b9 7012int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7013 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7014{
8d65af78 7015 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7016 setup_per_zone_lowmem_reserve();
7017 return 0;
7018}
7019
8ad4b1fb
RS
7020/*
7021 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7022 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7023 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7024 */
cccad5b9 7025int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7026 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7027{
7028 struct zone *zone;
7cd2b0a3 7029 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7030 int ret;
7031
7cd2b0a3
DR
7032 mutex_lock(&pcp_batch_high_lock);
7033 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7034
8d65af78 7035 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7036 if (!write || ret < 0)
7037 goto out;
7038
7039 /* Sanity checking to avoid pcp imbalance */
7040 if (percpu_pagelist_fraction &&
7041 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7042 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7043 ret = -EINVAL;
7044 goto out;
7045 }
7046
7047 /* No change? */
7048 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7049 goto out;
c8e251fa 7050
364df0eb 7051 for_each_populated_zone(zone) {
7cd2b0a3
DR
7052 unsigned int cpu;
7053
22a7f12b 7054 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7055 pageset_set_high_and_batch(zone,
7056 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7057 }
7cd2b0a3 7058out:
c8e251fa 7059 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7060 return ret;
8ad4b1fb
RS
7061}
7062
a9919c79 7063#ifdef CONFIG_NUMA
f034b5d4 7064int hashdist = HASHDIST_DEFAULT;
1da177e4 7065
1da177e4
LT
7066static int __init set_hashdist(char *str)
7067{
7068 if (!str)
7069 return 0;
7070 hashdist = simple_strtoul(str, &str, 0);
7071 return 1;
7072}
7073__setup("hashdist=", set_hashdist);
7074#endif
7075
7076/*
7077 * allocate a large system hash table from bootmem
7078 * - it is assumed that the hash table must contain an exact power-of-2
7079 * quantity of entries
7080 * - limit is the number of hash buckets, not the total allocation size
7081 */
7082void *__init alloc_large_system_hash(const char *tablename,
7083 unsigned long bucketsize,
7084 unsigned long numentries,
7085 int scale,
7086 int flags,
7087 unsigned int *_hash_shift,
7088 unsigned int *_hash_mask,
31fe62b9
TB
7089 unsigned long low_limit,
7090 unsigned long high_limit)
1da177e4 7091{
31fe62b9 7092 unsigned long long max = high_limit;
1da177e4
LT
7093 unsigned long log2qty, size;
7094 void *table = NULL;
7095
7096 /* allow the kernel cmdline to have a say */
7097 if (!numentries) {
7098 /* round applicable memory size up to nearest megabyte */
04903664 7099 numentries = nr_kernel_pages;
a7e83318
JZ
7100
7101 /* It isn't necessary when PAGE_SIZE >= 1MB */
7102 if (PAGE_SHIFT < 20)
7103 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7104
7105 /* limit to 1 bucket per 2^scale bytes of low memory */
7106 if (scale > PAGE_SHIFT)
7107 numentries >>= (scale - PAGE_SHIFT);
7108 else
7109 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7110
7111 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7112 if (unlikely(flags & HASH_SMALL)) {
7113 /* Makes no sense without HASH_EARLY */
7114 WARN_ON(!(flags & HASH_EARLY));
7115 if (!(numentries >> *_hash_shift)) {
7116 numentries = 1UL << *_hash_shift;
7117 BUG_ON(!numentries);
7118 }
7119 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7120 numentries = PAGE_SIZE / bucketsize;
1da177e4 7121 }
6e692ed3 7122 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7123
7124 /* limit allocation size to 1/16 total memory by default */
7125 if (max == 0) {
7126 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7127 do_div(max, bucketsize);
7128 }
074b8517 7129 max = min(max, 0x80000000ULL);
1da177e4 7130
31fe62b9
TB
7131 if (numentries < low_limit)
7132 numentries = low_limit;
1da177e4
LT
7133 if (numentries > max)
7134 numentries = max;
7135
f0d1b0b3 7136 log2qty = ilog2(numentries);
1da177e4
LT
7137
7138 do {
7139 size = bucketsize << log2qty;
7140 if (flags & HASH_EARLY)
6782832e 7141 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7142 else if (hashdist)
7143 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7144 else {
1037b83b
ED
7145 /*
7146 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7147 * some pages at the end of hash table which
7148 * alloc_pages_exact() automatically does
1037b83b 7149 */
264ef8a9 7150 if (get_order(size) < MAX_ORDER) {
a1dd268c 7151 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7152 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7153 }
1da177e4
LT
7154 }
7155 } while (!table && size > PAGE_SIZE && --log2qty);
7156
7157 if (!table)
7158 panic("Failed to allocate %s hash table\n", tablename);
7159
1170532b
JP
7160 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7161 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7162
7163 if (_hash_shift)
7164 *_hash_shift = log2qty;
7165 if (_hash_mask)
7166 *_hash_mask = (1 << log2qty) - 1;
7167
7168 return table;
7169}
a117e66e 7170
a5d76b54 7171/*
80934513
MK
7172 * This function checks whether pageblock includes unmovable pages or not.
7173 * If @count is not zero, it is okay to include less @count unmovable pages
7174 *
b8af2941 7175 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7176 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7177 * expect this function should be exact.
a5d76b54 7178 */
b023f468
WC
7179bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7180 bool skip_hwpoisoned_pages)
49ac8255
KH
7181{
7182 unsigned long pfn, iter, found;
47118af0
MN
7183 int mt;
7184
49ac8255
KH
7185 /*
7186 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7187 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7188 */
7189 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7190 return false;
47118af0
MN
7191 mt = get_pageblock_migratetype(page);
7192 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7193 return false;
49ac8255
KH
7194
7195 pfn = page_to_pfn(page);
7196 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7197 unsigned long check = pfn + iter;
7198
29723fcc 7199 if (!pfn_valid_within(check))
49ac8255 7200 continue;
29723fcc 7201
49ac8255 7202 page = pfn_to_page(check);
c8721bbb
NH
7203
7204 /*
7205 * Hugepages are not in LRU lists, but they're movable.
7206 * We need not scan over tail pages bacause we don't
7207 * handle each tail page individually in migration.
7208 */
7209 if (PageHuge(page)) {
7210 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7211 continue;
7212 }
7213
97d255c8
MK
7214 /*
7215 * We can't use page_count without pin a page
7216 * because another CPU can free compound page.
7217 * This check already skips compound tails of THP
0139aa7b 7218 * because their page->_refcount is zero at all time.
97d255c8 7219 */
fe896d18 7220 if (!page_ref_count(page)) {
49ac8255
KH
7221 if (PageBuddy(page))
7222 iter += (1 << page_order(page)) - 1;
7223 continue;
7224 }
97d255c8 7225
b023f468
WC
7226 /*
7227 * The HWPoisoned page may be not in buddy system, and
7228 * page_count() is not 0.
7229 */
7230 if (skip_hwpoisoned_pages && PageHWPoison(page))
7231 continue;
7232
49ac8255
KH
7233 if (!PageLRU(page))
7234 found++;
7235 /*
6b4f7799
JW
7236 * If there are RECLAIMABLE pages, we need to check
7237 * it. But now, memory offline itself doesn't call
7238 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7239 */
7240 /*
7241 * If the page is not RAM, page_count()should be 0.
7242 * we don't need more check. This is an _used_ not-movable page.
7243 *
7244 * The problematic thing here is PG_reserved pages. PG_reserved
7245 * is set to both of a memory hole page and a _used_ kernel
7246 * page at boot.
7247 */
7248 if (found > count)
80934513 7249 return true;
49ac8255 7250 }
80934513 7251 return false;
49ac8255
KH
7252}
7253
7254bool is_pageblock_removable_nolock(struct page *page)
7255{
656a0706
MH
7256 struct zone *zone;
7257 unsigned long pfn;
687875fb
MH
7258
7259 /*
7260 * We have to be careful here because we are iterating over memory
7261 * sections which are not zone aware so we might end up outside of
7262 * the zone but still within the section.
656a0706
MH
7263 * We have to take care about the node as well. If the node is offline
7264 * its NODE_DATA will be NULL - see page_zone.
687875fb 7265 */
656a0706
MH
7266 if (!node_online(page_to_nid(page)))
7267 return false;
7268
7269 zone = page_zone(page);
7270 pfn = page_to_pfn(page);
108bcc96 7271 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7272 return false;
7273
b023f468 7274 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7275}
0c0e6195 7276
080fe206 7277#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7278
7279static unsigned long pfn_max_align_down(unsigned long pfn)
7280{
7281 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7282 pageblock_nr_pages) - 1);
7283}
7284
7285static unsigned long pfn_max_align_up(unsigned long pfn)
7286{
7287 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7288 pageblock_nr_pages));
7289}
7290
041d3a8c 7291/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7292static int __alloc_contig_migrate_range(struct compact_control *cc,
7293 unsigned long start, unsigned long end)
041d3a8c
MN
7294{
7295 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7296 unsigned long nr_reclaimed;
041d3a8c
MN
7297 unsigned long pfn = start;
7298 unsigned int tries = 0;
7299 int ret = 0;
7300
be49a6e1 7301 migrate_prep();
041d3a8c 7302
bb13ffeb 7303 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7304 if (fatal_signal_pending(current)) {
7305 ret = -EINTR;
7306 break;
7307 }
7308
bb13ffeb
MG
7309 if (list_empty(&cc->migratepages)) {
7310 cc->nr_migratepages = 0;
edc2ca61 7311 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7312 if (!pfn) {
7313 ret = -EINTR;
7314 break;
7315 }
7316 tries = 0;
7317 } else if (++tries == 5) {
7318 ret = ret < 0 ? ret : -EBUSY;
7319 break;
7320 }
7321
beb51eaa
MK
7322 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7323 &cc->migratepages);
7324 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7325
9c620e2b 7326 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7327 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7328 }
2a6f5124
SP
7329 if (ret < 0) {
7330 putback_movable_pages(&cc->migratepages);
7331 return ret;
7332 }
7333 return 0;
041d3a8c
MN
7334}
7335
7336/**
7337 * alloc_contig_range() -- tries to allocate given range of pages
7338 * @start: start PFN to allocate
7339 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7340 * @migratetype: migratetype of the underlaying pageblocks (either
7341 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7342 * in range must have the same migratetype and it must
7343 * be either of the two.
041d3a8c
MN
7344 *
7345 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7346 * aligned, however it's the caller's responsibility to guarantee that
7347 * we are the only thread that changes migrate type of pageblocks the
7348 * pages fall in.
7349 *
7350 * The PFN range must belong to a single zone.
7351 *
7352 * Returns zero on success or negative error code. On success all
7353 * pages which PFN is in [start, end) are allocated for the caller and
7354 * need to be freed with free_contig_range().
7355 */
0815f3d8
MN
7356int alloc_contig_range(unsigned long start, unsigned long end,
7357 unsigned migratetype)
041d3a8c 7358{
041d3a8c 7359 unsigned long outer_start, outer_end;
d00181b9
KS
7360 unsigned int order;
7361 int ret = 0;
041d3a8c 7362
bb13ffeb
MG
7363 struct compact_control cc = {
7364 .nr_migratepages = 0,
7365 .order = -1,
7366 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7367 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7368 .ignore_skip_hint = true,
7369 };
7370 INIT_LIST_HEAD(&cc.migratepages);
7371
041d3a8c
MN
7372 /*
7373 * What we do here is we mark all pageblocks in range as
7374 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7375 * have different sizes, and due to the way page allocator
7376 * work, we align the range to biggest of the two pages so
7377 * that page allocator won't try to merge buddies from
7378 * different pageblocks and change MIGRATE_ISOLATE to some
7379 * other migration type.
7380 *
7381 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7382 * migrate the pages from an unaligned range (ie. pages that
7383 * we are interested in). This will put all the pages in
7384 * range back to page allocator as MIGRATE_ISOLATE.
7385 *
7386 * When this is done, we take the pages in range from page
7387 * allocator removing them from the buddy system. This way
7388 * page allocator will never consider using them.
7389 *
7390 * This lets us mark the pageblocks back as
7391 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7392 * aligned range but not in the unaligned, original range are
7393 * put back to page allocator so that buddy can use them.
7394 */
7395
7396 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7397 pfn_max_align_up(end), migratetype,
7398 false);
041d3a8c 7399 if (ret)
86a595f9 7400 return ret;
041d3a8c 7401
8ef5849f
JK
7402 /*
7403 * In case of -EBUSY, we'd like to know which page causes problem.
7404 * So, just fall through. We will check it in test_pages_isolated().
7405 */
bb13ffeb 7406 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7407 if (ret && ret != -EBUSY)
041d3a8c
MN
7408 goto done;
7409
7410 /*
7411 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7412 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7413 * more, all pages in [start, end) are free in page allocator.
7414 * What we are going to do is to allocate all pages from
7415 * [start, end) (that is remove them from page allocator).
7416 *
7417 * The only problem is that pages at the beginning and at the
7418 * end of interesting range may be not aligned with pages that
7419 * page allocator holds, ie. they can be part of higher order
7420 * pages. Because of this, we reserve the bigger range and
7421 * once this is done free the pages we are not interested in.
7422 *
7423 * We don't have to hold zone->lock here because the pages are
7424 * isolated thus they won't get removed from buddy.
7425 */
7426
7427 lru_add_drain_all();
510f5507 7428 drain_all_pages(cc.zone);
041d3a8c
MN
7429
7430 order = 0;
7431 outer_start = start;
7432 while (!PageBuddy(pfn_to_page(outer_start))) {
7433 if (++order >= MAX_ORDER) {
8ef5849f
JK
7434 outer_start = start;
7435 break;
041d3a8c
MN
7436 }
7437 outer_start &= ~0UL << order;
7438 }
7439
8ef5849f
JK
7440 if (outer_start != start) {
7441 order = page_order(pfn_to_page(outer_start));
7442
7443 /*
7444 * outer_start page could be small order buddy page and
7445 * it doesn't include start page. Adjust outer_start
7446 * in this case to report failed page properly
7447 * on tracepoint in test_pages_isolated()
7448 */
7449 if (outer_start + (1UL << order) <= start)
7450 outer_start = start;
7451 }
7452
041d3a8c 7453 /* Make sure the range is really isolated. */
b023f468 7454 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7455 pr_info("%s: [%lx, %lx) PFNs busy\n",
7456 __func__, outer_start, end);
041d3a8c
MN
7457 ret = -EBUSY;
7458 goto done;
7459 }
7460
49f223a9 7461 /* Grab isolated pages from freelists. */
bb13ffeb 7462 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7463 if (!outer_end) {
7464 ret = -EBUSY;
7465 goto done;
7466 }
7467
7468 /* Free head and tail (if any) */
7469 if (start != outer_start)
7470 free_contig_range(outer_start, start - outer_start);
7471 if (end != outer_end)
7472 free_contig_range(end, outer_end - end);
7473
7474done:
7475 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7476 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7477 return ret;
7478}
7479
7480void free_contig_range(unsigned long pfn, unsigned nr_pages)
7481{
bcc2b02f
MS
7482 unsigned int count = 0;
7483
7484 for (; nr_pages--; pfn++) {
7485 struct page *page = pfn_to_page(pfn);
7486
7487 count += page_count(page) != 1;
7488 __free_page(page);
7489 }
7490 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7491}
7492#endif
7493
4ed7e022 7494#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7495/*
7496 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7497 * page high values need to be recalulated.
7498 */
4ed7e022
JL
7499void __meminit zone_pcp_update(struct zone *zone)
7500{
0a647f38 7501 unsigned cpu;
c8e251fa 7502 mutex_lock(&pcp_batch_high_lock);
0a647f38 7503 for_each_possible_cpu(cpu)
169f6c19
CS
7504 pageset_set_high_and_batch(zone,
7505 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7506 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7507}
7508#endif
7509
340175b7
JL
7510void zone_pcp_reset(struct zone *zone)
7511{
7512 unsigned long flags;
5a883813
MK
7513 int cpu;
7514 struct per_cpu_pageset *pset;
340175b7
JL
7515
7516 /* avoid races with drain_pages() */
7517 local_irq_save(flags);
7518 if (zone->pageset != &boot_pageset) {
5a883813
MK
7519 for_each_online_cpu(cpu) {
7520 pset = per_cpu_ptr(zone->pageset, cpu);
7521 drain_zonestat(zone, pset);
7522 }
340175b7
JL
7523 free_percpu(zone->pageset);
7524 zone->pageset = &boot_pageset;
7525 }
7526 local_irq_restore(flags);
7527}
7528
6dcd73d7 7529#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7530/*
b9eb6319
JK
7531 * All pages in the range must be in a single zone and isolated
7532 * before calling this.
0c0e6195
KH
7533 */
7534void
7535__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7536{
7537 struct page *page;
7538 struct zone *zone;
7aeb09f9 7539 unsigned int order, i;
0c0e6195
KH
7540 unsigned long pfn;
7541 unsigned long flags;
7542 /* find the first valid pfn */
7543 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7544 if (pfn_valid(pfn))
7545 break;
7546 if (pfn == end_pfn)
7547 return;
7548 zone = page_zone(pfn_to_page(pfn));
7549 spin_lock_irqsave(&zone->lock, flags);
7550 pfn = start_pfn;
7551 while (pfn < end_pfn) {
7552 if (!pfn_valid(pfn)) {
7553 pfn++;
7554 continue;
7555 }
7556 page = pfn_to_page(pfn);
b023f468
WC
7557 /*
7558 * The HWPoisoned page may be not in buddy system, and
7559 * page_count() is not 0.
7560 */
7561 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7562 pfn++;
7563 SetPageReserved(page);
7564 continue;
7565 }
7566
0c0e6195
KH
7567 BUG_ON(page_count(page));
7568 BUG_ON(!PageBuddy(page));
7569 order = page_order(page);
7570#ifdef CONFIG_DEBUG_VM
1170532b
JP
7571 pr_info("remove from free list %lx %d %lx\n",
7572 pfn, 1 << order, end_pfn);
0c0e6195
KH
7573#endif
7574 list_del(&page->lru);
7575 rmv_page_order(page);
7576 zone->free_area[order].nr_free--;
0c0e6195
KH
7577 for (i = 0; i < (1 << order); i++)
7578 SetPageReserved((page+i));
7579 pfn += (1 << order);
7580 }
7581 spin_unlock_irqrestore(&zone->lock, flags);
7582}
7583#endif
8d22ba1b 7584
8d22ba1b
WF
7585bool is_free_buddy_page(struct page *page)
7586{
7587 struct zone *zone = page_zone(page);
7588 unsigned long pfn = page_to_pfn(page);
7589 unsigned long flags;
7aeb09f9 7590 unsigned int order;
8d22ba1b
WF
7591
7592 spin_lock_irqsave(&zone->lock, flags);
7593 for (order = 0; order < MAX_ORDER; order++) {
7594 struct page *page_head = page - (pfn & ((1 << order) - 1));
7595
7596 if (PageBuddy(page_head) && page_order(page_head) >= order)
7597 break;
7598 }
7599 spin_unlock_irqrestore(&zone->lock, flags);
7600
7601 return order < MAX_ORDER;
7602}