]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm/page_owner: copy last_migrate_reason in copy_page_owner()
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ef70b6f4
MG
289 int nid = early_pfn_to_nid(pfn);
290
291 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
292 return true;
293
294 return false;
295}
296
7e18adb4
MG
297static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
298{
299 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
300 return true;
301
302 return false;
303}
304
3a80a7fa
MG
305/*
306 * Returns false when the remaining initialisation should be deferred until
307 * later in the boot cycle when it can be parallelised.
308 */
309static inline bool update_defer_init(pg_data_t *pgdat,
310 unsigned long pfn, unsigned long zone_end,
311 unsigned long *nr_initialised)
312{
987b3095
LZ
313 unsigned long max_initialise;
314
3a80a7fa
MG
315 /* Always populate low zones for address-contrained allocations */
316 if (zone_end < pgdat_end_pfn(pgdat))
317 return true;
987b3095
LZ
318 /*
319 * Initialise at least 2G of a node but also take into account that
320 * two large system hashes that can take up 1GB for 0.25TB/node.
321 */
322 max_initialise = max(2UL << (30 - PAGE_SHIFT),
323 (pgdat->node_spanned_pages >> 8));
3a80a7fa 324
3a80a7fa 325 (*nr_initialised)++;
987b3095 326 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
327 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
328 pgdat->first_deferred_pfn = pfn;
329 return false;
330 }
331
332 return true;
333}
334#else
335static inline void reset_deferred_meminit(pg_data_t *pgdat)
336{
337}
338
339static inline bool early_page_uninitialised(unsigned long pfn)
340{
341 return false;
342}
343
7e18adb4
MG
344static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
345{
346 return false;
347}
348
3a80a7fa
MG
349static inline bool update_defer_init(pg_data_t *pgdat,
350 unsigned long pfn, unsigned long zone_end,
351 unsigned long *nr_initialised)
352{
353 return true;
354}
355#endif
356
0b423ca2
MG
357/* Return a pointer to the bitmap storing bits affecting a block of pages */
358static inline unsigned long *get_pageblock_bitmap(struct page *page,
359 unsigned long pfn)
360{
361#ifdef CONFIG_SPARSEMEM
362 return __pfn_to_section(pfn)->pageblock_flags;
363#else
364 return page_zone(page)->pageblock_flags;
365#endif /* CONFIG_SPARSEMEM */
366}
367
368static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
369{
370#ifdef CONFIG_SPARSEMEM
371 pfn &= (PAGES_PER_SECTION-1);
372 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
373#else
374 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
375 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
376#endif /* CONFIG_SPARSEMEM */
377}
378
379/**
380 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
381 * @page: The page within the block of interest
382 * @pfn: The target page frame number
383 * @end_bitidx: The last bit of interest to retrieve
384 * @mask: mask of bits that the caller is interested in
385 *
386 * Return: pageblock_bits flags
387 */
388static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
389 unsigned long pfn,
390 unsigned long end_bitidx,
391 unsigned long mask)
392{
393 unsigned long *bitmap;
394 unsigned long bitidx, word_bitidx;
395 unsigned long word;
396
397 bitmap = get_pageblock_bitmap(page, pfn);
398 bitidx = pfn_to_bitidx(page, pfn);
399 word_bitidx = bitidx / BITS_PER_LONG;
400 bitidx &= (BITS_PER_LONG-1);
401
402 word = bitmap[word_bitidx];
403 bitidx += end_bitidx;
404 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
405}
406
407unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
408 unsigned long end_bitidx,
409 unsigned long mask)
410{
411 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
412}
413
414static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
415{
416 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
417}
418
419/**
420 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
421 * @page: The page within the block of interest
422 * @flags: The flags to set
423 * @pfn: The target page frame number
424 * @end_bitidx: The last bit of interest
425 * @mask: mask of bits that the caller is interested in
426 */
427void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
428 unsigned long pfn,
429 unsigned long end_bitidx,
430 unsigned long mask)
431{
432 unsigned long *bitmap;
433 unsigned long bitidx, word_bitidx;
434 unsigned long old_word, word;
435
436 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
437
438 bitmap = get_pageblock_bitmap(page, pfn);
439 bitidx = pfn_to_bitidx(page, pfn);
440 word_bitidx = bitidx / BITS_PER_LONG;
441 bitidx &= (BITS_PER_LONG-1);
442
443 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
444
445 bitidx += end_bitidx;
446 mask <<= (BITS_PER_LONG - bitidx - 1);
447 flags <<= (BITS_PER_LONG - bitidx - 1);
448
449 word = READ_ONCE(bitmap[word_bitidx]);
450 for (;;) {
451 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
452 if (word == old_word)
453 break;
454 word = old_word;
455 }
456}
3a80a7fa 457
ee6f509c 458void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 459{
5d0f3f72
KM
460 if (unlikely(page_group_by_mobility_disabled &&
461 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
462 migratetype = MIGRATE_UNMOVABLE;
463
b2a0ac88
MG
464 set_pageblock_flags_group(page, (unsigned long)migratetype,
465 PB_migrate, PB_migrate_end);
466}
467
13e7444b 468#ifdef CONFIG_DEBUG_VM
c6a57e19 469static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 470{
bdc8cb98
DH
471 int ret = 0;
472 unsigned seq;
473 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 474 unsigned long sp, start_pfn;
c6a57e19 475
bdc8cb98
DH
476 do {
477 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
478 start_pfn = zone->zone_start_pfn;
479 sp = zone->spanned_pages;
108bcc96 480 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
481 ret = 1;
482 } while (zone_span_seqretry(zone, seq));
483
b5e6a5a2 484 if (ret)
613813e8
DH
485 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
486 pfn, zone_to_nid(zone), zone->name,
487 start_pfn, start_pfn + sp);
b5e6a5a2 488
bdc8cb98 489 return ret;
c6a57e19
DH
490}
491
492static int page_is_consistent(struct zone *zone, struct page *page)
493{
14e07298 494 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 495 return 0;
1da177e4 496 if (zone != page_zone(page))
c6a57e19
DH
497 return 0;
498
499 return 1;
500}
501/*
502 * Temporary debugging check for pages not lying within a given zone.
503 */
504static int bad_range(struct zone *zone, struct page *page)
505{
506 if (page_outside_zone_boundaries(zone, page))
1da177e4 507 return 1;
c6a57e19
DH
508 if (!page_is_consistent(zone, page))
509 return 1;
510
1da177e4
LT
511 return 0;
512}
13e7444b
NP
513#else
514static inline int bad_range(struct zone *zone, struct page *page)
515{
516 return 0;
517}
518#endif
519
d230dec1
KS
520static void bad_page(struct page *page, const char *reason,
521 unsigned long bad_flags)
1da177e4 522{
d936cf9b
HD
523 static unsigned long resume;
524 static unsigned long nr_shown;
525 static unsigned long nr_unshown;
526
527 /*
528 * Allow a burst of 60 reports, then keep quiet for that minute;
529 * or allow a steady drip of one report per second.
530 */
531 if (nr_shown == 60) {
532 if (time_before(jiffies, resume)) {
533 nr_unshown++;
534 goto out;
535 }
536 if (nr_unshown) {
ff8e8116 537 pr_alert(
1e9e6365 538 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
539 nr_unshown);
540 nr_unshown = 0;
541 }
542 nr_shown = 0;
543 }
544 if (nr_shown++ == 0)
545 resume = jiffies + 60 * HZ;
546
ff8e8116 547 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 548 current->comm, page_to_pfn(page));
ff8e8116
VB
549 __dump_page(page, reason);
550 bad_flags &= page->flags;
551 if (bad_flags)
552 pr_alert("bad because of flags: %#lx(%pGp)\n",
553 bad_flags, &bad_flags);
4e462112 554 dump_page_owner(page);
3dc14741 555
4f31888c 556 print_modules();
1da177e4 557 dump_stack();
d936cf9b 558out:
8cc3b392 559 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 560 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
562}
563
1da177e4
LT
564/*
565 * Higher-order pages are called "compound pages". They are structured thusly:
566 *
1d798ca3 567 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 568 *
1d798ca3
KS
569 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
570 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 571 *
1d798ca3
KS
572 * The first tail page's ->compound_dtor holds the offset in array of compound
573 * page destructors. See compound_page_dtors.
1da177e4 574 *
1d798ca3 575 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 576 * This usage means that zero-order pages may not be compound.
1da177e4 577 */
d98c7a09 578
9a982250 579void free_compound_page(struct page *page)
d98c7a09 580{
d85f3385 581 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
582}
583
d00181b9 584void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
585{
586 int i;
587 int nr_pages = 1 << order;
588
f1e61557 589 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
590 set_compound_order(page, order);
591 __SetPageHead(page);
592 for (i = 1; i < nr_pages; i++) {
593 struct page *p = page + i;
58a84aa9 594 set_page_count(p, 0);
1c290f64 595 p->mapping = TAIL_MAPPING;
1d798ca3 596 set_compound_head(p, page);
18229df5 597 }
53f9263b 598 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
599}
600
c0a32fc5
SG
601#ifdef CONFIG_DEBUG_PAGEALLOC
602unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
603bool _debug_pagealloc_enabled __read_mostly
604 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 605EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
606bool _debug_guardpage_enabled __read_mostly;
607
031bc574
JK
608static int __init early_debug_pagealloc(char *buf)
609{
610 if (!buf)
611 return -EINVAL;
2a138dc7 612 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
613}
614early_param("debug_pagealloc", early_debug_pagealloc);
615
e30825f1
JK
616static bool need_debug_guardpage(void)
617{
031bc574
JK
618 /* If we don't use debug_pagealloc, we don't need guard page */
619 if (!debug_pagealloc_enabled())
620 return false;
621
e30825f1
JK
622 return true;
623}
624
625static void init_debug_guardpage(void)
626{
031bc574
JK
627 if (!debug_pagealloc_enabled())
628 return;
629
e30825f1
JK
630 _debug_guardpage_enabled = true;
631}
632
633struct page_ext_operations debug_guardpage_ops = {
634 .need = need_debug_guardpage,
635 .init = init_debug_guardpage,
636};
c0a32fc5
SG
637
638static int __init debug_guardpage_minorder_setup(char *buf)
639{
640 unsigned long res;
641
642 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 643 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
644 return 0;
645 }
646 _debug_guardpage_minorder = res;
1170532b 647 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
648 return 0;
649}
650__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
651
2847cf95
JK
652static inline void set_page_guard(struct zone *zone, struct page *page,
653 unsigned int order, int migratetype)
c0a32fc5 654{
e30825f1
JK
655 struct page_ext *page_ext;
656
657 if (!debug_guardpage_enabled())
658 return;
659
660 page_ext = lookup_page_ext(page);
f86e4271
YS
661 if (unlikely(!page_ext))
662 return;
663
e30825f1
JK
664 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
665
2847cf95
JK
666 INIT_LIST_HEAD(&page->lru);
667 set_page_private(page, order);
668 /* Guard pages are not available for any usage */
669 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
670}
671
2847cf95
JK
672static inline void clear_page_guard(struct zone *zone, struct page *page,
673 unsigned int order, int migratetype)
c0a32fc5 674{
e30825f1
JK
675 struct page_ext *page_ext;
676
677 if (!debug_guardpage_enabled())
678 return;
679
680 page_ext = lookup_page_ext(page);
f86e4271
YS
681 if (unlikely(!page_ext))
682 return;
683
e30825f1
JK
684 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
685
2847cf95
JK
686 set_page_private(page, 0);
687 if (!is_migrate_isolate(migratetype))
688 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
689}
690#else
e30825f1 691struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
692static inline void set_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694static inline void clear_page_guard(struct zone *zone, struct page *page,
695 unsigned int order, int migratetype) {}
c0a32fc5
SG
696#endif
697
7aeb09f9 698static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 699{
4c21e2f2 700 set_page_private(page, order);
676165a8 701 __SetPageBuddy(page);
1da177e4
LT
702}
703
704static inline void rmv_page_order(struct page *page)
705{
676165a8 706 __ClearPageBuddy(page);
4c21e2f2 707 set_page_private(page, 0);
1da177e4
LT
708}
709
1da177e4
LT
710/*
711 * This function checks whether a page is free && is the buddy
712 * we can do coalesce a page and its buddy if
13e7444b 713 * (a) the buddy is not in a hole &&
676165a8 714 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
715 * (c) a page and its buddy have the same order &&
716 * (d) a page and its buddy are in the same zone.
676165a8 717 *
cf6fe945
WSH
718 * For recording whether a page is in the buddy system, we set ->_mapcount
719 * PAGE_BUDDY_MAPCOUNT_VALUE.
720 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
721 * serialized by zone->lock.
1da177e4 722 *
676165a8 723 * For recording page's order, we use page_private(page).
1da177e4 724 */
cb2b95e1 725static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 726 unsigned int order)
1da177e4 727{
14e07298 728 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 729 return 0;
13e7444b 730
c0a32fc5 731 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 if (page_zone_id(page) != page_zone_id(buddy))
733 return 0;
734
4c5018ce
WY
735 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
736
c0a32fc5
SG
737 return 1;
738 }
739
cb2b95e1 740 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
741 /*
742 * zone check is done late to avoid uselessly
743 * calculating zone/node ids for pages that could
744 * never merge.
745 */
746 if (page_zone_id(page) != page_zone_id(buddy))
747 return 0;
748
4c5018ce
WY
749 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
750
6aa3001b 751 return 1;
676165a8 752 }
6aa3001b 753 return 0;
1da177e4
LT
754}
755
756/*
757 * Freeing function for a buddy system allocator.
758 *
759 * The concept of a buddy system is to maintain direct-mapped table
760 * (containing bit values) for memory blocks of various "orders".
761 * The bottom level table contains the map for the smallest allocatable
762 * units of memory (here, pages), and each level above it describes
763 * pairs of units from the levels below, hence, "buddies".
764 * At a high level, all that happens here is marking the table entry
765 * at the bottom level available, and propagating the changes upward
766 * as necessary, plus some accounting needed to play nicely with other
767 * parts of the VM system.
768 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
769 * free pages of length of (1 << order) and marked with _mapcount
770 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
771 * field.
1da177e4 772 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
773 * other. That is, if we allocate a small block, and both were
774 * free, the remainder of the region must be split into blocks.
1da177e4 775 * If a block is freed, and its buddy is also free, then this
5f63b720 776 * triggers coalescing into a block of larger size.
1da177e4 777 *
6d49e352 778 * -- nyc
1da177e4
LT
779 */
780
48db57f8 781static inline void __free_one_page(struct page *page,
dc4b0caf 782 unsigned long pfn,
ed0ae21d
MG
783 struct zone *zone, unsigned int order,
784 int migratetype)
1da177e4
LT
785{
786 unsigned long page_idx;
6dda9d55 787 unsigned long combined_idx;
43506fad 788 unsigned long uninitialized_var(buddy_idx);
6dda9d55 789 struct page *buddy;
d9dddbf5
VB
790 unsigned int max_order;
791
792 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 793
d29bb978 794 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 795 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 796
ed0ae21d 797 VM_BUG_ON(migratetype == -1);
d9dddbf5 798 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 799 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 800
d9dddbf5 801 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 802
309381fe
SL
803 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
804 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 805
d9dddbf5 806continue_merging:
3c605096 807 while (order < max_order - 1) {
43506fad
KC
808 buddy_idx = __find_buddy_index(page_idx, order);
809 buddy = page + (buddy_idx - page_idx);
cb2b95e1 810 if (!page_is_buddy(page, buddy, order))
d9dddbf5 811 goto done_merging;
c0a32fc5
SG
812 /*
813 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 * merge with it and move up one order.
815 */
816 if (page_is_guard(buddy)) {
2847cf95 817 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
818 } else {
819 list_del(&buddy->lru);
820 zone->free_area[order].nr_free--;
821 rmv_page_order(buddy);
822 }
43506fad 823 combined_idx = buddy_idx & page_idx;
1da177e4
LT
824 page = page + (combined_idx - page_idx);
825 page_idx = combined_idx;
826 order++;
827 }
d9dddbf5
VB
828 if (max_order < MAX_ORDER) {
829 /* If we are here, it means order is >= pageblock_order.
830 * We want to prevent merge between freepages on isolate
831 * pageblock and normal pageblock. Without this, pageblock
832 * isolation could cause incorrect freepage or CMA accounting.
833 *
834 * We don't want to hit this code for the more frequent
835 * low-order merging.
836 */
837 if (unlikely(has_isolate_pageblock(zone))) {
838 int buddy_mt;
839
840 buddy_idx = __find_buddy_index(page_idx, order);
841 buddy = page + (buddy_idx - page_idx);
842 buddy_mt = get_pageblock_migratetype(buddy);
843
844 if (migratetype != buddy_mt
845 && (is_migrate_isolate(migratetype) ||
846 is_migrate_isolate(buddy_mt)))
847 goto done_merging;
848 }
849 max_order++;
850 goto continue_merging;
851 }
852
853done_merging:
1da177e4 854 set_page_order(page, order);
6dda9d55
CZ
855
856 /*
857 * If this is not the largest possible page, check if the buddy
858 * of the next-highest order is free. If it is, it's possible
859 * that pages are being freed that will coalesce soon. In case,
860 * that is happening, add the free page to the tail of the list
861 * so it's less likely to be used soon and more likely to be merged
862 * as a higher order page
863 */
b7f50cfa 864 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 865 struct page *higher_page, *higher_buddy;
43506fad
KC
866 combined_idx = buddy_idx & page_idx;
867 higher_page = page + (combined_idx - page_idx);
868 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 869 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
870 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
871 list_add_tail(&page->lru,
872 &zone->free_area[order].free_list[migratetype]);
873 goto out;
874 }
875 }
876
877 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
878out:
1da177e4
LT
879 zone->free_area[order].nr_free++;
880}
881
7bfec6f4
MG
882/*
883 * A bad page could be due to a number of fields. Instead of multiple branches,
884 * try and check multiple fields with one check. The caller must do a detailed
885 * check if necessary.
886 */
887static inline bool page_expected_state(struct page *page,
888 unsigned long check_flags)
889{
890 if (unlikely(atomic_read(&page->_mapcount) != -1))
891 return false;
892
893 if (unlikely((unsigned long)page->mapping |
894 page_ref_count(page) |
895#ifdef CONFIG_MEMCG
896 (unsigned long)page->mem_cgroup |
897#endif
898 (page->flags & check_flags)))
899 return false;
900
901 return true;
902}
903
bb552ac6 904static void free_pages_check_bad(struct page *page)
1da177e4 905{
7bfec6f4
MG
906 const char *bad_reason;
907 unsigned long bad_flags;
908
7bfec6f4
MG
909 bad_reason = NULL;
910 bad_flags = 0;
f0b791a3 911
53f9263b 912 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
913 bad_reason = "nonzero mapcount";
914 if (unlikely(page->mapping != NULL))
915 bad_reason = "non-NULL mapping";
fe896d18 916 if (unlikely(page_ref_count(page) != 0))
0139aa7b 917 bad_reason = "nonzero _refcount";
f0b791a3
DH
918 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
919 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
920 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
921 }
9edad6ea
JW
922#ifdef CONFIG_MEMCG
923 if (unlikely(page->mem_cgroup))
924 bad_reason = "page still charged to cgroup";
925#endif
7bfec6f4 926 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
927}
928
929static inline int free_pages_check(struct page *page)
930{
da838d4f 931 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 932 return 0;
bb552ac6
MG
933
934 /* Something has gone sideways, find it */
935 free_pages_check_bad(page);
7bfec6f4 936 return 1;
1da177e4
LT
937}
938
4db7548c
MG
939static int free_tail_pages_check(struct page *head_page, struct page *page)
940{
941 int ret = 1;
942
943 /*
944 * We rely page->lru.next never has bit 0 set, unless the page
945 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
946 */
947 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
948
949 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
950 ret = 0;
951 goto out;
952 }
953 switch (page - head_page) {
954 case 1:
955 /* the first tail page: ->mapping is compound_mapcount() */
956 if (unlikely(compound_mapcount(page))) {
957 bad_page(page, "nonzero compound_mapcount", 0);
958 goto out;
959 }
960 break;
961 case 2:
962 /*
963 * the second tail page: ->mapping is
964 * page_deferred_list().next -- ignore value.
965 */
966 break;
967 default:
968 if (page->mapping != TAIL_MAPPING) {
969 bad_page(page, "corrupted mapping in tail page", 0);
970 goto out;
971 }
972 break;
973 }
974 if (unlikely(!PageTail(page))) {
975 bad_page(page, "PageTail not set", 0);
976 goto out;
977 }
978 if (unlikely(compound_head(page) != head_page)) {
979 bad_page(page, "compound_head not consistent", 0);
980 goto out;
981 }
982 ret = 0;
983out:
984 page->mapping = NULL;
985 clear_compound_head(page);
986 return ret;
987}
988
e2769dbd
MG
989static __always_inline bool free_pages_prepare(struct page *page,
990 unsigned int order, bool check_free)
4db7548c 991{
e2769dbd 992 int bad = 0;
4db7548c 993
4db7548c
MG
994 VM_BUG_ON_PAGE(PageTail(page), page);
995
e2769dbd
MG
996 trace_mm_page_free(page, order);
997 kmemcheck_free_shadow(page, order);
e2769dbd
MG
998
999 /*
1000 * Check tail pages before head page information is cleared to
1001 * avoid checking PageCompound for order-0 pages.
1002 */
1003 if (unlikely(order)) {
1004 bool compound = PageCompound(page);
1005 int i;
1006
1007 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1008
e2769dbd
MG
1009 for (i = 1; i < (1 << order); i++) {
1010 if (compound)
1011 bad += free_tail_pages_check(page, page + i);
1012 if (unlikely(free_pages_check(page + i))) {
1013 bad++;
1014 continue;
1015 }
1016 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1017 }
1018 }
bda807d4 1019 if (PageMappingFlags(page))
4db7548c 1020 page->mapping = NULL;
e2769dbd
MG
1021 if (check_free)
1022 bad += free_pages_check(page);
1023 if (bad)
1024 return false;
4db7548c 1025
e2769dbd
MG
1026 page_cpupid_reset_last(page);
1027 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1028 reset_page_owner(page, order);
4db7548c
MG
1029
1030 if (!PageHighMem(page)) {
1031 debug_check_no_locks_freed(page_address(page),
e2769dbd 1032 PAGE_SIZE << order);
4db7548c 1033 debug_check_no_obj_freed(page_address(page),
e2769dbd 1034 PAGE_SIZE << order);
4db7548c 1035 }
e2769dbd
MG
1036 arch_free_page(page, order);
1037 kernel_poison_pages(page, 1 << order, 0);
1038 kernel_map_pages(page, 1 << order, 0);
29b52de1 1039 kasan_free_pages(page, order);
4db7548c 1040
4db7548c
MG
1041 return true;
1042}
1043
e2769dbd
MG
1044#ifdef CONFIG_DEBUG_VM
1045static inline bool free_pcp_prepare(struct page *page)
1046{
1047 return free_pages_prepare(page, 0, true);
1048}
1049
1050static inline bool bulkfree_pcp_prepare(struct page *page)
1051{
1052 return false;
1053}
1054#else
1055static bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, false);
1058}
1059
4db7548c
MG
1060static bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return free_pages_check(page);
1063}
1064#endif /* CONFIG_DEBUG_VM */
1065
1da177e4 1066/*
5f8dcc21 1067 * Frees a number of pages from the PCP lists
1da177e4 1068 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1069 * count is the number of pages to free.
1da177e4
LT
1070 *
1071 * If the zone was previously in an "all pages pinned" state then look to
1072 * see if this freeing clears that state.
1073 *
1074 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1075 * pinned" detection logic.
1076 */
5f8dcc21
MG
1077static void free_pcppages_bulk(struct zone *zone, int count,
1078 struct per_cpu_pages *pcp)
1da177e4 1079{
5f8dcc21 1080 int migratetype = 0;
a6f9edd6 1081 int batch_free = 0;
0d5d823a 1082 unsigned long nr_scanned;
3777999d 1083 bool isolated_pageblocks;
5f8dcc21 1084
c54ad30c 1085 spin_lock(&zone->lock);
3777999d 1086 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1087 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1088 if (nr_scanned)
1089 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1090
e5b31ac2 1091 while (count) {
48db57f8 1092 struct page *page;
5f8dcc21
MG
1093 struct list_head *list;
1094
1095 /*
a6f9edd6
MG
1096 * Remove pages from lists in a round-robin fashion. A
1097 * batch_free count is maintained that is incremented when an
1098 * empty list is encountered. This is so more pages are freed
1099 * off fuller lists instead of spinning excessively around empty
1100 * lists
5f8dcc21
MG
1101 */
1102 do {
a6f9edd6 1103 batch_free++;
5f8dcc21
MG
1104 if (++migratetype == MIGRATE_PCPTYPES)
1105 migratetype = 0;
1106 list = &pcp->lists[migratetype];
1107 } while (list_empty(list));
48db57f8 1108
1d16871d
NK
1109 /* This is the only non-empty list. Free them all. */
1110 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1111 batch_free = count;
1d16871d 1112
a6f9edd6 1113 do {
770c8aaa
BZ
1114 int mt; /* migratetype of the to-be-freed page */
1115
a16601c5 1116 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1117 /* must delete as __free_one_page list manipulates */
1118 list_del(&page->lru);
aa016d14 1119
bb14c2c7 1120 mt = get_pcppage_migratetype(page);
aa016d14
VB
1121 /* MIGRATE_ISOLATE page should not go to pcplists */
1122 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1123 /* Pageblock could have been isolated meanwhile */
3777999d 1124 if (unlikely(isolated_pageblocks))
51bb1a40 1125 mt = get_pageblock_migratetype(page);
51bb1a40 1126
4db7548c
MG
1127 if (bulkfree_pcp_prepare(page))
1128 continue;
1129
dc4b0caf 1130 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1131 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1132 } while (--count && --batch_free && !list_empty(list));
1da177e4 1133 }
c54ad30c 1134 spin_unlock(&zone->lock);
1da177e4
LT
1135}
1136
dc4b0caf
MG
1137static void free_one_page(struct zone *zone,
1138 struct page *page, unsigned long pfn,
7aeb09f9 1139 unsigned int order,
ed0ae21d 1140 int migratetype)
1da177e4 1141{
0d5d823a 1142 unsigned long nr_scanned;
006d22d9 1143 spin_lock(&zone->lock);
0d5d823a
MG
1144 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1145 if (nr_scanned)
1146 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1147
ad53f92e
JK
1148 if (unlikely(has_isolate_pageblock(zone) ||
1149 is_migrate_isolate(migratetype))) {
1150 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1151 }
dc4b0caf 1152 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1153 spin_unlock(&zone->lock);
48db57f8
NP
1154}
1155
1e8ce83c
RH
1156static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1157 unsigned long zone, int nid)
1158{
1e8ce83c 1159 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1160 init_page_count(page);
1161 page_mapcount_reset(page);
1162 page_cpupid_reset_last(page);
1e8ce83c 1163
1e8ce83c
RH
1164 INIT_LIST_HEAD(&page->lru);
1165#ifdef WANT_PAGE_VIRTUAL
1166 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1167 if (!is_highmem_idx(zone))
1168 set_page_address(page, __va(pfn << PAGE_SHIFT));
1169#endif
1170}
1171
1172static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1173 int nid)
1174{
1175 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1176}
1177
7e18adb4
MG
1178#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1179static void init_reserved_page(unsigned long pfn)
1180{
1181 pg_data_t *pgdat;
1182 int nid, zid;
1183
1184 if (!early_page_uninitialised(pfn))
1185 return;
1186
1187 nid = early_pfn_to_nid(pfn);
1188 pgdat = NODE_DATA(nid);
1189
1190 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1191 struct zone *zone = &pgdat->node_zones[zid];
1192
1193 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1194 break;
1195 }
1196 __init_single_pfn(pfn, zid, nid);
1197}
1198#else
1199static inline void init_reserved_page(unsigned long pfn)
1200{
1201}
1202#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1203
92923ca3
NZ
1204/*
1205 * Initialised pages do not have PageReserved set. This function is
1206 * called for each range allocated by the bootmem allocator and
1207 * marks the pages PageReserved. The remaining valid pages are later
1208 * sent to the buddy page allocator.
1209 */
4b50bcc7 1210void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1211{
1212 unsigned long start_pfn = PFN_DOWN(start);
1213 unsigned long end_pfn = PFN_UP(end);
1214
7e18adb4
MG
1215 for (; start_pfn < end_pfn; start_pfn++) {
1216 if (pfn_valid(start_pfn)) {
1217 struct page *page = pfn_to_page(start_pfn);
1218
1219 init_reserved_page(start_pfn);
1d798ca3
KS
1220
1221 /* Avoid false-positive PageTail() */
1222 INIT_LIST_HEAD(&page->lru);
1223
7e18adb4
MG
1224 SetPageReserved(page);
1225 }
1226 }
92923ca3
NZ
1227}
1228
ec95f53a
KM
1229static void __free_pages_ok(struct page *page, unsigned int order)
1230{
1231 unsigned long flags;
95e34412 1232 int migratetype;
dc4b0caf 1233 unsigned long pfn = page_to_pfn(page);
ec95f53a 1234
e2769dbd 1235 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1236 return;
1237
cfc47a28 1238 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1239 local_irq_save(flags);
f8891e5e 1240 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1241 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1242 local_irq_restore(flags);
1da177e4
LT
1243}
1244
949698a3 1245static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1246{
c3993076 1247 unsigned int nr_pages = 1 << order;
e2d0bd2b 1248 struct page *p = page;
c3993076 1249 unsigned int loop;
a226f6c8 1250
e2d0bd2b
YL
1251 prefetchw(p);
1252 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1253 prefetchw(p + 1);
c3993076
JW
1254 __ClearPageReserved(p);
1255 set_page_count(p, 0);
a226f6c8 1256 }
e2d0bd2b
YL
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
c3993076 1259
e2d0bd2b 1260 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1261 set_page_refcounted(page);
1262 __free_pages(page, order);
a226f6c8
DH
1263}
1264
75a592a4
MG
1265#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1266 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1267
75a592a4
MG
1268static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1269
1270int __meminit early_pfn_to_nid(unsigned long pfn)
1271{
7ace9917 1272 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1273 int nid;
1274
7ace9917 1275 spin_lock(&early_pfn_lock);
75a592a4 1276 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1277 if (nid < 0)
e4568d38 1278 nid = first_online_node;
7ace9917
MG
1279 spin_unlock(&early_pfn_lock);
1280
1281 return nid;
75a592a4
MG
1282}
1283#endif
1284
1285#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1286static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1287 struct mminit_pfnnid_cache *state)
1288{
1289 int nid;
1290
1291 nid = __early_pfn_to_nid(pfn, state);
1292 if (nid >= 0 && nid != node)
1293 return false;
1294 return true;
1295}
1296
1297/* Only safe to use early in boot when initialisation is single-threaded */
1298static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1299{
1300 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1301}
1302
1303#else
1304
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return true;
1308}
1309static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1310 struct mminit_pfnnid_cache *state)
1311{
1312 return true;
1313}
1314#endif
1315
1316
0e1cc95b 1317void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1318 unsigned int order)
1319{
1320 if (early_page_uninitialised(pfn))
1321 return;
949698a3 1322 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1323}
1324
7cf91a98
JK
1325/*
1326 * Check that the whole (or subset of) a pageblock given by the interval of
1327 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1328 * with the migration of free compaction scanner. The scanners then need to
1329 * use only pfn_valid_within() check for arches that allow holes within
1330 * pageblocks.
1331 *
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333 *
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1341 */
1342struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1343 unsigned long end_pfn, struct zone *zone)
1344{
1345 struct page *start_page;
1346 struct page *end_page;
1347
1348 /* end_pfn is one past the range we are checking */
1349 end_pfn--;
1350
1351 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1352 return NULL;
1353
1354 start_page = pfn_to_page(start_pfn);
1355
1356 if (page_zone(start_page) != zone)
1357 return NULL;
1358
1359 end_page = pfn_to_page(end_pfn);
1360
1361 /* This gives a shorter code than deriving page_zone(end_page) */
1362 if (page_zone_id(start_page) != page_zone_id(end_page))
1363 return NULL;
1364
1365 return start_page;
1366}
1367
1368void set_zone_contiguous(struct zone *zone)
1369{
1370 unsigned long block_start_pfn = zone->zone_start_pfn;
1371 unsigned long block_end_pfn;
1372
1373 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1374 for (; block_start_pfn < zone_end_pfn(zone);
1375 block_start_pfn = block_end_pfn,
1376 block_end_pfn += pageblock_nr_pages) {
1377
1378 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1379
1380 if (!__pageblock_pfn_to_page(block_start_pfn,
1381 block_end_pfn, zone))
1382 return;
1383 }
1384
1385 /* We confirm that there is no hole */
1386 zone->contiguous = true;
1387}
1388
1389void clear_zone_contiguous(struct zone *zone)
1390{
1391 zone->contiguous = false;
1392}
1393
7e18adb4 1394#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1395static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1396 unsigned long pfn, int nr_pages)
1397{
1398 int i;
1399
1400 if (!page)
1401 return;
1402
1403 /* Free a large naturally-aligned chunk if possible */
1404 if (nr_pages == MAX_ORDER_NR_PAGES &&
1405 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1406 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1407 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1408 return;
1409 }
1410
949698a3
LZ
1411 for (i = 0; i < nr_pages; i++, page++)
1412 __free_pages_boot_core(page, 0);
a4de83dd
MG
1413}
1414
d3cd131d
NS
1415/* Completion tracking for deferred_init_memmap() threads */
1416static atomic_t pgdat_init_n_undone __initdata;
1417static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1418
1419static inline void __init pgdat_init_report_one_done(void)
1420{
1421 if (atomic_dec_and_test(&pgdat_init_n_undone))
1422 complete(&pgdat_init_all_done_comp);
1423}
0e1cc95b 1424
7e18adb4 1425/* Initialise remaining memory on a node */
0e1cc95b 1426static int __init deferred_init_memmap(void *data)
7e18adb4 1427{
0e1cc95b
MG
1428 pg_data_t *pgdat = data;
1429 int nid = pgdat->node_id;
7e18adb4
MG
1430 struct mminit_pfnnid_cache nid_init_state = { };
1431 unsigned long start = jiffies;
1432 unsigned long nr_pages = 0;
1433 unsigned long walk_start, walk_end;
1434 int i, zid;
1435 struct zone *zone;
7e18adb4 1436 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1437 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1438
0e1cc95b 1439 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1440 pgdat_init_report_one_done();
0e1cc95b
MG
1441 return 0;
1442 }
1443
1444 /* Bind memory initialisation thread to a local node if possible */
1445 if (!cpumask_empty(cpumask))
1446 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1447
1448 /* Sanity check boundaries */
1449 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1450 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1451 pgdat->first_deferred_pfn = ULONG_MAX;
1452
1453 /* Only the highest zone is deferred so find it */
1454 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1455 zone = pgdat->node_zones + zid;
1456 if (first_init_pfn < zone_end_pfn(zone))
1457 break;
1458 }
1459
1460 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1461 unsigned long pfn, end_pfn;
54608c3f 1462 struct page *page = NULL;
a4de83dd
MG
1463 struct page *free_base_page = NULL;
1464 unsigned long free_base_pfn = 0;
1465 int nr_to_free = 0;
7e18adb4
MG
1466
1467 end_pfn = min(walk_end, zone_end_pfn(zone));
1468 pfn = first_init_pfn;
1469 if (pfn < walk_start)
1470 pfn = walk_start;
1471 if (pfn < zone->zone_start_pfn)
1472 pfn = zone->zone_start_pfn;
1473
1474 for (; pfn < end_pfn; pfn++) {
54608c3f 1475 if (!pfn_valid_within(pfn))
a4de83dd 1476 goto free_range;
7e18adb4 1477
54608c3f
MG
1478 /*
1479 * Ensure pfn_valid is checked every
1480 * MAX_ORDER_NR_PAGES for memory holes
1481 */
1482 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1483 if (!pfn_valid(pfn)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487 }
1488
1489 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1490 page = NULL;
a4de83dd 1491 goto free_range;
54608c3f
MG
1492 }
1493
1494 /* Minimise pfn page lookups and scheduler checks */
1495 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1496 page++;
1497 } else {
a4de83dd
MG
1498 nr_pages += nr_to_free;
1499 deferred_free_range(free_base_page,
1500 free_base_pfn, nr_to_free);
1501 free_base_page = NULL;
1502 free_base_pfn = nr_to_free = 0;
1503
54608c3f
MG
1504 page = pfn_to_page(pfn);
1505 cond_resched();
1506 }
7e18adb4
MG
1507
1508 if (page->flags) {
1509 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1510 goto free_range;
7e18adb4
MG
1511 }
1512
1513 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1514 if (!free_base_page) {
1515 free_base_page = page;
1516 free_base_pfn = pfn;
1517 nr_to_free = 0;
1518 }
1519 nr_to_free++;
1520
1521 /* Where possible, batch up pages for a single free */
1522 continue;
1523free_range:
1524 /* Free the current block of pages to allocator */
1525 nr_pages += nr_to_free;
1526 deferred_free_range(free_base_page, free_base_pfn,
1527 nr_to_free);
1528 free_base_page = NULL;
1529 free_base_pfn = nr_to_free = 0;
7e18adb4 1530 }
a4de83dd 1531
7e18adb4
MG
1532 first_init_pfn = max(end_pfn, first_init_pfn);
1533 }
1534
1535 /* Sanity check that the next zone really is unpopulated */
1536 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1537
0e1cc95b 1538 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1539 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1540
1541 pgdat_init_report_one_done();
0e1cc95b
MG
1542 return 0;
1543}
7cf91a98 1544#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1545
1546void __init page_alloc_init_late(void)
1547{
7cf91a98
JK
1548 struct zone *zone;
1549
1550#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1551 int nid;
1552
d3cd131d
NS
1553 /* There will be num_node_state(N_MEMORY) threads */
1554 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1555 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1556 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1557 }
1558
1559 /* Block until all are initialised */
d3cd131d 1560 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1561
1562 /* Reinit limits that are based on free pages after the kernel is up */
1563 files_maxfiles_init();
7cf91a98
JK
1564#endif
1565
1566 for_each_populated_zone(zone)
1567 set_zone_contiguous(zone);
7e18adb4 1568}
7e18adb4 1569
47118af0 1570#ifdef CONFIG_CMA
9cf510a5 1571/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1572void __init init_cma_reserved_pageblock(struct page *page)
1573{
1574 unsigned i = pageblock_nr_pages;
1575 struct page *p = page;
1576
1577 do {
1578 __ClearPageReserved(p);
1579 set_page_count(p, 0);
1580 } while (++p, --i);
1581
47118af0 1582 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1583
1584 if (pageblock_order >= MAX_ORDER) {
1585 i = pageblock_nr_pages;
1586 p = page;
1587 do {
1588 set_page_refcounted(p);
1589 __free_pages(p, MAX_ORDER - 1);
1590 p += MAX_ORDER_NR_PAGES;
1591 } while (i -= MAX_ORDER_NR_PAGES);
1592 } else {
1593 set_page_refcounted(page);
1594 __free_pages(page, pageblock_order);
1595 }
1596
3dcc0571 1597 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1598}
1599#endif
1da177e4
LT
1600
1601/*
1602 * The order of subdivision here is critical for the IO subsystem.
1603 * Please do not alter this order without good reasons and regression
1604 * testing. Specifically, as large blocks of memory are subdivided,
1605 * the order in which smaller blocks are delivered depends on the order
1606 * they're subdivided in this function. This is the primary factor
1607 * influencing the order in which pages are delivered to the IO
1608 * subsystem according to empirical testing, and this is also justified
1609 * by considering the behavior of a buddy system containing a single
1610 * large block of memory acted on by a series of small allocations.
1611 * This behavior is a critical factor in sglist merging's success.
1612 *
6d49e352 1613 * -- nyc
1da177e4 1614 */
085cc7d5 1615static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1616 int low, int high, struct free_area *area,
1617 int migratetype)
1da177e4
LT
1618{
1619 unsigned long size = 1 << high;
1620
1621 while (high > low) {
1622 area--;
1623 high--;
1624 size >>= 1;
309381fe 1625 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1626
2847cf95 1627 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1628 debug_guardpage_enabled() &&
2847cf95 1629 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1630 /*
1631 * Mark as guard pages (or page), that will allow to
1632 * merge back to allocator when buddy will be freed.
1633 * Corresponding page table entries will not be touched,
1634 * pages will stay not present in virtual address space
1635 */
2847cf95 1636 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1637 continue;
1638 }
b2a0ac88 1639 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1640 area->nr_free++;
1641 set_page_order(&page[size], high);
1642 }
1da177e4
LT
1643}
1644
4e611801 1645static void check_new_page_bad(struct page *page)
1da177e4 1646{
4e611801
VB
1647 const char *bad_reason = NULL;
1648 unsigned long bad_flags = 0;
7bfec6f4 1649
53f9263b 1650 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1651 bad_reason = "nonzero mapcount";
1652 if (unlikely(page->mapping != NULL))
1653 bad_reason = "non-NULL mapping";
fe896d18 1654 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1655 bad_reason = "nonzero _count";
f4c18e6f
NH
1656 if (unlikely(page->flags & __PG_HWPOISON)) {
1657 bad_reason = "HWPoisoned (hardware-corrupted)";
1658 bad_flags = __PG_HWPOISON;
e570f56c
NH
1659 /* Don't complain about hwpoisoned pages */
1660 page_mapcount_reset(page); /* remove PageBuddy */
1661 return;
f4c18e6f 1662 }
f0b791a3
DH
1663 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1664 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1665 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1666 }
9edad6ea
JW
1667#ifdef CONFIG_MEMCG
1668 if (unlikely(page->mem_cgroup))
1669 bad_reason = "page still charged to cgroup";
1670#endif
4e611801
VB
1671 bad_page(page, bad_reason, bad_flags);
1672}
1673
1674/*
1675 * This page is about to be returned from the page allocator
1676 */
1677static inline int check_new_page(struct page *page)
1678{
1679 if (likely(page_expected_state(page,
1680 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1681 return 0;
1682
1683 check_new_page_bad(page);
1684 return 1;
2a7684a2
WF
1685}
1686
1414c7f4
LA
1687static inline bool free_pages_prezeroed(bool poisoned)
1688{
1689 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1690 page_poisoning_enabled() && poisoned;
1691}
1692
479f854a
MG
1693#ifdef CONFIG_DEBUG_VM
1694static bool check_pcp_refill(struct page *page)
1695{
1696 return false;
1697}
1698
1699static bool check_new_pcp(struct page *page)
1700{
1701 return check_new_page(page);
1702}
1703#else
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return check_new_page(page);
1707}
1708static bool check_new_pcp(struct page *page)
1709{
1710 return false;
1711}
1712#endif /* CONFIG_DEBUG_VM */
1713
1714static bool check_new_pages(struct page *page, unsigned int order)
1715{
1716 int i;
1717 for (i = 0; i < (1 << order); i++) {
1718 struct page *p = page + i;
1719
1720 if (unlikely(check_new_page(p)))
1721 return true;
1722 }
1723
1724 return false;
1725}
1726
1727static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1728 unsigned int alloc_flags)
2a7684a2
WF
1729{
1730 int i;
1414c7f4 1731 bool poisoned = true;
2a7684a2
WF
1732
1733 for (i = 0; i < (1 << order); i++) {
1734 struct page *p = page + i;
1414c7f4
LA
1735 if (poisoned)
1736 poisoned &= page_is_poisoned(p);
2a7684a2 1737 }
689bcebf 1738
4c21e2f2 1739 set_page_private(page, 0);
7835e98b 1740 set_page_refcounted(page);
cc102509
NP
1741
1742 arch_alloc_page(page, order);
1da177e4 1743 kernel_map_pages(page, 1 << order, 1);
8823b1db 1744 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1745 kasan_alloc_pages(page, order);
17cf4406 1746
1414c7f4 1747 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1748 for (i = 0; i < (1 << order); i++)
1749 clear_highpage(page + i);
17cf4406
NP
1750
1751 if (order && (gfp_flags & __GFP_COMP))
1752 prep_compound_page(page, order);
1753
48c96a36
JK
1754 set_page_owner(page, order, gfp_flags);
1755
75379191 1756 /*
2f064f34 1757 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1758 * allocate the page. The expectation is that the caller is taking
1759 * steps that will free more memory. The caller should avoid the page
1760 * being used for !PFMEMALLOC purposes.
1761 */
2f064f34
MH
1762 if (alloc_flags & ALLOC_NO_WATERMARKS)
1763 set_page_pfmemalloc(page);
1764 else
1765 clear_page_pfmemalloc(page);
1da177e4
LT
1766}
1767
56fd56b8
MG
1768/*
1769 * Go through the free lists for the given migratetype and remove
1770 * the smallest available page from the freelists
1771 */
728ec980
MG
1772static inline
1773struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1774 int migratetype)
1775{
1776 unsigned int current_order;
b8af2941 1777 struct free_area *area;
56fd56b8
MG
1778 struct page *page;
1779
1780 /* Find a page of the appropriate size in the preferred list */
1781 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1782 area = &(zone->free_area[current_order]);
a16601c5 1783 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1784 struct page, lru);
a16601c5
GT
1785 if (!page)
1786 continue;
56fd56b8
MG
1787 list_del(&page->lru);
1788 rmv_page_order(page);
1789 area->nr_free--;
56fd56b8 1790 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1791 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1792 return page;
1793 }
1794
1795 return NULL;
1796}
1797
1798
b2a0ac88
MG
1799/*
1800 * This array describes the order lists are fallen back to when
1801 * the free lists for the desirable migrate type are depleted
1802 */
47118af0 1803static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1804 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1807#ifdef CONFIG_CMA
974a786e 1808 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1809#endif
194159fb 1810#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1811 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1812#endif
b2a0ac88
MG
1813};
1814
dc67647b
JK
1815#ifdef CONFIG_CMA
1816static struct page *__rmqueue_cma_fallback(struct zone *zone,
1817 unsigned int order)
1818{
1819 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1820}
1821#else
1822static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1823 unsigned int order) { return NULL; }
1824#endif
1825
c361be55
MG
1826/*
1827 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1828 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1829 * boundary. If alignment is required, use move_freepages_block()
1830 */
435b405c 1831int move_freepages(struct zone *zone,
b69a7288
AB
1832 struct page *start_page, struct page *end_page,
1833 int migratetype)
c361be55
MG
1834{
1835 struct page *page;
d00181b9 1836 unsigned int order;
d100313f 1837 int pages_moved = 0;
c361be55
MG
1838
1839#ifndef CONFIG_HOLES_IN_ZONE
1840 /*
1841 * page_zone is not safe to call in this context when
1842 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1843 * anyway as we check zone boundaries in move_freepages_block().
1844 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1845 * grouping pages by mobility
c361be55 1846 */
97ee4ba7 1847 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1848#endif
1849
1850 for (page = start_page; page <= end_page;) {
344c790e 1851 /* Make sure we are not inadvertently changing nodes */
309381fe 1852 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1853
c361be55
MG
1854 if (!pfn_valid_within(page_to_pfn(page))) {
1855 page++;
1856 continue;
1857 }
1858
1859 if (!PageBuddy(page)) {
1860 page++;
1861 continue;
1862 }
1863
1864 order = page_order(page);
84be48d8
KS
1865 list_move(&page->lru,
1866 &zone->free_area[order].free_list[migratetype]);
c361be55 1867 page += 1 << order;
d100313f 1868 pages_moved += 1 << order;
c361be55
MG
1869 }
1870
d100313f 1871 return pages_moved;
c361be55
MG
1872}
1873
ee6f509c 1874int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1875 int migratetype)
c361be55
MG
1876{
1877 unsigned long start_pfn, end_pfn;
1878 struct page *start_page, *end_page;
1879
1880 start_pfn = page_to_pfn(page);
d9c23400 1881 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1882 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1883 end_page = start_page + pageblock_nr_pages - 1;
1884 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1885
1886 /* Do not cross zone boundaries */
108bcc96 1887 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1888 start_page = page;
108bcc96 1889 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1890 return 0;
1891
1892 return move_freepages(zone, start_page, end_page, migratetype);
1893}
1894
2f66a68f
MG
1895static void change_pageblock_range(struct page *pageblock_page,
1896 int start_order, int migratetype)
1897{
1898 int nr_pageblocks = 1 << (start_order - pageblock_order);
1899
1900 while (nr_pageblocks--) {
1901 set_pageblock_migratetype(pageblock_page, migratetype);
1902 pageblock_page += pageblock_nr_pages;
1903 }
1904}
1905
fef903ef 1906/*
9c0415eb
VB
1907 * When we are falling back to another migratetype during allocation, try to
1908 * steal extra free pages from the same pageblocks to satisfy further
1909 * allocations, instead of polluting multiple pageblocks.
1910 *
1911 * If we are stealing a relatively large buddy page, it is likely there will
1912 * be more free pages in the pageblock, so try to steal them all. For
1913 * reclaimable and unmovable allocations, we steal regardless of page size,
1914 * as fragmentation caused by those allocations polluting movable pageblocks
1915 * is worse than movable allocations stealing from unmovable and reclaimable
1916 * pageblocks.
fef903ef 1917 */
4eb7dce6
JK
1918static bool can_steal_fallback(unsigned int order, int start_mt)
1919{
1920 /*
1921 * Leaving this order check is intended, although there is
1922 * relaxed order check in next check. The reason is that
1923 * we can actually steal whole pageblock if this condition met,
1924 * but, below check doesn't guarantee it and that is just heuristic
1925 * so could be changed anytime.
1926 */
1927 if (order >= pageblock_order)
1928 return true;
1929
1930 if (order >= pageblock_order / 2 ||
1931 start_mt == MIGRATE_RECLAIMABLE ||
1932 start_mt == MIGRATE_UNMOVABLE ||
1933 page_group_by_mobility_disabled)
1934 return true;
1935
1936 return false;
1937}
1938
1939/*
1940 * This function implements actual steal behaviour. If order is large enough,
1941 * we can steal whole pageblock. If not, we first move freepages in this
1942 * pageblock and check whether half of pages are moved or not. If half of
1943 * pages are moved, we can change migratetype of pageblock and permanently
1944 * use it's pages as requested migratetype in the future.
1945 */
1946static void steal_suitable_fallback(struct zone *zone, struct page *page,
1947 int start_type)
fef903ef 1948{
d00181b9 1949 unsigned int current_order = page_order(page);
4eb7dce6 1950 int pages;
fef903ef 1951
fef903ef
SB
1952 /* Take ownership for orders >= pageblock_order */
1953 if (current_order >= pageblock_order) {
1954 change_pageblock_range(page, current_order, start_type);
3a1086fb 1955 return;
fef903ef
SB
1956 }
1957
4eb7dce6 1958 pages = move_freepages_block(zone, page, start_type);
fef903ef 1959
4eb7dce6
JK
1960 /* Claim the whole block if over half of it is free */
1961 if (pages >= (1 << (pageblock_order-1)) ||
1962 page_group_by_mobility_disabled)
1963 set_pageblock_migratetype(page, start_type);
1964}
1965
2149cdae
JK
1966/*
1967 * Check whether there is a suitable fallback freepage with requested order.
1968 * If only_stealable is true, this function returns fallback_mt only if
1969 * we can steal other freepages all together. This would help to reduce
1970 * fragmentation due to mixed migratetype pages in one pageblock.
1971 */
1972int find_suitable_fallback(struct free_area *area, unsigned int order,
1973 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1974{
1975 int i;
1976 int fallback_mt;
1977
1978 if (area->nr_free == 0)
1979 return -1;
1980
1981 *can_steal = false;
1982 for (i = 0;; i++) {
1983 fallback_mt = fallbacks[migratetype][i];
974a786e 1984 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1985 break;
1986
1987 if (list_empty(&area->free_list[fallback_mt]))
1988 continue;
fef903ef 1989
4eb7dce6
JK
1990 if (can_steal_fallback(order, migratetype))
1991 *can_steal = true;
1992
2149cdae
JK
1993 if (!only_stealable)
1994 return fallback_mt;
1995
1996 if (*can_steal)
1997 return fallback_mt;
fef903ef 1998 }
4eb7dce6
JK
1999
2000 return -1;
fef903ef
SB
2001}
2002
0aaa29a5
MG
2003/*
2004 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2005 * there are no empty page blocks that contain a page with a suitable order
2006 */
2007static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2008 unsigned int alloc_order)
2009{
2010 int mt;
2011 unsigned long max_managed, flags;
2012
2013 /*
2014 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2015 * Check is race-prone but harmless.
2016 */
2017 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2018 if (zone->nr_reserved_highatomic >= max_managed)
2019 return;
2020
2021 spin_lock_irqsave(&zone->lock, flags);
2022
2023 /* Recheck the nr_reserved_highatomic limit under the lock */
2024 if (zone->nr_reserved_highatomic >= max_managed)
2025 goto out_unlock;
2026
2027 /* Yoink! */
2028 mt = get_pageblock_migratetype(page);
2029 if (mt != MIGRATE_HIGHATOMIC &&
2030 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2031 zone->nr_reserved_highatomic += pageblock_nr_pages;
2032 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2033 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2034 }
2035
2036out_unlock:
2037 spin_unlock_irqrestore(&zone->lock, flags);
2038}
2039
2040/*
2041 * Used when an allocation is about to fail under memory pressure. This
2042 * potentially hurts the reliability of high-order allocations when under
2043 * intense memory pressure but failed atomic allocations should be easier
2044 * to recover from than an OOM.
2045 */
2046static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2047{
2048 struct zonelist *zonelist = ac->zonelist;
2049 unsigned long flags;
2050 struct zoneref *z;
2051 struct zone *zone;
2052 struct page *page;
2053 int order;
2054
2055 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2056 ac->nodemask) {
2057 /* Preserve at least one pageblock */
2058 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2059 continue;
2060
2061 spin_lock_irqsave(&zone->lock, flags);
2062 for (order = 0; order < MAX_ORDER; order++) {
2063 struct free_area *area = &(zone->free_area[order]);
2064
a16601c5
GT
2065 page = list_first_entry_or_null(
2066 &area->free_list[MIGRATE_HIGHATOMIC],
2067 struct page, lru);
2068 if (!page)
0aaa29a5
MG
2069 continue;
2070
0aaa29a5
MG
2071 /*
2072 * It should never happen but changes to locking could
2073 * inadvertently allow a per-cpu drain to add pages
2074 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2075 * and watch for underflows.
2076 */
2077 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2078 zone->nr_reserved_highatomic);
2079
2080 /*
2081 * Convert to ac->migratetype and avoid the normal
2082 * pageblock stealing heuristics. Minimally, the caller
2083 * is doing the work and needs the pages. More
2084 * importantly, if the block was always converted to
2085 * MIGRATE_UNMOVABLE or another type then the number
2086 * of pageblocks that cannot be completely freed
2087 * may increase.
2088 */
2089 set_pageblock_migratetype(page, ac->migratetype);
2090 move_freepages_block(zone, page, ac->migratetype);
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 return;
2093 }
2094 spin_unlock_irqrestore(&zone->lock, flags);
2095 }
2096}
2097
b2a0ac88 2098/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2099static inline struct page *
7aeb09f9 2100__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2101{
b8af2941 2102 struct free_area *area;
7aeb09f9 2103 unsigned int current_order;
b2a0ac88 2104 struct page *page;
4eb7dce6
JK
2105 int fallback_mt;
2106 bool can_steal;
b2a0ac88
MG
2107
2108 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2109 for (current_order = MAX_ORDER-1;
2110 current_order >= order && current_order <= MAX_ORDER-1;
2111 --current_order) {
4eb7dce6
JK
2112 area = &(zone->free_area[current_order]);
2113 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2114 start_migratetype, false, &can_steal);
4eb7dce6
JK
2115 if (fallback_mt == -1)
2116 continue;
b2a0ac88 2117
a16601c5 2118 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2119 struct page, lru);
2120 if (can_steal)
2121 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2122
4eb7dce6
JK
2123 /* Remove the page from the freelists */
2124 area->nr_free--;
2125 list_del(&page->lru);
2126 rmv_page_order(page);
3a1086fb 2127
4eb7dce6
JK
2128 expand(zone, page, order, current_order, area,
2129 start_migratetype);
2130 /*
bb14c2c7 2131 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2132 * migratetype depending on the decisions in
bb14c2c7
VB
2133 * find_suitable_fallback(). This is OK as long as it does not
2134 * differ for MIGRATE_CMA pageblocks. Those can be used as
2135 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2136 */
bb14c2c7 2137 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2138
4eb7dce6
JK
2139 trace_mm_page_alloc_extfrag(page, order, current_order,
2140 start_migratetype, fallback_mt);
e0fff1bd 2141
4eb7dce6 2142 return page;
b2a0ac88
MG
2143 }
2144
728ec980 2145 return NULL;
b2a0ac88
MG
2146}
2147
56fd56b8 2148/*
1da177e4
LT
2149 * Do the hard work of removing an element from the buddy allocator.
2150 * Call me with the zone->lock already held.
2151 */
b2a0ac88 2152static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2153 int migratetype)
1da177e4 2154{
1da177e4
LT
2155 struct page *page;
2156
56fd56b8 2157 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2158 if (unlikely(!page)) {
dc67647b
JK
2159 if (migratetype == MIGRATE_MOVABLE)
2160 page = __rmqueue_cma_fallback(zone, order);
2161
2162 if (!page)
2163 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2164 }
2165
0d3d062a 2166 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2167 return page;
1da177e4
LT
2168}
2169
5f63b720 2170/*
1da177e4
LT
2171 * Obtain a specified number of elements from the buddy allocator, all under
2172 * a single hold of the lock, for efficiency. Add them to the supplied list.
2173 * Returns the number of new pages which were placed at *list.
2174 */
5f63b720 2175static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2176 unsigned long count, struct list_head *list,
b745bc85 2177 int migratetype, bool cold)
1da177e4 2178{
5bcc9f86 2179 int i;
5f63b720 2180
c54ad30c 2181 spin_lock(&zone->lock);
1da177e4 2182 for (i = 0; i < count; ++i) {
6ac0206b 2183 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2184 if (unlikely(page == NULL))
1da177e4 2185 break;
81eabcbe 2186
479f854a
MG
2187 if (unlikely(check_pcp_refill(page)))
2188 continue;
2189
81eabcbe
MG
2190 /*
2191 * Split buddy pages returned by expand() are received here
2192 * in physical page order. The page is added to the callers and
2193 * list and the list head then moves forward. From the callers
2194 * perspective, the linked list is ordered by page number in
2195 * some conditions. This is useful for IO devices that can
2196 * merge IO requests if the physical pages are ordered
2197 * properly.
2198 */
b745bc85 2199 if (likely(!cold))
e084b2d9
MG
2200 list_add(&page->lru, list);
2201 else
2202 list_add_tail(&page->lru, list);
81eabcbe 2203 list = &page->lru;
bb14c2c7 2204 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2205 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2206 -(1 << order));
1da177e4 2207 }
f2260e6b 2208 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2209 spin_unlock(&zone->lock);
085cc7d5 2210 return i;
1da177e4
LT
2211}
2212
4ae7c039 2213#ifdef CONFIG_NUMA
8fce4d8e 2214/*
4037d452
CL
2215 * Called from the vmstat counter updater to drain pagesets of this
2216 * currently executing processor on remote nodes after they have
2217 * expired.
2218 *
879336c3
CL
2219 * Note that this function must be called with the thread pinned to
2220 * a single processor.
8fce4d8e 2221 */
4037d452 2222void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2223{
4ae7c039 2224 unsigned long flags;
7be12fc9 2225 int to_drain, batch;
4ae7c039 2226
4037d452 2227 local_irq_save(flags);
4db0c3c2 2228 batch = READ_ONCE(pcp->batch);
7be12fc9 2229 to_drain = min(pcp->count, batch);
2a13515c
KM
2230 if (to_drain > 0) {
2231 free_pcppages_bulk(zone, to_drain, pcp);
2232 pcp->count -= to_drain;
2233 }
4037d452 2234 local_irq_restore(flags);
4ae7c039
CL
2235}
2236#endif
2237
9f8f2172 2238/*
93481ff0 2239 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2240 *
2241 * The processor must either be the current processor and the
2242 * thread pinned to the current processor or a processor that
2243 * is not online.
2244 */
93481ff0 2245static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2246{
c54ad30c 2247 unsigned long flags;
93481ff0
VB
2248 struct per_cpu_pageset *pset;
2249 struct per_cpu_pages *pcp;
1da177e4 2250
93481ff0
VB
2251 local_irq_save(flags);
2252 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2253
93481ff0
VB
2254 pcp = &pset->pcp;
2255 if (pcp->count) {
2256 free_pcppages_bulk(zone, pcp->count, pcp);
2257 pcp->count = 0;
2258 }
2259 local_irq_restore(flags);
2260}
3dfa5721 2261
93481ff0
VB
2262/*
2263 * Drain pcplists of all zones on the indicated processor.
2264 *
2265 * The processor must either be the current processor and the
2266 * thread pinned to the current processor or a processor that
2267 * is not online.
2268 */
2269static void drain_pages(unsigned int cpu)
2270{
2271 struct zone *zone;
2272
2273 for_each_populated_zone(zone) {
2274 drain_pages_zone(cpu, zone);
1da177e4
LT
2275 }
2276}
1da177e4 2277
9f8f2172
CL
2278/*
2279 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2280 *
2281 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2282 * the single zone's pages.
9f8f2172 2283 */
93481ff0 2284void drain_local_pages(struct zone *zone)
9f8f2172 2285{
93481ff0
VB
2286 int cpu = smp_processor_id();
2287
2288 if (zone)
2289 drain_pages_zone(cpu, zone);
2290 else
2291 drain_pages(cpu);
9f8f2172
CL
2292}
2293
2294/*
74046494
GBY
2295 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2296 *
93481ff0
VB
2297 * When zone parameter is non-NULL, spill just the single zone's pages.
2298 *
74046494
GBY
2299 * Note that this code is protected against sending an IPI to an offline
2300 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2301 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2302 * nothing keeps CPUs from showing up after we populated the cpumask and
2303 * before the call to on_each_cpu_mask().
9f8f2172 2304 */
93481ff0 2305void drain_all_pages(struct zone *zone)
9f8f2172 2306{
74046494 2307 int cpu;
74046494
GBY
2308
2309 /*
2310 * Allocate in the BSS so we wont require allocation in
2311 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2312 */
2313 static cpumask_t cpus_with_pcps;
2314
2315 /*
2316 * We don't care about racing with CPU hotplug event
2317 * as offline notification will cause the notified
2318 * cpu to drain that CPU pcps and on_each_cpu_mask
2319 * disables preemption as part of its processing
2320 */
2321 for_each_online_cpu(cpu) {
93481ff0
VB
2322 struct per_cpu_pageset *pcp;
2323 struct zone *z;
74046494 2324 bool has_pcps = false;
93481ff0
VB
2325
2326 if (zone) {
74046494 2327 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2328 if (pcp->pcp.count)
74046494 2329 has_pcps = true;
93481ff0
VB
2330 } else {
2331 for_each_populated_zone(z) {
2332 pcp = per_cpu_ptr(z->pageset, cpu);
2333 if (pcp->pcp.count) {
2334 has_pcps = true;
2335 break;
2336 }
74046494
GBY
2337 }
2338 }
93481ff0 2339
74046494
GBY
2340 if (has_pcps)
2341 cpumask_set_cpu(cpu, &cpus_with_pcps);
2342 else
2343 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2344 }
93481ff0
VB
2345 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2346 zone, 1);
9f8f2172
CL
2347}
2348
296699de 2349#ifdef CONFIG_HIBERNATION
1da177e4
LT
2350
2351void mark_free_pages(struct zone *zone)
2352{
f623f0db
RW
2353 unsigned long pfn, max_zone_pfn;
2354 unsigned long flags;
7aeb09f9 2355 unsigned int order, t;
86760a2c 2356 struct page *page;
1da177e4 2357
8080fc03 2358 if (zone_is_empty(zone))
1da177e4
LT
2359 return;
2360
2361 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2362
108bcc96 2363 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2364 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2365 if (pfn_valid(pfn)) {
86760a2c 2366 page = pfn_to_page(pfn);
ba6b0979
JK
2367
2368 if (page_zone(page) != zone)
2369 continue;
2370
7be98234
RW
2371 if (!swsusp_page_is_forbidden(page))
2372 swsusp_unset_page_free(page);
f623f0db 2373 }
1da177e4 2374
b2a0ac88 2375 for_each_migratetype_order(order, t) {
86760a2c
GT
2376 list_for_each_entry(page,
2377 &zone->free_area[order].free_list[t], lru) {
f623f0db 2378 unsigned long i;
1da177e4 2379
86760a2c 2380 pfn = page_to_pfn(page);
f623f0db 2381 for (i = 0; i < (1UL << order); i++)
7be98234 2382 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2383 }
b2a0ac88 2384 }
1da177e4
LT
2385 spin_unlock_irqrestore(&zone->lock, flags);
2386}
e2c55dc8 2387#endif /* CONFIG_PM */
1da177e4 2388
1da177e4
LT
2389/*
2390 * Free a 0-order page
b745bc85 2391 * cold == true ? free a cold page : free a hot page
1da177e4 2392 */
b745bc85 2393void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2394{
2395 struct zone *zone = page_zone(page);
2396 struct per_cpu_pages *pcp;
2397 unsigned long flags;
dc4b0caf 2398 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2399 int migratetype;
1da177e4 2400
4db7548c 2401 if (!free_pcp_prepare(page))
689bcebf
HD
2402 return;
2403
dc4b0caf 2404 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2405 set_pcppage_migratetype(page, migratetype);
1da177e4 2406 local_irq_save(flags);
f8891e5e 2407 __count_vm_event(PGFREE);
da456f14 2408
5f8dcc21
MG
2409 /*
2410 * We only track unmovable, reclaimable and movable on pcp lists.
2411 * Free ISOLATE pages back to the allocator because they are being
2412 * offlined but treat RESERVE as movable pages so we can get those
2413 * areas back if necessary. Otherwise, we may have to free
2414 * excessively into the page allocator
2415 */
2416 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2417 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2418 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2419 goto out;
2420 }
2421 migratetype = MIGRATE_MOVABLE;
2422 }
2423
99dcc3e5 2424 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2425 if (!cold)
5f8dcc21 2426 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2427 else
2428 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2429 pcp->count++;
48db57f8 2430 if (pcp->count >= pcp->high) {
4db0c3c2 2431 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2432 free_pcppages_bulk(zone, batch, pcp);
2433 pcp->count -= batch;
48db57f8 2434 }
5f8dcc21
MG
2435
2436out:
1da177e4 2437 local_irq_restore(flags);
1da177e4
LT
2438}
2439
cc59850e
KK
2440/*
2441 * Free a list of 0-order pages
2442 */
b745bc85 2443void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2444{
2445 struct page *page, *next;
2446
2447 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2448 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2449 free_hot_cold_page(page, cold);
2450 }
2451}
2452
8dfcc9ba
NP
2453/*
2454 * split_page takes a non-compound higher-order page, and splits it into
2455 * n (1<<order) sub-pages: page[0..n]
2456 * Each sub-page must be freed individually.
2457 *
2458 * Note: this is probably too low level an operation for use in drivers.
2459 * Please consult with lkml before using this in your driver.
2460 */
2461void split_page(struct page *page, unsigned int order)
2462{
2463 int i;
e2cfc911 2464 gfp_t gfp_mask;
8dfcc9ba 2465
309381fe
SL
2466 VM_BUG_ON_PAGE(PageCompound(page), page);
2467 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2468
2469#ifdef CONFIG_KMEMCHECK
2470 /*
2471 * Split shadow pages too, because free(page[0]) would
2472 * otherwise free the whole shadow.
2473 */
2474 if (kmemcheck_page_is_tracked(page))
2475 split_page(virt_to_page(page[0].shadow), order);
2476#endif
2477
e2cfc911
JK
2478 gfp_mask = get_page_owner_gfp(page);
2479 set_page_owner(page, 0, gfp_mask);
48c96a36 2480 for (i = 1; i < (1 << order); i++) {
7835e98b 2481 set_page_refcounted(page + i);
e2cfc911 2482 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2483 }
8dfcc9ba 2484}
5853ff23 2485EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2486
3c605096 2487int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2488{
748446bb
MG
2489 unsigned long watermark;
2490 struct zone *zone;
2139cbe6 2491 int mt;
748446bb
MG
2492
2493 BUG_ON(!PageBuddy(page));
2494
2495 zone = page_zone(page);
2e30abd1 2496 mt = get_pageblock_migratetype(page);
748446bb 2497
194159fb 2498 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2499 /* Obey watermarks as if the page was being allocated */
2500 watermark = low_wmark_pages(zone) + (1 << order);
2501 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2502 return 0;
2503
8fb74b9f 2504 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2505 }
748446bb
MG
2506
2507 /* Remove page from free list */
2508 list_del(&page->lru);
2509 zone->free_area[order].nr_free--;
2510 rmv_page_order(page);
2139cbe6 2511
8fb74b9f 2512 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2513 if (order >= pageblock_order - 1) {
2514 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2515 for (; page < endpage; page += pageblock_nr_pages) {
2516 int mt = get_pageblock_migratetype(page);
194159fb 2517 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2518 set_pageblock_migratetype(page,
2519 MIGRATE_MOVABLE);
2520 }
748446bb
MG
2521 }
2522
f3a14ced 2523
8fb74b9f 2524 return 1UL << order;
1fb3f8ca
MG
2525}
2526
060e7417
MG
2527/*
2528 * Update NUMA hit/miss statistics
2529 *
2530 * Must be called with interrupts disabled.
2531 *
2532 * When __GFP_OTHER_NODE is set assume the node of the preferred
2533 * zone is the local node. This is useful for daemons who allocate
2534 * memory on behalf of other processes.
2535 */
2536static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2537 gfp_t flags)
2538{
2539#ifdef CONFIG_NUMA
2540 int local_nid = numa_node_id();
2541 enum zone_stat_item local_stat = NUMA_LOCAL;
2542
2543 if (unlikely(flags & __GFP_OTHER_NODE)) {
2544 local_stat = NUMA_OTHER;
2545 local_nid = preferred_zone->node;
2546 }
2547
2548 if (z->node == local_nid) {
2549 __inc_zone_state(z, NUMA_HIT);
2550 __inc_zone_state(z, local_stat);
2551 } else {
2552 __inc_zone_state(z, NUMA_MISS);
2553 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2554 }
2555#endif
2556}
2557
1da177e4 2558/*
75379191 2559 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2560 */
0a15c3e9
MG
2561static inline
2562struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2563 struct zone *zone, unsigned int order,
c603844b
MG
2564 gfp_t gfp_flags, unsigned int alloc_flags,
2565 int migratetype)
1da177e4
LT
2566{
2567 unsigned long flags;
689bcebf 2568 struct page *page;
b745bc85 2569 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2570
48db57f8 2571 if (likely(order == 0)) {
1da177e4 2572 struct per_cpu_pages *pcp;
5f8dcc21 2573 struct list_head *list;
1da177e4 2574
1da177e4 2575 local_irq_save(flags);
479f854a
MG
2576 do {
2577 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2578 list = &pcp->lists[migratetype];
2579 if (list_empty(list)) {
2580 pcp->count += rmqueue_bulk(zone, 0,
2581 pcp->batch, list,
2582 migratetype, cold);
2583 if (unlikely(list_empty(list)))
2584 goto failed;
2585 }
b92a6edd 2586
479f854a
MG
2587 if (cold)
2588 page = list_last_entry(list, struct page, lru);
2589 else
2590 page = list_first_entry(list, struct page, lru);
5f8dcc21 2591
83b9355b
VB
2592 __dec_zone_state(zone, NR_ALLOC_BATCH);
2593 list_del(&page->lru);
2594 pcp->count--;
2595
2596 } while (check_new_pcp(page));
7fb1d9fc 2597 } else {
0f352e53
MH
2598 /*
2599 * We most definitely don't want callers attempting to
2600 * allocate greater than order-1 page units with __GFP_NOFAIL.
2601 */
2602 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2603 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2604
479f854a
MG
2605 do {
2606 page = NULL;
2607 if (alloc_flags & ALLOC_HARDER) {
2608 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2609 if (page)
2610 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2611 }
2612 if (!page)
2613 page = __rmqueue(zone, order, migratetype);
2614 } while (page && check_new_pages(page, order));
a74609fa
NP
2615 spin_unlock(&zone->lock);
2616 if (!page)
2617 goto failed;
754078eb 2618 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2619 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2620 get_pcppage_migratetype(page));
1da177e4
LT
2621 }
2622
abe5f972 2623 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2624 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2625 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2626
f8891e5e 2627 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2628 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2629 local_irq_restore(flags);
1da177e4 2630
309381fe 2631 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2632 return page;
a74609fa
NP
2633
2634failed:
2635 local_irq_restore(flags);
a74609fa 2636 return NULL;
1da177e4
LT
2637}
2638
933e312e
AM
2639#ifdef CONFIG_FAIL_PAGE_ALLOC
2640
b2588c4b 2641static struct {
933e312e
AM
2642 struct fault_attr attr;
2643
621a5f7a 2644 bool ignore_gfp_highmem;
71baba4b 2645 bool ignore_gfp_reclaim;
54114994 2646 u32 min_order;
933e312e
AM
2647} fail_page_alloc = {
2648 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2649 .ignore_gfp_reclaim = true,
621a5f7a 2650 .ignore_gfp_highmem = true,
54114994 2651 .min_order = 1,
933e312e
AM
2652};
2653
2654static int __init setup_fail_page_alloc(char *str)
2655{
2656 return setup_fault_attr(&fail_page_alloc.attr, str);
2657}
2658__setup("fail_page_alloc=", setup_fail_page_alloc);
2659
deaf386e 2660static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2661{
54114994 2662 if (order < fail_page_alloc.min_order)
deaf386e 2663 return false;
933e312e 2664 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2665 return false;
933e312e 2666 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2667 return false;
71baba4b
MG
2668 if (fail_page_alloc.ignore_gfp_reclaim &&
2669 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2670 return false;
933e312e
AM
2671
2672 return should_fail(&fail_page_alloc.attr, 1 << order);
2673}
2674
2675#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2676
2677static int __init fail_page_alloc_debugfs(void)
2678{
f4ae40a6 2679 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2680 struct dentry *dir;
933e312e 2681
dd48c085
AM
2682 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2683 &fail_page_alloc.attr);
2684 if (IS_ERR(dir))
2685 return PTR_ERR(dir);
933e312e 2686
b2588c4b 2687 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2688 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2689 goto fail;
2690 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2691 &fail_page_alloc.ignore_gfp_highmem))
2692 goto fail;
2693 if (!debugfs_create_u32("min-order", mode, dir,
2694 &fail_page_alloc.min_order))
2695 goto fail;
2696
2697 return 0;
2698fail:
dd48c085 2699 debugfs_remove_recursive(dir);
933e312e 2700
b2588c4b 2701 return -ENOMEM;
933e312e
AM
2702}
2703
2704late_initcall(fail_page_alloc_debugfs);
2705
2706#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2707
2708#else /* CONFIG_FAIL_PAGE_ALLOC */
2709
deaf386e 2710static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2711{
deaf386e 2712 return false;
933e312e
AM
2713}
2714
2715#endif /* CONFIG_FAIL_PAGE_ALLOC */
2716
1da177e4 2717/*
97a16fc8
MG
2718 * Return true if free base pages are above 'mark'. For high-order checks it
2719 * will return true of the order-0 watermark is reached and there is at least
2720 * one free page of a suitable size. Checking now avoids taking the zone lock
2721 * to check in the allocation paths if no pages are free.
1da177e4 2722 */
86a294a8
MH
2723bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2724 int classzone_idx, unsigned int alloc_flags,
2725 long free_pages)
1da177e4 2726{
d23ad423 2727 long min = mark;
1da177e4 2728 int o;
c603844b 2729 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2730
0aaa29a5 2731 /* free_pages may go negative - that's OK */
df0a6daa 2732 free_pages -= (1 << order) - 1;
0aaa29a5 2733
7fb1d9fc 2734 if (alloc_flags & ALLOC_HIGH)
1da177e4 2735 min -= min / 2;
0aaa29a5
MG
2736
2737 /*
2738 * If the caller does not have rights to ALLOC_HARDER then subtract
2739 * the high-atomic reserves. This will over-estimate the size of the
2740 * atomic reserve but it avoids a search.
2741 */
97a16fc8 2742 if (likely(!alloc_harder))
0aaa29a5
MG
2743 free_pages -= z->nr_reserved_highatomic;
2744 else
1da177e4 2745 min -= min / 4;
e2b19197 2746
d95ea5d1
BZ
2747#ifdef CONFIG_CMA
2748 /* If allocation can't use CMA areas don't use free CMA pages */
2749 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2750 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2751#endif
026b0814 2752
97a16fc8
MG
2753 /*
2754 * Check watermarks for an order-0 allocation request. If these
2755 * are not met, then a high-order request also cannot go ahead
2756 * even if a suitable page happened to be free.
2757 */
2758 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2759 return false;
1da177e4 2760
97a16fc8
MG
2761 /* If this is an order-0 request then the watermark is fine */
2762 if (!order)
2763 return true;
2764
2765 /* For a high-order request, check at least one suitable page is free */
2766 for (o = order; o < MAX_ORDER; o++) {
2767 struct free_area *area = &z->free_area[o];
2768 int mt;
2769
2770 if (!area->nr_free)
2771 continue;
2772
2773 if (alloc_harder)
2774 return true;
1da177e4 2775
97a16fc8
MG
2776 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2777 if (!list_empty(&area->free_list[mt]))
2778 return true;
2779 }
2780
2781#ifdef CONFIG_CMA
2782 if ((alloc_flags & ALLOC_CMA) &&
2783 !list_empty(&area->free_list[MIGRATE_CMA])) {
2784 return true;
2785 }
2786#endif
1da177e4 2787 }
97a16fc8 2788 return false;
88f5acf8
MG
2789}
2790
7aeb09f9 2791bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2792 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2793{
2794 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2795 zone_page_state(z, NR_FREE_PAGES));
2796}
2797
48ee5f36
MG
2798static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2799 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2800{
2801 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2802 long cma_pages = 0;
2803
2804#ifdef CONFIG_CMA
2805 /* If allocation can't use CMA areas don't use free CMA pages */
2806 if (!(alloc_flags & ALLOC_CMA))
2807 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2808#endif
2809
2810 /*
2811 * Fast check for order-0 only. If this fails then the reserves
2812 * need to be calculated. There is a corner case where the check
2813 * passes but only the high-order atomic reserve are free. If
2814 * the caller is !atomic then it'll uselessly search the free
2815 * list. That corner case is then slower but it is harmless.
2816 */
2817 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2818 return true;
2819
2820 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2821 free_pages);
2822}
2823
7aeb09f9 2824bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2825 unsigned long mark, int classzone_idx)
88f5acf8
MG
2826{
2827 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2828
2829 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2830 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2831
e2b19197 2832 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2833 free_pages);
1da177e4
LT
2834}
2835
9276b1bc 2836#ifdef CONFIG_NUMA
81c0a2bb
JW
2837static bool zone_local(struct zone *local_zone, struct zone *zone)
2838{
fff4068c 2839 return local_zone->node == zone->node;
81c0a2bb
JW
2840}
2841
957f822a
DR
2842static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2843{
5f7a75ac
MG
2844 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2845 RECLAIM_DISTANCE;
957f822a 2846}
9276b1bc 2847#else /* CONFIG_NUMA */
81c0a2bb
JW
2848static bool zone_local(struct zone *local_zone, struct zone *zone)
2849{
2850 return true;
2851}
2852
957f822a
DR
2853static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2854{
2855 return true;
2856}
9276b1bc
PJ
2857#endif /* CONFIG_NUMA */
2858
4ffeaf35
MG
2859static void reset_alloc_batches(struct zone *preferred_zone)
2860{
2861 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2862
2863 do {
2864 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2865 high_wmark_pages(zone) - low_wmark_pages(zone) -
2866 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2867 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2868 } while (zone++ != preferred_zone);
2869}
2870
7fb1d9fc 2871/*
0798e519 2872 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2873 * a page.
2874 */
2875static struct page *
a9263751
VB
2876get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2877 const struct alloc_context *ac)
753ee728 2878{
c33d6c06 2879 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2880 struct zone *zone;
30534755
MG
2881 bool fair_skipped = false;
2882 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2883
9276b1bc 2884zonelist_scan:
7fb1d9fc 2885 /*
9276b1bc 2886 * Scan zonelist, looking for a zone with enough free.
344736f2 2887 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2888 */
c33d6c06 2889 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2890 ac->nodemask) {
be06af00 2891 struct page *page;
e085dbc5
JW
2892 unsigned long mark;
2893
664eedde
MG
2894 if (cpusets_enabled() &&
2895 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2896 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2897 continue;
81c0a2bb
JW
2898 /*
2899 * Distribute pages in proportion to the individual
2900 * zone size to ensure fair page aging. The zone a
2901 * page was allocated in should have no effect on the
2902 * time the page has in memory before being reclaimed.
81c0a2bb 2903 */
30534755 2904 if (apply_fair) {
57054651 2905 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2906 fair_skipped = true;
3a025760 2907 continue;
4ffeaf35 2908 }
c33d6c06 2909 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2910 if (fair_skipped)
2911 goto reset_fair;
2912 apply_fair = false;
2913 }
81c0a2bb 2914 }
a756cf59
JW
2915 /*
2916 * When allocating a page cache page for writing, we
2917 * want to get it from a zone that is within its dirty
2918 * limit, such that no single zone holds more than its
2919 * proportional share of globally allowed dirty pages.
2920 * The dirty limits take into account the zone's
2921 * lowmem reserves and high watermark so that kswapd
2922 * should be able to balance it without having to
2923 * write pages from its LRU list.
2924 *
2925 * This may look like it could increase pressure on
2926 * lower zones by failing allocations in higher zones
2927 * before they are full. But the pages that do spill
2928 * over are limited as the lower zones are protected
2929 * by this very same mechanism. It should not become
2930 * a practical burden to them.
2931 *
2932 * XXX: For now, allow allocations to potentially
2933 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2934 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2935 * which is important when on a NUMA setup the allowed
2936 * zones are together not big enough to reach the
2937 * global limit. The proper fix for these situations
2938 * will require awareness of zones in the
2939 * dirty-throttling and the flusher threads.
2940 */
c9ab0c4f 2941 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2942 continue;
7fb1d9fc 2943
e085dbc5 2944 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2945 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2946 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2947 int ret;
2948
5dab2911
MG
2949 /* Checked here to keep the fast path fast */
2950 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2951 if (alloc_flags & ALLOC_NO_WATERMARKS)
2952 goto try_this_zone;
2953
957f822a 2954 if (zone_reclaim_mode == 0 ||
c33d6c06 2955 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2956 continue;
2957
fa5e084e
MG
2958 ret = zone_reclaim(zone, gfp_mask, order);
2959 switch (ret) {
2960 case ZONE_RECLAIM_NOSCAN:
2961 /* did not scan */
cd38b115 2962 continue;
fa5e084e
MG
2963 case ZONE_RECLAIM_FULL:
2964 /* scanned but unreclaimable */
cd38b115 2965 continue;
fa5e084e
MG
2966 default:
2967 /* did we reclaim enough */
fed2719e 2968 if (zone_watermark_ok(zone, order, mark,
93ea9964 2969 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2970 goto try_this_zone;
2971
fed2719e 2972 continue;
0798e519 2973 }
7fb1d9fc
RS
2974 }
2975
fa5e084e 2976try_this_zone:
c33d6c06 2977 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2978 gfp_mask, alloc_flags, ac->migratetype);
75379191 2979 if (page) {
479f854a 2980 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2981
2982 /*
2983 * If this is a high-order atomic allocation then check
2984 * if the pageblock should be reserved for the future
2985 */
2986 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2987 reserve_highatomic_pageblock(page, zone, order);
2988
75379191
VB
2989 return page;
2990 }
54a6eb5c 2991 }
9276b1bc 2992
4ffeaf35
MG
2993 /*
2994 * The first pass makes sure allocations are spread fairly within the
2995 * local node. However, the local node might have free pages left
2996 * after the fairness batches are exhausted, and remote zones haven't
2997 * even been considered yet. Try once more without fairness, and
2998 * include remote zones now, before entering the slowpath and waking
2999 * kswapd: prefer spilling to a remote zone over swapping locally.
3000 */
30534755
MG
3001 if (fair_skipped) {
3002reset_fair:
3003 apply_fair = false;
3004 fair_skipped = false;
c33d6c06 3005 reset_alloc_batches(ac->preferred_zoneref->zone);
0d0bd894 3006 z = ac->preferred_zoneref;
4ffeaf35 3007 goto zonelist_scan;
30534755 3008 }
4ffeaf35
MG
3009
3010 return NULL;
753ee728
MH
3011}
3012
29423e77
DR
3013/*
3014 * Large machines with many possible nodes should not always dump per-node
3015 * meminfo in irq context.
3016 */
3017static inline bool should_suppress_show_mem(void)
3018{
3019 bool ret = false;
3020
3021#if NODES_SHIFT > 8
3022 ret = in_interrupt();
3023#endif
3024 return ret;
3025}
3026
a238ab5b
DH
3027static DEFINE_RATELIMIT_STATE(nopage_rs,
3028 DEFAULT_RATELIMIT_INTERVAL,
3029 DEFAULT_RATELIMIT_BURST);
3030
d00181b9 3031void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3032{
a238ab5b
DH
3033 unsigned int filter = SHOW_MEM_FILTER_NODES;
3034
c0a32fc5
SG
3035 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3036 debug_guardpage_minorder() > 0)
a238ab5b
DH
3037 return;
3038
3039 /*
3040 * This documents exceptions given to allocations in certain
3041 * contexts that are allowed to allocate outside current's set
3042 * of allowed nodes.
3043 */
3044 if (!(gfp_mask & __GFP_NOMEMALLOC))
3045 if (test_thread_flag(TIF_MEMDIE) ||
3046 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3047 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3048 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3049 filter &= ~SHOW_MEM_FILTER_NODES;
3050
3051 if (fmt) {
3ee9a4f0
JP
3052 struct va_format vaf;
3053 va_list args;
3054
a238ab5b 3055 va_start(args, fmt);
3ee9a4f0
JP
3056
3057 vaf.fmt = fmt;
3058 vaf.va = &args;
3059
3060 pr_warn("%pV", &vaf);
3061
a238ab5b
DH
3062 va_end(args);
3063 }
3064
c5c990e8
VB
3065 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3066 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3067 dump_stack();
3068 if (!should_suppress_show_mem())
3069 show_mem(filter);
3070}
3071
11e33f6a
MG
3072static inline struct page *
3073__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3074 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3075{
6e0fc46d
DR
3076 struct oom_control oc = {
3077 .zonelist = ac->zonelist,
3078 .nodemask = ac->nodemask,
2a966b77 3079 .memcg = NULL,
6e0fc46d
DR
3080 .gfp_mask = gfp_mask,
3081 .order = order,
6e0fc46d 3082 };
11e33f6a
MG
3083 struct page *page;
3084
9879de73
JW
3085 *did_some_progress = 0;
3086
9879de73 3087 /*
dc56401f
JW
3088 * Acquire the oom lock. If that fails, somebody else is
3089 * making progress for us.
9879de73 3090 */
dc56401f 3091 if (!mutex_trylock(&oom_lock)) {
9879de73 3092 *did_some_progress = 1;
11e33f6a 3093 schedule_timeout_uninterruptible(1);
1da177e4
LT
3094 return NULL;
3095 }
6b1de916 3096
11e33f6a
MG
3097 /*
3098 * Go through the zonelist yet one more time, keep very high watermark
3099 * here, this is only to catch a parallel oom killing, we must fail if
3100 * we're still under heavy pressure.
3101 */
a9263751
VB
3102 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3103 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3104 if (page)
11e33f6a
MG
3105 goto out;
3106
4365a567 3107 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3108 /* Coredumps can quickly deplete all memory reserves */
3109 if (current->flags & PF_DUMPCORE)
3110 goto out;
4365a567
KH
3111 /* The OOM killer will not help higher order allocs */
3112 if (order > PAGE_ALLOC_COSTLY_ORDER)
3113 goto out;
03668b3c 3114 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3115 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3116 goto out;
9083905a
JW
3117 if (pm_suspended_storage())
3118 goto out;
3da88fb3
MH
3119 /*
3120 * XXX: GFP_NOFS allocations should rather fail than rely on
3121 * other request to make a forward progress.
3122 * We are in an unfortunate situation where out_of_memory cannot
3123 * do much for this context but let's try it to at least get
3124 * access to memory reserved if the current task is killed (see
3125 * out_of_memory). Once filesystems are ready to handle allocation
3126 * failures more gracefully we should just bail out here.
3127 */
3128
4167e9b2 3129 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3130 if (gfp_mask & __GFP_THISNODE)
3131 goto out;
3132 }
11e33f6a 3133 /* Exhausted what can be done so it's blamo time */
5020e285 3134 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3135 *did_some_progress = 1;
5020e285
MH
3136
3137 if (gfp_mask & __GFP_NOFAIL) {
3138 page = get_page_from_freelist(gfp_mask, order,
3139 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3140 /*
3141 * fallback to ignore cpuset restriction if our nodes
3142 * are depleted
3143 */
3144 if (!page)
3145 page = get_page_from_freelist(gfp_mask, order,
3146 ALLOC_NO_WATERMARKS, ac);
3147 }
3148 }
11e33f6a 3149out:
dc56401f 3150 mutex_unlock(&oom_lock);
11e33f6a
MG
3151 return page;
3152}
3153
33c2d214
MH
3154
3155/*
3156 * Maximum number of compaction retries wit a progress before OOM
3157 * killer is consider as the only way to move forward.
3158 */
3159#define MAX_COMPACT_RETRIES 16
3160
56de7263
MG
3161#ifdef CONFIG_COMPACTION
3162/* Try memory compaction for high-order allocations before reclaim */
3163static struct page *
3164__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3165 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3166 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3167{
98dd3b48 3168 struct page *page;
c5d01d0d 3169 int contended_compaction;
53853e2d
VB
3170
3171 if (!order)
66199712 3172 return NULL;
66199712 3173
c06b1fca 3174 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3175 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3176 mode, &contended_compaction);
c06b1fca 3177 current->flags &= ~PF_MEMALLOC;
56de7263 3178
c5d01d0d 3179 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3180 return NULL;
53853e2d 3181
98dd3b48
VB
3182 /*
3183 * At least in one zone compaction wasn't deferred or skipped, so let's
3184 * count a compaction stall
3185 */
3186 count_vm_event(COMPACTSTALL);
8fb74b9f 3187
a9263751
VB
3188 page = get_page_from_freelist(gfp_mask, order,
3189 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3190
98dd3b48
VB
3191 if (page) {
3192 struct zone *zone = page_zone(page);
53853e2d 3193
98dd3b48
VB
3194 zone->compact_blockskip_flush = false;
3195 compaction_defer_reset(zone, order, true);
3196 count_vm_event(COMPACTSUCCESS);
3197 return page;
3198 }
56de7263 3199
98dd3b48
VB
3200 /*
3201 * It's bad if compaction run occurs and fails. The most likely reason
3202 * is that pages exist, but not enough to satisfy watermarks.
3203 */
3204 count_vm_event(COMPACTFAIL);
66199712 3205
c5d01d0d
MH
3206 /*
3207 * In all zones where compaction was attempted (and not
3208 * deferred or skipped), lock contention has been detected.
3209 * For THP allocation we do not want to disrupt the others
3210 * so we fallback to base pages instead.
3211 */
3212 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3213 *compact_result = COMPACT_CONTENDED;
3214
3215 /*
3216 * If compaction was aborted due to need_resched(), we do not
3217 * want to further increase allocation latency, unless it is
3218 * khugepaged trying to collapse.
3219 */
3220 if (contended_compaction == COMPACT_CONTENDED_SCHED
3221 && !(current->flags & PF_KTHREAD))
3222 *compact_result = COMPACT_CONTENDED;
3223
98dd3b48 3224 cond_resched();
56de7263
MG
3225
3226 return NULL;
3227}
33c2d214
MH
3228
3229static inline bool
86a294a8
MH
3230should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3231 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3232 int compaction_retries)
3233{
7854ea6c
MH
3234 int max_retries = MAX_COMPACT_RETRIES;
3235
33c2d214
MH
3236 if (!order)
3237 return false;
3238
3239 /*
3240 * compaction considers all the zone as desperately out of memory
3241 * so it doesn't really make much sense to retry except when the
3242 * failure could be caused by weak migration mode.
3243 */
3244 if (compaction_failed(compact_result)) {
3245 if (*migrate_mode == MIGRATE_ASYNC) {
3246 *migrate_mode = MIGRATE_SYNC_LIGHT;
3247 return true;
3248 }
3249 return false;
3250 }
3251
3252 /*
7854ea6c
MH
3253 * make sure the compaction wasn't deferred or didn't bail out early
3254 * due to locks contention before we declare that we should give up.
86a294a8
MH
3255 * But do not retry if the given zonelist is not suitable for
3256 * compaction.
33c2d214 3257 */
7854ea6c 3258 if (compaction_withdrawn(compact_result))
86a294a8 3259 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3260
3261 /*
3262 * !costly requests are much more important than __GFP_REPEAT
3263 * costly ones because they are de facto nofail and invoke OOM
3264 * killer to move on while costly can fail and users are ready
3265 * to cope with that. 1/4 retries is rather arbitrary but we
3266 * would need much more detailed feedback from compaction to
3267 * make a better decision.
3268 */
3269 if (order > PAGE_ALLOC_COSTLY_ORDER)
3270 max_retries /= 4;
3271 if (compaction_retries <= max_retries)
3272 return true;
33c2d214
MH
3273
3274 return false;
3275}
56de7263
MG
3276#else
3277static inline struct page *
3278__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3279 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3280 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3281{
33c2d214 3282 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3283 return NULL;
3284}
33c2d214
MH
3285
3286static inline bool
86a294a8
MH
3287should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3288 enum compact_result compact_result,
33c2d214
MH
3289 enum migrate_mode *migrate_mode,
3290 int compaction_retries)
3291{
31e49bfd
MH
3292 struct zone *zone;
3293 struct zoneref *z;
3294
3295 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3296 return false;
3297
3298 /*
3299 * There are setups with compaction disabled which would prefer to loop
3300 * inside the allocator rather than hit the oom killer prematurely.
3301 * Let's give them a good hope and keep retrying while the order-0
3302 * watermarks are OK.
3303 */
3304 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3305 ac->nodemask) {
3306 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3307 ac_classzone_idx(ac), alloc_flags))
3308 return true;
3309 }
33c2d214
MH
3310 return false;
3311}
56de7263
MG
3312#endif /* CONFIG_COMPACTION */
3313
bba90710
MS
3314/* Perform direct synchronous page reclaim */
3315static int
a9263751
VB
3316__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3317 const struct alloc_context *ac)
11e33f6a 3318{
11e33f6a 3319 struct reclaim_state reclaim_state;
bba90710 3320 int progress;
11e33f6a
MG
3321
3322 cond_resched();
3323
3324 /* We now go into synchronous reclaim */
3325 cpuset_memory_pressure_bump();
c06b1fca 3326 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3327 lockdep_set_current_reclaim_state(gfp_mask);
3328 reclaim_state.reclaimed_slab = 0;
c06b1fca 3329 current->reclaim_state = &reclaim_state;
11e33f6a 3330
a9263751
VB
3331 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3332 ac->nodemask);
11e33f6a 3333
c06b1fca 3334 current->reclaim_state = NULL;
11e33f6a 3335 lockdep_clear_current_reclaim_state();
c06b1fca 3336 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3337
3338 cond_resched();
3339
bba90710
MS
3340 return progress;
3341}
3342
3343/* The really slow allocator path where we enter direct reclaim */
3344static inline struct page *
3345__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3346 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3347 unsigned long *did_some_progress)
bba90710
MS
3348{
3349 struct page *page = NULL;
3350 bool drained = false;
3351
a9263751 3352 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3353 if (unlikely(!(*did_some_progress)))
3354 return NULL;
11e33f6a 3355
9ee493ce 3356retry:
a9263751
VB
3357 page = get_page_from_freelist(gfp_mask, order,
3358 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3359
3360 /*
3361 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3362 * pages are pinned on the per-cpu lists or in high alloc reserves.
3363 * Shrink them them and try again
9ee493ce
MG
3364 */
3365 if (!page && !drained) {
0aaa29a5 3366 unreserve_highatomic_pageblock(ac);
93481ff0 3367 drain_all_pages(NULL);
9ee493ce
MG
3368 drained = true;
3369 goto retry;
3370 }
3371
11e33f6a
MG
3372 return page;
3373}
3374
a9263751 3375static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3376{
3377 struct zoneref *z;
3378 struct zone *zone;
3379
a9263751
VB
3380 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3381 ac->high_zoneidx, ac->nodemask)
93ea9964 3382 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3383}
3384
c603844b 3385static inline unsigned int
341ce06f
PZ
3386gfp_to_alloc_flags(gfp_t gfp_mask)
3387{
c603844b 3388 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3389
a56f57ff 3390 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3391 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3392
341ce06f
PZ
3393 /*
3394 * The caller may dip into page reserves a bit more if the caller
3395 * cannot run direct reclaim, or if the caller has realtime scheduling
3396 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3397 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3398 */
e6223a3b 3399 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3400
d0164adc 3401 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3402 /*
b104a35d
DR
3403 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3404 * if it can't schedule.
5c3240d9 3405 */
b104a35d 3406 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3407 alloc_flags |= ALLOC_HARDER;
523b9458 3408 /*
b104a35d 3409 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3410 * comment for __cpuset_node_allowed().
523b9458 3411 */
341ce06f 3412 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3413 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3414 alloc_flags |= ALLOC_HARDER;
3415
b37f1dd0
MG
3416 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3417 if (gfp_mask & __GFP_MEMALLOC)
3418 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3419 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3420 alloc_flags |= ALLOC_NO_WATERMARKS;
3421 else if (!in_interrupt() &&
3422 ((current->flags & PF_MEMALLOC) ||
3423 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3424 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3425 }
d95ea5d1 3426#ifdef CONFIG_CMA
43e7a34d 3427 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3428 alloc_flags |= ALLOC_CMA;
3429#endif
341ce06f
PZ
3430 return alloc_flags;
3431}
3432
072bb0aa
MG
3433bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3434{
b37f1dd0 3435 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3436}
3437
d0164adc
MG
3438static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3439{
3440 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3441}
3442
0a0337e0
MH
3443/*
3444 * Maximum number of reclaim retries without any progress before OOM killer
3445 * is consider as the only way to move forward.
3446 */
3447#define MAX_RECLAIM_RETRIES 16
3448
3449/*
3450 * Checks whether it makes sense to retry the reclaim to make a forward progress
3451 * for the given allocation request.
3452 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3453 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3454 * any progress in a row) is considered as well as the reclaimable pages on the
3455 * applicable zone list (with a backoff mechanism which is a function of
3456 * no_progress_loops).
0a0337e0
MH
3457 *
3458 * Returns true if a retry is viable or false to enter the oom path.
3459 */
3460static inline bool
3461should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3462 struct alloc_context *ac, int alloc_flags,
7854ea6c 3463 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3464{
3465 struct zone *zone;
3466 struct zoneref *z;
3467
3468 /*
3469 * Make sure we converge to OOM if we cannot make any progress
3470 * several times in the row.
3471 */
3472 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3473 return false;
3474
0a0337e0
MH
3475 /*
3476 * Keep reclaiming pages while there is a chance this will lead somewhere.
3477 * If none of the target zones can satisfy our allocation request even
3478 * if all reclaimable pages are considered then we are screwed and have
3479 * to go OOM.
3480 */
3481 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3482 ac->nodemask) {
3483 unsigned long available;
ede37713 3484 unsigned long reclaimable;
0a0337e0 3485
ede37713 3486 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3487 available -= DIV_ROUND_UP(no_progress_loops * available,
3488 MAX_RECLAIM_RETRIES);
3489 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3490
3491 /*
3492 * Would the allocation succeed if we reclaimed the whole
3493 * available?
3494 */
3495 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3496 ac_classzone_idx(ac), alloc_flags, available)) {
3497 /*
3498 * If we didn't make any progress and have a lot of
3499 * dirty + writeback pages then we should wait for
3500 * an IO to complete to slow down the reclaim and
3501 * prevent from pre mature OOM
3502 */
3503 if (!did_some_progress) {
3504 unsigned long writeback;
3505 unsigned long dirty;
3506
3507 writeback = zone_page_state_snapshot(zone,
3508 NR_WRITEBACK);
3509 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3510
3511 if (2*(writeback + dirty) > reclaimable) {
3512 congestion_wait(BLK_RW_ASYNC, HZ/10);
3513 return true;
3514 }
3515 }
3516
3517 /*
3518 * Memory allocation/reclaim might be called from a WQ
3519 * context and the current implementation of the WQ
3520 * concurrency control doesn't recognize that
3521 * a particular WQ is congested if the worker thread is
3522 * looping without ever sleeping. Therefore we have to
3523 * do a short sleep here rather than calling
3524 * cond_resched().
3525 */
3526 if (current->flags & PF_WQ_WORKER)
3527 schedule_timeout_uninterruptible(1);
3528 else
3529 cond_resched();
3530
0a0337e0
MH
3531 return true;
3532 }
3533 }
3534
3535 return false;
3536}
3537
11e33f6a
MG
3538static inline struct page *
3539__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3540 struct alloc_context *ac)
11e33f6a 3541{
d0164adc 3542 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3543 struct page *page = NULL;
c603844b 3544 unsigned int alloc_flags;
11e33f6a 3545 unsigned long did_some_progress;
e0b9daeb 3546 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3547 enum compact_result compact_result;
33c2d214 3548 int compaction_retries = 0;
0a0337e0 3549 int no_progress_loops = 0;
1da177e4 3550
72807a74
MG
3551 /*
3552 * In the slowpath, we sanity check order to avoid ever trying to
3553 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3554 * be using allocators in order of preference for an area that is
3555 * too large.
3556 */
1fc28b70
MG
3557 if (order >= MAX_ORDER) {
3558 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3559 return NULL;
1fc28b70 3560 }
1da177e4 3561
d0164adc
MG
3562 /*
3563 * We also sanity check to catch abuse of atomic reserves being used by
3564 * callers that are not in atomic context.
3565 */
3566 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3567 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3568 gfp_mask &= ~__GFP_ATOMIC;
3569
9879de73 3570retry:
d0164adc 3571 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3572 wake_all_kswapds(order, ac);
1da177e4 3573
9bf2229f 3574 /*
7fb1d9fc
RS
3575 * OK, we're below the kswapd watermark and have kicked background
3576 * reclaim. Now things get more complex, so set up alloc_flags according
3577 * to how we want to proceed.
9bf2229f 3578 */
341ce06f 3579 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3580
e46e7b77
MG
3581 /*
3582 * Reset the zonelist iterators if memory policies can be ignored.
3583 * These allocations are high priority and system rather than user
3584 * orientated.
3585 */
3586 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3587 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3588 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3589 ac->high_zoneidx, ac->nodemask);
3590 }
3591
341ce06f 3592 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3593 page = get_page_from_freelist(gfp_mask, order,
3594 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3595 if (page)
3596 goto got_pg;
1da177e4 3597
11e33f6a 3598 /* Allocate without watermarks if the context allows */
341ce06f 3599 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3600 page = get_page_from_freelist(gfp_mask, order,
3601 ALLOC_NO_WATERMARKS, ac);
3602 if (page)
3603 goto got_pg;
1da177e4
LT
3604 }
3605
d0164adc
MG
3606 /* Caller is not willing to reclaim, we can't balance anything */
3607 if (!can_direct_reclaim) {
aed0a0e3 3608 /*
33d53103
MH
3609 * All existing users of the __GFP_NOFAIL are blockable, so warn
3610 * of any new users that actually allow this type of allocation
3611 * to fail.
aed0a0e3
DR
3612 */
3613 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3614 goto nopage;
aed0a0e3 3615 }
1da177e4 3616
341ce06f 3617 /* Avoid recursion of direct reclaim */
33d53103
MH
3618 if (current->flags & PF_MEMALLOC) {
3619 /*
3620 * __GFP_NOFAIL request from this context is rather bizarre
3621 * because we cannot reclaim anything and only can loop waiting
3622 * for somebody to do a work for us.
3623 */
3624 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3625 cond_resched();
3626 goto retry;
3627 }
341ce06f 3628 goto nopage;
33d53103 3629 }
341ce06f 3630
6583bb64
DR
3631 /* Avoid allocations with no watermarks from looping endlessly */
3632 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3633 goto nopage;
3634
77f1fe6b
MG
3635 /*
3636 * Try direct compaction. The first pass is asynchronous. Subsequent
3637 * attempts after direct reclaim are synchronous
3638 */
a9263751
VB
3639 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3640 migration_mode,
c5d01d0d 3641 &compact_result);
56de7263
MG
3642 if (page)
3643 goto got_pg;
75f30861 3644
1f9efdef 3645 /* Checks for THP-specific high-order allocations */
d0164adc 3646 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3647 /*
3648 * If compaction is deferred for high-order allocations, it is
3649 * because sync compaction recently failed. If this is the case
3650 * and the caller requested a THP allocation, we do not want
3651 * to heavily disrupt the system, so we fail the allocation
3652 * instead of entering direct reclaim.
3653 */
c5d01d0d 3654 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3655 goto nopage;
3656
3657 /*
c5d01d0d
MH
3658 * Compaction is contended so rather back off than cause
3659 * excessive stalls.
1f9efdef 3660 */
c5d01d0d 3661 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3662 goto nopage;
3663 }
66199712 3664
33c2d214
MH
3665 if (order && compaction_made_progress(compact_result))
3666 compaction_retries++;
8fe78048 3667
11e33f6a 3668 /* Try direct reclaim and then allocating */
a9263751
VB
3669 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3670 &did_some_progress);
11e33f6a
MG
3671 if (page)
3672 goto got_pg;
1da177e4 3673
9083905a
JW
3674 /* Do not loop if specifically requested */
3675 if (gfp_mask & __GFP_NORETRY)
3676 goto noretry;
3677
0a0337e0
MH
3678 /*
3679 * Do not retry costly high order allocations unless they are
3680 * __GFP_REPEAT
3681 */
3682 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3683 goto noretry;
3684
7854ea6c
MH
3685 /*
3686 * Costly allocations might have made a progress but this doesn't mean
3687 * their order will become available due to high fragmentation so
3688 * always increment the no progress counter for them
3689 */
3690 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3691 no_progress_loops = 0;
7854ea6c 3692 else
0a0337e0 3693 no_progress_loops++;
1da177e4 3694
0a0337e0 3695 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3696 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3697 goto retry;
3698
33c2d214
MH
3699 /*
3700 * It doesn't make any sense to retry for the compaction if the order-0
3701 * reclaim is not able to make any progress because the current
3702 * implementation of the compaction depends on the sufficient amount
3703 * of free memory (see __compaction_suitable)
3704 */
3705 if (did_some_progress > 0 &&
86a294a8
MH
3706 should_compact_retry(ac, order, alloc_flags,
3707 compact_result, &migration_mode,
3708 compaction_retries))
33c2d214
MH
3709 goto retry;
3710
9083905a
JW
3711 /* Reclaim has failed us, start killing things */
3712 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3713 if (page)
3714 goto got_pg;
3715
3716 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3717 if (did_some_progress) {
3718 no_progress_loops = 0;
9083905a 3719 goto retry;
0a0337e0 3720 }
9083905a
JW
3721
3722noretry:
3723 /*
33c2d214
MH
3724 * High-order allocations do not necessarily loop after direct reclaim
3725 * and reclaim/compaction depends on compaction being called after
3726 * reclaim so call directly if necessary.
3727 * It can become very expensive to allocate transparent hugepages at
3728 * fault, so use asynchronous memory compaction for THP unless it is
3729 * khugepaged trying to collapse. All other requests should tolerate
3730 * at least light sync migration.
9083905a 3731 */
33c2d214
MH
3732 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3733 migration_mode = MIGRATE_ASYNC;
3734 else
3735 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3736 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3737 ac, migration_mode,
c5d01d0d 3738 &compact_result);
9083905a
JW
3739 if (page)
3740 goto got_pg;
1da177e4 3741nopage:
a238ab5b 3742 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3743got_pg:
072bb0aa 3744 return page;
1da177e4 3745}
11e33f6a
MG
3746
3747/*
3748 * This is the 'heart' of the zoned buddy allocator.
3749 */
3750struct page *
3751__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3752 struct zonelist *zonelist, nodemask_t *nodemask)
3753{
5bb1b169 3754 struct page *page;
cc9a6c87 3755 unsigned int cpuset_mems_cookie;
c603844b 3756 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3757 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3758 struct alloc_context ac = {
3759 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3760 .zonelist = zonelist,
a9263751
VB
3761 .nodemask = nodemask,
3762 .migratetype = gfpflags_to_migratetype(gfp_mask),
3763 };
11e33f6a 3764
682a3385 3765 if (cpusets_enabled()) {
83d4ca81 3766 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3767 alloc_flags |= ALLOC_CPUSET;
3768 if (!ac.nodemask)
3769 ac.nodemask = &cpuset_current_mems_allowed;
3770 }
3771
dcce284a
BH
3772 gfp_mask &= gfp_allowed_mask;
3773
11e33f6a
MG
3774 lockdep_trace_alloc(gfp_mask);
3775
d0164adc 3776 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3777
3778 if (should_fail_alloc_page(gfp_mask, order))
3779 return NULL;
3780
3781 /*
3782 * Check the zones suitable for the gfp_mask contain at least one
3783 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3784 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3785 */
3786 if (unlikely(!zonelist->_zonerefs->zone))
3787 return NULL;
3788
a9263751 3789 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3790 alloc_flags |= ALLOC_CMA;
3791
cc9a6c87 3792retry_cpuset:
d26914d1 3793 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3794
c9ab0c4f
MG
3795 /* Dirty zone balancing only done in the fast path */
3796 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3797
e46e7b77
MG
3798 /*
3799 * The preferred zone is used for statistics but crucially it is
3800 * also used as the starting point for the zonelist iterator. It
3801 * may get reset for allocations that ignore memory policies.
3802 */
c33d6c06
MG
3803 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3804 ac.high_zoneidx, ac.nodemask);
3805 if (!ac.preferred_zoneref) {
5bb1b169 3806 page = NULL;
4fcb0971 3807 goto no_zone;
5bb1b169
MG
3808 }
3809
5117f45d 3810 /* First allocation attempt */
a9263751 3811 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3812 if (likely(page))
3813 goto out;
11e33f6a 3814
4fcb0971
MG
3815 /*
3816 * Runtime PM, block IO and its error handling path can deadlock
3817 * because I/O on the device might not complete.
3818 */
3819 alloc_mask = memalloc_noio_flags(gfp_mask);
3820 ac.spread_dirty_pages = false;
23f086f9 3821
4741526b
MG
3822 /*
3823 * Restore the original nodemask if it was potentially replaced with
3824 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3825 */
3826 if (cpusets_enabled())
3827 ac.nodemask = nodemask;
4fcb0971 3828 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3829
4fcb0971 3830no_zone:
cc9a6c87
MG
3831 /*
3832 * When updating a task's mems_allowed, it is possible to race with
3833 * parallel threads in such a way that an allocation can fail while
3834 * the mask is being updated. If a page allocation is about to fail,
3835 * check if the cpuset changed during allocation and if so, retry.
3836 */
83d4ca81
MG
3837 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3838 alloc_mask = gfp_mask;
cc9a6c87 3839 goto retry_cpuset;
83d4ca81 3840 }
cc9a6c87 3841
4fcb0971
MG
3842out:
3843 if (kmemcheck_enabled && page)
3844 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3845
3846 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3847
11e33f6a 3848 return page;
1da177e4 3849}
d239171e 3850EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3851
3852/*
3853 * Common helper functions.
3854 */
920c7a5d 3855unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3856{
945a1113
AM
3857 struct page *page;
3858
3859 /*
3860 * __get_free_pages() returns a 32-bit address, which cannot represent
3861 * a highmem page
3862 */
3863 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3864
1da177e4
LT
3865 page = alloc_pages(gfp_mask, order);
3866 if (!page)
3867 return 0;
3868 return (unsigned long) page_address(page);
3869}
1da177e4
LT
3870EXPORT_SYMBOL(__get_free_pages);
3871
920c7a5d 3872unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3873{
945a1113 3874 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3875}
1da177e4
LT
3876EXPORT_SYMBOL(get_zeroed_page);
3877
920c7a5d 3878void __free_pages(struct page *page, unsigned int order)
1da177e4 3879{
b5810039 3880 if (put_page_testzero(page)) {
1da177e4 3881 if (order == 0)
b745bc85 3882 free_hot_cold_page(page, false);
1da177e4
LT
3883 else
3884 __free_pages_ok(page, order);
3885 }
3886}
3887
3888EXPORT_SYMBOL(__free_pages);
3889
920c7a5d 3890void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3891{
3892 if (addr != 0) {
725d704e 3893 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3894 __free_pages(virt_to_page((void *)addr), order);
3895 }
3896}
3897
3898EXPORT_SYMBOL(free_pages);
3899
b63ae8ca
AD
3900/*
3901 * Page Fragment:
3902 * An arbitrary-length arbitrary-offset area of memory which resides
3903 * within a 0 or higher order page. Multiple fragments within that page
3904 * are individually refcounted, in the page's reference counter.
3905 *
3906 * The page_frag functions below provide a simple allocation framework for
3907 * page fragments. This is used by the network stack and network device
3908 * drivers to provide a backing region of memory for use as either an
3909 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3910 */
3911static struct page *__page_frag_refill(struct page_frag_cache *nc,
3912 gfp_t gfp_mask)
3913{
3914 struct page *page = NULL;
3915 gfp_t gfp = gfp_mask;
3916
3917#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3918 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3919 __GFP_NOMEMALLOC;
3920 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3921 PAGE_FRAG_CACHE_MAX_ORDER);
3922 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3923#endif
3924 if (unlikely(!page))
3925 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3926
3927 nc->va = page ? page_address(page) : NULL;
3928
3929 return page;
3930}
3931
3932void *__alloc_page_frag(struct page_frag_cache *nc,
3933 unsigned int fragsz, gfp_t gfp_mask)
3934{
3935 unsigned int size = PAGE_SIZE;
3936 struct page *page;
3937 int offset;
3938
3939 if (unlikely(!nc->va)) {
3940refill:
3941 page = __page_frag_refill(nc, gfp_mask);
3942 if (!page)
3943 return NULL;
3944
3945#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3946 /* if size can vary use size else just use PAGE_SIZE */
3947 size = nc->size;
3948#endif
3949 /* Even if we own the page, we do not use atomic_set().
3950 * This would break get_page_unless_zero() users.
3951 */
fe896d18 3952 page_ref_add(page, size - 1);
b63ae8ca
AD
3953
3954 /* reset page count bias and offset to start of new frag */
2f064f34 3955 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3956 nc->pagecnt_bias = size;
3957 nc->offset = size;
3958 }
3959
3960 offset = nc->offset - fragsz;
3961 if (unlikely(offset < 0)) {
3962 page = virt_to_page(nc->va);
3963
fe896d18 3964 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3965 goto refill;
3966
3967#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3968 /* if size can vary use size else just use PAGE_SIZE */
3969 size = nc->size;
3970#endif
3971 /* OK, page count is 0, we can safely set it */
fe896d18 3972 set_page_count(page, size);
b63ae8ca
AD
3973
3974 /* reset page count bias and offset to start of new frag */
3975 nc->pagecnt_bias = size;
3976 offset = size - fragsz;
3977 }
3978
3979 nc->pagecnt_bias--;
3980 nc->offset = offset;
3981
3982 return nc->va + offset;
3983}
3984EXPORT_SYMBOL(__alloc_page_frag);
3985
3986/*
3987 * Frees a page fragment allocated out of either a compound or order 0 page.
3988 */
3989void __free_page_frag(void *addr)
3990{
3991 struct page *page = virt_to_head_page(addr);
3992
3993 if (unlikely(put_page_testzero(page)))
3994 __free_pages_ok(page, compound_order(page));
3995}
3996EXPORT_SYMBOL(__free_page_frag);
3997
6a1a0d3b 3998/*
52383431 3999 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
4000 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4001 * equivalent to alloc_pages.
6a1a0d3b 4002 *
52383431
VD
4003 * It should be used when the caller would like to use kmalloc, but since the
4004 * allocation is large, it has to fall back to the page allocator.
4005 */
4006struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4007{
4008 struct page *page;
52383431 4009
52383431 4010 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
4011 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4012 __free_pages(page, order);
4013 page = NULL;
4014 }
52383431
VD
4015 return page;
4016}
4017
4018struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4019{
4020 struct page *page;
52383431 4021
52383431 4022 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
4023 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4024 __free_pages(page, order);
4025 page = NULL;
4026 }
52383431
VD
4027 return page;
4028}
4029
4030/*
4031 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4032 * alloc_kmem_pages.
6a1a0d3b 4033 */
52383431 4034void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 4035{
d05e83a6 4036 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
4037 __free_pages(page, order);
4038}
4039
52383431 4040void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
4041{
4042 if (addr != 0) {
4043 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 4044 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
4045 }
4046}
4047
d00181b9
KS
4048static void *make_alloc_exact(unsigned long addr, unsigned int order,
4049 size_t size)
ee85c2e1
AK
4050{
4051 if (addr) {
4052 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4053 unsigned long used = addr + PAGE_ALIGN(size);
4054
4055 split_page(virt_to_page((void *)addr), order);
4056 while (used < alloc_end) {
4057 free_page(used);
4058 used += PAGE_SIZE;
4059 }
4060 }
4061 return (void *)addr;
4062}
4063
2be0ffe2
TT
4064/**
4065 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4066 * @size: the number of bytes to allocate
4067 * @gfp_mask: GFP flags for the allocation
4068 *
4069 * This function is similar to alloc_pages(), except that it allocates the
4070 * minimum number of pages to satisfy the request. alloc_pages() can only
4071 * allocate memory in power-of-two pages.
4072 *
4073 * This function is also limited by MAX_ORDER.
4074 *
4075 * Memory allocated by this function must be released by free_pages_exact().
4076 */
4077void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4078{
4079 unsigned int order = get_order(size);
4080 unsigned long addr;
4081
4082 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4083 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4084}
4085EXPORT_SYMBOL(alloc_pages_exact);
4086
ee85c2e1
AK
4087/**
4088 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4089 * pages on a node.
b5e6ab58 4090 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4091 * @size: the number of bytes to allocate
4092 * @gfp_mask: GFP flags for the allocation
4093 *
4094 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4095 * back.
ee85c2e1 4096 */
e1931811 4097void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4098{
d00181b9 4099 unsigned int order = get_order(size);
ee85c2e1
AK
4100 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4101 if (!p)
4102 return NULL;
4103 return make_alloc_exact((unsigned long)page_address(p), order, size);
4104}
ee85c2e1 4105
2be0ffe2
TT
4106/**
4107 * free_pages_exact - release memory allocated via alloc_pages_exact()
4108 * @virt: the value returned by alloc_pages_exact.
4109 * @size: size of allocation, same value as passed to alloc_pages_exact().
4110 *
4111 * Release the memory allocated by a previous call to alloc_pages_exact.
4112 */
4113void free_pages_exact(void *virt, size_t size)
4114{
4115 unsigned long addr = (unsigned long)virt;
4116 unsigned long end = addr + PAGE_ALIGN(size);
4117
4118 while (addr < end) {
4119 free_page(addr);
4120 addr += PAGE_SIZE;
4121 }
4122}
4123EXPORT_SYMBOL(free_pages_exact);
4124
e0fb5815
ZY
4125/**
4126 * nr_free_zone_pages - count number of pages beyond high watermark
4127 * @offset: The zone index of the highest zone
4128 *
4129 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4130 * high watermark within all zones at or below a given zone index. For each
4131 * zone, the number of pages is calculated as:
834405c3 4132 * managed_pages - high_pages
e0fb5815 4133 */
ebec3862 4134static unsigned long nr_free_zone_pages(int offset)
1da177e4 4135{
dd1a239f 4136 struct zoneref *z;
54a6eb5c
MG
4137 struct zone *zone;
4138
e310fd43 4139 /* Just pick one node, since fallback list is circular */
ebec3862 4140 unsigned long sum = 0;
1da177e4 4141
0e88460d 4142 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4143
54a6eb5c 4144 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4145 unsigned long size = zone->managed_pages;
41858966 4146 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4147 if (size > high)
4148 sum += size - high;
1da177e4
LT
4149 }
4150
4151 return sum;
4152}
4153
e0fb5815
ZY
4154/**
4155 * nr_free_buffer_pages - count number of pages beyond high watermark
4156 *
4157 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4158 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4159 */
ebec3862 4160unsigned long nr_free_buffer_pages(void)
1da177e4 4161{
af4ca457 4162 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4163}
c2f1a551 4164EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4165
e0fb5815
ZY
4166/**
4167 * nr_free_pagecache_pages - count number of pages beyond high watermark
4168 *
4169 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4170 * high watermark within all zones.
1da177e4 4171 */
ebec3862 4172unsigned long nr_free_pagecache_pages(void)
1da177e4 4173{
2a1e274a 4174 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4175}
08e0f6a9
CL
4176
4177static inline void show_node(struct zone *zone)
1da177e4 4178{
e5adfffc 4179 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4180 printk("Node %d ", zone_to_nid(zone));
1da177e4 4181}
1da177e4 4182
d02bd27b
IR
4183long si_mem_available(void)
4184{
4185 long available;
4186 unsigned long pagecache;
4187 unsigned long wmark_low = 0;
4188 unsigned long pages[NR_LRU_LISTS];
4189 struct zone *zone;
4190 int lru;
4191
4192 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4193 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4194
4195 for_each_zone(zone)
4196 wmark_low += zone->watermark[WMARK_LOW];
4197
4198 /*
4199 * Estimate the amount of memory available for userspace allocations,
4200 * without causing swapping.
4201 */
4202 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4203
4204 /*
4205 * Not all the page cache can be freed, otherwise the system will
4206 * start swapping. Assume at least half of the page cache, or the
4207 * low watermark worth of cache, needs to stay.
4208 */
4209 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4210 pagecache -= min(pagecache / 2, wmark_low);
4211 available += pagecache;
4212
4213 /*
4214 * Part of the reclaimable slab consists of items that are in use,
4215 * and cannot be freed. Cap this estimate at the low watermark.
4216 */
4217 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4218 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4219
4220 if (available < 0)
4221 available = 0;
4222 return available;
4223}
4224EXPORT_SYMBOL_GPL(si_mem_available);
4225
1da177e4
LT
4226void si_meminfo(struct sysinfo *val)
4227{
4228 val->totalram = totalram_pages;
cc7452b6 4229 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4230 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4231 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4232 val->totalhigh = totalhigh_pages;
4233 val->freehigh = nr_free_highpages();
1da177e4
LT
4234 val->mem_unit = PAGE_SIZE;
4235}
4236
4237EXPORT_SYMBOL(si_meminfo);
4238
4239#ifdef CONFIG_NUMA
4240void si_meminfo_node(struct sysinfo *val, int nid)
4241{
cdd91a77
JL
4242 int zone_type; /* needs to be signed */
4243 unsigned long managed_pages = 0;
fc2bd799
JK
4244 unsigned long managed_highpages = 0;
4245 unsigned long free_highpages = 0;
1da177e4
LT
4246 pg_data_t *pgdat = NODE_DATA(nid);
4247
cdd91a77
JL
4248 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4249 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4250 val->totalram = managed_pages;
cc7452b6 4251 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4252 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4253#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4254 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4255 struct zone *zone = &pgdat->node_zones[zone_type];
4256
4257 if (is_highmem(zone)) {
4258 managed_highpages += zone->managed_pages;
4259 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4260 }
4261 }
4262 val->totalhigh = managed_highpages;
4263 val->freehigh = free_highpages;
98d2b0eb 4264#else
fc2bd799
JK
4265 val->totalhigh = managed_highpages;
4266 val->freehigh = free_highpages;
98d2b0eb 4267#endif
1da177e4
LT
4268 val->mem_unit = PAGE_SIZE;
4269}
4270#endif
4271
ddd588b5 4272/*
7bf02ea2
DR
4273 * Determine whether the node should be displayed or not, depending on whether
4274 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4275 */
7bf02ea2 4276bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4277{
4278 bool ret = false;
cc9a6c87 4279 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4280
4281 if (!(flags & SHOW_MEM_FILTER_NODES))
4282 goto out;
4283
cc9a6c87 4284 do {
d26914d1 4285 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4286 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4287 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4288out:
4289 return ret;
4290}
4291
1da177e4
LT
4292#define K(x) ((x) << (PAGE_SHIFT-10))
4293
377e4f16
RV
4294static void show_migration_types(unsigned char type)
4295{
4296 static const char types[MIGRATE_TYPES] = {
4297 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4298 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4299 [MIGRATE_RECLAIMABLE] = 'E',
4300 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4301#ifdef CONFIG_CMA
4302 [MIGRATE_CMA] = 'C',
4303#endif
194159fb 4304#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4305 [MIGRATE_ISOLATE] = 'I',
194159fb 4306#endif
377e4f16
RV
4307 };
4308 char tmp[MIGRATE_TYPES + 1];
4309 char *p = tmp;
4310 int i;
4311
4312 for (i = 0; i < MIGRATE_TYPES; i++) {
4313 if (type & (1 << i))
4314 *p++ = types[i];
4315 }
4316
4317 *p = '\0';
4318 printk("(%s) ", tmp);
4319}
4320
1da177e4
LT
4321/*
4322 * Show free area list (used inside shift_scroll-lock stuff)
4323 * We also calculate the percentage fragmentation. We do this by counting the
4324 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4325 *
4326 * Bits in @filter:
4327 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4328 * cpuset.
1da177e4 4329 */
7bf02ea2 4330void show_free_areas(unsigned int filter)
1da177e4 4331{
d1bfcdb8 4332 unsigned long free_pcp = 0;
c7241913 4333 int cpu;
1da177e4
LT
4334 struct zone *zone;
4335
ee99c71c 4336 for_each_populated_zone(zone) {
7bf02ea2 4337 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4338 continue;
d1bfcdb8 4339
761b0677
KK
4340 for_each_online_cpu(cpu)
4341 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4342 }
4343
a731286d
KM
4344 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4345 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4346 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4347 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4348 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4349 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4350 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4351 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4352 global_page_state(NR_ISOLATED_ANON),
4353 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4354 global_page_state(NR_INACTIVE_FILE),
a731286d 4355 global_page_state(NR_ISOLATED_FILE),
7b854121 4356 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4357 global_page_state(NR_FILE_DIRTY),
ce866b34 4358 global_page_state(NR_WRITEBACK),
fd39fc85 4359 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4360 global_page_state(NR_SLAB_RECLAIMABLE),
4361 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4362 global_page_state(NR_FILE_MAPPED),
4b02108a 4363 global_page_state(NR_SHMEM),
a25700a5 4364 global_page_state(NR_PAGETABLE),
d1ce749a 4365 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4366 global_page_state(NR_FREE_PAGES),
4367 free_pcp,
d1ce749a 4368 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4369
ee99c71c 4370 for_each_populated_zone(zone) {
1da177e4
LT
4371 int i;
4372
7bf02ea2 4373 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4374 continue;
d1bfcdb8
KK
4375
4376 free_pcp = 0;
4377 for_each_online_cpu(cpu)
4378 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4379
1da177e4
LT
4380 show_node(zone);
4381 printk("%s"
4382 " free:%lukB"
4383 " min:%lukB"
4384 " low:%lukB"
4385 " high:%lukB"
4f98a2fe
RR
4386 " active_anon:%lukB"
4387 " inactive_anon:%lukB"
4388 " active_file:%lukB"
4389 " inactive_file:%lukB"
7b854121 4390 " unevictable:%lukB"
a731286d
KM
4391 " isolated(anon):%lukB"
4392 " isolated(file):%lukB"
1da177e4 4393 " present:%lukB"
9feedc9d 4394 " managed:%lukB"
4a0aa73f
KM
4395 " mlocked:%lukB"
4396 " dirty:%lukB"
4397 " writeback:%lukB"
4398 " mapped:%lukB"
4b02108a 4399 " shmem:%lukB"
4a0aa73f
KM
4400 " slab_reclaimable:%lukB"
4401 " slab_unreclaimable:%lukB"
c6a7f572 4402 " kernel_stack:%lukB"
4a0aa73f
KM
4403 " pagetables:%lukB"
4404 " unstable:%lukB"
4405 " bounce:%lukB"
d1bfcdb8
KK
4406 " free_pcp:%lukB"
4407 " local_pcp:%ukB"
d1ce749a 4408 " free_cma:%lukB"
4a0aa73f 4409 " writeback_tmp:%lukB"
1da177e4
LT
4410 " pages_scanned:%lu"
4411 " all_unreclaimable? %s"
4412 "\n",
4413 zone->name,
88f5acf8 4414 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4415 K(min_wmark_pages(zone)),
4416 K(low_wmark_pages(zone)),
4417 K(high_wmark_pages(zone)),
4f98a2fe
RR
4418 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4419 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4420 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4421 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4422 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4423 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4424 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4425 K(zone->present_pages),
9feedc9d 4426 K(zone->managed_pages),
4a0aa73f
KM
4427 K(zone_page_state(zone, NR_MLOCK)),
4428 K(zone_page_state(zone, NR_FILE_DIRTY)),
4429 K(zone_page_state(zone, NR_WRITEBACK)),
4430 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4431 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4432 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4433 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4434 zone_page_state(zone, NR_KERNEL_STACK) *
4435 THREAD_SIZE / 1024,
4a0aa73f
KM
4436 K(zone_page_state(zone, NR_PAGETABLE)),
4437 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4438 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4439 K(free_pcp),
4440 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4441 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4442 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4443 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4444 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4445 );
4446 printk("lowmem_reserve[]:");
4447 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4448 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4449 printk("\n");
4450 }
4451
ee99c71c 4452 for_each_populated_zone(zone) {
d00181b9
KS
4453 unsigned int order;
4454 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4455 unsigned char types[MAX_ORDER];
1da177e4 4456
7bf02ea2 4457 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4458 continue;
1da177e4
LT
4459 show_node(zone);
4460 printk("%s: ", zone->name);
1da177e4
LT
4461
4462 spin_lock_irqsave(&zone->lock, flags);
4463 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4464 struct free_area *area = &zone->free_area[order];
4465 int type;
4466
4467 nr[order] = area->nr_free;
8f9de51a 4468 total += nr[order] << order;
377e4f16
RV
4469
4470 types[order] = 0;
4471 for (type = 0; type < MIGRATE_TYPES; type++) {
4472 if (!list_empty(&area->free_list[type]))
4473 types[order] |= 1 << type;
4474 }
1da177e4
LT
4475 }
4476 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4477 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4478 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4479 if (nr[order])
4480 show_migration_types(types[order]);
4481 }
1da177e4
LT
4482 printk("= %lukB\n", K(total));
4483 }
4484
949f7ec5
DR
4485 hugetlb_show_meminfo();
4486
e6f3602d
LW
4487 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4488
1da177e4
LT
4489 show_swap_cache_info();
4490}
4491
19770b32
MG
4492static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4493{
4494 zoneref->zone = zone;
4495 zoneref->zone_idx = zone_idx(zone);
4496}
4497
1da177e4
LT
4498/*
4499 * Builds allocation fallback zone lists.
1a93205b
CL
4500 *
4501 * Add all populated zones of a node to the zonelist.
1da177e4 4502 */
f0c0b2b8 4503static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4504 int nr_zones)
1da177e4 4505{
1a93205b 4506 struct zone *zone;
bc732f1d 4507 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4508
4509 do {
2f6726e5 4510 zone_type--;
070f8032 4511 zone = pgdat->node_zones + zone_type;
1a93205b 4512 if (populated_zone(zone)) {
dd1a239f
MG
4513 zoneref_set_zone(zone,
4514 &zonelist->_zonerefs[nr_zones++]);
070f8032 4515 check_highest_zone(zone_type);
1da177e4 4516 }
2f6726e5 4517 } while (zone_type);
bc732f1d 4518
070f8032 4519 return nr_zones;
1da177e4
LT
4520}
4521
f0c0b2b8
KH
4522
4523/*
4524 * zonelist_order:
4525 * 0 = automatic detection of better ordering.
4526 * 1 = order by ([node] distance, -zonetype)
4527 * 2 = order by (-zonetype, [node] distance)
4528 *
4529 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4530 * the same zonelist. So only NUMA can configure this param.
4531 */
4532#define ZONELIST_ORDER_DEFAULT 0
4533#define ZONELIST_ORDER_NODE 1
4534#define ZONELIST_ORDER_ZONE 2
4535
4536/* zonelist order in the kernel.
4537 * set_zonelist_order() will set this to NODE or ZONE.
4538 */
4539static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4540static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4541
4542
1da177e4 4543#ifdef CONFIG_NUMA
f0c0b2b8
KH
4544/* The value user specified ....changed by config */
4545static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4546/* string for sysctl */
4547#define NUMA_ZONELIST_ORDER_LEN 16
4548char numa_zonelist_order[16] = "default";
4549
4550/*
4551 * interface for configure zonelist ordering.
4552 * command line option "numa_zonelist_order"
4553 * = "[dD]efault - default, automatic configuration.
4554 * = "[nN]ode - order by node locality, then by zone within node
4555 * = "[zZ]one - order by zone, then by locality within zone
4556 */
4557
4558static int __parse_numa_zonelist_order(char *s)
4559{
4560 if (*s == 'd' || *s == 'D') {
4561 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4562 } else if (*s == 'n' || *s == 'N') {
4563 user_zonelist_order = ZONELIST_ORDER_NODE;
4564 } else if (*s == 'z' || *s == 'Z') {
4565 user_zonelist_order = ZONELIST_ORDER_ZONE;
4566 } else {
1170532b 4567 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4568 return -EINVAL;
4569 }
4570 return 0;
4571}
4572
4573static __init int setup_numa_zonelist_order(char *s)
4574{
ecb256f8
VL
4575 int ret;
4576
4577 if (!s)
4578 return 0;
4579
4580 ret = __parse_numa_zonelist_order(s);
4581 if (ret == 0)
4582 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4583
4584 return ret;
f0c0b2b8
KH
4585}
4586early_param("numa_zonelist_order", setup_numa_zonelist_order);
4587
4588/*
4589 * sysctl handler for numa_zonelist_order
4590 */
cccad5b9 4591int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4592 void __user *buffer, size_t *length,
f0c0b2b8
KH
4593 loff_t *ppos)
4594{
4595 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4596 int ret;
443c6f14 4597 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4598
443c6f14 4599 mutex_lock(&zl_order_mutex);
dacbde09
CG
4600 if (write) {
4601 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4602 ret = -EINVAL;
4603 goto out;
4604 }
4605 strcpy(saved_string, (char *)table->data);
4606 }
8d65af78 4607 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4608 if (ret)
443c6f14 4609 goto out;
f0c0b2b8
KH
4610 if (write) {
4611 int oldval = user_zonelist_order;
dacbde09
CG
4612
4613 ret = __parse_numa_zonelist_order((char *)table->data);
4614 if (ret) {
f0c0b2b8
KH
4615 /*
4616 * bogus value. restore saved string
4617 */
dacbde09 4618 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4619 NUMA_ZONELIST_ORDER_LEN);
4620 user_zonelist_order = oldval;
4eaf3f64
HL
4621 } else if (oldval != user_zonelist_order) {
4622 mutex_lock(&zonelists_mutex);
9adb62a5 4623 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4624 mutex_unlock(&zonelists_mutex);
4625 }
f0c0b2b8 4626 }
443c6f14
AK
4627out:
4628 mutex_unlock(&zl_order_mutex);
4629 return ret;
f0c0b2b8
KH
4630}
4631
4632
62bc62a8 4633#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4634static int node_load[MAX_NUMNODES];
4635
1da177e4 4636/**
4dc3b16b 4637 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4638 * @node: node whose fallback list we're appending
4639 * @used_node_mask: nodemask_t of already used nodes
4640 *
4641 * We use a number of factors to determine which is the next node that should
4642 * appear on a given node's fallback list. The node should not have appeared
4643 * already in @node's fallback list, and it should be the next closest node
4644 * according to the distance array (which contains arbitrary distance values
4645 * from each node to each node in the system), and should also prefer nodes
4646 * with no CPUs, since presumably they'll have very little allocation pressure
4647 * on them otherwise.
4648 * It returns -1 if no node is found.
4649 */
f0c0b2b8 4650static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4651{
4cf808eb 4652 int n, val;
1da177e4 4653 int min_val = INT_MAX;
00ef2d2f 4654 int best_node = NUMA_NO_NODE;
a70f7302 4655 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4656
4cf808eb
LT
4657 /* Use the local node if we haven't already */
4658 if (!node_isset(node, *used_node_mask)) {
4659 node_set(node, *used_node_mask);
4660 return node;
4661 }
1da177e4 4662
4b0ef1fe 4663 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4664
4665 /* Don't want a node to appear more than once */
4666 if (node_isset(n, *used_node_mask))
4667 continue;
4668
1da177e4
LT
4669 /* Use the distance array to find the distance */
4670 val = node_distance(node, n);
4671
4cf808eb
LT
4672 /* Penalize nodes under us ("prefer the next node") */
4673 val += (n < node);
4674
1da177e4 4675 /* Give preference to headless and unused nodes */
a70f7302
RR
4676 tmp = cpumask_of_node(n);
4677 if (!cpumask_empty(tmp))
1da177e4
LT
4678 val += PENALTY_FOR_NODE_WITH_CPUS;
4679
4680 /* Slight preference for less loaded node */
4681 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4682 val += node_load[n];
4683
4684 if (val < min_val) {
4685 min_val = val;
4686 best_node = n;
4687 }
4688 }
4689
4690 if (best_node >= 0)
4691 node_set(best_node, *used_node_mask);
4692
4693 return best_node;
4694}
4695
f0c0b2b8
KH
4696
4697/*
4698 * Build zonelists ordered by node and zones within node.
4699 * This results in maximum locality--normal zone overflows into local
4700 * DMA zone, if any--but risks exhausting DMA zone.
4701 */
4702static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4703{
f0c0b2b8 4704 int j;
1da177e4 4705 struct zonelist *zonelist;
f0c0b2b8 4706
54a6eb5c 4707 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4708 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4709 ;
bc732f1d 4710 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4711 zonelist->_zonerefs[j].zone = NULL;
4712 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4713}
4714
523b9458
CL
4715/*
4716 * Build gfp_thisnode zonelists
4717 */
4718static void build_thisnode_zonelists(pg_data_t *pgdat)
4719{
523b9458
CL
4720 int j;
4721 struct zonelist *zonelist;
4722
54a6eb5c 4723 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4724 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4725 zonelist->_zonerefs[j].zone = NULL;
4726 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4727}
4728
f0c0b2b8
KH
4729/*
4730 * Build zonelists ordered by zone and nodes within zones.
4731 * This results in conserving DMA zone[s] until all Normal memory is
4732 * exhausted, but results in overflowing to remote node while memory
4733 * may still exist in local DMA zone.
4734 */
4735static int node_order[MAX_NUMNODES];
4736
4737static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4738{
f0c0b2b8
KH
4739 int pos, j, node;
4740 int zone_type; /* needs to be signed */
4741 struct zone *z;
4742 struct zonelist *zonelist;
4743
54a6eb5c
MG
4744 zonelist = &pgdat->node_zonelists[0];
4745 pos = 0;
4746 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4747 for (j = 0; j < nr_nodes; j++) {
4748 node = node_order[j];
4749 z = &NODE_DATA(node)->node_zones[zone_type];
4750 if (populated_zone(z)) {
dd1a239f
MG
4751 zoneref_set_zone(z,
4752 &zonelist->_zonerefs[pos++]);
54a6eb5c 4753 check_highest_zone(zone_type);
f0c0b2b8
KH
4754 }
4755 }
f0c0b2b8 4756 }
dd1a239f
MG
4757 zonelist->_zonerefs[pos].zone = NULL;
4758 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4759}
4760
3193913c
MG
4761#if defined(CONFIG_64BIT)
4762/*
4763 * Devices that require DMA32/DMA are relatively rare and do not justify a
4764 * penalty to every machine in case the specialised case applies. Default
4765 * to Node-ordering on 64-bit NUMA machines
4766 */
4767static int default_zonelist_order(void)
4768{
4769 return ZONELIST_ORDER_NODE;
4770}
4771#else
4772/*
4773 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4774 * by the kernel. If processes running on node 0 deplete the low memory zone
4775 * then reclaim will occur more frequency increasing stalls and potentially
4776 * be easier to OOM if a large percentage of the zone is under writeback or
4777 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4778 * Hence, default to zone ordering on 32-bit.
4779 */
f0c0b2b8
KH
4780static int default_zonelist_order(void)
4781{
f0c0b2b8
KH
4782 return ZONELIST_ORDER_ZONE;
4783}
3193913c 4784#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4785
4786static void set_zonelist_order(void)
4787{
4788 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4789 current_zonelist_order = default_zonelist_order();
4790 else
4791 current_zonelist_order = user_zonelist_order;
4792}
4793
4794static void build_zonelists(pg_data_t *pgdat)
4795{
c00eb15a 4796 int i, node, load;
1da177e4 4797 nodemask_t used_mask;
f0c0b2b8
KH
4798 int local_node, prev_node;
4799 struct zonelist *zonelist;
d00181b9 4800 unsigned int order = current_zonelist_order;
1da177e4
LT
4801
4802 /* initialize zonelists */
523b9458 4803 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4804 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4805 zonelist->_zonerefs[0].zone = NULL;
4806 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4807 }
4808
4809 /* NUMA-aware ordering of nodes */
4810 local_node = pgdat->node_id;
62bc62a8 4811 load = nr_online_nodes;
1da177e4
LT
4812 prev_node = local_node;
4813 nodes_clear(used_mask);
f0c0b2b8 4814
f0c0b2b8 4815 memset(node_order, 0, sizeof(node_order));
c00eb15a 4816 i = 0;
f0c0b2b8 4817
1da177e4
LT
4818 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4819 /*
4820 * We don't want to pressure a particular node.
4821 * So adding penalty to the first node in same
4822 * distance group to make it round-robin.
4823 */
957f822a
DR
4824 if (node_distance(local_node, node) !=
4825 node_distance(local_node, prev_node))
f0c0b2b8
KH
4826 node_load[node] = load;
4827
1da177e4
LT
4828 prev_node = node;
4829 load--;
f0c0b2b8
KH
4830 if (order == ZONELIST_ORDER_NODE)
4831 build_zonelists_in_node_order(pgdat, node);
4832 else
c00eb15a 4833 node_order[i++] = node; /* remember order */
f0c0b2b8 4834 }
1da177e4 4835
f0c0b2b8
KH
4836 if (order == ZONELIST_ORDER_ZONE) {
4837 /* calculate node order -- i.e., DMA last! */
c00eb15a 4838 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4839 }
523b9458
CL
4840
4841 build_thisnode_zonelists(pgdat);
1da177e4
LT
4842}
4843
7aac7898
LS
4844#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4845/*
4846 * Return node id of node used for "local" allocations.
4847 * I.e., first node id of first zone in arg node's generic zonelist.
4848 * Used for initializing percpu 'numa_mem', which is used primarily
4849 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4850 */
4851int local_memory_node(int node)
4852{
c33d6c06 4853 struct zoneref *z;
7aac7898 4854
c33d6c06 4855 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4856 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4857 NULL);
4858 return z->zone->node;
7aac7898
LS
4859}
4860#endif
f0c0b2b8 4861
1da177e4
LT
4862#else /* CONFIG_NUMA */
4863
f0c0b2b8
KH
4864static void set_zonelist_order(void)
4865{
4866 current_zonelist_order = ZONELIST_ORDER_ZONE;
4867}
4868
4869static void build_zonelists(pg_data_t *pgdat)
1da177e4 4870{
19655d34 4871 int node, local_node;
54a6eb5c
MG
4872 enum zone_type j;
4873 struct zonelist *zonelist;
1da177e4
LT
4874
4875 local_node = pgdat->node_id;
1da177e4 4876
54a6eb5c 4877 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4878 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4879
54a6eb5c
MG
4880 /*
4881 * Now we build the zonelist so that it contains the zones
4882 * of all the other nodes.
4883 * We don't want to pressure a particular node, so when
4884 * building the zones for node N, we make sure that the
4885 * zones coming right after the local ones are those from
4886 * node N+1 (modulo N)
4887 */
4888 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4889 if (!node_online(node))
4890 continue;
bc732f1d 4891 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4892 }
54a6eb5c
MG
4893 for (node = 0; node < local_node; node++) {
4894 if (!node_online(node))
4895 continue;
bc732f1d 4896 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4897 }
4898
dd1a239f
MG
4899 zonelist->_zonerefs[j].zone = NULL;
4900 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4901}
4902
4903#endif /* CONFIG_NUMA */
4904
99dcc3e5
CL
4905/*
4906 * Boot pageset table. One per cpu which is going to be used for all
4907 * zones and all nodes. The parameters will be set in such a way
4908 * that an item put on a list will immediately be handed over to
4909 * the buddy list. This is safe since pageset manipulation is done
4910 * with interrupts disabled.
4911 *
4912 * The boot_pagesets must be kept even after bootup is complete for
4913 * unused processors and/or zones. They do play a role for bootstrapping
4914 * hotplugged processors.
4915 *
4916 * zoneinfo_show() and maybe other functions do
4917 * not check if the processor is online before following the pageset pointer.
4918 * Other parts of the kernel may not check if the zone is available.
4919 */
4920static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4921static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4922static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4923
4eaf3f64
HL
4924/*
4925 * Global mutex to protect against size modification of zonelists
4926 * as well as to serialize pageset setup for the new populated zone.
4927 */
4928DEFINE_MUTEX(zonelists_mutex);
4929
9b1a4d38 4930/* return values int ....just for stop_machine() */
4ed7e022 4931static int __build_all_zonelists(void *data)
1da177e4 4932{
6811378e 4933 int nid;
99dcc3e5 4934 int cpu;
9adb62a5 4935 pg_data_t *self = data;
9276b1bc 4936
7f9cfb31
BL
4937#ifdef CONFIG_NUMA
4938 memset(node_load, 0, sizeof(node_load));
4939#endif
9adb62a5
JL
4940
4941 if (self && !node_online(self->node_id)) {
4942 build_zonelists(self);
9adb62a5
JL
4943 }
4944
9276b1bc 4945 for_each_online_node(nid) {
7ea1530a
CL
4946 pg_data_t *pgdat = NODE_DATA(nid);
4947
4948 build_zonelists(pgdat);
9276b1bc 4949 }
99dcc3e5
CL
4950
4951 /*
4952 * Initialize the boot_pagesets that are going to be used
4953 * for bootstrapping processors. The real pagesets for
4954 * each zone will be allocated later when the per cpu
4955 * allocator is available.
4956 *
4957 * boot_pagesets are used also for bootstrapping offline
4958 * cpus if the system is already booted because the pagesets
4959 * are needed to initialize allocators on a specific cpu too.
4960 * F.e. the percpu allocator needs the page allocator which
4961 * needs the percpu allocator in order to allocate its pagesets
4962 * (a chicken-egg dilemma).
4963 */
7aac7898 4964 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4965 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4966
7aac7898
LS
4967#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4968 /*
4969 * We now know the "local memory node" for each node--
4970 * i.e., the node of the first zone in the generic zonelist.
4971 * Set up numa_mem percpu variable for on-line cpus. During
4972 * boot, only the boot cpu should be on-line; we'll init the
4973 * secondary cpus' numa_mem as they come on-line. During
4974 * node/memory hotplug, we'll fixup all on-line cpus.
4975 */
4976 if (cpu_online(cpu))
4977 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4978#endif
4979 }
4980
6811378e
YG
4981 return 0;
4982}
4983
061f67bc
RV
4984static noinline void __init
4985build_all_zonelists_init(void)
4986{
4987 __build_all_zonelists(NULL);
4988 mminit_verify_zonelist();
4989 cpuset_init_current_mems_allowed();
4990}
4991
4eaf3f64
HL
4992/*
4993 * Called with zonelists_mutex held always
4994 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4995 *
4996 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4997 * [we're only called with non-NULL zone through __meminit paths] and
4998 * (2) call of __init annotated helper build_all_zonelists_init
4999 * [protected by SYSTEM_BOOTING].
4eaf3f64 5000 */
9adb62a5 5001void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5002{
f0c0b2b8
KH
5003 set_zonelist_order();
5004
6811378e 5005 if (system_state == SYSTEM_BOOTING) {
061f67bc 5006 build_all_zonelists_init();
6811378e 5007 } else {
e9959f0f 5008#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5009 if (zone)
5010 setup_zone_pageset(zone);
e9959f0f 5011#endif
dd1895e2
CS
5012 /* we have to stop all cpus to guarantee there is no user
5013 of zonelist */
9adb62a5 5014 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5015 /* cpuset refresh routine should be here */
5016 }
bd1e22b8 5017 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5018 /*
5019 * Disable grouping by mobility if the number of pages in the
5020 * system is too low to allow the mechanism to work. It would be
5021 * more accurate, but expensive to check per-zone. This check is
5022 * made on memory-hotadd so a system can start with mobility
5023 * disabled and enable it later
5024 */
d9c23400 5025 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5026 page_group_by_mobility_disabled = 1;
5027 else
5028 page_group_by_mobility_disabled = 0;
5029
756a025f
JP
5030 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5031 nr_online_nodes,
5032 zonelist_order_name[current_zonelist_order],
5033 page_group_by_mobility_disabled ? "off" : "on",
5034 vm_total_pages);
f0c0b2b8 5035#ifdef CONFIG_NUMA
f88dfff5 5036 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5037#endif
1da177e4
LT
5038}
5039
5040/*
5041 * Helper functions to size the waitqueue hash table.
5042 * Essentially these want to choose hash table sizes sufficiently
5043 * large so that collisions trying to wait on pages are rare.
5044 * But in fact, the number of active page waitqueues on typical
5045 * systems is ridiculously low, less than 200. So this is even
5046 * conservative, even though it seems large.
5047 *
5048 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5049 * waitqueues, i.e. the size of the waitq table given the number of pages.
5050 */
5051#define PAGES_PER_WAITQUEUE 256
5052
cca448fe 5053#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 5054static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
5055{
5056 unsigned long size = 1;
5057
5058 pages /= PAGES_PER_WAITQUEUE;
5059
5060 while (size < pages)
5061 size <<= 1;
5062
5063 /*
5064 * Once we have dozens or even hundreds of threads sleeping
5065 * on IO we've got bigger problems than wait queue collision.
5066 * Limit the size of the wait table to a reasonable size.
5067 */
5068 size = min(size, 4096UL);
5069
5070 return max(size, 4UL);
5071}
cca448fe
YG
5072#else
5073/*
5074 * A zone's size might be changed by hot-add, so it is not possible to determine
5075 * a suitable size for its wait_table. So we use the maximum size now.
5076 *
5077 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5078 *
5079 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5080 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5081 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5082 *
5083 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5084 * or more by the traditional way. (See above). It equals:
5085 *
5086 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5087 * ia64(16K page size) : = ( 8G + 4M)byte.
5088 * powerpc (64K page size) : = (32G +16M)byte.
5089 */
5090static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5091{
5092 return 4096UL;
5093}
5094#endif
1da177e4
LT
5095
5096/*
5097 * This is an integer logarithm so that shifts can be used later
5098 * to extract the more random high bits from the multiplicative
5099 * hash function before the remainder is taken.
5100 */
5101static inline unsigned long wait_table_bits(unsigned long size)
5102{
5103 return ffz(~size);
5104}
5105
1da177e4
LT
5106/*
5107 * Initially all pages are reserved - free ones are freed
5108 * up by free_all_bootmem() once the early boot process is
5109 * done. Non-atomic initialization, single-pass.
5110 */
c09b4240 5111void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5112 unsigned long start_pfn, enum memmap_context context)
1da177e4 5113{
4b94ffdc 5114 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5115 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5116 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5117 unsigned long pfn;
3a80a7fa 5118 unsigned long nr_initialised = 0;
342332e6
TI
5119#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5120 struct memblock_region *r = NULL, *tmp;
5121#endif
1da177e4 5122
22b31eec
HD
5123 if (highest_memmap_pfn < end_pfn - 1)
5124 highest_memmap_pfn = end_pfn - 1;
5125
4b94ffdc
DW
5126 /*
5127 * Honor reservation requested by the driver for this ZONE_DEVICE
5128 * memory
5129 */
5130 if (altmap && start_pfn == altmap->base_pfn)
5131 start_pfn += altmap->reserve;
5132
cbe8dd4a 5133 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5134 /*
b72d0ffb
AM
5135 * There can be holes in boot-time mem_map[]s handed to this
5136 * function. They do not exist on hotplugged memory.
a2f3aa02 5137 */
b72d0ffb
AM
5138 if (context != MEMMAP_EARLY)
5139 goto not_early;
5140
5141 if (!early_pfn_valid(pfn))
5142 continue;
5143 if (!early_pfn_in_nid(pfn, nid))
5144 continue;
5145 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5146 break;
342332e6
TI
5147
5148#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5149 /*
5150 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5151 * from zone_movable_pfn[nid] to end of each node should be
5152 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5153 */
5154 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5155 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5156 continue;
342332e6 5157
b72d0ffb
AM
5158 /*
5159 * Check given memblock attribute by firmware which can affect
5160 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5161 * mirrored, it's an overlapped memmap init. skip it.
5162 */
5163 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5164 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5165 for_each_memblock(memory, tmp)
5166 if (pfn < memblock_region_memory_end_pfn(tmp))
5167 break;
5168 r = tmp;
5169 }
5170 if (pfn >= memblock_region_memory_base_pfn(r) &&
5171 memblock_is_mirror(r)) {
5172 /* already initialized as NORMAL */
5173 pfn = memblock_region_memory_end_pfn(r);
5174 continue;
342332e6 5175 }
a2f3aa02 5176 }
b72d0ffb 5177#endif
ac5d2539 5178
b72d0ffb 5179not_early:
ac5d2539
MG
5180 /*
5181 * Mark the block movable so that blocks are reserved for
5182 * movable at startup. This will force kernel allocations
5183 * to reserve their blocks rather than leaking throughout
5184 * the address space during boot when many long-lived
974a786e 5185 * kernel allocations are made.
ac5d2539
MG
5186 *
5187 * bitmap is created for zone's valid pfn range. but memmap
5188 * can be created for invalid pages (for alignment)
5189 * check here not to call set_pageblock_migratetype() against
5190 * pfn out of zone.
5191 */
5192 if (!(pfn & (pageblock_nr_pages - 1))) {
5193 struct page *page = pfn_to_page(pfn);
5194
5195 __init_single_page(page, pfn, zone, nid);
5196 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5197 } else {
5198 __init_single_pfn(pfn, zone, nid);
5199 }
1da177e4
LT
5200 }
5201}
5202
1e548deb 5203static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5204{
7aeb09f9 5205 unsigned int order, t;
b2a0ac88
MG
5206 for_each_migratetype_order(order, t) {
5207 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5208 zone->free_area[order].nr_free = 0;
5209 }
5210}
5211
5212#ifndef __HAVE_ARCH_MEMMAP_INIT
5213#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5214 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5215#endif
5216
7cd2b0a3 5217static int zone_batchsize(struct zone *zone)
e7c8d5c9 5218{
3a6be87f 5219#ifdef CONFIG_MMU
e7c8d5c9
CL
5220 int batch;
5221
5222 /*
5223 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5224 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5225 *
5226 * OK, so we don't know how big the cache is. So guess.
5227 */
b40da049 5228 batch = zone->managed_pages / 1024;
ba56e91c
SR
5229 if (batch * PAGE_SIZE > 512 * 1024)
5230 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5231 batch /= 4; /* We effectively *= 4 below */
5232 if (batch < 1)
5233 batch = 1;
5234
5235 /*
0ceaacc9
NP
5236 * Clamp the batch to a 2^n - 1 value. Having a power
5237 * of 2 value was found to be more likely to have
5238 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5239 *
0ceaacc9
NP
5240 * For example if 2 tasks are alternately allocating
5241 * batches of pages, one task can end up with a lot
5242 * of pages of one half of the possible page colors
5243 * and the other with pages of the other colors.
e7c8d5c9 5244 */
9155203a 5245 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5246
e7c8d5c9 5247 return batch;
3a6be87f
DH
5248
5249#else
5250 /* The deferral and batching of frees should be suppressed under NOMMU
5251 * conditions.
5252 *
5253 * The problem is that NOMMU needs to be able to allocate large chunks
5254 * of contiguous memory as there's no hardware page translation to
5255 * assemble apparent contiguous memory from discontiguous pages.
5256 *
5257 * Queueing large contiguous runs of pages for batching, however,
5258 * causes the pages to actually be freed in smaller chunks. As there
5259 * can be a significant delay between the individual batches being
5260 * recycled, this leads to the once large chunks of space being
5261 * fragmented and becoming unavailable for high-order allocations.
5262 */
5263 return 0;
5264#endif
e7c8d5c9
CL
5265}
5266
8d7a8fa9
CS
5267/*
5268 * pcp->high and pcp->batch values are related and dependent on one another:
5269 * ->batch must never be higher then ->high.
5270 * The following function updates them in a safe manner without read side
5271 * locking.
5272 *
5273 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5274 * those fields changing asynchronously (acording the the above rule).
5275 *
5276 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5277 * outside of boot time (or some other assurance that no concurrent updaters
5278 * exist).
5279 */
5280static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5281 unsigned long batch)
5282{
5283 /* start with a fail safe value for batch */
5284 pcp->batch = 1;
5285 smp_wmb();
5286
5287 /* Update high, then batch, in order */
5288 pcp->high = high;
5289 smp_wmb();
5290
5291 pcp->batch = batch;
5292}
5293
3664033c 5294/* a companion to pageset_set_high() */
4008bab7
CS
5295static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5296{
8d7a8fa9 5297 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5298}
5299
88c90dbc 5300static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5301{
5302 struct per_cpu_pages *pcp;
5f8dcc21 5303 int migratetype;
2caaad41 5304
1c6fe946
MD
5305 memset(p, 0, sizeof(*p));
5306
3dfa5721 5307 pcp = &p->pcp;
2caaad41 5308 pcp->count = 0;
5f8dcc21
MG
5309 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5310 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5311}
5312
88c90dbc
CS
5313static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5314{
5315 pageset_init(p);
5316 pageset_set_batch(p, batch);
5317}
5318
8ad4b1fb 5319/*
3664033c 5320 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5321 * to the value high for the pageset p.
5322 */
3664033c 5323static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5324 unsigned long high)
5325{
8d7a8fa9
CS
5326 unsigned long batch = max(1UL, high / 4);
5327 if ((high / 4) > (PAGE_SHIFT * 8))
5328 batch = PAGE_SHIFT * 8;
8ad4b1fb 5329
8d7a8fa9 5330 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5331}
5332
7cd2b0a3
DR
5333static void pageset_set_high_and_batch(struct zone *zone,
5334 struct per_cpu_pageset *pcp)
56cef2b8 5335{
56cef2b8 5336 if (percpu_pagelist_fraction)
3664033c 5337 pageset_set_high(pcp,
56cef2b8
CS
5338 (zone->managed_pages /
5339 percpu_pagelist_fraction));
5340 else
5341 pageset_set_batch(pcp, zone_batchsize(zone));
5342}
5343
169f6c19
CS
5344static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5345{
5346 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5347
5348 pageset_init(pcp);
5349 pageset_set_high_and_batch(zone, pcp);
5350}
5351
4ed7e022 5352static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5353{
5354 int cpu;
319774e2 5355 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5356 for_each_possible_cpu(cpu)
5357 zone_pageset_init(zone, cpu);
319774e2
WF
5358}
5359
2caaad41 5360/*
99dcc3e5
CL
5361 * Allocate per cpu pagesets and initialize them.
5362 * Before this call only boot pagesets were available.
e7c8d5c9 5363 */
99dcc3e5 5364void __init setup_per_cpu_pageset(void)
e7c8d5c9 5365{
99dcc3e5 5366 struct zone *zone;
e7c8d5c9 5367
319774e2
WF
5368 for_each_populated_zone(zone)
5369 setup_zone_pageset(zone);
e7c8d5c9
CL
5370}
5371
577a32f6 5372static noinline __init_refok
cca448fe 5373int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5374{
5375 int i;
cca448fe 5376 size_t alloc_size;
ed8ece2e
DH
5377
5378 /*
5379 * The per-page waitqueue mechanism uses hashed waitqueues
5380 * per zone.
5381 */
02b694de
YG
5382 zone->wait_table_hash_nr_entries =
5383 wait_table_hash_nr_entries(zone_size_pages);
5384 zone->wait_table_bits =
5385 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5386 alloc_size = zone->wait_table_hash_nr_entries
5387 * sizeof(wait_queue_head_t);
5388
cd94b9db 5389 if (!slab_is_available()) {
cca448fe 5390 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5391 memblock_virt_alloc_node_nopanic(
5392 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5393 } else {
5394 /*
5395 * This case means that a zone whose size was 0 gets new memory
5396 * via memory hot-add.
5397 * But it may be the case that a new node was hot-added. In
5398 * this case vmalloc() will not be able to use this new node's
5399 * memory - this wait_table must be initialized to use this new
5400 * node itself as well.
5401 * To use this new node's memory, further consideration will be
5402 * necessary.
5403 */
8691f3a7 5404 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5405 }
5406 if (!zone->wait_table)
5407 return -ENOMEM;
ed8ece2e 5408
b8af2941 5409 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5410 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5411
5412 return 0;
ed8ece2e
DH
5413}
5414
c09b4240 5415static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5416{
99dcc3e5
CL
5417 /*
5418 * per cpu subsystem is not up at this point. The following code
5419 * relies on the ability of the linker to provide the
5420 * offset of a (static) per cpu variable into the per cpu area.
5421 */
5422 zone->pageset = &boot_pageset;
ed8ece2e 5423
b38a8725 5424 if (populated_zone(zone))
99dcc3e5
CL
5425 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5426 zone->name, zone->present_pages,
5427 zone_batchsize(zone));
ed8ece2e
DH
5428}
5429
4ed7e022 5430int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5431 unsigned long zone_start_pfn,
b171e409 5432 unsigned long size)
ed8ece2e
DH
5433{
5434 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5435 int ret;
5436 ret = zone_wait_table_init(zone, size);
5437 if (ret)
5438 return ret;
ed8ece2e
DH
5439 pgdat->nr_zones = zone_idx(zone) + 1;
5440
ed8ece2e
DH
5441 zone->zone_start_pfn = zone_start_pfn;
5442
708614e6
MG
5443 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5444 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5445 pgdat->node_id,
5446 (unsigned long)zone_idx(zone),
5447 zone_start_pfn, (zone_start_pfn + size));
5448
1e548deb 5449 zone_init_free_lists(zone);
718127cc
YG
5450
5451 return 0;
ed8ece2e
DH
5452}
5453
0ee332c1 5454#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5455#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5456
c713216d
MG
5457/*
5458 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5459 */
8a942fde
MG
5460int __meminit __early_pfn_to_nid(unsigned long pfn,
5461 struct mminit_pfnnid_cache *state)
c713216d 5462{
c13291a5 5463 unsigned long start_pfn, end_pfn;
e76b63f8 5464 int nid;
7c243c71 5465
8a942fde
MG
5466 if (state->last_start <= pfn && pfn < state->last_end)
5467 return state->last_nid;
c713216d 5468
e76b63f8
YL
5469 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5470 if (nid != -1) {
8a942fde
MG
5471 state->last_start = start_pfn;
5472 state->last_end = end_pfn;
5473 state->last_nid = nid;
e76b63f8
YL
5474 }
5475
5476 return nid;
c713216d
MG
5477}
5478#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5479
c713216d 5480/**
6782832e 5481 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5482 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5483 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5484 *
7d018176
ZZ
5485 * If an architecture guarantees that all ranges registered contain no holes
5486 * and may be freed, this this function may be used instead of calling
5487 * memblock_free_early_nid() manually.
c713216d 5488 */
c13291a5 5489void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5490{
c13291a5
TH
5491 unsigned long start_pfn, end_pfn;
5492 int i, this_nid;
edbe7d23 5493
c13291a5
TH
5494 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5495 start_pfn = min(start_pfn, max_low_pfn);
5496 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5497
c13291a5 5498 if (start_pfn < end_pfn)
6782832e
SS
5499 memblock_free_early_nid(PFN_PHYS(start_pfn),
5500 (end_pfn - start_pfn) << PAGE_SHIFT,
5501 this_nid);
edbe7d23 5502 }
edbe7d23 5503}
edbe7d23 5504
c713216d
MG
5505/**
5506 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5507 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5508 *
7d018176
ZZ
5509 * If an architecture guarantees that all ranges registered contain no holes and may
5510 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5511 */
5512void __init sparse_memory_present_with_active_regions(int nid)
5513{
c13291a5
TH
5514 unsigned long start_pfn, end_pfn;
5515 int i, this_nid;
c713216d 5516
c13291a5
TH
5517 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5518 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5519}
5520
5521/**
5522 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5523 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5524 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5525 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5526 *
5527 * It returns the start and end page frame of a node based on information
7d018176 5528 * provided by memblock_set_node(). If called for a node
c713216d 5529 * with no available memory, a warning is printed and the start and end
88ca3b94 5530 * PFNs will be 0.
c713216d 5531 */
a3142c8e 5532void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5533 unsigned long *start_pfn, unsigned long *end_pfn)
5534{
c13291a5 5535 unsigned long this_start_pfn, this_end_pfn;
c713216d 5536 int i;
c13291a5 5537
c713216d
MG
5538 *start_pfn = -1UL;
5539 *end_pfn = 0;
5540
c13291a5
TH
5541 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5542 *start_pfn = min(*start_pfn, this_start_pfn);
5543 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5544 }
5545
633c0666 5546 if (*start_pfn == -1UL)
c713216d 5547 *start_pfn = 0;
c713216d
MG
5548}
5549
2a1e274a
MG
5550/*
5551 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5552 * assumption is made that zones within a node are ordered in monotonic
5553 * increasing memory addresses so that the "highest" populated zone is used
5554 */
b69a7288 5555static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5556{
5557 int zone_index;
5558 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5559 if (zone_index == ZONE_MOVABLE)
5560 continue;
5561
5562 if (arch_zone_highest_possible_pfn[zone_index] >
5563 arch_zone_lowest_possible_pfn[zone_index])
5564 break;
5565 }
5566
5567 VM_BUG_ON(zone_index == -1);
5568 movable_zone = zone_index;
5569}
5570
5571/*
5572 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5573 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5574 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5575 * in each node depending on the size of each node and how evenly kernelcore
5576 * is distributed. This helper function adjusts the zone ranges
5577 * provided by the architecture for a given node by using the end of the
5578 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5579 * zones within a node are in order of monotonic increases memory addresses
5580 */
b69a7288 5581static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5582 unsigned long zone_type,
5583 unsigned long node_start_pfn,
5584 unsigned long node_end_pfn,
5585 unsigned long *zone_start_pfn,
5586 unsigned long *zone_end_pfn)
5587{
5588 /* Only adjust if ZONE_MOVABLE is on this node */
5589 if (zone_movable_pfn[nid]) {
5590 /* Size ZONE_MOVABLE */
5591 if (zone_type == ZONE_MOVABLE) {
5592 *zone_start_pfn = zone_movable_pfn[nid];
5593 *zone_end_pfn = min(node_end_pfn,
5594 arch_zone_highest_possible_pfn[movable_zone]);
5595
2a1e274a
MG
5596 /* Check if this whole range is within ZONE_MOVABLE */
5597 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5598 *zone_start_pfn = *zone_end_pfn;
5599 }
5600}
5601
c713216d
MG
5602/*
5603 * Return the number of pages a zone spans in a node, including holes
5604 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5605 */
6ea6e688 5606static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5607 unsigned long zone_type,
7960aedd
ZY
5608 unsigned long node_start_pfn,
5609 unsigned long node_end_pfn,
d91749c1
TI
5610 unsigned long *zone_start_pfn,
5611 unsigned long *zone_end_pfn,
c713216d
MG
5612 unsigned long *ignored)
5613{
b5685e92 5614 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5615 if (!node_start_pfn && !node_end_pfn)
5616 return 0;
5617
7960aedd 5618 /* Get the start and end of the zone */
d91749c1
TI
5619 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5620 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5621 adjust_zone_range_for_zone_movable(nid, zone_type,
5622 node_start_pfn, node_end_pfn,
d91749c1 5623 zone_start_pfn, zone_end_pfn);
c713216d
MG
5624
5625 /* Check that this node has pages within the zone's required range */
d91749c1 5626 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5627 return 0;
5628
5629 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5630 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5631 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5632
5633 /* Return the spanned pages */
d91749c1 5634 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5635}
5636
5637/*
5638 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5639 * then all holes in the requested range will be accounted for.
c713216d 5640 */
32996250 5641unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5642 unsigned long range_start_pfn,
5643 unsigned long range_end_pfn)
5644{
96e907d1
TH
5645 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5646 unsigned long start_pfn, end_pfn;
5647 int i;
c713216d 5648
96e907d1
TH
5649 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5650 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5651 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5652 nr_absent -= end_pfn - start_pfn;
c713216d 5653 }
96e907d1 5654 return nr_absent;
c713216d
MG
5655}
5656
5657/**
5658 * absent_pages_in_range - Return number of page frames in holes within a range
5659 * @start_pfn: The start PFN to start searching for holes
5660 * @end_pfn: The end PFN to stop searching for holes
5661 *
88ca3b94 5662 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5663 */
5664unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5665 unsigned long end_pfn)
5666{
5667 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5668}
5669
5670/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5671static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5672 unsigned long zone_type,
7960aedd
ZY
5673 unsigned long node_start_pfn,
5674 unsigned long node_end_pfn,
c713216d
MG
5675 unsigned long *ignored)
5676{
96e907d1
TH
5677 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5678 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5679 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5680 unsigned long nr_absent;
9c7cd687 5681
b5685e92 5682 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5683 if (!node_start_pfn && !node_end_pfn)
5684 return 0;
5685
96e907d1
TH
5686 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5687 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5688
2a1e274a
MG
5689 adjust_zone_range_for_zone_movable(nid, zone_type,
5690 node_start_pfn, node_end_pfn,
5691 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5692 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5693
5694 /*
5695 * ZONE_MOVABLE handling.
5696 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5697 * and vice versa.
5698 */
5699 if (zone_movable_pfn[nid]) {
5700 if (mirrored_kernelcore) {
5701 unsigned long start_pfn, end_pfn;
5702 struct memblock_region *r;
5703
5704 for_each_memblock(memory, r) {
5705 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5706 zone_start_pfn, zone_end_pfn);
5707 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5708 zone_start_pfn, zone_end_pfn);
5709
5710 if (zone_type == ZONE_MOVABLE &&
5711 memblock_is_mirror(r))
5712 nr_absent += end_pfn - start_pfn;
5713
5714 if (zone_type == ZONE_NORMAL &&
5715 !memblock_is_mirror(r))
5716 nr_absent += end_pfn - start_pfn;
5717 }
5718 } else {
5719 if (zone_type == ZONE_NORMAL)
5720 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5721 }
5722 }
5723
5724 return nr_absent;
c713216d 5725}
0e0b864e 5726
0ee332c1 5727#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5728static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5729 unsigned long zone_type,
7960aedd
ZY
5730 unsigned long node_start_pfn,
5731 unsigned long node_end_pfn,
d91749c1
TI
5732 unsigned long *zone_start_pfn,
5733 unsigned long *zone_end_pfn,
c713216d
MG
5734 unsigned long *zones_size)
5735{
d91749c1
TI
5736 unsigned int zone;
5737
5738 *zone_start_pfn = node_start_pfn;
5739 for (zone = 0; zone < zone_type; zone++)
5740 *zone_start_pfn += zones_size[zone];
5741
5742 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5743
c713216d
MG
5744 return zones_size[zone_type];
5745}
5746
6ea6e688 5747static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5748 unsigned long zone_type,
7960aedd
ZY
5749 unsigned long node_start_pfn,
5750 unsigned long node_end_pfn,
c713216d
MG
5751 unsigned long *zholes_size)
5752{
5753 if (!zholes_size)
5754 return 0;
5755
5756 return zholes_size[zone_type];
5757}
20e6926d 5758
0ee332c1 5759#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5760
a3142c8e 5761static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5762 unsigned long node_start_pfn,
5763 unsigned long node_end_pfn,
5764 unsigned long *zones_size,
5765 unsigned long *zholes_size)
c713216d 5766{
febd5949 5767 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5768 enum zone_type i;
5769
febd5949
GZ
5770 for (i = 0; i < MAX_NR_ZONES; i++) {
5771 struct zone *zone = pgdat->node_zones + i;
d91749c1 5772 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5773 unsigned long size, real_size;
c713216d 5774
febd5949
GZ
5775 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5776 node_start_pfn,
5777 node_end_pfn,
d91749c1
TI
5778 &zone_start_pfn,
5779 &zone_end_pfn,
febd5949
GZ
5780 zones_size);
5781 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5782 node_start_pfn, node_end_pfn,
5783 zholes_size);
d91749c1
TI
5784 if (size)
5785 zone->zone_start_pfn = zone_start_pfn;
5786 else
5787 zone->zone_start_pfn = 0;
febd5949
GZ
5788 zone->spanned_pages = size;
5789 zone->present_pages = real_size;
5790
5791 totalpages += size;
5792 realtotalpages += real_size;
5793 }
5794
5795 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5796 pgdat->node_present_pages = realtotalpages;
5797 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5798 realtotalpages);
5799}
5800
835c134e
MG
5801#ifndef CONFIG_SPARSEMEM
5802/*
5803 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5804 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5805 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5806 * round what is now in bits to nearest long in bits, then return it in
5807 * bytes.
5808 */
7c45512d 5809static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5810{
5811 unsigned long usemapsize;
5812
7c45512d 5813 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5814 usemapsize = roundup(zonesize, pageblock_nr_pages);
5815 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5816 usemapsize *= NR_PAGEBLOCK_BITS;
5817 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5818
5819 return usemapsize / 8;
5820}
5821
5822static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5823 struct zone *zone,
5824 unsigned long zone_start_pfn,
5825 unsigned long zonesize)
835c134e 5826{
7c45512d 5827 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5828 zone->pageblock_flags = NULL;
58a01a45 5829 if (usemapsize)
6782832e
SS
5830 zone->pageblock_flags =
5831 memblock_virt_alloc_node_nopanic(usemapsize,
5832 pgdat->node_id);
835c134e
MG
5833}
5834#else
7c45512d
LT
5835static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5836 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5837#endif /* CONFIG_SPARSEMEM */
5838
d9c23400 5839#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5840
d9c23400 5841/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5842void __paginginit set_pageblock_order(void)
d9c23400 5843{
955c1cd7
AM
5844 unsigned int order;
5845
d9c23400
MG
5846 /* Check that pageblock_nr_pages has not already been setup */
5847 if (pageblock_order)
5848 return;
5849
955c1cd7
AM
5850 if (HPAGE_SHIFT > PAGE_SHIFT)
5851 order = HUGETLB_PAGE_ORDER;
5852 else
5853 order = MAX_ORDER - 1;
5854
d9c23400
MG
5855 /*
5856 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5857 * This value may be variable depending on boot parameters on IA64 and
5858 * powerpc.
d9c23400
MG
5859 */
5860 pageblock_order = order;
5861}
5862#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5863
ba72cb8c
MG
5864/*
5865 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5866 * is unused as pageblock_order is set at compile-time. See
5867 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5868 * the kernel config
ba72cb8c 5869 */
15ca220e 5870void __paginginit set_pageblock_order(void)
ba72cb8c 5871{
ba72cb8c 5872}
d9c23400
MG
5873
5874#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5875
01cefaef
JL
5876static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5877 unsigned long present_pages)
5878{
5879 unsigned long pages = spanned_pages;
5880
5881 /*
5882 * Provide a more accurate estimation if there are holes within
5883 * the zone and SPARSEMEM is in use. If there are holes within the
5884 * zone, each populated memory region may cost us one or two extra
5885 * memmap pages due to alignment because memmap pages for each
5886 * populated regions may not naturally algined on page boundary.
5887 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5888 */
5889 if (spanned_pages > present_pages + (present_pages >> 4) &&
5890 IS_ENABLED(CONFIG_SPARSEMEM))
5891 pages = present_pages;
5892
5893 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5894}
5895
1da177e4
LT
5896/*
5897 * Set up the zone data structures:
5898 * - mark all pages reserved
5899 * - mark all memory queues empty
5900 * - clear the memory bitmaps
6527af5d
MK
5901 *
5902 * NOTE: pgdat should get zeroed by caller.
1da177e4 5903 */
7f3eb55b 5904static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5905{
2f1b6248 5906 enum zone_type j;
ed8ece2e 5907 int nid = pgdat->node_id;
718127cc 5908 int ret;
1da177e4 5909
208d54e5 5910 pgdat_resize_init(pgdat);
8177a420
AA
5911#ifdef CONFIG_NUMA_BALANCING
5912 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5913 pgdat->numabalancing_migrate_nr_pages = 0;
5914 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5915#endif
5916#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5917 spin_lock_init(&pgdat->split_queue_lock);
5918 INIT_LIST_HEAD(&pgdat->split_queue);
5919 pgdat->split_queue_len = 0;
8177a420 5920#endif
1da177e4 5921 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5922 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5923#ifdef CONFIG_COMPACTION
5924 init_waitqueue_head(&pgdat->kcompactd_wait);
5925#endif
eefa864b 5926 pgdat_page_ext_init(pgdat);
5f63b720 5927
1da177e4
LT
5928 for (j = 0; j < MAX_NR_ZONES; j++) {
5929 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5930 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5931 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5932
febd5949
GZ
5933 size = zone->spanned_pages;
5934 realsize = freesize = zone->present_pages;
1da177e4 5935
0e0b864e 5936 /*
9feedc9d 5937 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5938 * is used by this zone for memmap. This affects the watermark
5939 * and per-cpu initialisations
5940 */
01cefaef 5941 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5942 if (!is_highmem_idx(j)) {
5943 if (freesize >= memmap_pages) {
5944 freesize -= memmap_pages;
5945 if (memmap_pages)
5946 printk(KERN_DEBUG
5947 " %s zone: %lu pages used for memmap\n",
5948 zone_names[j], memmap_pages);
5949 } else
1170532b 5950 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5951 zone_names[j], memmap_pages, freesize);
5952 }
0e0b864e 5953
6267276f 5954 /* Account for reserved pages */
9feedc9d
JL
5955 if (j == 0 && freesize > dma_reserve) {
5956 freesize -= dma_reserve;
d903ef9f 5957 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5958 zone_names[0], dma_reserve);
0e0b864e
MG
5959 }
5960
98d2b0eb 5961 if (!is_highmem_idx(j))
9feedc9d 5962 nr_kernel_pages += freesize;
01cefaef
JL
5963 /* Charge for highmem memmap if there are enough kernel pages */
5964 else if (nr_kernel_pages > memmap_pages * 2)
5965 nr_kernel_pages -= memmap_pages;
9feedc9d 5966 nr_all_pages += freesize;
1da177e4 5967
9feedc9d
JL
5968 /*
5969 * Set an approximate value for lowmem here, it will be adjusted
5970 * when the bootmem allocator frees pages into the buddy system.
5971 * And all highmem pages will be managed by the buddy system.
5972 */
5973 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5974#ifdef CONFIG_NUMA
d5f541ed 5975 zone->node = nid;
9feedc9d 5976 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5977 / 100;
9feedc9d 5978 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5979#endif
1da177e4
LT
5980 zone->name = zone_names[j];
5981 spin_lock_init(&zone->lock);
5982 spin_lock_init(&zone->lru_lock);
bdc8cb98 5983 zone_seqlock_init(zone);
1da177e4 5984 zone->zone_pgdat = pgdat;
ed8ece2e 5985 zone_pcp_init(zone);
81c0a2bb
JW
5986
5987 /* For bootup, initialized properly in watermark setup */
5988 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5989
bea8c150 5990 lruvec_init(&zone->lruvec);
1da177e4
LT
5991 if (!size)
5992 continue;
5993
955c1cd7 5994 set_pageblock_order();
7c45512d 5995 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5996 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5997 BUG_ON(ret);
76cdd58e 5998 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5999 }
6000}
6001
577a32f6 6002static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6003{
b0aeba74 6004 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6005 unsigned long __maybe_unused offset = 0;
6006
1da177e4
LT
6007 /* Skip empty nodes */
6008 if (!pgdat->node_spanned_pages)
6009 return;
6010
d41dee36 6011#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6012 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6013 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6014 /* ia64 gets its own node_mem_map, before this, without bootmem */
6015 if (!pgdat->node_mem_map) {
b0aeba74 6016 unsigned long size, end;
d41dee36
AW
6017 struct page *map;
6018
e984bb43
BP
6019 /*
6020 * The zone's endpoints aren't required to be MAX_ORDER
6021 * aligned but the node_mem_map endpoints must be in order
6022 * for the buddy allocator to function correctly.
6023 */
108bcc96 6024 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6025 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6026 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6027 map = alloc_remap(pgdat->node_id, size);
6028 if (!map)
6782832e
SS
6029 map = memblock_virt_alloc_node_nopanic(size,
6030 pgdat->node_id);
a1c34a3b 6031 pgdat->node_mem_map = map + offset;
1da177e4 6032 }
12d810c1 6033#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6034 /*
6035 * With no DISCONTIG, the global mem_map is just set as node 0's
6036 */
c713216d 6037 if (pgdat == NODE_DATA(0)) {
1da177e4 6038 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6039#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6040 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6041 mem_map -= offset;
0ee332c1 6042#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6043 }
1da177e4 6044#endif
d41dee36 6045#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6046}
6047
9109fb7b
JW
6048void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6049 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6050{
9109fb7b 6051 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6052 unsigned long start_pfn = 0;
6053 unsigned long end_pfn = 0;
9109fb7b 6054
88fdf75d 6055 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 6056 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 6057
3a80a7fa 6058 reset_deferred_meminit(pgdat);
1da177e4
LT
6059 pgdat->node_id = nid;
6060 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
6061#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6062 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6063 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6064 (u64)start_pfn << PAGE_SHIFT,
6065 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6066#else
6067 start_pfn = node_start_pfn;
7960aedd
ZY
6068#endif
6069 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6070 zones_size, zholes_size);
1da177e4
LT
6071
6072 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6073#ifdef CONFIG_FLAT_NODE_MEM_MAP
6074 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6075 nid, (unsigned long)pgdat,
6076 (unsigned long)pgdat->node_mem_map);
6077#endif
1da177e4 6078
7f3eb55b 6079 free_area_init_core(pgdat);
1da177e4
LT
6080}
6081
0ee332c1 6082#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6083
6084#if MAX_NUMNODES > 1
6085/*
6086 * Figure out the number of possible node ids.
6087 */
f9872caf 6088void __init setup_nr_node_ids(void)
418508c1 6089{
904a9553 6090 unsigned int highest;
418508c1 6091
904a9553 6092 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6093 nr_node_ids = highest + 1;
6094}
418508c1
MS
6095#endif
6096
1e01979c
TH
6097/**
6098 * node_map_pfn_alignment - determine the maximum internode alignment
6099 *
6100 * This function should be called after node map is populated and sorted.
6101 * It calculates the maximum power of two alignment which can distinguish
6102 * all the nodes.
6103 *
6104 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6105 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6106 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6107 * shifted, 1GiB is enough and this function will indicate so.
6108 *
6109 * This is used to test whether pfn -> nid mapping of the chosen memory
6110 * model has fine enough granularity to avoid incorrect mapping for the
6111 * populated node map.
6112 *
6113 * Returns the determined alignment in pfn's. 0 if there is no alignment
6114 * requirement (single node).
6115 */
6116unsigned long __init node_map_pfn_alignment(void)
6117{
6118 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6119 unsigned long start, end, mask;
1e01979c 6120 int last_nid = -1;
c13291a5 6121 int i, nid;
1e01979c 6122
c13291a5 6123 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6124 if (!start || last_nid < 0 || last_nid == nid) {
6125 last_nid = nid;
6126 last_end = end;
6127 continue;
6128 }
6129
6130 /*
6131 * Start with a mask granular enough to pin-point to the
6132 * start pfn and tick off bits one-by-one until it becomes
6133 * too coarse to separate the current node from the last.
6134 */
6135 mask = ~((1 << __ffs(start)) - 1);
6136 while (mask && last_end <= (start & (mask << 1)))
6137 mask <<= 1;
6138
6139 /* accumulate all internode masks */
6140 accl_mask |= mask;
6141 }
6142
6143 /* convert mask to number of pages */
6144 return ~accl_mask + 1;
6145}
6146
a6af2bc3 6147/* Find the lowest pfn for a node */
b69a7288 6148static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6149{
a6af2bc3 6150 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6151 unsigned long start_pfn;
6152 int i;
1abbfb41 6153
c13291a5
TH
6154 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6155 min_pfn = min(min_pfn, start_pfn);
c713216d 6156
a6af2bc3 6157 if (min_pfn == ULONG_MAX) {
1170532b 6158 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6159 return 0;
6160 }
6161
6162 return min_pfn;
c713216d
MG
6163}
6164
6165/**
6166 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6167 *
6168 * It returns the minimum PFN based on information provided via
7d018176 6169 * memblock_set_node().
c713216d
MG
6170 */
6171unsigned long __init find_min_pfn_with_active_regions(void)
6172{
6173 return find_min_pfn_for_node(MAX_NUMNODES);
6174}
6175
37b07e41
LS
6176/*
6177 * early_calculate_totalpages()
6178 * Sum pages in active regions for movable zone.
4b0ef1fe 6179 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6180 */
484f51f8 6181static unsigned long __init early_calculate_totalpages(void)
7e63efef 6182{
7e63efef 6183 unsigned long totalpages = 0;
c13291a5
TH
6184 unsigned long start_pfn, end_pfn;
6185 int i, nid;
6186
6187 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6188 unsigned long pages = end_pfn - start_pfn;
7e63efef 6189
37b07e41
LS
6190 totalpages += pages;
6191 if (pages)
4b0ef1fe 6192 node_set_state(nid, N_MEMORY);
37b07e41 6193 }
b8af2941 6194 return totalpages;
7e63efef
MG
6195}
6196
2a1e274a
MG
6197/*
6198 * Find the PFN the Movable zone begins in each node. Kernel memory
6199 * is spread evenly between nodes as long as the nodes have enough
6200 * memory. When they don't, some nodes will have more kernelcore than
6201 * others
6202 */
b224ef85 6203static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6204{
6205 int i, nid;
6206 unsigned long usable_startpfn;
6207 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6208 /* save the state before borrow the nodemask */
4b0ef1fe 6209 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6210 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6211 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6212 struct memblock_region *r;
b2f3eebe
TC
6213
6214 /* Need to find movable_zone earlier when movable_node is specified. */
6215 find_usable_zone_for_movable();
6216
6217 /*
6218 * If movable_node is specified, ignore kernelcore and movablecore
6219 * options.
6220 */
6221 if (movable_node_is_enabled()) {
136199f0
EM
6222 for_each_memblock(memory, r) {
6223 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6224 continue;
6225
136199f0 6226 nid = r->nid;
b2f3eebe 6227
136199f0 6228 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6229 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6230 min(usable_startpfn, zone_movable_pfn[nid]) :
6231 usable_startpfn;
6232 }
6233
6234 goto out2;
6235 }
2a1e274a 6236
342332e6
TI
6237 /*
6238 * If kernelcore=mirror is specified, ignore movablecore option
6239 */
6240 if (mirrored_kernelcore) {
6241 bool mem_below_4gb_not_mirrored = false;
6242
6243 for_each_memblock(memory, r) {
6244 if (memblock_is_mirror(r))
6245 continue;
6246
6247 nid = r->nid;
6248
6249 usable_startpfn = memblock_region_memory_base_pfn(r);
6250
6251 if (usable_startpfn < 0x100000) {
6252 mem_below_4gb_not_mirrored = true;
6253 continue;
6254 }
6255
6256 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6257 min(usable_startpfn, zone_movable_pfn[nid]) :
6258 usable_startpfn;
6259 }
6260
6261 if (mem_below_4gb_not_mirrored)
6262 pr_warn("This configuration results in unmirrored kernel memory.");
6263
6264 goto out2;
6265 }
6266
7e63efef 6267 /*
b2f3eebe 6268 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6269 * kernelcore that corresponds so that memory usable for
6270 * any allocation type is evenly spread. If both kernelcore
6271 * and movablecore are specified, then the value of kernelcore
6272 * will be used for required_kernelcore if it's greater than
6273 * what movablecore would have allowed.
6274 */
6275 if (required_movablecore) {
7e63efef
MG
6276 unsigned long corepages;
6277
6278 /*
6279 * Round-up so that ZONE_MOVABLE is at least as large as what
6280 * was requested by the user
6281 */
6282 required_movablecore =
6283 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6284 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6285 corepages = totalpages - required_movablecore;
6286
6287 required_kernelcore = max(required_kernelcore, corepages);
6288 }
6289
bde304bd
XQ
6290 /*
6291 * If kernelcore was not specified or kernelcore size is larger
6292 * than totalpages, there is no ZONE_MOVABLE.
6293 */
6294 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6295 goto out;
2a1e274a
MG
6296
6297 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6298 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6299
6300restart:
6301 /* Spread kernelcore memory as evenly as possible throughout nodes */
6302 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6303 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6304 unsigned long start_pfn, end_pfn;
6305
2a1e274a
MG
6306 /*
6307 * Recalculate kernelcore_node if the division per node
6308 * now exceeds what is necessary to satisfy the requested
6309 * amount of memory for the kernel
6310 */
6311 if (required_kernelcore < kernelcore_node)
6312 kernelcore_node = required_kernelcore / usable_nodes;
6313
6314 /*
6315 * As the map is walked, we track how much memory is usable
6316 * by the kernel using kernelcore_remaining. When it is
6317 * 0, the rest of the node is usable by ZONE_MOVABLE
6318 */
6319 kernelcore_remaining = kernelcore_node;
6320
6321 /* Go through each range of PFNs within this node */
c13291a5 6322 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6323 unsigned long size_pages;
6324
c13291a5 6325 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6326 if (start_pfn >= end_pfn)
6327 continue;
6328
6329 /* Account for what is only usable for kernelcore */
6330 if (start_pfn < usable_startpfn) {
6331 unsigned long kernel_pages;
6332 kernel_pages = min(end_pfn, usable_startpfn)
6333 - start_pfn;
6334
6335 kernelcore_remaining -= min(kernel_pages,
6336 kernelcore_remaining);
6337 required_kernelcore -= min(kernel_pages,
6338 required_kernelcore);
6339
6340 /* Continue if range is now fully accounted */
6341 if (end_pfn <= usable_startpfn) {
6342
6343 /*
6344 * Push zone_movable_pfn to the end so
6345 * that if we have to rebalance
6346 * kernelcore across nodes, we will
6347 * not double account here
6348 */
6349 zone_movable_pfn[nid] = end_pfn;
6350 continue;
6351 }
6352 start_pfn = usable_startpfn;
6353 }
6354
6355 /*
6356 * The usable PFN range for ZONE_MOVABLE is from
6357 * start_pfn->end_pfn. Calculate size_pages as the
6358 * number of pages used as kernelcore
6359 */
6360 size_pages = end_pfn - start_pfn;
6361 if (size_pages > kernelcore_remaining)
6362 size_pages = kernelcore_remaining;
6363 zone_movable_pfn[nid] = start_pfn + size_pages;
6364
6365 /*
6366 * Some kernelcore has been met, update counts and
6367 * break if the kernelcore for this node has been
b8af2941 6368 * satisfied
2a1e274a
MG
6369 */
6370 required_kernelcore -= min(required_kernelcore,
6371 size_pages);
6372 kernelcore_remaining -= size_pages;
6373 if (!kernelcore_remaining)
6374 break;
6375 }
6376 }
6377
6378 /*
6379 * If there is still required_kernelcore, we do another pass with one
6380 * less node in the count. This will push zone_movable_pfn[nid] further
6381 * along on the nodes that still have memory until kernelcore is
b8af2941 6382 * satisfied
2a1e274a
MG
6383 */
6384 usable_nodes--;
6385 if (usable_nodes && required_kernelcore > usable_nodes)
6386 goto restart;
6387
b2f3eebe 6388out2:
2a1e274a
MG
6389 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6390 for (nid = 0; nid < MAX_NUMNODES; nid++)
6391 zone_movable_pfn[nid] =
6392 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6393
20e6926d 6394out:
66918dcd 6395 /* restore the node_state */
4b0ef1fe 6396 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6397}
6398
4b0ef1fe
LJ
6399/* Any regular or high memory on that node ? */
6400static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6401{
37b07e41
LS
6402 enum zone_type zone_type;
6403
4b0ef1fe
LJ
6404 if (N_MEMORY == N_NORMAL_MEMORY)
6405 return;
6406
6407 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6408 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6409 if (populated_zone(zone)) {
4b0ef1fe
LJ
6410 node_set_state(nid, N_HIGH_MEMORY);
6411 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6412 zone_type <= ZONE_NORMAL)
6413 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6414 break;
6415 }
37b07e41 6416 }
37b07e41
LS
6417}
6418
c713216d
MG
6419/**
6420 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6421 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6422 *
6423 * This will call free_area_init_node() for each active node in the system.
7d018176 6424 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6425 * zone in each node and their holes is calculated. If the maximum PFN
6426 * between two adjacent zones match, it is assumed that the zone is empty.
6427 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6428 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6429 * starts where the previous one ended. For example, ZONE_DMA32 starts
6430 * at arch_max_dma_pfn.
6431 */
6432void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6433{
c13291a5
TH
6434 unsigned long start_pfn, end_pfn;
6435 int i, nid;
a6af2bc3 6436
c713216d
MG
6437 /* Record where the zone boundaries are */
6438 memset(arch_zone_lowest_possible_pfn, 0,
6439 sizeof(arch_zone_lowest_possible_pfn));
6440 memset(arch_zone_highest_possible_pfn, 0,
6441 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6442
6443 start_pfn = find_min_pfn_with_active_regions();
6444
6445 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6446 if (i == ZONE_MOVABLE)
6447 continue;
90cae1fe
OH
6448
6449 end_pfn = max(max_zone_pfn[i], start_pfn);
6450 arch_zone_lowest_possible_pfn[i] = start_pfn;
6451 arch_zone_highest_possible_pfn[i] = end_pfn;
6452
6453 start_pfn = end_pfn;
c713216d 6454 }
2a1e274a
MG
6455 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6456 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6457
6458 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6459 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6460 find_zone_movable_pfns_for_nodes();
c713216d 6461
c713216d 6462 /* Print out the zone ranges */
f88dfff5 6463 pr_info("Zone ranges:\n");
2a1e274a
MG
6464 for (i = 0; i < MAX_NR_ZONES; i++) {
6465 if (i == ZONE_MOVABLE)
6466 continue;
f88dfff5 6467 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6468 if (arch_zone_lowest_possible_pfn[i] ==
6469 arch_zone_highest_possible_pfn[i])
f88dfff5 6470 pr_cont("empty\n");
72f0ba02 6471 else
8d29e18a
JG
6472 pr_cont("[mem %#018Lx-%#018Lx]\n",
6473 (u64)arch_zone_lowest_possible_pfn[i]
6474 << PAGE_SHIFT,
6475 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6476 << PAGE_SHIFT) - 1);
2a1e274a
MG
6477 }
6478
6479 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6480 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6481 for (i = 0; i < MAX_NUMNODES; i++) {
6482 if (zone_movable_pfn[i])
8d29e18a
JG
6483 pr_info(" Node %d: %#018Lx\n", i,
6484 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6485 }
c713216d 6486
f2d52fe5 6487 /* Print out the early node map */
f88dfff5 6488 pr_info("Early memory node ranges\n");
c13291a5 6489 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6490 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6491 (u64)start_pfn << PAGE_SHIFT,
6492 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6493
6494 /* Initialise every node */
708614e6 6495 mminit_verify_pageflags_layout();
8ef82866 6496 setup_nr_node_ids();
c713216d
MG
6497 for_each_online_node(nid) {
6498 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6499 free_area_init_node(nid, NULL,
c713216d 6500 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6501
6502 /* Any memory on that node */
6503 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6504 node_set_state(nid, N_MEMORY);
6505 check_for_memory(pgdat, nid);
c713216d
MG
6506 }
6507}
2a1e274a 6508
7e63efef 6509static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6510{
6511 unsigned long long coremem;
6512 if (!p)
6513 return -EINVAL;
6514
6515 coremem = memparse(p, &p);
7e63efef 6516 *core = coremem >> PAGE_SHIFT;
2a1e274a 6517
7e63efef 6518 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6519 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6520
6521 return 0;
6522}
ed7ed365 6523
7e63efef
MG
6524/*
6525 * kernelcore=size sets the amount of memory for use for allocations that
6526 * cannot be reclaimed or migrated.
6527 */
6528static int __init cmdline_parse_kernelcore(char *p)
6529{
342332e6
TI
6530 /* parse kernelcore=mirror */
6531 if (parse_option_str(p, "mirror")) {
6532 mirrored_kernelcore = true;
6533 return 0;
6534 }
6535
7e63efef
MG
6536 return cmdline_parse_core(p, &required_kernelcore);
6537}
6538
6539/*
6540 * movablecore=size sets the amount of memory for use for allocations that
6541 * can be reclaimed or migrated.
6542 */
6543static int __init cmdline_parse_movablecore(char *p)
6544{
6545 return cmdline_parse_core(p, &required_movablecore);
6546}
6547
ed7ed365 6548early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6549early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6550
0ee332c1 6551#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6552
c3d5f5f0
JL
6553void adjust_managed_page_count(struct page *page, long count)
6554{
6555 spin_lock(&managed_page_count_lock);
6556 page_zone(page)->managed_pages += count;
6557 totalram_pages += count;
3dcc0571
JL
6558#ifdef CONFIG_HIGHMEM
6559 if (PageHighMem(page))
6560 totalhigh_pages += count;
6561#endif
c3d5f5f0
JL
6562 spin_unlock(&managed_page_count_lock);
6563}
3dcc0571 6564EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6565
11199692 6566unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6567{
11199692
JL
6568 void *pos;
6569 unsigned long pages = 0;
69afade7 6570
11199692
JL
6571 start = (void *)PAGE_ALIGN((unsigned long)start);
6572 end = (void *)((unsigned long)end & PAGE_MASK);
6573 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6574 if ((unsigned int)poison <= 0xFF)
11199692
JL
6575 memset(pos, poison, PAGE_SIZE);
6576 free_reserved_page(virt_to_page(pos));
69afade7
JL
6577 }
6578
6579 if (pages && s)
11199692 6580 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6581 s, pages << (PAGE_SHIFT - 10), start, end);
6582
6583 return pages;
6584}
11199692 6585EXPORT_SYMBOL(free_reserved_area);
69afade7 6586
cfa11e08
JL
6587#ifdef CONFIG_HIGHMEM
6588void free_highmem_page(struct page *page)
6589{
6590 __free_reserved_page(page);
6591 totalram_pages++;
7b4b2a0d 6592 page_zone(page)->managed_pages++;
cfa11e08
JL
6593 totalhigh_pages++;
6594}
6595#endif
6596
7ee3d4e8
JL
6597
6598void __init mem_init_print_info(const char *str)
6599{
6600 unsigned long physpages, codesize, datasize, rosize, bss_size;
6601 unsigned long init_code_size, init_data_size;
6602
6603 physpages = get_num_physpages();
6604 codesize = _etext - _stext;
6605 datasize = _edata - _sdata;
6606 rosize = __end_rodata - __start_rodata;
6607 bss_size = __bss_stop - __bss_start;
6608 init_data_size = __init_end - __init_begin;
6609 init_code_size = _einittext - _sinittext;
6610
6611 /*
6612 * Detect special cases and adjust section sizes accordingly:
6613 * 1) .init.* may be embedded into .data sections
6614 * 2) .init.text.* may be out of [__init_begin, __init_end],
6615 * please refer to arch/tile/kernel/vmlinux.lds.S.
6616 * 3) .rodata.* may be embedded into .text or .data sections.
6617 */
6618#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6619 do { \
6620 if (start <= pos && pos < end && size > adj) \
6621 size -= adj; \
6622 } while (0)
7ee3d4e8
JL
6623
6624 adj_init_size(__init_begin, __init_end, init_data_size,
6625 _sinittext, init_code_size);
6626 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6627 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6628 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6629 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6630
6631#undef adj_init_size
6632
756a025f 6633 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6634#ifdef CONFIG_HIGHMEM
756a025f 6635 ", %luK highmem"
7ee3d4e8 6636#endif
756a025f
JP
6637 "%s%s)\n",
6638 nr_free_pages() << (PAGE_SHIFT - 10),
6639 physpages << (PAGE_SHIFT - 10),
6640 codesize >> 10, datasize >> 10, rosize >> 10,
6641 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6642 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6643 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6644#ifdef CONFIG_HIGHMEM
756a025f 6645 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6646#endif
756a025f 6647 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6648}
6649
0e0b864e 6650/**
88ca3b94
RD
6651 * set_dma_reserve - set the specified number of pages reserved in the first zone
6652 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6653 *
013110a7 6654 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6655 * In the DMA zone, a significant percentage may be consumed by kernel image
6656 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6657 * function may optionally be used to account for unfreeable pages in the
6658 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6659 * smaller per-cpu batchsize.
0e0b864e
MG
6660 */
6661void __init set_dma_reserve(unsigned long new_dma_reserve)
6662{
6663 dma_reserve = new_dma_reserve;
6664}
6665
1da177e4
LT
6666void __init free_area_init(unsigned long *zones_size)
6667{
9109fb7b 6668 free_area_init_node(0, zones_size,
1da177e4
LT
6669 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6670}
1da177e4 6671
1da177e4
LT
6672static int page_alloc_cpu_notify(struct notifier_block *self,
6673 unsigned long action, void *hcpu)
6674{
6675 int cpu = (unsigned long)hcpu;
1da177e4 6676
8bb78442 6677 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6678 lru_add_drain_cpu(cpu);
9f8f2172
CL
6679 drain_pages(cpu);
6680
6681 /*
6682 * Spill the event counters of the dead processor
6683 * into the current processors event counters.
6684 * This artificially elevates the count of the current
6685 * processor.
6686 */
f8891e5e 6687 vm_events_fold_cpu(cpu);
9f8f2172
CL
6688
6689 /*
6690 * Zero the differential counters of the dead processor
6691 * so that the vm statistics are consistent.
6692 *
6693 * This is only okay since the processor is dead and cannot
6694 * race with what we are doing.
6695 */
2bb921e5 6696 cpu_vm_stats_fold(cpu);
1da177e4
LT
6697 }
6698 return NOTIFY_OK;
6699}
1da177e4
LT
6700
6701void __init page_alloc_init(void)
6702{
6703 hotcpu_notifier(page_alloc_cpu_notify, 0);
6704}
6705
cb45b0e9 6706/*
34b10060 6707 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6708 * or min_free_kbytes changes.
6709 */
6710static void calculate_totalreserve_pages(void)
6711{
6712 struct pglist_data *pgdat;
6713 unsigned long reserve_pages = 0;
2f6726e5 6714 enum zone_type i, j;
cb45b0e9
HA
6715
6716 for_each_online_pgdat(pgdat) {
6717 for (i = 0; i < MAX_NR_ZONES; i++) {
6718 struct zone *zone = pgdat->node_zones + i;
3484b2de 6719 long max = 0;
cb45b0e9
HA
6720
6721 /* Find valid and maximum lowmem_reserve in the zone */
6722 for (j = i; j < MAX_NR_ZONES; j++) {
6723 if (zone->lowmem_reserve[j] > max)
6724 max = zone->lowmem_reserve[j];
6725 }
6726
41858966
MG
6727 /* we treat the high watermark as reserved pages. */
6728 max += high_wmark_pages(zone);
cb45b0e9 6729
b40da049
JL
6730 if (max > zone->managed_pages)
6731 max = zone->managed_pages;
a8d01437
JW
6732
6733 zone->totalreserve_pages = max;
6734
cb45b0e9
HA
6735 reserve_pages += max;
6736 }
6737 }
6738 totalreserve_pages = reserve_pages;
6739}
6740
1da177e4
LT
6741/*
6742 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6743 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6744 * has a correct pages reserved value, so an adequate number of
6745 * pages are left in the zone after a successful __alloc_pages().
6746 */
6747static void setup_per_zone_lowmem_reserve(void)
6748{
6749 struct pglist_data *pgdat;
2f6726e5 6750 enum zone_type j, idx;
1da177e4 6751
ec936fc5 6752 for_each_online_pgdat(pgdat) {
1da177e4
LT
6753 for (j = 0; j < MAX_NR_ZONES; j++) {
6754 struct zone *zone = pgdat->node_zones + j;
b40da049 6755 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6756
6757 zone->lowmem_reserve[j] = 0;
6758
2f6726e5
CL
6759 idx = j;
6760 while (idx) {
1da177e4
LT
6761 struct zone *lower_zone;
6762
2f6726e5
CL
6763 idx--;
6764
1da177e4
LT
6765 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6766 sysctl_lowmem_reserve_ratio[idx] = 1;
6767
6768 lower_zone = pgdat->node_zones + idx;
b40da049 6769 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6770 sysctl_lowmem_reserve_ratio[idx];
b40da049 6771 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6772 }
6773 }
6774 }
cb45b0e9
HA
6775
6776 /* update totalreserve_pages */
6777 calculate_totalreserve_pages();
1da177e4
LT
6778}
6779
cfd3da1e 6780static void __setup_per_zone_wmarks(void)
1da177e4
LT
6781{
6782 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6783 unsigned long lowmem_pages = 0;
6784 struct zone *zone;
6785 unsigned long flags;
6786
6787 /* Calculate total number of !ZONE_HIGHMEM pages */
6788 for_each_zone(zone) {
6789 if (!is_highmem(zone))
b40da049 6790 lowmem_pages += zone->managed_pages;
1da177e4
LT
6791 }
6792
6793 for_each_zone(zone) {
ac924c60
AM
6794 u64 tmp;
6795
1125b4e3 6796 spin_lock_irqsave(&zone->lock, flags);
b40da049 6797 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6798 do_div(tmp, lowmem_pages);
1da177e4
LT
6799 if (is_highmem(zone)) {
6800 /*
669ed175
NP
6801 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6802 * need highmem pages, so cap pages_min to a small
6803 * value here.
6804 *
41858966 6805 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6806 * deltas control asynch page reclaim, and so should
669ed175 6807 * not be capped for highmem.
1da177e4 6808 */
90ae8d67 6809 unsigned long min_pages;
1da177e4 6810
b40da049 6811 min_pages = zone->managed_pages / 1024;
90ae8d67 6812 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6813 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6814 } else {
669ed175
NP
6815 /*
6816 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6817 * proportionate to the zone's size.
6818 */
41858966 6819 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6820 }
6821
795ae7a0
JW
6822 /*
6823 * Set the kswapd watermarks distance according to the
6824 * scale factor in proportion to available memory, but
6825 * ensure a minimum size on small systems.
6826 */
6827 tmp = max_t(u64, tmp >> 2,
6828 mult_frac(zone->managed_pages,
6829 watermark_scale_factor, 10000));
6830
6831 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6832 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6833
81c0a2bb 6834 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6835 high_wmark_pages(zone) - low_wmark_pages(zone) -
6836 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6837
1125b4e3 6838 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6839 }
cb45b0e9
HA
6840
6841 /* update totalreserve_pages */
6842 calculate_totalreserve_pages();
1da177e4
LT
6843}
6844
cfd3da1e
MG
6845/**
6846 * setup_per_zone_wmarks - called when min_free_kbytes changes
6847 * or when memory is hot-{added|removed}
6848 *
6849 * Ensures that the watermark[min,low,high] values for each zone are set
6850 * correctly with respect to min_free_kbytes.
6851 */
6852void setup_per_zone_wmarks(void)
6853{
6854 mutex_lock(&zonelists_mutex);
6855 __setup_per_zone_wmarks();
6856 mutex_unlock(&zonelists_mutex);
6857}
6858
1da177e4
LT
6859/*
6860 * Initialise min_free_kbytes.
6861 *
6862 * For small machines we want it small (128k min). For large machines
6863 * we want it large (64MB max). But it is not linear, because network
6864 * bandwidth does not increase linearly with machine size. We use
6865 *
b8af2941 6866 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6867 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6868 *
6869 * which yields
6870 *
6871 * 16MB: 512k
6872 * 32MB: 724k
6873 * 64MB: 1024k
6874 * 128MB: 1448k
6875 * 256MB: 2048k
6876 * 512MB: 2896k
6877 * 1024MB: 4096k
6878 * 2048MB: 5792k
6879 * 4096MB: 8192k
6880 * 8192MB: 11584k
6881 * 16384MB: 16384k
6882 */
1b79acc9 6883int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6884{
6885 unsigned long lowmem_kbytes;
5f12733e 6886 int new_min_free_kbytes;
1da177e4
LT
6887
6888 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6889 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6890
6891 if (new_min_free_kbytes > user_min_free_kbytes) {
6892 min_free_kbytes = new_min_free_kbytes;
6893 if (min_free_kbytes < 128)
6894 min_free_kbytes = 128;
6895 if (min_free_kbytes > 65536)
6896 min_free_kbytes = 65536;
6897 } else {
6898 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6899 new_min_free_kbytes, user_min_free_kbytes);
6900 }
bc75d33f 6901 setup_per_zone_wmarks();
a6cccdc3 6902 refresh_zone_stat_thresholds();
1da177e4
LT
6903 setup_per_zone_lowmem_reserve();
6904 return 0;
6905}
bc22af74 6906core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6907
6908/*
b8af2941 6909 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6910 * that we can call two helper functions whenever min_free_kbytes
6911 * changes.
6912 */
cccad5b9 6913int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6914 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6915{
da8c757b
HP
6916 int rc;
6917
6918 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6919 if (rc)
6920 return rc;
6921
5f12733e
MH
6922 if (write) {
6923 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6924 setup_per_zone_wmarks();
5f12733e 6925 }
1da177e4
LT
6926 return 0;
6927}
6928
795ae7a0
JW
6929int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6930 void __user *buffer, size_t *length, loff_t *ppos)
6931{
6932 int rc;
6933
6934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6935 if (rc)
6936 return rc;
6937
6938 if (write)
6939 setup_per_zone_wmarks();
6940
6941 return 0;
6942}
6943
9614634f 6944#ifdef CONFIG_NUMA
cccad5b9 6945int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6946 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6947{
6948 struct zone *zone;
6949 int rc;
6950
8d65af78 6951 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6952 if (rc)
6953 return rc;
6954
6955 for_each_zone(zone)
b40da049 6956 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6957 sysctl_min_unmapped_ratio) / 100;
6958 return 0;
6959}
0ff38490 6960
cccad5b9 6961int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6962 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6963{
6964 struct zone *zone;
6965 int rc;
6966
8d65af78 6967 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6968 if (rc)
6969 return rc;
6970
6971 for_each_zone(zone)
b40da049 6972 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6973 sysctl_min_slab_ratio) / 100;
6974 return 0;
6975}
9614634f
CL
6976#endif
6977
1da177e4
LT
6978/*
6979 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6980 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6981 * whenever sysctl_lowmem_reserve_ratio changes.
6982 *
6983 * The reserve ratio obviously has absolutely no relation with the
41858966 6984 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6985 * if in function of the boot time zone sizes.
6986 */
cccad5b9 6987int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6988 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6989{
8d65af78 6990 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6991 setup_per_zone_lowmem_reserve();
6992 return 0;
6993}
6994
8ad4b1fb
RS
6995/*
6996 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6997 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6998 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6999 */
cccad5b9 7000int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7001 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7002{
7003 struct zone *zone;
7cd2b0a3 7004 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7005 int ret;
7006
7cd2b0a3
DR
7007 mutex_lock(&pcp_batch_high_lock);
7008 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7009
8d65af78 7010 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7011 if (!write || ret < 0)
7012 goto out;
7013
7014 /* Sanity checking to avoid pcp imbalance */
7015 if (percpu_pagelist_fraction &&
7016 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7017 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7018 ret = -EINVAL;
7019 goto out;
7020 }
7021
7022 /* No change? */
7023 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7024 goto out;
c8e251fa 7025
364df0eb 7026 for_each_populated_zone(zone) {
7cd2b0a3
DR
7027 unsigned int cpu;
7028
22a7f12b 7029 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7030 pageset_set_high_and_batch(zone,
7031 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7032 }
7cd2b0a3 7033out:
c8e251fa 7034 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7035 return ret;
8ad4b1fb
RS
7036}
7037
a9919c79 7038#ifdef CONFIG_NUMA
f034b5d4 7039int hashdist = HASHDIST_DEFAULT;
1da177e4 7040
1da177e4
LT
7041static int __init set_hashdist(char *str)
7042{
7043 if (!str)
7044 return 0;
7045 hashdist = simple_strtoul(str, &str, 0);
7046 return 1;
7047}
7048__setup("hashdist=", set_hashdist);
7049#endif
7050
7051/*
7052 * allocate a large system hash table from bootmem
7053 * - it is assumed that the hash table must contain an exact power-of-2
7054 * quantity of entries
7055 * - limit is the number of hash buckets, not the total allocation size
7056 */
7057void *__init alloc_large_system_hash(const char *tablename,
7058 unsigned long bucketsize,
7059 unsigned long numentries,
7060 int scale,
7061 int flags,
7062 unsigned int *_hash_shift,
7063 unsigned int *_hash_mask,
31fe62b9
TB
7064 unsigned long low_limit,
7065 unsigned long high_limit)
1da177e4 7066{
31fe62b9 7067 unsigned long long max = high_limit;
1da177e4
LT
7068 unsigned long log2qty, size;
7069 void *table = NULL;
7070
7071 /* allow the kernel cmdline to have a say */
7072 if (!numentries) {
7073 /* round applicable memory size up to nearest megabyte */
04903664 7074 numentries = nr_kernel_pages;
a7e83318
JZ
7075
7076 /* It isn't necessary when PAGE_SIZE >= 1MB */
7077 if (PAGE_SHIFT < 20)
7078 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7079
7080 /* limit to 1 bucket per 2^scale bytes of low memory */
7081 if (scale > PAGE_SHIFT)
7082 numentries >>= (scale - PAGE_SHIFT);
7083 else
7084 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7085
7086 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7087 if (unlikely(flags & HASH_SMALL)) {
7088 /* Makes no sense without HASH_EARLY */
7089 WARN_ON(!(flags & HASH_EARLY));
7090 if (!(numentries >> *_hash_shift)) {
7091 numentries = 1UL << *_hash_shift;
7092 BUG_ON(!numentries);
7093 }
7094 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7095 numentries = PAGE_SIZE / bucketsize;
1da177e4 7096 }
6e692ed3 7097 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7098
7099 /* limit allocation size to 1/16 total memory by default */
7100 if (max == 0) {
7101 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7102 do_div(max, bucketsize);
7103 }
074b8517 7104 max = min(max, 0x80000000ULL);
1da177e4 7105
31fe62b9
TB
7106 if (numentries < low_limit)
7107 numentries = low_limit;
1da177e4
LT
7108 if (numentries > max)
7109 numentries = max;
7110
f0d1b0b3 7111 log2qty = ilog2(numentries);
1da177e4
LT
7112
7113 do {
7114 size = bucketsize << log2qty;
7115 if (flags & HASH_EARLY)
6782832e 7116 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7117 else if (hashdist)
7118 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7119 else {
1037b83b
ED
7120 /*
7121 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7122 * some pages at the end of hash table which
7123 * alloc_pages_exact() automatically does
1037b83b 7124 */
264ef8a9 7125 if (get_order(size) < MAX_ORDER) {
a1dd268c 7126 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7127 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7128 }
1da177e4
LT
7129 }
7130 } while (!table && size > PAGE_SIZE && --log2qty);
7131
7132 if (!table)
7133 panic("Failed to allocate %s hash table\n", tablename);
7134
1170532b
JP
7135 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7136 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7137
7138 if (_hash_shift)
7139 *_hash_shift = log2qty;
7140 if (_hash_mask)
7141 *_hash_mask = (1 << log2qty) - 1;
7142
7143 return table;
7144}
a117e66e 7145
a5d76b54 7146/*
80934513
MK
7147 * This function checks whether pageblock includes unmovable pages or not.
7148 * If @count is not zero, it is okay to include less @count unmovable pages
7149 *
b8af2941 7150 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7151 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7152 * expect this function should be exact.
a5d76b54 7153 */
b023f468
WC
7154bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7155 bool skip_hwpoisoned_pages)
49ac8255
KH
7156{
7157 unsigned long pfn, iter, found;
47118af0
MN
7158 int mt;
7159
49ac8255
KH
7160 /*
7161 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7162 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7163 */
7164 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7165 return false;
47118af0
MN
7166 mt = get_pageblock_migratetype(page);
7167 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7168 return false;
49ac8255
KH
7169
7170 pfn = page_to_pfn(page);
7171 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7172 unsigned long check = pfn + iter;
7173
29723fcc 7174 if (!pfn_valid_within(check))
49ac8255 7175 continue;
29723fcc 7176
49ac8255 7177 page = pfn_to_page(check);
c8721bbb
NH
7178
7179 /*
7180 * Hugepages are not in LRU lists, but they're movable.
7181 * We need not scan over tail pages bacause we don't
7182 * handle each tail page individually in migration.
7183 */
7184 if (PageHuge(page)) {
7185 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7186 continue;
7187 }
7188
97d255c8
MK
7189 /*
7190 * We can't use page_count without pin a page
7191 * because another CPU can free compound page.
7192 * This check already skips compound tails of THP
0139aa7b 7193 * because their page->_refcount is zero at all time.
97d255c8 7194 */
fe896d18 7195 if (!page_ref_count(page)) {
49ac8255
KH
7196 if (PageBuddy(page))
7197 iter += (1 << page_order(page)) - 1;
7198 continue;
7199 }
97d255c8 7200
b023f468
WC
7201 /*
7202 * The HWPoisoned page may be not in buddy system, and
7203 * page_count() is not 0.
7204 */
7205 if (skip_hwpoisoned_pages && PageHWPoison(page))
7206 continue;
7207
49ac8255
KH
7208 if (!PageLRU(page))
7209 found++;
7210 /*
6b4f7799
JW
7211 * If there are RECLAIMABLE pages, we need to check
7212 * it. But now, memory offline itself doesn't call
7213 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7214 */
7215 /*
7216 * If the page is not RAM, page_count()should be 0.
7217 * we don't need more check. This is an _used_ not-movable page.
7218 *
7219 * The problematic thing here is PG_reserved pages. PG_reserved
7220 * is set to both of a memory hole page and a _used_ kernel
7221 * page at boot.
7222 */
7223 if (found > count)
80934513 7224 return true;
49ac8255 7225 }
80934513 7226 return false;
49ac8255
KH
7227}
7228
7229bool is_pageblock_removable_nolock(struct page *page)
7230{
656a0706
MH
7231 struct zone *zone;
7232 unsigned long pfn;
687875fb
MH
7233
7234 /*
7235 * We have to be careful here because we are iterating over memory
7236 * sections which are not zone aware so we might end up outside of
7237 * the zone but still within the section.
656a0706
MH
7238 * We have to take care about the node as well. If the node is offline
7239 * its NODE_DATA will be NULL - see page_zone.
687875fb 7240 */
656a0706
MH
7241 if (!node_online(page_to_nid(page)))
7242 return false;
7243
7244 zone = page_zone(page);
7245 pfn = page_to_pfn(page);
108bcc96 7246 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7247 return false;
7248
b023f468 7249 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7250}
0c0e6195 7251
080fe206 7252#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7253
7254static unsigned long pfn_max_align_down(unsigned long pfn)
7255{
7256 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7257 pageblock_nr_pages) - 1);
7258}
7259
7260static unsigned long pfn_max_align_up(unsigned long pfn)
7261{
7262 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7263 pageblock_nr_pages));
7264}
7265
041d3a8c 7266/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7267static int __alloc_contig_migrate_range(struct compact_control *cc,
7268 unsigned long start, unsigned long end)
041d3a8c
MN
7269{
7270 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7271 unsigned long nr_reclaimed;
041d3a8c
MN
7272 unsigned long pfn = start;
7273 unsigned int tries = 0;
7274 int ret = 0;
7275
be49a6e1 7276 migrate_prep();
041d3a8c 7277
bb13ffeb 7278 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7279 if (fatal_signal_pending(current)) {
7280 ret = -EINTR;
7281 break;
7282 }
7283
bb13ffeb
MG
7284 if (list_empty(&cc->migratepages)) {
7285 cc->nr_migratepages = 0;
edc2ca61 7286 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7287 if (!pfn) {
7288 ret = -EINTR;
7289 break;
7290 }
7291 tries = 0;
7292 } else if (++tries == 5) {
7293 ret = ret < 0 ? ret : -EBUSY;
7294 break;
7295 }
7296
beb51eaa
MK
7297 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7298 &cc->migratepages);
7299 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7300
9c620e2b 7301 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7302 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7303 }
2a6f5124
SP
7304 if (ret < 0) {
7305 putback_movable_pages(&cc->migratepages);
7306 return ret;
7307 }
7308 return 0;
041d3a8c
MN
7309}
7310
7311/**
7312 * alloc_contig_range() -- tries to allocate given range of pages
7313 * @start: start PFN to allocate
7314 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7315 * @migratetype: migratetype of the underlaying pageblocks (either
7316 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7317 * in range must have the same migratetype and it must
7318 * be either of the two.
041d3a8c
MN
7319 *
7320 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7321 * aligned, however it's the caller's responsibility to guarantee that
7322 * we are the only thread that changes migrate type of pageblocks the
7323 * pages fall in.
7324 *
7325 * The PFN range must belong to a single zone.
7326 *
7327 * Returns zero on success or negative error code. On success all
7328 * pages which PFN is in [start, end) are allocated for the caller and
7329 * need to be freed with free_contig_range().
7330 */
0815f3d8
MN
7331int alloc_contig_range(unsigned long start, unsigned long end,
7332 unsigned migratetype)
041d3a8c 7333{
041d3a8c 7334 unsigned long outer_start, outer_end;
d00181b9
KS
7335 unsigned int order;
7336 int ret = 0;
041d3a8c 7337
bb13ffeb
MG
7338 struct compact_control cc = {
7339 .nr_migratepages = 0,
7340 .order = -1,
7341 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7342 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7343 .ignore_skip_hint = true,
7344 };
7345 INIT_LIST_HEAD(&cc.migratepages);
7346
041d3a8c
MN
7347 /*
7348 * What we do here is we mark all pageblocks in range as
7349 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7350 * have different sizes, and due to the way page allocator
7351 * work, we align the range to biggest of the two pages so
7352 * that page allocator won't try to merge buddies from
7353 * different pageblocks and change MIGRATE_ISOLATE to some
7354 * other migration type.
7355 *
7356 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7357 * migrate the pages from an unaligned range (ie. pages that
7358 * we are interested in). This will put all the pages in
7359 * range back to page allocator as MIGRATE_ISOLATE.
7360 *
7361 * When this is done, we take the pages in range from page
7362 * allocator removing them from the buddy system. This way
7363 * page allocator will never consider using them.
7364 *
7365 * This lets us mark the pageblocks back as
7366 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7367 * aligned range but not in the unaligned, original range are
7368 * put back to page allocator so that buddy can use them.
7369 */
7370
7371 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7372 pfn_max_align_up(end), migratetype,
7373 false);
041d3a8c 7374 if (ret)
86a595f9 7375 return ret;
041d3a8c 7376
8ef5849f
JK
7377 /*
7378 * In case of -EBUSY, we'd like to know which page causes problem.
7379 * So, just fall through. We will check it in test_pages_isolated().
7380 */
bb13ffeb 7381 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7382 if (ret && ret != -EBUSY)
041d3a8c
MN
7383 goto done;
7384
7385 /*
7386 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7387 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7388 * more, all pages in [start, end) are free in page allocator.
7389 * What we are going to do is to allocate all pages from
7390 * [start, end) (that is remove them from page allocator).
7391 *
7392 * The only problem is that pages at the beginning and at the
7393 * end of interesting range may be not aligned with pages that
7394 * page allocator holds, ie. they can be part of higher order
7395 * pages. Because of this, we reserve the bigger range and
7396 * once this is done free the pages we are not interested in.
7397 *
7398 * We don't have to hold zone->lock here because the pages are
7399 * isolated thus they won't get removed from buddy.
7400 */
7401
7402 lru_add_drain_all();
510f5507 7403 drain_all_pages(cc.zone);
041d3a8c
MN
7404
7405 order = 0;
7406 outer_start = start;
7407 while (!PageBuddy(pfn_to_page(outer_start))) {
7408 if (++order >= MAX_ORDER) {
8ef5849f
JK
7409 outer_start = start;
7410 break;
041d3a8c
MN
7411 }
7412 outer_start &= ~0UL << order;
7413 }
7414
8ef5849f
JK
7415 if (outer_start != start) {
7416 order = page_order(pfn_to_page(outer_start));
7417
7418 /*
7419 * outer_start page could be small order buddy page and
7420 * it doesn't include start page. Adjust outer_start
7421 * in this case to report failed page properly
7422 * on tracepoint in test_pages_isolated()
7423 */
7424 if (outer_start + (1UL << order) <= start)
7425 outer_start = start;
7426 }
7427
041d3a8c 7428 /* Make sure the range is really isolated. */
b023f468 7429 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7430 pr_info("%s: [%lx, %lx) PFNs busy\n",
7431 __func__, outer_start, end);
041d3a8c
MN
7432 ret = -EBUSY;
7433 goto done;
7434 }
7435
49f223a9 7436 /* Grab isolated pages from freelists. */
bb13ffeb 7437 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7438 if (!outer_end) {
7439 ret = -EBUSY;
7440 goto done;
7441 }
7442
7443 /* Free head and tail (if any) */
7444 if (start != outer_start)
7445 free_contig_range(outer_start, start - outer_start);
7446 if (end != outer_end)
7447 free_contig_range(end, outer_end - end);
7448
7449done:
7450 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7451 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7452 return ret;
7453}
7454
7455void free_contig_range(unsigned long pfn, unsigned nr_pages)
7456{
bcc2b02f
MS
7457 unsigned int count = 0;
7458
7459 for (; nr_pages--; pfn++) {
7460 struct page *page = pfn_to_page(pfn);
7461
7462 count += page_count(page) != 1;
7463 __free_page(page);
7464 }
7465 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7466}
7467#endif
7468
4ed7e022 7469#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7470/*
7471 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7472 * page high values need to be recalulated.
7473 */
4ed7e022
JL
7474void __meminit zone_pcp_update(struct zone *zone)
7475{
0a647f38 7476 unsigned cpu;
c8e251fa 7477 mutex_lock(&pcp_batch_high_lock);
0a647f38 7478 for_each_possible_cpu(cpu)
169f6c19
CS
7479 pageset_set_high_and_batch(zone,
7480 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7481 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7482}
7483#endif
7484
340175b7
JL
7485void zone_pcp_reset(struct zone *zone)
7486{
7487 unsigned long flags;
5a883813
MK
7488 int cpu;
7489 struct per_cpu_pageset *pset;
340175b7
JL
7490
7491 /* avoid races with drain_pages() */
7492 local_irq_save(flags);
7493 if (zone->pageset != &boot_pageset) {
5a883813
MK
7494 for_each_online_cpu(cpu) {
7495 pset = per_cpu_ptr(zone->pageset, cpu);
7496 drain_zonestat(zone, pset);
7497 }
340175b7
JL
7498 free_percpu(zone->pageset);
7499 zone->pageset = &boot_pageset;
7500 }
7501 local_irq_restore(flags);
7502}
7503
6dcd73d7 7504#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7505/*
b9eb6319
JK
7506 * All pages in the range must be in a single zone and isolated
7507 * before calling this.
0c0e6195
KH
7508 */
7509void
7510__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7511{
7512 struct page *page;
7513 struct zone *zone;
7aeb09f9 7514 unsigned int order, i;
0c0e6195
KH
7515 unsigned long pfn;
7516 unsigned long flags;
7517 /* find the first valid pfn */
7518 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7519 if (pfn_valid(pfn))
7520 break;
7521 if (pfn == end_pfn)
7522 return;
7523 zone = page_zone(pfn_to_page(pfn));
7524 spin_lock_irqsave(&zone->lock, flags);
7525 pfn = start_pfn;
7526 while (pfn < end_pfn) {
7527 if (!pfn_valid(pfn)) {
7528 pfn++;
7529 continue;
7530 }
7531 page = pfn_to_page(pfn);
b023f468
WC
7532 /*
7533 * The HWPoisoned page may be not in buddy system, and
7534 * page_count() is not 0.
7535 */
7536 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7537 pfn++;
7538 SetPageReserved(page);
7539 continue;
7540 }
7541
0c0e6195
KH
7542 BUG_ON(page_count(page));
7543 BUG_ON(!PageBuddy(page));
7544 order = page_order(page);
7545#ifdef CONFIG_DEBUG_VM
1170532b
JP
7546 pr_info("remove from free list %lx %d %lx\n",
7547 pfn, 1 << order, end_pfn);
0c0e6195
KH
7548#endif
7549 list_del(&page->lru);
7550 rmv_page_order(page);
7551 zone->free_area[order].nr_free--;
0c0e6195
KH
7552 for (i = 0; i < (1 << order); i++)
7553 SetPageReserved((page+i));
7554 pfn += (1 << order);
7555 }
7556 spin_unlock_irqrestore(&zone->lock, flags);
7557}
7558#endif
8d22ba1b 7559
8d22ba1b
WF
7560bool is_free_buddy_page(struct page *page)
7561{
7562 struct zone *zone = page_zone(page);
7563 unsigned long pfn = page_to_pfn(page);
7564 unsigned long flags;
7aeb09f9 7565 unsigned int order;
8d22ba1b
WF
7566
7567 spin_lock_irqsave(&zone->lock, flags);
7568 for (order = 0; order < MAX_ORDER; order++) {
7569 struct page *page_head = page - (pfn & ((1 << order) - 1));
7570
7571 if (PageBuddy(page_head) && page_order(page_head) >= order)
7572 break;
7573 }
7574 spin_unlock_irqrestore(&zone->lock, flags);
7575
7576 return order < MAX_ORDER;
7577}