]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: prevent double decrease of nr_reserved_highatomic
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
38addce8 94#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 95volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
96EXPORT_SYMBOL(latent_entropy);
97#endif
98
1da177e4 99/*
13808910 100 * Array of node states.
1da177e4 101 */
13808910
CL
102nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105#ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107#ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
109#endif
110#ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
112#endif
113 [N_CPU] = { { [0] = 1UL } },
114#endif /* NUMA */
115};
116EXPORT_SYMBOL(node_states);
117
c3d5f5f0
JL
118/* Protect totalram_pages and zone->managed_pages */
119static DEFINE_SPINLOCK(managed_page_count_lock);
120
6c231b7b 121unsigned long totalram_pages __read_mostly;
cb45b0e9 122unsigned long totalreserve_pages __read_mostly;
e48322ab 123unsigned long totalcma_pages __read_mostly;
ab8fabd4 124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400 183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 184unsigned int pageblock_order __read_mostly;
d9c23400
MG
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
60f30350
VB
232char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237#ifdef CONFIG_CMA
238 "CMA",
239#endif
240#ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242#endif
243};
244
f1e61557
KS
245compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248#ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250#endif
9a982250
KS
251#ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253#endif
f1e61557
KS
254};
255
1da177e4 256int min_free_kbytes = 1024;
42aa83cb 257int user_min_free_kbytes = -1;
795ae7a0 258int watermark_scale_factor = 10;
1da177e4 259
2c85f51d
JB
260static unsigned long __meminitdata nr_kernel_pages;
261static unsigned long __meminitdata nr_all_pages;
a3142c8e 262static unsigned long __meminitdata dma_reserve;
1da177e4 263
0ee332c1
TH
264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __initdata required_kernelcore;
268static unsigned long __initdata required_movablecore;
269static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 270static bool mirrored_kernelcore;
0ee332c1
TH
271
272/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273int movable_zone;
274EXPORT_SYMBOL(movable_zone);
275#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 276
418508c1
MS
277#if MAX_NUMNODES > 1
278int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 279int nr_online_nodes __read_mostly = 1;
418508c1 280EXPORT_SYMBOL(nr_node_ids);
62bc62a8 281EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
282#endif
283
9ef9acb0
MG
284int page_group_by_mobility_disabled __read_mostly;
285
3a80a7fa
MG
286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287static inline void reset_deferred_meminit(pg_data_t *pgdat)
288{
289 pgdat->first_deferred_pfn = ULONG_MAX;
290}
291
292/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 293static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 294{
ef70b6f4
MG
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
298 return true;
299
300 return false;
301}
302
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
342static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345{
346 return true;
347}
348#endif
349
0b423ca2
MG
350/* Return a pointer to the bitmap storing bits affecting a block of pages */
351static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353{
354#ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356#else
357 return page_zone(page)->pageblock_flags;
358#endif /* CONFIG_SPARSEMEM */
359}
360
361static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362{
363#ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366#else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369#endif /* CONFIG_SPARSEMEM */
370}
371
372/**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385{
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398}
399
400unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403{
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405}
406
407static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408{
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410}
411
412/**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424{
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449}
3a80a7fa 450
ee6f509c 451void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 452{
5d0f3f72
KM
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
455 migratetype = MIGRATE_UNMOVABLE;
456
b2a0ac88
MG
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459}
460
13e7444b 461#ifdef CONFIG_DEBUG_VM
c6a57e19 462static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 463{
bdc8cb98
DH
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 467 unsigned long sp, start_pfn;
c6a57e19 468
bdc8cb98
DH
469 do {
470 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
108bcc96 473 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
b5e6a5a2 477 if (ret)
613813e8
DH
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
b5e6a5a2 481
bdc8cb98 482 return ret;
c6a57e19
DH
483}
484
485static int page_is_consistent(struct zone *zone, struct page *page)
486{
14e07298 487 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 488 return 0;
1da177e4 489 if (zone != page_zone(page))
c6a57e19
DH
490 return 0;
491
492 return 1;
493}
494/*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497static int bad_range(struct zone *zone, struct page *page)
498{
499 if (page_outside_zone_boundaries(zone, page))
1da177e4 500 return 1;
c6a57e19
DH
501 if (!page_is_consistent(zone, page))
502 return 1;
503
1da177e4
LT
504 return 0;
505}
13e7444b
NP
506#else
507static inline int bad_range(struct zone *zone, struct page *page)
508{
509 return 0;
510}
511#endif
512
d230dec1
KS
513static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
1da177e4 515{
d936cf9b
HD
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
ff8e8116 530 pr_alert(
1e9e6365 531 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
ff8e8116 540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 541 current->comm, page_to_pfn(page));
ff8e8116
VB
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
4e462112 547 dump_page_owner(page);
3dc14741 548
4f31888c 549 print_modules();
1da177e4 550 dump_stack();
d936cf9b 551out:
8cc3b392 552 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 553 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
555}
556
1da177e4
LT
557/*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
1d798ca3 560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 561 *
1d798ca3
KS
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 564 *
1d798ca3
KS
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
1da177e4 567 *
1d798ca3 568 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 569 * This usage means that zero-order pages may not be compound.
1da177e4 570 */
d98c7a09 571
9a982250 572void free_compound_page(struct page *page)
d98c7a09 573{
d85f3385 574 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
575}
576
d00181b9 577void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
578{
579 int i;
580 int nr_pages = 1 << order;
581
f1e61557 582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
58a84aa9 587 set_page_count(p, 0);
1c290f64 588 p->mapping = TAIL_MAPPING;
1d798ca3 589 set_compound_head(p, page);
18229df5 590 }
53f9263b 591 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
592}
593
c0a32fc5
SG
594#ifdef CONFIG_DEBUG_PAGEALLOC
595unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
596bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 598EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
599bool _debug_guardpage_enabled __read_mostly;
600
031bc574
JK
601static int __init early_debug_pagealloc(char *buf)
602{
603 if (!buf)
604 return -EINVAL;
2a138dc7 605 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
606}
607early_param("debug_pagealloc", early_debug_pagealloc);
608
e30825f1
JK
609static bool need_debug_guardpage(void)
610{
031bc574
JK
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
f1c1e9f7
JK
615 if (!debug_guardpage_minorder())
616 return false;
617
e30825f1
JK
618 return true;
619}
620
621static void init_debug_guardpage(void)
622{
031bc574
JK
623 if (!debug_pagealloc_enabled())
624 return;
625
f1c1e9f7
JK
626 if (!debug_guardpage_minorder())
627 return;
628
e30825f1
JK
629 _debug_guardpage_enabled = true;
630}
631
632struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635};
c0a32fc5
SG
636
637static int __init debug_guardpage_minorder_setup(char *buf)
638{
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 642 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
1170532b 646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
647 return 0;
648}
f1c1e9f7 649early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 650
acbc15a4 651static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 652 unsigned int order, int migratetype)
c0a32fc5 653{
e30825f1
JK
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
acbc15a4
JK
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
e30825f1
JK
661
662 page_ext = lookup_page_ext(page);
f86e4271 663 if (unlikely(!page_ext))
acbc15a4 664 return false;
f86e4271 665
e30825f1
JK
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
2847cf95
JK
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
672
673 return true;
c0a32fc5
SG
674}
675
2847cf95
JK
676static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
c0a32fc5 678{
e30825f1
JK
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
f86e4271
YS
685 if (unlikely(!page_ext))
686 return;
687
e30825f1
JK
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
2847cf95
JK
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
693}
694#else
980ac167 695struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
696static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
2847cf95
JK
698static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
c0a32fc5
SG
700#endif
701
7aeb09f9 702static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 703{
4c21e2f2 704 set_page_private(page, order);
676165a8 705 __SetPageBuddy(page);
1da177e4
LT
706}
707
708static inline void rmv_page_order(struct page *page)
709{
676165a8 710 __ClearPageBuddy(page);
4c21e2f2 711 set_page_private(page, 0);
1da177e4
LT
712}
713
1da177e4
LT
714/*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
13e7444b 717 * (a) the buddy is not in a hole &&
676165a8 718 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
676165a8 721 *
cf6fe945
WSH
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
1da177e4 726 *
676165a8 727 * For recording page's order, we use page_private(page).
1da177e4 728 */
cb2b95e1 729static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 730 unsigned int order)
1da177e4 731{
14e07298 732 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 733 return 0;
13e7444b 734
c0a32fc5 735 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
4c5018ce
WY
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
c0a32fc5
SG
741 return 1;
742 }
743
cb2b95e1 744 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
4c5018ce
WY
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
6aa3001b 755 return 1;
676165a8 756 }
6aa3001b 757 return 0;
1da177e4
LT
758}
759
760/*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
1da177e4 776 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
1da177e4 779 * If a block is freed, and its buddy is also free, then this
5f63b720 780 * triggers coalescing into a block of larger size.
1da177e4 781 *
6d49e352 782 * -- nyc
1da177e4
LT
783 */
784
48db57f8 785static inline void __free_one_page(struct page *page,
dc4b0caf 786 unsigned long pfn,
ed0ae21d
MG
787 struct zone *zone, unsigned int order,
788 int migratetype)
1da177e4
LT
789{
790 unsigned long page_idx;
6dda9d55 791 unsigned long combined_idx;
43506fad 792 unsigned long uninitialized_var(buddy_idx);
6dda9d55 793 struct page *buddy;
d9dddbf5
VB
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 797
d29bb978 798 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 800
ed0ae21d 801 VM_BUG_ON(migratetype == -1);
d9dddbf5 802 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 804
d9dddbf5 805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 806
309381fe
SL
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 809
d9dddbf5 810continue_merging:
3c605096 811 while (order < max_order - 1) {
43506fad
KC
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
cb2b95e1 814 if (!page_is_buddy(page, buddy, order))
d9dddbf5 815 goto done_merging;
c0a32fc5
SG
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
2847cf95 821 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
43506fad 827 combined_idx = buddy_idx & page_idx;
1da177e4
LT
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
d9dddbf5
VB
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857done_merging:
1da177e4 858 set_page_order(page, order);
6dda9d55
CZ
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
b7f50cfa 868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 869 struct page *higher_page, *higher_buddy;
43506fad
KC
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 873 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882out:
1da177e4
LT
883 zone->free_area[order].nr_free++;
884}
885
7bfec6f4
MG
886/*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893{
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899#ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901#endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906}
907
bb552ac6 908static void free_pages_check_bad(struct page *page)
1da177e4 909{
7bfec6f4
MG
910 const char *bad_reason;
911 unsigned long bad_flags;
912
7bfec6f4
MG
913 bad_reason = NULL;
914 bad_flags = 0;
f0b791a3 915
53f9263b 916 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
fe896d18 920 if (unlikely(page_ref_count(page) != 0))
0139aa7b 921 bad_reason = "nonzero _refcount";
f0b791a3
DH
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
9edad6ea
JW
926#ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929#endif
7bfec6f4 930 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
931}
932
933static inline int free_pages_check(struct page *page)
934{
da838d4f 935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 936 return 0;
bb552ac6
MG
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
7bfec6f4 940 return 1;
1da177e4
LT
941}
942
4db7548c
MG
943static int free_tail_pages_check(struct page *head_page, struct page *page)
944{
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991}
992
e2769dbd
MG
993static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
4db7548c 995{
e2769dbd 996 int bad = 0;
4db7548c 997
4db7548c
MG
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
e2769dbd
MG
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1012
9a73f61b
KS
1013 if (compound)
1014 ClearPageDoubleMap(page);
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
bda807d4 1025 if (PageMappingFlags(page))
4db7548c 1026 page->mapping = NULL;
c4159a75 1027 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1028 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
4db7548c 1033
e2769dbd
MG
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
4db7548c
MG
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 debug_check_no_obj_freed(page_address(page),
e2769dbd 1042 PAGE_SIZE << order);
4db7548c 1043 }
e2769dbd
MG
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
29b52de1 1047 kasan_free_pages(page, order);
4db7548c 1048
4db7548c
MG
1049 return true;
1050}
1051
e2769dbd
MG
1052#ifdef CONFIG_DEBUG_VM
1053static inline bool free_pcp_prepare(struct page *page)
1054{
1055 return free_pages_prepare(page, 0, true);
1056}
1057
1058static inline bool bulkfree_pcp_prepare(struct page *page)
1059{
1060 return false;
1061}
1062#else
1063static bool free_pcp_prepare(struct page *page)
1064{
1065 return free_pages_prepare(page, 0, false);
1066}
1067
4db7548c
MG
1068static bool bulkfree_pcp_prepare(struct page *page)
1069{
1070 return free_pages_check(page);
1071}
1072#endif /* CONFIG_DEBUG_VM */
1073
1da177e4 1074/*
5f8dcc21 1075 * Frees a number of pages from the PCP lists
1da177e4 1076 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1077 * count is the number of pages to free.
1da177e4
LT
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
5f8dcc21
MG
1085static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1da177e4 1087{
5f8dcc21 1088 int migratetype = 0;
a6f9edd6 1089 int batch_free = 0;
0d5d823a 1090 unsigned long nr_scanned;
3777999d 1091 bool isolated_pageblocks;
5f8dcc21 1092
c54ad30c 1093 spin_lock(&zone->lock);
3777999d 1094 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1096 if (nr_scanned)
599d0c95 1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1098
e5b31ac2 1099 while (count) {
48db57f8 1100 struct page *page;
5f8dcc21
MG
1101 struct list_head *list;
1102
1103 /*
a6f9edd6
MG
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
5f8dcc21
MG
1109 */
1110 do {
a6f9edd6 1111 batch_free++;
5f8dcc21
MG
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
48db57f8 1116
1d16871d
NK
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1119 batch_free = count;
1d16871d 1120
a6f9edd6 1121 do {
770c8aaa
BZ
1122 int mt; /* migratetype of the to-be-freed page */
1123
a16601c5 1124 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
aa016d14 1127
bb14c2c7 1128 mt = get_pcppage_migratetype(page);
aa016d14
VB
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
3777999d 1132 if (unlikely(isolated_pageblocks))
51bb1a40 1133 mt = get_pageblock_migratetype(page);
51bb1a40 1134
4db7548c
MG
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
dc4b0caf 1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1139 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1140 } while (--count && --batch_free && !list_empty(list));
1da177e4 1141 }
c54ad30c 1142 spin_unlock(&zone->lock);
1da177e4
LT
1143}
1144
dc4b0caf
MG
1145static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
7aeb09f9 1147 unsigned int order,
ed0ae21d 1148 int migratetype)
1da177e4 1149{
0d5d823a 1150 unsigned long nr_scanned;
006d22d9 1151 spin_lock(&zone->lock);
599d0c95 1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1153 if (nr_scanned)
599d0c95 1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1155
ad53f92e
JK
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1159 }
dc4b0caf 1160 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1161 spin_unlock(&zone->lock);
48db57f8
NP
1162}
1163
1e8ce83c
RH
1164static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166{
1e8ce83c 1167 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1e8ce83c 1171
1e8ce83c
RH
1172 INIT_LIST_HEAD(&page->lru);
1173#ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177#endif
1178}
1179
1180static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182{
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184}
1185
7e18adb4
MG
1186#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187static void init_reserved_page(unsigned long pfn)
1188{
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205}
1206#else
1207static inline void init_reserved_page(unsigned long pfn)
1208{
1209}
1210#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
92923ca3
NZ
1212/*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
4b50bcc7 1218void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1219{
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
7e18adb4
MG
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1d798ca3
KS
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
7e18adb4
MG
1232 SetPageReserved(page);
1233 }
1234 }
92923ca3
NZ
1235}
1236
ec95f53a
KM
1237static void __free_pages_ok(struct page *page, unsigned int order)
1238{
1239 unsigned long flags;
95e34412 1240 int migratetype;
dc4b0caf 1241 unsigned long pfn = page_to_pfn(page);
ec95f53a 1242
e2769dbd 1243 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1244 return;
1245
cfc47a28 1246 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1247 local_irq_save(flags);
f8891e5e 1248 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1250 local_irq_restore(flags);
1da177e4
LT
1251}
1252
949698a3 1253static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1254{
c3993076 1255 unsigned int nr_pages = 1 << order;
e2d0bd2b 1256 struct page *p = page;
c3993076 1257 unsigned int loop;
a226f6c8 1258
e2d0bd2b
YL
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
c3993076
JW
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
a226f6c8 1264 }
e2d0bd2b
YL
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
c3993076 1267
e2d0bd2b 1268 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
a226f6c8
DH
1271}
1272
75a592a4
MG
1273#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1275
75a592a4
MG
1276static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278int __meminit early_pfn_to_nid(unsigned long pfn)
1279{
7ace9917 1280 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1281 int nid;
1282
7ace9917 1283 spin_lock(&early_pfn_lock);
75a592a4 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1285 if (nid < 0)
e4568d38 1286 nid = first_online_node;
7ace9917
MG
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
75a592a4
MG
1290}
1291#endif
1292
1293#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296{
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303}
1304
1305/* Only safe to use early in boot when initialisation is single-threaded */
1306static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307{
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309}
1310
1311#else
1312
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return true;
1316}
1317static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319{
1320 return true;
1321}
1322#endif
1323
1324
0e1cc95b 1325void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1326 unsigned int order)
1327{
1328 if (early_page_uninitialised(pfn))
1329 return;
949698a3 1330 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1331}
1332
7cf91a98
JK
1333/*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352{
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374}
1375
1376void set_zone_contiguous(struct zone *zone)
1377{
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395}
1396
1397void clear_zone_contiguous(struct zone *zone)
1398{
1399 zone->contiguous = false;
1400}
1401
7e18adb4 1402#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1403static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1404 unsigned long pfn, int nr_pages)
1405{
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1415 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1416 return;
1417 }
1418
e780149b
XQ
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1422 __free_pages_boot_core(page, 0);
e780149b 1423 }
a4de83dd
MG
1424}
1425
d3cd131d
NS
1426/* Completion tracking for deferred_init_memmap() threads */
1427static atomic_t pgdat_init_n_undone __initdata;
1428static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430static inline void __init pgdat_init_report_one_done(void)
1431{
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434}
0e1cc95b 1435
7e18adb4 1436/* Initialise remaining memory on a node */
0e1cc95b 1437static int __init deferred_init_memmap(void *data)
7e18adb4 1438{
0e1cc95b
MG
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
7e18adb4
MG
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
7e18adb4 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1449
0e1cc95b 1450 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1451 pgdat_init_report_one_done();
0e1cc95b
MG
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
54608c3f 1473 struct page *page = NULL;
a4de83dd
MG
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
7e18adb4
MG
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
54608c3f 1486 if (!pfn_valid_within(pfn))
a4de83dd 1487 goto free_range;
7e18adb4 1488
54608c3f
MG
1489 /*
1490 * Ensure pfn_valid is checked every
e780149b 1491 * pageblock_nr_pages for memory holes
54608c3f 1492 */
e780149b 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
a4de83dd 1502 goto free_range;
54608c3f
MG
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
e780149b 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1507 page++;
1508 } else {
a4de83dd
MG
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
54608c3f
MG
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
7e18adb4
MG
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1521 goto free_range;
7e18adb4
MG
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
7e18adb4 1541 }
e780149b
XQ
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1545
7e18adb4
MG
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
0e1cc95b 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1553 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1554
1555 pgdat_init_report_one_done();
0e1cc95b
MG
1556 return 0;
1557}
7cf91a98 1558#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1559
1560void __init page_alloc_init_late(void)
1561{
7cf91a98
JK
1562 struct zone *zone;
1563
1564#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1565 int nid;
1566
d3cd131d
NS
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1569 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
d3cd131d 1574 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
7cf91a98
JK
1578#endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
7e18adb4 1582}
7e18adb4 1583
47118af0 1584#ifdef CONFIG_CMA
9cf510a5 1585/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1586void __init init_cma_reserved_pageblock(struct page *page)
1587{
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
47118af0 1596 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
3dcc0571 1611 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1612}
1613#endif
1da177e4
LT
1614
1615/*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
6d49e352 1627 * -- nyc
1da177e4 1628 */
085cc7d5 1629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1da177e4
LT
1632{
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
309381fe 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1640
acbc15a4
JK
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1648 continue;
acbc15a4 1649
b2a0ac88 1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1da177e4
LT
1654}
1655
4e611801 1656static void check_new_page_bad(struct page *page)
1da177e4 1657{
4e611801
VB
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
7bfec6f4 1660
53f9263b 1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
fe896d18 1665 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1666 bad_reason = "nonzero _count";
f4c18e6f
NH
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
e570f56c
NH
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
f4c18e6f 1673 }
f0b791a3
DH
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
9edad6ea
JW
1678#ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681#endif
4e611801
VB
1682 bad_page(page, bad_reason, bad_flags);
1683}
1684
1685/*
1686 * This page is about to be returned from the page allocator
1687 */
1688static inline int check_new_page(struct page *page)
1689{
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
2a7684a2
WF
1696}
1697
1414c7f4
LA
1698static inline bool free_pages_prezeroed(bool poisoned)
1699{
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702}
1703
479f854a
MG
1704#ifdef CONFIG_DEBUG_VM
1705static bool check_pcp_refill(struct page *page)
1706{
1707 return false;
1708}
1709
1710static bool check_new_pcp(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714#else
1715static bool check_pcp_refill(struct page *page)
1716{
1717 return check_new_page(page);
1718}
1719static bool check_new_pcp(struct page *page)
1720{
1721 return false;
1722}
1723#endif /* CONFIG_DEBUG_VM */
1724
1725static bool check_new_pages(struct page *page, unsigned int order)
1726{
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736}
1737
46f24fd8
JK
1738inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740{
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749}
1750
479f854a 1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1752 unsigned int alloc_flags)
2a7684a2
WF
1753{
1754 int i;
1414c7f4 1755 bool poisoned = true;
2a7684a2
WF
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1414c7f4
LA
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
2a7684a2 1761 }
689bcebf 1762
46f24fd8 1763 post_alloc_hook(page, order, gfp_flags);
17cf4406 1764
1414c7f4 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
17cf4406
NP
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
75379191 1772 /*
2f064f34 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
2f064f34
MH
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1da177e4
LT
1782}
1783
56fd56b8
MG
1784/*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
728ec980
MG
1788static inline
1789struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1790 int migratetype)
1791{
1792 unsigned int current_order;
b8af2941 1793 struct free_area *area;
56fd56b8
MG
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
a16601c5 1799 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1800 struct page, lru);
a16601c5
GT
1801 if (!page)
1802 continue;
56fd56b8
MG
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
56fd56b8 1806 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1807 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1808 return page;
1809 }
1810
1811 return NULL;
1812}
1813
1814
b2a0ac88
MG
1815/*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
47118af0 1819static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1823#ifdef CONFIG_CMA
974a786e 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1825#endif
194159fb 1826#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1828#endif
b2a0ac88
MG
1829};
1830
dc67647b
JK
1831#ifdef CONFIG_CMA
1832static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834{
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836}
1837#else
1838static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840#endif
1841
c361be55
MG
1842/*
1843 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1844 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
435b405c 1847int move_freepages(struct zone *zone,
b69a7288
AB
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
c361be55
MG
1850{
1851 struct page *page;
d00181b9 1852 unsigned int order;
d100313f 1853 int pages_moved = 0;
c361be55
MG
1854
1855#ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1861 * grouping pages by mobility
c361be55 1862 */
97ee4ba7 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1864#endif
1865
1866 for (page = start_page; page <= end_page;) {
344c790e 1867 /* Make sure we are not inadvertently changing nodes */
309381fe 1868 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1869
c361be55
MG
1870 if (!pfn_valid_within(page_to_pfn(page))) {
1871 page++;
1872 continue;
1873 }
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
84be48d8
KS
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
c361be55 1883 page += 1 << order;
d100313f 1884 pages_moved += 1 << order;
c361be55
MG
1885 }
1886
d100313f 1887 return pages_moved;
c361be55
MG
1888}
1889
ee6f509c 1890int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1891 int migratetype)
c361be55
MG
1892{
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
d9c23400 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1898 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1901
1902 /* Do not cross zone boundaries */
108bcc96 1903 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1904 start_page = page;
108bcc96 1905 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909}
1910
2f66a68f
MG
1911static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913{
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920}
1921
fef903ef 1922/*
9c0415eb
VB
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
fef903ef 1933 */
4eb7dce6
JK
1934static bool can_steal_fallback(unsigned int order, int start_mt)
1935{
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953}
1954
1955/*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
fef903ef 1964{
d00181b9 1965 unsigned int current_order = page_order(page);
4eb7dce6 1966 int pages;
fef903ef 1967
fef903ef
SB
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
3a1086fb 1971 return;
fef903ef
SB
1972 }
1973
4eb7dce6 1974 pages = move_freepages_block(zone, page, start_type);
fef903ef 1975
4eb7dce6
JK
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980}
1981
2149cdae
JK
1982/*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1990{
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
974a786e 2000 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
fef903ef 2005
4eb7dce6
JK
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2149cdae
JK
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
fef903ef 2014 }
4eb7dce6
JK
2015
2016 return -1;
fef903ef
SB
2017}
2018
0aaa29a5
MG
2019/*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025{
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054}
2055
2056/*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 */
2062static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2063{
2064 struct zonelist *zonelist = ac->zonelist;
2065 unsigned long flags;
2066 struct zoneref *z;
2067 struct zone *zone;
2068 struct page *page;
2069 int order;
2070
2071 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2072 ac->nodemask) {
2073 /* Preserve at least one pageblock */
2074 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2075 continue;
2076
2077 spin_lock_irqsave(&zone->lock, flags);
2078 for (order = 0; order < MAX_ORDER; order++) {
2079 struct free_area *area = &(zone->free_area[order]);
2080
a16601c5
GT
2081 page = list_first_entry_or_null(
2082 &area->free_list[MIGRATE_HIGHATOMIC],
2083 struct page, lru);
2084 if (!page)
0aaa29a5
MG
2085 continue;
2086
0aaa29a5 2087 /*
4855e4a7
MK
2088 * In page freeing path, migratetype change is racy so
2089 * we can counter several free pages in a pageblock
2090 * in this loop althoug we changed the pageblock type
2091 * from highatomic to ac->migratetype. So we should
2092 * adjust the count once.
0aaa29a5 2093 */
4855e4a7
MK
2094 if (get_pageblock_migratetype(page) ==
2095 MIGRATE_HIGHATOMIC) {
2096 /*
2097 * It should never happen but changes to
2098 * locking could inadvertently allow a per-cpu
2099 * drain to add pages to MIGRATE_HIGHATOMIC
2100 * while unreserving so be safe and watch for
2101 * underflows.
2102 */
2103 zone->nr_reserved_highatomic -= min(
2104 pageblock_nr_pages,
2105 zone->nr_reserved_highatomic);
2106 }
0aaa29a5
MG
2107
2108 /*
2109 * Convert to ac->migratetype and avoid the normal
2110 * pageblock stealing heuristics. Minimally, the caller
2111 * is doing the work and needs the pages. More
2112 * importantly, if the block was always converted to
2113 * MIGRATE_UNMOVABLE or another type then the number
2114 * of pageblocks that cannot be completely freed
2115 * may increase.
2116 */
2117 set_pageblock_migratetype(page, ac->migratetype);
2118 move_freepages_block(zone, page, ac->migratetype);
2119 spin_unlock_irqrestore(&zone->lock, flags);
2120 return;
2121 }
2122 spin_unlock_irqrestore(&zone->lock, flags);
2123 }
2124}
2125
b2a0ac88 2126/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2127static inline struct page *
7aeb09f9 2128__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2129{
b8af2941 2130 struct free_area *area;
7aeb09f9 2131 unsigned int current_order;
b2a0ac88 2132 struct page *page;
4eb7dce6
JK
2133 int fallback_mt;
2134 bool can_steal;
b2a0ac88
MG
2135
2136 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2137 for (current_order = MAX_ORDER-1;
2138 current_order >= order && current_order <= MAX_ORDER-1;
2139 --current_order) {
4eb7dce6
JK
2140 area = &(zone->free_area[current_order]);
2141 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2142 start_migratetype, false, &can_steal);
4eb7dce6
JK
2143 if (fallback_mt == -1)
2144 continue;
b2a0ac88 2145
a16601c5 2146 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2147 struct page, lru);
88ed365e
MK
2148 if (can_steal &&
2149 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2150 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2151
4eb7dce6
JK
2152 /* Remove the page from the freelists */
2153 area->nr_free--;
2154 list_del(&page->lru);
2155 rmv_page_order(page);
3a1086fb 2156
4eb7dce6
JK
2157 expand(zone, page, order, current_order, area,
2158 start_migratetype);
2159 /*
bb14c2c7 2160 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2161 * migratetype depending on the decisions in
bb14c2c7
VB
2162 * find_suitable_fallback(). This is OK as long as it does not
2163 * differ for MIGRATE_CMA pageblocks. Those can be used as
2164 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2165 */
bb14c2c7 2166 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2167
4eb7dce6
JK
2168 trace_mm_page_alloc_extfrag(page, order, current_order,
2169 start_migratetype, fallback_mt);
e0fff1bd 2170
4eb7dce6 2171 return page;
b2a0ac88
MG
2172 }
2173
728ec980 2174 return NULL;
b2a0ac88
MG
2175}
2176
56fd56b8 2177/*
1da177e4
LT
2178 * Do the hard work of removing an element from the buddy allocator.
2179 * Call me with the zone->lock already held.
2180 */
b2a0ac88 2181static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2182 int migratetype)
1da177e4 2183{
1da177e4
LT
2184 struct page *page;
2185
56fd56b8 2186 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2187 if (unlikely(!page)) {
dc67647b
JK
2188 if (migratetype == MIGRATE_MOVABLE)
2189 page = __rmqueue_cma_fallback(zone, order);
2190
2191 if (!page)
2192 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2193 }
2194
0d3d062a 2195 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2196 return page;
1da177e4
LT
2197}
2198
5f63b720 2199/*
1da177e4
LT
2200 * Obtain a specified number of elements from the buddy allocator, all under
2201 * a single hold of the lock, for efficiency. Add them to the supplied list.
2202 * Returns the number of new pages which were placed at *list.
2203 */
5f63b720 2204static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2205 unsigned long count, struct list_head *list,
b745bc85 2206 int migratetype, bool cold)
1da177e4 2207{
5bcc9f86 2208 int i;
5f63b720 2209
c54ad30c 2210 spin_lock(&zone->lock);
1da177e4 2211 for (i = 0; i < count; ++i) {
6ac0206b 2212 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2213 if (unlikely(page == NULL))
1da177e4 2214 break;
81eabcbe 2215
479f854a
MG
2216 if (unlikely(check_pcp_refill(page)))
2217 continue;
2218
81eabcbe
MG
2219 /*
2220 * Split buddy pages returned by expand() are received here
2221 * in physical page order. The page is added to the callers and
2222 * list and the list head then moves forward. From the callers
2223 * perspective, the linked list is ordered by page number in
2224 * some conditions. This is useful for IO devices that can
2225 * merge IO requests if the physical pages are ordered
2226 * properly.
2227 */
b745bc85 2228 if (likely(!cold))
e084b2d9
MG
2229 list_add(&page->lru, list);
2230 else
2231 list_add_tail(&page->lru, list);
81eabcbe 2232 list = &page->lru;
bb14c2c7 2233 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2234 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2235 -(1 << order));
1da177e4 2236 }
f2260e6b 2237 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2238 spin_unlock(&zone->lock);
085cc7d5 2239 return i;
1da177e4
LT
2240}
2241
4ae7c039 2242#ifdef CONFIG_NUMA
8fce4d8e 2243/*
4037d452
CL
2244 * Called from the vmstat counter updater to drain pagesets of this
2245 * currently executing processor on remote nodes after they have
2246 * expired.
2247 *
879336c3
CL
2248 * Note that this function must be called with the thread pinned to
2249 * a single processor.
8fce4d8e 2250 */
4037d452 2251void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2252{
4ae7c039 2253 unsigned long flags;
7be12fc9 2254 int to_drain, batch;
4ae7c039 2255
4037d452 2256 local_irq_save(flags);
4db0c3c2 2257 batch = READ_ONCE(pcp->batch);
7be12fc9 2258 to_drain = min(pcp->count, batch);
2a13515c
KM
2259 if (to_drain > 0) {
2260 free_pcppages_bulk(zone, to_drain, pcp);
2261 pcp->count -= to_drain;
2262 }
4037d452 2263 local_irq_restore(flags);
4ae7c039
CL
2264}
2265#endif
2266
9f8f2172 2267/*
93481ff0 2268 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2269 *
2270 * The processor must either be the current processor and the
2271 * thread pinned to the current processor or a processor that
2272 * is not online.
2273 */
93481ff0 2274static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2275{
c54ad30c 2276 unsigned long flags;
93481ff0
VB
2277 struct per_cpu_pageset *pset;
2278 struct per_cpu_pages *pcp;
1da177e4 2279
93481ff0
VB
2280 local_irq_save(flags);
2281 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2282
93481ff0
VB
2283 pcp = &pset->pcp;
2284 if (pcp->count) {
2285 free_pcppages_bulk(zone, pcp->count, pcp);
2286 pcp->count = 0;
2287 }
2288 local_irq_restore(flags);
2289}
3dfa5721 2290
93481ff0
VB
2291/*
2292 * Drain pcplists of all zones on the indicated processor.
2293 *
2294 * The processor must either be the current processor and the
2295 * thread pinned to the current processor or a processor that
2296 * is not online.
2297 */
2298static void drain_pages(unsigned int cpu)
2299{
2300 struct zone *zone;
2301
2302 for_each_populated_zone(zone) {
2303 drain_pages_zone(cpu, zone);
1da177e4
LT
2304 }
2305}
1da177e4 2306
9f8f2172
CL
2307/*
2308 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2309 *
2310 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2311 * the single zone's pages.
9f8f2172 2312 */
93481ff0 2313void drain_local_pages(struct zone *zone)
9f8f2172 2314{
93481ff0
VB
2315 int cpu = smp_processor_id();
2316
2317 if (zone)
2318 drain_pages_zone(cpu, zone);
2319 else
2320 drain_pages(cpu);
9f8f2172
CL
2321}
2322
2323/*
74046494
GBY
2324 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2325 *
93481ff0
VB
2326 * When zone parameter is non-NULL, spill just the single zone's pages.
2327 *
74046494
GBY
2328 * Note that this code is protected against sending an IPI to an offline
2329 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2330 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2331 * nothing keeps CPUs from showing up after we populated the cpumask and
2332 * before the call to on_each_cpu_mask().
9f8f2172 2333 */
93481ff0 2334void drain_all_pages(struct zone *zone)
9f8f2172 2335{
74046494 2336 int cpu;
74046494
GBY
2337
2338 /*
2339 * Allocate in the BSS so we wont require allocation in
2340 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2341 */
2342 static cpumask_t cpus_with_pcps;
2343
2344 /*
2345 * We don't care about racing with CPU hotplug event
2346 * as offline notification will cause the notified
2347 * cpu to drain that CPU pcps and on_each_cpu_mask
2348 * disables preemption as part of its processing
2349 */
2350 for_each_online_cpu(cpu) {
93481ff0
VB
2351 struct per_cpu_pageset *pcp;
2352 struct zone *z;
74046494 2353 bool has_pcps = false;
93481ff0
VB
2354
2355 if (zone) {
74046494 2356 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2357 if (pcp->pcp.count)
74046494 2358 has_pcps = true;
93481ff0
VB
2359 } else {
2360 for_each_populated_zone(z) {
2361 pcp = per_cpu_ptr(z->pageset, cpu);
2362 if (pcp->pcp.count) {
2363 has_pcps = true;
2364 break;
2365 }
74046494
GBY
2366 }
2367 }
93481ff0 2368
74046494
GBY
2369 if (has_pcps)
2370 cpumask_set_cpu(cpu, &cpus_with_pcps);
2371 else
2372 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2373 }
93481ff0
VB
2374 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2375 zone, 1);
9f8f2172
CL
2376}
2377
296699de 2378#ifdef CONFIG_HIBERNATION
1da177e4
LT
2379
2380void mark_free_pages(struct zone *zone)
2381{
f623f0db
RW
2382 unsigned long pfn, max_zone_pfn;
2383 unsigned long flags;
7aeb09f9 2384 unsigned int order, t;
86760a2c 2385 struct page *page;
1da177e4 2386
8080fc03 2387 if (zone_is_empty(zone))
1da177e4
LT
2388 return;
2389
2390 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2391
108bcc96 2392 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2393 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2394 if (pfn_valid(pfn)) {
86760a2c 2395 page = pfn_to_page(pfn);
ba6b0979
JK
2396
2397 if (page_zone(page) != zone)
2398 continue;
2399
7be98234
RW
2400 if (!swsusp_page_is_forbidden(page))
2401 swsusp_unset_page_free(page);
f623f0db 2402 }
1da177e4 2403
b2a0ac88 2404 for_each_migratetype_order(order, t) {
86760a2c
GT
2405 list_for_each_entry(page,
2406 &zone->free_area[order].free_list[t], lru) {
f623f0db 2407 unsigned long i;
1da177e4 2408
86760a2c 2409 pfn = page_to_pfn(page);
f623f0db 2410 for (i = 0; i < (1UL << order); i++)
7be98234 2411 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2412 }
b2a0ac88 2413 }
1da177e4
LT
2414 spin_unlock_irqrestore(&zone->lock, flags);
2415}
e2c55dc8 2416#endif /* CONFIG_PM */
1da177e4 2417
1da177e4
LT
2418/*
2419 * Free a 0-order page
b745bc85 2420 * cold == true ? free a cold page : free a hot page
1da177e4 2421 */
b745bc85 2422void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2423{
2424 struct zone *zone = page_zone(page);
2425 struct per_cpu_pages *pcp;
2426 unsigned long flags;
dc4b0caf 2427 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2428 int migratetype;
1da177e4 2429
4db7548c 2430 if (!free_pcp_prepare(page))
689bcebf
HD
2431 return;
2432
dc4b0caf 2433 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2434 set_pcppage_migratetype(page, migratetype);
1da177e4 2435 local_irq_save(flags);
f8891e5e 2436 __count_vm_event(PGFREE);
da456f14 2437
5f8dcc21
MG
2438 /*
2439 * We only track unmovable, reclaimable and movable on pcp lists.
2440 * Free ISOLATE pages back to the allocator because they are being
2441 * offlined but treat RESERVE as movable pages so we can get those
2442 * areas back if necessary. Otherwise, we may have to free
2443 * excessively into the page allocator
2444 */
2445 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2446 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2447 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2448 goto out;
2449 }
2450 migratetype = MIGRATE_MOVABLE;
2451 }
2452
99dcc3e5 2453 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2454 if (!cold)
5f8dcc21 2455 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2456 else
2457 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2458 pcp->count++;
48db57f8 2459 if (pcp->count >= pcp->high) {
4db0c3c2 2460 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2461 free_pcppages_bulk(zone, batch, pcp);
2462 pcp->count -= batch;
48db57f8 2463 }
5f8dcc21
MG
2464
2465out:
1da177e4 2466 local_irq_restore(flags);
1da177e4
LT
2467}
2468
cc59850e
KK
2469/*
2470 * Free a list of 0-order pages
2471 */
b745bc85 2472void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2473{
2474 struct page *page, *next;
2475
2476 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2477 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2478 free_hot_cold_page(page, cold);
2479 }
2480}
2481
8dfcc9ba
NP
2482/*
2483 * split_page takes a non-compound higher-order page, and splits it into
2484 * n (1<<order) sub-pages: page[0..n]
2485 * Each sub-page must be freed individually.
2486 *
2487 * Note: this is probably too low level an operation for use in drivers.
2488 * Please consult with lkml before using this in your driver.
2489 */
2490void split_page(struct page *page, unsigned int order)
2491{
2492 int i;
2493
309381fe
SL
2494 VM_BUG_ON_PAGE(PageCompound(page), page);
2495 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2496
2497#ifdef CONFIG_KMEMCHECK
2498 /*
2499 * Split shadow pages too, because free(page[0]) would
2500 * otherwise free the whole shadow.
2501 */
2502 if (kmemcheck_page_is_tracked(page))
2503 split_page(virt_to_page(page[0].shadow), order);
2504#endif
2505
a9627bc5 2506 for (i = 1; i < (1 << order); i++)
7835e98b 2507 set_page_refcounted(page + i);
a9627bc5 2508 split_page_owner(page, order);
8dfcc9ba 2509}
5853ff23 2510EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2511
3c605096 2512int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2513{
748446bb
MG
2514 unsigned long watermark;
2515 struct zone *zone;
2139cbe6 2516 int mt;
748446bb
MG
2517
2518 BUG_ON(!PageBuddy(page));
2519
2520 zone = page_zone(page);
2e30abd1 2521 mt = get_pageblock_migratetype(page);
748446bb 2522
194159fb 2523 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2524 /*
2525 * Obey watermarks as if the page was being allocated. We can
2526 * emulate a high-order watermark check with a raised order-0
2527 * watermark, because we already know our high-order page
2528 * exists.
2529 */
2530 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2531 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2532 return 0;
2533
8fb74b9f 2534 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2535 }
748446bb
MG
2536
2537 /* Remove page from free list */
2538 list_del(&page->lru);
2539 zone->free_area[order].nr_free--;
2540 rmv_page_order(page);
2139cbe6 2541
400bc7fd 2542 /*
2543 * Set the pageblock if the isolated page is at least half of a
2544 * pageblock
2545 */
748446bb
MG
2546 if (order >= pageblock_order - 1) {
2547 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2548 for (; page < endpage; page += pageblock_nr_pages) {
2549 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2550 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2551 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2552 set_pageblock_migratetype(page,
2553 MIGRATE_MOVABLE);
2554 }
748446bb
MG
2555 }
2556
f3a14ced 2557
8fb74b9f 2558 return 1UL << order;
1fb3f8ca
MG
2559}
2560
060e7417
MG
2561/*
2562 * Update NUMA hit/miss statistics
2563 *
2564 * Must be called with interrupts disabled.
2565 *
2566 * When __GFP_OTHER_NODE is set assume the node of the preferred
2567 * zone is the local node. This is useful for daemons who allocate
2568 * memory on behalf of other processes.
2569 */
2570static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2571 gfp_t flags)
2572{
2573#ifdef CONFIG_NUMA
2574 int local_nid = numa_node_id();
2575 enum zone_stat_item local_stat = NUMA_LOCAL;
2576
2577 if (unlikely(flags & __GFP_OTHER_NODE)) {
2578 local_stat = NUMA_OTHER;
2579 local_nid = preferred_zone->node;
2580 }
2581
2582 if (z->node == local_nid) {
2583 __inc_zone_state(z, NUMA_HIT);
2584 __inc_zone_state(z, local_stat);
2585 } else {
2586 __inc_zone_state(z, NUMA_MISS);
2587 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2588 }
2589#endif
2590}
2591
1da177e4 2592/*
75379191 2593 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2594 */
0a15c3e9
MG
2595static inline
2596struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2597 struct zone *zone, unsigned int order,
c603844b
MG
2598 gfp_t gfp_flags, unsigned int alloc_flags,
2599 int migratetype)
1da177e4
LT
2600{
2601 unsigned long flags;
689bcebf 2602 struct page *page;
b745bc85 2603 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2604
48db57f8 2605 if (likely(order == 0)) {
1da177e4 2606 struct per_cpu_pages *pcp;
5f8dcc21 2607 struct list_head *list;
1da177e4 2608
1da177e4 2609 local_irq_save(flags);
479f854a
MG
2610 do {
2611 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2612 list = &pcp->lists[migratetype];
2613 if (list_empty(list)) {
2614 pcp->count += rmqueue_bulk(zone, 0,
2615 pcp->batch, list,
2616 migratetype, cold);
2617 if (unlikely(list_empty(list)))
2618 goto failed;
2619 }
b92a6edd 2620
479f854a
MG
2621 if (cold)
2622 page = list_last_entry(list, struct page, lru);
2623 else
2624 page = list_first_entry(list, struct page, lru);
5f8dcc21 2625
83b9355b
VB
2626 list_del(&page->lru);
2627 pcp->count--;
2628
2629 } while (check_new_pcp(page));
7fb1d9fc 2630 } else {
0f352e53
MH
2631 /*
2632 * We most definitely don't want callers attempting to
2633 * allocate greater than order-1 page units with __GFP_NOFAIL.
2634 */
2635 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2636 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2637
479f854a
MG
2638 do {
2639 page = NULL;
2640 if (alloc_flags & ALLOC_HARDER) {
2641 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2642 if (page)
2643 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2644 }
2645 if (!page)
2646 page = __rmqueue(zone, order, migratetype);
2647 } while (page && check_new_pages(page, order));
a74609fa
NP
2648 spin_unlock(&zone->lock);
2649 if (!page)
2650 goto failed;
d1ce749a 2651 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2652 get_pcppage_migratetype(page));
1da177e4
LT
2653 }
2654
16709d1d 2655 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2656 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2657 local_irq_restore(flags);
1da177e4 2658
309381fe 2659 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2660 return page;
a74609fa
NP
2661
2662failed:
2663 local_irq_restore(flags);
a74609fa 2664 return NULL;
1da177e4
LT
2665}
2666
933e312e
AM
2667#ifdef CONFIG_FAIL_PAGE_ALLOC
2668
b2588c4b 2669static struct {
933e312e
AM
2670 struct fault_attr attr;
2671
621a5f7a 2672 bool ignore_gfp_highmem;
71baba4b 2673 bool ignore_gfp_reclaim;
54114994 2674 u32 min_order;
933e312e
AM
2675} fail_page_alloc = {
2676 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2677 .ignore_gfp_reclaim = true,
621a5f7a 2678 .ignore_gfp_highmem = true,
54114994 2679 .min_order = 1,
933e312e
AM
2680};
2681
2682static int __init setup_fail_page_alloc(char *str)
2683{
2684 return setup_fault_attr(&fail_page_alloc.attr, str);
2685}
2686__setup("fail_page_alloc=", setup_fail_page_alloc);
2687
deaf386e 2688static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2689{
54114994 2690 if (order < fail_page_alloc.min_order)
deaf386e 2691 return false;
933e312e 2692 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2693 return false;
933e312e 2694 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2695 return false;
71baba4b
MG
2696 if (fail_page_alloc.ignore_gfp_reclaim &&
2697 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2698 return false;
933e312e
AM
2699
2700 return should_fail(&fail_page_alloc.attr, 1 << order);
2701}
2702
2703#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2704
2705static int __init fail_page_alloc_debugfs(void)
2706{
f4ae40a6 2707 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2708 struct dentry *dir;
933e312e 2709
dd48c085
AM
2710 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2711 &fail_page_alloc.attr);
2712 if (IS_ERR(dir))
2713 return PTR_ERR(dir);
933e312e 2714
b2588c4b 2715 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2716 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2717 goto fail;
2718 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2719 &fail_page_alloc.ignore_gfp_highmem))
2720 goto fail;
2721 if (!debugfs_create_u32("min-order", mode, dir,
2722 &fail_page_alloc.min_order))
2723 goto fail;
2724
2725 return 0;
2726fail:
dd48c085 2727 debugfs_remove_recursive(dir);
933e312e 2728
b2588c4b 2729 return -ENOMEM;
933e312e
AM
2730}
2731
2732late_initcall(fail_page_alloc_debugfs);
2733
2734#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2735
2736#else /* CONFIG_FAIL_PAGE_ALLOC */
2737
deaf386e 2738static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2739{
deaf386e 2740 return false;
933e312e
AM
2741}
2742
2743#endif /* CONFIG_FAIL_PAGE_ALLOC */
2744
1da177e4 2745/*
97a16fc8
MG
2746 * Return true if free base pages are above 'mark'. For high-order checks it
2747 * will return true of the order-0 watermark is reached and there is at least
2748 * one free page of a suitable size. Checking now avoids taking the zone lock
2749 * to check in the allocation paths if no pages are free.
1da177e4 2750 */
86a294a8
MH
2751bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2752 int classzone_idx, unsigned int alloc_flags,
2753 long free_pages)
1da177e4 2754{
d23ad423 2755 long min = mark;
1da177e4 2756 int o;
c603844b 2757 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2758
0aaa29a5 2759 /* free_pages may go negative - that's OK */
df0a6daa 2760 free_pages -= (1 << order) - 1;
0aaa29a5 2761
7fb1d9fc 2762 if (alloc_flags & ALLOC_HIGH)
1da177e4 2763 min -= min / 2;
0aaa29a5
MG
2764
2765 /*
2766 * If the caller does not have rights to ALLOC_HARDER then subtract
2767 * the high-atomic reserves. This will over-estimate the size of the
2768 * atomic reserve but it avoids a search.
2769 */
97a16fc8 2770 if (likely(!alloc_harder))
0aaa29a5
MG
2771 free_pages -= z->nr_reserved_highatomic;
2772 else
1da177e4 2773 min -= min / 4;
e2b19197 2774
d95ea5d1
BZ
2775#ifdef CONFIG_CMA
2776 /* If allocation can't use CMA areas don't use free CMA pages */
2777 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2778 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2779#endif
026b0814 2780
97a16fc8
MG
2781 /*
2782 * Check watermarks for an order-0 allocation request. If these
2783 * are not met, then a high-order request also cannot go ahead
2784 * even if a suitable page happened to be free.
2785 */
2786 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2787 return false;
1da177e4 2788
97a16fc8
MG
2789 /* If this is an order-0 request then the watermark is fine */
2790 if (!order)
2791 return true;
2792
2793 /* For a high-order request, check at least one suitable page is free */
2794 for (o = order; o < MAX_ORDER; o++) {
2795 struct free_area *area = &z->free_area[o];
2796 int mt;
2797
2798 if (!area->nr_free)
2799 continue;
2800
2801 if (alloc_harder)
2802 return true;
1da177e4 2803
97a16fc8
MG
2804 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2805 if (!list_empty(&area->free_list[mt]))
2806 return true;
2807 }
2808
2809#ifdef CONFIG_CMA
2810 if ((alloc_flags & ALLOC_CMA) &&
2811 !list_empty(&area->free_list[MIGRATE_CMA])) {
2812 return true;
2813 }
2814#endif
1da177e4 2815 }
97a16fc8 2816 return false;
88f5acf8
MG
2817}
2818
7aeb09f9 2819bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2820 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2821{
2822 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2823 zone_page_state(z, NR_FREE_PAGES));
2824}
2825
48ee5f36
MG
2826static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2827 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2828{
2829 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2830 long cma_pages = 0;
2831
2832#ifdef CONFIG_CMA
2833 /* If allocation can't use CMA areas don't use free CMA pages */
2834 if (!(alloc_flags & ALLOC_CMA))
2835 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2836#endif
2837
2838 /*
2839 * Fast check for order-0 only. If this fails then the reserves
2840 * need to be calculated. There is a corner case where the check
2841 * passes but only the high-order atomic reserve are free. If
2842 * the caller is !atomic then it'll uselessly search the free
2843 * list. That corner case is then slower but it is harmless.
2844 */
2845 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2846 return true;
2847
2848 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2849 free_pages);
2850}
2851
7aeb09f9 2852bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2853 unsigned long mark, int classzone_idx)
88f5acf8
MG
2854{
2855 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2856
2857 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2858 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2859
e2b19197 2860 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2861 free_pages);
1da177e4
LT
2862}
2863
9276b1bc 2864#ifdef CONFIG_NUMA
957f822a
DR
2865static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2866{
5f7a75ac
MG
2867 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2868 RECLAIM_DISTANCE;
957f822a 2869}
9276b1bc 2870#else /* CONFIG_NUMA */
957f822a
DR
2871static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2872{
2873 return true;
2874}
9276b1bc
PJ
2875#endif /* CONFIG_NUMA */
2876
7fb1d9fc 2877/*
0798e519 2878 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2879 * a page.
2880 */
2881static struct page *
a9263751
VB
2882get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2883 const struct alloc_context *ac)
753ee728 2884{
c33d6c06 2885 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2886 struct zone *zone;
3b8c0be4
MG
2887 struct pglist_data *last_pgdat_dirty_limit = NULL;
2888
7fb1d9fc 2889 /*
9276b1bc 2890 * Scan zonelist, looking for a zone with enough free.
344736f2 2891 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2892 */
c33d6c06 2893 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2894 ac->nodemask) {
be06af00 2895 struct page *page;
e085dbc5
JW
2896 unsigned long mark;
2897
664eedde
MG
2898 if (cpusets_enabled() &&
2899 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2900 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2901 continue;
a756cf59
JW
2902 /*
2903 * When allocating a page cache page for writing, we
281e3726
MG
2904 * want to get it from a node that is within its dirty
2905 * limit, such that no single node holds more than its
a756cf59 2906 * proportional share of globally allowed dirty pages.
281e3726 2907 * The dirty limits take into account the node's
a756cf59
JW
2908 * lowmem reserves and high watermark so that kswapd
2909 * should be able to balance it without having to
2910 * write pages from its LRU list.
2911 *
a756cf59 2912 * XXX: For now, allow allocations to potentially
281e3726 2913 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2914 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2915 * which is important when on a NUMA setup the allowed
281e3726 2916 * nodes are together not big enough to reach the
a756cf59 2917 * global limit. The proper fix for these situations
281e3726 2918 * will require awareness of nodes in the
a756cf59
JW
2919 * dirty-throttling and the flusher threads.
2920 */
3b8c0be4
MG
2921 if (ac->spread_dirty_pages) {
2922 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2923 continue;
2924
2925 if (!node_dirty_ok(zone->zone_pgdat)) {
2926 last_pgdat_dirty_limit = zone->zone_pgdat;
2927 continue;
2928 }
2929 }
7fb1d9fc 2930
e085dbc5 2931 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2932 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2933 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2934 int ret;
2935
5dab2911
MG
2936 /* Checked here to keep the fast path fast */
2937 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2938 if (alloc_flags & ALLOC_NO_WATERMARKS)
2939 goto try_this_zone;
2940
a5f5f91d 2941 if (node_reclaim_mode == 0 ||
c33d6c06 2942 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2943 continue;
2944
a5f5f91d 2945 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2946 switch (ret) {
a5f5f91d 2947 case NODE_RECLAIM_NOSCAN:
fa5e084e 2948 /* did not scan */
cd38b115 2949 continue;
a5f5f91d 2950 case NODE_RECLAIM_FULL:
fa5e084e 2951 /* scanned but unreclaimable */
cd38b115 2952 continue;
fa5e084e
MG
2953 default:
2954 /* did we reclaim enough */
fed2719e 2955 if (zone_watermark_ok(zone, order, mark,
93ea9964 2956 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2957 goto try_this_zone;
2958
fed2719e 2959 continue;
0798e519 2960 }
7fb1d9fc
RS
2961 }
2962
fa5e084e 2963try_this_zone:
c33d6c06 2964 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2965 gfp_mask, alloc_flags, ac->migratetype);
75379191 2966 if (page) {
479f854a 2967 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2968
2969 /*
2970 * If this is a high-order atomic allocation then check
2971 * if the pageblock should be reserved for the future
2972 */
2973 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2974 reserve_highatomic_pageblock(page, zone, order);
2975
75379191
VB
2976 return page;
2977 }
54a6eb5c 2978 }
9276b1bc 2979
4ffeaf35 2980 return NULL;
753ee728
MH
2981}
2982
29423e77
DR
2983/*
2984 * Large machines with many possible nodes should not always dump per-node
2985 * meminfo in irq context.
2986 */
2987static inline bool should_suppress_show_mem(void)
2988{
2989 bool ret = false;
2990
2991#if NODES_SHIFT > 8
2992 ret = in_interrupt();
2993#endif
2994 return ret;
2995}
2996
a238ab5b
DH
2997static DEFINE_RATELIMIT_STATE(nopage_rs,
2998 DEFAULT_RATELIMIT_INTERVAL,
2999 DEFAULT_RATELIMIT_BURST);
3000
7877cdcc 3001void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
a238ab5b 3002{
a238ab5b 3003 unsigned int filter = SHOW_MEM_FILTER_NODES;
7877cdcc
MH
3004 struct va_format vaf;
3005 va_list args;
a238ab5b 3006
c0a32fc5
SG
3007 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3008 debug_guardpage_minorder() > 0)
a238ab5b
DH
3009 return;
3010
3011 /*
3012 * This documents exceptions given to allocations in certain
3013 * contexts that are allowed to allocate outside current's set
3014 * of allowed nodes.
3015 */
3016 if (!(gfp_mask & __GFP_NOMEMALLOC))
3017 if (test_thread_flag(TIF_MEMDIE) ||
3018 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3019 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3020 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3021 filter &= ~SHOW_MEM_FILTER_NODES;
3022
7877cdcc 3023 pr_warn("%s: ", current->comm);
3ee9a4f0 3024
7877cdcc
MH
3025 va_start(args, fmt);
3026 vaf.fmt = fmt;
3027 vaf.va = &args;
3028 pr_cont("%pV", &vaf);
3029 va_end(args);
3ee9a4f0 3030
7877cdcc 3031 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3ee9a4f0 3032
a238ab5b
DH
3033 dump_stack();
3034 if (!should_suppress_show_mem())
3035 show_mem(filter);
3036}
3037
11e33f6a
MG
3038static inline struct page *
3039__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3040 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3041{
6e0fc46d
DR
3042 struct oom_control oc = {
3043 .zonelist = ac->zonelist,
3044 .nodemask = ac->nodemask,
2a966b77 3045 .memcg = NULL,
6e0fc46d
DR
3046 .gfp_mask = gfp_mask,
3047 .order = order,
6e0fc46d 3048 };
11e33f6a
MG
3049 struct page *page;
3050
9879de73
JW
3051 *did_some_progress = 0;
3052
9879de73 3053 /*
dc56401f
JW
3054 * Acquire the oom lock. If that fails, somebody else is
3055 * making progress for us.
9879de73 3056 */
dc56401f 3057 if (!mutex_trylock(&oom_lock)) {
9879de73 3058 *did_some_progress = 1;
11e33f6a 3059 schedule_timeout_uninterruptible(1);
1da177e4
LT
3060 return NULL;
3061 }
6b1de916 3062
11e33f6a
MG
3063 /*
3064 * Go through the zonelist yet one more time, keep very high watermark
3065 * here, this is only to catch a parallel oom killing, we must fail if
3066 * we're still under heavy pressure.
3067 */
a9263751
VB
3068 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3069 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3070 if (page)
11e33f6a
MG
3071 goto out;
3072
4365a567 3073 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3074 /* Coredumps can quickly deplete all memory reserves */
3075 if (current->flags & PF_DUMPCORE)
3076 goto out;
4365a567
KH
3077 /* The OOM killer will not help higher order allocs */
3078 if (order > PAGE_ALLOC_COSTLY_ORDER)
3079 goto out;
03668b3c 3080 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3081 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3082 goto out;
9083905a
JW
3083 if (pm_suspended_storage())
3084 goto out;
3da88fb3
MH
3085 /*
3086 * XXX: GFP_NOFS allocations should rather fail than rely on
3087 * other request to make a forward progress.
3088 * We are in an unfortunate situation where out_of_memory cannot
3089 * do much for this context but let's try it to at least get
3090 * access to memory reserved if the current task is killed (see
3091 * out_of_memory). Once filesystems are ready to handle allocation
3092 * failures more gracefully we should just bail out here.
3093 */
3094
4167e9b2 3095 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3096 if (gfp_mask & __GFP_THISNODE)
3097 goto out;
3098 }
11e33f6a 3099 /* Exhausted what can be done so it's blamo time */
5020e285 3100 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3101 *did_some_progress = 1;
5020e285
MH
3102
3103 if (gfp_mask & __GFP_NOFAIL) {
3104 page = get_page_from_freelist(gfp_mask, order,
3105 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3106 /*
3107 * fallback to ignore cpuset restriction if our nodes
3108 * are depleted
3109 */
3110 if (!page)
3111 page = get_page_from_freelist(gfp_mask, order,
3112 ALLOC_NO_WATERMARKS, ac);
3113 }
3114 }
11e33f6a 3115out:
dc56401f 3116 mutex_unlock(&oom_lock);
11e33f6a
MG
3117 return page;
3118}
3119
33c2d214
MH
3120/*
3121 * Maximum number of compaction retries wit a progress before OOM
3122 * killer is consider as the only way to move forward.
3123 */
3124#define MAX_COMPACT_RETRIES 16
3125
56de7263
MG
3126#ifdef CONFIG_COMPACTION
3127/* Try memory compaction for high-order allocations before reclaim */
3128static struct page *
3129__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3130 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3131 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3132{
98dd3b48 3133 struct page *page;
53853e2d
VB
3134
3135 if (!order)
66199712 3136 return NULL;
66199712 3137
c06b1fca 3138 current->flags |= PF_MEMALLOC;
c5d01d0d 3139 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3140 prio);
c06b1fca 3141 current->flags &= ~PF_MEMALLOC;
56de7263 3142
c5d01d0d 3143 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3144 return NULL;
53853e2d 3145
98dd3b48
VB
3146 /*
3147 * At least in one zone compaction wasn't deferred or skipped, so let's
3148 * count a compaction stall
3149 */
3150 count_vm_event(COMPACTSTALL);
8fb74b9f 3151
31a6c190 3152 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3153
98dd3b48
VB
3154 if (page) {
3155 struct zone *zone = page_zone(page);
53853e2d 3156
98dd3b48
VB
3157 zone->compact_blockskip_flush = false;
3158 compaction_defer_reset(zone, order, true);
3159 count_vm_event(COMPACTSUCCESS);
3160 return page;
3161 }
56de7263 3162
98dd3b48
VB
3163 /*
3164 * It's bad if compaction run occurs and fails. The most likely reason
3165 * is that pages exist, but not enough to satisfy watermarks.
3166 */
3167 count_vm_event(COMPACTFAIL);
66199712 3168
98dd3b48 3169 cond_resched();
56de7263
MG
3170
3171 return NULL;
3172}
33c2d214 3173
3250845d
VB
3174static inline bool
3175should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3176 enum compact_result compact_result,
3177 enum compact_priority *compact_priority,
d9436498 3178 int *compaction_retries)
3250845d
VB
3179{
3180 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3181 int min_priority;
3250845d
VB
3182
3183 if (!order)
3184 return false;
3185
d9436498
VB
3186 if (compaction_made_progress(compact_result))
3187 (*compaction_retries)++;
3188
3250845d
VB
3189 /*
3190 * compaction considers all the zone as desperately out of memory
3191 * so it doesn't really make much sense to retry except when the
3192 * failure could be caused by insufficient priority
3193 */
d9436498
VB
3194 if (compaction_failed(compact_result))
3195 goto check_priority;
3250845d
VB
3196
3197 /*
3198 * make sure the compaction wasn't deferred or didn't bail out early
3199 * due to locks contention before we declare that we should give up.
3200 * But do not retry if the given zonelist is not suitable for
3201 * compaction.
3202 */
3203 if (compaction_withdrawn(compact_result))
3204 return compaction_zonelist_suitable(ac, order, alloc_flags);
3205
3206 /*
3207 * !costly requests are much more important than __GFP_REPEAT
3208 * costly ones because they are de facto nofail and invoke OOM
3209 * killer to move on while costly can fail and users are ready
3210 * to cope with that. 1/4 retries is rather arbitrary but we
3211 * would need much more detailed feedback from compaction to
3212 * make a better decision.
3213 */
3214 if (order > PAGE_ALLOC_COSTLY_ORDER)
3215 max_retries /= 4;
d9436498 3216 if (*compaction_retries <= max_retries)
3250845d
VB
3217 return true;
3218
d9436498
VB
3219 /*
3220 * Make sure there are attempts at the highest priority if we exhausted
3221 * all retries or failed at the lower priorities.
3222 */
3223check_priority:
c2033b00
VB
3224 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3225 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3226 if (*compact_priority > min_priority) {
d9436498
VB
3227 (*compact_priority)--;
3228 *compaction_retries = 0;
3229 return true;
3230 }
3250845d
VB
3231 return false;
3232}
56de7263
MG
3233#else
3234static inline struct page *
3235__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3236 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3237 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3238{
33c2d214 3239 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3240 return NULL;
3241}
33c2d214
MH
3242
3243static inline bool
86a294a8
MH
3244should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3245 enum compact_result compact_result,
a5508cd8 3246 enum compact_priority *compact_priority,
d9436498 3247 int *compaction_retries)
33c2d214 3248{
31e49bfd
MH
3249 struct zone *zone;
3250 struct zoneref *z;
3251
3252 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3253 return false;
3254
3255 /*
3256 * There are setups with compaction disabled which would prefer to loop
3257 * inside the allocator rather than hit the oom killer prematurely.
3258 * Let's give them a good hope and keep retrying while the order-0
3259 * watermarks are OK.
3260 */
3261 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3262 ac->nodemask) {
3263 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3264 ac_classzone_idx(ac), alloc_flags))
3265 return true;
3266 }
33c2d214
MH
3267 return false;
3268}
3250845d 3269#endif /* CONFIG_COMPACTION */
56de7263 3270
bba90710
MS
3271/* Perform direct synchronous page reclaim */
3272static int
a9263751
VB
3273__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3274 const struct alloc_context *ac)
11e33f6a 3275{
11e33f6a 3276 struct reclaim_state reclaim_state;
bba90710 3277 int progress;
11e33f6a
MG
3278
3279 cond_resched();
3280
3281 /* We now go into synchronous reclaim */
3282 cpuset_memory_pressure_bump();
c06b1fca 3283 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3284 lockdep_set_current_reclaim_state(gfp_mask);
3285 reclaim_state.reclaimed_slab = 0;
c06b1fca 3286 current->reclaim_state = &reclaim_state;
11e33f6a 3287
a9263751
VB
3288 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3289 ac->nodemask);
11e33f6a 3290
c06b1fca 3291 current->reclaim_state = NULL;
11e33f6a 3292 lockdep_clear_current_reclaim_state();
c06b1fca 3293 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3294
3295 cond_resched();
3296
bba90710
MS
3297 return progress;
3298}
3299
3300/* The really slow allocator path where we enter direct reclaim */
3301static inline struct page *
3302__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3303 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3304 unsigned long *did_some_progress)
bba90710
MS
3305{
3306 struct page *page = NULL;
3307 bool drained = false;
3308
a9263751 3309 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3310 if (unlikely(!(*did_some_progress)))
3311 return NULL;
11e33f6a 3312
9ee493ce 3313retry:
31a6c190 3314 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3315
3316 /*
3317 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3318 * pages are pinned on the per-cpu lists or in high alloc reserves.
3319 * Shrink them them and try again
9ee493ce
MG
3320 */
3321 if (!page && !drained) {
0aaa29a5 3322 unreserve_highatomic_pageblock(ac);
93481ff0 3323 drain_all_pages(NULL);
9ee493ce
MG
3324 drained = true;
3325 goto retry;
3326 }
3327
11e33f6a
MG
3328 return page;
3329}
3330
a9263751 3331static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3332{
3333 struct zoneref *z;
3334 struct zone *zone;
e1a55637 3335 pg_data_t *last_pgdat = NULL;
3a025760 3336
a9263751 3337 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3338 ac->high_zoneidx, ac->nodemask) {
3339 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3340 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3341 last_pgdat = zone->zone_pgdat;
3342 }
3a025760
JW
3343}
3344
c603844b 3345static inline unsigned int
341ce06f
PZ
3346gfp_to_alloc_flags(gfp_t gfp_mask)
3347{
c603844b 3348 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3349
a56f57ff 3350 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3351 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3352
341ce06f
PZ
3353 /*
3354 * The caller may dip into page reserves a bit more if the caller
3355 * cannot run direct reclaim, or if the caller has realtime scheduling
3356 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3357 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3358 */
e6223a3b 3359 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3360
d0164adc 3361 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3362 /*
b104a35d
DR
3363 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3364 * if it can't schedule.
5c3240d9 3365 */
b104a35d 3366 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3367 alloc_flags |= ALLOC_HARDER;
523b9458 3368 /*
b104a35d 3369 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3370 * comment for __cpuset_node_allowed().
523b9458 3371 */
341ce06f 3372 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3373 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3374 alloc_flags |= ALLOC_HARDER;
3375
d95ea5d1 3376#ifdef CONFIG_CMA
43e7a34d 3377 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3378 alloc_flags |= ALLOC_CMA;
3379#endif
341ce06f
PZ
3380 return alloc_flags;
3381}
3382
072bb0aa
MG
3383bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3384{
31a6c190
VB
3385 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3386 return false;
3387
3388 if (gfp_mask & __GFP_MEMALLOC)
3389 return true;
3390 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3391 return true;
3392 if (!in_interrupt() &&
3393 ((current->flags & PF_MEMALLOC) ||
3394 unlikely(test_thread_flag(TIF_MEMDIE))))
3395 return true;
3396
3397 return false;
072bb0aa
MG
3398}
3399
0a0337e0
MH
3400/*
3401 * Maximum number of reclaim retries without any progress before OOM killer
3402 * is consider as the only way to move forward.
3403 */
3404#define MAX_RECLAIM_RETRIES 16
3405
3406/*
3407 * Checks whether it makes sense to retry the reclaim to make a forward progress
3408 * for the given allocation request.
3409 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3410 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3411 * any progress in a row) is considered as well as the reclaimable pages on the
3412 * applicable zone list (with a backoff mechanism which is a function of
3413 * no_progress_loops).
0a0337e0
MH
3414 *
3415 * Returns true if a retry is viable or false to enter the oom path.
3416 */
3417static inline bool
3418should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3419 struct alloc_context *ac, int alloc_flags,
423b452e 3420 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3421{
3422 struct zone *zone;
3423 struct zoneref *z;
3424
423b452e
VB
3425 /*
3426 * Costly allocations might have made a progress but this doesn't mean
3427 * their order will become available due to high fragmentation so
3428 * always increment the no progress counter for them
3429 */
3430 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3431 *no_progress_loops = 0;
3432 else
3433 (*no_progress_loops)++;
3434
0a0337e0
MH
3435 /*
3436 * Make sure we converge to OOM if we cannot make any progress
3437 * several times in the row.
3438 */
423b452e 3439 if (*no_progress_loops > MAX_RECLAIM_RETRIES)
0a0337e0
MH
3440 return false;
3441
bca67592
MG
3442 /*
3443 * Keep reclaiming pages while there is a chance this will lead
3444 * somewhere. If none of the target zones can satisfy our allocation
3445 * request even if all reclaimable pages are considered then we are
3446 * screwed and have to go OOM.
0a0337e0
MH
3447 */
3448 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3449 ac->nodemask) {
3450 unsigned long available;
ede37713 3451 unsigned long reclaimable;
0a0337e0 3452
5a1c84b4 3453 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3454 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3455 MAX_RECLAIM_RETRIES);
5a1c84b4 3456 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3457
3458 /*
3459 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3460 * available?
0a0337e0 3461 */
5a1c84b4
MG
3462 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3463 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3464 /*
3465 * If we didn't make any progress and have a lot of
3466 * dirty + writeback pages then we should wait for
3467 * an IO to complete to slow down the reclaim and
3468 * prevent from pre mature OOM
3469 */
3470 if (!did_some_progress) {
11fb9989 3471 unsigned long write_pending;
ede37713 3472
5a1c84b4
MG
3473 write_pending = zone_page_state_snapshot(zone,
3474 NR_ZONE_WRITE_PENDING);
ede37713 3475
11fb9989 3476 if (2 * write_pending > reclaimable) {
ede37713
MH
3477 congestion_wait(BLK_RW_ASYNC, HZ/10);
3478 return true;
3479 }
3480 }
5a1c84b4 3481
ede37713
MH
3482 /*
3483 * Memory allocation/reclaim might be called from a WQ
3484 * context and the current implementation of the WQ
3485 * concurrency control doesn't recognize that
3486 * a particular WQ is congested if the worker thread is
3487 * looping without ever sleeping. Therefore we have to
3488 * do a short sleep here rather than calling
3489 * cond_resched().
3490 */
3491 if (current->flags & PF_WQ_WORKER)
3492 schedule_timeout_uninterruptible(1);
3493 else
3494 cond_resched();
3495
0a0337e0
MH
3496 return true;
3497 }
3498 }
3499
3500 return false;
3501}
3502
11e33f6a
MG
3503static inline struct page *
3504__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3505 struct alloc_context *ac)
11e33f6a 3506{
d0164adc 3507 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3508 struct page *page = NULL;
c603844b 3509 unsigned int alloc_flags;
11e33f6a 3510 unsigned long did_some_progress;
a5508cd8 3511 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3512 enum compact_result compact_result;
33c2d214 3513 int compaction_retries = 0;
0a0337e0 3514 int no_progress_loops = 0;
63f53dea
MH
3515 unsigned long alloc_start = jiffies;
3516 unsigned int stall_timeout = 10 * HZ;
1da177e4 3517
72807a74
MG
3518 /*
3519 * In the slowpath, we sanity check order to avoid ever trying to
3520 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3521 * be using allocators in order of preference for an area that is
3522 * too large.
3523 */
1fc28b70
MG
3524 if (order >= MAX_ORDER) {
3525 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3526 return NULL;
1fc28b70 3527 }
1da177e4 3528
d0164adc
MG
3529 /*
3530 * We also sanity check to catch abuse of atomic reserves being used by
3531 * callers that are not in atomic context.
3532 */
3533 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3534 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3535 gfp_mask &= ~__GFP_ATOMIC;
3536
9bf2229f 3537 /*
31a6c190
VB
3538 * The fast path uses conservative alloc_flags to succeed only until
3539 * kswapd needs to be woken up, and to avoid the cost of setting up
3540 * alloc_flags precisely. So we do that now.
9bf2229f 3541 */
341ce06f 3542 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3543
23771235
VB
3544 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3545 wake_all_kswapds(order, ac);
3546
3547 /*
3548 * The adjusted alloc_flags might result in immediate success, so try
3549 * that first
3550 */
3551 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3552 if (page)
3553 goto got_pg;
3554
a8161d1e
VB
3555 /*
3556 * For costly allocations, try direct compaction first, as it's likely
3557 * that we have enough base pages and don't need to reclaim. Don't try
3558 * that for allocations that are allowed to ignore watermarks, as the
3559 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3560 */
3561 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3562 !gfp_pfmemalloc_allowed(gfp_mask)) {
3563 page = __alloc_pages_direct_compact(gfp_mask, order,
3564 alloc_flags, ac,
a5508cd8 3565 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3566 &compact_result);
3567 if (page)
3568 goto got_pg;
3569
3eb2771b
VB
3570 /*
3571 * Checks for costly allocations with __GFP_NORETRY, which
3572 * includes THP page fault allocations
3573 */
3574 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3575 /*
3576 * If compaction is deferred for high-order allocations,
3577 * it is because sync compaction recently failed. If
3578 * this is the case and the caller requested a THP
3579 * allocation, we do not want to heavily disrupt the
3580 * system, so we fail the allocation instead of entering
3581 * direct reclaim.
3582 */
3583 if (compact_result == COMPACT_DEFERRED)
3584 goto nopage;
3585
a8161d1e 3586 /*
3eb2771b
VB
3587 * Looks like reclaim/compaction is worth trying, but
3588 * sync compaction could be very expensive, so keep
25160354 3589 * using async compaction.
a8161d1e 3590 */
a5508cd8 3591 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3592 }
3593 }
23771235 3594
31a6c190 3595retry:
23771235 3596 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3597 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3598 wake_all_kswapds(order, ac);
3599
23771235
VB
3600 if (gfp_pfmemalloc_allowed(gfp_mask))
3601 alloc_flags = ALLOC_NO_WATERMARKS;
3602
e46e7b77
MG
3603 /*
3604 * Reset the zonelist iterators if memory policies can be ignored.
3605 * These allocations are high priority and system rather than user
3606 * orientated.
3607 */
23771235 3608 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3609 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3610 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3611 ac->high_zoneidx, ac->nodemask);
3612 }
3613
23771235 3614 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3615 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3616 if (page)
3617 goto got_pg;
1da177e4 3618
d0164adc
MG
3619 /* Caller is not willing to reclaim, we can't balance anything */
3620 if (!can_direct_reclaim) {
aed0a0e3 3621 /*
33d53103
MH
3622 * All existing users of the __GFP_NOFAIL are blockable, so warn
3623 * of any new users that actually allow this type of allocation
3624 * to fail.
aed0a0e3
DR
3625 */
3626 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3627 goto nopage;
aed0a0e3 3628 }
1da177e4 3629
341ce06f 3630 /* Avoid recursion of direct reclaim */
33d53103
MH
3631 if (current->flags & PF_MEMALLOC) {
3632 /*
3633 * __GFP_NOFAIL request from this context is rather bizarre
3634 * because we cannot reclaim anything and only can loop waiting
3635 * for somebody to do a work for us.
3636 */
3637 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3638 cond_resched();
3639 goto retry;
3640 }
341ce06f 3641 goto nopage;
33d53103 3642 }
341ce06f 3643
6583bb64
DR
3644 /* Avoid allocations with no watermarks from looping endlessly */
3645 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3646 goto nopage;
3647
a8161d1e
VB
3648
3649 /* Try direct reclaim and then allocating */
3650 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3651 &did_some_progress);
3652 if (page)
3653 goto got_pg;
3654
3655 /* Try direct compaction and then allocating */
a9263751 3656 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3657 compact_priority, &compact_result);
56de7263
MG
3658 if (page)
3659 goto got_pg;
75f30861 3660
9083905a
JW
3661 /* Do not loop if specifically requested */
3662 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3663 goto nopage;
9083905a 3664
0a0337e0
MH
3665 /*
3666 * Do not retry costly high order allocations unless they are
3667 * __GFP_REPEAT
3668 */
3669 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3670 goto nopage;
0a0337e0 3671
63f53dea
MH
3672 /* Make sure we know about allocations which stall for too long */
3673 if (time_after(jiffies, alloc_start + stall_timeout)) {
3674 warn_alloc(gfp_mask,
9e80c719 3675 "page allocation stalls for %ums, order:%u",
63f53dea
MH
3676 jiffies_to_msecs(jiffies-alloc_start), order);
3677 stall_timeout += 10 * HZ;
3678 }
3679
0a0337e0 3680 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3681 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3682 goto retry;
3683
33c2d214
MH
3684 /*
3685 * It doesn't make any sense to retry for the compaction if the order-0
3686 * reclaim is not able to make any progress because the current
3687 * implementation of the compaction depends on the sufficient amount
3688 * of free memory (see __compaction_suitable)
3689 */
3690 if (did_some_progress > 0 &&
86a294a8 3691 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3692 compact_result, &compact_priority,
d9436498 3693 &compaction_retries))
33c2d214
MH
3694 goto retry;
3695
9083905a
JW
3696 /* Reclaim has failed us, start killing things */
3697 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3698 if (page)
3699 goto got_pg;
3700
3701 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3702 if (did_some_progress) {
3703 no_progress_loops = 0;
9083905a 3704 goto retry;
0a0337e0 3705 }
9083905a 3706
1da177e4 3707nopage:
7877cdcc
MH
3708 warn_alloc(gfp_mask,
3709 "page allocation failure: order:%u", order);
1da177e4 3710got_pg:
072bb0aa 3711 return page;
1da177e4 3712}
11e33f6a
MG
3713
3714/*
3715 * This is the 'heart' of the zoned buddy allocator.
3716 */
3717struct page *
3718__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3719 struct zonelist *zonelist, nodemask_t *nodemask)
3720{
5bb1b169 3721 struct page *page;
cc9a6c87 3722 unsigned int cpuset_mems_cookie;
e6cbd7f2 3723 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3724 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3725 struct alloc_context ac = {
3726 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3727 .zonelist = zonelist,
a9263751
VB
3728 .nodemask = nodemask,
3729 .migratetype = gfpflags_to_migratetype(gfp_mask),
3730 };
11e33f6a 3731
682a3385 3732 if (cpusets_enabled()) {
83d4ca81 3733 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3734 alloc_flags |= ALLOC_CPUSET;
3735 if (!ac.nodemask)
3736 ac.nodemask = &cpuset_current_mems_allowed;
3737 }
3738
dcce284a
BH
3739 gfp_mask &= gfp_allowed_mask;
3740
11e33f6a
MG
3741 lockdep_trace_alloc(gfp_mask);
3742
d0164adc 3743 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3744
3745 if (should_fail_alloc_page(gfp_mask, order))
3746 return NULL;
3747
3748 /*
3749 * Check the zones suitable for the gfp_mask contain at least one
3750 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3751 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3752 */
3753 if (unlikely(!zonelist->_zonerefs->zone))
3754 return NULL;
3755
a9263751 3756 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3757 alloc_flags |= ALLOC_CMA;
3758
cc9a6c87 3759retry_cpuset:
d26914d1 3760 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3761
c9ab0c4f
MG
3762 /* Dirty zone balancing only done in the fast path */
3763 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3764
e46e7b77
MG
3765 /*
3766 * The preferred zone is used for statistics but crucially it is
3767 * also used as the starting point for the zonelist iterator. It
3768 * may get reset for allocations that ignore memory policies.
3769 */
c33d6c06
MG
3770 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3771 ac.high_zoneidx, ac.nodemask);
3772 if (!ac.preferred_zoneref) {
5bb1b169 3773 page = NULL;
4fcb0971 3774 goto no_zone;
5bb1b169
MG
3775 }
3776
5117f45d 3777 /* First allocation attempt */
a9263751 3778 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3779 if (likely(page))
3780 goto out;
11e33f6a 3781
4fcb0971
MG
3782 /*
3783 * Runtime PM, block IO and its error handling path can deadlock
3784 * because I/O on the device might not complete.
3785 */
3786 alloc_mask = memalloc_noio_flags(gfp_mask);
3787 ac.spread_dirty_pages = false;
23f086f9 3788
4741526b
MG
3789 /*
3790 * Restore the original nodemask if it was potentially replaced with
3791 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3792 */
3793 if (cpusets_enabled())
3794 ac.nodemask = nodemask;
4fcb0971 3795 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3796
4fcb0971 3797no_zone:
cc9a6c87
MG
3798 /*
3799 * When updating a task's mems_allowed, it is possible to race with
3800 * parallel threads in such a way that an allocation can fail while
3801 * the mask is being updated. If a page allocation is about to fail,
3802 * check if the cpuset changed during allocation and if so, retry.
3803 */
83d4ca81
MG
3804 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3805 alloc_mask = gfp_mask;
cc9a6c87 3806 goto retry_cpuset;
83d4ca81 3807 }
cc9a6c87 3808
4fcb0971 3809out:
c4159a75
VD
3810 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3811 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3812 __free_pages(page, order);
3813 page = NULL;
4949148a
VD
3814 }
3815
4fcb0971
MG
3816 if (kmemcheck_enabled && page)
3817 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3818
3819 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3820
11e33f6a 3821 return page;
1da177e4 3822}
d239171e 3823EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3824
3825/*
3826 * Common helper functions.
3827 */
920c7a5d 3828unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3829{
945a1113
AM
3830 struct page *page;
3831
3832 /*
3833 * __get_free_pages() returns a 32-bit address, which cannot represent
3834 * a highmem page
3835 */
3836 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3837
1da177e4
LT
3838 page = alloc_pages(gfp_mask, order);
3839 if (!page)
3840 return 0;
3841 return (unsigned long) page_address(page);
3842}
1da177e4
LT
3843EXPORT_SYMBOL(__get_free_pages);
3844
920c7a5d 3845unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3846{
945a1113 3847 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3848}
1da177e4
LT
3849EXPORT_SYMBOL(get_zeroed_page);
3850
920c7a5d 3851void __free_pages(struct page *page, unsigned int order)
1da177e4 3852{
b5810039 3853 if (put_page_testzero(page)) {
1da177e4 3854 if (order == 0)
b745bc85 3855 free_hot_cold_page(page, false);
1da177e4
LT
3856 else
3857 __free_pages_ok(page, order);
3858 }
3859}
3860
3861EXPORT_SYMBOL(__free_pages);
3862
920c7a5d 3863void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3864{
3865 if (addr != 0) {
725d704e 3866 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3867 __free_pages(virt_to_page((void *)addr), order);
3868 }
3869}
3870
3871EXPORT_SYMBOL(free_pages);
3872
b63ae8ca
AD
3873/*
3874 * Page Fragment:
3875 * An arbitrary-length arbitrary-offset area of memory which resides
3876 * within a 0 or higher order page. Multiple fragments within that page
3877 * are individually refcounted, in the page's reference counter.
3878 *
3879 * The page_frag functions below provide a simple allocation framework for
3880 * page fragments. This is used by the network stack and network device
3881 * drivers to provide a backing region of memory for use as either an
3882 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3883 */
3884static struct page *__page_frag_refill(struct page_frag_cache *nc,
3885 gfp_t gfp_mask)
3886{
3887 struct page *page = NULL;
3888 gfp_t gfp = gfp_mask;
3889
3890#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3891 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3892 __GFP_NOMEMALLOC;
3893 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3894 PAGE_FRAG_CACHE_MAX_ORDER);
3895 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3896#endif
3897 if (unlikely(!page))
3898 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3899
3900 nc->va = page ? page_address(page) : NULL;
3901
3902 return page;
3903}
3904
3905void *__alloc_page_frag(struct page_frag_cache *nc,
3906 unsigned int fragsz, gfp_t gfp_mask)
3907{
3908 unsigned int size = PAGE_SIZE;
3909 struct page *page;
3910 int offset;
3911
3912 if (unlikely(!nc->va)) {
3913refill:
3914 page = __page_frag_refill(nc, gfp_mask);
3915 if (!page)
3916 return NULL;
3917
3918#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3919 /* if size can vary use size else just use PAGE_SIZE */
3920 size = nc->size;
3921#endif
3922 /* Even if we own the page, we do not use atomic_set().
3923 * This would break get_page_unless_zero() users.
3924 */
fe896d18 3925 page_ref_add(page, size - 1);
b63ae8ca
AD
3926
3927 /* reset page count bias and offset to start of new frag */
2f064f34 3928 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3929 nc->pagecnt_bias = size;
3930 nc->offset = size;
3931 }
3932
3933 offset = nc->offset - fragsz;
3934 if (unlikely(offset < 0)) {
3935 page = virt_to_page(nc->va);
3936
fe896d18 3937 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3938 goto refill;
3939
3940#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3941 /* if size can vary use size else just use PAGE_SIZE */
3942 size = nc->size;
3943#endif
3944 /* OK, page count is 0, we can safely set it */
fe896d18 3945 set_page_count(page, size);
b63ae8ca
AD
3946
3947 /* reset page count bias and offset to start of new frag */
3948 nc->pagecnt_bias = size;
3949 offset = size - fragsz;
3950 }
3951
3952 nc->pagecnt_bias--;
3953 nc->offset = offset;
3954
3955 return nc->va + offset;
3956}
3957EXPORT_SYMBOL(__alloc_page_frag);
3958
3959/*
3960 * Frees a page fragment allocated out of either a compound or order 0 page.
3961 */
3962void __free_page_frag(void *addr)
3963{
3964 struct page *page = virt_to_head_page(addr);
3965
3966 if (unlikely(put_page_testzero(page)))
3967 __free_pages_ok(page, compound_order(page));
3968}
3969EXPORT_SYMBOL(__free_page_frag);
3970
d00181b9
KS
3971static void *make_alloc_exact(unsigned long addr, unsigned int order,
3972 size_t size)
ee85c2e1
AK
3973{
3974 if (addr) {
3975 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3976 unsigned long used = addr + PAGE_ALIGN(size);
3977
3978 split_page(virt_to_page((void *)addr), order);
3979 while (used < alloc_end) {
3980 free_page(used);
3981 used += PAGE_SIZE;
3982 }
3983 }
3984 return (void *)addr;
3985}
3986
2be0ffe2
TT
3987/**
3988 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3989 * @size: the number of bytes to allocate
3990 * @gfp_mask: GFP flags for the allocation
3991 *
3992 * This function is similar to alloc_pages(), except that it allocates the
3993 * minimum number of pages to satisfy the request. alloc_pages() can only
3994 * allocate memory in power-of-two pages.
3995 *
3996 * This function is also limited by MAX_ORDER.
3997 *
3998 * Memory allocated by this function must be released by free_pages_exact().
3999 */
4000void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4001{
4002 unsigned int order = get_order(size);
4003 unsigned long addr;
4004
4005 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4006 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4007}
4008EXPORT_SYMBOL(alloc_pages_exact);
4009
ee85c2e1
AK
4010/**
4011 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4012 * pages on a node.
b5e6ab58 4013 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4014 * @size: the number of bytes to allocate
4015 * @gfp_mask: GFP flags for the allocation
4016 *
4017 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4018 * back.
ee85c2e1 4019 */
e1931811 4020void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4021{
d00181b9 4022 unsigned int order = get_order(size);
ee85c2e1
AK
4023 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4024 if (!p)
4025 return NULL;
4026 return make_alloc_exact((unsigned long)page_address(p), order, size);
4027}
ee85c2e1 4028
2be0ffe2
TT
4029/**
4030 * free_pages_exact - release memory allocated via alloc_pages_exact()
4031 * @virt: the value returned by alloc_pages_exact.
4032 * @size: size of allocation, same value as passed to alloc_pages_exact().
4033 *
4034 * Release the memory allocated by a previous call to alloc_pages_exact.
4035 */
4036void free_pages_exact(void *virt, size_t size)
4037{
4038 unsigned long addr = (unsigned long)virt;
4039 unsigned long end = addr + PAGE_ALIGN(size);
4040
4041 while (addr < end) {
4042 free_page(addr);
4043 addr += PAGE_SIZE;
4044 }
4045}
4046EXPORT_SYMBOL(free_pages_exact);
4047
e0fb5815
ZY
4048/**
4049 * nr_free_zone_pages - count number of pages beyond high watermark
4050 * @offset: The zone index of the highest zone
4051 *
4052 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4053 * high watermark within all zones at or below a given zone index. For each
4054 * zone, the number of pages is calculated as:
834405c3 4055 * managed_pages - high_pages
e0fb5815 4056 */
ebec3862 4057static unsigned long nr_free_zone_pages(int offset)
1da177e4 4058{
dd1a239f 4059 struct zoneref *z;
54a6eb5c
MG
4060 struct zone *zone;
4061
e310fd43 4062 /* Just pick one node, since fallback list is circular */
ebec3862 4063 unsigned long sum = 0;
1da177e4 4064
0e88460d 4065 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4066
54a6eb5c 4067 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4068 unsigned long size = zone->managed_pages;
41858966 4069 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4070 if (size > high)
4071 sum += size - high;
1da177e4
LT
4072 }
4073
4074 return sum;
4075}
4076
e0fb5815
ZY
4077/**
4078 * nr_free_buffer_pages - count number of pages beyond high watermark
4079 *
4080 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4081 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4082 */
ebec3862 4083unsigned long nr_free_buffer_pages(void)
1da177e4 4084{
af4ca457 4085 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4086}
c2f1a551 4087EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4088
e0fb5815
ZY
4089/**
4090 * nr_free_pagecache_pages - count number of pages beyond high watermark
4091 *
4092 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4093 * high watermark within all zones.
1da177e4 4094 */
ebec3862 4095unsigned long nr_free_pagecache_pages(void)
1da177e4 4096{
2a1e274a 4097 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4098}
08e0f6a9
CL
4099
4100static inline void show_node(struct zone *zone)
1da177e4 4101{
e5adfffc 4102 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4103 printk("Node %d ", zone_to_nid(zone));
1da177e4 4104}
1da177e4 4105
d02bd27b
IR
4106long si_mem_available(void)
4107{
4108 long available;
4109 unsigned long pagecache;
4110 unsigned long wmark_low = 0;
4111 unsigned long pages[NR_LRU_LISTS];
4112 struct zone *zone;
4113 int lru;
4114
4115 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4116 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4117
4118 for_each_zone(zone)
4119 wmark_low += zone->watermark[WMARK_LOW];
4120
4121 /*
4122 * Estimate the amount of memory available for userspace allocations,
4123 * without causing swapping.
4124 */
4125 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4126
4127 /*
4128 * Not all the page cache can be freed, otherwise the system will
4129 * start swapping. Assume at least half of the page cache, or the
4130 * low watermark worth of cache, needs to stay.
4131 */
4132 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4133 pagecache -= min(pagecache / 2, wmark_low);
4134 available += pagecache;
4135
4136 /*
4137 * Part of the reclaimable slab consists of items that are in use,
4138 * and cannot be freed. Cap this estimate at the low watermark.
4139 */
4140 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4141 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4142
4143 if (available < 0)
4144 available = 0;
4145 return available;
4146}
4147EXPORT_SYMBOL_GPL(si_mem_available);
4148
1da177e4
LT
4149void si_meminfo(struct sysinfo *val)
4150{
4151 val->totalram = totalram_pages;
11fb9989 4152 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4153 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4154 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4155 val->totalhigh = totalhigh_pages;
4156 val->freehigh = nr_free_highpages();
1da177e4
LT
4157 val->mem_unit = PAGE_SIZE;
4158}
4159
4160EXPORT_SYMBOL(si_meminfo);
4161
4162#ifdef CONFIG_NUMA
4163void si_meminfo_node(struct sysinfo *val, int nid)
4164{
cdd91a77
JL
4165 int zone_type; /* needs to be signed */
4166 unsigned long managed_pages = 0;
fc2bd799
JK
4167 unsigned long managed_highpages = 0;
4168 unsigned long free_highpages = 0;
1da177e4
LT
4169 pg_data_t *pgdat = NODE_DATA(nid);
4170
cdd91a77
JL
4171 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4172 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4173 val->totalram = managed_pages;
11fb9989 4174 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4175 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4176#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4177 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4178 struct zone *zone = &pgdat->node_zones[zone_type];
4179
4180 if (is_highmem(zone)) {
4181 managed_highpages += zone->managed_pages;
4182 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4183 }
4184 }
4185 val->totalhigh = managed_highpages;
4186 val->freehigh = free_highpages;
98d2b0eb 4187#else
fc2bd799
JK
4188 val->totalhigh = managed_highpages;
4189 val->freehigh = free_highpages;
98d2b0eb 4190#endif
1da177e4
LT
4191 val->mem_unit = PAGE_SIZE;
4192}
4193#endif
4194
ddd588b5 4195/*
7bf02ea2
DR
4196 * Determine whether the node should be displayed or not, depending on whether
4197 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4198 */
7bf02ea2 4199bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4200{
4201 bool ret = false;
cc9a6c87 4202 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4203
4204 if (!(flags & SHOW_MEM_FILTER_NODES))
4205 goto out;
4206
cc9a6c87 4207 do {
d26914d1 4208 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4209 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4210 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4211out:
4212 return ret;
4213}
4214
1da177e4
LT
4215#define K(x) ((x) << (PAGE_SHIFT-10))
4216
377e4f16
RV
4217static void show_migration_types(unsigned char type)
4218{
4219 static const char types[MIGRATE_TYPES] = {
4220 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4221 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4222 [MIGRATE_RECLAIMABLE] = 'E',
4223 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4224#ifdef CONFIG_CMA
4225 [MIGRATE_CMA] = 'C',
4226#endif
194159fb 4227#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4228 [MIGRATE_ISOLATE] = 'I',
194159fb 4229#endif
377e4f16
RV
4230 };
4231 char tmp[MIGRATE_TYPES + 1];
4232 char *p = tmp;
4233 int i;
4234
4235 for (i = 0; i < MIGRATE_TYPES; i++) {
4236 if (type & (1 << i))
4237 *p++ = types[i];
4238 }
4239
4240 *p = '\0';
1f84a18f 4241 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4242}
4243
1da177e4
LT
4244/*
4245 * Show free area list (used inside shift_scroll-lock stuff)
4246 * We also calculate the percentage fragmentation. We do this by counting the
4247 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4248 *
4249 * Bits in @filter:
4250 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4251 * cpuset.
1da177e4 4252 */
7bf02ea2 4253void show_free_areas(unsigned int filter)
1da177e4 4254{
d1bfcdb8 4255 unsigned long free_pcp = 0;
c7241913 4256 int cpu;
1da177e4 4257 struct zone *zone;
599d0c95 4258 pg_data_t *pgdat;
1da177e4 4259
ee99c71c 4260 for_each_populated_zone(zone) {
7bf02ea2 4261 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4262 continue;
d1bfcdb8 4263
761b0677
KK
4264 for_each_online_cpu(cpu)
4265 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4266 }
4267
a731286d
KM
4268 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4269 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4270 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4271 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4272 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4273 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4274 global_node_page_state(NR_ACTIVE_ANON),
4275 global_node_page_state(NR_INACTIVE_ANON),
4276 global_node_page_state(NR_ISOLATED_ANON),
4277 global_node_page_state(NR_ACTIVE_FILE),
4278 global_node_page_state(NR_INACTIVE_FILE),
4279 global_node_page_state(NR_ISOLATED_FILE),
4280 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4281 global_node_page_state(NR_FILE_DIRTY),
4282 global_node_page_state(NR_WRITEBACK),
4283 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4284 global_page_state(NR_SLAB_RECLAIMABLE),
4285 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4286 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4287 global_node_page_state(NR_SHMEM),
a25700a5 4288 global_page_state(NR_PAGETABLE),
d1ce749a 4289 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4290 global_page_state(NR_FREE_PAGES),
4291 free_pcp,
d1ce749a 4292 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4293
599d0c95
MG
4294 for_each_online_pgdat(pgdat) {
4295 printk("Node %d"
4296 " active_anon:%lukB"
4297 " inactive_anon:%lukB"
4298 " active_file:%lukB"
4299 " inactive_file:%lukB"
4300 " unevictable:%lukB"
4301 " isolated(anon):%lukB"
4302 " isolated(file):%lukB"
50658e2e 4303 " mapped:%lukB"
11fb9989
MG
4304 " dirty:%lukB"
4305 " writeback:%lukB"
4306 " shmem:%lukB"
4307#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4308 " shmem_thp: %lukB"
4309 " shmem_pmdmapped: %lukB"
4310 " anon_thp: %lukB"
4311#endif
4312 " writeback_tmp:%lukB"
4313 " unstable:%lukB"
33e077bd 4314 " pages_scanned:%lu"
599d0c95
MG
4315 " all_unreclaimable? %s"
4316 "\n",
4317 pgdat->node_id,
4318 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4319 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4320 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4321 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4322 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4323 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4324 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4325 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4326 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4327 K(node_page_state(pgdat, NR_WRITEBACK)),
4328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4329 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4330 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4331 * HPAGE_PMD_NR),
4332 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4333#endif
4334 K(node_page_state(pgdat, NR_SHMEM)),
4335 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4336 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4337 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4338 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4339 }
4340
ee99c71c 4341 for_each_populated_zone(zone) {
1da177e4
LT
4342 int i;
4343
7bf02ea2 4344 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4345 continue;
d1bfcdb8
KK
4346
4347 free_pcp = 0;
4348 for_each_online_cpu(cpu)
4349 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4350
1da177e4 4351 show_node(zone);
1f84a18f
JP
4352 printk(KERN_CONT
4353 "%s"
1da177e4
LT
4354 " free:%lukB"
4355 " min:%lukB"
4356 " low:%lukB"
4357 " high:%lukB"
71c799f4
MK
4358 " active_anon:%lukB"
4359 " inactive_anon:%lukB"
4360 " active_file:%lukB"
4361 " inactive_file:%lukB"
4362 " unevictable:%lukB"
5a1c84b4 4363 " writepending:%lukB"
1da177e4 4364 " present:%lukB"
9feedc9d 4365 " managed:%lukB"
4a0aa73f 4366 " mlocked:%lukB"
4a0aa73f
KM
4367 " slab_reclaimable:%lukB"
4368 " slab_unreclaimable:%lukB"
c6a7f572 4369 " kernel_stack:%lukB"
4a0aa73f 4370 " pagetables:%lukB"
4a0aa73f 4371 " bounce:%lukB"
d1bfcdb8
KK
4372 " free_pcp:%lukB"
4373 " local_pcp:%ukB"
d1ce749a 4374 " free_cma:%lukB"
1da177e4
LT
4375 "\n",
4376 zone->name,
88f5acf8 4377 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4378 K(min_wmark_pages(zone)),
4379 K(low_wmark_pages(zone)),
4380 K(high_wmark_pages(zone)),
71c799f4
MK
4381 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4382 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4383 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4384 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4385 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4386 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4387 K(zone->present_pages),
9feedc9d 4388 K(zone->managed_pages),
4a0aa73f 4389 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4390 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4391 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4392 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4393 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4394 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4395 K(free_pcp),
4396 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4397 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4398 printk("lowmem_reserve[]:");
4399 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4400 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4401 printk(KERN_CONT "\n");
1da177e4
LT
4402 }
4403
ee99c71c 4404 for_each_populated_zone(zone) {
d00181b9
KS
4405 unsigned int order;
4406 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4407 unsigned char types[MAX_ORDER];
1da177e4 4408
7bf02ea2 4409 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4410 continue;
1da177e4 4411 show_node(zone);
1f84a18f 4412 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4413
4414 spin_lock_irqsave(&zone->lock, flags);
4415 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4416 struct free_area *area = &zone->free_area[order];
4417 int type;
4418
4419 nr[order] = area->nr_free;
8f9de51a 4420 total += nr[order] << order;
377e4f16
RV
4421
4422 types[order] = 0;
4423 for (type = 0; type < MIGRATE_TYPES; type++) {
4424 if (!list_empty(&area->free_list[type]))
4425 types[order] |= 1 << type;
4426 }
1da177e4
LT
4427 }
4428 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4429 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4430 printk(KERN_CONT "%lu*%lukB ",
4431 nr[order], K(1UL) << order);
377e4f16
RV
4432 if (nr[order])
4433 show_migration_types(types[order]);
4434 }
1f84a18f 4435 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4436 }
4437
949f7ec5
DR
4438 hugetlb_show_meminfo();
4439
11fb9989 4440 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4441
1da177e4
LT
4442 show_swap_cache_info();
4443}
4444
19770b32
MG
4445static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4446{
4447 zoneref->zone = zone;
4448 zoneref->zone_idx = zone_idx(zone);
4449}
4450
1da177e4
LT
4451/*
4452 * Builds allocation fallback zone lists.
1a93205b
CL
4453 *
4454 * Add all populated zones of a node to the zonelist.
1da177e4 4455 */
f0c0b2b8 4456static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4457 int nr_zones)
1da177e4 4458{
1a93205b 4459 struct zone *zone;
bc732f1d 4460 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4461
4462 do {
2f6726e5 4463 zone_type--;
070f8032 4464 zone = pgdat->node_zones + zone_type;
6aa303de 4465 if (managed_zone(zone)) {
dd1a239f
MG
4466 zoneref_set_zone(zone,
4467 &zonelist->_zonerefs[nr_zones++]);
070f8032 4468 check_highest_zone(zone_type);
1da177e4 4469 }
2f6726e5 4470 } while (zone_type);
bc732f1d 4471
070f8032 4472 return nr_zones;
1da177e4
LT
4473}
4474
f0c0b2b8
KH
4475
4476/*
4477 * zonelist_order:
4478 * 0 = automatic detection of better ordering.
4479 * 1 = order by ([node] distance, -zonetype)
4480 * 2 = order by (-zonetype, [node] distance)
4481 *
4482 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4483 * the same zonelist. So only NUMA can configure this param.
4484 */
4485#define ZONELIST_ORDER_DEFAULT 0
4486#define ZONELIST_ORDER_NODE 1
4487#define ZONELIST_ORDER_ZONE 2
4488
4489/* zonelist order in the kernel.
4490 * set_zonelist_order() will set this to NODE or ZONE.
4491 */
4492static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4493static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4494
4495
1da177e4 4496#ifdef CONFIG_NUMA
f0c0b2b8
KH
4497/* The value user specified ....changed by config */
4498static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4499/* string for sysctl */
4500#define NUMA_ZONELIST_ORDER_LEN 16
4501char numa_zonelist_order[16] = "default";
4502
4503/*
4504 * interface for configure zonelist ordering.
4505 * command line option "numa_zonelist_order"
4506 * = "[dD]efault - default, automatic configuration.
4507 * = "[nN]ode - order by node locality, then by zone within node
4508 * = "[zZ]one - order by zone, then by locality within zone
4509 */
4510
4511static int __parse_numa_zonelist_order(char *s)
4512{
4513 if (*s == 'd' || *s == 'D') {
4514 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4515 } else if (*s == 'n' || *s == 'N') {
4516 user_zonelist_order = ZONELIST_ORDER_NODE;
4517 } else if (*s == 'z' || *s == 'Z') {
4518 user_zonelist_order = ZONELIST_ORDER_ZONE;
4519 } else {
1170532b 4520 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4521 return -EINVAL;
4522 }
4523 return 0;
4524}
4525
4526static __init int setup_numa_zonelist_order(char *s)
4527{
ecb256f8
VL
4528 int ret;
4529
4530 if (!s)
4531 return 0;
4532
4533 ret = __parse_numa_zonelist_order(s);
4534 if (ret == 0)
4535 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4536
4537 return ret;
f0c0b2b8
KH
4538}
4539early_param("numa_zonelist_order", setup_numa_zonelist_order);
4540
4541/*
4542 * sysctl handler for numa_zonelist_order
4543 */
cccad5b9 4544int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4545 void __user *buffer, size_t *length,
f0c0b2b8
KH
4546 loff_t *ppos)
4547{
4548 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4549 int ret;
443c6f14 4550 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4551
443c6f14 4552 mutex_lock(&zl_order_mutex);
dacbde09
CG
4553 if (write) {
4554 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4555 ret = -EINVAL;
4556 goto out;
4557 }
4558 strcpy(saved_string, (char *)table->data);
4559 }
8d65af78 4560 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4561 if (ret)
443c6f14 4562 goto out;
f0c0b2b8
KH
4563 if (write) {
4564 int oldval = user_zonelist_order;
dacbde09
CG
4565
4566 ret = __parse_numa_zonelist_order((char *)table->data);
4567 if (ret) {
f0c0b2b8
KH
4568 /*
4569 * bogus value. restore saved string
4570 */
dacbde09 4571 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4572 NUMA_ZONELIST_ORDER_LEN);
4573 user_zonelist_order = oldval;
4eaf3f64
HL
4574 } else if (oldval != user_zonelist_order) {
4575 mutex_lock(&zonelists_mutex);
9adb62a5 4576 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4577 mutex_unlock(&zonelists_mutex);
4578 }
f0c0b2b8 4579 }
443c6f14
AK
4580out:
4581 mutex_unlock(&zl_order_mutex);
4582 return ret;
f0c0b2b8
KH
4583}
4584
4585
62bc62a8 4586#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4587static int node_load[MAX_NUMNODES];
4588
1da177e4 4589/**
4dc3b16b 4590 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4591 * @node: node whose fallback list we're appending
4592 * @used_node_mask: nodemask_t of already used nodes
4593 *
4594 * We use a number of factors to determine which is the next node that should
4595 * appear on a given node's fallback list. The node should not have appeared
4596 * already in @node's fallback list, and it should be the next closest node
4597 * according to the distance array (which contains arbitrary distance values
4598 * from each node to each node in the system), and should also prefer nodes
4599 * with no CPUs, since presumably they'll have very little allocation pressure
4600 * on them otherwise.
4601 * It returns -1 if no node is found.
4602 */
f0c0b2b8 4603static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4604{
4cf808eb 4605 int n, val;
1da177e4 4606 int min_val = INT_MAX;
00ef2d2f 4607 int best_node = NUMA_NO_NODE;
a70f7302 4608 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4609
4cf808eb
LT
4610 /* Use the local node if we haven't already */
4611 if (!node_isset(node, *used_node_mask)) {
4612 node_set(node, *used_node_mask);
4613 return node;
4614 }
1da177e4 4615
4b0ef1fe 4616 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4617
4618 /* Don't want a node to appear more than once */
4619 if (node_isset(n, *used_node_mask))
4620 continue;
4621
1da177e4
LT
4622 /* Use the distance array to find the distance */
4623 val = node_distance(node, n);
4624
4cf808eb
LT
4625 /* Penalize nodes under us ("prefer the next node") */
4626 val += (n < node);
4627
1da177e4 4628 /* Give preference to headless and unused nodes */
a70f7302
RR
4629 tmp = cpumask_of_node(n);
4630 if (!cpumask_empty(tmp))
1da177e4
LT
4631 val += PENALTY_FOR_NODE_WITH_CPUS;
4632
4633 /* Slight preference for less loaded node */
4634 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4635 val += node_load[n];
4636
4637 if (val < min_val) {
4638 min_val = val;
4639 best_node = n;
4640 }
4641 }
4642
4643 if (best_node >= 0)
4644 node_set(best_node, *used_node_mask);
4645
4646 return best_node;
4647}
4648
f0c0b2b8
KH
4649
4650/*
4651 * Build zonelists ordered by node and zones within node.
4652 * This results in maximum locality--normal zone overflows into local
4653 * DMA zone, if any--but risks exhausting DMA zone.
4654 */
4655static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4656{
f0c0b2b8 4657 int j;
1da177e4 4658 struct zonelist *zonelist;
f0c0b2b8 4659
c9634cf0 4660 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4661 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4662 ;
bc732f1d 4663 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4664 zonelist->_zonerefs[j].zone = NULL;
4665 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4666}
4667
523b9458
CL
4668/*
4669 * Build gfp_thisnode zonelists
4670 */
4671static void build_thisnode_zonelists(pg_data_t *pgdat)
4672{
523b9458
CL
4673 int j;
4674 struct zonelist *zonelist;
4675
c9634cf0 4676 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4677 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4678 zonelist->_zonerefs[j].zone = NULL;
4679 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4680}
4681
f0c0b2b8
KH
4682/*
4683 * Build zonelists ordered by zone and nodes within zones.
4684 * This results in conserving DMA zone[s] until all Normal memory is
4685 * exhausted, but results in overflowing to remote node while memory
4686 * may still exist in local DMA zone.
4687 */
4688static int node_order[MAX_NUMNODES];
4689
4690static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4691{
f0c0b2b8
KH
4692 int pos, j, node;
4693 int zone_type; /* needs to be signed */
4694 struct zone *z;
4695 struct zonelist *zonelist;
4696
c9634cf0 4697 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4698 pos = 0;
4699 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4700 for (j = 0; j < nr_nodes; j++) {
4701 node = node_order[j];
4702 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4703 if (managed_zone(z)) {
dd1a239f
MG
4704 zoneref_set_zone(z,
4705 &zonelist->_zonerefs[pos++]);
54a6eb5c 4706 check_highest_zone(zone_type);
f0c0b2b8
KH
4707 }
4708 }
f0c0b2b8 4709 }
dd1a239f
MG
4710 zonelist->_zonerefs[pos].zone = NULL;
4711 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4712}
4713
3193913c
MG
4714#if defined(CONFIG_64BIT)
4715/*
4716 * Devices that require DMA32/DMA are relatively rare and do not justify a
4717 * penalty to every machine in case the specialised case applies. Default
4718 * to Node-ordering on 64-bit NUMA machines
4719 */
4720static int default_zonelist_order(void)
4721{
4722 return ZONELIST_ORDER_NODE;
4723}
4724#else
4725/*
4726 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4727 * by the kernel. If processes running on node 0 deplete the low memory zone
4728 * then reclaim will occur more frequency increasing stalls and potentially
4729 * be easier to OOM if a large percentage of the zone is under writeback or
4730 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4731 * Hence, default to zone ordering on 32-bit.
4732 */
f0c0b2b8
KH
4733static int default_zonelist_order(void)
4734{
f0c0b2b8
KH
4735 return ZONELIST_ORDER_ZONE;
4736}
3193913c 4737#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4738
4739static void set_zonelist_order(void)
4740{
4741 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4742 current_zonelist_order = default_zonelist_order();
4743 else
4744 current_zonelist_order = user_zonelist_order;
4745}
4746
4747static void build_zonelists(pg_data_t *pgdat)
4748{
c00eb15a 4749 int i, node, load;
1da177e4 4750 nodemask_t used_mask;
f0c0b2b8
KH
4751 int local_node, prev_node;
4752 struct zonelist *zonelist;
d00181b9 4753 unsigned int order = current_zonelist_order;
1da177e4
LT
4754
4755 /* initialize zonelists */
523b9458 4756 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4757 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4758 zonelist->_zonerefs[0].zone = NULL;
4759 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4760 }
4761
4762 /* NUMA-aware ordering of nodes */
4763 local_node = pgdat->node_id;
62bc62a8 4764 load = nr_online_nodes;
1da177e4
LT
4765 prev_node = local_node;
4766 nodes_clear(used_mask);
f0c0b2b8 4767
f0c0b2b8 4768 memset(node_order, 0, sizeof(node_order));
c00eb15a 4769 i = 0;
f0c0b2b8 4770
1da177e4
LT
4771 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4772 /*
4773 * We don't want to pressure a particular node.
4774 * So adding penalty to the first node in same
4775 * distance group to make it round-robin.
4776 */
957f822a
DR
4777 if (node_distance(local_node, node) !=
4778 node_distance(local_node, prev_node))
f0c0b2b8
KH
4779 node_load[node] = load;
4780
1da177e4
LT
4781 prev_node = node;
4782 load--;
f0c0b2b8
KH
4783 if (order == ZONELIST_ORDER_NODE)
4784 build_zonelists_in_node_order(pgdat, node);
4785 else
c00eb15a 4786 node_order[i++] = node; /* remember order */
f0c0b2b8 4787 }
1da177e4 4788
f0c0b2b8
KH
4789 if (order == ZONELIST_ORDER_ZONE) {
4790 /* calculate node order -- i.e., DMA last! */
c00eb15a 4791 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4792 }
523b9458
CL
4793
4794 build_thisnode_zonelists(pgdat);
1da177e4
LT
4795}
4796
7aac7898
LS
4797#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4798/*
4799 * Return node id of node used for "local" allocations.
4800 * I.e., first node id of first zone in arg node's generic zonelist.
4801 * Used for initializing percpu 'numa_mem', which is used primarily
4802 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4803 */
4804int local_memory_node(int node)
4805{
c33d6c06 4806 struct zoneref *z;
7aac7898 4807
c33d6c06 4808 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4809 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4810 NULL);
4811 return z->zone->node;
7aac7898
LS
4812}
4813#endif
f0c0b2b8 4814
6423aa81
JK
4815static void setup_min_unmapped_ratio(void);
4816static void setup_min_slab_ratio(void);
1da177e4
LT
4817#else /* CONFIG_NUMA */
4818
f0c0b2b8
KH
4819static void set_zonelist_order(void)
4820{
4821 current_zonelist_order = ZONELIST_ORDER_ZONE;
4822}
4823
4824static void build_zonelists(pg_data_t *pgdat)
1da177e4 4825{
19655d34 4826 int node, local_node;
54a6eb5c
MG
4827 enum zone_type j;
4828 struct zonelist *zonelist;
1da177e4
LT
4829
4830 local_node = pgdat->node_id;
1da177e4 4831
c9634cf0 4832 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 4833 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4834
54a6eb5c
MG
4835 /*
4836 * Now we build the zonelist so that it contains the zones
4837 * of all the other nodes.
4838 * We don't want to pressure a particular node, so when
4839 * building the zones for node N, we make sure that the
4840 * zones coming right after the local ones are those from
4841 * node N+1 (modulo N)
4842 */
4843 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4844 if (!node_online(node))
4845 continue;
bc732f1d 4846 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4847 }
54a6eb5c
MG
4848 for (node = 0; node < local_node; node++) {
4849 if (!node_online(node))
4850 continue;
bc732f1d 4851 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4852 }
4853
dd1a239f
MG
4854 zonelist->_zonerefs[j].zone = NULL;
4855 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4856}
4857
4858#endif /* CONFIG_NUMA */
4859
99dcc3e5
CL
4860/*
4861 * Boot pageset table. One per cpu which is going to be used for all
4862 * zones and all nodes. The parameters will be set in such a way
4863 * that an item put on a list will immediately be handed over to
4864 * the buddy list. This is safe since pageset manipulation is done
4865 * with interrupts disabled.
4866 *
4867 * The boot_pagesets must be kept even after bootup is complete for
4868 * unused processors and/or zones. They do play a role for bootstrapping
4869 * hotplugged processors.
4870 *
4871 * zoneinfo_show() and maybe other functions do
4872 * not check if the processor is online before following the pageset pointer.
4873 * Other parts of the kernel may not check if the zone is available.
4874 */
4875static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4876static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4877static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4878
4eaf3f64
HL
4879/*
4880 * Global mutex to protect against size modification of zonelists
4881 * as well as to serialize pageset setup for the new populated zone.
4882 */
4883DEFINE_MUTEX(zonelists_mutex);
4884
9b1a4d38 4885/* return values int ....just for stop_machine() */
4ed7e022 4886static int __build_all_zonelists(void *data)
1da177e4 4887{
6811378e 4888 int nid;
99dcc3e5 4889 int cpu;
9adb62a5 4890 pg_data_t *self = data;
9276b1bc 4891
7f9cfb31
BL
4892#ifdef CONFIG_NUMA
4893 memset(node_load, 0, sizeof(node_load));
4894#endif
9adb62a5
JL
4895
4896 if (self && !node_online(self->node_id)) {
4897 build_zonelists(self);
9adb62a5
JL
4898 }
4899
9276b1bc 4900 for_each_online_node(nid) {
7ea1530a
CL
4901 pg_data_t *pgdat = NODE_DATA(nid);
4902
4903 build_zonelists(pgdat);
9276b1bc 4904 }
99dcc3e5
CL
4905
4906 /*
4907 * Initialize the boot_pagesets that are going to be used
4908 * for bootstrapping processors. The real pagesets for
4909 * each zone will be allocated later when the per cpu
4910 * allocator is available.
4911 *
4912 * boot_pagesets are used also for bootstrapping offline
4913 * cpus if the system is already booted because the pagesets
4914 * are needed to initialize allocators on a specific cpu too.
4915 * F.e. the percpu allocator needs the page allocator which
4916 * needs the percpu allocator in order to allocate its pagesets
4917 * (a chicken-egg dilemma).
4918 */
7aac7898 4919 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4920 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4921
7aac7898
LS
4922#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4923 /*
4924 * We now know the "local memory node" for each node--
4925 * i.e., the node of the first zone in the generic zonelist.
4926 * Set up numa_mem percpu variable for on-line cpus. During
4927 * boot, only the boot cpu should be on-line; we'll init the
4928 * secondary cpus' numa_mem as they come on-line. During
4929 * node/memory hotplug, we'll fixup all on-line cpus.
4930 */
4931 if (cpu_online(cpu))
4932 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4933#endif
4934 }
4935
6811378e
YG
4936 return 0;
4937}
4938
061f67bc
RV
4939static noinline void __init
4940build_all_zonelists_init(void)
4941{
4942 __build_all_zonelists(NULL);
4943 mminit_verify_zonelist();
4944 cpuset_init_current_mems_allowed();
4945}
4946
4eaf3f64
HL
4947/*
4948 * Called with zonelists_mutex held always
4949 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4950 *
4951 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4952 * [we're only called with non-NULL zone through __meminit paths] and
4953 * (2) call of __init annotated helper build_all_zonelists_init
4954 * [protected by SYSTEM_BOOTING].
4eaf3f64 4955 */
9adb62a5 4956void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4957{
f0c0b2b8
KH
4958 set_zonelist_order();
4959
6811378e 4960 if (system_state == SYSTEM_BOOTING) {
061f67bc 4961 build_all_zonelists_init();
6811378e 4962 } else {
e9959f0f 4963#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4964 if (zone)
4965 setup_zone_pageset(zone);
e9959f0f 4966#endif
dd1895e2
CS
4967 /* we have to stop all cpus to guarantee there is no user
4968 of zonelist */
9adb62a5 4969 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4970 /* cpuset refresh routine should be here */
4971 }
bd1e22b8 4972 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4973 /*
4974 * Disable grouping by mobility if the number of pages in the
4975 * system is too low to allow the mechanism to work. It would be
4976 * more accurate, but expensive to check per-zone. This check is
4977 * made on memory-hotadd so a system can start with mobility
4978 * disabled and enable it later
4979 */
d9c23400 4980 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4981 page_group_by_mobility_disabled = 1;
4982 else
4983 page_group_by_mobility_disabled = 0;
4984
756a025f
JP
4985 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4986 nr_online_nodes,
4987 zonelist_order_name[current_zonelist_order],
4988 page_group_by_mobility_disabled ? "off" : "on",
4989 vm_total_pages);
f0c0b2b8 4990#ifdef CONFIG_NUMA
f88dfff5 4991 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4992#endif
1da177e4
LT
4993}
4994
1da177e4
LT
4995/*
4996 * Initially all pages are reserved - free ones are freed
4997 * up by free_all_bootmem() once the early boot process is
4998 * done. Non-atomic initialization, single-pass.
4999 */
c09b4240 5000void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5001 unsigned long start_pfn, enum memmap_context context)
1da177e4 5002{
4b94ffdc 5003 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5004 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5005 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5006 unsigned long pfn;
3a80a7fa 5007 unsigned long nr_initialised = 0;
342332e6
TI
5008#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5009 struct memblock_region *r = NULL, *tmp;
5010#endif
1da177e4 5011
22b31eec
HD
5012 if (highest_memmap_pfn < end_pfn - 1)
5013 highest_memmap_pfn = end_pfn - 1;
5014
4b94ffdc
DW
5015 /*
5016 * Honor reservation requested by the driver for this ZONE_DEVICE
5017 * memory
5018 */
5019 if (altmap && start_pfn == altmap->base_pfn)
5020 start_pfn += altmap->reserve;
5021
cbe8dd4a 5022 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5023 /*
b72d0ffb
AM
5024 * There can be holes in boot-time mem_map[]s handed to this
5025 * function. They do not exist on hotplugged memory.
a2f3aa02 5026 */
b72d0ffb
AM
5027 if (context != MEMMAP_EARLY)
5028 goto not_early;
5029
5030 if (!early_pfn_valid(pfn))
5031 continue;
5032 if (!early_pfn_in_nid(pfn, nid))
5033 continue;
5034 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5035 break;
342332e6
TI
5036
5037#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5038 /*
5039 * Check given memblock attribute by firmware which can affect
5040 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5041 * mirrored, it's an overlapped memmap init. skip it.
5042 */
5043 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5044 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5045 for_each_memblock(memory, tmp)
5046 if (pfn < memblock_region_memory_end_pfn(tmp))
5047 break;
5048 r = tmp;
5049 }
5050 if (pfn >= memblock_region_memory_base_pfn(r) &&
5051 memblock_is_mirror(r)) {
5052 /* already initialized as NORMAL */
5053 pfn = memblock_region_memory_end_pfn(r);
5054 continue;
342332e6 5055 }
a2f3aa02 5056 }
b72d0ffb 5057#endif
ac5d2539 5058
b72d0ffb 5059not_early:
ac5d2539
MG
5060 /*
5061 * Mark the block movable so that blocks are reserved for
5062 * movable at startup. This will force kernel allocations
5063 * to reserve their blocks rather than leaking throughout
5064 * the address space during boot when many long-lived
974a786e 5065 * kernel allocations are made.
ac5d2539
MG
5066 *
5067 * bitmap is created for zone's valid pfn range. but memmap
5068 * can be created for invalid pages (for alignment)
5069 * check here not to call set_pageblock_migratetype() against
5070 * pfn out of zone.
5071 */
5072 if (!(pfn & (pageblock_nr_pages - 1))) {
5073 struct page *page = pfn_to_page(pfn);
5074
5075 __init_single_page(page, pfn, zone, nid);
5076 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5077 } else {
5078 __init_single_pfn(pfn, zone, nid);
5079 }
1da177e4
LT
5080 }
5081}
5082
1e548deb 5083static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5084{
7aeb09f9 5085 unsigned int order, t;
b2a0ac88
MG
5086 for_each_migratetype_order(order, t) {
5087 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5088 zone->free_area[order].nr_free = 0;
5089 }
5090}
5091
5092#ifndef __HAVE_ARCH_MEMMAP_INIT
5093#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5094 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5095#endif
5096
7cd2b0a3 5097static int zone_batchsize(struct zone *zone)
e7c8d5c9 5098{
3a6be87f 5099#ifdef CONFIG_MMU
e7c8d5c9
CL
5100 int batch;
5101
5102 /*
5103 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5104 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5105 *
5106 * OK, so we don't know how big the cache is. So guess.
5107 */
b40da049 5108 batch = zone->managed_pages / 1024;
ba56e91c
SR
5109 if (batch * PAGE_SIZE > 512 * 1024)
5110 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5111 batch /= 4; /* We effectively *= 4 below */
5112 if (batch < 1)
5113 batch = 1;
5114
5115 /*
0ceaacc9
NP
5116 * Clamp the batch to a 2^n - 1 value. Having a power
5117 * of 2 value was found to be more likely to have
5118 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5119 *
0ceaacc9
NP
5120 * For example if 2 tasks are alternately allocating
5121 * batches of pages, one task can end up with a lot
5122 * of pages of one half of the possible page colors
5123 * and the other with pages of the other colors.
e7c8d5c9 5124 */
9155203a 5125 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5126
e7c8d5c9 5127 return batch;
3a6be87f
DH
5128
5129#else
5130 /* The deferral and batching of frees should be suppressed under NOMMU
5131 * conditions.
5132 *
5133 * The problem is that NOMMU needs to be able to allocate large chunks
5134 * of contiguous memory as there's no hardware page translation to
5135 * assemble apparent contiguous memory from discontiguous pages.
5136 *
5137 * Queueing large contiguous runs of pages for batching, however,
5138 * causes the pages to actually be freed in smaller chunks. As there
5139 * can be a significant delay between the individual batches being
5140 * recycled, this leads to the once large chunks of space being
5141 * fragmented and becoming unavailable for high-order allocations.
5142 */
5143 return 0;
5144#endif
e7c8d5c9
CL
5145}
5146
8d7a8fa9
CS
5147/*
5148 * pcp->high and pcp->batch values are related and dependent on one another:
5149 * ->batch must never be higher then ->high.
5150 * The following function updates them in a safe manner without read side
5151 * locking.
5152 *
5153 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5154 * those fields changing asynchronously (acording the the above rule).
5155 *
5156 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5157 * outside of boot time (or some other assurance that no concurrent updaters
5158 * exist).
5159 */
5160static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5161 unsigned long batch)
5162{
5163 /* start with a fail safe value for batch */
5164 pcp->batch = 1;
5165 smp_wmb();
5166
5167 /* Update high, then batch, in order */
5168 pcp->high = high;
5169 smp_wmb();
5170
5171 pcp->batch = batch;
5172}
5173
3664033c 5174/* a companion to pageset_set_high() */
4008bab7
CS
5175static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5176{
8d7a8fa9 5177 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5178}
5179
88c90dbc 5180static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5181{
5182 struct per_cpu_pages *pcp;
5f8dcc21 5183 int migratetype;
2caaad41 5184
1c6fe946
MD
5185 memset(p, 0, sizeof(*p));
5186
3dfa5721 5187 pcp = &p->pcp;
2caaad41 5188 pcp->count = 0;
5f8dcc21
MG
5189 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5190 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5191}
5192
88c90dbc
CS
5193static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5194{
5195 pageset_init(p);
5196 pageset_set_batch(p, batch);
5197}
5198
8ad4b1fb 5199/*
3664033c 5200 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5201 * to the value high for the pageset p.
5202 */
3664033c 5203static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5204 unsigned long high)
5205{
8d7a8fa9
CS
5206 unsigned long batch = max(1UL, high / 4);
5207 if ((high / 4) > (PAGE_SHIFT * 8))
5208 batch = PAGE_SHIFT * 8;
8ad4b1fb 5209
8d7a8fa9 5210 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5211}
5212
7cd2b0a3
DR
5213static void pageset_set_high_and_batch(struct zone *zone,
5214 struct per_cpu_pageset *pcp)
56cef2b8 5215{
56cef2b8 5216 if (percpu_pagelist_fraction)
3664033c 5217 pageset_set_high(pcp,
56cef2b8
CS
5218 (zone->managed_pages /
5219 percpu_pagelist_fraction));
5220 else
5221 pageset_set_batch(pcp, zone_batchsize(zone));
5222}
5223
169f6c19
CS
5224static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5225{
5226 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5227
5228 pageset_init(pcp);
5229 pageset_set_high_and_batch(zone, pcp);
5230}
5231
4ed7e022 5232static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5233{
5234 int cpu;
319774e2 5235 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5236 for_each_possible_cpu(cpu)
5237 zone_pageset_init(zone, cpu);
319774e2
WF
5238}
5239
2caaad41 5240/*
99dcc3e5
CL
5241 * Allocate per cpu pagesets and initialize them.
5242 * Before this call only boot pagesets were available.
e7c8d5c9 5243 */
99dcc3e5 5244void __init setup_per_cpu_pageset(void)
e7c8d5c9 5245{
b4911ea2 5246 struct pglist_data *pgdat;
99dcc3e5 5247 struct zone *zone;
e7c8d5c9 5248
319774e2
WF
5249 for_each_populated_zone(zone)
5250 setup_zone_pageset(zone);
b4911ea2
MG
5251
5252 for_each_online_pgdat(pgdat)
5253 pgdat->per_cpu_nodestats =
5254 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5255}
5256
c09b4240 5257static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5258{
99dcc3e5
CL
5259 /*
5260 * per cpu subsystem is not up at this point. The following code
5261 * relies on the ability of the linker to provide the
5262 * offset of a (static) per cpu variable into the per cpu area.
5263 */
5264 zone->pageset = &boot_pageset;
ed8ece2e 5265
b38a8725 5266 if (populated_zone(zone))
99dcc3e5
CL
5267 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5268 zone->name, zone->present_pages,
5269 zone_batchsize(zone));
ed8ece2e
DH
5270}
5271
4ed7e022 5272int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5273 unsigned long zone_start_pfn,
b171e409 5274 unsigned long size)
ed8ece2e
DH
5275{
5276 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5277
ed8ece2e
DH
5278 pgdat->nr_zones = zone_idx(zone) + 1;
5279
ed8ece2e
DH
5280 zone->zone_start_pfn = zone_start_pfn;
5281
708614e6
MG
5282 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5283 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5284 pgdat->node_id,
5285 (unsigned long)zone_idx(zone),
5286 zone_start_pfn, (zone_start_pfn + size));
5287
1e548deb 5288 zone_init_free_lists(zone);
9dcb8b68 5289 zone->initialized = 1;
718127cc
YG
5290
5291 return 0;
ed8ece2e
DH
5292}
5293
0ee332c1 5294#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5295#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5296
c713216d
MG
5297/*
5298 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5299 */
8a942fde
MG
5300int __meminit __early_pfn_to_nid(unsigned long pfn,
5301 struct mminit_pfnnid_cache *state)
c713216d 5302{
c13291a5 5303 unsigned long start_pfn, end_pfn;
e76b63f8 5304 int nid;
7c243c71 5305
8a942fde
MG
5306 if (state->last_start <= pfn && pfn < state->last_end)
5307 return state->last_nid;
c713216d 5308
e76b63f8
YL
5309 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5310 if (nid != -1) {
8a942fde
MG
5311 state->last_start = start_pfn;
5312 state->last_end = end_pfn;
5313 state->last_nid = nid;
e76b63f8
YL
5314 }
5315
5316 return nid;
c713216d
MG
5317}
5318#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5319
c713216d 5320/**
6782832e 5321 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5322 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5323 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5324 *
7d018176
ZZ
5325 * If an architecture guarantees that all ranges registered contain no holes
5326 * and may be freed, this this function may be used instead of calling
5327 * memblock_free_early_nid() manually.
c713216d 5328 */
c13291a5 5329void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5330{
c13291a5
TH
5331 unsigned long start_pfn, end_pfn;
5332 int i, this_nid;
edbe7d23 5333
c13291a5
TH
5334 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5335 start_pfn = min(start_pfn, max_low_pfn);
5336 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5337
c13291a5 5338 if (start_pfn < end_pfn)
6782832e
SS
5339 memblock_free_early_nid(PFN_PHYS(start_pfn),
5340 (end_pfn - start_pfn) << PAGE_SHIFT,
5341 this_nid);
edbe7d23 5342 }
edbe7d23 5343}
edbe7d23 5344
c713216d
MG
5345/**
5346 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5347 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5348 *
7d018176
ZZ
5349 * If an architecture guarantees that all ranges registered contain no holes and may
5350 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5351 */
5352void __init sparse_memory_present_with_active_regions(int nid)
5353{
c13291a5
TH
5354 unsigned long start_pfn, end_pfn;
5355 int i, this_nid;
c713216d 5356
c13291a5
TH
5357 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5358 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5359}
5360
5361/**
5362 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5363 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5364 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5365 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5366 *
5367 * It returns the start and end page frame of a node based on information
7d018176 5368 * provided by memblock_set_node(). If called for a node
c713216d 5369 * with no available memory, a warning is printed and the start and end
88ca3b94 5370 * PFNs will be 0.
c713216d 5371 */
a3142c8e 5372void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5373 unsigned long *start_pfn, unsigned long *end_pfn)
5374{
c13291a5 5375 unsigned long this_start_pfn, this_end_pfn;
c713216d 5376 int i;
c13291a5 5377
c713216d
MG
5378 *start_pfn = -1UL;
5379 *end_pfn = 0;
5380
c13291a5
TH
5381 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5382 *start_pfn = min(*start_pfn, this_start_pfn);
5383 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5384 }
5385
633c0666 5386 if (*start_pfn == -1UL)
c713216d 5387 *start_pfn = 0;
c713216d
MG
5388}
5389
2a1e274a
MG
5390/*
5391 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5392 * assumption is made that zones within a node are ordered in monotonic
5393 * increasing memory addresses so that the "highest" populated zone is used
5394 */
b69a7288 5395static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5396{
5397 int zone_index;
5398 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5399 if (zone_index == ZONE_MOVABLE)
5400 continue;
5401
5402 if (arch_zone_highest_possible_pfn[zone_index] >
5403 arch_zone_lowest_possible_pfn[zone_index])
5404 break;
5405 }
5406
5407 VM_BUG_ON(zone_index == -1);
5408 movable_zone = zone_index;
5409}
5410
5411/*
5412 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5413 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5414 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5415 * in each node depending on the size of each node and how evenly kernelcore
5416 * is distributed. This helper function adjusts the zone ranges
5417 * provided by the architecture for a given node by using the end of the
5418 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5419 * zones within a node are in order of monotonic increases memory addresses
5420 */
b69a7288 5421static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5422 unsigned long zone_type,
5423 unsigned long node_start_pfn,
5424 unsigned long node_end_pfn,
5425 unsigned long *zone_start_pfn,
5426 unsigned long *zone_end_pfn)
5427{
5428 /* Only adjust if ZONE_MOVABLE is on this node */
5429 if (zone_movable_pfn[nid]) {
5430 /* Size ZONE_MOVABLE */
5431 if (zone_type == ZONE_MOVABLE) {
5432 *zone_start_pfn = zone_movable_pfn[nid];
5433 *zone_end_pfn = min(node_end_pfn,
5434 arch_zone_highest_possible_pfn[movable_zone]);
5435
e506b996
XQ
5436 /* Adjust for ZONE_MOVABLE starting within this range */
5437 } else if (!mirrored_kernelcore &&
5438 *zone_start_pfn < zone_movable_pfn[nid] &&
5439 *zone_end_pfn > zone_movable_pfn[nid]) {
5440 *zone_end_pfn = zone_movable_pfn[nid];
5441
2a1e274a
MG
5442 /* Check if this whole range is within ZONE_MOVABLE */
5443 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5444 *zone_start_pfn = *zone_end_pfn;
5445 }
5446}
5447
c713216d
MG
5448/*
5449 * Return the number of pages a zone spans in a node, including holes
5450 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5451 */
6ea6e688 5452static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5453 unsigned long zone_type,
7960aedd
ZY
5454 unsigned long node_start_pfn,
5455 unsigned long node_end_pfn,
d91749c1
TI
5456 unsigned long *zone_start_pfn,
5457 unsigned long *zone_end_pfn,
c713216d
MG
5458 unsigned long *ignored)
5459{
b5685e92 5460 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5461 if (!node_start_pfn && !node_end_pfn)
5462 return 0;
5463
7960aedd 5464 /* Get the start and end of the zone */
d91749c1
TI
5465 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5466 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5467 adjust_zone_range_for_zone_movable(nid, zone_type,
5468 node_start_pfn, node_end_pfn,
d91749c1 5469 zone_start_pfn, zone_end_pfn);
c713216d
MG
5470
5471 /* Check that this node has pages within the zone's required range */
d91749c1 5472 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5473 return 0;
5474
5475 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5476 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5477 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5478
5479 /* Return the spanned pages */
d91749c1 5480 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5481}
5482
5483/*
5484 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5485 * then all holes in the requested range will be accounted for.
c713216d 5486 */
32996250 5487unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5488 unsigned long range_start_pfn,
5489 unsigned long range_end_pfn)
5490{
96e907d1
TH
5491 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5492 unsigned long start_pfn, end_pfn;
5493 int i;
c713216d 5494
96e907d1
TH
5495 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5496 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5497 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5498 nr_absent -= end_pfn - start_pfn;
c713216d 5499 }
96e907d1 5500 return nr_absent;
c713216d
MG
5501}
5502
5503/**
5504 * absent_pages_in_range - Return number of page frames in holes within a range
5505 * @start_pfn: The start PFN to start searching for holes
5506 * @end_pfn: The end PFN to stop searching for holes
5507 *
88ca3b94 5508 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5509 */
5510unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5511 unsigned long end_pfn)
5512{
5513 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5514}
5515
5516/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5517static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5518 unsigned long zone_type,
7960aedd
ZY
5519 unsigned long node_start_pfn,
5520 unsigned long node_end_pfn,
c713216d
MG
5521 unsigned long *ignored)
5522{
96e907d1
TH
5523 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5524 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5525 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5526 unsigned long nr_absent;
9c7cd687 5527
b5685e92 5528 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5529 if (!node_start_pfn && !node_end_pfn)
5530 return 0;
5531
96e907d1
TH
5532 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5533 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5534
2a1e274a
MG
5535 adjust_zone_range_for_zone_movable(nid, zone_type,
5536 node_start_pfn, node_end_pfn,
5537 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5538 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5539
5540 /*
5541 * ZONE_MOVABLE handling.
5542 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5543 * and vice versa.
5544 */
e506b996
XQ
5545 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5546 unsigned long start_pfn, end_pfn;
5547 struct memblock_region *r;
5548
5549 for_each_memblock(memory, r) {
5550 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5551 zone_start_pfn, zone_end_pfn);
5552 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5553 zone_start_pfn, zone_end_pfn);
5554
5555 if (zone_type == ZONE_MOVABLE &&
5556 memblock_is_mirror(r))
5557 nr_absent += end_pfn - start_pfn;
5558
5559 if (zone_type == ZONE_NORMAL &&
5560 !memblock_is_mirror(r))
5561 nr_absent += end_pfn - start_pfn;
342332e6
TI
5562 }
5563 }
5564
5565 return nr_absent;
c713216d 5566}
0e0b864e 5567
0ee332c1 5568#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5569static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5570 unsigned long zone_type,
7960aedd
ZY
5571 unsigned long node_start_pfn,
5572 unsigned long node_end_pfn,
d91749c1
TI
5573 unsigned long *zone_start_pfn,
5574 unsigned long *zone_end_pfn,
c713216d
MG
5575 unsigned long *zones_size)
5576{
d91749c1
TI
5577 unsigned int zone;
5578
5579 *zone_start_pfn = node_start_pfn;
5580 for (zone = 0; zone < zone_type; zone++)
5581 *zone_start_pfn += zones_size[zone];
5582
5583 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5584
c713216d
MG
5585 return zones_size[zone_type];
5586}
5587
6ea6e688 5588static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5589 unsigned long zone_type,
7960aedd
ZY
5590 unsigned long node_start_pfn,
5591 unsigned long node_end_pfn,
c713216d
MG
5592 unsigned long *zholes_size)
5593{
5594 if (!zholes_size)
5595 return 0;
5596
5597 return zholes_size[zone_type];
5598}
20e6926d 5599
0ee332c1 5600#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5601
a3142c8e 5602static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5603 unsigned long node_start_pfn,
5604 unsigned long node_end_pfn,
5605 unsigned long *zones_size,
5606 unsigned long *zholes_size)
c713216d 5607{
febd5949 5608 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5609 enum zone_type i;
5610
febd5949
GZ
5611 for (i = 0; i < MAX_NR_ZONES; i++) {
5612 struct zone *zone = pgdat->node_zones + i;
d91749c1 5613 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5614 unsigned long size, real_size;
c713216d 5615
febd5949
GZ
5616 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5617 node_start_pfn,
5618 node_end_pfn,
d91749c1
TI
5619 &zone_start_pfn,
5620 &zone_end_pfn,
febd5949
GZ
5621 zones_size);
5622 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5623 node_start_pfn, node_end_pfn,
5624 zholes_size);
d91749c1
TI
5625 if (size)
5626 zone->zone_start_pfn = zone_start_pfn;
5627 else
5628 zone->zone_start_pfn = 0;
febd5949
GZ
5629 zone->spanned_pages = size;
5630 zone->present_pages = real_size;
5631
5632 totalpages += size;
5633 realtotalpages += real_size;
5634 }
5635
5636 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5637 pgdat->node_present_pages = realtotalpages;
5638 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5639 realtotalpages);
5640}
5641
835c134e
MG
5642#ifndef CONFIG_SPARSEMEM
5643/*
5644 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5645 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5646 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5647 * round what is now in bits to nearest long in bits, then return it in
5648 * bytes.
5649 */
7c45512d 5650static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5651{
5652 unsigned long usemapsize;
5653
7c45512d 5654 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5655 usemapsize = roundup(zonesize, pageblock_nr_pages);
5656 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5657 usemapsize *= NR_PAGEBLOCK_BITS;
5658 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5659
5660 return usemapsize / 8;
5661}
5662
5663static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5664 struct zone *zone,
5665 unsigned long zone_start_pfn,
5666 unsigned long zonesize)
835c134e 5667{
7c45512d 5668 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5669 zone->pageblock_flags = NULL;
58a01a45 5670 if (usemapsize)
6782832e
SS
5671 zone->pageblock_flags =
5672 memblock_virt_alloc_node_nopanic(usemapsize,
5673 pgdat->node_id);
835c134e
MG
5674}
5675#else
7c45512d
LT
5676static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5677 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5678#endif /* CONFIG_SPARSEMEM */
5679
d9c23400 5680#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5681
d9c23400 5682/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5683void __paginginit set_pageblock_order(void)
d9c23400 5684{
955c1cd7
AM
5685 unsigned int order;
5686
d9c23400
MG
5687 /* Check that pageblock_nr_pages has not already been setup */
5688 if (pageblock_order)
5689 return;
5690
955c1cd7
AM
5691 if (HPAGE_SHIFT > PAGE_SHIFT)
5692 order = HUGETLB_PAGE_ORDER;
5693 else
5694 order = MAX_ORDER - 1;
5695
d9c23400
MG
5696 /*
5697 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5698 * This value may be variable depending on boot parameters on IA64 and
5699 * powerpc.
d9c23400
MG
5700 */
5701 pageblock_order = order;
5702}
5703#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5704
ba72cb8c
MG
5705/*
5706 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5707 * is unused as pageblock_order is set at compile-time. See
5708 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5709 * the kernel config
ba72cb8c 5710 */
15ca220e 5711void __paginginit set_pageblock_order(void)
ba72cb8c 5712{
ba72cb8c 5713}
d9c23400
MG
5714
5715#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5716
01cefaef
JL
5717static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5718 unsigned long present_pages)
5719{
5720 unsigned long pages = spanned_pages;
5721
5722 /*
5723 * Provide a more accurate estimation if there are holes within
5724 * the zone and SPARSEMEM is in use. If there are holes within the
5725 * zone, each populated memory region may cost us one or two extra
5726 * memmap pages due to alignment because memmap pages for each
5727 * populated regions may not naturally algined on page boundary.
5728 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5729 */
5730 if (spanned_pages > present_pages + (present_pages >> 4) &&
5731 IS_ENABLED(CONFIG_SPARSEMEM))
5732 pages = present_pages;
5733
5734 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5735}
5736
1da177e4
LT
5737/*
5738 * Set up the zone data structures:
5739 * - mark all pages reserved
5740 * - mark all memory queues empty
5741 * - clear the memory bitmaps
6527af5d
MK
5742 *
5743 * NOTE: pgdat should get zeroed by caller.
1da177e4 5744 */
7f3eb55b 5745static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5746{
2f1b6248 5747 enum zone_type j;
ed8ece2e 5748 int nid = pgdat->node_id;
718127cc 5749 int ret;
1da177e4 5750
208d54e5 5751 pgdat_resize_init(pgdat);
8177a420
AA
5752#ifdef CONFIG_NUMA_BALANCING
5753 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5754 pgdat->numabalancing_migrate_nr_pages = 0;
5755 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5756#endif
5757#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5758 spin_lock_init(&pgdat->split_queue_lock);
5759 INIT_LIST_HEAD(&pgdat->split_queue);
5760 pgdat->split_queue_len = 0;
8177a420 5761#endif
1da177e4 5762 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5763 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5764#ifdef CONFIG_COMPACTION
5765 init_waitqueue_head(&pgdat->kcompactd_wait);
5766#endif
eefa864b 5767 pgdat_page_ext_init(pgdat);
a52633d8 5768 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5769 lruvec_init(node_lruvec(pgdat));
5f63b720 5770
1da177e4
LT
5771 for (j = 0; j < MAX_NR_ZONES; j++) {
5772 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5773 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5774 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5775
febd5949
GZ
5776 size = zone->spanned_pages;
5777 realsize = freesize = zone->present_pages;
1da177e4 5778
0e0b864e 5779 /*
9feedc9d 5780 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5781 * is used by this zone for memmap. This affects the watermark
5782 * and per-cpu initialisations
5783 */
01cefaef 5784 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5785 if (!is_highmem_idx(j)) {
5786 if (freesize >= memmap_pages) {
5787 freesize -= memmap_pages;
5788 if (memmap_pages)
5789 printk(KERN_DEBUG
5790 " %s zone: %lu pages used for memmap\n",
5791 zone_names[j], memmap_pages);
5792 } else
1170532b 5793 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5794 zone_names[j], memmap_pages, freesize);
5795 }
0e0b864e 5796
6267276f 5797 /* Account for reserved pages */
9feedc9d
JL
5798 if (j == 0 && freesize > dma_reserve) {
5799 freesize -= dma_reserve;
d903ef9f 5800 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5801 zone_names[0], dma_reserve);
0e0b864e
MG
5802 }
5803
98d2b0eb 5804 if (!is_highmem_idx(j))
9feedc9d 5805 nr_kernel_pages += freesize;
01cefaef
JL
5806 /* Charge for highmem memmap if there are enough kernel pages */
5807 else if (nr_kernel_pages > memmap_pages * 2)
5808 nr_kernel_pages -= memmap_pages;
9feedc9d 5809 nr_all_pages += freesize;
1da177e4 5810
9feedc9d
JL
5811 /*
5812 * Set an approximate value for lowmem here, it will be adjusted
5813 * when the bootmem allocator frees pages into the buddy system.
5814 * And all highmem pages will be managed by the buddy system.
5815 */
5816 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5817#ifdef CONFIG_NUMA
d5f541ed 5818 zone->node = nid;
9614634f 5819#endif
1da177e4 5820 zone->name = zone_names[j];
a52633d8 5821 zone->zone_pgdat = pgdat;
1da177e4 5822 spin_lock_init(&zone->lock);
bdc8cb98 5823 zone_seqlock_init(zone);
ed8ece2e 5824 zone_pcp_init(zone);
81c0a2bb 5825
1da177e4
LT
5826 if (!size)
5827 continue;
5828
955c1cd7 5829 set_pageblock_order();
7c45512d 5830 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5831 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5832 BUG_ON(ret);
76cdd58e 5833 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5834 }
5835}
5836
bd721ea7 5837static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5838{
b0aeba74 5839 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5840 unsigned long __maybe_unused offset = 0;
5841
1da177e4
LT
5842 /* Skip empty nodes */
5843 if (!pgdat->node_spanned_pages)
5844 return;
5845
d41dee36 5846#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5847 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5848 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5849 /* ia64 gets its own node_mem_map, before this, without bootmem */
5850 if (!pgdat->node_mem_map) {
b0aeba74 5851 unsigned long size, end;
d41dee36
AW
5852 struct page *map;
5853
e984bb43
BP
5854 /*
5855 * The zone's endpoints aren't required to be MAX_ORDER
5856 * aligned but the node_mem_map endpoints must be in order
5857 * for the buddy allocator to function correctly.
5858 */
108bcc96 5859 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5860 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5861 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5862 map = alloc_remap(pgdat->node_id, size);
5863 if (!map)
6782832e
SS
5864 map = memblock_virt_alloc_node_nopanic(size,
5865 pgdat->node_id);
a1c34a3b 5866 pgdat->node_mem_map = map + offset;
1da177e4 5867 }
12d810c1 5868#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5869 /*
5870 * With no DISCONTIG, the global mem_map is just set as node 0's
5871 */
c713216d 5872 if (pgdat == NODE_DATA(0)) {
1da177e4 5873 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5874#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5875 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5876 mem_map -= offset;
0ee332c1 5877#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5878 }
1da177e4 5879#endif
d41dee36 5880#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5881}
5882
9109fb7b
JW
5883void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5884 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5885{
9109fb7b 5886 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5887 unsigned long start_pfn = 0;
5888 unsigned long end_pfn = 0;
9109fb7b 5889
88fdf75d 5890 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5891 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5892
3a80a7fa 5893 reset_deferred_meminit(pgdat);
1da177e4
LT
5894 pgdat->node_id = nid;
5895 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5896 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5897#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5898 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5899 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5900 (u64)start_pfn << PAGE_SHIFT,
5901 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5902#else
5903 start_pfn = node_start_pfn;
7960aedd
ZY
5904#endif
5905 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5906 zones_size, zholes_size);
1da177e4
LT
5907
5908 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5909#ifdef CONFIG_FLAT_NODE_MEM_MAP
5910 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5911 nid, (unsigned long)pgdat,
5912 (unsigned long)pgdat->node_mem_map);
5913#endif
1da177e4 5914
7f3eb55b 5915 free_area_init_core(pgdat);
1da177e4
LT
5916}
5917
0ee332c1 5918#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5919
5920#if MAX_NUMNODES > 1
5921/*
5922 * Figure out the number of possible node ids.
5923 */
f9872caf 5924void __init setup_nr_node_ids(void)
418508c1 5925{
904a9553 5926 unsigned int highest;
418508c1 5927
904a9553 5928 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5929 nr_node_ids = highest + 1;
5930}
418508c1
MS
5931#endif
5932
1e01979c
TH
5933/**
5934 * node_map_pfn_alignment - determine the maximum internode alignment
5935 *
5936 * This function should be called after node map is populated and sorted.
5937 * It calculates the maximum power of two alignment which can distinguish
5938 * all the nodes.
5939 *
5940 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5941 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5942 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5943 * shifted, 1GiB is enough and this function will indicate so.
5944 *
5945 * This is used to test whether pfn -> nid mapping of the chosen memory
5946 * model has fine enough granularity to avoid incorrect mapping for the
5947 * populated node map.
5948 *
5949 * Returns the determined alignment in pfn's. 0 if there is no alignment
5950 * requirement (single node).
5951 */
5952unsigned long __init node_map_pfn_alignment(void)
5953{
5954 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5955 unsigned long start, end, mask;
1e01979c 5956 int last_nid = -1;
c13291a5 5957 int i, nid;
1e01979c 5958
c13291a5 5959 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5960 if (!start || last_nid < 0 || last_nid == nid) {
5961 last_nid = nid;
5962 last_end = end;
5963 continue;
5964 }
5965
5966 /*
5967 * Start with a mask granular enough to pin-point to the
5968 * start pfn and tick off bits one-by-one until it becomes
5969 * too coarse to separate the current node from the last.
5970 */
5971 mask = ~((1 << __ffs(start)) - 1);
5972 while (mask && last_end <= (start & (mask << 1)))
5973 mask <<= 1;
5974
5975 /* accumulate all internode masks */
5976 accl_mask |= mask;
5977 }
5978
5979 /* convert mask to number of pages */
5980 return ~accl_mask + 1;
5981}
5982
a6af2bc3 5983/* Find the lowest pfn for a node */
b69a7288 5984static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5985{
a6af2bc3 5986 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5987 unsigned long start_pfn;
5988 int i;
1abbfb41 5989
c13291a5
TH
5990 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5991 min_pfn = min(min_pfn, start_pfn);
c713216d 5992
a6af2bc3 5993 if (min_pfn == ULONG_MAX) {
1170532b 5994 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5995 return 0;
5996 }
5997
5998 return min_pfn;
c713216d
MG
5999}
6000
6001/**
6002 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6003 *
6004 * It returns the minimum PFN based on information provided via
7d018176 6005 * memblock_set_node().
c713216d
MG
6006 */
6007unsigned long __init find_min_pfn_with_active_regions(void)
6008{
6009 return find_min_pfn_for_node(MAX_NUMNODES);
6010}
6011
37b07e41
LS
6012/*
6013 * early_calculate_totalpages()
6014 * Sum pages in active regions for movable zone.
4b0ef1fe 6015 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6016 */
484f51f8 6017static unsigned long __init early_calculate_totalpages(void)
7e63efef 6018{
7e63efef 6019 unsigned long totalpages = 0;
c13291a5
TH
6020 unsigned long start_pfn, end_pfn;
6021 int i, nid;
6022
6023 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6024 unsigned long pages = end_pfn - start_pfn;
7e63efef 6025
37b07e41
LS
6026 totalpages += pages;
6027 if (pages)
4b0ef1fe 6028 node_set_state(nid, N_MEMORY);
37b07e41 6029 }
b8af2941 6030 return totalpages;
7e63efef
MG
6031}
6032
2a1e274a
MG
6033/*
6034 * Find the PFN the Movable zone begins in each node. Kernel memory
6035 * is spread evenly between nodes as long as the nodes have enough
6036 * memory. When they don't, some nodes will have more kernelcore than
6037 * others
6038 */
b224ef85 6039static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6040{
6041 int i, nid;
6042 unsigned long usable_startpfn;
6043 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6044 /* save the state before borrow the nodemask */
4b0ef1fe 6045 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6046 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6047 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6048 struct memblock_region *r;
b2f3eebe
TC
6049
6050 /* Need to find movable_zone earlier when movable_node is specified. */
6051 find_usable_zone_for_movable();
6052
6053 /*
6054 * If movable_node is specified, ignore kernelcore and movablecore
6055 * options.
6056 */
6057 if (movable_node_is_enabled()) {
136199f0
EM
6058 for_each_memblock(memory, r) {
6059 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6060 continue;
6061
136199f0 6062 nid = r->nid;
b2f3eebe 6063
136199f0 6064 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6065 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6066 min(usable_startpfn, zone_movable_pfn[nid]) :
6067 usable_startpfn;
6068 }
6069
6070 goto out2;
6071 }
2a1e274a 6072
342332e6
TI
6073 /*
6074 * If kernelcore=mirror is specified, ignore movablecore option
6075 */
6076 if (mirrored_kernelcore) {
6077 bool mem_below_4gb_not_mirrored = false;
6078
6079 for_each_memblock(memory, r) {
6080 if (memblock_is_mirror(r))
6081 continue;
6082
6083 nid = r->nid;
6084
6085 usable_startpfn = memblock_region_memory_base_pfn(r);
6086
6087 if (usable_startpfn < 0x100000) {
6088 mem_below_4gb_not_mirrored = true;
6089 continue;
6090 }
6091
6092 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6093 min(usable_startpfn, zone_movable_pfn[nid]) :
6094 usable_startpfn;
6095 }
6096
6097 if (mem_below_4gb_not_mirrored)
6098 pr_warn("This configuration results in unmirrored kernel memory.");
6099
6100 goto out2;
6101 }
6102
7e63efef 6103 /*
b2f3eebe 6104 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6105 * kernelcore that corresponds so that memory usable for
6106 * any allocation type is evenly spread. If both kernelcore
6107 * and movablecore are specified, then the value of kernelcore
6108 * will be used for required_kernelcore if it's greater than
6109 * what movablecore would have allowed.
6110 */
6111 if (required_movablecore) {
7e63efef
MG
6112 unsigned long corepages;
6113
6114 /*
6115 * Round-up so that ZONE_MOVABLE is at least as large as what
6116 * was requested by the user
6117 */
6118 required_movablecore =
6119 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6120 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6121 corepages = totalpages - required_movablecore;
6122
6123 required_kernelcore = max(required_kernelcore, corepages);
6124 }
6125
bde304bd
XQ
6126 /*
6127 * If kernelcore was not specified or kernelcore size is larger
6128 * than totalpages, there is no ZONE_MOVABLE.
6129 */
6130 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6131 goto out;
2a1e274a
MG
6132
6133 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6134 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6135
6136restart:
6137 /* Spread kernelcore memory as evenly as possible throughout nodes */
6138 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6139 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6140 unsigned long start_pfn, end_pfn;
6141
2a1e274a
MG
6142 /*
6143 * Recalculate kernelcore_node if the division per node
6144 * now exceeds what is necessary to satisfy the requested
6145 * amount of memory for the kernel
6146 */
6147 if (required_kernelcore < kernelcore_node)
6148 kernelcore_node = required_kernelcore / usable_nodes;
6149
6150 /*
6151 * As the map is walked, we track how much memory is usable
6152 * by the kernel using kernelcore_remaining. When it is
6153 * 0, the rest of the node is usable by ZONE_MOVABLE
6154 */
6155 kernelcore_remaining = kernelcore_node;
6156
6157 /* Go through each range of PFNs within this node */
c13291a5 6158 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6159 unsigned long size_pages;
6160
c13291a5 6161 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6162 if (start_pfn >= end_pfn)
6163 continue;
6164
6165 /* Account for what is only usable for kernelcore */
6166 if (start_pfn < usable_startpfn) {
6167 unsigned long kernel_pages;
6168 kernel_pages = min(end_pfn, usable_startpfn)
6169 - start_pfn;
6170
6171 kernelcore_remaining -= min(kernel_pages,
6172 kernelcore_remaining);
6173 required_kernelcore -= min(kernel_pages,
6174 required_kernelcore);
6175
6176 /* Continue if range is now fully accounted */
6177 if (end_pfn <= usable_startpfn) {
6178
6179 /*
6180 * Push zone_movable_pfn to the end so
6181 * that if we have to rebalance
6182 * kernelcore across nodes, we will
6183 * not double account here
6184 */
6185 zone_movable_pfn[nid] = end_pfn;
6186 continue;
6187 }
6188 start_pfn = usable_startpfn;
6189 }
6190
6191 /*
6192 * The usable PFN range for ZONE_MOVABLE is from
6193 * start_pfn->end_pfn. Calculate size_pages as the
6194 * number of pages used as kernelcore
6195 */
6196 size_pages = end_pfn - start_pfn;
6197 if (size_pages > kernelcore_remaining)
6198 size_pages = kernelcore_remaining;
6199 zone_movable_pfn[nid] = start_pfn + size_pages;
6200
6201 /*
6202 * Some kernelcore has been met, update counts and
6203 * break if the kernelcore for this node has been
b8af2941 6204 * satisfied
2a1e274a
MG
6205 */
6206 required_kernelcore -= min(required_kernelcore,
6207 size_pages);
6208 kernelcore_remaining -= size_pages;
6209 if (!kernelcore_remaining)
6210 break;
6211 }
6212 }
6213
6214 /*
6215 * If there is still required_kernelcore, we do another pass with one
6216 * less node in the count. This will push zone_movable_pfn[nid] further
6217 * along on the nodes that still have memory until kernelcore is
b8af2941 6218 * satisfied
2a1e274a
MG
6219 */
6220 usable_nodes--;
6221 if (usable_nodes && required_kernelcore > usable_nodes)
6222 goto restart;
6223
b2f3eebe 6224out2:
2a1e274a
MG
6225 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6226 for (nid = 0; nid < MAX_NUMNODES; nid++)
6227 zone_movable_pfn[nid] =
6228 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6229
20e6926d 6230out:
66918dcd 6231 /* restore the node_state */
4b0ef1fe 6232 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6233}
6234
4b0ef1fe
LJ
6235/* Any regular or high memory on that node ? */
6236static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6237{
37b07e41
LS
6238 enum zone_type zone_type;
6239
4b0ef1fe
LJ
6240 if (N_MEMORY == N_NORMAL_MEMORY)
6241 return;
6242
6243 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6244 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6245 if (populated_zone(zone)) {
4b0ef1fe
LJ
6246 node_set_state(nid, N_HIGH_MEMORY);
6247 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6248 zone_type <= ZONE_NORMAL)
6249 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6250 break;
6251 }
37b07e41 6252 }
37b07e41
LS
6253}
6254
c713216d
MG
6255/**
6256 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6257 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6258 *
6259 * This will call free_area_init_node() for each active node in the system.
7d018176 6260 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6261 * zone in each node and their holes is calculated. If the maximum PFN
6262 * between two adjacent zones match, it is assumed that the zone is empty.
6263 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6264 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6265 * starts where the previous one ended. For example, ZONE_DMA32 starts
6266 * at arch_max_dma_pfn.
6267 */
6268void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6269{
c13291a5
TH
6270 unsigned long start_pfn, end_pfn;
6271 int i, nid;
a6af2bc3 6272
c713216d
MG
6273 /* Record where the zone boundaries are */
6274 memset(arch_zone_lowest_possible_pfn, 0,
6275 sizeof(arch_zone_lowest_possible_pfn));
6276 memset(arch_zone_highest_possible_pfn, 0,
6277 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6278
6279 start_pfn = find_min_pfn_with_active_regions();
6280
6281 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6282 if (i == ZONE_MOVABLE)
6283 continue;
90cae1fe
OH
6284
6285 end_pfn = max(max_zone_pfn[i], start_pfn);
6286 arch_zone_lowest_possible_pfn[i] = start_pfn;
6287 arch_zone_highest_possible_pfn[i] = end_pfn;
6288
6289 start_pfn = end_pfn;
c713216d 6290 }
2a1e274a
MG
6291 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6292 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6293
6294 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6295 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6296 find_zone_movable_pfns_for_nodes();
c713216d 6297
c713216d 6298 /* Print out the zone ranges */
f88dfff5 6299 pr_info("Zone ranges:\n");
2a1e274a
MG
6300 for (i = 0; i < MAX_NR_ZONES; i++) {
6301 if (i == ZONE_MOVABLE)
6302 continue;
f88dfff5 6303 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6304 if (arch_zone_lowest_possible_pfn[i] ==
6305 arch_zone_highest_possible_pfn[i])
f88dfff5 6306 pr_cont("empty\n");
72f0ba02 6307 else
8d29e18a
JG
6308 pr_cont("[mem %#018Lx-%#018Lx]\n",
6309 (u64)arch_zone_lowest_possible_pfn[i]
6310 << PAGE_SHIFT,
6311 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6312 << PAGE_SHIFT) - 1);
2a1e274a
MG
6313 }
6314
6315 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6316 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6317 for (i = 0; i < MAX_NUMNODES; i++) {
6318 if (zone_movable_pfn[i])
8d29e18a
JG
6319 pr_info(" Node %d: %#018Lx\n", i,
6320 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6321 }
c713216d 6322
f2d52fe5 6323 /* Print out the early node map */
f88dfff5 6324 pr_info("Early memory node ranges\n");
c13291a5 6325 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6326 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6327 (u64)start_pfn << PAGE_SHIFT,
6328 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6329
6330 /* Initialise every node */
708614e6 6331 mminit_verify_pageflags_layout();
8ef82866 6332 setup_nr_node_ids();
c713216d
MG
6333 for_each_online_node(nid) {
6334 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6335 free_area_init_node(nid, NULL,
c713216d 6336 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6337
6338 /* Any memory on that node */
6339 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6340 node_set_state(nid, N_MEMORY);
6341 check_for_memory(pgdat, nid);
c713216d
MG
6342 }
6343}
2a1e274a 6344
7e63efef 6345static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6346{
6347 unsigned long long coremem;
6348 if (!p)
6349 return -EINVAL;
6350
6351 coremem = memparse(p, &p);
7e63efef 6352 *core = coremem >> PAGE_SHIFT;
2a1e274a 6353
7e63efef 6354 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6355 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6356
6357 return 0;
6358}
ed7ed365 6359
7e63efef
MG
6360/*
6361 * kernelcore=size sets the amount of memory for use for allocations that
6362 * cannot be reclaimed or migrated.
6363 */
6364static int __init cmdline_parse_kernelcore(char *p)
6365{
342332e6
TI
6366 /* parse kernelcore=mirror */
6367 if (parse_option_str(p, "mirror")) {
6368 mirrored_kernelcore = true;
6369 return 0;
6370 }
6371
7e63efef
MG
6372 return cmdline_parse_core(p, &required_kernelcore);
6373}
6374
6375/*
6376 * movablecore=size sets the amount of memory for use for allocations that
6377 * can be reclaimed or migrated.
6378 */
6379static int __init cmdline_parse_movablecore(char *p)
6380{
6381 return cmdline_parse_core(p, &required_movablecore);
6382}
6383
ed7ed365 6384early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6385early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6386
0ee332c1 6387#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6388
c3d5f5f0
JL
6389void adjust_managed_page_count(struct page *page, long count)
6390{
6391 spin_lock(&managed_page_count_lock);
6392 page_zone(page)->managed_pages += count;
6393 totalram_pages += count;
3dcc0571
JL
6394#ifdef CONFIG_HIGHMEM
6395 if (PageHighMem(page))
6396 totalhigh_pages += count;
6397#endif
c3d5f5f0
JL
6398 spin_unlock(&managed_page_count_lock);
6399}
3dcc0571 6400EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6401
11199692 6402unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6403{
11199692
JL
6404 void *pos;
6405 unsigned long pages = 0;
69afade7 6406
11199692
JL
6407 start = (void *)PAGE_ALIGN((unsigned long)start);
6408 end = (void *)((unsigned long)end & PAGE_MASK);
6409 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6410 if ((unsigned int)poison <= 0xFF)
11199692
JL
6411 memset(pos, poison, PAGE_SIZE);
6412 free_reserved_page(virt_to_page(pos));
69afade7
JL
6413 }
6414
6415 if (pages && s)
11199692 6416 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6417 s, pages << (PAGE_SHIFT - 10), start, end);
6418
6419 return pages;
6420}
11199692 6421EXPORT_SYMBOL(free_reserved_area);
69afade7 6422
cfa11e08
JL
6423#ifdef CONFIG_HIGHMEM
6424void free_highmem_page(struct page *page)
6425{
6426 __free_reserved_page(page);
6427 totalram_pages++;
7b4b2a0d 6428 page_zone(page)->managed_pages++;
cfa11e08
JL
6429 totalhigh_pages++;
6430}
6431#endif
6432
7ee3d4e8
JL
6433
6434void __init mem_init_print_info(const char *str)
6435{
6436 unsigned long physpages, codesize, datasize, rosize, bss_size;
6437 unsigned long init_code_size, init_data_size;
6438
6439 physpages = get_num_physpages();
6440 codesize = _etext - _stext;
6441 datasize = _edata - _sdata;
6442 rosize = __end_rodata - __start_rodata;
6443 bss_size = __bss_stop - __bss_start;
6444 init_data_size = __init_end - __init_begin;
6445 init_code_size = _einittext - _sinittext;
6446
6447 /*
6448 * Detect special cases and adjust section sizes accordingly:
6449 * 1) .init.* may be embedded into .data sections
6450 * 2) .init.text.* may be out of [__init_begin, __init_end],
6451 * please refer to arch/tile/kernel/vmlinux.lds.S.
6452 * 3) .rodata.* may be embedded into .text or .data sections.
6453 */
6454#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6455 do { \
6456 if (start <= pos && pos < end && size > adj) \
6457 size -= adj; \
6458 } while (0)
7ee3d4e8
JL
6459
6460 adj_init_size(__init_begin, __init_end, init_data_size,
6461 _sinittext, init_code_size);
6462 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6463 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6464 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6465 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6466
6467#undef adj_init_size
6468
756a025f 6469 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6470#ifdef CONFIG_HIGHMEM
756a025f 6471 ", %luK highmem"
7ee3d4e8 6472#endif
756a025f
JP
6473 "%s%s)\n",
6474 nr_free_pages() << (PAGE_SHIFT - 10),
6475 physpages << (PAGE_SHIFT - 10),
6476 codesize >> 10, datasize >> 10, rosize >> 10,
6477 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6478 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6479 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6480#ifdef CONFIG_HIGHMEM
756a025f 6481 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6482#endif
756a025f 6483 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6484}
6485
0e0b864e 6486/**
88ca3b94
RD
6487 * set_dma_reserve - set the specified number of pages reserved in the first zone
6488 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6489 *
013110a7 6490 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6491 * In the DMA zone, a significant percentage may be consumed by kernel image
6492 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6493 * function may optionally be used to account for unfreeable pages in the
6494 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6495 * smaller per-cpu batchsize.
0e0b864e
MG
6496 */
6497void __init set_dma_reserve(unsigned long new_dma_reserve)
6498{
6499 dma_reserve = new_dma_reserve;
6500}
6501
1da177e4
LT
6502void __init free_area_init(unsigned long *zones_size)
6503{
9109fb7b 6504 free_area_init_node(0, zones_size,
1da177e4
LT
6505 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6506}
1da177e4 6507
1da177e4
LT
6508static int page_alloc_cpu_notify(struct notifier_block *self,
6509 unsigned long action, void *hcpu)
6510{
6511 int cpu = (unsigned long)hcpu;
1da177e4 6512
8bb78442 6513 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6514 lru_add_drain_cpu(cpu);
9f8f2172
CL
6515 drain_pages(cpu);
6516
6517 /*
6518 * Spill the event counters of the dead processor
6519 * into the current processors event counters.
6520 * This artificially elevates the count of the current
6521 * processor.
6522 */
f8891e5e 6523 vm_events_fold_cpu(cpu);
9f8f2172
CL
6524
6525 /*
6526 * Zero the differential counters of the dead processor
6527 * so that the vm statistics are consistent.
6528 *
6529 * This is only okay since the processor is dead and cannot
6530 * race with what we are doing.
6531 */
2bb921e5 6532 cpu_vm_stats_fold(cpu);
1da177e4
LT
6533 }
6534 return NOTIFY_OK;
6535}
1da177e4
LT
6536
6537void __init page_alloc_init(void)
6538{
6539 hotcpu_notifier(page_alloc_cpu_notify, 0);
6540}
6541
cb45b0e9 6542/*
34b10060 6543 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6544 * or min_free_kbytes changes.
6545 */
6546static void calculate_totalreserve_pages(void)
6547{
6548 struct pglist_data *pgdat;
6549 unsigned long reserve_pages = 0;
2f6726e5 6550 enum zone_type i, j;
cb45b0e9
HA
6551
6552 for_each_online_pgdat(pgdat) {
281e3726
MG
6553
6554 pgdat->totalreserve_pages = 0;
6555
cb45b0e9
HA
6556 for (i = 0; i < MAX_NR_ZONES; i++) {
6557 struct zone *zone = pgdat->node_zones + i;
3484b2de 6558 long max = 0;
cb45b0e9
HA
6559
6560 /* Find valid and maximum lowmem_reserve in the zone */
6561 for (j = i; j < MAX_NR_ZONES; j++) {
6562 if (zone->lowmem_reserve[j] > max)
6563 max = zone->lowmem_reserve[j];
6564 }
6565
41858966
MG
6566 /* we treat the high watermark as reserved pages. */
6567 max += high_wmark_pages(zone);
cb45b0e9 6568
b40da049
JL
6569 if (max > zone->managed_pages)
6570 max = zone->managed_pages;
a8d01437 6571
281e3726 6572 pgdat->totalreserve_pages += max;
a8d01437 6573
cb45b0e9
HA
6574 reserve_pages += max;
6575 }
6576 }
6577 totalreserve_pages = reserve_pages;
6578}
6579
1da177e4
LT
6580/*
6581 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6582 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6583 * has a correct pages reserved value, so an adequate number of
6584 * pages are left in the zone after a successful __alloc_pages().
6585 */
6586static void setup_per_zone_lowmem_reserve(void)
6587{
6588 struct pglist_data *pgdat;
2f6726e5 6589 enum zone_type j, idx;
1da177e4 6590
ec936fc5 6591 for_each_online_pgdat(pgdat) {
1da177e4
LT
6592 for (j = 0; j < MAX_NR_ZONES; j++) {
6593 struct zone *zone = pgdat->node_zones + j;
b40da049 6594 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6595
6596 zone->lowmem_reserve[j] = 0;
6597
2f6726e5
CL
6598 idx = j;
6599 while (idx) {
1da177e4
LT
6600 struct zone *lower_zone;
6601
2f6726e5
CL
6602 idx--;
6603
1da177e4
LT
6604 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6605 sysctl_lowmem_reserve_ratio[idx] = 1;
6606
6607 lower_zone = pgdat->node_zones + idx;
b40da049 6608 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6609 sysctl_lowmem_reserve_ratio[idx];
b40da049 6610 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6611 }
6612 }
6613 }
cb45b0e9
HA
6614
6615 /* update totalreserve_pages */
6616 calculate_totalreserve_pages();
1da177e4
LT
6617}
6618
cfd3da1e 6619static void __setup_per_zone_wmarks(void)
1da177e4
LT
6620{
6621 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6622 unsigned long lowmem_pages = 0;
6623 struct zone *zone;
6624 unsigned long flags;
6625
6626 /* Calculate total number of !ZONE_HIGHMEM pages */
6627 for_each_zone(zone) {
6628 if (!is_highmem(zone))
b40da049 6629 lowmem_pages += zone->managed_pages;
1da177e4
LT
6630 }
6631
6632 for_each_zone(zone) {
ac924c60
AM
6633 u64 tmp;
6634
1125b4e3 6635 spin_lock_irqsave(&zone->lock, flags);
b40da049 6636 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6637 do_div(tmp, lowmem_pages);
1da177e4
LT
6638 if (is_highmem(zone)) {
6639 /*
669ed175
NP
6640 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6641 * need highmem pages, so cap pages_min to a small
6642 * value here.
6643 *
41858966 6644 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6645 * deltas control asynch page reclaim, and so should
669ed175 6646 * not be capped for highmem.
1da177e4 6647 */
90ae8d67 6648 unsigned long min_pages;
1da177e4 6649
b40da049 6650 min_pages = zone->managed_pages / 1024;
90ae8d67 6651 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6652 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6653 } else {
669ed175
NP
6654 /*
6655 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6656 * proportionate to the zone's size.
6657 */
41858966 6658 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6659 }
6660
795ae7a0
JW
6661 /*
6662 * Set the kswapd watermarks distance according to the
6663 * scale factor in proportion to available memory, but
6664 * ensure a minimum size on small systems.
6665 */
6666 tmp = max_t(u64, tmp >> 2,
6667 mult_frac(zone->managed_pages,
6668 watermark_scale_factor, 10000));
6669
6670 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6671 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6672
1125b4e3 6673 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6674 }
cb45b0e9
HA
6675
6676 /* update totalreserve_pages */
6677 calculate_totalreserve_pages();
1da177e4
LT
6678}
6679
cfd3da1e
MG
6680/**
6681 * setup_per_zone_wmarks - called when min_free_kbytes changes
6682 * or when memory is hot-{added|removed}
6683 *
6684 * Ensures that the watermark[min,low,high] values for each zone are set
6685 * correctly with respect to min_free_kbytes.
6686 */
6687void setup_per_zone_wmarks(void)
6688{
6689 mutex_lock(&zonelists_mutex);
6690 __setup_per_zone_wmarks();
6691 mutex_unlock(&zonelists_mutex);
6692}
6693
1da177e4
LT
6694/*
6695 * Initialise min_free_kbytes.
6696 *
6697 * For small machines we want it small (128k min). For large machines
6698 * we want it large (64MB max). But it is not linear, because network
6699 * bandwidth does not increase linearly with machine size. We use
6700 *
b8af2941 6701 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6702 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6703 *
6704 * which yields
6705 *
6706 * 16MB: 512k
6707 * 32MB: 724k
6708 * 64MB: 1024k
6709 * 128MB: 1448k
6710 * 256MB: 2048k
6711 * 512MB: 2896k
6712 * 1024MB: 4096k
6713 * 2048MB: 5792k
6714 * 4096MB: 8192k
6715 * 8192MB: 11584k
6716 * 16384MB: 16384k
6717 */
1b79acc9 6718int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6719{
6720 unsigned long lowmem_kbytes;
5f12733e 6721 int new_min_free_kbytes;
1da177e4
LT
6722
6723 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6724 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6725
6726 if (new_min_free_kbytes > user_min_free_kbytes) {
6727 min_free_kbytes = new_min_free_kbytes;
6728 if (min_free_kbytes < 128)
6729 min_free_kbytes = 128;
6730 if (min_free_kbytes > 65536)
6731 min_free_kbytes = 65536;
6732 } else {
6733 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6734 new_min_free_kbytes, user_min_free_kbytes);
6735 }
bc75d33f 6736 setup_per_zone_wmarks();
a6cccdc3 6737 refresh_zone_stat_thresholds();
1da177e4 6738 setup_per_zone_lowmem_reserve();
6423aa81
JK
6739
6740#ifdef CONFIG_NUMA
6741 setup_min_unmapped_ratio();
6742 setup_min_slab_ratio();
6743#endif
6744
1da177e4
LT
6745 return 0;
6746}
bc22af74 6747core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6748
6749/*
b8af2941 6750 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6751 * that we can call two helper functions whenever min_free_kbytes
6752 * changes.
6753 */
cccad5b9 6754int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6755 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6756{
da8c757b
HP
6757 int rc;
6758
6759 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6760 if (rc)
6761 return rc;
6762
5f12733e
MH
6763 if (write) {
6764 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6765 setup_per_zone_wmarks();
5f12733e 6766 }
1da177e4
LT
6767 return 0;
6768}
6769
795ae7a0
JW
6770int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6771 void __user *buffer, size_t *length, loff_t *ppos)
6772{
6773 int rc;
6774
6775 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6776 if (rc)
6777 return rc;
6778
6779 if (write)
6780 setup_per_zone_wmarks();
6781
6782 return 0;
6783}
6784
9614634f 6785#ifdef CONFIG_NUMA
6423aa81 6786static void setup_min_unmapped_ratio(void)
9614634f 6787{
6423aa81 6788 pg_data_t *pgdat;
9614634f 6789 struct zone *zone;
9614634f 6790
a5f5f91d 6791 for_each_online_pgdat(pgdat)
81cbcbc2 6792 pgdat->min_unmapped_pages = 0;
a5f5f91d 6793
9614634f 6794 for_each_zone(zone)
a5f5f91d 6795 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6796 sysctl_min_unmapped_ratio) / 100;
9614634f 6797}
0ff38490 6798
6423aa81
JK
6799
6800int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6801 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6802{
0ff38490
CL
6803 int rc;
6804
8d65af78 6805 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6806 if (rc)
6807 return rc;
6808
6423aa81
JK
6809 setup_min_unmapped_ratio();
6810
6811 return 0;
6812}
6813
6814static void setup_min_slab_ratio(void)
6815{
6816 pg_data_t *pgdat;
6817 struct zone *zone;
6818
a5f5f91d
MG
6819 for_each_online_pgdat(pgdat)
6820 pgdat->min_slab_pages = 0;
6821
0ff38490 6822 for_each_zone(zone)
a5f5f91d 6823 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6824 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6825}
6826
6827int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6828 void __user *buffer, size_t *length, loff_t *ppos)
6829{
6830 int rc;
6831
6832 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6833 if (rc)
6834 return rc;
6835
6836 setup_min_slab_ratio();
6837
0ff38490
CL
6838 return 0;
6839}
9614634f
CL
6840#endif
6841
1da177e4
LT
6842/*
6843 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6844 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6845 * whenever sysctl_lowmem_reserve_ratio changes.
6846 *
6847 * The reserve ratio obviously has absolutely no relation with the
41858966 6848 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6849 * if in function of the boot time zone sizes.
6850 */
cccad5b9 6851int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6852 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6853{
8d65af78 6854 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6855 setup_per_zone_lowmem_reserve();
6856 return 0;
6857}
6858
8ad4b1fb
RS
6859/*
6860 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6861 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6862 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6863 */
cccad5b9 6864int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6865 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6866{
6867 struct zone *zone;
7cd2b0a3 6868 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6869 int ret;
6870
7cd2b0a3
DR
6871 mutex_lock(&pcp_batch_high_lock);
6872 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6873
8d65af78 6874 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6875 if (!write || ret < 0)
6876 goto out;
6877
6878 /* Sanity checking to avoid pcp imbalance */
6879 if (percpu_pagelist_fraction &&
6880 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6881 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6882 ret = -EINVAL;
6883 goto out;
6884 }
6885
6886 /* No change? */
6887 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6888 goto out;
c8e251fa 6889
364df0eb 6890 for_each_populated_zone(zone) {
7cd2b0a3
DR
6891 unsigned int cpu;
6892
22a7f12b 6893 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6894 pageset_set_high_and_batch(zone,
6895 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6896 }
7cd2b0a3 6897out:
c8e251fa 6898 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6899 return ret;
8ad4b1fb
RS
6900}
6901
a9919c79 6902#ifdef CONFIG_NUMA
f034b5d4 6903int hashdist = HASHDIST_DEFAULT;
1da177e4 6904
1da177e4
LT
6905static int __init set_hashdist(char *str)
6906{
6907 if (!str)
6908 return 0;
6909 hashdist = simple_strtoul(str, &str, 0);
6910 return 1;
6911}
6912__setup("hashdist=", set_hashdist);
6913#endif
6914
f6f34b43
SD
6915#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6916/*
6917 * Returns the number of pages that arch has reserved but
6918 * is not known to alloc_large_system_hash().
6919 */
6920static unsigned long __init arch_reserved_kernel_pages(void)
6921{
6922 return 0;
6923}
6924#endif
6925
1da177e4
LT
6926/*
6927 * allocate a large system hash table from bootmem
6928 * - it is assumed that the hash table must contain an exact power-of-2
6929 * quantity of entries
6930 * - limit is the number of hash buckets, not the total allocation size
6931 */
6932void *__init alloc_large_system_hash(const char *tablename,
6933 unsigned long bucketsize,
6934 unsigned long numentries,
6935 int scale,
6936 int flags,
6937 unsigned int *_hash_shift,
6938 unsigned int *_hash_mask,
31fe62b9
TB
6939 unsigned long low_limit,
6940 unsigned long high_limit)
1da177e4 6941{
31fe62b9 6942 unsigned long long max = high_limit;
1da177e4
LT
6943 unsigned long log2qty, size;
6944 void *table = NULL;
6945
6946 /* allow the kernel cmdline to have a say */
6947 if (!numentries) {
6948 /* round applicable memory size up to nearest megabyte */
04903664 6949 numentries = nr_kernel_pages;
f6f34b43 6950 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
6951
6952 /* It isn't necessary when PAGE_SIZE >= 1MB */
6953 if (PAGE_SHIFT < 20)
6954 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6955
6956 /* limit to 1 bucket per 2^scale bytes of low memory */
6957 if (scale > PAGE_SHIFT)
6958 numentries >>= (scale - PAGE_SHIFT);
6959 else
6960 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6961
6962 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6963 if (unlikely(flags & HASH_SMALL)) {
6964 /* Makes no sense without HASH_EARLY */
6965 WARN_ON(!(flags & HASH_EARLY));
6966 if (!(numentries >> *_hash_shift)) {
6967 numentries = 1UL << *_hash_shift;
6968 BUG_ON(!numentries);
6969 }
6970 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6971 numentries = PAGE_SIZE / bucketsize;
1da177e4 6972 }
6e692ed3 6973 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6974
6975 /* limit allocation size to 1/16 total memory by default */
6976 if (max == 0) {
6977 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6978 do_div(max, bucketsize);
6979 }
074b8517 6980 max = min(max, 0x80000000ULL);
1da177e4 6981
31fe62b9
TB
6982 if (numentries < low_limit)
6983 numentries = low_limit;
1da177e4
LT
6984 if (numentries > max)
6985 numentries = max;
6986
f0d1b0b3 6987 log2qty = ilog2(numentries);
1da177e4
LT
6988
6989 do {
6990 size = bucketsize << log2qty;
6991 if (flags & HASH_EARLY)
6782832e 6992 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6993 else if (hashdist)
6994 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6995 else {
1037b83b
ED
6996 /*
6997 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6998 * some pages at the end of hash table which
6999 * alloc_pages_exact() automatically does
1037b83b 7000 */
264ef8a9 7001 if (get_order(size) < MAX_ORDER) {
a1dd268c 7002 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7003 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7004 }
1da177e4
LT
7005 }
7006 } while (!table && size > PAGE_SIZE && --log2qty);
7007
7008 if (!table)
7009 panic("Failed to allocate %s hash table\n", tablename);
7010
1170532b
JP
7011 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7012 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7013
7014 if (_hash_shift)
7015 *_hash_shift = log2qty;
7016 if (_hash_mask)
7017 *_hash_mask = (1 << log2qty) - 1;
7018
7019 return table;
7020}
a117e66e 7021
a5d76b54 7022/*
80934513
MK
7023 * This function checks whether pageblock includes unmovable pages or not.
7024 * If @count is not zero, it is okay to include less @count unmovable pages
7025 *
b8af2941 7026 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7027 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7028 * expect this function should be exact.
a5d76b54 7029 */
b023f468
WC
7030bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7031 bool skip_hwpoisoned_pages)
49ac8255
KH
7032{
7033 unsigned long pfn, iter, found;
47118af0
MN
7034 int mt;
7035
49ac8255
KH
7036 /*
7037 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7038 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7039 */
7040 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7041 return false;
47118af0
MN
7042 mt = get_pageblock_migratetype(page);
7043 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7044 return false;
49ac8255
KH
7045
7046 pfn = page_to_pfn(page);
7047 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7048 unsigned long check = pfn + iter;
7049
29723fcc 7050 if (!pfn_valid_within(check))
49ac8255 7051 continue;
29723fcc 7052
49ac8255 7053 page = pfn_to_page(check);
c8721bbb
NH
7054
7055 /*
7056 * Hugepages are not in LRU lists, but they're movable.
7057 * We need not scan over tail pages bacause we don't
7058 * handle each tail page individually in migration.
7059 */
7060 if (PageHuge(page)) {
7061 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7062 continue;
7063 }
7064
97d255c8
MK
7065 /*
7066 * We can't use page_count without pin a page
7067 * because another CPU can free compound page.
7068 * This check already skips compound tails of THP
0139aa7b 7069 * because their page->_refcount is zero at all time.
97d255c8 7070 */
fe896d18 7071 if (!page_ref_count(page)) {
49ac8255
KH
7072 if (PageBuddy(page))
7073 iter += (1 << page_order(page)) - 1;
7074 continue;
7075 }
97d255c8 7076
b023f468
WC
7077 /*
7078 * The HWPoisoned page may be not in buddy system, and
7079 * page_count() is not 0.
7080 */
7081 if (skip_hwpoisoned_pages && PageHWPoison(page))
7082 continue;
7083
49ac8255
KH
7084 if (!PageLRU(page))
7085 found++;
7086 /*
6b4f7799
JW
7087 * If there are RECLAIMABLE pages, we need to check
7088 * it. But now, memory offline itself doesn't call
7089 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7090 */
7091 /*
7092 * If the page is not RAM, page_count()should be 0.
7093 * we don't need more check. This is an _used_ not-movable page.
7094 *
7095 * The problematic thing here is PG_reserved pages. PG_reserved
7096 * is set to both of a memory hole page and a _used_ kernel
7097 * page at boot.
7098 */
7099 if (found > count)
80934513 7100 return true;
49ac8255 7101 }
80934513 7102 return false;
49ac8255
KH
7103}
7104
7105bool is_pageblock_removable_nolock(struct page *page)
7106{
656a0706
MH
7107 struct zone *zone;
7108 unsigned long pfn;
687875fb
MH
7109
7110 /*
7111 * We have to be careful here because we are iterating over memory
7112 * sections which are not zone aware so we might end up outside of
7113 * the zone but still within the section.
656a0706
MH
7114 * We have to take care about the node as well. If the node is offline
7115 * its NODE_DATA will be NULL - see page_zone.
687875fb 7116 */
656a0706
MH
7117 if (!node_online(page_to_nid(page)))
7118 return false;
7119
7120 zone = page_zone(page);
7121 pfn = page_to_pfn(page);
108bcc96 7122 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7123 return false;
7124
b023f468 7125 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7126}
0c0e6195 7127
080fe206 7128#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7129
7130static unsigned long pfn_max_align_down(unsigned long pfn)
7131{
7132 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7133 pageblock_nr_pages) - 1);
7134}
7135
7136static unsigned long pfn_max_align_up(unsigned long pfn)
7137{
7138 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7139 pageblock_nr_pages));
7140}
7141
041d3a8c 7142/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7143static int __alloc_contig_migrate_range(struct compact_control *cc,
7144 unsigned long start, unsigned long end)
041d3a8c
MN
7145{
7146 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7147 unsigned long nr_reclaimed;
041d3a8c
MN
7148 unsigned long pfn = start;
7149 unsigned int tries = 0;
7150 int ret = 0;
7151
be49a6e1 7152 migrate_prep();
041d3a8c 7153
bb13ffeb 7154 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7155 if (fatal_signal_pending(current)) {
7156 ret = -EINTR;
7157 break;
7158 }
7159
bb13ffeb
MG
7160 if (list_empty(&cc->migratepages)) {
7161 cc->nr_migratepages = 0;
edc2ca61 7162 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7163 if (!pfn) {
7164 ret = -EINTR;
7165 break;
7166 }
7167 tries = 0;
7168 } else if (++tries == 5) {
7169 ret = ret < 0 ? ret : -EBUSY;
7170 break;
7171 }
7172
beb51eaa
MK
7173 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7174 &cc->migratepages);
7175 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7176
9c620e2b 7177 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7178 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7179 }
2a6f5124
SP
7180 if (ret < 0) {
7181 putback_movable_pages(&cc->migratepages);
7182 return ret;
7183 }
7184 return 0;
041d3a8c
MN
7185}
7186
7187/**
7188 * alloc_contig_range() -- tries to allocate given range of pages
7189 * @start: start PFN to allocate
7190 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7191 * @migratetype: migratetype of the underlaying pageblocks (either
7192 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7193 * in range must have the same migratetype and it must
7194 * be either of the two.
041d3a8c
MN
7195 *
7196 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7197 * aligned, however it's the caller's responsibility to guarantee that
7198 * we are the only thread that changes migrate type of pageblocks the
7199 * pages fall in.
7200 *
7201 * The PFN range must belong to a single zone.
7202 *
7203 * Returns zero on success or negative error code. On success all
7204 * pages which PFN is in [start, end) are allocated for the caller and
7205 * need to be freed with free_contig_range().
7206 */
0815f3d8
MN
7207int alloc_contig_range(unsigned long start, unsigned long end,
7208 unsigned migratetype)
041d3a8c 7209{
041d3a8c 7210 unsigned long outer_start, outer_end;
d00181b9
KS
7211 unsigned int order;
7212 int ret = 0;
041d3a8c 7213
bb13ffeb
MG
7214 struct compact_control cc = {
7215 .nr_migratepages = 0,
7216 .order = -1,
7217 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7218 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7219 .ignore_skip_hint = true,
7220 };
7221 INIT_LIST_HEAD(&cc.migratepages);
7222
041d3a8c
MN
7223 /*
7224 * What we do here is we mark all pageblocks in range as
7225 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7226 * have different sizes, and due to the way page allocator
7227 * work, we align the range to biggest of the two pages so
7228 * that page allocator won't try to merge buddies from
7229 * different pageblocks and change MIGRATE_ISOLATE to some
7230 * other migration type.
7231 *
7232 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7233 * migrate the pages from an unaligned range (ie. pages that
7234 * we are interested in). This will put all the pages in
7235 * range back to page allocator as MIGRATE_ISOLATE.
7236 *
7237 * When this is done, we take the pages in range from page
7238 * allocator removing them from the buddy system. This way
7239 * page allocator will never consider using them.
7240 *
7241 * This lets us mark the pageblocks back as
7242 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7243 * aligned range but not in the unaligned, original range are
7244 * put back to page allocator so that buddy can use them.
7245 */
7246
7247 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7248 pfn_max_align_up(end), migratetype,
7249 false);
041d3a8c 7250 if (ret)
86a595f9 7251 return ret;
041d3a8c 7252
8ef5849f
JK
7253 /*
7254 * In case of -EBUSY, we'd like to know which page causes problem.
7255 * So, just fall through. We will check it in test_pages_isolated().
7256 */
bb13ffeb 7257 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7258 if (ret && ret != -EBUSY)
041d3a8c
MN
7259 goto done;
7260
7261 /*
7262 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7263 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7264 * more, all pages in [start, end) are free in page allocator.
7265 * What we are going to do is to allocate all pages from
7266 * [start, end) (that is remove them from page allocator).
7267 *
7268 * The only problem is that pages at the beginning and at the
7269 * end of interesting range may be not aligned with pages that
7270 * page allocator holds, ie. they can be part of higher order
7271 * pages. Because of this, we reserve the bigger range and
7272 * once this is done free the pages we are not interested in.
7273 *
7274 * We don't have to hold zone->lock here because the pages are
7275 * isolated thus they won't get removed from buddy.
7276 */
7277
7278 lru_add_drain_all();
510f5507 7279 drain_all_pages(cc.zone);
041d3a8c
MN
7280
7281 order = 0;
7282 outer_start = start;
7283 while (!PageBuddy(pfn_to_page(outer_start))) {
7284 if (++order >= MAX_ORDER) {
8ef5849f
JK
7285 outer_start = start;
7286 break;
041d3a8c
MN
7287 }
7288 outer_start &= ~0UL << order;
7289 }
7290
8ef5849f
JK
7291 if (outer_start != start) {
7292 order = page_order(pfn_to_page(outer_start));
7293
7294 /*
7295 * outer_start page could be small order buddy page and
7296 * it doesn't include start page. Adjust outer_start
7297 * in this case to report failed page properly
7298 * on tracepoint in test_pages_isolated()
7299 */
7300 if (outer_start + (1UL << order) <= start)
7301 outer_start = start;
7302 }
7303
041d3a8c 7304 /* Make sure the range is really isolated. */
b023f468 7305 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7306 pr_info("%s: [%lx, %lx) PFNs busy\n",
7307 __func__, outer_start, end);
041d3a8c
MN
7308 ret = -EBUSY;
7309 goto done;
7310 }
7311
49f223a9 7312 /* Grab isolated pages from freelists. */
bb13ffeb 7313 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7314 if (!outer_end) {
7315 ret = -EBUSY;
7316 goto done;
7317 }
7318
7319 /* Free head and tail (if any) */
7320 if (start != outer_start)
7321 free_contig_range(outer_start, start - outer_start);
7322 if (end != outer_end)
7323 free_contig_range(end, outer_end - end);
7324
7325done:
7326 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7327 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7328 return ret;
7329}
7330
7331void free_contig_range(unsigned long pfn, unsigned nr_pages)
7332{
bcc2b02f
MS
7333 unsigned int count = 0;
7334
7335 for (; nr_pages--; pfn++) {
7336 struct page *page = pfn_to_page(pfn);
7337
7338 count += page_count(page) != 1;
7339 __free_page(page);
7340 }
7341 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7342}
7343#endif
7344
4ed7e022 7345#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7346/*
7347 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7348 * page high values need to be recalulated.
7349 */
4ed7e022
JL
7350void __meminit zone_pcp_update(struct zone *zone)
7351{
0a647f38 7352 unsigned cpu;
c8e251fa 7353 mutex_lock(&pcp_batch_high_lock);
0a647f38 7354 for_each_possible_cpu(cpu)
169f6c19
CS
7355 pageset_set_high_and_batch(zone,
7356 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7357 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7358}
7359#endif
7360
340175b7
JL
7361void zone_pcp_reset(struct zone *zone)
7362{
7363 unsigned long flags;
5a883813
MK
7364 int cpu;
7365 struct per_cpu_pageset *pset;
340175b7
JL
7366
7367 /* avoid races with drain_pages() */
7368 local_irq_save(flags);
7369 if (zone->pageset != &boot_pageset) {
5a883813
MK
7370 for_each_online_cpu(cpu) {
7371 pset = per_cpu_ptr(zone->pageset, cpu);
7372 drain_zonestat(zone, pset);
7373 }
340175b7
JL
7374 free_percpu(zone->pageset);
7375 zone->pageset = &boot_pageset;
7376 }
7377 local_irq_restore(flags);
7378}
7379
6dcd73d7 7380#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7381/*
b9eb6319
JK
7382 * All pages in the range must be in a single zone and isolated
7383 * before calling this.
0c0e6195
KH
7384 */
7385void
7386__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7387{
7388 struct page *page;
7389 struct zone *zone;
7aeb09f9 7390 unsigned int order, i;
0c0e6195
KH
7391 unsigned long pfn;
7392 unsigned long flags;
7393 /* find the first valid pfn */
7394 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7395 if (pfn_valid(pfn))
7396 break;
7397 if (pfn == end_pfn)
7398 return;
7399 zone = page_zone(pfn_to_page(pfn));
7400 spin_lock_irqsave(&zone->lock, flags);
7401 pfn = start_pfn;
7402 while (pfn < end_pfn) {
7403 if (!pfn_valid(pfn)) {
7404 pfn++;
7405 continue;
7406 }
7407 page = pfn_to_page(pfn);
b023f468
WC
7408 /*
7409 * The HWPoisoned page may be not in buddy system, and
7410 * page_count() is not 0.
7411 */
7412 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7413 pfn++;
7414 SetPageReserved(page);
7415 continue;
7416 }
7417
0c0e6195
KH
7418 BUG_ON(page_count(page));
7419 BUG_ON(!PageBuddy(page));
7420 order = page_order(page);
7421#ifdef CONFIG_DEBUG_VM
1170532b
JP
7422 pr_info("remove from free list %lx %d %lx\n",
7423 pfn, 1 << order, end_pfn);
0c0e6195
KH
7424#endif
7425 list_del(&page->lru);
7426 rmv_page_order(page);
7427 zone->free_area[order].nr_free--;
0c0e6195
KH
7428 for (i = 0; i < (1 << order); i++)
7429 SetPageReserved((page+i));
7430 pfn += (1 << order);
7431 }
7432 spin_unlock_irqrestore(&zone->lock, flags);
7433}
7434#endif
8d22ba1b 7435
8d22ba1b
WF
7436bool is_free_buddy_page(struct page *page)
7437{
7438 struct zone *zone = page_zone(page);
7439 unsigned long pfn = page_to_pfn(page);
7440 unsigned long flags;
7aeb09f9 7441 unsigned int order;
8d22ba1b
WF
7442
7443 spin_lock_irqsave(&zone->lock, flags);
7444 for (order = 0; order < MAX_ORDER; order++) {
7445 struct page *page_head = page - (pfn & ((1 << order) - 1));
7446
7447 if (PageBuddy(page_head) && page_order(page_head) >= order)
7448 break;
7449 }
7450 spin_unlock_irqrestore(&zone->lock, flags);
7451
7452 return order < MAX_ORDER;
7453}