]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: remove field from alloc_context
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
3777999d 834 bool isolated_pageblocks;
5f8dcc21 835
c54ad30c 836 spin_lock(&zone->lock);
3777999d 837 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 841
72853e29 842 while (to_free) {
48db57f8 843 struct page *page;
5f8dcc21
MG
844 struct list_head *list;
845
846 /*
a6f9edd6
MG
847 * Remove pages from lists in a round-robin fashion. A
848 * batch_free count is maintained that is incremented when an
849 * empty list is encountered. This is so more pages are freed
850 * off fuller lists instead of spinning excessively around empty
851 * lists
5f8dcc21
MG
852 */
853 do {
a6f9edd6 854 batch_free++;
5f8dcc21
MG
855 if (++migratetype == MIGRATE_PCPTYPES)
856 migratetype = 0;
857 list = &pcp->lists[migratetype];
858 } while (list_empty(list));
48db57f8 859
1d16871d
NK
860 /* This is the only non-empty list. Free them all. */
861 if (batch_free == MIGRATE_PCPTYPES)
862 batch_free = to_free;
863
a6f9edd6 864 do {
770c8aaa
BZ
865 int mt; /* migratetype of the to-be-freed page */
866
a16601c5 867 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
868 /* must delete as __free_one_page list manipulates */
869 list_del(&page->lru);
aa016d14 870
bb14c2c7 871 mt = get_pcppage_migratetype(page);
aa016d14
VB
872 /* MIGRATE_ISOLATE page should not go to pcplists */
873 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
874 /* Pageblock could have been isolated meanwhile */
3777999d 875 if (unlikely(isolated_pageblocks))
51bb1a40 876 mt = get_pageblock_migratetype(page);
51bb1a40 877
dc4b0caf 878 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 879 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 880 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 881 }
c54ad30c 882 spin_unlock(&zone->lock);
1da177e4
LT
883}
884
dc4b0caf
MG
885static void free_one_page(struct zone *zone,
886 struct page *page, unsigned long pfn,
7aeb09f9 887 unsigned int order,
ed0ae21d 888 int migratetype)
1da177e4 889{
0d5d823a 890 unsigned long nr_scanned;
006d22d9 891 spin_lock(&zone->lock);
0d5d823a
MG
892 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
893 if (nr_scanned)
894 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 895
ad53f92e
JK
896 if (unlikely(has_isolate_pageblock(zone) ||
897 is_migrate_isolate(migratetype))) {
898 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 899 }
dc4b0caf 900 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 901 spin_unlock(&zone->lock);
48db57f8
NP
902}
903
81422f29
KS
904static int free_tail_pages_check(struct page *head_page, struct page *page)
905{
1d798ca3
KS
906 int ret = 1;
907
908 /*
909 * We rely page->lru.next never has bit 0 set, unless the page
910 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
911 */
912 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
913
914 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
915 ret = 0;
916 goto out;
917 }
9a982250
KS
918 switch (page - head_page) {
919 case 1:
920 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
921 if (unlikely(compound_mapcount(page))) {
922 bad_page(page, "nonzero compound_mapcount", 0);
923 goto out;
924 }
9a982250
KS
925 break;
926 case 2:
927 /*
928 * the second tail page: ->mapping is
929 * page_deferred_list().next -- ignore value.
930 */
931 break;
932 default:
933 if (page->mapping != TAIL_MAPPING) {
934 bad_page(page, "corrupted mapping in tail page", 0);
935 goto out;
936 }
937 break;
1c290f64 938 }
81422f29
KS
939 if (unlikely(!PageTail(page))) {
940 bad_page(page, "PageTail not set", 0);
1d798ca3 941 goto out;
81422f29 942 }
1d798ca3
KS
943 if (unlikely(compound_head(page) != head_page)) {
944 bad_page(page, "compound_head not consistent", 0);
945 goto out;
81422f29 946 }
1d798ca3
KS
947 ret = 0;
948out:
1c290f64 949 page->mapping = NULL;
1d798ca3
KS
950 clear_compound_head(page);
951 return ret;
81422f29
KS
952}
953
1e8ce83c
RH
954static void __meminit __init_single_page(struct page *page, unsigned long pfn,
955 unsigned long zone, int nid)
956{
1e8ce83c 957 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
958 init_page_count(page);
959 page_mapcount_reset(page);
960 page_cpupid_reset_last(page);
1e8ce83c 961
1e8ce83c
RH
962 INIT_LIST_HEAD(&page->lru);
963#ifdef WANT_PAGE_VIRTUAL
964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
965 if (!is_highmem_idx(zone))
966 set_page_address(page, __va(pfn << PAGE_SHIFT));
967#endif
968}
969
970static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
971 int nid)
972{
973 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
974}
975
7e18adb4
MG
976#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
977static void init_reserved_page(unsigned long pfn)
978{
979 pg_data_t *pgdat;
980 int nid, zid;
981
982 if (!early_page_uninitialised(pfn))
983 return;
984
985 nid = early_pfn_to_nid(pfn);
986 pgdat = NODE_DATA(nid);
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
989 struct zone *zone = &pgdat->node_zones[zid];
990
991 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
992 break;
993 }
994 __init_single_pfn(pfn, zid, nid);
995}
996#else
997static inline void init_reserved_page(unsigned long pfn)
998{
999}
1000#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001
92923ca3
NZ
1002/*
1003 * Initialised pages do not have PageReserved set. This function is
1004 * called for each range allocated by the bootmem allocator and
1005 * marks the pages PageReserved. The remaining valid pages are later
1006 * sent to the buddy page allocator.
1007 */
7e18adb4 1008void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1009{
1010 unsigned long start_pfn = PFN_DOWN(start);
1011 unsigned long end_pfn = PFN_UP(end);
1012
7e18adb4
MG
1013 for (; start_pfn < end_pfn; start_pfn++) {
1014 if (pfn_valid(start_pfn)) {
1015 struct page *page = pfn_to_page(start_pfn);
1016
1017 init_reserved_page(start_pfn);
1d798ca3
KS
1018
1019 /* Avoid false-positive PageTail() */
1020 INIT_LIST_HEAD(&page->lru);
1021
7e18adb4
MG
1022 SetPageReserved(page);
1023 }
1024 }
92923ca3
NZ
1025}
1026
ec95f53a 1027static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1028{
d61f8590 1029 int bad = 0;
1da177e4 1030
ab1f306f 1031 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1032
b413d48a 1033 trace_mm_page_free(page, order);
b1eeab67 1034 kmemcheck_free_shadow(page, order);
b8c73fc2 1035 kasan_free_pages(page, order);
b1eeab67 1036
d61f8590
MG
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 for (i = 1; i < (1 << order); i++) {
1048 if (compound)
1049 bad += free_tail_pages_check(page, page + i);
1050 bad += free_pages_check(page + i);
1051 }
1052 }
17514574 1053 if (PageAnonHead(page))
8dd60a3a 1054 page->mapping = NULL;
81422f29 1055 bad += free_pages_check(page);
8cc3b392 1056 if (bad)
ec95f53a 1057 return false;
689bcebf 1058
48c96a36
JK
1059 reset_page_owner(page, order);
1060
3ac7fe5a 1061 if (!PageHighMem(page)) {
b8af2941
PK
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
3ac7fe5a
TG
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1066 }
dafb1367 1067 arch_free_page(page, order);
8823b1db 1068 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1069 kernel_map_pages(page, 1 << order, 0);
dafb1367 1070
ec95f53a
KM
1071 return true;
1072}
1073
1074static void __free_pages_ok(struct page *page, unsigned int order)
1075{
1076 unsigned long flags;
95e34412 1077 int migratetype;
dc4b0caf 1078 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1079
1080 if (!free_pages_prepare(page, order))
1081 return;
1082
cfc47a28 1083 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1084 local_irq_save(flags);
f8891e5e 1085 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1086 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1087 local_irq_restore(flags);
1da177e4
LT
1088}
1089
949698a3 1090static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1091{
c3993076 1092 unsigned int nr_pages = 1 << order;
e2d0bd2b 1093 struct page *p = page;
c3993076 1094 unsigned int loop;
a226f6c8 1095
e2d0bd2b
YL
1096 prefetchw(p);
1097 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1098 prefetchw(p + 1);
c3993076
JW
1099 __ClearPageReserved(p);
1100 set_page_count(p, 0);
a226f6c8 1101 }
e2d0bd2b
YL
1102 __ClearPageReserved(p);
1103 set_page_count(p, 0);
c3993076 1104
e2d0bd2b 1105 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1106 set_page_refcounted(page);
1107 __free_pages(page, order);
a226f6c8
DH
1108}
1109
75a592a4
MG
1110#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1111 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1112
75a592a4
MG
1113static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1114
1115int __meminit early_pfn_to_nid(unsigned long pfn)
1116{
7ace9917 1117 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1118 int nid;
1119
7ace9917 1120 spin_lock(&early_pfn_lock);
75a592a4 1121 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1122 if (nid < 0)
1123 nid = 0;
1124 spin_unlock(&early_pfn_lock);
1125
1126 return nid;
75a592a4
MG
1127}
1128#endif
1129
1130#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1131static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1133{
1134 int nid;
1135
1136 nid = __early_pfn_to_nid(pfn, state);
1137 if (nid >= 0 && nid != node)
1138 return false;
1139 return true;
1140}
1141
1142/* Only safe to use early in boot when initialisation is single-threaded */
1143static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1144{
1145 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1146}
1147
1148#else
1149
1150static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1151{
1152 return true;
1153}
1154static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1155 struct mminit_pfnnid_cache *state)
1156{
1157 return true;
1158}
1159#endif
1160
1161
0e1cc95b 1162void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1163 unsigned int order)
1164{
1165 if (early_page_uninitialised(pfn))
1166 return;
949698a3 1167 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1168}
1169
7cf91a98
JK
1170/*
1171 * Check that the whole (or subset of) a pageblock given by the interval of
1172 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1173 * with the migration of free compaction scanner. The scanners then need to
1174 * use only pfn_valid_within() check for arches that allow holes within
1175 * pageblocks.
1176 *
1177 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1178 *
1179 * It's possible on some configurations to have a setup like node0 node1 node0
1180 * i.e. it's possible that all pages within a zones range of pages do not
1181 * belong to a single zone. We assume that a border between node0 and node1
1182 * can occur within a single pageblock, but not a node0 node1 node0
1183 * interleaving within a single pageblock. It is therefore sufficient to check
1184 * the first and last page of a pageblock and avoid checking each individual
1185 * page in a pageblock.
1186 */
1187struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1188 unsigned long end_pfn, struct zone *zone)
1189{
1190 struct page *start_page;
1191 struct page *end_page;
1192
1193 /* end_pfn is one past the range we are checking */
1194 end_pfn--;
1195
1196 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1197 return NULL;
1198
1199 start_page = pfn_to_page(start_pfn);
1200
1201 if (page_zone(start_page) != zone)
1202 return NULL;
1203
1204 end_page = pfn_to_page(end_pfn);
1205
1206 /* This gives a shorter code than deriving page_zone(end_page) */
1207 if (page_zone_id(start_page) != page_zone_id(end_page))
1208 return NULL;
1209
1210 return start_page;
1211}
1212
1213void set_zone_contiguous(struct zone *zone)
1214{
1215 unsigned long block_start_pfn = zone->zone_start_pfn;
1216 unsigned long block_end_pfn;
1217
1218 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1219 for (; block_start_pfn < zone_end_pfn(zone);
1220 block_start_pfn = block_end_pfn,
1221 block_end_pfn += pageblock_nr_pages) {
1222
1223 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1224
1225 if (!__pageblock_pfn_to_page(block_start_pfn,
1226 block_end_pfn, zone))
1227 return;
1228 }
1229
1230 /* We confirm that there is no hole */
1231 zone->contiguous = true;
1232}
1233
1234void clear_zone_contiguous(struct zone *zone)
1235{
1236 zone->contiguous = false;
1237}
1238
7e18adb4 1239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1240static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1241 unsigned long pfn, int nr_pages)
1242{
1243 int i;
1244
1245 if (!page)
1246 return;
1247
1248 /* Free a large naturally-aligned chunk if possible */
1249 if (nr_pages == MAX_ORDER_NR_PAGES &&
1250 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1251 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1252 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1253 return;
1254 }
1255
949698a3
LZ
1256 for (i = 0; i < nr_pages; i++, page++)
1257 __free_pages_boot_core(page, 0);
a4de83dd
MG
1258}
1259
d3cd131d
NS
1260/* Completion tracking for deferred_init_memmap() threads */
1261static atomic_t pgdat_init_n_undone __initdata;
1262static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1263
1264static inline void __init pgdat_init_report_one_done(void)
1265{
1266 if (atomic_dec_and_test(&pgdat_init_n_undone))
1267 complete(&pgdat_init_all_done_comp);
1268}
0e1cc95b 1269
7e18adb4 1270/* Initialise remaining memory on a node */
0e1cc95b 1271static int __init deferred_init_memmap(void *data)
7e18adb4 1272{
0e1cc95b
MG
1273 pg_data_t *pgdat = data;
1274 int nid = pgdat->node_id;
7e18adb4
MG
1275 struct mminit_pfnnid_cache nid_init_state = { };
1276 unsigned long start = jiffies;
1277 unsigned long nr_pages = 0;
1278 unsigned long walk_start, walk_end;
1279 int i, zid;
1280 struct zone *zone;
7e18adb4 1281 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1283
0e1cc95b 1284 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1285 pgdat_init_report_one_done();
0e1cc95b
MG
1286 return 0;
1287 }
1288
1289 /* Bind memory initialisation thread to a local node if possible */
1290 if (!cpumask_empty(cpumask))
1291 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1292
1293 /* Sanity check boundaries */
1294 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1295 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1296 pgdat->first_deferred_pfn = ULONG_MAX;
1297
1298 /* Only the highest zone is deferred so find it */
1299 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1300 zone = pgdat->node_zones + zid;
1301 if (first_init_pfn < zone_end_pfn(zone))
1302 break;
1303 }
1304
1305 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1306 unsigned long pfn, end_pfn;
54608c3f 1307 struct page *page = NULL;
a4de83dd
MG
1308 struct page *free_base_page = NULL;
1309 unsigned long free_base_pfn = 0;
1310 int nr_to_free = 0;
7e18adb4
MG
1311
1312 end_pfn = min(walk_end, zone_end_pfn(zone));
1313 pfn = first_init_pfn;
1314 if (pfn < walk_start)
1315 pfn = walk_start;
1316 if (pfn < zone->zone_start_pfn)
1317 pfn = zone->zone_start_pfn;
1318
1319 for (; pfn < end_pfn; pfn++) {
54608c3f 1320 if (!pfn_valid_within(pfn))
a4de83dd 1321 goto free_range;
7e18adb4 1322
54608c3f
MG
1323 /*
1324 * Ensure pfn_valid is checked every
1325 * MAX_ORDER_NR_PAGES for memory holes
1326 */
1327 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1328 if (!pfn_valid(pfn)) {
1329 page = NULL;
a4de83dd 1330 goto free_range;
54608c3f
MG
1331 }
1332 }
1333
1334 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1335 page = NULL;
a4de83dd 1336 goto free_range;
54608c3f
MG
1337 }
1338
1339 /* Minimise pfn page lookups and scheduler checks */
1340 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1341 page++;
1342 } else {
a4de83dd
MG
1343 nr_pages += nr_to_free;
1344 deferred_free_range(free_base_page,
1345 free_base_pfn, nr_to_free);
1346 free_base_page = NULL;
1347 free_base_pfn = nr_to_free = 0;
1348
54608c3f
MG
1349 page = pfn_to_page(pfn);
1350 cond_resched();
1351 }
7e18adb4
MG
1352
1353 if (page->flags) {
1354 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1355 goto free_range;
7e18adb4
MG
1356 }
1357
1358 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1359 if (!free_base_page) {
1360 free_base_page = page;
1361 free_base_pfn = pfn;
1362 nr_to_free = 0;
1363 }
1364 nr_to_free++;
1365
1366 /* Where possible, batch up pages for a single free */
1367 continue;
1368free_range:
1369 /* Free the current block of pages to allocator */
1370 nr_pages += nr_to_free;
1371 deferred_free_range(free_base_page, free_base_pfn,
1372 nr_to_free);
1373 free_base_page = NULL;
1374 free_base_pfn = nr_to_free = 0;
7e18adb4 1375 }
a4de83dd 1376
7e18adb4
MG
1377 first_init_pfn = max(end_pfn, first_init_pfn);
1378 }
1379
1380 /* Sanity check that the next zone really is unpopulated */
1381 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1382
0e1cc95b 1383 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1384 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1385
1386 pgdat_init_report_one_done();
0e1cc95b
MG
1387 return 0;
1388}
7cf91a98 1389#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1390
1391void __init page_alloc_init_late(void)
1392{
7cf91a98
JK
1393 struct zone *zone;
1394
1395#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1396 int nid;
1397
d3cd131d
NS
1398 /* There will be num_node_state(N_MEMORY) threads */
1399 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1400 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1401 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1402 }
1403
1404 /* Block until all are initialised */
d3cd131d 1405 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1406
1407 /* Reinit limits that are based on free pages after the kernel is up */
1408 files_maxfiles_init();
7cf91a98
JK
1409#endif
1410
1411 for_each_populated_zone(zone)
1412 set_zone_contiguous(zone);
7e18adb4 1413}
7e18adb4 1414
47118af0 1415#ifdef CONFIG_CMA
9cf510a5 1416/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1417void __init init_cma_reserved_pageblock(struct page *page)
1418{
1419 unsigned i = pageblock_nr_pages;
1420 struct page *p = page;
1421
1422 do {
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 } while (++p, --i);
1426
47118af0 1427 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1428
1429 if (pageblock_order >= MAX_ORDER) {
1430 i = pageblock_nr_pages;
1431 p = page;
1432 do {
1433 set_page_refcounted(p);
1434 __free_pages(p, MAX_ORDER - 1);
1435 p += MAX_ORDER_NR_PAGES;
1436 } while (i -= MAX_ORDER_NR_PAGES);
1437 } else {
1438 set_page_refcounted(page);
1439 __free_pages(page, pageblock_order);
1440 }
1441
3dcc0571 1442 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1443}
1444#endif
1da177e4
LT
1445
1446/*
1447 * The order of subdivision here is critical for the IO subsystem.
1448 * Please do not alter this order without good reasons and regression
1449 * testing. Specifically, as large blocks of memory are subdivided,
1450 * the order in which smaller blocks are delivered depends on the order
1451 * they're subdivided in this function. This is the primary factor
1452 * influencing the order in which pages are delivered to the IO
1453 * subsystem according to empirical testing, and this is also justified
1454 * by considering the behavior of a buddy system containing a single
1455 * large block of memory acted on by a series of small allocations.
1456 * This behavior is a critical factor in sglist merging's success.
1457 *
6d49e352 1458 * -- nyc
1da177e4 1459 */
085cc7d5 1460static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1461 int low, int high, struct free_area *area,
1462 int migratetype)
1da177e4
LT
1463{
1464 unsigned long size = 1 << high;
1465
1466 while (high > low) {
1467 area--;
1468 high--;
1469 size >>= 1;
309381fe 1470 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1471
2847cf95 1472 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1473 debug_guardpage_enabled() &&
2847cf95 1474 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1475 /*
1476 * Mark as guard pages (or page), that will allow to
1477 * merge back to allocator when buddy will be freed.
1478 * Corresponding page table entries will not be touched,
1479 * pages will stay not present in virtual address space
1480 */
2847cf95 1481 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1482 continue;
1483 }
b2a0ac88 1484 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1485 area->nr_free++;
1486 set_page_order(&page[size], high);
1487 }
1da177e4
LT
1488}
1489
1da177e4
LT
1490/*
1491 * This page is about to be returned from the page allocator
1492 */
2a7684a2 1493static inline int check_new_page(struct page *page)
1da177e4 1494{
d230dec1 1495 const char *bad_reason = NULL;
f0b791a3
DH
1496 unsigned long bad_flags = 0;
1497
53f9263b 1498 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1499 bad_reason = "nonzero mapcount";
1500 if (unlikely(page->mapping != NULL))
1501 bad_reason = "non-NULL mapping";
fe896d18 1502 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1503 bad_reason = "nonzero _count";
f4c18e6f
NH
1504 if (unlikely(page->flags & __PG_HWPOISON)) {
1505 bad_reason = "HWPoisoned (hardware-corrupted)";
1506 bad_flags = __PG_HWPOISON;
1507 }
f0b791a3
DH
1508 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1509 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1510 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1511 }
9edad6ea
JW
1512#ifdef CONFIG_MEMCG
1513 if (unlikely(page->mem_cgroup))
1514 bad_reason = "page still charged to cgroup";
1515#endif
f0b791a3
DH
1516 if (unlikely(bad_reason)) {
1517 bad_page(page, bad_reason, bad_flags);
689bcebf 1518 return 1;
8cc3b392 1519 }
2a7684a2
WF
1520 return 0;
1521}
1522
1414c7f4
LA
1523static inline bool free_pages_prezeroed(bool poisoned)
1524{
1525 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1526 page_poisoning_enabled() && poisoned;
1527}
1528
75379191 1529static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1530 unsigned int alloc_flags)
2a7684a2
WF
1531{
1532 int i;
1414c7f4 1533 bool poisoned = true;
2a7684a2
WF
1534
1535 for (i = 0; i < (1 << order); i++) {
1536 struct page *p = page + i;
1537 if (unlikely(check_new_page(p)))
1538 return 1;
1414c7f4
LA
1539 if (poisoned)
1540 poisoned &= page_is_poisoned(p);
2a7684a2 1541 }
689bcebf 1542
4c21e2f2 1543 set_page_private(page, 0);
7835e98b 1544 set_page_refcounted(page);
cc102509
NP
1545
1546 arch_alloc_page(page, order);
1da177e4 1547 kernel_map_pages(page, 1 << order, 1);
8823b1db 1548 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1549 kasan_alloc_pages(page, order);
17cf4406 1550
1414c7f4 1551 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1552 for (i = 0; i < (1 << order); i++)
1553 clear_highpage(page + i);
17cf4406
NP
1554
1555 if (order && (gfp_flags & __GFP_COMP))
1556 prep_compound_page(page, order);
1557
48c96a36
JK
1558 set_page_owner(page, order, gfp_flags);
1559
75379191 1560 /*
2f064f34 1561 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1562 * allocate the page. The expectation is that the caller is taking
1563 * steps that will free more memory. The caller should avoid the page
1564 * being used for !PFMEMALLOC purposes.
1565 */
2f064f34
MH
1566 if (alloc_flags & ALLOC_NO_WATERMARKS)
1567 set_page_pfmemalloc(page);
1568 else
1569 clear_page_pfmemalloc(page);
75379191 1570
689bcebf 1571 return 0;
1da177e4
LT
1572}
1573
56fd56b8
MG
1574/*
1575 * Go through the free lists for the given migratetype and remove
1576 * the smallest available page from the freelists
1577 */
728ec980
MG
1578static inline
1579struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1580 int migratetype)
1581{
1582 unsigned int current_order;
b8af2941 1583 struct free_area *area;
56fd56b8
MG
1584 struct page *page;
1585
1586 /* Find a page of the appropriate size in the preferred list */
1587 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1588 area = &(zone->free_area[current_order]);
a16601c5 1589 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1590 struct page, lru);
a16601c5
GT
1591 if (!page)
1592 continue;
56fd56b8
MG
1593 list_del(&page->lru);
1594 rmv_page_order(page);
1595 area->nr_free--;
56fd56b8 1596 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1597 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1598 return page;
1599 }
1600
1601 return NULL;
1602}
1603
1604
b2a0ac88
MG
1605/*
1606 * This array describes the order lists are fallen back to when
1607 * the free lists for the desirable migrate type are depleted
1608 */
47118af0 1609static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1610 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1611 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1612 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1613#ifdef CONFIG_CMA
974a786e 1614 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1615#endif
194159fb 1616#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1617 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1618#endif
b2a0ac88
MG
1619};
1620
dc67647b
JK
1621#ifdef CONFIG_CMA
1622static struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624{
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626}
1627#else
1628static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630#endif
1631
c361be55
MG
1632/*
1633 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1634 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
435b405c 1637int move_freepages(struct zone *zone,
b69a7288
AB
1638 struct page *start_page, struct page *end_page,
1639 int migratetype)
c361be55
MG
1640{
1641 struct page *page;
d00181b9 1642 unsigned int order;
d100313f 1643 int pages_moved = 0;
c361be55
MG
1644
1645#ifndef CONFIG_HOLES_IN_ZONE
1646 /*
1647 * page_zone is not safe to call in this context when
1648 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1649 * anyway as we check zone boundaries in move_freepages_block().
1650 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1651 * grouping pages by mobility
c361be55 1652 */
97ee4ba7 1653 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1654#endif
1655
1656 for (page = start_page; page <= end_page;) {
344c790e 1657 /* Make sure we are not inadvertently changing nodes */
309381fe 1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1659
c361be55
MG
1660 if (!pfn_valid_within(page_to_pfn(page))) {
1661 page++;
1662 continue;
1663 }
1664
1665 if (!PageBuddy(page)) {
1666 page++;
1667 continue;
1668 }
1669
1670 order = page_order(page);
84be48d8
KS
1671 list_move(&page->lru,
1672 &zone->free_area[order].free_list[migratetype]);
c361be55 1673 page += 1 << order;
d100313f 1674 pages_moved += 1 << order;
c361be55
MG
1675 }
1676
d100313f 1677 return pages_moved;
c361be55
MG
1678}
1679
ee6f509c 1680int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1681 int migratetype)
c361be55
MG
1682{
1683 unsigned long start_pfn, end_pfn;
1684 struct page *start_page, *end_page;
1685
1686 start_pfn = page_to_pfn(page);
d9c23400 1687 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1688 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1689 end_page = start_page + pageblock_nr_pages - 1;
1690 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1691
1692 /* Do not cross zone boundaries */
108bcc96 1693 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1694 start_page = page;
108bcc96 1695 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1696 return 0;
1697
1698 return move_freepages(zone, start_page, end_page, migratetype);
1699}
1700
2f66a68f
MG
1701static void change_pageblock_range(struct page *pageblock_page,
1702 int start_order, int migratetype)
1703{
1704 int nr_pageblocks = 1 << (start_order - pageblock_order);
1705
1706 while (nr_pageblocks--) {
1707 set_pageblock_migratetype(pageblock_page, migratetype);
1708 pageblock_page += pageblock_nr_pages;
1709 }
1710}
1711
fef903ef 1712/*
9c0415eb
VB
1713 * When we are falling back to another migratetype during allocation, try to
1714 * steal extra free pages from the same pageblocks to satisfy further
1715 * allocations, instead of polluting multiple pageblocks.
1716 *
1717 * If we are stealing a relatively large buddy page, it is likely there will
1718 * be more free pages in the pageblock, so try to steal them all. For
1719 * reclaimable and unmovable allocations, we steal regardless of page size,
1720 * as fragmentation caused by those allocations polluting movable pageblocks
1721 * is worse than movable allocations stealing from unmovable and reclaimable
1722 * pageblocks.
fef903ef 1723 */
4eb7dce6
JK
1724static bool can_steal_fallback(unsigned int order, int start_mt)
1725{
1726 /*
1727 * Leaving this order check is intended, although there is
1728 * relaxed order check in next check. The reason is that
1729 * we can actually steal whole pageblock if this condition met,
1730 * but, below check doesn't guarantee it and that is just heuristic
1731 * so could be changed anytime.
1732 */
1733 if (order >= pageblock_order)
1734 return true;
1735
1736 if (order >= pageblock_order / 2 ||
1737 start_mt == MIGRATE_RECLAIMABLE ||
1738 start_mt == MIGRATE_UNMOVABLE ||
1739 page_group_by_mobility_disabled)
1740 return true;
1741
1742 return false;
1743}
1744
1745/*
1746 * This function implements actual steal behaviour. If order is large enough,
1747 * we can steal whole pageblock. If not, we first move freepages in this
1748 * pageblock and check whether half of pages are moved or not. If half of
1749 * pages are moved, we can change migratetype of pageblock and permanently
1750 * use it's pages as requested migratetype in the future.
1751 */
1752static void steal_suitable_fallback(struct zone *zone, struct page *page,
1753 int start_type)
fef903ef 1754{
d00181b9 1755 unsigned int current_order = page_order(page);
4eb7dce6 1756 int pages;
fef903ef 1757
fef903ef
SB
1758 /* Take ownership for orders >= pageblock_order */
1759 if (current_order >= pageblock_order) {
1760 change_pageblock_range(page, current_order, start_type);
3a1086fb 1761 return;
fef903ef
SB
1762 }
1763
4eb7dce6 1764 pages = move_freepages_block(zone, page, start_type);
fef903ef 1765
4eb7dce6
JK
1766 /* Claim the whole block if over half of it is free */
1767 if (pages >= (1 << (pageblock_order-1)) ||
1768 page_group_by_mobility_disabled)
1769 set_pageblock_migratetype(page, start_type);
1770}
1771
2149cdae
JK
1772/*
1773 * Check whether there is a suitable fallback freepage with requested order.
1774 * If only_stealable is true, this function returns fallback_mt only if
1775 * we can steal other freepages all together. This would help to reduce
1776 * fragmentation due to mixed migratetype pages in one pageblock.
1777 */
1778int find_suitable_fallback(struct free_area *area, unsigned int order,
1779 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1780{
1781 int i;
1782 int fallback_mt;
1783
1784 if (area->nr_free == 0)
1785 return -1;
1786
1787 *can_steal = false;
1788 for (i = 0;; i++) {
1789 fallback_mt = fallbacks[migratetype][i];
974a786e 1790 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1791 break;
1792
1793 if (list_empty(&area->free_list[fallback_mt]))
1794 continue;
fef903ef 1795
4eb7dce6
JK
1796 if (can_steal_fallback(order, migratetype))
1797 *can_steal = true;
1798
2149cdae
JK
1799 if (!only_stealable)
1800 return fallback_mt;
1801
1802 if (*can_steal)
1803 return fallback_mt;
fef903ef 1804 }
4eb7dce6
JK
1805
1806 return -1;
fef903ef
SB
1807}
1808
0aaa29a5
MG
1809/*
1810 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1811 * there are no empty page blocks that contain a page with a suitable order
1812 */
1813static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1814 unsigned int alloc_order)
1815{
1816 int mt;
1817 unsigned long max_managed, flags;
1818
1819 /*
1820 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1821 * Check is race-prone but harmless.
1822 */
1823 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1824 if (zone->nr_reserved_highatomic >= max_managed)
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 /* Recheck the nr_reserved_highatomic limit under the lock */
1830 if (zone->nr_reserved_highatomic >= max_managed)
1831 goto out_unlock;
1832
1833 /* Yoink! */
1834 mt = get_pageblock_migratetype(page);
1835 if (mt != MIGRATE_HIGHATOMIC &&
1836 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1837 zone->nr_reserved_highatomic += pageblock_nr_pages;
1838 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1839 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1840 }
1841
1842out_unlock:
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844}
1845
1846/*
1847 * Used when an allocation is about to fail under memory pressure. This
1848 * potentially hurts the reliability of high-order allocations when under
1849 * intense memory pressure but failed atomic allocations should be easier
1850 * to recover from than an OOM.
1851 */
1852static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1853{
1854 struct zonelist *zonelist = ac->zonelist;
1855 unsigned long flags;
1856 struct zoneref *z;
1857 struct zone *zone;
1858 struct page *page;
1859 int order;
1860
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1862 ac->nodemask) {
1863 /* Preserve at least one pageblock */
1864 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1865 continue;
1866
1867 spin_lock_irqsave(&zone->lock, flags);
1868 for (order = 0; order < MAX_ORDER; order++) {
1869 struct free_area *area = &(zone->free_area[order]);
1870
a16601c5
GT
1871 page = list_first_entry_or_null(
1872 &area->free_list[MIGRATE_HIGHATOMIC],
1873 struct page, lru);
1874 if (!page)
0aaa29a5
MG
1875 continue;
1876
0aaa29a5
MG
1877 /*
1878 * It should never happen but changes to locking could
1879 * inadvertently allow a per-cpu drain to add pages
1880 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1881 * and watch for underflows.
1882 */
1883 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1884 zone->nr_reserved_highatomic);
1885
1886 /*
1887 * Convert to ac->migratetype and avoid the normal
1888 * pageblock stealing heuristics. Minimally, the caller
1889 * is doing the work and needs the pages. More
1890 * importantly, if the block was always converted to
1891 * MIGRATE_UNMOVABLE or another type then the number
1892 * of pageblocks that cannot be completely freed
1893 * may increase.
1894 */
1895 set_pageblock_migratetype(page, ac->migratetype);
1896 move_freepages_block(zone, page, ac->migratetype);
1897 spin_unlock_irqrestore(&zone->lock, flags);
1898 return;
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 }
1902}
1903
b2a0ac88 1904/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1905static inline struct page *
7aeb09f9 1906__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1907{
b8af2941 1908 struct free_area *area;
7aeb09f9 1909 unsigned int current_order;
b2a0ac88 1910 struct page *page;
4eb7dce6
JK
1911 int fallback_mt;
1912 bool can_steal;
b2a0ac88
MG
1913
1914 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1915 for (current_order = MAX_ORDER-1;
1916 current_order >= order && current_order <= MAX_ORDER-1;
1917 --current_order) {
4eb7dce6
JK
1918 area = &(zone->free_area[current_order]);
1919 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1920 start_migratetype, false, &can_steal);
4eb7dce6
JK
1921 if (fallback_mt == -1)
1922 continue;
b2a0ac88 1923
a16601c5 1924 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1925 struct page, lru);
1926 if (can_steal)
1927 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1928
4eb7dce6
JK
1929 /* Remove the page from the freelists */
1930 area->nr_free--;
1931 list_del(&page->lru);
1932 rmv_page_order(page);
3a1086fb 1933
4eb7dce6
JK
1934 expand(zone, page, order, current_order, area,
1935 start_migratetype);
1936 /*
bb14c2c7 1937 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1938 * migratetype depending on the decisions in
bb14c2c7
VB
1939 * find_suitable_fallback(). This is OK as long as it does not
1940 * differ for MIGRATE_CMA pageblocks. Those can be used as
1941 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1942 */
bb14c2c7 1943 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1944
4eb7dce6
JK
1945 trace_mm_page_alloc_extfrag(page, order, current_order,
1946 start_migratetype, fallback_mt);
e0fff1bd 1947
4eb7dce6 1948 return page;
b2a0ac88
MG
1949 }
1950
728ec980 1951 return NULL;
b2a0ac88
MG
1952}
1953
56fd56b8 1954/*
1da177e4
LT
1955 * Do the hard work of removing an element from the buddy allocator.
1956 * Call me with the zone->lock already held.
1957 */
b2a0ac88 1958static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1959 int migratetype)
1da177e4 1960{
1da177e4
LT
1961 struct page *page;
1962
56fd56b8 1963 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1964 if (unlikely(!page)) {
dc67647b
JK
1965 if (migratetype == MIGRATE_MOVABLE)
1966 page = __rmqueue_cma_fallback(zone, order);
1967
1968 if (!page)
1969 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1970 }
1971
0d3d062a 1972 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1973 return page;
1da177e4
LT
1974}
1975
5f63b720 1976/*
1da177e4
LT
1977 * Obtain a specified number of elements from the buddy allocator, all under
1978 * a single hold of the lock, for efficiency. Add them to the supplied list.
1979 * Returns the number of new pages which were placed at *list.
1980 */
5f63b720 1981static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1982 unsigned long count, struct list_head *list,
b745bc85 1983 int migratetype, bool cold)
1da177e4 1984{
5bcc9f86 1985 int i;
5f63b720 1986
c54ad30c 1987 spin_lock(&zone->lock);
1da177e4 1988 for (i = 0; i < count; ++i) {
6ac0206b 1989 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1990 if (unlikely(page == NULL))
1da177e4 1991 break;
81eabcbe
MG
1992
1993 /*
1994 * Split buddy pages returned by expand() are received here
1995 * in physical page order. The page is added to the callers and
1996 * list and the list head then moves forward. From the callers
1997 * perspective, the linked list is ordered by page number in
1998 * some conditions. This is useful for IO devices that can
1999 * merge IO requests if the physical pages are ordered
2000 * properly.
2001 */
b745bc85 2002 if (likely(!cold))
e084b2d9
MG
2003 list_add(&page->lru, list);
2004 else
2005 list_add_tail(&page->lru, list);
81eabcbe 2006 list = &page->lru;
bb14c2c7 2007 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2008 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2009 -(1 << order));
1da177e4 2010 }
f2260e6b 2011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2012 spin_unlock(&zone->lock);
085cc7d5 2013 return i;
1da177e4
LT
2014}
2015
4ae7c039 2016#ifdef CONFIG_NUMA
8fce4d8e 2017/*
4037d452
CL
2018 * Called from the vmstat counter updater to drain pagesets of this
2019 * currently executing processor on remote nodes after they have
2020 * expired.
2021 *
879336c3
CL
2022 * Note that this function must be called with the thread pinned to
2023 * a single processor.
8fce4d8e 2024 */
4037d452 2025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2026{
4ae7c039 2027 unsigned long flags;
7be12fc9 2028 int to_drain, batch;
4ae7c039 2029
4037d452 2030 local_irq_save(flags);
4db0c3c2 2031 batch = READ_ONCE(pcp->batch);
7be12fc9 2032 to_drain = min(pcp->count, batch);
2a13515c
KM
2033 if (to_drain > 0) {
2034 free_pcppages_bulk(zone, to_drain, pcp);
2035 pcp->count -= to_drain;
2036 }
4037d452 2037 local_irq_restore(flags);
4ae7c039
CL
2038}
2039#endif
2040
9f8f2172 2041/*
93481ff0 2042 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2043 *
2044 * The processor must either be the current processor and the
2045 * thread pinned to the current processor or a processor that
2046 * is not online.
2047 */
93481ff0 2048static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2049{
c54ad30c 2050 unsigned long flags;
93481ff0
VB
2051 struct per_cpu_pageset *pset;
2052 struct per_cpu_pages *pcp;
1da177e4 2053
93481ff0
VB
2054 local_irq_save(flags);
2055 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2056
93481ff0
VB
2057 pcp = &pset->pcp;
2058 if (pcp->count) {
2059 free_pcppages_bulk(zone, pcp->count, pcp);
2060 pcp->count = 0;
2061 }
2062 local_irq_restore(flags);
2063}
3dfa5721 2064
93481ff0
VB
2065/*
2066 * Drain pcplists of all zones on the indicated processor.
2067 *
2068 * The processor must either be the current processor and the
2069 * thread pinned to the current processor or a processor that
2070 * is not online.
2071 */
2072static void drain_pages(unsigned int cpu)
2073{
2074 struct zone *zone;
2075
2076 for_each_populated_zone(zone) {
2077 drain_pages_zone(cpu, zone);
1da177e4
LT
2078 }
2079}
1da177e4 2080
9f8f2172
CL
2081/*
2082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2083 *
2084 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2085 * the single zone's pages.
9f8f2172 2086 */
93481ff0 2087void drain_local_pages(struct zone *zone)
9f8f2172 2088{
93481ff0
VB
2089 int cpu = smp_processor_id();
2090
2091 if (zone)
2092 drain_pages_zone(cpu, zone);
2093 else
2094 drain_pages(cpu);
9f8f2172
CL
2095}
2096
2097/*
74046494
GBY
2098 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2099 *
93481ff0
VB
2100 * When zone parameter is non-NULL, spill just the single zone's pages.
2101 *
74046494
GBY
2102 * Note that this code is protected against sending an IPI to an offline
2103 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2104 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2105 * nothing keeps CPUs from showing up after we populated the cpumask and
2106 * before the call to on_each_cpu_mask().
9f8f2172 2107 */
93481ff0 2108void drain_all_pages(struct zone *zone)
9f8f2172 2109{
74046494 2110 int cpu;
74046494
GBY
2111
2112 /*
2113 * Allocate in the BSS so we wont require allocation in
2114 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2115 */
2116 static cpumask_t cpus_with_pcps;
2117
2118 /*
2119 * We don't care about racing with CPU hotplug event
2120 * as offline notification will cause the notified
2121 * cpu to drain that CPU pcps and on_each_cpu_mask
2122 * disables preemption as part of its processing
2123 */
2124 for_each_online_cpu(cpu) {
93481ff0
VB
2125 struct per_cpu_pageset *pcp;
2126 struct zone *z;
74046494 2127 bool has_pcps = false;
93481ff0
VB
2128
2129 if (zone) {
74046494 2130 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2131 if (pcp->pcp.count)
74046494 2132 has_pcps = true;
93481ff0
VB
2133 } else {
2134 for_each_populated_zone(z) {
2135 pcp = per_cpu_ptr(z->pageset, cpu);
2136 if (pcp->pcp.count) {
2137 has_pcps = true;
2138 break;
2139 }
74046494
GBY
2140 }
2141 }
93481ff0 2142
74046494
GBY
2143 if (has_pcps)
2144 cpumask_set_cpu(cpu, &cpus_with_pcps);
2145 else
2146 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2147 }
93481ff0
VB
2148 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2149 zone, 1);
9f8f2172
CL
2150}
2151
296699de 2152#ifdef CONFIG_HIBERNATION
1da177e4
LT
2153
2154void mark_free_pages(struct zone *zone)
2155{
f623f0db
RW
2156 unsigned long pfn, max_zone_pfn;
2157 unsigned long flags;
7aeb09f9 2158 unsigned int order, t;
86760a2c 2159 struct page *page;
1da177e4 2160
8080fc03 2161 if (zone_is_empty(zone))
1da177e4
LT
2162 return;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2165
108bcc96 2166 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2168 if (pfn_valid(pfn)) {
86760a2c 2169 page = pfn_to_page(pfn);
ba6b0979
JK
2170
2171 if (page_zone(page) != zone)
2172 continue;
2173
7be98234
RW
2174 if (!swsusp_page_is_forbidden(page))
2175 swsusp_unset_page_free(page);
f623f0db 2176 }
1da177e4 2177
b2a0ac88 2178 for_each_migratetype_order(order, t) {
86760a2c
GT
2179 list_for_each_entry(page,
2180 &zone->free_area[order].free_list[t], lru) {
f623f0db 2181 unsigned long i;
1da177e4 2182
86760a2c 2183 pfn = page_to_pfn(page);
f623f0db 2184 for (i = 0; i < (1UL << order); i++)
7be98234 2185 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2186 }
b2a0ac88 2187 }
1da177e4
LT
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189}
e2c55dc8 2190#endif /* CONFIG_PM */
1da177e4 2191
1da177e4
LT
2192/*
2193 * Free a 0-order page
b745bc85 2194 * cold == true ? free a cold page : free a hot page
1da177e4 2195 */
b745bc85 2196void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2197{
2198 struct zone *zone = page_zone(page);
2199 struct per_cpu_pages *pcp;
2200 unsigned long flags;
dc4b0caf 2201 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2202 int migratetype;
1da177e4 2203
ec95f53a 2204 if (!free_pages_prepare(page, 0))
689bcebf
HD
2205 return;
2206
dc4b0caf 2207 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2208 set_pcppage_migratetype(page, migratetype);
1da177e4 2209 local_irq_save(flags);
f8891e5e 2210 __count_vm_event(PGFREE);
da456f14 2211
5f8dcc21
MG
2212 /*
2213 * We only track unmovable, reclaimable and movable on pcp lists.
2214 * Free ISOLATE pages back to the allocator because they are being
2215 * offlined but treat RESERVE as movable pages so we can get those
2216 * areas back if necessary. Otherwise, we may have to free
2217 * excessively into the page allocator
2218 */
2219 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2220 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2221 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2222 goto out;
2223 }
2224 migratetype = MIGRATE_MOVABLE;
2225 }
2226
99dcc3e5 2227 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2228 if (!cold)
5f8dcc21 2229 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2230 else
2231 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2232 pcp->count++;
48db57f8 2233 if (pcp->count >= pcp->high) {
4db0c3c2 2234 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2235 free_pcppages_bulk(zone, batch, pcp);
2236 pcp->count -= batch;
48db57f8 2237 }
5f8dcc21
MG
2238
2239out:
1da177e4 2240 local_irq_restore(flags);
1da177e4
LT
2241}
2242
cc59850e
KK
2243/*
2244 * Free a list of 0-order pages
2245 */
b745bc85 2246void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2247{
2248 struct page *page, *next;
2249
2250 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2251 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2252 free_hot_cold_page(page, cold);
2253 }
2254}
2255
8dfcc9ba
NP
2256/*
2257 * split_page takes a non-compound higher-order page, and splits it into
2258 * n (1<<order) sub-pages: page[0..n]
2259 * Each sub-page must be freed individually.
2260 *
2261 * Note: this is probably too low level an operation for use in drivers.
2262 * Please consult with lkml before using this in your driver.
2263 */
2264void split_page(struct page *page, unsigned int order)
2265{
2266 int i;
e2cfc911 2267 gfp_t gfp_mask;
8dfcc9ba 2268
309381fe
SL
2269 VM_BUG_ON_PAGE(PageCompound(page), page);
2270 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2271
2272#ifdef CONFIG_KMEMCHECK
2273 /*
2274 * Split shadow pages too, because free(page[0]) would
2275 * otherwise free the whole shadow.
2276 */
2277 if (kmemcheck_page_is_tracked(page))
2278 split_page(virt_to_page(page[0].shadow), order);
2279#endif
2280
e2cfc911
JK
2281 gfp_mask = get_page_owner_gfp(page);
2282 set_page_owner(page, 0, gfp_mask);
48c96a36 2283 for (i = 1; i < (1 << order); i++) {
7835e98b 2284 set_page_refcounted(page + i);
e2cfc911 2285 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2286 }
8dfcc9ba 2287}
5853ff23 2288EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2289
3c605096 2290int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2291{
748446bb
MG
2292 unsigned long watermark;
2293 struct zone *zone;
2139cbe6 2294 int mt;
748446bb
MG
2295
2296 BUG_ON(!PageBuddy(page));
2297
2298 zone = page_zone(page);
2e30abd1 2299 mt = get_pageblock_migratetype(page);
748446bb 2300
194159fb 2301 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2302 /* Obey watermarks as if the page was being allocated */
2303 watermark = low_wmark_pages(zone) + (1 << order);
2304 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2305 return 0;
2306
8fb74b9f 2307 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2308 }
748446bb
MG
2309
2310 /* Remove page from free list */
2311 list_del(&page->lru);
2312 zone->free_area[order].nr_free--;
2313 rmv_page_order(page);
2139cbe6 2314
e2cfc911 2315 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2316
8fb74b9f 2317 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2318 if (order >= pageblock_order - 1) {
2319 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2320 for (; page < endpage; page += pageblock_nr_pages) {
2321 int mt = get_pageblock_migratetype(page);
194159fb 2322 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2323 set_pageblock_migratetype(page,
2324 MIGRATE_MOVABLE);
2325 }
748446bb
MG
2326 }
2327
f3a14ced 2328
8fb74b9f 2329 return 1UL << order;
1fb3f8ca
MG
2330}
2331
2332/*
2333 * Similar to split_page except the page is already free. As this is only
2334 * being used for migration, the migratetype of the block also changes.
2335 * As this is called with interrupts disabled, the caller is responsible
2336 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2337 * are enabled.
2338 *
2339 * Note: this is probably too low level an operation for use in drivers.
2340 * Please consult with lkml before using this in your driver.
2341 */
2342int split_free_page(struct page *page)
2343{
2344 unsigned int order;
2345 int nr_pages;
2346
1fb3f8ca
MG
2347 order = page_order(page);
2348
8fb74b9f 2349 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2350 if (!nr_pages)
2351 return 0;
2352
2353 /* Split into individual pages */
2354 set_page_refcounted(page);
2355 split_page(page, order);
2356 return nr_pages;
748446bb
MG
2357}
2358
060e7417
MG
2359/*
2360 * Update NUMA hit/miss statistics
2361 *
2362 * Must be called with interrupts disabled.
2363 *
2364 * When __GFP_OTHER_NODE is set assume the node of the preferred
2365 * zone is the local node. This is useful for daemons who allocate
2366 * memory on behalf of other processes.
2367 */
2368static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2369 gfp_t flags)
2370{
2371#ifdef CONFIG_NUMA
2372 int local_nid = numa_node_id();
2373 enum zone_stat_item local_stat = NUMA_LOCAL;
2374
2375 if (unlikely(flags & __GFP_OTHER_NODE)) {
2376 local_stat = NUMA_OTHER;
2377 local_nid = preferred_zone->node;
2378 }
2379
2380 if (z->node == local_nid) {
2381 __inc_zone_state(z, NUMA_HIT);
2382 __inc_zone_state(z, local_stat);
2383 } else {
2384 __inc_zone_state(z, NUMA_MISS);
2385 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2386 }
2387#endif
2388}
2389
1da177e4 2390/*
75379191 2391 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2392 */
0a15c3e9
MG
2393static inline
2394struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2395 struct zone *zone, unsigned int order,
c603844b
MG
2396 gfp_t gfp_flags, unsigned int alloc_flags,
2397 int migratetype)
1da177e4
LT
2398{
2399 unsigned long flags;
689bcebf 2400 struct page *page;
b745bc85 2401 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2402
48db57f8 2403 if (likely(order == 0)) {
1da177e4 2404 struct per_cpu_pages *pcp;
5f8dcc21 2405 struct list_head *list;
1da177e4 2406
1da177e4 2407 local_irq_save(flags);
99dcc3e5
CL
2408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2409 list = &pcp->lists[migratetype];
5f8dcc21 2410 if (list_empty(list)) {
535131e6 2411 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2412 pcp->batch, list,
e084b2d9 2413 migratetype, cold);
5f8dcc21 2414 if (unlikely(list_empty(list)))
6fb332fa 2415 goto failed;
535131e6 2416 }
b92a6edd 2417
5f8dcc21 2418 if (cold)
a16601c5 2419 page = list_last_entry(list, struct page, lru);
5f8dcc21 2420 else
a16601c5 2421 page = list_first_entry(list, struct page, lru);
5f8dcc21 2422
754078eb 2423 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2424 list_del(&page->lru);
2425 pcp->count--;
7fb1d9fc 2426 } else {
0f352e53
MH
2427 /*
2428 * We most definitely don't want callers attempting to
2429 * allocate greater than order-1 page units with __GFP_NOFAIL.
2430 */
2431 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2432 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2433
2434 page = NULL;
2435 if (alloc_flags & ALLOC_HARDER) {
2436 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2437 if (page)
2438 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 }
2440 if (!page)
6ac0206b 2441 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2442 spin_unlock(&zone->lock);
2443 if (!page)
2444 goto failed;
754078eb 2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2446 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2447 get_pcppage_migratetype(page));
1da177e4
LT
2448 }
2449
abe5f972 2450 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2451 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2452 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2453
f8891e5e 2454 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2455 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2456 local_irq_restore(flags);
1da177e4 2457
309381fe 2458 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2459 return page;
a74609fa
NP
2460
2461failed:
2462 local_irq_restore(flags);
a74609fa 2463 return NULL;
1da177e4
LT
2464}
2465
933e312e
AM
2466#ifdef CONFIG_FAIL_PAGE_ALLOC
2467
b2588c4b 2468static struct {
933e312e
AM
2469 struct fault_attr attr;
2470
621a5f7a 2471 bool ignore_gfp_highmem;
71baba4b 2472 bool ignore_gfp_reclaim;
54114994 2473 u32 min_order;
933e312e
AM
2474} fail_page_alloc = {
2475 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2476 .ignore_gfp_reclaim = true,
621a5f7a 2477 .ignore_gfp_highmem = true,
54114994 2478 .min_order = 1,
933e312e
AM
2479};
2480
2481static int __init setup_fail_page_alloc(char *str)
2482{
2483 return setup_fault_attr(&fail_page_alloc.attr, str);
2484}
2485__setup("fail_page_alloc=", setup_fail_page_alloc);
2486
deaf386e 2487static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2488{
54114994 2489 if (order < fail_page_alloc.min_order)
deaf386e 2490 return false;
933e312e 2491 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2492 return false;
933e312e 2493 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2494 return false;
71baba4b
MG
2495 if (fail_page_alloc.ignore_gfp_reclaim &&
2496 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2497 return false;
933e312e
AM
2498
2499 return should_fail(&fail_page_alloc.attr, 1 << order);
2500}
2501
2502#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2503
2504static int __init fail_page_alloc_debugfs(void)
2505{
f4ae40a6 2506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2507 struct dentry *dir;
933e312e 2508
dd48c085
AM
2509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2510 &fail_page_alloc.attr);
2511 if (IS_ERR(dir))
2512 return PTR_ERR(dir);
933e312e 2513
b2588c4b 2514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2515 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2516 goto fail;
2517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2518 &fail_page_alloc.ignore_gfp_highmem))
2519 goto fail;
2520 if (!debugfs_create_u32("min-order", mode, dir,
2521 &fail_page_alloc.min_order))
2522 goto fail;
2523
2524 return 0;
2525fail:
dd48c085 2526 debugfs_remove_recursive(dir);
933e312e 2527
b2588c4b 2528 return -ENOMEM;
933e312e
AM
2529}
2530
2531late_initcall(fail_page_alloc_debugfs);
2532
2533#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2534
2535#else /* CONFIG_FAIL_PAGE_ALLOC */
2536
deaf386e 2537static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2538{
deaf386e 2539 return false;
933e312e
AM
2540}
2541
2542#endif /* CONFIG_FAIL_PAGE_ALLOC */
2543
1da177e4 2544/*
97a16fc8
MG
2545 * Return true if free base pages are above 'mark'. For high-order checks it
2546 * will return true of the order-0 watermark is reached and there is at least
2547 * one free page of a suitable size. Checking now avoids taking the zone lock
2548 * to check in the allocation paths if no pages are free.
1da177e4 2549 */
7aeb09f9 2550static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2551 unsigned long mark, int classzone_idx,
2552 unsigned int alloc_flags,
7aeb09f9 2553 long free_pages)
1da177e4 2554{
d23ad423 2555 long min = mark;
1da177e4 2556 int o;
c603844b 2557 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2558
0aaa29a5 2559 /* free_pages may go negative - that's OK */
df0a6daa 2560 free_pages -= (1 << order) - 1;
0aaa29a5 2561
7fb1d9fc 2562 if (alloc_flags & ALLOC_HIGH)
1da177e4 2563 min -= min / 2;
0aaa29a5
MG
2564
2565 /*
2566 * If the caller does not have rights to ALLOC_HARDER then subtract
2567 * the high-atomic reserves. This will over-estimate the size of the
2568 * atomic reserve but it avoids a search.
2569 */
97a16fc8 2570 if (likely(!alloc_harder))
0aaa29a5
MG
2571 free_pages -= z->nr_reserved_highatomic;
2572 else
1da177e4 2573 min -= min / 4;
e2b19197 2574
d95ea5d1
BZ
2575#ifdef CONFIG_CMA
2576 /* If allocation can't use CMA areas don't use free CMA pages */
2577 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2578 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2579#endif
026b0814 2580
97a16fc8
MG
2581 /*
2582 * Check watermarks for an order-0 allocation request. If these
2583 * are not met, then a high-order request also cannot go ahead
2584 * even if a suitable page happened to be free.
2585 */
2586 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2587 return false;
1da177e4 2588
97a16fc8
MG
2589 /* If this is an order-0 request then the watermark is fine */
2590 if (!order)
2591 return true;
2592
2593 /* For a high-order request, check at least one suitable page is free */
2594 for (o = order; o < MAX_ORDER; o++) {
2595 struct free_area *area = &z->free_area[o];
2596 int mt;
2597
2598 if (!area->nr_free)
2599 continue;
2600
2601 if (alloc_harder)
2602 return true;
1da177e4 2603
97a16fc8
MG
2604 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2605 if (!list_empty(&area->free_list[mt]))
2606 return true;
2607 }
2608
2609#ifdef CONFIG_CMA
2610 if ((alloc_flags & ALLOC_CMA) &&
2611 !list_empty(&area->free_list[MIGRATE_CMA])) {
2612 return true;
2613 }
2614#endif
1da177e4 2615 }
97a16fc8 2616 return false;
88f5acf8
MG
2617}
2618
7aeb09f9 2619bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2620 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2621{
2622 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2623 zone_page_state(z, NR_FREE_PAGES));
2624}
2625
48ee5f36
MG
2626static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2627 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2628{
2629 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2630 long cma_pages = 0;
2631
2632#ifdef CONFIG_CMA
2633 /* If allocation can't use CMA areas don't use free CMA pages */
2634 if (!(alloc_flags & ALLOC_CMA))
2635 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2636#endif
2637
2638 /*
2639 * Fast check for order-0 only. If this fails then the reserves
2640 * need to be calculated. There is a corner case where the check
2641 * passes but only the high-order atomic reserve are free. If
2642 * the caller is !atomic then it'll uselessly search the free
2643 * list. That corner case is then slower but it is harmless.
2644 */
2645 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2646 return true;
2647
2648 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2649 free_pages);
2650}
2651
7aeb09f9 2652bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2653 unsigned long mark, int classzone_idx)
88f5acf8
MG
2654{
2655 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2656
2657 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2658 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2659
e2b19197 2660 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2661 free_pages);
1da177e4
LT
2662}
2663
9276b1bc 2664#ifdef CONFIG_NUMA
81c0a2bb
JW
2665static bool zone_local(struct zone *local_zone, struct zone *zone)
2666{
fff4068c 2667 return local_zone->node == zone->node;
81c0a2bb
JW
2668}
2669
957f822a
DR
2670static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2671{
5f7a75ac
MG
2672 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2673 RECLAIM_DISTANCE;
957f822a 2674}
9276b1bc 2675#else /* CONFIG_NUMA */
81c0a2bb
JW
2676static bool zone_local(struct zone *local_zone, struct zone *zone)
2677{
2678 return true;
2679}
2680
957f822a
DR
2681static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2682{
2683 return true;
2684}
9276b1bc
PJ
2685#endif /* CONFIG_NUMA */
2686
4ffeaf35
MG
2687static void reset_alloc_batches(struct zone *preferred_zone)
2688{
2689 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2690
2691 do {
2692 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2693 high_wmark_pages(zone) - low_wmark_pages(zone) -
2694 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2695 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2696 } while (zone++ != preferred_zone);
2697}
2698
7fb1d9fc 2699/*
0798e519 2700 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2701 * a page.
2702 */
2703static struct page *
a9263751
VB
2704get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2705 const struct alloc_context *ac)
753ee728 2706{
c33d6c06 2707 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2708 struct zone *zone;
30534755
MG
2709 bool fair_skipped = false;
2710 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2711
9276b1bc 2712zonelist_scan:
7fb1d9fc 2713 /*
9276b1bc 2714 * Scan zonelist, looking for a zone with enough free.
344736f2 2715 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2716 */
c33d6c06 2717 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2718 ac->nodemask) {
be06af00 2719 struct page *page;
e085dbc5
JW
2720 unsigned long mark;
2721
664eedde
MG
2722 if (cpusets_enabled() &&
2723 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2724 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2725 continue;
81c0a2bb
JW
2726 /*
2727 * Distribute pages in proportion to the individual
2728 * zone size to ensure fair page aging. The zone a
2729 * page was allocated in should have no effect on the
2730 * time the page has in memory before being reclaimed.
81c0a2bb 2731 */
30534755 2732 if (apply_fair) {
57054651 2733 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2734 fair_skipped = true;
3a025760 2735 continue;
4ffeaf35 2736 }
c33d6c06 2737 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2738 if (fair_skipped)
2739 goto reset_fair;
2740 apply_fair = false;
2741 }
81c0a2bb 2742 }
a756cf59
JW
2743 /*
2744 * When allocating a page cache page for writing, we
2745 * want to get it from a zone that is within its dirty
2746 * limit, such that no single zone holds more than its
2747 * proportional share of globally allowed dirty pages.
2748 * The dirty limits take into account the zone's
2749 * lowmem reserves and high watermark so that kswapd
2750 * should be able to balance it without having to
2751 * write pages from its LRU list.
2752 *
2753 * This may look like it could increase pressure on
2754 * lower zones by failing allocations in higher zones
2755 * before they are full. But the pages that do spill
2756 * over are limited as the lower zones are protected
2757 * by this very same mechanism. It should not become
2758 * a practical burden to them.
2759 *
2760 * XXX: For now, allow allocations to potentially
2761 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2762 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2763 * which is important when on a NUMA setup the allowed
2764 * zones are together not big enough to reach the
2765 * global limit. The proper fix for these situations
2766 * will require awareness of zones in the
2767 * dirty-throttling and the flusher threads.
2768 */
c9ab0c4f 2769 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2770 continue;
7fb1d9fc 2771
e085dbc5 2772 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2773 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2774 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2775 int ret;
2776
5dab2911
MG
2777 /* Checked here to keep the fast path fast */
2778 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2779 if (alloc_flags & ALLOC_NO_WATERMARKS)
2780 goto try_this_zone;
2781
957f822a 2782 if (zone_reclaim_mode == 0 ||
c33d6c06 2783 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2784 continue;
2785
fa5e084e
MG
2786 ret = zone_reclaim(zone, gfp_mask, order);
2787 switch (ret) {
2788 case ZONE_RECLAIM_NOSCAN:
2789 /* did not scan */
cd38b115 2790 continue;
fa5e084e
MG
2791 case ZONE_RECLAIM_FULL:
2792 /* scanned but unreclaimable */
cd38b115 2793 continue;
fa5e084e
MG
2794 default:
2795 /* did we reclaim enough */
fed2719e 2796 if (zone_watermark_ok(zone, order, mark,
93ea9964 2797 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2798 goto try_this_zone;
2799
fed2719e 2800 continue;
0798e519 2801 }
7fb1d9fc
RS
2802 }
2803
fa5e084e 2804try_this_zone:
c33d6c06 2805 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2806 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2807 if (page) {
2808 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2809 goto try_this_zone;
0aaa29a5
MG
2810
2811 /*
2812 * If this is a high-order atomic allocation then check
2813 * if the pageblock should be reserved for the future
2814 */
2815 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2816 reserve_highatomic_pageblock(page, zone, order);
2817
75379191
VB
2818 return page;
2819 }
54a6eb5c 2820 }
9276b1bc 2821
4ffeaf35
MG
2822 /*
2823 * The first pass makes sure allocations are spread fairly within the
2824 * local node. However, the local node might have free pages left
2825 * after the fairness batches are exhausted, and remote zones haven't
2826 * even been considered yet. Try once more without fairness, and
2827 * include remote zones now, before entering the slowpath and waking
2828 * kswapd: prefer spilling to a remote zone over swapping locally.
2829 */
30534755
MG
2830 if (fair_skipped) {
2831reset_fair:
2832 apply_fair = false;
2833 fair_skipped = false;
c33d6c06 2834 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 2835 goto zonelist_scan;
30534755 2836 }
4ffeaf35
MG
2837
2838 return NULL;
753ee728
MH
2839}
2840
29423e77
DR
2841/*
2842 * Large machines with many possible nodes should not always dump per-node
2843 * meminfo in irq context.
2844 */
2845static inline bool should_suppress_show_mem(void)
2846{
2847 bool ret = false;
2848
2849#if NODES_SHIFT > 8
2850 ret = in_interrupt();
2851#endif
2852 return ret;
2853}
2854
a238ab5b
DH
2855static DEFINE_RATELIMIT_STATE(nopage_rs,
2856 DEFAULT_RATELIMIT_INTERVAL,
2857 DEFAULT_RATELIMIT_BURST);
2858
d00181b9 2859void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2860{
a238ab5b
DH
2861 unsigned int filter = SHOW_MEM_FILTER_NODES;
2862
c0a32fc5
SG
2863 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2864 debug_guardpage_minorder() > 0)
a238ab5b
DH
2865 return;
2866
2867 /*
2868 * This documents exceptions given to allocations in certain
2869 * contexts that are allowed to allocate outside current's set
2870 * of allowed nodes.
2871 */
2872 if (!(gfp_mask & __GFP_NOMEMALLOC))
2873 if (test_thread_flag(TIF_MEMDIE) ||
2874 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2875 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2876 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2877 filter &= ~SHOW_MEM_FILTER_NODES;
2878
2879 if (fmt) {
3ee9a4f0
JP
2880 struct va_format vaf;
2881 va_list args;
2882
a238ab5b 2883 va_start(args, fmt);
3ee9a4f0
JP
2884
2885 vaf.fmt = fmt;
2886 vaf.va = &args;
2887
2888 pr_warn("%pV", &vaf);
2889
a238ab5b
DH
2890 va_end(args);
2891 }
2892
c5c990e8
VB
2893 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2894 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2895 dump_stack();
2896 if (!should_suppress_show_mem())
2897 show_mem(filter);
2898}
2899
11e33f6a
MG
2900static inline struct page *
2901__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2902 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2903{
6e0fc46d
DR
2904 struct oom_control oc = {
2905 .zonelist = ac->zonelist,
2906 .nodemask = ac->nodemask,
2907 .gfp_mask = gfp_mask,
2908 .order = order,
6e0fc46d 2909 };
11e33f6a
MG
2910 struct page *page;
2911
9879de73
JW
2912 *did_some_progress = 0;
2913
9879de73 2914 /*
dc56401f
JW
2915 * Acquire the oom lock. If that fails, somebody else is
2916 * making progress for us.
9879de73 2917 */
dc56401f 2918 if (!mutex_trylock(&oom_lock)) {
9879de73 2919 *did_some_progress = 1;
11e33f6a 2920 schedule_timeout_uninterruptible(1);
1da177e4
LT
2921 return NULL;
2922 }
6b1de916 2923
11e33f6a
MG
2924 /*
2925 * Go through the zonelist yet one more time, keep very high watermark
2926 * here, this is only to catch a parallel oom killing, we must fail if
2927 * we're still under heavy pressure.
2928 */
a9263751
VB
2929 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2930 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2931 if (page)
11e33f6a
MG
2932 goto out;
2933
4365a567 2934 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2935 /* Coredumps can quickly deplete all memory reserves */
2936 if (current->flags & PF_DUMPCORE)
2937 goto out;
4365a567
KH
2938 /* The OOM killer will not help higher order allocs */
2939 if (order > PAGE_ALLOC_COSTLY_ORDER)
2940 goto out;
03668b3c 2941 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2942 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2943 goto out;
9083905a
JW
2944 if (pm_suspended_storage())
2945 goto out;
3da88fb3
MH
2946 /*
2947 * XXX: GFP_NOFS allocations should rather fail than rely on
2948 * other request to make a forward progress.
2949 * We are in an unfortunate situation where out_of_memory cannot
2950 * do much for this context but let's try it to at least get
2951 * access to memory reserved if the current task is killed (see
2952 * out_of_memory). Once filesystems are ready to handle allocation
2953 * failures more gracefully we should just bail out here.
2954 */
2955
4167e9b2 2956 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2957 if (gfp_mask & __GFP_THISNODE)
2958 goto out;
2959 }
11e33f6a 2960 /* Exhausted what can be done so it's blamo time */
5020e285 2961 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2962 *did_some_progress = 1;
5020e285
MH
2963
2964 if (gfp_mask & __GFP_NOFAIL) {
2965 page = get_page_from_freelist(gfp_mask, order,
2966 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2967 /*
2968 * fallback to ignore cpuset restriction if our nodes
2969 * are depleted
2970 */
2971 if (!page)
2972 page = get_page_from_freelist(gfp_mask, order,
2973 ALLOC_NO_WATERMARKS, ac);
2974 }
2975 }
11e33f6a 2976out:
dc56401f 2977 mutex_unlock(&oom_lock);
11e33f6a
MG
2978 return page;
2979}
2980
56de7263
MG
2981#ifdef CONFIG_COMPACTION
2982/* Try memory compaction for high-order allocations before reclaim */
2983static struct page *
2984__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 2985 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
2986 enum migrate_mode mode, int *contended_compaction,
2987 bool *deferred_compaction)
56de7263 2988{
53853e2d 2989 unsigned long compact_result;
98dd3b48 2990 struct page *page;
53853e2d
VB
2991
2992 if (!order)
66199712 2993 return NULL;
66199712 2994
c06b1fca 2995 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2996 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2997 mode, contended_compaction);
c06b1fca 2998 current->flags &= ~PF_MEMALLOC;
56de7263 2999
98dd3b48
VB
3000 switch (compact_result) {
3001 case COMPACT_DEFERRED:
53853e2d 3002 *deferred_compaction = true;
98dd3b48
VB
3003 /* fall-through */
3004 case COMPACT_SKIPPED:
3005 return NULL;
3006 default:
3007 break;
3008 }
53853e2d 3009
98dd3b48
VB
3010 /*
3011 * At least in one zone compaction wasn't deferred or skipped, so let's
3012 * count a compaction stall
3013 */
3014 count_vm_event(COMPACTSTALL);
8fb74b9f 3015
a9263751
VB
3016 page = get_page_from_freelist(gfp_mask, order,
3017 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3018
98dd3b48
VB
3019 if (page) {
3020 struct zone *zone = page_zone(page);
53853e2d 3021
98dd3b48
VB
3022 zone->compact_blockskip_flush = false;
3023 compaction_defer_reset(zone, order, true);
3024 count_vm_event(COMPACTSUCCESS);
3025 return page;
3026 }
56de7263 3027
98dd3b48
VB
3028 /*
3029 * It's bad if compaction run occurs and fails. The most likely reason
3030 * is that pages exist, but not enough to satisfy watermarks.
3031 */
3032 count_vm_event(COMPACTFAIL);
66199712 3033
98dd3b48 3034 cond_resched();
56de7263
MG
3035
3036 return NULL;
3037}
3038#else
3039static inline struct page *
3040__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3041 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3042 enum migrate_mode mode, int *contended_compaction,
3043 bool *deferred_compaction)
56de7263
MG
3044{
3045 return NULL;
3046}
3047#endif /* CONFIG_COMPACTION */
3048
bba90710
MS
3049/* Perform direct synchronous page reclaim */
3050static int
a9263751
VB
3051__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3052 const struct alloc_context *ac)
11e33f6a 3053{
11e33f6a 3054 struct reclaim_state reclaim_state;
bba90710 3055 int progress;
11e33f6a
MG
3056
3057 cond_resched();
3058
3059 /* We now go into synchronous reclaim */
3060 cpuset_memory_pressure_bump();
c06b1fca 3061 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3062 lockdep_set_current_reclaim_state(gfp_mask);
3063 reclaim_state.reclaimed_slab = 0;
c06b1fca 3064 current->reclaim_state = &reclaim_state;
11e33f6a 3065
a9263751
VB
3066 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3067 ac->nodemask);
11e33f6a 3068
c06b1fca 3069 current->reclaim_state = NULL;
11e33f6a 3070 lockdep_clear_current_reclaim_state();
c06b1fca 3071 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3072
3073 cond_resched();
3074
bba90710
MS
3075 return progress;
3076}
3077
3078/* The really slow allocator path where we enter direct reclaim */
3079static inline struct page *
3080__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3081 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3082 unsigned long *did_some_progress)
bba90710
MS
3083{
3084 struct page *page = NULL;
3085 bool drained = false;
3086
a9263751 3087 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3088 if (unlikely(!(*did_some_progress)))
3089 return NULL;
11e33f6a 3090
9ee493ce 3091retry:
a9263751
VB
3092 page = get_page_from_freelist(gfp_mask, order,
3093 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3094
3095 /*
3096 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3097 * pages are pinned on the per-cpu lists or in high alloc reserves.
3098 * Shrink them them and try again
9ee493ce
MG
3099 */
3100 if (!page && !drained) {
0aaa29a5 3101 unreserve_highatomic_pageblock(ac);
93481ff0 3102 drain_all_pages(NULL);
9ee493ce
MG
3103 drained = true;
3104 goto retry;
3105 }
3106
11e33f6a
MG
3107 return page;
3108}
3109
a9263751 3110static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3111{
3112 struct zoneref *z;
3113 struct zone *zone;
3114
a9263751
VB
3115 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3116 ac->high_zoneidx, ac->nodemask)
93ea9964 3117 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3118}
3119
c603844b 3120static inline unsigned int
341ce06f
PZ
3121gfp_to_alloc_flags(gfp_t gfp_mask)
3122{
c603844b 3123 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3124
a56f57ff 3125 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3126 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3127
341ce06f
PZ
3128 /*
3129 * The caller may dip into page reserves a bit more if the caller
3130 * cannot run direct reclaim, or if the caller has realtime scheduling
3131 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3132 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3133 */
e6223a3b 3134 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3135
d0164adc 3136 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3137 /*
b104a35d
DR
3138 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3139 * if it can't schedule.
5c3240d9 3140 */
b104a35d 3141 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3142 alloc_flags |= ALLOC_HARDER;
523b9458 3143 /*
b104a35d 3144 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3145 * comment for __cpuset_node_allowed().
523b9458 3146 */
341ce06f 3147 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3148 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3149 alloc_flags |= ALLOC_HARDER;
3150
b37f1dd0
MG
3151 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3152 if (gfp_mask & __GFP_MEMALLOC)
3153 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3154 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3155 alloc_flags |= ALLOC_NO_WATERMARKS;
3156 else if (!in_interrupt() &&
3157 ((current->flags & PF_MEMALLOC) ||
3158 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3159 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3160 }
d95ea5d1 3161#ifdef CONFIG_CMA
43e7a34d 3162 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3163 alloc_flags |= ALLOC_CMA;
3164#endif
341ce06f
PZ
3165 return alloc_flags;
3166}
3167
072bb0aa
MG
3168bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3169{
b37f1dd0 3170 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3171}
3172
d0164adc
MG
3173static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3174{
3175 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3176}
3177
11e33f6a
MG
3178static inline struct page *
3179__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3180 struct alloc_context *ac)
11e33f6a 3181{
d0164adc 3182 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3183 struct page *page = NULL;
c603844b 3184 unsigned int alloc_flags;
11e33f6a
MG
3185 unsigned long pages_reclaimed = 0;
3186 unsigned long did_some_progress;
e0b9daeb 3187 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3188 bool deferred_compaction = false;
1f9efdef 3189 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3190
72807a74
MG
3191 /*
3192 * In the slowpath, we sanity check order to avoid ever trying to
3193 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3194 * be using allocators in order of preference for an area that is
3195 * too large.
3196 */
1fc28b70
MG
3197 if (order >= MAX_ORDER) {
3198 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3199 return NULL;
1fc28b70 3200 }
1da177e4 3201
d0164adc
MG
3202 /*
3203 * We also sanity check to catch abuse of atomic reserves being used by
3204 * callers that are not in atomic context.
3205 */
3206 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3207 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3208 gfp_mask &= ~__GFP_ATOMIC;
3209
9879de73 3210retry:
d0164adc 3211 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3212 wake_all_kswapds(order, ac);
1da177e4 3213
9bf2229f 3214 /*
7fb1d9fc
RS
3215 * OK, we're below the kswapd watermark and have kicked background
3216 * reclaim. Now things get more complex, so set up alloc_flags according
3217 * to how we want to proceed.
9bf2229f 3218 */
341ce06f 3219 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3220
341ce06f 3221 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3222 page = get_page_from_freelist(gfp_mask, order,
3223 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3224 if (page)
3225 goto got_pg;
1da177e4 3226
11e33f6a 3227 /* Allocate without watermarks if the context allows */
341ce06f 3228 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3229 /*
3230 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3231 * the allocation is high priority and these type of
3232 * allocations are system rather than user orientated
3233 */
a9263751 3234 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3235 page = get_page_from_freelist(gfp_mask, order,
3236 ALLOC_NO_WATERMARKS, ac);
3237 if (page)
3238 goto got_pg;
1da177e4
LT
3239 }
3240
d0164adc
MG
3241 /* Caller is not willing to reclaim, we can't balance anything */
3242 if (!can_direct_reclaim) {
aed0a0e3 3243 /*
33d53103
MH
3244 * All existing users of the __GFP_NOFAIL are blockable, so warn
3245 * of any new users that actually allow this type of allocation
3246 * to fail.
aed0a0e3
DR
3247 */
3248 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3249 goto nopage;
aed0a0e3 3250 }
1da177e4 3251
341ce06f 3252 /* Avoid recursion of direct reclaim */
33d53103
MH
3253 if (current->flags & PF_MEMALLOC) {
3254 /*
3255 * __GFP_NOFAIL request from this context is rather bizarre
3256 * because we cannot reclaim anything and only can loop waiting
3257 * for somebody to do a work for us.
3258 */
3259 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3260 cond_resched();
3261 goto retry;
3262 }
341ce06f 3263 goto nopage;
33d53103 3264 }
341ce06f 3265
6583bb64
DR
3266 /* Avoid allocations with no watermarks from looping endlessly */
3267 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3268 goto nopage;
3269
77f1fe6b
MG
3270 /*
3271 * Try direct compaction. The first pass is asynchronous. Subsequent
3272 * attempts after direct reclaim are synchronous
3273 */
a9263751
VB
3274 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3275 migration_mode,
3276 &contended_compaction,
53853e2d 3277 &deferred_compaction);
56de7263
MG
3278 if (page)
3279 goto got_pg;
75f30861 3280
1f9efdef 3281 /* Checks for THP-specific high-order allocations */
d0164adc 3282 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3283 /*
3284 * If compaction is deferred for high-order allocations, it is
3285 * because sync compaction recently failed. If this is the case
3286 * and the caller requested a THP allocation, we do not want
3287 * to heavily disrupt the system, so we fail the allocation
3288 * instead of entering direct reclaim.
3289 */
3290 if (deferred_compaction)
3291 goto nopage;
3292
3293 /*
3294 * In all zones where compaction was attempted (and not
3295 * deferred or skipped), lock contention has been detected.
3296 * For THP allocation we do not want to disrupt the others
3297 * so we fallback to base pages instead.
3298 */
3299 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3300 goto nopage;
3301
3302 /*
3303 * If compaction was aborted due to need_resched(), we do not
3304 * want to further increase allocation latency, unless it is
3305 * khugepaged trying to collapse.
3306 */
3307 if (contended_compaction == COMPACT_CONTENDED_SCHED
3308 && !(current->flags & PF_KTHREAD))
3309 goto nopage;
3310 }
66199712 3311
8fe78048
DR
3312 /*
3313 * It can become very expensive to allocate transparent hugepages at
3314 * fault, so use asynchronous memory compaction for THP unless it is
3315 * khugepaged trying to collapse.
3316 */
d0164adc 3317 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3318 migration_mode = MIGRATE_SYNC_LIGHT;
3319
11e33f6a 3320 /* Try direct reclaim and then allocating */
a9263751
VB
3321 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3322 &did_some_progress);
11e33f6a
MG
3323 if (page)
3324 goto got_pg;
1da177e4 3325
9083905a
JW
3326 /* Do not loop if specifically requested */
3327 if (gfp_mask & __GFP_NORETRY)
3328 goto noretry;
3329
3330 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3331 pages_reclaimed += did_some_progress;
9083905a
JW
3332 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3333 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3334 /* Wait for some write requests to complete then retry */
c33d6c06 3335 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3336 goto retry;
1da177e4
LT
3337 }
3338
9083905a
JW
3339 /* Reclaim has failed us, start killing things */
3340 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3341 if (page)
3342 goto got_pg;
3343
3344 /* Retry as long as the OOM killer is making progress */
3345 if (did_some_progress)
3346 goto retry;
3347
3348noretry:
3349 /*
3350 * High-order allocations do not necessarily loop after
3351 * direct reclaim and reclaim/compaction depends on compaction
3352 * being called after reclaim so call directly if necessary
3353 */
3354 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3355 ac, migration_mode,
3356 &contended_compaction,
3357 &deferred_compaction);
3358 if (page)
3359 goto got_pg;
1da177e4 3360nopage:
a238ab5b 3361 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3362got_pg:
072bb0aa 3363 return page;
1da177e4 3364}
11e33f6a
MG
3365
3366/*
3367 * This is the 'heart' of the zoned buddy allocator.
3368 */
3369struct page *
3370__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3371 struct zonelist *zonelist, nodemask_t *nodemask)
3372{
5bb1b169 3373 struct page *page;
cc9a6c87 3374 unsigned int cpuset_mems_cookie;
c603844b 3375 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3376 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3377 struct alloc_context ac = {
3378 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3379 .zonelist = zonelist,
a9263751
VB
3380 .nodemask = nodemask,
3381 .migratetype = gfpflags_to_migratetype(gfp_mask),
3382 };
11e33f6a 3383
682a3385 3384 if (cpusets_enabled()) {
83d4ca81 3385 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3386 alloc_flags |= ALLOC_CPUSET;
3387 if (!ac.nodemask)
3388 ac.nodemask = &cpuset_current_mems_allowed;
3389 }
3390
dcce284a
BH
3391 gfp_mask &= gfp_allowed_mask;
3392
11e33f6a
MG
3393 lockdep_trace_alloc(gfp_mask);
3394
d0164adc 3395 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3396
3397 if (should_fail_alloc_page(gfp_mask, order))
3398 return NULL;
3399
3400 /*
3401 * Check the zones suitable for the gfp_mask contain at least one
3402 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3403 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3404 */
3405 if (unlikely(!zonelist->_zonerefs->zone))
3406 return NULL;
3407
a9263751 3408 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3409 alloc_flags |= ALLOC_CMA;
3410
cc9a6c87 3411retry_cpuset:
d26914d1 3412 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3413
c9ab0c4f
MG
3414 /* Dirty zone balancing only done in the fast path */
3415 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3416
5117f45d 3417 /* The preferred zone is used for statistics later */
c33d6c06
MG
3418 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3419 ac.high_zoneidx, ac.nodemask);
3420 if (!ac.preferred_zoneref) {
5bb1b169 3421 page = NULL;
4fcb0971 3422 goto no_zone;
5bb1b169
MG
3423 }
3424
5117f45d 3425 /* First allocation attempt */
a9263751 3426 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3427 if (likely(page))
3428 goto out;
11e33f6a 3429
4fcb0971
MG
3430 /*
3431 * Runtime PM, block IO and its error handling path can deadlock
3432 * because I/O on the device might not complete.
3433 */
3434 alloc_mask = memalloc_noio_flags(gfp_mask);
3435 ac.spread_dirty_pages = false;
23f086f9 3436
4fcb0971 3437 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3438
4fcb0971 3439no_zone:
cc9a6c87
MG
3440 /*
3441 * When updating a task's mems_allowed, it is possible to race with
3442 * parallel threads in such a way that an allocation can fail while
3443 * the mask is being updated. If a page allocation is about to fail,
3444 * check if the cpuset changed during allocation and if so, retry.
3445 */
83d4ca81
MG
3446 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3447 alloc_mask = gfp_mask;
cc9a6c87 3448 goto retry_cpuset;
83d4ca81 3449 }
cc9a6c87 3450
4fcb0971
MG
3451out:
3452 if (kmemcheck_enabled && page)
3453 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3454
3455 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3456
11e33f6a 3457 return page;
1da177e4 3458}
d239171e 3459EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3460
3461/*
3462 * Common helper functions.
3463 */
920c7a5d 3464unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3465{
945a1113
AM
3466 struct page *page;
3467
3468 /*
3469 * __get_free_pages() returns a 32-bit address, which cannot represent
3470 * a highmem page
3471 */
3472 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3473
1da177e4
LT
3474 page = alloc_pages(gfp_mask, order);
3475 if (!page)
3476 return 0;
3477 return (unsigned long) page_address(page);
3478}
1da177e4
LT
3479EXPORT_SYMBOL(__get_free_pages);
3480
920c7a5d 3481unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3482{
945a1113 3483 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3484}
1da177e4
LT
3485EXPORT_SYMBOL(get_zeroed_page);
3486
920c7a5d 3487void __free_pages(struct page *page, unsigned int order)
1da177e4 3488{
b5810039 3489 if (put_page_testzero(page)) {
1da177e4 3490 if (order == 0)
b745bc85 3491 free_hot_cold_page(page, false);
1da177e4
LT
3492 else
3493 __free_pages_ok(page, order);
3494 }
3495}
3496
3497EXPORT_SYMBOL(__free_pages);
3498
920c7a5d 3499void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3500{
3501 if (addr != 0) {
725d704e 3502 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3503 __free_pages(virt_to_page((void *)addr), order);
3504 }
3505}
3506
3507EXPORT_SYMBOL(free_pages);
3508
b63ae8ca
AD
3509/*
3510 * Page Fragment:
3511 * An arbitrary-length arbitrary-offset area of memory which resides
3512 * within a 0 or higher order page. Multiple fragments within that page
3513 * are individually refcounted, in the page's reference counter.
3514 *
3515 * The page_frag functions below provide a simple allocation framework for
3516 * page fragments. This is used by the network stack and network device
3517 * drivers to provide a backing region of memory for use as either an
3518 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3519 */
3520static struct page *__page_frag_refill(struct page_frag_cache *nc,
3521 gfp_t gfp_mask)
3522{
3523 struct page *page = NULL;
3524 gfp_t gfp = gfp_mask;
3525
3526#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3527 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3528 __GFP_NOMEMALLOC;
3529 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3530 PAGE_FRAG_CACHE_MAX_ORDER);
3531 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3532#endif
3533 if (unlikely(!page))
3534 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3535
3536 nc->va = page ? page_address(page) : NULL;
3537
3538 return page;
3539}
3540
3541void *__alloc_page_frag(struct page_frag_cache *nc,
3542 unsigned int fragsz, gfp_t gfp_mask)
3543{
3544 unsigned int size = PAGE_SIZE;
3545 struct page *page;
3546 int offset;
3547
3548 if (unlikely(!nc->va)) {
3549refill:
3550 page = __page_frag_refill(nc, gfp_mask);
3551 if (!page)
3552 return NULL;
3553
3554#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3555 /* if size can vary use size else just use PAGE_SIZE */
3556 size = nc->size;
3557#endif
3558 /* Even if we own the page, we do not use atomic_set().
3559 * This would break get_page_unless_zero() users.
3560 */
fe896d18 3561 page_ref_add(page, size - 1);
b63ae8ca
AD
3562
3563 /* reset page count bias and offset to start of new frag */
2f064f34 3564 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3565 nc->pagecnt_bias = size;
3566 nc->offset = size;
3567 }
3568
3569 offset = nc->offset - fragsz;
3570 if (unlikely(offset < 0)) {
3571 page = virt_to_page(nc->va);
3572
fe896d18 3573 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3574 goto refill;
3575
3576#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3577 /* if size can vary use size else just use PAGE_SIZE */
3578 size = nc->size;
3579#endif
3580 /* OK, page count is 0, we can safely set it */
fe896d18 3581 set_page_count(page, size);
b63ae8ca
AD
3582
3583 /* reset page count bias and offset to start of new frag */
3584 nc->pagecnt_bias = size;
3585 offset = size - fragsz;
3586 }
3587
3588 nc->pagecnt_bias--;
3589 nc->offset = offset;
3590
3591 return nc->va + offset;
3592}
3593EXPORT_SYMBOL(__alloc_page_frag);
3594
3595/*
3596 * Frees a page fragment allocated out of either a compound or order 0 page.
3597 */
3598void __free_page_frag(void *addr)
3599{
3600 struct page *page = virt_to_head_page(addr);
3601
3602 if (unlikely(put_page_testzero(page)))
3603 __free_pages_ok(page, compound_order(page));
3604}
3605EXPORT_SYMBOL(__free_page_frag);
3606
6a1a0d3b 3607/*
52383431 3608 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3609 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3610 * equivalent to alloc_pages.
6a1a0d3b 3611 *
52383431
VD
3612 * It should be used when the caller would like to use kmalloc, but since the
3613 * allocation is large, it has to fall back to the page allocator.
3614 */
3615struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3616{
3617 struct page *page;
52383431 3618
52383431 3619 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3620 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3621 __free_pages(page, order);
3622 page = NULL;
3623 }
52383431
VD
3624 return page;
3625}
3626
3627struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3628{
3629 struct page *page;
52383431 3630
52383431 3631 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3632 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3633 __free_pages(page, order);
3634 page = NULL;
3635 }
52383431
VD
3636 return page;
3637}
3638
3639/*
3640 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3641 * alloc_kmem_pages.
6a1a0d3b 3642 */
52383431 3643void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3644{
d05e83a6 3645 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3646 __free_pages(page, order);
3647}
3648
52383431 3649void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3650{
3651 if (addr != 0) {
3652 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3653 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3654 }
3655}
3656
d00181b9
KS
3657static void *make_alloc_exact(unsigned long addr, unsigned int order,
3658 size_t size)
ee85c2e1
AK
3659{
3660 if (addr) {
3661 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3662 unsigned long used = addr + PAGE_ALIGN(size);
3663
3664 split_page(virt_to_page((void *)addr), order);
3665 while (used < alloc_end) {
3666 free_page(used);
3667 used += PAGE_SIZE;
3668 }
3669 }
3670 return (void *)addr;
3671}
3672
2be0ffe2
TT
3673/**
3674 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3675 * @size: the number of bytes to allocate
3676 * @gfp_mask: GFP flags for the allocation
3677 *
3678 * This function is similar to alloc_pages(), except that it allocates the
3679 * minimum number of pages to satisfy the request. alloc_pages() can only
3680 * allocate memory in power-of-two pages.
3681 *
3682 * This function is also limited by MAX_ORDER.
3683 *
3684 * Memory allocated by this function must be released by free_pages_exact().
3685 */
3686void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3687{
3688 unsigned int order = get_order(size);
3689 unsigned long addr;
3690
3691 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3692 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3693}
3694EXPORT_SYMBOL(alloc_pages_exact);
3695
ee85c2e1
AK
3696/**
3697 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3698 * pages on a node.
b5e6ab58 3699 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3700 * @size: the number of bytes to allocate
3701 * @gfp_mask: GFP flags for the allocation
3702 *
3703 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3704 * back.
ee85c2e1 3705 */
e1931811 3706void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3707{
d00181b9 3708 unsigned int order = get_order(size);
ee85c2e1
AK
3709 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3710 if (!p)
3711 return NULL;
3712 return make_alloc_exact((unsigned long)page_address(p), order, size);
3713}
ee85c2e1 3714
2be0ffe2
TT
3715/**
3716 * free_pages_exact - release memory allocated via alloc_pages_exact()
3717 * @virt: the value returned by alloc_pages_exact.
3718 * @size: size of allocation, same value as passed to alloc_pages_exact().
3719 *
3720 * Release the memory allocated by a previous call to alloc_pages_exact.
3721 */
3722void free_pages_exact(void *virt, size_t size)
3723{
3724 unsigned long addr = (unsigned long)virt;
3725 unsigned long end = addr + PAGE_ALIGN(size);
3726
3727 while (addr < end) {
3728 free_page(addr);
3729 addr += PAGE_SIZE;
3730 }
3731}
3732EXPORT_SYMBOL(free_pages_exact);
3733
e0fb5815
ZY
3734/**
3735 * nr_free_zone_pages - count number of pages beyond high watermark
3736 * @offset: The zone index of the highest zone
3737 *
3738 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3739 * high watermark within all zones at or below a given zone index. For each
3740 * zone, the number of pages is calculated as:
834405c3 3741 * managed_pages - high_pages
e0fb5815 3742 */
ebec3862 3743static unsigned long nr_free_zone_pages(int offset)
1da177e4 3744{
dd1a239f 3745 struct zoneref *z;
54a6eb5c
MG
3746 struct zone *zone;
3747
e310fd43 3748 /* Just pick one node, since fallback list is circular */
ebec3862 3749 unsigned long sum = 0;
1da177e4 3750
0e88460d 3751 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3752
54a6eb5c 3753 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3754 unsigned long size = zone->managed_pages;
41858966 3755 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3756 if (size > high)
3757 sum += size - high;
1da177e4
LT
3758 }
3759
3760 return sum;
3761}
3762
e0fb5815
ZY
3763/**
3764 * nr_free_buffer_pages - count number of pages beyond high watermark
3765 *
3766 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3767 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3768 */
ebec3862 3769unsigned long nr_free_buffer_pages(void)
1da177e4 3770{
af4ca457 3771 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3772}
c2f1a551 3773EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3774
e0fb5815
ZY
3775/**
3776 * nr_free_pagecache_pages - count number of pages beyond high watermark
3777 *
3778 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3779 * high watermark within all zones.
1da177e4 3780 */
ebec3862 3781unsigned long nr_free_pagecache_pages(void)
1da177e4 3782{
2a1e274a 3783 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3784}
08e0f6a9
CL
3785
3786static inline void show_node(struct zone *zone)
1da177e4 3787{
e5adfffc 3788 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3789 printk("Node %d ", zone_to_nid(zone));
1da177e4 3790}
1da177e4 3791
d02bd27b
IR
3792long si_mem_available(void)
3793{
3794 long available;
3795 unsigned long pagecache;
3796 unsigned long wmark_low = 0;
3797 unsigned long pages[NR_LRU_LISTS];
3798 struct zone *zone;
3799 int lru;
3800
3801 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3802 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3803
3804 for_each_zone(zone)
3805 wmark_low += zone->watermark[WMARK_LOW];
3806
3807 /*
3808 * Estimate the amount of memory available for userspace allocations,
3809 * without causing swapping.
3810 */
3811 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3812
3813 /*
3814 * Not all the page cache can be freed, otherwise the system will
3815 * start swapping. Assume at least half of the page cache, or the
3816 * low watermark worth of cache, needs to stay.
3817 */
3818 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3819 pagecache -= min(pagecache / 2, wmark_low);
3820 available += pagecache;
3821
3822 /*
3823 * Part of the reclaimable slab consists of items that are in use,
3824 * and cannot be freed. Cap this estimate at the low watermark.
3825 */
3826 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3827 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3828
3829 if (available < 0)
3830 available = 0;
3831 return available;
3832}
3833EXPORT_SYMBOL_GPL(si_mem_available);
3834
1da177e4
LT
3835void si_meminfo(struct sysinfo *val)
3836{
3837 val->totalram = totalram_pages;
cc7452b6 3838 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3839 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3840 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3841 val->totalhigh = totalhigh_pages;
3842 val->freehigh = nr_free_highpages();
1da177e4
LT
3843 val->mem_unit = PAGE_SIZE;
3844}
3845
3846EXPORT_SYMBOL(si_meminfo);
3847
3848#ifdef CONFIG_NUMA
3849void si_meminfo_node(struct sysinfo *val, int nid)
3850{
cdd91a77
JL
3851 int zone_type; /* needs to be signed */
3852 unsigned long managed_pages = 0;
fc2bd799
JK
3853 unsigned long managed_highpages = 0;
3854 unsigned long free_highpages = 0;
1da177e4
LT
3855 pg_data_t *pgdat = NODE_DATA(nid);
3856
cdd91a77
JL
3857 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3858 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3859 val->totalram = managed_pages;
cc7452b6 3860 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3861 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3862#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3863 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3864 struct zone *zone = &pgdat->node_zones[zone_type];
3865
3866 if (is_highmem(zone)) {
3867 managed_highpages += zone->managed_pages;
3868 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3869 }
3870 }
3871 val->totalhigh = managed_highpages;
3872 val->freehigh = free_highpages;
98d2b0eb 3873#else
fc2bd799
JK
3874 val->totalhigh = managed_highpages;
3875 val->freehigh = free_highpages;
98d2b0eb 3876#endif
1da177e4
LT
3877 val->mem_unit = PAGE_SIZE;
3878}
3879#endif
3880
ddd588b5 3881/*
7bf02ea2
DR
3882 * Determine whether the node should be displayed or not, depending on whether
3883 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3884 */
7bf02ea2 3885bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3886{
3887 bool ret = false;
cc9a6c87 3888 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3889
3890 if (!(flags & SHOW_MEM_FILTER_NODES))
3891 goto out;
3892
cc9a6c87 3893 do {
d26914d1 3894 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3895 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3896 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3897out:
3898 return ret;
3899}
3900
1da177e4
LT
3901#define K(x) ((x) << (PAGE_SHIFT-10))
3902
377e4f16
RV
3903static void show_migration_types(unsigned char type)
3904{
3905 static const char types[MIGRATE_TYPES] = {
3906 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3907 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3908 [MIGRATE_RECLAIMABLE] = 'E',
3909 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3910#ifdef CONFIG_CMA
3911 [MIGRATE_CMA] = 'C',
3912#endif
194159fb 3913#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3914 [MIGRATE_ISOLATE] = 'I',
194159fb 3915#endif
377e4f16
RV
3916 };
3917 char tmp[MIGRATE_TYPES + 1];
3918 char *p = tmp;
3919 int i;
3920
3921 for (i = 0; i < MIGRATE_TYPES; i++) {
3922 if (type & (1 << i))
3923 *p++ = types[i];
3924 }
3925
3926 *p = '\0';
3927 printk("(%s) ", tmp);
3928}
3929
1da177e4
LT
3930/*
3931 * Show free area list (used inside shift_scroll-lock stuff)
3932 * We also calculate the percentage fragmentation. We do this by counting the
3933 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3934 *
3935 * Bits in @filter:
3936 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3937 * cpuset.
1da177e4 3938 */
7bf02ea2 3939void show_free_areas(unsigned int filter)
1da177e4 3940{
d1bfcdb8 3941 unsigned long free_pcp = 0;
c7241913 3942 int cpu;
1da177e4
LT
3943 struct zone *zone;
3944
ee99c71c 3945 for_each_populated_zone(zone) {
7bf02ea2 3946 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3947 continue;
d1bfcdb8 3948
761b0677
KK
3949 for_each_online_cpu(cpu)
3950 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3951 }
3952
a731286d
KM
3953 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3954 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3955 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3956 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3957 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3958 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3959 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3960 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3961 global_page_state(NR_ISOLATED_ANON),
3962 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3963 global_page_state(NR_INACTIVE_FILE),
a731286d 3964 global_page_state(NR_ISOLATED_FILE),
7b854121 3965 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3966 global_page_state(NR_FILE_DIRTY),
ce866b34 3967 global_page_state(NR_WRITEBACK),
fd39fc85 3968 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3969 global_page_state(NR_SLAB_RECLAIMABLE),
3970 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3971 global_page_state(NR_FILE_MAPPED),
4b02108a 3972 global_page_state(NR_SHMEM),
a25700a5 3973 global_page_state(NR_PAGETABLE),
d1ce749a 3974 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3975 global_page_state(NR_FREE_PAGES),
3976 free_pcp,
d1ce749a 3977 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3978
ee99c71c 3979 for_each_populated_zone(zone) {
1da177e4
LT
3980 int i;
3981
7bf02ea2 3982 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3983 continue;
d1bfcdb8
KK
3984
3985 free_pcp = 0;
3986 for_each_online_cpu(cpu)
3987 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3988
1da177e4
LT
3989 show_node(zone);
3990 printk("%s"
3991 " free:%lukB"
3992 " min:%lukB"
3993 " low:%lukB"
3994 " high:%lukB"
4f98a2fe
RR
3995 " active_anon:%lukB"
3996 " inactive_anon:%lukB"
3997 " active_file:%lukB"
3998 " inactive_file:%lukB"
7b854121 3999 " unevictable:%lukB"
a731286d
KM
4000 " isolated(anon):%lukB"
4001 " isolated(file):%lukB"
1da177e4 4002 " present:%lukB"
9feedc9d 4003 " managed:%lukB"
4a0aa73f
KM
4004 " mlocked:%lukB"
4005 " dirty:%lukB"
4006 " writeback:%lukB"
4007 " mapped:%lukB"
4b02108a 4008 " shmem:%lukB"
4a0aa73f
KM
4009 " slab_reclaimable:%lukB"
4010 " slab_unreclaimable:%lukB"
c6a7f572 4011 " kernel_stack:%lukB"
4a0aa73f
KM
4012 " pagetables:%lukB"
4013 " unstable:%lukB"
4014 " bounce:%lukB"
d1bfcdb8
KK
4015 " free_pcp:%lukB"
4016 " local_pcp:%ukB"
d1ce749a 4017 " free_cma:%lukB"
4a0aa73f 4018 " writeback_tmp:%lukB"
1da177e4
LT
4019 " pages_scanned:%lu"
4020 " all_unreclaimable? %s"
4021 "\n",
4022 zone->name,
88f5acf8 4023 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4024 K(min_wmark_pages(zone)),
4025 K(low_wmark_pages(zone)),
4026 K(high_wmark_pages(zone)),
4f98a2fe
RR
4027 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4028 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4029 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4030 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4031 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4032 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4033 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4034 K(zone->present_pages),
9feedc9d 4035 K(zone->managed_pages),
4a0aa73f
KM
4036 K(zone_page_state(zone, NR_MLOCK)),
4037 K(zone_page_state(zone, NR_FILE_DIRTY)),
4038 K(zone_page_state(zone, NR_WRITEBACK)),
4039 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4040 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4041 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4042 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4043 zone_page_state(zone, NR_KERNEL_STACK) *
4044 THREAD_SIZE / 1024,
4a0aa73f
KM
4045 K(zone_page_state(zone, NR_PAGETABLE)),
4046 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4047 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4048 K(free_pcp),
4049 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4050 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4051 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4052 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4053 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4054 );
4055 printk("lowmem_reserve[]:");
4056 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4057 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4058 printk("\n");
4059 }
4060
ee99c71c 4061 for_each_populated_zone(zone) {
d00181b9
KS
4062 unsigned int order;
4063 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4064 unsigned char types[MAX_ORDER];
1da177e4 4065
7bf02ea2 4066 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4067 continue;
1da177e4
LT
4068 show_node(zone);
4069 printk("%s: ", zone->name);
1da177e4
LT
4070
4071 spin_lock_irqsave(&zone->lock, flags);
4072 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4073 struct free_area *area = &zone->free_area[order];
4074 int type;
4075
4076 nr[order] = area->nr_free;
8f9de51a 4077 total += nr[order] << order;
377e4f16
RV
4078
4079 types[order] = 0;
4080 for (type = 0; type < MIGRATE_TYPES; type++) {
4081 if (!list_empty(&area->free_list[type]))
4082 types[order] |= 1 << type;
4083 }
1da177e4
LT
4084 }
4085 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4086 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4087 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4088 if (nr[order])
4089 show_migration_types(types[order]);
4090 }
1da177e4
LT
4091 printk("= %lukB\n", K(total));
4092 }
4093
949f7ec5
DR
4094 hugetlb_show_meminfo();
4095
e6f3602d
LW
4096 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4097
1da177e4
LT
4098 show_swap_cache_info();
4099}
4100
19770b32
MG
4101static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4102{
4103 zoneref->zone = zone;
4104 zoneref->zone_idx = zone_idx(zone);
4105}
4106
1da177e4
LT
4107/*
4108 * Builds allocation fallback zone lists.
1a93205b
CL
4109 *
4110 * Add all populated zones of a node to the zonelist.
1da177e4 4111 */
f0c0b2b8 4112static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4113 int nr_zones)
1da177e4 4114{
1a93205b 4115 struct zone *zone;
bc732f1d 4116 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4117
4118 do {
2f6726e5 4119 zone_type--;
070f8032 4120 zone = pgdat->node_zones + zone_type;
1a93205b 4121 if (populated_zone(zone)) {
dd1a239f
MG
4122 zoneref_set_zone(zone,
4123 &zonelist->_zonerefs[nr_zones++]);
070f8032 4124 check_highest_zone(zone_type);
1da177e4 4125 }
2f6726e5 4126 } while (zone_type);
bc732f1d 4127
070f8032 4128 return nr_zones;
1da177e4
LT
4129}
4130
f0c0b2b8
KH
4131
4132/*
4133 * zonelist_order:
4134 * 0 = automatic detection of better ordering.
4135 * 1 = order by ([node] distance, -zonetype)
4136 * 2 = order by (-zonetype, [node] distance)
4137 *
4138 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4139 * the same zonelist. So only NUMA can configure this param.
4140 */
4141#define ZONELIST_ORDER_DEFAULT 0
4142#define ZONELIST_ORDER_NODE 1
4143#define ZONELIST_ORDER_ZONE 2
4144
4145/* zonelist order in the kernel.
4146 * set_zonelist_order() will set this to NODE or ZONE.
4147 */
4148static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4149static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4150
4151
1da177e4 4152#ifdef CONFIG_NUMA
f0c0b2b8
KH
4153/* The value user specified ....changed by config */
4154static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4155/* string for sysctl */
4156#define NUMA_ZONELIST_ORDER_LEN 16
4157char numa_zonelist_order[16] = "default";
4158
4159/*
4160 * interface for configure zonelist ordering.
4161 * command line option "numa_zonelist_order"
4162 * = "[dD]efault - default, automatic configuration.
4163 * = "[nN]ode - order by node locality, then by zone within node
4164 * = "[zZ]one - order by zone, then by locality within zone
4165 */
4166
4167static int __parse_numa_zonelist_order(char *s)
4168{
4169 if (*s == 'd' || *s == 'D') {
4170 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4171 } else if (*s == 'n' || *s == 'N') {
4172 user_zonelist_order = ZONELIST_ORDER_NODE;
4173 } else if (*s == 'z' || *s == 'Z') {
4174 user_zonelist_order = ZONELIST_ORDER_ZONE;
4175 } else {
1170532b 4176 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4177 return -EINVAL;
4178 }
4179 return 0;
4180}
4181
4182static __init int setup_numa_zonelist_order(char *s)
4183{
ecb256f8
VL
4184 int ret;
4185
4186 if (!s)
4187 return 0;
4188
4189 ret = __parse_numa_zonelist_order(s);
4190 if (ret == 0)
4191 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4192
4193 return ret;
f0c0b2b8
KH
4194}
4195early_param("numa_zonelist_order", setup_numa_zonelist_order);
4196
4197/*
4198 * sysctl handler for numa_zonelist_order
4199 */
cccad5b9 4200int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4201 void __user *buffer, size_t *length,
f0c0b2b8
KH
4202 loff_t *ppos)
4203{
4204 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4205 int ret;
443c6f14 4206 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4207
443c6f14 4208 mutex_lock(&zl_order_mutex);
dacbde09
CG
4209 if (write) {
4210 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4211 ret = -EINVAL;
4212 goto out;
4213 }
4214 strcpy(saved_string, (char *)table->data);
4215 }
8d65af78 4216 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4217 if (ret)
443c6f14 4218 goto out;
f0c0b2b8
KH
4219 if (write) {
4220 int oldval = user_zonelist_order;
dacbde09
CG
4221
4222 ret = __parse_numa_zonelist_order((char *)table->data);
4223 if (ret) {
f0c0b2b8
KH
4224 /*
4225 * bogus value. restore saved string
4226 */
dacbde09 4227 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4228 NUMA_ZONELIST_ORDER_LEN);
4229 user_zonelist_order = oldval;
4eaf3f64
HL
4230 } else if (oldval != user_zonelist_order) {
4231 mutex_lock(&zonelists_mutex);
9adb62a5 4232 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4233 mutex_unlock(&zonelists_mutex);
4234 }
f0c0b2b8 4235 }
443c6f14
AK
4236out:
4237 mutex_unlock(&zl_order_mutex);
4238 return ret;
f0c0b2b8
KH
4239}
4240
4241
62bc62a8 4242#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4243static int node_load[MAX_NUMNODES];
4244
1da177e4 4245/**
4dc3b16b 4246 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4247 * @node: node whose fallback list we're appending
4248 * @used_node_mask: nodemask_t of already used nodes
4249 *
4250 * We use a number of factors to determine which is the next node that should
4251 * appear on a given node's fallback list. The node should not have appeared
4252 * already in @node's fallback list, and it should be the next closest node
4253 * according to the distance array (which contains arbitrary distance values
4254 * from each node to each node in the system), and should also prefer nodes
4255 * with no CPUs, since presumably they'll have very little allocation pressure
4256 * on them otherwise.
4257 * It returns -1 if no node is found.
4258 */
f0c0b2b8 4259static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4260{
4cf808eb 4261 int n, val;
1da177e4 4262 int min_val = INT_MAX;
00ef2d2f 4263 int best_node = NUMA_NO_NODE;
a70f7302 4264 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4265
4cf808eb
LT
4266 /* Use the local node if we haven't already */
4267 if (!node_isset(node, *used_node_mask)) {
4268 node_set(node, *used_node_mask);
4269 return node;
4270 }
1da177e4 4271
4b0ef1fe 4272 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4273
4274 /* Don't want a node to appear more than once */
4275 if (node_isset(n, *used_node_mask))
4276 continue;
4277
1da177e4
LT
4278 /* Use the distance array to find the distance */
4279 val = node_distance(node, n);
4280
4cf808eb
LT
4281 /* Penalize nodes under us ("prefer the next node") */
4282 val += (n < node);
4283
1da177e4 4284 /* Give preference to headless and unused nodes */
a70f7302
RR
4285 tmp = cpumask_of_node(n);
4286 if (!cpumask_empty(tmp))
1da177e4
LT
4287 val += PENALTY_FOR_NODE_WITH_CPUS;
4288
4289 /* Slight preference for less loaded node */
4290 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4291 val += node_load[n];
4292
4293 if (val < min_val) {
4294 min_val = val;
4295 best_node = n;
4296 }
4297 }
4298
4299 if (best_node >= 0)
4300 node_set(best_node, *used_node_mask);
4301
4302 return best_node;
4303}
4304
f0c0b2b8
KH
4305
4306/*
4307 * Build zonelists ordered by node and zones within node.
4308 * This results in maximum locality--normal zone overflows into local
4309 * DMA zone, if any--but risks exhausting DMA zone.
4310 */
4311static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4312{
f0c0b2b8 4313 int j;
1da177e4 4314 struct zonelist *zonelist;
f0c0b2b8 4315
54a6eb5c 4316 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4317 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4318 ;
bc732f1d 4319 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4320 zonelist->_zonerefs[j].zone = NULL;
4321 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4322}
4323
523b9458
CL
4324/*
4325 * Build gfp_thisnode zonelists
4326 */
4327static void build_thisnode_zonelists(pg_data_t *pgdat)
4328{
523b9458
CL
4329 int j;
4330 struct zonelist *zonelist;
4331
54a6eb5c 4332 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4333 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4334 zonelist->_zonerefs[j].zone = NULL;
4335 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4336}
4337
f0c0b2b8
KH
4338/*
4339 * Build zonelists ordered by zone and nodes within zones.
4340 * This results in conserving DMA zone[s] until all Normal memory is
4341 * exhausted, but results in overflowing to remote node while memory
4342 * may still exist in local DMA zone.
4343 */
4344static int node_order[MAX_NUMNODES];
4345
4346static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4347{
f0c0b2b8
KH
4348 int pos, j, node;
4349 int zone_type; /* needs to be signed */
4350 struct zone *z;
4351 struct zonelist *zonelist;
4352
54a6eb5c
MG
4353 zonelist = &pgdat->node_zonelists[0];
4354 pos = 0;
4355 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4356 for (j = 0; j < nr_nodes; j++) {
4357 node = node_order[j];
4358 z = &NODE_DATA(node)->node_zones[zone_type];
4359 if (populated_zone(z)) {
dd1a239f
MG
4360 zoneref_set_zone(z,
4361 &zonelist->_zonerefs[pos++]);
54a6eb5c 4362 check_highest_zone(zone_type);
f0c0b2b8
KH
4363 }
4364 }
f0c0b2b8 4365 }
dd1a239f
MG
4366 zonelist->_zonerefs[pos].zone = NULL;
4367 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4368}
4369
3193913c
MG
4370#if defined(CONFIG_64BIT)
4371/*
4372 * Devices that require DMA32/DMA are relatively rare and do not justify a
4373 * penalty to every machine in case the specialised case applies. Default
4374 * to Node-ordering on 64-bit NUMA machines
4375 */
4376static int default_zonelist_order(void)
4377{
4378 return ZONELIST_ORDER_NODE;
4379}
4380#else
4381/*
4382 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4383 * by the kernel. If processes running on node 0 deplete the low memory zone
4384 * then reclaim will occur more frequency increasing stalls and potentially
4385 * be easier to OOM if a large percentage of the zone is under writeback or
4386 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4387 * Hence, default to zone ordering on 32-bit.
4388 */
f0c0b2b8
KH
4389static int default_zonelist_order(void)
4390{
f0c0b2b8
KH
4391 return ZONELIST_ORDER_ZONE;
4392}
3193913c 4393#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4394
4395static void set_zonelist_order(void)
4396{
4397 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4398 current_zonelist_order = default_zonelist_order();
4399 else
4400 current_zonelist_order = user_zonelist_order;
4401}
4402
4403static void build_zonelists(pg_data_t *pgdat)
4404{
c00eb15a 4405 int i, node, load;
1da177e4 4406 nodemask_t used_mask;
f0c0b2b8
KH
4407 int local_node, prev_node;
4408 struct zonelist *zonelist;
d00181b9 4409 unsigned int order = current_zonelist_order;
1da177e4
LT
4410
4411 /* initialize zonelists */
523b9458 4412 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4413 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4414 zonelist->_zonerefs[0].zone = NULL;
4415 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4416 }
4417
4418 /* NUMA-aware ordering of nodes */
4419 local_node = pgdat->node_id;
62bc62a8 4420 load = nr_online_nodes;
1da177e4
LT
4421 prev_node = local_node;
4422 nodes_clear(used_mask);
f0c0b2b8 4423
f0c0b2b8 4424 memset(node_order, 0, sizeof(node_order));
c00eb15a 4425 i = 0;
f0c0b2b8 4426
1da177e4
LT
4427 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4428 /*
4429 * We don't want to pressure a particular node.
4430 * So adding penalty to the first node in same
4431 * distance group to make it round-robin.
4432 */
957f822a
DR
4433 if (node_distance(local_node, node) !=
4434 node_distance(local_node, prev_node))
f0c0b2b8
KH
4435 node_load[node] = load;
4436
1da177e4
LT
4437 prev_node = node;
4438 load--;
f0c0b2b8
KH
4439 if (order == ZONELIST_ORDER_NODE)
4440 build_zonelists_in_node_order(pgdat, node);
4441 else
c00eb15a 4442 node_order[i++] = node; /* remember order */
f0c0b2b8 4443 }
1da177e4 4444
f0c0b2b8
KH
4445 if (order == ZONELIST_ORDER_ZONE) {
4446 /* calculate node order -- i.e., DMA last! */
c00eb15a 4447 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4448 }
523b9458
CL
4449
4450 build_thisnode_zonelists(pgdat);
1da177e4
LT
4451}
4452
7aac7898
LS
4453#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4454/*
4455 * Return node id of node used for "local" allocations.
4456 * I.e., first node id of first zone in arg node's generic zonelist.
4457 * Used for initializing percpu 'numa_mem', which is used primarily
4458 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4459 */
4460int local_memory_node(int node)
4461{
c33d6c06 4462 struct zoneref *z;
7aac7898 4463
c33d6c06 4464 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4465 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4466 NULL);
4467 return z->zone->node;
7aac7898
LS
4468}
4469#endif
f0c0b2b8 4470
1da177e4
LT
4471#else /* CONFIG_NUMA */
4472
f0c0b2b8
KH
4473static void set_zonelist_order(void)
4474{
4475 current_zonelist_order = ZONELIST_ORDER_ZONE;
4476}
4477
4478static void build_zonelists(pg_data_t *pgdat)
1da177e4 4479{
19655d34 4480 int node, local_node;
54a6eb5c
MG
4481 enum zone_type j;
4482 struct zonelist *zonelist;
1da177e4
LT
4483
4484 local_node = pgdat->node_id;
1da177e4 4485
54a6eb5c 4486 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4487 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4488
54a6eb5c
MG
4489 /*
4490 * Now we build the zonelist so that it contains the zones
4491 * of all the other nodes.
4492 * We don't want to pressure a particular node, so when
4493 * building the zones for node N, we make sure that the
4494 * zones coming right after the local ones are those from
4495 * node N+1 (modulo N)
4496 */
4497 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4498 if (!node_online(node))
4499 continue;
bc732f1d 4500 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4501 }
54a6eb5c
MG
4502 for (node = 0; node < local_node; node++) {
4503 if (!node_online(node))
4504 continue;
bc732f1d 4505 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4506 }
4507
dd1a239f
MG
4508 zonelist->_zonerefs[j].zone = NULL;
4509 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4510}
4511
4512#endif /* CONFIG_NUMA */
4513
99dcc3e5
CL
4514/*
4515 * Boot pageset table. One per cpu which is going to be used for all
4516 * zones and all nodes. The parameters will be set in such a way
4517 * that an item put on a list will immediately be handed over to
4518 * the buddy list. This is safe since pageset manipulation is done
4519 * with interrupts disabled.
4520 *
4521 * The boot_pagesets must be kept even after bootup is complete for
4522 * unused processors and/or zones. They do play a role for bootstrapping
4523 * hotplugged processors.
4524 *
4525 * zoneinfo_show() and maybe other functions do
4526 * not check if the processor is online before following the pageset pointer.
4527 * Other parts of the kernel may not check if the zone is available.
4528 */
4529static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4530static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4531static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4532
4eaf3f64
HL
4533/*
4534 * Global mutex to protect against size modification of zonelists
4535 * as well as to serialize pageset setup for the new populated zone.
4536 */
4537DEFINE_MUTEX(zonelists_mutex);
4538
9b1a4d38 4539/* return values int ....just for stop_machine() */
4ed7e022 4540static int __build_all_zonelists(void *data)
1da177e4 4541{
6811378e 4542 int nid;
99dcc3e5 4543 int cpu;
9adb62a5 4544 pg_data_t *self = data;
9276b1bc 4545
7f9cfb31
BL
4546#ifdef CONFIG_NUMA
4547 memset(node_load, 0, sizeof(node_load));
4548#endif
9adb62a5
JL
4549
4550 if (self && !node_online(self->node_id)) {
4551 build_zonelists(self);
9adb62a5
JL
4552 }
4553
9276b1bc 4554 for_each_online_node(nid) {
7ea1530a
CL
4555 pg_data_t *pgdat = NODE_DATA(nid);
4556
4557 build_zonelists(pgdat);
9276b1bc 4558 }
99dcc3e5
CL
4559
4560 /*
4561 * Initialize the boot_pagesets that are going to be used
4562 * for bootstrapping processors. The real pagesets for
4563 * each zone will be allocated later when the per cpu
4564 * allocator is available.
4565 *
4566 * boot_pagesets are used also for bootstrapping offline
4567 * cpus if the system is already booted because the pagesets
4568 * are needed to initialize allocators on a specific cpu too.
4569 * F.e. the percpu allocator needs the page allocator which
4570 * needs the percpu allocator in order to allocate its pagesets
4571 * (a chicken-egg dilemma).
4572 */
7aac7898 4573 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4574 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4575
7aac7898
LS
4576#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4577 /*
4578 * We now know the "local memory node" for each node--
4579 * i.e., the node of the first zone in the generic zonelist.
4580 * Set up numa_mem percpu variable for on-line cpus. During
4581 * boot, only the boot cpu should be on-line; we'll init the
4582 * secondary cpus' numa_mem as they come on-line. During
4583 * node/memory hotplug, we'll fixup all on-line cpus.
4584 */
4585 if (cpu_online(cpu))
4586 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4587#endif
4588 }
4589
6811378e
YG
4590 return 0;
4591}
4592
061f67bc
RV
4593static noinline void __init
4594build_all_zonelists_init(void)
4595{
4596 __build_all_zonelists(NULL);
4597 mminit_verify_zonelist();
4598 cpuset_init_current_mems_allowed();
4599}
4600
4eaf3f64
HL
4601/*
4602 * Called with zonelists_mutex held always
4603 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4604 *
4605 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4606 * [we're only called with non-NULL zone through __meminit paths] and
4607 * (2) call of __init annotated helper build_all_zonelists_init
4608 * [protected by SYSTEM_BOOTING].
4eaf3f64 4609 */
9adb62a5 4610void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4611{
f0c0b2b8
KH
4612 set_zonelist_order();
4613
6811378e 4614 if (system_state == SYSTEM_BOOTING) {
061f67bc 4615 build_all_zonelists_init();
6811378e 4616 } else {
e9959f0f 4617#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4618 if (zone)
4619 setup_zone_pageset(zone);
e9959f0f 4620#endif
dd1895e2
CS
4621 /* we have to stop all cpus to guarantee there is no user
4622 of zonelist */
9adb62a5 4623 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4624 /* cpuset refresh routine should be here */
4625 }
bd1e22b8 4626 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4627 /*
4628 * Disable grouping by mobility if the number of pages in the
4629 * system is too low to allow the mechanism to work. It would be
4630 * more accurate, but expensive to check per-zone. This check is
4631 * made on memory-hotadd so a system can start with mobility
4632 * disabled and enable it later
4633 */
d9c23400 4634 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4635 page_group_by_mobility_disabled = 1;
4636 else
4637 page_group_by_mobility_disabled = 0;
4638
756a025f
JP
4639 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4640 nr_online_nodes,
4641 zonelist_order_name[current_zonelist_order],
4642 page_group_by_mobility_disabled ? "off" : "on",
4643 vm_total_pages);
f0c0b2b8 4644#ifdef CONFIG_NUMA
f88dfff5 4645 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4646#endif
1da177e4
LT
4647}
4648
4649/*
4650 * Helper functions to size the waitqueue hash table.
4651 * Essentially these want to choose hash table sizes sufficiently
4652 * large so that collisions trying to wait on pages are rare.
4653 * But in fact, the number of active page waitqueues on typical
4654 * systems is ridiculously low, less than 200. So this is even
4655 * conservative, even though it seems large.
4656 *
4657 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4658 * waitqueues, i.e. the size of the waitq table given the number of pages.
4659 */
4660#define PAGES_PER_WAITQUEUE 256
4661
cca448fe 4662#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4663static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4664{
4665 unsigned long size = 1;
4666
4667 pages /= PAGES_PER_WAITQUEUE;
4668
4669 while (size < pages)
4670 size <<= 1;
4671
4672 /*
4673 * Once we have dozens or even hundreds of threads sleeping
4674 * on IO we've got bigger problems than wait queue collision.
4675 * Limit the size of the wait table to a reasonable size.
4676 */
4677 size = min(size, 4096UL);
4678
4679 return max(size, 4UL);
4680}
cca448fe
YG
4681#else
4682/*
4683 * A zone's size might be changed by hot-add, so it is not possible to determine
4684 * a suitable size for its wait_table. So we use the maximum size now.
4685 *
4686 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4687 *
4688 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4689 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4690 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4691 *
4692 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4693 * or more by the traditional way. (See above). It equals:
4694 *
4695 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4696 * ia64(16K page size) : = ( 8G + 4M)byte.
4697 * powerpc (64K page size) : = (32G +16M)byte.
4698 */
4699static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4700{
4701 return 4096UL;
4702}
4703#endif
1da177e4
LT
4704
4705/*
4706 * This is an integer logarithm so that shifts can be used later
4707 * to extract the more random high bits from the multiplicative
4708 * hash function before the remainder is taken.
4709 */
4710static inline unsigned long wait_table_bits(unsigned long size)
4711{
4712 return ffz(~size);
4713}
4714
1da177e4
LT
4715/*
4716 * Initially all pages are reserved - free ones are freed
4717 * up by free_all_bootmem() once the early boot process is
4718 * done. Non-atomic initialization, single-pass.
4719 */
c09b4240 4720void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4721 unsigned long start_pfn, enum memmap_context context)
1da177e4 4722{
4b94ffdc 4723 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4724 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4725 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4726 unsigned long pfn;
3a80a7fa 4727 unsigned long nr_initialised = 0;
342332e6
TI
4728#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4729 struct memblock_region *r = NULL, *tmp;
4730#endif
1da177e4 4731
22b31eec
HD
4732 if (highest_memmap_pfn < end_pfn - 1)
4733 highest_memmap_pfn = end_pfn - 1;
4734
4b94ffdc
DW
4735 /*
4736 * Honor reservation requested by the driver for this ZONE_DEVICE
4737 * memory
4738 */
4739 if (altmap && start_pfn == altmap->base_pfn)
4740 start_pfn += altmap->reserve;
4741
cbe8dd4a 4742 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4743 /*
b72d0ffb
AM
4744 * There can be holes in boot-time mem_map[]s handed to this
4745 * function. They do not exist on hotplugged memory.
a2f3aa02 4746 */
b72d0ffb
AM
4747 if (context != MEMMAP_EARLY)
4748 goto not_early;
4749
4750 if (!early_pfn_valid(pfn))
4751 continue;
4752 if (!early_pfn_in_nid(pfn, nid))
4753 continue;
4754 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4755 break;
342332e6
TI
4756
4757#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4758 /*
4759 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4760 * from zone_movable_pfn[nid] to end of each node should be
4761 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4762 */
4763 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4764 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4765 continue;
342332e6 4766
b72d0ffb
AM
4767 /*
4768 * Check given memblock attribute by firmware which can affect
4769 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4770 * mirrored, it's an overlapped memmap init. skip it.
4771 */
4772 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4773 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4774 for_each_memblock(memory, tmp)
4775 if (pfn < memblock_region_memory_end_pfn(tmp))
4776 break;
4777 r = tmp;
4778 }
4779 if (pfn >= memblock_region_memory_base_pfn(r) &&
4780 memblock_is_mirror(r)) {
4781 /* already initialized as NORMAL */
4782 pfn = memblock_region_memory_end_pfn(r);
4783 continue;
342332e6 4784 }
a2f3aa02 4785 }
b72d0ffb 4786#endif
ac5d2539 4787
b72d0ffb 4788not_early:
ac5d2539
MG
4789 /*
4790 * Mark the block movable so that blocks are reserved for
4791 * movable at startup. This will force kernel allocations
4792 * to reserve their blocks rather than leaking throughout
4793 * the address space during boot when many long-lived
974a786e 4794 * kernel allocations are made.
ac5d2539
MG
4795 *
4796 * bitmap is created for zone's valid pfn range. but memmap
4797 * can be created for invalid pages (for alignment)
4798 * check here not to call set_pageblock_migratetype() against
4799 * pfn out of zone.
4800 */
4801 if (!(pfn & (pageblock_nr_pages - 1))) {
4802 struct page *page = pfn_to_page(pfn);
4803
4804 __init_single_page(page, pfn, zone, nid);
4805 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4806 } else {
4807 __init_single_pfn(pfn, zone, nid);
4808 }
1da177e4
LT
4809 }
4810}
4811
1e548deb 4812static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4813{
7aeb09f9 4814 unsigned int order, t;
b2a0ac88
MG
4815 for_each_migratetype_order(order, t) {
4816 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4817 zone->free_area[order].nr_free = 0;
4818 }
4819}
4820
4821#ifndef __HAVE_ARCH_MEMMAP_INIT
4822#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4823 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4824#endif
4825
7cd2b0a3 4826static int zone_batchsize(struct zone *zone)
e7c8d5c9 4827{
3a6be87f 4828#ifdef CONFIG_MMU
e7c8d5c9
CL
4829 int batch;
4830
4831 /*
4832 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4833 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4834 *
4835 * OK, so we don't know how big the cache is. So guess.
4836 */
b40da049 4837 batch = zone->managed_pages / 1024;
ba56e91c
SR
4838 if (batch * PAGE_SIZE > 512 * 1024)
4839 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4840 batch /= 4; /* We effectively *= 4 below */
4841 if (batch < 1)
4842 batch = 1;
4843
4844 /*
0ceaacc9
NP
4845 * Clamp the batch to a 2^n - 1 value. Having a power
4846 * of 2 value was found to be more likely to have
4847 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4848 *
0ceaacc9
NP
4849 * For example if 2 tasks are alternately allocating
4850 * batches of pages, one task can end up with a lot
4851 * of pages of one half of the possible page colors
4852 * and the other with pages of the other colors.
e7c8d5c9 4853 */
9155203a 4854 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4855
e7c8d5c9 4856 return batch;
3a6be87f
DH
4857
4858#else
4859 /* The deferral and batching of frees should be suppressed under NOMMU
4860 * conditions.
4861 *
4862 * The problem is that NOMMU needs to be able to allocate large chunks
4863 * of contiguous memory as there's no hardware page translation to
4864 * assemble apparent contiguous memory from discontiguous pages.
4865 *
4866 * Queueing large contiguous runs of pages for batching, however,
4867 * causes the pages to actually be freed in smaller chunks. As there
4868 * can be a significant delay between the individual batches being
4869 * recycled, this leads to the once large chunks of space being
4870 * fragmented and becoming unavailable for high-order allocations.
4871 */
4872 return 0;
4873#endif
e7c8d5c9
CL
4874}
4875
8d7a8fa9
CS
4876/*
4877 * pcp->high and pcp->batch values are related and dependent on one another:
4878 * ->batch must never be higher then ->high.
4879 * The following function updates them in a safe manner without read side
4880 * locking.
4881 *
4882 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4883 * those fields changing asynchronously (acording the the above rule).
4884 *
4885 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4886 * outside of boot time (or some other assurance that no concurrent updaters
4887 * exist).
4888 */
4889static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4890 unsigned long batch)
4891{
4892 /* start with a fail safe value for batch */
4893 pcp->batch = 1;
4894 smp_wmb();
4895
4896 /* Update high, then batch, in order */
4897 pcp->high = high;
4898 smp_wmb();
4899
4900 pcp->batch = batch;
4901}
4902
3664033c 4903/* a companion to pageset_set_high() */
4008bab7
CS
4904static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4905{
8d7a8fa9 4906 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4907}
4908
88c90dbc 4909static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4910{
4911 struct per_cpu_pages *pcp;
5f8dcc21 4912 int migratetype;
2caaad41 4913
1c6fe946
MD
4914 memset(p, 0, sizeof(*p));
4915
3dfa5721 4916 pcp = &p->pcp;
2caaad41 4917 pcp->count = 0;
5f8dcc21
MG
4918 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4919 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4920}
4921
88c90dbc
CS
4922static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4923{
4924 pageset_init(p);
4925 pageset_set_batch(p, batch);
4926}
4927
8ad4b1fb 4928/*
3664033c 4929 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4930 * to the value high for the pageset p.
4931 */
3664033c 4932static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4933 unsigned long high)
4934{
8d7a8fa9
CS
4935 unsigned long batch = max(1UL, high / 4);
4936 if ((high / 4) > (PAGE_SHIFT * 8))
4937 batch = PAGE_SHIFT * 8;
8ad4b1fb 4938
8d7a8fa9 4939 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4940}
4941
7cd2b0a3
DR
4942static void pageset_set_high_and_batch(struct zone *zone,
4943 struct per_cpu_pageset *pcp)
56cef2b8 4944{
56cef2b8 4945 if (percpu_pagelist_fraction)
3664033c 4946 pageset_set_high(pcp,
56cef2b8
CS
4947 (zone->managed_pages /
4948 percpu_pagelist_fraction));
4949 else
4950 pageset_set_batch(pcp, zone_batchsize(zone));
4951}
4952
169f6c19
CS
4953static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4954{
4955 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4956
4957 pageset_init(pcp);
4958 pageset_set_high_and_batch(zone, pcp);
4959}
4960
4ed7e022 4961static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4962{
4963 int cpu;
319774e2 4964 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4965 for_each_possible_cpu(cpu)
4966 zone_pageset_init(zone, cpu);
319774e2
WF
4967}
4968
2caaad41 4969/*
99dcc3e5
CL
4970 * Allocate per cpu pagesets and initialize them.
4971 * Before this call only boot pagesets were available.
e7c8d5c9 4972 */
99dcc3e5 4973void __init setup_per_cpu_pageset(void)
e7c8d5c9 4974{
99dcc3e5 4975 struct zone *zone;
e7c8d5c9 4976
319774e2
WF
4977 for_each_populated_zone(zone)
4978 setup_zone_pageset(zone);
e7c8d5c9
CL
4979}
4980
577a32f6 4981static noinline __init_refok
cca448fe 4982int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4983{
4984 int i;
cca448fe 4985 size_t alloc_size;
ed8ece2e
DH
4986
4987 /*
4988 * The per-page waitqueue mechanism uses hashed waitqueues
4989 * per zone.
4990 */
02b694de
YG
4991 zone->wait_table_hash_nr_entries =
4992 wait_table_hash_nr_entries(zone_size_pages);
4993 zone->wait_table_bits =
4994 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4995 alloc_size = zone->wait_table_hash_nr_entries
4996 * sizeof(wait_queue_head_t);
4997
cd94b9db 4998 if (!slab_is_available()) {
cca448fe 4999 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5000 memblock_virt_alloc_node_nopanic(
5001 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5002 } else {
5003 /*
5004 * This case means that a zone whose size was 0 gets new memory
5005 * via memory hot-add.
5006 * But it may be the case that a new node was hot-added. In
5007 * this case vmalloc() will not be able to use this new node's
5008 * memory - this wait_table must be initialized to use this new
5009 * node itself as well.
5010 * To use this new node's memory, further consideration will be
5011 * necessary.
5012 */
8691f3a7 5013 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5014 }
5015 if (!zone->wait_table)
5016 return -ENOMEM;
ed8ece2e 5017
b8af2941 5018 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5019 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5020
5021 return 0;
ed8ece2e
DH
5022}
5023
c09b4240 5024static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5025{
99dcc3e5
CL
5026 /*
5027 * per cpu subsystem is not up at this point. The following code
5028 * relies on the ability of the linker to provide the
5029 * offset of a (static) per cpu variable into the per cpu area.
5030 */
5031 zone->pageset = &boot_pageset;
ed8ece2e 5032
b38a8725 5033 if (populated_zone(zone))
99dcc3e5
CL
5034 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5035 zone->name, zone->present_pages,
5036 zone_batchsize(zone));
ed8ece2e
DH
5037}
5038
4ed7e022 5039int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5040 unsigned long zone_start_pfn,
b171e409 5041 unsigned long size)
ed8ece2e
DH
5042{
5043 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5044 int ret;
5045 ret = zone_wait_table_init(zone, size);
5046 if (ret)
5047 return ret;
ed8ece2e
DH
5048 pgdat->nr_zones = zone_idx(zone) + 1;
5049
ed8ece2e
DH
5050 zone->zone_start_pfn = zone_start_pfn;
5051
708614e6
MG
5052 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5053 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5054 pgdat->node_id,
5055 (unsigned long)zone_idx(zone),
5056 zone_start_pfn, (zone_start_pfn + size));
5057
1e548deb 5058 zone_init_free_lists(zone);
718127cc
YG
5059
5060 return 0;
ed8ece2e
DH
5061}
5062
0ee332c1 5063#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5064#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5065
c713216d
MG
5066/*
5067 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5068 */
8a942fde
MG
5069int __meminit __early_pfn_to_nid(unsigned long pfn,
5070 struct mminit_pfnnid_cache *state)
c713216d 5071{
c13291a5 5072 unsigned long start_pfn, end_pfn;
e76b63f8 5073 int nid;
7c243c71 5074
8a942fde
MG
5075 if (state->last_start <= pfn && pfn < state->last_end)
5076 return state->last_nid;
c713216d 5077
e76b63f8
YL
5078 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5079 if (nid != -1) {
8a942fde
MG
5080 state->last_start = start_pfn;
5081 state->last_end = end_pfn;
5082 state->last_nid = nid;
e76b63f8
YL
5083 }
5084
5085 return nid;
c713216d
MG
5086}
5087#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5088
c713216d 5089/**
6782832e 5090 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5091 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5092 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5093 *
7d018176
ZZ
5094 * If an architecture guarantees that all ranges registered contain no holes
5095 * and may be freed, this this function may be used instead of calling
5096 * memblock_free_early_nid() manually.
c713216d 5097 */
c13291a5 5098void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5099{
c13291a5
TH
5100 unsigned long start_pfn, end_pfn;
5101 int i, this_nid;
edbe7d23 5102
c13291a5
TH
5103 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5104 start_pfn = min(start_pfn, max_low_pfn);
5105 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5106
c13291a5 5107 if (start_pfn < end_pfn)
6782832e
SS
5108 memblock_free_early_nid(PFN_PHYS(start_pfn),
5109 (end_pfn - start_pfn) << PAGE_SHIFT,
5110 this_nid);
edbe7d23 5111 }
edbe7d23 5112}
edbe7d23 5113
c713216d
MG
5114/**
5115 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5116 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5117 *
7d018176
ZZ
5118 * If an architecture guarantees that all ranges registered contain no holes and may
5119 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5120 */
5121void __init sparse_memory_present_with_active_regions(int nid)
5122{
c13291a5
TH
5123 unsigned long start_pfn, end_pfn;
5124 int i, this_nid;
c713216d 5125
c13291a5
TH
5126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5127 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5128}
5129
5130/**
5131 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5132 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5133 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5134 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5135 *
5136 * It returns the start and end page frame of a node based on information
7d018176 5137 * provided by memblock_set_node(). If called for a node
c713216d 5138 * with no available memory, a warning is printed and the start and end
88ca3b94 5139 * PFNs will be 0.
c713216d 5140 */
a3142c8e 5141void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5142 unsigned long *start_pfn, unsigned long *end_pfn)
5143{
c13291a5 5144 unsigned long this_start_pfn, this_end_pfn;
c713216d 5145 int i;
c13291a5 5146
c713216d
MG
5147 *start_pfn = -1UL;
5148 *end_pfn = 0;
5149
c13291a5
TH
5150 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5151 *start_pfn = min(*start_pfn, this_start_pfn);
5152 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5153 }
5154
633c0666 5155 if (*start_pfn == -1UL)
c713216d 5156 *start_pfn = 0;
c713216d
MG
5157}
5158
2a1e274a
MG
5159/*
5160 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5161 * assumption is made that zones within a node are ordered in monotonic
5162 * increasing memory addresses so that the "highest" populated zone is used
5163 */
b69a7288 5164static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5165{
5166 int zone_index;
5167 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5168 if (zone_index == ZONE_MOVABLE)
5169 continue;
5170
5171 if (arch_zone_highest_possible_pfn[zone_index] >
5172 arch_zone_lowest_possible_pfn[zone_index])
5173 break;
5174 }
5175
5176 VM_BUG_ON(zone_index == -1);
5177 movable_zone = zone_index;
5178}
5179
5180/*
5181 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5182 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5183 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5184 * in each node depending on the size of each node and how evenly kernelcore
5185 * is distributed. This helper function adjusts the zone ranges
5186 * provided by the architecture for a given node by using the end of the
5187 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5188 * zones within a node are in order of monotonic increases memory addresses
5189 */
b69a7288 5190static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5191 unsigned long zone_type,
5192 unsigned long node_start_pfn,
5193 unsigned long node_end_pfn,
5194 unsigned long *zone_start_pfn,
5195 unsigned long *zone_end_pfn)
5196{
5197 /* Only adjust if ZONE_MOVABLE is on this node */
5198 if (zone_movable_pfn[nid]) {
5199 /* Size ZONE_MOVABLE */
5200 if (zone_type == ZONE_MOVABLE) {
5201 *zone_start_pfn = zone_movable_pfn[nid];
5202 *zone_end_pfn = min(node_end_pfn,
5203 arch_zone_highest_possible_pfn[movable_zone]);
5204
2a1e274a
MG
5205 /* Check if this whole range is within ZONE_MOVABLE */
5206 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5207 *zone_start_pfn = *zone_end_pfn;
5208 }
5209}
5210
c713216d
MG
5211/*
5212 * Return the number of pages a zone spans in a node, including holes
5213 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5214 */
6ea6e688 5215static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5216 unsigned long zone_type,
7960aedd
ZY
5217 unsigned long node_start_pfn,
5218 unsigned long node_end_pfn,
d91749c1
TI
5219 unsigned long *zone_start_pfn,
5220 unsigned long *zone_end_pfn,
c713216d
MG
5221 unsigned long *ignored)
5222{
b5685e92 5223 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5224 if (!node_start_pfn && !node_end_pfn)
5225 return 0;
5226
7960aedd 5227 /* Get the start and end of the zone */
d91749c1
TI
5228 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5229 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5230 adjust_zone_range_for_zone_movable(nid, zone_type,
5231 node_start_pfn, node_end_pfn,
d91749c1 5232 zone_start_pfn, zone_end_pfn);
c713216d
MG
5233
5234 /* Check that this node has pages within the zone's required range */
d91749c1 5235 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5236 return 0;
5237
5238 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5239 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5240 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5241
5242 /* Return the spanned pages */
d91749c1 5243 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5244}
5245
5246/*
5247 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5248 * then all holes in the requested range will be accounted for.
c713216d 5249 */
32996250 5250unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5251 unsigned long range_start_pfn,
5252 unsigned long range_end_pfn)
5253{
96e907d1
TH
5254 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5255 unsigned long start_pfn, end_pfn;
5256 int i;
c713216d 5257
96e907d1
TH
5258 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5259 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5260 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5261 nr_absent -= end_pfn - start_pfn;
c713216d 5262 }
96e907d1 5263 return nr_absent;
c713216d
MG
5264}
5265
5266/**
5267 * absent_pages_in_range - Return number of page frames in holes within a range
5268 * @start_pfn: The start PFN to start searching for holes
5269 * @end_pfn: The end PFN to stop searching for holes
5270 *
88ca3b94 5271 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5272 */
5273unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5274 unsigned long end_pfn)
5275{
5276 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5277}
5278
5279/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5280static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5281 unsigned long zone_type,
7960aedd
ZY
5282 unsigned long node_start_pfn,
5283 unsigned long node_end_pfn,
c713216d
MG
5284 unsigned long *ignored)
5285{
96e907d1
TH
5286 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5287 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5288 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5289 unsigned long nr_absent;
9c7cd687 5290
b5685e92 5291 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5292 if (!node_start_pfn && !node_end_pfn)
5293 return 0;
5294
96e907d1
TH
5295 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5296 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5297
2a1e274a
MG
5298 adjust_zone_range_for_zone_movable(nid, zone_type,
5299 node_start_pfn, node_end_pfn,
5300 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5301 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5302
5303 /*
5304 * ZONE_MOVABLE handling.
5305 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5306 * and vice versa.
5307 */
5308 if (zone_movable_pfn[nid]) {
5309 if (mirrored_kernelcore) {
5310 unsigned long start_pfn, end_pfn;
5311 struct memblock_region *r;
5312
5313 for_each_memblock(memory, r) {
5314 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5315 zone_start_pfn, zone_end_pfn);
5316 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5317 zone_start_pfn, zone_end_pfn);
5318
5319 if (zone_type == ZONE_MOVABLE &&
5320 memblock_is_mirror(r))
5321 nr_absent += end_pfn - start_pfn;
5322
5323 if (zone_type == ZONE_NORMAL &&
5324 !memblock_is_mirror(r))
5325 nr_absent += end_pfn - start_pfn;
5326 }
5327 } else {
5328 if (zone_type == ZONE_NORMAL)
5329 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5330 }
5331 }
5332
5333 return nr_absent;
c713216d 5334}
0e0b864e 5335
0ee332c1 5336#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5337static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5338 unsigned long zone_type,
7960aedd
ZY
5339 unsigned long node_start_pfn,
5340 unsigned long node_end_pfn,
d91749c1
TI
5341 unsigned long *zone_start_pfn,
5342 unsigned long *zone_end_pfn,
c713216d
MG
5343 unsigned long *zones_size)
5344{
d91749c1
TI
5345 unsigned int zone;
5346
5347 *zone_start_pfn = node_start_pfn;
5348 for (zone = 0; zone < zone_type; zone++)
5349 *zone_start_pfn += zones_size[zone];
5350
5351 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5352
c713216d
MG
5353 return zones_size[zone_type];
5354}
5355
6ea6e688 5356static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5357 unsigned long zone_type,
7960aedd
ZY
5358 unsigned long node_start_pfn,
5359 unsigned long node_end_pfn,
c713216d
MG
5360 unsigned long *zholes_size)
5361{
5362 if (!zholes_size)
5363 return 0;
5364
5365 return zholes_size[zone_type];
5366}
20e6926d 5367
0ee332c1 5368#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5369
a3142c8e 5370static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5371 unsigned long node_start_pfn,
5372 unsigned long node_end_pfn,
5373 unsigned long *zones_size,
5374 unsigned long *zholes_size)
c713216d 5375{
febd5949 5376 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5377 enum zone_type i;
5378
febd5949
GZ
5379 for (i = 0; i < MAX_NR_ZONES; i++) {
5380 struct zone *zone = pgdat->node_zones + i;
d91749c1 5381 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5382 unsigned long size, real_size;
c713216d 5383
febd5949
GZ
5384 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5385 node_start_pfn,
5386 node_end_pfn,
d91749c1
TI
5387 &zone_start_pfn,
5388 &zone_end_pfn,
febd5949
GZ
5389 zones_size);
5390 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5391 node_start_pfn, node_end_pfn,
5392 zholes_size);
d91749c1
TI
5393 if (size)
5394 zone->zone_start_pfn = zone_start_pfn;
5395 else
5396 zone->zone_start_pfn = 0;
febd5949
GZ
5397 zone->spanned_pages = size;
5398 zone->present_pages = real_size;
5399
5400 totalpages += size;
5401 realtotalpages += real_size;
5402 }
5403
5404 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5405 pgdat->node_present_pages = realtotalpages;
5406 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5407 realtotalpages);
5408}
5409
835c134e
MG
5410#ifndef CONFIG_SPARSEMEM
5411/*
5412 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5413 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5414 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5415 * round what is now in bits to nearest long in bits, then return it in
5416 * bytes.
5417 */
7c45512d 5418static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5419{
5420 unsigned long usemapsize;
5421
7c45512d 5422 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5423 usemapsize = roundup(zonesize, pageblock_nr_pages);
5424 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5425 usemapsize *= NR_PAGEBLOCK_BITS;
5426 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5427
5428 return usemapsize / 8;
5429}
5430
5431static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5432 struct zone *zone,
5433 unsigned long zone_start_pfn,
5434 unsigned long zonesize)
835c134e 5435{
7c45512d 5436 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5437 zone->pageblock_flags = NULL;
58a01a45 5438 if (usemapsize)
6782832e
SS
5439 zone->pageblock_flags =
5440 memblock_virt_alloc_node_nopanic(usemapsize,
5441 pgdat->node_id);
835c134e
MG
5442}
5443#else
7c45512d
LT
5444static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5445 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5446#endif /* CONFIG_SPARSEMEM */
5447
d9c23400 5448#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5449
d9c23400 5450/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5451void __paginginit set_pageblock_order(void)
d9c23400 5452{
955c1cd7
AM
5453 unsigned int order;
5454
d9c23400
MG
5455 /* Check that pageblock_nr_pages has not already been setup */
5456 if (pageblock_order)
5457 return;
5458
955c1cd7
AM
5459 if (HPAGE_SHIFT > PAGE_SHIFT)
5460 order = HUGETLB_PAGE_ORDER;
5461 else
5462 order = MAX_ORDER - 1;
5463
d9c23400
MG
5464 /*
5465 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5466 * This value may be variable depending on boot parameters on IA64 and
5467 * powerpc.
d9c23400
MG
5468 */
5469 pageblock_order = order;
5470}
5471#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5472
ba72cb8c
MG
5473/*
5474 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5475 * is unused as pageblock_order is set at compile-time. See
5476 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5477 * the kernel config
ba72cb8c 5478 */
15ca220e 5479void __paginginit set_pageblock_order(void)
ba72cb8c 5480{
ba72cb8c 5481}
d9c23400
MG
5482
5483#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5484
01cefaef
JL
5485static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5486 unsigned long present_pages)
5487{
5488 unsigned long pages = spanned_pages;
5489
5490 /*
5491 * Provide a more accurate estimation if there are holes within
5492 * the zone and SPARSEMEM is in use. If there are holes within the
5493 * zone, each populated memory region may cost us one or two extra
5494 * memmap pages due to alignment because memmap pages for each
5495 * populated regions may not naturally algined on page boundary.
5496 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5497 */
5498 if (spanned_pages > present_pages + (present_pages >> 4) &&
5499 IS_ENABLED(CONFIG_SPARSEMEM))
5500 pages = present_pages;
5501
5502 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5503}
5504
1da177e4
LT
5505/*
5506 * Set up the zone data structures:
5507 * - mark all pages reserved
5508 * - mark all memory queues empty
5509 * - clear the memory bitmaps
6527af5d
MK
5510 *
5511 * NOTE: pgdat should get zeroed by caller.
1da177e4 5512 */
7f3eb55b 5513static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5514{
2f1b6248 5515 enum zone_type j;
ed8ece2e 5516 int nid = pgdat->node_id;
718127cc 5517 int ret;
1da177e4 5518
208d54e5 5519 pgdat_resize_init(pgdat);
8177a420
AA
5520#ifdef CONFIG_NUMA_BALANCING
5521 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5522 pgdat->numabalancing_migrate_nr_pages = 0;
5523 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5524#endif
5525#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5526 spin_lock_init(&pgdat->split_queue_lock);
5527 INIT_LIST_HEAD(&pgdat->split_queue);
5528 pgdat->split_queue_len = 0;
8177a420 5529#endif
1da177e4 5530 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5531 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5532#ifdef CONFIG_COMPACTION
5533 init_waitqueue_head(&pgdat->kcompactd_wait);
5534#endif
eefa864b 5535 pgdat_page_ext_init(pgdat);
5f63b720 5536
1da177e4
LT
5537 for (j = 0; j < MAX_NR_ZONES; j++) {
5538 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5539 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5540 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5541
febd5949
GZ
5542 size = zone->spanned_pages;
5543 realsize = freesize = zone->present_pages;
1da177e4 5544
0e0b864e 5545 /*
9feedc9d 5546 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5547 * is used by this zone for memmap. This affects the watermark
5548 * and per-cpu initialisations
5549 */
01cefaef 5550 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5551 if (!is_highmem_idx(j)) {
5552 if (freesize >= memmap_pages) {
5553 freesize -= memmap_pages;
5554 if (memmap_pages)
5555 printk(KERN_DEBUG
5556 " %s zone: %lu pages used for memmap\n",
5557 zone_names[j], memmap_pages);
5558 } else
1170532b 5559 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5560 zone_names[j], memmap_pages, freesize);
5561 }
0e0b864e 5562
6267276f 5563 /* Account for reserved pages */
9feedc9d
JL
5564 if (j == 0 && freesize > dma_reserve) {
5565 freesize -= dma_reserve;
d903ef9f 5566 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5567 zone_names[0], dma_reserve);
0e0b864e
MG
5568 }
5569
98d2b0eb 5570 if (!is_highmem_idx(j))
9feedc9d 5571 nr_kernel_pages += freesize;
01cefaef
JL
5572 /* Charge for highmem memmap if there are enough kernel pages */
5573 else if (nr_kernel_pages > memmap_pages * 2)
5574 nr_kernel_pages -= memmap_pages;
9feedc9d 5575 nr_all_pages += freesize;
1da177e4 5576
9feedc9d
JL
5577 /*
5578 * Set an approximate value for lowmem here, it will be adjusted
5579 * when the bootmem allocator frees pages into the buddy system.
5580 * And all highmem pages will be managed by the buddy system.
5581 */
5582 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5583#ifdef CONFIG_NUMA
d5f541ed 5584 zone->node = nid;
9feedc9d 5585 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5586 / 100;
9feedc9d 5587 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5588#endif
1da177e4
LT
5589 zone->name = zone_names[j];
5590 spin_lock_init(&zone->lock);
5591 spin_lock_init(&zone->lru_lock);
bdc8cb98 5592 zone_seqlock_init(zone);
1da177e4 5593 zone->zone_pgdat = pgdat;
ed8ece2e 5594 zone_pcp_init(zone);
81c0a2bb
JW
5595
5596 /* For bootup, initialized properly in watermark setup */
5597 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5598
bea8c150 5599 lruvec_init(&zone->lruvec);
1da177e4
LT
5600 if (!size)
5601 continue;
5602
955c1cd7 5603 set_pageblock_order();
7c45512d 5604 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5605 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5606 BUG_ON(ret);
76cdd58e 5607 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5608 }
5609}
5610
577a32f6 5611static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5612{
b0aeba74 5613 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5614 unsigned long __maybe_unused offset = 0;
5615
1da177e4
LT
5616 /* Skip empty nodes */
5617 if (!pgdat->node_spanned_pages)
5618 return;
5619
d41dee36 5620#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5621 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5622 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5623 /* ia64 gets its own node_mem_map, before this, without bootmem */
5624 if (!pgdat->node_mem_map) {
b0aeba74 5625 unsigned long size, end;
d41dee36
AW
5626 struct page *map;
5627
e984bb43
BP
5628 /*
5629 * The zone's endpoints aren't required to be MAX_ORDER
5630 * aligned but the node_mem_map endpoints must be in order
5631 * for the buddy allocator to function correctly.
5632 */
108bcc96 5633 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5634 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5635 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5636 map = alloc_remap(pgdat->node_id, size);
5637 if (!map)
6782832e
SS
5638 map = memblock_virt_alloc_node_nopanic(size,
5639 pgdat->node_id);
a1c34a3b 5640 pgdat->node_mem_map = map + offset;
1da177e4 5641 }
12d810c1 5642#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5643 /*
5644 * With no DISCONTIG, the global mem_map is just set as node 0's
5645 */
c713216d 5646 if (pgdat == NODE_DATA(0)) {
1da177e4 5647 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5648#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5649 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5650 mem_map -= offset;
0ee332c1 5651#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5652 }
1da177e4 5653#endif
d41dee36 5654#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5655}
5656
9109fb7b
JW
5657void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5658 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5659{
9109fb7b 5660 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5661 unsigned long start_pfn = 0;
5662 unsigned long end_pfn = 0;
9109fb7b 5663
88fdf75d 5664 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5665 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5666
3a80a7fa 5667 reset_deferred_meminit(pgdat);
1da177e4
LT
5668 pgdat->node_id = nid;
5669 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5670#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5671 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5672 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5673 (u64)start_pfn << PAGE_SHIFT,
5674 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5675#else
5676 start_pfn = node_start_pfn;
7960aedd
ZY
5677#endif
5678 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5679 zones_size, zholes_size);
1da177e4
LT
5680
5681 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5682#ifdef CONFIG_FLAT_NODE_MEM_MAP
5683 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5684 nid, (unsigned long)pgdat,
5685 (unsigned long)pgdat->node_mem_map);
5686#endif
1da177e4 5687
7f3eb55b 5688 free_area_init_core(pgdat);
1da177e4
LT
5689}
5690
0ee332c1 5691#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5692
5693#if MAX_NUMNODES > 1
5694/*
5695 * Figure out the number of possible node ids.
5696 */
f9872caf 5697void __init setup_nr_node_ids(void)
418508c1 5698{
904a9553 5699 unsigned int highest;
418508c1 5700
904a9553 5701 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5702 nr_node_ids = highest + 1;
5703}
418508c1
MS
5704#endif
5705
1e01979c
TH
5706/**
5707 * node_map_pfn_alignment - determine the maximum internode alignment
5708 *
5709 * This function should be called after node map is populated and sorted.
5710 * It calculates the maximum power of two alignment which can distinguish
5711 * all the nodes.
5712 *
5713 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5714 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5715 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5716 * shifted, 1GiB is enough and this function will indicate so.
5717 *
5718 * This is used to test whether pfn -> nid mapping of the chosen memory
5719 * model has fine enough granularity to avoid incorrect mapping for the
5720 * populated node map.
5721 *
5722 * Returns the determined alignment in pfn's. 0 if there is no alignment
5723 * requirement (single node).
5724 */
5725unsigned long __init node_map_pfn_alignment(void)
5726{
5727 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5728 unsigned long start, end, mask;
1e01979c 5729 int last_nid = -1;
c13291a5 5730 int i, nid;
1e01979c 5731
c13291a5 5732 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5733 if (!start || last_nid < 0 || last_nid == nid) {
5734 last_nid = nid;
5735 last_end = end;
5736 continue;
5737 }
5738
5739 /*
5740 * Start with a mask granular enough to pin-point to the
5741 * start pfn and tick off bits one-by-one until it becomes
5742 * too coarse to separate the current node from the last.
5743 */
5744 mask = ~((1 << __ffs(start)) - 1);
5745 while (mask && last_end <= (start & (mask << 1)))
5746 mask <<= 1;
5747
5748 /* accumulate all internode masks */
5749 accl_mask |= mask;
5750 }
5751
5752 /* convert mask to number of pages */
5753 return ~accl_mask + 1;
5754}
5755
a6af2bc3 5756/* Find the lowest pfn for a node */
b69a7288 5757static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5758{
a6af2bc3 5759 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5760 unsigned long start_pfn;
5761 int i;
1abbfb41 5762
c13291a5
TH
5763 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5764 min_pfn = min(min_pfn, start_pfn);
c713216d 5765
a6af2bc3 5766 if (min_pfn == ULONG_MAX) {
1170532b 5767 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5768 return 0;
5769 }
5770
5771 return min_pfn;
c713216d
MG
5772}
5773
5774/**
5775 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5776 *
5777 * It returns the minimum PFN based on information provided via
7d018176 5778 * memblock_set_node().
c713216d
MG
5779 */
5780unsigned long __init find_min_pfn_with_active_regions(void)
5781{
5782 return find_min_pfn_for_node(MAX_NUMNODES);
5783}
5784
37b07e41
LS
5785/*
5786 * early_calculate_totalpages()
5787 * Sum pages in active regions for movable zone.
4b0ef1fe 5788 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5789 */
484f51f8 5790static unsigned long __init early_calculate_totalpages(void)
7e63efef 5791{
7e63efef 5792 unsigned long totalpages = 0;
c13291a5
TH
5793 unsigned long start_pfn, end_pfn;
5794 int i, nid;
5795
5796 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5797 unsigned long pages = end_pfn - start_pfn;
7e63efef 5798
37b07e41
LS
5799 totalpages += pages;
5800 if (pages)
4b0ef1fe 5801 node_set_state(nid, N_MEMORY);
37b07e41 5802 }
b8af2941 5803 return totalpages;
7e63efef
MG
5804}
5805
2a1e274a
MG
5806/*
5807 * Find the PFN the Movable zone begins in each node. Kernel memory
5808 * is spread evenly between nodes as long as the nodes have enough
5809 * memory. When they don't, some nodes will have more kernelcore than
5810 * others
5811 */
b224ef85 5812static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5813{
5814 int i, nid;
5815 unsigned long usable_startpfn;
5816 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5817 /* save the state before borrow the nodemask */
4b0ef1fe 5818 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5819 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5820 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5821 struct memblock_region *r;
b2f3eebe
TC
5822
5823 /* Need to find movable_zone earlier when movable_node is specified. */
5824 find_usable_zone_for_movable();
5825
5826 /*
5827 * If movable_node is specified, ignore kernelcore and movablecore
5828 * options.
5829 */
5830 if (movable_node_is_enabled()) {
136199f0
EM
5831 for_each_memblock(memory, r) {
5832 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5833 continue;
5834
136199f0 5835 nid = r->nid;
b2f3eebe 5836
136199f0 5837 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5838 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5839 min(usable_startpfn, zone_movable_pfn[nid]) :
5840 usable_startpfn;
5841 }
5842
5843 goto out2;
5844 }
2a1e274a 5845
342332e6
TI
5846 /*
5847 * If kernelcore=mirror is specified, ignore movablecore option
5848 */
5849 if (mirrored_kernelcore) {
5850 bool mem_below_4gb_not_mirrored = false;
5851
5852 for_each_memblock(memory, r) {
5853 if (memblock_is_mirror(r))
5854 continue;
5855
5856 nid = r->nid;
5857
5858 usable_startpfn = memblock_region_memory_base_pfn(r);
5859
5860 if (usable_startpfn < 0x100000) {
5861 mem_below_4gb_not_mirrored = true;
5862 continue;
5863 }
5864
5865 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5866 min(usable_startpfn, zone_movable_pfn[nid]) :
5867 usable_startpfn;
5868 }
5869
5870 if (mem_below_4gb_not_mirrored)
5871 pr_warn("This configuration results in unmirrored kernel memory.");
5872
5873 goto out2;
5874 }
5875
7e63efef 5876 /*
b2f3eebe 5877 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5878 * kernelcore that corresponds so that memory usable for
5879 * any allocation type is evenly spread. If both kernelcore
5880 * and movablecore are specified, then the value of kernelcore
5881 * will be used for required_kernelcore if it's greater than
5882 * what movablecore would have allowed.
5883 */
5884 if (required_movablecore) {
7e63efef
MG
5885 unsigned long corepages;
5886
5887 /*
5888 * Round-up so that ZONE_MOVABLE is at least as large as what
5889 * was requested by the user
5890 */
5891 required_movablecore =
5892 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5893 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5894 corepages = totalpages - required_movablecore;
5895
5896 required_kernelcore = max(required_kernelcore, corepages);
5897 }
5898
bde304bd
XQ
5899 /*
5900 * If kernelcore was not specified or kernelcore size is larger
5901 * than totalpages, there is no ZONE_MOVABLE.
5902 */
5903 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5904 goto out;
2a1e274a
MG
5905
5906 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5907 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5908
5909restart:
5910 /* Spread kernelcore memory as evenly as possible throughout nodes */
5911 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5912 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5913 unsigned long start_pfn, end_pfn;
5914
2a1e274a
MG
5915 /*
5916 * Recalculate kernelcore_node if the division per node
5917 * now exceeds what is necessary to satisfy the requested
5918 * amount of memory for the kernel
5919 */
5920 if (required_kernelcore < kernelcore_node)
5921 kernelcore_node = required_kernelcore / usable_nodes;
5922
5923 /*
5924 * As the map is walked, we track how much memory is usable
5925 * by the kernel using kernelcore_remaining. When it is
5926 * 0, the rest of the node is usable by ZONE_MOVABLE
5927 */
5928 kernelcore_remaining = kernelcore_node;
5929
5930 /* Go through each range of PFNs within this node */
c13291a5 5931 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5932 unsigned long size_pages;
5933
c13291a5 5934 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5935 if (start_pfn >= end_pfn)
5936 continue;
5937
5938 /* Account for what is only usable for kernelcore */
5939 if (start_pfn < usable_startpfn) {
5940 unsigned long kernel_pages;
5941 kernel_pages = min(end_pfn, usable_startpfn)
5942 - start_pfn;
5943
5944 kernelcore_remaining -= min(kernel_pages,
5945 kernelcore_remaining);
5946 required_kernelcore -= min(kernel_pages,
5947 required_kernelcore);
5948
5949 /* Continue if range is now fully accounted */
5950 if (end_pfn <= usable_startpfn) {
5951
5952 /*
5953 * Push zone_movable_pfn to the end so
5954 * that if we have to rebalance
5955 * kernelcore across nodes, we will
5956 * not double account here
5957 */
5958 zone_movable_pfn[nid] = end_pfn;
5959 continue;
5960 }
5961 start_pfn = usable_startpfn;
5962 }
5963
5964 /*
5965 * The usable PFN range for ZONE_MOVABLE is from
5966 * start_pfn->end_pfn. Calculate size_pages as the
5967 * number of pages used as kernelcore
5968 */
5969 size_pages = end_pfn - start_pfn;
5970 if (size_pages > kernelcore_remaining)
5971 size_pages = kernelcore_remaining;
5972 zone_movable_pfn[nid] = start_pfn + size_pages;
5973
5974 /*
5975 * Some kernelcore has been met, update counts and
5976 * break if the kernelcore for this node has been
b8af2941 5977 * satisfied
2a1e274a
MG
5978 */
5979 required_kernelcore -= min(required_kernelcore,
5980 size_pages);
5981 kernelcore_remaining -= size_pages;
5982 if (!kernelcore_remaining)
5983 break;
5984 }
5985 }
5986
5987 /*
5988 * If there is still required_kernelcore, we do another pass with one
5989 * less node in the count. This will push zone_movable_pfn[nid] further
5990 * along on the nodes that still have memory until kernelcore is
b8af2941 5991 * satisfied
2a1e274a
MG
5992 */
5993 usable_nodes--;
5994 if (usable_nodes && required_kernelcore > usable_nodes)
5995 goto restart;
5996
b2f3eebe 5997out2:
2a1e274a
MG
5998 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5999 for (nid = 0; nid < MAX_NUMNODES; nid++)
6000 zone_movable_pfn[nid] =
6001 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6002
20e6926d 6003out:
66918dcd 6004 /* restore the node_state */
4b0ef1fe 6005 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6006}
6007
4b0ef1fe
LJ
6008/* Any regular or high memory on that node ? */
6009static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6010{
37b07e41
LS
6011 enum zone_type zone_type;
6012
4b0ef1fe
LJ
6013 if (N_MEMORY == N_NORMAL_MEMORY)
6014 return;
6015
6016 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6017 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6018 if (populated_zone(zone)) {
4b0ef1fe
LJ
6019 node_set_state(nid, N_HIGH_MEMORY);
6020 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6021 zone_type <= ZONE_NORMAL)
6022 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6023 break;
6024 }
37b07e41 6025 }
37b07e41
LS
6026}
6027
c713216d
MG
6028/**
6029 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6030 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6031 *
6032 * This will call free_area_init_node() for each active node in the system.
7d018176 6033 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6034 * zone in each node and their holes is calculated. If the maximum PFN
6035 * between two adjacent zones match, it is assumed that the zone is empty.
6036 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6037 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6038 * starts where the previous one ended. For example, ZONE_DMA32 starts
6039 * at arch_max_dma_pfn.
6040 */
6041void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6042{
c13291a5
TH
6043 unsigned long start_pfn, end_pfn;
6044 int i, nid;
a6af2bc3 6045
c713216d
MG
6046 /* Record where the zone boundaries are */
6047 memset(arch_zone_lowest_possible_pfn, 0,
6048 sizeof(arch_zone_lowest_possible_pfn));
6049 memset(arch_zone_highest_possible_pfn, 0,
6050 sizeof(arch_zone_highest_possible_pfn));
6051 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6052 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6053 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6054 if (i == ZONE_MOVABLE)
6055 continue;
c713216d
MG
6056 arch_zone_lowest_possible_pfn[i] =
6057 arch_zone_highest_possible_pfn[i-1];
6058 arch_zone_highest_possible_pfn[i] =
6059 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6060 }
2a1e274a
MG
6061 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6062 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6063
6064 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6065 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6066 find_zone_movable_pfns_for_nodes();
c713216d 6067
c713216d 6068 /* Print out the zone ranges */
f88dfff5 6069 pr_info("Zone ranges:\n");
2a1e274a
MG
6070 for (i = 0; i < MAX_NR_ZONES; i++) {
6071 if (i == ZONE_MOVABLE)
6072 continue;
f88dfff5 6073 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6074 if (arch_zone_lowest_possible_pfn[i] ==
6075 arch_zone_highest_possible_pfn[i])
f88dfff5 6076 pr_cont("empty\n");
72f0ba02 6077 else
8d29e18a
JG
6078 pr_cont("[mem %#018Lx-%#018Lx]\n",
6079 (u64)arch_zone_lowest_possible_pfn[i]
6080 << PAGE_SHIFT,
6081 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6082 << PAGE_SHIFT) - 1);
2a1e274a
MG
6083 }
6084
6085 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6086 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6087 for (i = 0; i < MAX_NUMNODES; i++) {
6088 if (zone_movable_pfn[i])
8d29e18a
JG
6089 pr_info(" Node %d: %#018Lx\n", i,
6090 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6091 }
c713216d 6092
f2d52fe5 6093 /* Print out the early node map */
f88dfff5 6094 pr_info("Early memory node ranges\n");
c13291a5 6095 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6096 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6097 (u64)start_pfn << PAGE_SHIFT,
6098 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6099
6100 /* Initialise every node */
708614e6 6101 mminit_verify_pageflags_layout();
8ef82866 6102 setup_nr_node_ids();
c713216d
MG
6103 for_each_online_node(nid) {
6104 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6105 free_area_init_node(nid, NULL,
c713216d 6106 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6107
6108 /* Any memory on that node */
6109 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6110 node_set_state(nid, N_MEMORY);
6111 check_for_memory(pgdat, nid);
c713216d
MG
6112 }
6113}
2a1e274a 6114
7e63efef 6115static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6116{
6117 unsigned long long coremem;
6118 if (!p)
6119 return -EINVAL;
6120
6121 coremem = memparse(p, &p);
7e63efef 6122 *core = coremem >> PAGE_SHIFT;
2a1e274a 6123
7e63efef 6124 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6125 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6126
6127 return 0;
6128}
ed7ed365 6129
7e63efef
MG
6130/*
6131 * kernelcore=size sets the amount of memory for use for allocations that
6132 * cannot be reclaimed or migrated.
6133 */
6134static int __init cmdline_parse_kernelcore(char *p)
6135{
342332e6
TI
6136 /* parse kernelcore=mirror */
6137 if (parse_option_str(p, "mirror")) {
6138 mirrored_kernelcore = true;
6139 return 0;
6140 }
6141
7e63efef
MG
6142 return cmdline_parse_core(p, &required_kernelcore);
6143}
6144
6145/*
6146 * movablecore=size sets the amount of memory for use for allocations that
6147 * can be reclaimed or migrated.
6148 */
6149static int __init cmdline_parse_movablecore(char *p)
6150{
6151 return cmdline_parse_core(p, &required_movablecore);
6152}
6153
ed7ed365 6154early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6155early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6156
0ee332c1 6157#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6158
c3d5f5f0
JL
6159void adjust_managed_page_count(struct page *page, long count)
6160{
6161 spin_lock(&managed_page_count_lock);
6162 page_zone(page)->managed_pages += count;
6163 totalram_pages += count;
3dcc0571
JL
6164#ifdef CONFIG_HIGHMEM
6165 if (PageHighMem(page))
6166 totalhigh_pages += count;
6167#endif
c3d5f5f0
JL
6168 spin_unlock(&managed_page_count_lock);
6169}
3dcc0571 6170EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6171
11199692 6172unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6173{
11199692
JL
6174 void *pos;
6175 unsigned long pages = 0;
69afade7 6176
11199692
JL
6177 start = (void *)PAGE_ALIGN((unsigned long)start);
6178 end = (void *)((unsigned long)end & PAGE_MASK);
6179 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6180 if ((unsigned int)poison <= 0xFF)
11199692
JL
6181 memset(pos, poison, PAGE_SIZE);
6182 free_reserved_page(virt_to_page(pos));
69afade7
JL
6183 }
6184
6185 if (pages && s)
11199692 6186 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6187 s, pages << (PAGE_SHIFT - 10), start, end);
6188
6189 return pages;
6190}
11199692 6191EXPORT_SYMBOL(free_reserved_area);
69afade7 6192
cfa11e08
JL
6193#ifdef CONFIG_HIGHMEM
6194void free_highmem_page(struct page *page)
6195{
6196 __free_reserved_page(page);
6197 totalram_pages++;
7b4b2a0d 6198 page_zone(page)->managed_pages++;
cfa11e08
JL
6199 totalhigh_pages++;
6200}
6201#endif
6202
7ee3d4e8
JL
6203
6204void __init mem_init_print_info(const char *str)
6205{
6206 unsigned long physpages, codesize, datasize, rosize, bss_size;
6207 unsigned long init_code_size, init_data_size;
6208
6209 physpages = get_num_physpages();
6210 codesize = _etext - _stext;
6211 datasize = _edata - _sdata;
6212 rosize = __end_rodata - __start_rodata;
6213 bss_size = __bss_stop - __bss_start;
6214 init_data_size = __init_end - __init_begin;
6215 init_code_size = _einittext - _sinittext;
6216
6217 /*
6218 * Detect special cases and adjust section sizes accordingly:
6219 * 1) .init.* may be embedded into .data sections
6220 * 2) .init.text.* may be out of [__init_begin, __init_end],
6221 * please refer to arch/tile/kernel/vmlinux.lds.S.
6222 * 3) .rodata.* may be embedded into .text or .data sections.
6223 */
6224#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6225 do { \
6226 if (start <= pos && pos < end && size > adj) \
6227 size -= adj; \
6228 } while (0)
7ee3d4e8
JL
6229
6230 adj_init_size(__init_begin, __init_end, init_data_size,
6231 _sinittext, init_code_size);
6232 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6233 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6234 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6235 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6236
6237#undef adj_init_size
6238
756a025f 6239 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6240#ifdef CONFIG_HIGHMEM
756a025f 6241 ", %luK highmem"
7ee3d4e8 6242#endif
756a025f
JP
6243 "%s%s)\n",
6244 nr_free_pages() << (PAGE_SHIFT - 10),
6245 physpages << (PAGE_SHIFT - 10),
6246 codesize >> 10, datasize >> 10, rosize >> 10,
6247 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6248 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6249 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6250#ifdef CONFIG_HIGHMEM
756a025f 6251 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6252#endif
756a025f 6253 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6254}
6255
0e0b864e 6256/**
88ca3b94
RD
6257 * set_dma_reserve - set the specified number of pages reserved in the first zone
6258 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6259 *
013110a7 6260 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6261 * In the DMA zone, a significant percentage may be consumed by kernel image
6262 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6263 * function may optionally be used to account for unfreeable pages in the
6264 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6265 * smaller per-cpu batchsize.
0e0b864e
MG
6266 */
6267void __init set_dma_reserve(unsigned long new_dma_reserve)
6268{
6269 dma_reserve = new_dma_reserve;
6270}
6271
1da177e4
LT
6272void __init free_area_init(unsigned long *zones_size)
6273{
9109fb7b 6274 free_area_init_node(0, zones_size,
1da177e4
LT
6275 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6276}
1da177e4 6277
1da177e4
LT
6278static int page_alloc_cpu_notify(struct notifier_block *self,
6279 unsigned long action, void *hcpu)
6280{
6281 int cpu = (unsigned long)hcpu;
1da177e4 6282
8bb78442 6283 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6284 lru_add_drain_cpu(cpu);
9f8f2172
CL
6285 drain_pages(cpu);
6286
6287 /*
6288 * Spill the event counters of the dead processor
6289 * into the current processors event counters.
6290 * This artificially elevates the count of the current
6291 * processor.
6292 */
f8891e5e 6293 vm_events_fold_cpu(cpu);
9f8f2172
CL
6294
6295 /*
6296 * Zero the differential counters of the dead processor
6297 * so that the vm statistics are consistent.
6298 *
6299 * This is only okay since the processor is dead and cannot
6300 * race with what we are doing.
6301 */
2bb921e5 6302 cpu_vm_stats_fold(cpu);
1da177e4
LT
6303 }
6304 return NOTIFY_OK;
6305}
1da177e4
LT
6306
6307void __init page_alloc_init(void)
6308{
6309 hotcpu_notifier(page_alloc_cpu_notify, 0);
6310}
6311
cb45b0e9 6312/*
34b10060 6313 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6314 * or min_free_kbytes changes.
6315 */
6316static void calculate_totalreserve_pages(void)
6317{
6318 struct pglist_data *pgdat;
6319 unsigned long reserve_pages = 0;
2f6726e5 6320 enum zone_type i, j;
cb45b0e9
HA
6321
6322 for_each_online_pgdat(pgdat) {
6323 for (i = 0; i < MAX_NR_ZONES; i++) {
6324 struct zone *zone = pgdat->node_zones + i;
3484b2de 6325 long max = 0;
cb45b0e9
HA
6326
6327 /* Find valid and maximum lowmem_reserve in the zone */
6328 for (j = i; j < MAX_NR_ZONES; j++) {
6329 if (zone->lowmem_reserve[j] > max)
6330 max = zone->lowmem_reserve[j];
6331 }
6332
41858966
MG
6333 /* we treat the high watermark as reserved pages. */
6334 max += high_wmark_pages(zone);
cb45b0e9 6335
b40da049
JL
6336 if (max > zone->managed_pages)
6337 max = zone->managed_pages;
a8d01437
JW
6338
6339 zone->totalreserve_pages = max;
6340
cb45b0e9
HA
6341 reserve_pages += max;
6342 }
6343 }
6344 totalreserve_pages = reserve_pages;
6345}
6346
1da177e4
LT
6347/*
6348 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6349 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6350 * has a correct pages reserved value, so an adequate number of
6351 * pages are left in the zone after a successful __alloc_pages().
6352 */
6353static void setup_per_zone_lowmem_reserve(void)
6354{
6355 struct pglist_data *pgdat;
2f6726e5 6356 enum zone_type j, idx;
1da177e4 6357
ec936fc5 6358 for_each_online_pgdat(pgdat) {
1da177e4
LT
6359 for (j = 0; j < MAX_NR_ZONES; j++) {
6360 struct zone *zone = pgdat->node_zones + j;
b40da049 6361 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6362
6363 zone->lowmem_reserve[j] = 0;
6364
2f6726e5
CL
6365 idx = j;
6366 while (idx) {
1da177e4
LT
6367 struct zone *lower_zone;
6368
2f6726e5
CL
6369 idx--;
6370
1da177e4
LT
6371 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6372 sysctl_lowmem_reserve_ratio[idx] = 1;
6373
6374 lower_zone = pgdat->node_zones + idx;
b40da049 6375 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6376 sysctl_lowmem_reserve_ratio[idx];
b40da049 6377 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6378 }
6379 }
6380 }
cb45b0e9
HA
6381
6382 /* update totalreserve_pages */
6383 calculate_totalreserve_pages();
1da177e4
LT
6384}
6385
cfd3da1e 6386static void __setup_per_zone_wmarks(void)
1da177e4
LT
6387{
6388 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6389 unsigned long lowmem_pages = 0;
6390 struct zone *zone;
6391 unsigned long flags;
6392
6393 /* Calculate total number of !ZONE_HIGHMEM pages */
6394 for_each_zone(zone) {
6395 if (!is_highmem(zone))
b40da049 6396 lowmem_pages += zone->managed_pages;
1da177e4
LT
6397 }
6398
6399 for_each_zone(zone) {
ac924c60
AM
6400 u64 tmp;
6401
1125b4e3 6402 spin_lock_irqsave(&zone->lock, flags);
b40da049 6403 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6404 do_div(tmp, lowmem_pages);
1da177e4
LT
6405 if (is_highmem(zone)) {
6406 /*
669ed175
NP
6407 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6408 * need highmem pages, so cap pages_min to a small
6409 * value here.
6410 *
41858966 6411 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6412 * deltas control asynch page reclaim, and so should
669ed175 6413 * not be capped for highmem.
1da177e4 6414 */
90ae8d67 6415 unsigned long min_pages;
1da177e4 6416
b40da049 6417 min_pages = zone->managed_pages / 1024;
90ae8d67 6418 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6419 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6420 } else {
669ed175
NP
6421 /*
6422 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6423 * proportionate to the zone's size.
6424 */
41858966 6425 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6426 }
6427
795ae7a0
JW
6428 /*
6429 * Set the kswapd watermarks distance according to the
6430 * scale factor in proportion to available memory, but
6431 * ensure a minimum size on small systems.
6432 */
6433 tmp = max_t(u64, tmp >> 2,
6434 mult_frac(zone->managed_pages,
6435 watermark_scale_factor, 10000));
6436
6437 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6438 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6439
81c0a2bb 6440 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6441 high_wmark_pages(zone) - low_wmark_pages(zone) -
6442 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6443
1125b4e3 6444 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6445 }
cb45b0e9
HA
6446
6447 /* update totalreserve_pages */
6448 calculate_totalreserve_pages();
1da177e4
LT
6449}
6450
cfd3da1e
MG
6451/**
6452 * setup_per_zone_wmarks - called when min_free_kbytes changes
6453 * or when memory is hot-{added|removed}
6454 *
6455 * Ensures that the watermark[min,low,high] values for each zone are set
6456 * correctly with respect to min_free_kbytes.
6457 */
6458void setup_per_zone_wmarks(void)
6459{
6460 mutex_lock(&zonelists_mutex);
6461 __setup_per_zone_wmarks();
6462 mutex_unlock(&zonelists_mutex);
6463}
6464
55a4462a 6465/*
556adecb
RR
6466 * The inactive anon list should be small enough that the VM never has to
6467 * do too much work, but large enough that each inactive page has a chance
6468 * to be referenced again before it is swapped out.
6469 *
6470 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6471 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6472 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6473 * the anonymous pages are kept on the inactive list.
6474 *
6475 * total target max
6476 * memory ratio inactive anon
6477 * -------------------------------------
6478 * 10MB 1 5MB
6479 * 100MB 1 50MB
6480 * 1GB 3 250MB
6481 * 10GB 10 0.9GB
6482 * 100GB 31 3GB
6483 * 1TB 101 10GB
6484 * 10TB 320 32GB
6485 */
1b79acc9 6486static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6487{
96cb4df5 6488 unsigned int gb, ratio;
556adecb 6489
96cb4df5 6490 /* Zone size in gigabytes */
b40da049 6491 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6492 if (gb)
556adecb 6493 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6494 else
6495 ratio = 1;
556adecb 6496
96cb4df5
MK
6497 zone->inactive_ratio = ratio;
6498}
556adecb 6499
839a4fcc 6500static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6501{
6502 struct zone *zone;
6503
6504 for_each_zone(zone)
6505 calculate_zone_inactive_ratio(zone);
556adecb
RR
6506}
6507
1da177e4
LT
6508/*
6509 * Initialise min_free_kbytes.
6510 *
6511 * For small machines we want it small (128k min). For large machines
6512 * we want it large (64MB max). But it is not linear, because network
6513 * bandwidth does not increase linearly with machine size. We use
6514 *
b8af2941 6515 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6516 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6517 *
6518 * which yields
6519 *
6520 * 16MB: 512k
6521 * 32MB: 724k
6522 * 64MB: 1024k
6523 * 128MB: 1448k
6524 * 256MB: 2048k
6525 * 512MB: 2896k
6526 * 1024MB: 4096k
6527 * 2048MB: 5792k
6528 * 4096MB: 8192k
6529 * 8192MB: 11584k
6530 * 16384MB: 16384k
6531 */
1b79acc9 6532int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6533{
6534 unsigned long lowmem_kbytes;
5f12733e 6535 int new_min_free_kbytes;
1da177e4
LT
6536
6537 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6538 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6539
6540 if (new_min_free_kbytes > user_min_free_kbytes) {
6541 min_free_kbytes = new_min_free_kbytes;
6542 if (min_free_kbytes < 128)
6543 min_free_kbytes = 128;
6544 if (min_free_kbytes > 65536)
6545 min_free_kbytes = 65536;
6546 } else {
6547 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6548 new_min_free_kbytes, user_min_free_kbytes);
6549 }
bc75d33f 6550 setup_per_zone_wmarks();
a6cccdc3 6551 refresh_zone_stat_thresholds();
1da177e4 6552 setup_per_zone_lowmem_reserve();
556adecb 6553 setup_per_zone_inactive_ratio();
1da177e4
LT
6554 return 0;
6555}
bc22af74 6556core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6557
6558/*
b8af2941 6559 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6560 * that we can call two helper functions whenever min_free_kbytes
6561 * changes.
6562 */
cccad5b9 6563int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6564 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6565{
da8c757b
HP
6566 int rc;
6567
6568 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6569 if (rc)
6570 return rc;
6571
5f12733e
MH
6572 if (write) {
6573 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6574 setup_per_zone_wmarks();
5f12733e 6575 }
1da177e4
LT
6576 return 0;
6577}
6578
795ae7a0
JW
6579int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6580 void __user *buffer, size_t *length, loff_t *ppos)
6581{
6582 int rc;
6583
6584 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6585 if (rc)
6586 return rc;
6587
6588 if (write)
6589 setup_per_zone_wmarks();
6590
6591 return 0;
6592}
6593
9614634f 6594#ifdef CONFIG_NUMA
cccad5b9 6595int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6596 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6597{
6598 struct zone *zone;
6599 int rc;
6600
8d65af78 6601 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6602 if (rc)
6603 return rc;
6604
6605 for_each_zone(zone)
b40da049 6606 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6607 sysctl_min_unmapped_ratio) / 100;
6608 return 0;
6609}
0ff38490 6610
cccad5b9 6611int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6612 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6613{
6614 struct zone *zone;
6615 int rc;
6616
8d65af78 6617 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6618 if (rc)
6619 return rc;
6620
6621 for_each_zone(zone)
b40da049 6622 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6623 sysctl_min_slab_ratio) / 100;
6624 return 0;
6625}
9614634f
CL
6626#endif
6627
1da177e4
LT
6628/*
6629 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6630 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6631 * whenever sysctl_lowmem_reserve_ratio changes.
6632 *
6633 * The reserve ratio obviously has absolutely no relation with the
41858966 6634 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6635 * if in function of the boot time zone sizes.
6636 */
cccad5b9 6637int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6638 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6639{
8d65af78 6640 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6641 setup_per_zone_lowmem_reserve();
6642 return 0;
6643}
6644
8ad4b1fb
RS
6645/*
6646 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6647 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6648 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6649 */
cccad5b9 6650int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6651 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6652{
6653 struct zone *zone;
7cd2b0a3 6654 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6655 int ret;
6656
7cd2b0a3
DR
6657 mutex_lock(&pcp_batch_high_lock);
6658 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6659
8d65af78 6660 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6661 if (!write || ret < 0)
6662 goto out;
6663
6664 /* Sanity checking to avoid pcp imbalance */
6665 if (percpu_pagelist_fraction &&
6666 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6667 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6668 ret = -EINVAL;
6669 goto out;
6670 }
6671
6672 /* No change? */
6673 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6674 goto out;
c8e251fa 6675
364df0eb 6676 for_each_populated_zone(zone) {
7cd2b0a3
DR
6677 unsigned int cpu;
6678
22a7f12b 6679 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6680 pageset_set_high_and_batch(zone,
6681 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6682 }
7cd2b0a3 6683out:
c8e251fa 6684 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6685 return ret;
8ad4b1fb
RS
6686}
6687
a9919c79 6688#ifdef CONFIG_NUMA
f034b5d4 6689int hashdist = HASHDIST_DEFAULT;
1da177e4 6690
1da177e4
LT
6691static int __init set_hashdist(char *str)
6692{
6693 if (!str)
6694 return 0;
6695 hashdist = simple_strtoul(str, &str, 0);
6696 return 1;
6697}
6698__setup("hashdist=", set_hashdist);
6699#endif
6700
6701/*
6702 * allocate a large system hash table from bootmem
6703 * - it is assumed that the hash table must contain an exact power-of-2
6704 * quantity of entries
6705 * - limit is the number of hash buckets, not the total allocation size
6706 */
6707void *__init alloc_large_system_hash(const char *tablename,
6708 unsigned long bucketsize,
6709 unsigned long numentries,
6710 int scale,
6711 int flags,
6712 unsigned int *_hash_shift,
6713 unsigned int *_hash_mask,
31fe62b9
TB
6714 unsigned long low_limit,
6715 unsigned long high_limit)
1da177e4 6716{
31fe62b9 6717 unsigned long long max = high_limit;
1da177e4
LT
6718 unsigned long log2qty, size;
6719 void *table = NULL;
6720
6721 /* allow the kernel cmdline to have a say */
6722 if (!numentries) {
6723 /* round applicable memory size up to nearest megabyte */
04903664 6724 numentries = nr_kernel_pages;
a7e83318
JZ
6725
6726 /* It isn't necessary when PAGE_SIZE >= 1MB */
6727 if (PAGE_SHIFT < 20)
6728 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6729
6730 /* limit to 1 bucket per 2^scale bytes of low memory */
6731 if (scale > PAGE_SHIFT)
6732 numentries >>= (scale - PAGE_SHIFT);
6733 else
6734 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6735
6736 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6737 if (unlikely(flags & HASH_SMALL)) {
6738 /* Makes no sense without HASH_EARLY */
6739 WARN_ON(!(flags & HASH_EARLY));
6740 if (!(numentries >> *_hash_shift)) {
6741 numentries = 1UL << *_hash_shift;
6742 BUG_ON(!numentries);
6743 }
6744 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6745 numentries = PAGE_SIZE / bucketsize;
1da177e4 6746 }
6e692ed3 6747 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6748
6749 /* limit allocation size to 1/16 total memory by default */
6750 if (max == 0) {
6751 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6752 do_div(max, bucketsize);
6753 }
074b8517 6754 max = min(max, 0x80000000ULL);
1da177e4 6755
31fe62b9
TB
6756 if (numentries < low_limit)
6757 numentries = low_limit;
1da177e4
LT
6758 if (numentries > max)
6759 numentries = max;
6760
f0d1b0b3 6761 log2qty = ilog2(numentries);
1da177e4
LT
6762
6763 do {
6764 size = bucketsize << log2qty;
6765 if (flags & HASH_EARLY)
6782832e 6766 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6767 else if (hashdist)
6768 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6769 else {
1037b83b
ED
6770 /*
6771 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6772 * some pages at the end of hash table which
6773 * alloc_pages_exact() automatically does
1037b83b 6774 */
264ef8a9 6775 if (get_order(size) < MAX_ORDER) {
a1dd268c 6776 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6777 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6778 }
1da177e4
LT
6779 }
6780 } while (!table && size > PAGE_SIZE && --log2qty);
6781
6782 if (!table)
6783 panic("Failed to allocate %s hash table\n", tablename);
6784
1170532b
JP
6785 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6786 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6787
6788 if (_hash_shift)
6789 *_hash_shift = log2qty;
6790 if (_hash_mask)
6791 *_hash_mask = (1 << log2qty) - 1;
6792
6793 return table;
6794}
a117e66e 6795
835c134e 6796/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6797static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6798 unsigned long pfn)
6799{
6800#ifdef CONFIG_SPARSEMEM
6801 return __pfn_to_section(pfn)->pageblock_flags;
6802#else
f75fb889 6803 return page_zone(page)->pageblock_flags;
835c134e
MG
6804#endif /* CONFIG_SPARSEMEM */
6805}
6806
f75fb889 6807static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6808{
6809#ifdef CONFIG_SPARSEMEM
6810 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6811 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6812#else
f75fb889 6813 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6814 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6815#endif /* CONFIG_SPARSEMEM */
6816}
6817
6818/**
1aab4d77 6819 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6820 * @page: The page within the block of interest
1aab4d77
RD
6821 * @pfn: The target page frame number
6822 * @end_bitidx: The last bit of interest to retrieve
6823 * @mask: mask of bits that the caller is interested in
6824 *
6825 * Return: pageblock_bits flags
835c134e 6826 */
dc4b0caf 6827unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6828 unsigned long end_bitidx,
6829 unsigned long mask)
835c134e 6830{
835c134e 6831 unsigned long *bitmap;
dc4b0caf 6832 unsigned long bitidx, word_bitidx;
e58469ba 6833 unsigned long word;
835c134e 6834
f75fb889
MG
6835 bitmap = get_pageblock_bitmap(page, pfn);
6836 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6837 word_bitidx = bitidx / BITS_PER_LONG;
6838 bitidx &= (BITS_PER_LONG-1);
835c134e 6839
e58469ba
MG
6840 word = bitmap[word_bitidx];
6841 bitidx += end_bitidx;
6842 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6843}
6844
6845/**
dc4b0caf 6846 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6847 * @page: The page within the block of interest
835c134e 6848 * @flags: The flags to set
1aab4d77
RD
6849 * @pfn: The target page frame number
6850 * @end_bitidx: The last bit of interest
6851 * @mask: mask of bits that the caller is interested in
835c134e 6852 */
dc4b0caf
MG
6853void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6854 unsigned long pfn,
e58469ba
MG
6855 unsigned long end_bitidx,
6856 unsigned long mask)
835c134e 6857{
835c134e 6858 unsigned long *bitmap;
dc4b0caf 6859 unsigned long bitidx, word_bitidx;
e58469ba
MG
6860 unsigned long old_word, word;
6861
6862 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6863
f75fb889
MG
6864 bitmap = get_pageblock_bitmap(page, pfn);
6865 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6866 word_bitidx = bitidx / BITS_PER_LONG;
6867 bitidx &= (BITS_PER_LONG-1);
6868
f75fb889 6869 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6870
e58469ba
MG
6871 bitidx += end_bitidx;
6872 mask <<= (BITS_PER_LONG - bitidx - 1);
6873 flags <<= (BITS_PER_LONG - bitidx - 1);
6874
4db0c3c2 6875 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6876 for (;;) {
6877 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6878 if (word == old_word)
6879 break;
6880 word = old_word;
6881 }
835c134e 6882}
a5d76b54
KH
6883
6884/*
80934513
MK
6885 * This function checks whether pageblock includes unmovable pages or not.
6886 * If @count is not zero, it is okay to include less @count unmovable pages
6887 *
b8af2941 6888 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6889 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6890 * expect this function should be exact.
a5d76b54 6891 */
b023f468
WC
6892bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6893 bool skip_hwpoisoned_pages)
49ac8255
KH
6894{
6895 unsigned long pfn, iter, found;
47118af0
MN
6896 int mt;
6897
49ac8255
KH
6898 /*
6899 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6900 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6901 */
6902 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6903 return false;
47118af0
MN
6904 mt = get_pageblock_migratetype(page);
6905 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6906 return false;
49ac8255
KH
6907
6908 pfn = page_to_pfn(page);
6909 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6910 unsigned long check = pfn + iter;
6911
29723fcc 6912 if (!pfn_valid_within(check))
49ac8255 6913 continue;
29723fcc 6914
49ac8255 6915 page = pfn_to_page(check);
c8721bbb
NH
6916
6917 /*
6918 * Hugepages are not in LRU lists, but they're movable.
6919 * We need not scan over tail pages bacause we don't
6920 * handle each tail page individually in migration.
6921 */
6922 if (PageHuge(page)) {
6923 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6924 continue;
6925 }
6926
97d255c8
MK
6927 /*
6928 * We can't use page_count without pin a page
6929 * because another CPU can free compound page.
6930 * This check already skips compound tails of THP
0139aa7b 6931 * because their page->_refcount is zero at all time.
97d255c8 6932 */
fe896d18 6933 if (!page_ref_count(page)) {
49ac8255
KH
6934 if (PageBuddy(page))
6935 iter += (1 << page_order(page)) - 1;
6936 continue;
6937 }
97d255c8 6938
b023f468
WC
6939 /*
6940 * The HWPoisoned page may be not in buddy system, and
6941 * page_count() is not 0.
6942 */
6943 if (skip_hwpoisoned_pages && PageHWPoison(page))
6944 continue;
6945
49ac8255
KH
6946 if (!PageLRU(page))
6947 found++;
6948 /*
6b4f7799
JW
6949 * If there are RECLAIMABLE pages, we need to check
6950 * it. But now, memory offline itself doesn't call
6951 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6952 */
6953 /*
6954 * If the page is not RAM, page_count()should be 0.
6955 * we don't need more check. This is an _used_ not-movable page.
6956 *
6957 * The problematic thing here is PG_reserved pages. PG_reserved
6958 * is set to both of a memory hole page and a _used_ kernel
6959 * page at boot.
6960 */
6961 if (found > count)
80934513 6962 return true;
49ac8255 6963 }
80934513 6964 return false;
49ac8255
KH
6965}
6966
6967bool is_pageblock_removable_nolock(struct page *page)
6968{
656a0706
MH
6969 struct zone *zone;
6970 unsigned long pfn;
687875fb
MH
6971
6972 /*
6973 * We have to be careful here because we are iterating over memory
6974 * sections which are not zone aware so we might end up outside of
6975 * the zone but still within the section.
656a0706
MH
6976 * We have to take care about the node as well. If the node is offline
6977 * its NODE_DATA will be NULL - see page_zone.
687875fb 6978 */
656a0706
MH
6979 if (!node_online(page_to_nid(page)))
6980 return false;
6981
6982 zone = page_zone(page);
6983 pfn = page_to_pfn(page);
108bcc96 6984 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6985 return false;
6986
b023f468 6987 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6988}
0c0e6195 6989
080fe206 6990#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6991
6992static unsigned long pfn_max_align_down(unsigned long pfn)
6993{
6994 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6995 pageblock_nr_pages) - 1);
6996}
6997
6998static unsigned long pfn_max_align_up(unsigned long pfn)
6999{
7000 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7001 pageblock_nr_pages));
7002}
7003
041d3a8c 7004/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7005static int __alloc_contig_migrate_range(struct compact_control *cc,
7006 unsigned long start, unsigned long end)
041d3a8c
MN
7007{
7008 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7009 unsigned long nr_reclaimed;
041d3a8c
MN
7010 unsigned long pfn = start;
7011 unsigned int tries = 0;
7012 int ret = 0;
7013
be49a6e1 7014 migrate_prep();
041d3a8c 7015
bb13ffeb 7016 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7017 if (fatal_signal_pending(current)) {
7018 ret = -EINTR;
7019 break;
7020 }
7021
bb13ffeb
MG
7022 if (list_empty(&cc->migratepages)) {
7023 cc->nr_migratepages = 0;
edc2ca61 7024 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7025 if (!pfn) {
7026 ret = -EINTR;
7027 break;
7028 }
7029 tries = 0;
7030 } else if (++tries == 5) {
7031 ret = ret < 0 ? ret : -EBUSY;
7032 break;
7033 }
7034
beb51eaa
MK
7035 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7036 &cc->migratepages);
7037 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7038
9c620e2b 7039 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7040 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7041 }
2a6f5124
SP
7042 if (ret < 0) {
7043 putback_movable_pages(&cc->migratepages);
7044 return ret;
7045 }
7046 return 0;
041d3a8c
MN
7047}
7048
7049/**
7050 * alloc_contig_range() -- tries to allocate given range of pages
7051 * @start: start PFN to allocate
7052 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7053 * @migratetype: migratetype of the underlaying pageblocks (either
7054 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7055 * in range must have the same migratetype and it must
7056 * be either of the two.
041d3a8c
MN
7057 *
7058 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7059 * aligned, however it's the caller's responsibility to guarantee that
7060 * we are the only thread that changes migrate type of pageblocks the
7061 * pages fall in.
7062 *
7063 * The PFN range must belong to a single zone.
7064 *
7065 * Returns zero on success or negative error code. On success all
7066 * pages which PFN is in [start, end) are allocated for the caller and
7067 * need to be freed with free_contig_range().
7068 */
0815f3d8
MN
7069int alloc_contig_range(unsigned long start, unsigned long end,
7070 unsigned migratetype)
041d3a8c 7071{
041d3a8c 7072 unsigned long outer_start, outer_end;
d00181b9
KS
7073 unsigned int order;
7074 int ret = 0;
041d3a8c 7075
bb13ffeb
MG
7076 struct compact_control cc = {
7077 .nr_migratepages = 0,
7078 .order = -1,
7079 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7080 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7081 .ignore_skip_hint = true,
7082 };
7083 INIT_LIST_HEAD(&cc.migratepages);
7084
041d3a8c
MN
7085 /*
7086 * What we do here is we mark all pageblocks in range as
7087 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7088 * have different sizes, and due to the way page allocator
7089 * work, we align the range to biggest of the two pages so
7090 * that page allocator won't try to merge buddies from
7091 * different pageblocks and change MIGRATE_ISOLATE to some
7092 * other migration type.
7093 *
7094 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7095 * migrate the pages from an unaligned range (ie. pages that
7096 * we are interested in). This will put all the pages in
7097 * range back to page allocator as MIGRATE_ISOLATE.
7098 *
7099 * When this is done, we take the pages in range from page
7100 * allocator removing them from the buddy system. This way
7101 * page allocator will never consider using them.
7102 *
7103 * This lets us mark the pageblocks back as
7104 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7105 * aligned range but not in the unaligned, original range are
7106 * put back to page allocator so that buddy can use them.
7107 */
7108
7109 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7110 pfn_max_align_up(end), migratetype,
7111 false);
041d3a8c 7112 if (ret)
86a595f9 7113 return ret;
041d3a8c 7114
8ef5849f
JK
7115 /*
7116 * In case of -EBUSY, we'd like to know which page causes problem.
7117 * So, just fall through. We will check it in test_pages_isolated().
7118 */
bb13ffeb 7119 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7120 if (ret && ret != -EBUSY)
041d3a8c
MN
7121 goto done;
7122
7123 /*
7124 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7125 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7126 * more, all pages in [start, end) are free in page allocator.
7127 * What we are going to do is to allocate all pages from
7128 * [start, end) (that is remove them from page allocator).
7129 *
7130 * The only problem is that pages at the beginning and at the
7131 * end of interesting range may be not aligned with pages that
7132 * page allocator holds, ie. they can be part of higher order
7133 * pages. Because of this, we reserve the bigger range and
7134 * once this is done free the pages we are not interested in.
7135 *
7136 * We don't have to hold zone->lock here because the pages are
7137 * isolated thus they won't get removed from buddy.
7138 */
7139
7140 lru_add_drain_all();
510f5507 7141 drain_all_pages(cc.zone);
041d3a8c
MN
7142
7143 order = 0;
7144 outer_start = start;
7145 while (!PageBuddy(pfn_to_page(outer_start))) {
7146 if (++order >= MAX_ORDER) {
8ef5849f
JK
7147 outer_start = start;
7148 break;
041d3a8c
MN
7149 }
7150 outer_start &= ~0UL << order;
7151 }
7152
8ef5849f
JK
7153 if (outer_start != start) {
7154 order = page_order(pfn_to_page(outer_start));
7155
7156 /*
7157 * outer_start page could be small order buddy page and
7158 * it doesn't include start page. Adjust outer_start
7159 * in this case to report failed page properly
7160 * on tracepoint in test_pages_isolated()
7161 */
7162 if (outer_start + (1UL << order) <= start)
7163 outer_start = start;
7164 }
7165
041d3a8c 7166 /* Make sure the range is really isolated. */
b023f468 7167 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7168 pr_info("%s: [%lx, %lx) PFNs busy\n",
7169 __func__, outer_start, end);
041d3a8c
MN
7170 ret = -EBUSY;
7171 goto done;
7172 }
7173
49f223a9 7174 /* Grab isolated pages from freelists. */
bb13ffeb 7175 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7176 if (!outer_end) {
7177 ret = -EBUSY;
7178 goto done;
7179 }
7180
7181 /* Free head and tail (if any) */
7182 if (start != outer_start)
7183 free_contig_range(outer_start, start - outer_start);
7184 if (end != outer_end)
7185 free_contig_range(end, outer_end - end);
7186
7187done:
7188 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7189 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7190 return ret;
7191}
7192
7193void free_contig_range(unsigned long pfn, unsigned nr_pages)
7194{
bcc2b02f
MS
7195 unsigned int count = 0;
7196
7197 for (; nr_pages--; pfn++) {
7198 struct page *page = pfn_to_page(pfn);
7199
7200 count += page_count(page) != 1;
7201 __free_page(page);
7202 }
7203 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7204}
7205#endif
7206
4ed7e022 7207#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7208/*
7209 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7210 * page high values need to be recalulated.
7211 */
4ed7e022
JL
7212void __meminit zone_pcp_update(struct zone *zone)
7213{
0a647f38 7214 unsigned cpu;
c8e251fa 7215 mutex_lock(&pcp_batch_high_lock);
0a647f38 7216 for_each_possible_cpu(cpu)
169f6c19
CS
7217 pageset_set_high_and_batch(zone,
7218 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7219 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7220}
7221#endif
7222
340175b7
JL
7223void zone_pcp_reset(struct zone *zone)
7224{
7225 unsigned long flags;
5a883813
MK
7226 int cpu;
7227 struct per_cpu_pageset *pset;
340175b7
JL
7228
7229 /* avoid races with drain_pages() */
7230 local_irq_save(flags);
7231 if (zone->pageset != &boot_pageset) {
5a883813
MK
7232 for_each_online_cpu(cpu) {
7233 pset = per_cpu_ptr(zone->pageset, cpu);
7234 drain_zonestat(zone, pset);
7235 }
340175b7
JL
7236 free_percpu(zone->pageset);
7237 zone->pageset = &boot_pageset;
7238 }
7239 local_irq_restore(flags);
7240}
7241
6dcd73d7 7242#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7243/*
b9eb6319
JK
7244 * All pages in the range must be in a single zone and isolated
7245 * before calling this.
0c0e6195
KH
7246 */
7247void
7248__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7249{
7250 struct page *page;
7251 struct zone *zone;
7aeb09f9 7252 unsigned int order, i;
0c0e6195
KH
7253 unsigned long pfn;
7254 unsigned long flags;
7255 /* find the first valid pfn */
7256 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7257 if (pfn_valid(pfn))
7258 break;
7259 if (pfn == end_pfn)
7260 return;
7261 zone = page_zone(pfn_to_page(pfn));
7262 spin_lock_irqsave(&zone->lock, flags);
7263 pfn = start_pfn;
7264 while (pfn < end_pfn) {
7265 if (!pfn_valid(pfn)) {
7266 pfn++;
7267 continue;
7268 }
7269 page = pfn_to_page(pfn);
b023f468
WC
7270 /*
7271 * The HWPoisoned page may be not in buddy system, and
7272 * page_count() is not 0.
7273 */
7274 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7275 pfn++;
7276 SetPageReserved(page);
7277 continue;
7278 }
7279
0c0e6195
KH
7280 BUG_ON(page_count(page));
7281 BUG_ON(!PageBuddy(page));
7282 order = page_order(page);
7283#ifdef CONFIG_DEBUG_VM
1170532b
JP
7284 pr_info("remove from free list %lx %d %lx\n",
7285 pfn, 1 << order, end_pfn);
0c0e6195
KH
7286#endif
7287 list_del(&page->lru);
7288 rmv_page_order(page);
7289 zone->free_area[order].nr_free--;
0c0e6195
KH
7290 for (i = 0; i < (1 << order); i++)
7291 SetPageReserved((page+i));
7292 pfn += (1 << order);
7293 }
7294 spin_unlock_irqrestore(&zone->lock, flags);
7295}
7296#endif
8d22ba1b 7297
8d22ba1b
WF
7298bool is_free_buddy_page(struct page *page)
7299{
7300 struct zone *zone = page_zone(page);
7301 unsigned long pfn = page_to_pfn(page);
7302 unsigned long flags;
7aeb09f9 7303 unsigned int order;
8d22ba1b
WF
7304
7305 spin_lock_irqsave(&zone->lock, flags);
7306 for (order = 0; order < MAX_ORDER; order++) {
7307 struct page *page_head = page - (pfn & ((1 << order) - 1));
7308
7309 if (PageBuddy(page_head) && page_order(page_head) >= order)
7310 break;
7311 }
7312 spin_unlock_irqrestore(&zone->lock, flags);
7313
7314 return order < MAX_ORDER;
7315}