]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm/memory-failure: give up error handling for non-tail-refcounted thp
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
452aa699
RW
128#ifdef CONFIG_PM_SLEEP
129/*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
c9e664f1
RW
137
138static gfp_t saved_gfp_mask;
139
140void pm_restore_gfp_mask(void)
452aa699
RW
141{
142 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
452aa699
RW
147}
148
c9e664f1 149void pm_restrict_gfp_mask(void)
452aa699 150{
452aa699 151 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~GFP_IOFS;
452aa699 155}
f90ac398
MG
156
157bool pm_suspended_storage(void)
158{
159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 return false;
161 return true;
162}
452aa699
RW
163#endif /* CONFIG_PM_SLEEP */
164
d9c23400
MG
165#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166int pageblock_order __read_mostly;
167#endif
168
d98c7a09 169static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 170
1da177e4
LT
171/*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
1da177e4 181 */
2f1b6248 182int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 183#ifdef CONFIG_ZONE_DMA
2f1b6248 184 256,
4b51d669 185#endif
fb0e7942 186#ifdef CONFIG_ZONE_DMA32
2f1b6248 187 256,
fb0e7942 188#endif
e53ef38d 189#ifdef CONFIG_HIGHMEM
2a1e274a 190 32,
e53ef38d 191#endif
2a1e274a 192 32,
2f1b6248 193};
1da177e4
LT
194
195EXPORT_SYMBOL(totalram_pages);
1da177e4 196
15ad7cdc 197static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 198#ifdef CONFIG_ZONE_DMA
2f1b6248 199 "DMA",
4b51d669 200#endif
fb0e7942 201#ifdef CONFIG_ZONE_DMA32
2f1b6248 202 "DMA32",
fb0e7942 203#endif
2f1b6248 204 "Normal",
e53ef38d 205#ifdef CONFIG_HIGHMEM
2a1e274a 206 "HighMem",
e53ef38d 207#endif
2a1e274a 208 "Movable",
2f1b6248
CL
209};
210
1da177e4 211int min_free_kbytes = 1024;
42aa83cb 212int user_min_free_kbytes = -1;
1da177e4 213
2c85f51d
JB
214static unsigned long __meminitdata nr_kernel_pages;
215static unsigned long __meminitdata nr_all_pages;
a3142c8e 216static unsigned long __meminitdata dma_reserve;
1da177e4 217
0ee332c1
TH
218#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221static unsigned long __initdata required_kernelcore;
222static unsigned long __initdata required_movablecore;
223static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224
225/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226int movable_zone;
227EXPORT_SYMBOL(movable_zone);
228#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 229
418508c1
MS
230#if MAX_NUMNODES > 1
231int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 232int nr_online_nodes __read_mostly = 1;
418508c1 233EXPORT_SYMBOL(nr_node_ids);
62bc62a8 234EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
235#endif
236
9ef9acb0
MG
237int page_group_by_mobility_disabled __read_mostly;
238
3a80a7fa
MG
239#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240static inline void reset_deferred_meminit(pg_data_t *pgdat)
241{
242 pgdat->first_deferred_pfn = ULONG_MAX;
243}
244
245/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 246static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 247{
ae026b2a 248 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
249 return true;
250
251 return false;
252}
253
7e18adb4
MG
254static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
255{
256 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
257 return true;
258
259 return false;
260}
261
3a80a7fa
MG
262/*
263 * Returns false when the remaining initialisation should be deferred until
264 * later in the boot cycle when it can be parallelised.
265 */
266static inline bool update_defer_init(pg_data_t *pgdat,
267 unsigned long pfn, unsigned long zone_end,
268 unsigned long *nr_initialised)
269{
270 /* Always populate low zones for address-contrained allocations */
271 if (zone_end < pgdat_end_pfn(pgdat))
272 return true;
273
274 /* Initialise at least 2G of the highest zone */
275 (*nr_initialised)++;
276 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
277 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
278 pgdat->first_deferred_pfn = pfn;
279 return false;
280 }
281
282 return true;
283}
284#else
285static inline void reset_deferred_meminit(pg_data_t *pgdat)
286{
287}
288
289static inline bool early_page_uninitialised(unsigned long pfn)
290{
291 return false;
292}
293
7e18adb4
MG
294static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295{
296 return false;
297}
298
3a80a7fa
MG
299static inline bool update_defer_init(pg_data_t *pgdat,
300 unsigned long pfn, unsigned long zone_end,
301 unsigned long *nr_initialised)
302{
303 return true;
304}
305#endif
306
307
ee6f509c 308void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 309{
5d0f3f72
KM
310 if (unlikely(page_group_by_mobility_disabled &&
311 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
312 migratetype = MIGRATE_UNMOVABLE;
313
b2a0ac88
MG
314 set_pageblock_flags_group(page, (unsigned long)migratetype,
315 PB_migrate, PB_migrate_end);
316}
317
13e7444b 318#ifdef CONFIG_DEBUG_VM
c6a57e19 319static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 320{
bdc8cb98
DH
321 int ret = 0;
322 unsigned seq;
323 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 324 unsigned long sp, start_pfn;
c6a57e19 325
bdc8cb98
DH
326 do {
327 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
328 start_pfn = zone->zone_start_pfn;
329 sp = zone->spanned_pages;
108bcc96 330 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
331 ret = 1;
332 } while (zone_span_seqretry(zone, seq));
333
b5e6a5a2 334 if (ret)
613813e8
DH
335 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
336 pfn, zone_to_nid(zone), zone->name,
337 start_pfn, start_pfn + sp);
b5e6a5a2 338
bdc8cb98 339 return ret;
c6a57e19
DH
340}
341
342static int page_is_consistent(struct zone *zone, struct page *page)
343{
14e07298 344 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 345 return 0;
1da177e4 346 if (zone != page_zone(page))
c6a57e19
DH
347 return 0;
348
349 return 1;
350}
351/*
352 * Temporary debugging check for pages not lying within a given zone.
353 */
354static int bad_range(struct zone *zone, struct page *page)
355{
356 if (page_outside_zone_boundaries(zone, page))
1da177e4 357 return 1;
c6a57e19
DH
358 if (!page_is_consistent(zone, page))
359 return 1;
360
1da177e4
LT
361 return 0;
362}
13e7444b
NP
363#else
364static inline int bad_range(struct zone *zone, struct page *page)
365{
366 return 0;
367}
368#endif
369
d230dec1
KS
370static void bad_page(struct page *page, const char *reason,
371 unsigned long bad_flags)
1da177e4 372{
d936cf9b
HD
373 static unsigned long resume;
374 static unsigned long nr_shown;
375 static unsigned long nr_unshown;
376
2a7684a2
WF
377 /* Don't complain about poisoned pages */
378 if (PageHWPoison(page)) {
22b751c3 379 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
380 return;
381 }
382
d936cf9b
HD
383 /*
384 * Allow a burst of 60 reports, then keep quiet for that minute;
385 * or allow a steady drip of one report per second.
386 */
387 if (nr_shown == 60) {
388 if (time_before(jiffies, resume)) {
389 nr_unshown++;
390 goto out;
391 }
392 if (nr_unshown) {
1e9e6365
HD
393 printk(KERN_ALERT
394 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
395 nr_unshown);
396 nr_unshown = 0;
397 }
398 nr_shown = 0;
399 }
400 if (nr_shown++ == 0)
401 resume = jiffies + 60 * HZ;
402
1e9e6365 403 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 404 current->comm, page_to_pfn(page));
f0b791a3 405 dump_page_badflags(page, reason, bad_flags);
3dc14741 406
4f31888c 407 print_modules();
1da177e4 408 dump_stack();
d936cf9b 409out:
8cc3b392 410 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 411 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 412 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
413}
414
1da177e4
LT
415/*
416 * Higher-order pages are called "compound pages". They are structured thusly:
417 *
418 * The first PAGE_SIZE page is called the "head page".
419 *
420 * The remaining PAGE_SIZE pages are called "tail pages".
421 *
6416b9fa
WSH
422 * All pages have PG_compound set. All tail pages have their ->first_page
423 * pointing at the head page.
1da177e4 424 *
41d78ba5
HD
425 * The first tail page's ->lru.next holds the address of the compound page's
426 * put_page() function. Its ->lru.prev holds the order of allocation.
427 * This usage means that zero-order pages may not be compound.
1da177e4 428 */
d98c7a09
HD
429
430static void free_compound_page(struct page *page)
431{
d85f3385 432 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
433}
434
01ad1c08 435void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
436{
437 int i;
438 int nr_pages = 1 << order;
439
440 set_compound_page_dtor(page, free_compound_page);
441 set_compound_order(page, order);
442 __SetPageHead(page);
443 for (i = 1; i < nr_pages; i++) {
444 struct page *p = page + i;
58a84aa9 445 set_page_count(p, 0);
18229df5 446 p->first_page = page;
668f9abb
DR
447 /* Make sure p->first_page is always valid for PageTail() */
448 smp_wmb();
449 __SetPageTail(p);
18229df5
AW
450 }
451}
452
c0a32fc5
SG
453#ifdef CONFIG_DEBUG_PAGEALLOC
454unsigned int _debug_guardpage_minorder;
031bc574 455bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
456bool _debug_guardpage_enabled __read_mostly;
457
031bc574
JK
458static int __init early_debug_pagealloc(char *buf)
459{
460 if (!buf)
461 return -EINVAL;
462
463 if (strcmp(buf, "on") == 0)
464 _debug_pagealloc_enabled = true;
465
466 return 0;
467}
468early_param("debug_pagealloc", early_debug_pagealloc);
469
e30825f1
JK
470static bool need_debug_guardpage(void)
471{
031bc574
JK
472 /* If we don't use debug_pagealloc, we don't need guard page */
473 if (!debug_pagealloc_enabled())
474 return false;
475
e30825f1
JK
476 return true;
477}
478
479static void init_debug_guardpage(void)
480{
031bc574
JK
481 if (!debug_pagealloc_enabled())
482 return;
483
e30825f1
JK
484 _debug_guardpage_enabled = true;
485}
486
487struct page_ext_operations debug_guardpage_ops = {
488 .need = need_debug_guardpage,
489 .init = init_debug_guardpage,
490};
c0a32fc5
SG
491
492static int __init debug_guardpage_minorder_setup(char *buf)
493{
494 unsigned long res;
495
496 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
497 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
498 return 0;
499 }
500 _debug_guardpage_minorder = res;
501 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
502 return 0;
503}
504__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
505
2847cf95
JK
506static inline void set_page_guard(struct zone *zone, struct page *page,
507 unsigned int order, int migratetype)
c0a32fc5 508{
e30825f1
JK
509 struct page_ext *page_ext;
510
511 if (!debug_guardpage_enabled())
512 return;
513
514 page_ext = lookup_page_ext(page);
515 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
516
2847cf95
JK
517 INIT_LIST_HEAD(&page->lru);
518 set_page_private(page, order);
519 /* Guard pages are not available for any usage */
520 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
521}
522
2847cf95
JK
523static inline void clear_page_guard(struct zone *zone, struct page *page,
524 unsigned int order, int migratetype)
c0a32fc5 525{
e30825f1
JK
526 struct page_ext *page_ext;
527
528 if (!debug_guardpage_enabled())
529 return;
530
531 page_ext = lookup_page_ext(page);
532 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
533
2847cf95
JK
534 set_page_private(page, 0);
535 if (!is_migrate_isolate(migratetype))
536 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
537}
538#else
e30825f1 539struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
540static inline void set_page_guard(struct zone *zone, struct page *page,
541 unsigned int order, int migratetype) {}
542static inline void clear_page_guard(struct zone *zone, struct page *page,
543 unsigned int order, int migratetype) {}
c0a32fc5
SG
544#endif
545
7aeb09f9 546static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 547{
4c21e2f2 548 set_page_private(page, order);
676165a8 549 __SetPageBuddy(page);
1da177e4
LT
550}
551
552static inline void rmv_page_order(struct page *page)
553{
676165a8 554 __ClearPageBuddy(page);
4c21e2f2 555 set_page_private(page, 0);
1da177e4
LT
556}
557
1da177e4
LT
558/*
559 * This function checks whether a page is free && is the buddy
560 * we can do coalesce a page and its buddy if
13e7444b 561 * (a) the buddy is not in a hole &&
676165a8 562 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
563 * (c) a page and its buddy have the same order &&
564 * (d) a page and its buddy are in the same zone.
676165a8 565 *
cf6fe945
WSH
566 * For recording whether a page is in the buddy system, we set ->_mapcount
567 * PAGE_BUDDY_MAPCOUNT_VALUE.
568 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
569 * serialized by zone->lock.
1da177e4 570 *
676165a8 571 * For recording page's order, we use page_private(page).
1da177e4 572 */
cb2b95e1 573static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 574 unsigned int order)
1da177e4 575{
14e07298 576 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 577 return 0;
13e7444b 578
c0a32fc5 579 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
580 if (page_zone_id(page) != page_zone_id(buddy))
581 return 0;
582
4c5018ce
WY
583 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
584
c0a32fc5
SG
585 return 1;
586 }
587
cb2b95e1 588 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
589 /*
590 * zone check is done late to avoid uselessly
591 * calculating zone/node ids for pages that could
592 * never merge.
593 */
594 if (page_zone_id(page) != page_zone_id(buddy))
595 return 0;
596
4c5018ce
WY
597 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
598
6aa3001b 599 return 1;
676165a8 600 }
6aa3001b 601 return 0;
1da177e4
LT
602}
603
604/*
605 * Freeing function for a buddy system allocator.
606 *
607 * The concept of a buddy system is to maintain direct-mapped table
608 * (containing bit values) for memory blocks of various "orders".
609 * The bottom level table contains the map for the smallest allocatable
610 * units of memory (here, pages), and each level above it describes
611 * pairs of units from the levels below, hence, "buddies".
612 * At a high level, all that happens here is marking the table entry
613 * at the bottom level available, and propagating the changes upward
614 * as necessary, plus some accounting needed to play nicely with other
615 * parts of the VM system.
616 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
617 * free pages of length of (1 << order) and marked with _mapcount
618 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
619 * field.
1da177e4 620 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
621 * other. That is, if we allocate a small block, and both were
622 * free, the remainder of the region must be split into blocks.
1da177e4 623 * If a block is freed, and its buddy is also free, then this
5f63b720 624 * triggers coalescing into a block of larger size.
1da177e4 625 *
6d49e352 626 * -- nyc
1da177e4
LT
627 */
628
48db57f8 629static inline void __free_one_page(struct page *page,
dc4b0caf 630 unsigned long pfn,
ed0ae21d
MG
631 struct zone *zone, unsigned int order,
632 int migratetype)
1da177e4
LT
633{
634 unsigned long page_idx;
6dda9d55 635 unsigned long combined_idx;
43506fad 636 unsigned long uninitialized_var(buddy_idx);
6dda9d55 637 struct page *buddy;
3c605096 638 int max_order = MAX_ORDER;
1da177e4 639
d29bb978 640 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 641 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 642
ed0ae21d 643 VM_BUG_ON(migratetype == -1);
3c605096
JK
644 if (is_migrate_isolate(migratetype)) {
645 /*
646 * We restrict max order of merging to prevent merge
647 * between freepages on isolate pageblock and normal
648 * pageblock. Without this, pageblock isolation
649 * could cause incorrect freepage accounting.
650 */
651 max_order = min(MAX_ORDER, pageblock_order + 1);
652 } else {
8f82b55d 653 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 654 }
ed0ae21d 655
3c605096 656 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 657
309381fe
SL
658 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
659 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 660
3c605096 661 while (order < max_order - 1) {
43506fad
KC
662 buddy_idx = __find_buddy_index(page_idx, order);
663 buddy = page + (buddy_idx - page_idx);
cb2b95e1 664 if (!page_is_buddy(page, buddy, order))
3c82d0ce 665 break;
c0a32fc5
SG
666 /*
667 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
668 * merge with it and move up one order.
669 */
670 if (page_is_guard(buddy)) {
2847cf95 671 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
672 } else {
673 list_del(&buddy->lru);
674 zone->free_area[order].nr_free--;
675 rmv_page_order(buddy);
676 }
43506fad 677 combined_idx = buddy_idx & page_idx;
1da177e4
LT
678 page = page + (combined_idx - page_idx);
679 page_idx = combined_idx;
680 order++;
681 }
682 set_page_order(page, order);
6dda9d55
CZ
683
684 /*
685 * If this is not the largest possible page, check if the buddy
686 * of the next-highest order is free. If it is, it's possible
687 * that pages are being freed that will coalesce soon. In case,
688 * that is happening, add the free page to the tail of the list
689 * so it's less likely to be used soon and more likely to be merged
690 * as a higher order page
691 */
b7f50cfa 692 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 693 struct page *higher_page, *higher_buddy;
43506fad
KC
694 combined_idx = buddy_idx & page_idx;
695 higher_page = page + (combined_idx - page_idx);
696 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 697 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
698 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
699 list_add_tail(&page->lru,
700 &zone->free_area[order].free_list[migratetype]);
701 goto out;
702 }
703 }
704
705 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
706out:
1da177e4
LT
707 zone->free_area[order].nr_free++;
708}
709
224abf92 710static inline int free_pages_check(struct page *page)
1da177e4 711{
d230dec1 712 const char *bad_reason = NULL;
f0b791a3
DH
713 unsigned long bad_flags = 0;
714
715 if (unlikely(page_mapcount(page)))
716 bad_reason = "nonzero mapcount";
717 if (unlikely(page->mapping != NULL))
718 bad_reason = "non-NULL mapping";
719 if (unlikely(atomic_read(&page->_count) != 0))
720 bad_reason = "nonzero _count";
721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
722 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
723 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
724 }
9edad6ea
JW
725#ifdef CONFIG_MEMCG
726 if (unlikely(page->mem_cgroup))
727 bad_reason = "page still charged to cgroup";
728#endif
f0b791a3
DH
729 if (unlikely(bad_reason)) {
730 bad_page(page, bad_reason, bad_flags);
79f4b7bf 731 return 1;
8cc3b392 732 }
90572890 733 page_cpupid_reset_last(page);
79f4b7bf
HD
734 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
735 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
736 return 0;
1da177e4
LT
737}
738
739/*
5f8dcc21 740 * Frees a number of pages from the PCP lists
1da177e4 741 * Assumes all pages on list are in same zone, and of same order.
207f36ee 742 * count is the number of pages to free.
1da177e4
LT
743 *
744 * If the zone was previously in an "all pages pinned" state then look to
745 * see if this freeing clears that state.
746 *
747 * And clear the zone's pages_scanned counter, to hold off the "all pages are
748 * pinned" detection logic.
749 */
5f8dcc21
MG
750static void free_pcppages_bulk(struct zone *zone, int count,
751 struct per_cpu_pages *pcp)
1da177e4 752{
5f8dcc21 753 int migratetype = 0;
a6f9edd6 754 int batch_free = 0;
72853e29 755 int to_free = count;
0d5d823a 756 unsigned long nr_scanned;
5f8dcc21 757
c54ad30c 758 spin_lock(&zone->lock);
0d5d823a
MG
759 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
760 if (nr_scanned)
761 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 762
72853e29 763 while (to_free) {
48db57f8 764 struct page *page;
5f8dcc21
MG
765 struct list_head *list;
766
767 /*
a6f9edd6
MG
768 * Remove pages from lists in a round-robin fashion. A
769 * batch_free count is maintained that is incremented when an
770 * empty list is encountered. This is so more pages are freed
771 * off fuller lists instead of spinning excessively around empty
772 * lists
5f8dcc21
MG
773 */
774 do {
a6f9edd6 775 batch_free++;
5f8dcc21
MG
776 if (++migratetype == MIGRATE_PCPTYPES)
777 migratetype = 0;
778 list = &pcp->lists[migratetype];
779 } while (list_empty(list));
48db57f8 780
1d16871d
NK
781 /* This is the only non-empty list. Free them all. */
782 if (batch_free == MIGRATE_PCPTYPES)
783 batch_free = to_free;
784
a6f9edd6 785 do {
770c8aaa
BZ
786 int mt; /* migratetype of the to-be-freed page */
787
a6f9edd6
MG
788 page = list_entry(list->prev, struct page, lru);
789 /* must delete as __free_one_page list manipulates */
790 list_del(&page->lru);
b12c4ad1 791 mt = get_freepage_migratetype(page);
8f82b55d 792 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 793 mt = get_pageblock_migratetype(page);
51bb1a40 794
a7016235 795 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
dc4b0caf 796 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 797 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 798 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 799 }
c54ad30c 800 spin_unlock(&zone->lock);
1da177e4
LT
801}
802
dc4b0caf
MG
803static void free_one_page(struct zone *zone,
804 struct page *page, unsigned long pfn,
7aeb09f9 805 unsigned int order,
ed0ae21d 806 int migratetype)
1da177e4 807{
0d5d823a 808 unsigned long nr_scanned;
006d22d9 809 spin_lock(&zone->lock);
0d5d823a
MG
810 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
811 if (nr_scanned)
812 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 813
ad53f92e
JK
814 if (unlikely(has_isolate_pageblock(zone) ||
815 is_migrate_isolate(migratetype))) {
816 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 817 }
dc4b0caf 818 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 819 spin_unlock(&zone->lock);
48db57f8
NP
820}
821
81422f29
KS
822static int free_tail_pages_check(struct page *head_page, struct page *page)
823{
824 if (!IS_ENABLED(CONFIG_DEBUG_VM))
825 return 0;
826 if (unlikely(!PageTail(page))) {
827 bad_page(page, "PageTail not set", 0);
828 return 1;
829 }
830 if (unlikely(page->first_page != head_page)) {
831 bad_page(page, "first_page not consistent", 0);
832 return 1;
833 }
834 return 0;
835}
836
1e8ce83c
RH
837static void __meminit __init_single_page(struct page *page, unsigned long pfn,
838 unsigned long zone, int nid)
839{
1e8ce83c 840 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
841 init_page_count(page);
842 page_mapcount_reset(page);
843 page_cpupid_reset_last(page);
1e8ce83c 844
1e8ce83c
RH
845 INIT_LIST_HEAD(&page->lru);
846#ifdef WANT_PAGE_VIRTUAL
847 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
848 if (!is_highmem_idx(zone))
849 set_page_address(page, __va(pfn << PAGE_SHIFT));
850#endif
851}
852
853static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
854 int nid)
855{
856 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
857}
858
7e18adb4
MG
859#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
860static void init_reserved_page(unsigned long pfn)
861{
862 pg_data_t *pgdat;
863 int nid, zid;
864
865 if (!early_page_uninitialised(pfn))
866 return;
867
868 nid = early_pfn_to_nid(pfn);
869 pgdat = NODE_DATA(nid);
870
871 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
872 struct zone *zone = &pgdat->node_zones[zid];
873
874 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
875 break;
876 }
877 __init_single_pfn(pfn, zid, nid);
878}
879#else
880static inline void init_reserved_page(unsigned long pfn)
881{
882}
883#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
884
92923ca3
NZ
885/*
886 * Initialised pages do not have PageReserved set. This function is
887 * called for each range allocated by the bootmem allocator and
888 * marks the pages PageReserved. The remaining valid pages are later
889 * sent to the buddy page allocator.
890 */
7e18adb4 891void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
892{
893 unsigned long start_pfn = PFN_DOWN(start);
894 unsigned long end_pfn = PFN_UP(end);
895
7e18adb4
MG
896 for (; start_pfn < end_pfn; start_pfn++) {
897 if (pfn_valid(start_pfn)) {
898 struct page *page = pfn_to_page(start_pfn);
899
900 init_reserved_page(start_pfn);
901 SetPageReserved(page);
902 }
903 }
92923ca3
NZ
904}
905
ec95f53a 906static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 907{
81422f29
KS
908 bool compound = PageCompound(page);
909 int i, bad = 0;
1da177e4 910
ab1f306f 911 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 912 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 913
b413d48a 914 trace_mm_page_free(page, order);
b1eeab67 915 kmemcheck_free_shadow(page, order);
b8c73fc2 916 kasan_free_pages(page, order);
b1eeab67 917
8dd60a3a
AA
918 if (PageAnon(page))
919 page->mapping = NULL;
81422f29
KS
920 bad += free_pages_check(page);
921 for (i = 1; i < (1 << order); i++) {
922 if (compound)
923 bad += free_tail_pages_check(page, page + i);
8dd60a3a 924 bad += free_pages_check(page + i);
81422f29 925 }
8cc3b392 926 if (bad)
ec95f53a 927 return false;
689bcebf 928
48c96a36
JK
929 reset_page_owner(page, order);
930
3ac7fe5a 931 if (!PageHighMem(page)) {
b8af2941
PK
932 debug_check_no_locks_freed(page_address(page),
933 PAGE_SIZE << order);
3ac7fe5a
TG
934 debug_check_no_obj_freed(page_address(page),
935 PAGE_SIZE << order);
936 }
dafb1367 937 arch_free_page(page, order);
48db57f8 938 kernel_map_pages(page, 1 << order, 0);
dafb1367 939
ec95f53a
KM
940 return true;
941}
942
943static void __free_pages_ok(struct page *page, unsigned int order)
944{
945 unsigned long flags;
95e34412 946 int migratetype;
dc4b0caf 947 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
948
949 if (!free_pages_prepare(page, order))
950 return;
951
cfc47a28 952 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 953 local_irq_save(flags);
f8891e5e 954 __count_vm_events(PGFREE, 1 << order);
95e34412 955 set_freepage_migratetype(page, migratetype);
dc4b0caf 956 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 957 local_irq_restore(flags);
1da177e4
LT
958}
959
0e1cc95b 960static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 961 unsigned long pfn, unsigned int order)
a226f6c8 962{
c3993076 963 unsigned int nr_pages = 1 << order;
e2d0bd2b 964 struct page *p = page;
c3993076 965 unsigned int loop;
a226f6c8 966
e2d0bd2b
YL
967 prefetchw(p);
968 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
969 prefetchw(p + 1);
c3993076
JW
970 __ClearPageReserved(p);
971 set_page_count(p, 0);
a226f6c8 972 }
e2d0bd2b
YL
973 __ClearPageReserved(p);
974 set_page_count(p, 0);
c3993076 975
e2d0bd2b 976 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
977 set_page_refcounted(page);
978 __free_pages(page, order);
a226f6c8
DH
979}
980
75a592a4
MG
981#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
982 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 983
75a592a4
MG
984static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
985
986int __meminit early_pfn_to_nid(unsigned long pfn)
987{
7ace9917 988 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
989 int nid;
990
7ace9917 991 spin_lock(&early_pfn_lock);
75a592a4 992 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
993 if (nid < 0)
994 nid = 0;
995 spin_unlock(&early_pfn_lock);
996
997 return nid;
75a592a4
MG
998}
999#endif
1000
1001#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1002static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1003 struct mminit_pfnnid_cache *state)
1004{
1005 int nid;
1006
1007 nid = __early_pfn_to_nid(pfn, state);
1008 if (nid >= 0 && nid != node)
1009 return false;
1010 return true;
1011}
1012
1013/* Only safe to use early in boot when initialisation is single-threaded */
1014static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1015{
1016 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1017}
1018
1019#else
1020
1021static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1022{
1023 return true;
1024}
1025static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027{
1028 return true;
1029}
1030#endif
1031
1032
0e1cc95b 1033void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1034 unsigned int order)
1035{
1036 if (early_page_uninitialised(pfn))
1037 return;
1038 return __free_pages_boot_core(page, pfn, order);
1039}
1040
7e18adb4 1041#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1042static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1043 unsigned long pfn, int nr_pages)
1044{
1045 int i;
1046
1047 if (!page)
1048 return;
1049
1050 /* Free a large naturally-aligned chunk if possible */
1051 if (nr_pages == MAX_ORDER_NR_PAGES &&
1052 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1053 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1054 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1055 return;
1056 }
1057
1058 for (i = 0; i < nr_pages; i++, page++, pfn++)
1059 __free_pages_boot_core(page, pfn, 0);
1060}
1061
d3cd131d
NS
1062/* Completion tracking for deferred_init_memmap() threads */
1063static atomic_t pgdat_init_n_undone __initdata;
1064static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1065
1066static inline void __init pgdat_init_report_one_done(void)
1067{
1068 if (atomic_dec_and_test(&pgdat_init_n_undone))
1069 complete(&pgdat_init_all_done_comp);
1070}
0e1cc95b 1071
7e18adb4 1072/* Initialise remaining memory on a node */
0e1cc95b 1073static int __init deferred_init_memmap(void *data)
7e18adb4 1074{
0e1cc95b
MG
1075 pg_data_t *pgdat = data;
1076 int nid = pgdat->node_id;
7e18adb4
MG
1077 struct mminit_pfnnid_cache nid_init_state = { };
1078 unsigned long start = jiffies;
1079 unsigned long nr_pages = 0;
1080 unsigned long walk_start, walk_end;
1081 int i, zid;
1082 struct zone *zone;
7e18adb4 1083 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1084 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1085
0e1cc95b 1086 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1087 pgdat_init_report_one_done();
0e1cc95b
MG
1088 return 0;
1089 }
1090
1091 /* Bind memory initialisation thread to a local node if possible */
1092 if (!cpumask_empty(cpumask))
1093 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1094
1095 /* Sanity check boundaries */
1096 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1097 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1098 pgdat->first_deferred_pfn = ULONG_MAX;
1099
1100 /* Only the highest zone is deferred so find it */
1101 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1102 zone = pgdat->node_zones + zid;
1103 if (first_init_pfn < zone_end_pfn(zone))
1104 break;
1105 }
1106
1107 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1108 unsigned long pfn, end_pfn;
54608c3f 1109 struct page *page = NULL;
a4de83dd
MG
1110 struct page *free_base_page = NULL;
1111 unsigned long free_base_pfn = 0;
1112 int nr_to_free = 0;
7e18adb4
MG
1113
1114 end_pfn = min(walk_end, zone_end_pfn(zone));
1115 pfn = first_init_pfn;
1116 if (pfn < walk_start)
1117 pfn = walk_start;
1118 if (pfn < zone->zone_start_pfn)
1119 pfn = zone->zone_start_pfn;
1120
1121 for (; pfn < end_pfn; pfn++) {
54608c3f 1122 if (!pfn_valid_within(pfn))
a4de83dd 1123 goto free_range;
7e18adb4 1124
54608c3f
MG
1125 /*
1126 * Ensure pfn_valid is checked every
1127 * MAX_ORDER_NR_PAGES for memory holes
1128 */
1129 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1130 if (!pfn_valid(pfn)) {
1131 page = NULL;
a4de83dd 1132 goto free_range;
54608c3f
MG
1133 }
1134 }
1135
1136 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1137 page = NULL;
a4de83dd 1138 goto free_range;
54608c3f
MG
1139 }
1140
1141 /* Minimise pfn page lookups and scheduler checks */
1142 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1143 page++;
1144 } else {
a4de83dd
MG
1145 nr_pages += nr_to_free;
1146 deferred_free_range(free_base_page,
1147 free_base_pfn, nr_to_free);
1148 free_base_page = NULL;
1149 free_base_pfn = nr_to_free = 0;
1150
54608c3f
MG
1151 page = pfn_to_page(pfn);
1152 cond_resched();
1153 }
7e18adb4
MG
1154
1155 if (page->flags) {
1156 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1157 goto free_range;
7e18adb4
MG
1158 }
1159
1160 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1161 if (!free_base_page) {
1162 free_base_page = page;
1163 free_base_pfn = pfn;
1164 nr_to_free = 0;
1165 }
1166 nr_to_free++;
1167
1168 /* Where possible, batch up pages for a single free */
1169 continue;
1170free_range:
1171 /* Free the current block of pages to allocator */
1172 nr_pages += nr_to_free;
1173 deferred_free_range(free_base_page, free_base_pfn,
1174 nr_to_free);
1175 free_base_page = NULL;
1176 free_base_pfn = nr_to_free = 0;
7e18adb4 1177 }
a4de83dd 1178
7e18adb4
MG
1179 first_init_pfn = max(end_pfn, first_init_pfn);
1180 }
1181
1182 /* Sanity check that the next zone really is unpopulated */
1183 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1184
0e1cc95b 1185 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1186 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1187
1188 pgdat_init_report_one_done();
0e1cc95b
MG
1189 return 0;
1190}
1191
1192void __init page_alloc_init_late(void)
1193{
1194 int nid;
1195
d3cd131d
NS
1196 /* There will be num_node_state(N_MEMORY) threads */
1197 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1198 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1199 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1200 }
1201
1202 /* Block until all are initialised */
d3cd131d 1203 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1204
1205 /* Reinit limits that are based on free pages after the kernel is up */
1206 files_maxfiles_init();
7e18adb4
MG
1207}
1208#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1209
47118af0 1210#ifdef CONFIG_CMA
9cf510a5 1211/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1212void __init init_cma_reserved_pageblock(struct page *page)
1213{
1214 unsigned i = pageblock_nr_pages;
1215 struct page *p = page;
1216
1217 do {
1218 __ClearPageReserved(p);
1219 set_page_count(p, 0);
1220 } while (++p, --i);
1221
47118af0 1222 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1223
1224 if (pageblock_order >= MAX_ORDER) {
1225 i = pageblock_nr_pages;
1226 p = page;
1227 do {
1228 set_page_refcounted(p);
1229 __free_pages(p, MAX_ORDER - 1);
1230 p += MAX_ORDER_NR_PAGES;
1231 } while (i -= MAX_ORDER_NR_PAGES);
1232 } else {
1233 set_page_refcounted(page);
1234 __free_pages(page, pageblock_order);
1235 }
1236
3dcc0571 1237 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1238}
1239#endif
1da177e4
LT
1240
1241/*
1242 * The order of subdivision here is critical for the IO subsystem.
1243 * Please do not alter this order without good reasons and regression
1244 * testing. Specifically, as large blocks of memory are subdivided,
1245 * the order in which smaller blocks are delivered depends on the order
1246 * they're subdivided in this function. This is the primary factor
1247 * influencing the order in which pages are delivered to the IO
1248 * subsystem according to empirical testing, and this is also justified
1249 * by considering the behavior of a buddy system containing a single
1250 * large block of memory acted on by a series of small allocations.
1251 * This behavior is a critical factor in sglist merging's success.
1252 *
6d49e352 1253 * -- nyc
1da177e4 1254 */
085cc7d5 1255static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1256 int low, int high, struct free_area *area,
1257 int migratetype)
1da177e4
LT
1258{
1259 unsigned long size = 1 << high;
1260
1261 while (high > low) {
1262 area--;
1263 high--;
1264 size >>= 1;
309381fe 1265 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1266
2847cf95 1267 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1268 debug_guardpage_enabled() &&
2847cf95 1269 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1270 /*
1271 * Mark as guard pages (or page), that will allow to
1272 * merge back to allocator when buddy will be freed.
1273 * Corresponding page table entries will not be touched,
1274 * pages will stay not present in virtual address space
1275 */
2847cf95 1276 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1277 continue;
1278 }
b2a0ac88 1279 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1280 area->nr_free++;
1281 set_page_order(&page[size], high);
1282 }
1da177e4
LT
1283}
1284
1da177e4
LT
1285/*
1286 * This page is about to be returned from the page allocator
1287 */
2a7684a2 1288static inline int check_new_page(struct page *page)
1da177e4 1289{
d230dec1 1290 const char *bad_reason = NULL;
f0b791a3
DH
1291 unsigned long bad_flags = 0;
1292
1293 if (unlikely(page_mapcount(page)))
1294 bad_reason = "nonzero mapcount";
1295 if (unlikely(page->mapping != NULL))
1296 bad_reason = "non-NULL mapping";
1297 if (unlikely(atomic_read(&page->_count) != 0))
1298 bad_reason = "nonzero _count";
1299 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1300 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1301 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1302 }
9edad6ea
JW
1303#ifdef CONFIG_MEMCG
1304 if (unlikely(page->mem_cgroup))
1305 bad_reason = "page still charged to cgroup";
1306#endif
f0b791a3
DH
1307 if (unlikely(bad_reason)) {
1308 bad_page(page, bad_reason, bad_flags);
689bcebf 1309 return 1;
8cc3b392 1310 }
2a7684a2
WF
1311 return 0;
1312}
1313
75379191
VB
1314static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1315 int alloc_flags)
2a7684a2
WF
1316{
1317 int i;
1318
1319 for (i = 0; i < (1 << order); i++) {
1320 struct page *p = page + i;
1321 if (unlikely(check_new_page(p)))
1322 return 1;
1323 }
689bcebf 1324
4c21e2f2 1325 set_page_private(page, 0);
7835e98b 1326 set_page_refcounted(page);
cc102509
NP
1327
1328 arch_alloc_page(page, order);
1da177e4 1329 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1330 kasan_alloc_pages(page, order);
17cf4406
NP
1331
1332 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1333 for (i = 0; i < (1 << order); i++)
1334 clear_highpage(page + i);
17cf4406
NP
1335
1336 if (order && (gfp_flags & __GFP_COMP))
1337 prep_compound_page(page, order);
1338
48c96a36
JK
1339 set_page_owner(page, order, gfp_flags);
1340
75379191
VB
1341 /*
1342 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1343 * allocate the page. The expectation is that the caller is taking
1344 * steps that will free more memory. The caller should avoid the page
1345 * being used for !PFMEMALLOC purposes.
1346 */
1347 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1348
689bcebf 1349 return 0;
1da177e4
LT
1350}
1351
56fd56b8
MG
1352/*
1353 * Go through the free lists for the given migratetype and remove
1354 * the smallest available page from the freelists
1355 */
728ec980
MG
1356static inline
1357struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1358 int migratetype)
1359{
1360 unsigned int current_order;
b8af2941 1361 struct free_area *area;
56fd56b8
MG
1362 struct page *page;
1363
1364 /* Find a page of the appropriate size in the preferred list */
1365 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1366 area = &(zone->free_area[current_order]);
1367 if (list_empty(&area->free_list[migratetype]))
1368 continue;
1369
1370 page = list_entry(area->free_list[migratetype].next,
1371 struct page, lru);
1372 list_del(&page->lru);
1373 rmv_page_order(page);
1374 area->nr_free--;
56fd56b8 1375 expand(zone, page, order, current_order, area, migratetype);
5bcc9f86 1376 set_freepage_migratetype(page, migratetype);
56fd56b8
MG
1377 return page;
1378 }
1379
1380 return NULL;
1381}
1382
1383
b2a0ac88
MG
1384/*
1385 * This array describes the order lists are fallen back to when
1386 * the free lists for the desirable migrate type are depleted
1387 */
47118af0
MN
1388static int fallbacks[MIGRATE_TYPES][4] = {
1389 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1390 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
dc67647b 1391 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
47118af0 1392#ifdef CONFIG_CMA
47118af0 1393 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
47118af0 1394#endif
6d4a4916 1395 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1396#ifdef CONFIG_MEMORY_ISOLATION
6d4a4916 1397 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
194159fb 1398#endif
b2a0ac88
MG
1399};
1400
dc67647b
JK
1401#ifdef CONFIG_CMA
1402static struct page *__rmqueue_cma_fallback(struct zone *zone,
1403 unsigned int order)
1404{
1405 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1406}
1407#else
1408static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1409 unsigned int order) { return NULL; }
1410#endif
1411
c361be55
MG
1412/*
1413 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1414 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1415 * boundary. If alignment is required, use move_freepages_block()
1416 */
435b405c 1417int move_freepages(struct zone *zone,
b69a7288
AB
1418 struct page *start_page, struct page *end_page,
1419 int migratetype)
c361be55
MG
1420{
1421 struct page *page;
1422 unsigned long order;
d100313f 1423 int pages_moved = 0;
c361be55
MG
1424
1425#ifndef CONFIG_HOLES_IN_ZONE
1426 /*
1427 * page_zone is not safe to call in this context when
1428 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1429 * anyway as we check zone boundaries in move_freepages_block().
1430 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1431 * grouping pages by mobility
c361be55 1432 */
97ee4ba7 1433 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1434#endif
1435
1436 for (page = start_page; page <= end_page;) {
344c790e 1437 /* Make sure we are not inadvertently changing nodes */
309381fe 1438 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1439
c361be55
MG
1440 if (!pfn_valid_within(page_to_pfn(page))) {
1441 page++;
1442 continue;
1443 }
1444
1445 if (!PageBuddy(page)) {
1446 page++;
1447 continue;
1448 }
1449
1450 order = page_order(page);
84be48d8
KS
1451 list_move(&page->lru,
1452 &zone->free_area[order].free_list[migratetype]);
95e34412 1453 set_freepage_migratetype(page, migratetype);
c361be55 1454 page += 1 << order;
d100313f 1455 pages_moved += 1 << order;
c361be55
MG
1456 }
1457
d100313f 1458 return pages_moved;
c361be55
MG
1459}
1460
ee6f509c 1461int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1462 int migratetype)
c361be55
MG
1463{
1464 unsigned long start_pfn, end_pfn;
1465 struct page *start_page, *end_page;
1466
1467 start_pfn = page_to_pfn(page);
d9c23400 1468 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1469 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1470 end_page = start_page + pageblock_nr_pages - 1;
1471 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1472
1473 /* Do not cross zone boundaries */
108bcc96 1474 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1475 start_page = page;
108bcc96 1476 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1477 return 0;
1478
1479 return move_freepages(zone, start_page, end_page, migratetype);
1480}
1481
2f66a68f
MG
1482static void change_pageblock_range(struct page *pageblock_page,
1483 int start_order, int migratetype)
1484{
1485 int nr_pageblocks = 1 << (start_order - pageblock_order);
1486
1487 while (nr_pageblocks--) {
1488 set_pageblock_migratetype(pageblock_page, migratetype);
1489 pageblock_page += pageblock_nr_pages;
1490 }
1491}
1492
fef903ef 1493/*
9c0415eb
VB
1494 * When we are falling back to another migratetype during allocation, try to
1495 * steal extra free pages from the same pageblocks to satisfy further
1496 * allocations, instead of polluting multiple pageblocks.
1497 *
1498 * If we are stealing a relatively large buddy page, it is likely there will
1499 * be more free pages in the pageblock, so try to steal them all. For
1500 * reclaimable and unmovable allocations, we steal regardless of page size,
1501 * as fragmentation caused by those allocations polluting movable pageblocks
1502 * is worse than movable allocations stealing from unmovable and reclaimable
1503 * pageblocks.
fef903ef 1504 */
4eb7dce6
JK
1505static bool can_steal_fallback(unsigned int order, int start_mt)
1506{
1507 /*
1508 * Leaving this order check is intended, although there is
1509 * relaxed order check in next check. The reason is that
1510 * we can actually steal whole pageblock if this condition met,
1511 * but, below check doesn't guarantee it and that is just heuristic
1512 * so could be changed anytime.
1513 */
1514 if (order >= pageblock_order)
1515 return true;
1516
1517 if (order >= pageblock_order / 2 ||
1518 start_mt == MIGRATE_RECLAIMABLE ||
1519 start_mt == MIGRATE_UNMOVABLE ||
1520 page_group_by_mobility_disabled)
1521 return true;
1522
1523 return false;
1524}
1525
1526/*
1527 * This function implements actual steal behaviour. If order is large enough,
1528 * we can steal whole pageblock. If not, we first move freepages in this
1529 * pageblock and check whether half of pages are moved or not. If half of
1530 * pages are moved, we can change migratetype of pageblock and permanently
1531 * use it's pages as requested migratetype in the future.
1532 */
1533static void steal_suitable_fallback(struct zone *zone, struct page *page,
1534 int start_type)
fef903ef
SB
1535{
1536 int current_order = page_order(page);
4eb7dce6 1537 int pages;
fef903ef 1538
fef903ef
SB
1539 /* Take ownership for orders >= pageblock_order */
1540 if (current_order >= pageblock_order) {
1541 change_pageblock_range(page, current_order, start_type);
3a1086fb 1542 return;
fef903ef
SB
1543 }
1544
4eb7dce6 1545 pages = move_freepages_block(zone, page, start_type);
fef903ef 1546
4eb7dce6
JK
1547 /* Claim the whole block if over half of it is free */
1548 if (pages >= (1 << (pageblock_order-1)) ||
1549 page_group_by_mobility_disabled)
1550 set_pageblock_migratetype(page, start_type);
1551}
1552
2149cdae
JK
1553/*
1554 * Check whether there is a suitable fallback freepage with requested order.
1555 * If only_stealable is true, this function returns fallback_mt only if
1556 * we can steal other freepages all together. This would help to reduce
1557 * fragmentation due to mixed migratetype pages in one pageblock.
1558 */
1559int find_suitable_fallback(struct free_area *area, unsigned int order,
1560 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1561{
1562 int i;
1563 int fallback_mt;
1564
1565 if (area->nr_free == 0)
1566 return -1;
1567
1568 *can_steal = false;
1569 for (i = 0;; i++) {
1570 fallback_mt = fallbacks[migratetype][i];
1571 if (fallback_mt == MIGRATE_RESERVE)
1572 break;
1573
1574 if (list_empty(&area->free_list[fallback_mt]))
1575 continue;
fef903ef 1576
4eb7dce6
JK
1577 if (can_steal_fallback(order, migratetype))
1578 *can_steal = true;
1579
2149cdae
JK
1580 if (!only_stealable)
1581 return fallback_mt;
1582
1583 if (*can_steal)
1584 return fallback_mt;
fef903ef 1585 }
4eb7dce6
JK
1586
1587 return -1;
fef903ef
SB
1588}
1589
b2a0ac88 1590/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1591static inline struct page *
7aeb09f9 1592__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1593{
b8af2941 1594 struct free_area *area;
7aeb09f9 1595 unsigned int current_order;
b2a0ac88 1596 struct page *page;
4eb7dce6
JK
1597 int fallback_mt;
1598 bool can_steal;
b2a0ac88
MG
1599
1600 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1601 for (current_order = MAX_ORDER-1;
1602 current_order >= order && current_order <= MAX_ORDER-1;
1603 --current_order) {
4eb7dce6
JK
1604 area = &(zone->free_area[current_order]);
1605 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1606 start_migratetype, false, &can_steal);
4eb7dce6
JK
1607 if (fallback_mt == -1)
1608 continue;
b2a0ac88 1609
4eb7dce6
JK
1610 page = list_entry(area->free_list[fallback_mt].next,
1611 struct page, lru);
1612 if (can_steal)
1613 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1614
4eb7dce6
JK
1615 /* Remove the page from the freelists */
1616 area->nr_free--;
1617 list_del(&page->lru);
1618 rmv_page_order(page);
3a1086fb 1619
4eb7dce6
JK
1620 expand(zone, page, order, current_order, area,
1621 start_migratetype);
1622 /*
1623 * The freepage_migratetype may differ from pageblock's
1624 * migratetype depending on the decisions in
1625 * try_to_steal_freepages(). This is OK as long as it
1626 * does not differ for MIGRATE_CMA pageblocks. For CMA
1627 * we need to make sure unallocated pages flushed from
1628 * pcp lists are returned to the correct freelist.
1629 */
1630 set_freepage_migratetype(page, start_migratetype);
e0fff1bd 1631
4eb7dce6
JK
1632 trace_mm_page_alloc_extfrag(page, order, current_order,
1633 start_migratetype, fallback_mt);
e0fff1bd 1634
4eb7dce6 1635 return page;
b2a0ac88
MG
1636 }
1637
728ec980 1638 return NULL;
b2a0ac88
MG
1639}
1640
56fd56b8 1641/*
1da177e4
LT
1642 * Do the hard work of removing an element from the buddy allocator.
1643 * Call me with the zone->lock already held.
1644 */
b2a0ac88
MG
1645static struct page *__rmqueue(struct zone *zone, unsigned int order,
1646 int migratetype)
1da177e4 1647{
1da177e4
LT
1648 struct page *page;
1649
728ec980 1650retry_reserve:
56fd56b8 1651 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 1652
728ec980 1653 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
dc67647b
JK
1654 if (migratetype == MIGRATE_MOVABLE)
1655 page = __rmqueue_cma_fallback(zone, order);
1656
1657 if (!page)
1658 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 1659
728ec980
MG
1660 /*
1661 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1662 * is used because __rmqueue_smallest is an inline function
1663 * and we want just one call site
1664 */
1665 if (!page) {
1666 migratetype = MIGRATE_RESERVE;
1667 goto retry_reserve;
1668 }
1669 }
1670
0d3d062a 1671 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1672 return page;
1da177e4
LT
1673}
1674
5f63b720 1675/*
1da177e4
LT
1676 * Obtain a specified number of elements from the buddy allocator, all under
1677 * a single hold of the lock, for efficiency. Add them to the supplied list.
1678 * Returns the number of new pages which were placed at *list.
1679 */
5f63b720 1680static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1681 unsigned long count, struct list_head *list,
b745bc85 1682 int migratetype, bool cold)
1da177e4 1683{
5bcc9f86 1684 int i;
5f63b720 1685
c54ad30c 1686 spin_lock(&zone->lock);
1da177e4 1687 for (i = 0; i < count; ++i) {
b2a0ac88 1688 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1689 if (unlikely(page == NULL))
1da177e4 1690 break;
81eabcbe
MG
1691
1692 /*
1693 * Split buddy pages returned by expand() are received here
1694 * in physical page order. The page is added to the callers and
1695 * list and the list head then moves forward. From the callers
1696 * perspective, the linked list is ordered by page number in
1697 * some conditions. This is useful for IO devices that can
1698 * merge IO requests if the physical pages are ordered
1699 * properly.
1700 */
b745bc85 1701 if (likely(!cold))
e084b2d9
MG
1702 list_add(&page->lru, list);
1703 else
1704 list_add_tail(&page->lru, list);
81eabcbe 1705 list = &page->lru;
5bcc9f86 1706 if (is_migrate_cma(get_freepage_migratetype(page)))
d1ce749a
BZ
1707 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1708 -(1 << order));
1da177e4 1709 }
f2260e6b 1710 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1711 spin_unlock(&zone->lock);
085cc7d5 1712 return i;
1da177e4
LT
1713}
1714
4ae7c039 1715#ifdef CONFIG_NUMA
8fce4d8e 1716/*
4037d452
CL
1717 * Called from the vmstat counter updater to drain pagesets of this
1718 * currently executing processor on remote nodes after they have
1719 * expired.
1720 *
879336c3
CL
1721 * Note that this function must be called with the thread pinned to
1722 * a single processor.
8fce4d8e 1723 */
4037d452 1724void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1725{
4ae7c039 1726 unsigned long flags;
7be12fc9 1727 int to_drain, batch;
4ae7c039 1728
4037d452 1729 local_irq_save(flags);
4db0c3c2 1730 batch = READ_ONCE(pcp->batch);
7be12fc9 1731 to_drain = min(pcp->count, batch);
2a13515c
KM
1732 if (to_drain > 0) {
1733 free_pcppages_bulk(zone, to_drain, pcp);
1734 pcp->count -= to_drain;
1735 }
4037d452 1736 local_irq_restore(flags);
4ae7c039
CL
1737}
1738#endif
1739
9f8f2172 1740/*
93481ff0 1741 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1742 *
1743 * The processor must either be the current processor and the
1744 * thread pinned to the current processor or a processor that
1745 * is not online.
1746 */
93481ff0 1747static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1748{
c54ad30c 1749 unsigned long flags;
93481ff0
VB
1750 struct per_cpu_pageset *pset;
1751 struct per_cpu_pages *pcp;
1da177e4 1752
93481ff0
VB
1753 local_irq_save(flags);
1754 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1755
93481ff0
VB
1756 pcp = &pset->pcp;
1757 if (pcp->count) {
1758 free_pcppages_bulk(zone, pcp->count, pcp);
1759 pcp->count = 0;
1760 }
1761 local_irq_restore(flags);
1762}
3dfa5721 1763
93481ff0
VB
1764/*
1765 * Drain pcplists of all zones on the indicated processor.
1766 *
1767 * The processor must either be the current processor and the
1768 * thread pinned to the current processor or a processor that
1769 * is not online.
1770 */
1771static void drain_pages(unsigned int cpu)
1772{
1773 struct zone *zone;
1774
1775 for_each_populated_zone(zone) {
1776 drain_pages_zone(cpu, zone);
1da177e4
LT
1777 }
1778}
1da177e4 1779
9f8f2172
CL
1780/*
1781 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1782 *
1783 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1784 * the single zone's pages.
9f8f2172 1785 */
93481ff0 1786void drain_local_pages(struct zone *zone)
9f8f2172 1787{
93481ff0
VB
1788 int cpu = smp_processor_id();
1789
1790 if (zone)
1791 drain_pages_zone(cpu, zone);
1792 else
1793 drain_pages(cpu);
9f8f2172
CL
1794}
1795
1796/*
74046494
GBY
1797 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1798 *
93481ff0
VB
1799 * When zone parameter is non-NULL, spill just the single zone's pages.
1800 *
74046494
GBY
1801 * Note that this code is protected against sending an IPI to an offline
1802 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1803 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1804 * nothing keeps CPUs from showing up after we populated the cpumask and
1805 * before the call to on_each_cpu_mask().
9f8f2172 1806 */
93481ff0 1807void drain_all_pages(struct zone *zone)
9f8f2172 1808{
74046494 1809 int cpu;
74046494
GBY
1810
1811 /*
1812 * Allocate in the BSS so we wont require allocation in
1813 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1814 */
1815 static cpumask_t cpus_with_pcps;
1816
1817 /*
1818 * We don't care about racing with CPU hotplug event
1819 * as offline notification will cause the notified
1820 * cpu to drain that CPU pcps and on_each_cpu_mask
1821 * disables preemption as part of its processing
1822 */
1823 for_each_online_cpu(cpu) {
93481ff0
VB
1824 struct per_cpu_pageset *pcp;
1825 struct zone *z;
74046494 1826 bool has_pcps = false;
93481ff0
VB
1827
1828 if (zone) {
74046494 1829 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1830 if (pcp->pcp.count)
74046494 1831 has_pcps = true;
93481ff0
VB
1832 } else {
1833 for_each_populated_zone(z) {
1834 pcp = per_cpu_ptr(z->pageset, cpu);
1835 if (pcp->pcp.count) {
1836 has_pcps = true;
1837 break;
1838 }
74046494
GBY
1839 }
1840 }
93481ff0 1841
74046494
GBY
1842 if (has_pcps)
1843 cpumask_set_cpu(cpu, &cpus_with_pcps);
1844 else
1845 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1846 }
93481ff0
VB
1847 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1848 zone, 1);
9f8f2172
CL
1849}
1850
296699de 1851#ifdef CONFIG_HIBERNATION
1da177e4
LT
1852
1853void mark_free_pages(struct zone *zone)
1854{
f623f0db
RW
1855 unsigned long pfn, max_zone_pfn;
1856 unsigned long flags;
7aeb09f9 1857 unsigned int order, t;
1da177e4
LT
1858 struct list_head *curr;
1859
8080fc03 1860 if (zone_is_empty(zone))
1da177e4
LT
1861 return;
1862
1863 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1864
108bcc96 1865 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1866 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1867 if (pfn_valid(pfn)) {
1868 struct page *page = pfn_to_page(pfn);
1869
7be98234
RW
1870 if (!swsusp_page_is_forbidden(page))
1871 swsusp_unset_page_free(page);
f623f0db 1872 }
1da177e4 1873
b2a0ac88
MG
1874 for_each_migratetype_order(order, t) {
1875 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1876 unsigned long i;
1da177e4 1877
f623f0db
RW
1878 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1879 for (i = 0; i < (1UL << order); i++)
7be98234 1880 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1881 }
b2a0ac88 1882 }
1da177e4
LT
1883 spin_unlock_irqrestore(&zone->lock, flags);
1884}
e2c55dc8 1885#endif /* CONFIG_PM */
1da177e4 1886
1da177e4
LT
1887/*
1888 * Free a 0-order page
b745bc85 1889 * cold == true ? free a cold page : free a hot page
1da177e4 1890 */
b745bc85 1891void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
1892{
1893 struct zone *zone = page_zone(page);
1894 struct per_cpu_pages *pcp;
1895 unsigned long flags;
dc4b0caf 1896 unsigned long pfn = page_to_pfn(page);
5f8dcc21 1897 int migratetype;
1da177e4 1898
ec95f53a 1899 if (!free_pages_prepare(page, 0))
689bcebf
HD
1900 return;
1901
dc4b0caf 1902 migratetype = get_pfnblock_migratetype(page, pfn);
b12c4ad1 1903 set_freepage_migratetype(page, migratetype);
1da177e4 1904 local_irq_save(flags);
f8891e5e 1905 __count_vm_event(PGFREE);
da456f14 1906
5f8dcc21
MG
1907 /*
1908 * We only track unmovable, reclaimable and movable on pcp lists.
1909 * Free ISOLATE pages back to the allocator because they are being
1910 * offlined but treat RESERVE as movable pages so we can get those
1911 * areas back if necessary. Otherwise, we may have to free
1912 * excessively into the page allocator
1913 */
1914 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 1915 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 1916 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
1917 goto out;
1918 }
1919 migratetype = MIGRATE_MOVABLE;
1920 }
1921
99dcc3e5 1922 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 1923 if (!cold)
5f8dcc21 1924 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
1925 else
1926 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 1927 pcp->count++;
48db57f8 1928 if (pcp->count >= pcp->high) {
4db0c3c2 1929 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
1930 free_pcppages_bulk(zone, batch, pcp);
1931 pcp->count -= batch;
48db57f8 1932 }
5f8dcc21
MG
1933
1934out:
1da177e4 1935 local_irq_restore(flags);
1da177e4
LT
1936}
1937
cc59850e
KK
1938/*
1939 * Free a list of 0-order pages
1940 */
b745bc85 1941void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
1942{
1943 struct page *page, *next;
1944
1945 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 1946 trace_mm_page_free_batched(page, cold);
cc59850e
KK
1947 free_hot_cold_page(page, cold);
1948 }
1949}
1950
8dfcc9ba
NP
1951/*
1952 * split_page takes a non-compound higher-order page, and splits it into
1953 * n (1<<order) sub-pages: page[0..n]
1954 * Each sub-page must be freed individually.
1955 *
1956 * Note: this is probably too low level an operation for use in drivers.
1957 * Please consult with lkml before using this in your driver.
1958 */
1959void split_page(struct page *page, unsigned int order)
1960{
1961 int i;
e2cfc911 1962 gfp_t gfp_mask;
8dfcc9ba 1963
309381fe
SL
1964 VM_BUG_ON_PAGE(PageCompound(page), page);
1965 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
1966
1967#ifdef CONFIG_KMEMCHECK
1968 /*
1969 * Split shadow pages too, because free(page[0]) would
1970 * otherwise free the whole shadow.
1971 */
1972 if (kmemcheck_page_is_tracked(page))
1973 split_page(virt_to_page(page[0].shadow), order);
1974#endif
1975
e2cfc911
JK
1976 gfp_mask = get_page_owner_gfp(page);
1977 set_page_owner(page, 0, gfp_mask);
48c96a36 1978 for (i = 1; i < (1 << order); i++) {
7835e98b 1979 set_page_refcounted(page + i);
e2cfc911 1980 set_page_owner(page + i, 0, gfp_mask);
48c96a36 1981 }
8dfcc9ba 1982}
5853ff23 1983EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 1984
3c605096 1985int __isolate_free_page(struct page *page, unsigned int order)
748446bb 1986{
748446bb
MG
1987 unsigned long watermark;
1988 struct zone *zone;
2139cbe6 1989 int mt;
748446bb
MG
1990
1991 BUG_ON(!PageBuddy(page));
1992
1993 zone = page_zone(page);
2e30abd1 1994 mt = get_pageblock_migratetype(page);
748446bb 1995
194159fb 1996 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
1997 /* Obey watermarks as if the page was being allocated */
1998 watermark = low_wmark_pages(zone) + (1 << order);
1999 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2000 return 0;
2001
8fb74b9f 2002 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2003 }
748446bb
MG
2004
2005 /* Remove page from free list */
2006 list_del(&page->lru);
2007 zone->free_area[order].nr_free--;
2008 rmv_page_order(page);
2139cbe6 2009
e2cfc911 2010 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2011
8fb74b9f 2012 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2013 if (order >= pageblock_order - 1) {
2014 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2015 for (; page < endpage; page += pageblock_nr_pages) {
2016 int mt = get_pageblock_migratetype(page);
194159fb 2017 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2018 set_pageblock_migratetype(page,
2019 MIGRATE_MOVABLE);
2020 }
748446bb
MG
2021 }
2022
f3a14ced 2023
8fb74b9f 2024 return 1UL << order;
1fb3f8ca
MG
2025}
2026
2027/*
2028 * Similar to split_page except the page is already free. As this is only
2029 * being used for migration, the migratetype of the block also changes.
2030 * As this is called with interrupts disabled, the caller is responsible
2031 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2032 * are enabled.
2033 *
2034 * Note: this is probably too low level an operation for use in drivers.
2035 * Please consult with lkml before using this in your driver.
2036 */
2037int split_free_page(struct page *page)
2038{
2039 unsigned int order;
2040 int nr_pages;
2041
1fb3f8ca
MG
2042 order = page_order(page);
2043
8fb74b9f 2044 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2045 if (!nr_pages)
2046 return 0;
2047
2048 /* Split into individual pages */
2049 set_page_refcounted(page);
2050 split_page(page, order);
2051 return nr_pages;
748446bb
MG
2052}
2053
1da177e4 2054/*
75379191 2055 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2056 */
0a15c3e9
MG
2057static inline
2058struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9
MG
2059 struct zone *zone, unsigned int order,
2060 gfp_t gfp_flags, int migratetype)
1da177e4
LT
2061{
2062 unsigned long flags;
689bcebf 2063 struct page *page;
b745bc85 2064 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2065
48db57f8 2066 if (likely(order == 0)) {
1da177e4 2067 struct per_cpu_pages *pcp;
5f8dcc21 2068 struct list_head *list;
1da177e4 2069
1da177e4 2070 local_irq_save(flags);
99dcc3e5
CL
2071 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2072 list = &pcp->lists[migratetype];
5f8dcc21 2073 if (list_empty(list)) {
535131e6 2074 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2075 pcp->batch, list,
e084b2d9 2076 migratetype, cold);
5f8dcc21 2077 if (unlikely(list_empty(list)))
6fb332fa 2078 goto failed;
535131e6 2079 }
b92a6edd 2080
5f8dcc21
MG
2081 if (cold)
2082 page = list_entry(list->prev, struct page, lru);
2083 else
2084 page = list_entry(list->next, struct page, lru);
2085
b92a6edd
MG
2086 list_del(&page->lru);
2087 pcp->count--;
7fb1d9fc 2088 } else {
dab48dab
AM
2089 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2090 /*
2091 * __GFP_NOFAIL is not to be used in new code.
2092 *
2093 * All __GFP_NOFAIL callers should be fixed so that they
2094 * properly detect and handle allocation failures.
2095 *
2096 * We most definitely don't want callers attempting to
4923abf9 2097 * allocate greater than order-1 page units with
dab48dab
AM
2098 * __GFP_NOFAIL.
2099 */
4923abf9 2100 WARN_ON_ONCE(order > 1);
dab48dab 2101 }
1da177e4 2102 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 2103 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2104 spin_unlock(&zone->lock);
2105 if (!page)
2106 goto failed;
d1ce749a 2107 __mod_zone_freepage_state(zone, -(1 << order),
5bcc9f86 2108 get_freepage_migratetype(page));
1da177e4
LT
2109 }
2110
3a025760 2111 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2112 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2113 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2114 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2115
f8891e5e 2116 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2117 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2118 local_irq_restore(flags);
1da177e4 2119
309381fe 2120 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2121 return page;
a74609fa
NP
2122
2123failed:
2124 local_irq_restore(flags);
a74609fa 2125 return NULL;
1da177e4
LT
2126}
2127
933e312e
AM
2128#ifdef CONFIG_FAIL_PAGE_ALLOC
2129
b2588c4b 2130static struct {
933e312e
AM
2131 struct fault_attr attr;
2132
2133 u32 ignore_gfp_highmem;
2134 u32 ignore_gfp_wait;
54114994 2135 u32 min_order;
933e312e
AM
2136} fail_page_alloc = {
2137 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
2138 .ignore_gfp_wait = 1,
2139 .ignore_gfp_highmem = 1,
54114994 2140 .min_order = 1,
933e312e
AM
2141};
2142
2143static int __init setup_fail_page_alloc(char *str)
2144{
2145 return setup_fault_attr(&fail_page_alloc.attr, str);
2146}
2147__setup("fail_page_alloc=", setup_fail_page_alloc);
2148
deaf386e 2149static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2150{
54114994 2151 if (order < fail_page_alloc.min_order)
deaf386e 2152 return false;
933e312e 2153 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2154 return false;
933e312e 2155 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2156 return false;
933e312e 2157 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
deaf386e 2158 return false;
933e312e
AM
2159
2160 return should_fail(&fail_page_alloc.attr, 1 << order);
2161}
2162
2163#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2164
2165static int __init fail_page_alloc_debugfs(void)
2166{
f4ae40a6 2167 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2168 struct dentry *dir;
933e312e 2169
dd48c085
AM
2170 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2171 &fail_page_alloc.attr);
2172 if (IS_ERR(dir))
2173 return PTR_ERR(dir);
933e312e 2174
b2588c4b
AM
2175 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2176 &fail_page_alloc.ignore_gfp_wait))
2177 goto fail;
2178 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2179 &fail_page_alloc.ignore_gfp_highmem))
2180 goto fail;
2181 if (!debugfs_create_u32("min-order", mode, dir,
2182 &fail_page_alloc.min_order))
2183 goto fail;
2184
2185 return 0;
2186fail:
dd48c085 2187 debugfs_remove_recursive(dir);
933e312e 2188
b2588c4b 2189 return -ENOMEM;
933e312e
AM
2190}
2191
2192late_initcall(fail_page_alloc_debugfs);
2193
2194#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2195
2196#else /* CONFIG_FAIL_PAGE_ALLOC */
2197
deaf386e 2198static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2199{
deaf386e 2200 return false;
933e312e
AM
2201}
2202
2203#endif /* CONFIG_FAIL_PAGE_ALLOC */
2204
1da177e4 2205/*
88f5acf8 2206 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
2207 * of the allocation.
2208 */
7aeb09f9
MG
2209static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2210 unsigned long mark, int classzone_idx, int alloc_flags,
2211 long free_pages)
1da177e4 2212{
26086de3 2213 /* free_pages may go negative - that's OK */
d23ad423 2214 long min = mark;
1da177e4 2215 int o;
026b0814 2216 long free_cma = 0;
1da177e4 2217
df0a6daa 2218 free_pages -= (1 << order) - 1;
7fb1d9fc 2219 if (alloc_flags & ALLOC_HIGH)
1da177e4 2220 min -= min / 2;
7fb1d9fc 2221 if (alloc_flags & ALLOC_HARDER)
1da177e4 2222 min -= min / 4;
d95ea5d1
BZ
2223#ifdef CONFIG_CMA
2224 /* If allocation can't use CMA areas don't use free CMA pages */
2225 if (!(alloc_flags & ALLOC_CMA))
026b0814 2226 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2227#endif
026b0814 2228
3484b2de 2229 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2230 return false;
1da177e4
LT
2231 for (o = 0; o < order; o++) {
2232 /* At the next order, this order's pages become unavailable */
2233 free_pages -= z->free_area[o].nr_free << o;
2234
2235 /* Require fewer higher order pages to be free */
2236 min >>= 1;
2237
2238 if (free_pages <= min)
88f5acf8 2239 return false;
1da177e4 2240 }
88f5acf8
MG
2241 return true;
2242}
2243
7aeb09f9 2244bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2245 int classzone_idx, int alloc_flags)
2246{
2247 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2248 zone_page_state(z, NR_FREE_PAGES));
2249}
2250
7aeb09f9
MG
2251bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2252 unsigned long mark, int classzone_idx, int alloc_flags)
88f5acf8
MG
2253{
2254 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2255
2256 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2257 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2258
2259 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2260 free_pages);
1da177e4
LT
2261}
2262
9276b1bc
PJ
2263#ifdef CONFIG_NUMA
2264/*
2265 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2266 * skip over zones that are not allowed by the cpuset, or that have
2267 * been recently (in last second) found to be nearly full. See further
2268 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 2269 * that have to skip over a lot of full or unallowed zones.
9276b1bc 2270 *
a1aeb65a 2271 * If the zonelist cache is present in the passed zonelist, then
9276b1bc 2272 * returns a pointer to the allowed node mask (either the current
4b0ef1fe 2273 * tasks mems_allowed, or node_states[N_MEMORY].)
9276b1bc
PJ
2274 *
2275 * If the zonelist cache is not available for this zonelist, does
2276 * nothing and returns NULL.
2277 *
2278 * If the fullzones BITMAP in the zonelist cache is stale (more than
2279 * a second since last zap'd) then we zap it out (clear its bits.)
2280 *
2281 * We hold off even calling zlc_setup, until after we've checked the
2282 * first zone in the zonelist, on the theory that most allocations will
2283 * be satisfied from that first zone, so best to examine that zone as
2284 * quickly as we can.
2285 */
2286static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2287{
2288 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2289 nodemask_t *allowednodes; /* zonelist_cache approximation */
2290
2291 zlc = zonelist->zlcache_ptr;
2292 if (!zlc)
2293 return NULL;
2294
f05111f5 2295 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
2296 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2297 zlc->last_full_zap = jiffies;
2298 }
2299
2300 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2301 &cpuset_current_mems_allowed :
4b0ef1fe 2302 &node_states[N_MEMORY];
9276b1bc
PJ
2303 return allowednodes;
2304}
2305
2306/*
2307 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2308 * if it is worth looking at further for free memory:
2309 * 1) Check that the zone isn't thought to be full (doesn't have its
2310 * bit set in the zonelist_cache fullzones BITMAP).
2311 * 2) Check that the zones node (obtained from the zonelist_cache
2312 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2313 * Return true (non-zero) if zone is worth looking at further, or
2314 * else return false (zero) if it is not.
2315 *
2316 * This check -ignores- the distinction between various watermarks,
2317 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2318 * found to be full for any variation of these watermarks, it will
2319 * be considered full for up to one second by all requests, unless
2320 * we are so low on memory on all allowed nodes that we are forced
2321 * into the second scan of the zonelist.
2322 *
2323 * In the second scan we ignore this zonelist cache and exactly
2324 * apply the watermarks to all zones, even it is slower to do so.
2325 * We are low on memory in the second scan, and should leave no stone
2326 * unturned looking for a free page.
2327 */
dd1a239f 2328static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2329 nodemask_t *allowednodes)
2330{
2331 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2332 int i; /* index of *z in zonelist zones */
2333 int n; /* node that zone *z is on */
2334
2335 zlc = zonelist->zlcache_ptr;
2336 if (!zlc)
2337 return 1;
2338
dd1a239f 2339 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2340 n = zlc->z_to_n[i];
2341
2342 /* This zone is worth trying if it is allowed but not full */
2343 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2344}
2345
2346/*
2347 * Given 'z' scanning a zonelist, set the corresponding bit in
2348 * zlc->fullzones, so that subsequent attempts to allocate a page
2349 * from that zone don't waste time re-examining it.
2350 */
dd1a239f 2351static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2352{
2353 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2354 int i; /* index of *z in zonelist zones */
2355
2356 zlc = zonelist->zlcache_ptr;
2357 if (!zlc)
2358 return;
2359
dd1a239f 2360 i = z - zonelist->_zonerefs;
9276b1bc
PJ
2361
2362 set_bit(i, zlc->fullzones);
2363}
2364
76d3fbf8
MG
2365/*
2366 * clear all zones full, called after direct reclaim makes progress so that
2367 * a zone that was recently full is not skipped over for up to a second
2368 */
2369static void zlc_clear_zones_full(struct zonelist *zonelist)
2370{
2371 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2372
2373 zlc = zonelist->zlcache_ptr;
2374 if (!zlc)
2375 return;
2376
2377 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2378}
2379
81c0a2bb
JW
2380static bool zone_local(struct zone *local_zone, struct zone *zone)
2381{
fff4068c 2382 return local_zone->node == zone->node;
81c0a2bb
JW
2383}
2384
957f822a
DR
2385static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2386{
5f7a75ac
MG
2387 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2388 RECLAIM_DISTANCE;
957f822a
DR
2389}
2390
9276b1bc
PJ
2391#else /* CONFIG_NUMA */
2392
2393static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2394{
2395 return NULL;
2396}
2397
dd1a239f 2398static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
2399 nodemask_t *allowednodes)
2400{
2401 return 1;
2402}
2403
dd1a239f 2404static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
2405{
2406}
76d3fbf8
MG
2407
2408static void zlc_clear_zones_full(struct zonelist *zonelist)
2409{
2410}
957f822a 2411
81c0a2bb
JW
2412static bool zone_local(struct zone *local_zone, struct zone *zone)
2413{
2414 return true;
2415}
2416
957f822a
DR
2417static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2418{
2419 return true;
2420}
2421
9276b1bc
PJ
2422#endif /* CONFIG_NUMA */
2423
4ffeaf35
MG
2424static void reset_alloc_batches(struct zone *preferred_zone)
2425{
2426 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2427
2428 do {
2429 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2430 high_wmark_pages(zone) - low_wmark_pages(zone) -
2431 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2432 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2433 } while (zone++ != preferred_zone);
2434}
2435
7fb1d9fc 2436/*
0798e519 2437 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2438 * a page.
2439 */
2440static struct page *
a9263751
VB
2441get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2442 const struct alloc_context *ac)
753ee728 2443{
a9263751 2444 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2445 struct zoneref *z;
7fb1d9fc 2446 struct page *page = NULL;
5117f45d 2447 struct zone *zone;
9276b1bc
PJ
2448 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2449 int zlc_active = 0; /* set if using zonelist_cache */
2450 int did_zlc_setup = 0; /* just call zlc_setup() one time */
a6e21b14
MG
2451 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2452 (gfp_mask & __GFP_WRITE);
4ffeaf35
MG
2453 int nr_fair_skipped = 0;
2454 bool zonelist_rescan;
54a6eb5c 2455
9276b1bc 2456zonelist_scan:
4ffeaf35
MG
2457 zonelist_rescan = false;
2458
7fb1d9fc 2459 /*
9276b1bc 2460 * Scan zonelist, looking for a zone with enough free.
344736f2 2461 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2462 */
a9263751
VB
2463 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2464 ac->nodemask) {
e085dbc5
JW
2465 unsigned long mark;
2466
e5adfffc 2467 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
9276b1bc
PJ
2468 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2469 continue;
664eedde
MG
2470 if (cpusets_enabled() &&
2471 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2472 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2473 continue;
81c0a2bb
JW
2474 /*
2475 * Distribute pages in proportion to the individual
2476 * zone size to ensure fair page aging. The zone a
2477 * page was allocated in should have no effect on the
2478 * time the page has in memory before being reclaimed.
81c0a2bb 2479 */
3a025760 2480 if (alloc_flags & ALLOC_FAIR) {
a9263751 2481 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2482 break;
57054651 2483 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2484 nr_fair_skipped++;
3a025760 2485 continue;
4ffeaf35 2486 }
81c0a2bb 2487 }
a756cf59
JW
2488 /*
2489 * When allocating a page cache page for writing, we
2490 * want to get it from a zone that is within its dirty
2491 * limit, such that no single zone holds more than its
2492 * proportional share of globally allowed dirty pages.
2493 * The dirty limits take into account the zone's
2494 * lowmem reserves and high watermark so that kswapd
2495 * should be able to balance it without having to
2496 * write pages from its LRU list.
2497 *
2498 * This may look like it could increase pressure on
2499 * lower zones by failing allocations in higher zones
2500 * before they are full. But the pages that do spill
2501 * over are limited as the lower zones are protected
2502 * by this very same mechanism. It should not become
2503 * a practical burden to them.
2504 *
2505 * XXX: For now, allow allocations to potentially
2506 * exceed the per-zone dirty limit in the slowpath
2507 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2508 * which is important when on a NUMA setup the allowed
2509 * zones are together not big enough to reach the
2510 * global limit. The proper fix for these situations
2511 * will require awareness of zones in the
2512 * dirty-throttling and the flusher threads.
2513 */
a6e21b14 2514 if (consider_zone_dirty && !zone_dirty_ok(zone))
800a1e75 2515 continue;
7fb1d9fc 2516
e085dbc5
JW
2517 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2518 if (!zone_watermark_ok(zone, order, mark,
a9263751 2519 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2520 int ret;
2521
5dab2911
MG
2522 /* Checked here to keep the fast path fast */
2523 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2524 if (alloc_flags & ALLOC_NO_WATERMARKS)
2525 goto try_this_zone;
2526
e5adfffc
KS
2527 if (IS_ENABLED(CONFIG_NUMA) &&
2528 !did_zlc_setup && nr_online_nodes > 1) {
cd38b115
MG
2529 /*
2530 * we do zlc_setup if there are multiple nodes
2531 * and before considering the first zone allowed
2532 * by the cpuset.
2533 */
2534 allowednodes = zlc_setup(zonelist, alloc_flags);
2535 zlc_active = 1;
2536 did_zlc_setup = 1;
2537 }
2538
957f822a 2539 if (zone_reclaim_mode == 0 ||
a9263751 2540 !zone_allows_reclaim(ac->preferred_zone, zone))
fa5e084e
MG
2541 goto this_zone_full;
2542
cd38b115
MG
2543 /*
2544 * As we may have just activated ZLC, check if the first
2545 * eligible zone has failed zone_reclaim recently.
2546 */
e5adfffc 2547 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
cd38b115
MG
2548 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2549 continue;
2550
fa5e084e
MG
2551 ret = zone_reclaim(zone, gfp_mask, order);
2552 switch (ret) {
2553 case ZONE_RECLAIM_NOSCAN:
2554 /* did not scan */
cd38b115 2555 continue;
fa5e084e
MG
2556 case ZONE_RECLAIM_FULL:
2557 /* scanned but unreclaimable */
cd38b115 2558 continue;
fa5e084e
MG
2559 default:
2560 /* did we reclaim enough */
fed2719e 2561 if (zone_watermark_ok(zone, order, mark,
a9263751 2562 ac->classzone_idx, alloc_flags))
fed2719e
MG
2563 goto try_this_zone;
2564
2565 /*
2566 * Failed to reclaim enough to meet watermark.
2567 * Only mark the zone full if checking the min
2568 * watermark or if we failed to reclaim just
2569 * 1<<order pages or else the page allocator
2570 * fastpath will prematurely mark zones full
2571 * when the watermark is between the low and
2572 * min watermarks.
2573 */
2574 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2575 ret == ZONE_RECLAIM_SOME)
9276b1bc 2576 goto this_zone_full;
fed2719e
MG
2577
2578 continue;
0798e519 2579 }
7fb1d9fc
RS
2580 }
2581
fa5e084e 2582try_this_zone:
a9263751
VB
2583 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2584 gfp_mask, ac->migratetype);
75379191
VB
2585 if (page) {
2586 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2587 goto try_this_zone;
2588 return page;
2589 }
9276b1bc 2590this_zone_full:
65bb3719 2591 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
9276b1bc 2592 zlc_mark_zone_full(zonelist, z);
54a6eb5c 2593 }
9276b1bc 2594
4ffeaf35
MG
2595 /*
2596 * The first pass makes sure allocations are spread fairly within the
2597 * local node. However, the local node might have free pages left
2598 * after the fairness batches are exhausted, and remote zones haven't
2599 * even been considered yet. Try once more without fairness, and
2600 * include remote zones now, before entering the slowpath and waking
2601 * kswapd: prefer spilling to a remote zone over swapping locally.
2602 */
2603 if (alloc_flags & ALLOC_FAIR) {
2604 alloc_flags &= ~ALLOC_FAIR;
2605 if (nr_fair_skipped) {
2606 zonelist_rescan = true;
a9263751 2607 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2608 }
2609 if (nr_online_nodes > 1)
2610 zonelist_rescan = true;
2611 }
2612
2613 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2614 /* Disable zlc cache for second zonelist scan */
2615 zlc_active = 0;
2616 zonelist_rescan = true;
2617 }
2618
2619 if (zonelist_rescan)
2620 goto zonelist_scan;
2621
2622 return NULL;
753ee728
MH
2623}
2624
29423e77
DR
2625/*
2626 * Large machines with many possible nodes should not always dump per-node
2627 * meminfo in irq context.
2628 */
2629static inline bool should_suppress_show_mem(void)
2630{
2631 bool ret = false;
2632
2633#if NODES_SHIFT > 8
2634 ret = in_interrupt();
2635#endif
2636 return ret;
2637}
2638
a238ab5b
DH
2639static DEFINE_RATELIMIT_STATE(nopage_rs,
2640 DEFAULT_RATELIMIT_INTERVAL,
2641 DEFAULT_RATELIMIT_BURST);
2642
2643void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2644{
a238ab5b
DH
2645 unsigned int filter = SHOW_MEM_FILTER_NODES;
2646
c0a32fc5
SG
2647 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2648 debug_guardpage_minorder() > 0)
a238ab5b
DH
2649 return;
2650
2651 /*
2652 * This documents exceptions given to allocations in certain
2653 * contexts that are allowed to allocate outside current's set
2654 * of allowed nodes.
2655 */
2656 if (!(gfp_mask & __GFP_NOMEMALLOC))
2657 if (test_thread_flag(TIF_MEMDIE) ||
2658 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2659 filter &= ~SHOW_MEM_FILTER_NODES;
2660 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2661 filter &= ~SHOW_MEM_FILTER_NODES;
2662
2663 if (fmt) {
3ee9a4f0
JP
2664 struct va_format vaf;
2665 va_list args;
2666
a238ab5b 2667 va_start(args, fmt);
3ee9a4f0
JP
2668
2669 vaf.fmt = fmt;
2670 vaf.va = &args;
2671
2672 pr_warn("%pV", &vaf);
2673
a238ab5b
DH
2674 va_end(args);
2675 }
2676
3ee9a4f0
JP
2677 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2678 current->comm, order, gfp_mask);
a238ab5b
DH
2679
2680 dump_stack();
2681 if (!should_suppress_show_mem())
2682 show_mem(filter);
2683}
2684
11e33f6a
MG
2685static inline struct page *
2686__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2687 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a
MG
2688{
2689 struct page *page;
2690
9879de73
JW
2691 *did_some_progress = 0;
2692
9879de73 2693 /*
dc56401f
JW
2694 * Acquire the oom lock. If that fails, somebody else is
2695 * making progress for us.
9879de73 2696 */
dc56401f 2697 if (!mutex_trylock(&oom_lock)) {
9879de73 2698 *did_some_progress = 1;
11e33f6a 2699 schedule_timeout_uninterruptible(1);
1da177e4
LT
2700 return NULL;
2701 }
6b1de916 2702
11e33f6a
MG
2703 /*
2704 * Go through the zonelist yet one more time, keep very high watermark
2705 * here, this is only to catch a parallel oom killing, we must fail if
2706 * we're still under heavy pressure.
2707 */
a9263751
VB
2708 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2709 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2710 if (page)
11e33f6a
MG
2711 goto out;
2712
4365a567 2713 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2714 /* Coredumps can quickly deplete all memory reserves */
2715 if (current->flags & PF_DUMPCORE)
2716 goto out;
4365a567
KH
2717 /* The OOM killer will not help higher order allocs */
2718 if (order > PAGE_ALLOC_COSTLY_ORDER)
2719 goto out;
03668b3c 2720 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2721 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2722 goto out;
9083905a 2723 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2724 if (!(gfp_mask & __GFP_FS)) {
2725 /*
2726 * XXX: Page reclaim didn't yield anything,
2727 * and the OOM killer can't be invoked, but
9083905a 2728 * keep looping as per tradition.
cc873177
JW
2729 */
2730 *did_some_progress = 1;
9879de73 2731 goto out;
cc873177 2732 }
9083905a
JW
2733 if (pm_suspended_storage())
2734 goto out;
4167e9b2 2735 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2736 if (gfp_mask & __GFP_THISNODE)
2737 goto out;
2738 }
11e33f6a 2739 /* Exhausted what can be done so it's blamo time */
e009d5dc
MH
2740 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2741 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2742 *did_some_progress = 1;
11e33f6a 2743out:
dc56401f 2744 mutex_unlock(&oom_lock);
11e33f6a
MG
2745 return page;
2746}
2747
56de7263
MG
2748#ifdef CONFIG_COMPACTION
2749/* Try memory compaction for high-order allocations before reclaim */
2750static struct page *
2751__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2752 int alloc_flags, const struct alloc_context *ac,
2753 enum migrate_mode mode, int *contended_compaction,
2754 bool *deferred_compaction)
56de7263 2755{
53853e2d 2756 unsigned long compact_result;
98dd3b48 2757 struct page *page;
53853e2d
VB
2758
2759 if (!order)
66199712 2760 return NULL;
66199712 2761
c06b1fca 2762 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2763 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2764 mode, contended_compaction);
c06b1fca 2765 current->flags &= ~PF_MEMALLOC;
56de7263 2766
98dd3b48
VB
2767 switch (compact_result) {
2768 case COMPACT_DEFERRED:
53853e2d 2769 *deferred_compaction = true;
98dd3b48
VB
2770 /* fall-through */
2771 case COMPACT_SKIPPED:
2772 return NULL;
2773 default:
2774 break;
2775 }
53853e2d 2776
98dd3b48
VB
2777 /*
2778 * At least in one zone compaction wasn't deferred or skipped, so let's
2779 * count a compaction stall
2780 */
2781 count_vm_event(COMPACTSTALL);
8fb74b9f 2782
a9263751
VB
2783 page = get_page_from_freelist(gfp_mask, order,
2784 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2785
98dd3b48
VB
2786 if (page) {
2787 struct zone *zone = page_zone(page);
53853e2d 2788
98dd3b48
VB
2789 zone->compact_blockskip_flush = false;
2790 compaction_defer_reset(zone, order, true);
2791 count_vm_event(COMPACTSUCCESS);
2792 return page;
2793 }
56de7263 2794
98dd3b48
VB
2795 /*
2796 * It's bad if compaction run occurs and fails. The most likely reason
2797 * is that pages exist, but not enough to satisfy watermarks.
2798 */
2799 count_vm_event(COMPACTFAIL);
66199712 2800
98dd3b48 2801 cond_resched();
56de7263
MG
2802
2803 return NULL;
2804}
2805#else
2806static inline struct page *
2807__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2808 int alloc_flags, const struct alloc_context *ac,
2809 enum migrate_mode mode, int *contended_compaction,
2810 bool *deferred_compaction)
56de7263
MG
2811{
2812 return NULL;
2813}
2814#endif /* CONFIG_COMPACTION */
2815
bba90710
MS
2816/* Perform direct synchronous page reclaim */
2817static int
a9263751
VB
2818__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2819 const struct alloc_context *ac)
11e33f6a 2820{
11e33f6a 2821 struct reclaim_state reclaim_state;
bba90710 2822 int progress;
11e33f6a
MG
2823
2824 cond_resched();
2825
2826 /* We now go into synchronous reclaim */
2827 cpuset_memory_pressure_bump();
c06b1fca 2828 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2829 lockdep_set_current_reclaim_state(gfp_mask);
2830 reclaim_state.reclaimed_slab = 0;
c06b1fca 2831 current->reclaim_state = &reclaim_state;
11e33f6a 2832
a9263751
VB
2833 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2834 ac->nodemask);
11e33f6a 2835
c06b1fca 2836 current->reclaim_state = NULL;
11e33f6a 2837 lockdep_clear_current_reclaim_state();
c06b1fca 2838 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2839
2840 cond_resched();
2841
bba90710
MS
2842 return progress;
2843}
2844
2845/* The really slow allocator path where we enter direct reclaim */
2846static inline struct page *
2847__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2848 int alloc_flags, const struct alloc_context *ac,
2849 unsigned long *did_some_progress)
bba90710
MS
2850{
2851 struct page *page = NULL;
2852 bool drained = false;
2853
a9263751 2854 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2855 if (unlikely(!(*did_some_progress)))
2856 return NULL;
11e33f6a 2857
76d3fbf8 2858 /* After successful reclaim, reconsider all zones for allocation */
e5adfffc 2859 if (IS_ENABLED(CONFIG_NUMA))
a9263751 2860 zlc_clear_zones_full(ac->zonelist);
76d3fbf8 2861
9ee493ce 2862retry:
a9263751
VB
2863 page = get_page_from_freelist(gfp_mask, order,
2864 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2865
2866 /*
2867 * If an allocation failed after direct reclaim, it could be because
2868 * pages are pinned on the per-cpu lists. Drain them and try again
2869 */
2870 if (!page && !drained) {
93481ff0 2871 drain_all_pages(NULL);
9ee493ce
MG
2872 drained = true;
2873 goto retry;
2874 }
2875
11e33f6a
MG
2876 return page;
2877}
2878
1da177e4 2879/*
11e33f6a
MG
2880 * This is called in the allocator slow-path if the allocation request is of
2881 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 2882 */
11e33f6a
MG
2883static inline struct page *
2884__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
a9263751 2885 const struct alloc_context *ac)
11e33f6a
MG
2886{
2887 struct page *page;
2888
2889 do {
a9263751
VB
2890 page = get_page_from_freelist(gfp_mask, order,
2891 ALLOC_NO_WATERMARKS, ac);
11e33f6a
MG
2892
2893 if (!page && gfp_mask & __GFP_NOFAIL)
a9263751
VB
2894 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2895 HZ/50);
11e33f6a
MG
2896 } while (!page && (gfp_mask & __GFP_NOFAIL));
2897
2898 return page;
2899}
2900
a9263751 2901static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2902{
2903 struct zoneref *z;
2904 struct zone *zone;
2905
a9263751
VB
2906 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2907 ac->high_zoneidx, ac->nodemask)
2908 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2909}
2910
341ce06f
PZ
2911static inline int
2912gfp_to_alloc_flags(gfp_t gfp_mask)
2913{
341ce06f 2914 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
b104a35d 2915 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
1da177e4 2916
a56f57ff 2917 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2918 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2919
341ce06f
PZ
2920 /*
2921 * The caller may dip into page reserves a bit more if the caller
2922 * cannot run direct reclaim, or if the caller has realtime scheduling
2923 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
b104a35d 2924 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2925 */
e6223a3b 2926 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2927
b104a35d 2928 if (atomic) {
5c3240d9 2929 /*
b104a35d
DR
2930 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2931 * if it can't schedule.
5c3240d9 2932 */
b104a35d 2933 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2934 alloc_flags |= ALLOC_HARDER;
523b9458 2935 /*
b104a35d 2936 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2937 * comment for __cpuset_node_allowed().
523b9458 2938 */
341ce06f 2939 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2940 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2941 alloc_flags |= ALLOC_HARDER;
2942
b37f1dd0
MG
2943 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2944 if (gfp_mask & __GFP_MEMALLOC)
2945 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2946 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2947 alloc_flags |= ALLOC_NO_WATERMARKS;
2948 else if (!in_interrupt() &&
2949 ((current->flags & PF_MEMALLOC) ||
2950 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2951 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2952 }
d95ea5d1 2953#ifdef CONFIG_CMA
43e7a34d 2954 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2955 alloc_flags |= ALLOC_CMA;
2956#endif
341ce06f
PZ
2957 return alloc_flags;
2958}
2959
072bb0aa
MG
2960bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2961{
b37f1dd0 2962 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2963}
2964
11e33f6a
MG
2965static inline struct page *
2966__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2967 struct alloc_context *ac)
11e33f6a
MG
2968{
2969 const gfp_t wait = gfp_mask & __GFP_WAIT;
2970 struct page *page = NULL;
2971 int alloc_flags;
2972 unsigned long pages_reclaimed = 0;
2973 unsigned long did_some_progress;
e0b9daeb 2974 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2975 bool deferred_compaction = false;
1f9efdef 2976 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2977
72807a74
MG
2978 /*
2979 * In the slowpath, we sanity check order to avoid ever trying to
2980 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2981 * be using allocators in order of preference for an area that is
2982 * too large.
2983 */
1fc28b70
MG
2984 if (order >= MAX_ORDER) {
2985 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2986 return NULL;
1fc28b70 2987 }
1da177e4 2988
952f3b51 2989 /*
4167e9b2
DR
2990 * If this allocation cannot block and it is for a specific node, then
2991 * fail early. There's no need to wakeup kswapd or retry for a
2992 * speculative node-specific allocation.
952f3b51 2993 */
4167e9b2 2994 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
952f3b51
CL
2995 goto nopage;
2996
9879de73 2997retry:
3a025760 2998 if (!(gfp_mask & __GFP_NO_KSWAPD))
a9263751 2999 wake_all_kswapds(order, ac);
1da177e4 3000
9bf2229f 3001 /*
7fb1d9fc
RS
3002 * OK, we're below the kswapd watermark and have kicked background
3003 * reclaim. Now things get more complex, so set up alloc_flags according
3004 * to how we want to proceed.
9bf2229f 3005 */
341ce06f 3006 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3007
f33261d7
DR
3008 /*
3009 * Find the true preferred zone if the allocation is unconstrained by
3010 * cpusets.
3011 */
a9263751 3012 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3013 struct zoneref *preferred_zoneref;
a9263751
VB
3014 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3015 ac->high_zoneidx, NULL, &ac->preferred_zone);
3016 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3017 }
f33261d7 3018
341ce06f 3019 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3020 page = get_page_from_freelist(gfp_mask, order,
3021 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3022 if (page)
3023 goto got_pg;
1da177e4 3024
11e33f6a 3025 /* Allocate without watermarks if the context allows */
341ce06f 3026 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3027 /*
3028 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3029 * the allocation is high priority and these type of
3030 * allocations are system rather than user orientated
3031 */
a9263751
VB
3032 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3033
3034 page = __alloc_pages_high_priority(gfp_mask, order, ac);
183f6371 3035
cfd19c5a 3036 if (page) {
341ce06f 3037 goto got_pg;
cfd19c5a 3038 }
1da177e4
LT
3039 }
3040
3041 /* Atomic allocations - we can't balance anything */
aed0a0e3
DR
3042 if (!wait) {
3043 /*
3044 * All existing users of the deprecated __GFP_NOFAIL are
3045 * blockable, so warn of any new users that actually allow this
3046 * type of allocation to fail.
3047 */
3048 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3049 goto nopage;
aed0a0e3 3050 }
1da177e4 3051
341ce06f 3052 /* Avoid recursion of direct reclaim */
c06b1fca 3053 if (current->flags & PF_MEMALLOC)
341ce06f
PZ
3054 goto nopage;
3055
6583bb64
DR
3056 /* Avoid allocations with no watermarks from looping endlessly */
3057 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3058 goto nopage;
3059
77f1fe6b
MG
3060 /*
3061 * Try direct compaction. The first pass is asynchronous. Subsequent
3062 * attempts after direct reclaim are synchronous
3063 */
a9263751
VB
3064 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3065 migration_mode,
3066 &contended_compaction,
53853e2d 3067 &deferred_compaction);
56de7263
MG
3068 if (page)
3069 goto got_pg;
75f30861 3070
1f9efdef
VB
3071 /* Checks for THP-specific high-order allocations */
3072 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3073 /*
3074 * If compaction is deferred for high-order allocations, it is
3075 * because sync compaction recently failed. If this is the case
3076 * and the caller requested a THP allocation, we do not want
3077 * to heavily disrupt the system, so we fail the allocation
3078 * instead of entering direct reclaim.
3079 */
3080 if (deferred_compaction)
3081 goto nopage;
3082
3083 /*
3084 * In all zones where compaction was attempted (and not
3085 * deferred or skipped), lock contention has been detected.
3086 * For THP allocation we do not want to disrupt the others
3087 * so we fallback to base pages instead.
3088 */
3089 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3090 goto nopage;
3091
3092 /*
3093 * If compaction was aborted due to need_resched(), we do not
3094 * want to further increase allocation latency, unless it is
3095 * khugepaged trying to collapse.
3096 */
3097 if (contended_compaction == COMPACT_CONTENDED_SCHED
3098 && !(current->flags & PF_KTHREAD))
3099 goto nopage;
3100 }
66199712 3101
8fe78048
DR
3102 /*
3103 * It can become very expensive to allocate transparent hugepages at
3104 * fault, so use asynchronous memory compaction for THP unless it is
3105 * khugepaged trying to collapse.
3106 */
3107 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3108 (current->flags & PF_KTHREAD))
3109 migration_mode = MIGRATE_SYNC_LIGHT;
3110
11e33f6a 3111 /* Try direct reclaim and then allocating */
a9263751
VB
3112 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3113 &did_some_progress);
11e33f6a
MG
3114 if (page)
3115 goto got_pg;
1da177e4 3116
9083905a
JW
3117 /* Do not loop if specifically requested */
3118 if (gfp_mask & __GFP_NORETRY)
3119 goto noretry;
3120
3121 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3122 pages_reclaimed += did_some_progress;
9083905a
JW
3123 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3124 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3125 /* Wait for some write requests to complete then retry */
a9263751 3126 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3127 goto retry;
1da177e4
LT
3128 }
3129
9083905a
JW
3130 /* Reclaim has failed us, start killing things */
3131 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3132 if (page)
3133 goto got_pg;
3134
3135 /* Retry as long as the OOM killer is making progress */
3136 if (did_some_progress)
3137 goto retry;
3138
3139noretry:
3140 /*
3141 * High-order allocations do not necessarily loop after
3142 * direct reclaim and reclaim/compaction depends on compaction
3143 * being called after reclaim so call directly if necessary
3144 */
3145 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3146 ac, migration_mode,
3147 &contended_compaction,
3148 &deferred_compaction);
3149 if (page)
3150 goto got_pg;
1da177e4 3151nopage:
a238ab5b 3152 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3153got_pg:
072bb0aa 3154 return page;
1da177e4 3155}
11e33f6a
MG
3156
3157/*
3158 * This is the 'heart' of the zoned buddy allocator.
3159 */
3160struct page *
3161__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3162 struct zonelist *zonelist, nodemask_t *nodemask)
3163{
d8846374 3164 struct zoneref *preferred_zoneref;
cc9a6c87 3165 struct page *page = NULL;
cc9a6c87 3166 unsigned int cpuset_mems_cookie;
3a025760 3167 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3168 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3169 struct alloc_context ac = {
3170 .high_zoneidx = gfp_zone(gfp_mask),
3171 .nodemask = nodemask,
3172 .migratetype = gfpflags_to_migratetype(gfp_mask),
3173 };
11e33f6a 3174
dcce284a
BH
3175 gfp_mask &= gfp_allowed_mask;
3176
11e33f6a
MG
3177 lockdep_trace_alloc(gfp_mask);
3178
3179 might_sleep_if(gfp_mask & __GFP_WAIT);
3180
3181 if (should_fail_alloc_page(gfp_mask, order))
3182 return NULL;
3183
3184 /*
3185 * Check the zones suitable for the gfp_mask contain at least one
3186 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3187 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3188 */
3189 if (unlikely(!zonelist->_zonerefs->zone))
3190 return NULL;
3191
a9263751 3192 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3193 alloc_flags |= ALLOC_CMA;
3194
cc9a6c87 3195retry_cpuset:
d26914d1 3196 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3197
a9263751
VB
3198 /* We set it here, as __alloc_pages_slowpath might have changed it */
3199 ac.zonelist = zonelist;
5117f45d 3200 /* The preferred zone is used for statistics later */
a9263751
VB
3201 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3202 ac.nodemask ? : &cpuset_current_mems_allowed,
3203 &ac.preferred_zone);
3204 if (!ac.preferred_zone)
cc9a6c87 3205 goto out;
a9263751 3206 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3207
3208 /* First allocation attempt */
91fbdc0f 3209 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3210 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3211 if (unlikely(!page)) {
3212 /*
3213 * Runtime PM, block IO and its error handling path
3214 * can deadlock because I/O on the device might not
3215 * complete.
3216 */
91fbdc0f
AM
3217 alloc_mask = memalloc_noio_flags(gfp_mask);
3218
a9263751 3219 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3220 }
11e33f6a 3221
23f086f9
XQ
3222 if (kmemcheck_enabled && page)
3223 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3224
a9263751 3225 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3226
3227out:
3228 /*
3229 * When updating a task's mems_allowed, it is possible to race with
3230 * parallel threads in such a way that an allocation can fail while
3231 * the mask is being updated. If a page allocation is about to fail,
3232 * check if the cpuset changed during allocation and if so, retry.
3233 */
d26914d1 3234 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3235 goto retry_cpuset;
3236
11e33f6a 3237 return page;
1da177e4 3238}
d239171e 3239EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3240
3241/*
3242 * Common helper functions.
3243 */
920c7a5d 3244unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3245{
945a1113
AM
3246 struct page *page;
3247
3248 /*
3249 * __get_free_pages() returns a 32-bit address, which cannot represent
3250 * a highmem page
3251 */
3252 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3253
1da177e4
LT
3254 page = alloc_pages(gfp_mask, order);
3255 if (!page)
3256 return 0;
3257 return (unsigned long) page_address(page);
3258}
1da177e4
LT
3259EXPORT_SYMBOL(__get_free_pages);
3260
920c7a5d 3261unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3262{
945a1113 3263 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3264}
1da177e4
LT
3265EXPORT_SYMBOL(get_zeroed_page);
3266
920c7a5d 3267void __free_pages(struct page *page, unsigned int order)
1da177e4 3268{
b5810039 3269 if (put_page_testzero(page)) {
1da177e4 3270 if (order == 0)
b745bc85 3271 free_hot_cold_page(page, false);
1da177e4
LT
3272 else
3273 __free_pages_ok(page, order);
3274 }
3275}
3276
3277EXPORT_SYMBOL(__free_pages);
3278
920c7a5d 3279void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3280{
3281 if (addr != 0) {
725d704e 3282 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3283 __free_pages(virt_to_page((void *)addr), order);
3284 }
3285}
3286
3287EXPORT_SYMBOL(free_pages);
3288
b63ae8ca
AD
3289/*
3290 * Page Fragment:
3291 * An arbitrary-length arbitrary-offset area of memory which resides
3292 * within a 0 or higher order page. Multiple fragments within that page
3293 * are individually refcounted, in the page's reference counter.
3294 *
3295 * The page_frag functions below provide a simple allocation framework for
3296 * page fragments. This is used by the network stack and network device
3297 * drivers to provide a backing region of memory for use as either an
3298 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3299 */
3300static struct page *__page_frag_refill(struct page_frag_cache *nc,
3301 gfp_t gfp_mask)
3302{
3303 struct page *page = NULL;
3304 gfp_t gfp = gfp_mask;
3305
3306#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3307 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3308 __GFP_NOMEMALLOC;
3309 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3310 PAGE_FRAG_CACHE_MAX_ORDER);
3311 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3312#endif
3313 if (unlikely(!page))
3314 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3315
3316 nc->va = page ? page_address(page) : NULL;
3317
3318 return page;
3319}
3320
3321void *__alloc_page_frag(struct page_frag_cache *nc,
3322 unsigned int fragsz, gfp_t gfp_mask)
3323{
3324 unsigned int size = PAGE_SIZE;
3325 struct page *page;
3326 int offset;
3327
3328 if (unlikely(!nc->va)) {
3329refill:
3330 page = __page_frag_refill(nc, gfp_mask);
3331 if (!page)
3332 return NULL;
3333
3334#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3335 /* if size can vary use size else just use PAGE_SIZE */
3336 size = nc->size;
3337#endif
3338 /* Even if we own the page, we do not use atomic_set().
3339 * This would break get_page_unless_zero() users.
3340 */
3341 atomic_add(size - 1, &page->_count);
3342
3343 /* reset page count bias and offset to start of new frag */
3344 nc->pfmemalloc = page->pfmemalloc;
3345 nc->pagecnt_bias = size;
3346 nc->offset = size;
3347 }
3348
3349 offset = nc->offset - fragsz;
3350 if (unlikely(offset < 0)) {
3351 page = virt_to_page(nc->va);
3352
3353 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3354 goto refill;
3355
3356#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3357 /* if size can vary use size else just use PAGE_SIZE */
3358 size = nc->size;
3359#endif
3360 /* OK, page count is 0, we can safely set it */
3361 atomic_set(&page->_count, size);
3362
3363 /* reset page count bias and offset to start of new frag */
3364 nc->pagecnt_bias = size;
3365 offset = size - fragsz;
3366 }
3367
3368 nc->pagecnt_bias--;
3369 nc->offset = offset;
3370
3371 return nc->va + offset;
3372}
3373EXPORT_SYMBOL(__alloc_page_frag);
3374
3375/*
3376 * Frees a page fragment allocated out of either a compound or order 0 page.
3377 */
3378void __free_page_frag(void *addr)
3379{
3380 struct page *page = virt_to_head_page(addr);
3381
3382 if (unlikely(put_page_testzero(page)))
3383 __free_pages_ok(page, compound_order(page));
3384}
3385EXPORT_SYMBOL(__free_page_frag);
3386
6a1a0d3b 3387/*
52383431
VD
3388 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3389 * of the current memory cgroup.
6a1a0d3b 3390 *
52383431
VD
3391 * It should be used when the caller would like to use kmalloc, but since the
3392 * allocation is large, it has to fall back to the page allocator.
3393 */
3394struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3395{
3396 struct page *page;
3397 struct mem_cgroup *memcg = NULL;
3398
3399 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3400 return NULL;
3401 page = alloc_pages(gfp_mask, order);
3402 memcg_kmem_commit_charge(page, memcg, order);
3403 return page;
3404}
3405
3406struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3407{
3408 struct page *page;
3409 struct mem_cgroup *memcg = NULL;
3410
3411 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3412 return NULL;
3413 page = alloc_pages_node(nid, gfp_mask, order);
3414 memcg_kmem_commit_charge(page, memcg, order);
3415 return page;
3416}
3417
3418/*
3419 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3420 * alloc_kmem_pages.
6a1a0d3b 3421 */
52383431 3422void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b
GC
3423{
3424 memcg_kmem_uncharge_pages(page, order);
3425 __free_pages(page, order);
3426}
3427
52383431 3428void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3429{
3430 if (addr != 0) {
3431 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3432 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3433 }
3434}
3435
ee85c2e1
AK
3436static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3437{
3438 if (addr) {
3439 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3440 unsigned long used = addr + PAGE_ALIGN(size);
3441
3442 split_page(virt_to_page((void *)addr), order);
3443 while (used < alloc_end) {
3444 free_page(used);
3445 used += PAGE_SIZE;
3446 }
3447 }
3448 return (void *)addr;
3449}
3450
2be0ffe2
TT
3451/**
3452 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3453 * @size: the number of bytes to allocate
3454 * @gfp_mask: GFP flags for the allocation
3455 *
3456 * This function is similar to alloc_pages(), except that it allocates the
3457 * minimum number of pages to satisfy the request. alloc_pages() can only
3458 * allocate memory in power-of-two pages.
3459 *
3460 * This function is also limited by MAX_ORDER.
3461 *
3462 * Memory allocated by this function must be released by free_pages_exact().
3463 */
3464void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3465{
3466 unsigned int order = get_order(size);
3467 unsigned long addr;
3468
3469 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3470 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3471}
3472EXPORT_SYMBOL(alloc_pages_exact);
3473
ee85c2e1
AK
3474/**
3475 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3476 * pages on a node.
b5e6ab58 3477 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3478 * @size: the number of bytes to allocate
3479 * @gfp_mask: GFP flags for the allocation
3480 *
3481 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3482 * back.
3483 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3484 * but is not exact.
3485 */
e1931811 3486void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1
AK
3487{
3488 unsigned order = get_order(size);
3489 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3490 if (!p)
3491 return NULL;
3492 return make_alloc_exact((unsigned long)page_address(p), order, size);
3493}
ee85c2e1 3494
2be0ffe2
TT
3495/**
3496 * free_pages_exact - release memory allocated via alloc_pages_exact()
3497 * @virt: the value returned by alloc_pages_exact.
3498 * @size: size of allocation, same value as passed to alloc_pages_exact().
3499 *
3500 * Release the memory allocated by a previous call to alloc_pages_exact.
3501 */
3502void free_pages_exact(void *virt, size_t size)
3503{
3504 unsigned long addr = (unsigned long)virt;
3505 unsigned long end = addr + PAGE_ALIGN(size);
3506
3507 while (addr < end) {
3508 free_page(addr);
3509 addr += PAGE_SIZE;
3510 }
3511}
3512EXPORT_SYMBOL(free_pages_exact);
3513
e0fb5815
ZY
3514/**
3515 * nr_free_zone_pages - count number of pages beyond high watermark
3516 * @offset: The zone index of the highest zone
3517 *
3518 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3519 * high watermark within all zones at or below a given zone index. For each
3520 * zone, the number of pages is calculated as:
834405c3 3521 * managed_pages - high_pages
e0fb5815 3522 */
ebec3862 3523static unsigned long nr_free_zone_pages(int offset)
1da177e4 3524{
dd1a239f 3525 struct zoneref *z;
54a6eb5c
MG
3526 struct zone *zone;
3527
e310fd43 3528 /* Just pick one node, since fallback list is circular */
ebec3862 3529 unsigned long sum = 0;
1da177e4 3530
0e88460d 3531 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3532
54a6eb5c 3533 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3534 unsigned long size = zone->managed_pages;
41858966 3535 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3536 if (size > high)
3537 sum += size - high;
1da177e4
LT
3538 }
3539
3540 return sum;
3541}
3542
e0fb5815
ZY
3543/**
3544 * nr_free_buffer_pages - count number of pages beyond high watermark
3545 *
3546 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3547 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3548 */
ebec3862 3549unsigned long nr_free_buffer_pages(void)
1da177e4 3550{
af4ca457 3551 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3552}
c2f1a551 3553EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3554
e0fb5815
ZY
3555/**
3556 * nr_free_pagecache_pages - count number of pages beyond high watermark
3557 *
3558 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3559 * high watermark within all zones.
1da177e4 3560 */
ebec3862 3561unsigned long nr_free_pagecache_pages(void)
1da177e4 3562{
2a1e274a 3563 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3564}
08e0f6a9
CL
3565
3566static inline void show_node(struct zone *zone)
1da177e4 3567{
e5adfffc 3568 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3569 printk("Node %d ", zone_to_nid(zone));
1da177e4 3570}
1da177e4 3571
1da177e4
LT
3572void si_meminfo(struct sysinfo *val)
3573{
3574 val->totalram = totalram_pages;
cc7452b6 3575 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3576 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3577 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3578 val->totalhigh = totalhigh_pages;
3579 val->freehigh = nr_free_highpages();
1da177e4
LT
3580 val->mem_unit = PAGE_SIZE;
3581}
3582
3583EXPORT_SYMBOL(si_meminfo);
3584
3585#ifdef CONFIG_NUMA
3586void si_meminfo_node(struct sysinfo *val, int nid)
3587{
cdd91a77
JL
3588 int zone_type; /* needs to be signed */
3589 unsigned long managed_pages = 0;
1da177e4
LT
3590 pg_data_t *pgdat = NODE_DATA(nid);
3591
cdd91a77
JL
3592 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3593 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3594 val->totalram = managed_pages;
cc7452b6 3595 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3596 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3597#ifdef CONFIG_HIGHMEM
b40da049 3598 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3599 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3600 NR_FREE_PAGES);
98d2b0eb
CL
3601#else
3602 val->totalhigh = 0;
3603 val->freehigh = 0;
3604#endif
1da177e4
LT
3605 val->mem_unit = PAGE_SIZE;
3606}
3607#endif
3608
ddd588b5 3609/*
7bf02ea2
DR
3610 * Determine whether the node should be displayed or not, depending on whether
3611 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3612 */
7bf02ea2 3613bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3614{
3615 bool ret = false;
cc9a6c87 3616 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3617
3618 if (!(flags & SHOW_MEM_FILTER_NODES))
3619 goto out;
3620
cc9a6c87 3621 do {
d26914d1 3622 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3623 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3624 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3625out:
3626 return ret;
3627}
3628
1da177e4
LT
3629#define K(x) ((x) << (PAGE_SHIFT-10))
3630
377e4f16
RV
3631static void show_migration_types(unsigned char type)
3632{
3633 static const char types[MIGRATE_TYPES] = {
3634 [MIGRATE_UNMOVABLE] = 'U',
3635 [MIGRATE_RECLAIMABLE] = 'E',
3636 [MIGRATE_MOVABLE] = 'M',
3637 [MIGRATE_RESERVE] = 'R',
3638#ifdef CONFIG_CMA
3639 [MIGRATE_CMA] = 'C',
3640#endif
194159fb 3641#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3642 [MIGRATE_ISOLATE] = 'I',
194159fb 3643#endif
377e4f16
RV
3644 };
3645 char tmp[MIGRATE_TYPES + 1];
3646 char *p = tmp;
3647 int i;
3648
3649 for (i = 0; i < MIGRATE_TYPES; i++) {
3650 if (type & (1 << i))
3651 *p++ = types[i];
3652 }
3653
3654 *p = '\0';
3655 printk("(%s) ", tmp);
3656}
3657
1da177e4
LT
3658/*
3659 * Show free area list (used inside shift_scroll-lock stuff)
3660 * We also calculate the percentage fragmentation. We do this by counting the
3661 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3662 *
3663 * Bits in @filter:
3664 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3665 * cpuset.
1da177e4 3666 */
7bf02ea2 3667void show_free_areas(unsigned int filter)
1da177e4 3668{
d1bfcdb8 3669 unsigned long free_pcp = 0;
c7241913 3670 int cpu;
1da177e4
LT
3671 struct zone *zone;
3672
ee99c71c 3673 for_each_populated_zone(zone) {
7bf02ea2 3674 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3675 continue;
d1bfcdb8 3676
761b0677
KK
3677 for_each_online_cpu(cpu)
3678 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3679 }
3680
a731286d
KM
3681 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3682 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3683 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3684 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3685 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3686 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3687 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3688 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3689 global_page_state(NR_ISOLATED_ANON),
3690 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3691 global_page_state(NR_INACTIVE_FILE),
a731286d 3692 global_page_state(NR_ISOLATED_FILE),
7b854121 3693 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3694 global_page_state(NR_FILE_DIRTY),
ce866b34 3695 global_page_state(NR_WRITEBACK),
fd39fc85 3696 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3697 global_page_state(NR_SLAB_RECLAIMABLE),
3698 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3699 global_page_state(NR_FILE_MAPPED),
4b02108a 3700 global_page_state(NR_SHMEM),
a25700a5 3701 global_page_state(NR_PAGETABLE),
d1ce749a 3702 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3703 global_page_state(NR_FREE_PAGES),
3704 free_pcp,
d1ce749a 3705 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3706
ee99c71c 3707 for_each_populated_zone(zone) {
1da177e4
LT
3708 int i;
3709
7bf02ea2 3710 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3711 continue;
d1bfcdb8
KK
3712
3713 free_pcp = 0;
3714 for_each_online_cpu(cpu)
3715 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3716
1da177e4
LT
3717 show_node(zone);
3718 printk("%s"
3719 " free:%lukB"
3720 " min:%lukB"
3721 " low:%lukB"
3722 " high:%lukB"
4f98a2fe
RR
3723 " active_anon:%lukB"
3724 " inactive_anon:%lukB"
3725 " active_file:%lukB"
3726 " inactive_file:%lukB"
7b854121 3727 " unevictable:%lukB"
a731286d
KM
3728 " isolated(anon):%lukB"
3729 " isolated(file):%lukB"
1da177e4 3730 " present:%lukB"
9feedc9d 3731 " managed:%lukB"
4a0aa73f
KM
3732 " mlocked:%lukB"
3733 " dirty:%lukB"
3734 " writeback:%lukB"
3735 " mapped:%lukB"
4b02108a 3736 " shmem:%lukB"
4a0aa73f
KM
3737 " slab_reclaimable:%lukB"
3738 " slab_unreclaimable:%lukB"
c6a7f572 3739 " kernel_stack:%lukB"
4a0aa73f
KM
3740 " pagetables:%lukB"
3741 " unstable:%lukB"
3742 " bounce:%lukB"
d1bfcdb8
KK
3743 " free_pcp:%lukB"
3744 " local_pcp:%ukB"
d1ce749a 3745 " free_cma:%lukB"
4a0aa73f 3746 " writeback_tmp:%lukB"
1da177e4
LT
3747 " pages_scanned:%lu"
3748 " all_unreclaimable? %s"
3749 "\n",
3750 zone->name,
88f5acf8 3751 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3752 K(min_wmark_pages(zone)),
3753 K(low_wmark_pages(zone)),
3754 K(high_wmark_pages(zone)),
4f98a2fe
RR
3755 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3756 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3757 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3758 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3759 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3760 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3761 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3762 K(zone->present_pages),
9feedc9d 3763 K(zone->managed_pages),
4a0aa73f
KM
3764 K(zone_page_state(zone, NR_MLOCK)),
3765 K(zone_page_state(zone, NR_FILE_DIRTY)),
3766 K(zone_page_state(zone, NR_WRITEBACK)),
3767 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3768 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3769 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3770 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3771 zone_page_state(zone, NR_KERNEL_STACK) *
3772 THREAD_SIZE / 1024,
4a0aa73f
KM
3773 K(zone_page_state(zone, NR_PAGETABLE)),
3774 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3775 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3776 K(free_pcp),
3777 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3778 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3779 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3780 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3781 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3782 );
3783 printk("lowmem_reserve[]:");
3784 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3785 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3786 printk("\n");
3787 }
3788
ee99c71c 3789 for_each_populated_zone(zone) {
b8af2941 3790 unsigned long nr[MAX_ORDER], flags, order, total = 0;
377e4f16 3791 unsigned char types[MAX_ORDER];
1da177e4 3792
7bf02ea2 3793 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3794 continue;
1da177e4
LT
3795 show_node(zone);
3796 printk("%s: ", zone->name);
1da177e4
LT
3797
3798 spin_lock_irqsave(&zone->lock, flags);
3799 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3800 struct free_area *area = &zone->free_area[order];
3801 int type;
3802
3803 nr[order] = area->nr_free;
8f9de51a 3804 total += nr[order] << order;
377e4f16
RV
3805
3806 types[order] = 0;
3807 for (type = 0; type < MIGRATE_TYPES; type++) {
3808 if (!list_empty(&area->free_list[type]))
3809 types[order] |= 1 << type;
3810 }
1da177e4
LT
3811 }
3812 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3813 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3814 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3815 if (nr[order])
3816 show_migration_types(types[order]);
3817 }
1da177e4
LT
3818 printk("= %lukB\n", K(total));
3819 }
3820
949f7ec5
DR
3821 hugetlb_show_meminfo();
3822
e6f3602d
LW
3823 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3824
1da177e4
LT
3825 show_swap_cache_info();
3826}
3827
19770b32
MG
3828static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3829{
3830 zoneref->zone = zone;
3831 zoneref->zone_idx = zone_idx(zone);
3832}
3833
1da177e4
LT
3834/*
3835 * Builds allocation fallback zone lists.
1a93205b
CL
3836 *
3837 * Add all populated zones of a node to the zonelist.
1da177e4 3838 */
f0c0b2b8 3839static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3840 int nr_zones)
1da177e4 3841{
1a93205b 3842 struct zone *zone;
bc732f1d 3843 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3844
3845 do {
2f6726e5 3846 zone_type--;
070f8032 3847 zone = pgdat->node_zones + zone_type;
1a93205b 3848 if (populated_zone(zone)) {
dd1a239f
MG
3849 zoneref_set_zone(zone,
3850 &zonelist->_zonerefs[nr_zones++]);
070f8032 3851 check_highest_zone(zone_type);
1da177e4 3852 }
2f6726e5 3853 } while (zone_type);
bc732f1d 3854
070f8032 3855 return nr_zones;
1da177e4
LT
3856}
3857
f0c0b2b8
KH
3858
3859/*
3860 * zonelist_order:
3861 * 0 = automatic detection of better ordering.
3862 * 1 = order by ([node] distance, -zonetype)
3863 * 2 = order by (-zonetype, [node] distance)
3864 *
3865 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3866 * the same zonelist. So only NUMA can configure this param.
3867 */
3868#define ZONELIST_ORDER_DEFAULT 0
3869#define ZONELIST_ORDER_NODE 1
3870#define ZONELIST_ORDER_ZONE 2
3871
3872/* zonelist order in the kernel.
3873 * set_zonelist_order() will set this to NODE or ZONE.
3874 */
3875static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3876static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3877
3878
1da177e4 3879#ifdef CONFIG_NUMA
f0c0b2b8
KH
3880/* The value user specified ....changed by config */
3881static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3882/* string for sysctl */
3883#define NUMA_ZONELIST_ORDER_LEN 16
3884char numa_zonelist_order[16] = "default";
3885
3886/*
3887 * interface for configure zonelist ordering.
3888 * command line option "numa_zonelist_order"
3889 * = "[dD]efault - default, automatic configuration.
3890 * = "[nN]ode - order by node locality, then by zone within node
3891 * = "[zZ]one - order by zone, then by locality within zone
3892 */
3893
3894static int __parse_numa_zonelist_order(char *s)
3895{
3896 if (*s == 'd' || *s == 'D') {
3897 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3898 } else if (*s == 'n' || *s == 'N') {
3899 user_zonelist_order = ZONELIST_ORDER_NODE;
3900 } else if (*s == 'z' || *s == 'Z') {
3901 user_zonelist_order = ZONELIST_ORDER_ZONE;
3902 } else {
3903 printk(KERN_WARNING
3904 "Ignoring invalid numa_zonelist_order value: "
3905 "%s\n", s);
3906 return -EINVAL;
3907 }
3908 return 0;
3909}
3910
3911static __init int setup_numa_zonelist_order(char *s)
3912{
ecb256f8
VL
3913 int ret;
3914
3915 if (!s)
3916 return 0;
3917
3918 ret = __parse_numa_zonelist_order(s);
3919 if (ret == 0)
3920 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3921
3922 return ret;
f0c0b2b8
KH
3923}
3924early_param("numa_zonelist_order", setup_numa_zonelist_order);
3925
3926/*
3927 * sysctl handler for numa_zonelist_order
3928 */
cccad5b9 3929int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3930 void __user *buffer, size_t *length,
f0c0b2b8
KH
3931 loff_t *ppos)
3932{
3933 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3934 int ret;
443c6f14 3935 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3936
443c6f14 3937 mutex_lock(&zl_order_mutex);
dacbde09
CG
3938 if (write) {
3939 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3940 ret = -EINVAL;
3941 goto out;
3942 }
3943 strcpy(saved_string, (char *)table->data);
3944 }
8d65af78 3945 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3946 if (ret)
443c6f14 3947 goto out;
f0c0b2b8
KH
3948 if (write) {
3949 int oldval = user_zonelist_order;
dacbde09
CG
3950
3951 ret = __parse_numa_zonelist_order((char *)table->data);
3952 if (ret) {
f0c0b2b8
KH
3953 /*
3954 * bogus value. restore saved string
3955 */
dacbde09 3956 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3957 NUMA_ZONELIST_ORDER_LEN);
3958 user_zonelist_order = oldval;
4eaf3f64
HL
3959 } else if (oldval != user_zonelist_order) {
3960 mutex_lock(&zonelists_mutex);
9adb62a5 3961 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3962 mutex_unlock(&zonelists_mutex);
3963 }
f0c0b2b8 3964 }
443c6f14
AK
3965out:
3966 mutex_unlock(&zl_order_mutex);
3967 return ret;
f0c0b2b8
KH
3968}
3969
3970
62bc62a8 3971#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3972static int node_load[MAX_NUMNODES];
3973
1da177e4 3974/**
4dc3b16b 3975 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3976 * @node: node whose fallback list we're appending
3977 * @used_node_mask: nodemask_t of already used nodes
3978 *
3979 * We use a number of factors to determine which is the next node that should
3980 * appear on a given node's fallback list. The node should not have appeared
3981 * already in @node's fallback list, and it should be the next closest node
3982 * according to the distance array (which contains arbitrary distance values
3983 * from each node to each node in the system), and should also prefer nodes
3984 * with no CPUs, since presumably they'll have very little allocation pressure
3985 * on them otherwise.
3986 * It returns -1 if no node is found.
3987 */
f0c0b2b8 3988static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3989{
4cf808eb 3990 int n, val;
1da177e4 3991 int min_val = INT_MAX;
00ef2d2f 3992 int best_node = NUMA_NO_NODE;
a70f7302 3993 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3994
4cf808eb
LT
3995 /* Use the local node if we haven't already */
3996 if (!node_isset(node, *used_node_mask)) {
3997 node_set(node, *used_node_mask);
3998 return node;
3999 }
1da177e4 4000
4b0ef1fe 4001 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4002
4003 /* Don't want a node to appear more than once */
4004 if (node_isset(n, *used_node_mask))
4005 continue;
4006
1da177e4
LT
4007 /* Use the distance array to find the distance */
4008 val = node_distance(node, n);
4009
4cf808eb
LT
4010 /* Penalize nodes under us ("prefer the next node") */
4011 val += (n < node);
4012
1da177e4 4013 /* Give preference to headless and unused nodes */
a70f7302
RR
4014 tmp = cpumask_of_node(n);
4015 if (!cpumask_empty(tmp))
1da177e4
LT
4016 val += PENALTY_FOR_NODE_WITH_CPUS;
4017
4018 /* Slight preference for less loaded node */
4019 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4020 val += node_load[n];
4021
4022 if (val < min_val) {
4023 min_val = val;
4024 best_node = n;
4025 }
4026 }
4027
4028 if (best_node >= 0)
4029 node_set(best_node, *used_node_mask);
4030
4031 return best_node;
4032}
4033
f0c0b2b8
KH
4034
4035/*
4036 * Build zonelists ordered by node and zones within node.
4037 * This results in maximum locality--normal zone overflows into local
4038 * DMA zone, if any--but risks exhausting DMA zone.
4039 */
4040static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4041{
f0c0b2b8 4042 int j;
1da177e4 4043 struct zonelist *zonelist;
f0c0b2b8 4044
54a6eb5c 4045 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4046 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4047 ;
bc732f1d 4048 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4049 zonelist->_zonerefs[j].zone = NULL;
4050 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4051}
4052
523b9458
CL
4053/*
4054 * Build gfp_thisnode zonelists
4055 */
4056static void build_thisnode_zonelists(pg_data_t *pgdat)
4057{
523b9458
CL
4058 int j;
4059 struct zonelist *zonelist;
4060
54a6eb5c 4061 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4062 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4063 zonelist->_zonerefs[j].zone = NULL;
4064 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4065}
4066
f0c0b2b8
KH
4067/*
4068 * Build zonelists ordered by zone and nodes within zones.
4069 * This results in conserving DMA zone[s] until all Normal memory is
4070 * exhausted, but results in overflowing to remote node while memory
4071 * may still exist in local DMA zone.
4072 */
4073static int node_order[MAX_NUMNODES];
4074
4075static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4076{
f0c0b2b8
KH
4077 int pos, j, node;
4078 int zone_type; /* needs to be signed */
4079 struct zone *z;
4080 struct zonelist *zonelist;
4081
54a6eb5c
MG
4082 zonelist = &pgdat->node_zonelists[0];
4083 pos = 0;
4084 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4085 for (j = 0; j < nr_nodes; j++) {
4086 node = node_order[j];
4087 z = &NODE_DATA(node)->node_zones[zone_type];
4088 if (populated_zone(z)) {
dd1a239f
MG
4089 zoneref_set_zone(z,
4090 &zonelist->_zonerefs[pos++]);
54a6eb5c 4091 check_highest_zone(zone_type);
f0c0b2b8
KH
4092 }
4093 }
f0c0b2b8 4094 }
dd1a239f
MG
4095 zonelist->_zonerefs[pos].zone = NULL;
4096 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4097}
4098
3193913c
MG
4099#if defined(CONFIG_64BIT)
4100/*
4101 * Devices that require DMA32/DMA are relatively rare and do not justify a
4102 * penalty to every machine in case the specialised case applies. Default
4103 * to Node-ordering on 64-bit NUMA machines
4104 */
4105static int default_zonelist_order(void)
4106{
4107 return ZONELIST_ORDER_NODE;
4108}
4109#else
4110/*
4111 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4112 * by the kernel. If processes running on node 0 deplete the low memory zone
4113 * then reclaim will occur more frequency increasing stalls and potentially
4114 * be easier to OOM if a large percentage of the zone is under writeback or
4115 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4116 * Hence, default to zone ordering on 32-bit.
4117 */
f0c0b2b8
KH
4118static int default_zonelist_order(void)
4119{
f0c0b2b8
KH
4120 return ZONELIST_ORDER_ZONE;
4121}
3193913c 4122#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4123
4124static void set_zonelist_order(void)
4125{
4126 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4127 current_zonelist_order = default_zonelist_order();
4128 else
4129 current_zonelist_order = user_zonelist_order;
4130}
4131
4132static void build_zonelists(pg_data_t *pgdat)
4133{
4134 int j, node, load;
4135 enum zone_type i;
1da177e4 4136 nodemask_t used_mask;
f0c0b2b8
KH
4137 int local_node, prev_node;
4138 struct zonelist *zonelist;
4139 int order = current_zonelist_order;
1da177e4
LT
4140
4141 /* initialize zonelists */
523b9458 4142 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4143 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4144 zonelist->_zonerefs[0].zone = NULL;
4145 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4146 }
4147
4148 /* NUMA-aware ordering of nodes */
4149 local_node = pgdat->node_id;
62bc62a8 4150 load = nr_online_nodes;
1da177e4
LT
4151 prev_node = local_node;
4152 nodes_clear(used_mask);
f0c0b2b8 4153
f0c0b2b8
KH
4154 memset(node_order, 0, sizeof(node_order));
4155 j = 0;
4156
1da177e4
LT
4157 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4158 /*
4159 * We don't want to pressure a particular node.
4160 * So adding penalty to the first node in same
4161 * distance group to make it round-robin.
4162 */
957f822a
DR
4163 if (node_distance(local_node, node) !=
4164 node_distance(local_node, prev_node))
f0c0b2b8
KH
4165 node_load[node] = load;
4166
1da177e4
LT
4167 prev_node = node;
4168 load--;
f0c0b2b8
KH
4169 if (order == ZONELIST_ORDER_NODE)
4170 build_zonelists_in_node_order(pgdat, node);
4171 else
4172 node_order[j++] = node; /* remember order */
4173 }
1da177e4 4174
f0c0b2b8
KH
4175 if (order == ZONELIST_ORDER_ZONE) {
4176 /* calculate node order -- i.e., DMA last! */
4177 build_zonelists_in_zone_order(pgdat, j);
1da177e4 4178 }
523b9458
CL
4179
4180 build_thisnode_zonelists(pgdat);
1da177e4
LT
4181}
4182
9276b1bc 4183/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 4184static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4185{
54a6eb5c
MG
4186 struct zonelist *zonelist;
4187 struct zonelist_cache *zlc;
dd1a239f 4188 struct zoneref *z;
9276b1bc 4189
54a6eb5c
MG
4190 zonelist = &pgdat->node_zonelists[0];
4191 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4192 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
4193 for (z = zonelist->_zonerefs; z->zone; z++)
4194 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
4195}
4196
7aac7898
LS
4197#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4198/*
4199 * Return node id of node used for "local" allocations.
4200 * I.e., first node id of first zone in arg node's generic zonelist.
4201 * Used for initializing percpu 'numa_mem', which is used primarily
4202 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4203 */
4204int local_memory_node(int node)
4205{
4206 struct zone *zone;
4207
4208 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4209 gfp_zone(GFP_KERNEL),
4210 NULL,
4211 &zone);
4212 return zone->node;
4213}
4214#endif
f0c0b2b8 4215
1da177e4
LT
4216#else /* CONFIG_NUMA */
4217
f0c0b2b8
KH
4218static void set_zonelist_order(void)
4219{
4220 current_zonelist_order = ZONELIST_ORDER_ZONE;
4221}
4222
4223static void build_zonelists(pg_data_t *pgdat)
1da177e4 4224{
19655d34 4225 int node, local_node;
54a6eb5c
MG
4226 enum zone_type j;
4227 struct zonelist *zonelist;
1da177e4
LT
4228
4229 local_node = pgdat->node_id;
1da177e4 4230
54a6eb5c 4231 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4232 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4233
54a6eb5c
MG
4234 /*
4235 * Now we build the zonelist so that it contains the zones
4236 * of all the other nodes.
4237 * We don't want to pressure a particular node, so when
4238 * building the zones for node N, we make sure that the
4239 * zones coming right after the local ones are those from
4240 * node N+1 (modulo N)
4241 */
4242 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4243 if (!node_online(node))
4244 continue;
bc732f1d 4245 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4246 }
54a6eb5c
MG
4247 for (node = 0; node < local_node; node++) {
4248 if (!node_online(node))
4249 continue;
bc732f1d 4250 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4251 }
4252
dd1a239f
MG
4253 zonelist->_zonerefs[j].zone = NULL;
4254 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4255}
4256
9276b1bc 4257/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 4258static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 4259{
54a6eb5c 4260 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
4261}
4262
1da177e4
LT
4263#endif /* CONFIG_NUMA */
4264
99dcc3e5
CL
4265/*
4266 * Boot pageset table. One per cpu which is going to be used for all
4267 * zones and all nodes. The parameters will be set in such a way
4268 * that an item put on a list will immediately be handed over to
4269 * the buddy list. This is safe since pageset manipulation is done
4270 * with interrupts disabled.
4271 *
4272 * The boot_pagesets must be kept even after bootup is complete for
4273 * unused processors and/or zones. They do play a role for bootstrapping
4274 * hotplugged processors.
4275 *
4276 * zoneinfo_show() and maybe other functions do
4277 * not check if the processor is online before following the pageset pointer.
4278 * Other parts of the kernel may not check if the zone is available.
4279 */
4280static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4281static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4282static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4283
4eaf3f64
HL
4284/*
4285 * Global mutex to protect against size modification of zonelists
4286 * as well as to serialize pageset setup for the new populated zone.
4287 */
4288DEFINE_MUTEX(zonelists_mutex);
4289
9b1a4d38 4290/* return values int ....just for stop_machine() */
4ed7e022 4291static int __build_all_zonelists(void *data)
1da177e4 4292{
6811378e 4293 int nid;
99dcc3e5 4294 int cpu;
9adb62a5 4295 pg_data_t *self = data;
9276b1bc 4296
7f9cfb31
BL
4297#ifdef CONFIG_NUMA
4298 memset(node_load, 0, sizeof(node_load));
4299#endif
9adb62a5
JL
4300
4301 if (self && !node_online(self->node_id)) {
4302 build_zonelists(self);
4303 build_zonelist_cache(self);
4304 }
4305
9276b1bc 4306 for_each_online_node(nid) {
7ea1530a
CL
4307 pg_data_t *pgdat = NODE_DATA(nid);
4308
4309 build_zonelists(pgdat);
4310 build_zonelist_cache(pgdat);
9276b1bc 4311 }
99dcc3e5
CL
4312
4313 /*
4314 * Initialize the boot_pagesets that are going to be used
4315 * for bootstrapping processors. The real pagesets for
4316 * each zone will be allocated later when the per cpu
4317 * allocator is available.
4318 *
4319 * boot_pagesets are used also for bootstrapping offline
4320 * cpus if the system is already booted because the pagesets
4321 * are needed to initialize allocators on a specific cpu too.
4322 * F.e. the percpu allocator needs the page allocator which
4323 * needs the percpu allocator in order to allocate its pagesets
4324 * (a chicken-egg dilemma).
4325 */
7aac7898 4326 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4327 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4328
7aac7898
LS
4329#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4330 /*
4331 * We now know the "local memory node" for each node--
4332 * i.e., the node of the first zone in the generic zonelist.
4333 * Set up numa_mem percpu variable for on-line cpus. During
4334 * boot, only the boot cpu should be on-line; we'll init the
4335 * secondary cpus' numa_mem as they come on-line. During
4336 * node/memory hotplug, we'll fixup all on-line cpus.
4337 */
4338 if (cpu_online(cpu))
4339 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4340#endif
4341 }
4342
6811378e
YG
4343 return 0;
4344}
4345
061f67bc
RV
4346static noinline void __init
4347build_all_zonelists_init(void)
4348{
4349 __build_all_zonelists(NULL);
4350 mminit_verify_zonelist();
4351 cpuset_init_current_mems_allowed();
4352}
4353
4eaf3f64
HL
4354/*
4355 * Called with zonelists_mutex held always
4356 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4357 *
4358 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4359 * [we're only called with non-NULL zone through __meminit paths] and
4360 * (2) call of __init annotated helper build_all_zonelists_init
4361 * [protected by SYSTEM_BOOTING].
4eaf3f64 4362 */
9adb62a5 4363void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4364{
f0c0b2b8
KH
4365 set_zonelist_order();
4366
6811378e 4367 if (system_state == SYSTEM_BOOTING) {
061f67bc 4368 build_all_zonelists_init();
6811378e 4369 } else {
e9959f0f 4370#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4371 if (zone)
4372 setup_zone_pageset(zone);
e9959f0f 4373#endif
dd1895e2
CS
4374 /* we have to stop all cpus to guarantee there is no user
4375 of zonelist */
9adb62a5 4376 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4377 /* cpuset refresh routine should be here */
4378 }
bd1e22b8 4379 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4380 /*
4381 * Disable grouping by mobility if the number of pages in the
4382 * system is too low to allow the mechanism to work. It would be
4383 * more accurate, but expensive to check per-zone. This check is
4384 * made on memory-hotadd so a system can start with mobility
4385 * disabled and enable it later
4386 */
d9c23400 4387 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4388 page_group_by_mobility_disabled = 1;
4389 else
4390 page_group_by_mobility_disabled = 0;
4391
f88dfff5 4392 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4393 "Total pages: %ld\n",
62bc62a8 4394 nr_online_nodes,
f0c0b2b8 4395 zonelist_order_name[current_zonelist_order],
9ef9acb0 4396 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4397 vm_total_pages);
4398#ifdef CONFIG_NUMA
f88dfff5 4399 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4400#endif
1da177e4
LT
4401}
4402
4403/*
4404 * Helper functions to size the waitqueue hash table.
4405 * Essentially these want to choose hash table sizes sufficiently
4406 * large so that collisions trying to wait on pages are rare.
4407 * But in fact, the number of active page waitqueues on typical
4408 * systems is ridiculously low, less than 200. So this is even
4409 * conservative, even though it seems large.
4410 *
4411 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4412 * waitqueues, i.e. the size of the waitq table given the number of pages.
4413 */
4414#define PAGES_PER_WAITQUEUE 256
4415
cca448fe 4416#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4417static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4418{
4419 unsigned long size = 1;
4420
4421 pages /= PAGES_PER_WAITQUEUE;
4422
4423 while (size < pages)
4424 size <<= 1;
4425
4426 /*
4427 * Once we have dozens or even hundreds of threads sleeping
4428 * on IO we've got bigger problems than wait queue collision.
4429 * Limit the size of the wait table to a reasonable size.
4430 */
4431 size = min(size, 4096UL);
4432
4433 return max(size, 4UL);
4434}
cca448fe
YG
4435#else
4436/*
4437 * A zone's size might be changed by hot-add, so it is not possible to determine
4438 * a suitable size for its wait_table. So we use the maximum size now.
4439 *
4440 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4441 *
4442 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4443 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4444 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4445 *
4446 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4447 * or more by the traditional way. (See above). It equals:
4448 *
4449 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4450 * ia64(16K page size) : = ( 8G + 4M)byte.
4451 * powerpc (64K page size) : = (32G +16M)byte.
4452 */
4453static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4454{
4455 return 4096UL;
4456}
4457#endif
1da177e4
LT
4458
4459/*
4460 * This is an integer logarithm so that shifts can be used later
4461 * to extract the more random high bits from the multiplicative
4462 * hash function before the remainder is taken.
4463 */
4464static inline unsigned long wait_table_bits(unsigned long size)
4465{
4466 return ffz(~size);
4467}
4468
6d3163ce
AH
4469/*
4470 * Check if a pageblock contains reserved pages
4471 */
4472static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4473{
4474 unsigned long pfn;
4475
4476 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4477 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4478 return 1;
4479 }
4480 return 0;
4481}
4482
56fd56b8 4483/*
d9c23400 4484 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
4485 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4486 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
4487 * higher will lead to a bigger reserve which will get freed as contiguous
4488 * blocks as reclaim kicks in
4489 */
4490static void setup_zone_migrate_reserve(struct zone *zone)
4491{
6d3163ce 4492 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
56fd56b8 4493 struct page *page;
78986a67
MG
4494 unsigned long block_migratetype;
4495 int reserve;
943dca1a 4496 int old_reserve;
56fd56b8 4497
d0215638
MH
4498 /*
4499 * Get the start pfn, end pfn and the number of blocks to reserve
4500 * We have to be careful to be aligned to pageblock_nr_pages to
4501 * make sure that we always check pfn_valid for the first page in
4502 * the block.
4503 */
56fd56b8 4504 start_pfn = zone->zone_start_pfn;
108bcc96 4505 end_pfn = zone_end_pfn(zone);
d0215638 4506 start_pfn = roundup(start_pfn, pageblock_nr_pages);
41858966 4507 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 4508 pageblock_order;
56fd56b8 4509
78986a67
MG
4510 /*
4511 * Reserve blocks are generally in place to help high-order atomic
4512 * allocations that are short-lived. A min_free_kbytes value that
4513 * would result in more than 2 reserve blocks for atomic allocations
4514 * is assumed to be in place to help anti-fragmentation for the
4515 * future allocation of hugepages at runtime.
4516 */
4517 reserve = min(2, reserve);
943dca1a
YI
4518 old_reserve = zone->nr_migrate_reserve_block;
4519
4520 /* When memory hot-add, we almost always need to do nothing */
4521 if (reserve == old_reserve)
4522 return;
4523 zone->nr_migrate_reserve_block = reserve;
78986a67 4524
d9c23400 4525 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
7e18adb4
MG
4526 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4527 return;
4528
56fd56b8
MG
4529 if (!pfn_valid(pfn))
4530 continue;
4531 page = pfn_to_page(pfn);
4532
344c790e
AL
4533 /* Watch out for overlapping nodes */
4534 if (page_to_nid(page) != zone_to_nid(zone))
4535 continue;
4536
56fd56b8
MG
4537 block_migratetype = get_pageblock_migratetype(page);
4538
938929f1
MG
4539 /* Only test what is necessary when the reserves are not met */
4540 if (reserve > 0) {
4541 /*
4542 * Blocks with reserved pages will never free, skip
4543 * them.
4544 */
4545 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4546 if (pageblock_is_reserved(pfn, block_end_pfn))
4547 continue;
56fd56b8 4548
938929f1
MG
4549 /* If this block is reserved, account for it */
4550 if (block_migratetype == MIGRATE_RESERVE) {
4551 reserve--;
4552 continue;
4553 }
4554
4555 /* Suitable for reserving if this block is movable */
4556 if (block_migratetype == MIGRATE_MOVABLE) {
4557 set_pageblock_migratetype(page,
4558 MIGRATE_RESERVE);
4559 move_freepages_block(zone, page,
4560 MIGRATE_RESERVE);
4561 reserve--;
4562 continue;
4563 }
943dca1a
YI
4564 } else if (!old_reserve) {
4565 /*
4566 * At boot time we don't need to scan the whole zone
4567 * for turning off MIGRATE_RESERVE.
4568 */
4569 break;
56fd56b8
MG
4570 }
4571
4572 /*
4573 * If the reserve is met and this is a previous reserved block,
4574 * take it back
4575 */
4576 if (block_migratetype == MIGRATE_RESERVE) {
4577 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4578 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4579 }
4580 }
4581}
ac0e5b7a 4582
1da177e4
LT
4583/*
4584 * Initially all pages are reserved - free ones are freed
4585 * up by free_all_bootmem() once the early boot process is
4586 * done. Non-atomic initialization, single-pass.
4587 */
c09b4240 4588void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4589 unsigned long start_pfn, enum memmap_context context)
1da177e4 4590{
3a80a7fa 4591 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4592 unsigned long end_pfn = start_pfn + size;
4593 unsigned long pfn;
86051ca5 4594 struct zone *z;
3a80a7fa 4595 unsigned long nr_initialised = 0;
1da177e4 4596
22b31eec
HD
4597 if (highest_memmap_pfn < end_pfn - 1)
4598 highest_memmap_pfn = end_pfn - 1;
4599
3a80a7fa 4600 z = &pgdat->node_zones[zone];
cbe8dd4a 4601 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4602 /*
4603 * There can be holes in boot-time mem_map[]s
4604 * handed to this function. They do not
4605 * exist on hotplugged memory.
4606 */
4607 if (context == MEMMAP_EARLY) {
4608 if (!early_pfn_valid(pfn))
4609 continue;
4610 if (!early_pfn_in_nid(pfn, nid))
4611 continue;
3a80a7fa
MG
4612 if (!update_defer_init(pgdat, pfn, end_pfn,
4613 &nr_initialised))
4614 break;
a2f3aa02 4615 }
ac5d2539
MG
4616
4617 /*
4618 * Mark the block movable so that blocks are reserved for
4619 * movable at startup. This will force kernel allocations
4620 * to reserve their blocks rather than leaking throughout
4621 * the address space during boot when many long-lived
4622 * kernel allocations are made. Later some blocks near
4623 * the start are marked MIGRATE_RESERVE by
4624 * setup_zone_migrate_reserve()
4625 *
4626 * bitmap is created for zone's valid pfn range. but memmap
4627 * can be created for invalid pages (for alignment)
4628 * check here not to call set_pageblock_migratetype() against
4629 * pfn out of zone.
4630 */
4631 if (!(pfn & (pageblock_nr_pages - 1))) {
4632 struct page *page = pfn_to_page(pfn);
4633
4634 __init_single_page(page, pfn, zone, nid);
4635 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4636 } else {
4637 __init_single_pfn(pfn, zone, nid);
4638 }
1da177e4
LT
4639 }
4640}
4641
1e548deb 4642static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4643{
7aeb09f9 4644 unsigned int order, t;
b2a0ac88
MG
4645 for_each_migratetype_order(order, t) {
4646 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4647 zone->free_area[order].nr_free = 0;
4648 }
4649}
4650
4651#ifndef __HAVE_ARCH_MEMMAP_INIT
4652#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4653 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4654#endif
4655
7cd2b0a3 4656static int zone_batchsize(struct zone *zone)
e7c8d5c9 4657{
3a6be87f 4658#ifdef CONFIG_MMU
e7c8d5c9
CL
4659 int batch;
4660
4661 /*
4662 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4663 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4664 *
4665 * OK, so we don't know how big the cache is. So guess.
4666 */
b40da049 4667 batch = zone->managed_pages / 1024;
ba56e91c
SR
4668 if (batch * PAGE_SIZE > 512 * 1024)
4669 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4670 batch /= 4; /* We effectively *= 4 below */
4671 if (batch < 1)
4672 batch = 1;
4673
4674 /*
0ceaacc9
NP
4675 * Clamp the batch to a 2^n - 1 value. Having a power
4676 * of 2 value was found to be more likely to have
4677 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4678 *
0ceaacc9
NP
4679 * For example if 2 tasks are alternately allocating
4680 * batches of pages, one task can end up with a lot
4681 * of pages of one half of the possible page colors
4682 * and the other with pages of the other colors.
e7c8d5c9 4683 */
9155203a 4684 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4685
e7c8d5c9 4686 return batch;
3a6be87f
DH
4687
4688#else
4689 /* The deferral and batching of frees should be suppressed under NOMMU
4690 * conditions.
4691 *
4692 * The problem is that NOMMU needs to be able to allocate large chunks
4693 * of contiguous memory as there's no hardware page translation to
4694 * assemble apparent contiguous memory from discontiguous pages.
4695 *
4696 * Queueing large contiguous runs of pages for batching, however,
4697 * causes the pages to actually be freed in smaller chunks. As there
4698 * can be a significant delay between the individual batches being
4699 * recycled, this leads to the once large chunks of space being
4700 * fragmented and becoming unavailable for high-order allocations.
4701 */
4702 return 0;
4703#endif
e7c8d5c9
CL
4704}
4705
8d7a8fa9
CS
4706/*
4707 * pcp->high and pcp->batch values are related and dependent on one another:
4708 * ->batch must never be higher then ->high.
4709 * The following function updates them in a safe manner without read side
4710 * locking.
4711 *
4712 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4713 * those fields changing asynchronously (acording the the above rule).
4714 *
4715 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4716 * outside of boot time (or some other assurance that no concurrent updaters
4717 * exist).
4718 */
4719static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4720 unsigned long batch)
4721{
4722 /* start with a fail safe value for batch */
4723 pcp->batch = 1;
4724 smp_wmb();
4725
4726 /* Update high, then batch, in order */
4727 pcp->high = high;
4728 smp_wmb();
4729
4730 pcp->batch = batch;
4731}
4732
3664033c 4733/* a companion to pageset_set_high() */
4008bab7
CS
4734static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4735{
8d7a8fa9 4736 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4737}
4738
88c90dbc 4739static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4740{
4741 struct per_cpu_pages *pcp;
5f8dcc21 4742 int migratetype;
2caaad41 4743
1c6fe946
MD
4744 memset(p, 0, sizeof(*p));
4745
3dfa5721 4746 pcp = &p->pcp;
2caaad41 4747 pcp->count = 0;
5f8dcc21
MG
4748 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4749 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4750}
4751
88c90dbc
CS
4752static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4753{
4754 pageset_init(p);
4755 pageset_set_batch(p, batch);
4756}
4757
8ad4b1fb 4758/*
3664033c 4759 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4760 * to the value high for the pageset p.
4761 */
3664033c 4762static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4763 unsigned long high)
4764{
8d7a8fa9
CS
4765 unsigned long batch = max(1UL, high / 4);
4766 if ((high / 4) > (PAGE_SHIFT * 8))
4767 batch = PAGE_SHIFT * 8;
8ad4b1fb 4768
8d7a8fa9 4769 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4770}
4771
7cd2b0a3
DR
4772static void pageset_set_high_and_batch(struct zone *zone,
4773 struct per_cpu_pageset *pcp)
56cef2b8 4774{
56cef2b8 4775 if (percpu_pagelist_fraction)
3664033c 4776 pageset_set_high(pcp,
56cef2b8
CS
4777 (zone->managed_pages /
4778 percpu_pagelist_fraction));
4779 else
4780 pageset_set_batch(pcp, zone_batchsize(zone));
4781}
4782
169f6c19
CS
4783static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4784{
4785 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4786
4787 pageset_init(pcp);
4788 pageset_set_high_and_batch(zone, pcp);
4789}
4790
4ed7e022 4791static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4792{
4793 int cpu;
319774e2 4794 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4795 for_each_possible_cpu(cpu)
4796 zone_pageset_init(zone, cpu);
319774e2
WF
4797}
4798
2caaad41 4799/*
99dcc3e5
CL
4800 * Allocate per cpu pagesets and initialize them.
4801 * Before this call only boot pagesets were available.
e7c8d5c9 4802 */
99dcc3e5 4803void __init setup_per_cpu_pageset(void)
e7c8d5c9 4804{
99dcc3e5 4805 struct zone *zone;
e7c8d5c9 4806
319774e2
WF
4807 for_each_populated_zone(zone)
4808 setup_zone_pageset(zone);
e7c8d5c9
CL
4809}
4810
577a32f6 4811static noinline __init_refok
cca448fe 4812int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4813{
4814 int i;
cca448fe 4815 size_t alloc_size;
ed8ece2e
DH
4816
4817 /*
4818 * The per-page waitqueue mechanism uses hashed waitqueues
4819 * per zone.
4820 */
02b694de
YG
4821 zone->wait_table_hash_nr_entries =
4822 wait_table_hash_nr_entries(zone_size_pages);
4823 zone->wait_table_bits =
4824 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4825 alloc_size = zone->wait_table_hash_nr_entries
4826 * sizeof(wait_queue_head_t);
4827
cd94b9db 4828 if (!slab_is_available()) {
cca448fe 4829 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4830 memblock_virt_alloc_node_nopanic(
4831 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4832 } else {
4833 /*
4834 * This case means that a zone whose size was 0 gets new memory
4835 * via memory hot-add.
4836 * But it may be the case that a new node was hot-added. In
4837 * this case vmalloc() will not be able to use this new node's
4838 * memory - this wait_table must be initialized to use this new
4839 * node itself as well.
4840 * To use this new node's memory, further consideration will be
4841 * necessary.
4842 */
8691f3a7 4843 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4844 }
4845 if (!zone->wait_table)
4846 return -ENOMEM;
ed8ece2e 4847
b8af2941 4848 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4849 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4850
4851 return 0;
ed8ece2e
DH
4852}
4853
c09b4240 4854static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4855{
99dcc3e5
CL
4856 /*
4857 * per cpu subsystem is not up at this point. The following code
4858 * relies on the ability of the linker to provide the
4859 * offset of a (static) per cpu variable into the per cpu area.
4860 */
4861 zone->pageset = &boot_pageset;
ed8ece2e 4862
b38a8725 4863 if (populated_zone(zone))
99dcc3e5
CL
4864 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4865 zone->name, zone->present_pages,
4866 zone_batchsize(zone));
ed8ece2e
DH
4867}
4868
4ed7e022 4869int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4870 unsigned long zone_start_pfn,
a2f3aa02
DH
4871 unsigned long size,
4872 enum memmap_context context)
ed8ece2e
DH
4873{
4874 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4875 int ret;
4876 ret = zone_wait_table_init(zone, size);
4877 if (ret)
4878 return ret;
ed8ece2e
DH
4879 pgdat->nr_zones = zone_idx(zone) + 1;
4880
ed8ece2e
DH
4881 zone->zone_start_pfn = zone_start_pfn;
4882
708614e6
MG
4883 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4884 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4885 pgdat->node_id,
4886 (unsigned long)zone_idx(zone),
4887 zone_start_pfn, (zone_start_pfn + size));
4888
1e548deb 4889 zone_init_free_lists(zone);
718127cc
YG
4890
4891 return 0;
ed8ece2e
DH
4892}
4893
0ee332c1 4894#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4895#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4896
c713216d
MG
4897/*
4898 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4899 */
8a942fde
MG
4900int __meminit __early_pfn_to_nid(unsigned long pfn,
4901 struct mminit_pfnnid_cache *state)
c713216d 4902{
c13291a5 4903 unsigned long start_pfn, end_pfn;
e76b63f8 4904 int nid;
7c243c71 4905
8a942fde
MG
4906 if (state->last_start <= pfn && pfn < state->last_end)
4907 return state->last_nid;
c713216d 4908
e76b63f8
YL
4909 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4910 if (nid != -1) {
8a942fde
MG
4911 state->last_start = start_pfn;
4912 state->last_end = end_pfn;
4913 state->last_nid = nid;
e76b63f8
YL
4914 }
4915
4916 return nid;
c713216d
MG
4917}
4918#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4919
c713216d 4920/**
6782832e 4921 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4922 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4923 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4924 *
7d018176
ZZ
4925 * If an architecture guarantees that all ranges registered contain no holes
4926 * and may be freed, this this function may be used instead of calling
4927 * memblock_free_early_nid() manually.
c713216d 4928 */
c13291a5 4929void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4930{
c13291a5
TH
4931 unsigned long start_pfn, end_pfn;
4932 int i, this_nid;
edbe7d23 4933
c13291a5
TH
4934 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4935 start_pfn = min(start_pfn, max_low_pfn);
4936 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4937
c13291a5 4938 if (start_pfn < end_pfn)
6782832e
SS
4939 memblock_free_early_nid(PFN_PHYS(start_pfn),
4940 (end_pfn - start_pfn) << PAGE_SHIFT,
4941 this_nid);
edbe7d23 4942 }
edbe7d23 4943}
edbe7d23 4944
c713216d
MG
4945/**
4946 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4947 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4948 *
7d018176
ZZ
4949 * If an architecture guarantees that all ranges registered contain no holes and may
4950 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4951 */
4952void __init sparse_memory_present_with_active_regions(int nid)
4953{
c13291a5
TH
4954 unsigned long start_pfn, end_pfn;
4955 int i, this_nid;
c713216d 4956
c13291a5
TH
4957 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4958 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4959}
4960
4961/**
4962 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4963 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4964 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4965 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4966 *
4967 * It returns the start and end page frame of a node based on information
7d018176 4968 * provided by memblock_set_node(). If called for a node
c713216d 4969 * with no available memory, a warning is printed and the start and end
88ca3b94 4970 * PFNs will be 0.
c713216d 4971 */
a3142c8e 4972void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4973 unsigned long *start_pfn, unsigned long *end_pfn)
4974{
c13291a5 4975 unsigned long this_start_pfn, this_end_pfn;
c713216d 4976 int i;
c13291a5 4977
c713216d
MG
4978 *start_pfn = -1UL;
4979 *end_pfn = 0;
4980
c13291a5
TH
4981 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4982 *start_pfn = min(*start_pfn, this_start_pfn);
4983 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4984 }
4985
633c0666 4986 if (*start_pfn == -1UL)
c713216d 4987 *start_pfn = 0;
c713216d
MG
4988}
4989
2a1e274a
MG
4990/*
4991 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4992 * assumption is made that zones within a node are ordered in monotonic
4993 * increasing memory addresses so that the "highest" populated zone is used
4994 */
b69a7288 4995static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4996{
4997 int zone_index;
4998 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4999 if (zone_index == ZONE_MOVABLE)
5000 continue;
5001
5002 if (arch_zone_highest_possible_pfn[zone_index] >
5003 arch_zone_lowest_possible_pfn[zone_index])
5004 break;
5005 }
5006
5007 VM_BUG_ON(zone_index == -1);
5008 movable_zone = zone_index;
5009}
5010
5011/*
5012 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5013 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5014 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5015 * in each node depending on the size of each node and how evenly kernelcore
5016 * is distributed. This helper function adjusts the zone ranges
5017 * provided by the architecture for a given node by using the end of the
5018 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5019 * zones within a node are in order of monotonic increases memory addresses
5020 */
b69a7288 5021static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5022 unsigned long zone_type,
5023 unsigned long node_start_pfn,
5024 unsigned long node_end_pfn,
5025 unsigned long *zone_start_pfn,
5026 unsigned long *zone_end_pfn)
5027{
5028 /* Only adjust if ZONE_MOVABLE is on this node */
5029 if (zone_movable_pfn[nid]) {
5030 /* Size ZONE_MOVABLE */
5031 if (zone_type == ZONE_MOVABLE) {
5032 *zone_start_pfn = zone_movable_pfn[nid];
5033 *zone_end_pfn = min(node_end_pfn,
5034 arch_zone_highest_possible_pfn[movable_zone]);
5035
5036 /* Adjust for ZONE_MOVABLE starting within this range */
5037 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5038 *zone_end_pfn > zone_movable_pfn[nid]) {
5039 *zone_end_pfn = zone_movable_pfn[nid];
5040
5041 /* Check if this whole range is within ZONE_MOVABLE */
5042 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5043 *zone_start_pfn = *zone_end_pfn;
5044 }
5045}
5046
c713216d
MG
5047/*
5048 * Return the number of pages a zone spans in a node, including holes
5049 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5050 */
6ea6e688 5051static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5052 unsigned long zone_type,
7960aedd
ZY
5053 unsigned long node_start_pfn,
5054 unsigned long node_end_pfn,
c713216d
MG
5055 unsigned long *ignored)
5056{
c713216d
MG
5057 unsigned long zone_start_pfn, zone_end_pfn;
5058
7960aedd 5059 /* Get the start and end of the zone */
c713216d
MG
5060 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5061 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5062 adjust_zone_range_for_zone_movable(nid, zone_type,
5063 node_start_pfn, node_end_pfn,
5064 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
5065
5066 /* Check that this node has pages within the zone's required range */
5067 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5068 return 0;
5069
5070 /* Move the zone boundaries inside the node if necessary */
5071 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5072 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5073
5074 /* Return the spanned pages */
5075 return zone_end_pfn - zone_start_pfn;
5076}
5077
5078/*
5079 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5080 * then all holes in the requested range will be accounted for.
c713216d 5081 */
32996250 5082unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5083 unsigned long range_start_pfn,
5084 unsigned long range_end_pfn)
5085{
96e907d1
TH
5086 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5087 unsigned long start_pfn, end_pfn;
5088 int i;
c713216d 5089
96e907d1
TH
5090 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5091 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5092 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5093 nr_absent -= end_pfn - start_pfn;
c713216d 5094 }
96e907d1 5095 return nr_absent;
c713216d
MG
5096}
5097
5098/**
5099 * absent_pages_in_range - Return number of page frames in holes within a range
5100 * @start_pfn: The start PFN to start searching for holes
5101 * @end_pfn: The end PFN to stop searching for holes
5102 *
88ca3b94 5103 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5104 */
5105unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5106 unsigned long end_pfn)
5107{
5108 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5109}
5110
5111/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5112static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5113 unsigned long zone_type,
7960aedd
ZY
5114 unsigned long node_start_pfn,
5115 unsigned long node_end_pfn,
c713216d
MG
5116 unsigned long *ignored)
5117{
96e907d1
TH
5118 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5119 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
5120 unsigned long zone_start_pfn, zone_end_pfn;
5121
96e907d1
TH
5122 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5123 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5124
2a1e274a
MG
5125 adjust_zone_range_for_zone_movable(nid, zone_type,
5126 node_start_pfn, node_end_pfn,
5127 &zone_start_pfn, &zone_end_pfn);
9c7cd687 5128 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5129}
0e0b864e 5130
0ee332c1 5131#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5132static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5133 unsigned long zone_type,
7960aedd
ZY
5134 unsigned long node_start_pfn,
5135 unsigned long node_end_pfn,
c713216d
MG
5136 unsigned long *zones_size)
5137{
5138 return zones_size[zone_type];
5139}
5140
6ea6e688 5141static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5142 unsigned long zone_type,
7960aedd
ZY
5143 unsigned long node_start_pfn,
5144 unsigned long node_end_pfn,
c713216d
MG
5145 unsigned long *zholes_size)
5146{
5147 if (!zholes_size)
5148 return 0;
5149
5150 return zholes_size[zone_type];
5151}
20e6926d 5152
0ee332c1 5153#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5154
a3142c8e 5155static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5156 unsigned long node_start_pfn,
5157 unsigned long node_end_pfn,
5158 unsigned long *zones_size,
5159 unsigned long *zholes_size)
c713216d 5160{
febd5949 5161 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5162 enum zone_type i;
5163
febd5949
GZ
5164 for (i = 0; i < MAX_NR_ZONES; i++) {
5165 struct zone *zone = pgdat->node_zones + i;
5166 unsigned long size, real_size;
c713216d 5167
febd5949
GZ
5168 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5169 node_start_pfn,
5170 node_end_pfn,
5171 zones_size);
5172 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5173 node_start_pfn, node_end_pfn,
5174 zholes_size);
febd5949
GZ
5175 zone->spanned_pages = size;
5176 zone->present_pages = real_size;
5177
5178 totalpages += size;
5179 realtotalpages += real_size;
5180 }
5181
5182 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5183 pgdat->node_present_pages = realtotalpages;
5184 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5185 realtotalpages);
5186}
5187
835c134e
MG
5188#ifndef CONFIG_SPARSEMEM
5189/*
5190 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5191 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5192 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5193 * round what is now in bits to nearest long in bits, then return it in
5194 * bytes.
5195 */
7c45512d 5196static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5197{
5198 unsigned long usemapsize;
5199
7c45512d 5200 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5201 usemapsize = roundup(zonesize, pageblock_nr_pages);
5202 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5203 usemapsize *= NR_PAGEBLOCK_BITS;
5204 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5205
5206 return usemapsize / 8;
5207}
5208
5209static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5210 struct zone *zone,
5211 unsigned long zone_start_pfn,
5212 unsigned long zonesize)
835c134e 5213{
7c45512d 5214 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5215 zone->pageblock_flags = NULL;
58a01a45 5216 if (usemapsize)
6782832e
SS
5217 zone->pageblock_flags =
5218 memblock_virt_alloc_node_nopanic(usemapsize,
5219 pgdat->node_id);
835c134e
MG
5220}
5221#else
7c45512d
LT
5222static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5223 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5224#endif /* CONFIG_SPARSEMEM */
5225
d9c23400 5226#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5227
d9c23400 5228/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5229void __paginginit set_pageblock_order(void)
d9c23400 5230{
955c1cd7
AM
5231 unsigned int order;
5232
d9c23400
MG
5233 /* Check that pageblock_nr_pages has not already been setup */
5234 if (pageblock_order)
5235 return;
5236
955c1cd7
AM
5237 if (HPAGE_SHIFT > PAGE_SHIFT)
5238 order = HUGETLB_PAGE_ORDER;
5239 else
5240 order = MAX_ORDER - 1;
5241
d9c23400
MG
5242 /*
5243 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5244 * This value may be variable depending on boot parameters on IA64 and
5245 * powerpc.
d9c23400
MG
5246 */
5247 pageblock_order = order;
5248}
5249#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5250
ba72cb8c
MG
5251/*
5252 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5253 * is unused as pageblock_order is set at compile-time. See
5254 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5255 * the kernel config
ba72cb8c 5256 */
15ca220e 5257void __paginginit set_pageblock_order(void)
ba72cb8c 5258{
ba72cb8c 5259}
d9c23400
MG
5260
5261#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5262
01cefaef
JL
5263static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5264 unsigned long present_pages)
5265{
5266 unsigned long pages = spanned_pages;
5267
5268 /*
5269 * Provide a more accurate estimation if there are holes within
5270 * the zone and SPARSEMEM is in use. If there are holes within the
5271 * zone, each populated memory region may cost us one or two extra
5272 * memmap pages due to alignment because memmap pages for each
5273 * populated regions may not naturally algined on page boundary.
5274 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5275 */
5276 if (spanned_pages > present_pages + (present_pages >> 4) &&
5277 IS_ENABLED(CONFIG_SPARSEMEM))
5278 pages = present_pages;
5279
5280 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5281}
5282
1da177e4
LT
5283/*
5284 * Set up the zone data structures:
5285 * - mark all pages reserved
5286 * - mark all memory queues empty
5287 * - clear the memory bitmaps
6527af5d
MK
5288 *
5289 * NOTE: pgdat should get zeroed by caller.
1da177e4 5290 */
b5a0e011 5291static void __paginginit free_area_init_core(struct pglist_data *pgdat,
febd5949 5292 unsigned long node_start_pfn, unsigned long node_end_pfn)
1da177e4 5293{
2f1b6248 5294 enum zone_type j;
ed8ece2e 5295 int nid = pgdat->node_id;
1da177e4 5296 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5297 int ret;
1da177e4 5298
208d54e5 5299 pgdat_resize_init(pgdat);
8177a420
AA
5300#ifdef CONFIG_NUMA_BALANCING
5301 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5302 pgdat->numabalancing_migrate_nr_pages = 0;
5303 pgdat->numabalancing_migrate_next_window = jiffies;
5304#endif
1da177e4 5305 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5306 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5307 pgdat_page_ext_init(pgdat);
5f63b720 5308
1da177e4
LT
5309 for (j = 0; j < MAX_NR_ZONES; j++) {
5310 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5311 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5312
febd5949
GZ
5313 size = zone->spanned_pages;
5314 realsize = freesize = zone->present_pages;
1da177e4 5315
0e0b864e 5316 /*
9feedc9d 5317 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5318 * is used by this zone for memmap. This affects the watermark
5319 * and per-cpu initialisations
5320 */
01cefaef 5321 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5322 if (!is_highmem_idx(j)) {
5323 if (freesize >= memmap_pages) {
5324 freesize -= memmap_pages;
5325 if (memmap_pages)
5326 printk(KERN_DEBUG
5327 " %s zone: %lu pages used for memmap\n",
5328 zone_names[j], memmap_pages);
5329 } else
5330 printk(KERN_WARNING
5331 " %s zone: %lu pages exceeds freesize %lu\n",
5332 zone_names[j], memmap_pages, freesize);
5333 }
0e0b864e 5334
6267276f 5335 /* Account for reserved pages */
9feedc9d
JL
5336 if (j == 0 && freesize > dma_reserve) {
5337 freesize -= dma_reserve;
d903ef9f 5338 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5339 zone_names[0], dma_reserve);
0e0b864e
MG
5340 }
5341
98d2b0eb 5342 if (!is_highmem_idx(j))
9feedc9d 5343 nr_kernel_pages += freesize;
01cefaef
JL
5344 /* Charge for highmem memmap if there are enough kernel pages */
5345 else if (nr_kernel_pages > memmap_pages * 2)
5346 nr_kernel_pages -= memmap_pages;
9feedc9d 5347 nr_all_pages += freesize;
1da177e4 5348
9feedc9d
JL
5349 /*
5350 * Set an approximate value for lowmem here, it will be adjusted
5351 * when the bootmem allocator frees pages into the buddy system.
5352 * And all highmem pages will be managed by the buddy system.
5353 */
5354 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5355#ifdef CONFIG_NUMA
d5f541ed 5356 zone->node = nid;
9feedc9d 5357 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5358 / 100;
9feedc9d 5359 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5360#endif
1da177e4
LT
5361 zone->name = zone_names[j];
5362 spin_lock_init(&zone->lock);
5363 spin_lock_init(&zone->lru_lock);
bdc8cb98 5364 zone_seqlock_init(zone);
1da177e4 5365 zone->zone_pgdat = pgdat;
ed8ece2e 5366 zone_pcp_init(zone);
81c0a2bb
JW
5367
5368 /* For bootup, initialized properly in watermark setup */
5369 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5370
bea8c150 5371 lruvec_init(&zone->lruvec);
1da177e4
LT
5372 if (!size)
5373 continue;
5374
955c1cd7 5375 set_pageblock_order();
7c45512d 5376 setup_usemap(pgdat, zone, zone_start_pfn, size);
a2f3aa02
DH
5377 ret = init_currently_empty_zone(zone, zone_start_pfn,
5378 size, MEMMAP_EARLY);
718127cc 5379 BUG_ON(ret);
76cdd58e 5380 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5381 zone_start_pfn += size;
1da177e4
LT
5382 }
5383}
5384
577a32f6 5385static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5386{
1da177e4
LT
5387 /* Skip empty nodes */
5388 if (!pgdat->node_spanned_pages)
5389 return;
5390
d41dee36 5391#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
5392 /* ia64 gets its own node_mem_map, before this, without bootmem */
5393 if (!pgdat->node_mem_map) {
e984bb43 5394 unsigned long size, start, end;
d41dee36
AW
5395 struct page *map;
5396
e984bb43
BP
5397 /*
5398 * The zone's endpoints aren't required to be MAX_ORDER
5399 * aligned but the node_mem_map endpoints must be in order
5400 * for the buddy allocator to function correctly.
5401 */
5402 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
108bcc96 5403 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5404 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5405 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5406 map = alloc_remap(pgdat->node_id, size);
5407 if (!map)
6782832e
SS
5408 map = memblock_virt_alloc_node_nopanic(size,
5409 pgdat->node_id);
e984bb43 5410 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 5411 }
12d810c1 5412#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5413 /*
5414 * With no DISCONTIG, the global mem_map is just set as node 0's
5415 */
c713216d 5416 if (pgdat == NODE_DATA(0)) {
1da177e4 5417 mem_map = NODE_DATA(0)->node_mem_map;
0ee332c1 5418#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5419 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 5420 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
0ee332c1 5421#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5422 }
1da177e4 5423#endif
d41dee36 5424#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5425}
5426
9109fb7b
JW
5427void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5428 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5429{
9109fb7b 5430 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5431 unsigned long start_pfn = 0;
5432 unsigned long end_pfn = 0;
9109fb7b 5433
88fdf75d 5434 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5435 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5436
3a80a7fa 5437 reset_deferred_meminit(pgdat);
1da177e4
LT
5438 pgdat->node_id = nid;
5439 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5440#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5441 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a
JG
5442 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5443 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
7960aedd
ZY
5444#endif
5445 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5446 zones_size, zholes_size);
1da177e4
LT
5447
5448 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5449#ifdef CONFIG_FLAT_NODE_MEM_MAP
5450 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5451 nid, (unsigned long)pgdat,
5452 (unsigned long)pgdat->node_mem_map);
5453#endif
1da177e4 5454
febd5949 5455 free_area_init_core(pgdat, start_pfn, end_pfn);
1da177e4
LT
5456}
5457
0ee332c1 5458#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5459
5460#if MAX_NUMNODES > 1
5461/*
5462 * Figure out the number of possible node ids.
5463 */
f9872caf 5464void __init setup_nr_node_ids(void)
418508c1
MS
5465{
5466 unsigned int node;
5467 unsigned int highest = 0;
5468
5469 for_each_node_mask(node, node_possible_map)
5470 highest = node;
5471 nr_node_ids = highest + 1;
5472}
418508c1
MS
5473#endif
5474
1e01979c
TH
5475/**
5476 * node_map_pfn_alignment - determine the maximum internode alignment
5477 *
5478 * This function should be called after node map is populated and sorted.
5479 * It calculates the maximum power of two alignment which can distinguish
5480 * all the nodes.
5481 *
5482 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5483 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5484 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5485 * shifted, 1GiB is enough and this function will indicate so.
5486 *
5487 * This is used to test whether pfn -> nid mapping of the chosen memory
5488 * model has fine enough granularity to avoid incorrect mapping for the
5489 * populated node map.
5490 *
5491 * Returns the determined alignment in pfn's. 0 if there is no alignment
5492 * requirement (single node).
5493 */
5494unsigned long __init node_map_pfn_alignment(void)
5495{
5496 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5497 unsigned long start, end, mask;
1e01979c 5498 int last_nid = -1;
c13291a5 5499 int i, nid;
1e01979c 5500
c13291a5 5501 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5502 if (!start || last_nid < 0 || last_nid == nid) {
5503 last_nid = nid;
5504 last_end = end;
5505 continue;
5506 }
5507
5508 /*
5509 * Start with a mask granular enough to pin-point to the
5510 * start pfn and tick off bits one-by-one until it becomes
5511 * too coarse to separate the current node from the last.
5512 */
5513 mask = ~((1 << __ffs(start)) - 1);
5514 while (mask && last_end <= (start & (mask << 1)))
5515 mask <<= 1;
5516
5517 /* accumulate all internode masks */
5518 accl_mask |= mask;
5519 }
5520
5521 /* convert mask to number of pages */
5522 return ~accl_mask + 1;
5523}
5524
a6af2bc3 5525/* Find the lowest pfn for a node */
b69a7288 5526static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5527{
a6af2bc3 5528 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5529 unsigned long start_pfn;
5530 int i;
1abbfb41 5531
c13291a5
TH
5532 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5533 min_pfn = min(min_pfn, start_pfn);
c713216d 5534
a6af2bc3
MG
5535 if (min_pfn == ULONG_MAX) {
5536 printk(KERN_WARNING
2bc0d261 5537 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5538 return 0;
5539 }
5540
5541 return min_pfn;
c713216d
MG
5542}
5543
5544/**
5545 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5546 *
5547 * It returns the minimum PFN based on information provided via
7d018176 5548 * memblock_set_node().
c713216d
MG
5549 */
5550unsigned long __init find_min_pfn_with_active_regions(void)
5551{
5552 return find_min_pfn_for_node(MAX_NUMNODES);
5553}
5554
37b07e41
LS
5555/*
5556 * early_calculate_totalpages()
5557 * Sum pages in active regions for movable zone.
4b0ef1fe 5558 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5559 */
484f51f8 5560static unsigned long __init early_calculate_totalpages(void)
7e63efef 5561{
7e63efef 5562 unsigned long totalpages = 0;
c13291a5
TH
5563 unsigned long start_pfn, end_pfn;
5564 int i, nid;
5565
5566 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5567 unsigned long pages = end_pfn - start_pfn;
7e63efef 5568
37b07e41
LS
5569 totalpages += pages;
5570 if (pages)
4b0ef1fe 5571 node_set_state(nid, N_MEMORY);
37b07e41 5572 }
b8af2941 5573 return totalpages;
7e63efef
MG
5574}
5575
2a1e274a
MG
5576/*
5577 * Find the PFN the Movable zone begins in each node. Kernel memory
5578 * is spread evenly between nodes as long as the nodes have enough
5579 * memory. When they don't, some nodes will have more kernelcore than
5580 * others
5581 */
b224ef85 5582static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5583{
5584 int i, nid;
5585 unsigned long usable_startpfn;
5586 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5587 /* save the state before borrow the nodemask */
4b0ef1fe 5588 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5589 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5590 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5591 struct memblock_region *r;
b2f3eebe
TC
5592
5593 /* Need to find movable_zone earlier when movable_node is specified. */
5594 find_usable_zone_for_movable();
5595
5596 /*
5597 * If movable_node is specified, ignore kernelcore and movablecore
5598 * options.
5599 */
5600 if (movable_node_is_enabled()) {
136199f0
EM
5601 for_each_memblock(memory, r) {
5602 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5603 continue;
5604
136199f0 5605 nid = r->nid;
b2f3eebe 5606
136199f0 5607 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5608 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5609 min(usable_startpfn, zone_movable_pfn[nid]) :
5610 usable_startpfn;
5611 }
5612
5613 goto out2;
5614 }
2a1e274a 5615
7e63efef 5616 /*
b2f3eebe 5617 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5618 * kernelcore that corresponds so that memory usable for
5619 * any allocation type is evenly spread. If both kernelcore
5620 * and movablecore are specified, then the value of kernelcore
5621 * will be used for required_kernelcore if it's greater than
5622 * what movablecore would have allowed.
5623 */
5624 if (required_movablecore) {
7e63efef
MG
5625 unsigned long corepages;
5626
5627 /*
5628 * Round-up so that ZONE_MOVABLE is at least as large as what
5629 * was requested by the user
5630 */
5631 required_movablecore =
5632 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5633 corepages = totalpages - required_movablecore;
5634
5635 required_kernelcore = max(required_kernelcore, corepages);
5636 }
5637
20e6926d
YL
5638 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5639 if (!required_kernelcore)
66918dcd 5640 goto out;
2a1e274a
MG
5641
5642 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5643 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5644
5645restart:
5646 /* Spread kernelcore memory as evenly as possible throughout nodes */
5647 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5648 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5649 unsigned long start_pfn, end_pfn;
5650
2a1e274a
MG
5651 /*
5652 * Recalculate kernelcore_node if the division per node
5653 * now exceeds what is necessary to satisfy the requested
5654 * amount of memory for the kernel
5655 */
5656 if (required_kernelcore < kernelcore_node)
5657 kernelcore_node = required_kernelcore / usable_nodes;
5658
5659 /*
5660 * As the map is walked, we track how much memory is usable
5661 * by the kernel using kernelcore_remaining. When it is
5662 * 0, the rest of the node is usable by ZONE_MOVABLE
5663 */
5664 kernelcore_remaining = kernelcore_node;
5665
5666 /* Go through each range of PFNs within this node */
c13291a5 5667 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5668 unsigned long size_pages;
5669
c13291a5 5670 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5671 if (start_pfn >= end_pfn)
5672 continue;
5673
5674 /* Account for what is only usable for kernelcore */
5675 if (start_pfn < usable_startpfn) {
5676 unsigned long kernel_pages;
5677 kernel_pages = min(end_pfn, usable_startpfn)
5678 - start_pfn;
5679
5680 kernelcore_remaining -= min(kernel_pages,
5681 kernelcore_remaining);
5682 required_kernelcore -= min(kernel_pages,
5683 required_kernelcore);
5684
5685 /* Continue if range is now fully accounted */
5686 if (end_pfn <= usable_startpfn) {
5687
5688 /*
5689 * Push zone_movable_pfn to the end so
5690 * that if we have to rebalance
5691 * kernelcore across nodes, we will
5692 * not double account here
5693 */
5694 zone_movable_pfn[nid] = end_pfn;
5695 continue;
5696 }
5697 start_pfn = usable_startpfn;
5698 }
5699
5700 /*
5701 * The usable PFN range for ZONE_MOVABLE is from
5702 * start_pfn->end_pfn. Calculate size_pages as the
5703 * number of pages used as kernelcore
5704 */
5705 size_pages = end_pfn - start_pfn;
5706 if (size_pages > kernelcore_remaining)
5707 size_pages = kernelcore_remaining;
5708 zone_movable_pfn[nid] = start_pfn + size_pages;
5709
5710 /*
5711 * Some kernelcore has been met, update counts and
5712 * break if the kernelcore for this node has been
b8af2941 5713 * satisfied
2a1e274a
MG
5714 */
5715 required_kernelcore -= min(required_kernelcore,
5716 size_pages);
5717 kernelcore_remaining -= size_pages;
5718 if (!kernelcore_remaining)
5719 break;
5720 }
5721 }
5722
5723 /*
5724 * If there is still required_kernelcore, we do another pass with one
5725 * less node in the count. This will push zone_movable_pfn[nid] further
5726 * along on the nodes that still have memory until kernelcore is
b8af2941 5727 * satisfied
2a1e274a
MG
5728 */
5729 usable_nodes--;
5730 if (usable_nodes && required_kernelcore > usable_nodes)
5731 goto restart;
5732
b2f3eebe 5733out2:
2a1e274a
MG
5734 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5735 for (nid = 0; nid < MAX_NUMNODES; nid++)
5736 zone_movable_pfn[nid] =
5737 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5738
20e6926d 5739out:
66918dcd 5740 /* restore the node_state */
4b0ef1fe 5741 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5742}
5743
4b0ef1fe
LJ
5744/* Any regular or high memory on that node ? */
5745static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5746{
37b07e41
LS
5747 enum zone_type zone_type;
5748
4b0ef1fe
LJ
5749 if (N_MEMORY == N_NORMAL_MEMORY)
5750 return;
5751
5752 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5753 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5754 if (populated_zone(zone)) {
4b0ef1fe
LJ
5755 node_set_state(nid, N_HIGH_MEMORY);
5756 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5757 zone_type <= ZONE_NORMAL)
5758 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5759 break;
5760 }
37b07e41 5761 }
37b07e41
LS
5762}
5763
c713216d
MG
5764/**
5765 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5766 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5767 *
5768 * This will call free_area_init_node() for each active node in the system.
7d018176 5769 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5770 * zone in each node and their holes is calculated. If the maximum PFN
5771 * between two adjacent zones match, it is assumed that the zone is empty.
5772 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5773 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5774 * starts where the previous one ended. For example, ZONE_DMA32 starts
5775 * at arch_max_dma_pfn.
5776 */
5777void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5778{
c13291a5
TH
5779 unsigned long start_pfn, end_pfn;
5780 int i, nid;
a6af2bc3 5781
c713216d
MG
5782 /* Record where the zone boundaries are */
5783 memset(arch_zone_lowest_possible_pfn, 0,
5784 sizeof(arch_zone_lowest_possible_pfn));
5785 memset(arch_zone_highest_possible_pfn, 0,
5786 sizeof(arch_zone_highest_possible_pfn));
5787 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5788 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5789 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5790 if (i == ZONE_MOVABLE)
5791 continue;
c713216d
MG
5792 arch_zone_lowest_possible_pfn[i] =
5793 arch_zone_highest_possible_pfn[i-1];
5794 arch_zone_highest_possible_pfn[i] =
5795 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5796 }
2a1e274a
MG
5797 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5798 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5799
5800 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5801 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5802 find_zone_movable_pfns_for_nodes();
c713216d 5803
c713216d 5804 /* Print out the zone ranges */
f88dfff5 5805 pr_info("Zone ranges:\n");
2a1e274a
MG
5806 for (i = 0; i < MAX_NR_ZONES; i++) {
5807 if (i == ZONE_MOVABLE)
5808 continue;
f88dfff5 5809 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5810 if (arch_zone_lowest_possible_pfn[i] ==
5811 arch_zone_highest_possible_pfn[i])
f88dfff5 5812 pr_cont("empty\n");
72f0ba02 5813 else
8d29e18a
JG
5814 pr_cont("[mem %#018Lx-%#018Lx]\n",
5815 (u64)arch_zone_lowest_possible_pfn[i]
5816 << PAGE_SHIFT,
5817 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5818 << PAGE_SHIFT) - 1);
2a1e274a
MG
5819 }
5820
5821 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5822 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5823 for (i = 0; i < MAX_NUMNODES; i++) {
5824 if (zone_movable_pfn[i])
8d29e18a
JG
5825 pr_info(" Node %d: %#018Lx\n", i,
5826 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5827 }
c713216d 5828
f2d52fe5 5829 /* Print out the early node map */
f88dfff5 5830 pr_info("Early memory node ranges\n");
c13291a5 5831 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5832 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5833 (u64)start_pfn << PAGE_SHIFT,
5834 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5835
5836 /* Initialise every node */
708614e6 5837 mminit_verify_pageflags_layout();
8ef82866 5838 setup_nr_node_ids();
c713216d
MG
5839 for_each_online_node(nid) {
5840 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5841 free_area_init_node(nid, NULL,
c713216d 5842 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5843
5844 /* Any memory on that node */
5845 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5846 node_set_state(nid, N_MEMORY);
5847 check_for_memory(pgdat, nid);
c713216d
MG
5848 }
5849}
2a1e274a 5850
7e63efef 5851static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5852{
5853 unsigned long long coremem;
5854 if (!p)
5855 return -EINVAL;
5856
5857 coremem = memparse(p, &p);
7e63efef 5858 *core = coremem >> PAGE_SHIFT;
2a1e274a 5859
7e63efef 5860 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5861 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5862
5863 return 0;
5864}
ed7ed365 5865
7e63efef
MG
5866/*
5867 * kernelcore=size sets the amount of memory for use for allocations that
5868 * cannot be reclaimed or migrated.
5869 */
5870static int __init cmdline_parse_kernelcore(char *p)
5871{
5872 return cmdline_parse_core(p, &required_kernelcore);
5873}
5874
5875/*
5876 * movablecore=size sets the amount of memory for use for allocations that
5877 * can be reclaimed or migrated.
5878 */
5879static int __init cmdline_parse_movablecore(char *p)
5880{
5881 return cmdline_parse_core(p, &required_movablecore);
5882}
5883
ed7ed365 5884early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5885early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5886
0ee332c1 5887#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5888
c3d5f5f0
JL
5889void adjust_managed_page_count(struct page *page, long count)
5890{
5891 spin_lock(&managed_page_count_lock);
5892 page_zone(page)->managed_pages += count;
5893 totalram_pages += count;
3dcc0571
JL
5894#ifdef CONFIG_HIGHMEM
5895 if (PageHighMem(page))
5896 totalhigh_pages += count;
5897#endif
c3d5f5f0
JL
5898 spin_unlock(&managed_page_count_lock);
5899}
3dcc0571 5900EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5901
11199692 5902unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5903{
11199692
JL
5904 void *pos;
5905 unsigned long pages = 0;
69afade7 5906
11199692
JL
5907 start = (void *)PAGE_ALIGN((unsigned long)start);
5908 end = (void *)((unsigned long)end & PAGE_MASK);
5909 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5910 if ((unsigned int)poison <= 0xFF)
11199692
JL
5911 memset(pos, poison, PAGE_SIZE);
5912 free_reserved_page(virt_to_page(pos));
69afade7
JL
5913 }
5914
5915 if (pages && s)
11199692 5916 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5917 s, pages << (PAGE_SHIFT - 10), start, end);
5918
5919 return pages;
5920}
11199692 5921EXPORT_SYMBOL(free_reserved_area);
69afade7 5922
cfa11e08
JL
5923#ifdef CONFIG_HIGHMEM
5924void free_highmem_page(struct page *page)
5925{
5926 __free_reserved_page(page);
5927 totalram_pages++;
7b4b2a0d 5928 page_zone(page)->managed_pages++;
cfa11e08
JL
5929 totalhigh_pages++;
5930}
5931#endif
5932
7ee3d4e8
JL
5933
5934void __init mem_init_print_info(const char *str)
5935{
5936 unsigned long physpages, codesize, datasize, rosize, bss_size;
5937 unsigned long init_code_size, init_data_size;
5938
5939 physpages = get_num_physpages();
5940 codesize = _etext - _stext;
5941 datasize = _edata - _sdata;
5942 rosize = __end_rodata - __start_rodata;
5943 bss_size = __bss_stop - __bss_start;
5944 init_data_size = __init_end - __init_begin;
5945 init_code_size = _einittext - _sinittext;
5946
5947 /*
5948 * Detect special cases and adjust section sizes accordingly:
5949 * 1) .init.* may be embedded into .data sections
5950 * 2) .init.text.* may be out of [__init_begin, __init_end],
5951 * please refer to arch/tile/kernel/vmlinux.lds.S.
5952 * 3) .rodata.* may be embedded into .text or .data sections.
5953 */
5954#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5955 do { \
5956 if (start <= pos && pos < end && size > adj) \
5957 size -= adj; \
5958 } while (0)
7ee3d4e8
JL
5959
5960 adj_init_size(__init_begin, __init_end, init_data_size,
5961 _sinittext, init_code_size);
5962 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5963 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5964 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5965 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5966
5967#undef adj_init_size
5968
f88dfff5 5969 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5970 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5971 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5972#ifdef CONFIG_HIGHMEM
5973 ", %luK highmem"
5974#endif
5975 "%s%s)\n",
5976 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5977 codesize >> 10, datasize >> 10, rosize >> 10,
5978 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5979 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5980 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5981#ifdef CONFIG_HIGHMEM
5982 totalhigh_pages << (PAGE_SHIFT-10),
5983#endif
5984 str ? ", " : "", str ? str : "");
5985}
5986
0e0b864e 5987/**
88ca3b94
RD
5988 * set_dma_reserve - set the specified number of pages reserved in the first zone
5989 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
5990 *
5991 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5992 * In the DMA zone, a significant percentage may be consumed by kernel image
5993 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5994 * function may optionally be used to account for unfreeable pages in the
5995 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5996 * smaller per-cpu batchsize.
0e0b864e
MG
5997 */
5998void __init set_dma_reserve(unsigned long new_dma_reserve)
5999{
6000 dma_reserve = new_dma_reserve;
6001}
6002
1da177e4
LT
6003void __init free_area_init(unsigned long *zones_size)
6004{
9109fb7b 6005 free_area_init_node(0, zones_size,
1da177e4
LT
6006 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6007}
1da177e4 6008
1da177e4
LT
6009static int page_alloc_cpu_notify(struct notifier_block *self,
6010 unsigned long action, void *hcpu)
6011{
6012 int cpu = (unsigned long)hcpu;
1da177e4 6013
8bb78442 6014 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6015 lru_add_drain_cpu(cpu);
9f8f2172
CL
6016 drain_pages(cpu);
6017
6018 /*
6019 * Spill the event counters of the dead processor
6020 * into the current processors event counters.
6021 * This artificially elevates the count of the current
6022 * processor.
6023 */
f8891e5e 6024 vm_events_fold_cpu(cpu);
9f8f2172
CL
6025
6026 /*
6027 * Zero the differential counters of the dead processor
6028 * so that the vm statistics are consistent.
6029 *
6030 * This is only okay since the processor is dead and cannot
6031 * race with what we are doing.
6032 */
2bb921e5 6033 cpu_vm_stats_fold(cpu);
1da177e4
LT
6034 }
6035 return NOTIFY_OK;
6036}
1da177e4
LT
6037
6038void __init page_alloc_init(void)
6039{
6040 hotcpu_notifier(page_alloc_cpu_notify, 0);
6041}
6042
cb45b0e9
HA
6043/*
6044 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6045 * or min_free_kbytes changes.
6046 */
6047static void calculate_totalreserve_pages(void)
6048{
6049 struct pglist_data *pgdat;
6050 unsigned long reserve_pages = 0;
2f6726e5 6051 enum zone_type i, j;
cb45b0e9
HA
6052
6053 for_each_online_pgdat(pgdat) {
6054 for (i = 0; i < MAX_NR_ZONES; i++) {
6055 struct zone *zone = pgdat->node_zones + i;
3484b2de 6056 long max = 0;
cb45b0e9
HA
6057
6058 /* Find valid and maximum lowmem_reserve in the zone */
6059 for (j = i; j < MAX_NR_ZONES; j++) {
6060 if (zone->lowmem_reserve[j] > max)
6061 max = zone->lowmem_reserve[j];
6062 }
6063
41858966
MG
6064 /* we treat the high watermark as reserved pages. */
6065 max += high_wmark_pages(zone);
cb45b0e9 6066
b40da049
JL
6067 if (max > zone->managed_pages)
6068 max = zone->managed_pages;
cb45b0e9 6069 reserve_pages += max;
ab8fabd4
JW
6070 /*
6071 * Lowmem reserves are not available to
6072 * GFP_HIGHUSER page cache allocations and
6073 * kswapd tries to balance zones to their high
6074 * watermark. As a result, neither should be
6075 * regarded as dirtyable memory, to prevent a
6076 * situation where reclaim has to clean pages
6077 * in order to balance the zones.
6078 */
6079 zone->dirty_balance_reserve = max;
cb45b0e9
HA
6080 }
6081 }
ab8fabd4 6082 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
6083 totalreserve_pages = reserve_pages;
6084}
6085
1da177e4
LT
6086/*
6087 * setup_per_zone_lowmem_reserve - called whenever
6088 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6089 * has a correct pages reserved value, so an adequate number of
6090 * pages are left in the zone after a successful __alloc_pages().
6091 */
6092static void setup_per_zone_lowmem_reserve(void)
6093{
6094 struct pglist_data *pgdat;
2f6726e5 6095 enum zone_type j, idx;
1da177e4 6096
ec936fc5 6097 for_each_online_pgdat(pgdat) {
1da177e4
LT
6098 for (j = 0; j < MAX_NR_ZONES; j++) {
6099 struct zone *zone = pgdat->node_zones + j;
b40da049 6100 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6101
6102 zone->lowmem_reserve[j] = 0;
6103
2f6726e5
CL
6104 idx = j;
6105 while (idx) {
1da177e4
LT
6106 struct zone *lower_zone;
6107
2f6726e5
CL
6108 idx--;
6109
1da177e4
LT
6110 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6111 sysctl_lowmem_reserve_ratio[idx] = 1;
6112
6113 lower_zone = pgdat->node_zones + idx;
b40da049 6114 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6115 sysctl_lowmem_reserve_ratio[idx];
b40da049 6116 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6117 }
6118 }
6119 }
cb45b0e9
HA
6120
6121 /* update totalreserve_pages */
6122 calculate_totalreserve_pages();
1da177e4
LT
6123}
6124
cfd3da1e 6125static void __setup_per_zone_wmarks(void)
1da177e4
LT
6126{
6127 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6128 unsigned long lowmem_pages = 0;
6129 struct zone *zone;
6130 unsigned long flags;
6131
6132 /* Calculate total number of !ZONE_HIGHMEM pages */
6133 for_each_zone(zone) {
6134 if (!is_highmem(zone))
b40da049 6135 lowmem_pages += zone->managed_pages;
1da177e4
LT
6136 }
6137
6138 for_each_zone(zone) {
ac924c60
AM
6139 u64 tmp;
6140
1125b4e3 6141 spin_lock_irqsave(&zone->lock, flags);
b40da049 6142 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6143 do_div(tmp, lowmem_pages);
1da177e4
LT
6144 if (is_highmem(zone)) {
6145 /*
669ed175
NP
6146 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6147 * need highmem pages, so cap pages_min to a small
6148 * value here.
6149 *
41858966 6150 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6151 * deltas control asynch page reclaim, and so should
669ed175 6152 * not be capped for highmem.
1da177e4 6153 */
90ae8d67 6154 unsigned long min_pages;
1da177e4 6155
b40da049 6156 min_pages = zone->managed_pages / 1024;
90ae8d67 6157 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6158 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6159 } else {
669ed175
NP
6160 /*
6161 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6162 * proportionate to the zone's size.
6163 */
41858966 6164 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6165 }
6166
41858966
MG
6167 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6168 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6169
81c0a2bb 6170 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6171 high_wmark_pages(zone) - low_wmark_pages(zone) -
6172 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6173
56fd56b8 6174 setup_zone_migrate_reserve(zone);
1125b4e3 6175 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6176 }
cb45b0e9
HA
6177
6178 /* update totalreserve_pages */
6179 calculate_totalreserve_pages();
1da177e4
LT
6180}
6181
cfd3da1e
MG
6182/**
6183 * setup_per_zone_wmarks - called when min_free_kbytes changes
6184 * or when memory is hot-{added|removed}
6185 *
6186 * Ensures that the watermark[min,low,high] values for each zone are set
6187 * correctly with respect to min_free_kbytes.
6188 */
6189void setup_per_zone_wmarks(void)
6190{
6191 mutex_lock(&zonelists_mutex);
6192 __setup_per_zone_wmarks();
6193 mutex_unlock(&zonelists_mutex);
6194}
6195
55a4462a 6196/*
556adecb
RR
6197 * The inactive anon list should be small enough that the VM never has to
6198 * do too much work, but large enough that each inactive page has a chance
6199 * to be referenced again before it is swapped out.
6200 *
6201 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6202 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6203 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6204 * the anonymous pages are kept on the inactive list.
6205 *
6206 * total target max
6207 * memory ratio inactive anon
6208 * -------------------------------------
6209 * 10MB 1 5MB
6210 * 100MB 1 50MB
6211 * 1GB 3 250MB
6212 * 10GB 10 0.9GB
6213 * 100GB 31 3GB
6214 * 1TB 101 10GB
6215 * 10TB 320 32GB
6216 */
1b79acc9 6217static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6218{
96cb4df5 6219 unsigned int gb, ratio;
556adecb 6220
96cb4df5 6221 /* Zone size in gigabytes */
b40da049 6222 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6223 if (gb)
556adecb 6224 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6225 else
6226 ratio = 1;
556adecb 6227
96cb4df5
MK
6228 zone->inactive_ratio = ratio;
6229}
556adecb 6230
839a4fcc 6231static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6232{
6233 struct zone *zone;
6234
6235 for_each_zone(zone)
6236 calculate_zone_inactive_ratio(zone);
556adecb
RR
6237}
6238
1da177e4
LT
6239/*
6240 * Initialise min_free_kbytes.
6241 *
6242 * For small machines we want it small (128k min). For large machines
6243 * we want it large (64MB max). But it is not linear, because network
6244 * bandwidth does not increase linearly with machine size. We use
6245 *
b8af2941 6246 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6247 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6248 *
6249 * which yields
6250 *
6251 * 16MB: 512k
6252 * 32MB: 724k
6253 * 64MB: 1024k
6254 * 128MB: 1448k
6255 * 256MB: 2048k
6256 * 512MB: 2896k
6257 * 1024MB: 4096k
6258 * 2048MB: 5792k
6259 * 4096MB: 8192k
6260 * 8192MB: 11584k
6261 * 16384MB: 16384k
6262 */
1b79acc9 6263int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6264{
6265 unsigned long lowmem_kbytes;
5f12733e 6266 int new_min_free_kbytes;
1da177e4
LT
6267
6268 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6269 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6270
6271 if (new_min_free_kbytes > user_min_free_kbytes) {
6272 min_free_kbytes = new_min_free_kbytes;
6273 if (min_free_kbytes < 128)
6274 min_free_kbytes = 128;
6275 if (min_free_kbytes > 65536)
6276 min_free_kbytes = 65536;
6277 } else {
6278 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6279 new_min_free_kbytes, user_min_free_kbytes);
6280 }
bc75d33f 6281 setup_per_zone_wmarks();
a6cccdc3 6282 refresh_zone_stat_thresholds();
1da177e4 6283 setup_per_zone_lowmem_reserve();
556adecb 6284 setup_per_zone_inactive_ratio();
1da177e4
LT
6285 return 0;
6286}
bc75d33f 6287module_init(init_per_zone_wmark_min)
1da177e4
LT
6288
6289/*
b8af2941 6290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6291 * that we can call two helper functions whenever min_free_kbytes
6292 * changes.
6293 */
cccad5b9 6294int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6295 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6296{
da8c757b
HP
6297 int rc;
6298
6299 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6300 if (rc)
6301 return rc;
6302
5f12733e
MH
6303 if (write) {
6304 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6305 setup_per_zone_wmarks();
5f12733e 6306 }
1da177e4
LT
6307 return 0;
6308}
6309
9614634f 6310#ifdef CONFIG_NUMA
cccad5b9 6311int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6312 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6313{
6314 struct zone *zone;
6315 int rc;
6316
8d65af78 6317 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6318 if (rc)
6319 return rc;
6320
6321 for_each_zone(zone)
b40da049 6322 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6323 sysctl_min_unmapped_ratio) / 100;
6324 return 0;
6325}
0ff38490 6326
cccad5b9 6327int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6328 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6329{
6330 struct zone *zone;
6331 int rc;
6332
8d65af78 6333 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6334 if (rc)
6335 return rc;
6336
6337 for_each_zone(zone)
b40da049 6338 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6339 sysctl_min_slab_ratio) / 100;
6340 return 0;
6341}
9614634f
CL
6342#endif
6343
1da177e4
LT
6344/*
6345 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6346 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6347 * whenever sysctl_lowmem_reserve_ratio changes.
6348 *
6349 * The reserve ratio obviously has absolutely no relation with the
41858966 6350 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6351 * if in function of the boot time zone sizes.
6352 */
cccad5b9 6353int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6354 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6355{
8d65af78 6356 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6357 setup_per_zone_lowmem_reserve();
6358 return 0;
6359}
6360
8ad4b1fb
RS
6361/*
6362 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6363 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6364 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6365 */
cccad5b9 6366int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6367 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6368{
6369 struct zone *zone;
7cd2b0a3 6370 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6371 int ret;
6372
7cd2b0a3
DR
6373 mutex_lock(&pcp_batch_high_lock);
6374 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6375
8d65af78 6376 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6377 if (!write || ret < 0)
6378 goto out;
6379
6380 /* Sanity checking to avoid pcp imbalance */
6381 if (percpu_pagelist_fraction &&
6382 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6383 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6384 ret = -EINVAL;
6385 goto out;
6386 }
6387
6388 /* No change? */
6389 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6390 goto out;
c8e251fa 6391
364df0eb 6392 for_each_populated_zone(zone) {
7cd2b0a3
DR
6393 unsigned int cpu;
6394
22a7f12b 6395 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6396 pageset_set_high_and_batch(zone,
6397 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6398 }
7cd2b0a3 6399out:
c8e251fa 6400 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6401 return ret;
8ad4b1fb
RS
6402}
6403
a9919c79 6404#ifdef CONFIG_NUMA
f034b5d4 6405int hashdist = HASHDIST_DEFAULT;
1da177e4 6406
1da177e4
LT
6407static int __init set_hashdist(char *str)
6408{
6409 if (!str)
6410 return 0;
6411 hashdist = simple_strtoul(str, &str, 0);
6412 return 1;
6413}
6414__setup("hashdist=", set_hashdist);
6415#endif
6416
6417/*
6418 * allocate a large system hash table from bootmem
6419 * - it is assumed that the hash table must contain an exact power-of-2
6420 * quantity of entries
6421 * - limit is the number of hash buckets, not the total allocation size
6422 */
6423void *__init alloc_large_system_hash(const char *tablename,
6424 unsigned long bucketsize,
6425 unsigned long numentries,
6426 int scale,
6427 int flags,
6428 unsigned int *_hash_shift,
6429 unsigned int *_hash_mask,
31fe62b9
TB
6430 unsigned long low_limit,
6431 unsigned long high_limit)
1da177e4 6432{
31fe62b9 6433 unsigned long long max = high_limit;
1da177e4
LT
6434 unsigned long log2qty, size;
6435 void *table = NULL;
6436
6437 /* allow the kernel cmdline to have a say */
6438 if (!numentries) {
6439 /* round applicable memory size up to nearest megabyte */
04903664 6440 numentries = nr_kernel_pages;
a7e83318
JZ
6441
6442 /* It isn't necessary when PAGE_SIZE >= 1MB */
6443 if (PAGE_SHIFT < 20)
6444 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6445
6446 /* limit to 1 bucket per 2^scale bytes of low memory */
6447 if (scale > PAGE_SHIFT)
6448 numentries >>= (scale - PAGE_SHIFT);
6449 else
6450 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6451
6452 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6453 if (unlikely(flags & HASH_SMALL)) {
6454 /* Makes no sense without HASH_EARLY */
6455 WARN_ON(!(flags & HASH_EARLY));
6456 if (!(numentries >> *_hash_shift)) {
6457 numentries = 1UL << *_hash_shift;
6458 BUG_ON(!numentries);
6459 }
6460 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6461 numentries = PAGE_SIZE / bucketsize;
1da177e4 6462 }
6e692ed3 6463 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6464
6465 /* limit allocation size to 1/16 total memory by default */
6466 if (max == 0) {
6467 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6468 do_div(max, bucketsize);
6469 }
074b8517 6470 max = min(max, 0x80000000ULL);
1da177e4 6471
31fe62b9
TB
6472 if (numentries < low_limit)
6473 numentries = low_limit;
1da177e4
LT
6474 if (numentries > max)
6475 numentries = max;
6476
f0d1b0b3 6477 log2qty = ilog2(numentries);
1da177e4
LT
6478
6479 do {
6480 size = bucketsize << log2qty;
6481 if (flags & HASH_EARLY)
6782832e 6482 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6483 else if (hashdist)
6484 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6485 else {
1037b83b
ED
6486 /*
6487 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6488 * some pages at the end of hash table which
6489 * alloc_pages_exact() automatically does
1037b83b 6490 */
264ef8a9 6491 if (get_order(size) < MAX_ORDER) {
a1dd268c 6492 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6493 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6494 }
1da177e4
LT
6495 }
6496 } while (!table && size > PAGE_SIZE && --log2qty);
6497
6498 if (!table)
6499 panic("Failed to allocate %s hash table\n", tablename);
6500
f241e660 6501 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6502 tablename,
f241e660 6503 (1UL << log2qty),
f0d1b0b3 6504 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6505 size);
6506
6507 if (_hash_shift)
6508 *_hash_shift = log2qty;
6509 if (_hash_mask)
6510 *_hash_mask = (1 << log2qty) - 1;
6511
6512 return table;
6513}
a117e66e 6514
835c134e
MG
6515/* Return a pointer to the bitmap storing bits affecting a block of pages */
6516static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6517 unsigned long pfn)
6518{
6519#ifdef CONFIG_SPARSEMEM
6520 return __pfn_to_section(pfn)->pageblock_flags;
6521#else
6522 return zone->pageblock_flags;
6523#endif /* CONFIG_SPARSEMEM */
6524}
6525
6526static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6527{
6528#ifdef CONFIG_SPARSEMEM
6529 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6531#else
c060f943 6532 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6533 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6534#endif /* CONFIG_SPARSEMEM */
6535}
6536
6537/**
1aab4d77 6538 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6539 * @page: The page within the block of interest
1aab4d77
RD
6540 * @pfn: The target page frame number
6541 * @end_bitidx: The last bit of interest to retrieve
6542 * @mask: mask of bits that the caller is interested in
6543 *
6544 * Return: pageblock_bits flags
835c134e 6545 */
dc4b0caf 6546unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6547 unsigned long end_bitidx,
6548 unsigned long mask)
835c134e
MG
6549{
6550 struct zone *zone;
6551 unsigned long *bitmap;
dc4b0caf 6552 unsigned long bitidx, word_bitidx;
e58469ba 6553 unsigned long word;
835c134e
MG
6554
6555 zone = page_zone(page);
835c134e
MG
6556 bitmap = get_pageblock_bitmap(zone, pfn);
6557 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6558 word_bitidx = bitidx / BITS_PER_LONG;
6559 bitidx &= (BITS_PER_LONG-1);
835c134e 6560
e58469ba
MG
6561 word = bitmap[word_bitidx];
6562 bitidx += end_bitidx;
6563 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6564}
6565
6566/**
dc4b0caf 6567 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6568 * @page: The page within the block of interest
835c134e 6569 * @flags: The flags to set
1aab4d77
RD
6570 * @pfn: The target page frame number
6571 * @end_bitidx: The last bit of interest
6572 * @mask: mask of bits that the caller is interested in
835c134e 6573 */
dc4b0caf
MG
6574void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6575 unsigned long pfn,
e58469ba
MG
6576 unsigned long end_bitidx,
6577 unsigned long mask)
835c134e
MG
6578{
6579 struct zone *zone;
6580 unsigned long *bitmap;
dc4b0caf 6581 unsigned long bitidx, word_bitidx;
e58469ba
MG
6582 unsigned long old_word, word;
6583
6584 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6585
6586 zone = page_zone(page);
835c134e
MG
6587 bitmap = get_pageblock_bitmap(zone, pfn);
6588 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6589 word_bitidx = bitidx / BITS_PER_LONG;
6590 bitidx &= (BITS_PER_LONG-1);
6591
309381fe 6592 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6593
e58469ba
MG
6594 bitidx += end_bitidx;
6595 mask <<= (BITS_PER_LONG - bitidx - 1);
6596 flags <<= (BITS_PER_LONG - bitidx - 1);
6597
4db0c3c2 6598 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6599 for (;;) {
6600 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6601 if (word == old_word)
6602 break;
6603 word = old_word;
6604 }
835c134e 6605}
a5d76b54
KH
6606
6607/*
80934513
MK
6608 * This function checks whether pageblock includes unmovable pages or not.
6609 * If @count is not zero, it is okay to include less @count unmovable pages
6610 *
b8af2941 6611 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6612 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6613 * expect this function should be exact.
a5d76b54 6614 */
b023f468
WC
6615bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6616 bool skip_hwpoisoned_pages)
49ac8255
KH
6617{
6618 unsigned long pfn, iter, found;
47118af0
MN
6619 int mt;
6620
49ac8255
KH
6621 /*
6622 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6623 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6624 */
6625 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6626 return false;
47118af0
MN
6627 mt = get_pageblock_migratetype(page);
6628 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6629 return false;
49ac8255
KH
6630
6631 pfn = page_to_pfn(page);
6632 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6633 unsigned long check = pfn + iter;
6634
29723fcc 6635 if (!pfn_valid_within(check))
49ac8255 6636 continue;
29723fcc 6637
49ac8255 6638 page = pfn_to_page(check);
c8721bbb
NH
6639
6640 /*
6641 * Hugepages are not in LRU lists, but they're movable.
6642 * We need not scan over tail pages bacause we don't
6643 * handle each tail page individually in migration.
6644 */
6645 if (PageHuge(page)) {
6646 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6647 continue;
6648 }
6649
97d255c8
MK
6650 /*
6651 * We can't use page_count without pin a page
6652 * because another CPU can free compound page.
6653 * This check already skips compound tails of THP
6654 * because their page->_count is zero at all time.
6655 */
6656 if (!atomic_read(&page->_count)) {
49ac8255
KH
6657 if (PageBuddy(page))
6658 iter += (1 << page_order(page)) - 1;
6659 continue;
6660 }
97d255c8 6661
b023f468
WC
6662 /*
6663 * The HWPoisoned page may be not in buddy system, and
6664 * page_count() is not 0.
6665 */
6666 if (skip_hwpoisoned_pages && PageHWPoison(page))
6667 continue;
6668
49ac8255
KH
6669 if (!PageLRU(page))
6670 found++;
6671 /*
6b4f7799
JW
6672 * If there are RECLAIMABLE pages, we need to check
6673 * it. But now, memory offline itself doesn't call
6674 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6675 */
6676 /*
6677 * If the page is not RAM, page_count()should be 0.
6678 * we don't need more check. This is an _used_ not-movable page.
6679 *
6680 * The problematic thing here is PG_reserved pages. PG_reserved
6681 * is set to both of a memory hole page and a _used_ kernel
6682 * page at boot.
6683 */
6684 if (found > count)
80934513 6685 return true;
49ac8255 6686 }
80934513 6687 return false;
49ac8255
KH
6688}
6689
6690bool is_pageblock_removable_nolock(struct page *page)
6691{
656a0706
MH
6692 struct zone *zone;
6693 unsigned long pfn;
687875fb
MH
6694
6695 /*
6696 * We have to be careful here because we are iterating over memory
6697 * sections which are not zone aware so we might end up outside of
6698 * the zone but still within the section.
656a0706
MH
6699 * We have to take care about the node as well. If the node is offline
6700 * its NODE_DATA will be NULL - see page_zone.
687875fb 6701 */
656a0706
MH
6702 if (!node_online(page_to_nid(page)))
6703 return false;
6704
6705 zone = page_zone(page);
6706 pfn = page_to_pfn(page);
108bcc96 6707 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6708 return false;
6709
b023f468 6710 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6711}
0c0e6195 6712
041d3a8c
MN
6713#ifdef CONFIG_CMA
6714
6715static unsigned long pfn_max_align_down(unsigned long pfn)
6716{
6717 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6718 pageblock_nr_pages) - 1);
6719}
6720
6721static unsigned long pfn_max_align_up(unsigned long pfn)
6722{
6723 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6724 pageblock_nr_pages));
6725}
6726
041d3a8c 6727/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6728static int __alloc_contig_migrate_range(struct compact_control *cc,
6729 unsigned long start, unsigned long end)
041d3a8c
MN
6730{
6731 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6732 unsigned long nr_reclaimed;
041d3a8c
MN
6733 unsigned long pfn = start;
6734 unsigned int tries = 0;
6735 int ret = 0;
6736
be49a6e1 6737 migrate_prep();
041d3a8c 6738
bb13ffeb 6739 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6740 if (fatal_signal_pending(current)) {
6741 ret = -EINTR;
6742 break;
6743 }
6744
bb13ffeb
MG
6745 if (list_empty(&cc->migratepages)) {
6746 cc->nr_migratepages = 0;
edc2ca61 6747 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6748 if (!pfn) {
6749 ret = -EINTR;
6750 break;
6751 }
6752 tries = 0;
6753 } else if (++tries == 5) {
6754 ret = ret < 0 ? ret : -EBUSY;
6755 break;
6756 }
6757
beb51eaa
MK
6758 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6759 &cc->migratepages);
6760 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6761
9c620e2b 6762 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6763 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6764 }
2a6f5124
SP
6765 if (ret < 0) {
6766 putback_movable_pages(&cc->migratepages);
6767 return ret;
6768 }
6769 return 0;
041d3a8c
MN
6770}
6771
6772/**
6773 * alloc_contig_range() -- tries to allocate given range of pages
6774 * @start: start PFN to allocate
6775 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6776 * @migratetype: migratetype of the underlaying pageblocks (either
6777 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6778 * in range must have the same migratetype and it must
6779 * be either of the two.
041d3a8c
MN
6780 *
6781 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6782 * aligned, however it's the caller's responsibility to guarantee that
6783 * we are the only thread that changes migrate type of pageblocks the
6784 * pages fall in.
6785 *
6786 * The PFN range must belong to a single zone.
6787 *
6788 * Returns zero on success or negative error code. On success all
6789 * pages which PFN is in [start, end) are allocated for the caller and
6790 * need to be freed with free_contig_range().
6791 */
0815f3d8
MN
6792int alloc_contig_range(unsigned long start, unsigned long end,
6793 unsigned migratetype)
041d3a8c 6794{
041d3a8c
MN
6795 unsigned long outer_start, outer_end;
6796 int ret = 0, order;
6797
bb13ffeb
MG
6798 struct compact_control cc = {
6799 .nr_migratepages = 0,
6800 .order = -1,
6801 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6802 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6803 .ignore_skip_hint = true,
6804 };
6805 INIT_LIST_HEAD(&cc.migratepages);
6806
041d3a8c
MN
6807 /*
6808 * What we do here is we mark all pageblocks in range as
6809 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6810 * have different sizes, and due to the way page allocator
6811 * work, we align the range to biggest of the two pages so
6812 * that page allocator won't try to merge buddies from
6813 * different pageblocks and change MIGRATE_ISOLATE to some
6814 * other migration type.
6815 *
6816 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6817 * migrate the pages from an unaligned range (ie. pages that
6818 * we are interested in). This will put all the pages in
6819 * range back to page allocator as MIGRATE_ISOLATE.
6820 *
6821 * When this is done, we take the pages in range from page
6822 * allocator removing them from the buddy system. This way
6823 * page allocator will never consider using them.
6824 *
6825 * This lets us mark the pageblocks back as
6826 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6827 * aligned range but not in the unaligned, original range are
6828 * put back to page allocator so that buddy can use them.
6829 */
6830
6831 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6832 pfn_max_align_up(end), migratetype,
6833 false);
041d3a8c 6834 if (ret)
86a595f9 6835 return ret;
041d3a8c 6836
bb13ffeb 6837 ret = __alloc_contig_migrate_range(&cc, start, end);
041d3a8c
MN
6838 if (ret)
6839 goto done;
6840
6841 /*
6842 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6843 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6844 * more, all pages in [start, end) are free in page allocator.
6845 * What we are going to do is to allocate all pages from
6846 * [start, end) (that is remove them from page allocator).
6847 *
6848 * The only problem is that pages at the beginning and at the
6849 * end of interesting range may be not aligned with pages that
6850 * page allocator holds, ie. they can be part of higher order
6851 * pages. Because of this, we reserve the bigger range and
6852 * once this is done free the pages we are not interested in.
6853 *
6854 * We don't have to hold zone->lock here because the pages are
6855 * isolated thus they won't get removed from buddy.
6856 */
6857
6858 lru_add_drain_all();
510f5507 6859 drain_all_pages(cc.zone);
041d3a8c
MN
6860
6861 order = 0;
6862 outer_start = start;
6863 while (!PageBuddy(pfn_to_page(outer_start))) {
6864 if (++order >= MAX_ORDER) {
6865 ret = -EBUSY;
6866 goto done;
6867 }
6868 outer_start &= ~0UL << order;
6869 }
6870
6871 /* Make sure the range is really isolated. */
b023f468 6872 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6873 pr_info("%s: [%lx, %lx) PFNs busy\n",
6874 __func__, outer_start, end);
041d3a8c
MN
6875 ret = -EBUSY;
6876 goto done;
6877 }
6878
49f223a9 6879 /* Grab isolated pages from freelists. */
bb13ffeb 6880 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6881 if (!outer_end) {
6882 ret = -EBUSY;
6883 goto done;
6884 }
6885
6886 /* Free head and tail (if any) */
6887 if (start != outer_start)
6888 free_contig_range(outer_start, start - outer_start);
6889 if (end != outer_end)
6890 free_contig_range(end, outer_end - end);
6891
6892done:
6893 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6894 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6895 return ret;
6896}
6897
6898void free_contig_range(unsigned long pfn, unsigned nr_pages)
6899{
bcc2b02f
MS
6900 unsigned int count = 0;
6901
6902 for (; nr_pages--; pfn++) {
6903 struct page *page = pfn_to_page(pfn);
6904
6905 count += page_count(page) != 1;
6906 __free_page(page);
6907 }
6908 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6909}
6910#endif
6911
4ed7e022 6912#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6913/*
6914 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6915 * page high values need to be recalulated.
6916 */
4ed7e022
JL
6917void __meminit zone_pcp_update(struct zone *zone)
6918{
0a647f38 6919 unsigned cpu;
c8e251fa 6920 mutex_lock(&pcp_batch_high_lock);
0a647f38 6921 for_each_possible_cpu(cpu)
169f6c19
CS
6922 pageset_set_high_and_batch(zone,
6923 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6924 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6925}
6926#endif
6927
340175b7
JL
6928void zone_pcp_reset(struct zone *zone)
6929{
6930 unsigned long flags;
5a883813
MK
6931 int cpu;
6932 struct per_cpu_pageset *pset;
340175b7
JL
6933
6934 /* avoid races with drain_pages() */
6935 local_irq_save(flags);
6936 if (zone->pageset != &boot_pageset) {
5a883813
MK
6937 for_each_online_cpu(cpu) {
6938 pset = per_cpu_ptr(zone->pageset, cpu);
6939 drain_zonestat(zone, pset);
6940 }
340175b7
JL
6941 free_percpu(zone->pageset);
6942 zone->pageset = &boot_pageset;
6943 }
6944 local_irq_restore(flags);
6945}
6946
6dcd73d7 6947#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6948/*
6949 * All pages in the range must be isolated before calling this.
6950 */
6951void
6952__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6953{
6954 struct page *page;
6955 struct zone *zone;
7aeb09f9 6956 unsigned int order, i;
0c0e6195
KH
6957 unsigned long pfn;
6958 unsigned long flags;
6959 /* find the first valid pfn */
6960 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6961 if (pfn_valid(pfn))
6962 break;
6963 if (pfn == end_pfn)
6964 return;
6965 zone = page_zone(pfn_to_page(pfn));
6966 spin_lock_irqsave(&zone->lock, flags);
6967 pfn = start_pfn;
6968 while (pfn < end_pfn) {
6969 if (!pfn_valid(pfn)) {
6970 pfn++;
6971 continue;
6972 }
6973 page = pfn_to_page(pfn);
b023f468
WC
6974 /*
6975 * The HWPoisoned page may be not in buddy system, and
6976 * page_count() is not 0.
6977 */
6978 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6979 pfn++;
6980 SetPageReserved(page);
6981 continue;
6982 }
6983
0c0e6195
KH
6984 BUG_ON(page_count(page));
6985 BUG_ON(!PageBuddy(page));
6986 order = page_order(page);
6987#ifdef CONFIG_DEBUG_VM
6988 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6989 pfn, 1 << order, end_pfn);
6990#endif
6991 list_del(&page->lru);
6992 rmv_page_order(page);
6993 zone->free_area[order].nr_free--;
0c0e6195
KH
6994 for (i = 0; i < (1 << order); i++)
6995 SetPageReserved((page+i));
6996 pfn += (1 << order);
6997 }
6998 spin_unlock_irqrestore(&zone->lock, flags);
6999}
7000#endif
8d22ba1b
WF
7001
7002#ifdef CONFIG_MEMORY_FAILURE
7003bool is_free_buddy_page(struct page *page)
7004{
7005 struct zone *zone = page_zone(page);
7006 unsigned long pfn = page_to_pfn(page);
7007 unsigned long flags;
7aeb09f9 7008 unsigned int order;
8d22ba1b
WF
7009
7010 spin_lock_irqsave(&zone->lock, flags);
7011 for (order = 0; order < MAX_ORDER; order++) {
7012 struct page *page_head = page - (pfn & ((1 << order) - 1));
7013
7014 if (PageBuddy(page_head) && page_order(page_head) >= order)
7015 break;
7016 }
7017 spin_unlock_irqrestore(&zone->lock, flags);
7018
7019 return order < MAX_ORDER;
7020}
7021#endif