]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: shortcut watermark checks for order-0 pages
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
3777999d 834 bool isolated_pageblocks;
5f8dcc21 835
c54ad30c 836 spin_lock(&zone->lock);
3777999d 837 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 841
72853e29 842 while (to_free) {
48db57f8 843 struct page *page;
5f8dcc21
MG
844 struct list_head *list;
845
846 /*
a6f9edd6
MG
847 * Remove pages from lists in a round-robin fashion. A
848 * batch_free count is maintained that is incremented when an
849 * empty list is encountered. This is so more pages are freed
850 * off fuller lists instead of spinning excessively around empty
851 * lists
5f8dcc21
MG
852 */
853 do {
a6f9edd6 854 batch_free++;
5f8dcc21
MG
855 if (++migratetype == MIGRATE_PCPTYPES)
856 migratetype = 0;
857 list = &pcp->lists[migratetype];
858 } while (list_empty(list));
48db57f8 859
1d16871d
NK
860 /* This is the only non-empty list. Free them all. */
861 if (batch_free == MIGRATE_PCPTYPES)
862 batch_free = to_free;
863
a6f9edd6 864 do {
770c8aaa
BZ
865 int mt; /* migratetype of the to-be-freed page */
866
a16601c5 867 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
868 /* must delete as __free_one_page list manipulates */
869 list_del(&page->lru);
aa016d14 870
bb14c2c7 871 mt = get_pcppage_migratetype(page);
aa016d14
VB
872 /* MIGRATE_ISOLATE page should not go to pcplists */
873 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
874 /* Pageblock could have been isolated meanwhile */
3777999d 875 if (unlikely(isolated_pageblocks))
51bb1a40 876 mt = get_pageblock_migratetype(page);
51bb1a40 877
dc4b0caf 878 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 879 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 880 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 881 }
c54ad30c 882 spin_unlock(&zone->lock);
1da177e4
LT
883}
884
dc4b0caf
MG
885static void free_one_page(struct zone *zone,
886 struct page *page, unsigned long pfn,
7aeb09f9 887 unsigned int order,
ed0ae21d 888 int migratetype)
1da177e4 889{
0d5d823a 890 unsigned long nr_scanned;
006d22d9 891 spin_lock(&zone->lock);
0d5d823a
MG
892 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
893 if (nr_scanned)
894 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 895
ad53f92e
JK
896 if (unlikely(has_isolate_pageblock(zone) ||
897 is_migrate_isolate(migratetype))) {
898 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 899 }
dc4b0caf 900 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 901 spin_unlock(&zone->lock);
48db57f8
NP
902}
903
81422f29
KS
904static int free_tail_pages_check(struct page *head_page, struct page *page)
905{
1d798ca3
KS
906 int ret = 1;
907
908 /*
909 * We rely page->lru.next never has bit 0 set, unless the page
910 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
911 */
912 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
913
914 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
915 ret = 0;
916 goto out;
917 }
9a982250
KS
918 switch (page - head_page) {
919 case 1:
920 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
921 if (unlikely(compound_mapcount(page))) {
922 bad_page(page, "nonzero compound_mapcount", 0);
923 goto out;
924 }
9a982250
KS
925 break;
926 case 2:
927 /*
928 * the second tail page: ->mapping is
929 * page_deferred_list().next -- ignore value.
930 */
931 break;
932 default:
933 if (page->mapping != TAIL_MAPPING) {
934 bad_page(page, "corrupted mapping in tail page", 0);
935 goto out;
936 }
937 break;
1c290f64 938 }
81422f29
KS
939 if (unlikely(!PageTail(page))) {
940 bad_page(page, "PageTail not set", 0);
1d798ca3 941 goto out;
81422f29 942 }
1d798ca3
KS
943 if (unlikely(compound_head(page) != head_page)) {
944 bad_page(page, "compound_head not consistent", 0);
945 goto out;
81422f29 946 }
1d798ca3
KS
947 ret = 0;
948out:
1c290f64 949 page->mapping = NULL;
1d798ca3
KS
950 clear_compound_head(page);
951 return ret;
81422f29
KS
952}
953
1e8ce83c
RH
954static void __meminit __init_single_page(struct page *page, unsigned long pfn,
955 unsigned long zone, int nid)
956{
1e8ce83c 957 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
958 init_page_count(page);
959 page_mapcount_reset(page);
960 page_cpupid_reset_last(page);
1e8ce83c 961
1e8ce83c
RH
962 INIT_LIST_HEAD(&page->lru);
963#ifdef WANT_PAGE_VIRTUAL
964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
965 if (!is_highmem_idx(zone))
966 set_page_address(page, __va(pfn << PAGE_SHIFT));
967#endif
968}
969
970static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
971 int nid)
972{
973 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
974}
975
7e18adb4
MG
976#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
977static void init_reserved_page(unsigned long pfn)
978{
979 pg_data_t *pgdat;
980 int nid, zid;
981
982 if (!early_page_uninitialised(pfn))
983 return;
984
985 nid = early_pfn_to_nid(pfn);
986 pgdat = NODE_DATA(nid);
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
989 struct zone *zone = &pgdat->node_zones[zid];
990
991 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
992 break;
993 }
994 __init_single_pfn(pfn, zid, nid);
995}
996#else
997static inline void init_reserved_page(unsigned long pfn)
998{
999}
1000#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001
92923ca3
NZ
1002/*
1003 * Initialised pages do not have PageReserved set. This function is
1004 * called for each range allocated by the bootmem allocator and
1005 * marks the pages PageReserved. The remaining valid pages are later
1006 * sent to the buddy page allocator.
1007 */
7e18adb4 1008void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1009{
1010 unsigned long start_pfn = PFN_DOWN(start);
1011 unsigned long end_pfn = PFN_UP(end);
1012
7e18adb4
MG
1013 for (; start_pfn < end_pfn; start_pfn++) {
1014 if (pfn_valid(start_pfn)) {
1015 struct page *page = pfn_to_page(start_pfn);
1016
1017 init_reserved_page(start_pfn);
1d798ca3
KS
1018
1019 /* Avoid false-positive PageTail() */
1020 INIT_LIST_HEAD(&page->lru);
1021
7e18adb4
MG
1022 SetPageReserved(page);
1023 }
1024 }
92923ca3
NZ
1025}
1026
ec95f53a 1027static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1028{
d61f8590 1029 int bad = 0;
1da177e4 1030
ab1f306f 1031 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1032
b413d48a 1033 trace_mm_page_free(page, order);
b1eeab67 1034 kmemcheck_free_shadow(page, order);
b8c73fc2 1035 kasan_free_pages(page, order);
b1eeab67 1036
d61f8590
MG
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 for (i = 1; i < (1 << order); i++) {
1048 if (compound)
1049 bad += free_tail_pages_check(page, page + i);
1050 bad += free_pages_check(page + i);
1051 }
1052 }
17514574 1053 if (PageAnonHead(page))
8dd60a3a 1054 page->mapping = NULL;
81422f29 1055 bad += free_pages_check(page);
8cc3b392 1056 if (bad)
ec95f53a 1057 return false;
689bcebf 1058
48c96a36
JK
1059 reset_page_owner(page, order);
1060
3ac7fe5a 1061 if (!PageHighMem(page)) {
b8af2941
PK
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
3ac7fe5a
TG
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1066 }
dafb1367 1067 arch_free_page(page, order);
8823b1db 1068 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1069 kernel_map_pages(page, 1 << order, 0);
dafb1367 1070
ec95f53a
KM
1071 return true;
1072}
1073
1074static void __free_pages_ok(struct page *page, unsigned int order)
1075{
1076 unsigned long flags;
95e34412 1077 int migratetype;
dc4b0caf 1078 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1079
1080 if (!free_pages_prepare(page, order))
1081 return;
1082
cfc47a28 1083 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1084 local_irq_save(flags);
f8891e5e 1085 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1086 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1087 local_irq_restore(flags);
1da177e4
LT
1088}
1089
949698a3 1090static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1091{
c3993076 1092 unsigned int nr_pages = 1 << order;
e2d0bd2b 1093 struct page *p = page;
c3993076 1094 unsigned int loop;
a226f6c8 1095
e2d0bd2b
YL
1096 prefetchw(p);
1097 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1098 prefetchw(p + 1);
c3993076
JW
1099 __ClearPageReserved(p);
1100 set_page_count(p, 0);
a226f6c8 1101 }
e2d0bd2b
YL
1102 __ClearPageReserved(p);
1103 set_page_count(p, 0);
c3993076 1104
e2d0bd2b 1105 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1106 set_page_refcounted(page);
1107 __free_pages(page, order);
a226f6c8
DH
1108}
1109
75a592a4
MG
1110#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1111 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1112
75a592a4
MG
1113static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1114
1115int __meminit early_pfn_to_nid(unsigned long pfn)
1116{
7ace9917 1117 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1118 int nid;
1119
7ace9917 1120 spin_lock(&early_pfn_lock);
75a592a4 1121 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1122 if (nid < 0)
1123 nid = 0;
1124 spin_unlock(&early_pfn_lock);
1125
1126 return nid;
75a592a4
MG
1127}
1128#endif
1129
1130#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1131static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1133{
1134 int nid;
1135
1136 nid = __early_pfn_to_nid(pfn, state);
1137 if (nid >= 0 && nid != node)
1138 return false;
1139 return true;
1140}
1141
1142/* Only safe to use early in boot when initialisation is single-threaded */
1143static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1144{
1145 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1146}
1147
1148#else
1149
1150static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1151{
1152 return true;
1153}
1154static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1155 struct mminit_pfnnid_cache *state)
1156{
1157 return true;
1158}
1159#endif
1160
1161
0e1cc95b 1162void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1163 unsigned int order)
1164{
1165 if (early_page_uninitialised(pfn))
1166 return;
949698a3 1167 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1168}
1169
7cf91a98
JK
1170/*
1171 * Check that the whole (or subset of) a pageblock given by the interval of
1172 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1173 * with the migration of free compaction scanner. The scanners then need to
1174 * use only pfn_valid_within() check for arches that allow holes within
1175 * pageblocks.
1176 *
1177 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1178 *
1179 * It's possible on some configurations to have a setup like node0 node1 node0
1180 * i.e. it's possible that all pages within a zones range of pages do not
1181 * belong to a single zone. We assume that a border between node0 and node1
1182 * can occur within a single pageblock, but not a node0 node1 node0
1183 * interleaving within a single pageblock. It is therefore sufficient to check
1184 * the first and last page of a pageblock and avoid checking each individual
1185 * page in a pageblock.
1186 */
1187struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1188 unsigned long end_pfn, struct zone *zone)
1189{
1190 struct page *start_page;
1191 struct page *end_page;
1192
1193 /* end_pfn is one past the range we are checking */
1194 end_pfn--;
1195
1196 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1197 return NULL;
1198
1199 start_page = pfn_to_page(start_pfn);
1200
1201 if (page_zone(start_page) != zone)
1202 return NULL;
1203
1204 end_page = pfn_to_page(end_pfn);
1205
1206 /* This gives a shorter code than deriving page_zone(end_page) */
1207 if (page_zone_id(start_page) != page_zone_id(end_page))
1208 return NULL;
1209
1210 return start_page;
1211}
1212
1213void set_zone_contiguous(struct zone *zone)
1214{
1215 unsigned long block_start_pfn = zone->zone_start_pfn;
1216 unsigned long block_end_pfn;
1217
1218 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1219 for (; block_start_pfn < zone_end_pfn(zone);
1220 block_start_pfn = block_end_pfn,
1221 block_end_pfn += pageblock_nr_pages) {
1222
1223 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1224
1225 if (!__pageblock_pfn_to_page(block_start_pfn,
1226 block_end_pfn, zone))
1227 return;
1228 }
1229
1230 /* We confirm that there is no hole */
1231 zone->contiguous = true;
1232}
1233
1234void clear_zone_contiguous(struct zone *zone)
1235{
1236 zone->contiguous = false;
1237}
1238
7e18adb4 1239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1240static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1241 unsigned long pfn, int nr_pages)
1242{
1243 int i;
1244
1245 if (!page)
1246 return;
1247
1248 /* Free a large naturally-aligned chunk if possible */
1249 if (nr_pages == MAX_ORDER_NR_PAGES &&
1250 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1251 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1252 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1253 return;
1254 }
1255
949698a3
LZ
1256 for (i = 0; i < nr_pages; i++, page++)
1257 __free_pages_boot_core(page, 0);
a4de83dd
MG
1258}
1259
d3cd131d
NS
1260/* Completion tracking for deferred_init_memmap() threads */
1261static atomic_t pgdat_init_n_undone __initdata;
1262static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1263
1264static inline void __init pgdat_init_report_one_done(void)
1265{
1266 if (atomic_dec_and_test(&pgdat_init_n_undone))
1267 complete(&pgdat_init_all_done_comp);
1268}
0e1cc95b 1269
7e18adb4 1270/* Initialise remaining memory on a node */
0e1cc95b 1271static int __init deferred_init_memmap(void *data)
7e18adb4 1272{
0e1cc95b
MG
1273 pg_data_t *pgdat = data;
1274 int nid = pgdat->node_id;
7e18adb4
MG
1275 struct mminit_pfnnid_cache nid_init_state = { };
1276 unsigned long start = jiffies;
1277 unsigned long nr_pages = 0;
1278 unsigned long walk_start, walk_end;
1279 int i, zid;
1280 struct zone *zone;
7e18adb4 1281 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1283
0e1cc95b 1284 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1285 pgdat_init_report_one_done();
0e1cc95b
MG
1286 return 0;
1287 }
1288
1289 /* Bind memory initialisation thread to a local node if possible */
1290 if (!cpumask_empty(cpumask))
1291 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1292
1293 /* Sanity check boundaries */
1294 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1295 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1296 pgdat->first_deferred_pfn = ULONG_MAX;
1297
1298 /* Only the highest zone is deferred so find it */
1299 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1300 zone = pgdat->node_zones + zid;
1301 if (first_init_pfn < zone_end_pfn(zone))
1302 break;
1303 }
1304
1305 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1306 unsigned long pfn, end_pfn;
54608c3f 1307 struct page *page = NULL;
a4de83dd
MG
1308 struct page *free_base_page = NULL;
1309 unsigned long free_base_pfn = 0;
1310 int nr_to_free = 0;
7e18adb4
MG
1311
1312 end_pfn = min(walk_end, zone_end_pfn(zone));
1313 pfn = first_init_pfn;
1314 if (pfn < walk_start)
1315 pfn = walk_start;
1316 if (pfn < zone->zone_start_pfn)
1317 pfn = zone->zone_start_pfn;
1318
1319 for (; pfn < end_pfn; pfn++) {
54608c3f 1320 if (!pfn_valid_within(pfn))
a4de83dd 1321 goto free_range;
7e18adb4 1322
54608c3f
MG
1323 /*
1324 * Ensure pfn_valid is checked every
1325 * MAX_ORDER_NR_PAGES for memory holes
1326 */
1327 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1328 if (!pfn_valid(pfn)) {
1329 page = NULL;
a4de83dd 1330 goto free_range;
54608c3f
MG
1331 }
1332 }
1333
1334 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1335 page = NULL;
a4de83dd 1336 goto free_range;
54608c3f
MG
1337 }
1338
1339 /* Minimise pfn page lookups and scheduler checks */
1340 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1341 page++;
1342 } else {
a4de83dd
MG
1343 nr_pages += nr_to_free;
1344 deferred_free_range(free_base_page,
1345 free_base_pfn, nr_to_free);
1346 free_base_page = NULL;
1347 free_base_pfn = nr_to_free = 0;
1348
54608c3f
MG
1349 page = pfn_to_page(pfn);
1350 cond_resched();
1351 }
7e18adb4
MG
1352
1353 if (page->flags) {
1354 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1355 goto free_range;
7e18adb4
MG
1356 }
1357
1358 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1359 if (!free_base_page) {
1360 free_base_page = page;
1361 free_base_pfn = pfn;
1362 nr_to_free = 0;
1363 }
1364 nr_to_free++;
1365
1366 /* Where possible, batch up pages for a single free */
1367 continue;
1368free_range:
1369 /* Free the current block of pages to allocator */
1370 nr_pages += nr_to_free;
1371 deferred_free_range(free_base_page, free_base_pfn,
1372 nr_to_free);
1373 free_base_page = NULL;
1374 free_base_pfn = nr_to_free = 0;
7e18adb4 1375 }
a4de83dd 1376
7e18adb4
MG
1377 first_init_pfn = max(end_pfn, first_init_pfn);
1378 }
1379
1380 /* Sanity check that the next zone really is unpopulated */
1381 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1382
0e1cc95b 1383 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1384 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1385
1386 pgdat_init_report_one_done();
0e1cc95b
MG
1387 return 0;
1388}
7cf91a98 1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1390
1391void __init page_alloc_init_late(void)
1392{
7cf91a98
JK
1393 struct zone *zone;
1394
1395#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1396 int nid;
1397
d3cd131d
NS
1398 /* There will be num_node_state(N_MEMORY) threads */
1399 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1400 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1401 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1402 }
1403
1404 /* Block until all are initialised */
d3cd131d 1405 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1406
1407 /* Reinit limits that are based on free pages after the kernel is up */
1408 files_maxfiles_init();
7cf91a98
JK
1409#endif
1410
1411 for_each_populated_zone(zone)
1412 set_zone_contiguous(zone);
7e18adb4 1413}
7e18adb4 1414
47118af0 1415#ifdef CONFIG_CMA
9cf510a5 1416/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1417void __init init_cma_reserved_pageblock(struct page *page)
1418{
1419 unsigned i = pageblock_nr_pages;
1420 struct page *p = page;
1421
1422 do {
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 } while (++p, --i);
1426
47118af0 1427 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1428
1429 if (pageblock_order >= MAX_ORDER) {
1430 i = pageblock_nr_pages;
1431 p = page;
1432 do {
1433 set_page_refcounted(p);
1434 __free_pages(p, MAX_ORDER - 1);
1435 p += MAX_ORDER_NR_PAGES;
1436 } while (i -= MAX_ORDER_NR_PAGES);
1437 } else {
1438 set_page_refcounted(page);
1439 __free_pages(page, pageblock_order);
1440 }
1441
3dcc0571 1442 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1443}
1444#endif
1da177e4
LT
1445
1446/*
1447 * The order of subdivision here is critical for the IO subsystem.
1448 * Please do not alter this order without good reasons and regression
1449 * testing. Specifically, as large blocks of memory are subdivided,
1450 * the order in which smaller blocks are delivered depends on the order
1451 * they're subdivided in this function. This is the primary factor
1452 * influencing the order in which pages are delivered to the IO
1453 * subsystem according to empirical testing, and this is also justified
1454 * by considering the behavior of a buddy system containing a single
1455 * large block of memory acted on by a series of small allocations.
1456 * This behavior is a critical factor in sglist merging's success.
1457 *
6d49e352 1458 * -- nyc
1da177e4 1459 */
085cc7d5 1460static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1461 int low, int high, struct free_area *area,
1462 int migratetype)
1da177e4
LT
1463{
1464 unsigned long size = 1 << high;
1465
1466 while (high > low) {
1467 area--;
1468 high--;
1469 size >>= 1;
309381fe 1470 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1471
2847cf95 1472 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1473 debug_guardpage_enabled() &&
2847cf95 1474 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1475 /*
1476 * Mark as guard pages (or page), that will allow to
1477 * merge back to allocator when buddy will be freed.
1478 * Corresponding page table entries will not be touched,
1479 * pages will stay not present in virtual address space
1480 */
2847cf95 1481 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1482 continue;
1483 }
b2a0ac88 1484 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1485 area->nr_free++;
1486 set_page_order(&page[size], high);
1487 }
1da177e4
LT
1488}
1489
1da177e4
LT
1490/*
1491 * This page is about to be returned from the page allocator
1492 */
2a7684a2 1493static inline int check_new_page(struct page *page)
1da177e4 1494{
d230dec1 1495 const char *bad_reason = NULL;
f0b791a3
DH
1496 unsigned long bad_flags = 0;
1497
53f9263b 1498 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1499 bad_reason = "nonzero mapcount";
1500 if (unlikely(page->mapping != NULL))
1501 bad_reason = "non-NULL mapping";
fe896d18 1502 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1503 bad_reason = "nonzero _count";
f4c18e6f
NH
1504 if (unlikely(page->flags & __PG_HWPOISON)) {
1505 bad_reason = "HWPoisoned (hardware-corrupted)";
1506 bad_flags = __PG_HWPOISON;
1507 }
f0b791a3
DH
1508 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1509 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1510 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1511 }
9edad6ea
JW
1512#ifdef CONFIG_MEMCG
1513 if (unlikely(page->mem_cgroup))
1514 bad_reason = "page still charged to cgroup";
1515#endif
f0b791a3
DH
1516 if (unlikely(bad_reason)) {
1517 bad_page(page, bad_reason, bad_flags);
689bcebf 1518 return 1;
8cc3b392 1519 }
2a7684a2
WF
1520 return 0;
1521}
1522
1414c7f4
LA
1523static inline bool free_pages_prezeroed(bool poisoned)
1524{
1525 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1526 page_poisoning_enabled() && poisoned;
1527}
1528
75379191 1529static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1530 unsigned int alloc_flags)
2a7684a2
WF
1531{
1532 int i;
1414c7f4 1533 bool poisoned = true;
2a7684a2
WF
1534
1535 for (i = 0; i < (1 << order); i++) {
1536 struct page *p = page + i;
1537 if (unlikely(check_new_page(p)))
1538 return 1;
1414c7f4
LA
1539 if (poisoned)
1540 poisoned &= page_is_poisoned(p);
2a7684a2 1541 }
689bcebf 1542
4c21e2f2 1543 set_page_private(page, 0);
7835e98b 1544 set_page_refcounted(page);
cc102509
NP
1545
1546 arch_alloc_page(page, order);
1da177e4 1547 kernel_map_pages(page, 1 << order, 1);
8823b1db 1548 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1549 kasan_alloc_pages(page, order);
17cf4406 1550
1414c7f4 1551 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1552 for (i = 0; i < (1 << order); i++)
1553 clear_highpage(page + i);
17cf4406
NP
1554
1555 if (order && (gfp_flags & __GFP_COMP))
1556 prep_compound_page(page, order);
1557
48c96a36
JK
1558 set_page_owner(page, order, gfp_flags);
1559
75379191 1560 /*
2f064f34 1561 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1562 * allocate the page. The expectation is that the caller is taking
1563 * steps that will free more memory. The caller should avoid the page
1564 * being used for !PFMEMALLOC purposes.
1565 */
2f064f34
MH
1566 if (alloc_flags & ALLOC_NO_WATERMARKS)
1567 set_page_pfmemalloc(page);
1568 else
1569 clear_page_pfmemalloc(page);
75379191 1570
689bcebf 1571 return 0;
1da177e4
LT
1572}
1573
56fd56b8
MG
1574/*
1575 * Go through the free lists for the given migratetype and remove
1576 * the smallest available page from the freelists
1577 */
728ec980
MG
1578static inline
1579struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1580 int migratetype)
1581{
1582 unsigned int current_order;
b8af2941 1583 struct free_area *area;
56fd56b8
MG
1584 struct page *page;
1585
1586 /* Find a page of the appropriate size in the preferred list */
1587 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1588 area = &(zone->free_area[current_order]);
a16601c5 1589 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1590 struct page, lru);
a16601c5
GT
1591 if (!page)
1592 continue;
56fd56b8
MG
1593 list_del(&page->lru);
1594 rmv_page_order(page);
1595 area->nr_free--;
56fd56b8 1596 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1597 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1598 return page;
1599 }
1600
1601 return NULL;
1602}
1603
1604
b2a0ac88
MG
1605/*
1606 * This array describes the order lists are fallen back to when
1607 * the free lists for the desirable migrate type are depleted
1608 */
47118af0 1609static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1610 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1611 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1612 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1613#ifdef CONFIG_CMA
974a786e 1614 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1615#endif
194159fb 1616#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1617 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1618#endif
b2a0ac88
MG
1619};
1620
dc67647b
JK
1621#ifdef CONFIG_CMA
1622static struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624{
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626}
1627#else
1628static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630#endif
1631
c361be55
MG
1632/*
1633 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1634 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
435b405c 1637int move_freepages(struct zone *zone,
b69a7288
AB
1638 struct page *start_page, struct page *end_page,
1639 int migratetype)
c361be55
MG
1640{
1641 struct page *page;
d00181b9 1642 unsigned int order;
d100313f 1643 int pages_moved = 0;
c361be55
MG
1644
1645#ifndef CONFIG_HOLES_IN_ZONE
1646 /*
1647 * page_zone is not safe to call in this context when
1648 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1649 * anyway as we check zone boundaries in move_freepages_block().
1650 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1651 * grouping pages by mobility
c361be55 1652 */
97ee4ba7 1653 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1654#endif
1655
1656 for (page = start_page; page <= end_page;) {
344c790e 1657 /* Make sure we are not inadvertently changing nodes */
309381fe 1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1659
c361be55
MG
1660 if (!pfn_valid_within(page_to_pfn(page))) {
1661 page++;
1662 continue;
1663 }
1664
1665 if (!PageBuddy(page)) {
1666 page++;
1667 continue;
1668 }
1669
1670 order = page_order(page);
84be48d8
KS
1671 list_move(&page->lru,
1672 &zone->free_area[order].free_list[migratetype]);
c361be55 1673 page += 1 << order;
d100313f 1674 pages_moved += 1 << order;
c361be55
MG
1675 }
1676
d100313f 1677 return pages_moved;
c361be55
MG
1678}
1679
ee6f509c 1680int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1681 int migratetype)
c361be55
MG
1682{
1683 unsigned long start_pfn, end_pfn;
1684 struct page *start_page, *end_page;
1685
1686 start_pfn = page_to_pfn(page);
d9c23400 1687 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1688 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1689 end_page = start_page + pageblock_nr_pages - 1;
1690 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1691
1692 /* Do not cross zone boundaries */
108bcc96 1693 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1694 start_page = page;
108bcc96 1695 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1696 return 0;
1697
1698 return move_freepages(zone, start_page, end_page, migratetype);
1699}
1700
2f66a68f
MG
1701static void change_pageblock_range(struct page *pageblock_page,
1702 int start_order, int migratetype)
1703{
1704 int nr_pageblocks = 1 << (start_order - pageblock_order);
1705
1706 while (nr_pageblocks--) {
1707 set_pageblock_migratetype(pageblock_page, migratetype);
1708 pageblock_page += pageblock_nr_pages;
1709 }
1710}
1711
fef903ef 1712/*
9c0415eb
VB
1713 * When we are falling back to another migratetype during allocation, try to
1714 * steal extra free pages from the same pageblocks to satisfy further
1715 * allocations, instead of polluting multiple pageblocks.
1716 *
1717 * If we are stealing a relatively large buddy page, it is likely there will
1718 * be more free pages in the pageblock, so try to steal them all. For
1719 * reclaimable and unmovable allocations, we steal regardless of page size,
1720 * as fragmentation caused by those allocations polluting movable pageblocks
1721 * is worse than movable allocations stealing from unmovable and reclaimable
1722 * pageblocks.
fef903ef 1723 */
4eb7dce6
JK
1724static bool can_steal_fallback(unsigned int order, int start_mt)
1725{
1726 /*
1727 * Leaving this order check is intended, although there is
1728 * relaxed order check in next check. The reason is that
1729 * we can actually steal whole pageblock if this condition met,
1730 * but, below check doesn't guarantee it and that is just heuristic
1731 * so could be changed anytime.
1732 */
1733 if (order >= pageblock_order)
1734 return true;
1735
1736 if (order >= pageblock_order / 2 ||
1737 start_mt == MIGRATE_RECLAIMABLE ||
1738 start_mt == MIGRATE_UNMOVABLE ||
1739 page_group_by_mobility_disabled)
1740 return true;
1741
1742 return false;
1743}
1744
1745/*
1746 * This function implements actual steal behaviour. If order is large enough,
1747 * we can steal whole pageblock. If not, we first move freepages in this
1748 * pageblock and check whether half of pages are moved or not. If half of
1749 * pages are moved, we can change migratetype of pageblock and permanently
1750 * use it's pages as requested migratetype in the future.
1751 */
1752static void steal_suitable_fallback(struct zone *zone, struct page *page,
1753 int start_type)
fef903ef 1754{
d00181b9 1755 unsigned int current_order = page_order(page);
4eb7dce6 1756 int pages;
fef903ef 1757
fef903ef
SB
1758 /* Take ownership for orders >= pageblock_order */
1759 if (current_order >= pageblock_order) {
1760 change_pageblock_range(page, current_order, start_type);
3a1086fb 1761 return;
fef903ef
SB
1762 }
1763
4eb7dce6 1764 pages = move_freepages_block(zone, page, start_type);
fef903ef 1765
4eb7dce6
JK
1766 /* Claim the whole block if over half of it is free */
1767 if (pages >= (1 << (pageblock_order-1)) ||
1768 page_group_by_mobility_disabled)
1769 set_pageblock_migratetype(page, start_type);
1770}
1771
2149cdae
JK
1772/*
1773 * Check whether there is a suitable fallback freepage with requested order.
1774 * If only_stealable is true, this function returns fallback_mt only if
1775 * we can steal other freepages all together. This would help to reduce
1776 * fragmentation due to mixed migratetype pages in one pageblock.
1777 */
1778int find_suitable_fallback(struct free_area *area, unsigned int order,
1779 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1780{
1781 int i;
1782 int fallback_mt;
1783
1784 if (area->nr_free == 0)
1785 return -1;
1786
1787 *can_steal = false;
1788 for (i = 0;; i++) {
1789 fallback_mt = fallbacks[migratetype][i];
974a786e 1790 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1791 break;
1792
1793 if (list_empty(&area->free_list[fallback_mt]))
1794 continue;
fef903ef 1795
4eb7dce6
JK
1796 if (can_steal_fallback(order, migratetype))
1797 *can_steal = true;
1798
2149cdae
JK
1799 if (!only_stealable)
1800 return fallback_mt;
1801
1802 if (*can_steal)
1803 return fallback_mt;
fef903ef 1804 }
4eb7dce6
JK
1805
1806 return -1;
fef903ef
SB
1807}
1808
0aaa29a5
MG
1809/*
1810 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1811 * there are no empty page blocks that contain a page with a suitable order
1812 */
1813static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1814 unsigned int alloc_order)
1815{
1816 int mt;
1817 unsigned long max_managed, flags;
1818
1819 /*
1820 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1821 * Check is race-prone but harmless.
1822 */
1823 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1824 if (zone->nr_reserved_highatomic >= max_managed)
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 /* Recheck the nr_reserved_highatomic limit under the lock */
1830 if (zone->nr_reserved_highatomic >= max_managed)
1831 goto out_unlock;
1832
1833 /* Yoink! */
1834 mt = get_pageblock_migratetype(page);
1835 if (mt != MIGRATE_HIGHATOMIC &&
1836 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1837 zone->nr_reserved_highatomic += pageblock_nr_pages;
1838 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1839 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1840 }
1841
1842out_unlock:
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844}
1845
1846/*
1847 * Used when an allocation is about to fail under memory pressure. This
1848 * potentially hurts the reliability of high-order allocations when under
1849 * intense memory pressure but failed atomic allocations should be easier
1850 * to recover from than an OOM.
1851 */
1852static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1853{
1854 struct zonelist *zonelist = ac->zonelist;
1855 unsigned long flags;
1856 struct zoneref *z;
1857 struct zone *zone;
1858 struct page *page;
1859 int order;
1860
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1862 ac->nodemask) {
1863 /* Preserve at least one pageblock */
1864 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1865 continue;
1866
1867 spin_lock_irqsave(&zone->lock, flags);
1868 for (order = 0; order < MAX_ORDER; order++) {
1869 struct free_area *area = &(zone->free_area[order]);
1870
a16601c5
GT
1871 page = list_first_entry_or_null(
1872 &area->free_list[MIGRATE_HIGHATOMIC],
1873 struct page, lru);
1874 if (!page)
0aaa29a5
MG
1875 continue;
1876
0aaa29a5
MG
1877 /*
1878 * It should never happen but changes to locking could
1879 * inadvertently allow a per-cpu drain to add pages
1880 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1881 * and watch for underflows.
1882 */
1883 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1884 zone->nr_reserved_highatomic);
1885
1886 /*
1887 * Convert to ac->migratetype and avoid the normal
1888 * pageblock stealing heuristics. Minimally, the caller
1889 * is doing the work and needs the pages. More
1890 * importantly, if the block was always converted to
1891 * MIGRATE_UNMOVABLE or another type then the number
1892 * of pageblocks that cannot be completely freed
1893 * may increase.
1894 */
1895 set_pageblock_migratetype(page, ac->migratetype);
1896 move_freepages_block(zone, page, ac->migratetype);
1897 spin_unlock_irqrestore(&zone->lock, flags);
1898 return;
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 }
1902}
1903
b2a0ac88 1904/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1905static inline struct page *
7aeb09f9 1906__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1907{
b8af2941 1908 struct free_area *area;
7aeb09f9 1909 unsigned int current_order;
b2a0ac88 1910 struct page *page;
4eb7dce6
JK
1911 int fallback_mt;
1912 bool can_steal;
b2a0ac88
MG
1913
1914 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1915 for (current_order = MAX_ORDER-1;
1916 current_order >= order && current_order <= MAX_ORDER-1;
1917 --current_order) {
4eb7dce6
JK
1918 area = &(zone->free_area[current_order]);
1919 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1920 start_migratetype, false, &can_steal);
4eb7dce6
JK
1921 if (fallback_mt == -1)
1922 continue;
b2a0ac88 1923
a16601c5 1924 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1925 struct page, lru);
1926 if (can_steal)
1927 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1928
4eb7dce6
JK
1929 /* Remove the page from the freelists */
1930 area->nr_free--;
1931 list_del(&page->lru);
1932 rmv_page_order(page);
3a1086fb 1933
4eb7dce6
JK
1934 expand(zone, page, order, current_order, area,
1935 start_migratetype);
1936 /*
bb14c2c7 1937 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1938 * migratetype depending on the decisions in
bb14c2c7
VB
1939 * find_suitable_fallback(). This is OK as long as it does not
1940 * differ for MIGRATE_CMA pageblocks. Those can be used as
1941 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1942 */
bb14c2c7 1943 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1944
4eb7dce6
JK
1945 trace_mm_page_alloc_extfrag(page, order, current_order,
1946 start_migratetype, fallback_mt);
e0fff1bd 1947
4eb7dce6 1948 return page;
b2a0ac88
MG
1949 }
1950
728ec980 1951 return NULL;
b2a0ac88
MG
1952}
1953
56fd56b8 1954/*
1da177e4
LT
1955 * Do the hard work of removing an element from the buddy allocator.
1956 * Call me with the zone->lock already held.
1957 */
b2a0ac88 1958static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1959 int migratetype)
1da177e4 1960{
1da177e4
LT
1961 struct page *page;
1962
56fd56b8 1963 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1964 if (unlikely(!page)) {
dc67647b
JK
1965 if (migratetype == MIGRATE_MOVABLE)
1966 page = __rmqueue_cma_fallback(zone, order);
1967
1968 if (!page)
1969 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1970 }
1971
0d3d062a 1972 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1973 return page;
1da177e4
LT
1974}
1975
5f63b720 1976/*
1da177e4
LT
1977 * Obtain a specified number of elements from the buddy allocator, all under
1978 * a single hold of the lock, for efficiency. Add them to the supplied list.
1979 * Returns the number of new pages which were placed at *list.
1980 */
5f63b720 1981static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1982 unsigned long count, struct list_head *list,
b745bc85 1983 int migratetype, bool cold)
1da177e4 1984{
5bcc9f86 1985 int i;
5f63b720 1986
c54ad30c 1987 spin_lock(&zone->lock);
1da177e4 1988 for (i = 0; i < count; ++i) {
6ac0206b 1989 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1990 if (unlikely(page == NULL))
1da177e4 1991 break;
81eabcbe
MG
1992
1993 /*
1994 * Split buddy pages returned by expand() are received here
1995 * in physical page order. The page is added to the callers and
1996 * list and the list head then moves forward. From the callers
1997 * perspective, the linked list is ordered by page number in
1998 * some conditions. This is useful for IO devices that can
1999 * merge IO requests if the physical pages are ordered
2000 * properly.
2001 */
b745bc85 2002 if (likely(!cold))
e084b2d9
MG
2003 list_add(&page->lru, list);
2004 else
2005 list_add_tail(&page->lru, list);
81eabcbe 2006 list = &page->lru;
bb14c2c7 2007 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2008 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2009 -(1 << order));
1da177e4 2010 }
f2260e6b 2011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2012 spin_unlock(&zone->lock);
085cc7d5 2013 return i;
1da177e4
LT
2014}
2015
4ae7c039 2016#ifdef CONFIG_NUMA
8fce4d8e 2017/*
4037d452
CL
2018 * Called from the vmstat counter updater to drain pagesets of this
2019 * currently executing processor on remote nodes after they have
2020 * expired.
2021 *
879336c3
CL
2022 * Note that this function must be called with the thread pinned to
2023 * a single processor.
8fce4d8e 2024 */
4037d452 2025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2026{
4ae7c039 2027 unsigned long flags;
7be12fc9 2028 int to_drain, batch;
4ae7c039 2029
4037d452 2030 local_irq_save(flags);
4db0c3c2 2031 batch = READ_ONCE(pcp->batch);
7be12fc9 2032 to_drain = min(pcp->count, batch);
2a13515c
KM
2033 if (to_drain > 0) {
2034 free_pcppages_bulk(zone, to_drain, pcp);
2035 pcp->count -= to_drain;
2036 }
4037d452 2037 local_irq_restore(flags);
4ae7c039
CL
2038}
2039#endif
2040
9f8f2172 2041/*
93481ff0 2042 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2043 *
2044 * The processor must either be the current processor and the
2045 * thread pinned to the current processor or a processor that
2046 * is not online.
2047 */
93481ff0 2048static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2049{
c54ad30c 2050 unsigned long flags;
93481ff0
VB
2051 struct per_cpu_pageset *pset;
2052 struct per_cpu_pages *pcp;
1da177e4 2053
93481ff0
VB
2054 local_irq_save(flags);
2055 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2056
93481ff0
VB
2057 pcp = &pset->pcp;
2058 if (pcp->count) {
2059 free_pcppages_bulk(zone, pcp->count, pcp);
2060 pcp->count = 0;
2061 }
2062 local_irq_restore(flags);
2063}
3dfa5721 2064
93481ff0
VB
2065/*
2066 * Drain pcplists of all zones on the indicated processor.
2067 *
2068 * The processor must either be the current processor and the
2069 * thread pinned to the current processor or a processor that
2070 * is not online.
2071 */
2072static void drain_pages(unsigned int cpu)
2073{
2074 struct zone *zone;
2075
2076 for_each_populated_zone(zone) {
2077 drain_pages_zone(cpu, zone);
1da177e4
LT
2078 }
2079}
1da177e4 2080
9f8f2172
CL
2081/*
2082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2083 *
2084 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2085 * the single zone's pages.
9f8f2172 2086 */
93481ff0 2087void drain_local_pages(struct zone *zone)
9f8f2172 2088{
93481ff0
VB
2089 int cpu = smp_processor_id();
2090
2091 if (zone)
2092 drain_pages_zone(cpu, zone);
2093 else
2094 drain_pages(cpu);
9f8f2172
CL
2095}
2096
2097/*
74046494
GBY
2098 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2099 *
93481ff0
VB
2100 * When zone parameter is non-NULL, spill just the single zone's pages.
2101 *
74046494
GBY
2102 * Note that this code is protected against sending an IPI to an offline
2103 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2104 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2105 * nothing keeps CPUs from showing up after we populated the cpumask and
2106 * before the call to on_each_cpu_mask().
9f8f2172 2107 */
93481ff0 2108void drain_all_pages(struct zone *zone)
9f8f2172 2109{
74046494 2110 int cpu;
74046494
GBY
2111
2112 /*
2113 * Allocate in the BSS so we wont require allocation in
2114 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2115 */
2116 static cpumask_t cpus_with_pcps;
2117
2118 /*
2119 * We don't care about racing with CPU hotplug event
2120 * as offline notification will cause the notified
2121 * cpu to drain that CPU pcps and on_each_cpu_mask
2122 * disables preemption as part of its processing
2123 */
2124 for_each_online_cpu(cpu) {
93481ff0
VB
2125 struct per_cpu_pageset *pcp;
2126 struct zone *z;
74046494 2127 bool has_pcps = false;
93481ff0
VB
2128
2129 if (zone) {
74046494 2130 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2131 if (pcp->pcp.count)
74046494 2132 has_pcps = true;
93481ff0
VB
2133 } else {
2134 for_each_populated_zone(z) {
2135 pcp = per_cpu_ptr(z->pageset, cpu);
2136 if (pcp->pcp.count) {
2137 has_pcps = true;
2138 break;
2139 }
74046494
GBY
2140 }
2141 }
93481ff0 2142
74046494
GBY
2143 if (has_pcps)
2144 cpumask_set_cpu(cpu, &cpus_with_pcps);
2145 else
2146 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2147 }
93481ff0
VB
2148 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2149 zone, 1);
9f8f2172
CL
2150}
2151
296699de 2152#ifdef CONFIG_HIBERNATION
1da177e4
LT
2153
2154void mark_free_pages(struct zone *zone)
2155{
f623f0db
RW
2156 unsigned long pfn, max_zone_pfn;
2157 unsigned long flags;
7aeb09f9 2158 unsigned int order, t;
86760a2c 2159 struct page *page;
1da177e4 2160
8080fc03 2161 if (zone_is_empty(zone))
1da177e4
LT
2162 return;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2165
108bcc96 2166 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2168 if (pfn_valid(pfn)) {
86760a2c 2169 page = pfn_to_page(pfn);
ba6b0979
JK
2170
2171 if (page_zone(page) != zone)
2172 continue;
2173
7be98234
RW
2174 if (!swsusp_page_is_forbidden(page))
2175 swsusp_unset_page_free(page);
f623f0db 2176 }
1da177e4 2177
b2a0ac88 2178 for_each_migratetype_order(order, t) {
86760a2c
GT
2179 list_for_each_entry(page,
2180 &zone->free_area[order].free_list[t], lru) {
f623f0db 2181 unsigned long i;
1da177e4 2182
86760a2c 2183 pfn = page_to_pfn(page);
f623f0db 2184 for (i = 0; i < (1UL << order); i++)
7be98234 2185 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2186 }
b2a0ac88 2187 }
1da177e4
LT
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189}
e2c55dc8 2190#endif /* CONFIG_PM */
1da177e4 2191
1da177e4
LT
2192/*
2193 * Free a 0-order page
b745bc85 2194 * cold == true ? free a cold page : free a hot page
1da177e4 2195 */
b745bc85 2196void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2197{
2198 struct zone *zone = page_zone(page);
2199 struct per_cpu_pages *pcp;
2200 unsigned long flags;
dc4b0caf 2201 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2202 int migratetype;
1da177e4 2203
ec95f53a 2204 if (!free_pages_prepare(page, 0))
689bcebf
HD
2205 return;
2206
dc4b0caf 2207 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2208 set_pcppage_migratetype(page, migratetype);
1da177e4 2209 local_irq_save(flags);
f8891e5e 2210 __count_vm_event(PGFREE);
da456f14 2211
5f8dcc21
MG
2212 /*
2213 * We only track unmovable, reclaimable and movable on pcp lists.
2214 * Free ISOLATE pages back to the allocator because they are being
2215 * offlined but treat RESERVE as movable pages so we can get those
2216 * areas back if necessary. Otherwise, we may have to free
2217 * excessively into the page allocator
2218 */
2219 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2220 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2221 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2222 goto out;
2223 }
2224 migratetype = MIGRATE_MOVABLE;
2225 }
2226
99dcc3e5 2227 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2228 if (!cold)
5f8dcc21 2229 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2230 else
2231 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2232 pcp->count++;
48db57f8 2233 if (pcp->count >= pcp->high) {
4db0c3c2 2234 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2235 free_pcppages_bulk(zone, batch, pcp);
2236 pcp->count -= batch;
48db57f8 2237 }
5f8dcc21
MG
2238
2239out:
1da177e4 2240 local_irq_restore(flags);
1da177e4
LT
2241}
2242
cc59850e
KK
2243/*
2244 * Free a list of 0-order pages
2245 */
b745bc85 2246void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2247{
2248 struct page *page, *next;
2249
2250 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2251 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2252 free_hot_cold_page(page, cold);
2253 }
2254}
2255
8dfcc9ba
NP
2256/*
2257 * split_page takes a non-compound higher-order page, and splits it into
2258 * n (1<<order) sub-pages: page[0..n]
2259 * Each sub-page must be freed individually.
2260 *
2261 * Note: this is probably too low level an operation for use in drivers.
2262 * Please consult with lkml before using this in your driver.
2263 */
2264void split_page(struct page *page, unsigned int order)
2265{
2266 int i;
e2cfc911 2267 gfp_t gfp_mask;
8dfcc9ba 2268
309381fe
SL
2269 VM_BUG_ON_PAGE(PageCompound(page), page);
2270 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2271
2272#ifdef CONFIG_KMEMCHECK
2273 /*
2274 * Split shadow pages too, because free(page[0]) would
2275 * otherwise free the whole shadow.
2276 */
2277 if (kmemcheck_page_is_tracked(page))
2278 split_page(virt_to_page(page[0].shadow), order);
2279#endif
2280
e2cfc911
JK
2281 gfp_mask = get_page_owner_gfp(page);
2282 set_page_owner(page, 0, gfp_mask);
48c96a36 2283 for (i = 1; i < (1 << order); i++) {
7835e98b 2284 set_page_refcounted(page + i);
e2cfc911 2285 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2286 }
8dfcc9ba 2287}
5853ff23 2288EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2289
3c605096 2290int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2291{
748446bb
MG
2292 unsigned long watermark;
2293 struct zone *zone;
2139cbe6 2294 int mt;
748446bb
MG
2295
2296 BUG_ON(!PageBuddy(page));
2297
2298 zone = page_zone(page);
2e30abd1 2299 mt = get_pageblock_migratetype(page);
748446bb 2300
194159fb 2301 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2302 /* Obey watermarks as if the page was being allocated */
2303 watermark = low_wmark_pages(zone) + (1 << order);
2304 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2305 return 0;
2306
8fb74b9f 2307 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2308 }
748446bb
MG
2309
2310 /* Remove page from free list */
2311 list_del(&page->lru);
2312 zone->free_area[order].nr_free--;
2313 rmv_page_order(page);
2139cbe6 2314
e2cfc911 2315 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2316
8fb74b9f 2317 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2318 if (order >= pageblock_order - 1) {
2319 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2320 for (; page < endpage; page += pageblock_nr_pages) {
2321 int mt = get_pageblock_migratetype(page);
194159fb 2322 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2323 set_pageblock_migratetype(page,
2324 MIGRATE_MOVABLE);
2325 }
748446bb
MG
2326 }
2327
f3a14ced 2328
8fb74b9f 2329 return 1UL << order;
1fb3f8ca
MG
2330}
2331
2332/*
2333 * Similar to split_page except the page is already free. As this is only
2334 * being used for migration, the migratetype of the block also changes.
2335 * As this is called with interrupts disabled, the caller is responsible
2336 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2337 * are enabled.
2338 *
2339 * Note: this is probably too low level an operation for use in drivers.
2340 * Please consult with lkml before using this in your driver.
2341 */
2342int split_free_page(struct page *page)
2343{
2344 unsigned int order;
2345 int nr_pages;
2346
1fb3f8ca
MG
2347 order = page_order(page);
2348
8fb74b9f 2349 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2350 if (!nr_pages)
2351 return 0;
2352
2353 /* Split into individual pages */
2354 set_page_refcounted(page);
2355 split_page(page, order);
2356 return nr_pages;
748446bb
MG
2357}
2358
060e7417
MG
2359/*
2360 * Update NUMA hit/miss statistics
2361 *
2362 * Must be called with interrupts disabled.
2363 *
2364 * When __GFP_OTHER_NODE is set assume the node of the preferred
2365 * zone is the local node. This is useful for daemons who allocate
2366 * memory on behalf of other processes.
2367 */
2368static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2369 gfp_t flags)
2370{
2371#ifdef CONFIG_NUMA
2372 int local_nid = numa_node_id();
2373 enum zone_stat_item local_stat = NUMA_LOCAL;
2374
2375 if (unlikely(flags & __GFP_OTHER_NODE)) {
2376 local_stat = NUMA_OTHER;
2377 local_nid = preferred_zone->node;
2378 }
2379
2380 if (z->node == local_nid) {
2381 __inc_zone_state(z, NUMA_HIT);
2382 __inc_zone_state(z, local_stat);
2383 } else {
2384 __inc_zone_state(z, NUMA_MISS);
2385 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2386 }
2387#endif
2388}
2389
1da177e4 2390/*
75379191 2391 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2392 */
0a15c3e9
MG
2393static inline
2394struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2395 struct zone *zone, unsigned int order,
c603844b
MG
2396 gfp_t gfp_flags, unsigned int alloc_flags,
2397 int migratetype)
1da177e4
LT
2398{
2399 unsigned long flags;
689bcebf 2400 struct page *page;
b745bc85 2401 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2402
48db57f8 2403 if (likely(order == 0)) {
1da177e4 2404 struct per_cpu_pages *pcp;
5f8dcc21 2405 struct list_head *list;
1da177e4 2406
1da177e4 2407 local_irq_save(flags);
99dcc3e5
CL
2408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2409 list = &pcp->lists[migratetype];
5f8dcc21 2410 if (list_empty(list)) {
535131e6 2411 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2412 pcp->batch, list,
e084b2d9 2413 migratetype, cold);
5f8dcc21 2414 if (unlikely(list_empty(list)))
6fb332fa 2415 goto failed;
535131e6 2416 }
b92a6edd 2417
5f8dcc21 2418 if (cold)
a16601c5 2419 page = list_last_entry(list, struct page, lru);
5f8dcc21 2420 else
a16601c5 2421 page = list_first_entry(list, struct page, lru);
5f8dcc21 2422
754078eb 2423 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2424 list_del(&page->lru);
2425 pcp->count--;
7fb1d9fc 2426 } else {
0f352e53
MH
2427 /*
2428 * We most definitely don't want callers attempting to
2429 * allocate greater than order-1 page units with __GFP_NOFAIL.
2430 */
2431 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2432 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2433
2434 page = NULL;
2435 if (alloc_flags & ALLOC_HARDER) {
2436 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2437 if (page)
2438 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 }
2440 if (!page)
6ac0206b 2441 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2442 spin_unlock(&zone->lock);
2443 if (!page)
2444 goto failed;
754078eb 2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2446 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2447 get_pcppage_migratetype(page));
1da177e4
LT
2448 }
2449
abe5f972 2450 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2451 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2452 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2453
f8891e5e 2454 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2455 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2456 local_irq_restore(flags);
1da177e4 2457
309381fe 2458 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2459 return page;
a74609fa
NP
2460
2461failed:
2462 local_irq_restore(flags);
a74609fa 2463 return NULL;
1da177e4
LT
2464}
2465
933e312e
AM
2466#ifdef CONFIG_FAIL_PAGE_ALLOC
2467
b2588c4b 2468static struct {
933e312e
AM
2469 struct fault_attr attr;
2470
621a5f7a 2471 bool ignore_gfp_highmem;
71baba4b 2472 bool ignore_gfp_reclaim;
54114994 2473 u32 min_order;
933e312e
AM
2474} fail_page_alloc = {
2475 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2476 .ignore_gfp_reclaim = true,
621a5f7a 2477 .ignore_gfp_highmem = true,
54114994 2478 .min_order = 1,
933e312e
AM
2479};
2480
2481static int __init setup_fail_page_alloc(char *str)
2482{
2483 return setup_fault_attr(&fail_page_alloc.attr, str);
2484}
2485__setup("fail_page_alloc=", setup_fail_page_alloc);
2486
deaf386e 2487static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2488{
54114994 2489 if (order < fail_page_alloc.min_order)
deaf386e 2490 return false;
933e312e 2491 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2492 return false;
933e312e 2493 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2494 return false;
71baba4b
MG
2495 if (fail_page_alloc.ignore_gfp_reclaim &&
2496 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2497 return false;
933e312e
AM
2498
2499 return should_fail(&fail_page_alloc.attr, 1 << order);
2500}
2501
2502#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2503
2504static int __init fail_page_alloc_debugfs(void)
2505{
f4ae40a6 2506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2507 struct dentry *dir;
933e312e 2508
dd48c085
AM
2509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2510 &fail_page_alloc.attr);
2511 if (IS_ERR(dir))
2512 return PTR_ERR(dir);
933e312e 2513
b2588c4b 2514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2515 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2516 goto fail;
2517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2518 &fail_page_alloc.ignore_gfp_highmem))
2519 goto fail;
2520 if (!debugfs_create_u32("min-order", mode, dir,
2521 &fail_page_alloc.min_order))
2522 goto fail;
2523
2524 return 0;
2525fail:
dd48c085 2526 debugfs_remove_recursive(dir);
933e312e 2527
b2588c4b 2528 return -ENOMEM;
933e312e
AM
2529}
2530
2531late_initcall(fail_page_alloc_debugfs);
2532
2533#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2534
2535#else /* CONFIG_FAIL_PAGE_ALLOC */
2536
deaf386e 2537static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2538{
deaf386e 2539 return false;
933e312e
AM
2540}
2541
2542#endif /* CONFIG_FAIL_PAGE_ALLOC */
2543
1da177e4 2544/*
97a16fc8
MG
2545 * Return true if free base pages are above 'mark'. For high-order checks it
2546 * will return true of the order-0 watermark is reached and there is at least
2547 * one free page of a suitable size. Checking now avoids taking the zone lock
2548 * to check in the allocation paths if no pages are free.
1da177e4 2549 */
7aeb09f9 2550static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2551 unsigned long mark, int classzone_idx,
2552 unsigned int alloc_flags,
7aeb09f9 2553 long free_pages)
1da177e4 2554{
d23ad423 2555 long min = mark;
1da177e4 2556 int o;
c603844b 2557 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2558
0aaa29a5 2559 /* free_pages may go negative - that's OK */
df0a6daa 2560 free_pages -= (1 << order) - 1;
0aaa29a5 2561
7fb1d9fc 2562 if (alloc_flags & ALLOC_HIGH)
1da177e4 2563 min -= min / 2;
0aaa29a5
MG
2564
2565 /*
2566 * If the caller does not have rights to ALLOC_HARDER then subtract
2567 * the high-atomic reserves. This will over-estimate the size of the
2568 * atomic reserve but it avoids a search.
2569 */
97a16fc8 2570 if (likely(!alloc_harder))
0aaa29a5
MG
2571 free_pages -= z->nr_reserved_highatomic;
2572 else
1da177e4 2573 min -= min / 4;
e2b19197 2574
d95ea5d1
BZ
2575#ifdef CONFIG_CMA
2576 /* If allocation can't use CMA areas don't use free CMA pages */
2577 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2578 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2579#endif
026b0814 2580
97a16fc8
MG
2581 /*
2582 * Check watermarks for an order-0 allocation request. If these
2583 * are not met, then a high-order request also cannot go ahead
2584 * even if a suitable page happened to be free.
2585 */
2586 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2587 return false;
1da177e4 2588
97a16fc8
MG
2589 /* If this is an order-0 request then the watermark is fine */
2590 if (!order)
2591 return true;
2592
2593 /* For a high-order request, check at least one suitable page is free */
2594 for (o = order; o < MAX_ORDER; o++) {
2595 struct free_area *area = &z->free_area[o];
2596 int mt;
2597
2598 if (!area->nr_free)
2599 continue;
2600
2601 if (alloc_harder)
2602 return true;
1da177e4 2603
97a16fc8
MG
2604 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2605 if (!list_empty(&area->free_list[mt]))
2606 return true;
2607 }
2608
2609#ifdef CONFIG_CMA
2610 if ((alloc_flags & ALLOC_CMA) &&
2611 !list_empty(&area->free_list[MIGRATE_CMA])) {
2612 return true;
2613 }
2614#endif
1da177e4 2615 }
97a16fc8 2616 return false;
88f5acf8
MG
2617}
2618
7aeb09f9 2619bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2620 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2621{
2622 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2623 zone_page_state(z, NR_FREE_PAGES));
2624}
2625
48ee5f36
MG
2626static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2627 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2628{
2629 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2630 long cma_pages = 0;
2631
2632#ifdef CONFIG_CMA
2633 /* If allocation can't use CMA areas don't use free CMA pages */
2634 if (!(alloc_flags & ALLOC_CMA))
2635 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2636#endif
2637
2638 /*
2639 * Fast check for order-0 only. If this fails then the reserves
2640 * need to be calculated. There is a corner case where the check
2641 * passes but only the high-order atomic reserve are free. If
2642 * the caller is !atomic then it'll uselessly search the free
2643 * list. That corner case is then slower but it is harmless.
2644 */
2645 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2646 return true;
2647
2648 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2649 free_pages);
2650}
2651
7aeb09f9 2652bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2653 unsigned long mark, int classzone_idx)
88f5acf8
MG
2654{
2655 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2656
2657 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2658 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2659
e2b19197 2660 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2661 free_pages);
1da177e4
LT
2662}
2663
9276b1bc 2664#ifdef CONFIG_NUMA
81c0a2bb
JW
2665static bool zone_local(struct zone *local_zone, struct zone *zone)
2666{
fff4068c 2667 return local_zone->node == zone->node;
81c0a2bb
JW
2668}
2669
957f822a
DR
2670static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2671{
5f7a75ac
MG
2672 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2673 RECLAIM_DISTANCE;
957f822a 2674}
9276b1bc 2675#else /* CONFIG_NUMA */
81c0a2bb
JW
2676static bool zone_local(struct zone *local_zone, struct zone *zone)
2677{
2678 return true;
2679}
2680
957f822a
DR
2681static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2682{
2683 return true;
2684}
9276b1bc
PJ
2685#endif /* CONFIG_NUMA */
2686
4ffeaf35
MG
2687static void reset_alloc_batches(struct zone *preferred_zone)
2688{
2689 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2690
2691 do {
2692 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2693 high_wmark_pages(zone) - low_wmark_pages(zone) -
2694 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2695 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2696 } while (zone++ != preferred_zone);
2697}
2698
7fb1d9fc 2699/*
0798e519 2700 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2701 * a page.
2702 */
2703static struct page *
a9263751
VB
2704get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2705 const struct alloc_context *ac)
753ee728 2706{
dd1a239f 2707 struct zoneref *z;
5117f45d 2708 struct zone *zone;
30534755
MG
2709 bool fair_skipped = false;
2710 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2711
9276b1bc 2712zonelist_scan:
7fb1d9fc 2713 /*
9276b1bc 2714 * Scan zonelist, looking for a zone with enough free.
344736f2 2715 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2716 */
4dfa6cd8 2717 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2718 ac->nodemask) {
be06af00 2719 struct page *page;
e085dbc5
JW
2720 unsigned long mark;
2721
664eedde
MG
2722 if (cpusets_enabled() &&
2723 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2724 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2725 continue;
81c0a2bb
JW
2726 /*
2727 * Distribute pages in proportion to the individual
2728 * zone size to ensure fair page aging. The zone a
2729 * page was allocated in should have no effect on the
2730 * time the page has in memory before being reclaimed.
81c0a2bb 2731 */
30534755 2732 if (apply_fair) {
57054651 2733 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2734 fair_skipped = true;
3a025760 2735 continue;
4ffeaf35 2736 }
30534755
MG
2737 if (!zone_local(ac->preferred_zone, zone)) {
2738 if (fair_skipped)
2739 goto reset_fair;
2740 apply_fair = false;
2741 }
81c0a2bb 2742 }
a756cf59
JW
2743 /*
2744 * When allocating a page cache page for writing, we
2745 * want to get it from a zone that is within its dirty
2746 * limit, such that no single zone holds more than its
2747 * proportional share of globally allowed dirty pages.
2748 * The dirty limits take into account the zone's
2749 * lowmem reserves and high watermark so that kswapd
2750 * should be able to balance it without having to
2751 * write pages from its LRU list.
2752 *
2753 * This may look like it could increase pressure on
2754 * lower zones by failing allocations in higher zones
2755 * before they are full. But the pages that do spill
2756 * over are limited as the lower zones are protected
2757 * by this very same mechanism. It should not become
2758 * a practical burden to them.
2759 *
2760 * XXX: For now, allow allocations to potentially
2761 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2762 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2763 * which is important when on a NUMA setup the allowed
2764 * zones are together not big enough to reach the
2765 * global limit. The proper fix for these situations
2766 * will require awareness of zones in the
2767 * dirty-throttling and the flusher threads.
2768 */
c9ab0c4f 2769 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2770 continue;
7fb1d9fc 2771
e085dbc5 2772 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2773 if (!zone_watermark_fast(zone, order, mark,
a9263751 2774 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2775 int ret;
2776
5dab2911
MG
2777 /* Checked here to keep the fast path fast */
2778 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2779 if (alloc_flags & ALLOC_NO_WATERMARKS)
2780 goto try_this_zone;
2781
957f822a 2782 if (zone_reclaim_mode == 0 ||
a9263751 2783 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2784 continue;
2785
fa5e084e
MG
2786 ret = zone_reclaim(zone, gfp_mask, order);
2787 switch (ret) {
2788 case ZONE_RECLAIM_NOSCAN:
2789 /* did not scan */
cd38b115 2790 continue;
fa5e084e
MG
2791 case ZONE_RECLAIM_FULL:
2792 /* scanned but unreclaimable */
cd38b115 2793 continue;
fa5e084e
MG
2794 default:
2795 /* did we reclaim enough */
fed2719e 2796 if (zone_watermark_ok(zone, order, mark,
a9263751 2797 ac->classzone_idx, alloc_flags))
fed2719e
MG
2798 goto try_this_zone;
2799
fed2719e 2800 continue;
0798e519 2801 }
7fb1d9fc
RS
2802 }
2803
fa5e084e 2804try_this_zone:
a9263751 2805 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2806 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2807 if (page) {
2808 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2809 goto try_this_zone;
0aaa29a5
MG
2810
2811 /*
2812 * If this is a high-order atomic allocation then check
2813 * if the pageblock should be reserved for the future
2814 */
2815 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2816 reserve_highatomic_pageblock(page, zone, order);
2817
75379191
VB
2818 return page;
2819 }
54a6eb5c 2820 }
9276b1bc 2821
4ffeaf35
MG
2822 /*
2823 * The first pass makes sure allocations are spread fairly within the
2824 * local node. However, the local node might have free pages left
2825 * after the fairness batches are exhausted, and remote zones haven't
2826 * even been considered yet. Try once more without fairness, and
2827 * include remote zones now, before entering the slowpath and waking
2828 * kswapd: prefer spilling to a remote zone over swapping locally.
2829 */
30534755
MG
2830 if (fair_skipped) {
2831reset_fair:
2832 apply_fair = false;
2833 fair_skipped = false;
2834 reset_alloc_batches(ac->preferred_zone);
4ffeaf35 2835 goto zonelist_scan;
30534755 2836 }
4ffeaf35
MG
2837
2838 return NULL;
753ee728
MH
2839}
2840
29423e77
DR
2841/*
2842 * Large machines with many possible nodes should not always dump per-node
2843 * meminfo in irq context.
2844 */
2845static inline bool should_suppress_show_mem(void)
2846{
2847 bool ret = false;
2848
2849#if NODES_SHIFT > 8
2850 ret = in_interrupt();
2851#endif
2852 return ret;
2853}
2854
a238ab5b
DH
2855static DEFINE_RATELIMIT_STATE(nopage_rs,
2856 DEFAULT_RATELIMIT_INTERVAL,
2857 DEFAULT_RATELIMIT_BURST);
2858
d00181b9 2859void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2860{
a238ab5b
DH
2861 unsigned int filter = SHOW_MEM_FILTER_NODES;
2862
c0a32fc5
SG
2863 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2864 debug_guardpage_minorder() > 0)
a238ab5b
DH
2865 return;
2866
2867 /*
2868 * This documents exceptions given to allocations in certain
2869 * contexts that are allowed to allocate outside current's set
2870 * of allowed nodes.
2871 */
2872 if (!(gfp_mask & __GFP_NOMEMALLOC))
2873 if (test_thread_flag(TIF_MEMDIE) ||
2874 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2875 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2876 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2877 filter &= ~SHOW_MEM_FILTER_NODES;
2878
2879 if (fmt) {
3ee9a4f0
JP
2880 struct va_format vaf;
2881 va_list args;
2882
a238ab5b 2883 va_start(args, fmt);
3ee9a4f0
JP
2884
2885 vaf.fmt = fmt;
2886 vaf.va = &args;
2887
2888 pr_warn("%pV", &vaf);
2889
a238ab5b
DH
2890 va_end(args);
2891 }
2892
c5c990e8
VB
2893 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2894 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2895 dump_stack();
2896 if (!should_suppress_show_mem())
2897 show_mem(filter);
2898}
2899
11e33f6a
MG
2900static inline struct page *
2901__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2902 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2903{
6e0fc46d
DR
2904 struct oom_control oc = {
2905 .zonelist = ac->zonelist,
2906 .nodemask = ac->nodemask,
2907 .gfp_mask = gfp_mask,
2908 .order = order,
6e0fc46d 2909 };
11e33f6a
MG
2910 struct page *page;
2911
9879de73
JW
2912 *did_some_progress = 0;
2913
9879de73 2914 /*
dc56401f
JW
2915 * Acquire the oom lock. If that fails, somebody else is
2916 * making progress for us.
9879de73 2917 */
dc56401f 2918 if (!mutex_trylock(&oom_lock)) {
9879de73 2919 *did_some_progress = 1;
11e33f6a 2920 schedule_timeout_uninterruptible(1);
1da177e4
LT
2921 return NULL;
2922 }
6b1de916 2923
11e33f6a
MG
2924 /*
2925 * Go through the zonelist yet one more time, keep very high watermark
2926 * here, this is only to catch a parallel oom killing, we must fail if
2927 * we're still under heavy pressure.
2928 */
a9263751
VB
2929 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2930 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2931 if (page)
11e33f6a
MG
2932 goto out;
2933
4365a567 2934 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2935 /* Coredumps can quickly deplete all memory reserves */
2936 if (current->flags & PF_DUMPCORE)
2937 goto out;
4365a567
KH
2938 /* The OOM killer will not help higher order allocs */
2939 if (order > PAGE_ALLOC_COSTLY_ORDER)
2940 goto out;
03668b3c 2941 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2942 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2943 goto out;
9083905a
JW
2944 if (pm_suspended_storage())
2945 goto out;
3da88fb3
MH
2946 /*
2947 * XXX: GFP_NOFS allocations should rather fail than rely on
2948 * other request to make a forward progress.
2949 * We are in an unfortunate situation where out_of_memory cannot
2950 * do much for this context but let's try it to at least get
2951 * access to memory reserved if the current task is killed (see
2952 * out_of_memory). Once filesystems are ready to handle allocation
2953 * failures more gracefully we should just bail out here.
2954 */
2955
4167e9b2 2956 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2957 if (gfp_mask & __GFP_THISNODE)
2958 goto out;
2959 }
11e33f6a 2960 /* Exhausted what can be done so it's blamo time */
5020e285 2961 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2962 *did_some_progress = 1;
5020e285
MH
2963
2964 if (gfp_mask & __GFP_NOFAIL) {
2965 page = get_page_from_freelist(gfp_mask, order,
2966 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2967 /*
2968 * fallback to ignore cpuset restriction if our nodes
2969 * are depleted
2970 */
2971 if (!page)
2972 page = get_page_from_freelist(gfp_mask, order,
2973 ALLOC_NO_WATERMARKS, ac);
2974 }
2975 }
11e33f6a 2976out:
dc56401f 2977 mutex_unlock(&oom_lock);
11e33f6a
MG
2978 return page;
2979}
2980
56de7263
MG
2981#ifdef CONFIG_COMPACTION
2982/* Try memory compaction for high-order allocations before reclaim */
2983static struct page *
2984__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 2985 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
2986 enum migrate_mode mode, int *contended_compaction,
2987 bool *deferred_compaction)
56de7263 2988{
53853e2d 2989 unsigned long compact_result;
98dd3b48 2990 struct page *page;
53853e2d
VB
2991
2992 if (!order)
66199712 2993 return NULL;
66199712 2994
c06b1fca 2995 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2996 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2997 mode, contended_compaction);
c06b1fca 2998 current->flags &= ~PF_MEMALLOC;
56de7263 2999
98dd3b48
VB
3000 switch (compact_result) {
3001 case COMPACT_DEFERRED:
53853e2d 3002 *deferred_compaction = true;
98dd3b48
VB
3003 /* fall-through */
3004 case COMPACT_SKIPPED:
3005 return NULL;
3006 default:
3007 break;
3008 }
53853e2d 3009
98dd3b48
VB
3010 /*
3011 * At least in one zone compaction wasn't deferred or skipped, so let's
3012 * count a compaction stall
3013 */
3014 count_vm_event(COMPACTSTALL);
8fb74b9f 3015
a9263751
VB
3016 page = get_page_from_freelist(gfp_mask, order,
3017 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3018
98dd3b48
VB
3019 if (page) {
3020 struct zone *zone = page_zone(page);
53853e2d 3021
98dd3b48
VB
3022 zone->compact_blockskip_flush = false;
3023 compaction_defer_reset(zone, order, true);
3024 count_vm_event(COMPACTSUCCESS);
3025 return page;
3026 }
56de7263 3027
98dd3b48
VB
3028 /*
3029 * It's bad if compaction run occurs and fails. The most likely reason
3030 * is that pages exist, but not enough to satisfy watermarks.
3031 */
3032 count_vm_event(COMPACTFAIL);
66199712 3033
98dd3b48 3034 cond_resched();
56de7263
MG
3035
3036 return NULL;
3037}
3038#else
3039static inline struct page *
3040__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3041 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3042 enum migrate_mode mode, int *contended_compaction,
3043 bool *deferred_compaction)
56de7263
MG
3044{
3045 return NULL;
3046}
3047#endif /* CONFIG_COMPACTION */
3048
bba90710
MS
3049/* Perform direct synchronous page reclaim */
3050static int
a9263751
VB
3051__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3052 const struct alloc_context *ac)
11e33f6a 3053{
11e33f6a 3054 struct reclaim_state reclaim_state;
bba90710 3055 int progress;
11e33f6a
MG
3056
3057 cond_resched();
3058
3059 /* We now go into synchronous reclaim */
3060 cpuset_memory_pressure_bump();
c06b1fca 3061 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3062 lockdep_set_current_reclaim_state(gfp_mask);
3063 reclaim_state.reclaimed_slab = 0;
c06b1fca 3064 current->reclaim_state = &reclaim_state;
11e33f6a 3065
a9263751
VB
3066 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3067 ac->nodemask);
11e33f6a 3068
c06b1fca 3069 current->reclaim_state = NULL;
11e33f6a 3070 lockdep_clear_current_reclaim_state();
c06b1fca 3071 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3072
3073 cond_resched();
3074
bba90710
MS
3075 return progress;
3076}
3077
3078/* The really slow allocator path where we enter direct reclaim */
3079static inline struct page *
3080__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3081 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3082 unsigned long *did_some_progress)
bba90710
MS
3083{
3084 struct page *page = NULL;
3085 bool drained = false;
3086
a9263751 3087 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3088 if (unlikely(!(*did_some_progress)))
3089 return NULL;
11e33f6a 3090
9ee493ce 3091retry:
a9263751
VB
3092 page = get_page_from_freelist(gfp_mask, order,
3093 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3094
3095 /*
3096 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3097 * pages are pinned on the per-cpu lists or in high alloc reserves.
3098 * Shrink them them and try again
9ee493ce
MG
3099 */
3100 if (!page && !drained) {
0aaa29a5 3101 unreserve_highatomic_pageblock(ac);
93481ff0 3102 drain_all_pages(NULL);
9ee493ce
MG
3103 drained = true;
3104 goto retry;
3105 }
3106
11e33f6a
MG
3107 return page;
3108}
3109
a9263751 3110static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3111{
3112 struct zoneref *z;
3113 struct zone *zone;
3114
a9263751
VB
3115 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3116 ac->high_zoneidx, ac->nodemask)
3117 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3118}
3119
c603844b 3120static inline unsigned int
341ce06f
PZ
3121gfp_to_alloc_flags(gfp_t gfp_mask)
3122{
c603844b 3123 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3124
a56f57ff 3125 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3126 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3127
341ce06f
PZ
3128 /*
3129 * The caller may dip into page reserves a bit more if the caller
3130 * cannot run direct reclaim, or if the caller has realtime scheduling
3131 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3132 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3133 */
e6223a3b 3134 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3135
d0164adc 3136 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3137 /*
b104a35d
DR
3138 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3139 * if it can't schedule.
5c3240d9 3140 */
b104a35d 3141 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3142 alloc_flags |= ALLOC_HARDER;
523b9458 3143 /*
b104a35d 3144 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3145 * comment for __cpuset_node_allowed().
523b9458 3146 */
341ce06f 3147 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3148 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3149 alloc_flags |= ALLOC_HARDER;
3150
b37f1dd0
MG
3151 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3152 if (gfp_mask & __GFP_MEMALLOC)
3153 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3154 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3155 alloc_flags |= ALLOC_NO_WATERMARKS;
3156 else if (!in_interrupt() &&
3157 ((current->flags & PF_MEMALLOC) ||
3158 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3159 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3160 }
d95ea5d1 3161#ifdef CONFIG_CMA
43e7a34d 3162 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3163 alloc_flags |= ALLOC_CMA;
3164#endif
341ce06f
PZ
3165 return alloc_flags;
3166}
3167
072bb0aa
MG
3168bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3169{
b37f1dd0 3170 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3171}
3172
d0164adc
MG
3173static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3174{
3175 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3176}
3177
11e33f6a
MG
3178static inline struct page *
3179__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3180 struct alloc_context *ac)
11e33f6a 3181{
d0164adc 3182 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3183 struct page *page = NULL;
c603844b 3184 unsigned int alloc_flags;
11e33f6a
MG
3185 unsigned long pages_reclaimed = 0;
3186 unsigned long did_some_progress;
e0b9daeb 3187 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3188 bool deferred_compaction = false;
1f9efdef 3189 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3190
72807a74
MG
3191 /*
3192 * In the slowpath, we sanity check order to avoid ever trying to
3193 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3194 * be using allocators in order of preference for an area that is
3195 * too large.
3196 */
1fc28b70
MG
3197 if (order >= MAX_ORDER) {
3198 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3199 return NULL;
1fc28b70 3200 }
1da177e4 3201
d0164adc
MG
3202 /*
3203 * We also sanity check to catch abuse of atomic reserves being used by
3204 * callers that are not in atomic context.
3205 */
3206 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3207 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3208 gfp_mask &= ~__GFP_ATOMIC;
3209
9879de73 3210retry:
d0164adc 3211 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3212 wake_all_kswapds(order, ac);
1da177e4 3213
9bf2229f 3214 /*
7fb1d9fc
RS
3215 * OK, we're below the kswapd watermark and have kicked background
3216 * reclaim. Now things get more complex, so set up alloc_flags according
3217 * to how we want to proceed.
9bf2229f 3218 */
341ce06f 3219 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3220
341ce06f 3221 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3222 page = get_page_from_freelist(gfp_mask, order,
3223 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3224 if (page)
3225 goto got_pg;
1da177e4 3226
11e33f6a 3227 /* Allocate without watermarks if the context allows */
341ce06f 3228 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3229 /*
3230 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3231 * the allocation is high priority and these type of
3232 * allocations are system rather than user orientated
3233 */
a9263751 3234 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3235 page = get_page_from_freelist(gfp_mask, order,
3236 ALLOC_NO_WATERMARKS, ac);
3237 if (page)
3238 goto got_pg;
1da177e4
LT
3239 }
3240
d0164adc
MG
3241 /* Caller is not willing to reclaim, we can't balance anything */
3242 if (!can_direct_reclaim) {
aed0a0e3 3243 /*
33d53103
MH
3244 * All existing users of the __GFP_NOFAIL are blockable, so warn
3245 * of any new users that actually allow this type of allocation
3246 * to fail.
aed0a0e3
DR
3247 */
3248 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3249 goto nopage;
aed0a0e3 3250 }
1da177e4 3251
341ce06f 3252 /* Avoid recursion of direct reclaim */
33d53103
MH
3253 if (current->flags & PF_MEMALLOC) {
3254 /*
3255 * __GFP_NOFAIL request from this context is rather bizarre
3256 * because we cannot reclaim anything and only can loop waiting
3257 * for somebody to do a work for us.
3258 */
3259 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3260 cond_resched();
3261 goto retry;
3262 }
341ce06f 3263 goto nopage;
33d53103 3264 }
341ce06f 3265
6583bb64
DR
3266 /* Avoid allocations with no watermarks from looping endlessly */
3267 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3268 goto nopage;
3269
77f1fe6b
MG
3270 /*
3271 * Try direct compaction. The first pass is asynchronous. Subsequent
3272 * attempts after direct reclaim are synchronous
3273 */
a9263751
VB
3274 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3275 migration_mode,
3276 &contended_compaction,
53853e2d 3277 &deferred_compaction);
56de7263
MG
3278 if (page)
3279 goto got_pg;
75f30861 3280
1f9efdef 3281 /* Checks for THP-specific high-order allocations */
d0164adc 3282 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3283 /*
3284 * If compaction is deferred for high-order allocations, it is
3285 * because sync compaction recently failed. If this is the case
3286 * and the caller requested a THP allocation, we do not want
3287 * to heavily disrupt the system, so we fail the allocation
3288 * instead of entering direct reclaim.
3289 */
3290 if (deferred_compaction)
3291 goto nopage;
3292
3293 /*
3294 * In all zones where compaction was attempted (and not
3295 * deferred or skipped), lock contention has been detected.
3296 * For THP allocation we do not want to disrupt the others
3297 * so we fallback to base pages instead.
3298 */
3299 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3300 goto nopage;
3301
3302 /*
3303 * If compaction was aborted due to need_resched(), we do not
3304 * want to further increase allocation latency, unless it is
3305 * khugepaged trying to collapse.
3306 */
3307 if (contended_compaction == COMPACT_CONTENDED_SCHED
3308 && !(current->flags & PF_KTHREAD))
3309 goto nopage;
3310 }
66199712 3311
8fe78048
DR
3312 /*
3313 * It can become very expensive to allocate transparent hugepages at
3314 * fault, so use asynchronous memory compaction for THP unless it is
3315 * khugepaged trying to collapse.
3316 */
d0164adc 3317 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3318 migration_mode = MIGRATE_SYNC_LIGHT;
3319
11e33f6a 3320 /* Try direct reclaim and then allocating */
a9263751
VB
3321 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3322 &did_some_progress);
11e33f6a
MG
3323 if (page)
3324 goto got_pg;
1da177e4 3325
9083905a
JW
3326 /* Do not loop if specifically requested */
3327 if (gfp_mask & __GFP_NORETRY)
3328 goto noretry;
3329
3330 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3331 pages_reclaimed += did_some_progress;
9083905a
JW
3332 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3333 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3334 /* Wait for some write requests to complete then retry */
a9263751 3335 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3336 goto retry;
1da177e4
LT
3337 }
3338
9083905a
JW
3339 /* Reclaim has failed us, start killing things */
3340 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3341 if (page)
3342 goto got_pg;
3343
3344 /* Retry as long as the OOM killer is making progress */
3345 if (did_some_progress)
3346 goto retry;
3347
3348noretry:
3349 /*
3350 * High-order allocations do not necessarily loop after
3351 * direct reclaim and reclaim/compaction depends on compaction
3352 * being called after reclaim so call directly if necessary
3353 */
3354 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3355 ac, migration_mode,
3356 &contended_compaction,
3357 &deferred_compaction);
3358 if (page)
3359 goto got_pg;
1da177e4 3360nopage:
a238ab5b 3361 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3362got_pg:
072bb0aa 3363 return page;
1da177e4 3364}
11e33f6a
MG
3365
3366/*
3367 * This is the 'heart' of the zoned buddy allocator.
3368 */
3369struct page *
3370__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3371 struct zonelist *zonelist, nodemask_t *nodemask)
3372{
d8846374 3373 struct zoneref *preferred_zoneref;
5bb1b169 3374 struct page *page;
cc9a6c87 3375 unsigned int cpuset_mems_cookie;
c603844b 3376 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3377 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3378 struct alloc_context ac = {
3379 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3380 .zonelist = zonelist,
a9263751
VB
3381 .nodemask = nodemask,
3382 .migratetype = gfpflags_to_migratetype(gfp_mask),
3383 };
11e33f6a 3384
682a3385 3385 if (cpusets_enabled()) {
83d4ca81 3386 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3387 alloc_flags |= ALLOC_CPUSET;
3388 if (!ac.nodemask)
3389 ac.nodemask = &cpuset_current_mems_allowed;
3390 }
3391
dcce284a
BH
3392 gfp_mask &= gfp_allowed_mask;
3393
11e33f6a
MG
3394 lockdep_trace_alloc(gfp_mask);
3395
d0164adc 3396 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3397
3398 if (should_fail_alloc_page(gfp_mask, order))
3399 return NULL;
3400
3401 /*
3402 * Check the zones suitable for the gfp_mask contain at least one
3403 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3404 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3405 */
3406 if (unlikely(!zonelist->_zonerefs->zone))
3407 return NULL;
3408
a9263751 3409 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3410 alloc_flags |= ALLOC_CMA;
3411
cc9a6c87 3412retry_cpuset:
d26914d1 3413 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3414
c9ab0c4f
MG
3415 /* Dirty zone balancing only done in the fast path */
3416 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3417
5117f45d 3418 /* The preferred zone is used for statistics later */
a9263751 3419 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
682a3385 3420 ac.nodemask, &ac.preferred_zone);
5bb1b169
MG
3421 if (!ac.preferred_zone) {
3422 page = NULL;
4fcb0971 3423 goto no_zone;
5bb1b169
MG
3424 }
3425
a9263751 3426 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3427
3428 /* First allocation attempt */
a9263751 3429 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3430 if (likely(page))
3431 goto out;
11e33f6a 3432
4fcb0971
MG
3433 /*
3434 * Runtime PM, block IO and its error handling path can deadlock
3435 * because I/O on the device might not complete.
3436 */
3437 alloc_mask = memalloc_noio_flags(gfp_mask);
3438 ac.spread_dirty_pages = false;
23f086f9 3439
4fcb0971 3440 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3441
4fcb0971 3442no_zone:
cc9a6c87
MG
3443 /*
3444 * When updating a task's mems_allowed, it is possible to race with
3445 * parallel threads in such a way that an allocation can fail while
3446 * the mask is being updated. If a page allocation is about to fail,
3447 * check if the cpuset changed during allocation and if so, retry.
3448 */
83d4ca81
MG
3449 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3450 alloc_mask = gfp_mask;
cc9a6c87 3451 goto retry_cpuset;
83d4ca81 3452 }
cc9a6c87 3453
4fcb0971
MG
3454out:
3455 if (kmemcheck_enabled && page)
3456 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3457
3458 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3459
11e33f6a 3460 return page;
1da177e4 3461}
d239171e 3462EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3463
3464/*
3465 * Common helper functions.
3466 */
920c7a5d 3467unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3468{
945a1113
AM
3469 struct page *page;
3470
3471 /*
3472 * __get_free_pages() returns a 32-bit address, which cannot represent
3473 * a highmem page
3474 */
3475 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3476
1da177e4
LT
3477 page = alloc_pages(gfp_mask, order);
3478 if (!page)
3479 return 0;
3480 return (unsigned long) page_address(page);
3481}
1da177e4
LT
3482EXPORT_SYMBOL(__get_free_pages);
3483
920c7a5d 3484unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3485{
945a1113 3486 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3487}
1da177e4
LT
3488EXPORT_SYMBOL(get_zeroed_page);
3489
920c7a5d 3490void __free_pages(struct page *page, unsigned int order)
1da177e4 3491{
b5810039 3492 if (put_page_testzero(page)) {
1da177e4 3493 if (order == 0)
b745bc85 3494 free_hot_cold_page(page, false);
1da177e4
LT
3495 else
3496 __free_pages_ok(page, order);
3497 }
3498}
3499
3500EXPORT_SYMBOL(__free_pages);
3501
920c7a5d 3502void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3503{
3504 if (addr != 0) {
725d704e 3505 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3506 __free_pages(virt_to_page((void *)addr), order);
3507 }
3508}
3509
3510EXPORT_SYMBOL(free_pages);
3511
b63ae8ca
AD
3512/*
3513 * Page Fragment:
3514 * An arbitrary-length arbitrary-offset area of memory which resides
3515 * within a 0 or higher order page. Multiple fragments within that page
3516 * are individually refcounted, in the page's reference counter.
3517 *
3518 * The page_frag functions below provide a simple allocation framework for
3519 * page fragments. This is used by the network stack and network device
3520 * drivers to provide a backing region of memory for use as either an
3521 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3522 */
3523static struct page *__page_frag_refill(struct page_frag_cache *nc,
3524 gfp_t gfp_mask)
3525{
3526 struct page *page = NULL;
3527 gfp_t gfp = gfp_mask;
3528
3529#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3530 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3531 __GFP_NOMEMALLOC;
3532 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3533 PAGE_FRAG_CACHE_MAX_ORDER);
3534 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3535#endif
3536 if (unlikely(!page))
3537 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3538
3539 nc->va = page ? page_address(page) : NULL;
3540
3541 return page;
3542}
3543
3544void *__alloc_page_frag(struct page_frag_cache *nc,
3545 unsigned int fragsz, gfp_t gfp_mask)
3546{
3547 unsigned int size = PAGE_SIZE;
3548 struct page *page;
3549 int offset;
3550
3551 if (unlikely(!nc->va)) {
3552refill:
3553 page = __page_frag_refill(nc, gfp_mask);
3554 if (!page)
3555 return NULL;
3556
3557#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3558 /* if size can vary use size else just use PAGE_SIZE */
3559 size = nc->size;
3560#endif
3561 /* Even if we own the page, we do not use atomic_set().
3562 * This would break get_page_unless_zero() users.
3563 */
fe896d18 3564 page_ref_add(page, size - 1);
b63ae8ca
AD
3565
3566 /* reset page count bias and offset to start of new frag */
2f064f34 3567 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3568 nc->pagecnt_bias = size;
3569 nc->offset = size;
3570 }
3571
3572 offset = nc->offset - fragsz;
3573 if (unlikely(offset < 0)) {
3574 page = virt_to_page(nc->va);
3575
fe896d18 3576 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3577 goto refill;
3578
3579#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3580 /* if size can vary use size else just use PAGE_SIZE */
3581 size = nc->size;
3582#endif
3583 /* OK, page count is 0, we can safely set it */
fe896d18 3584 set_page_count(page, size);
b63ae8ca
AD
3585
3586 /* reset page count bias and offset to start of new frag */
3587 nc->pagecnt_bias = size;
3588 offset = size - fragsz;
3589 }
3590
3591 nc->pagecnt_bias--;
3592 nc->offset = offset;
3593
3594 return nc->va + offset;
3595}
3596EXPORT_SYMBOL(__alloc_page_frag);
3597
3598/*
3599 * Frees a page fragment allocated out of either a compound or order 0 page.
3600 */
3601void __free_page_frag(void *addr)
3602{
3603 struct page *page = virt_to_head_page(addr);
3604
3605 if (unlikely(put_page_testzero(page)))
3606 __free_pages_ok(page, compound_order(page));
3607}
3608EXPORT_SYMBOL(__free_page_frag);
3609
6a1a0d3b 3610/*
52383431 3611 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3612 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3613 * equivalent to alloc_pages.
6a1a0d3b 3614 *
52383431
VD
3615 * It should be used when the caller would like to use kmalloc, but since the
3616 * allocation is large, it has to fall back to the page allocator.
3617 */
3618struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3619{
3620 struct page *page;
52383431 3621
52383431 3622 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3623 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3624 __free_pages(page, order);
3625 page = NULL;
3626 }
52383431
VD
3627 return page;
3628}
3629
3630struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3631{
3632 struct page *page;
52383431 3633
52383431 3634 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3635 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3636 __free_pages(page, order);
3637 page = NULL;
3638 }
52383431
VD
3639 return page;
3640}
3641
3642/*
3643 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3644 * alloc_kmem_pages.
6a1a0d3b 3645 */
52383431 3646void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3647{
d05e83a6 3648 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3649 __free_pages(page, order);
3650}
3651
52383431 3652void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3653{
3654 if (addr != 0) {
3655 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3656 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3657 }
3658}
3659
d00181b9
KS
3660static void *make_alloc_exact(unsigned long addr, unsigned int order,
3661 size_t size)
ee85c2e1
AK
3662{
3663 if (addr) {
3664 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3665 unsigned long used = addr + PAGE_ALIGN(size);
3666
3667 split_page(virt_to_page((void *)addr), order);
3668 while (used < alloc_end) {
3669 free_page(used);
3670 used += PAGE_SIZE;
3671 }
3672 }
3673 return (void *)addr;
3674}
3675
2be0ffe2
TT
3676/**
3677 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3678 * @size: the number of bytes to allocate
3679 * @gfp_mask: GFP flags for the allocation
3680 *
3681 * This function is similar to alloc_pages(), except that it allocates the
3682 * minimum number of pages to satisfy the request. alloc_pages() can only
3683 * allocate memory in power-of-two pages.
3684 *
3685 * This function is also limited by MAX_ORDER.
3686 *
3687 * Memory allocated by this function must be released by free_pages_exact().
3688 */
3689void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3690{
3691 unsigned int order = get_order(size);
3692 unsigned long addr;
3693
3694 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3695 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3696}
3697EXPORT_SYMBOL(alloc_pages_exact);
3698
ee85c2e1
AK
3699/**
3700 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3701 * pages on a node.
b5e6ab58 3702 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3703 * @size: the number of bytes to allocate
3704 * @gfp_mask: GFP flags for the allocation
3705 *
3706 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3707 * back.
ee85c2e1 3708 */
e1931811 3709void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3710{
d00181b9 3711 unsigned int order = get_order(size);
ee85c2e1
AK
3712 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3713 if (!p)
3714 return NULL;
3715 return make_alloc_exact((unsigned long)page_address(p), order, size);
3716}
ee85c2e1 3717
2be0ffe2
TT
3718/**
3719 * free_pages_exact - release memory allocated via alloc_pages_exact()
3720 * @virt: the value returned by alloc_pages_exact.
3721 * @size: size of allocation, same value as passed to alloc_pages_exact().
3722 *
3723 * Release the memory allocated by a previous call to alloc_pages_exact.
3724 */
3725void free_pages_exact(void *virt, size_t size)
3726{
3727 unsigned long addr = (unsigned long)virt;
3728 unsigned long end = addr + PAGE_ALIGN(size);
3729
3730 while (addr < end) {
3731 free_page(addr);
3732 addr += PAGE_SIZE;
3733 }
3734}
3735EXPORT_SYMBOL(free_pages_exact);
3736
e0fb5815
ZY
3737/**
3738 * nr_free_zone_pages - count number of pages beyond high watermark
3739 * @offset: The zone index of the highest zone
3740 *
3741 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3742 * high watermark within all zones at or below a given zone index. For each
3743 * zone, the number of pages is calculated as:
834405c3 3744 * managed_pages - high_pages
e0fb5815 3745 */
ebec3862 3746static unsigned long nr_free_zone_pages(int offset)
1da177e4 3747{
dd1a239f 3748 struct zoneref *z;
54a6eb5c
MG
3749 struct zone *zone;
3750
e310fd43 3751 /* Just pick one node, since fallback list is circular */
ebec3862 3752 unsigned long sum = 0;
1da177e4 3753
0e88460d 3754 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3755
54a6eb5c 3756 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3757 unsigned long size = zone->managed_pages;
41858966 3758 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3759 if (size > high)
3760 sum += size - high;
1da177e4
LT
3761 }
3762
3763 return sum;
3764}
3765
e0fb5815
ZY
3766/**
3767 * nr_free_buffer_pages - count number of pages beyond high watermark
3768 *
3769 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3770 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3771 */
ebec3862 3772unsigned long nr_free_buffer_pages(void)
1da177e4 3773{
af4ca457 3774 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3775}
c2f1a551 3776EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3777
e0fb5815
ZY
3778/**
3779 * nr_free_pagecache_pages - count number of pages beyond high watermark
3780 *
3781 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3782 * high watermark within all zones.
1da177e4 3783 */
ebec3862 3784unsigned long nr_free_pagecache_pages(void)
1da177e4 3785{
2a1e274a 3786 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3787}
08e0f6a9
CL
3788
3789static inline void show_node(struct zone *zone)
1da177e4 3790{
e5adfffc 3791 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3792 printk("Node %d ", zone_to_nid(zone));
1da177e4 3793}
1da177e4 3794
d02bd27b
IR
3795long si_mem_available(void)
3796{
3797 long available;
3798 unsigned long pagecache;
3799 unsigned long wmark_low = 0;
3800 unsigned long pages[NR_LRU_LISTS];
3801 struct zone *zone;
3802 int lru;
3803
3804 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3805 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3806
3807 for_each_zone(zone)
3808 wmark_low += zone->watermark[WMARK_LOW];
3809
3810 /*
3811 * Estimate the amount of memory available for userspace allocations,
3812 * without causing swapping.
3813 */
3814 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3815
3816 /*
3817 * Not all the page cache can be freed, otherwise the system will
3818 * start swapping. Assume at least half of the page cache, or the
3819 * low watermark worth of cache, needs to stay.
3820 */
3821 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3822 pagecache -= min(pagecache / 2, wmark_low);
3823 available += pagecache;
3824
3825 /*
3826 * Part of the reclaimable slab consists of items that are in use,
3827 * and cannot be freed. Cap this estimate at the low watermark.
3828 */
3829 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3830 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3831
3832 if (available < 0)
3833 available = 0;
3834 return available;
3835}
3836EXPORT_SYMBOL_GPL(si_mem_available);
3837
1da177e4
LT
3838void si_meminfo(struct sysinfo *val)
3839{
3840 val->totalram = totalram_pages;
cc7452b6 3841 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3842 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3843 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3844 val->totalhigh = totalhigh_pages;
3845 val->freehigh = nr_free_highpages();
1da177e4
LT
3846 val->mem_unit = PAGE_SIZE;
3847}
3848
3849EXPORT_SYMBOL(si_meminfo);
3850
3851#ifdef CONFIG_NUMA
3852void si_meminfo_node(struct sysinfo *val, int nid)
3853{
cdd91a77
JL
3854 int zone_type; /* needs to be signed */
3855 unsigned long managed_pages = 0;
fc2bd799
JK
3856 unsigned long managed_highpages = 0;
3857 unsigned long free_highpages = 0;
1da177e4
LT
3858 pg_data_t *pgdat = NODE_DATA(nid);
3859
cdd91a77
JL
3860 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3861 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3862 val->totalram = managed_pages;
cc7452b6 3863 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3864 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3865#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3866 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3867 struct zone *zone = &pgdat->node_zones[zone_type];
3868
3869 if (is_highmem(zone)) {
3870 managed_highpages += zone->managed_pages;
3871 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3872 }
3873 }
3874 val->totalhigh = managed_highpages;
3875 val->freehigh = free_highpages;
98d2b0eb 3876#else
fc2bd799
JK
3877 val->totalhigh = managed_highpages;
3878 val->freehigh = free_highpages;
98d2b0eb 3879#endif
1da177e4
LT
3880 val->mem_unit = PAGE_SIZE;
3881}
3882#endif
3883
ddd588b5 3884/*
7bf02ea2
DR
3885 * Determine whether the node should be displayed or not, depending on whether
3886 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3887 */
7bf02ea2 3888bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3889{
3890 bool ret = false;
cc9a6c87 3891 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3892
3893 if (!(flags & SHOW_MEM_FILTER_NODES))
3894 goto out;
3895
cc9a6c87 3896 do {
d26914d1 3897 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3898 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3900out:
3901 return ret;
3902}
3903
1da177e4
LT
3904#define K(x) ((x) << (PAGE_SHIFT-10))
3905
377e4f16
RV
3906static void show_migration_types(unsigned char type)
3907{
3908 static const char types[MIGRATE_TYPES] = {
3909 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3910 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3911 [MIGRATE_RECLAIMABLE] = 'E',
3912 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3913#ifdef CONFIG_CMA
3914 [MIGRATE_CMA] = 'C',
3915#endif
194159fb 3916#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3917 [MIGRATE_ISOLATE] = 'I',
194159fb 3918#endif
377e4f16
RV
3919 };
3920 char tmp[MIGRATE_TYPES + 1];
3921 char *p = tmp;
3922 int i;
3923
3924 for (i = 0; i < MIGRATE_TYPES; i++) {
3925 if (type & (1 << i))
3926 *p++ = types[i];
3927 }
3928
3929 *p = '\0';
3930 printk("(%s) ", tmp);
3931}
3932
1da177e4
LT
3933/*
3934 * Show free area list (used inside shift_scroll-lock stuff)
3935 * We also calculate the percentage fragmentation. We do this by counting the
3936 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3937 *
3938 * Bits in @filter:
3939 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3940 * cpuset.
1da177e4 3941 */
7bf02ea2 3942void show_free_areas(unsigned int filter)
1da177e4 3943{
d1bfcdb8 3944 unsigned long free_pcp = 0;
c7241913 3945 int cpu;
1da177e4
LT
3946 struct zone *zone;
3947
ee99c71c 3948 for_each_populated_zone(zone) {
7bf02ea2 3949 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3950 continue;
d1bfcdb8 3951
761b0677
KK
3952 for_each_online_cpu(cpu)
3953 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3954 }
3955
a731286d
KM
3956 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3957 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3958 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3959 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3960 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3961 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3962 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3963 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3964 global_page_state(NR_ISOLATED_ANON),
3965 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3966 global_page_state(NR_INACTIVE_FILE),
a731286d 3967 global_page_state(NR_ISOLATED_FILE),
7b854121 3968 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3969 global_page_state(NR_FILE_DIRTY),
ce866b34 3970 global_page_state(NR_WRITEBACK),
fd39fc85 3971 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3972 global_page_state(NR_SLAB_RECLAIMABLE),
3973 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3974 global_page_state(NR_FILE_MAPPED),
4b02108a 3975 global_page_state(NR_SHMEM),
a25700a5 3976 global_page_state(NR_PAGETABLE),
d1ce749a 3977 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3978 global_page_state(NR_FREE_PAGES),
3979 free_pcp,
d1ce749a 3980 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3981
ee99c71c 3982 for_each_populated_zone(zone) {
1da177e4
LT
3983 int i;
3984
7bf02ea2 3985 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3986 continue;
d1bfcdb8
KK
3987
3988 free_pcp = 0;
3989 for_each_online_cpu(cpu)
3990 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3991
1da177e4
LT
3992 show_node(zone);
3993 printk("%s"
3994 " free:%lukB"
3995 " min:%lukB"
3996 " low:%lukB"
3997 " high:%lukB"
4f98a2fe
RR
3998 " active_anon:%lukB"
3999 " inactive_anon:%lukB"
4000 " active_file:%lukB"
4001 " inactive_file:%lukB"
7b854121 4002 " unevictable:%lukB"
a731286d
KM
4003 " isolated(anon):%lukB"
4004 " isolated(file):%lukB"
1da177e4 4005 " present:%lukB"
9feedc9d 4006 " managed:%lukB"
4a0aa73f
KM
4007 " mlocked:%lukB"
4008 " dirty:%lukB"
4009 " writeback:%lukB"
4010 " mapped:%lukB"
4b02108a 4011 " shmem:%lukB"
4a0aa73f
KM
4012 " slab_reclaimable:%lukB"
4013 " slab_unreclaimable:%lukB"
c6a7f572 4014 " kernel_stack:%lukB"
4a0aa73f
KM
4015 " pagetables:%lukB"
4016 " unstable:%lukB"
4017 " bounce:%lukB"
d1bfcdb8
KK
4018 " free_pcp:%lukB"
4019 " local_pcp:%ukB"
d1ce749a 4020 " free_cma:%lukB"
4a0aa73f 4021 " writeback_tmp:%lukB"
1da177e4
LT
4022 " pages_scanned:%lu"
4023 " all_unreclaimable? %s"
4024 "\n",
4025 zone->name,
88f5acf8 4026 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4027 K(min_wmark_pages(zone)),
4028 K(low_wmark_pages(zone)),
4029 K(high_wmark_pages(zone)),
4f98a2fe
RR
4030 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4031 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4032 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4033 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4034 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4035 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4036 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4037 K(zone->present_pages),
9feedc9d 4038 K(zone->managed_pages),
4a0aa73f
KM
4039 K(zone_page_state(zone, NR_MLOCK)),
4040 K(zone_page_state(zone, NR_FILE_DIRTY)),
4041 K(zone_page_state(zone, NR_WRITEBACK)),
4042 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4043 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4044 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4045 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4046 zone_page_state(zone, NR_KERNEL_STACK) *
4047 THREAD_SIZE / 1024,
4a0aa73f
KM
4048 K(zone_page_state(zone, NR_PAGETABLE)),
4049 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4050 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4051 K(free_pcp),
4052 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4053 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4054 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4055 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4056 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4057 );
4058 printk("lowmem_reserve[]:");
4059 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4060 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4061 printk("\n");
4062 }
4063
ee99c71c 4064 for_each_populated_zone(zone) {
d00181b9
KS
4065 unsigned int order;
4066 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4067 unsigned char types[MAX_ORDER];
1da177e4 4068
7bf02ea2 4069 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4070 continue;
1da177e4
LT
4071 show_node(zone);
4072 printk("%s: ", zone->name);
1da177e4
LT
4073
4074 spin_lock_irqsave(&zone->lock, flags);
4075 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4076 struct free_area *area = &zone->free_area[order];
4077 int type;
4078
4079 nr[order] = area->nr_free;
8f9de51a 4080 total += nr[order] << order;
377e4f16
RV
4081
4082 types[order] = 0;
4083 for (type = 0; type < MIGRATE_TYPES; type++) {
4084 if (!list_empty(&area->free_list[type]))
4085 types[order] |= 1 << type;
4086 }
1da177e4
LT
4087 }
4088 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4089 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4090 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4091 if (nr[order])
4092 show_migration_types(types[order]);
4093 }
1da177e4
LT
4094 printk("= %lukB\n", K(total));
4095 }
4096
949f7ec5
DR
4097 hugetlb_show_meminfo();
4098
e6f3602d
LW
4099 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4100
1da177e4
LT
4101 show_swap_cache_info();
4102}
4103
19770b32
MG
4104static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4105{
4106 zoneref->zone = zone;
4107 zoneref->zone_idx = zone_idx(zone);
4108}
4109
1da177e4
LT
4110/*
4111 * Builds allocation fallback zone lists.
1a93205b
CL
4112 *
4113 * Add all populated zones of a node to the zonelist.
1da177e4 4114 */
f0c0b2b8 4115static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4116 int nr_zones)
1da177e4 4117{
1a93205b 4118 struct zone *zone;
bc732f1d 4119 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4120
4121 do {
2f6726e5 4122 zone_type--;
070f8032 4123 zone = pgdat->node_zones + zone_type;
1a93205b 4124 if (populated_zone(zone)) {
dd1a239f
MG
4125 zoneref_set_zone(zone,
4126 &zonelist->_zonerefs[nr_zones++]);
070f8032 4127 check_highest_zone(zone_type);
1da177e4 4128 }
2f6726e5 4129 } while (zone_type);
bc732f1d 4130
070f8032 4131 return nr_zones;
1da177e4
LT
4132}
4133
f0c0b2b8
KH
4134
4135/*
4136 * zonelist_order:
4137 * 0 = automatic detection of better ordering.
4138 * 1 = order by ([node] distance, -zonetype)
4139 * 2 = order by (-zonetype, [node] distance)
4140 *
4141 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4142 * the same zonelist. So only NUMA can configure this param.
4143 */
4144#define ZONELIST_ORDER_DEFAULT 0
4145#define ZONELIST_ORDER_NODE 1
4146#define ZONELIST_ORDER_ZONE 2
4147
4148/* zonelist order in the kernel.
4149 * set_zonelist_order() will set this to NODE or ZONE.
4150 */
4151static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4152static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4153
4154
1da177e4 4155#ifdef CONFIG_NUMA
f0c0b2b8
KH
4156/* The value user specified ....changed by config */
4157static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4158/* string for sysctl */
4159#define NUMA_ZONELIST_ORDER_LEN 16
4160char numa_zonelist_order[16] = "default";
4161
4162/*
4163 * interface for configure zonelist ordering.
4164 * command line option "numa_zonelist_order"
4165 * = "[dD]efault - default, automatic configuration.
4166 * = "[nN]ode - order by node locality, then by zone within node
4167 * = "[zZ]one - order by zone, then by locality within zone
4168 */
4169
4170static int __parse_numa_zonelist_order(char *s)
4171{
4172 if (*s == 'd' || *s == 'D') {
4173 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4174 } else if (*s == 'n' || *s == 'N') {
4175 user_zonelist_order = ZONELIST_ORDER_NODE;
4176 } else if (*s == 'z' || *s == 'Z') {
4177 user_zonelist_order = ZONELIST_ORDER_ZONE;
4178 } else {
1170532b 4179 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4180 return -EINVAL;
4181 }
4182 return 0;
4183}
4184
4185static __init int setup_numa_zonelist_order(char *s)
4186{
ecb256f8
VL
4187 int ret;
4188
4189 if (!s)
4190 return 0;
4191
4192 ret = __parse_numa_zonelist_order(s);
4193 if (ret == 0)
4194 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4195
4196 return ret;
f0c0b2b8
KH
4197}
4198early_param("numa_zonelist_order", setup_numa_zonelist_order);
4199
4200/*
4201 * sysctl handler for numa_zonelist_order
4202 */
cccad5b9 4203int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4204 void __user *buffer, size_t *length,
f0c0b2b8
KH
4205 loff_t *ppos)
4206{
4207 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4208 int ret;
443c6f14 4209 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4210
443c6f14 4211 mutex_lock(&zl_order_mutex);
dacbde09
CG
4212 if (write) {
4213 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4214 ret = -EINVAL;
4215 goto out;
4216 }
4217 strcpy(saved_string, (char *)table->data);
4218 }
8d65af78 4219 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4220 if (ret)
443c6f14 4221 goto out;
f0c0b2b8
KH
4222 if (write) {
4223 int oldval = user_zonelist_order;
dacbde09
CG
4224
4225 ret = __parse_numa_zonelist_order((char *)table->data);
4226 if (ret) {
f0c0b2b8
KH
4227 /*
4228 * bogus value. restore saved string
4229 */
dacbde09 4230 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4231 NUMA_ZONELIST_ORDER_LEN);
4232 user_zonelist_order = oldval;
4eaf3f64
HL
4233 } else if (oldval != user_zonelist_order) {
4234 mutex_lock(&zonelists_mutex);
9adb62a5 4235 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4236 mutex_unlock(&zonelists_mutex);
4237 }
f0c0b2b8 4238 }
443c6f14
AK
4239out:
4240 mutex_unlock(&zl_order_mutex);
4241 return ret;
f0c0b2b8
KH
4242}
4243
4244
62bc62a8 4245#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4246static int node_load[MAX_NUMNODES];
4247
1da177e4 4248/**
4dc3b16b 4249 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4250 * @node: node whose fallback list we're appending
4251 * @used_node_mask: nodemask_t of already used nodes
4252 *
4253 * We use a number of factors to determine which is the next node that should
4254 * appear on a given node's fallback list. The node should not have appeared
4255 * already in @node's fallback list, and it should be the next closest node
4256 * according to the distance array (which contains arbitrary distance values
4257 * from each node to each node in the system), and should also prefer nodes
4258 * with no CPUs, since presumably they'll have very little allocation pressure
4259 * on them otherwise.
4260 * It returns -1 if no node is found.
4261 */
f0c0b2b8 4262static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4263{
4cf808eb 4264 int n, val;
1da177e4 4265 int min_val = INT_MAX;
00ef2d2f 4266 int best_node = NUMA_NO_NODE;
a70f7302 4267 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4268
4cf808eb
LT
4269 /* Use the local node if we haven't already */
4270 if (!node_isset(node, *used_node_mask)) {
4271 node_set(node, *used_node_mask);
4272 return node;
4273 }
1da177e4 4274
4b0ef1fe 4275 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4276
4277 /* Don't want a node to appear more than once */
4278 if (node_isset(n, *used_node_mask))
4279 continue;
4280
1da177e4
LT
4281 /* Use the distance array to find the distance */
4282 val = node_distance(node, n);
4283
4cf808eb
LT
4284 /* Penalize nodes under us ("prefer the next node") */
4285 val += (n < node);
4286
1da177e4 4287 /* Give preference to headless and unused nodes */
a70f7302
RR
4288 tmp = cpumask_of_node(n);
4289 if (!cpumask_empty(tmp))
1da177e4
LT
4290 val += PENALTY_FOR_NODE_WITH_CPUS;
4291
4292 /* Slight preference for less loaded node */
4293 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4294 val += node_load[n];
4295
4296 if (val < min_val) {
4297 min_val = val;
4298 best_node = n;
4299 }
4300 }
4301
4302 if (best_node >= 0)
4303 node_set(best_node, *used_node_mask);
4304
4305 return best_node;
4306}
4307
f0c0b2b8
KH
4308
4309/*
4310 * Build zonelists ordered by node and zones within node.
4311 * This results in maximum locality--normal zone overflows into local
4312 * DMA zone, if any--but risks exhausting DMA zone.
4313 */
4314static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4315{
f0c0b2b8 4316 int j;
1da177e4 4317 struct zonelist *zonelist;
f0c0b2b8 4318
54a6eb5c 4319 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4320 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4321 ;
bc732f1d 4322 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4323 zonelist->_zonerefs[j].zone = NULL;
4324 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4325}
4326
523b9458
CL
4327/*
4328 * Build gfp_thisnode zonelists
4329 */
4330static void build_thisnode_zonelists(pg_data_t *pgdat)
4331{
523b9458
CL
4332 int j;
4333 struct zonelist *zonelist;
4334
54a6eb5c 4335 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4336 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4337 zonelist->_zonerefs[j].zone = NULL;
4338 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4339}
4340
f0c0b2b8
KH
4341/*
4342 * Build zonelists ordered by zone and nodes within zones.
4343 * This results in conserving DMA zone[s] until all Normal memory is
4344 * exhausted, but results in overflowing to remote node while memory
4345 * may still exist in local DMA zone.
4346 */
4347static int node_order[MAX_NUMNODES];
4348
4349static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4350{
f0c0b2b8
KH
4351 int pos, j, node;
4352 int zone_type; /* needs to be signed */
4353 struct zone *z;
4354 struct zonelist *zonelist;
4355
54a6eb5c
MG
4356 zonelist = &pgdat->node_zonelists[0];
4357 pos = 0;
4358 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4359 for (j = 0; j < nr_nodes; j++) {
4360 node = node_order[j];
4361 z = &NODE_DATA(node)->node_zones[zone_type];
4362 if (populated_zone(z)) {
dd1a239f
MG
4363 zoneref_set_zone(z,
4364 &zonelist->_zonerefs[pos++]);
54a6eb5c 4365 check_highest_zone(zone_type);
f0c0b2b8
KH
4366 }
4367 }
f0c0b2b8 4368 }
dd1a239f
MG
4369 zonelist->_zonerefs[pos].zone = NULL;
4370 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4371}
4372
3193913c
MG
4373#if defined(CONFIG_64BIT)
4374/*
4375 * Devices that require DMA32/DMA are relatively rare and do not justify a
4376 * penalty to every machine in case the specialised case applies. Default
4377 * to Node-ordering on 64-bit NUMA machines
4378 */
4379static int default_zonelist_order(void)
4380{
4381 return ZONELIST_ORDER_NODE;
4382}
4383#else
4384/*
4385 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4386 * by the kernel. If processes running on node 0 deplete the low memory zone
4387 * then reclaim will occur more frequency increasing stalls and potentially
4388 * be easier to OOM if a large percentage of the zone is under writeback or
4389 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4390 * Hence, default to zone ordering on 32-bit.
4391 */
f0c0b2b8
KH
4392static int default_zonelist_order(void)
4393{
f0c0b2b8
KH
4394 return ZONELIST_ORDER_ZONE;
4395}
3193913c 4396#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4397
4398static void set_zonelist_order(void)
4399{
4400 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4401 current_zonelist_order = default_zonelist_order();
4402 else
4403 current_zonelist_order = user_zonelist_order;
4404}
4405
4406static void build_zonelists(pg_data_t *pgdat)
4407{
c00eb15a 4408 int i, node, load;
1da177e4 4409 nodemask_t used_mask;
f0c0b2b8
KH
4410 int local_node, prev_node;
4411 struct zonelist *zonelist;
d00181b9 4412 unsigned int order = current_zonelist_order;
1da177e4
LT
4413
4414 /* initialize zonelists */
523b9458 4415 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4416 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4417 zonelist->_zonerefs[0].zone = NULL;
4418 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4419 }
4420
4421 /* NUMA-aware ordering of nodes */
4422 local_node = pgdat->node_id;
62bc62a8 4423 load = nr_online_nodes;
1da177e4
LT
4424 prev_node = local_node;
4425 nodes_clear(used_mask);
f0c0b2b8 4426
f0c0b2b8 4427 memset(node_order, 0, sizeof(node_order));
c00eb15a 4428 i = 0;
f0c0b2b8 4429
1da177e4
LT
4430 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4431 /*
4432 * We don't want to pressure a particular node.
4433 * So adding penalty to the first node in same
4434 * distance group to make it round-robin.
4435 */
957f822a
DR
4436 if (node_distance(local_node, node) !=
4437 node_distance(local_node, prev_node))
f0c0b2b8
KH
4438 node_load[node] = load;
4439
1da177e4
LT
4440 prev_node = node;
4441 load--;
f0c0b2b8
KH
4442 if (order == ZONELIST_ORDER_NODE)
4443 build_zonelists_in_node_order(pgdat, node);
4444 else
c00eb15a 4445 node_order[i++] = node; /* remember order */
f0c0b2b8 4446 }
1da177e4 4447
f0c0b2b8
KH
4448 if (order == ZONELIST_ORDER_ZONE) {
4449 /* calculate node order -- i.e., DMA last! */
c00eb15a 4450 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4451 }
523b9458
CL
4452
4453 build_thisnode_zonelists(pgdat);
1da177e4
LT
4454}
4455
7aac7898
LS
4456#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4457/*
4458 * Return node id of node used for "local" allocations.
4459 * I.e., first node id of first zone in arg node's generic zonelist.
4460 * Used for initializing percpu 'numa_mem', which is used primarily
4461 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4462 */
4463int local_memory_node(int node)
4464{
4465 struct zone *zone;
4466
4467 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4468 gfp_zone(GFP_KERNEL),
4469 NULL,
4470 &zone);
4471 return zone->node;
4472}
4473#endif
f0c0b2b8 4474
1da177e4
LT
4475#else /* CONFIG_NUMA */
4476
f0c0b2b8
KH
4477static void set_zonelist_order(void)
4478{
4479 current_zonelist_order = ZONELIST_ORDER_ZONE;
4480}
4481
4482static void build_zonelists(pg_data_t *pgdat)
1da177e4 4483{
19655d34 4484 int node, local_node;
54a6eb5c
MG
4485 enum zone_type j;
4486 struct zonelist *zonelist;
1da177e4
LT
4487
4488 local_node = pgdat->node_id;
1da177e4 4489
54a6eb5c 4490 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4491 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4492
54a6eb5c
MG
4493 /*
4494 * Now we build the zonelist so that it contains the zones
4495 * of all the other nodes.
4496 * We don't want to pressure a particular node, so when
4497 * building the zones for node N, we make sure that the
4498 * zones coming right after the local ones are those from
4499 * node N+1 (modulo N)
4500 */
4501 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4502 if (!node_online(node))
4503 continue;
bc732f1d 4504 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4505 }
54a6eb5c
MG
4506 for (node = 0; node < local_node; node++) {
4507 if (!node_online(node))
4508 continue;
bc732f1d 4509 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4510 }
4511
dd1a239f
MG
4512 zonelist->_zonerefs[j].zone = NULL;
4513 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4514}
4515
4516#endif /* CONFIG_NUMA */
4517
99dcc3e5
CL
4518/*
4519 * Boot pageset table. One per cpu which is going to be used for all
4520 * zones and all nodes. The parameters will be set in such a way
4521 * that an item put on a list will immediately be handed over to
4522 * the buddy list. This is safe since pageset manipulation is done
4523 * with interrupts disabled.
4524 *
4525 * The boot_pagesets must be kept even after bootup is complete for
4526 * unused processors and/or zones. They do play a role for bootstrapping
4527 * hotplugged processors.
4528 *
4529 * zoneinfo_show() and maybe other functions do
4530 * not check if the processor is online before following the pageset pointer.
4531 * Other parts of the kernel may not check if the zone is available.
4532 */
4533static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4534static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4535static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4536
4eaf3f64
HL
4537/*
4538 * Global mutex to protect against size modification of zonelists
4539 * as well as to serialize pageset setup for the new populated zone.
4540 */
4541DEFINE_MUTEX(zonelists_mutex);
4542
9b1a4d38 4543/* return values int ....just for stop_machine() */
4ed7e022 4544static int __build_all_zonelists(void *data)
1da177e4 4545{
6811378e 4546 int nid;
99dcc3e5 4547 int cpu;
9adb62a5 4548 pg_data_t *self = data;
9276b1bc 4549
7f9cfb31
BL
4550#ifdef CONFIG_NUMA
4551 memset(node_load, 0, sizeof(node_load));
4552#endif
9adb62a5
JL
4553
4554 if (self && !node_online(self->node_id)) {
4555 build_zonelists(self);
9adb62a5
JL
4556 }
4557
9276b1bc 4558 for_each_online_node(nid) {
7ea1530a
CL
4559 pg_data_t *pgdat = NODE_DATA(nid);
4560
4561 build_zonelists(pgdat);
9276b1bc 4562 }
99dcc3e5
CL
4563
4564 /*
4565 * Initialize the boot_pagesets that are going to be used
4566 * for bootstrapping processors. The real pagesets for
4567 * each zone will be allocated later when the per cpu
4568 * allocator is available.
4569 *
4570 * boot_pagesets are used also for bootstrapping offline
4571 * cpus if the system is already booted because the pagesets
4572 * are needed to initialize allocators on a specific cpu too.
4573 * F.e. the percpu allocator needs the page allocator which
4574 * needs the percpu allocator in order to allocate its pagesets
4575 * (a chicken-egg dilemma).
4576 */
7aac7898 4577 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4578 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4579
7aac7898
LS
4580#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4581 /*
4582 * We now know the "local memory node" for each node--
4583 * i.e., the node of the first zone in the generic zonelist.
4584 * Set up numa_mem percpu variable for on-line cpus. During
4585 * boot, only the boot cpu should be on-line; we'll init the
4586 * secondary cpus' numa_mem as they come on-line. During
4587 * node/memory hotplug, we'll fixup all on-line cpus.
4588 */
4589 if (cpu_online(cpu))
4590 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4591#endif
4592 }
4593
6811378e
YG
4594 return 0;
4595}
4596
061f67bc
RV
4597static noinline void __init
4598build_all_zonelists_init(void)
4599{
4600 __build_all_zonelists(NULL);
4601 mminit_verify_zonelist();
4602 cpuset_init_current_mems_allowed();
4603}
4604
4eaf3f64
HL
4605/*
4606 * Called with zonelists_mutex held always
4607 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4608 *
4609 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4610 * [we're only called with non-NULL zone through __meminit paths] and
4611 * (2) call of __init annotated helper build_all_zonelists_init
4612 * [protected by SYSTEM_BOOTING].
4eaf3f64 4613 */
9adb62a5 4614void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4615{
f0c0b2b8
KH
4616 set_zonelist_order();
4617
6811378e 4618 if (system_state == SYSTEM_BOOTING) {
061f67bc 4619 build_all_zonelists_init();
6811378e 4620 } else {
e9959f0f 4621#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4622 if (zone)
4623 setup_zone_pageset(zone);
e9959f0f 4624#endif
dd1895e2
CS
4625 /* we have to stop all cpus to guarantee there is no user
4626 of zonelist */
9adb62a5 4627 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4628 /* cpuset refresh routine should be here */
4629 }
bd1e22b8 4630 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4631 /*
4632 * Disable grouping by mobility if the number of pages in the
4633 * system is too low to allow the mechanism to work. It would be
4634 * more accurate, but expensive to check per-zone. This check is
4635 * made on memory-hotadd so a system can start with mobility
4636 * disabled and enable it later
4637 */
d9c23400 4638 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4639 page_group_by_mobility_disabled = 1;
4640 else
4641 page_group_by_mobility_disabled = 0;
4642
756a025f
JP
4643 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4644 nr_online_nodes,
4645 zonelist_order_name[current_zonelist_order],
4646 page_group_by_mobility_disabled ? "off" : "on",
4647 vm_total_pages);
f0c0b2b8 4648#ifdef CONFIG_NUMA
f88dfff5 4649 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4650#endif
1da177e4
LT
4651}
4652
4653/*
4654 * Helper functions to size the waitqueue hash table.
4655 * Essentially these want to choose hash table sizes sufficiently
4656 * large so that collisions trying to wait on pages are rare.
4657 * But in fact, the number of active page waitqueues on typical
4658 * systems is ridiculously low, less than 200. So this is even
4659 * conservative, even though it seems large.
4660 *
4661 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4662 * waitqueues, i.e. the size of the waitq table given the number of pages.
4663 */
4664#define PAGES_PER_WAITQUEUE 256
4665
cca448fe 4666#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4667static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4668{
4669 unsigned long size = 1;
4670
4671 pages /= PAGES_PER_WAITQUEUE;
4672
4673 while (size < pages)
4674 size <<= 1;
4675
4676 /*
4677 * Once we have dozens or even hundreds of threads sleeping
4678 * on IO we've got bigger problems than wait queue collision.
4679 * Limit the size of the wait table to a reasonable size.
4680 */
4681 size = min(size, 4096UL);
4682
4683 return max(size, 4UL);
4684}
cca448fe
YG
4685#else
4686/*
4687 * A zone's size might be changed by hot-add, so it is not possible to determine
4688 * a suitable size for its wait_table. So we use the maximum size now.
4689 *
4690 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4691 *
4692 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4693 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4694 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4695 *
4696 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4697 * or more by the traditional way. (See above). It equals:
4698 *
4699 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4700 * ia64(16K page size) : = ( 8G + 4M)byte.
4701 * powerpc (64K page size) : = (32G +16M)byte.
4702 */
4703static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4704{
4705 return 4096UL;
4706}
4707#endif
1da177e4
LT
4708
4709/*
4710 * This is an integer logarithm so that shifts can be used later
4711 * to extract the more random high bits from the multiplicative
4712 * hash function before the remainder is taken.
4713 */
4714static inline unsigned long wait_table_bits(unsigned long size)
4715{
4716 return ffz(~size);
4717}
4718
1da177e4
LT
4719/*
4720 * Initially all pages are reserved - free ones are freed
4721 * up by free_all_bootmem() once the early boot process is
4722 * done. Non-atomic initialization, single-pass.
4723 */
c09b4240 4724void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4725 unsigned long start_pfn, enum memmap_context context)
1da177e4 4726{
4b94ffdc 4727 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4728 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4729 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4730 unsigned long pfn;
3a80a7fa 4731 unsigned long nr_initialised = 0;
342332e6
TI
4732#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4733 struct memblock_region *r = NULL, *tmp;
4734#endif
1da177e4 4735
22b31eec
HD
4736 if (highest_memmap_pfn < end_pfn - 1)
4737 highest_memmap_pfn = end_pfn - 1;
4738
4b94ffdc
DW
4739 /*
4740 * Honor reservation requested by the driver for this ZONE_DEVICE
4741 * memory
4742 */
4743 if (altmap && start_pfn == altmap->base_pfn)
4744 start_pfn += altmap->reserve;
4745
cbe8dd4a 4746 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4747 /*
b72d0ffb
AM
4748 * There can be holes in boot-time mem_map[]s handed to this
4749 * function. They do not exist on hotplugged memory.
a2f3aa02 4750 */
b72d0ffb
AM
4751 if (context != MEMMAP_EARLY)
4752 goto not_early;
4753
4754 if (!early_pfn_valid(pfn))
4755 continue;
4756 if (!early_pfn_in_nid(pfn, nid))
4757 continue;
4758 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4759 break;
342332e6
TI
4760
4761#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4762 /*
4763 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4764 * from zone_movable_pfn[nid] to end of each node should be
4765 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4766 */
4767 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4768 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4769 continue;
342332e6 4770
b72d0ffb
AM
4771 /*
4772 * Check given memblock attribute by firmware which can affect
4773 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4774 * mirrored, it's an overlapped memmap init. skip it.
4775 */
4776 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4777 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4778 for_each_memblock(memory, tmp)
4779 if (pfn < memblock_region_memory_end_pfn(tmp))
4780 break;
4781 r = tmp;
4782 }
4783 if (pfn >= memblock_region_memory_base_pfn(r) &&
4784 memblock_is_mirror(r)) {
4785 /* already initialized as NORMAL */
4786 pfn = memblock_region_memory_end_pfn(r);
4787 continue;
342332e6 4788 }
a2f3aa02 4789 }
b72d0ffb 4790#endif
ac5d2539 4791
b72d0ffb 4792not_early:
ac5d2539
MG
4793 /*
4794 * Mark the block movable so that blocks are reserved for
4795 * movable at startup. This will force kernel allocations
4796 * to reserve their blocks rather than leaking throughout
4797 * the address space during boot when many long-lived
974a786e 4798 * kernel allocations are made.
ac5d2539
MG
4799 *
4800 * bitmap is created for zone's valid pfn range. but memmap
4801 * can be created for invalid pages (for alignment)
4802 * check here not to call set_pageblock_migratetype() against
4803 * pfn out of zone.
4804 */
4805 if (!(pfn & (pageblock_nr_pages - 1))) {
4806 struct page *page = pfn_to_page(pfn);
4807
4808 __init_single_page(page, pfn, zone, nid);
4809 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4810 } else {
4811 __init_single_pfn(pfn, zone, nid);
4812 }
1da177e4
LT
4813 }
4814}
4815
1e548deb 4816static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4817{
7aeb09f9 4818 unsigned int order, t;
b2a0ac88
MG
4819 for_each_migratetype_order(order, t) {
4820 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4821 zone->free_area[order].nr_free = 0;
4822 }
4823}
4824
4825#ifndef __HAVE_ARCH_MEMMAP_INIT
4826#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4827 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4828#endif
4829
7cd2b0a3 4830static int zone_batchsize(struct zone *zone)
e7c8d5c9 4831{
3a6be87f 4832#ifdef CONFIG_MMU
e7c8d5c9
CL
4833 int batch;
4834
4835 /*
4836 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4837 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4838 *
4839 * OK, so we don't know how big the cache is. So guess.
4840 */
b40da049 4841 batch = zone->managed_pages / 1024;
ba56e91c
SR
4842 if (batch * PAGE_SIZE > 512 * 1024)
4843 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4844 batch /= 4; /* We effectively *= 4 below */
4845 if (batch < 1)
4846 batch = 1;
4847
4848 /*
0ceaacc9
NP
4849 * Clamp the batch to a 2^n - 1 value. Having a power
4850 * of 2 value was found to be more likely to have
4851 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4852 *
0ceaacc9
NP
4853 * For example if 2 tasks are alternately allocating
4854 * batches of pages, one task can end up with a lot
4855 * of pages of one half of the possible page colors
4856 * and the other with pages of the other colors.
e7c8d5c9 4857 */
9155203a 4858 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4859
e7c8d5c9 4860 return batch;
3a6be87f
DH
4861
4862#else
4863 /* The deferral and batching of frees should be suppressed under NOMMU
4864 * conditions.
4865 *
4866 * The problem is that NOMMU needs to be able to allocate large chunks
4867 * of contiguous memory as there's no hardware page translation to
4868 * assemble apparent contiguous memory from discontiguous pages.
4869 *
4870 * Queueing large contiguous runs of pages for batching, however,
4871 * causes the pages to actually be freed in smaller chunks. As there
4872 * can be a significant delay between the individual batches being
4873 * recycled, this leads to the once large chunks of space being
4874 * fragmented and becoming unavailable for high-order allocations.
4875 */
4876 return 0;
4877#endif
e7c8d5c9
CL
4878}
4879
8d7a8fa9
CS
4880/*
4881 * pcp->high and pcp->batch values are related and dependent on one another:
4882 * ->batch must never be higher then ->high.
4883 * The following function updates them in a safe manner without read side
4884 * locking.
4885 *
4886 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4887 * those fields changing asynchronously (acording the the above rule).
4888 *
4889 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4890 * outside of boot time (or some other assurance that no concurrent updaters
4891 * exist).
4892 */
4893static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4894 unsigned long batch)
4895{
4896 /* start with a fail safe value for batch */
4897 pcp->batch = 1;
4898 smp_wmb();
4899
4900 /* Update high, then batch, in order */
4901 pcp->high = high;
4902 smp_wmb();
4903
4904 pcp->batch = batch;
4905}
4906
3664033c 4907/* a companion to pageset_set_high() */
4008bab7
CS
4908static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4909{
8d7a8fa9 4910 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4911}
4912
88c90dbc 4913static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4914{
4915 struct per_cpu_pages *pcp;
5f8dcc21 4916 int migratetype;
2caaad41 4917
1c6fe946
MD
4918 memset(p, 0, sizeof(*p));
4919
3dfa5721 4920 pcp = &p->pcp;
2caaad41 4921 pcp->count = 0;
5f8dcc21
MG
4922 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4923 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4924}
4925
88c90dbc
CS
4926static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4927{
4928 pageset_init(p);
4929 pageset_set_batch(p, batch);
4930}
4931
8ad4b1fb 4932/*
3664033c 4933 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4934 * to the value high for the pageset p.
4935 */
3664033c 4936static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4937 unsigned long high)
4938{
8d7a8fa9
CS
4939 unsigned long batch = max(1UL, high / 4);
4940 if ((high / 4) > (PAGE_SHIFT * 8))
4941 batch = PAGE_SHIFT * 8;
8ad4b1fb 4942
8d7a8fa9 4943 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4944}
4945
7cd2b0a3
DR
4946static void pageset_set_high_and_batch(struct zone *zone,
4947 struct per_cpu_pageset *pcp)
56cef2b8 4948{
56cef2b8 4949 if (percpu_pagelist_fraction)
3664033c 4950 pageset_set_high(pcp,
56cef2b8
CS
4951 (zone->managed_pages /
4952 percpu_pagelist_fraction));
4953 else
4954 pageset_set_batch(pcp, zone_batchsize(zone));
4955}
4956
169f6c19
CS
4957static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4958{
4959 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4960
4961 pageset_init(pcp);
4962 pageset_set_high_and_batch(zone, pcp);
4963}
4964
4ed7e022 4965static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4966{
4967 int cpu;
319774e2 4968 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4969 for_each_possible_cpu(cpu)
4970 zone_pageset_init(zone, cpu);
319774e2
WF
4971}
4972
2caaad41 4973/*
99dcc3e5
CL
4974 * Allocate per cpu pagesets and initialize them.
4975 * Before this call only boot pagesets were available.
e7c8d5c9 4976 */
99dcc3e5 4977void __init setup_per_cpu_pageset(void)
e7c8d5c9 4978{
99dcc3e5 4979 struct zone *zone;
e7c8d5c9 4980
319774e2
WF
4981 for_each_populated_zone(zone)
4982 setup_zone_pageset(zone);
e7c8d5c9
CL
4983}
4984
577a32f6 4985static noinline __init_refok
cca448fe 4986int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4987{
4988 int i;
cca448fe 4989 size_t alloc_size;
ed8ece2e
DH
4990
4991 /*
4992 * The per-page waitqueue mechanism uses hashed waitqueues
4993 * per zone.
4994 */
02b694de
YG
4995 zone->wait_table_hash_nr_entries =
4996 wait_table_hash_nr_entries(zone_size_pages);
4997 zone->wait_table_bits =
4998 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4999 alloc_size = zone->wait_table_hash_nr_entries
5000 * sizeof(wait_queue_head_t);
5001
cd94b9db 5002 if (!slab_is_available()) {
cca448fe 5003 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5004 memblock_virt_alloc_node_nopanic(
5005 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5006 } else {
5007 /*
5008 * This case means that a zone whose size was 0 gets new memory
5009 * via memory hot-add.
5010 * But it may be the case that a new node was hot-added. In
5011 * this case vmalloc() will not be able to use this new node's
5012 * memory - this wait_table must be initialized to use this new
5013 * node itself as well.
5014 * To use this new node's memory, further consideration will be
5015 * necessary.
5016 */
8691f3a7 5017 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5018 }
5019 if (!zone->wait_table)
5020 return -ENOMEM;
ed8ece2e 5021
b8af2941 5022 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5023 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5024
5025 return 0;
ed8ece2e
DH
5026}
5027
c09b4240 5028static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5029{
99dcc3e5
CL
5030 /*
5031 * per cpu subsystem is not up at this point. The following code
5032 * relies on the ability of the linker to provide the
5033 * offset of a (static) per cpu variable into the per cpu area.
5034 */
5035 zone->pageset = &boot_pageset;
ed8ece2e 5036
b38a8725 5037 if (populated_zone(zone))
99dcc3e5
CL
5038 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5039 zone->name, zone->present_pages,
5040 zone_batchsize(zone));
ed8ece2e
DH
5041}
5042
4ed7e022 5043int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5044 unsigned long zone_start_pfn,
b171e409 5045 unsigned long size)
ed8ece2e
DH
5046{
5047 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5048 int ret;
5049 ret = zone_wait_table_init(zone, size);
5050 if (ret)
5051 return ret;
ed8ece2e
DH
5052 pgdat->nr_zones = zone_idx(zone) + 1;
5053
ed8ece2e
DH
5054 zone->zone_start_pfn = zone_start_pfn;
5055
708614e6
MG
5056 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5057 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5058 pgdat->node_id,
5059 (unsigned long)zone_idx(zone),
5060 zone_start_pfn, (zone_start_pfn + size));
5061
1e548deb 5062 zone_init_free_lists(zone);
718127cc
YG
5063
5064 return 0;
ed8ece2e
DH
5065}
5066
0ee332c1 5067#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5068#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5069
c713216d
MG
5070/*
5071 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5072 */
8a942fde
MG
5073int __meminit __early_pfn_to_nid(unsigned long pfn,
5074 struct mminit_pfnnid_cache *state)
c713216d 5075{
c13291a5 5076 unsigned long start_pfn, end_pfn;
e76b63f8 5077 int nid;
7c243c71 5078
8a942fde
MG
5079 if (state->last_start <= pfn && pfn < state->last_end)
5080 return state->last_nid;
c713216d 5081
e76b63f8
YL
5082 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5083 if (nid != -1) {
8a942fde
MG
5084 state->last_start = start_pfn;
5085 state->last_end = end_pfn;
5086 state->last_nid = nid;
e76b63f8
YL
5087 }
5088
5089 return nid;
c713216d
MG
5090}
5091#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5092
c713216d 5093/**
6782832e 5094 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5095 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5096 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5097 *
7d018176
ZZ
5098 * If an architecture guarantees that all ranges registered contain no holes
5099 * and may be freed, this this function may be used instead of calling
5100 * memblock_free_early_nid() manually.
c713216d 5101 */
c13291a5 5102void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5103{
c13291a5
TH
5104 unsigned long start_pfn, end_pfn;
5105 int i, this_nid;
edbe7d23 5106
c13291a5
TH
5107 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5108 start_pfn = min(start_pfn, max_low_pfn);
5109 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5110
c13291a5 5111 if (start_pfn < end_pfn)
6782832e
SS
5112 memblock_free_early_nid(PFN_PHYS(start_pfn),
5113 (end_pfn - start_pfn) << PAGE_SHIFT,
5114 this_nid);
edbe7d23 5115 }
edbe7d23 5116}
edbe7d23 5117
c713216d
MG
5118/**
5119 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5120 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5121 *
7d018176
ZZ
5122 * If an architecture guarantees that all ranges registered contain no holes and may
5123 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5124 */
5125void __init sparse_memory_present_with_active_regions(int nid)
5126{
c13291a5
TH
5127 unsigned long start_pfn, end_pfn;
5128 int i, this_nid;
c713216d 5129
c13291a5
TH
5130 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5131 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5132}
5133
5134/**
5135 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5136 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5137 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5138 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5139 *
5140 * It returns the start and end page frame of a node based on information
7d018176 5141 * provided by memblock_set_node(). If called for a node
c713216d 5142 * with no available memory, a warning is printed and the start and end
88ca3b94 5143 * PFNs will be 0.
c713216d 5144 */
a3142c8e 5145void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5146 unsigned long *start_pfn, unsigned long *end_pfn)
5147{
c13291a5 5148 unsigned long this_start_pfn, this_end_pfn;
c713216d 5149 int i;
c13291a5 5150
c713216d
MG
5151 *start_pfn = -1UL;
5152 *end_pfn = 0;
5153
c13291a5
TH
5154 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5155 *start_pfn = min(*start_pfn, this_start_pfn);
5156 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5157 }
5158
633c0666 5159 if (*start_pfn == -1UL)
c713216d 5160 *start_pfn = 0;
c713216d
MG
5161}
5162
2a1e274a
MG
5163/*
5164 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5165 * assumption is made that zones within a node are ordered in monotonic
5166 * increasing memory addresses so that the "highest" populated zone is used
5167 */
b69a7288 5168static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5169{
5170 int zone_index;
5171 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5172 if (zone_index == ZONE_MOVABLE)
5173 continue;
5174
5175 if (arch_zone_highest_possible_pfn[zone_index] >
5176 arch_zone_lowest_possible_pfn[zone_index])
5177 break;
5178 }
5179
5180 VM_BUG_ON(zone_index == -1);
5181 movable_zone = zone_index;
5182}
5183
5184/*
5185 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5186 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5187 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5188 * in each node depending on the size of each node and how evenly kernelcore
5189 * is distributed. This helper function adjusts the zone ranges
5190 * provided by the architecture for a given node by using the end of the
5191 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5192 * zones within a node are in order of monotonic increases memory addresses
5193 */
b69a7288 5194static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5195 unsigned long zone_type,
5196 unsigned long node_start_pfn,
5197 unsigned long node_end_pfn,
5198 unsigned long *zone_start_pfn,
5199 unsigned long *zone_end_pfn)
5200{
5201 /* Only adjust if ZONE_MOVABLE is on this node */
5202 if (zone_movable_pfn[nid]) {
5203 /* Size ZONE_MOVABLE */
5204 if (zone_type == ZONE_MOVABLE) {
5205 *zone_start_pfn = zone_movable_pfn[nid];
5206 *zone_end_pfn = min(node_end_pfn,
5207 arch_zone_highest_possible_pfn[movable_zone]);
5208
2a1e274a
MG
5209 /* Check if this whole range is within ZONE_MOVABLE */
5210 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5211 *zone_start_pfn = *zone_end_pfn;
5212 }
5213}
5214
c713216d
MG
5215/*
5216 * Return the number of pages a zone spans in a node, including holes
5217 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5218 */
6ea6e688 5219static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5220 unsigned long zone_type,
7960aedd
ZY
5221 unsigned long node_start_pfn,
5222 unsigned long node_end_pfn,
d91749c1
TI
5223 unsigned long *zone_start_pfn,
5224 unsigned long *zone_end_pfn,
c713216d
MG
5225 unsigned long *ignored)
5226{
b5685e92 5227 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5228 if (!node_start_pfn && !node_end_pfn)
5229 return 0;
5230
7960aedd 5231 /* Get the start and end of the zone */
d91749c1
TI
5232 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5233 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5234 adjust_zone_range_for_zone_movable(nid, zone_type,
5235 node_start_pfn, node_end_pfn,
d91749c1 5236 zone_start_pfn, zone_end_pfn);
c713216d
MG
5237
5238 /* Check that this node has pages within the zone's required range */
d91749c1 5239 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5240 return 0;
5241
5242 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5243 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5244 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5245
5246 /* Return the spanned pages */
d91749c1 5247 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5248}
5249
5250/*
5251 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5252 * then all holes in the requested range will be accounted for.
c713216d 5253 */
32996250 5254unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5255 unsigned long range_start_pfn,
5256 unsigned long range_end_pfn)
5257{
96e907d1
TH
5258 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5259 unsigned long start_pfn, end_pfn;
5260 int i;
c713216d 5261
96e907d1
TH
5262 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5263 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5264 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5265 nr_absent -= end_pfn - start_pfn;
c713216d 5266 }
96e907d1 5267 return nr_absent;
c713216d
MG
5268}
5269
5270/**
5271 * absent_pages_in_range - Return number of page frames in holes within a range
5272 * @start_pfn: The start PFN to start searching for holes
5273 * @end_pfn: The end PFN to stop searching for holes
5274 *
88ca3b94 5275 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5276 */
5277unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5278 unsigned long end_pfn)
5279{
5280 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5281}
5282
5283/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5284static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5285 unsigned long zone_type,
7960aedd
ZY
5286 unsigned long node_start_pfn,
5287 unsigned long node_end_pfn,
c713216d
MG
5288 unsigned long *ignored)
5289{
96e907d1
TH
5290 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5291 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5292 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5293 unsigned long nr_absent;
9c7cd687 5294
b5685e92 5295 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5296 if (!node_start_pfn && !node_end_pfn)
5297 return 0;
5298
96e907d1
TH
5299 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5300 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5301
2a1e274a
MG
5302 adjust_zone_range_for_zone_movable(nid, zone_type,
5303 node_start_pfn, node_end_pfn,
5304 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5305 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5306
5307 /*
5308 * ZONE_MOVABLE handling.
5309 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5310 * and vice versa.
5311 */
5312 if (zone_movable_pfn[nid]) {
5313 if (mirrored_kernelcore) {
5314 unsigned long start_pfn, end_pfn;
5315 struct memblock_region *r;
5316
5317 for_each_memblock(memory, r) {
5318 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5319 zone_start_pfn, zone_end_pfn);
5320 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5321 zone_start_pfn, zone_end_pfn);
5322
5323 if (zone_type == ZONE_MOVABLE &&
5324 memblock_is_mirror(r))
5325 nr_absent += end_pfn - start_pfn;
5326
5327 if (zone_type == ZONE_NORMAL &&
5328 !memblock_is_mirror(r))
5329 nr_absent += end_pfn - start_pfn;
5330 }
5331 } else {
5332 if (zone_type == ZONE_NORMAL)
5333 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5334 }
5335 }
5336
5337 return nr_absent;
c713216d 5338}
0e0b864e 5339
0ee332c1 5340#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5341static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5342 unsigned long zone_type,
7960aedd
ZY
5343 unsigned long node_start_pfn,
5344 unsigned long node_end_pfn,
d91749c1
TI
5345 unsigned long *zone_start_pfn,
5346 unsigned long *zone_end_pfn,
c713216d
MG
5347 unsigned long *zones_size)
5348{
d91749c1
TI
5349 unsigned int zone;
5350
5351 *zone_start_pfn = node_start_pfn;
5352 for (zone = 0; zone < zone_type; zone++)
5353 *zone_start_pfn += zones_size[zone];
5354
5355 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5356
c713216d
MG
5357 return zones_size[zone_type];
5358}
5359
6ea6e688 5360static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5361 unsigned long zone_type,
7960aedd
ZY
5362 unsigned long node_start_pfn,
5363 unsigned long node_end_pfn,
c713216d
MG
5364 unsigned long *zholes_size)
5365{
5366 if (!zholes_size)
5367 return 0;
5368
5369 return zholes_size[zone_type];
5370}
20e6926d 5371
0ee332c1 5372#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5373
a3142c8e 5374static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5375 unsigned long node_start_pfn,
5376 unsigned long node_end_pfn,
5377 unsigned long *zones_size,
5378 unsigned long *zholes_size)
c713216d 5379{
febd5949 5380 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5381 enum zone_type i;
5382
febd5949
GZ
5383 for (i = 0; i < MAX_NR_ZONES; i++) {
5384 struct zone *zone = pgdat->node_zones + i;
d91749c1 5385 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5386 unsigned long size, real_size;
c713216d 5387
febd5949
GZ
5388 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5389 node_start_pfn,
5390 node_end_pfn,
d91749c1
TI
5391 &zone_start_pfn,
5392 &zone_end_pfn,
febd5949
GZ
5393 zones_size);
5394 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5395 node_start_pfn, node_end_pfn,
5396 zholes_size);
d91749c1
TI
5397 if (size)
5398 zone->zone_start_pfn = zone_start_pfn;
5399 else
5400 zone->zone_start_pfn = 0;
febd5949
GZ
5401 zone->spanned_pages = size;
5402 zone->present_pages = real_size;
5403
5404 totalpages += size;
5405 realtotalpages += real_size;
5406 }
5407
5408 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5409 pgdat->node_present_pages = realtotalpages;
5410 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5411 realtotalpages);
5412}
5413
835c134e
MG
5414#ifndef CONFIG_SPARSEMEM
5415/*
5416 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5417 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5418 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5419 * round what is now in bits to nearest long in bits, then return it in
5420 * bytes.
5421 */
7c45512d 5422static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5423{
5424 unsigned long usemapsize;
5425
7c45512d 5426 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5427 usemapsize = roundup(zonesize, pageblock_nr_pages);
5428 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5429 usemapsize *= NR_PAGEBLOCK_BITS;
5430 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5431
5432 return usemapsize / 8;
5433}
5434
5435static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5436 struct zone *zone,
5437 unsigned long zone_start_pfn,
5438 unsigned long zonesize)
835c134e 5439{
7c45512d 5440 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5441 zone->pageblock_flags = NULL;
58a01a45 5442 if (usemapsize)
6782832e
SS
5443 zone->pageblock_flags =
5444 memblock_virt_alloc_node_nopanic(usemapsize,
5445 pgdat->node_id);
835c134e
MG
5446}
5447#else
7c45512d
LT
5448static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5449 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5450#endif /* CONFIG_SPARSEMEM */
5451
d9c23400 5452#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5453
d9c23400 5454/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5455void __paginginit set_pageblock_order(void)
d9c23400 5456{
955c1cd7
AM
5457 unsigned int order;
5458
d9c23400
MG
5459 /* Check that pageblock_nr_pages has not already been setup */
5460 if (pageblock_order)
5461 return;
5462
955c1cd7
AM
5463 if (HPAGE_SHIFT > PAGE_SHIFT)
5464 order = HUGETLB_PAGE_ORDER;
5465 else
5466 order = MAX_ORDER - 1;
5467
d9c23400
MG
5468 /*
5469 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5470 * This value may be variable depending on boot parameters on IA64 and
5471 * powerpc.
d9c23400
MG
5472 */
5473 pageblock_order = order;
5474}
5475#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5476
ba72cb8c
MG
5477/*
5478 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5479 * is unused as pageblock_order is set at compile-time. See
5480 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5481 * the kernel config
ba72cb8c 5482 */
15ca220e 5483void __paginginit set_pageblock_order(void)
ba72cb8c 5484{
ba72cb8c 5485}
d9c23400
MG
5486
5487#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5488
01cefaef
JL
5489static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5490 unsigned long present_pages)
5491{
5492 unsigned long pages = spanned_pages;
5493
5494 /*
5495 * Provide a more accurate estimation if there are holes within
5496 * the zone and SPARSEMEM is in use. If there are holes within the
5497 * zone, each populated memory region may cost us one or two extra
5498 * memmap pages due to alignment because memmap pages for each
5499 * populated regions may not naturally algined on page boundary.
5500 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5501 */
5502 if (spanned_pages > present_pages + (present_pages >> 4) &&
5503 IS_ENABLED(CONFIG_SPARSEMEM))
5504 pages = present_pages;
5505
5506 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5507}
5508
1da177e4
LT
5509/*
5510 * Set up the zone data structures:
5511 * - mark all pages reserved
5512 * - mark all memory queues empty
5513 * - clear the memory bitmaps
6527af5d
MK
5514 *
5515 * NOTE: pgdat should get zeroed by caller.
1da177e4 5516 */
7f3eb55b 5517static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5518{
2f1b6248 5519 enum zone_type j;
ed8ece2e 5520 int nid = pgdat->node_id;
718127cc 5521 int ret;
1da177e4 5522
208d54e5 5523 pgdat_resize_init(pgdat);
8177a420
AA
5524#ifdef CONFIG_NUMA_BALANCING
5525 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5526 pgdat->numabalancing_migrate_nr_pages = 0;
5527 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5528#endif
5529#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5530 spin_lock_init(&pgdat->split_queue_lock);
5531 INIT_LIST_HEAD(&pgdat->split_queue);
5532 pgdat->split_queue_len = 0;
8177a420 5533#endif
1da177e4 5534 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5535 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5536#ifdef CONFIG_COMPACTION
5537 init_waitqueue_head(&pgdat->kcompactd_wait);
5538#endif
eefa864b 5539 pgdat_page_ext_init(pgdat);
5f63b720 5540
1da177e4
LT
5541 for (j = 0; j < MAX_NR_ZONES; j++) {
5542 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5543 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5544 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5545
febd5949
GZ
5546 size = zone->spanned_pages;
5547 realsize = freesize = zone->present_pages;
1da177e4 5548
0e0b864e 5549 /*
9feedc9d 5550 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5551 * is used by this zone for memmap. This affects the watermark
5552 * and per-cpu initialisations
5553 */
01cefaef 5554 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5555 if (!is_highmem_idx(j)) {
5556 if (freesize >= memmap_pages) {
5557 freesize -= memmap_pages;
5558 if (memmap_pages)
5559 printk(KERN_DEBUG
5560 " %s zone: %lu pages used for memmap\n",
5561 zone_names[j], memmap_pages);
5562 } else
1170532b 5563 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5564 zone_names[j], memmap_pages, freesize);
5565 }
0e0b864e 5566
6267276f 5567 /* Account for reserved pages */
9feedc9d
JL
5568 if (j == 0 && freesize > dma_reserve) {
5569 freesize -= dma_reserve;
d903ef9f 5570 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5571 zone_names[0], dma_reserve);
0e0b864e
MG
5572 }
5573
98d2b0eb 5574 if (!is_highmem_idx(j))
9feedc9d 5575 nr_kernel_pages += freesize;
01cefaef
JL
5576 /* Charge for highmem memmap if there are enough kernel pages */
5577 else if (nr_kernel_pages > memmap_pages * 2)
5578 nr_kernel_pages -= memmap_pages;
9feedc9d 5579 nr_all_pages += freesize;
1da177e4 5580
9feedc9d
JL
5581 /*
5582 * Set an approximate value for lowmem here, it will be adjusted
5583 * when the bootmem allocator frees pages into the buddy system.
5584 * And all highmem pages will be managed by the buddy system.
5585 */
5586 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5587#ifdef CONFIG_NUMA
d5f541ed 5588 zone->node = nid;
9feedc9d 5589 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5590 / 100;
9feedc9d 5591 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5592#endif
1da177e4
LT
5593 zone->name = zone_names[j];
5594 spin_lock_init(&zone->lock);
5595 spin_lock_init(&zone->lru_lock);
bdc8cb98 5596 zone_seqlock_init(zone);
1da177e4 5597 zone->zone_pgdat = pgdat;
ed8ece2e 5598 zone_pcp_init(zone);
81c0a2bb
JW
5599
5600 /* For bootup, initialized properly in watermark setup */
5601 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5602
bea8c150 5603 lruvec_init(&zone->lruvec);
1da177e4
LT
5604 if (!size)
5605 continue;
5606
955c1cd7 5607 set_pageblock_order();
7c45512d 5608 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5609 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5610 BUG_ON(ret);
76cdd58e 5611 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5612 }
5613}
5614
577a32f6 5615static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5616{
b0aeba74 5617 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5618 unsigned long __maybe_unused offset = 0;
5619
1da177e4
LT
5620 /* Skip empty nodes */
5621 if (!pgdat->node_spanned_pages)
5622 return;
5623
d41dee36 5624#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5625 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5626 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5627 /* ia64 gets its own node_mem_map, before this, without bootmem */
5628 if (!pgdat->node_mem_map) {
b0aeba74 5629 unsigned long size, end;
d41dee36
AW
5630 struct page *map;
5631
e984bb43
BP
5632 /*
5633 * The zone's endpoints aren't required to be MAX_ORDER
5634 * aligned but the node_mem_map endpoints must be in order
5635 * for the buddy allocator to function correctly.
5636 */
108bcc96 5637 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5638 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5639 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5640 map = alloc_remap(pgdat->node_id, size);
5641 if (!map)
6782832e
SS
5642 map = memblock_virt_alloc_node_nopanic(size,
5643 pgdat->node_id);
a1c34a3b 5644 pgdat->node_mem_map = map + offset;
1da177e4 5645 }
12d810c1 5646#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5647 /*
5648 * With no DISCONTIG, the global mem_map is just set as node 0's
5649 */
c713216d 5650 if (pgdat == NODE_DATA(0)) {
1da177e4 5651 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5652#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5653 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5654 mem_map -= offset;
0ee332c1 5655#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5656 }
1da177e4 5657#endif
d41dee36 5658#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5659}
5660
9109fb7b
JW
5661void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5662 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5663{
9109fb7b 5664 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5665 unsigned long start_pfn = 0;
5666 unsigned long end_pfn = 0;
9109fb7b 5667
88fdf75d 5668 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5669 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5670
3a80a7fa 5671 reset_deferred_meminit(pgdat);
1da177e4
LT
5672 pgdat->node_id = nid;
5673 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5674#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5675 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5676 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5677 (u64)start_pfn << PAGE_SHIFT,
5678 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5679#else
5680 start_pfn = node_start_pfn;
7960aedd
ZY
5681#endif
5682 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5683 zones_size, zholes_size);
1da177e4
LT
5684
5685 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5686#ifdef CONFIG_FLAT_NODE_MEM_MAP
5687 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5688 nid, (unsigned long)pgdat,
5689 (unsigned long)pgdat->node_mem_map);
5690#endif
1da177e4 5691
7f3eb55b 5692 free_area_init_core(pgdat);
1da177e4
LT
5693}
5694
0ee332c1 5695#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5696
5697#if MAX_NUMNODES > 1
5698/*
5699 * Figure out the number of possible node ids.
5700 */
f9872caf 5701void __init setup_nr_node_ids(void)
418508c1 5702{
904a9553 5703 unsigned int highest;
418508c1 5704
904a9553 5705 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5706 nr_node_ids = highest + 1;
5707}
418508c1
MS
5708#endif
5709
1e01979c
TH
5710/**
5711 * node_map_pfn_alignment - determine the maximum internode alignment
5712 *
5713 * This function should be called after node map is populated and sorted.
5714 * It calculates the maximum power of two alignment which can distinguish
5715 * all the nodes.
5716 *
5717 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5718 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5719 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5720 * shifted, 1GiB is enough and this function will indicate so.
5721 *
5722 * This is used to test whether pfn -> nid mapping of the chosen memory
5723 * model has fine enough granularity to avoid incorrect mapping for the
5724 * populated node map.
5725 *
5726 * Returns the determined alignment in pfn's. 0 if there is no alignment
5727 * requirement (single node).
5728 */
5729unsigned long __init node_map_pfn_alignment(void)
5730{
5731 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5732 unsigned long start, end, mask;
1e01979c 5733 int last_nid = -1;
c13291a5 5734 int i, nid;
1e01979c 5735
c13291a5 5736 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5737 if (!start || last_nid < 0 || last_nid == nid) {
5738 last_nid = nid;
5739 last_end = end;
5740 continue;
5741 }
5742
5743 /*
5744 * Start with a mask granular enough to pin-point to the
5745 * start pfn and tick off bits one-by-one until it becomes
5746 * too coarse to separate the current node from the last.
5747 */
5748 mask = ~((1 << __ffs(start)) - 1);
5749 while (mask && last_end <= (start & (mask << 1)))
5750 mask <<= 1;
5751
5752 /* accumulate all internode masks */
5753 accl_mask |= mask;
5754 }
5755
5756 /* convert mask to number of pages */
5757 return ~accl_mask + 1;
5758}
5759
a6af2bc3 5760/* Find the lowest pfn for a node */
b69a7288 5761static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5762{
a6af2bc3 5763 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5764 unsigned long start_pfn;
5765 int i;
1abbfb41 5766
c13291a5
TH
5767 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5768 min_pfn = min(min_pfn, start_pfn);
c713216d 5769
a6af2bc3 5770 if (min_pfn == ULONG_MAX) {
1170532b 5771 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5772 return 0;
5773 }
5774
5775 return min_pfn;
c713216d
MG
5776}
5777
5778/**
5779 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5780 *
5781 * It returns the minimum PFN based on information provided via
7d018176 5782 * memblock_set_node().
c713216d
MG
5783 */
5784unsigned long __init find_min_pfn_with_active_regions(void)
5785{
5786 return find_min_pfn_for_node(MAX_NUMNODES);
5787}
5788
37b07e41
LS
5789/*
5790 * early_calculate_totalpages()
5791 * Sum pages in active regions for movable zone.
4b0ef1fe 5792 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5793 */
484f51f8 5794static unsigned long __init early_calculate_totalpages(void)
7e63efef 5795{
7e63efef 5796 unsigned long totalpages = 0;
c13291a5
TH
5797 unsigned long start_pfn, end_pfn;
5798 int i, nid;
5799
5800 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5801 unsigned long pages = end_pfn - start_pfn;
7e63efef 5802
37b07e41
LS
5803 totalpages += pages;
5804 if (pages)
4b0ef1fe 5805 node_set_state(nid, N_MEMORY);
37b07e41 5806 }
b8af2941 5807 return totalpages;
7e63efef
MG
5808}
5809
2a1e274a
MG
5810/*
5811 * Find the PFN the Movable zone begins in each node. Kernel memory
5812 * is spread evenly between nodes as long as the nodes have enough
5813 * memory. When they don't, some nodes will have more kernelcore than
5814 * others
5815 */
b224ef85 5816static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5817{
5818 int i, nid;
5819 unsigned long usable_startpfn;
5820 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5821 /* save the state before borrow the nodemask */
4b0ef1fe 5822 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5823 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5824 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5825 struct memblock_region *r;
b2f3eebe
TC
5826
5827 /* Need to find movable_zone earlier when movable_node is specified. */
5828 find_usable_zone_for_movable();
5829
5830 /*
5831 * If movable_node is specified, ignore kernelcore and movablecore
5832 * options.
5833 */
5834 if (movable_node_is_enabled()) {
136199f0
EM
5835 for_each_memblock(memory, r) {
5836 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5837 continue;
5838
136199f0 5839 nid = r->nid;
b2f3eebe 5840
136199f0 5841 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5842 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5843 min(usable_startpfn, zone_movable_pfn[nid]) :
5844 usable_startpfn;
5845 }
5846
5847 goto out2;
5848 }
2a1e274a 5849
342332e6
TI
5850 /*
5851 * If kernelcore=mirror is specified, ignore movablecore option
5852 */
5853 if (mirrored_kernelcore) {
5854 bool mem_below_4gb_not_mirrored = false;
5855
5856 for_each_memblock(memory, r) {
5857 if (memblock_is_mirror(r))
5858 continue;
5859
5860 nid = r->nid;
5861
5862 usable_startpfn = memblock_region_memory_base_pfn(r);
5863
5864 if (usable_startpfn < 0x100000) {
5865 mem_below_4gb_not_mirrored = true;
5866 continue;
5867 }
5868
5869 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5870 min(usable_startpfn, zone_movable_pfn[nid]) :
5871 usable_startpfn;
5872 }
5873
5874 if (mem_below_4gb_not_mirrored)
5875 pr_warn("This configuration results in unmirrored kernel memory.");
5876
5877 goto out2;
5878 }
5879
7e63efef 5880 /*
b2f3eebe 5881 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5882 * kernelcore that corresponds so that memory usable for
5883 * any allocation type is evenly spread. If both kernelcore
5884 * and movablecore are specified, then the value of kernelcore
5885 * will be used for required_kernelcore if it's greater than
5886 * what movablecore would have allowed.
5887 */
5888 if (required_movablecore) {
7e63efef
MG
5889 unsigned long corepages;
5890
5891 /*
5892 * Round-up so that ZONE_MOVABLE is at least as large as what
5893 * was requested by the user
5894 */
5895 required_movablecore =
5896 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5897 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5898 corepages = totalpages - required_movablecore;
5899
5900 required_kernelcore = max(required_kernelcore, corepages);
5901 }
5902
bde304bd
XQ
5903 /*
5904 * If kernelcore was not specified or kernelcore size is larger
5905 * than totalpages, there is no ZONE_MOVABLE.
5906 */
5907 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5908 goto out;
2a1e274a
MG
5909
5910 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5911 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5912
5913restart:
5914 /* Spread kernelcore memory as evenly as possible throughout nodes */
5915 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5916 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5917 unsigned long start_pfn, end_pfn;
5918
2a1e274a
MG
5919 /*
5920 * Recalculate kernelcore_node if the division per node
5921 * now exceeds what is necessary to satisfy the requested
5922 * amount of memory for the kernel
5923 */
5924 if (required_kernelcore < kernelcore_node)
5925 kernelcore_node = required_kernelcore / usable_nodes;
5926
5927 /*
5928 * As the map is walked, we track how much memory is usable
5929 * by the kernel using kernelcore_remaining. When it is
5930 * 0, the rest of the node is usable by ZONE_MOVABLE
5931 */
5932 kernelcore_remaining = kernelcore_node;
5933
5934 /* Go through each range of PFNs within this node */
c13291a5 5935 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5936 unsigned long size_pages;
5937
c13291a5 5938 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5939 if (start_pfn >= end_pfn)
5940 continue;
5941
5942 /* Account for what is only usable for kernelcore */
5943 if (start_pfn < usable_startpfn) {
5944 unsigned long kernel_pages;
5945 kernel_pages = min(end_pfn, usable_startpfn)
5946 - start_pfn;
5947
5948 kernelcore_remaining -= min(kernel_pages,
5949 kernelcore_remaining);
5950 required_kernelcore -= min(kernel_pages,
5951 required_kernelcore);
5952
5953 /* Continue if range is now fully accounted */
5954 if (end_pfn <= usable_startpfn) {
5955
5956 /*
5957 * Push zone_movable_pfn to the end so
5958 * that if we have to rebalance
5959 * kernelcore across nodes, we will
5960 * not double account here
5961 */
5962 zone_movable_pfn[nid] = end_pfn;
5963 continue;
5964 }
5965 start_pfn = usable_startpfn;
5966 }
5967
5968 /*
5969 * The usable PFN range for ZONE_MOVABLE is from
5970 * start_pfn->end_pfn. Calculate size_pages as the
5971 * number of pages used as kernelcore
5972 */
5973 size_pages = end_pfn - start_pfn;
5974 if (size_pages > kernelcore_remaining)
5975 size_pages = kernelcore_remaining;
5976 zone_movable_pfn[nid] = start_pfn + size_pages;
5977
5978 /*
5979 * Some kernelcore has been met, update counts and
5980 * break if the kernelcore for this node has been
b8af2941 5981 * satisfied
2a1e274a
MG
5982 */
5983 required_kernelcore -= min(required_kernelcore,
5984 size_pages);
5985 kernelcore_remaining -= size_pages;
5986 if (!kernelcore_remaining)
5987 break;
5988 }
5989 }
5990
5991 /*
5992 * If there is still required_kernelcore, we do another pass with one
5993 * less node in the count. This will push zone_movable_pfn[nid] further
5994 * along on the nodes that still have memory until kernelcore is
b8af2941 5995 * satisfied
2a1e274a
MG
5996 */
5997 usable_nodes--;
5998 if (usable_nodes && required_kernelcore > usable_nodes)
5999 goto restart;
6000
b2f3eebe 6001out2:
2a1e274a
MG
6002 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6003 for (nid = 0; nid < MAX_NUMNODES; nid++)
6004 zone_movable_pfn[nid] =
6005 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6006
20e6926d 6007out:
66918dcd 6008 /* restore the node_state */
4b0ef1fe 6009 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6010}
6011
4b0ef1fe
LJ
6012/* Any regular or high memory on that node ? */
6013static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6014{
37b07e41
LS
6015 enum zone_type zone_type;
6016
4b0ef1fe
LJ
6017 if (N_MEMORY == N_NORMAL_MEMORY)
6018 return;
6019
6020 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6021 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6022 if (populated_zone(zone)) {
4b0ef1fe
LJ
6023 node_set_state(nid, N_HIGH_MEMORY);
6024 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6025 zone_type <= ZONE_NORMAL)
6026 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6027 break;
6028 }
37b07e41 6029 }
37b07e41
LS
6030}
6031
c713216d
MG
6032/**
6033 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6034 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6035 *
6036 * This will call free_area_init_node() for each active node in the system.
7d018176 6037 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6038 * zone in each node and their holes is calculated. If the maximum PFN
6039 * between two adjacent zones match, it is assumed that the zone is empty.
6040 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6041 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6042 * starts where the previous one ended. For example, ZONE_DMA32 starts
6043 * at arch_max_dma_pfn.
6044 */
6045void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6046{
c13291a5
TH
6047 unsigned long start_pfn, end_pfn;
6048 int i, nid;
a6af2bc3 6049
c713216d
MG
6050 /* Record where the zone boundaries are */
6051 memset(arch_zone_lowest_possible_pfn, 0,
6052 sizeof(arch_zone_lowest_possible_pfn));
6053 memset(arch_zone_highest_possible_pfn, 0,
6054 sizeof(arch_zone_highest_possible_pfn));
6055 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6056 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6057 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6058 if (i == ZONE_MOVABLE)
6059 continue;
c713216d
MG
6060 arch_zone_lowest_possible_pfn[i] =
6061 arch_zone_highest_possible_pfn[i-1];
6062 arch_zone_highest_possible_pfn[i] =
6063 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6064 }
2a1e274a
MG
6065 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6066 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6067
6068 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6069 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6070 find_zone_movable_pfns_for_nodes();
c713216d 6071
c713216d 6072 /* Print out the zone ranges */
f88dfff5 6073 pr_info("Zone ranges:\n");
2a1e274a
MG
6074 for (i = 0; i < MAX_NR_ZONES; i++) {
6075 if (i == ZONE_MOVABLE)
6076 continue;
f88dfff5 6077 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6078 if (arch_zone_lowest_possible_pfn[i] ==
6079 arch_zone_highest_possible_pfn[i])
f88dfff5 6080 pr_cont("empty\n");
72f0ba02 6081 else
8d29e18a
JG
6082 pr_cont("[mem %#018Lx-%#018Lx]\n",
6083 (u64)arch_zone_lowest_possible_pfn[i]
6084 << PAGE_SHIFT,
6085 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6086 << PAGE_SHIFT) - 1);
2a1e274a
MG
6087 }
6088
6089 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6090 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6091 for (i = 0; i < MAX_NUMNODES; i++) {
6092 if (zone_movable_pfn[i])
8d29e18a
JG
6093 pr_info(" Node %d: %#018Lx\n", i,
6094 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6095 }
c713216d 6096
f2d52fe5 6097 /* Print out the early node map */
f88dfff5 6098 pr_info("Early memory node ranges\n");
c13291a5 6099 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6100 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6101 (u64)start_pfn << PAGE_SHIFT,
6102 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6103
6104 /* Initialise every node */
708614e6 6105 mminit_verify_pageflags_layout();
8ef82866 6106 setup_nr_node_ids();
c713216d
MG
6107 for_each_online_node(nid) {
6108 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6109 free_area_init_node(nid, NULL,
c713216d 6110 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6111
6112 /* Any memory on that node */
6113 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6114 node_set_state(nid, N_MEMORY);
6115 check_for_memory(pgdat, nid);
c713216d
MG
6116 }
6117}
2a1e274a 6118
7e63efef 6119static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6120{
6121 unsigned long long coremem;
6122 if (!p)
6123 return -EINVAL;
6124
6125 coremem = memparse(p, &p);
7e63efef 6126 *core = coremem >> PAGE_SHIFT;
2a1e274a 6127
7e63efef 6128 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6129 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6130
6131 return 0;
6132}
ed7ed365 6133
7e63efef
MG
6134/*
6135 * kernelcore=size sets the amount of memory for use for allocations that
6136 * cannot be reclaimed or migrated.
6137 */
6138static int __init cmdline_parse_kernelcore(char *p)
6139{
342332e6
TI
6140 /* parse kernelcore=mirror */
6141 if (parse_option_str(p, "mirror")) {
6142 mirrored_kernelcore = true;
6143 return 0;
6144 }
6145
7e63efef
MG
6146 return cmdline_parse_core(p, &required_kernelcore);
6147}
6148
6149/*
6150 * movablecore=size sets the amount of memory for use for allocations that
6151 * can be reclaimed or migrated.
6152 */
6153static int __init cmdline_parse_movablecore(char *p)
6154{
6155 return cmdline_parse_core(p, &required_movablecore);
6156}
6157
ed7ed365 6158early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6159early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6160
0ee332c1 6161#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6162
c3d5f5f0
JL
6163void adjust_managed_page_count(struct page *page, long count)
6164{
6165 spin_lock(&managed_page_count_lock);
6166 page_zone(page)->managed_pages += count;
6167 totalram_pages += count;
3dcc0571
JL
6168#ifdef CONFIG_HIGHMEM
6169 if (PageHighMem(page))
6170 totalhigh_pages += count;
6171#endif
c3d5f5f0
JL
6172 spin_unlock(&managed_page_count_lock);
6173}
3dcc0571 6174EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6175
11199692 6176unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6177{
11199692
JL
6178 void *pos;
6179 unsigned long pages = 0;
69afade7 6180
11199692
JL
6181 start = (void *)PAGE_ALIGN((unsigned long)start);
6182 end = (void *)((unsigned long)end & PAGE_MASK);
6183 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6184 if ((unsigned int)poison <= 0xFF)
11199692
JL
6185 memset(pos, poison, PAGE_SIZE);
6186 free_reserved_page(virt_to_page(pos));
69afade7
JL
6187 }
6188
6189 if (pages && s)
11199692 6190 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6191 s, pages << (PAGE_SHIFT - 10), start, end);
6192
6193 return pages;
6194}
11199692 6195EXPORT_SYMBOL(free_reserved_area);
69afade7 6196
cfa11e08
JL
6197#ifdef CONFIG_HIGHMEM
6198void free_highmem_page(struct page *page)
6199{
6200 __free_reserved_page(page);
6201 totalram_pages++;
7b4b2a0d 6202 page_zone(page)->managed_pages++;
cfa11e08
JL
6203 totalhigh_pages++;
6204}
6205#endif
6206
7ee3d4e8
JL
6207
6208void __init mem_init_print_info(const char *str)
6209{
6210 unsigned long physpages, codesize, datasize, rosize, bss_size;
6211 unsigned long init_code_size, init_data_size;
6212
6213 physpages = get_num_physpages();
6214 codesize = _etext - _stext;
6215 datasize = _edata - _sdata;
6216 rosize = __end_rodata - __start_rodata;
6217 bss_size = __bss_stop - __bss_start;
6218 init_data_size = __init_end - __init_begin;
6219 init_code_size = _einittext - _sinittext;
6220
6221 /*
6222 * Detect special cases and adjust section sizes accordingly:
6223 * 1) .init.* may be embedded into .data sections
6224 * 2) .init.text.* may be out of [__init_begin, __init_end],
6225 * please refer to arch/tile/kernel/vmlinux.lds.S.
6226 * 3) .rodata.* may be embedded into .text or .data sections.
6227 */
6228#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6229 do { \
6230 if (start <= pos && pos < end && size > adj) \
6231 size -= adj; \
6232 } while (0)
7ee3d4e8
JL
6233
6234 adj_init_size(__init_begin, __init_end, init_data_size,
6235 _sinittext, init_code_size);
6236 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6237 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6238 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6239 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6240
6241#undef adj_init_size
6242
756a025f 6243 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6244#ifdef CONFIG_HIGHMEM
756a025f 6245 ", %luK highmem"
7ee3d4e8 6246#endif
756a025f
JP
6247 "%s%s)\n",
6248 nr_free_pages() << (PAGE_SHIFT - 10),
6249 physpages << (PAGE_SHIFT - 10),
6250 codesize >> 10, datasize >> 10, rosize >> 10,
6251 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6252 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6253 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6254#ifdef CONFIG_HIGHMEM
756a025f 6255 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6256#endif
756a025f 6257 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6258}
6259
0e0b864e 6260/**
88ca3b94
RD
6261 * set_dma_reserve - set the specified number of pages reserved in the first zone
6262 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6263 *
013110a7 6264 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6265 * In the DMA zone, a significant percentage may be consumed by kernel image
6266 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6267 * function may optionally be used to account for unfreeable pages in the
6268 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6269 * smaller per-cpu batchsize.
0e0b864e
MG
6270 */
6271void __init set_dma_reserve(unsigned long new_dma_reserve)
6272{
6273 dma_reserve = new_dma_reserve;
6274}
6275
1da177e4
LT
6276void __init free_area_init(unsigned long *zones_size)
6277{
9109fb7b 6278 free_area_init_node(0, zones_size,
1da177e4
LT
6279 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6280}
1da177e4 6281
1da177e4
LT
6282static int page_alloc_cpu_notify(struct notifier_block *self,
6283 unsigned long action, void *hcpu)
6284{
6285 int cpu = (unsigned long)hcpu;
1da177e4 6286
8bb78442 6287 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6288 lru_add_drain_cpu(cpu);
9f8f2172
CL
6289 drain_pages(cpu);
6290
6291 /*
6292 * Spill the event counters of the dead processor
6293 * into the current processors event counters.
6294 * This artificially elevates the count of the current
6295 * processor.
6296 */
f8891e5e 6297 vm_events_fold_cpu(cpu);
9f8f2172
CL
6298
6299 /*
6300 * Zero the differential counters of the dead processor
6301 * so that the vm statistics are consistent.
6302 *
6303 * This is only okay since the processor is dead and cannot
6304 * race with what we are doing.
6305 */
2bb921e5 6306 cpu_vm_stats_fold(cpu);
1da177e4
LT
6307 }
6308 return NOTIFY_OK;
6309}
1da177e4
LT
6310
6311void __init page_alloc_init(void)
6312{
6313 hotcpu_notifier(page_alloc_cpu_notify, 0);
6314}
6315
cb45b0e9 6316/*
34b10060 6317 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6318 * or min_free_kbytes changes.
6319 */
6320static void calculate_totalreserve_pages(void)
6321{
6322 struct pglist_data *pgdat;
6323 unsigned long reserve_pages = 0;
2f6726e5 6324 enum zone_type i, j;
cb45b0e9
HA
6325
6326 for_each_online_pgdat(pgdat) {
6327 for (i = 0; i < MAX_NR_ZONES; i++) {
6328 struct zone *zone = pgdat->node_zones + i;
3484b2de 6329 long max = 0;
cb45b0e9
HA
6330
6331 /* Find valid and maximum lowmem_reserve in the zone */
6332 for (j = i; j < MAX_NR_ZONES; j++) {
6333 if (zone->lowmem_reserve[j] > max)
6334 max = zone->lowmem_reserve[j];
6335 }
6336
41858966
MG
6337 /* we treat the high watermark as reserved pages. */
6338 max += high_wmark_pages(zone);
cb45b0e9 6339
b40da049
JL
6340 if (max > zone->managed_pages)
6341 max = zone->managed_pages;
a8d01437
JW
6342
6343 zone->totalreserve_pages = max;
6344
cb45b0e9
HA
6345 reserve_pages += max;
6346 }
6347 }
6348 totalreserve_pages = reserve_pages;
6349}
6350
1da177e4
LT
6351/*
6352 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6353 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6354 * has a correct pages reserved value, so an adequate number of
6355 * pages are left in the zone after a successful __alloc_pages().
6356 */
6357static void setup_per_zone_lowmem_reserve(void)
6358{
6359 struct pglist_data *pgdat;
2f6726e5 6360 enum zone_type j, idx;
1da177e4 6361
ec936fc5 6362 for_each_online_pgdat(pgdat) {
1da177e4
LT
6363 for (j = 0; j < MAX_NR_ZONES; j++) {
6364 struct zone *zone = pgdat->node_zones + j;
b40da049 6365 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6366
6367 zone->lowmem_reserve[j] = 0;
6368
2f6726e5
CL
6369 idx = j;
6370 while (idx) {
1da177e4
LT
6371 struct zone *lower_zone;
6372
2f6726e5
CL
6373 idx--;
6374
1da177e4
LT
6375 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6376 sysctl_lowmem_reserve_ratio[idx] = 1;
6377
6378 lower_zone = pgdat->node_zones + idx;
b40da049 6379 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6380 sysctl_lowmem_reserve_ratio[idx];
b40da049 6381 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6382 }
6383 }
6384 }
cb45b0e9
HA
6385
6386 /* update totalreserve_pages */
6387 calculate_totalreserve_pages();
1da177e4
LT
6388}
6389
cfd3da1e 6390static void __setup_per_zone_wmarks(void)
1da177e4
LT
6391{
6392 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6393 unsigned long lowmem_pages = 0;
6394 struct zone *zone;
6395 unsigned long flags;
6396
6397 /* Calculate total number of !ZONE_HIGHMEM pages */
6398 for_each_zone(zone) {
6399 if (!is_highmem(zone))
b40da049 6400 lowmem_pages += zone->managed_pages;
1da177e4
LT
6401 }
6402
6403 for_each_zone(zone) {
ac924c60
AM
6404 u64 tmp;
6405
1125b4e3 6406 spin_lock_irqsave(&zone->lock, flags);
b40da049 6407 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6408 do_div(tmp, lowmem_pages);
1da177e4
LT
6409 if (is_highmem(zone)) {
6410 /*
669ed175
NP
6411 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6412 * need highmem pages, so cap pages_min to a small
6413 * value here.
6414 *
41858966 6415 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6416 * deltas control asynch page reclaim, and so should
669ed175 6417 * not be capped for highmem.
1da177e4 6418 */
90ae8d67 6419 unsigned long min_pages;
1da177e4 6420
b40da049 6421 min_pages = zone->managed_pages / 1024;
90ae8d67 6422 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6423 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6424 } else {
669ed175
NP
6425 /*
6426 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6427 * proportionate to the zone's size.
6428 */
41858966 6429 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6430 }
6431
795ae7a0
JW
6432 /*
6433 * Set the kswapd watermarks distance according to the
6434 * scale factor in proportion to available memory, but
6435 * ensure a minimum size on small systems.
6436 */
6437 tmp = max_t(u64, tmp >> 2,
6438 mult_frac(zone->managed_pages,
6439 watermark_scale_factor, 10000));
6440
6441 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6442 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6443
81c0a2bb 6444 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6445 high_wmark_pages(zone) - low_wmark_pages(zone) -
6446 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6447
1125b4e3 6448 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6449 }
cb45b0e9
HA
6450
6451 /* update totalreserve_pages */
6452 calculate_totalreserve_pages();
1da177e4
LT
6453}
6454
cfd3da1e
MG
6455/**
6456 * setup_per_zone_wmarks - called when min_free_kbytes changes
6457 * or when memory is hot-{added|removed}
6458 *
6459 * Ensures that the watermark[min,low,high] values for each zone are set
6460 * correctly with respect to min_free_kbytes.
6461 */
6462void setup_per_zone_wmarks(void)
6463{
6464 mutex_lock(&zonelists_mutex);
6465 __setup_per_zone_wmarks();
6466 mutex_unlock(&zonelists_mutex);
6467}
6468
55a4462a 6469/*
556adecb
RR
6470 * The inactive anon list should be small enough that the VM never has to
6471 * do too much work, but large enough that each inactive page has a chance
6472 * to be referenced again before it is swapped out.
6473 *
6474 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6475 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6476 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6477 * the anonymous pages are kept on the inactive list.
6478 *
6479 * total target max
6480 * memory ratio inactive anon
6481 * -------------------------------------
6482 * 10MB 1 5MB
6483 * 100MB 1 50MB
6484 * 1GB 3 250MB
6485 * 10GB 10 0.9GB
6486 * 100GB 31 3GB
6487 * 1TB 101 10GB
6488 * 10TB 320 32GB
6489 */
1b79acc9 6490static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6491{
96cb4df5 6492 unsigned int gb, ratio;
556adecb 6493
96cb4df5 6494 /* Zone size in gigabytes */
b40da049 6495 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6496 if (gb)
556adecb 6497 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6498 else
6499 ratio = 1;
556adecb 6500
96cb4df5
MK
6501 zone->inactive_ratio = ratio;
6502}
556adecb 6503
839a4fcc 6504static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6505{
6506 struct zone *zone;
6507
6508 for_each_zone(zone)
6509 calculate_zone_inactive_ratio(zone);
556adecb
RR
6510}
6511
1da177e4
LT
6512/*
6513 * Initialise min_free_kbytes.
6514 *
6515 * For small machines we want it small (128k min). For large machines
6516 * we want it large (64MB max). But it is not linear, because network
6517 * bandwidth does not increase linearly with machine size. We use
6518 *
b8af2941 6519 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6520 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6521 *
6522 * which yields
6523 *
6524 * 16MB: 512k
6525 * 32MB: 724k
6526 * 64MB: 1024k
6527 * 128MB: 1448k
6528 * 256MB: 2048k
6529 * 512MB: 2896k
6530 * 1024MB: 4096k
6531 * 2048MB: 5792k
6532 * 4096MB: 8192k
6533 * 8192MB: 11584k
6534 * 16384MB: 16384k
6535 */
1b79acc9 6536int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6537{
6538 unsigned long lowmem_kbytes;
5f12733e 6539 int new_min_free_kbytes;
1da177e4
LT
6540
6541 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6542 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6543
6544 if (new_min_free_kbytes > user_min_free_kbytes) {
6545 min_free_kbytes = new_min_free_kbytes;
6546 if (min_free_kbytes < 128)
6547 min_free_kbytes = 128;
6548 if (min_free_kbytes > 65536)
6549 min_free_kbytes = 65536;
6550 } else {
6551 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6552 new_min_free_kbytes, user_min_free_kbytes);
6553 }
bc75d33f 6554 setup_per_zone_wmarks();
a6cccdc3 6555 refresh_zone_stat_thresholds();
1da177e4 6556 setup_per_zone_lowmem_reserve();
556adecb 6557 setup_per_zone_inactive_ratio();
1da177e4
LT
6558 return 0;
6559}
bc22af74 6560core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6561
6562/*
b8af2941 6563 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6564 * that we can call two helper functions whenever min_free_kbytes
6565 * changes.
6566 */
cccad5b9 6567int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6568 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6569{
da8c757b
HP
6570 int rc;
6571
6572 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6573 if (rc)
6574 return rc;
6575
5f12733e
MH
6576 if (write) {
6577 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6578 setup_per_zone_wmarks();
5f12733e 6579 }
1da177e4
LT
6580 return 0;
6581}
6582
795ae7a0
JW
6583int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6584 void __user *buffer, size_t *length, loff_t *ppos)
6585{
6586 int rc;
6587
6588 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6589 if (rc)
6590 return rc;
6591
6592 if (write)
6593 setup_per_zone_wmarks();
6594
6595 return 0;
6596}
6597
9614634f 6598#ifdef CONFIG_NUMA
cccad5b9 6599int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6600 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6601{
6602 struct zone *zone;
6603 int rc;
6604
8d65af78 6605 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6606 if (rc)
6607 return rc;
6608
6609 for_each_zone(zone)
b40da049 6610 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6611 sysctl_min_unmapped_ratio) / 100;
6612 return 0;
6613}
0ff38490 6614
cccad5b9 6615int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6616 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6617{
6618 struct zone *zone;
6619 int rc;
6620
8d65af78 6621 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6622 if (rc)
6623 return rc;
6624
6625 for_each_zone(zone)
b40da049 6626 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6627 sysctl_min_slab_ratio) / 100;
6628 return 0;
6629}
9614634f
CL
6630#endif
6631
1da177e4
LT
6632/*
6633 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6634 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6635 * whenever sysctl_lowmem_reserve_ratio changes.
6636 *
6637 * The reserve ratio obviously has absolutely no relation with the
41858966 6638 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6639 * if in function of the boot time zone sizes.
6640 */
cccad5b9 6641int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6642 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6643{
8d65af78 6644 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6645 setup_per_zone_lowmem_reserve();
6646 return 0;
6647}
6648
8ad4b1fb
RS
6649/*
6650 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6651 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6652 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6653 */
cccad5b9 6654int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6655 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6656{
6657 struct zone *zone;
7cd2b0a3 6658 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6659 int ret;
6660
7cd2b0a3
DR
6661 mutex_lock(&pcp_batch_high_lock);
6662 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6663
8d65af78 6664 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6665 if (!write || ret < 0)
6666 goto out;
6667
6668 /* Sanity checking to avoid pcp imbalance */
6669 if (percpu_pagelist_fraction &&
6670 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6671 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6672 ret = -EINVAL;
6673 goto out;
6674 }
6675
6676 /* No change? */
6677 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6678 goto out;
c8e251fa 6679
364df0eb 6680 for_each_populated_zone(zone) {
7cd2b0a3
DR
6681 unsigned int cpu;
6682
22a7f12b 6683 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6684 pageset_set_high_and_batch(zone,
6685 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6686 }
7cd2b0a3 6687out:
c8e251fa 6688 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6689 return ret;
8ad4b1fb
RS
6690}
6691
a9919c79 6692#ifdef CONFIG_NUMA
f034b5d4 6693int hashdist = HASHDIST_DEFAULT;
1da177e4 6694
1da177e4
LT
6695static int __init set_hashdist(char *str)
6696{
6697 if (!str)
6698 return 0;
6699 hashdist = simple_strtoul(str, &str, 0);
6700 return 1;
6701}
6702__setup("hashdist=", set_hashdist);
6703#endif
6704
6705/*
6706 * allocate a large system hash table from bootmem
6707 * - it is assumed that the hash table must contain an exact power-of-2
6708 * quantity of entries
6709 * - limit is the number of hash buckets, not the total allocation size
6710 */
6711void *__init alloc_large_system_hash(const char *tablename,
6712 unsigned long bucketsize,
6713 unsigned long numentries,
6714 int scale,
6715 int flags,
6716 unsigned int *_hash_shift,
6717 unsigned int *_hash_mask,
31fe62b9
TB
6718 unsigned long low_limit,
6719 unsigned long high_limit)
1da177e4 6720{
31fe62b9 6721 unsigned long long max = high_limit;
1da177e4
LT
6722 unsigned long log2qty, size;
6723 void *table = NULL;
6724
6725 /* allow the kernel cmdline to have a say */
6726 if (!numentries) {
6727 /* round applicable memory size up to nearest megabyte */
04903664 6728 numentries = nr_kernel_pages;
a7e83318
JZ
6729
6730 /* It isn't necessary when PAGE_SIZE >= 1MB */
6731 if (PAGE_SHIFT < 20)
6732 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6733
6734 /* limit to 1 bucket per 2^scale bytes of low memory */
6735 if (scale > PAGE_SHIFT)
6736 numentries >>= (scale - PAGE_SHIFT);
6737 else
6738 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6739
6740 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6741 if (unlikely(flags & HASH_SMALL)) {
6742 /* Makes no sense without HASH_EARLY */
6743 WARN_ON(!(flags & HASH_EARLY));
6744 if (!(numentries >> *_hash_shift)) {
6745 numentries = 1UL << *_hash_shift;
6746 BUG_ON(!numentries);
6747 }
6748 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6749 numentries = PAGE_SIZE / bucketsize;
1da177e4 6750 }
6e692ed3 6751 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6752
6753 /* limit allocation size to 1/16 total memory by default */
6754 if (max == 0) {
6755 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6756 do_div(max, bucketsize);
6757 }
074b8517 6758 max = min(max, 0x80000000ULL);
1da177e4 6759
31fe62b9
TB
6760 if (numentries < low_limit)
6761 numentries = low_limit;
1da177e4
LT
6762 if (numentries > max)
6763 numentries = max;
6764
f0d1b0b3 6765 log2qty = ilog2(numentries);
1da177e4
LT
6766
6767 do {
6768 size = bucketsize << log2qty;
6769 if (flags & HASH_EARLY)
6782832e 6770 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6771 else if (hashdist)
6772 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6773 else {
1037b83b
ED
6774 /*
6775 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6776 * some pages at the end of hash table which
6777 * alloc_pages_exact() automatically does
1037b83b 6778 */
264ef8a9 6779 if (get_order(size) < MAX_ORDER) {
a1dd268c 6780 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6781 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6782 }
1da177e4
LT
6783 }
6784 } while (!table && size > PAGE_SIZE && --log2qty);
6785
6786 if (!table)
6787 panic("Failed to allocate %s hash table\n", tablename);
6788
1170532b
JP
6789 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6790 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6791
6792 if (_hash_shift)
6793 *_hash_shift = log2qty;
6794 if (_hash_mask)
6795 *_hash_mask = (1 << log2qty) - 1;
6796
6797 return table;
6798}
a117e66e 6799
835c134e 6800/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6801static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6802 unsigned long pfn)
6803{
6804#ifdef CONFIG_SPARSEMEM
6805 return __pfn_to_section(pfn)->pageblock_flags;
6806#else
f75fb889 6807 return page_zone(page)->pageblock_flags;
835c134e
MG
6808#endif /* CONFIG_SPARSEMEM */
6809}
6810
f75fb889 6811static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6812{
6813#ifdef CONFIG_SPARSEMEM
6814 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6815 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6816#else
f75fb889 6817 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6818 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6819#endif /* CONFIG_SPARSEMEM */
6820}
6821
6822/**
1aab4d77 6823 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6824 * @page: The page within the block of interest
1aab4d77
RD
6825 * @pfn: The target page frame number
6826 * @end_bitidx: The last bit of interest to retrieve
6827 * @mask: mask of bits that the caller is interested in
6828 *
6829 * Return: pageblock_bits flags
835c134e 6830 */
dc4b0caf 6831unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6832 unsigned long end_bitidx,
6833 unsigned long mask)
835c134e 6834{
835c134e 6835 unsigned long *bitmap;
dc4b0caf 6836 unsigned long bitidx, word_bitidx;
e58469ba 6837 unsigned long word;
835c134e 6838
f75fb889
MG
6839 bitmap = get_pageblock_bitmap(page, pfn);
6840 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6841 word_bitidx = bitidx / BITS_PER_LONG;
6842 bitidx &= (BITS_PER_LONG-1);
835c134e 6843
e58469ba
MG
6844 word = bitmap[word_bitidx];
6845 bitidx += end_bitidx;
6846 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6847}
6848
6849/**
dc4b0caf 6850 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6851 * @page: The page within the block of interest
835c134e 6852 * @flags: The flags to set
1aab4d77
RD
6853 * @pfn: The target page frame number
6854 * @end_bitidx: The last bit of interest
6855 * @mask: mask of bits that the caller is interested in
835c134e 6856 */
dc4b0caf
MG
6857void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6858 unsigned long pfn,
e58469ba
MG
6859 unsigned long end_bitidx,
6860 unsigned long mask)
835c134e 6861{
835c134e 6862 unsigned long *bitmap;
dc4b0caf 6863 unsigned long bitidx, word_bitidx;
e58469ba
MG
6864 unsigned long old_word, word;
6865
6866 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6867
f75fb889
MG
6868 bitmap = get_pageblock_bitmap(page, pfn);
6869 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6870 word_bitidx = bitidx / BITS_PER_LONG;
6871 bitidx &= (BITS_PER_LONG-1);
6872
f75fb889 6873 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6874
e58469ba
MG
6875 bitidx += end_bitidx;
6876 mask <<= (BITS_PER_LONG - bitidx - 1);
6877 flags <<= (BITS_PER_LONG - bitidx - 1);
6878
4db0c3c2 6879 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6880 for (;;) {
6881 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6882 if (word == old_word)
6883 break;
6884 word = old_word;
6885 }
835c134e 6886}
a5d76b54
KH
6887
6888/*
80934513
MK
6889 * This function checks whether pageblock includes unmovable pages or not.
6890 * If @count is not zero, it is okay to include less @count unmovable pages
6891 *
b8af2941 6892 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6893 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6894 * expect this function should be exact.
a5d76b54 6895 */
b023f468
WC
6896bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6897 bool skip_hwpoisoned_pages)
49ac8255
KH
6898{
6899 unsigned long pfn, iter, found;
47118af0
MN
6900 int mt;
6901
49ac8255
KH
6902 /*
6903 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6904 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6905 */
6906 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6907 return false;
47118af0
MN
6908 mt = get_pageblock_migratetype(page);
6909 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6910 return false;
49ac8255
KH
6911
6912 pfn = page_to_pfn(page);
6913 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6914 unsigned long check = pfn + iter;
6915
29723fcc 6916 if (!pfn_valid_within(check))
49ac8255 6917 continue;
29723fcc 6918
49ac8255 6919 page = pfn_to_page(check);
c8721bbb
NH
6920
6921 /*
6922 * Hugepages are not in LRU lists, but they're movable.
6923 * We need not scan over tail pages bacause we don't
6924 * handle each tail page individually in migration.
6925 */
6926 if (PageHuge(page)) {
6927 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6928 continue;
6929 }
6930
97d255c8
MK
6931 /*
6932 * We can't use page_count without pin a page
6933 * because another CPU can free compound page.
6934 * This check already skips compound tails of THP
0139aa7b 6935 * because their page->_refcount is zero at all time.
97d255c8 6936 */
fe896d18 6937 if (!page_ref_count(page)) {
49ac8255
KH
6938 if (PageBuddy(page))
6939 iter += (1 << page_order(page)) - 1;
6940 continue;
6941 }
97d255c8 6942
b023f468
WC
6943 /*
6944 * The HWPoisoned page may be not in buddy system, and
6945 * page_count() is not 0.
6946 */
6947 if (skip_hwpoisoned_pages && PageHWPoison(page))
6948 continue;
6949
49ac8255
KH
6950 if (!PageLRU(page))
6951 found++;
6952 /*
6b4f7799
JW
6953 * If there are RECLAIMABLE pages, we need to check
6954 * it. But now, memory offline itself doesn't call
6955 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6956 */
6957 /*
6958 * If the page is not RAM, page_count()should be 0.
6959 * we don't need more check. This is an _used_ not-movable page.
6960 *
6961 * The problematic thing here is PG_reserved pages. PG_reserved
6962 * is set to both of a memory hole page and a _used_ kernel
6963 * page at boot.
6964 */
6965 if (found > count)
80934513 6966 return true;
49ac8255 6967 }
80934513 6968 return false;
49ac8255
KH
6969}
6970
6971bool is_pageblock_removable_nolock(struct page *page)
6972{
656a0706
MH
6973 struct zone *zone;
6974 unsigned long pfn;
687875fb
MH
6975
6976 /*
6977 * We have to be careful here because we are iterating over memory
6978 * sections which are not zone aware so we might end up outside of
6979 * the zone but still within the section.
656a0706
MH
6980 * We have to take care about the node as well. If the node is offline
6981 * its NODE_DATA will be NULL - see page_zone.
687875fb 6982 */
656a0706
MH
6983 if (!node_online(page_to_nid(page)))
6984 return false;
6985
6986 zone = page_zone(page);
6987 pfn = page_to_pfn(page);
108bcc96 6988 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6989 return false;
6990
b023f468 6991 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6992}
0c0e6195 6993
080fe206 6994#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6995
6996static unsigned long pfn_max_align_down(unsigned long pfn)
6997{
6998 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6999 pageblock_nr_pages) - 1);
7000}
7001
7002static unsigned long pfn_max_align_up(unsigned long pfn)
7003{
7004 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7005 pageblock_nr_pages));
7006}
7007
041d3a8c 7008/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7009static int __alloc_contig_migrate_range(struct compact_control *cc,
7010 unsigned long start, unsigned long end)
041d3a8c
MN
7011{
7012 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7013 unsigned long nr_reclaimed;
041d3a8c
MN
7014 unsigned long pfn = start;
7015 unsigned int tries = 0;
7016 int ret = 0;
7017
be49a6e1 7018 migrate_prep();
041d3a8c 7019
bb13ffeb 7020 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7021 if (fatal_signal_pending(current)) {
7022 ret = -EINTR;
7023 break;
7024 }
7025
bb13ffeb
MG
7026 if (list_empty(&cc->migratepages)) {
7027 cc->nr_migratepages = 0;
edc2ca61 7028 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7029 if (!pfn) {
7030 ret = -EINTR;
7031 break;
7032 }
7033 tries = 0;
7034 } else if (++tries == 5) {
7035 ret = ret < 0 ? ret : -EBUSY;
7036 break;
7037 }
7038
beb51eaa
MK
7039 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7040 &cc->migratepages);
7041 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7042
9c620e2b 7043 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7044 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7045 }
2a6f5124
SP
7046 if (ret < 0) {
7047 putback_movable_pages(&cc->migratepages);
7048 return ret;
7049 }
7050 return 0;
041d3a8c
MN
7051}
7052
7053/**
7054 * alloc_contig_range() -- tries to allocate given range of pages
7055 * @start: start PFN to allocate
7056 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7057 * @migratetype: migratetype of the underlaying pageblocks (either
7058 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7059 * in range must have the same migratetype and it must
7060 * be either of the two.
041d3a8c
MN
7061 *
7062 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7063 * aligned, however it's the caller's responsibility to guarantee that
7064 * we are the only thread that changes migrate type of pageblocks the
7065 * pages fall in.
7066 *
7067 * The PFN range must belong to a single zone.
7068 *
7069 * Returns zero on success or negative error code. On success all
7070 * pages which PFN is in [start, end) are allocated for the caller and
7071 * need to be freed with free_contig_range().
7072 */
0815f3d8
MN
7073int alloc_contig_range(unsigned long start, unsigned long end,
7074 unsigned migratetype)
041d3a8c 7075{
041d3a8c 7076 unsigned long outer_start, outer_end;
d00181b9
KS
7077 unsigned int order;
7078 int ret = 0;
041d3a8c 7079
bb13ffeb
MG
7080 struct compact_control cc = {
7081 .nr_migratepages = 0,
7082 .order = -1,
7083 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7084 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7085 .ignore_skip_hint = true,
7086 };
7087 INIT_LIST_HEAD(&cc.migratepages);
7088
041d3a8c
MN
7089 /*
7090 * What we do here is we mark all pageblocks in range as
7091 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7092 * have different sizes, and due to the way page allocator
7093 * work, we align the range to biggest of the two pages so
7094 * that page allocator won't try to merge buddies from
7095 * different pageblocks and change MIGRATE_ISOLATE to some
7096 * other migration type.
7097 *
7098 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7099 * migrate the pages from an unaligned range (ie. pages that
7100 * we are interested in). This will put all the pages in
7101 * range back to page allocator as MIGRATE_ISOLATE.
7102 *
7103 * When this is done, we take the pages in range from page
7104 * allocator removing them from the buddy system. This way
7105 * page allocator will never consider using them.
7106 *
7107 * This lets us mark the pageblocks back as
7108 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7109 * aligned range but not in the unaligned, original range are
7110 * put back to page allocator so that buddy can use them.
7111 */
7112
7113 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7114 pfn_max_align_up(end), migratetype,
7115 false);
041d3a8c 7116 if (ret)
86a595f9 7117 return ret;
041d3a8c 7118
8ef5849f
JK
7119 /*
7120 * In case of -EBUSY, we'd like to know which page causes problem.
7121 * So, just fall through. We will check it in test_pages_isolated().
7122 */
bb13ffeb 7123 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7124 if (ret && ret != -EBUSY)
041d3a8c
MN
7125 goto done;
7126
7127 /*
7128 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7129 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7130 * more, all pages in [start, end) are free in page allocator.
7131 * What we are going to do is to allocate all pages from
7132 * [start, end) (that is remove them from page allocator).
7133 *
7134 * The only problem is that pages at the beginning and at the
7135 * end of interesting range may be not aligned with pages that
7136 * page allocator holds, ie. they can be part of higher order
7137 * pages. Because of this, we reserve the bigger range and
7138 * once this is done free the pages we are not interested in.
7139 *
7140 * We don't have to hold zone->lock here because the pages are
7141 * isolated thus they won't get removed from buddy.
7142 */
7143
7144 lru_add_drain_all();
510f5507 7145 drain_all_pages(cc.zone);
041d3a8c
MN
7146
7147 order = 0;
7148 outer_start = start;
7149 while (!PageBuddy(pfn_to_page(outer_start))) {
7150 if (++order >= MAX_ORDER) {
8ef5849f
JK
7151 outer_start = start;
7152 break;
041d3a8c
MN
7153 }
7154 outer_start &= ~0UL << order;
7155 }
7156
8ef5849f
JK
7157 if (outer_start != start) {
7158 order = page_order(pfn_to_page(outer_start));
7159
7160 /*
7161 * outer_start page could be small order buddy page and
7162 * it doesn't include start page. Adjust outer_start
7163 * in this case to report failed page properly
7164 * on tracepoint in test_pages_isolated()
7165 */
7166 if (outer_start + (1UL << order) <= start)
7167 outer_start = start;
7168 }
7169
041d3a8c 7170 /* Make sure the range is really isolated. */
b023f468 7171 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7172 pr_info("%s: [%lx, %lx) PFNs busy\n",
7173 __func__, outer_start, end);
041d3a8c
MN
7174 ret = -EBUSY;
7175 goto done;
7176 }
7177
49f223a9 7178 /* Grab isolated pages from freelists. */
bb13ffeb 7179 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7180 if (!outer_end) {
7181 ret = -EBUSY;
7182 goto done;
7183 }
7184
7185 /* Free head and tail (if any) */
7186 if (start != outer_start)
7187 free_contig_range(outer_start, start - outer_start);
7188 if (end != outer_end)
7189 free_contig_range(end, outer_end - end);
7190
7191done:
7192 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7193 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7194 return ret;
7195}
7196
7197void free_contig_range(unsigned long pfn, unsigned nr_pages)
7198{
bcc2b02f
MS
7199 unsigned int count = 0;
7200
7201 for (; nr_pages--; pfn++) {
7202 struct page *page = pfn_to_page(pfn);
7203
7204 count += page_count(page) != 1;
7205 __free_page(page);
7206 }
7207 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7208}
7209#endif
7210
4ed7e022 7211#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7212/*
7213 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7214 * page high values need to be recalulated.
7215 */
4ed7e022
JL
7216void __meminit zone_pcp_update(struct zone *zone)
7217{
0a647f38 7218 unsigned cpu;
c8e251fa 7219 mutex_lock(&pcp_batch_high_lock);
0a647f38 7220 for_each_possible_cpu(cpu)
169f6c19
CS
7221 pageset_set_high_and_batch(zone,
7222 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7223 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7224}
7225#endif
7226
340175b7
JL
7227void zone_pcp_reset(struct zone *zone)
7228{
7229 unsigned long flags;
5a883813
MK
7230 int cpu;
7231 struct per_cpu_pageset *pset;
340175b7
JL
7232
7233 /* avoid races with drain_pages() */
7234 local_irq_save(flags);
7235 if (zone->pageset != &boot_pageset) {
5a883813
MK
7236 for_each_online_cpu(cpu) {
7237 pset = per_cpu_ptr(zone->pageset, cpu);
7238 drain_zonestat(zone, pset);
7239 }
340175b7
JL
7240 free_percpu(zone->pageset);
7241 zone->pageset = &boot_pageset;
7242 }
7243 local_irq_restore(flags);
7244}
7245
6dcd73d7 7246#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7247/*
b9eb6319
JK
7248 * All pages in the range must be in a single zone and isolated
7249 * before calling this.
0c0e6195
KH
7250 */
7251void
7252__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7253{
7254 struct page *page;
7255 struct zone *zone;
7aeb09f9 7256 unsigned int order, i;
0c0e6195
KH
7257 unsigned long pfn;
7258 unsigned long flags;
7259 /* find the first valid pfn */
7260 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7261 if (pfn_valid(pfn))
7262 break;
7263 if (pfn == end_pfn)
7264 return;
7265 zone = page_zone(pfn_to_page(pfn));
7266 spin_lock_irqsave(&zone->lock, flags);
7267 pfn = start_pfn;
7268 while (pfn < end_pfn) {
7269 if (!pfn_valid(pfn)) {
7270 pfn++;
7271 continue;
7272 }
7273 page = pfn_to_page(pfn);
b023f468
WC
7274 /*
7275 * The HWPoisoned page may be not in buddy system, and
7276 * page_count() is not 0.
7277 */
7278 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7279 pfn++;
7280 SetPageReserved(page);
7281 continue;
7282 }
7283
0c0e6195
KH
7284 BUG_ON(page_count(page));
7285 BUG_ON(!PageBuddy(page));
7286 order = page_order(page);
7287#ifdef CONFIG_DEBUG_VM
1170532b
JP
7288 pr_info("remove from free list %lx %d %lx\n",
7289 pfn, 1 << order, end_pfn);
0c0e6195
KH
7290#endif
7291 list_del(&page->lru);
7292 rmv_page_order(page);
7293 zone->free_area[order].nr_free--;
0c0e6195
KH
7294 for (i = 0; i < (1 << order); i++)
7295 SetPageReserved((page+i));
7296 pfn += (1 << order);
7297 }
7298 spin_unlock_irqrestore(&zone->lock, flags);
7299}
7300#endif
8d22ba1b 7301
8d22ba1b
WF
7302bool is_free_buddy_page(struct page *page)
7303{
7304 struct zone *zone = page_zone(page);
7305 unsigned long pfn = page_to_pfn(page);
7306 unsigned long flags;
7aeb09f9 7307 unsigned int order;
8d22ba1b
WF
7308
7309 spin_lock_irqsave(&zone->lock, flags);
7310 for (order = 0; order < MAX_ORDER; order++) {
7311 struct page *page_head = page - (pfn & ((1 << order) - 1));
7312
7313 if (PageBuddy(page_head) && page_order(page_head) >= order)
7314 break;
7315 }
7316 spin_unlock_irqrestore(&zone->lock, flags);
7317
7318 return order < MAX_ORDER;
7319}