]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /* |
2 | * linux/mm/page_alloc.c | |
3 | * | |
4 | * Manages the free list, the system allocates free pages here. | |
5 | * Note that kmalloc() lives in slab.c | |
6 | * | |
7 | * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds | |
8 | * Swap reorganised 29.12.95, Stephen Tweedie | |
9 | * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 | |
10 | * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 | |
11 | * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 | |
12 | * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 | |
13 | * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 | |
14 | * (lots of bits borrowed from Ingo Molnar & Andrew Morton) | |
15 | */ | |
16 | ||
1da177e4 LT |
17 | #include <linux/stddef.h> |
18 | #include <linux/mm.h> | |
19 | #include <linux/swap.h> | |
20 | #include <linux/interrupt.h> | |
21 | #include <linux/pagemap.h> | |
10ed273f | 22 | #include <linux/jiffies.h> |
1da177e4 | 23 | #include <linux/bootmem.h> |
edbe7d23 | 24 | #include <linux/memblock.h> |
1da177e4 | 25 | #include <linux/compiler.h> |
9f158333 | 26 | #include <linux/kernel.h> |
b1eeab67 | 27 | #include <linux/kmemcheck.h> |
b8c73fc2 | 28 | #include <linux/kasan.h> |
1da177e4 LT |
29 | #include <linux/module.h> |
30 | #include <linux/suspend.h> | |
31 | #include <linux/pagevec.h> | |
32 | #include <linux/blkdev.h> | |
33 | #include <linux/slab.h> | |
a238ab5b | 34 | #include <linux/ratelimit.h> |
5a3135c2 | 35 | #include <linux/oom.h> |
1da177e4 LT |
36 | #include <linux/notifier.h> |
37 | #include <linux/topology.h> | |
38 | #include <linux/sysctl.h> | |
39 | #include <linux/cpu.h> | |
40 | #include <linux/cpuset.h> | |
bdc8cb98 | 41 | #include <linux/memory_hotplug.h> |
1da177e4 LT |
42 | #include <linux/nodemask.h> |
43 | #include <linux/vmalloc.h> | |
a6cccdc3 | 44 | #include <linux/vmstat.h> |
4be38e35 | 45 | #include <linux/mempolicy.h> |
6811378e | 46 | #include <linux/stop_machine.h> |
c713216d MG |
47 | #include <linux/sort.h> |
48 | #include <linux/pfn.h> | |
3fcfab16 | 49 | #include <linux/backing-dev.h> |
933e312e | 50 | #include <linux/fault-inject.h> |
a5d76b54 | 51 | #include <linux/page-isolation.h> |
eefa864b | 52 | #include <linux/page_ext.h> |
3ac7fe5a | 53 | #include <linux/debugobjects.h> |
dbb1f81c | 54 | #include <linux/kmemleak.h> |
56de7263 | 55 | #include <linux/compaction.h> |
0d3d062a | 56 | #include <trace/events/kmem.h> |
268bb0ce | 57 | #include <linux/prefetch.h> |
6e543d57 | 58 | #include <linux/mm_inline.h> |
041d3a8c | 59 | #include <linux/migrate.h> |
e30825f1 | 60 | #include <linux/page_ext.h> |
949f7ec5 | 61 | #include <linux/hugetlb.h> |
8bd75c77 | 62 | #include <linux/sched/rt.h> |
48c96a36 | 63 | #include <linux/page_owner.h> |
0e1cc95b | 64 | #include <linux/kthread.h> |
1da177e4 | 65 | |
7ee3d4e8 | 66 | #include <asm/sections.h> |
1da177e4 | 67 | #include <asm/tlbflush.h> |
ac924c60 | 68 | #include <asm/div64.h> |
1da177e4 LT |
69 | #include "internal.h" |
70 | ||
c8e251fa CS |
71 | /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ |
72 | static DEFINE_MUTEX(pcp_batch_high_lock); | |
7cd2b0a3 | 73 | #define MIN_PERCPU_PAGELIST_FRACTION (8) |
c8e251fa | 74 | |
72812019 LS |
75 | #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID |
76 | DEFINE_PER_CPU(int, numa_node); | |
77 | EXPORT_PER_CPU_SYMBOL(numa_node); | |
78 | #endif | |
79 | ||
7aac7898 LS |
80 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
81 | /* | |
82 | * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. | |
83 | * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. | |
84 | * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() | |
85 | * defined in <linux/topology.h>. | |
86 | */ | |
87 | DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ | |
88 | EXPORT_PER_CPU_SYMBOL(_numa_mem_); | |
ad2c8144 | 89 | int _node_numa_mem_[MAX_NUMNODES]; |
7aac7898 LS |
90 | #endif |
91 | ||
1da177e4 | 92 | /* |
13808910 | 93 | * Array of node states. |
1da177e4 | 94 | */ |
13808910 CL |
95 | nodemask_t node_states[NR_NODE_STATES] __read_mostly = { |
96 | [N_POSSIBLE] = NODE_MASK_ALL, | |
97 | [N_ONLINE] = { { [0] = 1UL } }, | |
98 | #ifndef CONFIG_NUMA | |
99 | [N_NORMAL_MEMORY] = { { [0] = 1UL } }, | |
100 | #ifdef CONFIG_HIGHMEM | |
101 | [N_HIGH_MEMORY] = { { [0] = 1UL } }, | |
20b2f52b LJ |
102 | #endif |
103 | #ifdef CONFIG_MOVABLE_NODE | |
104 | [N_MEMORY] = { { [0] = 1UL } }, | |
13808910 CL |
105 | #endif |
106 | [N_CPU] = { { [0] = 1UL } }, | |
107 | #endif /* NUMA */ | |
108 | }; | |
109 | EXPORT_SYMBOL(node_states); | |
110 | ||
c3d5f5f0 JL |
111 | /* Protect totalram_pages and zone->managed_pages */ |
112 | static DEFINE_SPINLOCK(managed_page_count_lock); | |
113 | ||
6c231b7b | 114 | unsigned long totalram_pages __read_mostly; |
cb45b0e9 | 115 | unsigned long totalreserve_pages __read_mostly; |
e48322ab | 116 | unsigned long totalcma_pages __read_mostly; |
ab8fabd4 | 117 | |
1b76b02f | 118 | int percpu_pagelist_fraction; |
dcce284a | 119 | gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; |
1da177e4 | 120 | |
bb14c2c7 VB |
121 | /* |
122 | * A cached value of the page's pageblock's migratetype, used when the page is | |
123 | * put on a pcplist. Used to avoid the pageblock migratetype lookup when | |
124 | * freeing from pcplists in most cases, at the cost of possibly becoming stale. | |
125 | * Also the migratetype set in the page does not necessarily match the pcplist | |
126 | * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any | |
127 | * other index - this ensures that it will be put on the correct CMA freelist. | |
128 | */ | |
129 | static inline int get_pcppage_migratetype(struct page *page) | |
130 | { | |
131 | return page->index; | |
132 | } | |
133 | ||
134 | static inline void set_pcppage_migratetype(struct page *page, int migratetype) | |
135 | { | |
136 | page->index = migratetype; | |
137 | } | |
138 | ||
452aa699 RW |
139 | #ifdef CONFIG_PM_SLEEP |
140 | /* | |
141 | * The following functions are used by the suspend/hibernate code to temporarily | |
142 | * change gfp_allowed_mask in order to avoid using I/O during memory allocations | |
143 | * while devices are suspended. To avoid races with the suspend/hibernate code, | |
144 | * they should always be called with pm_mutex held (gfp_allowed_mask also should | |
145 | * only be modified with pm_mutex held, unless the suspend/hibernate code is | |
146 | * guaranteed not to run in parallel with that modification). | |
147 | */ | |
c9e664f1 RW |
148 | |
149 | static gfp_t saved_gfp_mask; | |
150 | ||
151 | void pm_restore_gfp_mask(void) | |
452aa699 RW |
152 | { |
153 | WARN_ON(!mutex_is_locked(&pm_mutex)); | |
c9e664f1 RW |
154 | if (saved_gfp_mask) { |
155 | gfp_allowed_mask = saved_gfp_mask; | |
156 | saved_gfp_mask = 0; | |
157 | } | |
452aa699 RW |
158 | } |
159 | ||
c9e664f1 | 160 | void pm_restrict_gfp_mask(void) |
452aa699 | 161 | { |
452aa699 | 162 | WARN_ON(!mutex_is_locked(&pm_mutex)); |
c9e664f1 RW |
163 | WARN_ON(saved_gfp_mask); |
164 | saved_gfp_mask = gfp_allowed_mask; | |
d0164adc | 165 | gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); |
452aa699 | 166 | } |
f90ac398 MG |
167 | |
168 | bool pm_suspended_storage(void) | |
169 | { | |
d0164adc | 170 | if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) |
f90ac398 MG |
171 | return false; |
172 | return true; | |
173 | } | |
452aa699 RW |
174 | #endif /* CONFIG_PM_SLEEP */ |
175 | ||
d9c23400 | 176 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
d00181b9 | 177 | unsigned int pageblock_order __read_mostly; |
d9c23400 MG |
178 | #endif |
179 | ||
d98c7a09 | 180 | static void __free_pages_ok(struct page *page, unsigned int order); |
a226f6c8 | 181 | |
1da177e4 LT |
182 | /* |
183 | * results with 256, 32 in the lowmem_reserve sysctl: | |
184 | * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) | |
185 | * 1G machine -> (16M dma, 784M normal, 224M high) | |
186 | * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA | |
187 | * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL | |
84109e15 | 188 | * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA |
a2f1b424 AK |
189 | * |
190 | * TBD: should special case ZONE_DMA32 machines here - in those we normally | |
191 | * don't need any ZONE_NORMAL reservation | |
1da177e4 | 192 | */ |
2f1b6248 | 193 | int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { |
4b51d669 | 194 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 195 | 256, |
4b51d669 | 196 | #endif |
fb0e7942 | 197 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 198 | 256, |
fb0e7942 | 199 | #endif |
e53ef38d | 200 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 201 | 32, |
e53ef38d | 202 | #endif |
2a1e274a | 203 | 32, |
2f1b6248 | 204 | }; |
1da177e4 LT |
205 | |
206 | EXPORT_SYMBOL(totalram_pages); | |
1da177e4 | 207 | |
15ad7cdc | 208 | static char * const zone_names[MAX_NR_ZONES] = { |
4b51d669 | 209 | #ifdef CONFIG_ZONE_DMA |
2f1b6248 | 210 | "DMA", |
4b51d669 | 211 | #endif |
fb0e7942 | 212 | #ifdef CONFIG_ZONE_DMA32 |
2f1b6248 | 213 | "DMA32", |
fb0e7942 | 214 | #endif |
2f1b6248 | 215 | "Normal", |
e53ef38d | 216 | #ifdef CONFIG_HIGHMEM |
2a1e274a | 217 | "HighMem", |
e53ef38d | 218 | #endif |
2a1e274a | 219 | "Movable", |
033fbae9 DW |
220 | #ifdef CONFIG_ZONE_DEVICE |
221 | "Device", | |
222 | #endif | |
2f1b6248 CL |
223 | }; |
224 | ||
f1e61557 KS |
225 | static void free_compound_page(struct page *page); |
226 | compound_page_dtor * const compound_page_dtors[] = { | |
227 | NULL, | |
228 | free_compound_page, | |
229 | #ifdef CONFIG_HUGETLB_PAGE | |
230 | free_huge_page, | |
231 | #endif | |
232 | }; | |
233 | ||
1da177e4 | 234 | int min_free_kbytes = 1024; |
42aa83cb | 235 | int user_min_free_kbytes = -1; |
1da177e4 | 236 | |
2c85f51d JB |
237 | static unsigned long __meminitdata nr_kernel_pages; |
238 | static unsigned long __meminitdata nr_all_pages; | |
a3142c8e | 239 | static unsigned long __meminitdata dma_reserve; |
1da177e4 | 240 | |
0ee332c1 TH |
241 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
242 | static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; | |
243 | static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; | |
244 | static unsigned long __initdata required_kernelcore; | |
245 | static unsigned long __initdata required_movablecore; | |
246 | static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; | |
247 | ||
248 | /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ | |
249 | int movable_zone; | |
250 | EXPORT_SYMBOL(movable_zone); | |
251 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | |
c713216d | 252 | |
418508c1 MS |
253 | #if MAX_NUMNODES > 1 |
254 | int nr_node_ids __read_mostly = MAX_NUMNODES; | |
62bc62a8 | 255 | int nr_online_nodes __read_mostly = 1; |
418508c1 | 256 | EXPORT_SYMBOL(nr_node_ids); |
62bc62a8 | 257 | EXPORT_SYMBOL(nr_online_nodes); |
418508c1 MS |
258 | #endif |
259 | ||
9ef9acb0 MG |
260 | int page_group_by_mobility_disabled __read_mostly; |
261 | ||
3a80a7fa MG |
262 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
263 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
264 | { | |
265 | pgdat->first_deferred_pfn = ULONG_MAX; | |
266 | } | |
267 | ||
268 | /* Returns true if the struct page for the pfn is uninitialised */ | |
0e1cc95b | 269 | static inline bool __meminit early_page_uninitialised(unsigned long pfn) |
3a80a7fa | 270 | { |
ae026b2a | 271 | if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) |
3a80a7fa MG |
272 | return true; |
273 | ||
274 | return false; | |
275 | } | |
276 | ||
7e18adb4 MG |
277 | static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) |
278 | { | |
279 | if (pfn >= NODE_DATA(nid)->first_deferred_pfn) | |
280 | return true; | |
281 | ||
282 | return false; | |
283 | } | |
284 | ||
3a80a7fa MG |
285 | /* |
286 | * Returns false when the remaining initialisation should be deferred until | |
287 | * later in the boot cycle when it can be parallelised. | |
288 | */ | |
289 | static inline bool update_defer_init(pg_data_t *pgdat, | |
290 | unsigned long pfn, unsigned long zone_end, | |
291 | unsigned long *nr_initialised) | |
292 | { | |
293 | /* Always populate low zones for address-contrained allocations */ | |
294 | if (zone_end < pgdat_end_pfn(pgdat)) | |
295 | return true; | |
296 | ||
297 | /* Initialise at least 2G of the highest zone */ | |
298 | (*nr_initialised)++; | |
299 | if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) && | |
300 | (pfn & (PAGES_PER_SECTION - 1)) == 0) { | |
301 | pgdat->first_deferred_pfn = pfn; | |
302 | return false; | |
303 | } | |
304 | ||
305 | return true; | |
306 | } | |
307 | #else | |
308 | static inline void reset_deferred_meminit(pg_data_t *pgdat) | |
309 | { | |
310 | } | |
311 | ||
312 | static inline bool early_page_uninitialised(unsigned long pfn) | |
313 | { | |
314 | return false; | |
315 | } | |
316 | ||
7e18adb4 MG |
317 | static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) |
318 | { | |
319 | return false; | |
320 | } | |
321 | ||
3a80a7fa MG |
322 | static inline bool update_defer_init(pg_data_t *pgdat, |
323 | unsigned long pfn, unsigned long zone_end, | |
324 | unsigned long *nr_initialised) | |
325 | { | |
326 | return true; | |
327 | } | |
328 | #endif | |
329 | ||
330 | ||
ee6f509c | 331 | void set_pageblock_migratetype(struct page *page, int migratetype) |
b2a0ac88 | 332 | { |
5d0f3f72 KM |
333 | if (unlikely(page_group_by_mobility_disabled && |
334 | migratetype < MIGRATE_PCPTYPES)) | |
49255c61 MG |
335 | migratetype = MIGRATE_UNMOVABLE; |
336 | ||
b2a0ac88 MG |
337 | set_pageblock_flags_group(page, (unsigned long)migratetype, |
338 | PB_migrate, PB_migrate_end); | |
339 | } | |
340 | ||
13e7444b | 341 | #ifdef CONFIG_DEBUG_VM |
c6a57e19 | 342 | static int page_outside_zone_boundaries(struct zone *zone, struct page *page) |
1da177e4 | 343 | { |
bdc8cb98 DH |
344 | int ret = 0; |
345 | unsigned seq; | |
346 | unsigned long pfn = page_to_pfn(page); | |
b5e6a5a2 | 347 | unsigned long sp, start_pfn; |
c6a57e19 | 348 | |
bdc8cb98 DH |
349 | do { |
350 | seq = zone_span_seqbegin(zone); | |
b5e6a5a2 CS |
351 | start_pfn = zone->zone_start_pfn; |
352 | sp = zone->spanned_pages; | |
108bcc96 | 353 | if (!zone_spans_pfn(zone, pfn)) |
bdc8cb98 DH |
354 | ret = 1; |
355 | } while (zone_span_seqretry(zone, seq)); | |
356 | ||
b5e6a5a2 | 357 | if (ret) |
613813e8 DH |
358 | pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", |
359 | pfn, zone_to_nid(zone), zone->name, | |
360 | start_pfn, start_pfn + sp); | |
b5e6a5a2 | 361 | |
bdc8cb98 | 362 | return ret; |
c6a57e19 DH |
363 | } |
364 | ||
365 | static int page_is_consistent(struct zone *zone, struct page *page) | |
366 | { | |
14e07298 | 367 | if (!pfn_valid_within(page_to_pfn(page))) |
c6a57e19 | 368 | return 0; |
1da177e4 | 369 | if (zone != page_zone(page)) |
c6a57e19 DH |
370 | return 0; |
371 | ||
372 | return 1; | |
373 | } | |
374 | /* | |
375 | * Temporary debugging check for pages not lying within a given zone. | |
376 | */ | |
377 | static int bad_range(struct zone *zone, struct page *page) | |
378 | { | |
379 | if (page_outside_zone_boundaries(zone, page)) | |
1da177e4 | 380 | return 1; |
c6a57e19 DH |
381 | if (!page_is_consistent(zone, page)) |
382 | return 1; | |
383 | ||
1da177e4 LT |
384 | return 0; |
385 | } | |
13e7444b NP |
386 | #else |
387 | static inline int bad_range(struct zone *zone, struct page *page) | |
388 | { | |
389 | return 0; | |
390 | } | |
391 | #endif | |
392 | ||
d230dec1 KS |
393 | static void bad_page(struct page *page, const char *reason, |
394 | unsigned long bad_flags) | |
1da177e4 | 395 | { |
d936cf9b HD |
396 | static unsigned long resume; |
397 | static unsigned long nr_shown; | |
398 | static unsigned long nr_unshown; | |
399 | ||
2a7684a2 WF |
400 | /* Don't complain about poisoned pages */ |
401 | if (PageHWPoison(page)) { | |
22b751c3 | 402 | page_mapcount_reset(page); /* remove PageBuddy */ |
2a7684a2 WF |
403 | return; |
404 | } | |
405 | ||
d936cf9b HD |
406 | /* |
407 | * Allow a burst of 60 reports, then keep quiet for that minute; | |
408 | * or allow a steady drip of one report per second. | |
409 | */ | |
410 | if (nr_shown == 60) { | |
411 | if (time_before(jiffies, resume)) { | |
412 | nr_unshown++; | |
413 | goto out; | |
414 | } | |
415 | if (nr_unshown) { | |
1e9e6365 HD |
416 | printk(KERN_ALERT |
417 | "BUG: Bad page state: %lu messages suppressed\n", | |
d936cf9b HD |
418 | nr_unshown); |
419 | nr_unshown = 0; | |
420 | } | |
421 | nr_shown = 0; | |
422 | } | |
423 | if (nr_shown++ == 0) | |
424 | resume = jiffies + 60 * HZ; | |
425 | ||
1e9e6365 | 426 | printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", |
3dc14741 | 427 | current->comm, page_to_pfn(page)); |
f0b791a3 | 428 | dump_page_badflags(page, reason, bad_flags); |
3dc14741 | 429 | |
4f31888c | 430 | print_modules(); |
1da177e4 | 431 | dump_stack(); |
d936cf9b | 432 | out: |
8cc3b392 | 433 | /* Leave bad fields for debug, except PageBuddy could make trouble */ |
22b751c3 | 434 | page_mapcount_reset(page); /* remove PageBuddy */ |
373d4d09 | 435 | add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
1da177e4 LT |
436 | } |
437 | ||
1da177e4 LT |
438 | /* |
439 | * Higher-order pages are called "compound pages". They are structured thusly: | |
440 | * | |
1d798ca3 | 441 | * The first PAGE_SIZE page is called the "head page" and have PG_head set. |
1da177e4 | 442 | * |
1d798ca3 KS |
443 | * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded |
444 | * in bit 0 of page->compound_head. The rest of bits is pointer to head page. | |
1da177e4 | 445 | * |
1d798ca3 KS |
446 | * The first tail page's ->compound_dtor holds the offset in array of compound |
447 | * page destructors. See compound_page_dtors. | |
1da177e4 | 448 | * |
1d798ca3 | 449 | * The first tail page's ->compound_order holds the order of allocation. |
41d78ba5 | 450 | * This usage means that zero-order pages may not be compound. |
1da177e4 | 451 | */ |
d98c7a09 HD |
452 | |
453 | static void free_compound_page(struct page *page) | |
454 | { | |
d85f3385 | 455 | __free_pages_ok(page, compound_order(page)); |
d98c7a09 HD |
456 | } |
457 | ||
d00181b9 | 458 | void prep_compound_page(struct page *page, unsigned int order) |
18229df5 AW |
459 | { |
460 | int i; | |
461 | int nr_pages = 1 << order; | |
462 | ||
f1e61557 | 463 | set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); |
18229df5 AW |
464 | set_compound_order(page, order); |
465 | __SetPageHead(page); | |
466 | for (i = 1; i < nr_pages; i++) { | |
467 | struct page *p = page + i; | |
58a84aa9 | 468 | set_page_count(p, 0); |
1d798ca3 | 469 | set_compound_head(p, page); |
18229df5 AW |
470 | } |
471 | } | |
472 | ||
c0a32fc5 SG |
473 | #ifdef CONFIG_DEBUG_PAGEALLOC |
474 | unsigned int _debug_guardpage_minorder; | |
031bc574 | 475 | bool _debug_pagealloc_enabled __read_mostly; |
e30825f1 JK |
476 | bool _debug_guardpage_enabled __read_mostly; |
477 | ||
031bc574 JK |
478 | static int __init early_debug_pagealloc(char *buf) |
479 | { | |
480 | if (!buf) | |
481 | return -EINVAL; | |
482 | ||
483 | if (strcmp(buf, "on") == 0) | |
484 | _debug_pagealloc_enabled = true; | |
485 | ||
486 | return 0; | |
487 | } | |
488 | early_param("debug_pagealloc", early_debug_pagealloc); | |
489 | ||
e30825f1 JK |
490 | static bool need_debug_guardpage(void) |
491 | { | |
031bc574 JK |
492 | /* If we don't use debug_pagealloc, we don't need guard page */ |
493 | if (!debug_pagealloc_enabled()) | |
494 | return false; | |
495 | ||
e30825f1 JK |
496 | return true; |
497 | } | |
498 | ||
499 | static void init_debug_guardpage(void) | |
500 | { | |
031bc574 JK |
501 | if (!debug_pagealloc_enabled()) |
502 | return; | |
503 | ||
e30825f1 JK |
504 | _debug_guardpage_enabled = true; |
505 | } | |
506 | ||
507 | struct page_ext_operations debug_guardpage_ops = { | |
508 | .need = need_debug_guardpage, | |
509 | .init = init_debug_guardpage, | |
510 | }; | |
c0a32fc5 SG |
511 | |
512 | static int __init debug_guardpage_minorder_setup(char *buf) | |
513 | { | |
514 | unsigned long res; | |
515 | ||
516 | if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { | |
517 | printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); | |
518 | return 0; | |
519 | } | |
520 | _debug_guardpage_minorder = res; | |
521 | printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); | |
522 | return 0; | |
523 | } | |
524 | __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); | |
525 | ||
2847cf95 JK |
526 | static inline void set_page_guard(struct zone *zone, struct page *page, |
527 | unsigned int order, int migratetype) | |
c0a32fc5 | 528 | { |
e30825f1 JK |
529 | struct page_ext *page_ext; |
530 | ||
531 | if (!debug_guardpage_enabled()) | |
532 | return; | |
533 | ||
534 | page_ext = lookup_page_ext(page); | |
535 | __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | |
536 | ||
2847cf95 JK |
537 | INIT_LIST_HEAD(&page->lru); |
538 | set_page_private(page, order); | |
539 | /* Guard pages are not available for any usage */ | |
540 | __mod_zone_freepage_state(zone, -(1 << order), migratetype); | |
c0a32fc5 SG |
541 | } |
542 | ||
2847cf95 JK |
543 | static inline void clear_page_guard(struct zone *zone, struct page *page, |
544 | unsigned int order, int migratetype) | |
c0a32fc5 | 545 | { |
e30825f1 JK |
546 | struct page_ext *page_ext; |
547 | ||
548 | if (!debug_guardpage_enabled()) | |
549 | return; | |
550 | ||
551 | page_ext = lookup_page_ext(page); | |
552 | __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); | |
553 | ||
2847cf95 JK |
554 | set_page_private(page, 0); |
555 | if (!is_migrate_isolate(migratetype)) | |
556 | __mod_zone_freepage_state(zone, (1 << order), migratetype); | |
c0a32fc5 SG |
557 | } |
558 | #else | |
e30825f1 | 559 | struct page_ext_operations debug_guardpage_ops = { NULL, }; |
2847cf95 JK |
560 | static inline void set_page_guard(struct zone *zone, struct page *page, |
561 | unsigned int order, int migratetype) {} | |
562 | static inline void clear_page_guard(struct zone *zone, struct page *page, | |
563 | unsigned int order, int migratetype) {} | |
c0a32fc5 SG |
564 | #endif |
565 | ||
7aeb09f9 | 566 | static inline void set_page_order(struct page *page, unsigned int order) |
6aa3001b | 567 | { |
4c21e2f2 | 568 | set_page_private(page, order); |
676165a8 | 569 | __SetPageBuddy(page); |
1da177e4 LT |
570 | } |
571 | ||
572 | static inline void rmv_page_order(struct page *page) | |
573 | { | |
676165a8 | 574 | __ClearPageBuddy(page); |
4c21e2f2 | 575 | set_page_private(page, 0); |
1da177e4 LT |
576 | } |
577 | ||
1da177e4 LT |
578 | /* |
579 | * This function checks whether a page is free && is the buddy | |
580 | * we can do coalesce a page and its buddy if | |
13e7444b | 581 | * (a) the buddy is not in a hole && |
676165a8 | 582 | * (b) the buddy is in the buddy system && |
cb2b95e1 AW |
583 | * (c) a page and its buddy have the same order && |
584 | * (d) a page and its buddy are in the same zone. | |
676165a8 | 585 | * |
cf6fe945 WSH |
586 | * For recording whether a page is in the buddy system, we set ->_mapcount |
587 | * PAGE_BUDDY_MAPCOUNT_VALUE. | |
588 | * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is | |
589 | * serialized by zone->lock. | |
1da177e4 | 590 | * |
676165a8 | 591 | * For recording page's order, we use page_private(page). |
1da177e4 | 592 | */ |
cb2b95e1 | 593 | static inline int page_is_buddy(struct page *page, struct page *buddy, |
7aeb09f9 | 594 | unsigned int order) |
1da177e4 | 595 | { |
14e07298 | 596 | if (!pfn_valid_within(page_to_pfn(buddy))) |
13e7444b | 597 | return 0; |
13e7444b | 598 | |
c0a32fc5 | 599 | if (page_is_guard(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
600 | if (page_zone_id(page) != page_zone_id(buddy)) |
601 | return 0; | |
602 | ||
4c5018ce WY |
603 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
604 | ||
c0a32fc5 SG |
605 | return 1; |
606 | } | |
607 | ||
cb2b95e1 | 608 | if (PageBuddy(buddy) && page_order(buddy) == order) { |
d34c5fa0 MG |
609 | /* |
610 | * zone check is done late to avoid uselessly | |
611 | * calculating zone/node ids for pages that could | |
612 | * never merge. | |
613 | */ | |
614 | if (page_zone_id(page) != page_zone_id(buddy)) | |
615 | return 0; | |
616 | ||
4c5018ce WY |
617 | VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); |
618 | ||
6aa3001b | 619 | return 1; |
676165a8 | 620 | } |
6aa3001b | 621 | return 0; |
1da177e4 LT |
622 | } |
623 | ||
624 | /* | |
625 | * Freeing function for a buddy system allocator. | |
626 | * | |
627 | * The concept of a buddy system is to maintain direct-mapped table | |
628 | * (containing bit values) for memory blocks of various "orders". | |
629 | * The bottom level table contains the map for the smallest allocatable | |
630 | * units of memory (here, pages), and each level above it describes | |
631 | * pairs of units from the levels below, hence, "buddies". | |
632 | * At a high level, all that happens here is marking the table entry | |
633 | * at the bottom level available, and propagating the changes upward | |
634 | * as necessary, plus some accounting needed to play nicely with other | |
635 | * parts of the VM system. | |
636 | * At each level, we keep a list of pages, which are heads of continuous | |
cf6fe945 WSH |
637 | * free pages of length of (1 << order) and marked with _mapcount |
638 | * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) | |
639 | * field. | |
1da177e4 | 640 | * So when we are allocating or freeing one, we can derive the state of the |
5f63b720 MN |
641 | * other. That is, if we allocate a small block, and both were |
642 | * free, the remainder of the region must be split into blocks. | |
1da177e4 | 643 | * If a block is freed, and its buddy is also free, then this |
5f63b720 | 644 | * triggers coalescing into a block of larger size. |
1da177e4 | 645 | * |
6d49e352 | 646 | * -- nyc |
1da177e4 LT |
647 | */ |
648 | ||
48db57f8 | 649 | static inline void __free_one_page(struct page *page, |
dc4b0caf | 650 | unsigned long pfn, |
ed0ae21d MG |
651 | struct zone *zone, unsigned int order, |
652 | int migratetype) | |
1da177e4 LT |
653 | { |
654 | unsigned long page_idx; | |
6dda9d55 | 655 | unsigned long combined_idx; |
43506fad | 656 | unsigned long uninitialized_var(buddy_idx); |
6dda9d55 | 657 | struct page *buddy; |
d00181b9 | 658 | unsigned int max_order = MAX_ORDER; |
1da177e4 | 659 | |
d29bb978 | 660 | VM_BUG_ON(!zone_is_initialized(zone)); |
6e9f0d58 | 661 | VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); |
1da177e4 | 662 | |
ed0ae21d | 663 | VM_BUG_ON(migratetype == -1); |
3c605096 JK |
664 | if (is_migrate_isolate(migratetype)) { |
665 | /* | |
666 | * We restrict max order of merging to prevent merge | |
667 | * between freepages on isolate pageblock and normal | |
668 | * pageblock. Without this, pageblock isolation | |
669 | * could cause incorrect freepage accounting. | |
670 | */ | |
d00181b9 | 671 | max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); |
3c605096 | 672 | } else { |
8f82b55d | 673 | __mod_zone_freepage_state(zone, 1 << order, migratetype); |
3c605096 | 674 | } |
ed0ae21d | 675 | |
3c605096 | 676 | page_idx = pfn & ((1 << max_order) - 1); |
1da177e4 | 677 | |
309381fe SL |
678 | VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); |
679 | VM_BUG_ON_PAGE(bad_range(zone, page), page); | |
1da177e4 | 680 | |
3c605096 | 681 | while (order < max_order - 1) { |
43506fad KC |
682 | buddy_idx = __find_buddy_index(page_idx, order); |
683 | buddy = page + (buddy_idx - page_idx); | |
cb2b95e1 | 684 | if (!page_is_buddy(page, buddy, order)) |
3c82d0ce | 685 | break; |
c0a32fc5 SG |
686 | /* |
687 | * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, | |
688 | * merge with it and move up one order. | |
689 | */ | |
690 | if (page_is_guard(buddy)) { | |
2847cf95 | 691 | clear_page_guard(zone, buddy, order, migratetype); |
c0a32fc5 SG |
692 | } else { |
693 | list_del(&buddy->lru); | |
694 | zone->free_area[order].nr_free--; | |
695 | rmv_page_order(buddy); | |
696 | } | |
43506fad | 697 | combined_idx = buddy_idx & page_idx; |
1da177e4 LT |
698 | page = page + (combined_idx - page_idx); |
699 | page_idx = combined_idx; | |
700 | order++; | |
701 | } | |
702 | set_page_order(page, order); | |
6dda9d55 CZ |
703 | |
704 | /* | |
705 | * If this is not the largest possible page, check if the buddy | |
706 | * of the next-highest order is free. If it is, it's possible | |
707 | * that pages are being freed that will coalesce soon. In case, | |
708 | * that is happening, add the free page to the tail of the list | |
709 | * so it's less likely to be used soon and more likely to be merged | |
710 | * as a higher order page | |
711 | */ | |
b7f50cfa | 712 | if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { |
6dda9d55 | 713 | struct page *higher_page, *higher_buddy; |
43506fad KC |
714 | combined_idx = buddy_idx & page_idx; |
715 | higher_page = page + (combined_idx - page_idx); | |
716 | buddy_idx = __find_buddy_index(combined_idx, order + 1); | |
0ba8f2d5 | 717 | higher_buddy = higher_page + (buddy_idx - combined_idx); |
6dda9d55 CZ |
718 | if (page_is_buddy(higher_page, higher_buddy, order + 1)) { |
719 | list_add_tail(&page->lru, | |
720 | &zone->free_area[order].free_list[migratetype]); | |
721 | goto out; | |
722 | } | |
723 | } | |
724 | ||
725 | list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); | |
726 | out: | |
1da177e4 LT |
727 | zone->free_area[order].nr_free++; |
728 | } | |
729 | ||
224abf92 | 730 | static inline int free_pages_check(struct page *page) |
1da177e4 | 731 | { |
d230dec1 | 732 | const char *bad_reason = NULL; |
f0b791a3 DH |
733 | unsigned long bad_flags = 0; |
734 | ||
735 | if (unlikely(page_mapcount(page))) | |
736 | bad_reason = "nonzero mapcount"; | |
737 | if (unlikely(page->mapping != NULL)) | |
738 | bad_reason = "non-NULL mapping"; | |
739 | if (unlikely(atomic_read(&page->_count) != 0)) | |
740 | bad_reason = "nonzero _count"; | |
741 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { | |
742 | bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; | |
743 | bad_flags = PAGE_FLAGS_CHECK_AT_FREE; | |
744 | } | |
9edad6ea JW |
745 | #ifdef CONFIG_MEMCG |
746 | if (unlikely(page->mem_cgroup)) | |
747 | bad_reason = "page still charged to cgroup"; | |
748 | #endif | |
f0b791a3 DH |
749 | if (unlikely(bad_reason)) { |
750 | bad_page(page, bad_reason, bad_flags); | |
79f4b7bf | 751 | return 1; |
8cc3b392 | 752 | } |
90572890 | 753 | page_cpupid_reset_last(page); |
79f4b7bf HD |
754 | if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
755 | page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; | |
756 | return 0; | |
1da177e4 LT |
757 | } |
758 | ||
759 | /* | |
5f8dcc21 | 760 | * Frees a number of pages from the PCP lists |
1da177e4 | 761 | * Assumes all pages on list are in same zone, and of same order. |
207f36ee | 762 | * count is the number of pages to free. |
1da177e4 LT |
763 | * |
764 | * If the zone was previously in an "all pages pinned" state then look to | |
765 | * see if this freeing clears that state. | |
766 | * | |
767 | * And clear the zone's pages_scanned counter, to hold off the "all pages are | |
768 | * pinned" detection logic. | |
769 | */ | |
5f8dcc21 MG |
770 | static void free_pcppages_bulk(struct zone *zone, int count, |
771 | struct per_cpu_pages *pcp) | |
1da177e4 | 772 | { |
5f8dcc21 | 773 | int migratetype = 0; |
a6f9edd6 | 774 | int batch_free = 0; |
72853e29 | 775 | int to_free = count; |
0d5d823a | 776 | unsigned long nr_scanned; |
5f8dcc21 | 777 | |
c54ad30c | 778 | spin_lock(&zone->lock); |
0d5d823a MG |
779 | nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); |
780 | if (nr_scanned) | |
781 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | |
f2260e6b | 782 | |
72853e29 | 783 | while (to_free) { |
48db57f8 | 784 | struct page *page; |
5f8dcc21 MG |
785 | struct list_head *list; |
786 | ||
787 | /* | |
a6f9edd6 MG |
788 | * Remove pages from lists in a round-robin fashion. A |
789 | * batch_free count is maintained that is incremented when an | |
790 | * empty list is encountered. This is so more pages are freed | |
791 | * off fuller lists instead of spinning excessively around empty | |
792 | * lists | |
5f8dcc21 MG |
793 | */ |
794 | do { | |
a6f9edd6 | 795 | batch_free++; |
5f8dcc21 MG |
796 | if (++migratetype == MIGRATE_PCPTYPES) |
797 | migratetype = 0; | |
798 | list = &pcp->lists[migratetype]; | |
799 | } while (list_empty(list)); | |
48db57f8 | 800 | |
1d16871d NK |
801 | /* This is the only non-empty list. Free them all. */ |
802 | if (batch_free == MIGRATE_PCPTYPES) | |
803 | batch_free = to_free; | |
804 | ||
a6f9edd6 | 805 | do { |
770c8aaa BZ |
806 | int mt; /* migratetype of the to-be-freed page */ |
807 | ||
a6f9edd6 MG |
808 | page = list_entry(list->prev, struct page, lru); |
809 | /* must delete as __free_one_page list manipulates */ | |
810 | list_del(&page->lru); | |
aa016d14 | 811 | |
bb14c2c7 | 812 | mt = get_pcppage_migratetype(page); |
aa016d14 VB |
813 | /* MIGRATE_ISOLATE page should not go to pcplists */ |
814 | VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); | |
815 | /* Pageblock could have been isolated meanwhile */ | |
8f82b55d | 816 | if (unlikely(has_isolate_pageblock(zone))) |
51bb1a40 | 817 | mt = get_pageblock_migratetype(page); |
51bb1a40 | 818 | |
dc4b0caf | 819 | __free_one_page(page, page_to_pfn(page), zone, 0, mt); |
770c8aaa | 820 | trace_mm_page_pcpu_drain(page, 0, mt); |
72853e29 | 821 | } while (--to_free && --batch_free && !list_empty(list)); |
1da177e4 | 822 | } |
c54ad30c | 823 | spin_unlock(&zone->lock); |
1da177e4 LT |
824 | } |
825 | ||
dc4b0caf MG |
826 | static void free_one_page(struct zone *zone, |
827 | struct page *page, unsigned long pfn, | |
7aeb09f9 | 828 | unsigned int order, |
ed0ae21d | 829 | int migratetype) |
1da177e4 | 830 | { |
0d5d823a | 831 | unsigned long nr_scanned; |
006d22d9 | 832 | spin_lock(&zone->lock); |
0d5d823a MG |
833 | nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); |
834 | if (nr_scanned) | |
835 | __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); | |
f2260e6b | 836 | |
ad53f92e JK |
837 | if (unlikely(has_isolate_pageblock(zone) || |
838 | is_migrate_isolate(migratetype))) { | |
839 | migratetype = get_pfnblock_migratetype(page, pfn); | |
ad53f92e | 840 | } |
dc4b0caf | 841 | __free_one_page(page, pfn, zone, order, migratetype); |
006d22d9 | 842 | spin_unlock(&zone->lock); |
48db57f8 NP |
843 | } |
844 | ||
81422f29 KS |
845 | static int free_tail_pages_check(struct page *head_page, struct page *page) |
846 | { | |
1d798ca3 KS |
847 | int ret = 1; |
848 | ||
849 | /* | |
850 | * We rely page->lru.next never has bit 0 set, unless the page | |
851 | * is PageTail(). Let's make sure that's true even for poisoned ->lru. | |
852 | */ | |
853 | BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); | |
854 | ||
855 | if (!IS_ENABLED(CONFIG_DEBUG_VM)) { | |
856 | ret = 0; | |
857 | goto out; | |
858 | } | |
81422f29 KS |
859 | if (unlikely(!PageTail(page))) { |
860 | bad_page(page, "PageTail not set", 0); | |
1d798ca3 | 861 | goto out; |
81422f29 | 862 | } |
1d798ca3 KS |
863 | if (unlikely(compound_head(page) != head_page)) { |
864 | bad_page(page, "compound_head not consistent", 0); | |
865 | goto out; | |
81422f29 | 866 | } |
1d798ca3 KS |
867 | ret = 0; |
868 | out: | |
869 | clear_compound_head(page); | |
870 | return ret; | |
81422f29 KS |
871 | } |
872 | ||
1e8ce83c RH |
873 | static void __meminit __init_single_page(struct page *page, unsigned long pfn, |
874 | unsigned long zone, int nid) | |
875 | { | |
1e8ce83c | 876 | set_page_links(page, zone, nid, pfn); |
1e8ce83c RH |
877 | init_page_count(page); |
878 | page_mapcount_reset(page); | |
879 | page_cpupid_reset_last(page); | |
1e8ce83c | 880 | |
1e8ce83c RH |
881 | INIT_LIST_HEAD(&page->lru); |
882 | #ifdef WANT_PAGE_VIRTUAL | |
883 | /* The shift won't overflow because ZONE_NORMAL is below 4G. */ | |
884 | if (!is_highmem_idx(zone)) | |
885 | set_page_address(page, __va(pfn << PAGE_SHIFT)); | |
886 | #endif | |
887 | } | |
888 | ||
889 | static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, | |
890 | int nid) | |
891 | { | |
892 | return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); | |
893 | } | |
894 | ||
7e18adb4 MG |
895 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
896 | static void init_reserved_page(unsigned long pfn) | |
897 | { | |
898 | pg_data_t *pgdat; | |
899 | int nid, zid; | |
900 | ||
901 | if (!early_page_uninitialised(pfn)) | |
902 | return; | |
903 | ||
904 | nid = early_pfn_to_nid(pfn); | |
905 | pgdat = NODE_DATA(nid); | |
906 | ||
907 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
908 | struct zone *zone = &pgdat->node_zones[zid]; | |
909 | ||
910 | if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) | |
911 | break; | |
912 | } | |
913 | __init_single_pfn(pfn, zid, nid); | |
914 | } | |
915 | #else | |
916 | static inline void init_reserved_page(unsigned long pfn) | |
917 | { | |
918 | } | |
919 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
920 | ||
92923ca3 NZ |
921 | /* |
922 | * Initialised pages do not have PageReserved set. This function is | |
923 | * called for each range allocated by the bootmem allocator and | |
924 | * marks the pages PageReserved. The remaining valid pages are later | |
925 | * sent to the buddy page allocator. | |
926 | */ | |
7e18adb4 | 927 | void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) |
92923ca3 NZ |
928 | { |
929 | unsigned long start_pfn = PFN_DOWN(start); | |
930 | unsigned long end_pfn = PFN_UP(end); | |
931 | ||
7e18adb4 MG |
932 | for (; start_pfn < end_pfn; start_pfn++) { |
933 | if (pfn_valid(start_pfn)) { | |
934 | struct page *page = pfn_to_page(start_pfn); | |
935 | ||
936 | init_reserved_page(start_pfn); | |
1d798ca3 KS |
937 | |
938 | /* Avoid false-positive PageTail() */ | |
939 | INIT_LIST_HEAD(&page->lru); | |
940 | ||
7e18adb4 MG |
941 | SetPageReserved(page); |
942 | } | |
943 | } | |
92923ca3 NZ |
944 | } |
945 | ||
ec95f53a | 946 | static bool free_pages_prepare(struct page *page, unsigned int order) |
48db57f8 | 947 | { |
81422f29 KS |
948 | bool compound = PageCompound(page); |
949 | int i, bad = 0; | |
1da177e4 | 950 | |
ab1f306f | 951 | VM_BUG_ON_PAGE(PageTail(page), page); |
81422f29 | 952 | VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); |
ab1f306f | 953 | |
b413d48a | 954 | trace_mm_page_free(page, order); |
b1eeab67 | 955 | kmemcheck_free_shadow(page, order); |
b8c73fc2 | 956 | kasan_free_pages(page, order); |
b1eeab67 | 957 | |
8dd60a3a AA |
958 | if (PageAnon(page)) |
959 | page->mapping = NULL; | |
81422f29 KS |
960 | bad += free_pages_check(page); |
961 | for (i = 1; i < (1 << order); i++) { | |
962 | if (compound) | |
963 | bad += free_tail_pages_check(page, page + i); | |
8dd60a3a | 964 | bad += free_pages_check(page + i); |
81422f29 | 965 | } |
8cc3b392 | 966 | if (bad) |
ec95f53a | 967 | return false; |
689bcebf | 968 | |
48c96a36 JK |
969 | reset_page_owner(page, order); |
970 | ||
3ac7fe5a | 971 | if (!PageHighMem(page)) { |
b8af2941 PK |
972 | debug_check_no_locks_freed(page_address(page), |
973 | PAGE_SIZE << order); | |
3ac7fe5a TG |
974 | debug_check_no_obj_freed(page_address(page), |
975 | PAGE_SIZE << order); | |
976 | } | |
dafb1367 | 977 | arch_free_page(page, order); |
48db57f8 | 978 | kernel_map_pages(page, 1 << order, 0); |
dafb1367 | 979 | |
ec95f53a KM |
980 | return true; |
981 | } | |
982 | ||
983 | static void __free_pages_ok(struct page *page, unsigned int order) | |
984 | { | |
985 | unsigned long flags; | |
95e34412 | 986 | int migratetype; |
dc4b0caf | 987 | unsigned long pfn = page_to_pfn(page); |
ec95f53a KM |
988 | |
989 | if (!free_pages_prepare(page, order)) | |
990 | return; | |
991 | ||
cfc47a28 | 992 | migratetype = get_pfnblock_migratetype(page, pfn); |
c54ad30c | 993 | local_irq_save(flags); |
f8891e5e | 994 | __count_vm_events(PGFREE, 1 << order); |
dc4b0caf | 995 | free_one_page(page_zone(page), page, pfn, order, migratetype); |
c54ad30c | 996 | local_irq_restore(flags); |
1da177e4 LT |
997 | } |
998 | ||
0e1cc95b | 999 | static void __init __free_pages_boot_core(struct page *page, |
3a80a7fa | 1000 | unsigned long pfn, unsigned int order) |
a226f6c8 | 1001 | { |
c3993076 | 1002 | unsigned int nr_pages = 1 << order; |
e2d0bd2b | 1003 | struct page *p = page; |
c3993076 | 1004 | unsigned int loop; |
a226f6c8 | 1005 | |
e2d0bd2b YL |
1006 | prefetchw(p); |
1007 | for (loop = 0; loop < (nr_pages - 1); loop++, p++) { | |
1008 | prefetchw(p + 1); | |
c3993076 JW |
1009 | __ClearPageReserved(p); |
1010 | set_page_count(p, 0); | |
a226f6c8 | 1011 | } |
e2d0bd2b YL |
1012 | __ClearPageReserved(p); |
1013 | set_page_count(p, 0); | |
c3993076 | 1014 | |
e2d0bd2b | 1015 | page_zone(page)->managed_pages += nr_pages; |
c3993076 JW |
1016 | set_page_refcounted(page); |
1017 | __free_pages(page, order); | |
a226f6c8 DH |
1018 | } |
1019 | ||
75a592a4 MG |
1020 | #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ |
1021 | defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) | |
7ace9917 | 1022 | |
75a592a4 MG |
1023 | static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; |
1024 | ||
1025 | int __meminit early_pfn_to_nid(unsigned long pfn) | |
1026 | { | |
7ace9917 | 1027 | static DEFINE_SPINLOCK(early_pfn_lock); |
75a592a4 MG |
1028 | int nid; |
1029 | ||
7ace9917 | 1030 | spin_lock(&early_pfn_lock); |
75a592a4 | 1031 | nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); |
7ace9917 MG |
1032 | if (nid < 0) |
1033 | nid = 0; | |
1034 | spin_unlock(&early_pfn_lock); | |
1035 | ||
1036 | return nid; | |
75a592a4 MG |
1037 | } |
1038 | #endif | |
1039 | ||
1040 | #ifdef CONFIG_NODES_SPAN_OTHER_NODES | |
1041 | static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, | |
1042 | struct mminit_pfnnid_cache *state) | |
1043 | { | |
1044 | int nid; | |
1045 | ||
1046 | nid = __early_pfn_to_nid(pfn, state); | |
1047 | if (nid >= 0 && nid != node) | |
1048 | return false; | |
1049 | return true; | |
1050 | } | |
1051 | ||
1052 | /* Only safe to use early in boot when initialisation is single-threaded */ | |
1053 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1054 | { | |
1055 | return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); | |
1056 | } | |
1057 | ||
1058 | #else | |
1059 | ||
1060 | static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) | |
1061 | { | |
1062 | return true; | |
1063 | } | |
1064 | static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, | |
1065 | struct mminit_pfnnid_cache *state) | |
1066 | { | |
1067 | return true; | |
1068 | } | |
1069 | #endif | |
1070 | ||
1071 | ||
0e1cc95b | 1072 | void __init __free_pages_bootmem(struct page *page, unsigned long pfn, |
3a80a7fa MG |
1073 | unsigned int order) |
1074 | { | |
1075 | if (early_page_uninitialised(pfn)) | |
1076 | return; | |
1077 | return __free_pages_boot_core(page, pfn, order); | |
1078 | } | |
1079 | ||
7e18adb4 | 1080 | #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT |
0e1cc95b | 1081 | static void __init deferred_free_range(struct page *page, |
a4de83dd MG |
1082 | unsigned long pfn, int nr_pages) |
1083 | { | |
1084 | int i; | |
1085 | ||
1086 | if (!page) | |
1087 | return; | |
1088 | ||
1089 | /* Free a large naturally-aligned chunk if possible */ | |
1090 | if (nr_pages == MAX_ORDER_NR_PAGES && | |
1091 | (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { | |
ac5d2539 | 1092 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); |
a4de83dd MG |
1093 | __free_pages_boot_core(page, pfn, MAX_ORDER-1); |
1094 | return; | |
1095 | } | |
1096 | ||
1097 | for (i = 0; i < nr_pages; i++, page++, pfn++) | |
1098 | __free_pages_boot_core(page, pfn, 0); | |
1099 | } | |
1100 | ||
d3cd131d NS |
1101 | /* Completion tracking for deferred_init_memmap() threads */ |
1102 | static atomic_t pgdat_init_n_undone __initdata; | |
1103 | static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); | |
1104 | ||
1105 | static inline void __init pgdat_init_report_one_done(void) | |
1106 | { | |
1107 | if (atomic_dec_and_test(&pgdat_init_n_undone)) | |
1108 | complete(&pgdat_init_all_done_comp); | |
1109 | } | |
0e1cc95b | 1110 | |
7e18adb4 | 1111 | /* Initialise remaining memory on a node */ |
0e1cc95b | 1112 | static int __init deferred_init_memmap(void *data) |
7e18adb4 | 1113 | { |
0e1cc95b MG |
1114 | pg_data_t *pgdat = data; |
1115 | int nid = pgdat->node_id; | |
7e18adb4 MG |
1116 | struct mminit_pfnnid_cache nid_init_state = { }; |
1117 | unsigned long start = jiffies; | |
1118 | unsigned long nr_pages = 0; | |
1119 | unsigned long walk_start, walk_end; | |
1120 | int i, zid; | |
1121 | struct zone *zone; | |
7e18adb4 | 1122 | unsigned long first_init_pfn = pgdat->first_deferred_pfn; |
0e1cc95b | 1123 | const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); |
7e18adb4 | 1124 | |
0e1cc95b | 1125 | if (first_init_pfn == ULONG_MAX) { |
d3cd131d | 1126 | pgdat_init_report_one_done(); |
0e1cc95b MG |
1127 | return 0; |
1128 | } | |
1129 | ||
1130 | /* Bind memory initialisation thread to a local node if possible */ | |
1131 | if (!cpumask_empty(cpumask)) | |
1132 | set_cpus_allowed_ptr(current, cpumask); | |
7e18adb4 MG |
1133 | |
1134 | /* Sanity check boundaries */ | |
1135 | BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); | |
1136 | BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); | |
1137 | pgdat->first_deferred_pfn = ULONG_MAX; | |
1138 | ||
1139 | /* Only the highest zone is deferred so find it */ | |
1140 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
1141 | zone = pgdat->node_zones + zid; | |
1142 | if (first_init_pfn < zone_end_pfn(zone)) | |
1143 | break; | |
1144 | } | |
1145 | ||
1146 | for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { | |
1147 | unsigned long pfn, end_pfn; | |
54608c3f | 1148 | struct page *page = NULL; |
a4de83dd MG |
1149 | struct page *free_base_page = NULL; |
1150 | unsigned long free_base_pfn = 0; | |
1151 | int nr_to_free = 0; | |
7e18adb4 MG |
1152 | |
1153 | end_pfn = min(walk_end, zone_end_pfn(zone)); | |
1154 | pfn = first_init_pfn; | |
1155 | if (pfn < walk_start) | |
1156 | pfn = walk_start; | |
1157 | if (pfn < zone->zone_start_pfn) | |
1158 | pfn = zone->zone_start_pfn; | |
1159 | ||
1160 | for (; pfn < end_pfn; pfn++) { | |
54608c3f | 1161 | if (!pfn_valid_within(pfn)) |
a4de83dd | 1162 | goto free_range; |
7e18adb4 | 1163 | |
54608c3f MG |
1164 | /* |
1165 | * Ensure pfn_valid is checked every | |
1166 | * MAX_ORDER_NR_PAGES for memory holes | |
1167 | */ | |
1168 | if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { | |
1169 | if (!pfn_valid(pfn)) { | |
1170 | page = NULL; | |
a4de83dd | 1171 | goto free_range; |
54608c3f MG |
1172 | } |
1173 | } | |
1174 | ||
1175 | if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { | |
1176 | page = NULL; | |
a4de83dd | 1177 | goto free_range; |
54608c3f MG |
1178 | } |
1179 | ||
1180 | /* Minimise pfn page lookups and scheduler checks */ | |
1181 | if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { | |
1182 | page++; | |
1183 | } else { | |
a4de83dd MG |
1184 | nr_pages += nr_to_free; |
1185 | deferred_free_range(free_base_page, | |
1186 | free_base_pfn, nr_to_free); | |
1187 | free_base_page = NULL; | |
1188 | free_base_pfn = nr_to_free = 0; | |
1189 | ||
54608c3f MG |
1190 | page = pfn_to_page(pfn); |
1191 | cond_resched(); | |
1192 | } | |
7e18adb4 MG |
1193 | |
1194 | if (page->flags) { | |
1195 | VM_BUG_ON(page_zone(page) != zone); | |
a4de83dd | 1196 | goto free_range; |
7e18adb4 MG |
1197 | } |
1198 | ||
1199 | __init_single_page(page, pfn, zid, nid); | |
a4de83dd MG |
1200 | if (!free_base_page) { |
1201 | free_base_page = page; | |
1202 | free_base_pfn = pfn; | |
1203 | nr_to_free = 0; | |
1204 | } | |
1205 | nr_to_free++; | |
1206 | ||
1207 | /* Where possible, batch up pages for a single free */ | |
1208 | continue; | |
1209 | free_range: | |
1210 | /* Free the current block of pages to allocator */ | |
1211 | nr_pages += nr_to_free; | |
1212 | deferred_free_range(free_base_page, free_base_pfn, | |
1213 | nr_to_free); | |
1214 | free_base_page = NULL; | |
1215 | free_base_pfn = nr_to_free = 0; | |
7e18adb4 | 1216 | } |
a4de83dd | 1217 | |
7e18adb4 MG |
1218 | first_init_pfn = max(end_pfn, first_init_pfn); |
1219 | } | |
1220 | ||
1221 | /* Sanity check that the next zone really is unpopulated */ | |
1222 | WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); | |
1223 | ||
0e1cc95b | 1224 | pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, |
7e18adb4 | 1225 | jiffies_to_msecs(jiffies - start)); |
d3cd131d NS |
1226 | |
1227 | pgdat_init_report_one_done(); | |
0e1cc95b MG |
1228 | return 0; |
1229 | } | |
1230 | ||
1231 | void __init page_alloc_init_late(void) | |
1232 | { | |
1233 | int nid; | |
1234 | ||
d3cd131d NS |
1235 | /* There will be num_node_state(N_MEMORY) threads */ |
1236 | atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); | |
0e1cc95b | 1237 | for_each_node_state(nid, N_MEMORY) { |
0e1cc95b MG |
1238 | kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); |
1239 | } | |
1240 | ||
1241 | /* Block until all are initialised */ | |
d3cd131d | 1242 | wait_for_completion(&pgdat_init_all_done_comp); |
4248b0da MG |
1243 | |
1244 | /* Reinit limits that are based on free pages after the kernel is up */ | |
1245 | files_maxfiles_init(); | |
7e18adb4 MG |
1246 | } |
1247 | #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ | |
1248 | ||
47118af0 | 1249 | #ifdef CONFIG_CMA |
9cf510a5 | 1250 | /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ |
47118af0 MN |
1251 | void __init init_cma_reserved_pageblock(struct page *page) |
1252 | { | |
1253 | unsigned i = pageblock_nr_pages; | |
1254 | struct page *p = page; | |
1255 | ||
1256 | do { | |
1257 | __ClearPageReserved(p); | |
1258 | set_page_count(p, 0); | |
1259 | } while (++p, --i); | |
1260 | ||
47118af0 | 1261 | set_pageblock_migratetype(page, MIGRATE_CMA); |
dc78327c MN |
1262 | |
1263 | if (pageblock_order >= MAX_ORDER) { | |
1264 | i = pageblock_nr_pages; | |
1265 | p = page; | |
1266 | do { | |
1267 | set_page_refcounted(p); | |
1268 | __free_pages(p, MAX_ORDER - 1); | |
1269 | p += MAX_ORDER_NR_PAGES; | |
1270 | } while (i -= MAX_ORDER_NR_PAGES); | |
1271 | } else { | |
1272 | set_page_refcounted(page); | |
1273 | __free_pages(page, pageblock_order); | |
1274 | } | |
1275 | ||
3dcc0571 | 1276 | adjust_managed_page_count(page, pageblock_nr_pages); |
47118af0 MN |
1277 | } |
1278 | #endif | |
1da177e4 LT |
1279 | |
1280 | /* | |
1281 | * The order of subdivision here is critical for the IO subsystem. | |
1282 | * Please do not alter this order without good reasons and regression | |
1283 | * testing. Specifically, as large blocks of memory are subdivided, | |
1284 | * the order in which smaller blocks are delivered depends on the order | |
1285 | * they're subdivided in this function. This is the primary factor | |
1286 | * influencing the order in which pages are delivered to the IO | |
1287 | * subsystem according to empirical testing, and this is also justified | |
1288 | * by considering the behavior of a buddy system containing a single | |
1289 | * large block of memory acted on by a series of small allocations. | |
1290 | * This behavior is a critical factor in sglist merging's success. | |
1291 | * | |
6d49e352 | 1292 | * -- nyc |
1da177e4 | 1293 | */ |
085cc7d5 | 1294 | static inline void expand(struct zone *zone, struct page *page, |
b2a0ac88 MG |
1295 | int low, int high, struct free_area *area, |
1296 | int migratetype) | |
1da177e4 LT |
1297 | { |
1298 | unsigned long size = 1 << high; | |
1299 | ||
1300 | while (high > low) { | |
1301 | area--; | |
1302 | high--; | |
1303 | size >>= 1; | |
309381fe | 1304 | VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); |
c0a32fc5 | 1305 | |
2847cf95 | 1306 | if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && |
e30825f1 | 1307 | debug_guardpage_enabled() && |
2847cf95 | 1308 | high < debug_guardpage_minorder()) { |
c0a32fc5 SG |
1309 | /* |
1310 | * Mark as guard pages (or page), that will allow to | |
1311 | * merge back to allocator when buddy will be freed. | |
1312 | * Corresponding page table entries will not be touched, | |
1313 | * pages will stay not present in virtual address space | |
1314 | */ | |
2847cf95 | 1315 | set_page_guard(zone, &page[size], high, migratetype); |
c0a32fc5 SG |
1316 | continue; |
1317 | } | |
b2a0ac88 | 1318 | list_add(&page[size].lru, &area->free_list[migratetype]); |
1da177e4 LT |
1319 | area->nr_free++; |
1320 | set_page_order(&page[size], high); | |
1321 | } | |
1da177e4 LT |
1322 | } |
1323 | ||
1da177e4 LT |
1324 | /* |
1325 | * This page is about to be returned from the page allocator | |
1326 | */ | |
2a7684a2 | 1327 | static inline int check_new_page(struct page *page) |
1da177e4 | 1328 | { |
d230dec1 | 1329 | const char *bad_reason = NULL; |
f0b791a3 DH |
1330 | unsigned long bad_flags = 0; |
1331 | ||
1332 | if (unlikely(page_mapcount(page))) | |
1333 | bad_reason = "nonzero mapcount"; | |
1334 | if (unlikely(page->mapping != NULL)) | |
1335 | bad_reason = "non-NULL mapping"; | |
1336 | if (unlikely(atomic_read(&page->_count) != 0)) | |
1337 | bad_reason = "nonzero _count"; | |
f4c18e6f NH |
1338 | if (unlikely(page->flags & __PG_HWPOISON)) { |
1339 | bad_reason = "HWPoisoned (hardware-corrupted)"; | |
1340 | bad_flags = __PG_HWPOISON; | |
1341 | } | |
f0b791a3 DH |
1342 | if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { |
1343 | bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; | |
1344 | bad_flags = PAGE_FLAGS_CHECK_AT_PREP; | |
1345 | } | |
9edad6ea JW |
1346 | #ifdef CONFIG_MEMCG |
1347 | if (unlikely(page->mem_cgroup)) | |
1348 | bad_reason = "page still charged to cgroup"; | |
1349 | #endif | |
f0b791a3 DH |
1350 | if (unlikely(bad_reason)) { |
1351 | bad_page(page, bad_reason, bad_flags); | |
689bcebf | 1352 | return 1; |
8cc3b392 | 1353 | } |
2a7684a2 WF |
1354 | return 0; |
1355 | } | |
1356 | ||
75379191 VB |
1357 | static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, |
1358 | int alloc_flags) | |
2a7684a2 WF |
1359 | { |
1360 | int i; | |
1361 | ||
1362 | for (i = 0; i < (1 << order); i++) { | |
1363 | struct page *p = page + i; | |
1364 | if (unlikely(check_new_page(p))) | |
1365 | return 1; | |
1366 | } | |
689bcebf | 1367 | |
4c21e2f2 | 1368 | set_page_private(page, 0); |
7835e98b | 1369 | set_page_refcounted(page); |
cc102509 NP |
1370 | |
1371 | arch_alloc_page(page, order); | |
1da177e4 | 1372 | kernel_map_pages(page, 1 << order, 1); |
b8c73fc2 | 1373 | kasan_alloc_pages(page, order); |
17cf4406 NP |
1374 | |
1375 | if (gfp_flags & __GFP_ZERO) | |
f4d2897b AA |
1376 | for (i = 0; i < (1 << order); i++) |
1377 | clear_highpage(page + i); | |
17cf4406 NP |
1378 | |
1379 | if (order && (gfp_flags & __GFP_COMP)) | |
1380 | prep_compound_page(page, order); | |
1381 | ||
48c96a36 JK |
1382 | set_page_owner(page, order, gfp_flags); |
1383 | ||
75379191 | 1384 | /* |
2f064f34 | 1385 | * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to |
75379191 VB |
1386 | * allocate the page. The expectation is that the caller is taking |
1387 | * steps that will free more memory. The caller should avoid the page | |
1388 | * being used for !PFMEMALLOC purposes. | |
1389 | */ | |
2f064f34 MH |
1390 | if (alloc_flags & ALLOC_NO_WATERMARKS) |
1391 | set_page_pfmemalloc(page); | |
1392 | else | |
1393 | clear_page_pfmemalloc(page); | |
75379191 | 1394 | |
689bcebf | 1395 | return 0; |
1da177e4 LT |
1396 | } |
1397 | ||
56fd56b8 MG |
1398 | /* |
1399 | * Go through the free lists for the given migratetype and remove | |
1400 | * the smallest available page from the freelists | |
1401 | */ | |
728ec980 MG |
1402 | static inline |
1403 | struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, | |
56fd56b8 MG |
1404 | int migratetype) |
1405 | { | |
1406 | unsigned int current_order; | |
b8af2941 | 1407 | struct free_area *area; |
56fd56b8 MG |
1408 | struct page *page; |
1409 | ||
1410 | /* Find a page of the appropriate size in the preferred list */ | |
1411 | for (current_order = order; current_order < MAX_ORDER; ++current_order) { | |
1412 | area = &(zone->free_area[current_order]); | |
1413 | if (list_empty(&area->free_list[migratetype])) | |
1414 | continue; | |
1415 | ||
1416 | page = list_entry(area->free_list[migratetype].next, | |
1417 | struct page, lru); | |
1418 | list_del(&page->lru); | |
1419 | rmv_page_order(page); | |
1420 | area->nr_free--; | |
56fd56b8 | 1421 | expand(zone, page, order, current_order, area, migratetype); |
bb14c2c7 | 1422 | set_pcppage_migratetype(page, migratetype); |
56fd56b8 MG |
1423 | return page; |
1424 | } | |
1425 | ||
1426 | return NULL; | |
1427 | } | |
1428 | ||
1429 | ||
b2a0ac88 MG |
1430 | /* |
1431 | * This array describes the order lists are fallen back to when | |
1432 | * the free lists for the desirable migrate type are depleted | |
1433 | */ | |
47118af0 | 1434 | static int fallbacks[MIGRATE_TYPES][4] = { |
974a786e MG |
1435 | [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, |
1436 | [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, | |
1437 | [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, | |
47118af0 | 1438 | #ifdef CONFIG_CMA |
974a786e | 1439 | [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ |
47118af0 | 1440 | #endif |
194159fb | 1441 | #ifdef CONFIG_MEMORY_ISOLATION |
974a786e | 1442 | [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ |
194159fb | 1443 | #endif |
b2a0ac88 MG |
1444 | }; |
1445 | ||
dc67647b JK |
1446 | #ifdef CONFIG_CMA |
1447 | static struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1448 | unsigned int order) | |
1449 | { | |
1450 | return __rmqueue_smallest(zone, order, MIGRATE_CMA); | |
1451 | } | |
1452 | #else | |
1453 | static inline struct page *__rmqueue_cma_fallback(struct zone *zone, | |
1454 | unsigned int order) { return NULL; } | |
1455 | #endif | |
1456 | ||
c361be55 MG |
1457 | /* |
1458 | * Move the free pages in a range to the free lists of the requested type. | |
d9c23400 | 1459 | * Note that start_page and end_pages are not aligned on a pageblock |
c361be55 MG |
1460 | * boundary. If alignment is required, use move_freepages_block() |
1461 | */ | |
435b405c | 1462 | int move_freepages(struct zone *zone, |
b69a7288 AB |
1463 | struct page *start_page, struct page *end_page, |
1464 | int migratetype) | |
c361be55 MG |
1465 | { |
1466 | struct page *page; | |
d00181b9 | 1467 | unsigned int order; |
d100313f | 1468 | int pages_moved = 0; |
c361be55 MG |
1469 | |
1470 | #ifndef CONFIG_HOLES_IN_ZONE | |
1471 | /* | |
1472 | * page_zone is not safe to call in this context when | |
1473 | * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant | |
1474 | * anyway as we check zone boundaries in move_freepages_block(). | |
1475 | * Remove at a later date when no bug reports exist related to | |
ac0e5b7a | 1476 | * grouping pages by mobility |
c361be55 | 1477 | */ |
97ee4ba7 | 1478 | VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); |
c361be55 MG |
1479 | #endif |
1480 | ||
1481 | for (page = start_page; page <= end_page;) { | |
344c790e | 1482 | /* Make sure we are not inadvertently changing nodes */ |
309381fe | 1483 | VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); |
344c790e | 1484 | |
c361be55 MG |
1485 | if (!pfn_valid_within(page_to_pfn(page))) { |
1486 | page++; | |
1487 | continue; | |
1488 | } | |
1489 | ||
1490 | if (!PageBuddy(page)) { | |
1491 | page++; | |
1492 | continue; | |
1493 | } | |
1494 | ||
1495 | order = page_order(page); | |
84be48d8 KS |
1496 | list_move(&page->lru, |
1497 | &zone->free_area[order].free_list[migratetype]); | |
c361be55 | 1498 | page += 1 << order; |
d100313f | 1499 | pages_moved += 1 << order; |
c361be55 MG |
1500 | } |
1501 | ||
d100313f | 1502 | return pages_moved; |
c361be55 MG |
1503 | } |
1504 | ||
ee6f509c | 1505 | int move_freepages_block(struct zone *zone, struct page *page, |
68e3e926 | 1506 | int migratetype) |
c361be55 MG |
1507 | { |
1508 | unsigned long start_pfn, end_pfn; | |
1509 | struct page *start_page, *end_page; | |
1510 | ||
1511 | start_pfn = page_to_pfn(page); | |
d9c23400 | 1512 | start_pfn = start_pfn & ~(pageblock_nr_pages-1); |
c361be55 | 1513 | start_page = pfn_to_page(start_pfn); |
d9c23400 MG |
1514 | end_page = start_page + pageblock_nr_pages - 1; |
1515 | end_pfn = start_pfn + pageblock_nr_pages - 1; | |
c361be55 MG |
1516 | |
1517 | /* Do not cross zone boundaries */ | |
108bcc96 | 1518 | if (!zone_spans_pfn(zone, start_pfn)) |
c361be55 | 1519 | start_page = page; |
108bcc96 | 1520 | if (!zone_spans_pfn(zone, end_pfn)) |
c361be55 MG |
1521 | return 0; |
1522 | ||
1523 | return move_freepages(zone, start_page, end_page, migratetype); | |
1524 | } | |
1525 | ||
2f66a68f MG |
1526 | static void change_pageblock_range(struct page *pageblock_page, |
1527 | int start_order, int migratetype) | |
1528 | { | |
1529 | int nr_pageblocks = 1 << (start_order - pageblock_order); | |
1530 | ||
1531 | while (nr_pageblocks--) { | |
1532 | set_pageblock_migratetype(pageblock_page, migratetype); | |
1533 | pageblock_page += pageblock_nr_pages; | |
1534 | } | |
1535 | } | |
1536 | ||
fef903ef | 1537 | /* |
9c0415eb VB |
1538 | * When we are falling back to another migratetype during allocation, try to |
1539 | * steal extra free pages from the same pageblocks to satisfy further | |
1540 | * allocations, instead of polluting multiple pageblocks. | |
1541 | * | |
1542 | * If we are stealing a relatively large buddy page, it is likely there will | |
1543 | * be more free pages in the pageblock, so try to steal them all. For | |
1544 | * reclaimable and unmovable allocations, we steal regardless of page size, | |
1545 | * as fragmentation caused by those allocations polluting movable pageblocks | |
1546 | * is worse than movable allocations stealing from unmovable and reclaimable | |
1547 | * pageblocks. | |
fef903ef | 1548 | */ |
4eb7dce6 JK |
1549 | static bool can_steal_fallback(unsigned int order, int start_mt) |
1550 | { | |
1551 | /* | |
1552 | * Leaving this order check is intended, although there is | |
1553 | * relaxed order check in next check. The reason is that | |
1554 | * we can actually steal whole pageblock if this condition met, | |
1555 | * but, below check doesn't guarantee it and that is just heuristic | |
1556 | * so could be changed anytime. | |
1557 | */ | |
1558 | if (order >= pageblock_order) | |
1559 | return true; | |
1560 | ||
1561 | if (order >= pageblock_order / 2 || | |
1562 | start_mt == MIGRATE_RECLAIMABLE || | |
1563 | start_mt == MIGRATE_UNMOVABLE || | |
1564 | page_group_by_mobility_disabled) | |
1565 | return true; | |
1566 | ||
1567 | return false; | |
1568 | } | |
1569 | ||
1570 | /* | |
1571 | * This function implements actual steal behaviour. If order is large enough, | |
1572 | * we can steal whole pageblock. If not, we first move freepages in this | |
1573 | * pageblock and check whether half of pages are moved or not. If half of | |
1574 | * pages are moved, we can change migratetype of pageblock and permanently | |
1575 | * use it's pages as requested migratetype in the future. | |
1576 | */ | |
1577 | static void steal_suitable_fallback(struct zone *zone, struct page *page, | |
1578 | int start_type) | |
fef903ef | 1579 | { |
d00181b9 | 1580 | unsigned int current_order = page_order(page); |
4eb7dce6 | 1581 | int pages; |
fef903ef | 1582 | |
fef903ef SB |
1583 | /* Take ownership for orders >= pageblock_order */ |
1584 | if (current_order >= pageblock_order) { | |
1585 | change_pageblock_range(page, current_order, start_type); | |
3a1086fb | 1586 | return; |
fef903ef SB |
1587 | } |
1588 | ||
4eb7dce6 | 1589 | pages = move_freepages_block(zone, page, start_type); |
fef903ef | 1590 | |
4eb7dce6 JK |
1591 | /* Claim the whole block if over half of it is free */ |
1592 | if (pages >= (1 << (pageblock_order-1)) || | |
1593 | page_group_by_mobility_disabled) | |
1594 | set_pageblock_migratetype(page, start_type); | |
1595 | } | |
1596 | ||
2149cdae JK |
1597 | /* |
1598 | * Check whether there is a suitable fallback freepage with requested order. | |
1599 | * If only_stealable is true, this function returns fallback_mt only if | |
1600 | * we can steal other freepages all together. This would help to reduce | |
1601 | * fragmentation due to mixed migratetype pages in one pageblock. | |
1602 | */ | |
1603 | int find_suitable_fallback(struct free_area *area, unsigned int order, | |
1604 | int migratetype, bool only_stealable, bool *can_steal) | |
4eb7dce6 JK |
1605 | { |
1606 | int i; | |
1607 | int fallback_mt; | |
1608 | ||
1609 | if (area->nr_free == 0) | |
1610 | return -1; | |
1611 | ||
1612 | *can_steal = false; | |
1613 | for (i = 0;; i++) { | |
1614 | fallback_mt = fallbacks[migratetype][i]; | |
974a786e | 1615 | if (fallback_mt == MIGRATE_TYPES) |
4eb7dce6 JK |
1616 | break; |
1617 | ||
1618 | if (list_empty(&area->free_list[fallback_mt])) | |
1619 | continue; | |
fef903ef | 1620 | |
4eb7dce6 JK |
1621 | if (can_steal_fallback(order, migratetype)) |
1622 | *can_steal = true; | |
1623 | ||
2149cdae JK |
1624 | if (!only_stealable) |
1625 | return fallback_mt; | |
1626 | ||
1627 | if (*can_steal) | |
1628 | return fallback_mt; | |
fef903ef | 1629 | } |
4eb7dce6 JK |
1630 | |
1631 | return -1; | |
fef903ef SB |
1632 | } |
1633 | ||
0aaa29a5 MG |
1634 | /* |
1635 | * Reserve a pageblock for exclusive use of high-order atomic allocations if | |
1636 | * there are no empty page blocks that contain a page with a suitable order | |
1637 | */ | |
1638 | static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, | |
1639 | unsigned int alloc_order) | |
1640 | { | |
1641 | int mt; | |
1642 | unsigned long max_managed, flags; | |
1643 | ||
1644 | /* | |
1645 | * Limit the number reserved to 1 pageblock or roughly 1% of a zone. | |
1646 | * Check is race-prone but harmless. | |
1647 | */ | |
1648 | max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; | |
1649 | if (zone->nr_reserved_highatomic >= max_managed) | |
1650 | return; | |
1651 | ||
1652 | spin_lock_irqsave(&zone->lock, flags); | |
1653 | ||
1654 | /* Recheck the nr_reserved_highatomic limit under the lock */ | |
1655 | if (zone->nr_reserved_highatomic >= max_managed) | |
1656 | goto out_unlock; | |
1657 | ||
1658 | /* Yoink! */ | |
1659 | mt = get_pageblock_migratetype(page); | |
1660 | if (mt != MIGRATE_HIGHATOMIC && | |
1661 | !is_migrate_isolate(mt) && !is_migrate_cma(mt)) { | |
1662 | zone->nr_reserved_highatomic += pageblock_nr_pages; | |
1663 | set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); | |
1664 | move_freepages_block(zone, page, MIGRATE_HIGHATOMIC); | |
1665 | } | |
1666 | ||
1667 | out_unlock: | |
1668 | spin_unlock_irqrestore(&zone->lock, flags); | |
1669 | } | |
1670 | ||
1671 | /* | |
1672 | * Used when an allocation is about to fail under memory pressure. This | |
1673 | * potentially hurts the reliability of high-order allocations when under | |
1674 | * intense memory pressure but failed atomic allocations should be easier | |
1675 | * to recover from than an OOM. | |
1676 | */ | |
1677 | static void unreserve_highatomic_pageblock(const struct alloc_context *ac) | |
1678 | { | |
1679 | struct zonelist *zonelist = ac->zonelist; | |
1680 | unsigned long flags; | |
1681 | struct zoneref *z; | |
1682 | struct zone *zone; | |
1683 | struct page *page; | |
1684 | int order; | |
1685 | ||
1686 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, | |
1687 | ac->nodemask) { | |
1688 | /* Preserve at least one pageblock */ | |
1689 | if (zone->nr_reserved_highatomic <= pageblock_nr_pages) | |
1690 | continue; | |
1691 | ||
1692 | spin_lock_irqsave(&zone->lock, flags); | |
1693 | for (order = 0; order < MAX_ORDER; order++) { | |
1694 | struct free_area *area = &(zone->free_area[order]); | |
1695 | ||
1696 | if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) | |
1697 | continue; | |
1698 | ||
1699 | page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next, | |
1700 | struct page, lru); | |
1701 | ||
1702 | /* | |
1703 | * It should never happen but changes to locking could | |
1704 | * inadvertently allow a per-cpu drain to add pages | |
1705 | * to MIGRATE_HIGHATOMIC while unreserving so be safe | |
1706 | * and watch for underflows. | |
1707 | */ | |
1708 | zone->nr_reserved_highatomic -= min(pageblock_nr_pages, | |
1709 | zone->nr_reserved_highatomic); | |
1710 | ||
1711 | /* | |
1712 | * Convert to ac->migratetype and avoid the normal | |
1713 | * pageblock stealing heuristics. Minimally, the caller | |
1714 | * is doing the work and needs the pages. More | |
1715 | * importantly, if the block was always converted to | |
1716 | * MIGRATE_UNMOVABLE or another type then the number | |
1717 | * of pageblocks that cannot be completely freed | |
1718 | * may increase. | |
1719 | */ | |
1720 | set_pageblock_migratetype(page, ac->migratetype); | |
1721 | move_freepages_block(zone, page, ac->migratetype); | |
1722 | spin_unlock_irqrestore(&zone->lock, flags); | |
1723 | return; | |
1724 | } | |
1725 | spin_unlock_irqrestore(&zone->lock, flags); | |
1726 | } | |
1727 | } | |
1728 | ||
b2a0ac88 | 1729 | /* Remove an element from the buddy allocator from the fallback list */ |
0ac3a409 | 1730 | static inline struct page * |
7aeb09f9 | 1731 | __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) |
b2a0ac88 | 1732 | { |
b8af2941 | 1733 | struct free_area *area; |
7aeb09f9 | 1734 | unsigned int current_order; |
b2a0ac88 | 1735 | struct page *page; |
4eb7dce6 JK |
1736 | int fallback_mt; |
1737 | bool can_steal; | |
b2a0ac88 MG |
1738 | |
1739 | /* Find the largest possible block of pages in the other list */ | |
7aeb09f9 MG |
1740 | for (current_order = MAX_ORDER-1; |
1741 | current_order >= order && current_order <= MAX_ORDER-1; | |
1742 | --current_order) { | |
4eb7dce6 JK |
1743 | area = &(zone->free_area[current_order]); |
1744 | fallback_mt = find_suitable_fallback(area, current_order, | |
2149cdae | 1745 | start_migratetype, false, &can_steal); |
4eb7dce6 JK |
1746 | if (fallback_mt == -1) |
1747 | continue; | |
b2a0ac88 | 1748 | |
4eb7dce6 JK |
1749 | page = list_entry(area->free_list[fallback_mt].next, |
1750 | struct page, lru); | |
1751 | if (can_steal) | |
1752 | steal_suitable_fallback(zone, page, start_migratetype); | |
b2a0ac88 | 1753 | |
4eb7dce6 JK |
1754 | /* Remove the page from the freelists */ |
1755 | area->nr_free--; | |
1756 | list_del(&page->lru); | |
1757 | rmv_page_order(page); | |
3a1086fb | 1758 | |
4eb7dce6 JK |
1759 | expand(zone, page, order, current_order, area, |
1760 | start_migratetype); | |
1761 | /* | |
bb14c2c7 | 1762 | * The pcppage_migratetype may differ from pageblock's |
4eb7dce6 | 1763 | * migratetype depending on the decisions in |
bb14c2c7 VB |
1764 | * find_suitable_fallback(). This is OK as long as it does not |
1765 | * differ for MIGRATE_CMA pageblocks. Those can be used as | |
1766 | * fallback only via special __rmqueue_cma_fallback() function | |
4eb7dce6 | 1767 | */ |
bb14c2c7 | 1768 | set_pcppage_migratetype(page, start_migratetype); |
e0fff1bd | 1769 | |
4eb7dce6 JK |
1770 | trace_mm_page_alloc_extfrag(page, order, current_order, |
1771 | start_migratetype, fallback_mt); | |
e0fff1bd | 1772 | |
4eb7dce6 | 1773 | return page; |
b2a0ac88 MG |
1774 | } |
1775 | ||
728ec980 | 1776 | return NULL; |
b2a0ac88 MG |
1777 | } |
1778 | ||
56fd56b8 | 1779 | /* |
1da177e4 LT |
1780 | * Do the hard work of removing an element from the buddy allocator. |
1781 | * Call me with the zone->lock already held. | |
1782 | */ | |
b2a0ac88 | 1783 | static struct page *__rmqueue(struct zone *zone, unsigned int order, |
0aaa29a5 | 1784 | int migratetype, gfp_t gfp_flags) |
1da177e4 | 1785 | { |
1da177e4 LT |
1786 | struct page *page; |
1787 | ||
56fd56b8 | 1788 | page = __rmqueue_smallest(zone, order, migratetype); |
974a786e | 1789 | if (unlikely(!page)) { |
dc67647b JK |
1790 | if (migratetype == MIGRATE_MOVABLE) |
1791 | page = __rmqueue_cma_fallback(zone, order); | |
1792 | ||
1793 | if (!page) | |
1794 | page = __rmqueue_fallback(zone, order, migratetype); | |
728ec980 MG |
1795 | } |
1796 | ||
0d3d062a | 1797 | trace_mm_page_alloc_zone_locked(page, order, migratetype); |
b2a0ac88 | 1798 | return page; |
1da177e4 LT |
1799 | } |
1800 | ||
5f63b720 | 1801 | /* |
1da177e4 LT |
1802 | * Obtain a specified number of elements from the buddy allocator, all under |
1803 | * a single hold of the lock, for efficiency. Add them to the supplied list. | |
1804 | * Returns the number of new pages which were placed at *list. | |
1805 | */ | |
5f63b720 | 1806 | static int rmqueue_bulk(struct zone *zone, unsigned int order, |
b2a0ac88 | 1807 | unsigned long count, struct list_head *list, |
b745bc85 | 1808 | int migratetype, bool cold) |
1da177e4 | 1809 | { |
5bcc9f86 | 1810 | int i; |
5f63b720 | 1811 | |
c54ad30c | 1812 | spin_lock(&zone->lock); |
1da177e4 | 1813 | for (i = 0; i < count; ++i) { |
0aaa29a5 | 1814 | struct page *page = __rmqueue(zone, order, migratetype, 0); |
085cc7d5 | 1815 | if (unlikely(page == NULL)) |
1da177e4 | 1816 | break; |
81eabcbe MG |
1817 | |
1818 | /* | |
1819 | * Split buddy pages returned by expand() are received here | |
1820 | * in physical page order. The page is added to the callers and | |
1821 | * list and the list head then moves forward. From the callers | |
1822 | * perspective, the linked list is ordered by page number in | |
1823 | * some conditions. This is useful for IO devices that can | |
1824 | * merge IO requests if the physical pages are ordered | |
1825 | * properly. | |
1826 | */ | |
b745bc85 | 1827 | if (likely(!cold)) |
e084b2d9 MG |
1828 | list_add(&page->lru, list); |
1829 | else | |
1830 | list_add_tail(&page->lru, list); | |
81eabcbe | 1831 | list = &page->lru; |
bb14c2c7 | 1832 | if (is_migrate_cma(get_pcppage_migratetype(page))) |
d1ce749a BZ |
1833 | __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, |
1834 | -(1 << order)); | |
1da177e4 | 1835 | } |
f2260e6b | 1836 | __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); |
c54ad30c | 1837 | spin_unlock(&zone->lock); |
085cc7d5 | 1838 | return i; |
1da177e4 LT |
1839 | } |
1840 | ||
4ae7c039 | 1841 | #ifdef CONFIG_NUMA |
8fce4d8e | 1842 | /* |
4037d452 CL |
1843 | * Called from the vmstat counter updater to drain pagesets of this |
1844 | * currently executing processor on remote nodes after they have | |
1845 | * expired. | |
1846 | * | |
879336c3 CL |
1847 | * Note that this function must be called with the thread pinned to |
1848 | * a single processor. | |
8fce4d8e | 1849 | */ |
4037d452 | 1850 | void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) |
4ae7c039 | 1851 | { |
4ae7c039 | 1852 | unsigned long flags; |
7be12fc9 | 1853 | int to_drain, batch; |
4ae7c039 | 1854 | |
4037d452 | 1855 | local_irq_save(flags); |
4db0c3c2 | 1856 | batch = READ_ONCE(pcp->batch); |
7be12fc9 | 1857 | to_drain = min(pcp->count, batch); |
2a13515c KM |
1858 | if (to_drain > 0) { |
1859 | free_pcppages_bulk(zone, to_drain, pcp); | |
1860 | pcp->count -= to_drain; | |
1861 | } | |
4037d452 | 1862 | local_irq_restore(flags); |
4ae7c039 CL |
1863 | } |
1864 | #endif | |
1865 | ||
9f8f2172 | 1866 | /* |
93481ff0 | 1867 | * Drain pcplists of the indicated processor and zone. |
9f8f2172 CL |
1868 | * |
1869 | * The processor must either be the current processor and the | |
1870 | * thread pinned to the current processor or a processor that | |
1871 | * is not online. | |
1872 | */ | |
93481ff0 | 1873 | static void drain_pages_zone(unsigned int cpu, struct zone *zone) |
1da177e4 | 1874 | { |
c54ad30c | 1875 | unsigned long flags; |
93481ff0 VB |
1876 | struct per_cpu_pageset *pset; |
1877 | struct per_cpu_pages *pcp; | |
1da177e4 | 1878 | |
93481ff0 VB |
1879 | local_irq_save(flags); |
1880 | pset = per_cpu_ptr(zone->pageset, cpu); | |
1da177e4 | 1881 | |
93481ff0 VB |
1882 | pcp = &pset->pcp; |
1883 | if (pcp->count) { | |
1884 | free_pcppages_bulk(zone, pcp->count, pcp); | |
1885 | pcp->count = 0; | |
1886 | } | |
1887 | local_irq_restore(flags); | |
1888 | } | |
3dfa5721 | 1889 | |
93481ff0 VB |
1890 | /* |
1891 | * Drain pcplists of all zones on the indicated processor. | |
1892 | * | |
1893 | * The processor must either be the current processor and the | |
1894 | * thread pinned to the current processor or a processor that | |
1895 | * is not online. | |
1896 | */ | |
1897 | static void drain_pages(unsigned int cpu) | |
1898 | { | |
1899 | struct zone *zone; | |
1900 | ||
1901 | for_each_populated_zone(zone) { | |
1902 | drain_pages_zone(cpu, zone); | |
1da177e4 LT |
1903 | } |
1904 | } | |
1da177e4 | 1905 | |
9f8f2172 CL |
1906 | /* |
1907 | * Spill all of this CPU's per-cpu pages back into the buddy allocator. | |
93481ff0 VB |
1908 | * |
1909 | * The CPU has to be pinned. When zone parameter is non-NULL, spill just | |
1910 | * the single zone's pages. | |
9f8f2172 | 1911 | */ |
93481ff0 | 1912 | void drain_local_pages(struct zone *zone) |
9f8f2172 | 1913 | { |
93481ff0 VB |
1914 | int cpu = smp_processor_id(); |
1915 | ||
1916 | if (zone) | |
1917 | drain_pages_zone(cpu, zone); | |
1918 | else | |
1919 | drain_pages(cpu); | |
9f8f2172 CL |
1920 | } |
1921 | ||
1922 | /* | |
74046494 GBY |
1923 | * Spill all the per-cpu pages from all CPUs back into the buddy allocator. |
1924 | * | |
93481ff0 VB |
1925 | * When zone parameter is non-NULL, spill just the single zone's pages. |
1926 | * | |
74046494 GBY |
1927 | * Note that this code is protected against sending an IPI to an offline |
1928 | * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: | |
1929 | * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but | |
1930 | * nothing keeps CPUs from showing up after we populated the cpumask and | |
1931 | * before the call to on_each_cpu_mask(). | |
9f8f2172 | 1932 | */ |
93481ff0 | 1933 | void drain_all_pages(struct zone *zone) |
9f8f2172 | 1934 | { |
74046494 | 1935 | int cpu; |
74046494 GBY |
1936 | |
1937 | /* | |
1938 | * Allocate in the BSS so we wont require allocation in | |
1939 | * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y | |
1940 | */ | |
1941 | static cpumask_t cpus_with_pcps; | |
1942 | ||
1943 | /* | |
1944 | * We don't care about racing with CPU hotplug event | |
1945 | * as offline notification will cause the notified | |
1946 | * cpu to drain that CPU pcps and on_each_cpu_mask | |
1947 | * disables preemption as part of its processing | |
1948 | */ | |
1949 | for_each_online_cpu(cpu) { | |
93481ff0 VB |
1950 | struct per_cpu_pageset *pcp; |
1951 | struct zone *z; | |
74046494 | 1952 | bool has_pcps = false; |
93481ff0 VB |
1953 | |
1954 | if (zone) { | |
74046494 | 1955 | pcp = per_cpu_ptr(zone->pageset, cpu); |
93481ff0 | 1956 | if (pcp->pcp.count) |
74046494 | 1957 | has_pcps = true; |
93481ff0 VB |
1958 | } else { |
1959 | for_each_populated_zone(z) { | |
1960 | pcp = per_cpu_ptr(z->pageset, cpu); | |
1961 | if (pcp->pcp.count) { | |
1962 | has_pcps = true; | |
1963 | break; | |
1964 | } | |
74046494 GBY |
1965 | } |
1966 | } | |
93481ff0 | 1967 | |
74046494 GBY |
1968 | if (has_pcps) |
1969 | cpumask_set_cpu(cpu, &cpus_with_pcps); | |
1970 | else | |
1971 | cpumask_clear_cpu(cpu, &cpus_with_pcps); | |
1972 | } | |
93481ff0 VB |
1973 | on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, |
1974 | zone, 1); | |
9f8f2172 CL |
1975 | } |
1976 | ||
296699de | 1977 | #ifdef CONFIG_HIBERNATION |
1da177e4 LT |
1978 | |
1979 | void mark_free_pages(struct zone *zone) | |
1980 | { | |
f623f0db RW |
1981 | unsigned long pfn, max_zone_pfn; |
1982 | unsigned long flags; | |
7aeb09f9 | 1983 | unsigned int order, t; |
1da177e4 LT |
1984 | struct list_head *curr; |
1985 | ||
8080fc03 | 1986 | if (zone_is_empty(zone)) |
1da177e4 LT |
1987 | return; |
1988 | ||
1989 | spin_lock_irqsave(&zone->lock, flags); | |
f623f0db | 1990 | |
108bcc96 | 1991 | max_zone_pfn = zone_end_pfn(zone); |
f623f0db RW |
1992 | for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) |
1993 | if (pfn_valid(pfn)) { | |
1994 | struct page *page = pfn_to_page(pfn); | |
1995 | ||
7be98234 RW |
1996 | if (!swsusp_page_is_forbidden(page)) |
1997 | swsusp_unset_page_free(page); | |
f623f0db | 1998 | } |
1da177e4 | 1999 | |
b2a0ac88 MG |
2000 | for_each_migratetype_order(order, t) { |
2001 | list_for_each(curr, &zone->free_area[order].free_list[t]) { | |
f623f0db | 2002 | unsigned long i; |
1da177e4 | 2003 | |
f623f0db RW |
2004 | pfn = page_to_pfn(list_entry(curr, struct page, lru)); |
2005 | for (i = 0; i < (1UL << order); i++) | |
7be98234 | 2006 | swsusp_set_page_free(pfn_to_page(pfn + i)); |
f623f0db | 2007 | } |
b2a0ac88 | 2008 | } |
1da177e4 LT |
2009 | spin_unlock_irqrestore(&zone->lock, flags); |
2010 | } | |
e2c55dc8 | 2011 | #endif /* CONFIG_PM */ |
1da177e4 | 2012 | |
1da177e4 LT |
2013 | /* |
2014 | * Free a 0-order page | |
b745bc85 | 2015 | * cold == true ? free a cold page : free a hot page |
1da177e4 | 2016 | */ |
b745bc85 | 2017 | void free_hot_cold_page(struct page *page, bool cold) |
1da177e4 LT |
2018 | { |
2019 | struct zone *zone = page_zone(page); | |
2020 | struct per_cpu_pages *pcp; | |
2021 | unsigned long flags; | |
dc4b0caf | 2022 | unsigned long pfn = page_to_pfn(page); |
5f8dcc21 | 2023 | int migratetype; |
1da177e4 | 2024 | |
ec95f53a | 2025 | if (!free_pages_prepare(page, 0)) |
689bcebf HD |
2026 | return; |
2027 | ||
dc4b0caf | 2028 | migratetype = get_pfnblock_migratetype(page, pfn); |
bb14c2c7 | 2029 | set_pcppage_migratetype(page, migratetype); |
1da177e4 | 2030 | local_irq_save(flags); |
f8891e5e | 2031 | __count_vm_event(PGFREE); |
da456f14 | 2032 | |
5f8dcc21 MG |
2033 | /* |
2034 | * We only track unmovable, reclaimable and movable on pcp lists. | |
2035 | * Free ISOLATE pages back to the allocator because they are being | |
2036 | * offlined but treat RESERVE as movable pages so we can get those | |
2037 | * areas back if necessary. Otherwise, we may have to free | |
2038 | * excessively into the page allocator | |
2039 | */ | |
2040 | if (migratetype >= MIGRATE_PCPTYPES) { | |
194159fb | 2041 | if (unlikely(is_migrate_isolate(migratetype))) { |
dc4b0caf | 2042 | free_one_page(zone, page, pfn, 0, migratetype); |
5f8dcc21 MG |
2043 | goto out; |
2044 | } | |
2045 | migratetype = MIGRATE_MOVABLE; | |
2046 | } | |
2047 | ||
99dcc3e5 | 2048 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
b745bc85 | 2049 | if (!cold) |
5f8dcc21 | 2050 | list_add(&page->lru, &pcp->lists[migratetype]); |
b745bc85 MG |
2051 | else |
2052 | list_add_tail(&page->lru, &pcp->lists[migratetype]); | |
1da177e4 | 2053 | pcp->count++; |
48db57f8 | 2054 | if (pcp->count >= pcp->high) { |
4db0c3c2 | 2055 | unsigned long batch = READ_ONCE(pcp->batch); |
998d39cb CS |
2056 | free_pcppages_bulk(zone, batch, pcp); |
2057 | pcp->count -= batch; | |
48db57f8 | 2058 | } |
5f8dcc21 MG |
2059 | |
2060 | out: | |
1da177e4 | 2061 | local_irq_restore(flags); |
1da177e4 LT |
2062 | } |
2063 | ||
cc59850e KK |
2064 | /* |
2065 | * Free a list of 0-order pages | |
2066 | */ | |
b745bc85 | 2067 | void free_hot_cold_page_list(struct list_head *list, bool cold) |
cc59850e KK |
2068 | { |
2069 | struct page *page, *next; | |
2070 | ||
2071 | list_for_each_entry_safe(page, next, list, lru) { | |
b413d48a | 2072 | trace_mm_page_free_batched(page, cold); |
cc59850e KK |
2073 | free_hot_cold_page(page, cold); |
2074 | } | |
2075 | } | |
2076 | ||
8dfcc9ba NP |
2077 | /* |
2078 | * split_page takes a non-compound higher-order page, and splits it into | |
2079 | * n (1<<order) sub-pages: page[0..n] | |
2080 | * Each sub-page must be freed individually. | |
2081 | * | |
2082 | * Note: this is probably too low level an operation for use in drivers. | |
2083 | * Please consult with lkml before using this in your driver. | |
2084 | */ | |
2085 | void split_page(struct page *page, unsigned int order) | |
2086 | { | |
2087 | int i; | |
e2cfc911 | 2088 | gfp_t gfp_mask; |
8dfcc9ba | 2089 | |
309381fe SL |
2090 | VM_BUG_ON_PAGE(PageCompound(page), page); |
2091 | VM_BUG_ON_PAGE(!page_count(page), page); | |
b1eeab67 VN |
2092 | |
2093 | #ifdef CONFIG_KMEMCHECK | |
2094 | /* | |
2095 | * Split shadow pages too, because free(page[0]) would | |
2096 | * otherwise free the whole shadow. | |
2097 | */ | |
2098 | if (kmemcheck_page_is_tracked(page)) | |
2099 | split_page(virt_to_page(page[0].shadow), order); | |
2100 | #endif | |
2101 | ||
e2cfc911 JK |
2102 | gfp_mask = get_page_owner_gfp(page); |
2103 | set_page_owner(page, 0, gfp_mask); | |
48c96a36 | 2104 | for (i = 1; i < (1 << order); i++) { |
7835e98b | 2105 | set_page_refcounted(page + i); |
e2cfc911 | 2106 | set_page_owner(page + i, 0, gfp_mask); |
48c96a36 | 2107 | } |
8dfcc9ba | 2108 | } |
5853ff23 | 2109 | EXPORT_SYMBOL_GPL(split_page); |
8dfcc9ba | 2110 | |
3c605096 | 2111 | int __isolate_free_page(struct page *page, unsigned int order) |
748446bb | 2112 | { |
748446bb MG |
2113 | unsigned long watermark; |
2114 | struct zone *zone; | |
2139cbe6 | 2115 | int mt; |
748446bb MG |
2116 | |
2117 | BUG_ON(!PageBuddy(page)); | |
2118 | ||
2119 | zone = page_zone(page); | |
2e30abd1 | 2120 | mt = get_pageblock_migratetype(page); |
748446bb | 2121 | |
194159fb | 2122 | if (!is_migrate_isolate(mt)) { |
2e30abd1 MS |
2123 | /* Obey watermarks as if the page was being allocated */ |
2124 | watermark = low_wmark_pages(zone) + (1 << order); | |
2125 | if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) | |
2126 | return 0; | |
2127 | ||
8fb74b9f | 2128 | __mod_zone_freepage_state(zone, -(1UL << order), mt); |
2e30abd1 | 2129 | } |
748446bb MG |
2130 | |
2131 | /* Remove page from free list */ | |
2132 | list_del(&page->lru); | |
2133 | zone->free_area[order].nr_free--; | |
2134 | rmv_page_order(page); | |
2139cbe6 | 2135 | |
e2cfc911 | 2136 | set_page_owner(page, order, __GFP_MOVABLE); |
f3a14ced | 2137 | |
8fb74b9f | 2138 | /* Set the pageblock if the isolated page is at least a pageblock */ |
748446bb MG |
2139 | if (order >= pageblock_order - 1) { |
2140 | struct page *endpage = page + (1 << order) - 1; | |
47118af0 MN |
2141 | for (; page < endpage; page += pageblock_nr_pages) { |
2142 | int mt = get_pageblock_migratetype(page); | |
194159fb | 2143 | if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) |
47118af0 MN |
2144 | set_pageblock_migratetype(page, |
2145 | MIGRATE_MOVABLE); | |
2146 | } | |
748446bb MG |
2147 | } |
2148 | ||
f3a14ced | 2149 | |
8fb74b9f | 2150 | return 1UL << order; |
1fb3f8ca MG |
2151 | } |
2152 | ||
2153 | /* | |
2154 | * Similar to split_page except the page is already free. As this is only | |
2155 | * being used for migration, the migratetype of the block also changes. | |
2156 | * As this is called with interrupts disabled, the caller is responsible | |
2157 | * for calling arch_alloc_page() and kernel_map_page() after interrupts | |
2158 | * are enabled. | |
2159 | * | |
2160 | * Note: this is probably too low level an operation for use in drivers. | |
2161 | * Please consult with lkml before using this in your driver. | |
2162 | */ | |
2163 | int split_free_page(struct page *page) | |
2164 | { | |
2165 | unsigned int order; | |
2166 | int nr_pages; | |
2167 | ||
1fb3f8ca MG |
2168 | order = page_order(page); |
2169 | ||
8fb74b9f | 2170 | nr_pages = __isolate_free_page(page, order); |
1fb3f8ca MG |
2171 | if (!nr_pages) |
2172 | return 0; | |
2173 | ||
2174 | /* Split into individual pages */ | |
2175 | set_page_refcounted(page); | |
2176 | split_page(page, order); | |
2177 | return nr_pages; | |
748446bb MG |
2178 | } |
2179 | ||
1da177e4 | 2180 | /* |
75379191 | 2181 | * Allocate a page from the given zone. Use pcplists for order-0 allocations. |
1da177e4 | 2182 | */ |
0a15c3e9 MG |
2183 | static inline |
2184 | struct page *buffered_rmqueue(struct zone *preferred_zone, | |
7aeb09f9 | 2185 | struct zone *zone, unsigned int order, |
0aaa29a5 | 2186 | gfp_t gfp_flags, int alloc_flags, int migratetype) |
1da177e4 LT |
2187 | { |
2188 | unsigned long flags; | |
689bcebf | 2189 | struct page *page; |
b745bc85 | 2190 | bool cold = ((gfp_flags & __GFP_COLD) != 0); |
1da177e4 | 2191 | |
48db57f8 | 2192 | if (likely(order == 0)) { |
1da177e4 | 2193 | struct per_cpu_pages *pcp; |
5f8dcc21 | 2194 | struct list_head *list; |
1da177e4 | 2195 | |
1da177e4 | 2196 | local_irq_save(flags); |
99dcc3e5 CL |
2197 | pcp = &this_cpu_ptr(zone->pageset)->pcp; |
2198 | list = &pcp->lists[migratetype]; | |
5f8dcc21 | 2199 | if (list_empty(list)) { |
535131e6 | 2200 | pcp->count += rmqueue_bulk(zone, 0, |
5f8dcc21 | 2201 | pcp->batch, list, |
e084b2d9 | 2202 | migratetype, cold); |
5f8dcc21 | 2203 | if (unlikely(list_empty(list))) |
6fb332fa | 2204 | goto failed; |
535131e6 | 2205 | } |
b92a6edd | 2206 | |
5f8dcc21 MG |
2207 | if (cold) |
2208 | page = list_entry(list->prev, struct page, lru); | |
2209 | else | |
2210 | page = list_entry(list->next, struct page, lru); | |
2211 | ||
b92a6edd MG |
2212 | list_del(&page->lru); |
2213 | pcp->count--; | |
7fb1d9fc | 2214 | } else { |
dab48dab AM |
2215 | if (unlikely(gfp_flags & __GFP_NOFAIL)) { |
2216 | /* | |
2217 | * __GFP_NOFAIL is not to be used in new code. | |
2218 | * | |
2219 | * All __GFP_NOFAIL callers should be fixed so that they | |
2220 | * properly detect and handle allocation failures. | |
2221 | * | |
2222 | * We most definitely don't want callers attempting to | |
4923abf9 | 2223 | * allocate greater than order-1 page units with |
dab48dab AM |
2224 | * __GFP_NOFAIL. |
2225 | */ | |
4923abf9 | 2226 | WARN_ON_ONCE(order > 1); |
dab48dab | 2227 | } |
1da177e4 | 2228 | spin_lock_irqsave(&zone->lock, flags); |
0aaa29a5 MG |
2229 | |
2230 | page = NULL; | |
2231 | if (alloc_flags & ALLOC_HARDER) { | |
2232 | page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); | |
2233 | if (page) | |
2234 | trace_mm_page_alloc_zone_locked(page, order, migratetype); | |
2235 | } | |
2236 | if (!page) | |
2237 | page = __rmqueue(zone, order, migratetype, gfp_flags); | |
a74609fa NP |
2238 | spin_unlock(&zone->lock); |
2239 | if (!page) | |
2240 | goto failed; | |
d1ce749a | 2241 | __mod_zone_freepage_state(zone, -(1 << order), |
bb14c2c7 | 2242 | get_pcppage_migratetype(page)); |
1da177e4 LT |
2243 | } |
2244 | ||
3a025760 | 2245 | __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); |
abe5f972 | 2246 | if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && |
57054651 JW |
2247 | !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) |
2248 | set_bit(ZONE_FAIR_DEPLETED, &zone->flags); | |
27329369 | 2249 | |
f8891e5e | 2250 | __count_zone_vm_events(PGALLOC, zone, 1 << order); |
78afd561 | 2251 | zone_statistics(preferred_zone, zone, gfp_flags); |
a74609fa | 2252 | local_irq_restore(flags); |
1da177e4 | 2253 | |
309381fe | 2254 | VM_BUG_ON_PAGE(bad_range(zone, page), page); |
1da177e4 | 2255 | return page; |
a74609fa NP |
2256 | |
2257 | failed: | |
2258 | local_irq_restore(flags); | |
a74609fa | 2259 | return NULL; |
1da177e4 LT |
2260 | } |
2261 | ||
933e312e AM |
2262 | #ifdef CONFIG_FAIL_PAGE_ALLOC |
2263 | ||
b2588c4b | 2264 | static struct { |
933e312e AM |
2265 | struct fault_attr attr; |
2266 | ||
621a5f7a | 2267 | bool ignore_gfp_highmem; |
71baba4b | 2268 | bool ignore_gfp_reclaim; |
54114994 | 2269 | u32 min_order; |
933e312e AM |
2270 | } fail_page_alloc = { |
2271 | .attr = FAULT_ATTR_INITIALIZER, | |
71baba4b | 2272 | .ignore_gfp_reclaim = true, |
621a5f7a | 2273 | .ignore_gfp_highmem = true, |
54114994 | 2274 | .min_order = 1, |
933e312e AM |
2275 | }; |
2276 | ||
2277 | static int __init setup_fail_page_alloc(char *str) | |
2278 | { | |
2279 | return setup_fault_attr(&fail_page_alloc.attr, str); | |
2280 | } | |
2281 | __setup("fail_page_alloc=", setup_fail_page_alloc); | |
2282 | ||
deaf386e | 2283 | static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2284 | { |
54114994 | 2285 | if (order < fail_page_alloc.min_order) |
deaf386e | 2286 | return false; |
933e312e | 2287 | if (gfp_mask & __GFP_NOFAIL) |
deaf386e | 2288 | return false; |
933e312e | 2289 | if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) |
deaf386e | 2290 | return false; |
71baba4b MG |
2291 | if (fail_page_alloc.ignore_gfp_reclaim && |
2292 | (gfp_mask & __GFP_DIRECT_RECLAIM)) | |
deaf386e | 2293 | return false; |
933e312e AM |
2294 | |
2295 | return should_fail(&fail_page_alloc.attr, 1 << order); | |
2296 | } | |
2297 | ||
2298 | #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS | |
2299 | ||
2300 | static int __init fail_page_alloc_debugfs(void) | |
2301 | { | |
f4ae40a6 | 2302 | umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; |
933e312e | 2303 | struct dentry *dir; |
933e312e | 2304 | |
dd48c085 AM |
2305 | dir = fault_create_debugfs_attr("fail_page_alloc", NULL, |
2306 | &fail_page_alloc.attr); | |
2307 | if (IS_ERR(dir)) | |
2308 | return PTR_ERR(dir); | |
933e312e | 2309 | |
b2588c4b | 2310 | if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, |
71baba4b | 2311 | &fail_page_alloc.ignore_gfp_reclaim)) |
b2588c4b AM |
2312 | goto fail; |
2313 | if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, | |
2314 | &fail_page_alloc.ignore_gfp_highmem)) | |
2315 | goto fail; | |
2316 | if (!debugfs_create_u32("min-order", mode, dir, | |
2317 | &fail_page_alloc.min_order)) | |
2318 | goto fail; | |
2319 | ||
2320 | return 0; | |
2321 | fail: | |
dd48c085 | 2322 | debugfs_remove_recursive(dir); |
933e312e | 2323 | |
b2588c4b | 2324 | return -ENOMEM; |
933e312e AM |
2325 | } |
2326 | ||
2327 | late_initcall(fail_page_alloc_debugfs); | |
2328 | ||
2329 | #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ | |
2330 | ||
2331 | #else /* CONFIG_FAIL_PAGE_ALLOC */ | |
2332 | ||
deaf386e | 2333 | static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) |
933e312e | 2334 | { |
deaf386e | 2335 | return false; |
933e312e AM |
2336 | } |
2337 | ||
2338 | #endif /* CONFIG_FAIL_PAGE_ALLOC */ | |
2339 | ||
1da177e4 | 2340 | /* |
97a16fc8 MG |
2341 | * Return true if free base pages are above 'mark'. For high-order checks it |
2342 | * will return true of the order-0 watermark is reached and there is at least | |
2343 | * one free page of a suitable size. Checking now avoids taking the zone lock | |
2344 | * to check in the allocation paths if no pages are free. | |
1da177e4 | 2345 | */ |
7aeb09f9 MG |
2346 | static bool __zone_watermark_ok(struct zone *z, unsigned int order, |
2347 | unsigned long mark, int classzone_idx, int alloc_flags, | |
2348 | long free_pages) | |
1da177e4 | 2349 | { |
d23ad423 | 2350 | long min = mark; |
1da177e4 | 2351 | int o; |
97a16fc8 | 2352 | const int alloc_harder = (alloc_flags & ALLOC_HARDER); |
1da177e4 | 2353 | |
0aaa29a5 | 2354 | /* free_pages may go negative - that's OK */ |
df0a6daa | 2355 | free_pages -= (1 << order) - 1; |
0aaa29a5 | 2356 | |
7fb1d9fc | 2357 | if (alloc_flags & ALLOC_HIGH) |
1da177e4 | 2358 | min -= min / 2; |
0aaa29a5 MG |
2359 | |
2360 | /* | |
2361 | * If the caller does not have rights to ALLOC_HARDER then subtract | |
2362 | * the high-atomic reserves. This will over-estimate the size of the | |
2363 | * atomic reserve but it avoids a search. | |
2364 | */ | |
97a16fc8 | 2365 | if (likely(!alloc_harder)) |
0aaa29a5 MG |
2366 | free_pages -= z->nr_reserved_highatomic; |
2367 | else | |
1da177e4 | 2368 | min -= min / 4; |
e2b19197 | 2369 | |
d95ea5d1 BZ |
2370 | #ifdef CONFIG_CMA |
2371 | /* If allocation can't use CMA areas don't use free CMA pages */ | |
2372 | if (!(alloc_flags & ALLOC_CMA)) | |
97a16fc8 | 2373 | free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); |
d95ea5d1 | 2374 | #endif |
026b0814 | 2375 | |
97a16fc8 MG |
2376 | /* |
2377 | * Check watermarks for an order-0 allocation request. If these | |
2378 | * are not met, then a high-order request also cannot go ahead | |
2379 | * even if a suitable page happened to be free. | |
2380 | */ | |
2381 | if (free_pages <= min + z->lowmem_reserve[classzone_idx]) | |
88f5acf8 | 2382 | return false; |
1da177e4 | 2383 | |
97a16fc8 MG |
2384 | /* If this is an order-0 request then the watermark is fine */ |
2385 | if (!order) | |
2386 | return true; | |
2387 | ||
2388 | /* For a high-order request, check at least one suitable page is free */ | |
2389 | for (o = order; o < MAX_ORDER; o++) { | |
2390 | struct free_area *area = &z->free_area[o]; | |
2391 | int mt; | |
2392 | ||
2393 | if (!area->nr_free) | |
2394 | continue; | |
2395 | ||
2396 | if (alloc_harder) | |
2397 | return true; | |
1da177e4 | 2398 | |
97a16fc8 MG |
2399 | for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { |
2400 | if (!list_empty(&area->free_list[mt])) | |
2401 | return true; | |
2402 | } | |
2403 | ||
2404 | #ifdef CONFIG_CMA | |
2405 | if ((alloc_flags & ALLOC_CMA) && | |
2406 | !list_empty(&area->free_list[MIGRATE_CMA])) { | |
2407 | return true; | |
2408 | } | |
2409 | #endif | |
1da177e4 | 2410 | } |
97a16fc8 | 2411 | return false; |
88f5acf8 MG |
2412 | } |
2413 | ||
7aeb09f9 | 2414 | bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, |
88f5acf8 MG |
2415 | int classzone_idx, int alloc_flags) |
2416 | { | |
2417 | return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, | |
2418 | zone_page_state(z, NR_FREE_PAGES)); | |
2419 | } | |
2420 | ||
7aeb09f9 | 2421 | bool zone_watermark_ok_safe(struct zone *z, unsigned int order, |
e2b19197 | 2422 | unsigned long mark, int classzone_idx) |
88f5acf8 MG |
2423 | { |
2424 | long free_pages = zone_page_state(z, NR_FREE_PAGES); | |
2425 | ||
2426 | if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) | |
2427 | free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); | |
2428 | ||
e2b19197 | 2429 | return __zone_watermark_ok(z, order, mark, classzone_idx, 0, |
88f5acf8 | 2430 | free_pages); |
1da177e4 LT |
2431 | } |
2432 | ||
9276b1bc | 2433 | #ifdef CONFIG_NUMA |
81c0a2bb JW |
2434 | static bool zone_local(struct zone *local_zone, struct zone *zone) |
2435 | { | |
fff4068c | 2436 | return local_zone->node == zone->node; |
81c0a2bb JW |
2437 | } |
2438 | ||
957f822a DR |
2439 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
2440 | { | |
5f7a75ac MG |
2441 | return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < |
2442 | RECLAIM_DISTANCE; | |
957f822a | 2443 | } |
9276b1bc | 2444 | #else /* CONFIG_NUMA */ |
81c0a2bb JW |
2445 | static bool zone_local(struct zone *local_zone, struct zone *zone) |
2446 | { | |
2447 | return true; | |
2448 | } | |
2449 | ||
957f822a DR |
2450 | static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) |
2451 | { | |
2452 | return true; | |
2453 | } | |
9276b1bc PJ |
2454 | #endif /* CONFIG_NUMA */ |
2455 | ||
4ffeaf35 MG |
2456 | static void reset_alloc_batches(struct zone *preferred_zone) |
2457 | { | |
2458 | struct zone *zone = preferred_zone->zone_pgdat->node_zones; | |
2459 | ||
2460 | do { | |
2461 | mod_zone_page_state(zone, NR_ALLOC_BATCH, | |
2462 | high_wmark_pages(zone) - low_wmark_pages(zone) - | |
2463 | atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | |
57054651 | 2464 | clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); |
4ffeaf35 MG |
2465 | } while (zone++ != preferred_zone); |
2466 | } | |
2467 | ||
7fb1d9fc | 2468 | /* |
0798e519 | 2469 | * get_page_from_freelist goes through the zonelist trying to allocate |
7fb1d9fc RS |
2470 | * a page. |
2471 | */ | |
2472 | static struct page * | |
a9263751 VB |
2473 | get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, |
2474 | const struct alloc_context *ac) | |
753ee728 | 2475 | { |
a9263751 | 2476 | struct zonelist *zonelist = ac->zonelist; |
dd1a239f | 2477 | struct zoneref *z; |
7fb1d9fc | 2478 | struct page *page = NULL; |
5117f45d | 2479 | struct zone *zone; |
4ffeaf35 MG |
2480 | int nr_fair_skipped = 0; |
2481 | bool zonelist_rescan; | |
54a6eb5c | 2482 | |
9276b1bc | 2483 | zonelist_scan: |
4ffeaf35 MG |
2484 | zonelist_rescan = false; |
2485 | ||
7fb1d9fc | 2486 | /* |
9276b1bc | 2487 | * Scan zonelist, looking for a zone with enough free. |
344736f2 | 2488 | * See also __cpuset_node_allowed() comment in kernel/cpuset.c. |
7fb1d9fc | 2489 | */ |
a9263751 VB |
2490 | for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, |
2491 | ac->nodemask) { | |
e085dbc5 JW |
2492 | unsigned long mark; |
2493 | ||
664eedde MG |
2494 | if (cpusets_enabled() && |
2495 | (alloc_flags & ALLOC_CPUSET) && | |
344736f2 | 2496 | !cpuset_zone_allowed(zone, gfp_mask)) |
cd38b115 | 2497 | continue; |
81c0a2bb JW |
2498 | /* |
2499 | * Distribute pages in proportion to the individual | |
2500 | * zone size to ensure fair page aging. The zone a | |
2501 | * page was allocated in should have no effect on the | |
2502 | * time the page has in memory before being reclaimed. | |
81c0a2bb | 2503 | */ |
3a025760 | 2504 | if (alloc_flags & ALLOC_FAIR) { |
a9263751 | 2505 | if (!zone_local(ac->preferred_zone, zone)) |
f7b5d647 | 2506 | break; |
57054651 | 2507 | if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { |
4ffeaf35 | 2508 | nr_fair_skipped++; |
3a025760 | 2509 | continue; |
4ffeaf35 | 2510 | } |
81c0a2bb | 2511 | } |
a756cf59 JW |
2512 | /* |
2513 | * When allocating a page cache page for writing, we | |
2514 | * want to get it from a zone that is within its dirty | |
2515 | * limit, such that no single zone holds more than its | |
2516 | * proportional share of globally allowed dirty pages. | |
2517 | * The dirty limits take into account the zone's | |
2518 | * lowmem reserves and high watermark so that kswapd | |
2519 | * should be able to balance it without having to | |
2520 | * write pages from its LRU list. | |
2521 | * | |
2522 | * This may look like it could increase pressure on | |
2523 | * lower zones by failing allocations in higher zones | |
2524 | * before they are full. But the pages that do spill | |
2525 | * over are limited as the lower zones are protected | |
2526 | * by this very same mechanism. It should not become | |
2527 | * a practical burden to them. | |
2528 | * | |
2529 | * XXX: For now, allow allocations to potentially | |
2530 | * exceed the per-zone dirty limit in the slowpath | |
c9ab0c4f | 2531 | * (spread_dirty_pages unset) before going into reclaim, |
a756cf59 JW |
2532 | * which is important when on a NUMA setup the allowed |
2533 | * zones are together not big enough to reach the | |
2534 | * global limit. The proper fix for these situations | |
2535 | * will require awareness of zones in the | |
2536 | * dirty-throttling and the flusher threads. | |
2537 | */ | |
c9ab0c4f | 2538 | if (ac->spread_dirty_pages && !zone_dirty_ok(zone)) |
800a1e75 | 2539 | continue; |
7fb1d9fc | 2540 | |
e085dbc5 JW |
2541 | mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; |
2542 | if (!zone_watermark_ok(zone, order, mark, | |
a9263751 | 2543 | ac->classzone_idx, alloc_flags)) { |
fa5e084e MG |
2544 | int ret; |
2545 | ||
5dab2911 MG |
2546 | /* Checked here to keep the fast path fast */ |
2547 | BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); | |
2548 | if (alloc_flags & ALLOC_NO_WATERMARKS) | |
2549 | goto try_this_zone; | |
2550 | ||
957f822a | 2551 | if (zone_reclaim_mode == 0 || |
a9263751 | 2552 | !zone_allows_reclaim(ac->preferred_zone, zone)) |
cd38b115 MG |
2553 | continue; |
2554 | ||
fa5e084e MG |
2555 | ret = zone_reclaim(zone, gfp_mask, order); |
2556 | switch (ret) { | |
2557 | case ZONE_RECLAIM_NOSCAN: | |
2558 | /* did not scan */ | |
cd38b115 | 2559 | continue; |
fa5e084e MG |
2560 | case ZONE_RECLAIM_FULL: |
2561 | /* scanned but unreclaimable */ | |
cd38b115 | 2562 | continue; |
fa5e084e MG |
2563 | default: |
2564 | /* did we reclaim enough */ | |
fed2719e | 2565 | if (zone_watermark_ok(zone, order, mark, |
a9263751 | 2566 | ac->classzone_idx, alloc_flags)) |
fed2719e MG |
2567 | goto try_this_zone; |
2568 | ||
fed2719e | 2569 | continue; |
0798e519 | 2570 | } |
7fb1d9fc RS |
2571 | } |
2572 | ||
fa5e084e | 2573 | try_this_zone: |
a9263751 | 2574 | page = buffered_rmqueue(ac->preferred_zone, zone, order, |
0aaa29a5 | 2575 | gfp_mask, alloc_flags, ac->migratetype); |
75379191 VB |
2576 | if (page) { |
2577 | if (prep_new_page(page, order, gfp_mask, alloc_flags)) | |
2578 | goto try_this_zone; | |
0aaa29a5 MG |
2579 | |
2580 | /* | |
2581 | * If this is a high-order atomic allocation then check | |
2582 | * if the pageblock should be reserved for the future | |
2583 | */ | |
2584 | if (unlikely(order && (alloc_flags & ALLOC_HARDER))) | |
2585 | reserve_highatomic_pageblock(page, zone, order); | |
2586 | ||
75379191 VB |
2587 | return page; |
2588 | } | |
54a6eb5c | 2589 | } |
9276b1bc | 2590 | |
4ffeaf35 MG |
2591 | /* |
2592 | * The first pass makes sure allocations are spread fairly within the | |
2593 | * local node. However, the local node might have free pages left | |
2594 | * after the fairness batches are exhausted, and remote zones haven't | |
2595 | * even been considered yet. Try once more without fairness, and | |
2596 | * include remote zones now, before entering the slowpath and waking | |
2597 | * kswapd: prefer spilling to a remote zone over swapping locally. | |
2598 | */ | |
2599 | if (alloc_flags & ALLOC_FAIR) { | |
2600 | alloc_flags &= ~ALLOC_FAIR; | |
2601 | if (nr_fair_skipped) { | |
2602 | zonelist_rescan = true; | |
a9263751 | 2603 | reset_alloc_batches(ac->preferred_zone); |
4ffeaf35 MG |
2604 | } |
2605 | if (nr_online_nodes > 1) | |
2606 | zonelist_rescan = true; | |
2607 | } | |
2608 | ||
4ffeaf35 MG |
2609 | if (zonelist_rescan) |
2610 | goto zonelist_scan; | |
2611 | ||
2612 | return NULL; | |
753ee728 MH |
2613 | } |
2614 | ||
29423e77 DR |
2615 | /* |
2616 | * Large machines with many possible nodes should not always dump per-node | |
2617 | * meminfo in irq context. | |
2618 | */ | |
2619 | static inline bool should_suppress_show_mem(void) | |
2620 | { | |
2621 | bool ret = false; | |
2622 | ||
2623 | #if NODES_SHIFT > 8 | |
2624 | ret = in_interrupt(); | |
2625 | #endif | |
2626 | return ret; | |
2627 | } | |
2628 | ||
a238ab5b DH |
2629 | static DEFINE_RATELIMIT_STATE(nopage_rs, |
2630 | DEFAULT_RATELIMIT_INTERVAL, | |
2631 | DEFAULT_RATELIMIT_BURST); | |
2632 | ||
d00181b9 | 2633 | void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...) |
a238ab5b | 2634 | { |
a238ab5b DH |
2635 | unsigned int filter = SHOW_MEM_FILTER_NODES; |
2636 | ||
c0a32fc5 SG |
2637 | if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || |
2638 | debug_guardpage_minorder() > 0) | |
a238ab5b DH |
2639 | return; |
2640 | ||
2641 | /* | |
2642 | * This documents exceptions given to allocations in certain | |
2643 | * contexts that are allowed to allocate outside current's set | |
2644 | * of allowed nodes. | |
2645 | */ | |
2646 | if (!(gfp_mask & __GFP_NOMEMALLOC)) | |
2647 | if (test_thread_flag(TIF_MEMDIE) || | |
2648 | (current->flags & (PF_MEMALLOC | PF_EXITING))) | |
2649 | filter &= ~SHOW_MEM_FILTER_NODES; | |
d0164adc | 2650 | if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) |
a238ab5b DH |
2651 | filter &= ~SHOW_MEM_FILTER_NODES; |
2652 | ||
2653 | if (fmt) { | |
3ee9a4f0 JP |
2654 | struct va_format vaf; |
2655 | va_list args; | |
2656 | ||
a238ab5b | 2657 | va_start(args, fmt); |
3ee9a4f0 JP |
2658 | |
2659 | vaf.fmt = fmt; | |
2660 | vaf.va = &args; | |
2661 | ||
2662 | pr_warn("%pV", &vaf); | |
2663 | ||
a238ab5b DH |
2664 | va_end(args); |
2665 | } | |
2666 | ||
d00181b9 | 2667 | pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n", |
3ee9a4f0 | 2668 | current->comm, order, gfp_mask); |
a238ab5b DH |
2669 | |
2670 | dump_stack(); | |
2671 | if (!should_suppress_show_mem()) | |
2672 | show_mem(filter); | |
2673 | } | |
2674 | ||
11e33f6a MG |
2675 | static inline struct page * |
2676 | __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 2677 | const struct alloc_context *ac, unsigned long *did_some_progress) |
11e33f6a | 2678 | { |
6e0fc46d DR |
2679 | struct oom_control oc = { |
2680 | .zonelist = ac->zonelist, | |
2681 | .nodemask = ac->nodemask, | |
2682 | .gfp_mask = gfp_mask, | |
2683 | .order = order, | |
6e0fc46d | 2684 | }; |
11e33f6a MG |
2685 | struct page *page; |
2686 | ||
9879de73 JW |
2687 | *did_some_progress = 0; |
2688 | ||
9879de73 | 2689 | /* |
dc56401f JW |
2690 | * Acquire the oom lock. If that fails, somebody else is |
2691 | * making progress for us. | |
9879de73 | 2692 | */ |
dc56401f | 2693 | if (!mutex_trylock(&oom_lock)) { |
9879de73 | 2694 | *did_some_progress = 1; |
11e33f6a | 2695 | schedule_timeout_uninterruptible(1); |
1da177e4 LT |
2696 | return NULL; |
2697 | } | |
6b1de916 | 2698 | |
11e33f6a MG |
2699 | /* |
2700 | * Go through the zonelist yet one more time, keep very high watermark | |
2701 | * here, this is only to catch a parallel oom killing, we must fail if | |
2702 | * we're still under heavy pressure. | |
2703 | */ | |
a9263751 VB |
2704 | page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, |
2705 | ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); | |
7fb1d9fc | 2706 | if (page) |
11e33f6a MG |
2707 | goto out; |
2708 | ||
4365a567 | 2709 | if (!(gfp_mask & __GFP_NOFAIL)) { |
9879de73 JW |
2710 | /* Coredumps can quickly deplete all memory reserves */ |
2711 | if (current->flags & PF_DUMPCORE) | |
2712 | goto out; | |
4365a567 KH |
2713 | /* The OOM killer will not help higher order allocs */ |
2714 | if (order > PAGE_ALLOC_COSTLY_ORDER) | |
2715 | goto out; | |
03668b3c | 2716 | /* The OOM killer does not needlessly kill tasks for lowmem */ |
a9263751 | 2717 | if (ac->high_zoneidx < ZONE_NORMAL) |
03668b3c | 2718 | goto out; |
9083905a | 2719 | /* The OOM killer does not compensate for IO-less reclaim */ |
cc873177 JW |
2720 | if (!(gfp_mask & __GFP_FS)) { |
2721 | /* | |
2722 | * XXX: Page reclaim didn't yield anything, | |
2723 | * and the OOM killer can't be invoked, but | |
9083905a | 2724 | * keep looping as per tradition. |
cc873177 JW |
2725 | */ |
2726 | *did_some_progress = 1; | |
9879de73 | 2727 | goto out; |
cc873177 | 2728 | } |
9083905a JW |
2729 | if (pm_suspended_storage()) |
2730 | goto out; | |
4167e9b2 | 2731 | /* The OOM killer may not free memory on a specific node */ |
4365a567 KH |
2732 | if (gfp_mask & __GFP_THISNODE) |
2733 | goto out; | |
2734 | } | |
11e33f6a | 2735 | /* Exhausted what can be done so it's blamo time */ |
6e0fc46d | 2736 | if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) |
c32b3cbe | 2737 | *did_some_progress = 1; |
11e33f6a | 2738 | out: |
dc56401f | 2739 | mutex_unlock(&oom_lock); |
11e33f6a MG |
2740 | return page; |
2741 | } | |
2742 | ||
56de7263 MG |
2743 | #ifdef CONFIG_COMPACTION |
2744 | /* Try memory compaction for high-order allocations before reclaim */ | |
2745 | static struct page * | |
2746 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
a9263751 VB |
2747 | int alloc_flags, const struct alloc_context *ac, |
2748 | enum migrate_mode mode, int *contended_compaction, | |
2749 | bool *deferred_compaction) | |
56de7263 | 2750 | { |
53853e2d | 2751 | unsigned long compact_result; |
98dd3b48 | 2752 | struct page *page; |
53853e2d VB |
2753 | |
2754 | if (!order) | |
66199712 | 2755 | return NULL; |
66199712 | 2756 | |
c06b1fca | 2757 | current->flags |= PF_MEMALLOC; |
1a6d53a1 VB |
2758 | compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, |
2759 | mode, contended_compaction); | |
c06b1fca | 2760 | current->flags &= ~PF_MEMALLOC; |
56de7263 | 2761 | |
98dd3b48 VB |
2762 | switch (compact_result) { |
2763 | case COMPACT_DEFERRED: | |
53853e2d | 2764 | *deferred_compaction = true; |
98dd3b48 VB |
2765 | /* fall-through */ |
2766 | case COMPACT_SKIPPED: | |
2767 | return NULL; | |
2768 | default: | |
2769 | break; | |
2770 | } | |
53853e2d | 2771 | |
98dd3b48 VB |
2772 | /* |
2773 | * At least in one zone compaction wasn't deferred or skipped, so let's | |
2774 | * count a compaction stall | |
2775 | */ | |
2776 | count_vm_event(COMPACTSTALL); | |
8fb74b9f | 2777 | |
a9263751 VB |
2778 | page = get_page_from_freelist(gfp_mask, order, |
2779 | alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | |
53853e2d | 2780 | |
98dd3b48 VB |
2781 | if (page) { |
2782 | struct zone *zone = page_zone(page); | |
53853e2d | 2783 | |
98dd3b48 VB |
2784 | zone->compact_blockskip_flush = false; |
2785 | compaction_defer_reset(zone, order, true); | |
2786 | count_vm_event(COMPACTSUCCESS); | |
2787 | return page; | |
2788 | } | |
56de7263 | 2789 | |
98dd3b48 VB |
2790 | /* |
2791 | * It's bad if compaction run occurs and fails. The most likely reason | |
2792 | * is that pages exist, but not enough to satisfy watermarks. | |
2793 | */ | |
2794 | count_vm_event(COMPACTFAIL); | |
66199712 | 2795 | |
98dd3b48 | 2796 | cond_resched(); |
56de7263 MG |
2797 | |
2798 | return NULL; | |
2799 | } | |
2800 | #else | |
2801 | static inline struct page * | |
2802 | __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, | |
a9263751 VB |
2803 | int alloc_flags, const struct alloc_context *ac, |
2804 | enum migrate_mode mode, int *contended_compaction, | |
2805 | bool *deferred_compaction) | |
56de7263 MG |
2806 | { |
2807 | return NULL; | |
2808 | } | |
2809 | #endif /* CONFIG_COMPACTION */ | |
2810 | ||
bba90710 MS |
2811 | /* Perform direct synchronous page reclaim */ |
2812 | static int | |
a9263751 VB |
2813 | __perform_reclaim(gfp_t gfp_mask, unsigned int order, |
2814 | const struct alloc_context *ac) | |
11e33f6a | 2815 | { |
11e33f6a | 2816 | struct reclaim_state reclaim_state; |
bba90710 | 2817 | int progress; |
11e33f6a MG |
2818 | |
2819 | cond_resched(); | |
2820 | ||
2821 | /* We now go into synchronous reclaim */ | |
2822 | cpuset_memory_pressure_bump(); | |
c06b1fca | 2823 | current->flags |= PF_MEMALLOC; |
11e33f6a MG |
2824 | lockdep_set_current_reclaim_state(gfp_mask); |
2825 | reclaim_state.reclaimed_slab = 0; | |
c06b1fca | 2826 | current->reclaim_state = &reclaim_state; |
11e33f6a | 2827 | |
a9263751 VB |
2828 | progress = try_to_free_pages(ac->zonelist, order, gfp_mask, |
2829 | ac->nodemask); | |
11e33f6a | 2830 | |
c06b1fca | 2831 | current->reclaim_state = NULL; |
11e33f6a | 2832 | lockdep_clear_current_reclaim_state(); |
c06b1fca | 2833 | current->flags &= ~PF_MEMALLOC; |
11e33f6a MG |
2834 | |
2835 | cond_resched(); | |
2836 | ||
bba90710 MS |
2837 | return progress; |
2838 | } | |
2839 | ||
2840 | /* The really slow allocator path where we enter direct reclaim */ | |
2841 | static inline struct page * | |
2842 | __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, | |
a9263751 VB |
2843 | int alloc_flags, const struct alloc_context *ac, |
2844 | unsigned long *did_some_progress) | |
bba90710 MS |
2845 | { |
2846 | struct page *page = NULL; | |
2847 | bool drained = false; | |
2848 | ||
a9263751 | 2849 | *did_some_progress = __perform_reclaim(gfp_mask, order, ac); |
9ee493ce MG |
2850 | if (unlikely(!(*did_some_progress))) |
2851 | return NULL; | |
11e33f6a | 2852 | |
9ee493ce | 2853 | retry: |
a9263751 VB |
2854 | page = get_page_from_freelist(gfp_mask, order, |
2855 | alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | |
9ee493ce MG |
2856 | |
2857 | /* | |
2858 | * If an allocation failed after direct reclaim, it could be because | |
0aaa29a5 MG |
2859 | * pages are pinned on the per-cpu lists or in high alloc reserves. |
2860 | * Shrink them them and try again | |
9ee493ce MG |
2861 | */ |
2862 | if (!page && !drained) { | |
0aaa29a5 | 2863 | unreserve_highatomic_pageblock(ac); |
93481ff0 | 2864 | drain_all_pages(NULL); |
9ee493ce MG |
2865 | drained = true; |
2866 | goto retry; | |
2867 | } | |
2868 | ||
11e33f6a MG |
2869 | return page; |
2870 | } | |
2871 | ||
a9263751 | 2872 | static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) |
3a025760 JW |
2873 | { |
2874 | struct zoneref *z; | |
2875 | struct zone *zone; | |
2876 | ||
a9263751 VB |
2877 | for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, |
2878 | ac->high_zoneidx, ac->nodemask) | |
2879 | wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); | |
3a025760 JW |
2880 | } |
2881 | ||
341ce06f PZ |
2882 | static inline int |
2883 | gfp_to_alloc_flags(gfp_t gfp_mask) | |
2884 | { | |
341ce06f | 2885 | int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; |
1da177e4 | 2886 | |
a56f57ff | 2887 | /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ |
e6223a3b | 2888 | BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); |
933e312e | 2889 | |
341ce06f PZ |
2890 | /* |
2891 | * The caller may dip into page reserves a bit more if the caller | |
2892 | * cannot run direct reclaim, or if the caller has realtime scheduling | |
2893 | * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will | |
d0164adc | 2894 | * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). |
341ce06f | 2895 | */ |
e6223a3b | 2896 | alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); |
1da177e4 | 2897 | |
d0164adc | 2898 | if (gfp_mask & __GFP_ATOMIC) { |
5c3240d9 | 2899 | /* |
b104a35d DR |
2900 | * Not worth trying to allocate harder for __GFP_NOMEMALLOC even |
2901 | * if it can't schedule. | |
5c3240d9 | 2902 | */ |
b104a35d | 2903 | if (!(gfp_mask & __GFP_NOMEMALLOC)) |
5c3240d9 | 2904 | alloc_flags |= ALLOC_HARDER; |
523b9458 | 2905 | /* |
b104a35d | 2906 | * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the |
344736f2 | 2907 | * comment for __cpuset_node_allowed(). |
523b9458 | 2908 | */ |
341ce06f | 2909 | alloc_flags &= ~ALLOC_CPUSET; |
c06b1fca | 2910 | } else if (unlikely(rt_task(current)) && !in_interrupt()) |
341ce06f PZ |
2911 | alloc_flags |= ALLOC_HARDER; |
2912 | ||
b37f1dd0 MG |
2913 | if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { |
2914 | if (gfp_mask & __GFP_MEMALLOC) | |
2915 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
907aed48 MG |
2916 | else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) |
2917 | alloc_flags |= ALLOC_NO_WATERMARKS; | |
2918 | else if (!in_interrupt() && | |
2919 | ((current->flags & PF_MEMALLOC) || | |
2920 | unlikely(test_thread_flag(TIF_MEMDIE)))) | |
341ce06f | 2921 | alloc_flags |= ALLOC_NO_WATERMARKS; |
1da177e4 | 2922 | } |
d95ea5d1 | 2923 | #ifdef CONFIG_CMA |
43e7a34d | 2924 | if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) |
d95ea5d1 BZ |
2925 | alloc_flags |= ALLOC_CMA; |
2926 | #endif | |
341ce06f PZ |
2927 | return alloc_flags; |
2928 | } | |
2929 | ||
072bb0aa MG |
2930 | bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) |
2931 | { | |
b37f1dd0 | 2932 | return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); |
072bb0aa MG |
2933 | } |
2934 | ||
d0164adc MG |
2935 | static inline bool is_thp_gfp_mask(gfp_t gfp_mask) |
2936 | { | |
2937 | return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE; | |
2938 | } | |
2939 | ||
11e33f6a MG |
2940 | static inline struct page * |
2941 | __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, | |
a9263751 | 2942 | struct alloc_context *ac) |
11e33f6a | 2943 | { |
d0164adc | 2944 | bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; |
11e33f6a MG |
2945 | struct page *page = NULL; |
2946 | int alloc_flags; | |
2947 | unsigned long pages_reclaimed = 0; | |
2948 | unsigned long did_some_progress; | |
e0b9daeb | 2949 | enum migrate_mode migration_mode = MIGRATE_ASYNC; |
66199712 | 2950 | bool deferred_compaction = false; |
1f9efdef | 2951 | int contended_compaction = COMPACT_CONTENDED_NONE; |
1da177e4 | 2952 | |
72807a74 MG |
2953 | /* |
2954 | * In the slowpath, we sanity check order to avoid ever trying to | |
2955 | * reclaim >= MAX_ORDER areas which will never succeed. Callers may | |
2956 | * be using allocators in order of preference for an area that is | |
2957 | * too large. | |
2958 | */ | |
1fc28b70 MG |
2959 | if (order >= MAX_ORDER) { |
2960 | WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); | |
72807a74 | 2961 | return NULL; |
1fc28b70 | 2962 | } |
1da177e4 | 2963 | |
d0164adc MG |
2964 | /* |
2965 | * We also sanity check to catch abuse of atomic reserves being used by | |
2966 | * callers that are not in atomic context. | |
2967 | */ | |
2968 | if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == | |
2969 | (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) | |
2970 | gfp_mask &= ~__GFP_ATOMIC; | |
2971 | ||
952f3b51 | 2972 | /* |
4167e9b2 DR |
2973 | * If this allocation cannot block and it is for a specific node, then |
2974 | * fail early. There's no need to wakeup kswapd or retry for a | |
2975 | * speculative node-specific allocation. | |
952f3b51 | 2976 | */ |
d0164adc | 2977 | if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim) |
952f3b51 CL |
2978 | goto nopage; |
2979 | ||
9879de73 | 2980 | retry: |
d0164adc | 2981 | if (gfp_mask & __GFP_KSWAPD_RECLAIM) |
a9263751 | 2982 | wake_all_kswapds(order, ac); |
1da177e4 | 2983 | |
9bf2229f | 2984 | /* |
7fb1d9fc RS |
2985 | * OK, we're below the kswapd watermark and have kicked background |
2986 | * reclaim. Now things get more complex, so set up alloc_flags according | |
2987 | * to how we want to proceed. | |
9bf2229f | 2988 | */ |
341ce06f | 2989 | alloc_flags = gfp_to_alloc_flags(gfp_mask); |
1da177e4 | 2990 | |
f33261d7 DR |
2991 | /* |
2992 | * Find the true preferred zone if the allocation is unconstrained by | |
2993 | * cpusets. | |
2994 | */ | |
a9263751 | 2995 | if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { |
d8846374 | 2996 | struct zoneref *preferred_zoneref; |
a9263751 VB |
2997 | preferred_zoneref = first_zones_zonelist(ac->zonelist, |
2998 | ac->high_zoneidx, NULL, &ac->preferred_zone); | |
2999 | ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); | |
d8846374 | 3000 | } |
f33261d7 | 3001 | |
341ce06f | 3002 | /* This is the last chance, in general, before the goto nopage. */ |
a9263751 VB |
3003 | page = get_page_from_freelist(gfp_mask, order, |
3004 | alloc_flags & ~ALLOC_NO_WATERMARKS, ac); | |
7fb1d9fc RS |
3005 | if (page) |
3006 | goto got_pg; | |
1da177e4 | 3007 | |
11e33f6a | 3008 | /* Allocate without watermarks if the context allows */ |
341ce06f | 3009 | if (alloc_flags & ALLOC_NO_WATERMARKS) { |
183f6371 MG |
3010 | /* |
3011 | * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds | |
3012 | * the allocation is high priority and these type of | |
3013 | * allocations are system rather than user orientated | |
3014 | */ | |
a9263751 | 3015 | ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); |
33d53103 MH |
3016 | page = get_page_from_freelist(gfp_mask, order, |
3017 | ALLOC_NO_WATERMARKS, ac); | |
3018 | if (page) | |
3019 | goto got_pg; | |
1da177e4 LT |
3020 | } |
3021 | ||
d0164adc MG |
3022 | /* Caller is not willing to reclaim, we can't balance anything */ |
3023 | if (!can_direct_reclaim) { | |
aed0a0e3 | 3024 | /* |
33d53103 MH |
3025 | * All existing users of the __GFP_NOFAIL are blockable, so warn |
3026 | * of any new users that actually allow this type of allocation | |
3027 | * to fail. | |
aed0a0e3 DR |
3028 | */ |
3029 | WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); | |
1da177e4 | 3030 | goto nopage; |
aed0a0e3 | 3031 | } |
1da177e4 | 3032 | |
341ce06f | 3033 | /* Avoid recursion of direct reclaim */ |
33d53103 MH |
3034 | if (current->flags & PF_MEMALLOC) { |
3035 | /* | |
3036 | * __GFP_NOFAIL request from this context is rather bizarre | |
3037 | * because we cannot reclaim anything and only can loop waiting | |
3038 | * for somebody to do a work for us. | |
3039 | */ | |
3040 | if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { | |
3041 | cond_resched(); | |
3042 | goto retry; | |
3043 | } | |
341ce06f | 3044 | goto nopage; |
33d53103 | 3045 | } |
341ce06f | 3046 | |
6583bb64 DR |
3047 | /* Avoid allocations with no watermarks from looping endlessly */ |
3048 | if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) | |
3049 | goto nopage; | |
3050 | ||
77f1fe6b MG |
3051 | /* |
3052 | * Try direct compaction. The first pass is asynchronous. Subsequent | |
3053 | * attempts after direct reclaim are synchronous | |
3054 | */ | |
a9263751 VB |
3055 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, |
3056 | migration_mode, | |
3057 | &contended_compaction, | |
53853e2d | 3058 | &deferred_compaction); |
56de7263 MG |
3059 | if (page) |
3060 | goto got_pg; | |
75f30861 | 3061 | |
1f9efdef | 3062 | /* Checks for THP-specific high-order allocations */ |
d0164adc | 3063 | if (is_thp_gfp_mask(gfp_mask)) { |
1f9efdef VB |
3064 | /* |
3065 | * If compaction is deferred for high-order allocations, it is | |
3066 | * because sync compaction recently failed. If this is the case | |
3067 | * and the caller requested a THP allocation, we do not want | |
3068 | * to heavily disrupt the system, so we fail the allocation | |
3069 | * instead of entering direct reclaim. | |
3070 | */ | |
3071 | if (deferred_compaction) | |
3072 | goto nopage; | |
3073 | ||
3074 | /* | |
3075 | * In all zones where compaction was attempted (and not | |
3076 | * deferred or skipped), lock contention has been detected. | |
3077 | * For THP allocation we do not want to disrupt the others | |
3078 | * so we fallback to base pages instead. | |
3079 | */ | |
3080 | if (contended_compaction == COMPACT_CONTENDED_LOCK) | |
3081 | goto nopage; | |
3082 | ||
3083 | /* | |
3084 | * If compaction was aborted due to need_resched(), we do not | |
3085 | * want to further increase allocation latency, unless it is | |
3086 | * khugepaged trying to collapse. | |
3087 | */ | |
3088 | if (contended_compaction == COMPACT_CONTENDED_SCHED | |
3089 | && !(current->flags & PF_KTHREAD)) | |
3090 | goto nopage; | |
3091 | } | |
66199712 | 3092 | |
8fe78048 DR |
3093 | /* |
3094 | * It can become very expensive to allocate transparent hugepages at | |
3095 | * fault, so use asynchronous memory compaction for THP unless it is | |
3096 | * khugepaged trying to collapse. | |
3097 | */ | |
d0164adc | 3098 | if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD)) |
8fe78048 DR |
3099 | migration_mode = MIGRATE_SYNC_LIGHT; |
3100 | ||
11e33f6a | 3101 | /* Try direct reclaim and then allocating */ |
a9263751 VB |
3102 | page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, |
3103 | &did_some_progress); | |
11e33f6a MG |
3104 | if (page) |
3105 | goto got_pg; | |
1da177e4 | 3106 | |
9083905a JW |
3107 | /* Do not loop if specifically requested */ |
3108 | if (gfp_mask & __GFP_NORETRY) | |
3109 | goto noretry; | |
3110 | ||
3111 | /* Keep reclaiming pages as long as there is reasonable progress */ | |
a41f24ea | 3112 | pages_reclaimed += did_some_progress; |
9083905a JW |
3113 | if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || |
3114 | ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { | |
11e33f6a | 3115 | /* Wait for some write requests to complete then retry */ |
a9263751 | 3116 | wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); |
9879de73 | 3117 | goto retry; |
1da177e4 LT |
3118 | } |
3119 | ||
9083905a JW |
3120 | /* Reclaim has failed us, start killing things */ |
3121 | page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); | |
3122 | if (page) | |
3123 | goto got_pg; | |
3124 | ||
3125 | /* Retry as long as the OOM killer is making progress */ | |
3126 | if (did_some_progress) | |
3127 | goto retry; | |
3128 | ||
3129 | noretry: | |
3130 | /* | |
3131 | * High-order allocations do not necessarily loop after | |
3132 | * direct reclaim and reclaim/compaction depends on compaction | |
3133 | * being called after reclaim so call directly if necessary | |
3134 | */ | |
3135 | page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, | |
3136 | ac, migration_mode, | |
3137 | &contended_compaction, | |
3138 | &deferred_compaction); | |
3139 | if (page) | |
3140 | goto got_pg; | |
1da177e4 | 3141 | nopage: |
a238ab5b | 3142 | warn_alloc_failed(gfp_mask, order, NULL); |
1da177e4 | 3143 | got_pg: |
072bb0aa | 3144 | return page; |
1da177e4 | 3145 | } |
11e33f6a MG |
3146 | |
3147 | /* | |
3148 | * This is the 'heart' of the zoned buddy allocator. | |
3149 | */ | |
3150 | struct page * | |
3151 | __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, | |
3152 | struct zonelist *zonelist, nodemask_t *nodemask) | |
3153 | { | |
d8846374 | 3154 | struct zoneref *preferred_zoneref; |
cc9a6c87 | 3155 | struct page *page = NULL; |
cc9a6c87 | 3156 | unsigned int cpuset_mems_cookie; |
3a025760 | 3157 | int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; |
91fbdc0f | 3158 | gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ |
a9263751 VB |
3159 | struct alloc_context ac = { |
3160 | .high_zoneidx = gfp_zone(gfp_mask), | |
3161 | .nodemask = nodemask, | |
3162 | .migratetype = gfpflags_to_migratetype(gfp_mask), | |
3163 | }; | |
11e33f6a | 3164 | |
dcce284a BH |
3165 | gfp_mask &= gfp_allowed_mask; |
3166 | ||
11e33f6a MG |
3167 | lockdep_trace_alloc(gfp_mask); |
3168 | ||
d0164adc | 3169 | might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); |
11e33f6a MG |
3170 | |
3171 | if (should_fail_alloc_page(gfp_mask, order)) | |
3172 | return NULL; | |
3173 | ||
3174 | /* | |
3175 | * Check the zones suitable for the gfp_mask contain at least one | |
3176 | * valid zone. It's possible to have an empty zonelist as a result | |
4167e9b2 | 3177 | * of __GFP_THISNODE and a memoryless node |
11e33f6a MG |
3178 | */ |
3179 | if (unlikely(!zonelist->_zonerefs->zone)) | |
3180 | return NULL; | |
3181 | ||
a9263751 | 3182 | if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) |
21bb9bd1 VB |
3183 | alloc_flags |= ALLOC_CMA; |
3184 | ||
cc9a6c87 | 3185 | retry_cpuset: |
d26914d1 | 3186 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 3187 | |
a9263751 VB |
3188 | /* We set it here, as __alloc_pages_slowpath might have changed it */ |
3189 | ac.zonelist = zonelist; | |
c9ab0c4f MG |
3190 | |
3191 | /* Dirty zone balancing only done in the fast path */ | |
3192 | ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE); | |
3193 | ||
5117f45d | 3194 | /* The preferred zone is used for statistics later */ |
a9263751 VB |
3195 | preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, |
3196 | ac.nodemask ? : &cpuset_current_mems_allowed, | |
3197 | &ac.preferred_zone); | |
3198 | if (!ac.preferred_zone) | |
cc9a6c87 | 3199 | goto out; |
a9263751 | 3200 | ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); |
5117f45d MG |
3201 | |
3202 | /* First allocation attempt */ | |
91fbdc0f | 3203 | alloc_mask = gfp_mask|__GFP_HARDWALL; |
a9263751 | 3204 | page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); |
21caf2fc ML |
3205 | if (unlikely(!page)) { |
3206 | /* | |
3207 | * Runtime PM, block IO and its error handling path | |
3208 | * can deadlock because I/O on the device might not | |
3209 | * complete. | |
3210 | */ | |
91fbdc0f | 3211 | alloc_mask = memalloc_noio_flags(gfp_mask); |
c9ab0c4f | 3212 | ac.spread_dirty_pages = false; |
91fbdc0f | 3213 | |
a9263751 | 3214 | page = __alloc_pages_slowpath(alloc_mask, order, &ac); |
21caf2fc | 3215 | } |
11e33f6a | 3216 | |
23f086f9 XQ |
3217 | if (kmemcheck_enabled && page) |
3218 | kmemcheck_pagealloc_alloc(page, order, gfp_mask); | |
3219 | ||
a9263751 | 3220 | trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); |
cc9a6c87 MG |
3221 | |
3222 | out: | |
3223 | /* | |
3224 | * When updating a task's mems_allowed, it is possible to race with | |
3225 | * parallel threads in such a way that an allocation can fail while | |
3226 | * the mask is being updated. If a page allocation is about to fail, | |
3227 | * check if the cpuset changed during allocation and if so, retry. | |
3228 | */ | |
d26914d1 | 3229 | if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) |
cc9a6c87 MG |
3230 | goto retry_cpuset; |
3231 | ||
11e33f6a | 3232 | return page; |
1da177e4 | 3233 | } |
d239171e | 3234 | EXPORT_SYMBOL(__alloc_pages_nodemask); |
1da177e4 LT |
3235 | |
3236 | /* | |
3237 | * Common helper functions. | |
3238 | */ | |
920c7a5d | 3239 | unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) |
1da177e4 | 3240 | { |
945a1113 AM |
3241 | struct page *page; |
3242 | ||
3243 | /* | |
3244 | * __get_free_pages() returns a 32-bit address, which cannot represent | |
3245 | * a highmem page | |
3246 | */ | |
3247 | VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); | |
3248 | ||
1da177e4 LT |
3249 | page = alloc_pages(gfp_mask, order); |
3250 | if (!page) | |
3251 | return 0; | |
3252 | return (unsigned long) page_address(page); | |
3253 | } | |
1da177e4 LT |
3254 | EXPORT_SYMBOL(__get_free_pages); |
3255 | ||
920c7a5d | 3256 | unsigned long get_zeroed_page(gfp_t gfp_mask) |
1da177e4 | 3257 | { |
945a1113 | 3258 | return __get_free_pages(gfp_mask | __GFP_ZERO, 0); |
1da177e4 | 3259 | } |
1da177e4 LT |
3260 | EXPORT_SYMBOL(get_zeroed_page); |
3261 | ||
920c7a5d | 3262 | void __free_pages(struct page *page, unsigned int order) |
1da177e4 | 3263 | { |
b5810039 | 3264 | if (put_page_testzero(page)) { |
1da177e4 | 3265 | if (order == 0) |
b745bc85 | 3266 | free_hot_cold_page(page, false); |
1da177e4 LT |
3267 | else |
3268 | __free_pages_ok(page, order); | |
3269 | } | |
3270 | } | |
3271 | ||
3272 | EXPORT_SYMBOL(__free_pages); | |
3273 | ||
920c7a5d | 3274 | void free_pages(unsigned long addr, unsigned int order) |
1da177e4 LT |
3275 | { |
3276 | if (addr != 0) { | |
725d704e | 3277 | VM_BUG_ON(!virt_addr_valid((void *)addr)); |
1da177e4 LT |
3278 | __free_pages(virt_to_page((void *)addr), order); |
3279 | } | |
3280 | } | |
3281 | ||
3282 | EXPORT_SYMBOL(free_pages); | |
3283 | ||
b63ae8ca AD |
3284 | /* |
3285 | * Page Fragment: | |
3286 | * An arbitrary-length arbitrary-offset area of memory which resides | |
3287 | * within a 0 or higher order page. Multiple fragments within that page | |
3288 | * are individually refcounted, in the page's reference counter. | |
3289 | * | |
3290 | * The page_frag functions below provide a simple allocation framework for | |
3291 | * page fragments. This is used by the network stack and network device | |
3292 | * drivers to provide a backing region of memory for use as either an | |
3293 | * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. | |
3294 | */ | |
3295 | static struct page *__page_frag_refill(struct page_frag_cache *nc, | |
3296 | gfp_t gfp_mask) | |
3297 | { | |
3298 | struct page *page = NULL; | |
3299 | gfp_t gfp = gfp_mask; | |
3300 | ||
3301 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3302 | gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | | |
3303 | __GFP_NOMEMALLOC; | |
3304 | page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, | |
3305 | PAGE_FRAG_CACHE_MAX_ORDER); | |
3306 | nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; | |
3307 | #endif | |
3308 | if (unlikely(!page)) | |
3309 | page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); | |
3310 | ||
3311 | nc->va = page ? page_address(page) : NULL; | |
3312 | ||
3313 | return page; | |
3314 | } | |
3315 | ||
3316 | void *__alloc_page_frag(struct page_frag_cache *nc, | |
3317 | unsigned int fragsz, gfp_t gfp_mask) | |
3318 | { | |
3319 | unsigned int size = PAGE_SIZE; | |
3320 | struct page *page; | |
3321 | int offset; | |
3322 | ||
3323 | if (unlikely(!nc->va)) { | |
3324 | refill: | |
3325 | page = __page_frag_refill(nc, gfp_mask); | |
3326 | if (!page) | |
3327 | return NULL; | |
3328 | ||
3329 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3330 | /* if size can vary use size else just use PAGE_SIZE */ | |
3331 | size = nc->size; | |
3332 | #endif | |
3333 | /* Even if we own the page, we do not use atomic_set(). | |
3334 | * This would break get_page_unless_zero() users. | |
3335 | */ | |
3336 | atomic_add(size - 1, &page->_count); | |
3337 | ||
3338 | /* reset page count bias and offset to start of new frag */ | |
2f064f34 | 3339 | nc->pfmemalloc = page_is_pfmemalloc(page); |
b63ae8ca AD |
3340 | nc->pagecnt_bias = size; |
3341 | nc->offset = size; | |
3342 | } | |
3343 | ||
3344 | offset = nc->offset - fragsz; | |
3345 | if (unlikely(offset < 0)) { | |
3346 | page = virt_to_page(nc->va); | |
3347 | ||
3348 | if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) | |
3349 | goto refill; | |
3350 | ||
3351 | #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) | |
3352 | /* if size can vary use size else just use PAGE_SIZE */ | |
3353 | size = nc->size; | |
3354 | #endif | |
3355 | /* OK, page count is 0, we can safely set it */ | |
3356 | atomic_set(&page->_count, size); | |
3357 | ||
3358 | /* reset page count bias and offset to start of new frag */ | |
3359 | nc->pagecnt_bias = size; | |
3360 | offset = size - fragsz; | |
3361 | } | |
3362 | ||
3363 | nc->pagecnt_bias--; | |
3364 | nc->offset = offset; | |
3365 | ||
3366 | return nc->va + offset; | |
3367 | } | |
3368 | EXPORT_SYMBOL(__alloc_page_frag); | |
3369 | ||
3370 | /* | |
3371 | * Frees a page fragment allocated out of either a compound or order 0 page. | |
3372 | */ | |
3373 | void __free_page_frag(void *addr) | |
3374 | { | |
3375 | struct page *page = virt_to_head_page(addr); | |
3376 | ||
3377 | if (unlikely(put_page_testzero(page))) | |
3378 | __free_pages_ok(page, compound_order(page)); | |
3379 | } | |
3380 | EXPORT_SYMBOL(__free_page_frag); | |
3381 | ||
6a1a0d3b | 3382 | /* |
52383431 | 3383 | * alloc_kmem_pages charges newly allocated pages to the kmem resource counter |
a9bb7e62 VD |
3384 | * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is |
3385 | * equivalent to alloc_pages. | |
6a1a0d3b | 3386 | * |
52383431 VD |
3387 | * It should be used when the caller would like to use kmalloc, but since the |
3388 | * allocation is large, it has to fall back to the page allocator. | |
3389 | */ | |
3390 | struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) | |
3391 | { | |
3392 | struct page *page; | |
52383431 | 3393 | |
52383431 | 3394 | page = alloc_pages(gfp_mask, order); |
d05e83a6 VD |
3395 | if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { |
3396 | __free_pages(page, order); | |
3397 | page = NULL; | |
3398 | } | |
52383431 VD |
3399 | return page; |
3400 | } | |
3401 | ||
3402 | struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) | |
3403 | { | |
3404 | struct page *page; | |
52383431 | 3405 | |
52383431 | 3406 | page = alloc_pages_node(nid, gfp_mask, order); |
d05e83a6 VD |
3407 | if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) { |
3408 | __free_pages(page, order); | |
3409 | page = NULL; | |
3410 | } | |
52383431 VD |
3411 | return page; |
3412 | } | |
3413 | ||
3414 | /* | |
3415 | * __free_kmem_pages and free_kmem_pages will free pages allocated with | |
3416 | * alloc_kmem_pages. | |
6a1a0d3b | 3417 | */ |
52383431 | 3418 | void __free_kmem_pages(struct page *page, unsigned int order) |
6a1a0d3b | 3419 | { |
d05e83a6 | 3420 | memcg_kmem_uncharge(page, order); |
6a1a0d3b GC |
3421 | __free_pages(page, order); |
3422 | } | |
3423 | ||
52383431 | 3424 | void free_kmem_pages(unsigned long addr, unsigned int order) |
6a1a0d3b GC |
3425 | { |
3426 | if (addr != 0) { | |
3427 | VM_BUG_ON(!virt_addr_valid((void *)addr)); | |
52383431 | 3428 | __free_kmem_pages(virt_to_page((void *)addr), order); |
6a1a0d3b GC |
3429 | } |
3430 | } | |
3431 | ||
d00181b9 KS |
3432 | static void *make_alloc_exact(unsigned long addr, unsigned int order, |
3433 | size_t size) | |
ee85c2e1 AK |
3434 | { |
3435 | if (addr) { | |
3436 | unsigned long alloc_end = addr + (PAGE_SIZE << order); | |
3437 | unsigned long used = addr + PAGE_ALIGN(size); | |
3438 | ||
3439 | split_page(virt_to_page((void *)addr), order); | |
3440 | while (used < alloc_end) { | |
3441 | free_page(used); | |
3442 | used += PAGE_SIZE; | |
3443 | } | |
3444 | } | |
3445 | return (void *)addr; | |
3446 | } | |
3447 | ||
2be0ffe2 TT |
3448 | /** |
3449 | * alloc_pages_exact - allocate an exact number physically-contiguous pages. | |
3450 | * @size: the number of bytes to allocate | |
3451 | * @gfp_mask: GFP flags for the allocation | |
3452 | * | |
3453 | * This function is similar to alloc_pages(), except that it allocates the | |
3454 | * minimum number of pages to satisfy the request. alloc_pages() can only | |
3455 | * allocate memory in power-of-two pages. | |
3456 | * | |
3457 | * This function is also limited by MAX_ORDER. | |
3458 | * | |
3459 | * Memory allocated by this function must be released by free_pages_exact(). | |
3460 | */ | |
3461 | void *alloc_pages_exact(size_t size, gfp_t gfp_mask) | |
3462 | { | |
3463 | unsigned int order = get_order(size); | |
3464 | unsigned long addr; | |
3465 | ||
3466 | addr = __get_free_pages(gfp_mask, order); | |
ee85c2e1 | 3467 | return make_alloc_exact(addr, order, size); |
2be0ffe2 TT |
3468 | } |
3469 | EXPORT_SYMBOL(alloc_pages_exact); | |
3470 | ||
ee85c2e1 AK |
3471 | /** |
3472 | * alloc_pages_exact_nid - allocate an exact number of physically-contiguous | |
3473 | * pages on a node. | |
b5e6ab58 | 3474 | * @nid: the preferred node ID where memory should be allocated |
ee85c2e1 AK |
3475 | * @size: the number of bytes to allocate |
3476 | * @gfp_mask: GFP flags for the allocation | |
3477 | * | |
3478 | * Like alloc_pages_exact(), but try to allocate on node nid first before falling | |
3479 | * back. | |
ee85c2e1 | 3480 | */ |
e1931811 | 3481 | void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) |
ee85c2e1 | 3482 | { |
d00181b9 | 3483 | unsigned int order = get_order(size); |
ee85c2e1 AK |
3484 | struct page *p = alloc_pages_node(nid, gfp_mask, order); |
3485 | if (!p) | |
3486 | return NULL; | |
3487 | return make_alloc_exact((unsigned long)page_address(p), order, size); | |
3488 | } | |
ee85c2e1 | 3489 | |
2be0ffe2 TT |
3490 | /** |
3491 | * free_pages_exact - release memory allocated via alloc_pages_exact() | |
3492 | * @virt: the value returned by alloc_pages_exact. | |
3493 | * @size: size of allocation, same value as passed to alloc_pages_exact(). | |
3494 | * | |
3495 | * Release the memory allocated by a previous call to alloc_pages_exact. | |
3496 | */ | |
3497 | void free_pages_exact(void *virt, size_t size) | |
3498 | { | |
3499 | unsigned long addr = (unsigned long)virt; | |
3500 | unsigned long end = addr + PAGE_ALIGN(size); | |
3501 | ||
3502 | while (addr < end) { | |
3503 | free_page(addr); | |
3504 | addr += PAGE_SIZE; | |
3505 | } | |
3506 | } | |
3507 | EXPORT_SYMBOL(free_pages_exact); | |
3508 | ||
e0fb5815 ZY |
3509 | /** |
3510 | * nr_free_zone_pages - count number of pages beyond high watermark | |
3511 | * @offset: The zone index of the highest zone | |
3512 | * | |
3513 | * nr_free_zone_pages() counts the number of counts pages which are beyond the | |
3514 | * high watermark within all zones at or below a given zone index. For each | |
3515 | * zone, the number of pages is calculated as: | |
834405c3 | 3516 | * managed_pages - high_pages |
e0fb5815 | 3517 | */ |
ebec3862 | 3518 | static unsigned long nr_free_zone_pages(int offset) |
1da177e4 | 3519 | { |
dd1a239f | 3520 | struct zoneref *z; |
54a6eb5c MG |
3521 | struct zone *zone; |
3522 | ||
e310fd43 | 3523 | /* Just pick one node, since fallback list is circular */ |
ebec3862 | 3524 | unsigned long sum = 0; |
1da177e4 | 3525 | |
0e88460d | 3526 | struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); |
1da177e4 | 3527 | |
54a6eb5c | 3528 | for_each_zone_zonelist(zone, z, zonelist, offset) { |
b40da049 | 3529 | unsigned long size = zone->managed_pages; |
41858966 | 3530 | unsigned long high = high_wmark_pages(zone); |
e310fd43 MB |
3531 | if (size > high) |
3532 | sum += size - high; | |
1da177e4 LT |
3533 | } |
3534 | ||
3535 | return sum; | |
3536 | } | |
3537 | ||
e0fb5815 ZY |
3538 | /** |
3539 | * nr_free_buffer_pages - count number of pages beyond high watermark | |
3540 | * | |
3541 | * nr_free_buffer_pages() counts the number of pages which are beyond the high | |
3542 | * watermark within ZONE_DMA and ZONE_NORMAL. | |
1da177e4 | 3543 | */ |
ebec3862 | 3544 | unsigned long nr_free_buffer_pages(void) |
1da177e4 | 3545 | { |
af4ca457 | 3546 | return nr_free_zone_pages(gfp_zone(GFP_USER)); |
1da177e4 | 3547 | } |
c2f1a551 | 3548 | EXPORT_SYMBOL_GPL(nr_free_buffer_pages); |
1da177e4 | 3549 | |
e0fb5815 ZY |
3550 | /** |
3551 | * nr_free_pagecache_pages - count number of pages beyond high watermark | |
3552 | * | |
3553 | * nr_free_pagecache_pages() counts the number of pages which are beyond the | |
3554 | * high watermark within all zones. | |
1da177e4 | 3555 | */ |
ebec3862 | 3556 | unsigned long nr_free_pagecache_pages(void) |
1da177e4 | 3557 | { |
2a1e274a | 3558 | return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); |
1da177e4 | 3559 | } |
08e0f6a9 CL |
3560 | |
3561 | static inline void show_node(struct zone *zone) | |
1da177e4 | 3562 | { |
e5adfffc | 3563 | if (IS_ENABLED(CONFIG_NUMA)) |
25ba77c1 | 3564 | printk("Node %d ", zone_to_nid(zone)); |
1da177e4 | 3565 | } |
1da177e4 | 3566 | |
1da177e4 LT |
3567 | void si_meminfo(struct sysinfo *val) |
3568 | { | |
3569 | val->totalram = totalram_pages; | |
cc7452b6 | 3570 | val->sharedram = global_page_state(NR_SHMEM); |
d23ad423 | 3571 | val->freeram = global_page_state(NR_FREE_PAGES); |
1da177e4 | 3572 | val->bufferram = nr_blockdev_pages(); |
1da177e4 LT |
3573 | val->totalhigh = totalhigh_pages; |
3574 | val->freehigh = nr_free_highpages(); | |
1da177e4 LT |
3575 | val->mem_unit = PAGE_SIZE; |
3576 | } | |
3577 | ||
3578 | EXPORT_SYMBOL(si_meminfo); | |
3579 | ||
3580 | #ifdef CONFIG_NUMA | |
3581 | void si_meminfo_node(struct sysinfo *val, int nid) | |
3582 | { | |
cdd91a77 JL |
3583 | int zone_type; /* needs to be signed */ |
3584 | unsigned long managed_pages = 0; | |
1da177e4 LT |
3585 | pg_data_t *pgdat = NODE_DATA(nid); |
3586 | ||
cdd91a77 JL |
3587 | for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) |
3588 | managed_pages += pgdat->node_zones[zone_type].managed_pages; | |
3589 | val->totalram = managed_pages; | |
cc7452b6 | 3590 | val->sharedram = node_page_state(nid, NR_SHMEM); |
d23ad423 | 3591 | val->freeram = node_page_state(nid, NR_FREE_PAGES); |
98d2b0eb | 3592 | #ifdef CONFIG_HIGHMEM |
b40da049 | 3593 | val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; |
d23ad423 CL |
3594 | val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], |
3595 | NR_FREE_PAGES); | |
98d2b0eb CL |
3596 | #else |
3597 | val->totalhigh = 0; | |
3598 | val->freehigh = 0; | |
3599 | #endif | |
1da177e4 LT |
3600 | val->mem_unit = PAGE_SIZE; |
3601 | } | |
3602 | #endif | |
3603 | ||
ddd588b5 | 3604 | /* |
7bf02ea2 DR |
3605 | * Determine whether the node should be displayed or not, depending on whether |
3606 | * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). | |
ddd588b5 | 3607 | */ |
7bf02ea2 | 3608 | bool skip_free_areas_node(unsigned int flags, int nid) |
ddd588b5 DR |
3609 | { |
3610 | bool ret = false; | |
cc9a6c87 | 3611 | unsigned int cpuset_mems_cookie; |
ddd588b5 DR |
3612 | |
3613 | if (!(flags & SHOW_MEM_FILTER_NODES)) | |
3614 | goto out; | |
3615 | ||
cc9a6c87 | 3616 | do { |
d26914d1 | 3617 | cpuset_mems_cookie = read_mems_allowed_begin(); |
cc9a6c87 | 3618 | ret = !node_isset(nid, cpuset_current_mems_allowed); |
d26914d1 | 3619 | } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
ddd588b5 DR |
3620 | out: |
3621 | return ret; | |
3622 | } | |
3623 | ||
1da177e4 LT |
3624 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
3625 | ||
377e4f16 RV |
3626 | static void show_migration_types(unsigned char type) |
3627 | { | |
3628 | static const char types[MIGRATE_TYPES] = { | |
3629 | [MIGRATE_UNMOVABLE] = 'U', | |
377e4f16 | 3630 | [MIGRATE_MOVABLE] = 'M', |
475a2f90 VB |
3631 | [MIGRATE_RECLAIMABLE] = 'E', |
3632 | [MIGRATE_HIGHATOMIC] = 'H', | |
377e4f16 RV |
3633 | #ifdef CONFIG_CMA |
3634 | [MIGRATE_CMA] = 'C', | |
3635 | #endif | |
194159fb | 3636 | #ifdef CONFIG_MEMORY_ISOLATION |
377e4f16 | 3637 | [MIGRATE_ISOLATE] = 'I', |
194159fb | 3638 | #endif |
377e4f16 RV |
3639 | }; |
3640 | char tmp[MIGRATE_TYPES + 1]; | |
3641 | char *p = tmp; | |
3642 | int i; | |
3643 | ||
3644 | for (i = 0; i < MIGRATE_TYPES; i++) { | |
3645 | if (type & (1 << i)) | |
3646 | *p++ = types[i]; | |
3647 | } | |
3648 | ||
3649 | *p = '\0'; | |
3650 | printk("(%s) ", tmp); | |
3651 | } | |
3652 | ||
1da177e4 LT |
3653 | /* |
3654 | * Show free area list (used inside shift_scroll-lock stuff) | |
3655 | * We also calculate the percentage fragmentation. We do this by counting the | |
3656 | * memory on each free list with the exception of the first item on the list. | |
d1bfcdb8 KK |
3657 | * |
3658 | * Bits in @filter: | |
3659 | * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's | |
3660 | * cpuset. | |
1da177e4 | 3661 | */ |
7bf02ea2 | 3662 | void show_free_areas(unsigned int filter) |
1da177e4 | 3663 | { |
d1bfcdb8 | 3664 | unsigned long free_pcp = 0; |
c7241913 | 3665 | int cpu; |
1da177e4 LT |
3666 | struct zone *zone; |
3667 | ||
ee99c71c | 3668 | for_each_populated_zone(zone) { |
7bf02ea2 | 3669 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3670 | continue; |
d1bfcdb8 | 3671 | |
761b0677 KK |
3672 | for_each_online_cpu(cpu) |
3673 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
1da177e4 LT |
3674 | } |
3675 | ||
a731286d KM |
3676 | printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" |
3677 | " active_file:%lu inactive_file:%lu isolated_file:%lu\n" | |
d1bfcdb8 KK |
3678 | " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" |
3679 | " slab_reclaimable:%lu slab_unreclaimable:%lu\n" | |
d1ce749a | 3680 | " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" |
d1bfcdb8 | 3681 | " free:%lu free_pcp:%lu free_cma:%lu\n", |
4f98a2fe | 3682 | global_page_state(NR_ACTIVE_ANON), |
4f98a2fe | 3683 | global_page_state(NR_INACTIVE_ANON), |
a731286d KM |
3684 | global_page_state(NR_ISOLATED_ANON), |
3685 | global_page_state(NR_ACTIVE_FILE), | |
4f98a2fe | 3686 | global_page_state(NR_INACTIVE_FILE), |
a731286d | 3687 | global_page_state(NR_ISOLATED_FILE), |
7b854121 | 3688 | global_page_state(NR_UNEVICTABLE), |
b1e7a8fd | 3689 | global_page_state(NR_FILE_DIRTY), |
ce866b34 | 3690 | global_page_state(NR_WRITEBACK), |
fd39fc85 | 3691 | global_page_state(NR_UNSTABLE_NFS), |
3701b033 KM |
3692 | global_page_state(NR_SLAB_RECLAIMABLE), |
3693 | global_page_state(NR_SLAB_UNRECLAIMABLE), | |
65ba55f5 | 3694 | global_page_state(NR_FILE_MAPPED), |
4b02108a | 3695 | global_page_state(NR_SHMEM), |
a25700a5 | 3696 | global_page_state(NR_PAGETABLE), |
d1ce749a | 3697 | global_page_state(NR_BOUNCE), |
d1bfcdb8 KK |
3698 | global_page_state(NR_FREE_PAGES), |
3699 | free_pcp, | |
d1ce749a | 3700 | global_page_state(NR_FREE_CMA_PAGES)); |
1da177e4 | 3701 | |
ee99c71c | 3702 | for_each_populated_zone(zone) { |
1da177e4 LT |
3703 | int i; |
3704 | ||
7bf02ea2 | 3705 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3706 | continue; |
d1bfcdb8 KK |
3707 | |
3708 | free_pcp = 0; | |
3709 | for_each_online_cpu(cpu) | |
3710 | free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; | |
3711 | ||
1da177e4 LT |
3712 | show_node(zone); |
3713 | printk("%s" | |
3714 | " free:%lukB" | |
3715 | " min:%lukB" | |
3716 | " low:%lukB" | |
3717 | " high:%lukB" | |
4f98a2fe RR |
3718 | " active_anon:%lukB" |
3719 | " inactive_anon:%lukB" | |
3720 | " active_file:%lukB" | |
3721 | " inactive_file:%lukB" | |
7b854121 | 3722 | " unevictable:%lukB" |
a731286d KM |
3723 | " isolated(anon):%lukB" |
3724 | " isolated(file):%lukB" | |
1da177e4 | 3725 | " present:%lukB" |
9feedc9d | 3726 | " managed:%lukB" |
4a0aa73f KM |
3727 | " mlocked:%lukB" |
3728 | " dirty:%lukB" | |
3729 | " writeback:%lukB" | |
3730 | " mapped:%lukB" | |
4b02108a | 3731 | " shmem:%lukB" |
4a0aa73f KM |
3732 | " slab_reclaimable:%lukB" |
3733 | " slab_unreclaimable:%lukB" | |
c6a7f572 | 3734 | " kernel_stack:%lukB" |
4a0aa73f KM |
3735 | " pagetables:%lukB" |
3736 | " unstable:%lukB" | |
3737 | " bounce:%lukB" | |
d1bfcdb8 KK |
3738 | " free_pcp:%lukB" |
3739 | " local_pcp:%ukB" | |
d1ce749a | 3740 | " free_cma:%lukB" |
4a0aa73f | 3741 | " writeback_tmp:%lukB" |
1da177e4 LT |
3742 | " pages_scanned:%lu" |
3743 | " all_unreclaimable? %s" | |
3744 | "\n", | |
3745 | zone->name, | |
88f5acf8 | 3746 | K(zone_page_state(zone, NR_FREE_PAGES)), |
41858966 MG |
3747 | K(min_wmark_pages(zone)), |
3748 | K(low_wmark_pages(zone)), | |
3749 | K(high_wmark_pages(zone)), | |
4f98a2fe RR |
3750 | K(zone_page_state(zone, NR_ACTIVE_ANON)), |
3751 | K(zone_page_state(zone, NR_INACTIVE_ANON)), | |
3752 | K(zone_page_state(zone, NR_ACTIVE_FILE)), | |
3753 | K(zone_page_state(zone, NR_INACTIVE_FILE)), | |
7b854121 | 3754 | K(zone_page_state(zone, NR_UNEVICTABLE)), |
a731286d KM |
3755 | K(zone_page_state(zone, NR_ISOLATED_ANON)), |
3756 | K(zone_page_state(zone, NR_ISOLATED_FILE)), | |
1da177e4 | 3757 | K(zone->present_pages), |
9feedc9d | 3758 | K(zone->managed_pages), |
4a0aa73f KM |
3759 | K(zone_page_state(zone, NR_MLOCK)), |
3760 | K(zone_page_state(zone, NR_FILE_DIRTY)), | |
3761 | K(zone_page_state(zone, NR_WRITEBACK)), | |
3762 | K(zone_page_state(zone, NR_FILE_MAPPED)), | |
4b02108a | 3763 | K(zone_page_state(zone, NR_SHMEM)), |
4a0aa73f KM |
3764 | K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), |
3765 | K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), | |
c6a7f572 KM |
3766 | zone_page_state(zone, NR_KERNEL_STACK) * |
3767 | THREAD_SIZE / 1024, | |
4a0aa73f KM |
3768 | K(zone_page_state(zone, NR_PAGETABLE)), |
3769 | K(zone_page_state(zone, NR_UNSTABLE_NFS)), | |
3770 | K(zone_page_state(zone, NR_BOUNCE)), | |
d1bfcdb8 KK |
3771 | K(free_pcp), |
3772 | K(this_cpu_read(zone->pageset->pcp.count)), | |
d1ce749a | 3773 | K(zone_page_state(zone, NR_FREE_CMA_PAGES)), |
4a0aa73f | 3774 | K(zone_page_state(zone, NR_WRITEBACK_TEMP)), |
0d5d823a | 3775 | K(zone_page_state(zone, NR_PAGES_SCANNED)), |
6e543d57 | 3776 | (!zone_reclaimable(zone) ? "yes" : "no") |
1da177e4 LT |
3777 | ); |
3778 | printk("lowmem_reserve[]:"); | |
3779 | for (i = 0; i < MAX_NR_ZONES; i++) | |
3484b2de | 3780 | printk(" %ld", zone->lowmem_reserve[i]); |
1da177e4 LT |
3781 | printk("\n"); |
3782 | } | |
3783 | ||
ee99c71c | 3784 | for_each_populated_zone(zone) { |
d00181b9 KS |
3785 | unsigned int order; |
3786 | unsigned long nr[MAX_ORDER], flags, total = 0; | |
377e4f16 | 3787 | unsigned char types[MAX_ORDER]; |
1da177e4 | 3788 | |
7bf02ea2 | 3789 | if (skip_free_areas_node(filter, zone_to_nid(zone))) |
ddd588b5 | 3790 | continue; |
1da177e4 LT |
3791 | show_node(zone); |
3792 | printk("%s: ", zone->name); | |
1da177e4 LT |
3793 | |
3794 | spin_lock_irqsave(&zone->lock, flags); | |
3795 | for (order = 0; order < MAX_ORDER; order++) { | |
377e4f16 RV |
3796 | struct free_area *area = &zone->free_area[order]; |
3797 | int type; | |
3798 | ||
3799 | nr[order] = area->nr_free; | |
8f9de51a | 3800 | total += nr[order] << order; |
377e4f16 RV |
3801 | |
3802 | types[order] = 0; | |
3803 | for (type = 0; type < MIGRATE_TYPES; type++) { | |
3804 | if (!list_empty(&area->free_list[type])) | |
3805 | types[order] |= 1 << type; | |
3806 | } | |
1da177e4 LT |
3807 | } |
3808 | spin_unlock_irqrestore(&zone->lock, flags); | |
377e4f16 | 3809 | for (order = 0; order < MAX_ORDER; order++) { |
8f9de51a | 3810 | printk("%lu*%lukB ", nr[order], K(1UL) << order); |
377e4f16 RV |
3811 | if (nr[order]) |
3812 | show_migration_types(types[order]); | |
3813 | } | |
1da177e4 LT |
3814 | printk("= %lukB\n", K(total)); |
3815 | } | |
3816 | ||
949f7ec5 DR |
3817 | hugetlb_show_meminfo(); |
3818 | ||
e6f3602d LW |
3819 | printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); |
3820 | ||
1da177e4 LT |
3821 | show_swap_cache_info(); |
3822 | } | |
3823 | ||
19770b32 MG |
3824 | static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) |
3825 | { | |
3826 | zoneref->zone = zone; | |
3827 | zoneref->zone_idx = zone_idx(zone); | |
3828 | } | |
3829 | ||
1da177e4 LT |
3830 | /* |
3831 | * Builds allocation fallback zone lists. | |
1a93205b CL |
3832 | * |
3833 | * Add all populated zones of a node to the zonelist. | |
1da177e4 | 3834 | */ |
f0c0b2b8 | 3835 | static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, |
bc732f1d | 3836 | int nr_zones) |
1da177e4 | 3837 | { |
1a93205b | 3838 | struct zone *zone; |
bc732f1d | 3839 | enum zone_type zone_type = MAX_NR_ZONES; |
02a68a5e CL |
3840 | |
3841 | do { | |
2f6726e5 | 3842 | zone_type--; |
070f8032 | 3843 | zone = pgdat->node_zones + zone_type; |
1a93205b | 3844 | if (populated_zone(zone)) { |
dd1a239f MG |
3845 | zoneref_set_zone(zone, |
3846 | &zonelist->_zonerefs[nr_zones++]); | |
070f8032 | 3847 | check_highest_zone(zone_type); |
1da177e4 | 3848 | } |
2f6726e5 | 3849 | } while (zone_type); |
bc732f1d | 3850 | |
070f8032 | 3851 | return nr_zones; |
1da177e4 LT |
3852 | } |
3853 | ||
f0c0b2b8 KH |
3854 | |
3855 | /* | |
3856 | * zonelist_order: | |
3857 | * 0 = automatic detection of better ordering. | |
3858 | * 1 = order by ([node] distance, -zonetype) | |
3859 | * 2 = order by (-zonetype, [node] distance) | |
3860 | * | |
3861 | * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create | |
3862 | * the same zonelist. So only NUMA can configure this param. | |
3863 | */ | |
3864 | #define ZONELIST_ORDER_DEFAULT 0 | |
3865 | #define ZONELIST_ORDER_NODE 1 | |
3866 | #define ZONELIST_ORDER_ZONE 2 | |
3867 | ||
3868 | /* zonelist order in the kernel. | |
3869 | * set_zonelist_order() will set this to NODE or ZONE. | |
3870 | */ | |
3871 | static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3872 | static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; | |
3873 | ||
3874 | ||
1da177e4 | 3875 | #ifdef CONFIG_NUMA |
f0c0b2b8 KH |
3876 | /* The value user specified ....changed by config */ |
3877 | static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3878 | /* string for sysctl */ | |
3879 | #define NUMA_ZONELIST_ORDER_LEN 16 | |
3880 | char numa_zonelist_order[16] = "default"; | |
3881 | ||
3882 | /* | |
3883 | * interface for configure zonelist ordering. | |
3884 | * command line option "numa_zonelist_order" | |
3885 | * = "[dD]efault - default, automatic configuration. | |
3886 | * = "[nN]ode - order by node locality, then by zone within node | |
3887 | * = "[zZ]one - order by zone, then by locality within zone | |
3888 | */ | |
3889 | ||
3890 | static int __parse_numa_zonelist_order(char *s) | |
3891 | { | |
3892 | if (*s == 'd' || *s == 'D') { | |
3893 | user_zonelist_order = ZONELIST_ORDER_DEFAULT; | |
3894 | } else if (*s == 'n' || *s == 'N') { | |
3895 | user_zonelist_order = ZONELIST_ORDER_NODE; | |
3896 | } else if (*s == 'z' || *s == 'Z') { | |
3897 | user_zonelist_order = ZONELIST_ORDER_ZONE; | |
3898 | } else { | |
3899 | printk(KERN_WARNING | |
3900 | "Ignoring invalid numa_zonelist_order value: " | |
3901 | "%s\n", s); | |
3902 | return -EINVAL; | |
3903 | } | |
3904 | return 0; | |
3905 | } | |
3906 | ||
3907 | static __init int setup_numa_zonelist_order(char *s) | |
3908 | { | |
ecb256f8 VL |
3909 | int ret; |
3910 | ||
3911 | if (!s) | |
3912 | return 0; | |
3913 | ||
3914 | ret = __parse_numa_zonelist_order(s); | |
3915 | if (ret == 0) | |
3916 | strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); | |
3917 | ||
3918 | return ret; | |
f0c0b2b8 KH |
3919 | } |
3920 | early_param("numa_zonelist_order", setup_numa_zonelist_order); | |
3921 | ||
3922 | /* | |
3923 | * sysctl handler for numa_zonelist_order | |
3924 | */ | |
cccad5b9 | 3925 | int numa_zonelist_order_handler(struct ctl_table *table, int write, |
8d65af78 | 3926 | void __user *buffer, size_t *length, |
f0c0b2b8 KH |
3927 | loff_t *ppos) |
3928 | { | |
3929 | char saved_string[NUMA_ZONELIST_ORDER_LEN]; | |
3930 | int ret; | |
443c6f14 | 3931 | static DEFINE_MUTEX(zl_order_mutex); |
f0c0b2b8 | 3932 | |
443c6f14 | 3933 | mutex_lock(&zl_order_mutex); |
dacbde09 CG |
3934 | if (write) { |
3935 | if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { | |
3936 | ret = -EINVAL; | |
3937 | goto out; | |
3938 | } | |
3939 | strcpy(saved_string, (char *)table->data); | |
3940 | } | |
8d65af78 | 3941 | ret = proc_dostring(table, write, buffer, length, ppos); |
f0c0b2b8 | 3942 | if (ret) |
443c6f14 | 3943 | goto out; |
f0c0b2b8 KH |
3944 | if (write) { |
3945 | int oldval = user_zonelist_order; | |
dacbde09 CG |
3946 | |
3947 | ret = __parse_numa_zonelist_order((char *)table->data); | |
3948 | if (ret) { | |
f0c0b2b8 KH |
3949 | /* |
3950 | * bogus value. restore saved string | |
3951 | */ | |
dacbde09 | 3952 | strncpy((char *)table->data, saved_string, |
f0c0b2b8 KH |
3953 | NUMA_ZONELIST_ORDER_LEN); |
3954 | user_zonelist_order = oldval; | |
4eaf3f64 HL |
3955 | } else if (oldval != user_zonelist_order) { |
3956 | mutex_lock(&zonelists_mutex); | |
9adb62a5 | 3957 | build_all_zonelists(NULL, NULL); |
4eaf3f64 HL |
3958 | mutex_unlock(&zonelists_mutex); |
3959 | } | |
f0c0b2b8 | 3960 | } |
443c6f14 AK |
3961 | out: |
3962 | mutex_unlock(&zl_order_mutex); | |
3963 | return ret; | |
f0c0b2b8 KH |
3964 | } |
3965 | ||
3966 | ||
62bc62a8 | 3967 | #define MAX_NODE_LOAD (nr_online_nodes) |
f0c0b2b8 KH |
3968 | static int node_load[MAX_NUMNODES]; |
3969 | ||
1da177e4 | 3970 | /** |
4dc3b16b | 3971 | * find_next_best_node - find the next node that should appear in a given node's fallback list |
1da177e4 LT |
3972 | * @node: node whose fallback list we're appending |
3973 | * @used_node_mask: nodemask_t of already used nodes | |
3974 | * | |
3975 | * We use a number of factors to determine which is the next node that should | |
3976 | * appear on a given node's fallback list. The node should not have appeared | |
3977 | * already in @node's fallback list, and it should be the next closest node | |
3978 | * according to the distance array (which contains arbitrary distance values | |
3979 | * from each node to each node in the system), and should also prefer nodes | |
3980 | * with no CPUs, since presumably they'll have very little allocation pressure | |
3981 | * on them otherwise. | |
3982 | * It returns -1 if no node is found. | |
3983 | */ | |
f0c0b2b8 | 3984 | static int find_next_best_node(int node, nodemask_t *used_node_mask) |
1da177e4 | 3985 | { |
4cf808eb | 3986 | int n, val; |
1da177e4 | 3987 | int min_val = INT_MAX; |
00ef2d2f | 3988 | int best_node = NUMA_NO_NODE; |
a70f7302 | 3989 | const struct cpumask *tmp = cpumask_of_node(0); |
1da177e4 | 3990 | |
4cf808eb LT |
3991 | /* Use the local node if we haven't already */ |
3992 | if (!node_isset(node, *used_node_mask)) { | |
3993 | node_set(node, *used_node_mask); | |
3994 | return node; | |
3995 | } | |
1da177e4 | 3996 | |
4b0ef1fe | 3997 | for_each_node_state(n, N_MEMORY) { |
1da177e4 LT |
3998 | |
3999 | /* Don't want a node to appear more than once */ | |
4000 | if (node_isset(n, *used_node_mask)) | |
4001 | continue; | |
4002 | ||
1da177e4 LT |
4003 | /* Use the distance array to find the distance */ |
4004 | val = node_distance(node, n); | |
4005 | ||
4cf808eb LT |
4006 | /* Penalize nodes under us ("prefer the next node") */ |
4007 | val += (n < node); | |
4008 | ||
1da177e4 | 4009 | /* Give preference to headless and unused nodes */ |
a70f7302 RR |
4010 | tmp = cpumask_of_node(n); |
4011 | if (!cpumask_empty(tmp)) | |
1da177e4 LT |
4012 | val += PENALTY_FOR_NODE_WITH_CPUS; |
4013 | ||
4014 | /* Slight preference for less loaded node */ | |
4015 | val *= (MAX_NODE_LOAD*MAX_NUMNODES); | |
4016 | val += node_load[n]; | |
4017 | ||
4018 | if (val < min_val) { | |
4019 | min_val = val; | |
4020 | best_node = n; | |
4021 | } | |
4022 | } | |
4023 | ||
4024 | if (best_node >= 0) | |
4025 | node_set(best_node, *used_node_mask); | |
4026 | ||
4027 | return best_node; | |
4028 | } | |
4029 | ||
f0c0b2b8 KH |
4030 | |
4031 | /* | |
4032 | * Build zonelists ordered by node and zones within node. | |
4033 | * This results in maximum locality--normal zone overflows into local | |
4034 | * DMA zone, if any--but risks exhausting DMA zone. | |
4035 | */ | |
4036 | static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) | |
1da177e4 | 4037 | { |
f0c0b2b8 | 4038 | int j; |
1da177e4 | 4039 | struct zonelist *zonelist; |
f0c0b2b8 | 4040 | |
54a6eb5c | 4041 | zonelist = &pgdat->node_zonelists[0]; |
dd1a239f | 4042 | for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) |
54a6eb5c | 4043 | ; |
bc732f1d | 4044 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
dd1a239f MG |
4045 | zonelist->_zonerefs[j].zone = NULL; |
4046 | zonelist->_zonerefs[j].zone_idx = 0; | |
f0c0b2b8 KH |
4047 | } |
4048 | ||
523b9458 CL |
4049 | /* |
4050 | * Build gfp_thisnode zonelists | |
4051 | */ | |
4052 | static void build_thisnode_zonelists(pg_data_t *pgdat) | |
4053 | { | |
523b9458 CL |
4054 | int j; |
4055 | struct zonelist *zonelist; | |
4056 | ||
54a6eb5c | 4057 | zonelist = &pgdat->node_zonelists[1]; |
bc732f1d | 4058 | j = build_zonelists_node(pgdat, zonelist, 0); |
dd1a239f MG |
4059 | zonelist->_zonerefs[j].zone = NULL; |
4060 | zonelist->_zonerefs[j].zone_idx = 0; | |
523b9458 CL |
4061 | } |
4062 | ||
f0c0b2b8 KH |
4063 | /* |
4064 | * Build zonelists ordered by zone and nodes within zones. | |
4065 | * This results in conserving DMA zone[s] until all Normal memory is | |
4066 | * exhausted, but results in overflowing to remote node while memory | |
4067 | * may still exist in local DMA zone. | |
4068 | */ | |
4069 | static int node_order[MAX_NUMNODES]; | |
4070 | ||
4071 | static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) | |
4072 | { | |
f0c0b2b8 KH |
4073 | int pos, j, node; |
4074 | int zone_type; /* needs to be signed */ | |
4075 | struct zone *z; | |
4076 | struct zonelist *zonelist; | |
4077 | ||
54a6eb5c MG |
4078 | zonelist = &pgdat->node_zonelists[0]; |
4079 | pos = 0; | |
4080 | for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { | |
4081 | for (j = 0; j < nr_nodes; j++) { | |
4082 | node = node_order[j]; | |
4083 | z = &NODE_DATA(node)->node_zones[zone_type]; | |
4084 | if (populated_zone(z)) { | |
dd1a239f MG |
4085 | zoneref_set_zone(z, |
4086 | &zonelist->_zonerefs[pos++]); | |
54a6eb5c | 4087 | check_highest_zone(zone_type); |
f0c0b2b8 KH |
4088 | } |
4089 | } | |
f0c0b2b8 | 4090 | } |
dd1a239f MG |
4091 | zonelist->_zonerefs[pos].zone = NULL; |
4092 | zonelist->_zonerefs[pos].zone_idx = 0; | |
f0c0b2b8 KH |
4093 | } |
4094 | ||
3193913c MG |
4095 | #if defined(CONFIG_64BIT) |
4096 | /* | |
4097 | * Devices that require DMA32/DMA are relatively rare and do not justify a | |
4098 | * penalty to every machine in case the specialised case applies. Default | |
4099 | * to Node-ordering on 64-bit NUMA machines | |
4100 | */ | |
4101 | static int default_zonelist_order(void) | |
4102 | { | |
4103 | return ZONELIST_ORDER_NODE; | |
4104 | } | |
4105 | #else | |
4106 | /* | |
4107 | * On 32-bit, the Normal zone needs to be preserved for allocations accessible | |
4108 | * by the kernel. If processes running on node 0 deplete the low memory zone | |
4109 | * then reclaim will occur more frequency increasing stalls and potentially | |
4110 | * be easier to OOM if a large percentage of the zone is under writeback or | |
4111 | * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. | |
4112 | * Hence, default to zone ordering on 32-bit. | |
4113 | */ | |
f0c0b2b8 KH |
4114 | static int default_zonelist_order(void) |
4115 | { | |
f0c0b2b8 KH |
4116 | return ZONELIST_ORDER_ZONE; |
4117 | } | |
3193913c | 4118 | #endif /* CONFIG_64BIT */ |
f0c0b2b8 KH |
4119 | |
4120 | static void set_zonelist_order(void) | |
4121 | { | |
4122 | if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) | |
4123 | current_zonelist_order = default_zonelist_order(); | |
4124 | else | |
4125 | current_zonelist_order = user_zonelist_order; | |
4126 | } | |
4127 | ||
4128 | static void build_zonelists(pg_data_t *pgdat) | |
4129 | { | |
c00eb15a | 4130 | int i, node, load; |
1da177e4 | 4131 | nodemask_t used_mask; |
f0c0b2b8 KH |
4132 | int local_node, prev_node; |
4133 | struct zonelist *zonelist; | |
d00181b9 | 4134 | unsigned int order = current_zonelist_order; |
1da177e4 LT |
4135 | |
4136 | /* initialize zonelists */ | |
523b9458 | 4137 | for (i = 0; i < MAX_ZONELISTS; i++) { |
1da177e4 | 4138 | zonelist = pgdat->node_zonelists + i; |
dd1a239f MG |
4139 | zonelist->_zonerefs[0].zone = NULL; |
4140 | zonelist->_zonerefs[0].zone_idx = 0; | |
1da177e4 LT |
4141 | } |
4142 | ||
4143 | /* NUMA-aware ordering of nodes */ | |
4144 | local_node = pgdat->node_id; | |
62bc62a8 | 4145 | load = nr_online_nodes; |
1da177e4 LT |
4146 | prev_node = local_node; |
4147 | nodes_clear(used_mask); | |
f0c0b2b8 | 4148 | |
f0c0b2b8 | 4149 | memset(node_order, 0, sizeof(node_order)); |
c00eb15a | 4150 | i = 0; |
f0c0b2b8 | 4151 | |
1da177e4 LT |
4152 | while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { |
4153 | /* | |
4154 | * We don't want to pressure a particular node. | |
4155 | * So adding penalty to the first node in same | |
4156 | * distance group to make it round-robin. | |
4157 | */ | |
957f822a DR |
4158 | if (node_distance(local_node, node) != |
4159 | node_distance(local_node, prev_node)) | |
f0c0b2b8 KH |
4160 | node_load[node] = load; |
4161 | ||
1da177e4 LT |
4162 | prev_node = node; |
4163 | load--; | |
f0c0b2b8 KH |
4164 | if (order == ZONELIST_ORDER_NODE) |
4165 | build_zonelists_in_node_order(pgdat, node); | |
4166 | else | |
c00eb15a | 4167 | node_order[i++] = node; /* remember order */ |
f0c0b2b8 | 4168 | } |
1da177e4 | 4169 | |
f0c0b2b8 KH |
4170 | if (order == ZONELIST_ORDER_ZONE) { |
4171 | /* calculate node order -- i.e., DMA last! */ | |
c00eb15a | 4172 | build_zonelists_in_zone_order(pgdat, i); |
1da177e4 | 4173 | } |
523b9458 CL |
4174 | |
4175 | build_thisnode_zonelists(pgdat); | |
1da177e4 LT |
4176 | } |
4177 | ||
7aac7898 LS |
4178 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
4179 | /* | |
4180 | * Return node id of node used for "local" allocations. | |
4181 | * I.e., first node id of first zone in arg node's generic zonelist. | |
4182 | * Used for initializing percpu 'numa_mem', which is used primarily | |
4183 | * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. | |
4184 | */ | |
4185 | int local_memory_node(int node) | |
4186 | { | |
4187 | struct zone *zone; | |
4188 | ||
4189 | (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), | |
4190 | gfp_zone(GFP_KERNEL), | |
4191 | NULL, | |
4192 | &zone); | |
4193 | return zone->node; | |
4194 | } | |
4195 | #endif | |
f0c0b2b8 | 4196 | |
1da177e4 LT |
4197 | #else /* CONFIG_NUMA */ |
4198 | ||
f0c0b2b8 KH |
4199 | static void set_zonelist_order(void) |
4200 | { | |
4201 | current_zonelist_order = ZONELIST_ORDER_ZONE; | |
4202 | } | |
4203 | ||
4204 | static void build_zonelists(pg_data_t *pgdat) | |
1da177e4 | 4205 | { |
19655d34 | 4206 | int node, local_node; |
54a6eb5c MG |
4207 | enum zone_type j; |
4208 | struct zonelist *zonelist; | |
1da177e4 LT |
4209 | |
4210 | local_node = pgdat->node_id; | |
1da177e4 | 4211 | |
54a6eb5c | 4212 | zonelist = &pgdat->node_zonelists[0]; |
bc732f1d | 4213 | j = build_zonelists_node(pgdat, zonelist, 0); |
1da177e4 | 4214 | |
54a6eb5c MG |
4215 | /* |
4216 | * Now we build the zonelist so that it contains the zones | |
4217 | * of all the other nodes. | |
4218 | * We don't want to pressure a particular node, so when | |
4219 | * building the zones for node N, we make sure that the | |
4220 | * zones coming right after the local ones are those from | |
4221 | * node N+1 (modulo N) | |
4222 | */ | |
4223 | for (node = local_node + 1; node < MAX_NUMNODES; node++) { | |
4224 | if (!node_online(node)) | |
4225 | continue; | |
bc732f1d | 4226 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
1da177e4 | 4227 | } |
54a6eb5c MG |
4228 | for (node = 0; node < local_node; node++) { |
4229 | if (!node_online(node)) | |
4230 | continue; | |
bc732f1d | 4231 | j = build_zonelists_node(NODE_DATA(node), zonelist, j); |
54a6eb5c MG |
4232 | } |
4233 | ||
dd1a239f MG |
4234 | zonelist->_zonerefs[j].zone = NULL; |
4235 | zonelist->_zonerefs[j].zone_idx = 0; | |
1da177e4 LT |
4236 | } |
4237 | ||
4238 | #endif /* CONFIG_NUMA */ | |
4239 | ||
99dcc3e5 CL |
4240 | /* |
4241 | * Boot pageset table. One per cpu which is going to be used for all | |
4242 | * zones and all nodes. The parameters will be set in such a way | |
4243 | * that an item put on a list will immediately be handed over to | |
4244 | * the buddy list. This is safe since pageset manipulation is done | |
4245 | * with interrupts disabled. | |
4246 | * | |
4247 | * The boot_pagesets must be kept even after bootup is complete for | |
4248 | * unused processors and/or zones. They do play a role for bootstrapping | |
4249 | * hotplugged processors. | |
4250 | * | |
4251 | * zoneinfo_show() and maybe other functions do | |
4252 | * not check if the processor is online before following the pageset pointer. | |
4253 | * Other parts of the kernel may not check if the zone is available. | |
4254 | */ | |
4255 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); | |
4256 | static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); | |
1f522509 | 4257 | static void setup_zone_pageset(struct zone *zone); |
99dcc3e5 | 4258 | |
4eaf3f64 HL |
4259 | /* |
4260 | * Global mutex to protect against size modification of zonelists | |
4261 | * as well as to serialize pageset setup for the new populated zone. | |
4262 | */ | |
4263 | DEFINE_MUTEX(zonelists_mutex); | |
4264 | ||
9b1a4d38 | 4265 | /* return values int ....just for stop_machine() */ |
4ed7e022 | 4266 | static int __build_all_zonelists(void *data) |
1da177e4 | 4267 | { |
6811378e | 4268 | int nid; |
99dcc3e5 | 4269 | int cpu; |
9adb62a5 | 4270 | pg_data_t *self = data; |
9276b1bc | 4271 | |
7f9cfb31 BL |
4272 | #ifdef CONFIG_NUMA |
4273 | memset(node_load, 0, sizeof(node_load)); | |
4274 | #endif | |
9adb62a5 JL |
4275 | |
4276 | if (self && !node_online(self->node_id)) { | |
4277 | build_zonelists(self); | |
9adb62a5 JL |
4278 | } |
4279 | ||
9276b1bc | 4280 | for_each_online_node(nid) { |
7ea1530a CL |
4281 | pg_data_t *pgdat = NODE_DATA(nid); |
4282 | ||
4283 | build_zonelists(pgdat); | |
9276b1bc | 4284 | } |
99dcc3e5 CL |
4285 | |
4286 | /* | |
4287 | * Initialize the boot_pagesets that are going to be used | |
4288 | * for bootstrapping processors. The real pagesets for | |
4289 | * each zone will be allocated later when the per cpu | |
4290 | * allocator is available. | |
4291 | * | |
4292 | * boot_pagesets are used also for bootstrapping offline | |
4293 | * cpus if the system is already booted because the pagesets | |
4294 | * are needed to initialize allocators on a specific cpu too. | |
4295 | * F.e. the percpu allocator needs the page allocator which | |
4296 | * needs the percpu allocator in order to allocate its pagesets | |
4297 | * (a chicken-egg dilemma). | |
4298 | */ | |
7aac7898 | 4299 | for_each_possible_cpu(cpu) { |
99dcc3e5 CL |
4300 | setup_pageset(&per_cpu(boot_pageset, cpu), 0); |
4301 | ||
7aac7898 LS |
4302 | #ifdef CONFIG_HAVE_MEMORYLESS_NODES |
4303 | /* | |
4304 | * We now know the "local memory node" for each node-- | |
4305 | * i.e., the node of the first zone in the generic zonelist. | |
4306 | * Set up numa_mem percpu variable for on-line cpus. During | |
4307 | * boot, only the boot cpu should be on-line; we'll init the | |
4308 | * secondary cpus' numa_mem as they come on-line. During | |
4309 | * node/memory hotplug, we'll fixup all on-line cpus. | |
4310 | */ | |
4311 | if (cpu_online(cpu)) | |
4312 | set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); | |
4313 | #endif | |
4314 | } | |
4315 | ||
6811378e YG |
4316 | return 0; |
4317 | } | |
4318 | ||
061f67bc RV |
4319 | static noinline void __init |
4320 | build_all_zonelists_init(void) | |
4321 | { | |
4322 | __build_all_zonelists(NULL); | |
4323 | mminit_verify_zonelist(); | |
4324 | cpuset_init_current_mems_allowed(); | |
4325 | } | |
4326 | ||
4eaf3f64 HL |
4327 | /* |
4328 | * Called with zonelists_mutex held always | |
4329 | * unless system_state == SYSTEM_BOOTING. | |
061f67bc RV |
4330 | * |
4331 | * __ref due to (1) call of __meminit annotated setup_zone_pageset | |
4332 | * [we're only called with non-NULL zone through __meminit paths] and | |
4333 | * (2) call of __init annotated helper build_all_zonelists_init | |
4334 | * [protected by SYSTEM_BOOTING]. | |
4eaf3f64 | 4335 | */ |
9adb62a5 | 4336 | void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) |
6811378e | 4337 | { |
f0c0b2b8 KH |
4338 | set_zonelist_order(); |
4339 | ||
6811378e | 4340 | if (system_state == SYSTEM_BOOTING) { |
061f67bc | 4341 | build_all_zonelists_init(); |
6811378e | 4342 | } else { |
e9959f0f | 4343 | #ifdef CONFIG_MEMORY_HOTPLUG |
9adb62a5 JL |
4344 | if (zone) |
4345 | setup_zone_pageset(zone); | |
e9959f0f | 4346 | #endif |
dd1895e2 CS |
4347 | /* we have to stop all cpus to guarantee there is no user |
4348 | of zonelist */ | |
9adb62a5 | 4349 | stop_machine(__build_all_zonelists, pgdat, NULL); |
6811378e YG |
4350 | /* cpuset refresh routine should be here */ |
4351 | } | |
bd1e22b8 | 4352 | vm_total_pages = nr_free_pagecache_pages(); |
9ef9acb0 MG |
4353 | /* |
4354 | * Disable grouping by mobility if the number of pages in the | |
4355 | * system is too low to allow the mechanism to work. It would be | |
4356 | * more accurate, but expensive to check per-zone. This check is | |
4357 | * made on memory-hotadd so a system can start with mobility | |
4358 | * disabled and enable it later | |
4359 | */ | |
d9c23400 | 4360 | if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) |
9ef9acb0 MG |
4361 | page_group_by_mobility_disabled = 1; |
4362 | else | |
4363 | page_group_by_mobility_disabled = 0; | |
4364 | ||
f88dfff5 | 4365 | pr_info("Built %i zonelists in %s order, mobility grouping %s. " |
9ef9acb0 | 4366 | "Total pages: %ld\n", |
62bc62a8 | 4367 | nr_online_nodes, |
f0c0b2b8 | 4368 | zonelist_order_name[current_zonelist_order], |
9ef9acb0 | 4369 | page_group_by_mobility_disabled ? "off" : "on", |
f0c0b2b8 KH |
4370 | vm_total_pages); |
4371 | #ifdef CONFIG_NUMA | |
f88dfff5 | 4372 | pr_info("Policy zone: %s\n", zone_names[policy_zone]); |
f0c0b2b8 | 4373 | #endif |
1da177e4 LT |
4374 | } |
4375 | ||
4376 | /* | |
4377 | * Helper functions to size the waitqueue hash table. | |
4378 | * Essentially these want to choose hash table sizes sufficiently | |
4379 | * large so that collisions trying to wait on pages are rare. | |
4380 | * But in fact, the number of active page waitqueues on typical | |
4381 | * systems is ridiculously low, less than 200. So this is even | |
4382 | * conservative, even though it seems large. | |
4383 | * | |
4384 | * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to | |
4385 | * waitqueues, i.e. the size of the waitq table given the number of pages. | |
4386 | */ | |
4387 | #define PAGES_PER_WAITQUEUE 256 | |
4388 | ||
cca448fe | 4389 | #ifndef CONFIG_MEMORY_HOTPLUG |
02b694de | 4390 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) |
1da177e4 LT |
4391 | { |
4392 | unsigned long size = 1; | |
4393 | ||
4394 | pages /= PAGES_PER_WAITQUEUE; | |
4395 | ||
4396 | while (size < pages) | |
4397 | size <<= 1; | |
4398 | ||
4399 | /* | |
4400 | * Once we have dozens or even hundreds of threads sleeping | |
4401 | * on IO we've got bigger problems than wait queue collision. | |
4402 | * Limit the size of the wait table to a reasonable size. | |
4403 | */ | |
4404 | size = min(size, 4096UL); | |
4405 | ||
4406 | return max(size, 4UL); | |
4407 | } | |
cca448fe YG |
4408 | #else |
4409 | /* | |
4410 | * A zone's size might be changed by hot-add, so it is not possible to determine | |
4411 | * a suitable size for its wait_table. So we use the maximum size now. | |
4412 | * | |
4413 | * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: | |
4414 | * | |
4415 | * i386 (preemption config) : 4096 x 16 = 64Kbyte. | |
4416 | * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. | |
4417 | * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. | |
4418 | * | |
4419 | * The maximum entries are prepared when a zone's memory is (512K + 256) pages | |
4420 | * or more by the traditional way. (See above). It equals: | |
4421 | * | |
4422 | * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. | |
4423 | * ia64(16K page size) : = ( 8G + 4M)byte. | |
4424 | * powerpc (64K page size) : = (32G +16M)byte. | |
4425 | */ | |
4426 | static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) | |
4427 | { | |
4428 | return 4096UL; | |
4429 | } | |
4430 | #endif | |
1da177e4 LT |
4431 | |
4432 | /* | |
4433 | * This is an integer logarithm so that shifts can be used later | |
4434 | * to extract the more random high bits from the multiplicative | |
4435 | * hash function before the remainder is taken. | |
4436 | */ | |
4437 | static inline unsigned long wait_table_bits(unsigned long size) | |
4438 | { | |
4439 | return ffz(~size); | |
4440 | } | |
4441 | ||
1da177e4 LT |
4442 | /* |
4443 | * Initially all pages are reserved - free ones are freed | |
4444 | * up by free_all_bootmem() once the early boot process is | |
4445 | * done. Non-atomic initialization, single-pass. | |
4446 | */ | |
c09b4240 | 4447 | void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, |
a2f3aa02 | 4448 | unsigned long start_pfn, enum memmap_context context) |
1da177e4 | 4449 | { |
3a80a7fa | 4450 | pg_data_t *pgdat = NODE_DATA(nid); |
29751f69 AW |
4451 | unsigned long end_pfn = start_pfn + size; |
4452 | unsigned long pfn; | |
86051ca5 | 4453 | struct zone *z; |
3a80a7fa | 4454 | unsigned long nr_initialised = 0; |
1da177e4 | 4455 | |
22b31eec HD |
4456 | if (highest_memmap_pfn < end_pfn - 1) |
4457 | highest_memmap_pfn = end_pfn - 1; | |
4458 | ||
3a80a7fa | 4459 | z = &pgdat->node_zones[zone]; |
cbe8dd4a | 4460 | for (pfn = start_pfn; pfn < end_pfn; pfn++) { |
a2f3aa02 DH |
4461 | /* |
4462 | * There can be holes in boot-time mem_map[]s | |
4463 | * handed to this function. They do not | |
4464 | * exist on hotplugged memory. | |
4465 | */ | |
4466 | if (context == MEMMAP_EARLY) { | |
4467 | if (!early_pfn_valid(pfn)) | |
4468 | continue; | |
4469 | if (!early_pfn_in_nid(pfn, nid)) | |
4470 | continue; | |
3a80a7fa MG |
4471 | if (!update_defer_init(pgdat, pfn, end_pfn, |
4472 | &nr_initialised)) | |
4473 | break; | |
a2f3aa02 | 4474 | } |
ac5d2539 MG |
4475 | |
4476 | /* | |
4477 | * Mark the block movable so that blocks are reserved for | |
4478 | * movable at startup. This will force kernel allocations | |
4479 | * to reserve their blocks rather than leaking throughout | |
4480 | * the address space during boot when many long-lived | |
974a786e | 4481 | * kernel allocations are made. |
ac5d2539 MG |
4482 | * |
4483 | * bitmap is created for zone's valid pfn range. but memmap | |
4484 | * can be created for invalid pages (for alignment) | |
4485 | * check here not to call set_pageblock_migratetype() against | |
4486 | * pfn out of zone. | |
4487 | */ | |
4488 | if (!(pfn & (pageblock_nr_pages - 1))) { | |
4489 | struct page *page = pfn_to_page(pfn); | |
4490 | ||
4491 | __init_single_page(page, pfn, zone, nid); | |
4492 | set_pageblock_migratetype(page, MIGRATE_MOVABLE); | |
4493 | } else { | |
4494 | __init_single_pfn(pfn, zone, nid); | |
4495 | } | |
1da177e4 LT |
4496 | } |
4497 | } | |
4498 | ||
1e548deb | 4499 | static void __meminit zone_init_free_lists(struct zone *zone) |
1da177e4 | 4500 | { |
7aeb09f9 | 4501 | unsigned int order, t; |
b2a0ac88 MG |
4502 | for_each_migratetype_order(order, t) { |
4503 | INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); | |
1da177e4 LT |
4504 | zone->free_area[order].nr_free = 0; |
4505 | } | |
4506 | } | |
4507 | ||
4508 | #ifndef __HAVE_ARCH_MEMMAP_INIT | |
4509 | #define memmap_init(size, nid, zone, start_pfn) \ | |
a2f3aa02 | 4510 | memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) |
1da177e4 LT |
4511 | #endif |
4512 | ||
7cd2b0a3 | 4513 | static int zone_batchsize(struct zone *zone) |
e7c8d5c9 | 4514 | { |
3a6be87f | 4515 | #ifdef CONFIG_MMU |
e7c8d5c9 CL |
4516 | int batch; |
4517 | ||
4518 | /* | |
4519 | * The per-cpu-pages pools are set to around 1000th of the | |
ba56e91c | 4520 | * size of the zone. But no more than 1/2 of a meg. |
e7c8d5c9 CL |
4521 | * |
4522 | * OK, so we don't know how big the cache is. So guess. | |
4523 | */ | |
b40da049 | 4524 | batch = zone->managed_pages / 1024; |
ba56e91c SR |
4525 | if (batch * PAGE_SIZE > 512 * 1024) |
4526 | batch = (512 * 1024) / PAGE_SIZE; | |
e7c8d5c9 CL |
4527 | batch /= 4; /* We effectively *= 4 below */ |
4528 | if (batch < 1) | |
4529 | batch = 1; | |
4530 | ||
4531 | /* | |
0ceaacc9 NP |
4532 | * Clamp the batch to a 2^n - 1 value. Having a power |
4533 | * of 2 value was found to be more likely to have | |
4534 | * suboptimal cache aliasing properties in some cases. | |
e7c8d5c9 | 4535 | * |
0ceaacc9 NP |
4536 | * For example if 2 tasks are alternately allocating |
4537 | * batches of pages, one task can end up with a lot | |
4538 | * of pages of one half of the possible page colors | |
4539 | * and the other with pages of the other colors. | |
e7c8d5c9 | 4540 | */ |
9155203a | 4541 | batch = rounddown_pow_of_two(batch + batch/2) - 1; |
ba56e91c | 4542 | |
e7c8d5c9 | 4543 | return batch; |
3a6be87f DH |
4544 | |
4545 | #else | |
4546 | /* The deferral and batching of frees should be suppressed under NOMMU | |
4547 | * conditions. | |
4548 | * | |
4549 | * The problem is that NOMMU needs to be able to allocate large chunks | |
4550 | * of contiguous memory as there's no hardware page translation to | |
4551 | * assemble apparent contiguous memory from discontiguous pages. | |
4552 | * | |
4553 | * Queueing large contiguous runs of pages for batching, however, | |
4554 | * causes the pages to actually be freed in smaller chunks. As there | |
4555 | * can be a significant delay between the individual batches being | |
4556 | * recycled, this leads to the once large chunks of space being | |
4557 | * fragmented and becoming unavailable for high-order allocations. | |
4558 | */ | |
4559 | return 0; | |
4560 | #endif | |
e7c8d5c9 CL |
4561 | } |
4562 | ||
8d7a8fa9 CS |
4563 | /* |
4564 | * pcp->high and pcp->batch values are related and dependent on one another: | |
4565 | * ->batch must never be higher then ->high. | |
4566 | * The following function updates them in a safe manner without read side | |
4567 | * locking. | |
4568 | * | |
4569 | * Any new users of pcp->batch and pcp->high should ensure they can cope with | |
4570 | * those fields changing asynchronously (acording the the above rule). | |
4571 | * | |
4572 | * mutex_is_locked(&pcp_batch_high_lock) required when calling this function | |
4573 | * outside of boot time (or some other assurance that no concurrent updaters | |
4574 | * exist). | |
4575 | */ | |
4576 | static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, | |
4577 | unsigned long batch) | |
4578 | { | |
4579 | /* start with a fail safe value for batch */ | |
4580 | pcp->batch = 1; | |
4581 | smp_wmb(); | |
4582 | ||
4583 | /* Update high, then batch, in order */ | |
4584 | pcp->high = high; | |
4585 | smp_wmb(); | |
4586 | ||
4587 | pcp->batch = batch; | |
4588 | } | |
4589 | ||
3664033c | 4590 | /* a companion to pageset_set_high() */ |
4008bab7 CS |
4591 | static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) |
4592 | { | |
8d7a8fa9 | 4593 | pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); |
4008bab7 CS |
4594 | } |
4595 | ||
88c90dbc | 4596 | static void pageset_init(struct per_cpu_pageset *p) |
2caaad41 CL |
4597 | { |
4598 | struct per_cpu_pages *pcp; | |
5f8dcc21 | 4599 | int migratetype; |
2caaad41 | 4600 | |
1c6fe946 MD |
4601 | memset(p, 0, sizeof(*p)); |
4602 | ||
3dfa5721 | 4603 | pcp = &p->pcp; |
2caaad41 | 4604 | pcp->count = 0; |
5f8dcc21 MG |
4605 | for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) |
4606 | INIT_LIST_HEAD(&pcp->lists[migratetype]); | |
2caaad41 CL |
4607 | } |
4608 | ||
88c90dbc CS |
4609 | static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) |
4610 | { | |
4611 | pageset_init(p); | |
4612 | pageset_set_batch(p, batch); | |
4613 | } | |
4614 | ||
8ad4b1fb | 4615 | /* |
3664033c | 4616 | * pageset_set_high() sets the high water mark for hot per_cpu_pagelist |
8ad4b1fb RS |
4617 | * to the value high for the pageset p. |
4618 | */ | |
3664033c | 4619 | static void pageset_set_high(struct per_cpu_pageset *p, |
8ad4b1fb RS |
4620 | unsigned long high) |
4621 | { | |
8d7a8fa9 CS |
4622 | unsigned long batch = max(1UL, high / 4); |
4623 | if ((high / 4) > (PAGE_SHIFT * 8)) | |
4624 | batch = PAGE_SHIFT * 8; | |
8ad4b1fb | 4625 | |
8d7a8fa9 | 4626 | pageset_update(&p->pcp, high, batch); |
8ad4b1fb RS |
4627 | } |
4628 | ||
7cd2b0a3 DR |
4629 | static void pageset_set_high_and_batch(struct zone *zone, |
4630 | struct per_cpu_pageset *pcp) | |
56cef2b8 | 4631 | { |
56cef2b8 | 4632 | if (percpu_pagelist_fraction) |
3664033c | 4633 | pageset_set_high(pcp, |
56cef2b8 CS |
4634 | (zone->managed_pages / |
4635 | percpu_pagelist_fraction)); | |
4636 | else | |
4637 | pageset_set_batch(pcp, zone_batchsize(zone)); | |
4638 | } | |
4639 | ||
169f6c19 CS |
4640 | static void __meminit zone_pageset_init(struct zone *zone, int cpu) |
4641 | { | |
4642 | struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); | |
4643 | ||
4644 | pageset_init(pcp); | |
4645 | pageset_set_high_and_batch(zone, pcp); | |
4646 | } | |
4647 | ||
4ed7e022 | 4648 | static void __meminit setup_zone_pageset(struct zone *zone) |
319774e2 WF |
4649 | { |
4650 | int cpu; | |
319774e2 | 4651 | zone->pageset = alloc_percpu(struct per_cpu_pageset); |
56cef2b8 CS |
4652 | for_each_possible_cpu(cpu) |
4653 | zone_pageset_init(zone, cpu); | |
319774e2 WF |
4654 | } |
4655 | ||
2caaad41 | 4656 | /* |
99dcc3e5 CL |
4657 | * Allocate per cpu pagesets and initialize them. |
4658 | * Before this call only boot pagesets were available. | |
e7c8d5c9 | 4659 | */ |
99dcc3e5 | 4660 | void __init setup_per_cpu_pageset(void) |
e7c8d5c9 | 4661 | { |
99dcc3e5 | 4662 | struct zone *zone; |
e7c8d5c9 | 4663 | |
319774e2 WF |
4664 | for_each_populated_zone(zone) |
4665 | setup_zone_pageset(zone); | |
e7c8d5c9 CL |
4666 | } |
4667 | ||
577a32f6 | 4668 | static noinline __init_refok |
cca448fe | 4669 | int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) |
ed8ece2e DH |
4670 | { |
4671 | int i; | |
cca448fe | 4672 | size_t alloc_size; |
ed8ece2e DH |
4673 | |
4674 | /* | |
4675 | * The per-page waitqueue mechanism uses hashed waitqueues | |
4676 | * per zone. | |
4677 | */ | |
02b694de YG |
4678 | zone->wait_table_hash_nr_entries = |
4679 | wait_table_hash_nr_entries(zone_size_pages); | |
4680 | zone->wait_table_bits = | |
4681 | wait_table_bits(zone->wait_table_hash_nr_entries); | |
cca448fe YG |
4682 | alloc_size = zone->wait_table_hash_nr_entries |
4683 | * sizeof(wait_queue_head_t); | |
4684 | ||
cd94b9db | 4685 | if (!slab_is_available()) { |
cca448fe | 4686 | zone->wait_table = (wait_queue_head_t *) |
6782832e SS |
4687 | memblock_virt_alloc_node_nopanic( |
4688 | alloc_size, zone->zone_pgdat->node_id); | |
cca448fe YG |
4689 | } else { |
4690 | /* | |
4691 | * This case means that a zone whose size was 0 gets new memory | |
4692 | * via memory hot-add. | |
4693 | * But it may be the case that a new node was hot-added. In | |
4694 | * this case vmalloc() will not be able to use this new node's | |
4695 | * memory - this wait_table must be initialized to use this new | |
4696 | * node itself as well. | |
4697 | * To use this new node's memory, further consideration will be | |
4698 | * necessary. | |
4699 | */ | |
8691f3a7 | 4700 | zone->wait_table = vmalloc(alloc_size); |
cca448fe YG |
4701 | } |
4702 | if (!zone->wait_table) | |
4703 | return -ENOMEM; | |
ed8ece2e | 4704 | |
b8af2941 | 4705 | for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) |
ed8ece2e | 4706 | init_waitqueue_head(zone->wait_table + i); |
cca448fe YG |
4707 | |
4708 | return 0; | |
ed8ece2e DH |
4709 | } |
4710 | ||
c09b4240 | 4711 | static __meminit void zone_pcp_init(struct zone *zone) |
ed8ece2e | 4712 | { |
99dcc3e5 CL |
4713 | /* |
4714 | * per cpu subsystem is not up at this point. The following code | |
4715 | * relies on the ability of the linker to provide the | |
4716 | * offset of a (static) per cpu variable into the per cpu area. | |
4717 | */ | |
4718 | zone->pageset = &boot_pageset; | |
ed8ece2e | 4719 | |
b38a8725 | 4720 | if (populated_zone(zone)) |
99dcc3e5 CL |
4721 | printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", |
4722 | zone->name, zone->present_pages, | |
4723 | zone_batchsize(zone)); | |
ed8ece2e DH |
4724 | } |
4725 | ||
4ed7e022 | 4726 | int __meminit init_currently_empty_zone(struct zone *zone, |
718127cc | 4727 | unsigned long zone_start_pfn, |
b171e409 | 4728 | unsigned long size) |
ed8ece2e DH |
4729 | { |
4730 | struct pglist_data *pgdat = zone->zone_pgdat; | |
cca448fe YG |
4731 | int ret; |
4732 | ret = zone_wait_table_init(zone, size); | |
4733 | if (ret) | |
4734 | return ret; | |
ed8ece2e DH |
4735 | pgdat->nr_zones = zone_idx(zone) + 1; |
4736 | ||
ed8ece2e DH |
4737 | zone->zone_start_pfn = zone_start_pfn; |
4738 | ||
708614e6 MG |
4739 | mminit_dprintk(MMINIT_TRACE, "memmap_init", |
4740 | "Initialising map node %d zone %lu pfns %lu -> %lu\n", | |
4741 | pgdat->node_id, | |
4742 | (unsigned long)zone_idx(zone), | |
4743 | zone_start_pfn, (zone_start_pfn + size)); | |
4744 | ||
1e548deb | 4745 | zone_init_free_lists(zone); |
718127cc YG |
4746 | |
4747 | return 0; | |
ed8ece2e DH |
4748 | } |
4749 | ||
0ee332c1 | 4750 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
c713216d | 4751 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID |
8a942fde | 4752 | |
c713216d MG |
4753 | /* |
4754 | * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. | |
c713216d | 4755 | */ |
8a942fde MG |
4756 | int __meminit __early_pfn_to_nid(unsigned long pfn, |
4757 | struct mminit_pfnnid_cache *state) | |
c713216d | 4758 | { |
c13291a5 | 4759 | unsigned long start_pfn, end_pfn; |
e76b63f8 | 4760 | int nid; |
7c243c71 | 4761 | |
8a942fde MG |
4762 | if (state->last_start <= pfn && pfn < state->last_end) |
4763 | return state->last_nid; | |
c713216d | 4764 | |
e76b63f8 YL |
4765 | nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); |
4766 | if (nid != -1) { | |
8a942fde MG |
4767 | state->last_start = start_pfn; |
4768 | state->last_end = end_pfn; | |
4769 | state->last_nid = nid; | |
e76b63f8 YL |
4770 | } |
4771 | ||
4772 | return nid; | |
c713216d MG |
4773 | } |
4774 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | |
4775 | ||
c713216d | 4776 | /** |
6782832e | 4777 | * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range |
88ca3b94 | 4778 | * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. |
6782832e | 4779 | * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid |
c713216d | 4780 | * |
7d018176 ZZ |
4781 | * If an architecture guarantees that all ranges registered contain no holes |
4782 | * and may be freed, this this function may be used instead of calling | |
4783 | * memblock_free_early_nid() manually. | |
c713216d | 4784 | */ |
c13291a5 | 4785 | void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) |
cc289894 | 4786 | { |
c13291a5 TH |
4787 | unsigned long start_pfn, end_pfn; |
4788 | int i, this_nid; | |
edbe7d23 | 4789 | |
c13291a5 TH |
4790 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { |
4791 | start_pfn = min(start_pfn, max_low_pfn); | |
4792 | end_pfn = min(end_pfn, max_low_pfn); | |
edbe7d23 | 4793 | |
c13291a5 | 4794 | if (start_pfn < end_pfn) |
6782832e SS |
4795 | memblock_free_early_nid(PFN_PHYS(start_pfn), |
4796 | (end_pfn - start_pfn) << PAGE_SHIFT, | |
4797 | this_nid); | |
edbe7d23 | 4798 | } |
edbe7d23 | 4799 | } |
edbe7d23 | 4800 | |
c713216d MG |
4801 | /** |
4802 | * sparse_memory_present_with_active_regions - Call memory_present for each active range | |
88ca3b94 | 4803 | * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. |
c713216d | 4804 | * |
7d018176 ZZ |
4805 | * If an architecture guarantees that all ranges registered contain no holes and may |
4806 | * be freed, this function may be used instead of calling memory_present() manually. | |
c713216d MG |
4807 | */ |
4808 | void __init sparse_memory_present_with_active_regions(int nid) | |
4809 | { | |
c13291a5 TH |
4810 | unsigned long start_pfn, end_pfn; |
4811 | int i, this_nid; | |
c713216d | 4812 | |
c13291a5 TH |
4813 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) |
4814 | memory_present(this_nid, start_pfn, end_pfn); | |
c713216d MG |
4815 | } |
4816 | ||
4817 | /** | |
4818 | * get_pfn_range_for_nid - Return the start and end page frames for a node | |
88ca3b94 RD |
4819 | * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. |
4820 | * @start_pfn: Passed by reference. On return, it will have the node start_pfn. | |
4821 | * @end_pfn: Passed by reference. On return, it will have the node end_pfn. | |
c713216d MG |
4822 | * |
4823 | * It returns the start and end page frame of a node based on information | |
7d018176 | 4824 | * provided by memblock_set_node(). If called for a node |
c713216d | 4825 | * with no available memory, a warning is printed and the start and end |
88ca3b94 | 4826 | * PFNs will be 0. |
c713216d | 4827 | */ |
a3142c8e | 4828 | void __meminit get_pfn_range_for_nid(unsigned int nid, |
c713216d MG |
4829 | unsigned long *start_pfn, unsigned long *end_pfn) |
4830 | { | |
c13291a5 | 4831 | unsigned long this_start_pfn, this_end_pfn; |
c713216d | 4832 | int i; |
c13291a5 | 4833 | |
c713216d MG |
4834 | *start_pfn = -1UL; |
4835 | *end_pfn = 0; | |
4836 | ||
c13291a5 TH |
4837 | for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { |
4838 | *start_pfn = min(*start_pfn, this_start_pfn); | |
4839 | *end_pfn = max(*end_pfn, this_end_pfn); | |
c713216d MG |
4840 | } |
4841 | ||
633c0666 | 4842 | if (*start_pfn == -1UL) |
c713216d | 4843 | *start_pfn = 0; |
c713216d MG |
4844 | } |
4845 | ||
2a1e274a MG |
4846 | /* |
4847 | * This finds a zone that can be used for ZONE_MOVABLE pages. The | |
4848 | * assumption is made that zones within a node are ordered in monotonic | |
4849 | * increasing memory addresses so that the "highest" populated zone is used | |
4850 | */ | |
b69a7288 | 4851 | static void __init find_usable_zone_for_movable(void) |
2a1e274a MG |
4852 | { |
4853 | int zone_index; | |
4854 | for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { | |
4855 | if (zone_index == ZONE_MOVABLE) | |
4856 | continue; | |
4857 | ||
4858 | if (arch_zone_highest_possible_pfn[zone_index] > | |
4859 | arch_zone_lowest_possible_pfn[zone_index]) | |
4860 | break; | |
4861 | } | |
4862 | ||
4863 | VM_BUG_ON(zone_index == -1); | |
4864 | movable_zone = zone_index; | |
4865 | } | |
4866 | ||
4867 | /* | |
4868 | * The zone ranges provided by the architecture do not include ZONE_MOVABLE | |
25985edc | 4869 | * because it is sized independent of architecture. Unlike the other zones, |
2a1e274a MG |
4870 | * the starting point for ZONE_MOVABLE is not fixed. It may be different |
4871 | * in each node depending on the size of each node and how evenly kernelcore | |
4872 | * is distributed. This helper function adjusts the zone ranges | |
4873 | * provided by the architecture for a given node by using the end of the | |
4874 | * highest usable zone for ZONE_MOVABLE. This preserves the assumption that | |
4875 | * zones within a node are in order of monotonic increases memory addresses | |
4876 | */ | |
b69a7288 | 4877 | static void __meminit adjust_zone_range_for_zone_movable(int nid, |
2a1e274a MG |
4878 | unsigned long zone_type, |
4879 | unsigned long node_start_pfn, | |
4880 | unsigned long node_end_pfn, | |
4881 | unsigned long *zone_start_pfn, | |
4882 | unsigned long *zone_end_pfn) | |
4883 | { | |
4884 | /* Only adjust if ZONE_MOVABLE is on this node */ | |
4885 | if (zone_movable_pfn[nid]) { | |
4886 | /* Size ZONE_MOVABLE */ | |
4887 | if (zone_type == ZONE_MOVABLE) { | |
4888 | *zone_start_pfn = zone_movable_pfn[nid]; | |
4889 | *zone_end_pfn = min(node_end_pfn, | |
4890 | arch_zone_highest_possible_pfn[movable_zone]); | |
4891 | ||
4892 | /* Adjust for ZONE_MOVABLE starting within this range */ | |
4893 | } else if (*zone_start_pfn < zone_movable_pfn[nid] && | |
4894 | *zone_end_pfn > zone_movable_pfn[nid]) { | |
4895 | *zone_end_pfn = zone_movable_pfn[nid]; | |
4896 | ||
4897 | /* Check if this whole range is within ZONE_MOVABLE */ | |
4898 | } else if (*zone_start_pfn >= zone_movable_pfn[nid]) | |
4899 | *zone_start_pfn = *zone_end_pfn; | |
4900 | } | |
4901 | } | |
4902 | ||
c713216d MG |
4903 | /* |
4904 | * Return the number of pages a zone spans in a node, including holes | |
4905 | * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() | |
4906 | */ | |
6ea6e688 | 4907 | static unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4908 | unsigned long zone_type, |
7960aedd ZY |
4909 | unsigned long node_start_pfn, |
4910 | unsigned long node_end_pfn, | |
c713216d MG |
4911 | unsigned long *ignored) |
4912 | { | |
c713216d MG |
4913 | unsigned long zone_start_pfn, zone_end_pfn; |
4914 | ||
b5685e92 | 4915 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
4916 | if (!node_start_pfn && !node_end_pfn) |
4917 | return 0; | |
4918 | ||
7960aedd | 4919 | /* Get the start and end of the zone */ |
c713216d MG |
4920 | zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; |
4921 | zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; | |
2a1e274a MG |
4922 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4923 | node_start_pfn, node_end_pfn, | |
4924 | &zone_start_pfn, &zone_end_pfn); | |
c713216d MG |
4925 | |
4926 | /* Check that this node has pages within the zone's required range */ | |
4927 | if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) | |
4928 | return 0; | |
4929 | ||
4930 | /* Move the zone boundaries inside the node if necessary */ | |
4931 | zone_end_pfn = min(zone_end_pfn, node_end_pfn); | |
4932 | zone_start_pfn = max(zone_start_pfn, node_start_pfn); | |
4933 | ||
4934 | /* Return the spanned pages */ | |
4935 | return zone_end_pfn - zone_start_pfn; | |
4936 | } | |
4937 | ||
4938 | /* | |
4939 | * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, | |
88ca3b94 | 4940 | * then all holes in the requested range will be accounted for. |
c713216d | 4941 | */ |
32996250 | 4942 | unsigned long __meminit __absent_pages_in_range(int nid, |
c713216d MG |
4943 | unsigned long range_start_pfn, |
4944 | unsigned long range_end_pfn) | |
4945 | { | |
96e907d1 TH |
4946 | unsigned long nr_absent = range_end_pfn - range_start_pfn; |
4947 | unsigned long start_pfn, end_pfn; | |
4948 | int i; | |
c713216d | 4949 | |
96e907d1 TH |
4950 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
4951 | start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); | |
4952 | end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); | |
4953 | nr_absent -= end_pfn - start_pfn; | |
c713216d | 4954 | } |
96e907d1 | 4955 | return nr_absent; |
c713216d MG |
4956 | } |
4957 | ||
4958 | /** | |
4959 | * absent_pages_in_range - Return number of page frames in holes within a range | |
4960 | * @start_pfn: The start PFN to start searching for holes | |
4961 | * @end_pfn: The end PFN to stop searching for holes | |
4962 | * | |
88ca3b94 | 4963 | * It returns the number of pages frames in memory holes within a range. |
c713216d MG |
4964 | */ |
4965 | unsigned long __init absent_pages_in_range(unsigned long start_pfn, | |
4966 | unsigned long end_pfn) | |
4967 | { | |
4968 | return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); | |
4969 | } | |
4970 | ||
4971 | /* Return the number of page frames in holes in a zone on a node */ | |
6ea6e688 | 4972 | static unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 4973 | unsigned long zone_type, |
7960aedd ZY |
4974 | unsigned long node_start_pfn, |
4975 | unsigned long node_end_pfn, | |
c713216d MG |
4976 | unsigned long *ignored) |
4977 | { | |
96e907d1 TH |
4978 | unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; |
4979 | unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; | |
9c7cd687 MG |
4980 | unsigned long zone_start_pfn, zone_end_pfn; |
4981 | ||
b5685e92 | 4982 | /* When hotadd a new node from cpu_up(), the node should be empty */ |
f9126ab9 XQ |
4983 | if (!node_start_pfn && !node_end_pfn) |
4984 | return 0; | |
4985 | ||
96e907d1 TH |
4986 | zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); |
4987 | zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); | |
9c7cd687 | 4988 | |
2a1e274a MG |
4989 | adjust_zone_range_for_zone_movable(nid, zone_type, |
4990 | node_start_pfn, node_end_pfn, | |
4991 | &zone_start_pfn, &zone_end_pfn); | |
9c7cd687 | 4992 | return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); |
c713216d | 4993 | } |
0e0b864e | 4994 | |
0ee332c1 | 4995 | #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
6ea6e688 | 4996 | static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, |
c713216d | 4997 | unsigned long zone_type, |
7960aedd ZY |
4998 | unsigned long node_start_pfn, |
4999 | unsigned long node_end_pfn, | |
c713216d MG |
5000 | unsigned long *zones_size) |
5001 | { | |
5002 | return zones_size[zone_type]; | |
5003 | } | |
5004 | ||
6ea6e688 | 5005 | static inline unsigned long __meminit zone_absent_pages_in_node(int nid, |
c713216d | 5006 | unsigned long zone_type, |
7960aedd ZY |
5007 | unsigned long node_start_pfn, |
5008 | unsigned long node_end_pfn, | |
c713216d MG |
5009 | unsigned long *zholes_size) |
5010 | { | |
5011 | if (!zholes_size) | |
5012 | return 0; | |
5013 | ||
5014 | return zholes_size[zone_type]; | |
5015 | } | |
20e6926d | 5016 | |
0ee332c1 | 5017 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5018 | |
a3142c8e | 5019 | static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, |
7960aedd ZY |
5020 | unsigned long node_start_pfn, |
5021 | unsigned long node_end_pfn, | |
5022 | unsigned long *zones_size, | |
5023 | unsigned long *zholes_size) | |
c713216d | 5024 | { |
febd5949 | 5025 | unsigned long realtotalpages = 0, totalpages = 0; |
c713216d MG |
5026 | enum zone_type i; |
5027 | ||
febd5949 GZ |
5028 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5029 | struct zone *zone = pgdat->node_zones + i; | |
5030 | unsigned long size, real_size; | |
c713216d | 5031 | |
febd5949 GZ |
5032 | size = zone_spanned_pages_in_node(pgdat->node_id, i, |
5033 | node_start_pfn, | |
5034 | node_end_pfn, | |
5035 | zones_size); | |
5036 | real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, | |
7960aedd ZY |
5037 | node_start_pfn, node_end_pfn, |
5038 | zholes_size); | |
febd5949 GZ |
5039 | zone->spanned_pages = size; |
5040 | zone->present_pages = real_size; | |
5041 | ||
5042 | totalpages += size; | |
5043 | realtotalpages += real_size; | |
5044 | } | |
5045 | ||
5046 | pgdat->node_spanned_pages = totalpages; | |
c713216d MG |
5047 | pgdat->node_present_pages = realtotalpages; |
5048 | printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, | |
5049 | realtotalpages); | |
5050 | } | |
5051 | ||
835c134e MG |
5052 | #ifndef CONFIG_SPARSEMEM |
5053 | /* | |
5054 | * Calculate the size of the zone->blockflags rounded to an unsigned long | |
d9c23400 MG |
5055 | * Start by making sure zonesize is a multiple of pageblock_order by rounding |
5056 | * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally | |
835c134e MG |
5057 | * round what is now in bits to nearest long in bits, then return it in |
5058 | * bytes. | |
5059 | */ | |
7c45512d | 5060 | static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) |
835c134e MG |
5061 | { |
5062 | unsigned long usemapsize; | |
5063 | ||
7c45512d | 5064 | zonesize += zone_start_pfn & (pageblock_nr_pages-1); |
d9c23400 MG |
5065 | usemapsize = roundup(zonesize, pageblock_nr_pages); |
5066 | usemapsize = usemapsize >> pageblock_order; | |
835c134e MG |
5067 | usemapsize *= NR_PAGEBLOCK_BITS; |
5068 | usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); | |
5069 | ||
5070 | return usemapsize / 8; | |
5071 | } | |
5072 | ||
5073 | static void __init setup_usemap(struct pglist_data *pgdat, | |
7c45512d LT |
5074 | struct zone *zone, |
5075 | unsigned long zone_start_pfn, | |
5076 | unsigned long zonesize) | |
835c134e | 5077 | { |
7c45512d | 5078 | unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); |
835c134e | 5079 | zone->pageblock_flags = NULL; |
58a01a45 | 5080 | if (usemapsize) |
6782832e SS |
5081 | zone->pageblock_flags = |
5082 | memblock_virt_alloc_node_nopanic(usemapsize, | |
5083 | pgdat->node_id); | |
835c134e MG |
5084 | } |
5085 | #else | |
7c45512d LT |
5086 | static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, |
5087 | unsigned long zone_start_pfn, unsigned long zonesize) {} | |
835c134e MG |
5088 | #endif /* CONFIG_SPARSEMEM */ |
5089 | ||
d9c23400 | 5090 | #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE |
ba72cb8c | 5091 | |
d9c23400 | 5092 | /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ |
15ca220e | 5093 | void __paginginit set_pageblock_order(void) |
d9c23400 | 5094 | { |
955c1cd7 AM |
5095 | unsigned int order; |
5096 | ||
d9c23400 MG |
5097 | /* Check that pageblock_nr_pages has not already been setup */ |
5098 | if (pageblock_order) | |
5099 | return; | |
5100 | ||
955c1cd7 AM |
5101 | if (HPAGE_SHIFT > PAGE_SHIFT) |
5102 | order = HUGETLB_PAGE_ORDER; | |
5103 | else | |
5104 | order = MAX_ORDER - 1; | |
5105 | ||
d9c23400 MG |
5106 | /* |
5107 | * Assume the largest contiguous order of interest is a huge page. | |
955c1cd7 AM |
5108 | * This value may be variable depending on boot parameters on IA64 and |
5109 | * powerpc. | |
d9c23400 MG |
5110 | */ |
5111 | pageblock_order = order; | |
5112 | } | |
5113 | #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
5114 | ||
ba72cb8c MG |
5115 | /* |
5116 | * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() | |
955c1cd7 AM |
5117 | * is unused as pageblock_order is set at compile-time. See |
5118 | * include/linux/pageblock-flags.h for the values of pageblock_order based on | |
5119 | * the kernel config | |
ba72cb8c | 5120 | */ |
15ca220e | 5121 | void __paginginit set_pageblock_order(void) |
ba72cb8c | 5122 | { |
ba72cb8c | 5123 | } |
d9c23400 MG |
5124 | |
5125 | #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ | |
5126 | ||
01cefaef JL |
5127 | static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, |
5128 | unsigned long present_pages) | |
5129 | { | |
5130 | unsigned long pages = spanned_pages; | |
5131 | ||
5132 | /* | |
5133 | * Provide a more accurate estimation if there are holes within | |
5134 | * the zone and SPARSEMEM is in use. If there are holes within the | |
5135 | * zone, each populated memory region may cost us one or two extra | |
5136 | * memmap pages due to alignment because memmap pages for each | |
5137 | * populated regions may not naturally algined on page boundary. | |
5138 | * So the (present_pages >> 4) heuristic is a tradeoff for that. | |
5139 | */ | |
5140 | if (spanned_pages > present_pages + (present_pages >> 4) && | |
5141 | IS_ENABLED(CONFIG_SPARSEMEM)) | |
5142 | pages = present_pages; | |
5143 | ||
5144 | return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; | |
5145 | } | |
5146 | ||
1da177e4 LT |
5147 | /* |
5148 | * Set up the zone data structures: | |
5149 | * - mark all pages reserved | |
5150 | * - mark all memory queues empty | |
5151 | * - clear the memory bitmaps | |
6527af5d MK |
5152 | * |
5153 | * NOTE: pgdat should get zeroed by caller. | |
1da177e4 | 5154 | */ |
7f3eb55b | 5155 | static void __paginginit free_area_init_core(struct pglist_data *pgdat) |
1da177e4 | 5156 | { |
2f1b6248 | 5157 | enum zone_type j; |
ed8ece2e | 5158 | int nid = pgdat->node_id; |
1da177e4 | 5159 | unsigned long zone_start_pfn = pgdat->node_start_pfn; |
718127cc | 5160 | int ret; |
1da177e4 | 5161 | |
208d54e5 | 5162 | pgdat_resize_init(pgdat); |
8177a420 AA |
5163 | #ifdef CONFIG_NUMA_BALANCING |
5164 | spin_lock_init(&pgdat->numabalancing_migrate_lock); | |
5165 | pgdat->numabalancing_migrate_nr_pages = 0; | |
5166 | pgdat->numabalancing_migrate_next_window = jiffies; | |
5167 | #endif | |
1da177e4 | 5168 | init_waitqueue_head(&pgdat->kswapd_wait); |
5515061d | 5169 | init_waitqueue_head(&pgdat->pfmemalloc_wait); |
eefa864b | 5170 | pgdat_page_ext_init(pgdat); |
5f63b720 | 5171 | |
1da177e4 LT |
5172 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5173 | struct zone *zone = pgdat->node_zones + j; | |
9feedc9d | 5174 | unsigned long size, realsize, freesize, memmap_pages; |
1da177e4 | 5175 | |
febd5949 GZ |
5176 | size = zone->spanned_pages; |
5177 | realsize = freesize = zone->present_pages; | |
1da177e4 | 5178 | |
0e0b864e | 5179 | /* |
9feedc9d | 5180 | * Adjust freesize so that it accounts for how much memory |
0e0b864e MG |
5181 | * is used by this zone for memmap. This affects the watermark |
5182 | * and per-cpu initialisations | |
5183 | */ | |
01cefaef | 5184 | memmap_pages = calc_memmap_size(size, realsize); |
ba914f48 ZH |
5185 | if (!is_highmem_idx(j)) { |
5186 | if (freesize >= memmap_pages) { | |
5187 | freesize -= memmap_pages; | |
5188 | if (memmap_pages) | |
5189 | printk(KERN_DEBUG | |
5190 | " %s zone: %lu pages used for memmap\n", | |
5191 | zone_names[j], memmap_pages); | |
5192 | } else | |
5193 | printk(KERN_WARNING | |
5194 | " %s zone: %lu pages exceeds freesize %lu\n", | |
5195 | zone_names[j], memmap_pages, freesize); | |
5196 | } | |
0e0b864e | 5197 | |
6267276f | 5198 | /* Account for reserved pages */ |
9feedc9d JL |
5199 | if (j == 0 && freesize > dma_reserve) { |
5200 | freesize -= dma_reserve; | |
d903ef9f | 5201 | printk(KERN_DEBUG " %s zone: %lu pages reserved\n", |
6267276f | 5202 | zone_names[0], dma_reserve); |
0e0b864e MG |
5203 | } |
5204 | ||
98d2b0eb | 5205 | if (!is_highmem_idx(j)) |
9feedc9d | 5206 | nr_kernel_pages += freesize; |
01cefaef JL |
5207 | /* Charge for highmem memmap if there are enough kernel pages */ |
5208 | else if (nr_kernel_pages > memmap_pages * 2) | |
5209 | nr_kernel_pages -= memmap_pages; | |
9feedc9d | 5210 | nr_all_pages += freesize; |
1da177e4 | 5211 | |
9feedc9d JL |
5212 | /* |
5213 | * Set an approximate value for lowmem here, it will be adjusted | |
5214 | * when the bootmem allocator frees pages into the buddy system. | |
5215 | * And all highmem pages will be managed by the buddy system. | |
5216 | */ | |
5217 | zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; | |
9614634f | 5218 | #ifdef CONFIG_NUMA |
d5f541ed | 5219 | zone->node = nid; |
9feedc9d | 5220 | zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) |
9614634f | 5221 | / 100; |
9feedc9d | 5222 | zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; |
9614634f | 5223 | #endif |
1da177e4 LT |
5224 | zone->name = zone_names[j]; |
5225 | spin_lock_init(&zone->lock); | |
5226 | spin_lock_init(&zone->lru_lock); | |
bdc8cb98 | 5227 | zone_seqlock_init(zone); |
1da177e4 | 5228 | zone->zone_pgdat = pgdat; |
ed8ece2e | 5229 | zone_pcp_init(zone); |
81c0a2bb JW |
5230 | |
5231 | /* For bootup, initialized properly in watermark setup */ | |
5232 | mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); | |
5233 | ||
bea8c150 | 5234 | lruvec_init(&zone->lruvec); |
1da177e4 LT |
5235 | if (!size) |
5236 | continue; | |
5237 | ||
955c1cd7 | 5238 | set_pageblock_order(); |
7c45512d | 5239 | setup_usemap(pgdat, zone, zone_start_pfn, size); |
b171e409 | 5240 | ret = init_currently_empty_zone(zone, zone_start_pfn, size); |
718127cc | 5241 | BUG_ON(ret); |
76cdd58e | 5242 | memmap_init(size, nid, j, zone_start_pfn); |
1da177e4 | 5243 | zone_start_pfn += size; |
1da177e4 LT |
5244 | } |
5245 | } | |
5246 | ||
577a32f6 | 5247 | static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) |
1da177e4 | 5248 | { |
b0aeba74 | 5249 | unsigned long __maybe_unused start = 0; |
a1c34a3b LA |
5250 | unsigned long __maybe_unused offset = 0; |
5251 | ||
1da177e4 LT |
5252 | /* Skip empty nodes */ |
5253 | if (!pgdat->node_spanned_pages) | |
5254 | return; | |
5255 | ||
d41dee36 | 5256 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
b0aeba74 TL |
5257 | start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); |
5258 | offset = pgdat->node_start_pfn - start; | |
1da177e4 LT |
5259 | /* ia64 gets its own node_mem_map, before this, without bootmem */ |
5260 | if (!pgdat->node_mem_map) { | |
b0aeba74 | 5261 | unsigned long size, end; |
d41dee36 AW |
5262 | struct page *map; |
5263 | ||
e984bb43 BP |
5264 | /* |
5265 | * The zone's endpoints aren't required to be MAX_ORDER | |
5266 | * aligned but the node_mem_map endpoints must be in order | |
5267 | * for the buddy allocator to function correctly. | |
5268 | */ | |
108bcc96 | 5269 | end = pgdat_end_pfn(pgdat); |
e984bb43 BP |
5270 | end = ALIGN(end, MAX_ORDER_NR_PAGES); |
5271 | size = (end - start) * sizeof(struct page); | |
6f167ec7 DH |
5272 | map = alloc_remap(pgdat->node_id, size); |
5273 | if (!map) | |
6782832e SS |
5274 | map = memblock_virt_alloc_node_nopanic(size, |
5275 | pgdat->node_id); | |
a1c34a3b | 5276 | pgdat->node_mem_map = map + offset; |
1da177e4 | 5277 | } |
12d810c1 | 5278 | #ifndef CONFIG_NEED_MULTIPLE_NODES |
1da177e4 LT |
5279 | /* |
5280 | * With no DISCONTIG, the global mem_map is just set as node 0's | |
5281 | */ | |
c713216d | 5282 | if (pgdat == NODE_DATA(0)) { |
1da177e4 | 5283 | mem_map = NODE_DATA(0)->node_mem_map; |
a1c34a3b | 5284 | #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) |
c713216d | 5285 | if (page_to_pfn(mem_map) != pgdat->node_start_pfn) |
a1c34a3b | 5286 | mem_map -= offset; |
0ee332c1 | 5287 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5288 | } |
1da177e4 | 5289 | #endif |
d41dee36 | 5290 | #endif /* CONFIG_FLAT_NODE_MEM_MAP */ |
1da177e4 LT |
5291 | } |
5292 | ||
9109fb7b JW |
5293 | void __paginginit free_area_init_node(int nid, unsigned long *zones_size, |
5294 | unsigned long node_start_pfn, unsigned long *zholes_size) | |
1da177e4 | 5295 | { |
9109fb7b | 5296 | pg_data_t *pgdat = NODE_DATA(nid); |
7960aedd ZY |
5297 | unsigned long start_pfn = 0; |
5298 | unsigned long end_pfn = 0; | |
9109fb7b | 5299 | |
88fdf75d | 5300 | /* pg_data_t should be reset to zero when it's allocated */ |
8783b6e2 | 5301 | WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); |
88fdf75d | 5302 | |
3a80a7fa | 5303 | reset_deferred_meminit(pgdat); |
1da177e4 LT |
5304 | pgdat->node_id = nid; |
5305 | pgdat->node_start_pfn = node_start_pfn; | |
7960aedd ZY |
5306 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
5307 | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | |
8d29e18a | 5308 | pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, |
4ada0c5a ZL |
5309 | (u64)start_pfn << PAGE_SHIFT, |
5310 | end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); | |
7960aedd ZY |
5311 | #endif |
5312 | calculate_node_totalpages(pgdat, start_pfn, end_pfn, | |
5313 | zones_size, zholes_size); | |
1da177e4 LT |
5314 | |
5315 | alloc_node_mem_map(pgdat); | |
e8c27ac9 YL |
5316 | #ifdef CONFIG_FLAT_NODE_MEM_MAP |
5317 | printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", | |
5318 | nid, (unsigned long)pgdat, | |
5319 | (unsigned long)pgdat->node_mem_map); | |
5320 | #endif | |
1da177e4 | 5321 | |
7f3eb55b | 5322 | free_area_init_core(pgdat); |
1da177e4 LT |
5323 | } |
5324 | ||
0ee332c1 | 5325 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP |
418508c1 MS |
5326 | |
5327 | #if MAX_NUMNODES > 1 | |
5328 | /* | |
5329 | * Figure out the number of possible node ids. | |
5330 | */ | |
f9872caf | 5331 | void __init setup_nr_node_ids(void) |
418508c1 | 5332 | { |
904a9553 | 5333 | unsigned int highest; |
418508c1 | 5334 | |
904a9553 | 5335 | highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); |
418508c1 MS |
5336 | nr_node_ids = highest + 1; |
5337 | } | |
418508c1 MS |
5338 | #endif |
5339 | ||
1e01979c TH |
5340 | /** |
5341 | * node_map_pfn_alignment - determine the maximum internode alignment | |
5342 | * | |
5343 | * This function should be called after node map is populated and sorted. | |
5344 | * It calculates the maximum power of two alignment which can distinguish | |
5345 | * all the nodes. | |
5346 | * | |
5347 | * For example, if all nodes are 1GiB and aligned to 1GiB, the return value | |
5348 | * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the | |
5349 | * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is | |
5350 | * shifted, 1GiB is enough and this function will indicate so. | |
5351 | * | |
5352 | * This is used to test whether pfn -> nid mapping of the chosen memory | |
5353 | * model has fine enough granularity to avoid incorrect mapping for the | |
5354 | * populated node map. | |
5355 | * | |
5356 | * Returns the determined alignment in pfn's. 0 if there is no alignment | |
5357 | * requirement (single node). | |
5358 | */ | |
5359 | unsigned long __init node_map_pfn_alignment(void) | |
5360 | { | |
5361 | unsigned long accl_mask = 0, last_end = 0; | |
c13291a5 | 5362 | unsigned long start, end, mask; |
1e01979c | 5363 | int last_nid = -1; |
c13291a5 | 5364 | int i, nid; |
1e01979c | 5365 | |
c13291a5 | 5366 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { |
1e01979c TH |
5367 | if (!start || last_nid < 0 || last_nid == nid) { |
5368 | last_nid = nid; | |
5369 | last_end = end; | |
5370 | continue; | |
5371 | } | |
5372 | ||
5373 | /* | |
5374 | * Start with a mask granular enough to pin-point to the | |
5375 | * start pfn and tick off bits one-by-one until it becomes | |
5376 | * too coarse to separate the current node from the last. | |
5377 | */ | |
5378 | mask = ~((1 << __ffs(start)) - 1); | |
5379 | while (mask && last_end <= (start & (mask << 1))) | |
5380 | mask <<= 1; | |
5381 | ||
5382 | /* accumulate all internode masks */ | |
5383 | accl_mask |= mask; | |
5384 | } | |
5385 | ||
5386 | /* convert mask to number of pages */ | |
5387 | return ~accl_mask + 1; | |
5388 | } | |
5389 | ||
a6af2bc3 | 5390 | /* Find the lowest pfn for a node */ |
b69a7288 | 5391 | static unsigned long __init find_min_pfn_for_node(int nid) |
c713216d | 5392 | { |
a6af2bc3 | 5393 | unsigned long min_pfn = ULONG_MAX; |
c13291a5 TH |
5394 | unsigned long start_pfn; |
5395 | int i; | |
1abbfb41 | 5396 | |
c13291a5 TH |
5397 | for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) |
5398 | min_pfn = min(min_pfn, start_pfn); | |
c713216d | 5399 | |
a6af2bc3 MG |
5400 | if (min_pfn == ULONG_MAX) { |
5401 | printk(KERN_WARNING | |
2bc0d261 | 5402 | "Could not find start_pfn for node %d\n", nid); |
a6af2bc3 MG |
5403 | return 0; |
5404 | } | |
5405 | ||
5406 | return min_pfn; | |
c713216d MG |
5407 | } |
5408 | ||
5409 | /** | |
5410 | * find_min_pfn_with_active_regions - Find the minimum PFN registered | |
5411 | * | |
5412 | * It returns the minimum PFN based on information provided via | |
7d018176 | 5413 | * memblock_set_node(). |
c713216d MG |
5414 | */ |
5415 | unsigned long __init find_min_pfn_with_active_regions(void) | |
5416 | { | |
5417 | return find_min_pfn_for_node(MAX_NUMNODES); | |
5418 | } | |
5419 | ||
37b07e41 LS |
5420 | /* |
5421 | * early_calculate_totalpages() | |
5422 | * Sum pages in active regions for movable zone. | |
4b0ef1fe | 5423 | * Populate N_MEMORY for calculating usable_nodes. |
37b07e41 | 5424 | */ |
484f51f8 | 5425 | static unsigned long __init early_calculate_totalpages(void) |
7e63efef | 5426 | { |
7e63efef | 5427 | unsigned long totalpages = 0; |
c13291a5 TH |
5428 | unsigned long start_pfn, end_pfn; |
5429 | int i, nid; | |
5430 | ||
5431 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { | |
5432 | unsigned long pages = end_pfn - start_pfn; | |
7e63efef | 5433 | |
37b07e41 LS |
5434 | totalpages += pages; |
5435 | if (pages) | |
4b0ef1fe | 5436 | node_set_state(nid, N_MEMORY); |
37b07e41 | 5437 | } |
b8af2941 | 5438 | return totalpages; |
7e63efef MG |
5439 | } |
5440 | ||
2a1e274a MG |
5441 | /* |
5442 | * Find the PFN the Movable zone begins in each node. Kernel memory | |
5443 | * is spread evenly between nodes as long as the nodes have enough | |
5444 | * memory. When they don't, some nodes will have more kernelcore than | |
5445 | * others | |
5446 | */ | |
b224ef85 | 5447 | static void __init find_zone_movable_pfns_for_nodes(void) |
2a1e274a MG |
5448 | { |
5449 | int i, nid; | |
5450 | unsigned long usable_startpfn; | |
5451 | unsigned long kernelcore_node, kernelcore_remaining; | |
66918dcd | 5452 | /* save the state before borrow the nodemask */ |
4b0ef1fe | 5453 | nodemask_t saved_node_state = node_states[N_MEMORY]; |
37b07e41 | 5454 | unsigned long totalpages = early_calculate_totalpages(); |
4b0ef1fe | 5455 | int usable_nodes = nodes_weight(node_states[N_MEMORY]); |
136199f0 | 5456 | struct memblock_region *r; |
b2f3eebe TC |
5457 | |
5458 | /* Need to find movable_zone earlier when movable_node is specified. */ | |
5459 | find_usable_zone_for_movable(); | |
5460 | ||
5461 | /* | |
5462 | * If movable_node is specified, ignore kernelcore and movablecore | |
5463 | * options. | |
5464 | */ | |
5465 | if (movable_node_is_enabled()) { | |
136199f0 EM |
5466 | for_each_memblock(memory, r) { |
5467 | if (!memblock_is_hotpluggable(r)) | |
b2f3eebe TC |
5468 | continue; |
5469 | ||
136199f0 | 5470 | nid = r->nid; |
b2f3eebe | 5471 | |
136199f0 | 5472 | usable_startpfn = PFN_DOWN(r->base); |
b2f3eebe TC |
5473 | zone_movable_pfn[nid] = zone_movable_pfn[nid] ? |
5474 | min(usable_startpfn, zone_movable_pfn[nid]) : | |
5475 | usable_startpfn; | |
5476 | } | |
5477 | ||
5478 | goto out2; | |
5479 | } | |
2a1e274a | 5480 | |
7e63efef | 5481 | /* |
b2f3eebe | 5482 | * If movablecore=nn[KMG] was specified, calculate what size of |
7e63efef MG |
5483 | * kernelcore that corresponds so that memory usable for |
5484 | * any allocation type is evenly spread. If both kernelcore | |
5485 | * and movablecore are specified, then the value of kernelcore | |
5486 | * will be used for required_kernelcore if it's greater than | |
5487 | * what movablecore would have allowed. | |
5488 | */ | |
5489 | if (required_movablecore) { | |
7e63efef MG |
5490 | unsigned long corepages; |
5491 | ||
5492 | /* | |
5493 | * Round-up so that ZONE_MOVABLE is at least as large as what | |
5494 | * was requested by the user | |
5495 | */ | |
5496 | required_movablecore = | |
5497 | roundup(required_movablecore, MAX_ORDER_NR_PAGES); | |
9fd745d4 | 5498 | required_movablecore = min(totalpages, required_movablecore); |
7e63efef MG |
5499 | corepages = totalpages - required_movablecore; |
5500 | ||
5501 | required_kernelcore = max(required_kernelcore, corepages); | |
5502 | } | |
5503 | ||
bde304bd XQ |
5504 | /* |
5505 | * If kernelcore was not specified or kernelcore size is larger | |
5506 | * than totalpages, there is no ZONE_MOVABLE. | |
5507 | */ | |
5508 | if (!required_kernelcore || required_kernelcore >= totalpages) | |
66918dcd | 5509 | goto out; |
2a1e274a MG |
5510 | |
5511 | /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ | |
2a1e274a MG |
5512 | usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; |
5513 | ||
5514 | restart: | |
5515 | /* Spread kernelcore memory as evenly as possible throughout nodes */ | |
5516 | kernelcore_node = required_kernelcore / usable_nodes; | |
4b0ef1fe | 5517 | for_each_node_state(nid, N_MEMORY) { |
c13291a5 TH |
5518 | unsigned long start_pfn, end_pfn; |
5519 | ||
2a1e274a MG |
5520 | /* |
5521 | * Recalculate kernelcore_node if the division per node | |
5522 | * now exceeds what is necessary to satisfy the requested | |
5523 | * amount of memory for the kernel | |
5524 | */ | |
5525 | if (required_kernelcore < kernelcore_node) | |
5526 | kernelcore_node = required_kernelcore / usable_nodes; | |
5527 | ||
5528 | /* | |
5529 | * As the map is walked, we track how much memory is usable | |
5530 | * by the kernel using kernelcore_remaining. When it is | |
5531 | * 0, the rest of the node is usable by ZONE_MOVABLE | |
5532 | */ | |
5533 | kernelcore_remaining = kernelcore_node; | |
5534 | ||
5535 | /* Go through each range of PFNs within this node */ | |
c13291a5 | 5536 | for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { |
2a1e274a MG |
5537 | unsigned long size_pages; |
5538 | ||
c13291a5 | 5539 | start_pfn = max(start_pfn, zone_movable_pfn[nid]); |
2a1e274a MG |
5540 | if (start_pfn >= end_pfn) |
5541 | continue; | |
5542 | ||
5543 | /* Account for what is only usable for kernelcore */ | |
5544 | if (start_pfn < usable_startpfn) { | |
5545 | unsigned long kernel_pages; | |
5546 | kernel_pages = min(end_pfn, usable_startpfn) | |
5547 | - start_pfn; | |
5548 | ||
5549 | kernelcore_remaining -= min(kernel_pages, | |
5550 | kernelcore_remaining); | |
5551 | required_kernelcore -= min(kernel_pages, | |
5552 | required_kernelcore); | |
5553 | ||
5554 | /* Continue if range is now fully accounted */ | |
5555 | if (end_pfn <= usable_startpfn) { | |
5556 | ||
5557 | /* | |
5558 | * Push zone_movable_pfn to the end so | |
5559 | * that if we have to rebalance | |
5560 | * kernelcore across nodes, we will | |
5561 | * not double account here | |
5562 | */ | |
5563 | zone_movable_pfn[nid] = end_pfn; | |
5564 | continue; | |
5565 | } | |
5566 | start_pfn = usable_startpfn; | |
5567 | } | |
5568 | ||
5569 | /* | |
5570 | * The usable PFN range for ZONE_MOVABLE is from | |
5571 | * start_pfn->end_pfn. Calculate size_pages as the | |
5572 | * number of pages used as kernelcore | |
5573 | */ | |
5574 | size_pages = end_pfn - start_pfn; | |
5575 | if (size_pages > kernelcore_remaining) | |
5576 | size_pages = kernelcore_remaining; | |
5577 | zone_movable_pfn[nid] = start_pfn + size_pages; | |
5578 | ||
5579 | /* | |
5580 | * Some kernelcore has been met, update counts and | |
5581 | * break if the kernelcore for this node has been | |
b8af2941 | 5582 | * satisfied |
2a1e274a MG |
5583 | */ |
5584 | required_kernelcore -= min(required_kernelcore, | |
5585 | size_pages); | |
5586 | kernelcore_remaining -= size_pages; | |
5587 | if (!kernelcore_remaining) | |
5588 | break; | |
5589 | } | |
5590 | } | |
5591 | ||
5592 | /* | |
5593 | * If there is still required_kernelcore, we do another pass with one | |
5594 | * less node in the count. This will push zone_movable_pfn[nid] further | |
5595 | * along on the nodes that still have memory until kernelcore is | |
b8af2941 | 5596 | * satisfied |
2a1e274a MG |
5597 | */ |
5598 | usable_nodes--; | |
5599 | if (usable_nodes && required_kernelcore > usable_nodes) | |
5600 | goto restart; | |
5601 | ||
b2f3eebe | 5602 | out2: |
2a1e274a MG |
5603 | /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ |
5604 | for (nid = 0; nid < MAX_NUMNODES; nid++) | |
5605 | zone_movable_pfn[nid] = | |
5606 | roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); | |
66918dcd | 5607 | |
20e6926d | 5608 | out: |
66918dcd | 5609 | /* restore the node_state */ |
4b0ef1fe | 5610 | node_states[N_MEMORY] = saved_node_state; |
2a1e274a MG |
5611 | } |
5612 | ||
4b0ef1fe LJ |
5613 | /* Any regular or high memory on that node ? */ |
5614 | static void check_for_memory(pg_data_t *pgdat, int nid) | |
37b07e41 | 5615 | { |
37b07e41 LS |
5616 | enum zone_type zone_type; |
5617 | ||
4b0ef1fe LJ |
5618 | if (N_MEMORY == N_NORMAL_MEMORY) |
5619 | return; | |
5620 | ||
5621 | for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { | |
37b07e41 | 5622 | struct zone *zone = &pgdat->node_zones[zone_type]; |
b38a8725 | 5623 | if (populated_zone(zone)) { |
4b0ef1fe LJ |
5624 | node_set_state(nid, N_HIGH_MEMORY); |
5625 | if (N_NORMAL_MEMORY != N_HIGH_MEMORY && | |
5626 | zone_type <= ZONE_NORMAL) | |
5627 | node_set_state(nid, N_NORMAL_MEMORY); | |
d0048b0e BL |
5628 | break; |
5629 | } | |
37b07e41 | 5630 | } |
37b07e41 LS |
5631 | } |
5632 | ||
c713216d MG |
5633 | /** |
5634 | * free_area_init_nodes - Initialise all pg_data_t and zone data | |
88ca3b94 | 5635 | * @max_zone_pfn: an array of max PFNs for each zone |
c713216d MG |
5636 | * |
5637 | * This will call free_area_init_node() for each active node in the system. | |
7d018176 | 5638 | * Using the page ranges provided by memblock_set_node(), the size of each |
c713216d MG |
5639 | * zone in each node and their holes is calculated. If the maximum PFN |
5640 | * between two adjacent zones match, it is assumed that the zone is empty. | |
5641 | * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed | |
5642 | * that arch_max_dma32_pfn has no pages. It is also assumed that a zone | |
5643 | * starts where the previous one ended. For example, ZONE_DMA32 starts | |
5644 | * at arch_max_dma_pfn. | |
5645 | */ | |
5646 | void __init free_area_init_nodes(unsigned long *max_zone_pfn) | |
5647 | { | |
c13291a5 TH |
5648 | unsigned long start_pfn, end_pfn; |
5649 | int i, nid; | |
a6af2bc3 | 5650 | |
c713216d MG |
5651 | /* Record where the zone boundaries are */ |
5652 | memset(arch_zone_lowest_possible_pfn, 0, | |
5653 | sizeof(arch_zone_lowest_possible_pfn)); | |
5654 | memset(arch_zone_highest_possible_pfn, 0, | |
5655 | sizeof(arch_zone_highest_possible_pfn)); | |
5656 | arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); | |
5657 | arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; | |
5658 | for (i = 1; i < MAX_NR_ZONES; i++) { | |
2a1e274a MG |
5659 | if (i == ZONE_MOVABLE) |
5660 | continue; | |
c713216d MG |
5661 | arch_zone_lowest_possible_pfn[i] = |
5662 | arch_zone_highest_possible_pfn[i-1]; | |
5663 | arch_zone_highest_possible_pfn[i] = | |
5664 | max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); | |
5665 | } | |
2a1e274a MG |
5666 | arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; |
5667 | arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; | |
5668 | ||
5669 | /* Find the PFNs that ZONE_MOVABLE begins at in each node */ | |
5670 | memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); | |
b224ef85 | 5671 | find_zone_movable_pfns_for_nodes(); |
c713216d | 5672 | |
c713216d | 5673 | /* Print out the zone ranges */ |
f88dfff5 | 5674 | pr_info("Zone ranges:\n"); |
2a1e274a MG |
5675 | for (i = 0; i < MAX_NR_ZONES; i++) { |
5676 | if (i == ZONE_MOVABLE) | |
5677 | continue; | |
f88dfff5 | 5678 | pr_info(" %-8s ", zone_names[i]); |
72f0ba02 DR |
5679 | if (arch_zone_lowest_possible_pfn[i] == |
5680 | arch_zone_highest_possible_pfn[i]) | |
f88dfff5 | 5681 | pr_cont("empty\n"); |
72f0ba02 | 5682 | else |
8d29e18a JG |
5683 | pr_cont("[mem %#018Lx-%#018Lx]\n", |
5684 | (u64)arch_zone_lowest_possible_pfn[i] | |
5685 | << PAGE_SHIFT, | |
5686 | ((u64)arch_zone_highest_possible_pfn[i] | |
a62e2f4f | 5687 | << PAGE_SHIFT) - 1); |
2a1e274a MG |
5688 | } |
5689 | ||
5690 | /* Print out the PFNs ZONE_MOVABLE begins at in each node */ | |
f88dfff5 | 5691 | pr_info("Movable zone start for each node\n"); |
2a1e274a MG |
5692 | for (i = 0; i < MAX_NUMNODES; i++) { |
5693 | if (zone_movable_pfn[i]) | |
8d29e18a JG |
5694 | pr_info(" Node %d: %#018Lx\n", i, |
5695 | (u64)zone_movable_pfn[i] << PAGE_SHIFT); | |
2a1e274a | 5696 | } |
c713216d | 5697 | |
f2d52fe5 | 5698 | /* Print out the early node map */ |
f88dfff5 | 5699 | pr_info("Early memory node ranges\n"); |
c13291a5 | 5700 | for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) |
8d29e18a JG |
5701 | pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, |
5702 | (u64)start_pfn << PAGE_SHIFT, | |
5703 | ((u64)end_pfn << PAGE_SHIFT) - 1); | |
c713216d MG |
5704 | |
5705 | /* Initialise every node */ | |
708614e6 | 5706 | mminit_verify_pageflags_layout(); |
8ef82866 | 5707 | setup_nr_node_ids(); |
c713216d MG |
5708 | for_each_online_node(nid) { |
5709 | pg_data_t *pgdat = NODE_DATA(nid); | |
9109fb7b | 5710 | free_area_init_node(nid, NULL, |
c713216d | 5711 | find_min_pfn_for_node(nid), NULL); |
37b07e41 LS |
5712 | |
5713 | /* Any memory on that node */ | |
5714 | if (pgdat->node_present_pages) | |
4b0ef1fe LJ |
5715 | node_set_state(nid, N_MEMORY); |
5716 | check_for_memory(pgdat, nid); | |
c713216d MG |
5717 | } |
5718 | } | |
2a1e274a | 5719 | |
7e63efef | 5720 | static int __init cmdline_parse_core(char *p, unsigned long *core) |
2a1e274a MG |
5721 | { |
5722 | unsigned long long coremem; | |
5723 | if (!p) | |
5724 | return -EINVAL; | |
5725 | ||
5726 | coremem = memparse(p, &p); | |
7e63efef | 5727 | *core = coremem >> PAGE_SHIFT; |
2a1e274a | 5728 | |
7e63efef | 5729 | /* Paranoid check that UL is enough for the coremem value */ |
2a1e274a MG |
5730 | WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); |
5731 | ||
5732 | return 0; | |
5733 | } | |
ed7ed365 | 5734 | |
7e63efef MG |
5735 | /* |
5736 | * kernelcore=size sets the amount of memory for use for allocations that | |
5737 | * cannot be reclaimed or migrated. | |
5738 | */ | |
5739 | static int __init cmdline_parse_kernelcore(char *p) | |
5740 | { | |
5741 | return cmdline_parse_core(p, &required_kernelcore); | |
5742 | } | |
5743 | ||
5744 | /* | |
5745 | * movablecore=size sets the amount of memory for use for allocations that | |
5746 | * can be reclaimed or migrated. | |
5747 | */ | |
5748 | static int __init cmdline_parse_movablecore(char *p) | |
5749 | { | |
5750 | return cmdline_parse_core(p, &required_movablecore); | |
5751 | } | |
5752 | ||
ed7ed365 | 5753 | early_param("kernelcore", cmdline_parse_kernelcore); |
7e63efef | 5754 | early_param("movablecore", cmdline_parse_movablecore); |
ed7ed365 | 5755 | |
0ee332c1 | 5756 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ |
c713216d | 5757 | |
c3d5f5f0 JL |
5758 | void adjust_managed_page_count(struct page *page, long count) |
5759 | { | |
5760 | spin_lock(&managed_page_count_lock); | |
5761 | page_zone(page)->managed_pages += count; | |
5762 | totalram_pages += count; | |
3dcc0571 JL |
5763 | #ifdef CONFIG_HIGHMEM |
5764 | if (PageHighMem(page)) | |
5765 | totalhigh_pages += count; | |
5766 | #endif | |
c3d5f5f0 JL |
5767 | spin_unlock(&managed_page_count_lock); |
5768 | } | |
3dcc0571 | 5769 | EXPORT_SYMBOL(adjust_managed_page_count); |
c3d5f5f0 | 5770 | |
11199692 | 5771 | unsigned long free_reserved_area(void *start, void *end, int poison, char *s) |
69afade7 | 5772 | { |
11199692 JL |
5773 | void *pos; |
5774 | unsigned long pages = 0; | |
69afade7 | 5775 | |
11199692 JL |
5776 | start = (void *)PAGE_ALIGN((unsigned long)start); |
5777 | end = (void *)((unsigned long)end & PAGE_MASK); | |
5778 | for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { | |
dbe67df4 | 5779 | if ((unsigned int)poison <= 0xFF) |
11199692 JL |
5780 | memset(pos, poison, PAGE_SIZE); |
5781 | free_reserved_page(virt_to_page(pos)); | |
69afade7 JL |
5782 | } |
5783 | ||
5784 | if (pages && s) | |
11199692 | 5785 | pr_info("Freeing %s memory: %ldK (%p - %p)\n", |
69afade7 JL |
5786 | s, pages << (PAGE_SHIFT - 10), start, end); |
5787 | ||
5788 | return pages; | |
5789 | } | |
11199692 | 5790 | EXPORT_SYMBOL(free_reserved_area); |
69afade7 | 5791 | |
cfa11e08 JL |
5792 | #ifdef CONFIG_HIGHMEM |
5793 | void free_highmem_page(struct page *page) | |
5794 | { | |
5795 | __free_reserved_page(page); | |
5796 | totalram_pages++; | |
7b4b2a0d | 5797 | page_zone(page)->managed_pages++; |
cfa11e08 JL |
5798 | totalhigh_pages++; |
5799 | } | |
5800 | #endif | |
5801 | ||
7ee3d4e8 JL |
5802 | |
5803 | void __init mem_init_print_info(const char *str) | |
5804 | { | |
5805 | unsigned long physpages, codesize, datasize, rosize, bss_size; | |
5806 | unsigned long init_code_size, init_data_size; | |
5807 | ||
5808 | physpages = get_num_physpages(); | |
5809 | codesize = _etext - _stext; | |
5810 | datasize = _edata - _sdata; | |
5811 | rosize = __end_rodata - __start_rodata; | |
5812 | bss_size = __bss_stop - __bss_start; | |
5813 | init_data_size = __init_end - __init_begin; | |
5814 | init_code_size = _einittext - _sinittext; | |
5815 | ||
5816 | /* | |
5817 | * Detect special cases and adjust section sizes accordingly: | |
5818 | * 1) .init.* may be embedded into .data sections | |
5819 | * 2) .init.text.* may be out of [__init_begin, __init_end], | |
5820 | * please refer to arch/tile/kernel/vmlinux.lds.S. | |
5821 | * 3) .rodata.* may be embedded into .text or .data sections. | |
5822 | */ | |
5823 | #define adj_init_size(start, end, size, pos, adj) \ | |
b8af2941 PK |
5824 | do { \ |
5825 | if (start <= pos && pos < end && size > adj) \ | |
5826 | size -= adj; \ | |
5827 | } while (0) | |
7ee3d4e8 JL |
5828 | |
5829 | adj_init_size(__init_begin, __init_end, init_data_size, | |
5830 | _sinittext, init_code_size); | |
5831 | adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); | |
5832 | adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); | |
5833 | adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); | |
5834 | adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); | |
5835 | ||
5836 | #undef adj_init_size | |
5837 | ||
f88dfff5 | 5838 | pr_info("Memory: %luK/%luK available " |
7ee3d4e8 | 5839 | "(%luK kernel code, %luK rwdata, %luK rodata, " |
e48322ab | 5840 | "%luK init, %luK bss, %luK reserved, %luK cma-reserved" |
7ee3d4e8 JL |
5841 | #ifdef CONFIG_HIGHMEM |
5842 | ", %luK highmem" | |
5843 | #endif | |
5844 | "%s%s)\n", | |
5845 | nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), | |
5846 | codesize >> 10, datasize >> 10, rosize >> 10, | |
5847 | (init_data_size + init_code_size) >> 10, bss_size >> 10, | |
e48322ab PK |
5848 | (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), |
5849 | totalcma_pages << (PAGE_SHIFT-10), | |
7ee3d4e8 JL |
5850 | #ifdef CONFIG_HIGHMEM |
5851 | totalhigh_pages << (PAGE_SHIFT-10), | |
5852 | #endif | |
5853 | str ? ", " : "", str ? str : ""); | |
5854 | } | |
5855 | ||
0e0b864e | 5856 | /** |
88ca3b94 RD |
5857 | * set_dma_reserve - set the specified number of pages reserved in the first zone |
5858 | * @new_dma_reserve: The number of pages to mark reserved | |
0e0b864e | 5859 | * |
013110a7 | 5860 | * The per-cpu batchsize and zone watermarks are determined by managed_pages. |
0e0b864e MG |
5861 | * In the DMA zone, a significant percentage may be consumed by kernel image |
5862 | * and other unfreeable allocations which can skew the watermarks badly. This | |
88ca3b94 RD |
5863 | * function may optionally be used to account for unfreeable pages in the |
5864 | * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and | |
5865 | * smaller per-cpu batchsize. | |
0e0b864e MG |
5866 | */ |
5867 | void __init set_dma_reserve(unsigned long new_dma_reserve) | |
5868 | { | |
5869 | dma_reserve = new_dma_reserve; | |
5870 | } | |
5871 | ||
1da177e4 LT |
5872 | void __init free_area_init(unsigned long *zones_size) |
5873 | { | |
9109fb7b | 5874 | free_area_init_node(0, zones_size, |
1da177e4 LT |
5875 | __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); |
5876 | } | |
1da177e4 | 5877 | |
1da177e4 LT |
5878 | static int page_alloc_cpu_notify(struct notifier_block *self, |
5879 | unsigned long action, void *hcpu) | |
5880 | { | |
5881 | int cpu = (unsigned long)hcpu; | |
1da177e4 | 5882 | |
8bb78442 | 5883 | if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { |
f0cb3c76 | 5884 | lru_add_drain_cpu(cpu); |
9f8f2172 CL |
5885 | drain_pages(cpu); |
5886 | ||
5887 | /* | |
5888 | * Spill the event counters of the dead processor | |
5889 | * into the current processors event counters. | |
5890 | * This artificially elevates the count of the current | |
5891 | * processor. | |
5892 | */ | |
f8891e5e | 5893 | vm_events_fold_cpu(cpu); |
9f8f2172 CL |
5894 | |
5895 | /* | |
5896 | * Zero the differential counters of the dead processor | |
5897 | * so that the vm statistics are consistent. | |
5898 | * | |
5899 | * This is only okay since the processor is dead and cannot | |
5900 | * race with what we are doing. | |
5901 | */ | |
2bb921e5 | 5902 | cpu_vm_stats_fold(cpu); |
1da177e4 LT |
5903 | } |
5904 | return NOTIFY_OK; | |
5905 | } | |
1da177e4 LT |
5906 | |
5907 | void __init page_alloc_init(void) | |
5908 | { | |
5909 | hotcpu_notifier(page_alloc_cpu_notify, 0); | |
5910 | } | |
5911 | ||
cb45b0e9 | 5912 | /* |
34b10060 | 5913 | * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio |
cb45b0e9 HA |
5914 | * or min_free_kbytes changes. |
5915 | */ | |
5916 | static void calculate_totalreserve_pages(void) | |
5917 | { | |
5918 | struct pglist_data *pgdat; | |
5919 | unsigned long reserve_pages = 0; | |
2f6726e5 | 5920 | enum zone_type i, j; |
cb45b0e9 HA |
5921 | |
5922 | for_each_online_pgdat(pgdat) { | |
5923 | for (i = 0; i < MAX_NR_ZONES; i++) { | |
5924 | struct zone *zone = pgdat->node_zones + i; | |
3484b2de | 5925 | long max = 0; |
cb45b0e9 HA |
5926 | |
5927 | /* Find valid and maximum lowmem_reserve in the zone */ | |
5928 | for (j = i; j < MAX_NR_ZONES; j++) { | |
5929 | if (zone->lowmem_reserve[j] > max) | |
5930 | max = zone->lowmem_reserve[j]; | |
5931 | } | |
5932 | ||
41858966 MG |
5933 | /* we treat the high watermark as reserved pages. */ |
5934 | max += high_wmark_pages(zone); | |
cb45b0e9 | 5935 | |
b40da049 JL |
5936 | if (max > zone->managed_pages) |
5937 | max = zone->managed_pages; | |
a8d01437 JW |
5938 | |
5939 | zone->totalreserve_pages = max; | |
5940 | ||
cb45b0e9 HA |
5941 | reserve_pages += max; |
5942 | } | |
5943 | } | |
5944 | totalreserve_pages = reserve_pages; | |
5945 | } | |
5946 | ||
1da177e4 LT |
5947 | /* |
5948 | * setup_per_zone_lowmem_reserve - called whenever | |
34b10060 | 5949 | * sysctl_lowmem_reserve_ratio changes. Ensures that each zone |
1da177e4 LT |
5950 | * has a correct pages reserved value, so an adequate number of |
5951 | * pages are left in the zone after a successful __alloc_pages(). | |
5952 | */ | |
5953 | static void setup_per_zone_lowmem_reserve(void) | |
5954 | { | |
5955 | struct pglist_data *pgdat; | |
2f6726e5 | 5956 | enum zone_type j, idx; |
1da177e4 | 5957 | |
ec936fc5 | 5958 | for_each_online_pgdat(pgdat) { |
1da177e4 LT |
5959 | for (j = 0; j < MAX_NR_ZONES; j++) { |
5960 | struct zone *zone = pgdat->node_zones + j; | |
b40da049 | 5961 | unsigned long managed_pages = zone->managed_pages; |
1da177e4 LT |
5962 | |
5963 | zone->lowmem_reserve[j] = 0; | |
5964 | ||
2f6726e5 CL |
5965 | idx = j; |
5966 | while (idx) { | |
1da177e4 LT |
5967 | struct zone *lower_zone; |
5968 | ||
2f6726e5 CL |
5969 | idx--; |
5970 | ||
1da177e4 LT |
5971 | if (sysctl_lowmem_reserve_ratio[idx] < 1) |
5972 | sysctl_lowmem_reserve_ratio[idx] = 1; | |
5973 | ||
5974 | lower_zone = pgdat->node_zones + idx; | |
b40da049 | 5975 | lower_zone->lowmem_reserve[j] = managed_pages / |
1da177e4 | 5976 | sysctl_lowmem_reserve_ratio[idx]; |
b40da049 | 5977 | managed_pages += lower_zone->managed_pages; |
1da177e4 LT |
5978 | } |
5979 | } | |
5980 | } | |
cb45b0e9 HA |
5981 | |
5982 | /* update totalreserve_pages */ | |
5983 | calculate_totalreserve_pages(); | |
1da177e4 LT |
5984 | } |
5985 | ||
cfd3da1e | 5986 | static void __setup_per_zone_wmarks(void) |
1da177e4 LT |
5987 | { |
5988 | unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); | |
5989 | unsigned long lowmem_pages = 0; | |
5990 | struct zone *zone; | |
5991 | unsigned long flags; | |
5992 | ||
5993 | /* Calculate total number of !ZONE_HIGHMEM pages */ | |
5994 | for_each_zone(zone) { | |
5995 | if (!is_highmem(zone)) | |
b40da049 | 5996 | lowmem_pages += zone->managed_pages; |
1da177e4 LT |
5997 | } |
5998 | ||
5999 | for_each_zone(zone) { | |
ac924c60 AM |
6000 | u64 tmp; |
6001 | ||
1125b4e3 | 6002 | spin_lock_irqsave(&zone->lock, flags); |
b40da049 | 6003 | tmp = (u64)pages_min * zone->managed_pages; |
ac924c60 | 6004 | do_div(tmp, lowmem_pages); |
1da177e4 LT |
6005 | if (is_highmem(zone)) { |
6006 | /* | |
669ed175 NP |
6007 | * __GFP_HIGH and PF_MEMALLOC allocations usually don't |
6008 | * need highmem pages, so cap pages_min to a small | |
6009 | * value here. | |
6010 | * | |
41858966 | 6011 | * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) |
42ff2703 | 6012 | * deltas control asynch page reclaim, and so should |
669ed175 | 6013 | * not be capped for highmem. |
1da177e4 | 6014 | */ |
90ae8d67 | 6015 | unsigned long min_pages; |
1da177e4 | 6016 | |
b40da049 | 6017 | min_pages = zone->managed_pages / 1024; |
90ae8d67 | 6018 | min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); |
41858966 | 6019 | zone->watermark[WMARK_MIN] = min_pages; |
1da177e4 | 6020 | } else { |
669ed175 NP |
6021 | /* |
6022 | * If it's a lowmem zone, reserve a number of pages | |
1da177e4 LT |
6023 | * proportionate to the zone's size. |
6024 | */ | |
41858966 | 6025 | zone->watermark[WMARK_MIN] = tmp; |
1da177e4 LT |
6026 | } |
6027 | ||
41858966 MG |
6028 | zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); |
6029 | zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); | |
49f223a9 | 6030 | |
81c0a2bb | 6031 | __mod_zone_page_state(zone, NR_ALLOC_BATCH, |
abe5f972 JW |
6032 | high_wmark_pages(zone) - low_wmark_pages(zone) - |
6033 | atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); | |
81c0a2bb | 6034 | |
1125b4e3 | 6035 | spin_unlock_irqrestore(&zone->lock, flags); |
1da177e4 | 6036 | } |
cb45b0e9 HA |
6037 | |
6038 | /* update totalreserve_pages */ | |
6039 | calculate_totalreserve_pages(); | |
1da177e4 LT |
6040 | } |
6041 | ||
cfd3da1e MG |
6042 | /** |
6043 | * setup_per_zone_wmarks - called when min_free_kbytes changes | |
6044 | * or when memory is hot-{added|removed} | |
6045 | * | |
6046 | * Ensures that the watermark[min,low,high] values for each zone are set | |
6047 | * correctly with respect to min_free_kbytes. | |
6048 | */ | |
6049 | void setup_per_zone_wmarks(void) | |
6050 | { | |
6051 | mutex_lock(&zonelists_mutex); | |
6052 | __setup_per_zone_wmarks(); | |
6053 | mutex_unlock(&zonelists_mutex); | |
6054 | } | |
6055 | ||
55a4462a | 6056 | /* |
556adecb RR |
6057 | * The inactive anon list should be small enough that the VM never has to |
6058 | * do too much work, but large enough that each inactive page has a chance | |
6059 | * to be referenced again before it is swapped out. | |
6060 | * | |
6061 | * The inactive_anon ratio is the target ratio of ACTIVE_ANON to | |
6062 | * INACTIVE_ANON pages on this zone's LRU, maintained by the | |
6063 | * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of | |
6064 | * the anonymous pages are kept on the inactive list. | |
6065 | * | |
6066 | * total target max | |
6067 | * memory ratio inactive anon | |
6068 | * ------------------------------------- | |
6069 | * 10MB 1 5MB | |
6070 | * 100MB 1 50MB | |
6071 | * 1GB 3 250MB | |
6072 | * 10GB 10 0.9GB | |
6073 | * 100GB 31 3GB | |
6074 | * 1TB 101 10GB | |
6075 | * 10TB 320 32GB | |
6076 | */ | |
1b79acc9 | 6077 | static void __meminit calculate_zone_inactive_ratio(struct zone *zone) |
556adecb | 6078 | { |
96cb4df5 | 6079 | unsigned int gb, ratio; |
556adecb | 6080 | |
96cb4df5 | 6081 | /* Zone size in gigabytes */ |
b40da049 | 6082 | gb = zone->managed_pages >> (30 - PAGE_SHIFT); |
96cb4df5 | 6083 | if (gb) |
556adecb | 6084 | ratio = int_sqrt(10 * gb); |
96cb4df5 MK |
6085 | else |
6086 | ratio = 1; | |
556adecb | 6087 | |
96cb4df5 MK |
6088 | zone->inactive_ratio = ratio; |
6089 | } | |
556adecb | 6090 | |
839a4fcc | 6091 | static void __meminit setup_per_zone_inactive_ratio(void) |
96cb4df5 MK |
6092 | { |
6093 | struct zone *zone; | |
6094 | ||
6095 | for_each_zone(zone) | |
6096 | calculate_zone_inactive_ratio(zone); | |
556adecb RR |
6097 | } |
6098 | ||
1da177e4 LT |
6099 | /* |
6100 | * Initialise min_free_kbytes. | |
6101 | * | |
6102 | * For small machines we want it small (128k min). For large machines | |
6103 | * we want it large (64MB max). But it is not linear, because network | |
6104 | * bandwidth does not increase linearly with machine size. We use | |
6105 | * | |
b8af2941 | 6106 | * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: |
1da177e4 LT |
6107 | * min_free_kbytes = sqrt(lowmem_kbytes * 16) |
6108 | * | |
6109 | * which yields | |
6110 | * | |
6111 | * 16MB: 512k | |
6112 | * 32MB: 724k | |
6113 | * 64MB: 1024k | |
6114 | * 128MB: 1448k | |
6115 | * 256MB: 2048k | |
6116 | * 512MB: 2896k | |
6117 | * 1024MB: 4096k | |
6118 | * 2048MB: 5792k | |
6119 | * 4096MB: 8192k | |
6120 | * 8192MB: 11584k | |
6121 | * 16384MB: 16384k | |
6122 | */ | |
1b79acc9 | 6123 | int __meminit init_per_zone_wmark_min(void) |
1da177e4 LT |
6124 | { |
6125 | unsigned long lowmem_kbytes; | |
5f12733e | 6126 | int new_min_free_kbytes; |
1da177e4 LT |
6127 | |
6128 | lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); | |
5f12733e MH |
6129 | new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); |
6130 | ||
6131 | if (new_min_free_kbytes > user_min_free_kbytes) { | |
6132 | min_free_kbytes = new_min_free_kbytes; | |
6133 | if (min_free_kbytes < 128) | |
6134 | min_free_kbytes = 128; | |
6135 | if (min_free_kbytes > 65536) | |
6136 | min_free_kbytes = 65536; | |
6137 | } else { | |
6138 | pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", | |
6139 | new_min_free_kbytes, user_min_free_kbytes); | |
6140 | } | |
bc75d33f | 6141 | setup_per_zone_wmarks(); |
a6cccdc3 | 6142 | refresh_zone_stat_thresholds(); |
1da177e4 | 6143 | setup_per_zone_lowmem_reserve(); |
556adecb | 6144 | setup_per_zone_inactive_ratio(); |
1da177e4 LT |
6145 | return 0; |
6146 | } | |
bc75d33f | 6147 | module_init(init_per_zone_wmark_min) |
1da177e4 LT |
6148 | |
6149 | /* | |
b8af2941 | 6150 | * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so |
1da177e4 LT |
6151 | * that we can call two helper functions whenever min_free_kbytes |
6152 | * changes. | |
6153 | */ | |
cccad5b9 | 6154 | int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6155 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6156 | { |
da8c757b HP |
6157 | int rc; |
6158 | ||
6159 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); | |
6160 | if (rc) | |
6161 | return rc; | |
6162 | ||
5f12733e MH |
6163 | if (write) { |
6164 | user_min_free_kbytes = min_free_kbytes; | |
bc75d33f | 6165 | setup_per_zone_wmarks(); |
5f12733e | 6166 | } |
1da177e4 LT |
6167 | return 0; |
6168 | } | |
6169 | ||
9614634f | 6170 | #ifdef CONFIG_NUMA |
cccad5b9 | 6171 | int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6172 | void __user *buffer, size_t *length, loff_t *ppos) |
9614634f CL |
6173 | { |
6174 | struct zone *zone; | |
6175 | int rc; | |
6176 | ||
8d65af78 | 6177 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
9614634f CL |
6178 | if (rc) |
6179 | return rc; | |
6180 | ||
6181 | for_each_zone(zone) | |
b40da049 | 6182 | zone->min_unmapped_pages = (zone->managed_pages * |
9614634f CL |
6183 | sysctl_min_unmapped_ratio) / 100; |
6184 | return 0; | |
6185 | } | |
0ff38490 | 6186 | |
cccad5b9 | 6187 | int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6188 | void __user *buffer, size_t *length, loff_t *ppos) |
0ff38490 CL |
6189 | { |
6190 | struct zone *zone; | |
6191 | int rc; | |
6192 | ||
8d65af78 | 6193 | rc = proc_dointvec_minmax(table, write, buffer, length, ppos); |
0ff38490 CL |
6194 | if (rc) |
6195 | return rc; | |
6196 | ||
6197 | for_each_zone(zone) | |
b40da049 | 6198 | zone->min_slab_pages = (zone->managed_pages * |
0ff38490 CL |
6199 | sysctl_min_slab_ratio) / 100; |
6200 | return 0; | |
6201 | } | |
9614634f CL |
6202 | #endif |
6203 | ||
1da177e4 LT |
6204 | /* |
6205 | * lowmem_reserve_ratio_sysctl_handler - just a wrapper around | |
6206 | * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() | |
6207 | * whenever sysctl_lowmem_reserve_ratio changes. | |
6208 | * | |
6209 | * The reserve ratio obviously has absolutely no relation with the | |
41858966 | 6210 | * minimum watermarks. The lowmem reserve ratio can only make sense |
1da177e4 LT |
6211 | * if in function of the boot time zone sizes. |
6212 | */ | |
cccad5b9 | 6213 | int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6214 | void __user *buffer, size_t *length, loff_t *ppos) |
1da177e4 | 6215 | { |
8d65af78 | 6216 | proc_dointvec_minmax(table, write, buffer, length, ppos); |
1da177e4 LT |
6217 | setup_per_zone_lowmem_reserve(); |
6218 | return 0; | |
6219 | } | |
6220 | ||
8ad4b1fb RS |
6221 | /* |
6222 | * percpu_pagelist_fraction - changes the pcp->high for each zone on each | |
b8af2941 PK |
6223 | * cpu. It is the fraction of total pages in each zone that a hot per cpu |
6224 | * pagelist can have before it gets flushed back to buddy allocator. | |
8ad4b1fb | 6225 | */ |
cccad5b9 | 6226 | int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, |
8d65af78 | 6227 | void __user *buffer, size_t *length, loff_t *ppos) |
8ad4b1fb RS |
6228 | { |
6229 | struct zone *zone; | |
7cd2b0a3 | 6230 | int old_percpu_pagelist_fraction; |
8ad4b1fb RS |
6231 | int ret; |
6232 | ||
7cd2b0a3 DR |
6233 | mutex_lock(&pcp_batch_high_lock); |
6234 | old_percpu_pagelist_fraction = percpu_pagelist_fraction; | |
6235 | ||
8d65af78 | 6236 | ret = proc_dointvec_minmax(table, write, buffer, length, ppos); |
7cd2b0a3 DR |
6237 | if (!write || ret < 0) |
6238 | goto out; | |
6239 | ||
6240 | /* Sanity checking to avoid pcp imbalance */ | |
6241 | if (percpu_pagelist_fraction && | |
6242 | percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { | |
6243 | percpu_pagelist_fraction = old_percpu_pagelist_fraction; | |
6244 | ret = -EINVAL; | |
6245 | goto out; | |
6246 | } | |
6247 | ||
6248 | /* No change? */ | |
6249 | if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) | |
6250 | goto out; | |
c8e251fa | 6251 | |
364df0eb | 6252 | for_each_populated_zone(zone) { |
7cd2b0a3 DR |
6253 | unsigned int cpu; |
6254 | ||
22a7f12b | 6255 | for_each_possible_cpu(cpu) |
7cd2b0a3 DR |
6256 | pageset_set_high_and_batch(zone, |
6257 | per_cpu_ptr(zone->pageset, cpu)); | |
8ad4b1fb | 6258 | } |
7cd2b0a3 | 6259 | out: |
c8e251fa | 6260 | mutex_unlock(&pcp_batch_high_lock); |
7cd2b0a3 | 6261 | return ret; |
8ad4b1fb RS |
6262 | } |
6263 | ||
a9919c79 | 6264 | #ifdef CONFIG_NUMA |
f034b5d4 | 6265 | int hashdist = HASHDIST_DEFAULT; |
1da177e4 | 6266 | |
1da177e4 LT |
6267 | static int __init set_hashdist(char *str) |
6268 | { | |
6269 | if (!str) | |
6270 | return 0; | |
6271 | hashdist = simple_strtoul(str, &str, 0); | |
6272 | return 1; | |
6273 | } | |
6274 | __setup("hashdist=", set_hashdist); | |
6275 | #endif | |
6276 | ||
6277 | /* | |
6278 | * allocate a large system hash table from bootmem | |
6279 | * - it is assumed that the hash table must contain an exact power-of-2 | |
6280 | * quantity of entries | |
6281 | * - limit is the number of hash buckets, not the total allocation size | |
6282 | */ | |
6283 | void *__init alloc_large_system_hash(const char *tablename, | |
6284 | unsigned long bucketsize, | |
6285 | unsigned long numentries, | |
6286 | int scale, | |
6287 | int flags, | |
6288 | unsigned int *_hash_shift, | |
6289 | unsigned int *_hash_mask, | |
31fe62b9 TB |
6290 | unsigned long low_limit, |
6291 | unsigned long high_limit) | |
1da177e4 | 6292 | { |
31fe62b9 | 6293 | unsigned long long max = high_limit; |
1da177e4 LT |
6294 | unsigned long log2qty, size; |
6295 | void *table = NULL; | |
6296 | ||
6297 | /* allow the kernel cmdline to have a say */ | |
6298 | if (!numentries) { | |
6299 | /* round applicable memory size up to nearest megabyte */ | |
04903664 | 6300 | numentries = nr_kernel_pages; |
a7e83318 JZ |
6301 | |
6302 | /* It isn't necessary when PAGE_SIZE >= 1MB */ | |
6303 | if (PAGE_SHIFT < 20) | |
6304 | numentries = round_up(numentries, (1<<20)/PAGE_SIZE); | |
1da177e4 LT |
6305 | |
6306 | /* limit to 1 bucket per 2^scale bytes of low memory */ | |
6307 | if (scale > PAGE_SHIFT) | |
6308 | numentries >>= (scale - PAGE_SHIFT); | |
6309 | else | |
6310 | numentries <<= (PAGE_SHIFT - scale); | |
9ab37b8f PM |
6311 | |
6312 | /* Make sure we've got at least a 0-order allocation.. */ | |
2c85f51d JB |
6313 | if (unlikely(flags & HASH_SMALL)) { |
6314 | /* Makes no sense without HASH_EARLY */ | |
6315 | WARN_ON(!(flags & HASH_EARLY)); | |
6316 | if (!(numentries >> *_hash_shift)) { | |
6317 | numentries = 1UL << *_hash_shift; | |
6318 | BUG_ON(!numentries); | |
6319 | } | |
6320 | } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) | |
9ab37b8f | 6321 | numentries = PAGE_SIZE / bucketsize; |
1da177e4 | 6322 | } |
6e692ed3 | 6323 | numentries = roundup_pow_of_two(numentries); |
1da177e4 LT |
6324 | |
6325 | /* limit allocation size to 1/16 total memory by default */ | |
6326 | if (max == 0) { | |
6327 | max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; | |
6328 | do_div(max, bucketsize); | |
6329 | } | |
074b8517 | 6330 | max = min(max, 0x80000000ULL); |
1da177e4 | 6331 | |
31fe62b9 TB |
6332 | if (numentries < low_limit) |
6333 | numentries = low_limit; | |
1da177e4 LT |
6334 | if (numentries > max) |
6335 | numentries = max; | |
6336 | ||
f0d1b0b3 | 6337 | log2qty = ilog2(numentries); |
1da177e4 LT |
6338 | |
6339 | do { | |
6340 | size = bucketsize << log2qty; | |
6341 | if (flags & HASH_EARLY) | |
6782832e | 6342 | table = memblock_virt_alloc_nopanic(size, 0); |
1da177e4 LT |
6343 | else if (hashdist) |
6344 | table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); | |
6345 | else { | |
1037b83b ED |
6346 | /* |
6347 | * If bucketsize is not a power-of-two, we may free | |
a1dd268c MG |
6348 | * some pages at the end of hash table which |
6349 | * alloc_pages_exact() automatically does | |
1037b83b | 6350 | */ |
264ef8a9 | 6351 | if (get_order(size) < MAX_ORDER) { |
a1dd268c | 6352 | table = alloc_pages_exact(size, GFP_ATOMIC); |
264ef8a9 CM |
6353 | kmemleak_alloc(table, size, 1, GFP_ATOMIC); |
6354 | } | |
1da177e4 LT |
6355 | } |
6356 | } while (!table && size > PAGE_SIZE && --log2qty); | |
6357 | ||
6358 | if (!table) | |
6359 | panic("Failed to allocate %s hash table\n", tablename); | |
6360 | ||
f241e660 | 6361 | printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", |
1da177e4 | 6362 | tablename, |
f241e660 | 6363 | (1UL << log2qty), |
f0d1b0b3 | 6364 | ilog2(size) - PAGE_SHIFT, |
1da177e4 LT |
6365 | size); |
6366 | ||
6367 | if (_hash_shift) | |
6368 | *_hash_shift = log2qty; | |
6369 | if (_hash_mask) | |
6370 | *_hash_mask = (1 << log2qty) - 1; | |
6371 | ||
6372 | return table; | |
6373 | } | |
a117e66e | 6374 | |
835c134e MG |
6375 | /* Return a pointer to the bitmap storing bits affecting a block of pages */ |
6376 | static inline unsigned long *get_pageblock_bitmap(struct zone *zone, | |
6377 | unsigned long pfn) | |
6378 | { | |
6379 | #ifdef CONFIG_SPARSEMEM | |
6380 | return __pfn_to_section(pfn)->pageblock_flags; | |
6381 | #else | |
6382 | return zone->pageblock_flags; | |
6383 | #endif /* CONFIG_SPARSEMEM */ | |
6384 | } | |
6385 | ||
6386 | static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) | |
6387 | { | |
6388 | #ifdef CONFIG_SPARSEMEM | |
6389 | pfn &= (PAGES_PER_SECTION-1); | |
d9c23400 | 6390 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e | 6391 | #else |
c060f943 | 6392 | pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); |
d9c23400 | 6393 | return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; |
835c134e MG |
6394 | #endif /* CONFIG_SPARSEMEM */ |
6395 | } | |
6396 | ||
6397 | /** | |
1aab4d77 | 6398 | * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages |
835c134e | 6399 | * @page: The page within the block of interest |
1aab4d77 RD |
6400 | * @pfn: The target page frame number |
6401 | * @end_bitidx: The last bit of interest to retrieve | |
6402 | * @mask: mask of bits that the caller is interested in | |
6403 | * | |
6404 | * Return: pageblock_bits flags | |
835c134e | 6405 | */ |
dc4b0caf | 6406 | unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, |
e58469ba MG |
6407 | unsigned long end_bitidx, |
6408 | unsigned long mask) | |
835c134e MG |
6409 | { |
6410 | struct zone *zone; | |
6411 | unsigned long *bitmap; | |
dc4b0caf | 6412 | unsigned long bitidx, word_bitidx; |
e58469ba | 6413 | unsigned long word; |
835c134e MG |
6414 | |
6415 | zone = page_zone(page); | |
835c134e MG |
6416 | bitmap = get_pageblock_bitmap(zone, pfn); |
6417 | bitidx = pfn_to_bitidx(zone, pfn); | |
e58469ba MG |
6418 | word_bitidx = bitidx / BITS_PER_LONG; |
6419 | bitidx &= (BITS_PER_LONG-1); | |
835c134e | 6420 | |
e58469ba MG |
6421 | word = bitmap[word_bitidx]; |
6422 | bitidx += end_bitidx; | |
6423 | return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; | |
835c134e MG |
6424 | } |
6425 | ||
6426 | /** | |
dc4b0caf | 6427 | * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages |
835c134e | 6428 | * @page: The page within the block of interest |
835c134e | 6429 | * @flags: The flags to set |
1aab4d77 RD |
6430 | * @pfn: The target page frame number |
6431 | * @end_bitidx: The last bit of interest | |
6432 | * @mask: mask of bits that the caller is interested in | |
835c134e | 6433 | */ |
dc4b0caf MG |
6434 | void set_pfnblock_flags_mask(struct page *page, unsigned long flags, |
6435 | unsigned long pfn, | |
e58469ba MG |
6436 | unsigned long end_bitidx, |
6437 | unsigned long mask) | |
835c134e MG |
6438 | { |
6439 | struct zone *zone; | |
6440 | unsigned long *bitmap; | |
dc4b0caf | 6441 | unsigned long bitidx, word_bitidx; |
e58469ba MG |
6442 | unsigned long old_word, word; |
6443 | ||
6444 | BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); | |
835c134e MG |
6445 | |
6446 | zone = page_zone(page); | |
835c134e MG |
6447 | bitmap = get_pageblock_bitmap(zone, pfn); |
6448 | bitidx = pfn_to_bitidx(zone, pfn); | |
e58469ba MG |
6449 | word_bitidx = bitidx / BITS_PER_LONG; |
6450 | bitidx &= (BITS_PER_LONG-1); | |
6451 | ||
309381fe | 6452 | VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); |
835c134e | 6453 | |
e58469ba MG |
6454 | bitidx += end_bitidx; |
6455 | mask <<= (BITS_PER_LONG - bitidx - 1); | |
6456 | flags <<= (BITS_PER_LONG - bitidx - 1); | |
6457 | ||
4db0c3c2 | 6458 | word = READ_ONCE(bitmap[word_bitidx]); |
e58469ba MG |
6459 | for (;;) { |
6460 | old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); | |
6461 | if (word == old_word) | |
6462 | break; | |
6463 | word = old_word; | |
6464 | } | |
835c134e | 6465 | } |
a5d76b54 KH |
6466 | |
6467 | /* | |
80934513 MK |
6468 | * This function checks whether pageblock includes unmovable pages or not. |
6469 | * If @count is not zero, it is okay to include less @count unmovable pages | |
6470 | * | |
b8af2941 | 6471 | * PageLRU check without isolation or lru_lock could race so that |
80934513 MK |
6472 | * MIGRATE_MOVABLE block might include unmovable pages. It means you can't |
6473 | * expect this function should be exact. | |
a5d76b54 | 6474 | */ |
b023f468 WC |
6475 | bool has_unmovable_pages(struct zone *zone, struct page *page, int count, |
6476 | bool skip_hwpoisoned_pages) | |
49ac8255 KH |
6477 | { |
6478 | unsigned long pfn, iter, found; | |
47118af0 MN |
6479 | int mt; |
6480 | ||
49ac8255 KH |
6481 | /* |
6482 | * For avoiding noise data, lru_add_drain_all() should be called | |
80934513 | 6483 | * If ZONE_MOVABLE, the zone never contains unmovable pages |
49ac8255 KH |
6484 | */ |
6485 | if (zone_idx(zone) == ZONE_MOVABLE) | |
80934513 | 6486 | return false; |
47118af0 MN |
6487 | mt = get_pageblock_migratetype(page); |
6488 | if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) | |
80934513 | 6489 | return false; |
49ac8255 KH |
6490 | |
6491 | pfn = page_to_pfn(page); | |
6492 | for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { | |
6493 | unsigned long check = pfn + iter; | |
6494 | ||
29723fcc | 6495 | if (!pfn_valid_within(check)) |
49ac8255 | 6496 | continue; |
29723fcc | 6497 | |
49ac8255 | 6498 | page = pfn_to_page(check); |
c8721bbb NH |
6499 | |
6500 | /* | |
6501 | * Hugepages are not in LRU lists, but they're movable. | |
6502 | * We need not scan over tail pages bacause we don't | |
6503 | * handle each tail page individually in migration. | |
6504 | */ | |
6505 | if (PageHuge(page)) { | |
6506 | iter = round_up(iter + 1, 1<<compound_order(page)) - 1; | |
6507 | continue; | |
6508 | } | |
6509 | ||
97d255c8 MK |
6510 | /* |
6511 | * We can't use page_count without pin a page | |
6512 | * because another CPU can free compound page. | |
6513 | * This check already skips compound tails of THP | |
6514 | * because their page->_count is zero at all time. | |
6515 | */ | |
6516 | if (!atomic_read(&page->_count)) { | |
49ac8255 KH |
6517 | if (PageBuddy(page)) |
6518 | iter += (1 << page_order(page)) - 1; | |
6519 | continue; | |
6520 | } | |
97d255c8 | 6521 | |
b023f468 WC |
6522 | /* |
6523 | * The HWPoisoned page may be not in buddy system, and | |
6524 | * page_count() is not 0. | |
6525 | */ | |
6526 | if (skip_hwpoisoned_pages && PageHWPoison(page)) | |
6527 | continue; | |
6528 | ||
49ac8255 KH |
6529 | if (!PageLRU(page)) |
6530 | found++; | |
6531 | /* | |
6b4f7799 JW |
6532 | * If there are RECLAIMABLE pages, we need to check |
6533 | * it. But now, memory offline itself doesn't call | |
6534 | * shrink_node_slabs() and it still to be fixed. | |
49ac8255 KH |
6535 | */ |
6536 | /* | |
6537 | * If the page is not RAM, page_count()should be 0. | |
6538 | * we don't need more check. This is an _used_ not-movable page. | |
6539 | * | |
6540 | * The problematic thing here is PG_reserved pages. PG_reserved | |
6541 | * is set to both of a memory hole page and a _used_ kernel | |
6542 | * page at boot. | |
6543 | */ | |
6544 | if (found > count) | |
80934513 | 6545 | return true; |
49ac8255 | 6546 | } |
80934513 | 6547 | return false; |
49ac8255 KH |
6548 | } |
6549 | ||
6550 | bool is_pageblock_removable_nolock(struct page *page) | |
6551 | { | |
656a0706 MH |
6552 | struct zone *zone; |
6553 | unsigned long pfn; | |
687875fb MH |
6554 | |
6555 | /* | |
6556 | * We have to be careful here because we are iterating over memory | |
6557 | * sections which are not zone aware so we might end up outside of | |
6558 | * the zone but still within the section. | |
656a0706 MH |
6559 | * We have to take care about the node as well. If the node is offline |
6560 | * its NODE_DATA will be NULL - see page_zone. | |
687875fb | 6561 | */ |
656a0706 MH |
6562 | if (!node_online(page_to_nid(page))) |
6563 | return false; | |
6564 | ||
6565 | zone = page_zone(page); | |
6566 | pfn = page_to_pfn(page); | |
108bcc96 | 6567 | if (!zone_spans_pfn(zone, pfn)) |
687875fb MH |
6568 | return false; |
6569 | ||
b023f468 | 6570 | return !has_unmovable_pages(zone, page, 0, true); |
a5d76b54 | 6571 | } |
0c0e6195 | 6572 | |
041d3a8c MN |
6573 | #ifdef CONFIG_CMA |
6574 | ||
6575 | static unsigned long pfn_max_align_down(unsigned long pfn) | |
6576 | { | |
6577 | return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6578 | pageblock_nr_pages) - 1); | |
6579 | } | |
6580 | ||
6581 | static unsigned long pfn_max_align_up(unsigned long pfn) | |
6582 | { | |
6583 | return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, | |
6584 | pageblock_nr_pages)); | |
6585 | } | |
6586 | ||
041d3a8c | 6587 | /* [start, end) must belong to a single zone. */ |
bb13ffeb MG |
6588 | static int __alloc_contig_migrate_range(struct compact_control *cc, |
6589 | unsigned long start, unsigned long end) | |
041d3a8c MN |
6590 | { |
6591 | /* This function is based on compact_zone() from compaction.c. */ | |
beb51eaa | 6592 | unsigned long nr_reclaimed; |
041d3a8c MN |
6593 | unsigned long pfn = start; |
6594 | unsigned int tries = 0; | |
6595 | int ret = 0; | |
6596 | ||
be49a6e1 | 6597 | migrate_prep(); |
041d3a8c | 6598 | |
bb13ffeb | 6599 | while (pfn < end || !list_empty(&cc->migratepages)) { |
041d3a8c MN |
6600 | if (fatal_signal_pending(current)) { |
6601 | ret = -EINTR; | |
6602 | break; | |
6603 | } | |
6604 | ||
bb13ffeb MG |
6605 | if (list_empty(&cc->migratepages)) { |
6606 | cc->nr_migratepages = 0; | |
edc2ca61 | 6607 | pfn = isolate_migratepages_range(cc, pfn, end); |
041d3a8c MN |
6608 | if (!pfn) { |
6609 | ret = -EINTR; | |
6610 | break; | |
6611 | } | |
6612 | tries = 0; | |
6613 | } else if (++tries == 5) { | |
6614 | ret = ret < 0 ? ret : -EBUSY; | |
6615 | break; | |
6616 | } | |
6617 | ||
beb51eaa MK |
6618 | nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, |
6619 | &cc->migratepages); | |
6620 | cc->nr_migratepages -= nr_reclaimed; | |
02c6de8d | 6621 | |
9c620e2b | 6622 | ret = migrate_pages(&cc->migratepages, alloc_migrate_target, |
e0b9daeb | 6623 | NULL, 0, cc->mode, MR_CMA); |
041d3a8c | 6624 | } |
2a6f5124 SP |
6625 | if (ret < 0) { |
6626 | putback_movable_pages(&cc->migratepages); | |
6627 | return ret; | |
6628 | } | |
6629 | return 0; | |
041d3a8c MN |
6630 | } |
6631 | ||
6632 | /** | |
6633 | * alloc_contig_range() -- tries to allocate given range of pages | |
6634 | * @start: start PFN to allocate | |
6635 | * @end: one-past-the-last PFN to allocate | |
0815f3d8 MN |
6636 | * @migratetype: migratetype of the underlaying pageblocks (either |
6637 | * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks | |
6638 | * in range must have the same migratetype and it must | |
6639 | * be either of the two. | |
041d3a8c MN |
6640 | * |
6641 | * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES | |
6642 | * aligned, however it's the caller's responsibility to guarantee that | |
6643 | * we are the only thread that changes migrate type of pageblocks the | |
6644 | * pages fall in. | |
6645 | * | |
6646 | * The PFN range must belong to a single zone. | |
6647 | * | |
6648 | * Returns zero on success or negative error code. On success all | |
6649 | * pages which PFN is in [start, end) are allocated for the caller and | |
6650 | * need to be freed with free_contig_range(). | |
6651 | */ | |
0815f3d8 MN |
6652 | int alloc_contig_range(unsigned long start, unsigned long end, |
6653 | unsigned migratetype) | |
041d3a8c | 6654 | { |
041d3a8c | 6655 | unsigned long outer_start, outer_end; |
d00181b9 KS |
6656 | unsigned int order; |
6657 | int ret = 0; | |
041d3a8c | 6658 | |
bb13ffeb MG |
6659 | struct compact_control cc = { |
6660 | .nr_migratepages = 0, | |
6661 | .order = -1, | |
6662 | .zone = page_zone(pfn_to_page(start)), | |
e0b9daeb | 6663 | .mode = MIGRATE_SYNC, |
bb13ffeb MG |
6664 | .ignore_skip_hint = true, |
6665 | }; | |
6666 | INIT_LIST_HEAD(&cc.migratepages); | |
6667 | ||
041d3a8c MN |
6668 | /* |
6669 | * What we do here is we mark all pageblocks in range as | |
6670 | * MIGRATE_ISOLATE. Because pageblock and max order pages may | |
6671 | * have different sizes, and due to the way page allocator | |
6672 | * work, we align the range to biggest of the two pages so | |
6673 | * that page allocator won't try to merge buddies from | |
6674 | * different pageblocks and change MIGRATE_ISOLATE to some | |
6675 | * other migration type. | |
6676 | * | |
6677 | * Once the pageblocks are marked as MIGRATE_ISOLATE, we | |
6678 | * migrate the pages from an unaligned range (ie. pages that | |
6679 | * we are interested in). This will put all the pages in | |
6680 | * range back to page allocator as MIGRATE_ISOLATE. | |
6681 | * | |
6682 | * When this is done, we take the pages in range from page | |
6683 | * allocator removing them from the buddy system. This way | |
6684 | * page allocator will never consider using them. | |
6685 | * | |
6686 | * This lets us mark the pageblocks back as | |
6687 | * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the | |
6688 | * aligned range but not in the unaligned, original range are | |
6689 | * put back to page allocator so that buddy can use them. | |
6690 | */ | |
6691 | ||
6692 | ret = start_isolate_page_range(pfn_max_align_down(start), | |
b023f468 WC |
6693 | pfn_max_align_up(end), migratetype, |
6694 | false); | |
041d3a8c | 6695 | if (ret) |
86a595f9 | 6696 | return ret; |
041d3a8c | 6697 | |
8ef5849f JK |
6698 | /* |
6699 | * In case of -EBUSY, we'd like to know which page causes problem. | |
6700 | * So, just fall through. We will check it in test_pages_isolated(). | |
6701 | */ | |
bb13ffeb | 6702 | ret = __alloc_contig_migrate_range(&cc, start, end); |
8ef5849f | 6703 | if (ret && ret != -EBUSY) |
041d3a8c MN |
6704 | goto done; |
6705 | ||
6706 | /* | |
6707 | * Pages from [start, end) are within a MAX_ORDER_NR_PAGES | |
6708 | * aligned blocks that are marked as MIGRATE_ISOLATE. What's | |
6709 | * more, all pages in [start, end) are free in page allocator. | |
6710 | * What we are going to do is to allocate all pages from | |
6711 | * [start, end) (that is remove them from page allocator). | |
6712 | * | |
6713 | * The only problem is that pages at the beginning and at the | |
6714 | * end of interesting range may be not aligned with pages that | |
6715 | * page allocator holds, ie. they can be part of higher order | |
6716 | * pages. Because of this, we reserve the bigger range and | |
6717 | * once this is done free the pages we are not interested in. | |
6718 | * | |
6719 | * We don't have to hold zone->lock here because the pages are | |
6720 | * isolated thus they won't get removed from buddy. | |
6721 | */ | |
6722 | ||
6723 | lru_add_drain_all(); | |
510f5507 | 6724 | drain_all_pages(cc.zone); |
041d3a8c MN |
6725 | |
6726 | order = 0; | |
6727 | outer_start = start; | |
6728 | while (!PageBuddy(pfn_to_page(outer_start))) { | |
6729 | if (++order >= MAX_ORDER) { | |
8ef5849f JK |
6730 | outer_start = start; |
6731 | break; | |
041d3a8c MN |
6732 | } |
6733 | outer_start &= ~0UL << order; | |
6734 | } | |
6735 | ||
8ef5849f JK |
6736 | if (outer_start != start) { |
6737 | order = page_order(pfn_to_page(outer_start)); | |
6738 | ||
6739 | /* | |
6740 | * outer_start page could be small order buddy page and | |
6741 | * it doesn't include start page. Adjust outer_start | |
6742 | * in this case to report failed page properly | |
6743 | * on tracepoint in test_pages_isolated() | |
6744 | */ | |
6745 | if (outer_start + (1UL << order) <= start) | |
6746 | outer_start = start; | |
6747 | } | |
6748 | ||
041d3a8c | 6749 | /* Make sure the range is really isolated. */ |
b023f468 | 6750 | if (test_pages_isolated(outer_start, end, false)) { |
dae803e1 MN |
6751 | pr_info("%s: [%lx, %lx) PFNs busy\n", |
6752 | __func__, outer_start, end); | |
041d3a8c MN |
6753 | ret = -EBUSY; |
6754 | goto done; | |
6755 | } | |
6756 | ||
49f223a9 | 6757 | /* Grab isolated pages from freelists. */ |
bb13ffeb | 6758 | outer_end = isolate_freepages_range(&cc, outer_start, end); |
041d3a8c MN |
6759 | if (!outer_end) { |
6760 | ret = -EBUSY; | |
6761 | goto done; | |
6762 | } | |
6763 | ||
6764 | /* Free head and tail (if any) */ | |
6765 | if (start != outer_start) | |
6766 | free_contig_range(outer_start, start - outer_start); | |
6767 | if (end != outer_end) | |
6768 | free_contig_range(end, outer_end - end); | |
6769 | ||
6770 | done: | |
6771 | undo_isolate_page_range(pfn_max_align_down(start), | |
0815f3d8 | 6772 | pfn_max_align_up(end), migratetype); |
041d3a8c MN |
6773 | return ret; |
6774 | } | |
6775 | ||
6776 | void free_contig_range(unsigned long pfn, unsigned nr_pages) | |
6777 | { | |
bcc2b02f MS |
6778 | unsigned int count = 0; |
6779 | ||
6780 | for (; nr_pages--; pfn++) { | |
6781 | struct page *page = pfn_to_page(pfn); | |
6782 | ||
6783 | count += page_count(page) != 1; | |
6784 | __free_page(page); | |
6785 | } | |
6786 | WARN(count != 0, "%d pages are still in use!\n", count); | |
041d3a8c MN |
6787 | } |
6788 | #endif | |
6789 | ||
4ed7e022 | 6790 | #ifdef CONFIG_MEMORY_HOTPLUG |
0a647f38 CS |
6791 | /* |
6792 | * The zone indicated has a new number of managed_pages; batch sizes and percpu | |
6793 | * page high values need to be recalulated. | |
6794 | */ | |
4ed7e022 JL |
6795 | void __meminit zone_pcp_update(struct zone *zone) |
6796 | { | |
0a647f38 | 6797 | unsigned cpu; |
c8e251fa | 6798 | mutex_lock(&pcp_batch_high_lock); |
0a647f38 | 6799 | for_each_possible_cpu(cpu) |
169f6c19 CS |
6800 | pageset_set_high_and_batch(zone, |
6801 | per_cpu_ptr(zone->pageset, cpu)); | |
c8e251fa | 6802 | mutex_unlock(&pcp_batch_high_lock); |
4ed7e022 JL |
6803 | } |
6804 | #endif | |
6805 | ||
340175b7 JL |
6806 | void zone_pcp_reset(struct zone *zone) |
6807 | { | |
6808 | unsigned long flags; | |
5a883813 MK |
6809 | int cpu; |
6810 | struct per_cpu_pageset *pset; | |
340175b7 JL |
6811 | |
6812 | /* avoid races with drain_pages() */ | |
6813 | local_irq_save(flags); | |
6814 | if (zone->pageset != &boot_pageset) { | |
5a883813 MK |
6815 | for_each_online_cpu(cpu) { |
6816 | pset = per_cpu_ptr(zone->pageset, cpu); | |
6817 | drain_zonestat(zone, pset); | |
6818 | } | |
340175b7 JL |
6819 | free_percpu(zone->pageset); |
6820 | zone->pageset = &boot_pageset; | |
6821 | } | |
6822 | local_irq_restore(flags); | |
6823 | } | |
6824 | ||
6dcd73d7 | 6825 | #ifdef CONFIG_MEMORY_HOTREMOVE |
0c0e6195 KH |
6826 | /* |
6827 | * All pages in the range must be isolated before calling this. | |
6828 | */ | |
6829 | void | |
6830 | __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) | |
6831 | { | |
6832 | struct page *page; | |
6833 | struct zone *zone; | |
7aeb09f9 | 6834 | unsigned int order, i; |
0c0e6195 KH |
6835 | unsigned long pfn; |
6836 | unsigned long flags; | |
6837 | /* find the first valid pfn */ | |
6838 | for (pfn = start_pfn; pfn < end_pfn; pfn++) | |
6839 | if (pfn_valid(pfn)) | |
6840 | break; | |
6841 | if (pfn == end_pfn) | |
6842 | return; | |
6843 | zone = page_zone(pfn_to_page(pfn)); | |
6844 | spin_lock_irqsave(&zone->lock, flags); | |
6845 | pfn = start_pfn; | |
6846 | while (pfn < end_pfn) { | |
6847 | if (!pfn_valid(pfn)) { | |
6848 | pfn++; | |
6849 | continue; | |
6850 | } | |
6851 | page = pfn_to_page(pfn); | |
b023f468 WC |
6852 | /* |
6853 | * The HWPoisoned page may be not in buddy system, and | |
6854 | * page_count() is not 0. | |
6855 | */ | |
6856 | if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { | |
6857 | pfn++; | |
6858 | SetPageReserved(page); | |
6859 | continue; | |
6860 | } | |
6861 | ||
0c0e6195 KH |
6862 | BUG_ON(page_count(page)); |
6863 | BUG_ON(!PageBuddy(page)); | |
6864 | order = page_order(page); | |
6865 | #ifdef CONFIG_DEBUG_VM | |
6866 | printk(KERN_INFO "remove from free list %lx %d %lx\n", | |
6867 | pfn, 1 << order, end_pfn); | |
6868 | #endif | |
6869 | list_del(&page->lru); | |
6870 | rmv_page_order(page); | |
6871 | zone->free_area[order].nr_free--; | |
0c0e6195 KH |
6872 | for (i = 0; i < (1 << order); i++) |
6873 | SetPageReserved((page+i)); | |
6874 | pfn += (1 << order); | |
6875 | } | |
6876 | spin_unlock_irqrestore(&zone->lock, flags); | |
6877 | } | |
6878 | #endif | |
8d22ba1b WF |
6879 | |
6880 | #ifdef CONFIG_MEMORY_FAILURE | |
6881 | bool is_free_buddy_page(struct page *page) | |
6882 | { | |
6883 | struct zone *zone = page_zone(page); | |
6884 | unsigned long pfn = page_to_pfn(page); | |
6885 | unsigned long flags; | |
7aeb09f9 | 6886 | unsigned int order; |
8d22ba1b WF |
6887 | |
6888 | spin_lock_irqsave(&zone->lock, flags); | |
6889 | for (order = 0; order < MAX_ORDER; order++) { | |
6890 | struct page *page_head = page - (pfn & ((1 << order) - 1)); | |
6891 | ||
6892 | if (PageBuddy(page_head) && page_order(page_head) >= order) | |
6893 | break; | |
6894 | } | |
6895 | spin_unlock_irqrestore(&zone->lock, flags); | |
6896 | ||
6897 | return order < MAX_ORDER; | |
6898 | } | |
6899 | #endif |