]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: meminit: remove mminit_verify_page_links
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
1da177e4 64
7ee3d4e8 65#include <asm/sections.h>
1da177e4 66#include <asm/tlbflush.h>
ac924c60 67#include <asm/div64.h>
1da177e4
LT
68#include "internal.h"
69
c8e251fa
CS
70/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 72#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 73
72812019
LS
74#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75DEFINE_PER_CPU(int, numa_node);
76EXPORT_PER_CPU_SYMBOL(numa_node);
77#endif
78
7aac7898
LS
79#ifdef CONFIG_HAVE_MEMORYLESS_NODES
80/*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 88int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
89#endif
90
1da177e4 91/*
13808910 92 * Array of node states.
1da177e4 93 */
13808910
CL
94nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
95 [N_POSSIBLE] = NODE_MASK_ALL,
96 [N_ONLINE] = { { [0] = 1UL } },
97#ifndef CONFIG_NUMA
98 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
99#ifdef CONFIG_HIGHMEM
100 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
101#endif
102#ifdef CONFIG_MOVABLE_NODE
103 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
104#endif
105 [N_CPU] = { { [0] = 1UL } },
106#endif /* NUMA */
107};
108EXPORT_SYMBOL(node_states);
109
c3d5f5f0
JL
110/* Protect totalram_pages and zone->managed_pages */
111static DEFINE_SPINLOCK(managed_page_count_lock);
112
6c231b7b 113unsigned long totalram_pages __read_mostly;
cb45b0e9 114unsigned long totalreserve_pages __read_mostly;
e48322ab 115unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
116/*
117 * When calculating the number of globally allowed dirty pages, there
118 * is a certain number of per-zone reserves that should not be
119 * considered dirtyable memory. This is the sum of those reserves
120 * over all existing zones that contribute dirtyable memory.
121 */
122unsigned long dirty_balance_reserve __read_mostly;
123
1b76b02f 124int percpu_pagelist_fraction;
dcce284a 125gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 126
452aa699
RW
127#ifdef CONFIG_PM_SLEEP
128/*
129 * The following functions are used by the suspend/hibernate code to temporarily
130 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
131 * while devices are suspended. To avoid races with the suspend/hibernate code,
132 * they should always be called with pm_mutex held (gfp_allowed_mask also should
133 * only be modified with pm_mutex held, unless the suspend/hibernate code is
134 * guaranteed not to run in parallel with that modification).
135 */
c9e664f1
RW
136
137static gfp_t saved_gfp_mask;
138
139void pm_restore_gfp_mask(void)
452aa699
RW
140{
141 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
142 if (saved_gfp_mask) {
143 gfp_allowed_mask = saved_gfp_mask;
144 saved_gfp_mask = 0;
145 }
452aa699
RW
146}
147
c9e664f1 148void pm_restrict_gfp_mask(void)
452aa699 149{
452aa699 150 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
151 WARN_ON(saved_gfp_mask);
152 saved_gfp_mask = gfp_allowed_mask;
153 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 154}
f90ac398
MG
155
156bool pm_suspended_storage(void)
157{
158 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
159 return false;
160 return true;
161}
452aa699
RW
162#endif /* CONFIG_PM_SLEEP */
163
d9c23400
MG
164#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
165int pageblock_order __read_mostly;
166#endif
167
d98c7a09 168static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 169
1da177e4
LT
170/*
171 * results with 256, 32 in the lowmem_reserve sysctl:
172 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
173 * 1G machine -> (16M dma, 784M normal, 224M high)
174 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
175 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 176 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
177 *
178 * TBD: should special case ZONE_DMA32 machines here - in those we normally
179 * don't need any ZONE_NORMAL reservation
1da177e4 180 */
2f1b6248 181int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 182#ifdef CONFIG_ZONE_DMA
2f1b6248 183 256,
4b51d669 184#endif
fb0e7942 185#ifdef CONFIG_ZONE_DMA32
2f1b6248 186 256,
fb0e7942 187#endif
e53ef38d 188#ifdef CONFIG_HIGHMEM
2a1e274a 189 32,
e53ef38d 190#endif
2a1e274a 191 32,
2f1b6248 192};
1da177e4
LT
193
194EXPORT_SYMBOL(totalram_pages);
1da177e4 195
15ad7cdc 196static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 197#ifdef CONFIG_ZONE_DMA
2f1b6248 198 "DMA",
4b51d669 199#endif
fb0e7942 200#ifdef CONFIG_ZONE_DMA32
2f1b6248 201 "DMA32",
fb0e7942 202#endif
2f1b6248 203 "Normal",
e53ef38d 204#ifdef CONFIG_HIGHMEM
2a1e274a 205 "HighMem",
e53ef38d 206#endif
2a1e274a 207 "Movable",
2f1b6248
CL
208};
209
1da177e4 210int min_free_kbytes = 1024;
42aa83cb 211int user_min_free_kbytes = -1;
1da177e4 212
2c85f51d
JB
213static unsigned long __meminitdata nr_kernel_pages;
214static unsigned long __meminitdata nr_all_pages;
a3142c8e 215static unsigned long __meminitdata dma_reserve;
1da177e4 216
0ee332c1
TH
217#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
218static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
219static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __initdata required_kernelcore;
221static unsigned long __initdata required_movablecore;
222static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
223
224/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
225int movable_zone;
226EXPORT_SYMBOL(movable_zone);
227#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 228
418508c1
MS
229#if MAX_NUMNODES > 1
230int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 231int nr_online_nodes __read_mostly = 1;
418508c1 232EXPORT_SYMBOL(nr_node_ids);
62bc62a8 233EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
234#endif
235
9ef9acb0
MG
236int page_group_by_mobility_disabled __read_mostly;
237
3a80a7fa
MG
238#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
239static inline void reset_deferred_meminit(pg_data_t *pgdat)
240{
241 pgdat->first_deferred_pfn = ULONG_MAX;
242}
243
244/* Returns true if the struct page for the pfn is uninitialised */
245static inline bool __defermem_init early_page_uninitialised(unsigned long pfn)
246{
247 int nid = early_pfn_to_nid(pfn);
248
249 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
250 return true;
251
252 return false;
253}
254
7e18adb4
MG
255static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
256{
257 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
258 return true;
259
260 return false;
261}
262
3a80a7fa
MG
263/*
264 * Returns false when the remaining initialisation should be deferred until
265 * later in the boot cycle when it can be parallelised.
266 */
267static inline bool update_defer_init(pg_data_t *pgdat,
268 unsigned long pfn, unsigned long zone_end,
269 unsigned long *nr_initialised)
270{
271 /* Always populate low zones for address-contrained allocations */
272 if (zone_end < pgdat_end_pfn(pgdat))
273 return true;
274
275 /* Initialise at least 2G of the highest zone */
276 (*nr_initialised)++;
277 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
278 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
279 pgdat->first_deferred_pfn = pfn;
280 return false;
281 }
282
283 return true;
284}
285#else
286static inline void reset_deferred_meminit(pg_data_t *pgdat)
287{
288}
289
290static inline bool early_page_uninitialised(unsigned long pfn)
291{
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 return false;
298}
299
3a80a7fa
MG
300static inline bool update_defer_init(pg_data_t *pgdat,
301 unsigned long pfn, unsigned long zone_end,
302 unsigned long *nr_initialised)
303{
304 return true;
305}
306#endif
307
308
ee6f509c 309void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 310{
5d0f3f72
KM
311 if (unlikely(page_group_by_mobility_disabled &&
312 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
313 migratetype = MIGRATE_UNMOVABLE;
314
b2a0ac88
MG
315 set_pageblock_flags_group(page, (unsigned long)migratetype,
316 PB_migrate, PB_migrate_end);
317}
318
13e7444b 319#ifdef CONFIG_DEBUG_VM
c6a57e19 320static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 321{
bdc8cb98
DH
322 int ret = 0;
323 unsigned seq;
324 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 325 unsigned long sp, start_pfn;
c6a57e19 326
bdc8cb98
DH
327 do {
328 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
329 start_pfn = zone->zone_start_pfn;
330 sp = zone->spanned_pages;
108bcc96 331 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
332 ret = 1;
333 } while (zone_span_seqretry(zone, seq));
334
b5e6a5a2 335 if (ret)
613813e8
DH
336 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
337 pfn, zone_to_nid(zone), zone->name,
338 start_pfn, start_pfn + sp);
b5e6a5a2 339
bdc8cb98 340 return ret;
c6a57e19
DH
341}
342
343static int page_is_consistent(struct zone *zone, struct page *page)
344{
14e07298 345 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 346 return 0;
1da177e4 347 if (zone != page_zone(page))
c6a57e19
DH
348 return 0;
349
350 return 1;
351}
352/*
353 * Temporary debugging check for pages not lying within a given zone.
354 */
355static int bad_range(struct zone *zone, struct page *page)
356{
357 if (page_outside_zone_boundaries(zone, page))
1da177e4 358 return 1;
c6a57e19
DH
359 if (!page_is_consistent(zone, page))
360 return 1;
361
1da177e4
LT
362 return 0;
363}
13e7444b
NP
364#else
365static inline int bad_range(struct zone *zone, struct page *page)
366{
367 return 0;
368}
369#endif
370
d230dec1
KS
371static void bad_page(struct page *page, const char *reason,
372 unsigned long bad_flags)
1da177e4 373{
d936cf9b
HD
374 static unsigned long resume;
375 static unsigned long nr_shown;
376 static unsigned long nr_unshown;
377
2a7684a2
WF
378 /* Don't complain about poisoned pages */
379 if (PageHWPoison(page)) {
22b751c3 380 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
381 return;
382 }
383
d936cf9b
HD
384 /*
385 * Allow a burst of 60 reports, then keep quiet for that minute;
386 * or allow a steady drip of one report per second.
387 */
388 if (nr_shown == 60) {
389 if (time_before(jiffies, resume)) {
390 nr_unshown++;
391 goto out;
392 }
393 if (nr_unshown) {
1e9e6365
HD
394 printk(KERN_ALERT
395 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
396 nr_unshown);
397 nr_unshown = 0;
398 }
399 nr_shown = 0;
400 }
401 if (nr_shown++ == 0)
402 resume = jiffies + 60 * HZ;
403
1e9e6365 404 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 405 current->comm, page_to_pfn(page));
f0b791a3 406 dump_page_badflags(page, reason, bad_flags);
3dc14741 407
4f31888c 408 print_modules();
1da177e4 409 dump_stack();
d936cf9b 410out:
8cc3b392 411 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 412 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 413 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
414}
415
1da177e4
LT
416/*
417 * Higher-order pages are called "compound pages". They are structured thusly:
418 *
419 * The first PAGE_SIZE page is called the "head page".
420 *
421 * The remaining PAGE_SIZE pages are called "tail pages".
422 *
6416b9fa
WSH
423 * All pages have PG_compound set. All tail pages have their ->first_page
424 * pointing at the head page.
1da177e4 425 *
41d78ba5
HD
426 * The first tail page's ->lru.next holds the address of the compound page's
427 * put_page() function. Its ->lru.prev holds the order of allocation.
428 * This usage means that zero-order pages may not be compound.
1da177e4 429 */
d98c7a09
HD
430
431static void free_compound_page(struct page *page)
432{
d85f3385 433 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
434}
435
01ad1c08 436void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
437{
438 int i;
439 int nr_pages = 1 << order;
440
441 set_compound_page_dtor(page, free_compound_page);
442 set_compound_order(page, order);
443 __SetPageHead(page);
444 for (i = 1; i < nr_pages; i++) {
445 struct page *p = page + i;
58a84aa9 446 set_page_count(p, 0);
18229df5 447 p->first_page = page;
668f9abb
DR
448 /* Make sure p->first_page is always valid for PageTail() */
449 smp_wmb();
450 __SetPageTail(p);
18229df5
AW
451 }
452}
453
c0a32fc5
SG
454#ifdef CONFIG_DEBUG_PAGEALLOC
455unsigned int _debug_guardpage_minorder;
031bc574 456bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
457bool _debug_guardpage_enabled __read_mostly;
458
031bc574
JK
459static int __init early_debug_pagealloc(char *buf)
460{
461 if (!buf)
462 return -EINVAL;
463
464 if (strcmp(buf, "on") == 0)
465 _debug_pagealloc_enabled = true;
466
467 return 0;
468}
469early_param("debug_pagealloc", early_debug_pagealloc);
470
e30825f1
JK
471static bool need_debug_guardpage(void)
472{
031bc574
JK
473 /* If we don't use debug_pagealloc, we don't need guard page */
474 if (!debug_pagealloc_enabled())
475 return false;
476
e30825f1
JK
477 return true;
478}
479
480static void init_debug_guardpage(void)
481{
031bc574
JK
482 if (!debug_pagealloc_enabled())
483 return;
484
e30825f1
JK
485 _debug_guardpage_enabled = true;
486}
487
488struct page_ext_operations debug_guardpage_ops = {
489 .need = need_debug_guardpage,
490 .init = init_debug_guardpage,
491};
c0a32fc5
SG
492
493static int __init debug_guardpage_minorder_setup(char *buf)
494{
495 unsigned long res;
496
497 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
498 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
499 return 0;
500 }
501 _debug_guardpage_minorder = res;
502 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
503 return 0;
504}
505__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
506
2847cf95
JK
507static inline void set_page_guard(struct zone *zone, struct page *page,
508 unsigned int order, int migratetype)
c0a32fc5 509{
e30825f1
JK
510 struct page_ext *page_ext;
511
512 if (!debug_guardpage_enabled())
513 return;
514
515 page_ext = lookup_page_ext(page);
516 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
517
2847cf95
JK
518 INIT_LIST_HEAD(&page->lru);
519 set_page_private(page, order);
520 /* Guard pages are not available for any usage */
521 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
522}
523
2847cf95
JK
524static inline void clear_page_guard(struct zone *zone, struct page *page,
525 unsigned int order, int migratetype)
c0a32fc5 526{
e30825f1
JK
527 struct page_ext *page_ext;
528
529 if (!debug_guardpage_enabled())
530 return;
531
532 page_ext = lookup_page_ext(page);
533 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
534
2847cf95
JK
535 set_page_private(page, 0);
536 if (!is_migrate_isolate(migratetype))
537 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
538}
539#else
e30825f1 540struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
541static inline void set_page_guard(struct zone *zone, struct page *page,
542 unsigned int order, int migratetype) {}
543static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype) {}
c0a32fc5
SG
545#endif
546
7aeb09f9 547static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 548{
4c21e2f2 549 set_page_private(page, order);
676165a8 550 __SetPageBuddy(page);
1da177e4
LT
551}
552
553static inline void rmv_page_order(struct page *page)
554{
676165a8 555 __ClearPageBuddy(page);
4c21e2f2 556 set_page_private(page, 0);
1da177e4
LT
557}
558
1da177e4
LT
559/*
560 * This function checks whether a page is free && is the buddy
561 * we can do coalesce a page and its buddy if
13e7444b 562 * (a) the buddy is not in a hole &&
676165a8 563 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
564 * (c) a page and its buddy have the same order &&
565 * (d) a page and its buddy are in the same zone.
676165a8 566 *
cf6fe945
WSH
567 * For recording whether a page is in the buddy system, we set ->_mapcount
568 * PAGE_BUDDY_MAPCOUNT_VALUE.
569 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
570 * serialized by zone->lock.
1da177e4 571 *
676165a8 572 * For recording page's order, we use page_private(page).
1da177e4 573 */
cb2b95e1 574static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 575 unsigned int order)
1da177e4 576{
14e07298 577 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 578 return 0;
13e7444b 579
c0a32fc5 580 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
581 if (page_zone_id(page) != page_zone_id(buddy))
582 return 0;
583
4c5018ce
WY
584 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
585
c0a32fc5
SG
586 return 1;
587 }
588
cb2b95e1 589 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
590 /*
591 * zone check is done late to avoid uselessly
592 * calculating zone/node ids for pages that could
593 * never merge.
594 */
595 if (page_zone_id(page) != page_zone_id(buddy))
596 return 0;
597
4c5018ce
WY
598 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
599
6aa3001b 600 return 1;
676165a8 601 }
6aa3001b 602 return 0;
1da177e4
LT
603}
604
605/*
606 * Freeing function for a buddy system allocator.
607 *
608 * The concept of a buddy system is to maintain direct-mapped table
609 * (containing bit values) for memory blocks of various "orders".
610 * The bottom level table contains the map for the smallest allocatable
611 * units of memory (here, pages), and each level above it describes
612 * pairs of units from the levels below, hence, "buddies".
613 * At a high level, all that happens here is marking the table entry
614 * at the bottom level available, and propagating the changes upward
615 * as necessary, plus some accounting needed to play nicely with other
616 * parts of the VM system.
617 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
618 * free pages of length of (1 << order) and marked with _mapcount
619 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
620 * field.
1da177e4 621 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
622 * other. That is, if we allocate a small block, and both were
623 * free, the remainder of the region must be split into blocks.
1da177e4 624 * If a block is freed, and its buddy is also free, then this
5f63b720 625 * triggers coalescing into a block of larger size.
1da177e4 626 *
6d49e352 627 * -- nyc
1da177e4
LT
628 */
629
48db57f8 630static inline void __free_one_page(struct page *page,
dc4b0caf 631 unsigned long pfn,
ed0ae21d
MG
632 struct zone *zone, unsigned int order,
633 int migratetype)
1da177e4
LT
634{
635 unsigned long page_idx;
6dda9d55 636 unsigned long combined_idx;
43506fad 637 unsigned long uninitialized_var(buddy_idx);
6dda9d55 638 struct page *buddy;
3c605096 639 int max_order = MAX_ORDER;
1da177e4 640
d29bb978 641 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 642 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 643
ed0ae21d 644 VM_BUG_ON(migratetype == -1);
3c605096
JK
645 if (is_migrate_isolate(migratetype)) {
646 /*
647 * We restrict max order of merging to prevent merge
648 * between freepages on isolate pageblock and normal
649 * pageblock. Without this, pageblock isolation
650 * could cause incorrect freepage accounting.
651 */
652 max_order = min(MAX_ORDER, pageblock_order + 1);
653 } else {
8f82b55d 654 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 655 }
ed0ae21d 656
3c605096 657 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 658
309381fe
SL
659 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 661
3c605096 662 while (order < max_order - 1) {
43506fad
KC
663 buddy_idx = __find_buddy_index(page_idx, order);
664 buddy = page + (buddy_idx - page_idx);
cb2b95e1 665 if (!page_is_buddy(page, buddy, order))
3c82d0ce 666 break;
c0a32fc5
SG
667 /*
668 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
669 * merge with it and move up one order.
670 */
671 if (page_is_guard(buddy)) {
2847cf95 672 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
673 } else {
674 list_del(&buddy->lru);
675 zone->free_area[order].nr_free--;
676 rmv_page_order(buddy);
677 }
43506fad 678 combined_idx = buddy_idx & page_idx;
1da177e4
LT
679 page = page + (combined_idx - page_idx);
680 page_idx = combined_idx;
681 order++;
682 }
683 set_page_order(page, order);
6dda9d55
CZ
684
685 /*
686 * If this is not the largest possible page, check if the buddy
687 * of the next-highest order is free. If it is, it's possible
688 * that pages are being freed that will coalesce soon. In case,
689 * that is happening, add the free page to the tail of the list
690 * so it's less likely to be used soon and more likely to be merged
691 * as a higher order page
692 */
b7f50cfa 693 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 694 struct page *higher_page, *higher_buddy;
43506fad
KC
695 combined_idx = buddy_idx & page_idx;
696 higher_page = page + (combined_idx - page_idx);
697 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 698 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
699 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
700 list_add_tail(&page->lru,
701 &zone->free_area[order].free_list[migratetype]);
702 goto out;
703 }
704 }
705
706 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
707out:
1da177e4
LT
708 zone->free_area[order].nr_free++;
709}
710
224abf92 711static inline int free_pages_check(struct page *page)
1da177e4 712{
d230dec1 713 const char *bad_reason = NULL;
f0b791a3
DH
714 unsigned long bad_flags = 0;
715
716 if (unlikely(page_mapcount(page)))
717 bad_reason = "nonzero mapcount";
718 if (unlikely(page->mapping != NULL))
719 bad_reason = "non-NULL mapping";
720 if (unlikely(atomic_read(&page->_count) != 0))
721 bad_reason = "nonzero _count";
722 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
723 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
724 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
725 }
9edad6ea
JW
726#ifdef CONFIG_MEMCG
727 if (unlikely(page->mem_cgroup))
728 bad_reason = "page still charged to cgroup";
729#endif
f0b791a3
DH
730 if (unlikely(bad_reason)) {
731 bad_page(page, bad_reason, bad_flags);
79f4b7bf 732 return 1;
8cc3b392 733 }
90572890 734 page_cpupid_reset_last(page);
79f4b7bf
HD
735 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
736 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
737 return 0;
1da177e4
LT
738}
739
740/*
5f8dcc21 741 * Frees a number of pages from the PCP lists
1da177e4 742 * Assumes all pages on list are in same zone, and of same order.
207f36ee 743 * count is the number of pages to free.
1da177e4
LT
744 *
745 * If the zone was previously in an "all pages pinned" state then look to
746 * see if this freeing clears that state.
747 *
748 * And clear the zone's pages_scanned counter, to hold off the "all pages are
749 * pinned" detection logic.
750 */
5f8dcc21
MG
751static void free_pcppages_bulk(struct zone *zone, int count,
752 struct per_cpu_pages *pcp)
1da177e4 753{
5f8dcc21 754 int migratetype = 0;
a6f9edd6 755 int batch_free = 0;
72853e29 756 int to_free = count;
0d5d823a 757 unsigned long nr_scanned;
5f8dcc21 758
c54ad30c 759 spin_lock(&zone->lock);
0d5d823a
MG
760 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
761 if (nr_scanned)
762 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 763
72853e29 764 while (to_free) {
48db57f8 765 struct page *page;
5f8dcc21
MG
766 struct list_head *list;
767
768 /*
a6f9edd6
MG
769 * Remove pages from lists in a round-robin fashion. A
770 * batch_free count is maintained that is incremented when an
771 * empty list is encountered. This is so more pages are freed
772 * off fuller lists instead of spinning excessively around empty
773 * lists
5f8dcc21
MG
774 */
775 do {
a6f9edd6 776 batch_free++;
5f8dcc21
MG
777 if (++migratetype == MIGRATE_PCPTYPES)
778 migratetype = 0;
779 list = &pcp->lists[migratetype];
780 } while (list_empty(list));
48db57f8 781
1d16871d
NK
782 /* This is the only non-empty list. Free them all. */
783 if (batch_free == MIGRATE_PCPTYPES)
784 batch_free = to_free;
785
a6f9edd6 786 do {
770c8aaa
BZ
787 int mt; /* migratetype of the to-be-freed page */
788
a6f9edd6
MG
789 page = list_entry(list->prev, struct page, lru);
790 /* must delete as __free_one_page list manipulates */
791 list_del(&page->lru);
b12c4ad1 792 mt = get_freepage_migratetype(page);
8f82b55d 793 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 794 mt = get_pageblock_migratetype(page);
51bb1a40 795
a7016235 796 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 797 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 798 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 799 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 800 }
c54ad30c 801 spin_unlock(&zone->lock);
1da177e4
LT
802}
803
dc4b0caf
MG
804static void free_one_page(struct zone *zone,
805 struct page *page, unsigned long pfn,
7aeb09f9 806 unsigned int order,
ed0ae21d 807 int migratetype)
1da177e4 808{
0d5d823a 809 unsigned long nr_scanned;
006d22d9 810 spin_lock(&zone->lock);
0d5d823a
MG
811 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
812 if (nr_scanned)
813 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 814
ad53f92e
JK
815 if (unlikely(has_isolate_pageblock(zone) ||
816 is_migrate_isolate(migratetype))) {
817 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 818 }
dc4b0caf 819 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 820 spin_unlock(&zone->lock);
48db57f8
NP
821}
822
81422f29
KS
823static int free_tail_pages_check(struct page *head_page, struct page *page)
824{
825 if (!IS_ENABLED(CONFIG_DEBUG_VM))
826 return 0;
827 if (unlikely(!PageTail(page))) {
828 bad_page(page, "PageTail not set", 0);
829 return 1;
830 }
831 if (unlikely(page->first_page != head_page)) {
832 bad_page(page, "first_page not consistent", 0);
833 return 1;
834 }
835 return 0;
836}
837
1e8ce83c
RH
838static void __meminit __init_single_page(struct page *page, unsigned long pfn,
839 unsigned long zone, int nid)
840{
1e8ce83c 841 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
842 init_page_count(page);
843 page_mapcount_reset(page);
844 page_cpupid_reset_last(page);
1e8ce83c 845
1e8ce83c
RH
846 INIT_LIST_HEAD(&page->lru);
847#ifdef WANT_PAGE_VIRTUAL
848 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
849 if (!is_highmem_idx(zone))
850 set_page_address(page, __va(pfn << PAGE_SHIFT));
851#endif
852}
853
854static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
855 int nid)
856{
857 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
858}
859
7e18adb4
MG
860#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
861static void init_reserved_page(unsigned long pfn)
862{
863 pg_data_t *pgdat;
864 int nid, zid;
865
866 if (!early_page_uninitialised(pfn))
867 return;
868
869 nid = early_pfn_to_nid(pfn);
870 pgdat = NODE_DATA(nid);
871
872 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
873 struct zone *zone = &pgdat->node_zones[zid];
874
875 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
876 break;
877 }
878 __init_single_pfn(pfn, zid, nid);
879}
880#else
881static inline void init_reserved_page(unsigned long pfn)
882{
883}
884#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
885
92923ca3
NZ
886/*
887 * Initialised pages do not have PageReserved set. This function is
888 * called for each range allocated by the bootmem allocator and
889 * marks the pages PageReserved. The remaining valid pages are later
890 * sent to the buddy page allocator.
891 */
7e18adb4 892void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
893{
894 unsigned long start_pfn = PFN_DOWN(start);
895 unsigned long end_pfn = PFN_UP(end);
896
7e18adb4
MG
897 for (; start_pfn < end_pfn; start_pfn++) {
898 if (pfn_valid(start_pfn)) {
899 struct page *page = pfn_to_page(start_pfn);
900
901 init_reserved_page(start_pfn);
902 SetPageReserved(page);
903 }
904 }
92923ca3
NZ
905}
906
ec95f53a 907static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 908{
81422f29
KS
909 bool compound = PageCompound(page);
910 int i, bad = 0;
1da177e4 911
ab1f306f 912 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 913 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 914
b413d48a 915 trace_mm_page_free(page, order);
b1eeab67 916 kmemcheck_free_shadow(page, order);
b8c73fc2 917 kasan_free_pages(page, order);
b1eeab67 918
8dd60a3a
AA
919 if (PageAnon(page))
920 page->mapping = NULL;
81422f29
KS
921 bad += free_pages_check(page);
922 for (i = 1; i < (1 << order); i++) {
923 if (compound)
924 bad += free_tail_pages_check(page, page + i);
8dd60a3a 925 bad += free_pages_check(page + i);
81422f29 926 }
8cc3b392 927 if (bad)
ec95f53a 928 return false;
689bcebf 929
48c96a36
JK
930 reset_page_owner(page, order);
931
3ac7fe5a 932 if (!PageHighMem(page)) {
b8af2941
PK
933 debug_check_no_locks_freed(page_address(page),
934 PAGE_SIZE << order);
3ac7fe5a
TG
935 debug_check_no_obj_freed(page_address(page),
936 PAGE_SIZE << order);
937 }
dafb1367 938 arch_free_page(page, order);
48db57f8 939 kernel_map_pages(page, 1 << order, 0);
dafb1367 940
ec95f53a
KM
941 return true;
942}
943
944static void __free_pages_ok(struct page *page, unsigned int order)
945{
946 unsigned long flags;
95e34412 947 int migratetype;
dc4b0caf 948 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
949
950 if (!free_pages_prepare(page, order))
951 return;
952
cfc47a28 953 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 954 local_irq_save(flags);
f8891e5e 955 __count_vm_events(PGFREE, 1 << order);
95e34412 956 set_freepage_migratetype(page, migratetype);
dc4b0caf 957 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 958 local_irq_restore(flags);
1da177e4
LT
959}
960
3a80a7fa
MG
961static void __defer_init __free_pages_boot_core(struct page *page,
962 unsigned long pfn, unsigned int order)
a226f6c8 963{
c3993076 964 unsigned int nr_pages = 1 << order;
e2d0bd2b 965 struct page *p = page;
c3993076 966 unsigned int loop;
a226f6c8 967
e2d0bd2b
YL
968 prefetchw(p);
969 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
970 prefetchw(p + 1);
c3993076
JW
971 __ClearPageReserved(p);
972 set_page_count(p, 0);
a226f6c8 973 }
e2d0bd2b
YL
974 __ClearPageReserved(p);
975 set_page_count(p, 0);
c3993076 976
e2d0bd2b 977 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
978 set_page_refcounted(page);
979 __free_pages(page, order);
a226f6c8
DH
980}
981
75a592a4
MG
982#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
983 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
984/* Only safe to use early in boot when initialisation is single-threaded */
985static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
986
987int __meminit early_pfn_to_nid(unsigned long pfn)
988{
989 int nid;
990
991 /* The system will behave unpredictably otherwise */
992 BUG_ON(system_state != SYSTEM_BOOTING);
993
994 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
995 if (nid >= 0)
996 return nid;
997 /* just returns 0 */
998 return 0;
999}
1000#endif
1001
1002#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1003static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1004 struct mminit_pfnnid_cache *state)
1005{
1006 int nid;
1007
1008 nid = __early_pfn_to_nid(pfn, state);
1009 if (nid >= 0 && nid != node)
1010 return false;
1011 return true;
1012}
1013
1014/* Only safe to use early in boot when initialisation is single-threaded */
1015static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1016{
1017 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1018}
1019
1020#else
1021
1022static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1023{
1024 return true;
1025}
1026static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1027 struct mminit_pfnnid_cache *state)
1028{
1029 return true;
1030}
1031#endif
1032
1033
3a80a7fa
MG
1034void __defer_init __free_pages_bootmem(struct page *page, unsigned long pfn,
1035 unsigned int order)
1036{
1037 if (early_page_uninitialised(pfn))
1038 return;
1039 return __free_pages_boot_core(page, pfn, order);
1040}
1041
7e18adb4 1042#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
a4de83dd
MG
1043static void __defermem_init deferred_free_range(struct page *page,
1044 unsigned long pfn, int nr_pages)
1045{
1046 int i;
1047
1048 if (!page)
1049 return;
1050
1051 /* Free a large naturally-aligned chunk if possible */
1052 if (nr_pages == MAX_ORDER_NR_PAGES &&
1053 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1054 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1055 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1056 return;
1057 }
1058
1059 for (i = 0; i < nr_pages; i++, page++, pfn++)
1060 __free_pages_boot_core(page, pfn, 0);
1061}
1062
7e18adb4
MG
1063/* Initialise remaining memory on a node */
1064void __defermem_init deferred_init_memmap(int nid)
1065{
1066 struct mminit_pfnnid_cache nid_init_state = { };
1067 unsigned long start = jiffies;
1068 unsigned long nr_pages = 0;
1069 unsigned long walk_start, walk_end;
1070 int i, zid;
1071 struct zone *zone;
1072 pg_data_t *pgdat = NODE_DATA(nid);
1073 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1074
1075 if (first_init_pfn == ULONG_MAX)
1076 return;
1077
1078 /* Sanity check boundaries */
1079 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1080 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1081 pgdat->first_deferred_pfn = ULONG_MAX;
1082
1083 /* Only the highest zone is deferred so find it */
1084 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1085 zone = pgdat->node_zones + zid;
1086 if (first_init_pfn < zone_end_pfn(zone))
1087 break;
1088 }
1089
1090 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1091 unsigned long pfn, end_pfn;
54608c3f 1092 struct page *page = NULL;
a4de83dd
MG
1093 struct page *free_base_page = NULL;
1094 unsigned long free_base_pfn = 0;
1095 int nr_to_free = 0;
7e18adb4
MG
1096
1097 end_pfn = min(walk_end, zone_end_pfn(zone));
1098 pfn = first_init_pfn;
1099 if (pfn < walk_start)
1100 pfn = walk_start;
1101 if (pfn < zone->zone_start_pfn)
1102 pfn = zone->zone_start_pfn;
1103
1104 for (; pfn < end_pfn; pfn++) {
54608c3f 1105 if (!pfn_valid_within(pfn))
a4de83dd 1106 goto free_range;
7e18adb4 1107
54608c3f
MG
1108 /*
1109 * Ensure pfn_valid is checked every
1110 * MAX_ORDER_NR_PAGES for memory holes
1111 */
1112 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1113 if (!pfn_valid(pfn)) {
1114 page = NULL;
a4de83dd 1115 goto free_range;
54608c3f
MG
1116 }
1117 }
1118
1119 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1120 page = NULL;
a4de83dd 1121 goto free_range;
54608c3f
MG
1122 }
1123
1124 /* Minimise pfn page lookups and scheduler checks */
1125 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1126 page++;
1127 } else {
a4de83dd
MG
1128 nr_pages += nr_to_free;
1129 deferred_free_range(free_base_page,
1130 free_base_pfn, nr_to_free);
1131 free_base_page = NULL;
1132 free_base_pfn = nr_to_free = 0;
1133
54608c3f
MG
1134 page = pfn_to_page(pfn);
1135 cond_resched();
1136 }
7e18adb4
MG
1137
1138 if (page->flags) {
1139 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1140 goto free_range;
7e18adb4
MG
1141 }
1142
1143 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1144 if (!free_base_page) {
1145 free_base_page = page;
1146 free_base_pfn = pfn;
1147 nr_to_free = 0;
1148 }
1149 nr_to_free++;
1150
1151 /* Where possible, batch up pages for a single free */
1152 continue;
1153free_range:
1154 /* Free the current block of pages to allocator */
1155 nr_pages += nr_to_free;
1156 deferred_free_range(free_base_page, free_base_pfn,
1157 nr_to_free);
1158 free_base_page = NULL;
1159 free_base_pfn = nr_to_free = 0;
7e18adb4 1160 }
a4de83dd 1161
7e18adb4
MG
1162 first_init_pfn = max(end_pfn, first_init_pfn);
1163 }
1164
1165 /* Sanity check that the next zone really is unpopulated */
1166 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1167
1168 pr_info("kswapd %d initialised %lu pages in %ums\n", nid, nr_pages,
1169 jiffies_to_msecs(jiffies - start));
1170}
1171#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1172
47118af0 1173#ifdef CONFIG_CMA
9cf510a5 1174/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1175void __init init_cma_reserved_pageblock(struct page *page)
1176{
1177 unsigned i = pageblock_nr_pages;
1178 struct page *p = page;
1179
1180 do {
1181 __ClearPageReserved(p);
1182 set_page_count(p, 0);
1183 } while (++p, --i);
1184
47118af0 1185 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1186
1187 if (pageblock_order >= MAX_ORDER) {
1188 i = pageblock_nr_pages;
1189 p = page;
1190 do {
1191 set_page_refcounted(p);
1192 __free_pages(p, MAX_ORDER - 1);
1193 p += MAX_ORDER_NR_PAGES;
1194 } while (i -= MAX_ORDER_NR_PAGES);
1195 } else {
1196 set_page_refcounted(page);
1197 __free_pages(page, pageblock_order);
1198 }
1199
3dcc0571 1200 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1201}
1202#endif
1da177e4
LT
1203
1204/*
1205 * The order of subdivision here is critical for the IO subsystem.
1206 * Please do not alter this order without good reasons and regression
1207 * testing. Specifically, as large blocks of memory are subdivided,
1208 * the order in which smaller blocks are delivered depends on the order
1209 * they're subdivided in this function. This is the primary factor
1210 * influencing the order in which pages are delivered to the IO
1211 * subsystem according to empirical testing, and this is also justified
1212 * by considering the behavior of a buddy system containing a single
1213 * large block of memory acted on by a series of small allocations.
1214 * This behavior is a critical factor in sglist merging's success.
1215 *
6d49e352 1216 * -- nyc
1da177e4 1217 */
085cc7d5 1218static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1219 int low, int high, struct free_area *area,
1220 int migratetype)
1da177e4
LT
1221{
1222 unsigned long size = 1 << high;
1223
1224 while (high > low) {
1225 area--;
1226 high--;
1227 size >>= 1;
309381fe 1228 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1229
2847cf95 1230 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1231 debug_guardpage_enabled() &&
2847cf95 1232 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1233 /*
1234 * Mark as guard pages (or page), that will allow to
1235 * merge back to allocator when buddy will be freed.
1236 * Corresponding page table entries will not be touched,
1237 * pages will stay not present in virtual address space
1238 */
2847cf95 1239 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1240 continue;
1241 }
b2a0ac88 1242 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1243 area->nr_free++;
1244 set_page_order(&page[size], high);
1245 }
1da177e4
LT
1246}
1247
1da177e4
LT
1248/*
1249 * This page is about to be returned from the page allocator
1250 */
2a7684a2 1251static inline int check_new_page(struct page *page)
1da177e4 1252{
d230dec1 1253 const char *bad_reason = NULL;
f0b791a3
DH
1254 unsigned long bad_flags = 0;
1255
1256 if (unlikely(page_mapcount(page)))
1257 bad_reason = "nonzero mapcount";
1258 if (unlikely(page->mapping != NULL))
1259 bad_reason = "non-NULL mapping";
1260 if (unlikely(atomic_read(&page->_count) != 0))
1261 bad_reason = "nonzero _count";
1262 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1263 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1264 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1265 }
9edad6ea
JW
1266#ifdef CONFIG_MEMCG
1267 if (unlikely(page->mem_cgroup))
1268 bad_reason = "page still charged to cgroup";
1269#endif
f0b791a3
DH
1270 if (unlikely(bad_reason)) {
1271 bad_page(page, bad_reason, bad_flags);
689bcebf 1272 return 1;
8cc3b392 1273 }
2a7684a2
WF
1274 return 0;
1275}
1276
75379191
VB
1277static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1278 int alloc_flags)
2a7684a2
WF
1279{
1280 int i;
1281
1282 for (i = 0; i < (1 << order); i++) {
1283 struct page *p = page + i;
1284 if (unlikely(check_new_page(p)))
1285 return 1;
1286 }
689bcebf 1287
4c21e2f2 1288 set_page_private(page, 0);
7835e98b 1289 set_page_refcounted(page);
cc102509
NP
1290
1291 arch_alloc_page(page, order);
1da177e4 1292 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1293 kasan_alloc_pages(page, order);
17cf4406
NP
1294
1295 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1296 for (i = 0; i < (1 << order); i++)
1297 clear_highpage(page + i);
17cf4406
NP
1298
1299 if (order && (gfp_flags & __GFP_COMP))
1300 prep_compound_page(page, order);
1301
48c96a36
JK
1302 set_page_owner(page, order, gfp_flags);
1303
75379191
VB
1304 /*
1305 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1306 * allocate the page. The expectation is that the caller is taking
1307 * steps that will free more memory. The caller should avoid the page
1308 * being used for !PFMEMALLOC purposes.
1309 */
1310 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1311
689bcebf 1312 return 0;
1da177e4
LT
1313}
1314
56fd56b8
MG
1315/*
1316 * Go through the free lists for the given migratetype and remove
1317 * the smallest available page from the freelists
1318 */
728ec980
MG
1319static inline
1320struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1321 int migratetype)
1322{
1323 unsigned int current_order;
b8af2941 1324 struct free_area *area;
56fd56b8
MG
1325 struct page *page;
1326
1327 /* Find a page of the appropriate size in the preferred list */
1328 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1329 area = &(zone->free_area[current_order]);
1330 if (list_empty(&area->free_list[migratetype]))
1331 continue;
1332
1333 page = list_entry(area->free_list[migratetype].next,
1334 struct page, lru);
1335 list_del(&page->lru);
1336 rmv_page_order(page);
1337 area->nr_free--;
56fd56b8 1338 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1339 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1340 return page;
1341 }
1342
1343 return NULL;
1344}
1345
1346
b2a0ac88
MG
1347/*
1348 * This array describes the order lists are fallen back to when
1349 * the free lists for the desirable migrate type are depleted
1350 */
47118af0
MN
1351static int fallbacks[MIGRATE_TYPES][4] = {
1352 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1353 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1354 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1355#ifdef CONFIG_CMA
47118af0 1356 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1357#endif
6d4a4916 1358 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1359#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1360 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1361#endif
b2a0ac88
MG
1362};
1363
dc67647b
JK
1364#ifdef CONFIG_CMA
1365static struct page *__rmqueue_cma_fallback(struct zone *zone,
1366 unsigned int order)
1367{
1368 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1369}
1370#else
1371static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1372 unsigned int order) { return NULL; }
1373#endif
1374
c361be55
MG
1375/*
1376 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1377 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1378 * boundary. If alignment is required, use move_freepages_block()
1379 */
435b405c 1380int move_freepages(struct zone *zone,
b69a7288
AB
1381 struct page *start_page, struct page *end_page,
1382 int migratetype)
c361be55
MG
1383{
1384 struct page *page;
1385 unsigned long order;
d100313f 1386 int pages_moved = 0;
c361be55
MG
1387
1388#ifndef CONFIG_HOLES_IN_ZONE
1389 /*
1390 * page_zone is not safe to call in this context when
1391 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1392 * anyway as we check zone boundaries in move_freepages_block().
1393 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1394 * grouping pages by mobility
c361be55 1395 */
97ee4ba7 1396 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1397#endif
1398
1399 for (page = start_page; page <= end_page;) {
344c790e 1400 /* Make sure we are not inadvertently changing nodes */
309381fe 1401 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1402
c361be55
MG
1403 if (!pfn_valid_within(page_to_pfn(page))) {
1404 page++;
1405 continue;
1406 }
1407
1408 if (!PageBuddy(page)) {
1409 page++;
1410 continue;
1411 }
1412
1413 order = page_order(page);
84be48d8
KS
1414 list_move(&page->lru,
1415 &zone->free_area[order].free_list[migratetype]);
95e34412 1416 set_freepage_migratetype(page, migratetype);
c361be55 1417 page += 1 << order;
d100313f 1418 pages_moved += 1 << order;
c361be55
MG
1419 }
1420
d100313f 1421 return pages_moved;
c361be55
MG
1422}
1423
ee6f509c 1424int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1425 int migratetype)
c361be55
MG
1426{
1427 unsigned long start_pfn, end_pfn;
1428 struct page *start_page, *end_page;
1429
1430 start_pfn = page_to_pfn(page);
d9c23400 1431 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1432 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1433 end_page = start_page + pageblock_nr_pages - 1;
1434 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1435
1436 /* Do not cross zone boundaries */
108bcc96 1437 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1438 start_page = page;
108bcc96 1439 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1440 return 0;
1441
1442 return move_freepages(zone, start_page, end_page, migratetype);
1443}
1444
2f66a68f
MG
1445static void change_pageblock_range(struct page *pageblock_page,
1446 int start_order, int migratetype)
1447{
1448 int nr_pageblocks = 1 << (start_order - pageblock_order);
1449
1450 while (nr_pageblocks--) {
1451 set_pageblock_migratetype(pageblock_page, migratetype);
1452 pageblock_page += pageblock_nr_pages;
1453 }
1454}
1455
fef903ef 1456/*
9c0415eb
VB
1457 * When we are falling back to another migratetype during allocation, try to
1458 * steal extra free pages from the same pageblocks to satisfy further
1459 * allocations, instead of polluting multiple pageblocks.
1460 *
1461 * If we are stealing a relatively large buddy page, it is likely there will
1462 * be more free pages in the pageblock, so try to steal them all. For
1463 * reclaimable and unmovable allocations, we steal regardless of page size,
1464 * as fragmentation caused by those allocations polluting movable pageblocks
1465 * is worse than movable allocations stealing from unmovable and reclaimable
1466 * pageblocks.
fef903ef 1467 */
4eb7dce6
JK
1468static bool can_steal_fallback(unsigned int order, int start_mt)
1469{
1470 /*
1471 * Leaving this order check is intended, although there is
1472 * relaxed order check in next check. The reason is that
1473 * we can actually steal whole pageblock if this condition met,
1474 * but, below check doesn't guarantee it and that is just heuristic
1475 * so could be changed anytime.
1476 */
1477 if (order >= pageblock_order)
1478 return true;
1479
1480 if (order >= pageblock_order / 2 ||
1481 start_mt == MIGRATE_RECLAIMABLE ||
1482 start_mt == MIGRATE_UNMOVABLE ||
1483 page_group_by_mobility_disabled)
1484 return true;
1485
1486 return false;
1487}
1488
1489/*
1490 * This function implements actual steal behaviour. If order is large enough,
1491 * we can steal whole pageblock. If not, we first move freepages in this
1492 * pageblock and check whether half of pages are moved or not. If half of
1493 * pages are moved, we can change migratetype of pageblock and permanently
1494 * use it's pages as requested migratetype in the future.
1495 */
1496static void steal_suitable_fallback(struct zone *zone, struct page *page,
1497 int start_type)
fef903ef
SB
1498{
1499 int current_order = page_order(page);
4eb7dce6 1500 int pages;
fef903ef 1501
fef903ef
SB
1502 /* Take ownership for orders >= pageblock_order */
1503 if (current_order >= pageblock_order) {
1504 change_pageblock_range(page, current_order, start_type);
3a1086fb 1505 return;
fef903ef
SB
1506 }
1507
4eb7dce6 1508 pages = move_freepages_block(zone, page, start_type);
fef903ef 1509
4eb7dce6
JK
1510 /* Claim the whole block if over half of it is free */
1511 if (pages >= (1 << (pageblock_order-1)) ||
1512 page_group_by_mobility_disabled)
1513 set_pageblock_migratetype(page, start_type);
1514}
1515
2149cdae
JK
1516/*
1517 * Check whether there is a suitable fallback freepage with requested order.
1518 * If only_stealable is true, this function returns fallback_mt only if
1519 * we can steal other freepages all together. This would help to reduce
1520 * fragmentation due to mixed migratetype pages in one pageblock.
1521 */
1522int find_suitable_fallback(struct free_area *area, unsigned int order,
1523 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1524{
1525 int i;
1526 int fallback_mt;
1527
1528 if (area->nr_free == 0)
1529 return -1;
1530
1531 *can_steal = false;
1532 for (i = 0;; i++) {
1533 fallback_mt = fallbacks[migratetype][i];
1534 if (fallback_mt == MIGRATE_RESERVE)
1535 break;
1536
1537 if (list_empty(&area->free_list[fallback_mt]))
1538 continue;
fef903ef 1539
4eb7dce6
JK
1540 if (can_steal_fallback(order, migratetype))
1541 *can_steal = true;
1542
2149cdae
JK
1543 if (!only_stealable)
1544 return fallback_mt;
1545
1546 if (*can_steal)
1547 return fallback_mt;
fef903ef 1548 }
4eb7dce6
JK
1549
1550 return -1;
fef903ef
SB
1551}
1552
b2a0ac88 1553/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1554static inline struct page *
7aeb09f9 1555__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1556{
b8af2941 1557 struct free_area *area;
7aeb09f9 1558 unsigned int current_order;
b2a0ac88 1559 struct page *page;
4eb7dce6
JK
1560 int fallback_mt;
1561 bool can_steal;
b2a0ac88
MG
1562
1563 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1564 for (current_order = MAX_ORDER-1;
1565 current_order >= order && current_order <= MAX_ORDER-1;
1566 --current_order) {
4eb7dce6
JK
1567 area = &(zone->free_area[current_order]);
1568 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1569 start_migratetype, false, &can_steal);
4eb7dce6
JK
1570 if (fallback_mt == -1)
1571 continue;
b2a0ac88 1572
4eb7dce6
JK
1573 page = list_entry(area->free_list[fallback_mt].next,
1574 struct page, lru);
1575 if (can_steal)
1576 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1577
4eb7dce6
JK
1578 /* Remove the page from the freelists */
1579 area->nr_free--;
1580 list_del(&page->lru);
1581 rmv_page_order(page);
3a1086fb 1582
4eb7dce6
JK
1583 expand(zone, page, order, current_order, area,
1584 start_migratetype);
1585 /*
1586 * The freepage_migratetype may differ from pageblock's
1587 * migratetype depending on the decisions in
1588 * try_to_steal_freepages(). This is OK as long as it
1589 * does not differ for MIGRATE_CMA pageblocks. For CMA
1590 * we need to make sure unallocated pages flushed from
1591 * pcp lists are returned to the correct freelist.
1592 */
1593 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1594
4eb7dce6
JK
1595 trace_mm_page_alloc_extfrag(page, order, current_order,
1596 start_migratetype, fallback_mt);
e0fff1bd 1597
4eb7dce6 1598 return page;
b2a0ac88
MG
1599 }
1600
728ec980 1601 return NULL;
b2a0ac88
MG
1602}
1603
56fd56b8 1604/*
1da177e4
LT
1605 * Do the hard work of removing an element from the buddy allocator.
1606 * Call me with the zone->lock already held.
1607 */
b2a0ac88
MG
1608static struct page *__rmqueue(struct zone *zone, unsigned int order,
1609 int migratetype)
1da177e4 1610{
1da177e4
LT
1611 struct page *page;
1612
728ec980 1613retry_reserve:
56fd56b8 1614 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1615
728ec980 1616 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1617 if (migratetype == MIGRATE_MOVABLE)
1618 page = __rmqueue_cma_fallback(zone, order);
1619
1620 if (!page)
1621 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1622
728ec980
MG
1623 /*
1624 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1625 * is used because __rmqueue_smallest is an inline function
1626 * and we want just one call site
1627 */
1628 if (!page) {
1629 migratetype = MIGRATE_RESERVE;
1630 goto retry_reserve;
1631 }
1632 }
1633
0d3d062a 1634 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1635 return page;
1da177e4
LT
1636}
1637
5f63b720 1638/*
1da177e4
LT
1639 * Obtain a specified number of elements from the buddy allocator, all under
1640 * a single hold of the lock, for efficiency. Add them to the supplied list.
1641 * Returns the number of new pages which were placed at *list.
1642 */
5f63b720 1643static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1644 unsigned long count, struct list_head *list,
b745bc85 1645 int migratetype, bool cold)
1da177e4 1646{
5bcc9f86 1647 int i;
5f63b720 1648
c54ad30c 1649 spin_lock(&zone->lock);
1da177e4 1650 for (i = 0; i < count; ++i) {
b2a0ac88 1651 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1652 if (unlikely(page == NULL))
1da177e4 1653 break;
81eabcbe
MG
1654
1655 /*
1656 * Split buddy pages returned by expand() are received here
1657 * in physical page order. The page is added to the callers and
1658 * list and the list head then moves forward. From the callers
1659 * perspective, the linked list is ordered by page number in
1660 * some conditions. This is useful for IO devices that can
1661 * merge IO requests if the physical pages are ordered
1662 * properly.
1663 */
b745bc85 1664 if (likely(!cold))
e084b2d9
MG
1665 list_add(&page->lru, list);
1666 else
1667 list_add_tail(&page->lru, list);
81eabcbe 1668 list = &page->lru;
5bcc9f86 1669 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1670 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1671 -(1 << order));
1da177e4 1672 }
f2260e6b 1673 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1674 spin_unlock(&zone->lock);
085cc7d5 1675 return i;
1da177e4
LT
1676}
1677
4ae7c039 1678#ifdef CONFIG_NUMA
8fce4d8e 1679/*
4037d452
CL
1680 * Called from the vmstat counter updater to drain pagesets of this
1681 * currently executing processor on remote nodes after they have
1682 * expired.
1683 *
879336c3
CL
1684 * Note that this function must be called with the thread pinned to
1685 * a single processor.
8fce4d8e 1686 */
4037d452 1687void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1688{
4ae7c039 1689 unsigned long flags;
7be12fc9 1690 int to_drain, batch;
4ae7c039 1691
4037d452 1692 local_irq_save(flags);
4db0c3c2 1693 batch = READ_ONCE(pcp->batch);
7be12fc9 1694 to_drain = min(pcp->count, batch);
2a13515c
KM
1695 if (to_drain > 0) {
1696 free_pcppages_bulk(zone, to_drain, pcp);
1697 pcp->count -= to_drain;
1698 }
4037d452 1699 local_irq_restore(flags);
4ae7c039
CL
1700}
1701#endif
1702
9f8f2172 1703/*
93481ff0 1704 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1705 *
1706 * The processor must either be the current processor and the
1707 * thread pinned to the current processor or a processor that
1708 * is not online.
1709 */
93481ff0 1710static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1711{
c54ad30c 1712 unsigned long flags;
93481ff0
VB
1713 struct per_cpu_pageset *pset;
1714 struct per_cpu_pages *pcp;
1da177e4 1715
93481ff0
VB
1716 local_irq_save(flags);
1717 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1718
93481ff0
VB
1719 pcp = &pset->pcp;
1720 if (pcp->count) {
1721 free_pcppages_bulk(zone, pcp->count, pcp);
1722 pcp->count = 0;
1723 }
1724 local_irq_restore(flags);
1725}
3dfa5721 1726
93481ff0
VB
1727/*
1728 * Drain pcplists of all zones on the indicated processor.
1729 *
1730 * The processor must either be the current processor and the
1731 * thread pinned to the current processor or a processor that
1732 * is not online.
1733 */
1734static void drain_pages(unsigned int cpu)
1735{
1736 struct zone *zone;
1737
1738 for_each_populated_zone(zone) {
1739 drain_pages_zone(cpu, zone);
1da177e4
LT
1740 }
1741}
1da177e4 1742
9f8f2172
CL
1743/*
1744 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1745 *
1746 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1747 * the single zone's pages.
9f8f2172 1748 */
93481ff0 1749void drain_local_pages(struct zone *zone)
9f8f2172 1750{
93481ff0
VB
1751 int cpu = smp_processor_id();
1752
1753 if (zone)
1754 drain_pages_zone(cpu, zone);
1755 else
1756 drain_pages(cpu);
9f8f2172
CL
1757}
1758
1759/*
74046494
GBY
1760 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1761 *
93481ff0
VB
1762 * When zone parameter is non-NULL, spill just the single zone's pages.
1763 *
74046494
GBY
1764 * Note that this code is protected against sending an IPI to an offline
1765 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1766 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1767 * nothing keeps CPUs from showing up after we populated the cpumask and
1768 * before the call to on_each_cpu_mask().
9f8f2172 1769 */
93481ff0 1770void drain_all_pages(struct zone *zone)
9f8f2172 1771{
74046494 1772 int cpu;
74046494
GBY
1773
1774 /*
1775 * Allocate in the BSS so we wont require allocation in
1776 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1777 */
1778 static cpumask_t cpus_with_pcps;
1779
1780 /*
1781 * We don't care about racing with CPU hotplug event
1782 * as offline notification will cause the notified
1783 * cpu to drain that CPU pcps and on_each_cpu_mask
1784 * disables preemption as part of its processing
1785 */
1786 for_each_online_cpu(cpu) {
93481ff0
VB
1787 struct per_cpu_pageset *pcp;
1788 struct zone *z;
74046494 1789 bool has_pcps = false;
93481ff0
VB
1790
1791 if (zone) {
74046494 1792 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1793 if (pcp->pcp.count)
74046494 1794 has_pcps = true;
93481ff0
VB
1795 } else {
1796 for_each_populated_zone(z) {
1797 pcp = per_cpu_ptr(z->pageset, cpu);
1798 if (pcp->pcp.count) {
1799 has_pcps = true;
1800 break;
1801 }
74046494
GBY
1802 }
1803 }
93481ff0 1804
74046494
GBY
1805 if (has_pcps)
1806 cpumask_set_cpu(cpu, &cpus_with_pcps);
1807 else
1808 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1809 }
93481ff0
VB
1810 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1811 zone, 1);
9f8f2172
CL
1812}
1813
296699de 1814#ifdef CONFIG_HIBERNATION
1da177e4
LT
1815
1816void mark_free_pages(struct zone *zone)
1817{
f623f0db
RW
1818 unsigned long pfn, max_zone_pfn;
1819 unsigned long flags;
7aeb09f9 1820 unsigned int order, t;
1da177e4
LT
1821 struct list_head *curr;
1822
8080fc03 1823 if (zone_is_empty(zone))
1da177e4
LT
1824 return;
1825
1826 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1827
108bcc96 1828 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1829 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1830 if (pfn_valid(pfn)) {
1831 struct page *page = pfn_to_page(pfn);
1832
7be98234
RW
1833 if (!swsusp_page_is_forbidden(page))
1834 swsusp_unset_page_free(page);
f623f0db 1835 }
1da177e4 1836
b2a0ac88
MG
1837 for_each_migratetype_order(order, t) {
1838 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1839 unsigned long i;
1da177e4 1840
f623f0db
RW
1841 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1842 for (i = 0; i < (1UL << order); i++)
7be98234 1843 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1844 }
b2a0ac88 1845 }
1da177e4
LT
1846 spin_unlock_irqrestore(&zone->lock, flags);
1847}
e2c55dc8 1848#endif /* CONFIG_PM */
1da177e4 1849
1da177e4
LT
1850/*
1851 * Free a 0-order page
b745bc85 1852 * cold == true ? free a cold page : free a hot page
1da177e4 1853 */
b745bc85 1854void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1855{
1856 struct zone *zone = page_zone(page);
1857 struct per_cpu_pages *pcp;
1858 unsigned long flags;
dc4b0caf 1859 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1860 int migratetype;
1da177e4 1861
ec95f53a 1862 if (!free_pages_prepare(page, 0))
689bcebf
HD
1863 return;
1864
dc4b0caf 1865 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1866 set_freepage_migratetype(page, migratetype);
1da177e4 1867 local_irq_save(flags);
f8891e5e 1868 __count_vm_event(PGFREE);
da456f14 1869
5f8dcc21
MG
1870 /*
1871 * We only track unmovable, reclaimable and movable on pcp lists.
1872 * Free ISOLATE pages back to the allocator because they are being
1873 * offlined but treat RESERVE as movable pages so we can get those
1874 * areas back if necessary. Otherwise, we may have to free
1875 * excessively into the page allocator
1876 */
1877 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1878 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1879 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1880 goto out;
1881 }
1882 migratetype = MIGRATE_MOVABLE;
1883 }
1884
99dcc3e5 1885 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1886 if (!cold)
5f8dcc21 1887 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1888 else
1889 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1890 pcp->count++;
48db57f8 1891 if (pcp->count >= pcp->high) {
4db0c3c2 1892 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1893 free_pcppages_bulk(zone, batch, pcp);
1894 pcp->count -= batch;
48db57f8 1895 }
5f8dcc21
MG
1896
1897out:
1da177e4 1898 local_irq_restore(flags);
1da177e4
LT
1899}
1900
cc59850e
KK
1901/*
1902 * Free a list of 0-order pages
1903 */
b745bc85 1904void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1905{
1906 struct page *page, *next;
1907
1908 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1909 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1910 free_hot_cold_page(page, cold);
1911 }
1912}
1913
8dfcc9ba
NP
1914/*
1915 * split_page takes a non-compound higher-order page, and splits it into
1916 * n (1<<order) sub-pages: page[0..n]
1917 * Each sub-page must be freed individually.
1918 *
1919 * Note: this is probably too low level an operation for use in drivers.
1920 * Please consult with lkml before using this in your driver.
1921 */
1922void split_page(struct page *page, unsigned int order)
1923{
1924 int i;
1925
309381fe
SL
1926 VM_BUG_ON_PAGE(PageCompound(page), page);
1927 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1928
1929#ifdef CONFIG_KMEMCHECK
1930 /*
1931 * Split shadow pages too, because free(page[0]) would
1932 * otherwise free the whole shadow.
1933 */
1934 if (kmemcheck_page_is_tracked(page))
1935 split_page(virt_to_page(page[0].shadow), order);
1936#endif
1937
48c96a36
JK
1938 set_page_owner(page, 0, 0);
1939 for (i = 1; i < (1 << order); i++) {
7835e98b 1940 set_page_refcounted(page + i);
48c96a36
JK
1941 set_page_owner(page + i, 0, 0);
1942 }
8dfcc9ba 1943}
5853ff23 1944EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1945
3c605096 1946int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1947{
748446bb
MG
1948 unsigned long watermark;
1949 struct zone *zone;
2139cbe6 1950 int mt;
748446bb
MG
1951
1952 BUG_ON(!PageBuddy(page));
1953
1954 zone = page_zone(page);
2e30abd1 1955 mt = get_pageblock_migratetype(page);
748446bb 1956
194159fb 1957 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1958 /* Obey watermarks as if the page was being allocated */
1959 watermark = low_wmark_pages(zone) + (1 << order);
1960 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1961 return 0;
1962
8fb74b9f 1963 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 1964 }
748446bb
MG
1965
1966 /* Remove page from free list */
1967 list_del(&page->lru);
1968 zone->free_area[order].nr_free--;
1969 rmv_page_order(page);
2139cbe6 1970
8fb74b9f 1971 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
1972 if (order >= pageblock_order - 1) {
1973 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
1974 for (; page < endpage; page += pageblock_nr_pages) {
1975 int mt = get_pageblock_migratetype(page);
194159fb 1976 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
1977 set_pageblock_migratetype(page,
1978 MIGRATE_MOVABLE);
1979 }
748446bb
MG
1980 }
1981
48c96a36 1982 set_page_owner(page, order, 0);
8fb74b9f 1983 return 1UL << order;
1fb3f8ca
MG
1984}
1985
1986/*
1987 * Similar to split_page except the page is already free. As this is only
1988 * being used for migration, the migratetype of the block also changes.
1989 * As this is called with interrupts disabled, the caller is responsible
1990 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1991 * are enabled.
1992 *
1993 * Note: this is probably too low level an operation for use in drivers.
1994 * Please consult with lkml before using this in your driver.
1995 */
1996int split_free_page(struct page *page)
1997{
1998 unsigned int order;
1999 int nr_pages;
2000
1fb3f8ca
MG
2001 order = page_order(page);
2002
8fb74b9f 2003 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2004 if (!nr_pages)
2005 return 0;
2006
2007 /* Split into individual pages */
2008 set_page_refcounted(page);
2009 split_page(page, order);
2010 return nr_pages;
748446bb
MG
2011}
2012
1da177e4 2013/*
75379191 2014 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2015 */
0a15c3e9
MG
2016static inline
2017struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
2018 struct zone *zone, unsigned int order,
2019 gfp_t gfp_flags, int migratetype)
1da177e4
LT
2020{
2021 unsigned long flags;
689bcebf 2022 struct page *page;
b745bc85 2023 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2024
48db57f8 2025 if (likely(order == 0)) {
1da177e4 2026 struct per_cpu_pages *pcp;
5f8dcc21 2027 struct list_head *list;
1da177e4 2028
1da177e4 2029 local_irq_save(flags);
99dcc3e5
CL
2030 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2031 list = &pcp->lists[migratetype];
5f8dcc21 2032 if (list_empty(list)) {
535131e6 2033 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2034 pcp->batch, list,
e084b2d9 2035 migratetype, cold);
5f8dcc21 2036 if (unlikely(list_empty(list)))
6fb332fa 2037 goto failed;
535131e6 2038 }
b92a6edd 2039
5f8dcc21
MG
2040 if (cold)
2041 page = list_entry(list->prev, struct page, lru);
2042 else
2043 page = list_entry(list->next, struct page, lru);
2044
b92a6edd
MG
2045 list_del(&page->lru);
2046 pcp->count--;
7fb1d9fc 2047 } else {
dab48dab
AM
2048 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2049 /*
2050 * __GFP_NOFAIL is not to be used in new code.
2051 *
2052 * All __GFP_NOFAIL callers should be fixed so that they
2053 * properly detect and handle allocation failures.
2054 *
2055 * We most definitely don't want callers attempting to
4923abf9 2056 * allocate greater than order-1 page units with
dab48dab
AM
2057 * __GFP_NOFAIL.
2058 */
4923abf9 2059 WARN_ON_ONCE(order > 1);
dab48dab 2060 }
1da177e4 2061 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2062 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2063 spin_unlock(&zone->lock);
2064 if (!page)
2065 goto failed;
d1ce749a 2066 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 2067 get_freepage_migratetype(page));
1da177e4
LT
2068 }
2069
3a025760 2070 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2071 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2072 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2073 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2074
f8891e5e 2075 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2076 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2077 local_irq_restore(flags);
1da177e4 2078
309381fe 2079 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2080 return page;
a74609fa
NP
2081
2082failed:
2083 local_irq_restore(flags);
a74609fa 2084 return NULL;
1da177e4
LT
2085}
2086
933e312e
AM
2087#ifdef CONFIG_FAIL_PAGE_ALLOC
2088
b2588c4b 2089static struct {
933e312e
AM
2090 struct fault_attr attr;
2091
2092 u32 ignore_gfp_highmem;
2093 u32 ignore_gfp_wait;
54114994 2094 u32 min_order;
933e312e
AM
2095} fail_page_alloc = {
2096 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2097 .ignore_gfp_wait = 1,
2098 .ignore_gfp_highmem = 1,
54114994 2099 .min_order = 1,
933e312e
AM
2100};
2101
2102static int __init setup_fail_page_alloc(char *str)
2103{
2104 return setup_fault_attr(&fail_page_alloc.attr, str);
2105}
2106__setup("fail_page_alloc=", setup_fail_page_alloc);
2107
deaf386e 2108static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2109{
54114994 2110 if (order < fail_page_alloc.min_order)
deaf386e 2111 return false;
933e312e 2112 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2113 return false;
933e312e 2114 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2115 return false;
933e312e 2116 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2117 return false;
933e312e
AM
2118
2119 return should_fail(&fail_page_alloc.attr, 1 << order);
2120}
2121
2122#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2123
2124static int __init fail_page_alloc_debugfs(void)
2125{
f4ae40a6 2126 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2127 struct dentry *dir;
933e312e 2128
dd48c085
AM
2129 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2130 &fail_page_alloc.attr);
2131 if (IS_ERR(dir))
2132 return PTR_ERR(dir);
933e312e 2133
b2588c4b
AM
2134 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2135 &fail_page_alloc.ignore_gfp_wait))
2136 goto fail;
2137 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2138 &fail_page_alloc.ignore_gfp_highmem))
2139 goto fail;
2140 if (!debugfs_create_u32("min-order", mode, dir,
2141 &fail_page_alloc.min_order))
2142 goto fail;
2143
2144 return 0;
2145fail:
dd48c085 2146 debugfs_remove_recursive(dir);
933e312e 2147
b2588c4b 2148 return -ENOMEM;
933e312e
AM
2149}
2150
2151late_initcall(fail_page_alloc_debugfs);
2152
2153#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2154
2155#else /* CONFIG_FAIL_PAGE_ALLOC */
2156
deaf386e 2157static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2158{
deaf386e 2159 return false;
933e312e
AM
2160}
2161
2162#endif /* CONFIG_FAIL_PAGE_ALLOC */
2163
1da177e4 2164/*
88f5acf8 2165 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2166 * of the allocation.
2167 */
7aeb09f9
MG
2168static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2169 unsigned long mark, int classzone_idx, int alloc_flags,
2170 long free_pages)
1da177e4 2171{
26086de3 2172 /* free_pages may go negative - that's OK */
d23ad423 2173 long min = mark;
1da177e4 2174 int o;
026b0814 2175 long free_cma = 0;
1da177e4 2176
df0a6daa 2177 free_pages -= (1 << order) - 1;
7fb1d9fc 2178 if (alloc_flags & ALLOC_HIGH)
1da177e4 2179 min -= min / 2;
7fb1d9fc 2180 if (alloc_flags & ALLOC_HARDER)
1da177e4 2181 min -= min / 4;
d95ea5d1
BZ
2182#ifdef CONFIG_CMA
2183 /* If allocation can't use CMA areas don't use free CMA pages */
2184 if (!(alloc_flags & ALLOC_CMA))
026b0814 2185 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2186#endif
026b0814 2187
3484b2de 2188 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2189 return false;
1da177e4
LT
2190 for (o = 0; o < order; o++) {
2191 /* At the next order, this order's pages become unavailable */
2192 free_pages -= z->free_area[o].nr_free << o;
2193
2194 /* Require fewer higher order pages to be free */
2195 min >>= 1;
2196
2197 if (free_pages <= min)
88f5acf8 2198 return false;
1da177e4 2199 }
88f5acf8
MG
2200 return true;
2201}
2202
7aeb09f9 2203bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2204 int classzone_idx, int alloc_flags)
2205{
2206 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2207 zone_page_state(z, NR_FREE_PAGES));
2208}
2209
7aeb09f9
MG
2210bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2211 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2212{
2213 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2214
2215 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2216 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2217
2218 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2219 free_pages);
1da177e4
LT
2220}
2221
9276b1bc
PJ
2222#ifdef CONFIG_NUMA
2223/*
2224 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2225 * skip over zones that are not allowed by the cpuset, or that have
2226 * been recently (in last second) found to be nearly full. See further
2227 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2228 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2229 *
a1aeb65a 2230 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2231 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2232 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2233 *
2234 * If the zonelist cache is not available for this zonelist, does
2235 * nothing and returns NULL.
2236 *
2237 * If the fullzones BITMAP in the zonelist cache is stale (more than
2238 * a second since last zap'd) then we zap it out (clear its bits.)
2239 *
2240 * We hold off even calling zlc_setup, until after we've checked the
2241 * first zone in the zonelist, on the theory that most allocations will
2242 * be satisfied from that first zone, so best to examine that zone as
2243 * quickly as we can.
2244 */
2245static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2246{
2247 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2248 nodemask_t *allowednodes; /* zonelist_cache approximation */
2249
2250 zlc = zonelist->zlcache_ptr;
2251 if (!zlc)
2252 return NULL;
2253
f05111f5 2254 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2255 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2256 zlc->last_full_zap = jiffies;
2257 }
2258
2259 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2260 &cpuset_current_mems_allowed :
4b0ef1fe 2261 &node_states[N_MEMORY];
9276b1bc
PJ
2262 return allowednodes;
2263}
2264
2265/*
2266 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2267 * if it is worth looking at further for free memory:
2268 * 1) Check that the zone isn't thought to be full (doesn't have its
2269 * bit set in the zonelist_cache fullzones BITMAP).
2270 * 2) Check that the zones node (obtained from the zonelist_cache
2271 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2272 * Return true (non-zero) if zone is worth looking at further, or
2273 * else return false (zero) if it is not.
2274 *
2275 * This check -ignores- the distinction between various watermarks,
2276 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2277 * found to be full for any variation of these watermarks, it will
2278 * be considered full for up to one second by all requests, unless
2279 * we are so low on memory on all allowed nodes that we are forced
2280 * into the second scan of the zonelist.
2281 *
2282 * In the second scan we ignore this zonelist cache and exactly
2283 * apply the watermarks to all zones, even it is slower to do so.
2284 * We are low on memory in the second scan, and should leave no stone
2285 * unturned looking for a free page.
2286 */
dd1a239f 2287static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2288 nodemask_t *allowednodes)
2289{
2290 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2291 int i; /* index of *z in zonelist zones */
2292 int n; /* node that zone *z is on */
2293
2294 zlc = zonelist->zlcache_ptr;
2295 if (!zlc)
2296 return 1;
2297
dd1a239f 2298 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2299 n = zlc->z_to_n[i];
2300
2301 /* This zone is worth trying if it is allowed but not full */
2302 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2303}
2304
2305/*
2306 * Given 'z' scanning a zonelist, set the corresponding bit in
2307 * zlc->fullzones, so that subsequent attempts to allocate a page
2308 * from that zone don't waste time re-examining it.
2309 */
dd1a239f 2310static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2311{
2312 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2313 int i; /* index of *z in zonelist zones */
2314
2315 zlc = zonelist->zlcache_ptr;
2316 if (!zlc)
2317 return;
2318
dd1a239f 2319 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2320
2321 set_bit(i, zlc->fullzones);
2322}
2323
76d3fbf8
MG
2324/*
2325 * clear all zones full, called after direct reclaim makes progress so that
2326 * a zone that was recently full is not skipped over for up to a second
2327 */
2328static void zlc_clear_zones_full(struct zonelist *zonelist)
2329{
2330 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2331
2332 zlc = zonelist->zlcache_ptr;
2333 if (!zlc)
2334 return;
2335
2336 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2337}
2338
81c0a2bb
JW
2339static bool zone_local(struct zone *local_zone, struct zone *zone)
2340{
fff4068c 2341 return local_zone->node == zone->node;
81c0a2bb
JW
2342}
2343
957f822a
DR
2344static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2345{
5f7a75ac
MG
2346 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2347 RECLAIM_DISTANCE;
957f822a
DR
2348}
2349
9276b1bc
PJ
2350#else /* CONFIG_NUMA */
2351
2352static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2353{
2354 return NULL;
2355}
2356
dd1a239f 2357static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2358 nodemask_t *allowednodes)
2359{
2360 return 1;
2361}
2362
dd1a239f 2363static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2364{
2365}
76d3fbf8
MG
2366
2367static void zlc_clear_zones_full(struct zonelist *zonelist)
2368{
2369}
957f822a 2370
81c0a2bb
JW
2371static bool zone_local(struct zone *local_zone, struct zone *zone)
2372{
2373 return true;
2374}
2375
957f822a
DR
2376static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2377{
2378 return true;
2379}
2380
9276b1bc
PJ
2381#endif /* CONFIG_NUMA */
2382
4ffeaf35
MG
2383static void reset_alloc_batches(struct zone *preferred_zone)
2384{
2385 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2386
2387 do {
2388 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2389 high_wmark_pages(zone) - low_wmark_pages(zone) -
2390 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2391 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2392 } while (zone++ != preferred_zone);
2393}
2394
7fb1d9fc 2395/*
0798e519 2396 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2397 * a page.
2398 */
2399static struct page *
a9263751
VB
2400get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2401 const struct alloc_context *ac)
753ee728 2402{
a9263751 2403 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2404 struct zoneref *z;
7fb1d9fc 2405 struct page *page = NULL;
5117f45d 2406 struct zone *zone;
9276b1bc
PJ
2407 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2408 int zlc_active = 0; /* set if using zonelist_cache */
2409 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2410 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2411 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2412 int nr_fair_skipped = 0;
2413 bool zonelist_rescan;
54a6eb5c 2414
9276b1bc 2415zonelist_scan:
4ffeaf35
MG
2416 zonelist_rescan = false;
2417
7fb1d9fc 2418 /*
9276b1bc 2419 * Scan zonelist, looking for a zone with enough free.
344736f2 2420 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2421 */
a9263751
VB
2422 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2423 ac->nodemask) {
e085dbc5
JW
2424 unsigned long mark;
2425
e5adfffc 2426 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2427 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2428 continue;
664eedde
MG
2429 if (cpusets_enabled() &&
2430 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2431 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2432 continue;
81c0a2bb
JW
2433 /*
2434 * Distribute pages in proportion to the individual
2435 * zone size to ensure fair page aging. The zone a
2436 * page was allocated in should have no effect on the
2437 * time the page has in memory before being reclaimed.
81c0a2bb 2438 */
3a025760 2439 if (alloc_flags & ALLOC_FAIR) {
a9263751 2440 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2441 break;
57054651 2442 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2443 nr_fair_skipped++;
3a025760 2444 continue;
4ffeaf35 2445 }
81c0a2bb 2446 }
a756cf59
JW
2447 /*
2448 * When allocating a page cache page for writing, we
2449 * want to get it from a zone that is within its dirty
2450 * limit, such that no single zone holds more than its
2451 * proportional share of globally allowed dirty pages.
2452 * The dirty limits take into account the zone's
2453 * lowmem reserves and high watermark so that kswapd
2454 * should be able to balance it without having to
2455 * write pages from its LRU list.
2456 *
2457 * This may look like it could increase pressure on
2458 * lower zones by failing allocations in higher zones
2459 * before they are full. But the pages that do spill
2460 * over are limited as the lower zones are protected
2461 * by this very same mechanism. It should not become
2462 * a practical burden to them.
2463 *
2464 * XXX: For now, allow allocations to potentially
2465 * exceed the per-zone dirty limit in the slowpath
2466 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2467 * which is important when on a NUMA setup the allowed
2468 * zones are together not big enough to reach the
2469 * global limit. The proper fix for these situations
2470 * will require awareness of zones in the
2471 * dirty-throttling and the flusher threads.
2472 */
a6e21b14 2473 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2474 continue;
7fb1d9fc 2475
e085dbc5
JW
2476 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2477 if (!zone_watermark_ok(zone, order, mark,
a9263751 2478 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2479 int ret;
2480
5dab2911
MG
2481 /* Checked here to keep the fast path fast */
2482 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2483 if (alloc_flags & ALLOC_NO_WATERMARKS)
2484 goto try_this_zone;
2485
e5adfffc
KS
2486 if (IS_ENABLED(CONFIG_NUMA) &&
2487 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2488 /*
2489 * we do zlc_setup if there are multiple nodes
2490 * and before considering the first zone allowed
2491 * by the cpuset.
2492 */
2493 allowednodes = zlc_setup(zonelist, alloc_flags);
2494 zlc_active = 1;
2495 did_zlc_setup = 1;
2496 }
2497
957f822a 2498 if (zone_reclaim_mode == 0 ||
a9263751 2499 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2500 goto this_zone_full;
2501
cd38b115
MG
2502 /*
2503 * As we may have just activated ZLC, check if the first
2504 * eligible zone has failed zone_reclaim recently.
2505 */
e5adfffc 2506 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2507 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2508 continue;
2509
fa5e084e
MG
2510 ret = zone_reclaim(zone, gfp_mask, order);
2511 switch (ret) {
2512 case ZONE_RECLAIM_NOSCAN:
2513 /* did not scan */
cd38b115 2514 continue;
fa5e084e
MG
2515 case ZONE_RECLAIM_FULL:
2516 /* scanned but unreclaimable */
cd38b115 2517 continue;
fa5e084e
MG
2518 default:
2519 /* did we reclaim enough */
fed2719e 2520 if (zone_watermark_ok(zone, order, mark,
a9263751 2521 ac->classzone_idx, alloc_flags))
fed2719e
MG
2522 goto try_this_zone;
2523
2524 /*
2525 * Failed to reclaim enough to meet watermark.
2526 * Only mark the zone full if checking the min
2527 * watermark or if we failed to reclaim just
2528 * 1<<order pages or else the page allocator
2529 * fastpath will prematurely mark zones full
2530 * when the watermark is between the low and
2531 * min watermarks.
2532 */
2533 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2534 ret == ZONE_RECLAIM_SOME)
9276b1bc 2535 goto this_zone_full;
fed2719e
MG
2536
2537 continue;
0798e519 2538 }
7fb1d9fc
RS
2539 }
2540
fa5e084e 2541try_this_zone:
a9263751
VB
2542 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2543 gfp_mask, ac->migratetype);
75379191
VB
2544 if (page) {
2545 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2546 goto try_this_zone;
2547 return page;
2548 }
9276b1bc 2549this_zone_full:
65bb3719 2550 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2551 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2552 }
9276b1bc 2553
4ffeaf35
MG
2554 /*
2555 * The first pass makes sure allocations are spread fairly within the
2556 * local node. However, the local node might have free pages left
2557 * after the fairness batches are exhausted, and remote zones haven't
2558 * even been considered yet. Try once more without fairness, and
2559 * include remote zones now, before entering the slowpath and waking
2560 * kswapd: prefer spilling to a remote zone over swapping locally.
2561 */
2562 if (alloc_flags & ALLOC_FAIR) {
2563 alloc_flags &= ~ALLOC_FAIR;
2564 if (nr_fair_skipped) {
2565 zonelist_rescan = true;
a9263751 2566 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2567 }
2568 if (nr_online_nodes > 1)
2569 zonelist_rescan = true;
2570 }
2571
2572 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2573 /* Disable zlc cache for second zonelist scan */
2574 zlc_active = 0;
2575 zonelist_rescan = true;
2576 }
2577
2578 if (zonelist_rescan)
2579 goto zonelist_scan;
2580
2581 return NULL;
753ee728
MH
2582}
2583
29423e77
DR
2584/*
2585 * Large machines with many possible nodes should not always dump per-node
2586 * meminfo in irq context.
2587 */
2588static inline bool should_suppress_show_mem(void)
2589{
2590 bool ret = false;
2591
2592#if NODES_SHIFT > 8
2593 ret = in_interrupt();
2594#endif
2595 return ret;
2596}
2597
a238ab5b
DH
2598static DEFINE_RATELIMIT_STATE(nopage_rs,
2599 DEFAULT_RATELIMIT_INTERVAL,
2600 DEFAULT_RATELIMIT_BURST);
2601
2602void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2603{
a238ab5b
DH
2604 unsigned int filter = SHOW_MEM_FILTER_NODES;
2605
c0a32fc5
SG
2606 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2607 debug_guardpage_minorder() > 0)
a238ab5b
DH
2608 return;
2609
2610 /*
2611 * This documents exceptions given to allocations in certain
2612 * contexts that are allowed to allocate outside current's set
2613 * of allowed nodes.
2614 */
2615 if (!(gfp_mask & __GFP_NOMEMALLOC))
2616 if (test_thread_flag(TIF_MEMDIE) ||
2617 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2618 filter &= ~SHOW_MEM_FILTER_NODES;
2619 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2620 filter &= ~SHOW_MEM_FILTER_NODES;
2621
2622 if (fmt) {
3ee9a4f0
JP
2623 struct va_format vaf;
2624 va_list args;
2625
a238ab5b 2626 va_start(args, fmt);
3ee9a4f0
JP
2627
2628 vaf.fmt = fmt;
2629 vaf.va = &args;
2630
2631 pr_warn("%pV", &vaf);
2632
a238ab5b
DH
2633 va_end(args);
2634 }
2635
3ee9a4f0
JP
2636 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2637 current->comm, order, gfp_mask);
a238ab5b
DH
2638
2639 dump_stack();
2640 if (!should_suppress_show_mem())
2641 show_mem(filter);
2642}
2643
11e33f6a
MG
2644static inline struct page *
2645__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2646 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2647{
2648 struct page *page;
2649
9879de73
JW
2650 *did_some_progress = 0;
2651
9879de73 2652 /*
dc56401f
JW
2653 * Acquire the oom lock. If that fails, somebody else is
2654 * making progress for us.
9879de73 2655 */
dc56401f 2656 if (!mutex_trylock(&oom_lock)) {
9879de73 2657 *did_some_progress = 1;
11e33f6a 2658 schedule_timeout_uninterruptible(1);
1da177e4
LT
2659 return NULL;
2660 }
6b1de916 2661
11e33f6a
MG
2662 /*
2663 * Go through the zonelist yet one more time, keep very high watermark
2664 * here, this is only to catch a parallel oom killing, we must fail if
2665 * we're still under heavy pressure.
2666 */
a9263751
VB
2667 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2668 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2669 if (page)
11e33f6a
MG
2670 goto out;
2671
4365a567 2672 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2673 /* Coredumps can quickly deplete all memory reserves */
2674 if (current->flags & PF_DUMPCORE)
2675 goto out;
4365a567
KH
2676 /* The OOM killer will not help higher order allocs */
2677 if (order > PAGE_ALLOC_COSTLY_ORDER)
2678 goto out;
03668b3c 2679 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2680 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2681 goto out;
9083905a 2682 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2683 if (!(gfp_mask & __GFP_FS)) {
2684 /*
2685 * XXX: Page reclaim didn't yield anything,
2686 * and the OOM killer can't be invoked, but
9083905a 2687 * keep looping as per tradition.
cc873177
JW
2688 */
2689 *did_some_progress = 1;
9879de73 2690 goto out;
cc873177 2691 }
9083905a
JW
2692 if (pm_suspended_storage())
2693 goto out;
4167e9b2 2694 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2695 if (gfp_mask & __GFP_THISNODE)
2696 goto out;
2697 }
11e33f6a 2698 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2699 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2700 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2701 *did_some_progress = 1;
11e33f6a 2702out:
dc56401f 2703 mutex_unlock(&oom_lock);
11e33f6a
MG
2704 return page;
2705}
2706
56de7263
MG
2707#ifdef CONFIG_COMPACTION
2708/* Try memory compaction for high-order allocations before reclaim */
2709static struct page *
2710__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2711 int alloc_flags, const struct alloc_context *ac,
2712 enum migrate_mode mode, int *contended_compaction,
2713 bool *deferred_compaction)
56de7263 2714{
53853e2d 2715 unsigned long compact_result;
98dd3b48 2716 struct page *page;
53853e2d
VB
2717
2718 if (!order)
66199712 2719 return NULL;
66199712 2720
c06b1fca 2721 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2722 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2723 mode, contended_compaction);
c06b1fca 2724 current->flags &= ~PF_MEMALLOC;
56de7263 2725
98dd3b48
VB
2726 switch (compact_result) {
2727 case COMPACT_DEFERRED:
53853e2d 2728 *deferred_compaction = true;
98dd3b48
VB
2729 /* fall-through */
2730 case COMPACT_SKIPPED:
2731 return NULL;
2732 default:
2733 break;
2734 }
53853e2d 2735
98dd3b48
VB
2736 /*
2737 * At least in one zone compaction wasn't deferred or skipped, so let's
2738 * count a compaction stall
2739 */
2740 count_vm_event(COMPACTSTALL);
8fb74b9f 2741
a9263751
VB
2742 page = get_page_from_freelist(gfp_mask, order,
2743 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2744
98dd3b48
VB
2745 if (page) {
2746 struct zone *zone = page_zone(page);
53853e2d 2747
98dd3b48
VB
2748 zone->compact_blockskip_flush = false;
2749 compaction_defer_reset(zone, order, true);
2750 count_vm_event(COMPACTSUCCESS);
2751 return page;
2752 }
56de7263 2753
98dd3b48
VB
2754 /*
2755 * It's bad if compaction run occurs and fails. The most likely reason
2756 * is that pages exist, but not enough to satisfy watermarks.
2757 */
2758 count_vm_event(COMPACTFAIL);
66199712 2759
98dd3b48 2760 cond_resched();
56de7263
MG
2761
2762 return NULL;
2763}
2764#else
2765static inline struct page *
2766__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2767 int alloc_flags, const struct alloc_context *ac,
2768 enum migrate_mode mode, int *contended_compaction,
2769 bool *deferred_compaction)
56de7263
MG
2770{
2771 return NULL;
2772}
2773#endif /* CONFIG_COMPACTION */
2774
bba90710
MS
2775/* Perform direct synchronous page reclaim */
2776static int
a9263751
VB
2777__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2778 const struct alloc_context *ac)
11e33f6a 2779{
11e33f6a 2780 struct reclaim_state reclaim_state;
bba90710 2781 int progress;
11e33f6a
MG
2782
2783 cond_resched();
2784
2785 /* We now go into synchronous reclaim */
2786 cpuset_memory_pressure_bump();
c06b1fca 2787 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2788 lockdep_set_current_reclaim_state(gfp_mask);
2789 reclaim_state.reclaimed_slab = 0;
c06b1fca 2790 current->reclaim_state = &reclaim_state;
11e33f6a 2791
a9263751
VB
2792 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2793 ac->nodemask);
11e33f6a 2794
c06b1fca 2795 current->reclaim_state = NULL;
11e33f6a 2796 lockdep_clear_current_reclaim_state();
c06b1fca 2797 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2798
2799 cond_resched();
2800
bba90710
MS
2801 return progress;
2802}
2803
2804/* The really slow allocator path where we enter direct reclaim */
2805static inline struct page *
2806__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2807 int alloc_flags, const struct alloc_context *ac,
2808 unsigned long *did_some_progress)
bba90710
MS
2809{
2810 struct page *page = NULL;
2811 bool drained = false;
2812
a9263751 2813 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2814 if (unlikely(!(*did_some_progress)))
2815 return NULL;
11e33f6a 2816
76d3fbf8 2817 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2818 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2819 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2820
9ee493ce 2821retry:
a9263751
VB
2822 page = get_page_from_freelist(gfp_mask, order,
2823 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2824
2825 /*
2826 * If an allocation failed after direct reclaim, it could be because
2827 * pages are pinned on the per-cpu lists. Drain them and try again
2828 */
2829 if (!page && !drained) {
93481ff0 2830 drain_all_pages(NULL);
9ee493ce
MG
2831 drained = true;
2832 goto retry;
2833 }
2834
11e33f6a
MG
2835 return page;
2836}
2837
1da177e4 2838/*
11e33f6a
MG
2839 * This is called in the allocator slow-path if the allocation request is of
2840 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2841 */
11e33f6a
MG
2842static inline struct page *
2843__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2844 const struct alloc_context *ac)
11e33f6a
MG
2845{
2846 struct page *page;
2847
2848 do {
a9263751
VB
2849 page = get_page_from_freelist(gfp_mask, order,
2850 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2851
2852 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2853 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2854 HZ/50);
11e33f6a
MG
2855 } while (!page && (gfp_mask & __GFP_NOFAIL));
2856
2857 return page;
2858}
2859
a9263751 2860static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2861{
2862 struct zoneref *z;
2863 struct zone *zone;
2864
a9263751
VB
2865 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2866 ac->high_zoneidx, ac->nodemask)
2867 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2868}
2869
341ce06f
PZ
2870static inline int
2871gfp_to_alloc_flags(gfp_t gfp_mask)
2872{
341ce06f 2873 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2874 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2875
a56f57ff 2876 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2877 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2878
341ce06f
PZ
2879 /*
2880 * The caller may dip into page reserves a bit more if the caller
2881 * cannot run direct reclaim, or if the caller has realtime scheduling
2882 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2883 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2884 */
e6223a3b 2885 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2886
b104a35d 2887 if (atomic) {
5c3240d9 2888 /*
b104a35d
DR
2889 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2890 * if it can't schedule.
5c3240d9 2891 */
b104a35d 2892 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2893 alloc_flags |= ALLOC_HARDER;
523b9458 2894 /*
b104a35d 2895 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2896 * comment for __cpuset_node_allowed().
523b9458 2897 */
341ce06f 2898 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2899 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2900 alloc_flags |= ALLOC_HARDER;
2901
b37f1dd0
MG
2902 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2903 if (gfp_mask & __GFP_MEMALLOC)
2904 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2905 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2906 alloc_flags |= ALLOC_NO_WATERMARKS;
2907 else if (!in_interrupt() &&
2908 ((current->flags & PF_MEMALLOC) ||
2909 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2910 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2911 }
d95ea5d1 2912#ifdef CONFIG_CMA
43e7a34d 2913 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2914 alloc_flags |= ALLOC_CMA;
2915#endif
341ce06f
PZ
2916 return alloc_flags;
2917}
2918
072bb0aa
MG
2919bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2920{
b37f1dd0 2921 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2922}
2923
11e33f6a
MG
2924static inline struct page *
2925__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2926 struct alloc_context *ac)
11e33f6a
MG
2927{
2928 const gfp_t wait = gfp_mask & __GFP_WAIT;
2929 struct page *page = NULL;
2930 int alloc_flags;
2931 unsigned long pages_reclaimed = 0;
2932 unsigned long did_some_progress;
e0b9daeb 2933 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2934 bool deferred_compaction = false;
1f9efdef 2935 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2936
72807a74
MG
2937 /*
2938 * In the slowpath, we sanity check order to avoid ever trying to
2939 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2940 * be using allocators in order of preference for an area that is
2941 * too large.
2942 */
1fc28b70
MG
2943 if (order >= MAX_ORDER) {
2944 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2945 return NULL;
1fc28b70 2946 }
1da177e4 2947
952f3b51 2948 /*
4167e9b2
DR
2949 * If this allocation cannot block and it is for a specific node, then
2950 * fail early. There's no need to wakeup kswapd or retry for a
2951 * speculative node-specific allocation.
952f3b51 2952 */
4167e9b2 2953 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2954 goto nopage;
2955
9879de73 2956retry:
3a025760 2957 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2958 wake_all_kswapds(order, ac);
1da177e4 2959
9bf2229f 2960 /*
7fb1d9fc
RS
2961 * OK, we're below the kswapd watermark and have kicked background
2962 * reclaim. Now things get more complex, so set up alloc_flags according
2963 * to how we want to proceed.
9bf2229f 2964 */
341ce06f 2965 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2966
f33261d7
DR
2967 /*
2968 * Find the true preferred zone if the allocation is unconstrained by
2969 * cpusets.
2970 */
a9263751 2971 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 2972 struct zoneref *preferred_zoneref;
a9263751
VB
2973 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2974 ac->high_zoneidx, NULL, &ac->preferred_zone);
2975 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 2976 }
f33261d7 2977
341ce06f 2978 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
2979 page = get_page_from_freelist(gfp_mask, order,
2980 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
2981 if (page)
2982 goto got_pg;
1da177e4 2983
11e33f6a 2984 /* Allocate without watermarks if the context allows */
341ce06f 2985 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
2986 /*
2987 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2988 * the allocation is high priority and these type of
2989 * allocations are system rather than user orientated
2990 */
a9263751
VB
2991 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2992
2993 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 2994
cfd19c5a 2995 if (page) {
341ce06f 2996 goto got_pg;
cfd19c5a 2997 }
1da177e4
LT
2998 }
2999
3000 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
3001 if (!wait) {
3002 /*
3003 * All existing users of the deprecated __GFP_NOFAIL are
3004 * blockable, so warn of any new users that actually allow this
3005 * type of allocation to fail.
3006 */
3007 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3008 goto nopage;
aed0a0e3 3009 }
1da177e4 3010
341ce06f 3011 /* Avoid recursion of direct reclaim */
c06b1fca 3012 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3013 goto nopage;
3014
6583bb64
DR
3015 /* Avoid allocations with no watermarks from looping endlessly */
3016 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3017 goto nopage;
3018
77f1fe6b
MG
3019 /*
3020 * Try direct compaction. The first pass is asynchronous. Subsequent
3021 * attempts after direct reclaim are synchronous
3022 */
a9263751
VB
3023 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3024 migration_mode,
3025 &contended_compaction,
53853e2d 3026 &deferred_compaction);
56de7263
MG
3027 if (page)
3028 goto got_pg;
75f30861 3029
1f9efdef
VB
3030 /* Checks for THP-specific high-order allocations */
3031 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3032 /*
3033 * If compaction is deferred for high-order allocations, it is
3034 * because sync compaction recently failed. If this is the case
3035 * and the caller requested a THP allocation, we do not want
3036 * to heavily disrupt the system, so we fail the allocation
3037 * instead of entering direct reclaim.
3038 */
3039 if (deferred_compaction)
3040 goto nopage;
3041
3042 /*
3043 * In all zones where compaction was attempted (and not
3044 * deferred or skipped), lock contention has been detected.
3045 * For THP allocation we do not want to disrupt the others
3046 * so we fallback to base pages instead.
3047 */
3048 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3049 goto nopage;
3050
3051 /*
3052 * If compaction was aborted due to need_resched(), we do not
3053 * want to further increase allocation latency, unless it is
3054 * khugepaged trying to collapse.
3055 */
3056 if (contended_compaction == COMPACT_CONTENDED_SCHED
3057 && !(current->flags & PF_KTHREAD))
3058 goto nopage;
3059 }
66199712 3060
8fe78048
DR
3061 /*
3062 * It can become very expensive to allocate transparent hugepages at
3063 * fault, so use asynchronous memory compaction for THP unless it is
3064 * khugepaged trying to collapse.
3065 */
3066 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3067 (current->flags & PF_KTHREAD))
3068 migration_mode = MIGRATE_SYNC_LIGHT;
3069
11e33f6a 3070 /* Try direct reclaim and then allocating */
a9263751
VB
3071 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3072 &did_some_progress);
11e33f6a
MG
3073 if (page)
3074 goto got_pg;
1da177e4 3075
9083905a
JW
3076 /* Do not loop if specifically requested */
3077 if (gfp_mask & __GFP_NORETRY)
3078 goto noretry;
3079
3080 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3081 pages_reclaimed += did_some_progress;
9083905a
JW
3082 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3083 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3084 /* Wait for some write requests to complete then retry */
a9263751 3085 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3086 goto retry;
1da177e4
LT
3087 }
3088
9083905a
JW
3089 /* Reclaim has failed us, start killing things */
3090 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3091 if (page)
3092 goto got_pg;
3093
3094 /* Retry as long as the OOM killer is making progress */
3095 if (did_some_progress)
3096 goto retry;
3097
3098noretry:
3099 /*
3100 * High-order allocations do not necessarily loop after
3101 * direct reclaim and reclaim/compaction depends on compaction
3102 * being called after reclaim so call directly if necessary
3103 */
3104 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3105 ac, migration_mode,
3106 &contended_compaction,
3107 &deferred_compaction);
3108 if (page)
3109 goto got_pg;
1da177e4 3110nopage:
a238ab5b 3111 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3112got_pg:
072bb0aa 3113 return page;
1da177e4 3114}
11e33f6a
MG
3115
3116/*
3117 * This is the 'heart' of the zoned buddy allocator.
3118 */
3119struct page *
3120__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3121 struct zonelist *zonelist, nodemask_t *nodemask)
3122{
d8846374 3123 struct zoneref *preferred_zoneref;
cc9a6c87 3124 struct page *page = NULL;
cc9a6c87 3125 unsigned int cpuset_mems_cookie;
3a025760 3126 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3127 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3128 struct alloc_context ac = {
3129 .high_zoneidx = gfp_zone(gfp_mask),
3130 .nodemask = nodemask,
3131 .migratetype = gfpflags_to_migratetype(gfp_mask),
3132 };
11e33f6a 3133
dcce284a
BH
3134 gfp_mask &= gfp_allowed_mask;
3135
11e33f6a
MG
3136 lockdep_trace_alloc(gfp_mask);
3137
3138 might_sleep_if(gfp_mask & __GFP_WAIT);
3139
3140 if (should_fail_alloc_page(gfp_mask, order))
3141 return NULL;
3142
3143 /*
3144 * Check the zones suitable for the gfp_mask contain at least one
3145 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3146 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3147 */
3148 if (unlikely(!zonelist->_zonerefs->zone))
3149 return NULL;
3150
a9263751 3151 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3152 alloc_flags |= ALLOC_CMA;
3153
cc9a6c87 3154retry_cpuset:
d26914d1 3155 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3156
a9263751
VB
3157 /* We set it here, as __alloc_pages_slowpath might have changed it */
3158 ac.zonelist = zonelist;
5117f45d 3159 /* The preferred zone is used for statistics later */
a9263751
VB
3160 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3161 ac.nodemask ? : &cpuset_current_mems_allowed,
3162 &ac.preferred_zone);
3163 if (!ac.preferred_zone)
cc9a6c87 3164 goto out;
a9263751 3165 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3166
3167 /* First allocation attempt */
91fbdc0f 3168 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3169 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3170 if (unlikely(!page)) {
3171 /*
3172 * Runtime PM, block IO and its error handling path
3173 * can deadlock because I/O on the device might not
3174 * complete.
3175 */
91fbdc0f
AM
3176 alloc_mask = memalloc_noio_flags(gfp_mask);
3177
a9263751 3178 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3179 }
11e33f6a 3180
23f086f9
XQ
3181 if (kmemcheck_enabled && page)
3182 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3183
a9263751 3184 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3185
3186out:
3187 /*
3188 * When updating a task's mems_allowed, it is possible to race with
3189 * parallel threads in such a way that an allocation can fail while
3190 * the mask is being updated. If a page allocation is about to fail,
3191 * check if the cpuset changed during allocation and if so, retry.
3192 */
d26914d1 3193 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3194 goto retry_cpuset;
3195
11e33f6a 3196 return page;
1da177e4 3197}
d239171e 3198EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3199
3200/*
3201 * Common helper functions.
3202 */
920c7a5d 3203unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3204{
945a1113
AM
3205 struct page *page;
3206
3207 /*
3208 * __get_free_pages() returns a 32-bit address, which cannot represent
3209 * a highmem page
3210 */
3211 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3212
1da177e4
LT
3213 page = alloc_pages(gfp_mask, order);
3214 if (!page)
3215 return 0;
3216 return (unsigned long) page_address(page);
3217}
1da177e4
LT
3218EXPORT_SYMBOL(__get_free_pages);
3219
920c7a5d 3220unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3221{
945a1113 3222 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3223}
1da177e4
LT
3224EXPORT_SYMBOL(get_zeroed_page);
3225
920c7a5d 3226void __free_pages(struct page *page, unsigned int order)
1da177e4 3227{
b5810039 3228 if (put_page_testzero(page)) {
1da177e4 3229 if (order == 0)
b745bc85 3230 free_hot_cold_page(page, false);
1da177e4
LT
3231 else
3232 __free_pages_ok(page, order);
3233 }
3234}
3235
3236EXPORT_SYMBOL(__free_pages);
3237
920c7a5d 3238void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3239{
3240 if (addr != 0) {
725d704e 3241 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3242 __free_pages(virt_to_page((void *)addr), order);
3243 }
3244}
3245
3246EXPORT_SYMBOL(free_pages);
3247
b63ae8ca
AD
3248/*
3249 * Page Fragment:
3250 * An arbitrary-length arbitrary-offset area of memory which resides
3251 * within a 0 or higher order page. Multiple fragments within that page
3252 * are individually refcounted, in the page's reference counter.
3253 *
3254 * The page_frag functions below provide a simple allocation framework for
3255 * page fragments. This is used by the network stack and network device
3256 * drivers to provide a backing region of memory for use as either an
3257 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3258 */
3259static struct page *__page_frag_refill(struct page_frag_cache *nc,
3260 gfp_t gfp_mask)
3261{
3262 struct page *page = NULL;
3263 gfp_t gfp = gfp_mask;
3264
3265#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3266 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3267 __GFP_NOMEMALLOC;
3268 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3269 PAGE_FRAG_CACHE_MAX_ORDER);
3270 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3271#endif
3272 if (unlikely(!page))
3273 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3274
3275 nc->va = page ? page_address(page) : NULL;
3276
3277 return page;
3278}
3279
3280void *__alloc_page_frag(struct page_frag_cache *nc,
3281 unsigned int fragsz, gfp_t gfp_mask)
3282{
3283 unsigned int size = PAGE_SIZE;
3284 struct page *page;
3285 int offset;
3286
3287 if (unlikely(!nc->va)) {
3288refill:
3289 page = __page_frag_refill(nc, gfp_mask);
3290 if (!page)
3291 return NULL;
3292
3293#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3294 /* if size can vary use size else just use PAGE_SIZE */
3295 size = nc->size;
3296#endif
3297 /* Even if we own the page, we do not use atomic_set().
3298 * This would break get_page_unless_zero() users.
3299 */
3300 atomic_add(size - 1, &page->_count);
3301
3302 /* reset page count bias and offset to start of new frag */
3303 nc->pfmemalloc = page->pfmemalloc;
3304 nc->pagecnt_bias = size;
3305 nc->offset = size;
3306 }
3307
3308 offset = nc->offset - fragsz;
3309 if (unlikely(offset < 0)) {
3310 page = virt_to_page(nc->va);
3311
3312 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3313 goto refill;
3314
3315#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3316 /* if size can vary use size else just use PAGE_SIZE */
3317 size = nc->size;
3318#endif
3319 /* OK, page count is 0, we can safely set it */
3320 atomic_set(&page->_count, size);
3321
3322 /* reset page count bias and offset to start of new frag */
3323 nc->pagecnt_bias = size;
3324 offset = size - fragsz;
3325 }
3326
3327 nc->pagecnt_bias--;
3328 nc->offset = offset;
3329
3330 return nc->va + offset;
3331}
3332EXPORT_SYMBOL(__alloc_page_frag);
3333
3334/*
3335 * Frees a page fragment allocated out of either a compound or order 0 page.
3336 */
3337void __free_page_frag(void *addr)
3338{
3339 struct page *page = virt_to_head_page(addr);
3340
3341 if (unlikely(put_page_testzero(page)))
3342 __free_pages_ok(page, compound_order(page));
3343}
3344EXPORT_SYMBOL(__free_page_frag);
3345
6a1a0d3b 3346/*
52383431
VD
3347 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3348 * of the current memory cgroup.
6a1a0d3b 3349 *
52383431
VD
3350 * It should be used when the caller would like to use kmalloc, but since the
3351 * allocation is large, it has to fall back to the page allocator.
3352 */
3353struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3354{
3355 struct page *page;
3356 struct mem_cgroup *memcg = NULL;
3357
3358 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3359 return NULL;
3360 page = alloc_pages(gfp_mask, order);
3361 memcg_kmem_commit_charge(page, memcg, order);
3362 return page;
3363}
3364
3365struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3366{
3367 struct page *page;
3368 struct mem_cgroup *memcg = NULL;
3369
3370 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3371 return NULL;
3372 page = alloc_pages_node(nid, gfp_mask, order);
3373 memcg_kmem_commit_charge(page, memcg, order);
3374 return page;
3375}
3376
3377/*
3378 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3379 * alloc_kmem_pages.
6a1a0d3b 3380 */
52383431 3381void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3382{
3383 memcg_kmem_uncharge_pages(page, order);
3384 __free_pages(page, order);
3385}
3386
52383431 3387void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3388{
3389 if (addr != 0) {
3390 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3391 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3392 }
3393}
3394
ee85c2e1
AK
3395static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3396{
3397 if (addr) {
3398 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3399 unsigned long used = addr + PAGE_ALIGN(size);
3400
3401 split_page(virt_to_page((void *)addr), order);
3402 while (used < alloc_end) {
3403 free_page(used);
3404 used += PAGE_SIZE;
3405 }
3406 }
3407 return (void *)addr;
3408}
3409
2be0ffe2
TT
3410/**
3411 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3412 * @size: the number of bytes to allocate
3413 * @gfp_mask: GFP flags for the allocation
3414 *
3415 * This function is similar to alloc_pages(), except that it allocates the
3416 * minimum number of pages to satisfy the request. alloc_pages() can only
3417 * allocate memory in power-of-two pages.
3418 *
3419 * This function is also limited by MAX_ORDER.
3420 *
3421 * Memory allocated by this function must be released by free_pages_exact().
3422 */
3423void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3424{
3425 unsigned int order = get_order(size);
3426 unsigned long addr;
3427
3428 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3429 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3430}
3431EXPORT_SYMBOL(alloc_pages_exact);
3432
ee85c2e1
AK
3433/**
3434 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3435 * pages on a node.
b5e6ab58 3436 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3437 * @size: the number of bytes to allocate
3438 * @gfp_mask: GFP flags for the allocation
3439 *
3440 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3441 * back.
3442 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3443 * but is not exact.
3444 */
e1931811 3445void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3446{
3447 unsigned order = get_order(size);
3448 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3449 if (!p)
3450 return NULL;
3451 return make_alloc_exact((unsigned long)page_address(p), order, size);
3452}
ee85c2e1 3453
2be0ffe2
TT
3454/**
3455 * free_pages_exact - release memory allocated via alloc_pages_exact()
3456 * @virt: the value returned by alloc_pages_exact.
3457 * @size: size of allocation, same value as passed to alloc_pages_exact().
3458 *
3459 * Release the memory allocated by a previous call to alloc_pages_exact.
3460 */
3461void free_pages_exact(void *virt, size_t size)
3462{
3463 unsigned long addr = (unsigned long)virt;
3464 unsigned long end = addr + PAGE_ALIGN(size);
3465
3466 while (addr < end) {
3467 free_page(addr);
3468 addr += PAGE_SIZE;
3469 }
3470}
3471EXPORT_SYMBOL(free_pages_exact);
3472
e0fb5815
ZY
3473/**
3474 * nr_free_zone_pages - count number of pages beyond high watermark
3475 * @offset: The zone index of the highest zone
3476 *
3477 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3478 * high watermark within all zones at or below a given zone index. For each
3479 * zone, the number of pages is calculated as:
834405c3 3480 * managed_pages - high_pages
e0fb5815 3481 */
ebec3862 3482static unsigned long nr_free_zone_pages(int offset)
1da177e4 3483{
dd1a239f 3484 struct zoneref *z;
54a6eb5c
MG
3485 struct zone *zone;
3486
e310fd43 3487 /* Just pick one node, since fallback list is circular */
ebec3862 3488 unsigned long sum = 0;
1da177e4 3489
0e88460d 3490 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3491
54a6eb5c 3492 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3493 unsigned long size = zone->managed_pages;
41858966 3494 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3495 if (size > high)
3496 sum += size - high;
1da177e4
LT
3497 }
3498
3499 return sum;
3500}
3501
e0fb5815
ZY
3502/**
3503 * nr_free_buffer_pages - count number of pages beyond high watermark
3504 *
3505 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3506 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3507 */
ebec3862 3508unsigned long nr_free_buffer_pages(void)
1da177e4 3509{
af4ca457 3510 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3511}
c2f1a551 3512EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3513
e0fb5815
ZY
3514/**
3515 * nr_free_pagecache_pages - count number of pages beyond high watermark
3516 *
3517 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3518 * high watermark within all zones.
1da177e4 3519 */
ebec3862 3520unsigned long nr_free_pagecache_pages(void)
1da177e4 3521{
2a1e274a 3522 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3523}
08e0f6a9
CL
3524
3525static inline void show_node(struct zone *zone)
1da177e4 3526{
e5adfffc 3527 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3528 printk("Node %d ", zone_to_nid(zone));
1da177e4 3529}
1da177e4 3530
1da177e4
LT
3531void si_meminfo(struct sysinfo *val)
3532{
3533 val->totalram = totalram_pages;
cc7452b6 3534 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3535 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3536 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3537 val->totalhigh = totalhigh_pages;
3538 val->freehigh = nr_free_highpages();
1da177e4
LT
3539 val->mem_unit = PAGE_SIZE;
3540}
3541
3542EXPORT_SYMBOL(si_meminfo);
3543
3544#ifdef CONFIG_NUMA
3545void si_meminfo_node(struct sysinfo *val, int nid)
3546{
cdd91a77
JL
3547 int zone_type; /* needs to be signed */
3548 unsigned long managed_pages = 0;
1da177e4
LT
3549 pg_data_t *pgdat = NODE_DATA(nid);
3550
cdd91a77
JL
3551 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3552 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3553 val->totalram = managed_pages;
cc7452b6 3554 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3555 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3556#ifdef CONFIG_HIGHMEM
b40da049 3557 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3558 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3559 NR_FREE_PAGES);
98d2b0eb
CL
3560#else
3561 val->totalhigh = 0;
3562 val->freehigh = 0;
3563#endif
1da177e4
LT
3564 val->mem_unit = PAGE_SIZE;
3565}
3566#endif
3567
ddd588b5 3568/*
7bf02ea2
DR
3569 * Determine whether the node should be displayed or not, depending on whether
3570 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3571 */
7bf02ea2 3572bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3573{
3574 bool ret = false;
cc9a6c87 3575 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3576
3577 if (!(flags & SHOW_MEM_FILTER_NODES))
3578 goto out;
3579
cc9a6c87 3580 do {
d26914d1 3581 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3582 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3583 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3584out:
3585 return ret;
3586}
3587
1da177e4
LT
3588#define K(x) ((x) << (PAGE_SHIFT-10))
3589
377e4f16
RV
3590static void show_migration_types(unsigned char type)
3591{
3592 static const char types[MIGRATE_TYPES] = {
3593 [MIGRATE_UNMOVABLE] = 'U',
3594 [MIGRATE_RECLAIMABLE] = 'E',
3595 [MIGRATE_MOVABLE] = 'M',
3596 [MIGRATE_RESERVE] = 'R',
3597#ifdef CONFIG_CMA
3598 [MIGRATE_CMA] = 'C',
3599#endif
194159fb 3600#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3601 [MIGRATE_ISOLATE] = 'I',
194159fb 3602#endif
377e4f16
RV
3603 };
3604 char tmp[MIGRATE_TYPES + 1];
3605 char *p = tmp;
3606 int i;
3607
3608 for (i = 0; i < MIGRATE_TYPES; i++) {
3609 if (type & (1 << i))
3610 *p++ = types[i];
3611 }
3612
3613 *p = '\0';
3614 printk("(%s) ", tmp);
3615}
3616
1da177e4
LT
3617/*
3618 * Show free area list (used inside shift_scroll-lock stuff)
3619 * We also calculate the percentage fragmentation. We do this by counting the
3620 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3621 *
3622 * Bits in @filter:
3623 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3624 * cpuset.
1da177e4 3625 */
7bf02ea2 3626void show_free_areas(unsigned int filter)
1da177e4 3627{
d1bfcdb8 3628 unsigned long free_pcp = 0;
c7241913 3629 int cpu;
1da177e4
LT
3630 struct zone *zone;
3631
ee99c71c 3632 for_each_populated_zone(zone) {
7bf02ea2 3633 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3634 continue;
d1bfcdb8 3635
761b0677
KK
3636 for_each_online_cpu(cpu)
3637 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3638 }
3639
a731286d
KM
3640 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3641 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3642 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3643 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3644 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3645 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3646 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3647 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3648 global_page_state(NR_ISOLATED_ANON),
3649 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3650 global_page_state(NR_INACTIVE_FILE),
a731286d 3651 global_page_state(NR_ISOLATED_FILE),
7b854121 3652 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3653 global_page_state(NR_FILE_DIRTY),
ce866b34 3654 global_page_state(NR_WRITEBACK),
fd39fc85 3655 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3656 global_page_state(NR_SLAB_RECLAIMABLE),
3657 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3658 global_page_state(NR_FILE_MAPPED),
4b02108a 3659 global_page_state(NR_SHMEM),
a25700a5 3660 global_page_state(NR_PAGETABLE),
d1ce749a 3661 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3662 global_page_state(NR_FREE_PAGES),
3663 free_pcp,
d1ce749a 3664 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3665
ee99c71c 3666 for_each_populated_zone(zone) {
1da177e4
LT
3667 int i;
3668
7bf02ea2 3669 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3670 continue;
d1bfcdb8
KK
3671
3672 free_pcp = 0;
3673 for_each_online_cpu(cpu)
3674 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3675
1da177e4
LT
3676 show_node(zone);
3677 printk("%s"
3678 " free:%lukB"
3679 " min:%lukB"
3680 " low:%lukB"
3681 " high:%lukB"
4f98a2fe
RR
3682 " active_anon:%lukB"
3683 " inactive_anon:%lukB"
3684 " active_file:%lukB"
3685 " inactive_file:%lukB"
7b854121 3686 " unevictable:%lukB"
a731286d
KM
3687 " isolated(anon):%lukB"
3688 " isolated(file):%lukB"
1da177e4 3689 " present:%lukB"
9feedc9d 3690 " managed:%lukB"
4a0aa73f
KM
3691 " mlocked:%lukB"
3692 " dirty:%lukB"
3693 " writeback:%lukB"
3694 " mapped:%lukB"
4b02108a 3695 " shmem:%lukB"
4a0aa73f
KM
3696 " slab_reclaimable:%lukB"
3697 " slab_unreclaimable:%lukB"
c6a7f572 3698 " kernel_stack:%lukB"
4a0aa73f
KM
3699 " pagetables:%lukB"
3700 " unstable:%lukB"
3701 " bounce:%lukB"
d1bfcdb8
KK
3702 " free_pcp:%lukB"
3703 " local_pcp:%ukB"
d1ce749a 3704 " free_cma:%lukB"
4a0aa73f 3705 " writeback_tmp:%lukB"
1da177e4
LT
3706 " pages_scanned:%lu"
3707 " all_unreclaimable? %s"
3708 "\n",
3709 zone->name,
88f5acf8 3710 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3711 K(min_wmark_pages(zone)),
3712 K(low_wmark_pages(zone)),
3713 K(high_wmark_pages(zone)),
4f98a2fe
RR
3714 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3715 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3716 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3717 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3718 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3719 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3720 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3721 K(zone->present_pages),
9feedc9d 3722 K(zone->managed_pages),
4a0aa73f
KM
3723 K(zone_page_state(zone, NR_MLOCK)),
3724 K(zone_page_state(zone, NR_FILE_DIRTY)),
3725 K(zone_page_state(zone, NR_WRITEBACK)),
3726 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3727 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3728 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3729 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3730 zone_page_state(zone, NR_KERNEL_STACK) *
3731 THREAD_SIZE / 1024,
4a0aa73f
KM
3732 K(zone_page_state(zone, NR_PAGETABLE)),
3733 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3734 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3735 K(free_pcp),
3736 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3737 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3738 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3739 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3740 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3741 );
3742 printk("lowmem_reserve[]:");
3743 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3744 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3745 printk("\n");
3746 }
3747
ee99c71c 3748 for_each_populated_zone(zone) {
b8af2941 3749 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3750 unsigned char types[MAX_ORDER];
1da177e4 3751
7bf02ea2 3752 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3753 continue;
1da177e4
LT
3754 show_node(zone);
3755 printk("%s: ", zone->name);
1da177e4
LT
3756
3757 spin_lock_irqsave(&zone->lock, flags);
3758 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3759 struct free_area *area = &zone->free_area[order];
3760 int type;
3761
3762 nr[order] = area->nr_free;
8f9de51a 3763 total += nr[order] << order;
377e4f16
RV
3764
3765 types[order] = 0;
3766 for (type = 0; type < MIGRATE_TYPES; type++) {
3767 if (!list_empty(&area->free_list[type]))
3768 types[order] |= 1 << type;
3769 }
1da177e4
LT
3770 }
3771 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3772 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3773 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3774 if (nr[order])
3775 show_migration_types(types[order]);
3776 }
1da177e4
LT
3777 printk("= %lukB\n", K(total));
3778 }
3779
949f7ec5
DR
3780 hugetlb_show_meminfo();
3781
e6f3602d
LW
3782 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3783
1da177e4
LT
3784 show_swap_cache_info();
3785}
3786
19770b32
MG
3787static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3788{
3789 zoneref->zone = zone;
3790 zoneref->zone_idx = zone_idx(zone);
3791}
3792
1da177e4
LT
3793/*
3794 * Builds allocation fallback zone lists.
1a93205b
CL
3795 *
3796 * Add all populated zones of a node to the zonelist.
1da177e4 3797 */
f0c0b2b8 3798static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3799 int nr_zones)
1da177e4 3800{
1a93205b 3801 struct zone *zone;
bc732f1d 3802 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3803
3804 do {
2f6726e5 3805 zone_type--;
070f8032 3806 zone = pgdat->node_zones + zone_type;
1a93205b 3807 if (populated_zone(zone)) {
dd1a239f
MG
3808 zoneref_set_zone(zone,
3809 &zonelist->_zonerefs[nr_zones++]);
070f8032 3810 check_highest_zone(zone_type);
1da177e4 3811 }
2f6726e5 3812 } while (zone_type);
bc732f1d 3813
070f8032 3814 return nr_zones;
1da177e4
LT
3815}
3816
f0c0b2b8
KH
3817
3818/*
3819 * zonelist_order:
3820 * 0 = automatic detection of better ordering.
3821 * 1 = order by ([node] distance, -zonetype)
3822 * 2 = order by (-zonetype, [node] distance)
3823 *
3824 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3825 * the same zonelist. So only NUMA can configure this param.
3826 */
3827#define ZONELIST_ORDER_DEFAULT 0
3828#define ZONELIST_ORDER_NODE 1
3829#define ZONELIST_ORDER_ZONE 2
3830
3831/* zonelist order in the kernel.
3832 * set_zonelist_order() will set this to NODE or ZONE.
3833 */
3834static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3835static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3836
3837
1da177e4 3838#ifdef CONFIG_NUMA
f0c0b2b8
KH
3839/* The value user specified ....changed by config */
3840static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3841/* string for sysctl */
3842#define NUMA_ZONELIST_ORDER_LEN 16
3843char numa_zonelist_order[16] = "default";
3844
3845/*
3846 * interface for configure zonelist ordering.
3847 * command line option "numa_zonelist_order"
3848 * = "[dD]efault - default, automatic configuration.
3849 * = "[nN]ode - order by node locality, then by zone within node
3850 * = "[zZ]one - order by zone, then by locality within zone
3851 */
3852
3853static int __parse_numa_zonelist_order(char *s)
3854{
3855 if (*s == 'd' || *s == 'D') {
3856 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3857 } else if (*s == 'n' || *s == 'N') {
3858 user_zonelist_order = ZONELIST_ORDER_NODE;
3859 } else if (*s == 'z' || *s == 'Z') {
3860 user_zonelist_order = ZONELIST_ORDER_ZONE;
3861 } else {
3862 printk(KERN_WARNING
3863 "Ignoring invalid numa_zonelist_order value: "
3864 "%s\n", s);
3865 return -EINVAL;
3866 }
3867 return 0;
3868}
3869
3870static __init int setup_numa_zonelist_order(char *s)
3871{
ecb256f8
VL
3872 int ret;
3873
3874 if (!s)
3875 return 0;
3876
3877 ret = __parse_numa_zonelist_order(s);
3878 if (ret == 0)
3879 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3880
3881 return ret;
f0c0b2b8
KH
3882}
3883early_param("numa_zonelist_order", setup_numa_zonelist_order);
3884
3885/*
3886 * sysctl handler for numa_zonelist_order
3887 */
cccad5b9 3888int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3889 void __user *buffer, size_t *length,
f0c0b2b8
KH
3890 loff_t *ppos)
3891{
3892 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3893 int ret;
443c6f14 3894 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3895
443c6f14 3896 mutex_lock(&zl_order_mutex);
dacbde09
CG
3897 if (write) {
3898 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3899 ret = -EINVAL;
3900 goto out;
3901 }
3902 strcpy(saved_string, (char *)table->data);
3903 }
8d65af78 3904 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3905 if (ret)
443c6f14 3906 goto out;
f0c0b2b8
KH
3907 if (write) {
3908 int oldval = user_zonelist_order;
dacbde09
CG
3909
3910 ret = __parse_numa_zonelist_order((char *)table->data);
3911 if (ret) {
f0c0b2b8
KH
3912 /*
3913 * bogus value. restore saved string
3914 */
dacbde09 3915 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3916 NUMA_ZONELIST_ORDER_LEN);
3917 user_zonelist_order = oldval;
4eaf3f64
HL
3918 } else if (oldval != user_zonelist_order) {
3919 mutex_lock(&zonelists_mutex);
9adb62a5 3920 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3921 mutex_unlock(&zonelists_mutex);
3922 }
f0c0b2b8 3923 }
443c6f14
AK
3924out:
3925 mutex_unlock(&zl_order_mutex);
3926 return ret;
f0c0b2b8
KH
3927}
3928
3929
62bc62a8 3930#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3931static int node_load[MAX_NUMNODES];
3932
1da177e4 3933/**
4dc3b16b 3934 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3935 * @node: node whose fallback list we're appending
3936 * @used_node_mask: nodemask_t of already used nodes
3937 *
3938 * We use a number of factors to determine which is the next node that should
3939 * appear on a given node's fallback list. The node should not have appeared
3940 * already in @node's fallback list, and it should be the next closest node
3941 * according to the distance array (which contains arbitrary distance values
3942 * from each node to each node in the system), and should also prefer nodes
3943 * with no CPUs, since presumably they'll have very little allocation pressure
3944 * on them otherwise.
3945 * It returns -1 if no node is found.
3946 */
f0c0b2b8 3947static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3948{
4cf808eb 3949 int n, val;
1da177e4 3950 int min_val = INT_MAX;
00ef2d2f 3951 int best_node = NUMA_NO_NODE;
a70f7302 3952 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3953
4cf808eb
LT
3954 /* Use the local node if we haven't already */
3955 if (!node_isset(node, *used_node_mask)) {
3956 node_set(node, *used_node_mask);
3957 return node;
3958 }
1da177e4 3959
4b0ef1fe 3960 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
3961
3962 /* Don't want a node to appear more than once */
3963 if (node_isset(n, *used_node_mask))
3964 continue;
3965
1da177e4
LT
3966 /* Use the distance array to find the distance */
3967 val = node_distance(node, n);
3968
4cf808eb
LT
3969 /* Penalize nodes under us ("prefer the next node") */
3970 val += (n < node);
3971
1da177e4 3972 /* Give preference to headless and unused nodes */
a70f7302
RR
3973 tmp = cpumask_of_node(n);
3974 if (!cpumask_empty(tmp))
1da177e4
LT
3975 val += PENALTY_FOR_NODE_WITH_CPUS;
3976
3977 /* Slight preference for less loaded node */
3978 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3979 val += node_load[n];
3980
3981 if (val < min_val) {
3982 min_val = val;
3983 best_node = n;
3984 }
3985 }
3986
3987 if (best_node >= 0)
3988 node_set(best_node, *used_node_mask);
3989
3990 return best_node;
3991}
3992
f0c0b2b8
KH
3993
3994/*
3995 * Build zonelists ordered by node and zones within node.
3996 * This results in maximum locality--normal zone overflows into local
3997 * DMA zone, if any--but risks exhausting DMA zone.
3998 */
3999static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4000{
f0c0b2b8 4001 int j;
1da177e4 4002 struct zonelist *zonelist;
f0c0b2b8 4003
54a6eb5c 4004 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4005 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4006 ;
bc732f1d 4007 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4008 zonelist->_zonerefs[j].zone = NULL;
4009 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4010}
4011
523b9458
CL
4012/*
4013 * Build gfp_thisnode zonelists
4014 */
4015static void build_thisnode_zonelists(pg_data_t *pgdat)
4016{
523b9458
CL
4017 int j;
4018 struct zonelist *zonelist;
4019
54a6eb5c 4020 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4021 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4022 zonelist->_zonerefs[j].zone = NULL;
4023 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4024}
4025
f0c0b2b8
KH
4026/*
4027 * Build zonelists ordered by zone and nodes within zones.
4028 * This results in conserving DMA zone[s] until all Normal memory is
4029 * exhausted, but results in overflowing to remote node while memory
4030 * may still exist in local DMA zone.
4031 */
4032static int node_order[MAX_NUMNODES];
4033
4034static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4035{
f0c0b2b8
KH
4036 int pos, j, node;
4037 int zone_type; /* needs to be signed */
4038 struct zone *z;
4039 struct zonelist *zonelist;
4040
54a6eb5c
MG
4041 zonelist = &pgdat->node_zonelists[0];
4042 pos = 0;
4043 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4044 for (j = 0; j < nr_nodes; j++) {
4045 node = node_order[j];
4046 z = &NODE_DATA(node)->node_zones[zone_type];
4047 if (populated_zone(z)) {
dd1a239f
MG
4048 zoneref_set_zone(z,
4049 &zonelist->_zonerefs[pos++]);
54a6eb5c 4050 check_highest_zone(zone_type);
f0c0b2b8
KH
4051 }
4052 }
f0c0b2b8 4053 }
dd1a239f
MG
4054 zonelist->_zonerefs[pos].zone = NULL;
4055 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4056}
4057
3193913c
MG
4058#if defined(CONFIG_64BIT)
4059/*
4060 * Devices that require DMA32/DMA are relatively rare and do not justify a
4061 * penalty to every machine in case the specialised case applies. Default
4062 * to Node-ordering on 64-bit NUMA machines
4063 */
4064static int default_zonelist_order(void)
4065{
4066 return ZONELIST_ORDER_NODE;
4067}
4068#else
4069/*
4070 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4071 * by the kernel. If processes running on node 0 deplete the low memory zone
4072 * then reclaim will occur more frequency increasing stalls and potentially
4073 * be easier to OOM if a large percentage of the zone is under writeback or
4074 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4075 * Hence, default to zone ordering on 32-bit.
4076 */
f0c0b2b8
KH
4077static int default_zonelist_order(void)
4078{
f0c0b2b8
KH
4079 return ZONELIST_ORDER_ZONE;
4080}
3193913c 4081#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4082
4083static void set_zonelist_order(void)
4084{
4085 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4086 current_zonelist_order = default_zonelist_order();
4087 else
4088 current_zonelist_order = user_zonelist_order;
4089}
4090
4091static void build_zonelists(pg_data_t *pgdat)
4092{
4093 int j, node, load;
4094 enum zone_type i;
1da177e4 4095 nodemask_t used_mask;
f0c0b2b8
KH
4096 int local_node, prev_node;
4097 struct zonelist *zonelist;
4098 int order = current_zonelist_order;
1da177e4
LT
4099
4100 /* initialize zonelists */
523b9458 4101 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4102 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4103 zonelist->_zonerefs[0].zone = NULL;
4104 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4105 }
4106
4107 /* NUMA-aware ordering of nodes */
4108 local_node = pgdat->node_id;
62bc62a8 4109 load = nr_online_nodes;
1da177e4
LT
4110 prev_node = local_node;
4111 nodes_clear(used_mask);
f0c0b2b8 4112
f0c0b2b8
KH
4113 memset(node_order, 0, sizeof(node_order));
4114 j = 0;
4115
1da177e4
LT
4116 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4117 /*
4118 * We don't want to pressure a particular node.
4119 * So adding penalty to the first node in same
4120 * distance group to make it round-robin.
4121 */
957f822a
DR
4122 if (node_distance(local_node, node) !=
4123 node_distance(local_node, prev_node))
f0c0b2b8
KH
4124 node_load[node] = load;
4125
1da177e4
LT
4126 prev_node = node;
4127 load--;
f0c0b2b8
KH
4128 if (order == ZONELIST_ORDER_NODE)
4129 build_zonelists_in_node_order(pgdat, node);
4130 else
4131 node_order[j++] = node; /* remember order */
4132 }
1da177e4 4133
f0c0b2b8
KH
4134 if (order == ZONELIST_ORDER_ZONE) {
4135 /* calculate node order -- i.e., DMA last! */
4136 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4137 }
523b9458
CL
4138
4139 build_thisnode_zonelists(pgdat);
1da177e4
LT
4140}
4141
9276b1bc 4142/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4143static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4144{
54a6eb5c
MG
4145 struct zonelist *zonelist;
4146 struct zonelist_cache *zlc;
dd1a239f 4147 struct zoneref *z;
9276b1bc 4148
54a6eb5c
MG
4149 zonelist = &pgdat->node_zonelists[0];
4150 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4151 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4152 for (z = zonelist->_zonerefs; z->zone; z++)
4153 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4154}
4155
7aac7898
LS
4156#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4157/*
4158 * Return node id of node used for "local" allocations.
4159 * I.e., first node id of first zone in arg node's generic zonelist.
4160 * Used for initializing percpu 'numa_mem', which is used primarily
4161 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4162 */
4163int local_memory_node(int node)
4164{
4165 struct zone *zone;
4166
4167 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4168 gfp_zone(GFP_KERNEL),
4169 NULL,
4170 &zone);
4171 return zone->node;
4172}
4173#endif
f0c0b2b8 4174
1da177e4
LT
4175#else /* CONFIG_NUMA */
4176
f0c0b2b8
KH
4177static void set_zonelist_order(void)
4178{
4179 current_zonelist_order = ZONELIST_ORDER_ZONE;
4180}
4181
4182static void build_zonelists(pg_data_t *pgdat)
1da177e4 4183{
19655d34 4184 int node, local_node;
54a6eb5c
MG
4185 enum zone_type j;
4186 struct zonelist *zonelist;
1da177e4
LT
4187
4188 local_node = pgdat->node_id;
1da177e4 4189
54a6eb5c 4190 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4191 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4192
54a6eb5c
MG
4193 /*
4194 * Now we build the zonelist so that it contains the zones
4195 * of all the other nodes.
4196 * We don't want to pressure a particular node, so when
4197 * building the zones for node N, we make sure that the
4198 * zones coming right after the local ones are those from
4199 * node N+1 (modulo N)
4200 */
4201 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4202 if (!node_online(node))
4203 continue;
bc732f1d 4204 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4205 }
54a6eb5c
MG
4206 for (node = 0; node < local_node; node++) {
4207 if (!node_online(node))
4208 continue;
bc732f1d 4209 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4210 }
4211
dd1a239f
MG
4212 zonelist->_zonerefs[j].zone = NULL;
4213 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4214}
4215
9276b1bc 4216/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4217static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4218{
54a6eb5c 4219 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4220}
4221
1da177e4
LT
4222#endif /* CONFIG_NUMA */
4223
99dcc3e5
CL
4224/*
4225 * Boot pageset table. One per cpu which is going to be used for all
4226 * zones and all nodes. The parameters will be set in such a way
4227 * that an item put on a list will immediately be handed over to
4228 * the buddy list. This is safe since pageset manipulation is done
4229 * with interrupts disabled.
4230 *
4231 * The boot_pagesets must be kept even after bootup is complete for
4232 * unused processors and/or zones. They do play a role for bootstrapping
4233 * hotplugged processors.
4234 *
4235 * zoneinfo_show() and maybe other functions do
4236 * not check if the processor is online before following the pageset pointer.
4237 * Other parts of the kernel may not check if the zone is available.
4238 */
4239static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4240static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4241static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4242
4eaf3f64
HL
4243/*
4244 * Global mutex to protect against size modification of zonelists
4245 * as well as to serialize pageset setup for the new populated zone.
4246 */
4247DEFINE_MUTEX(zonelists_mutex);
4248
9b1a4d38 4249/* return values int ....just for stop_machine() */
4ed7e022 4250static int __build_all_zonelists(void *data)
1da177e4 4251{
6811378e 4252 int nid;
99dcc3e5 4253 int cpu;
9adb62a5 4254 pg_data_t *self = data;
9276b1bc 4255
7f9cfb31
BL
4256#ifdef CONFIG_NUMA
4257 memset(node_load, 0, sizeof(node_load));
4258#endif
9adb62a5
JL
4259
4260 if (self && !node_online(self->node_id)) {
4261 build_zonelists(self);
4262 build_zonelist_cache(self);
4263 }
4264
9276b1bc 4265 for_each_online_node(nid) {
7ea1530a
CL
4266 pg_data_t *pgdat = NODE_DATA(nid);
4267
4268 build_zonelists(pgdat);
4269 build_zonelist_cache(pgdat);
9276b1bc 4270 }
99dcc3e5
CL
4271
4272 /*
4273 * Initialize the boot_pagesets that are going to be used
4274 * for bootstrapping processors. The real pagesets for
4275 * each zone will be allocated later when the per cpu
4276 * allocator is available.
4277 *
4278 * boot_pagesets are used also for bootstrapping offline
4279 * cpus if the system is already booted because the pagesets
4280 * are needed to initialize allocators on a specific cpu too.
4281 * F.e. the percpu allocator needs the page allocator which
4282 * needs the percpu allocator in order to allocate its pagesets
4283 * (a chicken-egg dilemma).
4284 */
7aac7898 4285 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4286 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4287
7aac7898
LS
4288#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4289 /*
4290 * We now know the "local memory node" for each node--
4291 * i.e., the node of the first zone in the generic zonelist.
4292 * Set up numa_mem percpu variable for on-line cpus. During
4293 * boot, only the boot cpu should be on-line; we'll init the
4294 * secondary cpus' numa_mem as they come on-line. During
4295 * node/memory hotplug, we'll fixup all on-line cpus.
4296 */
4297 if (cpu_online(cpu))
4298 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4299#endif
4300 }
4301
6811378e
YG
4302 return 0;
4303}
4304
061f67bc
RV
4305static noinline void __init
4306build_all_zonelists_init(void)
4307{
4308 __build_all_zonelists(NULL);
4309 mminit_verify_zonelist();
4310 cpuset_init_current_mems_allowed();
4311}
4312
4eaf3f64
HL
4313/*
4314 * Called with zonelists_mutex held always
4315 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4316 *
4317 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4318 * [we're only called with non-NULL zone through __meminit paths] and
4319 * (2) call of __init annotated helper build_all_zonelists_init
4320 * [protected by SYSTEM_BOOTING].
4eaf3f64 4321 */
9adb62a5 4322void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4323{
f0c0b2b8
KH
4324 set_zonelist_order();
4325
6811378e 4326 if (system_state == SYSTEM_BOOTING) {
061f67bc 4327 build_all_zonelists_init();
6811378e 4328 } else {
e9959f0f 4329#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4330 if (zone)
4331 setup_zone_pageset(zone);
e9959f0f 4332#endif
dd1895e2
CS
4333 /* we have to stop all cpus to guarantee there is no user
4334 of zonelist */
9adb62a5 4335 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4336 /* cpuset refresh routine should be here */
4337 }
bd1e22b8 4338 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4339 /*
4340 * Disable grouping by mobility if the number of pages in the
4341 * system is too low to allow the mechanism to work. It would be
4342 * more accurate, but expensive to check per-zone. This check is
4343 * made on memory-hotadd so a system can start with mobility
4344 * disabled and enable it later
4345 */
d9c23400 4346 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4347 page_group_by_mobility_disabled = 1;
4348 else
4349 page_group_by_mobility_disabled = 0;
4350
f88dfff5 4351 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4352 "Total pages: %ld\n",
62bc62a8 4353 nr_online_nodes,
f0c0b2b8 4354 zonelist_order_name[current_zonelist_order],
9ef9acb0 4355 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4356 vm_total_pages);
4357#ifdef CONFIG_NUMA
f88dfff5 4358 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4359#endif
1da177e4
LT
4360}
4361
4362/*
4363 * Helper functions to size the waitqueue hash table.
4364 * Essentially these want to choose hash table sizes sufficiently
4365 * large so that collisions trying to wait on pages are rare.
4366 * But in fact, the number of active page waitqueues on typical
4367 * systems is ridiculously low, less than 200. So this is even
4368 * conservative, even though it seems large.
4369 *
4370 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4371 * waitqueues, i.e. the size of the waitq table given the number of pages.
4372 */
4373#define PAGES_PER_WAITQUEUE 256
4374
cca448fe 4375#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4376static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4377{
4378 unsigned long size = 1;
4379
4380 pages /= PAGES_PER_WAITQUEUE;
4381
4382 while (size < pages)
4383 size <<= 1;
4384
4385 /*
4386 * Once we have dozens or even hundreds of threads sleeping
4387 * on IO we've got bigger problems than wait queue collision.
4388 * Limit the size of the wait table to a reasonable size.
4389 */
4390 size = min(size, 4096UL);
4391
4392 return max(size, 4UL);
4393}
cca448fe
YG
4394#else
4395/*
4396 * A zone's size might be changed by hot-add, so it is not possible to determine
4397 * a suitable size for its wait_table. So we use the maximum size now.
4398 *
4399 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4400 *
4401 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4402 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4403 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4404 *
4405 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4406 * or more by the traditional way. (See above). It equals:
4407 *
4408 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4409 * ia64(16K page size) : = ( 8G + 4M)byte.
4410 * powerpc (64K page size) : = (32G +16M)byte.
4411 */
4412static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4413{
4414 return 4096UL;
4415}
4416#endif
1da177e4
LT
4417
4418/*
4419 * This is an integer logarithm so that shifts can be used later
4420 * to extract the more random high bits from the multiplicative
4421 * hash function before the remainder is taken.
4422 */
4423static inline unsigned long wait_table_bits(unsigned long size)
4424{
4425 return ffz(~size);
4426}
4427
6d3163ce
AH
4428/*
4429 * Check if a pageblock contains reserved pages
4430 */
4431static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4432{
4433 unsigned long pfn;
4434
4435 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4436 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4437 return 1;
4438 }
4439 return 0;
4440}
4441
56fd56b8 4442/*
d9c23400 4443 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4444 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4445 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4446 * higher will lead to a bigger reserve which will get freed as contiguous
4447 * blocks as reclaim kicks in
4448 */
4449static void setup_zone_migrate_reserve(struct zone *zone)
4450{
6d3163ce 4451 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4452 struct page *page;
78986a67
MG
4453 unsigned long block_migratetype;
4454 int reserve;
943dca1a 4455 int old_reserve;
56fd56b8 4456
d0215638
MH
4457 /*
4458 * Get the start pfn, end pfn and the number of blocks to reserve
4459 * We have to be careful to be aligned to pageblock_nr_pages to
4460 * make sure that we always check pfn_valid for the first page in
4461 * the block.
4462 */
56fd56b8 4463 start_pfn = zone->zone_start_pfn;
108bcc96 4464 end_pfn = zone_end_pfn(zone);
d0215638 4465 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4466 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4467 pageblock_order;
56fd56b8 4468
78986a67
MG
4469 /*
4470 * Reserve blocks are generally in place to help high-order atomic
4471 * allocations that are short-lived. A min_free_kbytes value that
4472 * would result in more than 2 reserve blocks for atomic allocations
4473 * is assumed to be in place to help anti-fragmentation for the
4474 * future allocation of hugepages at runtime.
4475 */
4476 reserve = min(2, reserve);
943dca1a
YI
4477 old_reserve = zone->nr_migrate_reserve_block;
4478
4479 /* When memory hot-add, we almost always need to do nothing */
4480 if (reserve == old_reserve)
4481 return;
4482 zone->nr_migrate_reserve_block = reserve;
78986a67 4483
d9c23400 4484 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4485 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4486 return;
4487
56fd56b8
MG
4488 if (!pfn_valid(pfn))
4489 continue;
4490 page = pfn_to_page(pfn);
4491
344c790e
AL
4492 /* Watch out for overlapping nodes */
4493 if (page_to_nid(page) != zone_to_nid(zone))
4494 continue;
4495
56fd56b8
MG
4496 block_migratetype = get_pageblock_migratetype(page);
4497
938929f1
MG
4498 /* Only test what is necessary when the reserves are not met */
4499 if (reserve > 0) {
4500 /*
4501 * Blocks with reserved pages will never free, skip
4502 * them.
4503 */
4504 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4505 if (pageblock_is_reserved(pfn, block_end_pfn))
4506 continue;
56fd56b8 4507
938929f1
MG
4508 /* If this block is reserved, account for it */
4509 if (block_migratetype == MIGRATE_RESERVE) {
4510 reserve--;
4511 continue;
4512 }
4513
4514 /* Suitable for reserving if this block is movable */
4515 if (block_migratetype == MIGRATE_MOVABLE) {
4516 set_pageblock_migratetype(page,
4517 MIGRATE_RESERVE);
4518 move_freepages_block(zone, page,
4519 MIGRATE_RESERVE);
4520 reserve--;
4521 continue;
4522 }
943dca1a
YI
4523 } else if (!old_reserve) {
4524 /*
4525 * At boot time we don't need to scan the whole zone
4526 * for turning off MIGRATE_RESERVE.
4527 */
4528 break;
56fd56b8
MG
4529 }
4530
4531 /*
4532 * If the reserve is met and this is a previous reserved block,
4533 * take it back
4534 */
4535 if (block_migratetype == MIGRATE_RESERVE) {
4536 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4537 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4538 }
4539 }
4540}
ac0e5b7a 4541
1da177e4
LT
4542/*
4543 * Initially all pages are reserved - free ones are freed
4544 * up by free_all_bootmem() once the early boot process is
4545 * done. Non-atomic initialization, single-pass.
4546 */
c09b4240 4547void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4548 unsigned long start_pfn, enum memmap_context context)
1da177e4 4549{
3a80a7fa 4550 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4551 unsigned long end_pfn = start_pfn + size;
4552 unsigned long pfn;
86051ca5 4553 struct zone *z;
3a80a7fa 4554 unsigned long nr_initialised = 0;
1da177e4 4555
22b31eec
HD
4556 if (highest_memmap_pfn < end_pfn - 1)
4557 highest_memmap_pfn = end_pfn - 1;
4558
3a80a7fa 4559 z = &pgdat->node_zones[zone];
cbe8dd4a 4560 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4561 /*
4562 * There can be holes in boot-time mem_map[]s
4563 * handed to this function. They do not
4564 * exist on hotplugged memory.
4565 */
4566 if (context == MEMMAP_EARLY) {
4567 if (!early_pfn_valid(pfn))
4568 continue;
4569 if (!early_pfn_in_nid(pfn, nid))
4570 continue;
3a80a7fa
MG
4571 if (!update_defer_init(pgdat, pfn, end_pfn,
4572 &nr_initialised))
4573 break;
a2f3aa02 4574 }
ac5d2539
MG
4575
4576 /*
4577 * Mark the block movable so that blocks are reserved for
4578 * movable at startup. This will force kernel allocations
4579 * to reserve their blocks rather than leaking throughout
4580 * the address space during boot when many long-lived
4581 * kernel allocations are made. Later some blocks near
4582 * the start are marked MIGRATE_RESERVE by
4583 * setup_zone_migrate_reserve()
4584 *
4585 * bitmap is created for zone's valid pfn range. but memmap
4586 * can be created for invalid pages (for alignment)
4587 * check here not to call set_pageblock_migratetype() against
4588 * pfn out of zone.
4589 */
4590 if (!(pfn & (pageblock_nr_pages - 1))) {
4591 struct page *page = pfn_to_page(pfn);
4592
4593 __init_single_page(page, pfn, zone, nid);
4594 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4595 } else {
4596 __init_single_pfn(pfn, zone, nid);
4597 }
1da177e4
LT
4598 }
4599}
4600
1e548deb 4601static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4602{
7aeb09f9 4603 unsigned int order, t;
b2a0ac88
MG
4604 for_each_migratetype_order(order, t) {
4605 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4606 zone->free_area[order].nr_free = 0;
4607 }
4608}
4609
4610#ifndef __HAVE_ARCH_MEMMAP_INIT
4611#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4612 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4613#endif
4614
7cd2b0a3 4615static int zone_batchsize(struct zone *zone)
e7c8d5c9 4616{
3a6be87f 4617#ifdef CONFIG_MMU
e7c8d5c9
CL
4618 int batch;
4619
4620 /*
4621 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4622 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4623 *
4624 * OK, so we don't know how big the cache is. So guess.
4625 */
b40da049 4626 batch = zone->managed_pages / 1024;
ba56e91c
SR
4627 if (batch * PAGE_SIZE > 512 * 1024)
4628 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4629 batch /= 4; /* We effectively *= 4 below */
4630 if (batch < 1)
4631 batch = 1;
4632
4633 /*
0ceaacc9
NP
4634 * Clamp the batch to a 2^n - 1 value. Having a power
4635 * of 2 value was found to be more likely to have
4636 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4637 *
0ceaacc9
NP
4638 * For example if 2 tasks are alternately allocating
4639 * batches of pages, one task can end up with a lot
4640 * of pages of one half of the possible page colors
4641 * and the other with pages of the other colors.
e7c8d5c9 4642 */
9155203a 4643 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4644
e7c8d5c9 4645 return batch;
3a6be87f
DH
4646
4647#else
4648 /* The deferral and batching of frees should be suppressed under NOMMU
4649 * conditions.
4650 *
4651 * The problem is that NOMMU needs to be able to allocate large chunks
4652 * of contiguous memory as there's no hardware page translation to
4653 * assemble apparent contiguous memory from discontiguous pages.
4654 *
4655 * Queueing large contiguous runs of pages for batching, however,
4656 * causes the pages to actually be freed in smaller chunks. As there
4657 * can be a significant delay between the individual batches being
4658 * recycled, this leads to the once large chunks of space being
4659 * fragmented and becoming unavailable for high-order allocations.
4660 */
4661 return 0;
4662#endif
e7c8d5c9
CL
4663}
4664
8d7a8fa9
CS
4665/*
4666 * pcp->high and pcp->batch values are related and dependent on one another:
4667 * ->batch must never be higher then ->high.
4668 * The following function updates them in a safe manner without read side
4669 * locking.
4670 *
4671 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4672 * those fields changing asynchronously (acording the the above rule).
4673 *
4674 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4675 * outside of boot time (or some other assurance that no concurrent updaters
4676 * exist).
4677 */
4678static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4679 unsigned long batch)
4680{
4681 /* start with a fail safe value for batch */
4682 pcp->batch = 1;
4683 smp_wmb();
4684
4685 /* Update high, then batch, in order */
4686 pcp->high = high;
4687 smp_wmb();
4688
4689 pcp->batch = batch;
4690}
4691
3664033c 4692/* a companion to pageset_set_high() */
4008bab7
CS
4693static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4694{
8d7a8fa9 4695 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4696}
4697
88c90dbc 4698static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4699{
4700 struct per_cpu_pages *pcp;
5f8dcc21 4701 int migratetype;
2caaad41 4702
1c6fe946
MD
4703 memset(p, 0, sizeof(*p));
4704
3dfa5721 4705 pcp = &p->pcp;
2caaad41 4706 pcp->count = 0;
5f8dcc21
MG
4707 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4708 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4709}
4710
88c90dbc
CS
4711static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4712{
4713 pageset_init(p);
4714 pageset_set_batch(p, batch);
4715}
4716
8ad4b1fb 4717/*
3664033c 4718 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4719 * to the value high for the pageset p.
4720 */
3664033c 4721static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4722 unsigned long high)
4723{
8d7a8fa9
CS
4724 unsigned long batch = max(1UL, high / 4);
4725 if ((high / 4) > (PAGE_SHIFT * 8))
4726 batch = PAGE_SHIFT * 8;
8ad4b1fb 4727
8d7a8fa9 4728 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4729}
4730
7cd2b0a3
DR
4731static void pageset_set_high_and_batch(struct zone *zone,
4732 struct per_cpu_pageset *pcp)
56cef2b8 4733{
56cef2b8 4734 if (percpu_pagelist_fraction)
3664033c 4735 pageset_set_high(pcp,
56cef2b8
CS
4736 (zone->managed_pages /
4737 percpu_pagelist_fraction));
4738 else
4739 pageset_set_batch(pcp, zone_batchsize(zone));
4740}
4741
169f6c19
CS
4742static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4743{
4744 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4745
4746 pageset_init(pcp);
4747 pageset_set_high_and_batch(zone, pcp);
4748}
4749
4ed7e022 4750static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4751{
4752 int cpu;
319774e2 4753 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4754 for_each_possible_cpu(cpu)
4755 zone_pageset_init(zone, cpu);
319774e2
WF
4756}
4757
2caaad41 4758/*
99dcc3e5
CL
4759 * Allocate per cpu pagesets and initialize them.
4760 * Before this call only boot pagesets were available.
e7c8d5c9 4761 */
99dcc3e5 4762void __init setup_per_cpu_pageset(void)
e7c8d5c9 4763{
99dcc3e5 4764 struct zone *zone;
e7c8d5c9 4765
319774e2
WF
4766 for_each_populated_zone(zone)
4767 setup_zone_pageset(zone);
e7c8d5c9
CL
4768}
4769
577a32f6 4770static noinline __init_refok
cca448fe 4771int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4772{
4773 int i;
cca448fe 4774 size_t alloc_size;
ed8ece2e
DH
4775
4776 /*
4777 * The per-page waitqueue mechanism uses hashed waitqueues
4778 * per zone.
4779 */
02b694de
YG
4780 zone->wait_table_hash_nr_entries =
4781 wait_table_hash_nr_entries(zone_size_pages);
4782 zone->wait_table_bits =
4783 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4784 alloc_size = zone->wait_table_hash_nr_entries
4785 * sizeof(wait_queue_head_t);
4786
cd94b9db 4787 if (!slab_is_available()) {
cca448fe 4788 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4789 memblock_virt_alloc_node_nopanic(
4790 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4791 } else {
4792 /*
4793 * This case means that a zone whose size was 0 gets new memory
4794 * via memory hot-add.
4795 * But it may be the case that a new node was hot-added. In
4796 * this case vmalloc() will not be able to use this new node's
4797 * memory - this wait_table must be initialized to use this new
4798 * node itself as well.
4799 * To use this new node's memory, further consideration will be
4800 * necessary.
4801 */
8691f3a7 4802 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4803 }
4804 if (!zone->wait_table)
4805 return -ENOMEM;
ed8ece2e 4806
b8af2941 4807 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4808 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4809
4810 return 0;
ed8ece2e
DH
4811}
4812
c09b4240 4813static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4814{
99dcc3e5
CL
4815 /*
4816 * per cpu subsystem is not up at this point. The following code
4817 * relies on the ability of the linker to provide the
4818 * offset of a (static) per cpu variable into the per cpu area.
4819 */
4820 zone->pageset = &boot_pageset;
ed8ece2e 4821
b38a8725 4822 if (populated_zone(zone))
99dcc3e5
CL
4823 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4824 zone->name, zone->present_pages,
4825 zone_batchsize(zone));
ed8ece2e
DH
4826}
4827
4ed7e022 4828int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4829 unsigned long zone_start_pfn,
a2f3aa02
DH
4830 unsigned long size,
4831 enum memmap_context context)
ed8ece2e
DH
4832{
4833 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4834 int ret;
4835 ret = zone_wait_table_init(zone, size);
4836 if (ret)
4837 return ret;
ed8ece2e
DH
4838 pgdat->nr_zones = zone_idx(zone) + 1;
4839
ed8ece2e
DH
4840 zone->zone_start_pfn = zone_start_pfn;
4841
708614e6
MG
4842 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4843 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4844 pgdat->node_id,
4845 (unsigned long)zone_idx(zone),
4846 zone_start_pfn, (zone_start_pfn + size));
4847
1e548deb 4848 zone_init_free_lists(zone);
718127cc
YG
4849
4850 return 0;
ed8ece2e
DH
4851}
4852
0ee332c1 4853#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4854#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4855
c713216d
MG
4856/*
4857 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4858 */
8a942fde
MG
4859int __meminit __early_pfn_to_nid(unsigned long pfn,
4860 struct mminit_pfnnid_cache *state)
c713216d 4861{
c13291a5 4862 unsigned long start_pfn, end_pfn;
e76b63f8 4863 int nid;
7c243c71 4864
8a942fde
MG
4865 if (state->last_start <= pfn && pfn < state->last_end)
4866 return state->last_nid;
c713216d 4867
e76b63f8
YL
4868 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4869 if (nid != -1) {
8a942fde
MG
4870 state->last_start = start_pfn;
4871 state->last_end = end_pfn;
4872 state->last_nid = nid;
e76b63f8
YL
4873 }
4874
4875 return nid;
c713216d
MG
4876}
4877#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4878
c713216d 4879/**
6782832e 4880 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4881 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4882 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4883 *
7d018176
ZZ
4884 * If an architecture guarantees that all ranges registered contain no holes
4885 * and may be freed, this this function may be used instead of calling
4886 * memblock_free_early_nid() manually.
c713216d 4887 */
c13291a5 4888void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4889{
c13291a5
TH
4890 unsigned long start_pfn, end_pfn;
4891 int i, this_nid;
edbe7d23 4892
c13291a5
TH
4893 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4894 start_pfn = min(start_pfn, max_low_pfn);
4895 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4896
c13291a5 4897 if (start_pfn < end_pfn)
6782832e
SS
4898 memblock_free_early_nid(PFN_PHYS(start_pfn),
4899 (end_pfn - start_pfn) << PAGE_SHIFT,
4900 this_nid);
edbe7d23 4901 }
edbe7d23 4902}
edbe7d23 4903
c713216d
MG
4904/**
4905 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4906 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4907 *
7d018176
ZZ
4908 * If an architecture guarantees that all ranges registered contain no holes and may
4909 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4910 */
4911void __init sparse_memory_present_with_active_regions(int nid)
4912{
c13291a5
TH
4913 unsigned long start_pfn, end_pfn;
4914 int i, this_nid;
c713216d 4915
c13291a5
TH
4916 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4917 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4918}
4919
4920/**
4921 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4922 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4923 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4924 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4925 *
4926 * It returns the start and end page frame of a node based on information
7d018176 4927 * provided by memblock_set_node(). If called for a node
c713216d 4928 * with no available memory, a warning is printed and the start and end
88ca3b94 4929 * PFNs will be 0.
c713216d 4930 */
a3142c8e 4931void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4932 unsigned long *start_pfn, unsigned long *end_pfn)
4933{
c13291a5 4934 unsigned long this_start_pfn, this_end_pfn;
c713216d 4935 int i;
c13291a5 4936
c713216d
MG
4937 *start_pfn = -1UL;
4938 *end_pfn = 0;
4939
c13291a5
TH
4940 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4941 *start_pfn = min(*start_pfn, this_start_pfn);
4942 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4943 }
4944
633c0666 4945 if (*start_pfn == -1UL)
c713216d 4946 *start_pfn = 0;
c713216d
MG
4947}
4948
2a1e274a
MG
4949/*
4950 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4951 * assumption is made that zones within a node are ordered in monotonic
4952 * increasing memory addresses so that the "highest" populated zone is used
4953 */
b69a7288 4954static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4955{
4956 int zone_index;
4957 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4958 if (zone_index == ZONE_MOVABLE)
4959 continue;
4960
4961 if (arch_zone_highest_possible_pfn[zone_index] >
4962 arch_zone_lowest_possible_pfn[zone_index])
4963 break;
4964 }
4965
4966 VM_BUG_ON(zone_index == -1);
4967 movable_zone = zone_index;
4968}
4969
4970/*
4971 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4972 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4973 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4974 * in each node depending on the size of each node and how evenly kernelcore
4975 * is distributed. This helper function adjusts the zone ranges
4976 * provided by the architecture for a given node by using the end of the
4977 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4978 * zones within a node are in order of monotonic increases memory addresses
4979 */
b69a7288 4980static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4981 unsigned long zone_type,
4982 unsigned long node_start_pfn,
4983 unsigned long node_end_pfn,
4984 unsigned long *zone_start_pfn,
4985 unsigned long *zone_end_pfn)
4986{
4987 /* Only adjust if ZONE_MOVABLE is on this node */
4988 if (zone_movable_pfn[nid]) {
4989 /* Size ZONE_MOVABLE */
4990 if (zone_type == ZONE_MOVABLE) {
4991 *zone_start_pfn = zone_movable_pfn[nid];
4992 *zone_end_pfn = min(node_end_pfn,
4993 arch_zone_highest_possible_pfn[movable_zone]);
4994
4995 /* Adjust for ZONE_MOVABLE starting within this range */
4996 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4997 *zone_end_pfn > zone_movable_pfn[nid]) {
4998 *zone_end_pfn = zone_movable_pfn[nid];
4999
5000 /* Check if this whole range is within ZONE_MOVABLE */
5001 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5002 *zone_start_pfn = *zone_end_pfn;
5003 }
5004}
5005
c713216d
MG
5006/*
5007 * Return the number of pages a zone spans in a node, including holes
5008 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5009 */
6ea6e688 5010static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5011 unsigned long zone_type,
7960aedd
ZY
5012 unsigned long node_start_pfn,
5013 unsigned long node_end_pfn,
c713216d
MG
5014 unsigned long *ignored)
5015{
c713216d
MG
5016 unsigned long zone_start_pfn, zone_end_pfn;
5017
7960aedd 5018 /* Get the start and end of the zone */
c713216d
MG
5019 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5020 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5021 adjust_zone_range_for_zone_movable(nid, zone_type,
5022 node_start_pfn, node_end_pfn,
5023 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5024
5025 /* Check that this node has pages within the zone's required range */
5026 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5027 return 0;
5028
5029 /* Move the zone boundaries inside the node if necessary */
5030 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5031 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5032
5033 /* Return the spanned pages */
5034 return zone_end_pfn - zone_start_pfn;
5035}
5036
5037/*
5038 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5039 * then all holes in the requested range will be accounted for.
c713216d 5040 */
32996250 5041unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5042 unsigned long range_start_pfn,
5043 unsigned long range_end_pfn)
5044{
96e907d1
TH
5045 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5046 unsigned long start_pfn, end_pfn;
5047 int i;
c713216d 5048
96e907d1
TH
5049 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5050 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5051 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5052 nr_absent -= end_pfn - start_pfn;
c713216d 5053 }
96e907d1 5054 return nr_absent;
c713216d
MG
5055}
5056
5057/**
5058 * absent_pages_in_range - Return number of page frames in holes within a range
5059 * @start_pfn: The start PFN to start searching for holes
5060 * @end_pfn: The end PFN to stop searching for holes
5061 *
88ca3b94 5062 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5063 */
5064unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5065 unsigned long end_pfn)
5066{
5067 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5068}
5069
5070/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5071static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5072 unsigned long zone_type,
7960aedd
ZY
5073 unsigned long node_start_pfn,
5074 unsigned long node_end_pfn,
c713216d
MG
5075 unsigned long *ignored)
5076{
96e907d1
TH
5077 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5078 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5079 unsigned long zone_start_pfn, zone_end_pfn;
5080
96e907d1
TH
5081 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5082 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5083
2a1e274a
MG
5084 adjust_zone_range_for_zone_movable(nid, zone_type,
5085 node_start_pfn, node_end_pfn,
5086 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5087 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5088}
0e0b864e 5089
0ee332c1 5090#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5091static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5092 unsigned long zone_type,
7960aedd
ZY
5093 unsigned long node_start_pfn,
5094 unsigned long node_end_pfn,
c713216d
MG
5095 unsigned long *zones_size)
5096{
5097 return zones_size[zone_type];
5098}
5099
6ea6e688 5100static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5101 unsigned long zone_type,
7960aedd
ZY
5102 unsigned long node_start_pfn,
5103 unsigned long node_end_pfn,
c713216d
MG
5104 unsigned long *zholes_size)
5105{
5106 if (!zholes_size)
5107 return 0;
5108
5109 return zholes_size[zone_type];
5110}
20e6926d 5111
0ee332c1 5112#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5113
a3142c8e 5114static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5115 unsigned long node_start_pfn,
5116 unsigned long node_end_pfn,
5117 unsigned long *zones_size,
5118 unsigned long *zholes_size)
c713216d 5119{
febd5949 5120 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5121 enum zone_type i;
5122
febd5949
GZ
5123 for (i = 0; i < MAX_NR_ZONES; i++) {
5124 struct zone *zone = pgdat->node_zones + i;
5125 unsigned long size, real_size;
c713216d 5126
febd5949
GZ
5127 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5128 node_start_pfn,
5129 node_end_pfn,
5130 zones_size);
5131 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5132 node_start_pfn, node_end_pfn,
5133 zholes_size);
febd5949
GZ
5134 zone->spanned_pages = size;
5135 zone->present_pages = real_size;
5136
5137 totalpages += size;
5138 realtotalpages += real_size;
5139 }
5140
5141 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5142 pgdat->node_present_pages = realtotalpages;
5143 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5144 realtotalpages);
5145}
5146
835c134e
MG
5147#ifndef CONFIG_SPARSEMEM
5148/*
5149 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5150 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5151 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5152 * round what is now in bits to nearest long in bits, then return it in
5153 * bytes.
5154 */
7c45512d 5155static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5156{
5157 unsigned long usemapsize;
5158
7c45512d 5159 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5160 usemapsize = roundup(zonesize, pageblock_nr_pages);
5161 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5162 usemapsize *= NR_PAGEBLOCK_BITS;
5163 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5164
5165 return usemapsize / 8;
5166}
5167
5168static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5169 struct zone *zone,
5170 unsigned long zone_start_pfn,
5171 unsigned long zonesize)
835c134e 5172{
7c45512d 5173 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5174 zone->pageblock_flags = NULL;
58a01a45 5175 if (usemapsize)
6782832e
SS
5176 zone->pageblock_flags =
5177 memblock_virt_alloc_node_nopanic(usemapsize,
5178 pgdat->node_id);
835c134e
MG
5179}
5180#else
7c45512d
LT
5181static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5182 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5183#endif /* CONFIG_SPARSEMEM */
5184
d9c23400 5185#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5186
d9c23400 5187/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5188void __paginginit set_pageblock_order(void)
d9c23400 5189{
955c1cd7
AM
5190 unsigned int order;
5191
d9c23400
MG
5192 /* Check that pageblock_nr_pages has not already been setup */
5193 if (pageblock_order)
5194 return;
5195
955c1cd7
AM
5196 if (HPAGE_SHIFT > PAGE_SHIFT)
5197 order = HUGETLB_PAGE_ORDER;
5198 else
5199 order = MAX_ORDER - 1;
5200
d9c23400
MG
5201 /*
5202 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5203 * This value may be variable depending on boot parameters on IA64 and
5204 * powerpc.
d9c23400
MG
5205 */
5206 pageblock_order = order;
5207}
5208#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5209
ba72cb8c
MG
5210/*
5211 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5212 * is unused as pageblock_order is set at compile-time. See
5213 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5214 * the kernel config
ba72cb8c 5215 */
15ca220e 5216void __paginginit set_pageblock_order(void)
ba72cb8c 5217{
ba72cb8c 5218}
d9c23400
MG
5219
5220#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5221
01cefaef
JL
5222static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5223 unsigned long present_pages)
5224{
5225 unsigned long pages = spanned_pages;
5226
5227 /*
5228 * Provide a more accurate estimation if there are holes within
5229 * the zone and SPARSEMEM is in use. If there are holes within the
5230 * zone, each populated memory region may cost us one or two extra
5231 * memmap pages due to alignment because memmap pages for each
5232 * populated regions may not naturally algined on page boundary.
5233 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5234 */
5235 if (spanned_pages > present_pages + (present_pages >> 4) &&
5236 IS_ENABLED(CONFIG_SPARSEMEM))
5237 pages = present_pages;
5238
5239 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5240}
5241
1da177e4
LT
5242/*
5243 * Set up the zone data structures:
5244 * - mark all pages reserved
5245 * - mark all memory queues empty
5246 * - clear the memory bitmaps
6527af5d
MK
5247 *
5248 * NOTE: pgdat should get zeroed by caller.
1da177e4 5249 */
b5a0e011 5250static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 5251 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 5252{
2f1b6248 5253 enum zone_type j;
ed8ece2e 5254 int nid = pgdat->node_id;
1da177e4 5255 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5256 int ret;
1da177e4 5257
208d54e5 5258 pgdat_resize_init(pgdat);
8177a420
AA
5259#ifdef CONFIG_NUMA_BALANCING
5260 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5261 pgdat->numabalancing_migrate_nr_pages = 0;
5262 pgdat->numabalancing_migrate_next_window = jiffies;
5263#endif
1da177e4 5264 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5265 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5266 pgdat_page_ext_init(pgdat);
5f63b720 5267
1da177e4
LT
5268 for (j = 0; j < MAX_NR_ZONES; j++) {
5269 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5270 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5271
febd5949
GZ
5272 size = zone->spanned_pages;
5273 realsize = freesize = zone->present_pages;
1da177e4 5274
0e0b864e 5275 /*
9feedc9d 5276 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5277 * is used by this zone for memmap. This affects the watermark
5278 * and per-cpu initialisations
5279 */
01cefaef 5280 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5281 if (!is_highmem_idx(j)) {
5282 if (freesize >= memmap_pages) {
5283 freesize -= memmap_pages;
5284 if (memmap_pages)
5285 printk(KERN_DEBUG
5286 " %s zone: %lu pages used for memmap\n",
5287 zone_names[j], memmap_pages);
5288 } else
5289 printk(KERN_WARNING
5290 " %s zone: %lu pages exceeds freesize %lu\n",
5291 zone_names[j], memmap_pages, freesize);
5292 }
0e0b864e 5293
6267276f 5294 /* Account for reserved pages */
9feedc9d
JL
5295 if (j == 0 && freesize > dma_reserve) {
5296 freesize -= dma_reserve;
d903ef9f 5297 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5298 zone_names[0], dma_reserve);
0e0b864e
MG
5299 }
5300
98d2b0eb 5301 if (!is_highmem_idx(j))
9feedc9d 5302 nr_kernel_pages += freesize;
01cefaef
JL
5303 /* Charge for highmem memmap if there are enough kernel pages */
5304 else if (nr_kernel_pages > memmap_pages * 2)
5305 nr_kernel_pages -= memmap_pages;
9feedc9d 5306 nr_all_pages += freesize;
1da177e4 5307
9feedc9d
JL
5308 /*
5309 * Set an approximate value for lowmem here, it will be adjusted
5310 * when the bootmem allocator frees pages into the buddy system.
5311 * And all highmem pages will be managed by the buddy system.
5312 */
5313 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5314#ifdef CONFIG_NUMA
d5f541ed 5315 zone->node = nid;
9feedc9d 5316 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5317 / 100;
9feedc9d 5318 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5319#endif
1da177e4
LT
5320 zone->name = zone_names[j];
5321 spin_lock_init(&zone->lock);
5322 spin_lock_init(&zone->lru_lock);
bdc8cb98 5323 zone_seqlock_init(zone);
1da177e4 5324 zone->zone_pgdat = pgdat;
ed8ece2e 5325 zone_pcp_init(zone);
81c0a2bb
JW
5326
5327 /* For bootup, initialized properly in watermark setup */
5328 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5329
bea8c150 5330 lruvec_init(&zone->lruvec);
1da177e4
LT
5331 if (!size)
5332 continue;
5333
955c1cd7 5334 set_pageblock_order();
7c45512d 5335 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5336 ret = init_currently_empty_zone(zone, zone_start_pfn,
5337 size, MEMMAP_EARLY);
718127cc 5338 BUG_ON(ret);
76cdd58e 5339 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5340 zone_start_pfn += size;
1da177e4
LT
5341 }
5342}
5343
577a32f6 5344static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5345{
1da177e4
LT
5346 /* Skip empty nodes */
5347 if (!pgdat->node_spanned_pages)
5348 return;
5349
d41dee36 5350#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5351 /* ia64 gets its own node_mem_map, before this, without bootmem */
5352 if (!pgdat->node_mem_map) {
e984bb43 5353 unsigned long size, start, end;
d41dee36
AW
5354 struct page *map;
5355
e984bb43
BP
5356 /*
5357 * The zone's endpoints aren't required to be MAX_ORDER
5358 * aligned but the node_mem_map endpoints must be in order
5359 * for the buddy allocator to function correctly.
5360 */
5361 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5362 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5363 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5364 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5365 map = alloc_remap(pgdat->node_id, size);
5366 if (!map)
6782832e
SS
5367 map = memblock_virt_alloc_node_nopanic(size,
5368 pgdat->node_id);
e984bb43 5369 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5370 }
12d810c1 5371#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5372 /*
5373 * With no DISCONTIG, the global mem_map is just set as node 0's
5374 */
c713216d 5375 if (pgdat == NODE_DATA(0)) {
1da177e4 5376 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5377#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5378 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5379 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5380#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5381 }
1da177e4 5382#endif
d41dee36 5383#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5384}
5385
9109fb7b
JW
5386void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5387 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5388{
9109fb7b 5389 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5390 unsigned long start_pfn = 0;
5391 unsigned long end_pfn = 0;
9109fb7b 5392
88fdf75d 5393 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5394 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5395
3a80a7fa 5396 reset_deferred_meminit(pgdat);
1da177e4
LT
5397 pgdat->node_id = nid;
5398 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5399#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5400 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5401 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5402 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5403#endif
5404 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5405 zones_size, zholes_size);
1da177e4
LT
5406
5407 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5408#ifdef CONFIG_FLAT_NODE_MEM_MAP
5409 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5410 nid, (unsigned long)pgdat,
5411 (unsigned long)pgdat->node_mem_map);
5412#endif
1da177e4 5413
febd5949 5414 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5415}
5416
0ee332c1 5417#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5418
5419#if MAX_NUMNODES > 1
5420/*
5421 * Figure out the number of possible node ids.
5422 */
f9872caf 5423void __init setup_nr_node_ids(void)
418508c1
MS
5424{
5425 unsigned int node;
5426 unsigned int highest = 0;
5427
5428 for_each_node_mask(node, node_possible_map)
5429 highest = node;
5430 nr_node_ids = highest + 1;
5431}
418508c1
MS
5432#endif
5433
1e01979c
TH
5434/**
5435 * node_map_pfn_alignment - determine the maximum internode alignment
5436 *
5437 * This function should be called after node map is populated and sorted.
5438 * It calculates the maximum power of two alignment which can distinguish
5439 * all the nodes.
5440 *
5441 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5442 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5443 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5444 * shifted, 1GiB is enough and this function will indicate so.
5445 *
5446 * This is used to test whether pfn -> nid mapping of the chosen memory
5447 * model has fine enough granularity to avoid incorrect mapping for the
5448 * populated node map.
5449 *
5450 * Returns the determined alignment in pfn's. 0 if there is no alignment
5451 * requirement (single node).
5452 */
5453unsigned long __init node_map_pfn_alignment(void)
5454{
5455 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5456 unsigned long start, end, mask;
1e01979c 5457 int last_nid = -1;
c13291a5 5458 int i, nid;
1e01979c 5459
c13291a5 5460 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5461 if (!start || last_nid < 0 || last_nid == nid) {
5462 last_nid = nid;
5463 last_end = end;
5464 continue;
5465 }
5466
5467 /*
5468 * Start with a mask granular enough to pin-point to the
5469 * start pfn and tick off bits one-by-one until it becomes
5470 * too coarse to separate the current node from the last.
5471 */
5472 mask = ~((1 << __ffs(start)) - 1);
5473 while (mask && last_end <= (start & (mask << 1)))
5474 mask <<= 1;
5475
5476 /* accumulate all internode masks */
5477 accl_mask |= mask;
5478 }
5479
5480 /* convert mask to number of pages */
5481 return ~accl_mask + 1;
5482}
5483
a6af2bc3 5484/* Find the lowest pfn for a node */
b69a7288 5485static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5486{
a6af2bc3 5487 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5488 unsigned long start_pfn;
5489 int i;
1abbfb41 5490
c13291a5
TH
5491 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5492 min_pfn = min(min_pfn, start_pfn);
c713216d 5493
a6af2bc3
MG
5494 if (min_pfn == ULONG_MAX) {
5495 printk(KERN_WARNING
2bc0d261 5496 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5497 return 0;
5498 }
5499
5500 return min_pfn;
c713216d
MG
5501}
5502
5503/**
5504 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5505 *
5506 * It returns the minimum PFN based on information provided via
7d018176 5507 * memblock_set_node().
c713216d
MG
5508 */
5509unsigned long __init find_min_pfn_with_active_regions(void)
5510{
5511 return find_min_pfn_for_node(MAX_NUMNODES);
5512}
5513
37b07e41
LS
5514/*
5515 * early_calculate_totalpages()
5516 * Sum pages in active regions for movable zone.
4b0ef1fe 5517 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5518 */
484f51f8 5519static unsigned long __init early_calculate_totalpages(void)
7e63efef 5520{
7e63efef 5521 unsigned long totalpages = 0;
c13291a5
TH
5522 unsigned long start_pfn, end_pfn;
5523 int i, nid;
5524
5525 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5526 unsigned long pages = end_pfn - start_pfn;
7e63efef 5527
37b07e41
LS
5528 totalpages += pages;
5529 if (pages)
4b0ef1fe 5530 node_set_state(nid, N_MEMORY);
37b07e41 5531 }
b8af2941 5532 return totalpages;
7e63efef
MG
5533}
5534
2a1e274a
MG
5535/*
5536 * Find the PFN the Movable zone begins in each node. Kernel memory
5537 * is spread evenly between nodes as long as the nodes have enough
5538 * memory. When they don't, some nodes will have more kernelcore than
5539 * others
5540 */
b224ef85 5541static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5542{
5543 int i, nid;
5544 unsigned long usable_startpfn;
5545 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5546 /* save the state before borrow the nodemask */
4b0ef1fe 5547 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5548 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5549 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5550 struct memblock_region *r;
b2f3eebe
TC
5551
5552 /* Need to find movable_zone earlier when movable_node is specified. */
5553 find_usable_zone_for_movable();
5554
5555 /*
5556 * If movable_node is specified, ignore kernelcore and movablecore
5557 * options.
5558 */
5559 if (movable_node_is_enabled()) {
136199f0
EM
5560 for_each_memblock(memory, r) {
5561 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5562 continue;
5563
136199f0 5564 nid = r->nid;
b2f3eebe 5565
136199f0 5566 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5567 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5568 min(usable_startpfn, zone_movable_pfn[nid]) :
5569 usable_startpfn;
5570 }
5571
5572 goto out2;
5573 }
2a1e274a 5574
7e63efef 5575 /*
b2f3eebe 5576 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5577 * kernelcore that corresponds so that memory usable for
5578 * any allocation type is evenly spread. If both kernelcore
5579 * and movablecore are specified, then the value of kernelcore
5580 * will be used for required_kernelcore if it's greater than
5581 * what movablecore would have allowed.
5582 */
5583 if (required_movablecore) {
7e63efef
MG
5584 unsigned long corepages;
5585
5586 /*
5587 * Round-up so that ZONE_MOVABLE is at least as large as what
5588 * was requested by the user
5589 */
5590 required_movablecore =
5591 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5592 corepages = totalpages - required_movablecore;
5593
5594 required_kernelcore = max(required_kernelcore, corepages);
5595 }
5596
20e6926d
YL
5597 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5598 if (!required_kernelcore)
66918dcd 5599 goto out;
2a1e274a
MG
5600
5601 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5602 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5603
5604restart:
5605 /* Spread kernelcore memory as evenly as possible throughout nodes */
5606 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5607 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5608 unsigned long start_pfn, end_pfn;
5609
2a1e274a
MG
5610 /*
5611 * Recalculate kernelcore_node if the division per node
5612 * now exceeds what is necessary to satisfy the requested
5613 * amount of memory for the kernel
5614 */
5615 if (required_kernelcore < kernelcore_node)
5616 kernelcore_node = required_kernelcore / usable_nodes;
5617
5618 /*
5619 * As the map is walked, we track how much memory is usable
5620 * by the kernel using kernelcore_remaining. When it is
5621 * 0, the rest of the node is usable by ZONE_MOVABLE
5622 */
5623 kernelcore_remaining = kernelcore_node;
5624
5625 /* Go through each range of PFNs within this node */
c13291a5 5626 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5627 unsigned long size_pages;
5628
c13291a5 5629 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5630 if (start_pfn >= end_pfn)
5631 continue;
5632
5633 /* Account for what is only usable for kernelcore */
5634 if (start_pfn < usable_startpfn) {
5635 unsigned long kernel_pages;
5636 kernel_pages = min(end_pfn, usable_startpfn)
5637 - start_pfn;
5638
5639 kernelcore_remaining -= min(kernel_pages,
5640 kernelcore_remaining);
5641 required_kernelcore -= min(kernel_pages,
5642 required_kernelcore);
5643
5644 /* Continue if range is now fully accounted */
5645 if (end_pfn <= usable_startpfn) {
5646
5647 /*
5648 * Push zone_movable_pfn to the end so
5649 * that if we have to rebalance
5650 * kernelcore across nodes, we will
5651 * not double account here
5652 */
5653 zone_movable_pfn[nid] = end_pfn;
5654 continue;
5655 }
5656 start_pfn = usable_startpfn;
5657 }
5658
5659 /*
5660 * The usable PFN range for ZONE_MOVABLE is from
5661 * start_pfn->end_pfn. Calculate size_pages as the
5662 * number of pages used as kernelcore
5663 */
5664 size_pages = end_pfn - start_pfn;
5665 if (size_pages > kernelcore_remaining)
5666 size_pages = kernelcore_remaining;
5667 zone_movable_pfn[nid] = start_pfn + size_pages;
5668
5669 /*
5670 * Some kernelcore has been met, update counts and
5671 * break if the kernelcore for this node has been
b8af2941 5672 * satisfied
2a1e274a
MG
5673 */
5674 required_kernelcore -= min(required_kernelcore,
5675 size_pages);
5676 kernelcore_remaining -= size_pages;
5677 if (!kernelcore_remaining)
5678 break;
5679 }
5680 }
5681
5682 /*
5683 * If there is still required_kernelcore, we do another pass with one
5684 * less node in the count. This will push zone_movable_pfn[nid] further
5685 * along on the nodes that still have memory until kernelcore is
b8af2941 5686 * satisfied
2a1e274a
MG
5687 */
5688 usable_nodes--;
5689 if (usable_nodes && required_kernelcore > usable_nodes)
5690 goto restart;
5691
b2f3eebe 5692out2:
2a1e274a
MG
5693 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5694 for (nid = 0; nid < MAX_NUMNODES; nid++)
5695 zone_movable_pfn[nid] =
5696 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5697
20e6926d 5698out:
66918dcd 5699 /* restore the node_state */
4b0ef1fe 5700 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5701}
5702
4b0ef1fe
LJ
5703/* Any regular or high memory on that node ? */
5704static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5705{
37b07e41
LS
5706 enum zone_type zone_type;
5707
4b0ef1fe
LJ
5708 if (N_MEMORY == N_NORMAL_MEMORY)
5709 return;
5710
5711 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5712 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5713 if (populated_zone(zone)) {
4b0ef1fe
LJ
5714 node_set_state(nid, N_HIGH_MEMORY);
5715 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5716 zone_type <= ZONE_NORMAL)
5717 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5718 break;
5719 }
37b07e41 5720 }
37b07e41
LS
5721}
5722
c713216d
MG
5723/**
5724 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5725 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5726 *
5727 * This will call free_area_init_node() for each active node in the system.
7d018176 5728 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5729 * zone in each node and their holes is calculated. If the maximum PFN
5730 * between two adjacent zones match, it is assumed that the zone is empty.
5731 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5732 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5733 * starts where the previous one ended. For example, ZONE_DMA32 starts
5734 * at arch_max_dma_pfn.
5735 */
5736void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5737{
c13291a5
TH
5738 unsigned long start_pfn, end_pfn;
5739 int i, nid;
a6af2bc3 5740
c713216d
MG
5741 /* Record where the zone boundaries are */
5742 memset(arch_zone_lowest_possible_pfn, 0,
5743 sizeof(arch_zone_lowest_possible_pfn));
5744 memset(arch_zone_highest_possible_pfn, 0,
5745 sizeof(arch_zone_highest_possible_pfn));
5746 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5747 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5748 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5749 if (i == ZONE_MOVABLE)
5750 continue;
c713216d
MG
5751 arch_zone_lowest_possible_pfn[i] =
5752 arch_zone_highest_possible_pfn[i-1];
5753 arch_zone_highest_possible_pfn[i] =
5754 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5755 }
2a1e274a
MG
5756 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5757 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5758
5759 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5760 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5761 find_zone_movable_pfns_for_nodes();
c713216d 5762
c713216d 5763 /* Print out the zone ranges */
f88dfff5 5764 pr_info("Zone ranges:\n");
2a1e274a
MG
5765 for (i = 0; i < MAX_NR_ZONES; i++) {
5766 if (i == ZONE_MOVABLE)
5767 continue;
f88dfff5 5768 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5769 if (arch_zone_lowest_possible_pfn[i] ==
5770 arch_zone_highest_possible_pfn[i])
f88dfff5 5771 pr_cont("empty\n");
72f0ba02 5772 else
8d29e18a
JG
5773 pr_cont("[mem %#018Lx-%#018Lx]\n",
5774 (u64)arch_zone_lowest_possible_pfn[i]
5775 << PAGE_SHIFT,
5776 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5777 << PAGE_SHIFT) - 1);
2a1e274a
MG
5778 }
5779
5780 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5781 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5782 for (i = 0; i < MAX_NUMNODES; i++) {
5783 if (zone_movable_pfn[i])
8d29e18a
JG
5784 pr_info(" Node %d: %#018Lx\n", i,
5785 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5786 }
c713216d 5787
f2d52fe5 5788 /* Print out the early node map */
f88dfff5 5789 pr_info("Early memory node ranges\n");
c13291a5 5790 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5791 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5792 (u64)start_pfn << PAGE_SHIFT,
5793 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5794
5795 /* Initialise every node */
708614e6 5796 mminit_verify_pageflags_layout();
8ef82866 5797 setup_nr_node_ids();
c713216d
MG
5798 for_each_online_node(nid) {
5799 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5800 free_area_init_node(nid, NULL,
c713216d 5801 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5802
5803 /* Any memory on that node */
5804 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5805 node_set_state(nid, N_MEMORY);
5806 check_for_memory(pgdat, nid);
c713216d
MG
5807 }
5808}
2a1e274a 5809
7e63efef 5810static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5811{
5812 unsigned long long coremem;
5813 if (!p)
5814 return -EINVAL;
5815
5816 coremem = memparse(p, &p);
7e63efef 5817 *core = coremem >> PAGE_SHIFT;
2a1e274a 5818
7e63efef 5819 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5820 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5821
5822 return 0;
5823}
ed7ed365 5824
7e63efef
MG
5825/*
5826 * kernelcore=size sets the amount of memory for use for allocations that
5827 * cannot be reclaimed or migrated.
5828 */
5829static int __init cmdline_parse_kernelcore(char *p)
5830{
5831 return cmdline_parse_core(p, &required_kernelcore);
5832}
5833
5834/*
5835 * movablecore=size sets the amount of memory for use for allocations that
5836 * can be reclaimed or migrated.
5837 */
5838static int __init cmdline_parse_movablecore(char *p)
5839{
5840 return cmdline_parse_core(p, &required_movablecore);
5841}
5842
ed7ed365 5843early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5844early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5845
0ee332c1 5846#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5847
c3d5f5f0
JL
5848void adjust_managed_page_count(struct page *page, long count)
5849{
5850 spin_lock(&managed_page_count_lock);
5851 page_zone(page)->managed_pages += count;
5852 totalram_pages += count;
3dcc0571
JL
5853#ifdef CONFIG_HIGHMEM
5854 if (PageHighMem(page))
5855 totalhigh_pages += count;
5856#endif
c3d5f5f0
JL
5857 spin_unlock(&managed_page_count_lock);
5858}
3dcc0571 5859EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5860
11199692 5861unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5862{
11199692
JL
5863 void *pos;
5864 unsigned long pages = 0;
69afade7 5865
11199692
JL
5866 start = (void *)PAGE_ALIGN((unsigned long)start);
5867 end = (void *)((unsigned long)end & PAGE_MASK);
5868 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5869 if ((unsigned int)poison <= 0xFF)
11199692
JL
5870 memset(pos, poison, PAGE_SIZE);
5871 free_reserved_page(virt_to_page(pos));
69afade7
JL
5872 }
5873
5874 if (pages && s)
11199692 5875 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5876 s, pages << (PAGE_SHIFT - 10), start, end);
5877
5878 return pages;
5879}
11199692 5880EXPORT_SYMBOL(free_reserved_area);
69afade7 5881
cfa11e08
JL
5882#ifdef CONFIG_HIGHMEM
5883void free_highmem_page(struct page *page)
5884{
5885 __free_reserved_page(page);
5886 totalram_pages++;
7b4b2a0d 5887 page_zone(page)->managed_pages++;
cfa11e08
JL
5888 totalhigh_pages++;
5889}
5890#endif
5891
7ee3d4e8
JL
5892
5893void __init mem_init_print_info(const char *str)
5894{
5895 unsigned long physpages, codesize, datasize, rosize, bss_size;
5896 unsigned long init_code_size, init_data_size;
5897
5898 physpages = get_num_physpages();
5899 codesize = _etext - _stext;
5900 datasize = _edata - _sdata;
5901 rosize = __end_rodata - __start_rodata;
5902 bss_size = __bss_stop - __bss_start;
5903 init_data_size = __init_end - __init_begin;
5904 init_code_size = _einittext - _sinittext;
5905
5906 /*
5907 * Detect special cases and adjust section sizes accordingly:
5908 * 1) .init.* may be embedded into .data sections
5909 * 2) .init.text.* may be out of [__init_begin, __init_end],
5910 * please refer to arch/tile/kernel/vmlinux.lds.S.
5911 * 3) .rodata.* may be embedded into .text or .data sections.
5912 */
5913#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5914 do { \
5915 if (start <= pos && pos < end && size > adj) \
5916 size -= adj; \
5917 } while (0)
7ee3d4e8
JL
5918
5919 adj_init_size(__init_begin, __init_end, init_data_size,
5920 _sinittext, init_code_size);
5921 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5922 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5923 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5924 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5925
5926#undef adj_init_size
5927
f88dfff5 5928 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5929 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5930 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5931#ifdef CONFIG_HIGHMEM
5932 ", %luK highmem"
5933#endif
5934 "%s%s)\n",
5935 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5936 codesize >> 10, datasize >> 10, rosize >> 10,
5937 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5938 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5939 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5940#ifdef CONFIG_HIGHMEM
5941 totalhigh_pages << (PAGE_SHIFT-10),
5942#endif
5943 str ? ", " : "", str ? str : "");
5944}
5945
0e0b864e 5946/**
88ca3b94
RD
5947 * set_dma_reserve - set the specified number of pages reserved in the first zone
5948 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5949 *
5950 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5951 * In the DMA zone, a significant percentage may be consumed by kernel image
5952 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5953 * function may optionally be used to account for unfreeable pages in the
5954 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5955 * smaller per-cpu batchsize.
0e0b864e
MG
5956 */
5957void __init set_dma_reserve(unsigned long new_dma_reserve)
5958{
5959 dma_reserve = new_dma_reserve;
5960}
5961
1da177e4
LT
5962void __init free_area_init(unsigned long *zones_size)
5963{
9109fb7b 5964 free_area_init_node(0, zones_size,
1da177e4
LT
5965 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5966}
1da177e4 5967
1da177e4
LT
5968static int page_alloc_cpu_notify(struct notifier_block *self,
5969 unsigned long action, void *hcpu)
5970{
5971 int cpu = (unsigned long)hcpu;
1da177e4 5972
8bb78442 5973 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5974 lru_add_drain_cpu(cpu);
9f8f2172
CL
5975 drain_pages(cpu);
5976
5977 /*
5978 * Spill the event counters of the dead processor
5979 * into the current processors event counters.
5980 * This artificially elevates the count of the current
5981 * processor.
5982 */
f8891e5e 5983 vm_events_fold_cpu(cpu);
9f8f2172
CL
5984
5985 /*
5986 * Zero the differential counters of the dead processor
5987 * so that the vm statistics are consistent.
5988 *
5989 * This is only okay since the processor is dead and cannot
5990 * race with what we are doing.
5991 */
2bb921e5 5992 cpu_vm_stats_fold(cpu);
1da177e4
LT
5993 }
5994 return NOTIFY_OK;
5995}
1da177e4
LT
5996
5997void __init page_alloc_init(void)
5998{
5999 hotcpu_notifier(page_alloc_cpu_notify, 0);
6000}
6001
cb45b0e9
HA
6002/*
6003 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6004 * or min_free_kbytes changes.
6005 */
6006static void calculate_totalreserve_pages(void)
6007{
6008 struct pglist_data *pgdat;
6009 unsigned long reserve_pages = 0;
2f6726e5 6010 enum zone_type i, j;
cb45b0e9
HA
6011
6012 for_each_online_pgdat(pgdat) {
6013 for (i = 0; i < MAX_NR_ZONES; i++) {
6014 struct zone *zone = pgdat->node_zones + i;
3484b2de 6015 long max = 0;
cb45b0e9
HA
6016
6017 /* Find valid and maximum lowmem_reserve in the zone */
6018 for (j = i; j < MAX_NR_ZONES; j++) {
6019 if (zone->lowmem_reserve[j] > max)
6020 max = zone->lowmem_reserve[j];
6021 }
6022
41858966
MG
6023 /* we treat the high watermark as reserved pages. */
6024 max += high_wmark_pages(zone);
cb45b0e9 6025
b40da049
JL
6026 if (max > zone->managed_pages)
6027 max = zone->managed_pages;
cb45b0e9 6028 reserve_pages += max;
ab8fabd4
JW
6029 /*
6030 * Lowmem reserves are not available to
6031 * GFP_HIGHUSER page cache allocations and
6032 * kswapd tries to balance zones to their high
6033 * watermark. As a result, neither should be
6034 * regarded as dirtyable memory, to prevent a
6035 * situation where reclaim has to clean pages
6036 * in order to balance the zones.
6037 */
6038 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6039 }
6040 }
ab8fabd4 6041 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6042 totalreserve_pages = reserve_pages;
6043}
6044
1da177e4
LT
6045/*
6046 * setup_per_zone_lowmem_reserve - called whenever
6047 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6048 * has a correct pages reserved value, so an adequate number of
6049 * pages are left in the zone after a successful __alloc_pages().
6050 */
6051static void setup_per_zone_lowmem_reserve(void)
6052{
6053 struct pglist_data *pgdat;
2f6726e5 6054 enum zone_type j, idx;
1da177e4 6055
ec936fc5 6056 for_each_online_pgdat(pgdat) {
1da177e4
LT
6057 for (j = 0; j < MAX_NR_ZONES; j++) {
6058 struct zone *zone = pgdat->node_zones + j;
b40da049 6059 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6060
6061 zone->lowmem_reserve[j] = 0;
6062
2f6726e5
CL
6063 idx = j;
6064 while (idx) {
1da177e4
LT
6065 struct zone *lower_zone;
6066
2f6726e5
CL
6067 idx--;
6068
1da177e4
LT
6069 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6070 sysctl_lowmem_reserve_ratio[idx] = 1;
6071
6072 lower_zone = pgdat->node_zones + idx;
b40da049 6073 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6074 sysctl_lowmem_reserve_ratio[idx];
b40da049 6075 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6076 }
6077 }
6078 }
cb45b0e9
HA
6079
6080 /* update totalreserve_pages */
6081 calculate_totalreserve_pages();
1da177e4
LT
6082}
6083
cfd3da1e 6084static void __setup_per_zone_wmarks(void)
1da177e4
LT
6085{
6086 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6087 unsigned long lowmem_pages = 0;
6088 struct zone *zone;
6089 unsigned long flags;
6090
6091 /* Calculate total number of !ZONE_HIGHMEM pages */
6092 for_each_zone(zone) {
6093 if (!is_highmem(zone))
b40da049 6094 lowmem_pages += zone->managed_pages;
1da177e4
LT
6095 }
6096
6097 for_each_zone(zone) {
ac924c60
AM
6098 u64 tmp;
6099
1125b4e3 6100 spin_lock_irqsave(&zone->lock, flags);
b40da049 6101 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6102 do_div(tmp, lowmem_pages);
1da177e4
LT
6103 if (is_highmem(zone)) {
6104 /*
669ed175
NP
6105 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6106 * need highmem pages, so cap pages_min to a small
6107 * value here.
6108 *
41858966 6109 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6110 * deltas control asynch page reclaim, and so should
669ed175 6111 * not be capped for highmem.
1da177e4 6112 */
90ae8d67 6113 unsigned long min_pages;
1da177e4 6114
b40da049 6115 min_pages = zone->managed_pages / 1024;
90ae8d67 6116 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6117 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6118 } else {
669ed175
NP
6119 /*
6120 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6121 * proportionate to the zone's size.
6122 */
41858966 6123 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6124 }
6125
41858966
MG
6126 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6127 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6128
81c0a2bb 6129 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6130 high_wmark_pages(zone) - low_wmark_pages(zone) -
6131 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6132
56fd56b8 6133 setup_zone_migrate_reserve(zone);
1125b4e3 6134 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6135 }
cb45b0e9
HA
6136
6137 /* update totalreserve_pages */
6138 calculate_totalreserve_pages();
1da177e4
LT
6139}
6140
cfd3da1e
MG
6141/**
6142 * setup_per_zone_wmarks - called when min_free_kbytes changes
6143 * or when memory is hot-{added|removed}
6144 *
6145 * Ensures that the watermark[min,low,high] values for each zone are set
6146 * correctly with respect to min_free_kbytes.
6147 */
6148void setup_per_zone_wmarks(void)
6149{
6150 mutex_lock(&zonelists_mutex);
6151 __setup_per_zone_wmarks();
6152 mutex_unlock(&zonelists_mutex);
6153}
6154
55a4462a 6155/*
556adecb
RR
6156 * The inactive anon list should be small enough that the VM never has to
6157 * do too much work, but large enough that each inactive page has a chance
6158 * to be referenced again before it is swapped out.
6159 *
6160 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6161 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6162 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6163 * the anonymous pages are kept on the inactive list.
6164 *
6165 * total target max
6166 * memory ratio inactive anon
6167 * -------------------------------------
6168 * 10MB 1 5MB
6169 * 100MB 1 50MB
6170 * 1GB 3 250MB
6171 * 10GB 10 0.9GB
6172 * 100GB 31 3GB
6173 * 1TB 101 10GB
6174 * 10TB 320 32GB
6175 */
1b79acc9 6176static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6177{
96cb4df5 6178 unsigned int gb, ratio;
556adecb 6179
96cb4df5 6180 /* Zone size in gigabytes */
b40da049 6181 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6182 if (gb)
556adecb 6183 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6184 else
6185 ratio = 1;
556adecb 6186
96cb4df5
MK
6187 zone->inactive_ratio = ratio;
6188}
556adecb 6189
839a4fcc 6190static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6191{
6192 struct zone *zone;
6193
6194 for_each_zone(zone)
6195 calculate_zone_inactive_ratio(zone);
556adecb
RR
6196}
6197
1da177e4
LT
6198/*
6199 * Initialise min_free_kbytes.
6200 *
6201 * For small machines we want it small (128k min). For large machines
6202 * we want it large (64MB max). But it is not linear, because network
6203 * bandwidth does not increase linearly with machine size. We use
6204 *
b8af2941 6205 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6206 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6207 *
6208 * which yields
6209 *
6210 * 16MB: 512k
6211 * 32MB: 724k
6212 * 64MB: 1024k
6213 * 128MB: 1448k
6214 * 256MB: 2048k
6215 * 512MB: 2896k
6216 * 1024MB: 4096k
6217 * 2048MB: 5792k
6218 * 4096MB: 8192k
6219 * 8192MB: 11584k
6220 * 16384MB: 16384k
6221 */
1b79acc9 6222int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6223{
6224 unsigned long lowmem_kbytes;
5f12733e 6225 int new_min_free_kbytes;
1da177e4
LT
6226
6227 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6228 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6229
6230 if (new_min_free_kbytes > user_min_free_kbytes) {
6231 min_free_kbytes = new_min_free_kbytes;
6232 if (min_free_kbytes < 128)
6233 min_free_kbytes = 128;
6234 if (min_free_kbytes > 65536)
6235 min_free_kbytes = 65536;
6236 } else {
6237 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6238 new_min_free_kbytes, user_min_free_kbytes);
6239 }
bc75d33f 6240 setup_per_zone_wmarks();
a6cccdc3 6241 refresh_zone_stat_thresholds();
1da177e4 6242 setup_per_zone_lowmem_reserve();
556adecb 6243 setup_per_zone_inactive_ratio();
1da177e4
LT
6244 return 0;
6245}
bc75d33f 6246module_init(init_per_zone_wmark_min)
1da177e4
LT
6247
6248/*
b8af2941 6249 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6250 * that we can call two helper functions whenever min_free_kbytes
6251 * changes.
6252 */
cccad5b9 6253int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6254 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6255{
da8c757b
HP
6256 int rc;
6257
6258 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6259 if (rc)
6260 return rc;
6261
5f12733e
MH
6262 if (write) {
6263 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6264 setup_per_zone_wmarks();
5f12733e 6265 }
1da177e4
LT
6266 return 0;
6267}
6268
9614634f 6269#ifdef CONFIG_NUMA
cccad5b9 6270int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6271 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6272{
6273 struct zone *zone;
6274 int rc;
6275
8d65af78 6276 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6277 if (rc)
6278 return rc;
6279
6280 for_each_zone(zone)
b40da049 6281 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6282 sysctl_min_unmapped_ratio) / 100;
6283 return 0;
6284}
0ff38490 6285
cccad5b9 6286int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6287 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6288{
6289 struct zone *zone;
6290 int rc;
6291
8d65af78 6292 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6293 if (rc)
6294 return rc;
6295
6296 for_each_zone(zone)
b40da049 6297 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6298 sysctl_min_slab_ratio) / 100;
6299 return 0;
6300}
9614634f
CL
6301#endif
6302
1da177e4
LT
6303/*
6304 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6305 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6306 * whenever sysctl_lowmem_reserve_ratio changes.
6307 *
6308 * The reserve ratio obviously has absolutely no relation with the
41858966 6309 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6310 * if in function of the boot time zone sizes.
6311 */
cccad5b9 6312int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6313 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6314{
8d65af78 6315 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6316 setup_per_zone_lowmem_reserve();
6317 return 0;
6318}
6319
8ad4b1fb
RS
6320/*
6321 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6322 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6323 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6324 */
cccad5b9 6325int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6326 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6327{
6328 struct zone *zone;
7cd2b0a3 6329 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6330 int ret;
6331
7cd2b0a3
DR
6332 mutex_lock(&pcp_batch_high_lock);
6333 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6334
8d65af78 6335 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6336 if (!write || ret < 0)
6337 goto out;
6338
6339 /* Sanity checking to avoid pcp imbalance */
6340 if (percpu_pagelist_fraction &&
6341 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6342 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6343 ret = -EINVAL;
6344 goto out;
6345 }
6346
6347 /* No change? */
6348 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6349 goto out;
c8e251fa 6350
364df0eb 6351 for_each_populated_zone(zone) {
7cd2b0a3
DR
6352 unsigned int cpu;
6353
22a7f12b 6354 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6355 pageset_set_high_and_batch(zone,
6356 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6357 }
7cd2b0a3 6358out:
c8e251fa 6359 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6360 return ret;
8ad4b1fb
RS
6361}
6362
a9919c79 6363#ifdef CONFIG_NUMA
f034b5d4 6364int hashdist = HASHDIST_DEFAULT;
1da177e4 6365
1da177e4
LT
6366static int __init set_hashdist(char *str)
6367{
6368 if (!str)
6369 return 0;
6370 hashdist = simple_strtoul(str, &str, 0);
6371 return 1;
6372}
6373__setup("hashdist=", set_hashdist);
6374#endif
6375
6376/*
6377 * allocate a large system hash table from bootmem
6378 * - it is assumed that the hash table must contain an exact power-of-2
6379 * quantity of entries
6380 * - limit is the number of hash buckets, not the total allocation size
6381 */
6382void *__init alloc_large_system_hash(const char *tablename,
6383 unsigned long bucketsize,
6384 unsigned long numentries,
6385 int scale,
6386 int flags,
6387 unsigned int *_hash_shift,
6388 unsigned int *_hash_mask,
31fe62b9
TB
6389 unsigned long low_limit,
6390 unsigned long high_limit)
1da177e4 6391{
31fe62b9 6392 unsigned long long max = high_limit;
1da177e4
LT
6393 unsigned long log2qty, size;
6394 void *table = NULL;
6395
6396 /* allow the kernel cmdline to have a say */
6397 if (!numentries) {
6398 /* round applicable memory size up to nearest megabyte */
04903664 6399 numentries = nr_kernel_pages;
a7e83318
JZ
6400
6401 /* It isn't necessary when PAGE_SIZE >= 1MB */
6402 if (PAGE_SHIFT < 20)
6403 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6404
6405 /* limit to 1 bucket per 2^scale bytes of low memory */
6406 if (scale > PAGE_SHIFT)
6407 numentries >>= (scale - PAGE_SHIFT);
6408 else
6409 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6410
6411 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6412 if (unlikely(flags & HASH_SMALL)) {
6413 /* Makes no sense without HASH_EARLY */
6414 WARN_ON(!(flags & HASH_EARLY));
6415 if (!(numentries >> *_hash_shift)) {
6416 numentries = 1UL << *_hash_shift;
6417 BUG_ON(!numentries);
6418 }
6419 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6420 numentries = PAGE_SIZE / bucketsize;
1da177e4 6421 }
6e692ed3 6422 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6423
6424 /* limit allocation size to 1/16 total memory by default */
6425 if (max == 0) {
6426 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6427 do_div(max, bucketsize);
6428 }
074b8517 6429 max = min(max, 0x80000000ULL);
1da177e4 6430
31fe62b9
TB
6431 if (numentries < low_limit)
6432 numentries = low_limit;
1da177e4
LT
6433 if (numentries > max)
6434 numentries = max;
6435
f0d1b0b3 6436 log2qty = ilog2(numentries);
1da177e4
LT
6437
6438 do {
6439 size = bucketsize << log2qty;
6440 if (flags & HASH_EARLY)
6782832e 6441 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6442 else if (hashdist)
6443 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6444 else {
1037b83b
ED
6445 /*
6446 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6447 * some pages at the end of hash table which
6448 * alloc_pages_exact() automatically does
1037b83b 6449 */
264ef8a9 6450 if (get_order(size) < MAX_ORDER) {
a1dd268c 6451 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6452 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6453 }
1da177e4
LT
6454 }
6455 } while (!table && size > PAGE_SIZE && --log2qty);
6456
6457 if (!table)
6458 panic("Failed to allocate %s hash table\n", tablename);
6459
f241e660 6460 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6461 tablename,
f241e660 6462 (1UL << log2qty),
f0d1b0b3 6463 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6464 size);
6465
6466 if (_hash_shift)
6467 *_hash_shift = log2qty;
6468 if (_hash_mask)
6469 *_hash_mask = (1 << log2qty) - 1;
6470
6471 return table;
6472}
a117e66e 6473
835c134e
MG
6474/* Return a pointer to the bitmap storing bits affecting a block of pages */
6475static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6476 unsigned long pfn)
6477{
6478#ifdef CONFIG_SPARSEMEM
6479 return __pfn_to_section(pfn)->pageblock_flags;
6480#else
6481 return zone->pageblock_flags;
6482#endif /* CONFIG_SPARSEMEM */
6483}
6484
6485static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6486{
6487#ifdef CONFIG_SPARSEMEM
6488 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6489 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6490#else
c060f943 6491 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6492 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6493#endif /* CONFIG_SPARSEMEM */
6494}
6495
6496/**
1aab4d77 6497 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6498 * @page: The page within the block of interest
1aab4d77
RD
6499 * @pfn: The target page frame number
6500 * @end_bitidx: The last bit of interest to retrieve
6501 * @mask: mask of bits that the caller is interested in
6502 *
6503 * Return: pageblock_bits flags
835c134e 6504 */
dc4b0caf 6505unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6506 unsigned long end_bitidx,
6507 unsigned long mask)
835c134e
MG
6508{
6509 struct zone *zone;
6510 unsigned long *bitmap;
dc4b0caf 6511 unsigned long bitidx, word_bitidx;
e58469ba 6512 unsigned long word;
835c134e
MG
6513
6514 zone = page_zone(page);
835c134e
MG
6515 bitmap = get_pageblock_bitmap(zone, pfn);
6516 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6517 word_bitidx = bitidx / BITS_PER_LONG;
6518 bitidx &= (BITS_PER_LONG-1);
835c134e 6519
e58469ba
MG
6520 word = bitmap[word_bitidx];
6521 bitidx += end_bitidx;
6522 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6523}
6524
6525/**
dc4b0caf 6526 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6527 * @page: The page within the block of interest
835c134e 6528 * @flags: The flags to set
1aab4d77
RD
6529 * @pfn: The target page frame number
6530 * @end_bitidx: The last bit of interest
6531 * @mask: mask of bits that the caller is interested in
835c134e 6532 */
dc4b0caf
MG
6533void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6534 unsigned long pfn,
e58469ba
MG
6535 unsigned long end_bitidx,
6536 unsigned long mask)
835c134e
MG
6537{
6538 struct zone *zone;
6539 unsigned long *bitmap;
dc4b0caf 6540 unsigned long bitidx, word_bitidx;
e58469ba
MG
6541 unsigned long old_word, word;
6542
6543 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6544
6545 zone = page_zone(page);
835c134e
MG
6546 bitmap = get_pageblock_bitmap(zone, pfn);
6547 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6548 word_bitidx = bitidx / BITS_PER_LONG;
6549 bitidx &= (BITS_PER_LONG-1);
6550
309381fe 6551 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6552
e58469ba
MG
6553 bitidx += end_bitidx;
6554 mask <<= (BITS_PER_LONG - bitidx - 1);
6555 flags <<= (BITS_PER_LONG - bitidx - 1);
6556
4db0c3c2 6557 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6558 for (;;) {
6559 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6560 if (word == old_word)
6561 break;
6562 word = old_word;
6563 }
835c134e 6564}
a5d76b54
KH
6565
6566/*
80934513
MK
6567 * This function checks whether pageblock includes unmovable pages or not.
6568 * If @count is not zero, it is okay to include less @count unmovable pages
6569 *
b8af2941 6570 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6571 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6572 * expect this function should be exact.
a5d76b54 6573 */
b023f468
WC
6574bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6575 bool skip_hwpoisoned_pages)
49ac8255
KH
6576{
6577 unsigned long pfn, iter, found;
47118af0
MN
6578 int mt;
6579
49ac8255
KH
6580 /*
6581 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6582 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6583 */
6584 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6585 return false;
47118af0
MN
6586 mt = get_pageblock_migratetype(page);
6587 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6588 return false;
49ac8255
KH
6589
6590 pfn = page_to_pfn(page);
6591 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6592 unsigned long check = pfn + iter;
6593
29723fcc 6594 if (!pfn_valid_within(check))
49ac8255 6595 continue;
29723fcc 6596
49ac8255 6597 page = pfn_to_page(check);
c8721bbb
NH
6598
6599 /*
6600 * Hugepages are not in LRU lists, but they're movable.
6601 * We need not scan over tail pages bacause we don't
6602 * handle each tail page individually in migration.
6603 */
6604 if (PageHuge(page)) {
6605 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6606 continue;
6607 }
6608
97d255c8
MK
6609 /*
6610 * We can't use page_count without pin a page
6611 * because another CPU can free compound page.
6612 * This check already skips compound tails of THP
6613 * because their page->_count is zero at all time.
6614 */
6615 if (!atomic_read(&page->_count)) {
49ac8255
KH
6616 if (PageBuddy(page))
6617 iter += (1 << page_order(page)) - 1;
6618 continue;
6619 }
97d255c8 6620
b023f468
WC
6621 /*
6622 * The HWPoisoned page may be not in buddy system, and
6623 * page_count() is not 0.
6624 */
6625 if (skip_hwpoisoned_pages && PageHWPoison(page))
6626 continue;
6627
49ac8255
KH
6628 if (!PageLRU(page))
6629 found++;
6630 /*
6b4f7799
JW
6631 * If there are RECLAIMABLE pages, we need to check
6632 * it. But now, memory offline itself doesn't call
6633 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6634 */
6635 /*
6636 * If the page is not RAM, page_count()should be 0.
6637 * we don't need more check. This is an _used_ not-movable page.
6638 *
6639 * The problematic thing here is PG_reserved pages. PG_reserved
6640 * is set to both of a memory hole page and a _used_ kernel
6641 * page at boot.
6642 */
6643 if (found > count)
80934513 6644 return true;
49ac8255 6645 }
80934513 6646 return false;
49ac8255
KH
6647}
6648
6649bool is_pageblock_removable_nolock(struct page *page)
6650{
656a0706
MH
6651 struct zone *zone;
6652 unsigned long pfn;
687875fb
MH
6653
6654 /*
6655 * We have to be careful here because we are iterating over memory
6656 * sections which are not zone aware so we might end up outside of
6657 * the zone but still within the section.
656a0706
MH
6658 * We have to take care about the node as well. If the node is offline
6659 * its NODE_DATA will be NULL - see page_zone.
687875fb 6660 */
656a0706
MH
6661 if (!node_online(page_to_nid(page)))
6662 return false;
6663
6664 zone = page_zone(page);
6665 pfn = page_to_pfn(page);
108bcc96 6666 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6667 return false;
6668
b023f468 6669 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6670}
0c0e6195 6671
041d3a8c
MN
6672#ifdef CONFIG_CMA
6673
6674static unsigned long pfn_max_align_down(unsigned long pfn)
6675{
6676 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6677 pageblock_nr_pages) - 1);
6678}
6679
6680static unsigned long pfn_max_align_up(unsigned long pfn)
6681{
6682 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6683 pageblock_nr_pages));
6684}
6685
041d3a8c 6686/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6687static int __alloc_contig_migrate_range(struct compact_control *cc,
6688 unsigned long start, unsigned long end)
041d3a8c
MN
6689{
6690 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6691 unsigned long nr_reclaimed;
041d3a8c
MN
6692 unsigned long pfn = start;
6693 unsigned int tries = 0;
6694 int ret = 0;
6695
be49a6e1 6696 migrate_prep();
041d3a8c 6697
bb13ffeb 6698 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6699 if (fatal_signal_pending(current)) {
6700 ret = -EINTR;
6701 break;
6702 }
6703
bb13ffeb
MG
6704 if (list_empty(&cc->migratepages)) {
6705 cc->nr_migratepages = 0;
edc2ca61 6706 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6707 if (!pfn) {
6708 ret = -EINTR;
6709 break;
6710 }
6711 tries = 0;
6712 } else if (++tries == 5) {
6713 ret = ret < 0 ? ret : -EBUSY;
6714 break;
6715 }
6716
beb51eaa
MK
6717 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6718 &cc->migratepages);
6719 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6720
9c620e2b 6721 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6722 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6723 }
2a6f5124
SP
6724 if (ret < 0) {
6725 putback_movable_pages(&cc->migratepages);
6726 return ret;
6727 }
6728 return 0;
041d3a8c
MN
6729}
6730
6731/**
6732 * alloc_contig_range() -- tries to allocate given range of pages
6733 * @start: start PFN to allocate
6734 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6735 * @migratetype: migratetype of the underlaying pageblocks (either
6736 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6737 * in range must have the same migratetype and it must
6738 * be either of the two.
041d3a8c
MN
6739 *
6740 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6741 * aligned, however it's the caller's responsibility to guarantee that
6742 * we are the only thread that changes migrate type of pageblocks the
6743 * pages fall in.
6744 *
6745 * The PFN range must belong to a single zone.
6746 *
6747 * Returns zero on success or negative error code. On success all
6748 * pages which PFN is in [start, end) are allocated for the caller and
6749 * need to be freed with free_contig_range().
6750 */
0815f3d8
MN
6751int alloc_contig_range(unsigned long start, unsigned long end,
6752 unsigned migratetype)
041d3a8c 6753{
041d3a8c
MN
6754 unsigned long outer_start, outer_end;
6755 int ret = 0, order;
6756
bb13ffeb
MG
6757 struct compact_control cc = {
6758 .nr_migratepages = 0,
6759 .order = -1,
6760 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6761 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6762 .ignore_skip_hint = true,
6763 };
6764 INIT_LIST_HEAD(&cc.migratepages);
6765
041d3a8c
MN
6766 /*
6767 * What we do here is we mark all pageblocks in range as
6768 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6769 * have different sizes, and due to the way page allocator
6770 * work, we align the range to biggest of the two pages so
6771 * that page allocator won't try to merge buddies from
6772 * different pageblocks and change MIGRATE_ISOLATE to some
6773 * other migration type.
6774 *
6775 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6776 * migrate the pages from an unaligned range (ie. pages that
6777 * we are interested in). This will put all the pages in
6778 * range back to page allocator as MIGRATE_ISOLATE.
6779 *
6780 * When this is done, we take the pages in range from page
6781 * allocator removing them from the buddy system. This way
6782 * page allocator will never consider using them.
6783 *
6784 * This lets us mark the pageblocks back as
6785 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6786 * aligned range but not in the unaligned, original range are
6787 * put back to page allocator so that buddy can use them.
6788 */
6789
6790 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6791 pfn_max_align_up(end), migratetype,
6792 false);
041d3a8c 6793 if (ret)
86a595f9 6794 return ret;
041d3a8c 6795
bb13ffeb 6796 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6797 if (ret)
6798 goto done;
6799
6800 /*
6801 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6802 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6803 * more, all pages in [start, end) are free in page allocator.
6804 * What we are going to do is to allocate all pages from
6805 * [start, end) (that is remove them from page allocator).
6806 *
6807 * The only problem is that pages at the beginning and at the
6808 * end of interesting range may be not aligned with pages that
6809 * page allocator holds, ie. they can be part of higher order
6810 * pages. Because of this, we reserve the bigger range and
6811 * once this is done free the pages we are not interested in.
6812 *
6813 * We don't have to hold zone->lock here because the pages are
6814 * isolated thus they won't get removed from buddy.
6815 */
6816
6817 lru_add_drain_all();
510f5507 6818 drain_all_pages(cc.zone);
041d3a8c
MN
6819
6820 order = 0;
6821 outer_start = start;
6822 while (!PageBuddy(pfn_to_page(outer_start))) {
6823 if (++order >= MAX_ORDER) {
6824 ret = -EBUSY;
6825 goto done;
6826 }
6827 outer_start &= ~0UL << order;
6828 }
6829
6830 /* Make sure the range is really isolated. */
b023f468 6831 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6832 pr_info("%s: [%lx, %lx) PFNs busy\n",
6833 __func__, outer_start, end);
041d3a8c
MN
6834 ret = -EBUSY;
6835 goto done;
6836 }
6837
49f223a9 6838 /* Grab isolated pages from freelists. */
bb13ffeb 6839 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6840 if (!outer_end) {
6841 ret = -EBUSY;
6842 goto done;
6843 }
6844
6845 /* Free head and tail (if any) */
6846 if (start != outer_start)
6847 free_contig_range(outer_start, start - outer_start);
6848 if (end != outer_end)
6849 free_contig_range(end, outer_end - end);
6850
6851done:
6852 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6853 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6854 return ret;
6855}
6856
6857void free_contig_range(unsigned long pfn, unsigned nr_pages)
6858{
bcc2b02f
MS
6859 unsigned int count = 0;
6860
6861 for (; nr_pages--; pfn++) {
6862 struct page *page = pfn_to_page(pfn);
6863
6864 count += page_count(page) != 1;
6865 __free_page(page);
6866 }
6867 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6868}
6869#endif
6870
4ed7e022 6871#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6872/*
6873 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6874 * page high values need to be recalulated.
6875 */
4ed7e022
JL
6876void __meminit zone_pcp_update(struct zone *zone)
6877{
0a647f38 6878 unsigned cpu;
c8e251fa 6879 mutex_lock(&pcp_batch_high_lock);
0a647f38 6880 for_each_possible_cpu(cpu)
169f6c19
CS
6881 pageset_set_high_and_batch(zone,
6882 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6883 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6884}
6885#endif
6886
340175b7
JL
6887void zone_pcp_reset(struct zone *zone)
6888{
6889 unsigned long flags;
5a883813
MK
6890 int cpu;
6891 struct per_cpu_pageset *pset;
340175b7
JL
6892
6893 /* avoid races with drain_pages() */
6894 local_irq_save(flags);
6895 if (zone->pageset != &boot_pageset) {
5a883813
MK
6896 for_each_online_cpu(cpu) {
6897 pset = per_cpu_ptr(zone->pageset, cpu);
6898 drain_zonestat(zone, pset);
6899 }
340175b7
JL
6900 free_percpu(zone->pageset);
6901 zone->pageset = &boot_pageset;
6902 }
6903 local_irq_restore(flags);
6904}
6905
6dcd73d7 6906#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6907/*
6908 * All pages in the range must be isolated before calling this.
6909 */
6910void
6911__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6912{
6913 struct page *page;
6914 struct zone *zone;
7aeb09f9 6915 unsigned int order, i;
0c0e6195
KH
6916 unsigned long pfn;
6917 unsigned long flags;
6918 /* find the first valid pfn */
6919 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6920 if (pfn_valid(pfn))
6921 break;
6922 if (pfn == end_pfn)
6923 return;
6924 zone = page_zone(pfn_to_page(pfn));
6925 spin_lock_irqsave(&zone->lock, flags);
6926 pfn = start_pfn;
6927 while (pfn < end_pfn) {
6928 if (!pfn_valid(pfn)) {
6929 pfn++;
6930 continue;
6931 }
6932 page = pfn_to_page(pfn);
b023f468
WC
6933 /*
6934 * The HWPoisoned page may be not in buddy system, and
6935 * page_count() is not 0.
6936 */
6937 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6938 pfn++;
6939 SetPageReserved(page);
6940 continue;
6941 }
6942
0c0e6195
KH
6943 BUG_ON(page_count(page));
6944 BUG_ON(!PageBuddy(page));
6945 order = page_order(page);
6946#ifdef CONFIG_DEBUG_VM
6947 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6948 pfn, 1 << order, end_pfn);
6949#endif
6950 list_del(&page->lru);
6951 rmv_page_order(page);
6952 zone->free_area[order].nr_free--;
0c0e6195
KH
6953 for (i = 0; i < (1 << order); i++)
6954 SetPageReserved((page+i));
6955 pfn += (1 << order);
6956 }
6957 spin_unlock_irqrestore(&zone->lock, flags);
6958}
6959#endif
8d22ba1b
WF
6960
6961#ifdef CONFIG_MEMORY_FAILURE
6962bool is_free_buddy_page(struct page *page)
6963{
6964 struct zone *zone = page_zone(page);
6965 unsigned long pfn = page_to_pfn(page);
6966 unsigned long flags;
7aeb09f9 6967 unsigned int order;
8d22ba1b
WF
6968
6969 spin_lock_irqsave(&zone->lock, flags);
6970 for (order = 0; order < MAX_ORDER; order++) {
6971 struct page *page_head = page - (pfn & ((1 << order) - 1));
6972
6973 if (PageBuddy(page_head) && page_order(page_head) >= order)
6974 break;
6975 }
6976 spin_unlock_irqrestore(&zone->lock, flags);
6977
6978 return order < MAX_ORDER;
6979}
6980#endif