]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: reduce branches in zone_statistics
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
224abf92 787static inline int free_pages_check(struct page *page)
1da177e4 788{
d230dec1 789 const char *bad_reason = NULL;
f0b791a3
DH
790 unsigned long bad_flags = 0;
791
53f9263b 792 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
fe896d18 796 if (unlikely(page_ref_count(page) != 0))
0139aa7b 797 bad_reason = "nonzero _refcount";
f0b791a3
DH
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
9edad6ea
JW
802#ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805#endif
f0b791a3
DH
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
79f4b7bf 808 return 1;
8cc3b392 809 }
90572890 810 page_cpupid_reset_last(page);
79f4b7bf
HD
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
1da177e4
LT
814}
815
816/*
5f8dcc21 817 * Frees a number of pages from the PCP lists
1da177e4 818 * Assumes all pages on list are in same zone, and of same order.
207f36ee 819 * count is the number of pages to free.
1da177e4
LT
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
5f8dcc21
MG
827static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
1da177e4 829{
5f8dcc21 830 int migratetype = 0;
a6f9edd6 831 int batch_free = 0;
72853e29 832 int to_free = count;
0d5d823a 833 unsigned long nr_scanned;
5f8dcc21 834
c54ad30c 835 spin_lock(&zone->lock);
0d5d823a
MG
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 839
72853e29 840 while (to_free) {
48db57f8 841 struct page *page;
5f8dcc21
MG
842 struct list_head *list;
843
844 /*
a6f9edd6
MG
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
5f8dcc21
MG
850 */
851 do {
a6f9edd6 852 batch_free++;
5f8dcc21
MG
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
48db57f8 857
1d16871d
NK
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
a6f9edd6 862 do {
770c8aaa
BZ
863 int mt; /* migratetype of the to-be-freed page */
864
a16601c5 865 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
aa016d14 868
bb14c2c7 869 mt = get_pcppage_migratetype(page);
aa016d14
VB
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
8f82b55d 873 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 874 mt = get_pageblock_migratetype(page);
51bb1a40 875
dc4b0caf 876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 877 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 878 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 879 }
c54ad30c 880 spin_unlock(&zone->lock);
1da177e4
LT
881}
882
dc4b0caf
MG
883static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
7aeb09f9 885 unsigned int order,
ed0ae21d 886 int migratetype)
1da177e4 887{
0d5d823a 888 unsigned long nr_scanned;
006d22d9 889 spin_lock(&zone->lock);
0d5d823a
MG
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 893
ad53f92e
JK
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 897 }
dc4b0caf 898 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 899 spin_unlock(&zone->lock);
48db57f8
NP
900}
901
81422f29
KS
902static int free_tail_pages_check(struct page *head_page, struct page *page)
903{
1d798ca3
KS
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
9a982250
KS
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
9a982250
KS
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
1c290f64 936 }
81422f29
KS
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
1d798ca3 939 goto out;
81422f29 940 }
1d798ca3
KS
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
81422f29 944 }
1d798ca3
KS
945 ret = 0;
946out:
1c290f64 947 page->mapping = NULL;
1d798ca3
KS
948 clear_compound_head(page);
949 return ret;
81422f29
KS
950}
951
1e8ce83c
RH
952static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954{
1e8ce83c 955 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
1e8ce83c 959
1e8ce83c
RH
960 INIT_LIST_HEAD(&page->lru);
961#ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965#endif
966}
967
968static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970{
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972}
973
7e18adb4
MG
974#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975static void init_reserved_page(unsigned long pfn)
976{
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993}
994#else
995static inline void init_reserved_page(unsigned long pfn)
996{
997}
998#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
92923ca3
NZ
1000/*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
7e18adb4 1006void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1007{
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
7e18adb4
MG
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1d798ca3
KS
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
7e18adb4
MG
1020 SetPageReserved(page);
1021 }
1022 }
92923ca3
NZ
1023}
1024
ec95f53a 1025static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1026{
d61f8590 1027 int bad = 0;
1da177e4 1028
ab1f306f 1029 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1030
b413d48a 1031 trace_mm_page_free(page, order);
b1eeab67 1032 kmemcheck_free_shadow(page, order);
b8c73fc2 1033 kasan_free_pages(page, order);
b1eeab67 1034
d61f8590
MG
1035 /*
1036 * Check tail pages before head page information is cleared to
1037 * avoid checking PageCompound for order-0 pages.
1038 */
1039 if (unlikely(order)) {
1040 bool compound = PageCompound(page);
1041 int i;
1042
1043 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1044
1045 for (i = 1; i < (1 << order); i++) {
1046 if (compound)
1047 bad += free_tail_pages_check(page, page + i);
1048 bad += free_pages_check(page + i);
1049 }
1050 }
17514574 1051 if (PageAnonHead(page))
8dd60a3a 1052 page->mapping = NULL;
81422f29 1053 bad += free_pages_check(page);
8cc3b392 1054 if (bad)
ec95f53a 1055 return false;
689bcebf 1056
48c96a36
JK
1057 reset_page_owner(page, order);
1058
3ac7fe5a 1059 if (!PageHighMem(page)) {
b8af2941
PK
1060 debug_check_no_locks_freed(page_address(page),
1061 PAGE_SIZE << order);
3ac7fe5a
TG
1062 debug_check_no_obj_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 }
dafb1367 1065 arch_free_page(page, order);
8823b1db 1066 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1067 kernel_map_pages(page, 1 << order, 0);
dafb1367 1068
ec95f53a
KM
1069 return true;
1070}
1071
1072static void __free_pages_ok(struct page *page, unsigned int order)
1073{
1074 unsigned long flags;
95e34412 1075 int migratetype;
dc4b0caf 1076 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1077
1078 if (!free_pages_prepare(page, order))
1079 return;
1080
cfc47a28 1081 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1082 local_irq_save(flags);
f8891e5e 1083 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1084 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1085 local_irq_restore(flags);
1da177e4
LT
1086}
1087
949698a3 1088static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1089{
c3993076 1090 unsigned int nr_pages = 1 << order;
e2d0bd2b 1091 struct page *p = page;
c3993076 1092 unsigned int loop;
a226f6c8 1093
e2d0bd2b
YL
1094 prefetchw(p);
1095 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1096 prefetchw(p + 1);
c3993076
JW
1097 __ClearPageReserved(p);
1098 set_page_count(p, 0);
a226f6c8 1099 }
e2d0bd2b
YL
1100 __ClearPageReserved(p);
1101 set_page_count(p, 0);
c3993076 1102
e2d0bd2b 1103 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1104 set_page_refcounted(page);
1105 __free_pages(page, order);
a226f6c8
DH
1106}
1107
75a592a4
MG
1108#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1109 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1110
75a592a4
MG
1111static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1112
1113int __meminit early_pfn_to_nid(unsigned long pfn)
1114{
7ace9917 1115 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1116 int nid;
1117
7ace9917 1118 spin_lock(&early_pfn_lock);
75a592a4 1119 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1120 if (nid < 0)
1121 nid = 0;
1122 spin_unlock(&early_pfn_lock);
1123
1124 return nid;
75a592a4
MG
1125}
1126#endif
1127
1128#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1129static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1130 struct mminit_pfnnid_cache *state)
1131{
1132 int nid;
1133
1134 nid = __early_pfn_to_nid(pfn, state);
1135 if (nid >= 0 && nid != node)
1136 return false;
1137 return true;
1138}
1139
1140/* Only safe to use early in boot when initialisation is single-threaded */
1141static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1142{
1143 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1144}
1145
1146#else
1147
1148static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1149{
1150 return true;
1151}
1152static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1153 struct mminit_pfnnid_cache *state)
1154{
1155 return true;
1156}
1157#endif
1158
1159
0e1cc95b 1160void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1161 unsigned int order)
1162{
1163 if (early_page_uninitialised(pfn))
1164 return;
949698a3 1165 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1166}
1167
7cf91a98
JK
1168/*
1169 * Check that the whole (or subset of) a pageblock given by the interval of
1170 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1171 * with the migration of free compaction scanner. The scanners then need to
1172 * use only pfn_valid_within() check for arches that allow holes within
1173 * pageblocks.
1174 *
1175 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1176 *
1177 * It's possible on some configurations to have a setup like node0 node1 node0
1178 * i.e. it's possible that all pages within a zones range of pages do not
1179 * belong to a single zone. We assume that a border between node0 and node1
1180 * can occur within a single pageblock, but not a node0 node1 node0
1181 * interleaving within a single pageblock. It is therefore sufficient to check
1182 * the first and last page of a pageblock and avoid checking each individual
1183 * page in a pageblock.
1184 */
1185struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1186 unsigned long end_pfn, struct zone *zone)
1187{
1188 struct page *start_page;
1189 struct page *end_page;
1190
1191 /* end_pfn is one past the range we are checking */
1192 end_pfn--;
1193
1194 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1195 return NULL;
1196
1197 start_page = pfn_to_page(start_pfn);
1198
1199 if (page_zone(start_page) != zone)
1200 return NULL;
1201
1202 end_page = pfn_to_page(end_pfn);
1203
1204 /* This gives a shorter code than deriving page_zone(end_page) */
1205 if (page_zone_id(start_page) != page_zone_id(end_page))
1206 return NULL;
1207
1208 return start_page;
1209}
1210
1211void set_zone_contiguous(struct zone *zone)
1212{
1213 unsigned long block_start_pfn = zone->zone_start_pfn;
1214 unsigned long block_end_pfn;
1215
1216 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1217 for (; block_start_pfn < zone_end_pfn(zone);
1218 block_start_pfn = block_end_pfn,
1219 block_end_pfn += pageblock_nr_pages) {
1220
1221 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1222
1223 if (!__pageblock_pfn_to_page(block_start_pfn,
1224 block_end_pfn, zone))
1225 return;
1226 }
1227
1228 /* We confirm that there is no hole */
1229 zone->contiguous = true;
1230}
1231
1232void clear_zone_contiguous(struct zone *zone)
1233{
1234 zone->contiguous = false;
1235}
1236
7e18adb4 1237#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1238static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1239 unsigned long pfn, int nr_pages)
1240{
1241 int i;
1242
1243 if (!page)
1244 return;
1245
1246 /* Free a large naturally-aligned chunk if possible */
1247 if (nr_pages == MAX_ORDER_NR_PAGES &&
1248 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1249 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1250 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1251 return;
1252 }
1253
949698a3
LZ
1254 for (i = 0; i < nr_pages; i++, page++)
1255 __free_pages_boot_core(page, 0);
a4de83dd
MG
1256}
1257
d3cd131d
NS
1258/* Completion tracking for deferred_init_memmap() threads */
1259static atomic_t pgdat_init_n_undone __initdata;
1260static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1261
1262static inline void __init pgdat_init_report_one_done(void)
1263{
1264 if (atomic_dec_and_test(&pgdat_init_n_undone))
1265 complete(&pgdat_init_all_done_comp);
1266}
0e1cc95b 1267
7e18adb4 1268/* Initialise remaining memory on a node */
0e1cc95b 1269static int __init deferred_init_memmap(void *data)
7e18adb4 1270{
0e1cc95b
MG
1271 pg_data_t *pgdat = data;
1272 int nid = pgdat->node_id;
7e18adb4
MG
1273 struct mminit_pfnnid_cache nid_init_state = { };
1274 unsigned long start = jiffies;
1275 unsigned long nr_pages = 0;
1276 unsigned long walk_start, walk_end;
1277 int i, zid;
1278 struct zone *zone;
7e18adb4 1279 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1280 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1281
0e1cc95b 1282 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1283 pgdat_init_report_one_done();
0e1cc95b
MG
1284 return 0;
1285 }
1286
1287 /* Bind memory initialisation thread to a local node if possible */
1288 if (!cpumask_empty(cpumask))
1289 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1290
1291 /* Sanity check boundaries */
1292 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1293 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1294 pgdat->first_deferred_pfn = ULONG_MAX;
1295
1296 /* Only the highest zone is deferred so find it */
1297 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1298 zone = pgdat->node_zones + zid;
1299 if (first_init_pfn < zone_end_pfn(zone))
1300 break;
1301 }
1302
1303 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1304 unsigned long pfn, end_pfn;
54608c3f 1305 struct page *page = NULL;
a4de83dd
MG
1306 struct page *free_base_page = NULL;
1307 unsigned long free_base_pfn = 0;
1308 int nr_to_free = 0;
7e18adb4
MG
1309
1310 end_pfn = min(walk_end, zone_end_pfn(zone));
1311 pfn = first_init_pfn;
1312 if (pfn < walk_start)
1313 pfn = walk_start;
1314 if (pfn < zone->zone_start_pfn)
1315 pfn = zone->zone_start_pfn;
1316
1317 for (; pfn < end_pfn; pfn++) {
54608c3f 1318 if (!pfn_valid_within(pfn))
a4de83dd 1319 goto free_range;
7e18adb4 1320
54608c3f
MG
1321 /*
1322 * Ensure pfn_valid is checked every
1323 * MAX_ORDER_NR_PAGES for memory holes
1324 */
1325 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1326 if (!pfn_valid(pfn)) {
1327 page = NULL;
a4de83dd 1328 goto free_range;
54608c3f
MG
1329 }
1330 }
1331
1332 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1333 page = NULL;
a4de83dd 1334 goto free_range;
54608c3f
MG
1335 }
1336
1337 /* Minimise pfn page lookups and scheduler checks */
1338 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1339 page++;
1340 } else {
a4de83dd
MG
1341 nr_pages += nr_to_free;
1342 deferred_free_range(free_base_page,
1343 free_base_pfn, nr_to_free);
1344 free_base_page = NULL;
1345 free_base_pfn = nr_to_free = 0;
1346
54608c3f
MG
1347 page = pfn_to_page(pfn);
1348 cond_resched();
1349 }
7e18adb4
MG
1350
1351 if (page->flags) {
1352 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1353 goto free_range;
7e18adb4
MG
1354 }
1355
1356 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1357 if (!free_base_page) {
1358 free_base_page = page;
1359 free_base_pfn = pfn;
1360 nr_to_free = 0;
1361 }
1362 nr_to_free++;
1363
1364 /* Where possible, batch up pages for a single free */
1365 continue;
1366free_range:
1367 /* Free the current block of pages to allocator */
1368 nr_pages += nr_to_free;
1369 deferred_free_range(free_base_page, free_base_pfn,
1370 nr_to_free);
1371 free_base_page = NULL;
1372 free_base_pfn = nr_to_free = 0;
7e18adb4 1373 }
a4de83dd 1374
7e18adb4
MG
1375 first_init_pfn = max(end_pfn, first_init_pfn);
1376 }
1377
1378 /* Sanity check that the next zone really is unpopulated */
1379 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1380
0e1cc95b 1381 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1382 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1383
1384 pgdat_init_report_one_done();
0e1cc95b
MG
1385 return 0;
1386}
7cf91a98 1387#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1388
1389void __init page_alloc_init_late(void)
1390{
7cf91a98
JK
1391 struct zone *zone;
1392
1393#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1394 int nid;
1395
d3cd131d
NS
1396 /* There will be num_node_state(N_MEMORY) threads */
1397 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1398 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1399 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1400 }
1401
1402 /* Block until all are initialised */
d3cd131d 1403 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1404
1405 /* Reinit limits that are based on free pages after the kernel is up */
1406 files_maxfiles_init();
7cf91a98
JK
1407#endif
1408
1409 for_each_populated_zone(zone)
1410 set_zone_contiguous(zone);
7e18adb4 1411}
7e18adb4 1412
47118af0 1413#ifdef CONFIG_CMA
9cf510a5 1414/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1415void __init init_cma_reserved_pageblock(struct page *page)
1416{
1417 unsigned i = pageblock_nr_pages;
1418 struct page *p = page;
1419
1420 do {
1421 __ClearPageReserved(p);
1422 set_page_count(p, 0);
1423 } while (++p, --i);
1424
47118af0 1425 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1426
1427 if (pageblock_order >= MAX_ORDER) {
1428 i = pageblock_nr_pages;
1429 p = page;
1430 do {
1431 set_page_refcounted(p);
1432 __free_pages(p, MAX_ORDER - 1);
1433 p += MAX_ORDER_NR_PAGES;
1434 } while (i -= MAX_ORDER_NR_PAGES);
1435 } else {
1436 set_page_refcounted(page);
1437 __free_pages(page, pageblock_order);
1438 }
1439
3dcc0571 1440 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1441}
1442#endif
1da177e4
LT
1443
1444/*
1445 * The order of subdivision here is critical for the IO subsystem.
1446 * Please do not alter this order without good reasons and regression
1447 * testing. Specifically, as large blocks of memory are subdivided,
1448 * the order in which smaller blocks are delivered depends on the order
1449 * they're subdivided in this function. This is the primary factor
1450 * influencing the order in which pages are delivered to the IO
1451 * subsystem according to empirical testing, and this is also justified
1452 * by considering the behavior of a buddy system containing a single
1453 * large block of memory acted on by a series of small allocations.
1454 * This behavior is a critical factor in sglist merging's success.
1455 *
6d49e352 1456 * -- nyc
1da177e4 1457 */
085cc7d5 1458static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1459 int low, int high, struct free_area *area,
1460 int migratetype)
1da177e4
LT
1461{
1462 unsigned long size = 1 << high;
1463
1464 while (high > low) {
1465 area--;
1466 high--;
1467 size >>= 1;
309381fe 1468 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1469
2847cf95 1470 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1471 debug_guardpage_enabled() &&
2847cf95 1472 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1473 /*
1474 * Mark as guard pages (or page), that will allow to
1475 * merge back to allocator when buddy will be freed.
1476 * Corresponding page table entries will not be touched,
1477 * pages will stay not present in virtual address space
1478 */
2847cf95 1479 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1480 continue;
1481 }
b2a0ac88 1482 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1483 area->nr_free++;
1484 set_page_order(&page[size], high);
1485 }
1da177e4
LT
1486}
1487
1da177e4
LT
1488/*
1489 * This page is about to be returned from the page allocator
1490 */
2a7684a2 1491static inline int check_new_page(struct page *page)
1da177e4 1492{
d230dec1 1493 const char *bad_reason = NULL;
f0b791a3
DH
1494 unsigned long bad_flags = 0;
1495
53f9263b 1496 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1497 bad_reason = "nonzero mapcount";
1498 if (unlikely(page->mapping != NULL))
1499 bad_reason = "non-NULL mapping";
fe896d18 1500 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1501 bad_reason = "nonzero _count";
f4c18e6f
NH
1502 if (unlikely(page->flags & __PG_HWPOISON)) {
1503 bad_reason = "HWPoisoned (hardware-corrupted)";
1504 bad_flags = __PG_HWPOISON;
1505 }
f0b791a3
DH
1506 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1507 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1508 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1509 }
9edad6ea
JW
1510#ifdef CONFIG_MEMCG
1511 if (unlikely(page->mem_cgroup))
1512 bad_reason = "page still charged to cgroup";
1513#endif
f0b791a3
DH
1514 if (unlikely(bad_reason)) {
1515 bad_page(page, bad_reason, bad_flags);
689bcebf 1516 return 1;
8cc3b392 1517 }
2a7684a2
WF
1518 return 0;
1519}
1520
1414c7f4
LA
1521static inline bool free_pages_prezeroed(bool poisoned)
1522{
1523 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1524 page_poisoning_enabled() && poisoned;
1525}
1526
75379191
VB
1527static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1528 int alloc_flags)
2a7684a2
WF
1529{
1530 int i;
1414c7f4 1531 bool poisoned = true;
2a7684a2
WF
1532
1533 for (i = 0; i < (1 << order); i++) {
1534 struct page *p = page + i;
1535 if (unlikely(check_new_page(p)))
1536 return 1;
1414c7f4
LA
1537 if (poisoned)
1538 poisoned &= page_is_poisoned(p);
2a7684a2 1539 }
689bcebf 1540
4c21e2f2 1541 set_page_private(page, 0);
7835e98b 1542 set_page_refcounted(page);
cc102509
NP
1543
1544 arch_alloc_page(page, order);
1da177e4 1545 kernel_map_pages(page, 1 << order, 1);
8823b1db 1546 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1547 kasan_alloc_pages(page, order);
17cf4406 1548
1414c7f4 1549 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1550 for (i = 0; i < (1 << order); i++)
1551 clear_highpage(page + i);
17cf4406
NP
1552
1553 if (order && (gfp_flags & __GFP_COMP))
1554 prep_compound_page(page, order);
1555
48c96a36
JK
1556 set_page_owner(page, order, gfp_flags);
1557
75379191 1558 /*
2f064f34 1559 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1560 * allocate the page. The expectation is that the caller is taking
1561 * steps that will free more memory. The caller should avoid the page
1562 * being used for !PFMEMALLOC purposes.
1563 */
2f064f34
MH
1564 if (alloc_flags & ALLOC_NO_WATERMARKS)
1565 set_page_pfmemalloc(page);
1566 else
1567 clear_page_pfmemalloc(page);
75379191 1568
689bcebf 1569 return 0;
1da177e4
LT
1570}
1571
56fd56b8
MG
1572/*
1573 * Go through the free lists for the given migratetype and remove
1574 * the smallest available page from the freelists
1575 */
728ec980
MG
1576static inline
1577struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1578 int migratetype)
1579{
1580 unsigned int current_order;
b8af2941 1581 struct free_area *area;
56fd56b8
MG
1582 struct page *page;
1583
1584 /* Find a page of the appropriate size in the preferred list */
1585 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1586 area = &(zone->free_area[current_order]);
a16601c5 1587 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1588 struct page, lru);
a16601c5
GT
1589 if (!page)
1590 continue;
56fd56b8
MG
1591 list_del(&page->lru);
1592 rmv_page_order(page);
1593 area->nr_free--;
56fd56b8 1594 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1595 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1596 return page;
1597 }
1598
1599 return NULL;
1600}
1601
1602
b2a0ac88
MG
1603/*
1604 * This array describes the order lists are fallen back to when
1605 * the free lists for the desirable migrate type are depleted
1606 */
47118af0 1607static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1608 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1609 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1610 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1611#ifdef CONFIG_CMA
974a786e 1612 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1613#endif
194159fb 1614#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1615 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1616#endif
b2a0ac88
MG
1617};
1618
dc67647b
JK
1619#ifdef CONFIG_CMA
1620static struct page *__rmqueue_cma_fallback(struct zone *zone,
1621 unsigned int order)
1622{
1623 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1624}
1625#else
1626static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1627 unsigned int order) { return NULL; }
1628#endif
1629
c361be55
MG
1630/*
1631 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1632 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1633 * boundary. If alignment is required, use move_freepages_block()
1634 */
435b405c 1635int move_freepages(struct zone *zone,
b69a7288
AB
1636 struct page *start_page, struct page *end_page,
1637 int migratetype)
c361be55
MG
1638{
1639 struct page *page;
d00181b9 1640 unsigned int order;
d100313f 1641 int pages_moved = 0;
c361be55
MG
1642
1643#ifndef CONFIG_HOLES_IN_ZONE
1644 /*
1645 * page_zone is not safe to call in this context when
1646 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1647 * anyway as we check zone boundaries in move_freepages_block().
1648 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1649 * grouping pages by mobility
c361be55 1650 */
97ee4ba7 1651 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1652#endif
1653
1654 for (page = start_page; page <= end_page;) {
344c790e 1655 /* Make sure we are not inadvertently changing nodes */
309381fe 1656 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1657
c361be55
MG
1658 if (!pfn_valid_within(page_to_pfn(page))) {
1659 page++;
1660 continue;
1661 }
1662
1663 if (!PageBuddy(page)) {
1664 page++;
1665 continue;
1666 }
1667
1668 order = page_order(page);
84be48d8
KS
1669 list_move(&page->lru,
1670 &zone->free_area[order].free_list[migratetype]);
c361be55 1671 page += 1 << order;
d100313f 1672 pages_moved += 1 << order;
c361be55
MG
1673 }
1674
d100313f 1675 return pages_moved;
c361be55
MG
1676}
1677
ee6f509c 1678int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1679 int migratetype)
c361be55
MG
1680{
1681 unsigned long start_pfn, end_pfn;
1682 struct page *start_page, *end_page;
1683
1684 start_pfn = page_to_pfn(page);
d9c23400 1685 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1686 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1687 end_page = start_page + pageblock_nr_pages - 1;
1688 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1689
1690 /* Do not cross zone boundaries */
108bcc96 1691 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1692 start_page = page;
108bcc96 1693 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1694 return 0;
1695
1696 return move_freepages(zone, start_page, end_page, migratetype);
1697}
1698
2f66a68f
MG
1699static void change_pageblock_range(struct page *pageblock_page,
1700 int start_order, int migratetype)
1701{
1702 int nr_pageblocks = 1 << (start_order - pageblock_order);
1703
1704 while (nr_pageblocks--) {
1705 set_pageblock_migratetype(pageblock_page, migratetype);
1706 pageblock_page += pageblock_nr_pages;
1707 }
1708}
1709
fef903ef 1710/*
9c0415eb
VB
1711 * When we are falling back to another migratetype during allocation, try to
1712 * steal extra free pages from the same pageblocks to satisfy further
1713 * allocations, instead of polluting multiple pageblocks.
1714 *
1715 * If we are stealing a relatively large buddy page, it is likely there will
1716 * be more free pages in the pageblock, so try to steal them all. For
1717 * reclaimable and unmovable allocations, we steal regardless of page size,
1718 * as fragmentation caused by those allocations polluting movable pageblocks
1719 * is worse than movable allocations stealing from unmovable and reclaimable
1720 * pageblocks.
fef903ef 1721 */
4eb7dce6
JK
1722static bool can_steal_fallback(unsigned int order, int start_mt)
1723{
1724 /*
1725 * Leaving this order check is intended, although there is
1726 * relaxed order check in next check. The reason is that
1727 * we can actually steal whole pageblock if this condition met,
1728 * but, below check doesn't guarantee it and that is just heuristic
1729 * so could be changed anytime.
1730 */
1731 if (order >= pageblock_order)
1732 return true;
1733
1734 if (order >= pageblock_order / 2 ||
1735 start_mt == MIGRATE_RECLAIMABLE ||
1736 start_mt == MIGRATE_UNMOVABLE ||
1737 page_group_by_mobility_disabled)
1738 return true;
1739
1740 return false;
1741}
1742
1743/*
1744 * This function implements actual steal behaviour. If order is large enough,
1745 * we can steal whole pageblock. If not, we first move freepages in this
1746 * pageblock and check whether half of pages are moved or not. If half of
1747 * pages are moved, we can change migratetype of pageblock and permanently
1748 * use it's pages as requested migratetype in the future.
1749 */
1750static void steal_suitable_fallback(struct zone *zone, struct page *page,
1751 int start_type)
fef903ef 1752{
d00181b9 1753 unsigned int current_order = page_order(page);
4eb7dce6 1754 int pages;
fef903ef 1755
fef903ef
SB
1756 /* Take ownership for orders >= pageblock_order */
1757 if (current_order >= pageblock_order) {
1758 change_pageblock_range(page, current_order, start_type);
3a1086fb 1759 return;
fef903ef
SB
1760 }
1761
4eb7dce6 1762 pages = move_freepages_block(zone, page, start_type);
fef903ef 1763
4eb7dce6
JK
1764 /* Claim the whole block if over half of it is free */
1765 if (pages >= (1 << (pageblock_order-1)) ||
1766 page_group_by_mobility_disabled)
1767 set_pageblock_migratetype(page, start_type);
1768}
1769
2149cdae
JK
1770/*
1771 * Check whether there is a suitable fallback freepage with requested order.
1772 * If only_stealable is true, this function returns fallback_mt only if
1773 * we can steal other freepages all together. This would help to reduce
1774 * fragmentation due to mixed migratetype pages in one pageblock.
1775 */
1776int find_suitable_fallback(struct free_area *area, unsigned int order,
1777 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1778{
1779 int i;
1780 int fallback_mt;
1781
1782 if (area->nr_free == 0)
1783 return -1;
1784
1785 *can_steal = false;
1786 for (i = 0;; i++) {
1787 fallback_mt = fallbacks[migratetype][i];
974a786e 1788 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1789 break;
1790
1791 if (list_empty(&area->free_list[fallback_mt]))
1792 continue;
fef903ef 1793
4eb7dce6
JK
1794 if (can_steal_fallback(order, migratetype))
1795 *can_steal = true;
1796
2149cdae
JK
1797 if (!only_stealable)
1798 return fallback_mt;
1799
1800 if (*can_steal)
1801 return fallback_mt;
fef903ef 1802 }
4eb7dce6
JK
1803
1804 return -1;
fef903ef
SB
1805}
1806
0aaa29a5
MG
1807/*
1808 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1809 * there are no empty page blocks that contain a page with a suitable order
1810 */
1811static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1812 unsigned int alloc_order)
1813{
1814 int mt;
1815 unsigned long max_managed, flags;
1816
1817 /*
1818 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1819 * Check is race-prone but harmless.
1820 */
1821 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1822 if (zone->nr_reserved_highatomic >= max_managed)
1823 return;
1824
1825 spin_lock_irqsave(&zone->lock, flags);
1826
1827 /* Recheck the nr_reserved_highatomic limit under the lock */
1828 if (zone->nr_reserved_highatomic >= max_managed)
1829 goto out_unlock;
1830
1831 /* Yoink! */
1832 mt = get_pageblock_migratetype(page);
1833 if (mt != MIGRATE_HIGHATOMIC &&
1834 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1835 zone->nr_reserved_highatomic += pageblock_nr_pages;
1836 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1837 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1838 }
1839
1840out_unlock:
1841 spin_unlock_irqrestore(&zone->lock, flags);
1842}
1843
1844/*
1845 * Used when an allocation is about to fail under memory pressure. This
1846 * potentially hurts the reliability of high-order allocations when under
1847 * intense memory pressure but failed atomic allocations should be easier
1848 * to recover from than an OOM.
1849 */
1850static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1851{
1852 struct zonelist *zonelist = ac->zonelist;
1853 unsigned long flags;
1854 struct zoneref *z;
1855 struct zone *zone;
1856 struct page *page;
1857 int order;
1858
1859 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1860 ac->nodemask) {
1861 /* Preserve at least one pageblock */
1862 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1863 continue;
1864
1865 spin_lock_irqsave(&zone->lock, flags);
1866 for (order = 0; order < MAX_ORDER; order++) {
1867 struct free_area *area = &(zone->free_area[order]);
1868
a16601c5
GT
1869 page = list_first_entry_or_null(
1870 &area->free_list[MIGRATE_HIGHATOMIC],
1871 struct page, lru);
1872 if (!page)
0aaa29a5
MG
1873 continue;
1874
0aaa29a5
MG
1875 /*
1876 * It should never happen but changes to locking could
1877 * inadvertently allow a per-cpu drain to add pages
1878 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1879 * and watch for underflows.
1880 */
1881 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1882 zone->nr_reserved_highatomic);
1883
1884 /*
1885 * Convert to ac->migratetype and avoid the normal
1886 * pageblock stealing heuristics. Minimally, the caller
1887 * is doing the work and needs the pages. More
1888 * importantly, if the block was always converted to
1889 * MIGRATE_UNMOVABLE or another type then the number
1890 * of pageblocks that cannot be completely freed
1891 * may increase.
1892 */
1893 set_pageblock_migratetype(page, ac->migratetype);
1894 move_freepages_block(zone, page, ac->migratetype);
1895 spin_unlock_irqrestore(&zone->lock, flags);
1896 return;
1897 }
1898 spin_unlock_irqrestore(&zone->lock, flags);
1899 }
1900}
1901
b2a0ac88 1902/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1903static inline struct page *
7aeb09f9 1904__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1905{
b8af2941 1906 struct free_area *area;
7aeb09f9 1907 unsigned int current_order;
b2a0ac88 1908 struct page *page;
4eb7dce6
JK
1909 int fallback_mt;
1910 bool can_steal;
b2a0ac88
MG
1911
1912 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1913 for (current_order = MAX_ORDER-1;
1914 current_order >= order && current_order <= MAX_ORDER-1;
1915 --current_order) {
4eb7dce6
JK
1916 area = &(zone->free_area[current_order]);
1917 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1918 start_migratetype, false, &can_steal);
4eb7dce6
JK
1919 if (fallback_mt == -1)
1920 continue;
b2a0ac88 1921
a16601c5 1922 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1923 struct page, lru);
1924 if (can_steal)
1925 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1926
4eb7dce6
JK
1927 /* Remove the page from the freelists */
1928 area->nr_free--;
1929 list_del(&page->lru);
1930 rmv_page_order(page);
3a1086fb 1931
4eb7dce6
JK
1932 expand(zone, page, order, current_order, area,
1933 start_migratetype);
1934 /*
bb14c2c7 1935 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1936 * migratetype depending on the decisions in
bb14c2c7
VB
1937 * find_suitable_fallback(). This is OK as long as it does not
1938 * differ for MIGRATE_CMA pageblocks. Those can be used as
1939 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1940 */
bb14c2c7 1941 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1942
4eb7dce6
JK
1943 trace_mm_page_alloc_extfrag(page, order, current_order,
1944 start_migratetype, fallback_mt);
e0fff1bd 1945
4eb7dce6 1946 return page;
b2a0ac88
MG
1947 }
1948
728ec980 1949 return NULL;
b2a0ac88
MG
1950}
1951
56fd56b8 1952/*
1da177e4
LT
1953 * Do the hard work of removing an element from the buddy allocator.
1954 * Call me with the zone->lock already held.
1955 */
b2a0ac88 1956static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1957 int migratetype)
1da177e4 1958{
1da177e4
LT
1959 struct page *page;
1960
56fd56b8 1961 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1962 if (unlikely(!page)) {
dc67647b
JK
1963 if (migratetype == MIGRATE_MOVABLE)
1964 page = __rmqueue_cma_fallback(zone, order);
1965
1966 if (!page)
1967 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1968 }
1969
0d3d062a 1970 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1971 return page;
1da177e4
LT
1972}
1973
5f63b720 1974/*
1da177e4
LT
1975 * Obtain a specified number of elements from the buddy allocator, all under
1976 * a single hold of the lock, for efficiency. Add them to the supplied list.
1977 * Returns the number of new pages which were placed at *list.
1978 */
5f63b720 1979static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1980 unsigned long count, struct list_head *list,
b745bc85 1981 int migratetype, bool cold)
1da177e4 1982{
5bcc9f86 1983 int i;
5f63b720 1984
c54ad30c 1985 spin_lock(&zone->lock);
1da177e4 1986 for (i = 0; i < count; ++i) {
6ac0206b 1987 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1988 if (unlikely(page == NULL))
1da177e4 1989 break;
81eabcbe
MG
1990
1991 /*
1992 * Split buddy pages returned by expand() are received here
1993 * in physical page order. The page is added to the callers and
1994 * list and the list head then moves forward. From the callers
1995 * perspective, the linked list is ordered by page number in
1996 * some conditions. This is useful for IO devices that can
1997 * merge IO requests if the physical pages are ordered
1998 * properly.
1999 */
b745bc85 2000 if (likely(!cold))
e084b2d9
MG
2001 list_add(&page->lru, list);
2002 else
2003 list_add_tail(&page->lru, list);
81eabcbe 2004 list = &page->lru;
bb14c2c7 2005 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2006 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2007 -(1 << order));
1da177e4 2008 }
f2260e6b 2009 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2010 spin_unlock(&zone->lock);
085cc7d5 2011 return i;
1da177e4
LT
2012}
2013
4ae7c039 2014#ifdef CONFIG_NUMA
8fce4d8e 2015/*
4037d452
CL
2016 * Called from the vmstat counter updater to drain pagesets of this
2017 * currently executing processor on remote nodes after they have
2018 * expired.
2019 *
879336c3
CL
2020 * Note that this function must be called with the thread pinned to
2021 * a single processor.
8fce4d8e 2022 */
4037d452 2023void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2024{
4ae7c039 2025 unsigned long flags;
7be12fc9 2026 int to_drain, batch;
4ae7c039 2027
4037d452 2028 local_irq_save(flags);
4db0c3c2 2029 batch = READ_ONCE(pcp->batch);
7be12fc9 2030 to_drain = min(pcp->count, batch);
2a13515c
KM
2031 if (to_drain > 0) {
2032 free_pcppages_bulk(zone, to_drain, pcp);
2033 pcp->count -= to_drain;
2034 }
4037d452 2035 local_irq_restore(flags);
4ae7c039
CL
2036}
2037#endif
2038
9f8f2172 2039/*
93481ff0 2040 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2041 *
2042 * The processor must either be the current processor and the
2043 * thread pinned to the current processor or a processor that
2044 * is not online.
2045 */
93481ff0 2046static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2047{
c54ad30c 2048 unsigned long flags;
93481ff0
VB
2049 struct per_cpu_pageset *pset;
2050 struct per_cpu_pages *pcp;
1da177e4 2051
93481ff0
VB
2052 local_irq_save(flags);
2053 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2054
93481ff0
VB
2055 pcp = &pset->pcp;
2056 if (pcp->count) {
2057 free_pcppages_bulk(zone, pcp->count, pcp);
2058 pcp->count = 0;
2059 }
2060 local_irq_restore(flags);
2061}
3dfa5721 2062
93481ff0
VB
2063/*
2064 * Drain pcplists of all zones on the indicated processor.
2065 *
2066 * The processor must either be the current processor and the
2067 * thread pinned to the current processor or a processor that
2068 * is not online.
2069 */
2070static void drain_pages(unsigned int cpu)
2071{
2072 struct zone *zone;
2073
2074 for_each_populated_zone(zone) {
2075 drain_pages_zone(cpu, zone);
1da177e4
LT
2076 }
2077}
1da177e4 2078
9f8f2172
CL
2079/*
2080 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2081 *
2082 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2083 * the single zone's pages.
9f8f2172 2084 */
93481ff0 2085void drain_local_pages(struct zone *zone)
9f8f2172 2086{
93481ff0
VB
2087 int cpu = smp_processor_id();
2088
2089 if (zone)
2090 drain_pages_zone(cpu, zone);
2091 else
2092 drain_pages(cpu);
9f8f2172
CL
2093}
2094
2095/*
74046494
GBY
2096 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2097 *
93481ff0
VB
2098 * When zone parameter is non-NULL, spill just the single zone's pages.
2099 *
74046494
GBY
2100 * Note that this code is protected against sending an IPI to an offline
2101 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2102 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2103 * nothing keeps CPUs from showing up after we populated the cpumask and
2104 * before the call to on_each_cpu_mask().
9f8f2172 2105 */
93481ff0 2106void drain_all_pages(struct zone *zone)
9f8f2172 2107{
74046494 2108 int cpu;
74046494
GBY
2109
2110 /*
2111 * Allocate in the BSS so we wont require allocation in
2112 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2113 */
2114 static cpumask_t cpus_with_pcps;
2115
2116 /*
2117 * We don't care about racing with CPU hotplug event
2118 * as offline notification will cause the notified
2119 * cpu to drain that CPU pcps and on_each_cpu_mask
2120 * disables preemption as part of its processing
2121 */
2122 for_each_online_cpu(cpu) {
93481ff0
VB
2123 struct per_cpu_pageset *pcp;
2124 struct zone *z;
74046494 2125 bool has_pcps = false;
93481ff0
VB
2126
2127 if (zone) {
74046494 2128 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2129 if (pcp->pcp.count)
74046494 2130 has_pcps = true;
93481ff0
VB
2131 } else {
2132 for_each_populated_zone(z) {
2133 pcp = per_cpu_ptr(z->pageset, cpu);
2134 if (pcp->pcp.count) {
2135 has_pcps = true;
2136 break;
2137 }
74046494
GBY
2138 }
2139 }
93481ff0 2140
74046494
GBY
2141 if (has_pcps)
2142 cpumask_set_cpu(cpu, &cpus_with_pcps);
2143 else
2144 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2145 }
93481ff0
VB
2146 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2147 zone, 1);
9f8f2172
CL
2148}
2149
296699de 2150#ifdef CONFIG_HIBERNATION
1da177e4
LT
2151
2152void mark_free_pages(struct zone *zone)
2153{
f623f0db
RW
2154 unsigned long pfn, max_zone_pfn;
2155 unsigned long flags;
7aeb09f9 2156 unsigned int order, t;
86760a2c 2157 struct page *page;
1da177e4 2158
8080fc03 2159 if (zone_is_empty(zone))
1da177e4
LT
2160 return;
2161
2162 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2163
108bcc96 2164 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2165 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2166 if (pfn_valid(pfn)) {
86760a2c 2167 page = pfn_to_page(pfn);
ba6b0979
JK
2168
2169 if (page_zone(page) != zone)
2170 continue;
2171
7be98234
RW
2172 if (!swsusp_page_is_forbidden(page))
2173 swsusp_unset_page_free(page);
f623f0db 2174 }
1da177e4 2175
b2a0ac88 2176 for_each_migratetype_order(order, t) {
86760a2c
GT
2177 list_for_each_entry(page,
2178 &zone->free_area[order].free_list[t], lru) {
f623f0db 2179 unsigned long i;
1da177e4 2180
86760a2c 2181 pfn = page_to_pfn(page);
f623f0db 2182 for (i = 0; i < (1UL << order); i++)
7be98234 2183 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2184 }
b2a0ac88 2185 }
1da177e4
LT
2186 spin_unlock_irqrestore(&zone->lock, flags);
2187}
e2c55dc8 2188#endif /* CONFIG_PM */
1da177e4 2189
1da177e4
LT
2190/*
2191 * Free a 0-order page
b745bc85 2192 * cold == true ? free a cold page : free a hot page
1da177e4 2193 */
b745bc85 2194void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2195{
2196 struct zone *zone = page_zone(page);
2197 struct per_cpu_pages *pcp;
2198 unsigned long flags;
dc4b0caf 2199 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2200 int migratetype;
1da177e4 2201
ec95f53a 2202 if (!free_pages_prepare(page, 0))
689bcebf
HD
2203 return;
2204
dc4b0caf 2205 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2206 set_pcppage_migratetype(page, migratetype);
1da177e4 2207 local_irq_save(flags);
f8891e5e 2208 __count_vm_event(PGFREE);
da456f14 2209
5f8dcc21
MG
2210 /*
2211 * We only track unmovable, reclaimable and movable on pcp lists.
2212 * Free ISOLATE pages back to the allocator because they are being
2213 * offlined but treat RESERVE as movable pages so we can get those
2214 * areas back if necessary. Otherwise, we may have to free
2215 * excessively into the page allocator
2216 */
2217 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2218 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2219 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2220 goto out;
2221 }
2222 migratetype = MIGRATE_MOVABLE;
2223 }
2224
99dcc3e5 2225 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2226 if (!cold)
5f8dcc21 2227 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2228 else
2229 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2230 pcp->count++;
48db57f8 2231 if (pcp->count >= pcp->high) {
4db0c3c2 2232 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2233 free_pcppages_bulk(zone, batch, pcp);
2234 pcp->count -= batch;
48db57f8 2235 }
5f8dcc21
MG
2236
2237out:
1da177e4 2238 local_irq_restore(flags);
1da177e4
LT
2239}
2240
cc59850e
KK
2241/*
2242 * Free a list of 0-order pages
2243 */
b745bc85 2244void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2245{
2246 struct page *page, *next;
2247
2248 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2249 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2250 free_hot_cold_page(page, cold);
2251 }
2252}
2253
8dfcc9ba
NP
2254/*
2255 * split_page takes a non-compound higher-order page, and splits it into
2256 * n (1<<order) sub-pages: page[0..n]
2257 * Each sub-page must be freed individually.
2258 *
2259 * Note: this is probably too low level an operation for use in drivers.
2260 * Please consult with lkml before using this in your driver.
2261 */
2262void split_page(struct page *page, unsigned int order)
2263{
2264 int i;
e2cfc911 2265 gfp_t gfp_mask;
8dfcc9ba 2266
309381fe
SL
2267 VM_BUG_ON_PAGE(PageCompound(page), page);
2268 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2269
2270#ifdef CONFIG_KMEMCHECK
2271 /*
2272 * Split shadow pages too, because free(page[0]) would
2273 * otherwise free the whole shadow.
2274 */
2275 if (kmemcheck_page_is_tracked(page))
2276 split_page(virt_to_page(page[0].shadow), order);
2277#endif
2278
e2cfc911
JK
2279 gfp_mask = get_page_owner_gfp(page);
2280 set_page_owner(page, 0, gfp_mask);
48c96a36 2281 for (i = 1; i < (1 << order); i++) {
7835e98b 2282 set_page_refcounted(page + i);
e2cfc911 2283 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2284 }
8dfcc9ba 2285}
5853ff23 2286EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2287
3c605096 2288int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2289{
748446bb
MG
2290 unsigned long watermark;
2291 struct zone *zone;
2139cbe6 2292 int mt;
748446bb
MG
2293
2294 BUG_ON(!PageBuddy(page));
2295
2296 zone = page_zone(page);
2e30abd1 2297 mt = get_pageblock_migratetype(page);
748446bb 2298
194159fb 2299 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2300 /* Obey watermarks as if the page was being allocated */
2301 watermark = low_wmark_pages(zone) + (1 << order);
2302 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2303 return 0;
2304
8fb74b9f 2305 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2306 }
748446bb
MG
2307
2308 /* Remove page from free list */
2309 list_del(&page->lru);
2310 zone->free_area[order].nr_free--;
2311 rmv_page_order(page);
2139cbe6 2312
e2cfc911 2313 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2314
8fb74b9f 2315 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2316 if (order >= pageblock_order - 1) {
2317 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2318 for (; page < endpage; page += pageblock_nr_pages) {
2319 int mt = get_pageblock_migratetype(page);
194159fb 2320 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2321 set_pageblock_migratetype(page,
2322 MIGRATE_MOVABLE);
2323 }
748446bb
MG
2324 }
2325
f3a14ced 2326
8fb74b9f 2327 return 1UL << order;
1fb3f8ca
MG
2328}
2329
2330/*
2331 * Similar to split_page except the page is already free. As this is only
2332 * being used for migration, the migratetype of the block also changes.
2333 * As this is called with interrupts disabled, the caller is responsible
2334 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2335 * are enabled.
2336 *
2337 * Note: this is probably too low level an operation for use in drivers.
2338 * Please consult with lkml before using this in your driver.
2339 */
2340int split_free_page(struct page *page)
2341{
2342 unsigned int order;
2343 int nr_pages;
2344
1fb3f8ca
MG
2345 order = page_order(page);
2346
8fb74b9f 2347 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2348 if (!nr_pages)
2349 return 0;
2350
2351 /* Split into individual pages */
2352 set_page_refcounted(page);
2353 split_page(page, order);
2354 return nr_pages;
748446bb
MG
2355}
2356
1da177e4 2357/*
75379191 2358 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2359 */
0a15c3e9
MG
2360static inline
2361struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2362 struct zone *zone, unsigned int order,
0aaa29a5 2363 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2364{
2365 unsigned long flags;
689bcebf 2366 struct page *page;
b745bc85 2367 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2368
48db57f8 2369 if (likely(order == 0)) {
1da177e4 2370 struct per_cpu_pages *pcp;
5f8dcc21 2371 struct list_head *list;
1da177e4 2372
1da177e4 2373 local_irq_save(flags);
99dcc3e5
CL
2374 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2375 list = &pcp->lists[migratetype];
5f8dcc21 2376 if (list_empty(list)) {
535131e6 2377 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2378 pcp->batch, list,
e084b2d9 2379 migratetype, cold);
5f8dcc21 2380 if (unlikely(list_empty(list)))
6fb332fa 2381 goto failed;
535131e6 2382 }
b92a6edd 2383
5f8dcc21 2384 if (cold)
a16601c5 2385 page = list_last_entry(list, struct page, lru);
5f8dcc21 2386 else
a16601c5 2387 page = list_first_entry(list, struct page, lru);
5f8dcc21 2388
b92a6edd
MG
2389 list_del(&page->lru);
2390 pcp->count--;
7fb1d9fc 2391 } else {
0f352e53
MH
2392 /*
2393 * We most definitely don't want callers attempting to
2394 * allocate greater than order-1 page units with __GFP_NOFAIL.
2395 */
2396 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2397 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2398
2399 page = NULL;
2400 if (alloc_flags & ALLOC_HARDER) {
2401 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2402 if (page)
2403 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2404 }
2405 if (!page)
6ac0206b 2406 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2407 spin_unlock(&zone->lock);
2408 if (!page)
2409 goto failed;
d1ce749a 2410 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2411 get_pcppage_migratetype(page));
1da177e4
LT
2412 }
2413
3a025760 2414 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2415 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2416 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2417 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2418
f8891e5e 2419 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2420 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2421 local_irq_restore(flags);
1da177e4 2422
309381fe 2423 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2424 return page;
a74609fa
NP
2425
2426failed:
2427 local_irq_restore(flags);
a74609fa 2428 return NULL;
1da177e4
LT
2429}
2430
933e312e
AM
2431#ifdef CONFIG_FAIL_PAGE_ALLOC
2432
b2588c4b 2433static struct {
933e312e
AM
2434 struct fault_attr attr;
2435
621a5f7a 2436 bool ignore_gfp_highmem;
71baba4b 2437 bool ignore_gfp_reclaim;
54114994 2438 u32 min_order;
933e312e
AM
2439} fail_page_alloc = {
2440 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2441 .ignore_gfp_reclaim = true,
621a5f7a 2442 .ignore_gfp_highmem = true,
54114994 2443 .min_order = 1,
933e312e
AM
2444};
2445
2446static int __init setup_fail_page_alloc(char *str)
2447{
2448 return setup_fault_attr(&fail_page_alloc.attr, str);
2449}
2450__setup("fail_page_alloc=", setup_fail_page_alloc);
2451
deaf386e 2452static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2453{
54114994 2454 if (order < fail_page_alloc.min_order)
deaf386e 2455 return false;
933e312e 2456 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2457 return false;
933e312e 2458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2459 return false;
71baba4b
MG
2460 if (fail_page_alloc.ignore_gfp_reclaim &&
2461 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2462 return false;
933e312e
AM
2463
2464 return should_fail(&fail_page_alloc.attr, 1 << order);
2465}
2466
2467#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2468
2469static int __init fail_page_alloc_debugfs(void)
2470{
f4ae40a6 2471 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2472 struct dentry *dir;
933e312e 2473
dd48c085
AM
2474 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2475 &fail_page_alloc.attr);
2476 if (IS_ERR(dir))
2477 return PTR_ERR(dir);
933e312e 2478
b2588c4b 2479 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2480 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2481 goto fail;
2482 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2483 &fail_page_alloc.ignore_gfp_highmem))
2484 goto fail;
2485 if (!debugfs_create_u32("min-order", mode, dir,
2486 &fail_page_alloc.min_order))
2487 goto fail;
2488
2489 return 0;
2490fail:
dd48c085 2491 debugfs_remove_recursive(dir);
933e312e 2492
b2588c4b 2493 return -ENOMEM;
933e312e
AM
2494}
2495
2496late_initcall(fail_page_alloc_debugfs);
2497
2498#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2499
2500#else /* CONFIG_FAIL_PAGE_ALLOC */
2501
deaf386e 2502static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2503{
deaf386e 2504 return false;
933e312e
AM
2505}
2506
2507#endif /* CONFIG_FAIL_PAGE_ALLOC */
2508
1da177e4 2509/*
97a16fc8
MG
2510 * Return true if free base pages are above 'mark'. For high-order checks it
2511 * will return true of the order-0 watermark is reached and there is at least
2512 * one free page of a suitable size. Checking now avoids taking the zone lock
2513 * to check in the allocation paths if no pages are free.
1da177e4 2514 */
7aeb09f9
MG
2515static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2516 unsigned long mark, int classzone_idx, int alloc_flags,
2517 long free_pages)
1da177e4 2518{
d23ad423 2519 long min = mark;
1da177e4 2520 int o;
97a16fc8 2521 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2522
0aaa29a5 2523 /* free_pages may go negative - that's OK */
df0a6daa 2524 free_pages -= (1 << order) - 1;
0aaa29a5 2525
7fb1d9fc 2526 if (alloc_flags & ALLOC_HIGH)
1da177e4 2527 min -= min / 2;
0aaa29a5
MG
2528
2529 /*
2530 * If the caller does not have rights to ALLOC_HARDER then subtract
2531 * the high-atomic reserves. This will over-estimate the size of the
2532 * atomic reserve but it avoids a search.
2533 */
97a16fc8 2534 if (likely(!alloc_harder))
0aaa29a5
MG
2535 free_pages -= z->nr_reserved_highatomic;
2536 else
1da177e4 2537 min -= min / 4;
e2b19197 2538
d95ea5d1
BZ
2539#ifdef CONFIG_CMA
2540 /* If allocation can't use CMA areas don't use free CMA pages */
2541 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2542 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2543#endif
026b0814 2544
97a16fc8
MG
2545 /*
2546 * Check watermarks for an order-0 allocation request. If these
2547 * are not met, then a high-order request also cannot go ahead
2548 * even if a suitable page happened to be free.
2549 */
2550 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2551 return false;
1da177e4 2552
97a16fc8
MG
2553 /* If this is an order-0 request then the watermark is fine */
2554 if (!order)
2555 return true;
2556
2557 /* For a high-order request, check at least one suitable page is free */
2558 for (o = order; o < MAX_ORDER; o++) {
2559 struct free_area *area = &z->free_area[o];
2560 int mt;
2561
2562 if (!area->nr_free)
2563 continue;
2564
2565 if (alloc_harder)
2566 return true;
1da177e4 2567
97a16fc8
MG
2568 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2569 if (!list_empty(&area->free_list[mt]))
2570 return true;
2571 }
2572
2573#ifdef CONFIG_CMA
2574 if ((alloc_flags & ALLOC_CMA) &&
2575 !list_empty(&area->free_list[MIGRATE_CMA])) {
2576 return true;
2577 }
2578#endif
1da177e4 2579 }
97a16fc8 2580 return false;
88f5acf8
MG
2581}
2582
7aeb09f9 2583bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2584 int classzone_idx, int alloc_flags)
2585{
2586 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2587 zone_page_state(z, NR_FREE_PAGES));
2588}
2589
7aeb09f9 2590bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2591 unsigned long mark, int classzone_idx)
88f5acf8
MG
2592{
2593 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2594
2595 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2596 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2597
e2b19197 2598 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2599 free_pages);
1da177e4
LT
2600}
2601
9276b1bc 2602#ifdef CONFIG_NUMA
81c0a2bb
JW
2603static bool zone_local(struct zone *local_zone, struct zone *zone)
2604{
fff4068c 2605 return local_zone->node == zone->node;
81c0a2bb
JW
2606}
2607
957f822a
DR
2608static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2609{
5f7a75ac
MG
2610 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2611 RECLAIM_DISTANCE;
957f822a 2612}
9276b1bc 2613#else /* CONFIG_NUMA */
81c0a2bb
JW
2614static bool zone_local(struct zone *local_zone, struct zone *zone)
2615{
2616 return true;
2617}
2618
957f822a
DR
2619static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2620{
2621 return true;
2622}
9276b1bc
PJ
2623#endif /* CONFIG_NUMA */
2624
4ffeaf35
MG
2625static void reset_alloc_batches(struct zone *preferred_zone)
2626{
2627 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2628
2629 do {
2630 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2631 high_wmark_pages(zone) - low_wmark_pages(zone) -
2632 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2633 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2634 } while (zone++ != preferred_zone);
2635}
2636
7fb1d9fc 2637/*
0798e519 2638 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2639 * a page.
2640 */
2641static struct page *
a9263751
VB
2642get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2643 const struct alloc_context *ac)
753ee728 2644{
a9263751 2645 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2646 struct zoneref *z;
7fb1d9fc 2647 struct page *page = NULL;
5117f45d 2648 struct zone *zone;
4ffeaf35
MG
2649 int nr_fair_skipped = 0;
2650 bool zonelist_rescan;
54a6eb5c 2651
9276b1bc 2652zonelist_scan:
4ffeaf35
MG
2653 zonelist_rescan = false;
2654
7fb1d9fc 2655 /*
9276b1bc 2656 * Scan zonelist, looking for a zone with enough free.
344736f2 2657 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2658 */
a9263751
VB
2659 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2660 ac->nodemask) {
e085dbc5
JW
2661 unsigned long mark;
2662
664eedde
MG
2663 if (cpusets_enabled() &&
2664 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2665 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2666 continue;
81c0a2bb
JW
2667 /*
2668 * Distribute pages in proportion to the individual
2669 * zone size to ensure fair page aging. The zone a
2670 * page was allocated in should have no effect on the
2671 * time the page has in memory before being reclaimed.
81c0a2bb 2672 */
3a025760 2673 if (alloc_flags & ALLOC_FAIR) {
a9263751 2674 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2675 break;
57054651 2676 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2677 nr_fair_skipped++;
3a025760 2678 continue;
4ffeaf35 2679 }
81c0a2bb 2680 }
a756cf59
JW
2681 /*
2682 * When allocating a page cache page for writing, we
2683 * want to get it from a zone that is within its dirty
2684 * limit, such that no single zone holds more than its
2685 * proportional share of globally allowed dirty pages.
2686 * The dirty limits take into account the zone's
2687 * lowmem reserves and high watermark so that kswapd
2688 * should be able to balance it without having to
2689 * write pages from its LRU list.
2690 *
2691 * This may look like it could increase pressure on
2692 * lower zones by failing allocations in higher zones
2693 * before they are full. But the pages that do spill
2694 * over are limited as the lower zones are protected
2695 * by this very same mechanism. It should not become
2696 * a practical burden to them.
2697 *
2698 * XXX: For now, allow allocations to potentially
2699 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2700 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2701 * which is important when on a NUMA setup the allowed
2702 * zones are together not big enough to reach the
2703 * global limit. The proper fix for these situations
2704 * will require awareness of zones in the
2705 * dirty-throttling and the flusher threads.
2706 */
c9ab0c4f 2707 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2708 continue;
7fb1d9fc 2709
e085dbc5
JW
2710 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2711 if (!zone_watermark_ok(zone, order, mark,
a9263751 2712 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2713 int ret;
2714
5dab2911
MG
2715 /* Checked here to keep the fast path fast */
2716 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2717 if (alloc_flags & ALLOC_NO_WATERMARKS)
2718 goto try_this_zone;
2719
957f822a 2720 if (zone_reclaim_mode == 0 ||
a9263751 2721 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2722 continue;
2723
fa5e084e
MG
2724 ret = zone_reclaim(zone, gfp_mask, order);
2725 switch (ret) {
2726 case ZONE_RECLAIM_NOSCAN:
2727 /* did not scan */
cd38b115 2728 continue;
fa5e084e
MG
2729 case ZONE_RECLAIM_FULL:
2730 /* scanned but unreclaimable */
cd38b115 2731 continue;
fa5e084e
MG
2732 default:
2733 /* did we reclaim enough */
fed2719e 2734 if (zone_watermark_ok(zone, order, mark,
a9263751 2735 ac->classzone_idx, alloc_flags))
fed2719e
MG
2736 goto try_this_zone;
2737
fed2719e 2738 continue;
0798e519 2739 }
7fb1d9fc
RS
2740 }
2741
fa5e084e 2742try_this_zone:
a9263751 2743 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2744 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2745 if (page) {
2746 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2747 goto try_this_zone;
0aaa29a5
MG
2748
2749 /*
2750 * If this is a high-order atomic allocation then check
2751 * if the pageblock should be reserved for the future
2752 */
2753 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2754 reserve_highatomic_pageblock(page, zone, order);
2755
75379191
VB
2756 return page;
2757 }
54a6eb5c 2758 }
9276b1bc 2759
4ffeaf35
MG
2760 /*
2761 * The first pass makes sure allocations are spread fairly within the
2762 * local node. However, the local node might have free pages left
2763 * after the fairness batches are exhausted, and remote zones haven't
2764 * even been considered yet. Try once more without fairness, and
2765 * include remote zones now, before entering the slowpath and waking
2766 * kswapd: prefer spilling to a remote zone over swapping locally.
2767 */
2768 if (alloc_flags & ALLOC_FAIR) {
2769 alloc_flags &= ~ALLOC_FAIR;
2770 if (nr_fair_skipped) {
2771 zonelist_rescan = true;
a9263751 2772 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2773 }
2774 if (nr_online_nodes > 1)
2775 zonelist_rescan = true;
2776 }
2777
4ffeaf35
MG
2778 if (zonelist_rescan)
2779 goto zonelist_scan;
2780
2781 return NULL;
753ee728
MH
2782}
2783
29423e77
DR
2784/*
2785 * Large machines with many possible nodes should not always dump per-node
2786 * meminfo in irq context.
2787 */
2788static inline bool should_suppress_show_mem(void)
2789{
2790 bool ret = false;
2791
2792#if NODES_SHIFT > 8
2793 ret = in_interrupt();
2794#endif
2795 return ret;
2796}
2797
a238ab5b
DH
2798static DEFINE_RATELIMIT_STATE(nopage_rs,
2799 DEFAULT_RATELIMIT_INTERVAL,
2800 DEFAULT_RATELIMIT_BURST);
2801
d00181b9 2802void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2803{
a238ab5b
DH
2804 unsigned int filter = SHOW_MEM_FILTER_NODES;
2805
c0a32fc5
SG
2806 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2807 debug_guardpage_minorder() > 0)
a238ab5b
DH
2808 return;
2809
2810 /*
2811 * This documents exceptions given to allocations in certain
2812 * contexts that are allowed to allocate outside current's set
2813 * of allowed nodes.
2814 */
2815 if (!(gfp_mask & __GFP_NOMEMALLOC))
2816 if (test_thread_flag(TIF_MEMDIE) ||
2817 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2818 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2819 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2820 filter &= ~SHOW_MEM_FILTER_NODES;
2821
2822 if (fmt) {
3ee9a4f0
JP
2823 struct va_format vaf;
2824 va_list args;
2825
a238ab5b 2826 va_start(args, fmt);
3ee9a4f0
JP
2827
2828 vaf.fmt = fmt;
2829 vaf.va = &args;
2830
2831 pr_warn("%pV", &vaf);
2832
a238ab5b
DH
2833 va_end(args);
2834 }
2835
c5c990e8
VB
2836 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2837 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2838 dump_stack();
2839 if (!should_suppress_show_mem())
2840 show_mem(filter);
2841}
2842
11e33f6a
MG
2843static inline struct page *
2844__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2845 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2846{
6e0fc46d
DR
2847 struct oom_control oc = {
2848 .zonelist = ac->zonelist,
2849 .nodemask = ac->nodemask,
2850 .gfp_mask = gfp_mask,
2851 .order = order,
6e0fc46d 2852 };
11e33f6a
MG
2853 struct page *page;
2854
9879de73
JW
2855 *did_some_progress = 0;
2856
9879de73 2857 /*
dc56401f
JW
2858 * Acquire the oom lock. If that fails, somebody else is
2859 * making progress for us.
9879de73 2860 */
dc56401f 2861 if (!mutex_trylock(&oom_lock)) {
9879de73 2862 *did_some_progress = 1;
11e33f6a 2863 schedule_timeout_uninterruptible(1);
1da177e4
LT
2864 return NULL;
2865 }
6b1de916 2866
11e33f6a
MG
2867 /*
2868 * Go through the zonelist yet one more time, keep very high watermark
2869 * here, this is only to catch a parallel oom killing, we must fail if
2870 * we're still under heavy pressure.
2871 */
a9263751
VB
2872 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2873 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2874 if (page)
11e33f6a
MG
2875 goto out;
2876
4365a567 2877 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2878 /* Coredumps can quickly deplete all memory reserves */
2879 if (current->flags & PF_DUMPCORE)
2880 goto out;
4365a567
KH
2881 /* The OOM killer will not help higher order allocs */
2882 if (order > PAGE_ALLOC_COSTLY_ORDER)
2883 goto out;
03668b3c 2884 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2885 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2886 goto out;
9083905a
JW
2887 if (pm_suspended_storage())
2888 goto out;
3da88fb3
MH
2889 /*
2890 * XXX: GFP_NOFS allocations should rather fail than rely on
2891 * other request to make a forward progress.
2892 * We are in an unfortunate situation where out_of_memory cannot
2893 * do much for this context but let's try it to at least get
2894 * access to memory reserved if the current task is killed (see
2895 * out_of_memory). Once filesystems are ready to handle allocation
2896 * failures more gracefully we should just bail out here.
2897 */
2898
4167e9b2 2899 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2900 if (gfp_mask & __GFP_THISNODE)
2901 goto out;
2902 }
11e33f6a 2903 /* Exhausted what can be done so it's blamo time */
5020e285 2904 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 2905 *did_some_progress = 1;
5020e285
MH
2906
2907 if (gfp_mask & __GFP_NOFAIL) {
2908 page = get_page_from_freelist(gfp_mask, order,
2909 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2910 /*
2911 * fallback to ignore cpuset restriction if our nodes
2912 * are depleted
2913 */
2914 if (!page)
2915 page = get_page_from_freelist(gfp_mask, order,
2916 ALLOC_NO_WATERMARKS, ac);
2917 }
2918 }
11e33f6a 2919out:
dc56401f 2920 mutex_unlock(&oom_lock);
11e33f6a
MG
2921 return page;
2922}
2923
56de7263
MG
2924#ifdef CONFIG_COMPACTION
2925/* Try memory compaction for high-order allocations before reclaim */
2926static struct page *
2927__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2928 int alloc_flags, const struct alloc_context *ac,
2929 enum migrate_mode mode, int *contended_compaction,
2930 bool *deferred_compaction)
56de7263 2931{
53853e2d 2932 unsigned long compact_result;
98dd3b48 2933 struct page *page;
53853e2d
VB
2934
2935 if (!order)
66199712 2936 return NULL;
66199712 2937
c06b1fca 2938 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2939 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2940 mode, contended_compaction);
c06b1fca 2941 current->flags &= ~PF_MEMALLOC;
56de7263 2942
98dd3b48
VB
2943 switch (compact_result) {
2944 case COMPACT_DEFERRED:
53853e2d 2945 *deferred_compaction = true;
98dd3b48
VB
2946 /* fall-through */
2947 case COMPACT_SKIPPED:
2948 return NULL;
2949 default:
2950 break;
2951 }
53853e2d 2952
98dd3b48
VB
2953 /*
2954 * At least in one zone compaction wasn't deferred or skipped, so let's
2955 * count a compaction stall
2956 */
2957 count_vm_event(COMPACTSTALL);
8fb74b9f 2958
a9263751
VB
2959 page = get_page_from_freelist(gfp_mask, order,
2960 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2961
98dd3b48
VB
2962 if (page) {
2963 struct zone *zone = page_zone(page);
53853e2d 2964
98dd3b48
VB
2965 zone->compact_blockskip_flush = false;
2966 compaction_defer_reset(zone, order, true);
2967 count_vm_event(COMPACTSUCCESS);
2968 return page;
2969 }
56de7263 2970
98dd3b48
VB
2971 /*
2972 * It's bad if compaction run occurs and fails. The most likely reason
2973 * is that pages exist, but not enough to satisfy watermarks.
2974 */
2975 count_vm_event(COMPACTFAIL);
66199712 2976
98dd3b48 2977 cond_resched();
56de7263
MG
2978
2979 return NULL;
2980}
2981#else
2982static inline struct page *
2983__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2984 int alloc_flags, const struct alloc_context *ac,
2985 enum migrate_mode mode, int *contended_compaction,
2986 bool *deferred_compaction)
56de7263
MG
2987{
2988 return NULL;
2989}
2990#endif /* CONFIG_COMPACTION */
2991
bba90710
MS
2992/* Perform direct synchronous page reclaim */
2993static int
a9263751
VB
2994__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2995 const struct alloc_context *ac)
11e33f6a 2996{
11e33f6a 2997 struct reclaim_state reclaim_state;
bba90710 2998 int progress;
11e33f6a
MG
2999
3000 cond_resched();
3001
3002 /* We now go into synchronous reclaim */
3003 cpuset_memory_pressure_bump();
c06b1fca 3004 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3005 lockdep_set_current_reclaim_state(gfp_mask);
3006 reclaim_state.reclaimed_slab = 0;
c06b1fca 3007 current->reclaim_state = &reclaim_state;
11e33f6a 3008
a9263751
VB
3009 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3010 ac->nodemask);
11e33f6a 3011
c06b1fca 3012 current->reclaim_state = NULL;
11e33f6a 3013 lockdep_clear_current_reclaim_state();
c06b1fca 3014 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3015
3016 cond_resched();
3017
bba90710
MS
3018 return progress;
3019}
3020
3021/* The really slow allocator path where we enter direct reclaim */
3022static inline struct page *
3023__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
3024 int alloc_flags, const struct alloc_context *ac,
3025 unsigned long *did_some_progress)
bba90710
MS
3026{
3027 struct page *page = NULL;
3028 bool drained = false;
3029
a9263751 3030 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3031 if (unlikely(!(*did_some_progress)))
3032 return NULL;
11e33f6a 3033
9ee493ce 3034retry:
a9263751
VB
3035 page = get_page_from_freelist(gfp_mask, order,
3036 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3037
3038 /*
3039 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3040 * pages are pinned on the per-cpu lists or in high alloc reserves.
3041 * Shrink them them and try again
9ee493ce
MG
3042 */
3043 if (!page && !drained) {
0aaa29a5 3044 unreserve_highatomic_pageblock(ac);
93481ff0 3045 drain_all_pages(NULL);
9ee493ce
MG
3046 drained = true;
3047 goto retry;
3048 }
3049
11e33f6a
MG
3050 return page;
3051}
3052
a9263751 3053static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3054{
3055 struct zoneref *z;
3056 struct zone *zone;
3057
a9263751
VB
3058 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3059 ac->high_zoneidx, ac->nodemask)
3060 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
3061}
3062
341ce06f
PZ
3063static inline int
3064gfp_to_alloc_flags(gfp_t gfp_mask)
3065{
341ce06f 3066 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3067
a56f57ff 3068 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3069 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3070
341ce06f
PZ
3071 /*
3072 * The caller may dip into page reserves a bit more if the caller
3073 * cannot run direct reclaim, or if the caller has realtime scheduling
3074 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3075 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3076 */
e6223a3b 3077 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3078
d0164adc 3079 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3080 /*
b104a35d
DR
3081 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3082 * if it can't schedule.
5c3240d9 3083 */
b104a35d 3084 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3085 alloc_flags |= ALLOC_HARDER;
523b9458 3086 /*
b104a35d 3087 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3088 * comment for __cpuset_node_allowed().
523b9458 3089 */
341ce06f 3090 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3091 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3092 alloc_flags |= ALLOC_HARDER;
3093
b37f1dd0
MG
3094 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3095 if (gfp_mask & __GFP_MEMALLOC)
3096 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3097 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3098 alloc_flags |= ALLOC_NO_WATERMARKS;
3099 else if (!in_interrupt() &&
3100 ((current->flags & PF_MEMALLOC) ||
3101 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3102 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3103 }
d95ea5d1 3104#ifdef CONFIG_CMA
43e7a34d 3105 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3106 alloc_flags |= ALLOC_CMA;
3107#endif
341ce06f
PZ
3108 return alloc_flags;
3109}
3110
072bb0aa
MG
3111bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3112{
b37f1dd0 3113 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3114}
3115
d0164adc
MG
3116static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3117{
3118 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3119}
3120
11e33f6a
MG
3121static inline struct page *
3122__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3123 struct alloc_context *ac)
11e33f6a 3124{
d0164adc 3125 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
3126 struct page *page = NULL;
3127 int alloc_flags;
3128 unsigned long pages_reclaimed = 0;
3129 unsigned long did_some_progress;
e0b9daeb 3130 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3131 bool deferred_compaction = false;
1f9efdef 3132 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3133
72807a74
MG
3134 /*
3135 * In the slowpath, we sanity check order to avoid ever trying to
3136 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3137 * be using allocators in order of preference for an area that is
3138 * too large.
3139 */
1fc28b70
MG
3140 if (order >= MAX_ORDER) {
3141 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3142 return NULL;
1fc28b70 3143 }
1da177e4 3144
d0164adc
MG
3145 /*
3146 * We also sanity check to catch abuse of atomic reserves being used by
3147 * callers that are not in atomic context.
3148 */
3149 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3150 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3151 gfp_mask &= ~__GFP_ATOMIC;
3152
9879de73 3153retry:
d0164adc 3154 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3155 wake_all_kswapds(order, ac);
1da177e4 3156
9bf2229f 3157 /*
7fb1d9fc
RS
3158 * OK, we're below the kswapd watermark and have kicked background
3159 * reclaim. Now things get more complex, so set up alloc_flags according
3160 * to how we want to proceed.
9bf2229f 3161 */
341ce06f 3162 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3163
f33261d7
DR
3164 /*
3165 * Find the true preferred zone if the allocation is unconstrained by
3166 * cpusets.
3167 */
a9263751 3168 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3169 struct zoneref *preferred_zoneref;
a9263751
VB
3170 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3171 ac->high_zoneidx, NULL, &ac->preferred_zone);
3172 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3173 }
f33261d7 3174
341ce06f 3175 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3176 page = get_page_from_freelist(gfp_mask, order,
3177 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3178 if (page)
3179 goto got_pg;
1da177e4 3180
11e33f6a 3181 /* Allocate without watermarks if the context allows */
341ce06f 3182 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3183 /*
3184 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3185 * the allocation is high priority and these type of
3186 * allocations are system rather than user orientated
3187 */
a9263751 3188 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3189 page = get_page_from_freelist(gfp_mask, order,
3190 ALLOC_NO_WATERMARKS, ac);
3191 if (page)
3192 goto got_pg;
1da177e4
LT
3193 }
3194
d0164adc
MG
3195 /* Caller is not willing to reclaim, we can't balance anything */
3196 if (!can_direct_reclaim) {
aed0a0e3 3197 /*
33d53103
MH
3198 * All existing users of the __GFP_NOFAIL are blockable, so warn
3199 * of any new users that actually allow this type of allocation
3200 * to fail.
aed0a0e3
DR
3201 */
3202 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3203 goto nopage;
aed0a0e3 3204 }
1da177e4 3205
341ce06f 3206 /* Avoid recursion of direct reclaim */
33d53103
MH
3207 if (current->flags & PF_MEMALLOC) {
3208 /*
3209 * __GFP_NOFAIL request from this context is rather bizarre
3210 * because we cannot reclaim anything and only can loop waiting
3211 * for somebody to do a work for us.
3212 */
3213 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3214 cond_resched();
3215 goto retry;
3216 }
341ce06f 3217 goto nopage;
33d53103 3218 }
341ce06f 3219
6583bb64
DR
3220 /* Avoid allocations with no watermarks from looping endlessly */
3221 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3222 goto nopage;
3223
77f1fe6b
MG
3224 /*
3225 * Try direct compaction. The first pass is asynchronous. Subsequent
3226 * attempts after direct reclaim are synchronous
3227 */
a9263751
VB
3228 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3229 migration_mode,
3230 &contended_compaction,
53853e2d 3231 &deferred_compaction);
56de7263
MG
3232 if (page)
3233 goto got_pg;
75f30861 3234
1f9efdef 3235 /* Checks for THP-specific high-order allocations */
d0164adc 3236 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3237 /*
3238 * If compaction is deferred for high-order allocations, it is
3239 * because sync compaction recently failed. If this is the case
3240 * and the caller requested a THP allocation, we do not want
3241 * to heavily disrupt the system, so we fail the allocation
3242 * instead of entering direct reclaim.
3243 */
3244 if (deferred_compaction)
3245 goto nopage;
3246
3247 /*
3248 * In all zones where compaction was attempted (and not
3249 * deferred or skipped), lock contention has been detected.
3250 * For THP allocation we do not want to disrupt the others
3251 * so we fallback to base pages instead.
3252 */
3253 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3254 goto nopage;
3255
3256 /*
3257 * If compaction was aborted due to need_resched(), we do not
3258 * want to further increase allocation latency, unless it is
3259 * khugepaged trying to collapse.
3260 */
3261 if (contended_compaction == COMPACT_CONTENDED_SCHED
3262 && !(current->flags & PF_KTHREAD))
3263 goto nopage;
3264 }
66199712 3265
8fe78048
DR
3266 /*
3267 * It can become very expensive to allocate transparent hugepages at
3268 * fault, so use asynchronous memory compaction for THP unless it is
3269 * khugepaged trying to collapse.
3270 */
d0164adc 3271 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3272 migration_mode = MIGRATE_SYNC_LIGHT;
3273
11e33f6a 3274 /* Try direct reclaim and then allocating */
a9263751
VB
3275 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3276 &did_some_progress);
11e33f6a
MG
3277 if (page)
3278 goto got_pg;
1da177e4 3279
9083905a
JW
3280 /* Do not loop if specifically requested */
3281 if (gfp_mask & __GFP_NORETRY)
3282 goto noretry;
3283
3284 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3285 pages_reclaimed += did_some_progress;
9083905a
JW
3286 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3287 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3288 /* Wait for some write requests to complete then retry */
a9263751 3289 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3290 goto retry;
1da177e4
LT
3291 }
3292
9083905a
JW
3293 /* Reclaim has failed us, start killing things */
3294 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3295 if (page)
3296 goto got_pg;
3297
3298 /* Retry as long as the OOM killer is making progress */
3299 if (did_some_progress)
3300 goto retry;
3301
3302noretry:
3303 /*
3304 * High-order allocations do not necessarily loop after
3305 * direct reclaim and reclaim/compaction depends on compaction
3306 * being called after reclaim so call directly if necessary
3307 */
3308 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3309 ac, migration_mode,
3310 &contended_compaction,
3311 &deferred_compaction);
3312 if (page)
3313 goto got_pg;
1da177e4 3314nopage:
a238ab5b 3315 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3316got_pg:
072bb0aa 3317 return page;
1da177e4 3318}
11e33f6a
MG
3319
3320/*
3321 * This is the 'heart' of the zoned buddy allocator.
3322 */
3323struct page *
3324__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3325 struct zonelist *zonelist, nodemask_t *nodemask)
3326{
d8846374 3327 struct zoneref *preferred_zoneref;
cc9a6c87 3328 struct page *page = NULL;
cc9a6c87 3329 unsigned int cpuset_mems_cookie;
3a025760 3330 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3331 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3332 struct alloc_context ac = {
3333 .high_zoneidx = gfp_zone(gfp_mask),
3334 .nodemask = nodemask,
3335 .migratetype = gfpflags_to_migratetype(gfp_mask),
3336 };
11e33f6a 3337
dcce284a
BH
3338 gfp_mask &= gfp_allowed_mask;
3339
11e33f6a
MG
3340 lockdep_trace_alloc(gfp_mask);
3341
d0164adc 3342 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3343
3344 if (should_fail_alloc_page(gfp_mask, order))
3345 return NULL;
3346
3347 /*
3348 * Check the zones suitable for the gfp_mask contain at least one
3349 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3350 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3351 */
3352 if (unlikely(!zonelist->_zonerefs->zone))
3353 return NULL;
3354
a9263751 3355 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3356 alloc_flags |= ALLOC_CMA;
3357
cc9a6c87 3358retry_cpuset:
d26914d1 3359 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3360
a9263751
VB
3361 /* We set it here, as __alloc_pages_slowpath might have changed it */
3362 ac.zonelist = zonelist;
c9ab0c4f
MG
3363
3364 /* Dirty zone balancing only done in the fast path */
3365 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3366
5117f45d 3367 /* The preferred zone is used for statistics later */
a9263751
VB
3368 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3369 ac.nodemask ? : &cpuset_current_mems_allowed,
3370 &ac.preferred_zone);
3371 if (!ac.preferred_zone)
cc9a6c87 3372 goto out;
a9263751 3373 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3374
3375 /* First allocation attempt */
91fbdc0f 3376 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3377 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3378 if (unlikely(!page)) {
3379 /*
3380 * Runtime PM, block IO and its error handling path
3381 * can deadlock because I/O on the device might not
3382 * complete.
3383 */
91fbdc0f 3384 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3385 ac.spread_dirty_pages = false;
91fbdc0f 3386
a9263751 3387 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3388 }
11e33f6a 3389
23f086f9
XQ
3390 if (kmemcheck_enabled && page)
3391 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3392
a9263751 3393 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3394
3395out:
3396 /*
3397 * When updating a task's mems_allowed, it is possible to race with
3398 * parallel threads in such a way that an allocation can fail while
3399 * the mask is being updated. If a page allocation is about to fail,
3400 * check if the cpuset changed during allocation and if so, retry.
3401 */
d26914d1 3402 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3403 goto retry_cpuset;
3404
11e33f6a 3405 return page;
1da177e4 3406}
d239171e 3407EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3408
3409/*
3410 * Common helper functions.
3411 */
920c7a5d 3412unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3413{
945a1113
AM
3414 struct page *page;
3415
3416 /*
3417 * __get_free_pages() returns a 32-bit address, which cannot represent
3418 * a highmem page
3419 */
3420 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3421
1da177e4
LT
3422 page = alloc_pages(gfp_mask, order);
3423 if (!page)
3424 return 0;
3425 return (unsigned long) page_address(page);
3426}
1da177e4
LT
3427EXPORT_SYMBOL(__get_free_pages);
3428
920c7a5d 3429unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3430{
945a1113 3431 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3432}
1da177e4
LT
3433EXPORT_SYMBOL(get_zeroed_page);
3434
920c7a5d 3435void __free_pages(struct page *page, unsigned int order)
1da177e4 3436{
b5810039 3437 if (put_page_testzero(page)) {
1da177e4 3438 if (order == 0)
b745bc85 3439 free_hot_cold_page(page, false);
1da177e4
LT
3440 else
3441 __free_pages_ok(page, order);
3442 }
3443}
3444
3445EXPORT_SYMBOL(__free_pages);
3446
920c7a5d 3447void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3448{
3449 if (addr != 0) {
725d704e 3450 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3451 __free_pages(virt_to_page((void *)addr), order);
3452 }
3453}
3454
3455EXPORT_SYMBOL(free_pages);
3456
b63ae8ca
AD
3457/*
3458 * Page Fragment:
3459 * An arbitrary-length arbitrary-offset area of memory which resides
3460 * within a 0 or higher order page. Multiple fragments within that page
3461 * are individually refcounted, in the page's reference counter.
3462 *
3463 * The page_frag functions below provide a simple allocation framework for
3464 * page fragments. This is used by the network stack and network device
3465 * drivers to provide a backing region of memory for use as either an
3466 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3467 */
3468static struct page *__page_frag_refill(struct page_frag_cache *nc,
3469 gfp_t gfp_mask)
3470{
3471 struct page *page = NULL;
3472 gfp_t gfp = gfp_mask;
3473
3474#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3475 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3476 __GFP_NOMEMALLOC;
3477 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3478 PAGE_FRAG_CACHE_MAX_ORDER);
3479 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3480#endif
3481 if (unlikely(!page))
3482 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3483
3484 nc->va = page ? page_address(page) : NULL;
3485
3486 return page;
3487}
3488
3489void *__alloc_page_frag(struct page_frag_cache *nc,
3490 unsigned int fragsz, gfp_t gfp_mask)
3491{
3492 unsigned int size = PAGE_SIZE;
3493 struct page *page;
3494 int offset;
3495
3496 if (unlikely(!nc->va)) {
3497refill:
3498 page = __page_frag_refill(nc, gfp_mask);
3499 if (!page)
3500 return NULL;
3501
3502#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3503 /* if size can vary use size else just use PAGE_SIZE */
3504 size = nc->size;
3505#endif
3506 /* Even if we own the page, we do not use atomic_set().
3507 * This would break get_page_unless_zero() users.
3508 */
fe896d18 3509 page_ref_add(page, size - 1);
b63ae8ca
AD
3510
3511 /* reset page count bias and offset to start of new frag */
2f064f34 3512 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3513 nc->pagecnt_bias = size;
3514 nc->offset = size;
3515 }
3516
3517 offset = nc->offset - fragsz;
3518 if (unlikely(offset < 0)) {
3519 page = virt_to_page(nc->va);
3520
fe896d18 3521 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3522 goto refill;
3523
3524#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3525 /* if size can vary use size else just use PAGE_SIZE */
3526 size = nc->size;
3527#endif
3528 /* OK, page count is 0, we can safely set it */
fe896d18 3529 set_page_count(page, size);
b63ae8ca
AD
3530
3531 /* reset page count bias and offset to start of new frag */
3532 nc->pagecnt_bias = size;
3533 offset = size - fragsz;
3534 }
3535
3536 nc->pagecnt_bias--;
3537 nc->offset = offset;
3538
3539 return nc->va + offset;
3540}
3541EXPORT_SYMBOL(__alloc_page_frag);
3542
3543/*
3544 * Frees a page fragment allocated out of either a compound or order 0 page.
3545 */
3546void __free_page_frag(void *addr)
3547{
3548 struct page *page = virt_to_head_page(addr);
3549
3550 if (unlikely(put_page_testzero(page)))
3551 __free_pages_ok(page, compound_order(page));
3552}
3553EXPORT_SYMBOL(__free_page_frag);
3554
6a1a0d3b 3555/*
52383431 3556 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3557 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3558 * equivalent to alloc_pages.
6a1a0d3b 3559 *
52383431
VD
3560 * It should be used when the caller would like to use kmalloc, but since the
3561 * allocation is large, it has to fall back to the page allocator.
3562 */
3563struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3564{
3565 struct page *page;
52383431 3566
52383431 3567 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3568 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3569 __free_pages(page, order);
3570 page = NULL;
3571 }
52383431
VD
3572 return page;
3573}
3574
3575struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3576{
3577 struct page *page;
52383431 3578
52383431 3579 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3580 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3581 __free_pages(page, order);
3582 page = NULL;
3583 }
52383431
VD
3584 return page;
3585}
3586
3587/*
3588 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3589 * alloc_kmem_pages.
6a1a0d3b 3590 */
52383431 3591void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3592{
d05e83a6 3593 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3594 __free_pages(page, order);
3595}
3596
52383431 3597void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3598{
3599 if (addr != 0) {
3600 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3601 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3602 }
3603}
3604
d00181b9
KS
3605static void *make_alloc_exact(unsigned long addr, unsigned int order,
3606 size_t size)
ee85c2e1
AK
3607{
3608 if (addr) {
3609 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3610 unsigned long used = addr + PAGE_ALIGN(size);
3611
3612 split_page(virt_to_page((void *)addr), order);
3613 while (used < alloc_end) {
3614 free_page(used);
3615 used += PAGE_SIZE;
3616 }
3617 }
3618 return (void *)addr;
3619}
3620
2be0ffe2
TT
3621/**
3622 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3623 * @size: the number of bytes to allocate
3624 * @gfp_mask: GFP flags for the allocation
3625 *
3626 * This function is similar to alloc_pages(), except that it allocates the
3627 * minimum number of pages to satisfy the request. alloc_pages() can only
3628 * allocate memory in power-of-two pages.
3629 *
3630 * This function is also limited by MAX_ORDER.
3631 *
3632 * Memory allocated by this function must be released by free_pages_exact().
3633 */
3634void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3635{
3636 unsigned int order = get_order(size);
3637 unsigned long addr;
3638
3639 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3640 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3641}
3642EXPORT_SYMBOL(alloc_pages_exact);
3643
ee85c2e1
AK
3644/**
3645 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3646 * pages on a node.
b5e6ab58 3647 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3648 * @size: the number of bytes to allocate
3649 * @gfp_mask: GFP flags for the allocation
3650 *
3651 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3652 * back.
ee85c2e1 3653 */
e1931811 3654void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3655{
d00181b9 3656 unsigned int order = get_order(size);
ee85c2e1
AK
3657 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3658 if (!p)
3659 return NULL;
3660 return make_alloc_exact((unsigned long)page_address(p), order, size);
3661}
ee85c2e1 3662
2be0ffe2
TT
3663/**
3664 * free_pages_exact - release memory allocated via alloc_pages_exact()
3665 * @virt: the value returned by alloc_pages_exact.
3666 * @size: size of allocation, same value as passed to alloc_pages_exact().
3667 *
3668 * Release the memory allocated by a previous call to alloc_pages_exact.
3669 */
3670void free_pages_exact(void *virt, size_t size)
3671{
3672 unsigned long addr = (unsigned long)virt;
3673 unsigned long end = addr + PAGE_ALIGN(size);
3674
3675 while (addr < end) {
3676 free_page(addr);
3677 addr += PAGE_SIZE;
3678 }
3679}
3680EXPORT_SYMBOL(free_pages_exact);
3681
e0fb5815
ZY
3682/**
3683 * nr_free_zone_pages - count number of pages beyond high watermark
3684 * @offset: The zone index of the highest zone
3685 *
3686 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3687 * high watermark within all zones at or below a given zone index. For each
3688 * zone, the number of pages is calculated as:
834405c3 3689 * managed_pages - high_pages
e0fb5815 3690 */
ebec3862 3691static unsigned long nr_free_zone_pages(int offset)
1da177e4 3692{
dd1a239f 3693 struct zoneref *z;
54a6eb5c
MG
3694 struct zone *zone;
3695
e310fd43 3696 /* Just pick one node, since fallback list is circular */
ebec3862 3697 unsigned long sum = 0;
1da177e4 3698
0e88460d 3699 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3700
54a6eb5c 3701 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3702 unsigned long size = zone->managed_pages;
41858966 3703 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3704 if (size > high)
3705 sum += size - high;
1da177e4
LT
3706 }
3707
3708 return sum;
3709}
3710
e0fb5815
ZY
3711/**
3712 * nr_free_buffer_pages - count number of pages beyond high watermark
3713 *
3714 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3715 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3716 */
ebec3862 3717unsigned long nr_free_buffer_pages(void)
1da177e4 3718{
af4ca457 3719 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3720}
c2f1a551 3721EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3722
e0fb5815
ZY
3723/**
3724 * nr_free_pagecache_pages - count number of pages beyond high watermark
3725 *
3726 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3727 * high watermark within all zones.
1da177e4 3728 */
ebec3862 3729unsigned long nr_free_pagecache_pages(void)
1da177e4 3730{
2a1e274a 3731 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3732}
08e0f6a9
CL
3733
3734static inline void show_node(struct zone *zone)
1da177e4 3735{
e5adfffc 3736 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3737 printk("Node %d ", zone_to_nid(zone));
1da177e4 3738}
1da177e4 3739
d02bd27b
IR
3740long si_mem_available(void)
3741{
3742 long available;
3743 unsigned long pagecache;
3744 unsigned long wmark_low = 0;
3745 unsigned long pages[NR_LRU_LISTS];
3746 struct zone *zone;
3747 int lru;
3748
3749 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3750 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3751
3752 for_each_zone(zone)
3753 wmark_low += zone->watermark[WMARK_LOW];
3754
3755 /*
3756 * Estimate the amount of memory available for userspace allocations,
3757 * without causing swapping.
3758 */
3759 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3760
3761 /*
3762 * Not all the page cache can be freed, otherwise the system will
3763 * start swapping. Assume at least half of the page cache, or the
3764 * low watermark worth of cache, needs to stay.
3765 */
3766 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3767 pagecache -= min(pagecache / 2, wmark_low);
3768 available += pagecache;
3769
3770 /*
3771 * Part of the reclaimable slab consists of items that are in use,
3772 * and cannot be freed. Cap this estimate at the low watermark.
3773 */
3774 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3775 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3776
3777 if (available < 0)
3778 available = 0;
3779 return available;
3780}
3781EXPORT_SYMBOL_GPL(si_mem_available);
3782
1da177e4
LT
3783void si_meminfo(struct sysinfo *val)
3784{
3785 val->totalram = totalram_pages;
cc7452b6 3786 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3787 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3788 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3789 val->totalhigh = totalhigh_pages;
3790 val->freehigh = nr_free_highpages();
1da177e4
LT
3791 val->mem_unit = PAGE_SIZE;
3792}
3793
3794EXPORT_SYMBOL(si_meminfo);
3795
3796#ifdef CONFIG_NUMA
3797void si_meminfo_node(struct sysinfo *val, int nid)
3798{
cdd91a77
JL
3799 int zone_type; /* needs to be signed */
3800 unsigned long managed_pages = 0;
fc2bd799
JK
3801 unsigned long managed_highpages = 0;
3802 unsigned long free_highpages = 0;
1da177e4
LT
3803 pg_data_t *pgdat = NODE_DATA(nid);
3804
cdd91a77
JL
3805 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3806 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3807 val->totalram = managed_pages;
cc7452b6 3808 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3809 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3810#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3811 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3812 struct zone *zone = &pgdat->node_zones[zone_type];
3813
3814 if (is_highmem(zone)) {
3815 managed_highpages += zone->managed_pages;
3816 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3817 }
3818 }
3819 val->totalhigh = managed_highpages;
3820 val->freehigh = free_highpages;
98d2b0eb 3821#else
fc2bd799
JK
3822 val->totalhigh = managed_highpages;
3823 val->freehigh = free_highpages;
98d2b0eb 3824#endif
1da177e4
LT
3825 val->mem_unit = PAGE_SIZE;
3826}
3827#endif
3828
ddd588b5 3829/*
7bf02ea2
DR
3830 * Determine whether the node should be displayed or not, depending on whether
3831 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3832 */
7bf02ea2 3833bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3834{
3835 bool ret = false;
cc9a6c87 3836 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3837
3838 if (!(flags & SHOW_MEM_FILTER_NODES))
3839 goto out;
3840
cc9a6c87 3841 do {
d26914d1 3842 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3843 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3844 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3845out:
3846 return ret;
3847}
3848
1da177e4
LT
3849#define K(x) ((x) << (PAGE_SHIFT-10))
3850
377e4f16
RV
3851static void show_migration_types(unsigned char type)
3852{
3853 static const char types[MIGRATE_TYPES] = {
3854 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3855 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3856 [MIGRATE_RECLAIMABLE] = 'E',
3857 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3858#ifdef CONFIG_CMA
3859 [MIGRATE_CMA] = 'C',
3860#endif
194159fb 3861#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3862 [MIGRATE_ISOLATE] = 'I',
194159fb 3863#endif
377e4f16
RV
3864 };
3865 char tmp[MIGRATE_TYPES + 1];
3866 char *p = tmp;
3867 int i;
3868
3869 for (i = 0; i < MIGRATE_TYPES; i++) {
3870 if (type & (1 << i))
3871 *p++ = types[i];
3872 }
3873
3874 *p = '\0';
3875 printk("(%s) ", tmp);
3876}
3877
1da177e4
LT
3878/*
3879 * Show free area list (used inside shift_scroll-lock stuff)
3880 * We also calculate the percentage fragmentation. We do this by counting the
3881 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3882 *
3883 * Bits in @filter:
3884 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3885 * cpuset.
1da177e4 3886 */
7bf02ea2 3887void show_free_areas(unsigned int filter)
1da177e4 3888{
d1bfcdb8 3889 unsigned long free_pcp = 0;
c7241913 3890 int cpu;
1da177e4
LT
3891 struct zone *zone;
3892
ee99c71c 3893 for_each_populated_zone(zone) {
7bf02ea2 3894 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3895 continue;
d1bfcdb8 3896
761b0677
KK
3897 for_each_online_cpu(cpu)
3898 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3899 }
3900
a731286d
KM
3901 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3902 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3903 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3904 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3905 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3906 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3907 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3908 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3909 global_page_state(NR_ISOLATED_ANON),
3910 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3911 global_page_state(NR_INACTIVE_FILE),
a731286d 3912 global_page_state(NR_ISOLATED_FILE),
7b854121 3913 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3914 global_page_state(NR_FILE_DIRTY),
ce866b34 3915 global_page_state(NR_WRITEBACK),
fd39fc85 3916 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3917 global_page_state(NR_SLAB_RECLAIMABLE),
3918 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3919 global_page_state(NR_FILE_MAPPED),
4b02108a 3920 global_page_state(NR_SHMEM),
a25700a5 3921 global_page_state(NR_PAGETABLE),
d1ce749a 3922 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3923 global_page_state(NR_FREE_PAGES),
3924 free_pcp,
d1ce749a 3925 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3926
ee99c71c 3927 for_each_populated_zone(zone) {
1da177e4
LT
3928 int i;
3929
7bf02ea2 3930 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3931 continue;
d1bfcdb8
KK
3932
3933 free_pcp = 0;
3934 for_each_online_cpu(cpu)
3935 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3936
1da177e4
LT
3937 show_node(zone);
3938 printk("%s"
3939 " free:%lukB"
3940 " min:%lukB"
3941 " low:%lukB"
3942 " high:%lukB"
4f98a2fe
RR
3943 " active_anon:%lukB"
3944 " inactive_anon:%lukB"
3945 " active_file:%lukB"
3946 " inactive_file:%lukB"
7b854121 3947 " unevictable:%lukB"
a731286d
KM
3948 " isolated(anon):%lukB"
3949 " isolated(file):%lukB"
1da177e4 3950 " present:%lukB"
9feedc9d 3951 " managed:%lukB"
4a0aa73f
KM
3952 " mlocked:%lukB"
3953 " dirty:%lukB"
3954 " writeback:%lukB"
3955 " mapped:%lukB"
4b02108a 3956 " shmem:%lukB"
4a0aa73f
KM
3957 " slab_reclaimable:%lukB"
3958 " slab_unreclaimable:%lukB"
c6a7f572 3959 " kernel_stack:%lukB"
4a0aa73f
KM
3960 " pagetables:%lukB"
3961 " unstable:%lukB"
3962 " bounce:%lukB"
d1bfcdb8
KK
3963 " free_pcp:%lukB"
3964 " local_pcp:%ukB"
d1ce749a 3965 " free_cma:%lukB"
4a0aa73f 3966 " writeback_tmp:%lukB"
1da177e4
LT
3967 " pages_scanned:%lu"
3968 " all_unreclaimable? %s"
3969 "\n",
3970 zone->name,
88f5acf8 3971 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3972 K(min_wmark_pages(zone)),
3973 K(low_wmark_pages(zone)),
3974 K(high_wmark_pages(zone)),
4f98a2fe
RR
3975 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3976 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3977 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3978 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3979 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3980 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3981 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3982 K(zone->present_pages),
9feedc9d 3983 K(zone->managed_pages),
4a0aa73f
KM
3984 K(zone_page_state(zone, NR_MLOCK)),
3985 K(zone_page_state(zone, NR_FILE_DIRTY)),
3986 K(zone_page_state(zone, NR_WRITEBACK)),
3987 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3988 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3989 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3990 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3991 zone_page_state(zone, NR_KERNEL_STACK) *
3992 THREAD_SIZE / 1024,
4a0aa73f
KM
3993 K(zone_page_state(zone, NR_PAGETABLE)),
3994 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3995 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3996 K(free_pcp),
3997 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3998 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3999 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4000 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4001 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4002 );
4003 printk("lowmem_reserve[]:");
4004 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4005 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4006 printk("\n");
4007 }
4008
ee99c71c 4009 for_each_populated_zone(zone) {
d00181b9
KS
4010 unsigned int order;
4011 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4012 unsigned char types[MAX_ORDER];
1da177e4 4013
7bf02ea2 4014 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4015 continue;
1da177e4
LT
4016 show_node(zone);
4017 printk("%s: ", zone->name);
1da177e4
LT
4018
4019 spin_lock_irqsave(&zone->lock, flags);
4020 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4021 struct free_area *area = &zone->free_area[order];
4022 int type;
4023
4024 nr[order] = area->nr_free;
8f9de51a 4025 total += nr[order] << order;
377e4f16
RV
4026
4027 types[order] = 0;
4028 for (type = 0; type < MIGRATE_TYPES; type++) {
4029 if (!list_empty(&area->free_list[type]))
4030 types[order] |= 1 << type;
4031 }
1da177e4
LT
4032 }
4033 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4034 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4035 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4036 if (nr[order])
4037 show_migration_types(types[order]);
4038 }
1da177e4
LT
4039 printk("= %lukB\n", K(total));
4040 }
4041
949f7ec5
DR
4042 hugetlb_show_meminfo();
4043
e6f3602d
LW
4044 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4045
1da177e4
LT
4046 show_swap_cache_info();
4047}
4048
19770b32
MG
4049static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4050{
4051 zoneref->zone = zone;
4052 zoneref->zone_idx = zone_idx(zone);
4053}
4054
1da177e4
LT
4055/*
4056 * Builds allocation fallback zone lists.
1a93205b
CL
4057 *
4058 * Add all populated zones of a node to the zonelist.
1da177e4 4059 */
f0c0b2b8 4060static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4061 int nr_zones)
1da177e4 4062{
1a93205b 4063 struct zone *zone;
bc732f1d 4064 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4065
4066 do {
2f6726e5 4067 zone_type--;
070f8032 4068 zone = pgdat->node_zones + zone_type;
1a93205b 4069 if (populated_zone(zone)) {
dd1a239f
MG
4070 zoneref_set_zone(zone,
4071 &zonelist->_zonerefs[nr_zones++]);
070f8032 4072 check_highest_zone(zone_type);
1da177e4 4073 }
2f6726e5 4074 } while (zone_type);
bc732f1d 4075
070f8032 4076 return nr_zones;
1da177e4
LT
4077}
4078
f0c0b2b8
KH
4079
4080/*
4081 * zonelist_order:
4082 * 0 = automatic detection of better ordering.
4083 * 1 = order by ([node] distance, -zonetype)
4084 * 2 = order by (-zonetype, [node] distance)
4085 *
4086 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4087 * the same zonelist. So only NUMA can configure this param.
4088 */
4089#define ZONELIST_ORDER_DEFAULT 0
4090#define ZONELIST_ORDER_NODE 1
4091#define ZONELIST_ORDER_ZONE 2
4092
4093/* zonelist order in the kernel.
4094 * set_zonelist_order() will set this to NODE or ZONE.
4095 */
4096static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4097static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4098
4099
1da177e4 4100#ifdef CONFIG_NUMA
f0c0b2b8
KH
4101/* The value user specified ....changed by config */
4102static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4103/* string for sysctl */
4104#define NUMA_ZONELIST_ORDER_LEN 16
4105char numa_zonelist_order[16] = "default";
4106
4107/*
4108 * interface for configure zonelist ordering.
4109 * command line option "numa_zonelist_order"
4110 * = "[dD]efault - default, automatic configuration.
4111 * = "[nN]ode - order by node locality, then by zone within node
4112 * = "[zZ]one - order by zone, then by locality within zone
4113 */
4114
4115static int __parse_numa_zonelist_order(char *s)
4116{
4117 if (*s == 'd' || *s == 'D') {
4118 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4119 } else if (*s == 'n' || *s == 'N') {
4120 user_zonelist_order = ZONELIST_ORDER_NODE;
4121 } else if (*s == 'z' || *s == 'Z') {
4122 user_zonelist_order = ZONELIST_ORDER_ZONE;
4123 } else {
1170532b 4124 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4125 return -EINVAL;
4126 }
4127 return 0;
4128}
4129
4130static __init int setup_numa_zonelist_order(char *s)
4131{
ecb256f8
VL
4132 int ret;
4133
4134 if (!s)
4135 return 0;
4136
4137 ret = __parse_numa_zonelist_order(s);
4138 if (ret == 0)
4139 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4140
4141 return ret;
f0c0b2b8
KH
4142}
4143early_param("numa_zonelist_order", setup_numa_zonelist_order);
4144
4145/*
4146 * sysctl handler for numa_zonelist_order
4147 */
cccad5b9 4148int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4149 void __user *buffer, size_t *length,
f0c0b2b8
KH
4150 loff_t *ppos)
4151{
4152 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4153 int ret;
443c6f14 4154 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4155
443c6f14 4156 mutex_lock(&zl_order_mutex);
dacbde09
CG
4157 if (write) {
4158 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4159 ret = -EINVAL;
4160 goto out;
4161 }
4162 strcpy(saved_string, (char *)table->data);
4163 }
8d65af78 4164 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4165 if (ret)
443c6f14 4166 goto out;
f0c0b2b8
KH
4167 if (write) {
4168 int oldval = user_zonelist_order;
dacbde09
CG
4169
4170 ret = __parse_numa_zonelist_order((char *)table->data);
4171 if (ret) {
f0c0b2b8
KH
4172 /*
4173 * bogus value. restore saved string
4174 */
dacbde09 4175 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4176 NUMA_ZONELIST_ORDER_LEN);
4177 user_zonelist_order = oldval;
4eaf3f64
HL
4178 } else if (oldval != user_zonelist_order) {
4179 mutex_lock(&zonelists_mutex);
9adb62a5 4180 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4181 mutex_unlock(&zonelists_mutex);
4182 }
f0c0b2b8 4183 }
443c6f14
AK
4184out:
4185 mutex_unlock(&zl_order_mutex);
4186 return ret;
f0c0b2b8
KH
4187}
4188
4189
62bc62a8 4190#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4191static int node_load[MAX_NUMNODES];
4192
1da177e4 4193/**
4dc3b16b 4194 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4195 * @node: node whose fallback list we're appending
4196 * @used_node_mask: nodemask_t of already used nodes
4197 *
4198 * We use a number of factors to determine which is the next node that should
4199 * appear on a given node's fallback list. The node should not have appeared
4200 * already in @node's fallback list, and it should be the next closest node
4201 * according to the distance array (which contains arbitrary distance values
4202 * from each node to each node in the system), and should also prefer nodes
4203 * with no CPUs, since presumably they'll have very little allocation pressure
4204 * on them otherwise.
4205 * It returns -1 if no node is found.
4206 */
f0c0b2b8 4207static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4208{
4cf808eb 4209 int n, val;
1da177e4 4210 int min_val = INT_MAX;
00ef2d2f 4211 int best_node = NUMA_NO_NODE;
a70f7302 4212 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4213
4cf808eb
LT
4214 /* Use the local node if we haven't already */
4215 if (!node_isset(node, *used_node_mask)) {
4216 node_set(node, *used_node_mask);
4217 return node;
4218 }
1da177e4 4219
4b0ef1fe 4220 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4221
4222 /* Don't want a node to appear more than once */
4223 if (node_isset(n, *used_node_mask))
4224 continue;
4225
1da177e4
LT
4226 /* Use the distance array to find the distance */
4227 val = node_distance(node, n);
4228
4cf808eb
LT
4229 /* Penalize nodes under us ("prefer the next node") */
4230 val += (n < node);
4231
1da177e4 4232 /* Give preference to headless and unused nodes */
a70f7302
RR
4233 tmp = cpumask_of_node(n);
4234 if (!cpumask_empty(tmp))
1da177e4
LT
4235 val += PENALTY_FOR_NODE_WITH_CPUS;
4236
4237 /* Slight preference for less loaded node */
4238 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4239 val += node_load[n];
4240
4241 if (val < min_val) {
4242 min_val = val;
4243 best_node = n;
4244 }
4245 }
4246
4247 if (best_node >= 0)
4248 node_set(best_node, *used_node_mask);
4249
4250 return best_node;
4251}
4252
f0c0b2b8
KH
4253
4254/*
4255 * Build zonelists ordered by node and zones within node.
4256 * This results in maximum locality--normal zone overflows into local
4257 * DMA zone, if any--but risks exhausting DMA zone.
4258 */
4259static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4260{
f0c0b2b8 4261 int j;
1da177e4 4262 struct zonelist *zonelist;
f0c0b2b8 4263
54a6eb5c 4264 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4265 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4266 ;
bc732f1d 4267 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4268 zonelist->_zonerefs[j].zone = NULL;
4269 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4270}
4271
523b9458
CL
4272/*
4273 * Build gfp_thisnode zonelists
4274 */
4275static void build_thisnode_zonelists(pg_data_t *pgdat)
4276{
523b9458
CL
4277 int j;
4278 struct zonelist *zonelist;
4279
54a6eb5c 4280 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4281 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4282 zonelist->_zonerefs[j].zone = NULL;
4283 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4284}
4285
f0c0b2b8
KH
4286/*
4287 * Build zonelists ordered by zone and nodes within zones.
4288 * This results in conserving DMA zone[s] until all Normal memory is
4289 * exhausted, but results in overflowing to remote node while memory
4290 * may still exist in local DMA zone.
4291 */
4292static int node_order[MAX_NUMNODES];
4293
4294static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4295{
f0c0b2b8
KH
4296 int pos, j, node;
4297 int zone_type; /* needs to be signed */
4298 struct zone *z;
4299 struct zonelist *zonelist;
4300
54a6eb5c
MG
4301 zonelist = &pgdat->node_zonelists[0];
4302 pos = 0;
4303 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4304 for (j = 0; j < nr_nodes; j++) {
4305 node = node_order[j];
4306 z = &NODE_DATA(node)->node_zones[zone_type];
4307 if (populated_zone(z)) {
dd1a239f
MG
4308 zoneref_set_zone(z,
4309 &zonelist->_zonerefs[pos++]);
54a6eb5c 4310 check_highest_zone(zone_type);
f0c0b2b8
KH
4311 }
4312 }
f0c0b2b8 4313 }
dd1a239f
MG
4314 zonelist->_zonerefs[pos].zone = NULL;
4315 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4316}
4317
3193913c
MG
4318#if defined(CONFIG_64BIT)
4319/*
4320 * Devices that require DMA32/DMA are relatively rare and do not justify a
4321 * penalty to every machine in case the specialised case applies. Default
4322 * to Node-ordering on 64-bit NUMA machines
4323 */
4324static int default_zonelist_order(void)
4325{
4326 return ZONELIST_ORDER_NODE;
4327}
4328#else
4329/*
4330 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4331 * by the kernel. If processes running on node 0 deplete the low memory zone
4332 * then reclaim will occur more frequency increasing stalls and potentially
4333 * be easier to OOM if a large percentage of the zone is under writeback or
4334 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4335 * Hence, default to zone ordering on 32-bit.
4336 */
f0c0b2b8
KH
4337static int default_zonelist_order(void)
4338{
f0c0b2b8
KH
4339 return ZONELIST_ORDER_ZONE;
4340}
3193913c 4341#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4342
4343static void set_zonelist_order(void)
4344{
4345 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4346 current_zonelist_order = default_zonelist_order();
4347 else
4348 current_zonelist_order = user_zonelist_order;
4349}
4350
4351static void build_zonelists(pg_data_t *pgdat)
4352{
c00eb15a 4353 int i, node, load;
1da177e4 4354 nodemask_t used_mask;
f0c0b2b8
KH
4355 int local_node, prev_node;
4356 struct zonelist *zonelist;
d00181b9 4357 unsigned int order = current_zonelist_order;
1da177e4
LT
4358
4359 /* initialize zonelists */
523b9458 4360 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4361 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4362 zonelist->_zonerefs[0].zone = NULL;
4363 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4364 }
4365
4366 /* NUMA-aware ordering of nodes */
4367 local_node = pgdat->node_id;
62bc62a8 4368 load = nr_online_nodes;
1da177e4
LT
4369 prev_node = local_node;
4370 nodes_clear(used_mask);
f0c0b2b8 4371
f0c0b2b8 4372 memset(node_order, 0, sizeof(node_order));
c00eb15a 4373 i = 0;
f0c0b2b8 4374
1da177e4
LT
4375 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4376 /*
4377 * We don't want to pressure a particular node.
4378 * So adding penalty to the first node in same
4379 * distance group to make it round-robin.
4380 */
957f822a
DR
4381 if (node_distance(local_node, node) !=
4382 node_distance(local_node, prev_node))
f0c0b2b8
KH
4383 node_load[node] = load;
4384
1da177e4
LT
4385 prev_node = node;
4386 load--;
f0c0b2b8
KH
4387 if (order == ZONELIST_ORDER_NODE)
4388 build_zonelists_in_node_order(pgdat, node);
4389 else
c00eb15a 4390 node_order[i++] = node; /* remember order */
f0c0b2b8 4391 }
1da177e4 4392
f0c0b2b8
KH
4393 if (order == ZONELIST_ORDER_ZONE) {
4394 /* calculate node order -- i.e., DMA last! */
c00eb15a 4395 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4396 }
523b9458
CL
4397
4398 build_thisnode_zonelists(pgdat);
1da177e4
LT
4399}
4400
7aac7898
LS
4401#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4402/*
4403 * Return node id of node used for "local" allocations.
4404 * I.e., first node id of first zone in arg node's generic zonelist.
4405 * Used for initializing percpu 'numa_mem', which is used primarily
4406 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4407 */
4408int local_memory_node(int node)
4409{
4410 struct zone *zone;
4411
4412 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4413 gfp_zone(GFP_KERNEL),
4414 NULL,
4415 &zone);
4416 return zone->node;
4417}
4418#endif
f0c0b2b8 4419
1da177e4
LT
4420#else /* CONFIG_NUMA */
4421
f0c0b2b8
KH
4422static void set_zonelist_order(void)
4423{
4424 current_zonelist_order = ZONELIST_ORDER_ZONE;
4425}
4426
4427static void build_zonelists(pg_data_t *pgdat)
1da177e4 4428{
19655d34 4429 int node, local_node;
54a6eb5c
MG
4430 enum zone_type j;
4431 struct zonelist *zonelist;
1da177e4
LT
4432
4433 local_node = pgdat->node_id;
1da177e4 4434
54a6eb5c 4435 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4436 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4437
54a6eb5c
MG
4438 /*
4439 * Now we build the zonelist so that it contains the zones
4440 * of all the other nodes.
4441 * We don't want to pressure a particular node, so when
4442 * building the zones for node N, we make sure that the
4443 * zones coming right after the local ones are those from
4444 * node N+1 (modulo N)
4445 */
4446 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4447 if (!node_online(node))
4448 continue;
bc732f1d 4449 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4450 }
54a6eb5c
MG
4451 for (node = 0; node < local_node; node++) {
4452 if (!node_online(node))
4453 continue;
bc732f1d 4454 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4455 }
4456
dd1a239f
MG
4457 zonelist->_zonerefs[j].zone = NULL;
4458 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4459}
4460
4461#endif /* CONFIG_NUMA */
4462
99dcc3e5
CL
4463/*
4464 * Boot pageset table. One per cpu which is going to be used for all
4465 * zones and all nodes. The parameters will be set in such a way
4466 * that an item put on a list will immediately be handed over to
4467 * the buddy list. This is safe since pageset manipulation is done
4468 * with interrupts disabled.
4469 *
4470 * The boot_pagesets must be kept even after bootup is complete for
4471 * unused processors and/or zones. They do play a role for bootstrapping
4472 * hotplugged processors.
4473 *
4474 * zoneinfo_show() and maybe other functions do
4475 * not check if the processor is online before following the pageset pointer.
4476 * Other parts of the kernel may not check if the zone is available.
4477 */
4478static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4479static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4480static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4481
4eaf3f64
HL
4482/*
4483 * Global mutex to protect against size modification of zonelists
4484 * as well as to serialize pageset setup for the new populated zone.
4485 */
4486DEFINE_MUTEX(zonelists_mutex);
4487
9b1a4d38 4488/* return values int ....just for stop_machine() */
4ed7e022 4489static int __build_all_zonelists(void *data)
1da177e4 4490{
6811378e 4491 int nid;
99dcc3e5 4492 int cpu;
9adb62a5 4493 pg_data_t *self = data;
9276b1bc 4494
7f9cfb31
BL
4495#ifdef CONFIG_NUMA
4496 memset(node_load, 0, sizeof(node_load));
4497#endif
9adb62a5
JL
4498
4499 if (self && !node_online(self->node_id)) {
4500 build_zonelists(self);
9adb62a5
JL
4501 }
4502
9276b1bc 4503 for_each_online_node(nid) {
7ea1530a
CL
4504 pg_data_t *pgdat = NODE_DATA(nid);
4505
4506 build_zonelists(pgdat);
9276b1bc 4507 }
99dcc3e5
CL
4508
4509 /*
4510 * Initialize the boot_pagesets that are going to be used
4511 * for bootstrapping processors. The real pagesets for
4512 * each zone will be allocated later when the per cpu
4513 * allocator is available.
4514 *
4515 * boot_pagesets are used also for bootstrapping offline
4516 * cpus if the system is already booted because the pagesets
4517 * are needed to initialize allocators on a specific cpu too.
4518 * F.e. the percpu allocator needs the page allocator which
4519 * needs the percpu allocator in order to allocate its pagesets
4520 * (a chicken-egg dilemma).
4521 */
7aac7898 4522 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4523 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4524
7aac7898
LS
4525#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4526 /*
4527 * We now know the "local memory node" for each node--
4528 * i.e., the node of the first zone in the generic zonelist.
4529 * Set up numa_mem percpu variable for on-line cpus. During
4530 * boot, only the boot cpu should be on-line; we'll init the
4531 * secondary cpus' numa_mem as they come on-line. During
4532 * node/memory hotplug, we'll fixup all on-line cpus.
4533 */
4534 if (cpu_online(cpu))
4535 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4536#endif
4537 }
4538
6811378e
YG
4539 return 0;
4540}
4541
061f67bc
RV
4542static noinline void __init
4543build_all_zonelists_init(void)
4544{
4545 __build_all_zonelists(NULL);
4546 mminit_verify_zonelist();
4547 cpuset_init_current_mems_allowed();
4548}
4549
4eaf3f64
HL
4550/*
4551 * Called with zonelists_mutex held always
4552 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4553 *
4554 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4555 * [we're only called with non-NULL zone through __meminit paths] and
4556 * (2) call of __init annotated helper build_all_zonelists_init
4557 * [protected by SYSTEM_BOOTING].
4eaf3f64 4558 */
9adb62a5 4559void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4560{
f0c0b2b8
KH
4561 set_zonelist_order();
4562
6811378e 4563 if (system_state == SYSTEM_BOOTING) {
061f67bc 4564 build_all_zonelists_init();
6811378e 4565 } else {
e9959f0f 4566#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4567 if (zone)
4568 setup_zone_pageset(zone);
e9959f0f 4569#endif
dd1895e2
CS
4570 /* we have to stop all cpus to guarantee there is no user
4571 of zonelist */
9adb62a5 4572 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4573 /* cpuset refresh routine should be here */
4574 }
bd1e22b8 4575 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4576 /*
4577 * Disable grouping by mobility if the number of pages in the
4578 * system is too low to allow the mechanism to work. It would be
4579 * more accurate, but expensive to check per-zone. This check is
4580 * made on memory-hotadd so a system can start with mobility
4581 * disabled and enable it later
4582 */
d9c23400 4583 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4584 page_group_by_mobility_disabled = 1;
4585 else
4586 page_group_by_mobility_disabled = 0;
4587
756a025f
JP
4588 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4589 nr_online_nodes,
4590 zonelist_order_name[current_zonelist_order],
4591 page_group_by_mobility_disabled ? "off" : "on",
4592 vm_total_pages);
f0c0b2b8 4593#ifdef CONFIG_NUMA
f88dfff5 4594 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4595#endif
1da177e4
LT
4596}
4597
4598/*
4599 * Helper functions to size the waitqueue hash table.
4600 * Essentially these want to choose hash table sizes sufficiently
4601 * large so that collisions trying to wait on pages are rare.
4602 * But in fact, the number of active page waitqueues on typical
4603 * systems is ridiculously low, less than 200. So this is even
4604 * conservative, even though it seems large.
4605 *
4606 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4607 * waitqueues, i.e. the size of the waitq table given the number of pages.
4608 */
4609#define PAGES_PER_WAITQUEUE 256
4610
cca448fe 4611#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4612static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4613{
4614 unsigned long size = 1;
4615
4616 pages /= PAGES_PER_WAITQUEUE;
4617
4618 while (size < pages)
4619 size <<= 1;
4620
4621 /*
4622 * Once we have dozens or even hundreds of threads sleeping
4623 * on IO we've got bigger problems than wait queue collision.
4624 * Limit the size of the wait table to a reasonable size.
4625 */
4626 size = min(size, 4096UL);
4627
4628 return max(size, 4UL);
4629}
cca448fe
YG
4630#else
4631/*
4632 * A zone's size might be changed by hot-add, so it is not possible to determine
4633 * a suitable size for its wait_table. So we use the maximum size now.
4634 *
4635 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4636 *
4637 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4638 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4639 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4640 *
4641 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4642 * or more by the traditional way. (See above). It equals:
4643 *
4644 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4645 * ia64(16K page size) : = ( 8G + 4M)byte.
4646 * powerpc (64K page size) : = (32G +16M)byte.
4647 */
4648static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4649{
4650 return 4096UL;
4651}
4652#endif
1da177e4
LT
4653
4654/*
4655 * This is an integer logarithm so that shifts can be used later
4656 * to extract the more random high bits from the multiplicative
4657 * hash function before the remainder is taken.
4658 */
4659static inline unsigned long wait_table_bits(unsigned long size)
4660{
4661 return ffz(~size);
4662}
4663
1da177e4
LT
4664/*
4665 * Initially all pages are reserved - free ones are freed
4666 * up by free_all_bootmem() once the early boot process is
4667 * done. Non-atomic initialization, single-pass.
4668 */
c09b4240 4669void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4670 unsigned long start_pfn, enum memmap_context context)
1da177e4 4671{
4b94ffdc 4672 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4673 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4674 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4675 unsigned long pfn;
3a80a7fa 4676 unsigned long nr_initialised = 0;
342332e6
TI
4677#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4678 struct memblock_region *r = NULL, *tmp;
4679#endif
1da177e4 4680
22b31eec
HD
4681 if (highest_memmap_pfn < end_pfn - 1)
4682 highest_memmap_pfn = end_pfn - 1;
4683
4b94ffdc
DW
4684 /*
4685 * Honor reservation requested by the driver for this ZONE_DEVICE
4686 * memory
4687 */
4688 if (altmap && start_pfn == altmap->base_pfn)
4689 start_pfn += altmap->reserve;
4690
cbe8dd4a 4691 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4692 /*
b72d0ffb
AM
4693 * There can be holes in boot-time mem_map[]s handed to this
4694 * function. They do not exist on hotplugged memory.
a2f3aa02 4695 */
b72d0ffb
AM
4696 if (context != MEMMAP_EARLY)
4697 goto not_early;
4698
4699 if (!early_pfn_valid(pfn))
4700 continue;
4701 if (!early_pfn_in_nid(pfn, nid))
4702 continue;
4703 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4704 break;
342332e6
TI
4705
4706#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4707 /*
4708 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4709 * from zone_movable_pfn[nid] to end of each node should be
4710 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4711 */
4712 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4713 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4714 continue;
342332e6 4715
b72d0ffb
AM
4716 /*
4717 * Check given memblock attribute by firmware which can affect
4718 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4719 * mirrored, it's an overlapped memmap init. skip it.
4720 */
4721 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4722 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4723 for_each_memblock(memory, tmp)
4724 if (pfn < memblock_region_memory_end_pfn(tmp))
4725 break;
4726 r = tmp;
4727 }
4728 if (pfn >= memblock_region_memory_base_pfn(r) &&
4729 memblock_is_mirror(r)) {
4730 /* already initialized as NORMAL */
4731 pfn = memblock_region_memory_end_pfn(r);
4732 continue;
342332e6 4733 }
a2f3aa02 4734 }
b72d0ffb 4735#endif
ac5d2539 4736
b72d0ffb 4737not_early:
ac5d2539
MG
4738 /*
4739 * Mark the block movable so that blocks are reserved for
4740 * movable at startup. This will force kernel allocations
4741 * to reserve their blocks rather than leaking throughout
4742 * the address space during boot when many long-lived
974a786e 4743 * kernel allocations are made.
ac5d2539
MG
4744 *
4745 * bitmap is created for zone's valid pfn range. but memmap
4746 * can be created for invalid pages (for alignment)
4747 * check here not to call set_pageblock_migratetype() against
4748 * pfn out of zone.
4749 */
4750 if (!(pfn & (pageblock_nr_pages - 1))) {
4751 struct page *page = pfn_to_page(pfn);
4752
4753 __init_single_page(page, pfn, zone, nid);
4754 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4755 } else {
4756 __init_single_pfn(pfn, zone, nid);
4757 }
1da177e4
LT
4758 }
4759}
4760
1e548deb 4761static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4762{
7aeb09f9 4763 unsigned int order, t;
b2a0ac88
MG
4764 for_each_migratetype_order(order, t) {
4765 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4766 zone->free_area[order].nr_free = 0;
4767 }
4768}
4769
4770#ifndef __HAVE_ARCH_MEMMAP_INIT
4771#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4772 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4773#endif
4774
7cd2b0a3 4775static int zone_batchsize(struct zone *zone)
e7c8d5c9 4776{
3a6be87f 4777#ifdef CONFIG_MMU
e7c8d5c9
CL
4778 int batch;
4779
4780 /*
4781 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4782 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4783 *
4784 * OK, so we don't know how big the cache is. So guess.
4785 */
b40da049 4786 batch = zone->managed_pages / 1024;
ba56e91c
SR
4787 if (batch * PAGE_SIZE > 512 * 1024)
4788 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4789 batch /= 4; /* We effectively *= 4 below */
4790 if (batch < 1)
4791 batch = 1;
4792
4793 /*
0ceaacc9
NP
4794 * Clamp the batch to a 2^n - 1 value. Having a power
4795 * of 2 value was found to be more likely to have
4796 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4797 *
0ceaacc9
NP
4798 * For example if 2 tasks are alternately allocating
4799 * batches of pages, one task can end up with a lot
4800 * of pages of one half of the possible page colors
4801 * and the other with pages of the other colors.
e7c8d5c9 4802 */
9155203a 4803 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4804
e7c8d5c9 4805 return batch;
3a6be87f
DH
4806
4807#else
4808 /* The deferral and batching of frees should be suppressed under NOMMU
4809 * conditions.
4810 *
4811 * The problem is that NOMMU needs to be able to allocate large chunks
4812 * of contiguous memory as there's no hardware page translation to
4813 * assemble apparent contiguous memory from discontiguous pages.
4814 *
4815 * Queueing large contiguous runs of pages for batching, however,
4816 * causes the pages to actually be freed in smaller chunks. As there
4817 * can be a significant delay between the individual batches being
4818 * recycled, this leads to the once large chunks of space being
4819 * fragmented and becoming unavailable for high-order allocations.
4820 */
4821 return 0;
4822#endif
e7c8d5c9
CL
4823}
4824
8d7a8fa9
CS
4825/*
4826 * pcp->high and pcp->batch values are related and dependent on one another:
4827 * ->batch must never be higher then ->high.
4828 * The following function updates them in a safe manner without read side
4829 * locking.
4830 *
4831 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4832 * those fields changing asynchronously (acording the the above rule).
4833 *
4834 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4835 * outside of boot time (or some other assurance that no concurrent updaters
4836 * exist).
4837 */
4838static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4839 unsigned long batch)
4840{
4841 /* start with a fail safe value for batch */
4842 pcp->batch = 1;
4843 smp_wmb();
4844
4845 /* Update high, then batch, in order */
4846 pcp->high = high;
4847 smp_wmb();
4848
4849 pcp->batch = batch;
4850}
4851
3664033c 4852/* a companion to pageset_set_high() */
4008bab7
CS
4853static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4854{
8d7a8fa9 4855 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4856}
4857
88c90dbc 4858static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4859{
4860 struct per_cpu_pages *pcp;
5f8dcc21 4861 int migratetype;
2caaad41 4862
1c6fe946
MD
4863 memset(p, 0, sizeof(*p));
4864
3dfa5721 4865 pcp = &p->pcp;
2caaad41 4866 pcp->count = 0;
5f8dcc21
MG
4867 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4868 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4869}
4870
88c90dbc
CS
4871static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4872{
4873 pageset_init(p);
4874 pageset_set_batch(p, batch);
4875}
4876
8ad4b1fb 4877/*
3664033c 4878 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4879 * to the value high for the pageset p.
4880 */
3664033c 4881static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4882 unsigned long high)
4883{
8d7a8fa9
CS
4884 unsigned long batch = max(1UL, high / 4);
4885 if ((high / 4) > (PAGE_SHIFT * 8))
4886 batch = PAGE_SHIFT * 8;
8ad4b1fb 4887
8d7a8fa9 4888 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4889}
4890
7cd2b0a3
DR
4891static void pageset_set_high_and_batch(struct zone *zone,
4892 struct per_cpu_pageset *pcp)
56cef2b8 4893{
56cef2b8 4894 if (percpu_pagelist_fraction)
3664033c 4895 pageset_set_high(pcp,
56cef2b8
CS
4896 (zone->managed_pages /
4897 percpu_pagelist_fraction));
4898 else
4899 pageset_set_batch(pcp, zone_batchsize(zone));
4900}
4901
169f6c19
CS
4902static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4903{
4904 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4905
4906 pageset_init(pcp);
4907 pageset_set_high_and_batch(zone, pcp);
4908}
4909
4ed7e022 4910static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4911{
4912 int cpu;
319774e2 4913 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4914 for_each_possible_cpu(cpu)
4915 zone_pageset_init(zone, cpu);
319774e2
WF
4916}
4917
2caaad41 4918/*
99dcc3e5
CL
4919 * Allocate per cpu pagesets and initialize them.
4920 * Before this call only boot pagesets were available.
e7c8d5c9 4921 */
99dcc3e5 4922void __init setup_per_cpu_pageset(void)
e7c8d5c9 4923{
99dcc3e5 4924 struct zone *zone;
e7c8d5c9 4925
319774e2
WF
4926 for_each_populated_zone(zone)
4927 setup_zone_pageset(zone);
e7c8d5c9
CL
4928}
4929
577a32f6 4930static noinline __init_refok
cca448fe 4931int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4932{
4933 int i;
cca448fe 4934 size_t alloc_size;
ed8ece2e
DH
4935
4936 /*
4937 * The per-page waitqueue mechanism uses hashed waitqueues
4938 * per zone.
4939 */
02b694de
YG
4940 zone->wait_table_hash_nr_entries =
4941 wait_table_hash_nr_entries(zone_size_pages);
4942 zone->wait_table_bits =
4943 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4944 alloc_size = zone->wait_table_hash_nr_entries
4945 * sizeof(wait_queue_head_t);
4946
cd94b9db 4947 if (!slab_is_available()) {
cca448fe 4948 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4949 memblock_virt_alloc_node_nopanic(
4950 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4951 } else {
4952 /*
4953 * This case means that a zone whose size was 0 gets new memory
4954 * via memory hot-add.
4955 * But it may be the case that a new node was hot-added. In
4956 * this case vmalloc() will not be able to use this new node's
4957 * memory - this wait_table must be initialized to use this new
4958 * node itself as well.
4959 * To use this new node's memory, further consideration will be
4960 * necessary.
4961 */
8691f3a7 4962 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4963 }
4964 if (!zone->wait_table)
4965 return -ENOMEM;
ed8ece2e 4966
b8af2941 4967 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4968 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4969
4970 return 0;
ed8ece2e
DH
4971}
4972
c09b4240 4973static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4974{
99dcc3e5
CL
4975 /*
4976 * per cpu subsystem is not up at this point. The following code
4977 * relies on the ability of the linker to provide the
4978 * offset of a (static) per cpu variable into the per cpu area.
4979 */
4980 zone->pageset = &boot_pageset;
ed8ece2e 4981
b38a8725 4982 if (populated_zone(zone))
99dcc3e5
CL
4983 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4984 zone->name, zone->present_pages,
4985 zone_batchsize(zone));
ed8ece2e
DH
4986}
4987
4ed7e022 4988int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4989 unsigned long zone_start_pfn,
b171e409 4990 unsigned long size)
ed8ece2e
DH
4991{
4992 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4993 int ret;
4994 ret = zone_wait_table_init(zone, size);
4995 if (ret)
4996 return ret;
ed8ece2e
DH
4997 pgdat->nr_zones = zone_idx(zone) + 1;
4998
ed8ece2e
DH
4999 zone->zone_start_pfn = zone_start_pfn;
5000
708614e6
MG
5001 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5002 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5003 pgdat->node_id,
5004 (unsigned long)zone_idx(zone),
5005 zone_start_pfn, (zone_start_pfn + size));
5006
1e548deb 5007 zone_init_free_lists(zone);
718127cc
YG
5008
5009 return 0;
ed8ece2e
DH
5010}
5011
0ee332c1 5012#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5013#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5014
c713216d
MG
5015/*
5016 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5017 */
8a942fde
MG
5018int __meminit __early_pfn_to_nid(unsigned long pfn,
5019 struct mminit_pfnnid_cache *state)
c713216d 5020{
c13291a5 5021 unsigned long start_pfn, end_pfn;
e76b63f8 5022 int nid;
7c243c71 5023
8a942fde
MG
5024 if (state->last_start <= pfn && pfn < state->last_end)
5025 return state->last_nid;
c713216d 5026
e76b63f8
YL
5027 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5028 if (nid != -1) {
8a942fde
MG
5029 state->last_start = start_pfn;
5030 state->last_end = end_pfn;
5031 state->last_nid = nid;
e76b63f8
YL
5032 }
5033
5034 return nid;
c713216d
MG
5035}
5036#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5037
c713216d 5038/**
6782832e 5039 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5040 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5041 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5042 *
7d018176
ZZ
5043 * If an architecture guarantees that all ranges registered contain no holes
5044 * and may be freed, this this function may be used instead of calling
5045 * memblock_free_early_nid() manually.
c713216d 5046 */
c13291a5 5047void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5048{
c13291a5
TH
5049 unsigned long start_pfn, end_pfn;
5050 int i, this_nid;
edbe7d23 5051
c13291a5
TH
5052 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5053 start_pfn = min(start_pfn, max_low_pfn);
5054 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5055
c13291a5 5056 if (start_pfn < end_pfn)
6782832e
SS
5057 memblock_free_early_nid(PFN_PHYS(start_pfn),
5058 (end_pfn - start_pfn) << PAGE_SHIFT,
5059 this_nid);
edbe7d23 5060 }
edbe7d23 5061}
edbe7d23 5062
c713216d
MG
5063/**
5064 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5065 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5066 *
7d018176
ZZ
5067 * If an architecture guarantees that all ranges registered contain no holes and may
5068 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5069 */
5070void __init sparse_memory_present_with_active_regions(int nid)
5071{
c13291a5
TH
5072 unsigned long start_pfn, end_pfn;
5073 int i, this_nid;
c713216d 5074
c13291a5
TH
5075 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5076 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5077}
5078
5079/**
5080 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5081 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5082 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5083 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5084 *
5085 * It returns the start and end page frame of a node based on information
7d018176 5086 * provided by memblock_set_node(). If called for a node
c713216d 5087 * with no available memory, a warning is printed and the start and end
88ca3b94 5088 * PFNs will be 0.
c713216d 5089 */
a3142c8e 5090void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5091 unsigned long *start_pfn, unsigned long *end_pfn)
5092{
c13291a5 5093 unsigned long this_start_pfn, this_end_pfn;
c713216d 5094 int i;
c13291a5 5095
c713216d
MG
5096 *start_pfn = -1UL;
5097 *end_pfn = 0;
5098
c13291a5
TH
5099 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5100 *start_pfn = min(*start_pfn, this_start_pfn);
5101 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5102 }
5103
633c0666 5104 if (*start_pfn == -1UL)
c713216d 5105 *start_pfn = 0;
c713216d
MG
5106}
5107
2a1e274a
MG
5108/*
5109 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5110 * assumption is made that zones within a node are ordered in monotonic
5111 * increasing memory addresses so that the "highest" populated zone is used
5112 */
b69a7288 5113static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5114{
5115 int zone_index;
5116 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5117 if (zone_index == ZONE_MOVABLE)
5118 continue;
5119
5120 if (arch_zone_highest_possible_pfn[zone_index] >
5121 arch_zone_lowest_possible_pfn[zone_index])
5122 break;
5123 }
5124
5125 VM_BUG_ON(zone_index == -1);
5126 movable_zone = zone_index;
5127}
5128
5129/*
5130 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5131 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5132 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5133 * in each node depending on the size of each node and how evenly kernelcore
5134 * is distributed. This helper function adjusts the zone ranges
5135 * provided by the architecture for a given node by using the end of the
5136 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5137 * zones within a node are in order of monotonic increases memory addresses
5138 */
b69a7288 5139static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5140 unsigned long zone_type,
5141 unsigned long node_start_pfn,
5142 unsigned long node_end_pfn,
5143 unsigned long *zone_start_pfn,
5144 unsigned long *zone_end_pfn)
5145{
5146 /* Only adjust if ZONE_MOVABLE is on this node */
5147 if (zone_movable_pfn[nid]) {
5148 /* Size ZONE_MOVABLE */
5149 if (zone_type == ZONE_MOVABLE) {
5150 *zone_start_pfn = zone_movable_pfn[nid];
5151 *zone_end_pfn = min(node_end_pfn,
5152 arch_zone_highest_possible_pfn[movable_zone]);
5153
2a1e274a
MG
5154 /* Check if this whole range is within ZONE_MOVABLE */
5155 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5156 *zone_start_pfn = *zone_end_pfn;
5157 }
5158}
5159
c713216d
MG
5160/*
5161 * Return the number of pages a zone spans in a node, including holes
5162 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5163 */
6ea6e688 5164static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5165 unsigned long zone_type,
7960aedd
ZY
5166 unsigned long node_start_pfn,
5167 unsigned long node_end_pfn,
d91749c1
TI
5168 unsigned long *zone_start_pfn,
5169 unsigned long *zone_end_pfn,
c713216d
MG
5170 unsigned long *ignored)
5171{
b5685e92 5172 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5173 if (!node_start_pfn && !node_end_pfn)
5174 return 0;
5175
7960aedd 5176 /* Get the start and end of the zone */
d91749c1
TI
5177 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5178 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5179 adjust_zone_range_for_zone_movable(nid, zone_type,
5180 node_start_pfn, node_end_pfn,
d91749c1 5181 zone_start_pfn, zone_end_pfn);
c713216d
MG
5182
5183 /* Check that this node has pages within the zone's required range */
d91749c1 5184 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5185 return 0;
5186
5187 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5188 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5189 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5190
5191 /* Return the spanned pages */
d91749c1 5192 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5193}
5194
5195/*
5196 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5197 * then all holes in the requested range will be accounted for.
c713216d 5198 */
32996250 5199unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5200 unsigned long range_start_pfn,
5201 unsigned long range_end_pfn)
5202{
96e907d1
TH
5203 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5204 unsigned long start_pfn, end_pfn;
5205 int i;
c713216d 5206
96e907d1
TH
5207 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5208 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5209 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5210 nr_absent -= end_pfn - start_pfn;
c713216d 5211 }
96e907d1 5212 return nr_absent;
c713216d
MG
5213}
5214
5215/**
5216 * absent_pages_in_range - Return number of page frames in holes within a range
5217 * @start_pfn: The start PFN to start searching for holes
5218 * @end_pfn: The end PFN to stop searching for holes
5219 *
88ca3b94 5220 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5221 */
5222unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5223 unsigned long end_pfn)
5224{
5225 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5226}
5227
5228/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5229static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5230 unsigned long zone_type,
7960aedd
ZY
5231 unsigned long node_start_pfn,
5232 unsigned long node_end_pfn,
c713216d
MG
5233 unsigned long *ignored)
5234{
96e907d1
TH
5235 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5236 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5237 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5238 unsigned long nr_absent;
9c7cd687 5239
b5685e92 5240 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5241 if (!node_start_pfn && !node_end_pfn)
5242 return 0;
5243
96e907d1
TH
5244 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5245 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5246
2a1e274a
MG
5247 adjust_zone_range_for_zone_movable(nid, zone_type,
5248 node_start_pfn, node_end_pfn,
5249 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5250 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5251
5252 /*
5253 * ZONE_MOVABLE handling.
5254 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5255 * and vice versa.
5256 */
5257 if (zone_movable_pfn[nid]) {
5258 if (mirrored_kernelcore) {
5259 unsigned long start_pfn, end_pfn;
5260 struct memblock_region *r;
5261
5262 for_each_memblock(memory, r) {
5263 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5264 zone_start_pfn, zone_end_pfn);
5265 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5266 zone_start_pfn, zone_end_pfn);
5267
5268 if (zone_type == ZONE_MOVABLE &&
5269 memblock_is_mirror(r))
5270 nr_absent += end_pfn - start_pfn;
5271
5272 if (zone_type == ZONE_NORMAL &&
5273 !memblock_is_mirror(r))
5274 nr_absent += end_pfn - start_pfn;
5275 }
5276 } else {
5277 if (zone_type == ZONE_NORMAL)
5278 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5279 }
5280 }
5281
5282 return nr_absent;
c713216d 5283}
0e0b864e 5284
0ee332c1 5285#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5286static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5287 unsigned long zone_type,
7960aedd
ZY
5288 unsigned long node_start_pfn,
5289 unsigned long node_end_pfn,
d91749c1
TI
5290 unsigned long *zone_start_pfn,
5291 unsigned long *zone_end_pfn,
c713216d
MG
5292 unsigned long *zones_size)
5293{
d91749c1
TI
5294 unsigned int zone;
5295
5296 *zone_start_pfn = node_start_pfn;
5297 for (zone = 0; zone < zone_type; zone++)
5298 *zone_start_pfn += zones_size[zone];
5299
5300 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5301
c713216d
MG
5302 return zones_size[zone_type];
5303}
5304
6ea6e688 5305static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5306 unsigned long zone_type,
7960aedd
ZY
5307 unsigned long node_start_pfn,
5308 unsigned long node_end_pfn,
c713216d
MG
5309 unsigned long *zholes_size)
5310{
5311 if (!zholes_size)
5312 return 0;
5313
5314 return zholes_size[zone_type];
5315}
20e6926d 5316
0ee332c1 5317#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5318
a3142c8e 5319static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5320 unsigned long node_start_pfn,
5321 unsigned long node_end_pfn,
5322 unsigned long *zones_size,
5323 unsigned long *zholes_size)
c713216d 5324{
febd5949 5325 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5326 enum zone_type i;
5327
febd5949
GZ
5328 for (i = 0; i < MAX_NR_ZONES; i++) {
5329 struct zone *zone = pgdat->node_zones + i;
d91749c1 5330 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5331 unsigned long size, real_size;
c713216d 5332
febd5949
GZ
5333 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5334 node_start_pfn,
5335 node_end_pfn,
d91749c1
TI
5336 &zone_start_pfn,
5337 &zone_end_pfn,
febd5949
GZ
5338 zones_size);
5339 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5340 node_start_pfn, node_end_pfn,
5341 zholes_size);
d91749c1
TI
5342 if (size)
5343 zone->zone_start_pfn = zone_start_pfn;
5344 else
5345 zone->zone_start_pfn = 0;
febd5949
GZ
5346 zone->spanned_pages = size;
5347 zone->present_pages = real_size;
5348
5349 totalpages += size;
5350 realtotalpages += real_size;
5351 }
5352
5353 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5354 pgdat->node_present_pages = realtotalpages;
5355 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5356 realtotalpages);
5357}
5358
835c134e
MG
5359#ifndef CONFIG_SPARSEMEM
5360/*
5361 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5362 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5363 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5364 * round what is now in bits to nearest long in bits, then return it in
5365 * bytes.
5366 */
7c45512d 5367static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5368{
5369 unsigned long usemapsize;
5370
7c45512d 5371 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5372 usemapsize = roundup(zonesize, pageblock_nr_pages);
5373 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5374 usemapsize *= NR_PAGEBLOCK_BITS;
5375 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5376
5377 return usemapsize / 8;
5378}
5379
5380static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5381 struct zone *zone,
5382 unsigned long zone_start_pfn,
5383 unsigned long zonesize)
835c134e 5384{
7c45512d 5385 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5386 zone->pageblock_flags = NULL;
58a01a45 5387 if (usemapsize)
6782832e
SS
5388 zone->pageblock_flags =
5389 memblock_virt_alloc_node_nopanic(usemapsize,
5390 pgdat->node_id);
835c134e
MG
5391}
5392#else
7c45512d
LT
5393static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5394 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5395#endif /* CONFIG_SPARSEMEM */
5396
d9c23400 5397#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5398
d9c23400 5399/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5400void __paginginit set_pageblock_order(void)
d9c23400 5401{
955c1cd7
AM
5402 unsigned int order;
5403
d9c23400
MG
5404 /* Check that pageblock_nr_pages has not already been setup */
5405 if (pageblock_order)
5406 return;
5407
955c1cd7
AM
5408 if (HPAGE_SHIFT > PAGE_SHIFT)
5409 order = HUGETLB_PAGE_ORDER;
5410 else
5411 order = MAX_ORDER - 1;
5412
d9c23400
MG
5413 /*
5414 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5415 * This value may be variable depending on boot parameters on IA64 and
5416 * powerpc.
d9c23400
MG
5417 */
5418 pageblock_order = order;
5419}
5420#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5421
ba72cb8c
MG
5422/*
5423 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5424 * is unused as pageblock_order is set at compile-time. See
5425 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5426 * the kernel config
ba72cb8c 5427 */
15ca220e 5428void __paginginit set_pageblock_order(void)
ba72cb8c 5429{
ba72cb8c 5430}
d9c23400
MG
5431
5432#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5433
01cefaef
JL
5434static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5435 unsigned long present_pages)
5436{
5437 unsigned long pages = spanned_pages;
5438
5439 /*
5440 * Provide a more accurate estimation if there are holes within
5441 * the zone and SPARSEMEM is in use. If there are holes within the
5442 * zone, each populated memory region may cost us one or two extra
5443 * memmap pages due to alignment because memmap pages for each
5444 * populated regions may not naturally algined on page boundary.
5445 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5446 */
5447 if (spanned_pages > present_pages + (present_pages >> 4) &&
5448 IS_ENABLED(CONFIG_SPARSEMEM))
5449 pages = present_pages;
5450
5451 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5452}
5453
1da177e4
LT
5454/*
5455 * Set up the zone data structures:
5456 * - mark all pages reserved
5457 * - mark all memory queues empty
5458 * - clear the memory bitmaps
6527af5d
MK
5459 *
5460 * NOTE: pgdat should get zeroed by caller.
1da177e4 5461 */
7f3eb55b 5462static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5463{
2f1b6248 5464 enum zone_type j;
ed8ece2e 5465 int nid = pgdat->node_id;
718127cc 5466 int ret;
1da177e4 5467
208d54e5 5468 pgdat_resize_init(pgdat);
8177a420
AA
5469#ifdef CONFIG_NUMA_BALANCING
5470 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5471 pgdat->numabalancing_migrate_nr_pages = 0;
5472 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5473#endif
5474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5475 spin_lock_init(&pgdat->split_queue_lock);
5476 INIT_LIST_HEAD(&pgdat->split_queue);
5477 pgdat->split_queue_len = 0;
8177a420 5478#endif
1da177e4 5479 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5480 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5481#ifdef CONFIG_COMPACTION
5482 init_waitqueue_head(&pgdat->kcompactd_wait);
5483#endif
eefa864b 5484 pgdat_page_ext_init(pgdat);
5f63b720 5485
1da177e4
LT
5486 for (j = 0; j < MAX_NR_ZONES; j++) {
5487 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5488 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5489 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5490
febd5949
GZ
5491 size = zone->spanned_pages;
5492 realsize = freesize = zone->present_pages;
1da177e4 5493
0e0b864e 5494 /*
9feedc9d 5495 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5496 * is used by this zone for memmap. This affects the watermark
5497 * and per-cpu initialisations
5498 */
01cefaef 5499 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5500 if (!is_highmem_idx(j)) {
5501 if (freesize >= memmap_pages) {
5502 freesize -= memmap_pages;
5503 if (memmap_pages)
5504 printk(KERN_DEBUG
5505 " %s zone: %lu pages used for memmap\n",
5506 zone_names[j], memmap_pages);
5507 } else
1170532b 5508 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5509 zone_names[j], memmap_pages, freesize);
5510 }
0e0b864e 5511
6267276f 5512 /* Account for reserved pages */
9feedc9d
JL
5513 if (j == 0 && freesize > dma_reserve) {
5514 freesize -= dma_reserve;
d903ef9f 5515 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5516 zone_names[0], dma_reserve);
0e0b864e
MG
5517 }
5518
98d2b0eb 5519 if (!is_highmem_idx(j))
9feedc9d 5520 nr_kernel_pages += freesize;
01cefaef
JL
5521 /* Charge for highmem memmap if there are enough kernel pages */
5522 else if (nr_kernel_pages > memmap_pages * 2)
5523 nr_kernel_pages -= memmap_pages;
9feedc9d 5524 nr_all_pages += freesize;
1da177e4 5525
9feedc9d
JL
5526 /*
5527 * Set an approximate value for lowmem here, it will be adjusted
5528 * when the bootmem allocator frees pages into the buddy system.
5529 * And all highmem pages will be managed by the buddy system.
5530 */
5531 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5532#ifdef CONFIG_NUMA
d5f541ed 5533 zone->node = nid;
9feedc9d 5534 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5535 / 100;
9feedc9d 5536 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5537#endif
1da177e4
LT
5538 zone->name = zone_names[j];
5539 spin_lock_init(&zone->lock);
5540 spin_lock_init(&zone->lru_lock);
bdc8cb98 5541 zone_seqlock_init(zone);
1da177e4 5542 zone->zone_pgdat = pgdat;
ed8ece2e 5543 zone_pcp_init(zone);
81c0a2bb
JW
5544
5545 /* For bootup, initialized properly in watermark setup */
5546 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5547
bea8c150 5548 lruvec_init(&zone->lruvec);
1da177e4
LT
5549 if (!size)
5550 continue;
5551
955c1cd7 5552 set_pageblock_order();
7c45512d 5553 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5554 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5555 BUG_ON(ret);
76cdd58e 5556 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5557 }
5558}
5559
577a32f6 5560static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5561{
b0aeba74 5562 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5563 unsigned long __maybe_unused offset = 0;
5564
1da177e4
LT
5565 /* Skip empty nodes */
5566 if (!pgdat->node_spanned_pages)
5567 return;
5568
d41dee36 5569#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5570 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5571 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5572 /* ia64 gets its own node_mem_map, before this, without bootmem */
5573 if (!pgdat->node_mem_map) {
b0aeba74 5574 unsigned long size, end;
d41dee36
AW
5575 struct page *map;
5576
e984bb43
BP
5577 /*
5578 * The zone's endpoints aren't required to be MAX_ORDER
5579 * aligned but the node_mem_map endpoints must be in order
5580 * for the buddy allocator to function correctly.
5581 */
108bcc96 5582 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5583 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5584 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5585 map = alloc_remap(pgdat->node_id, size);
5586 if (!map)
6782832e
SS
5587 map = memblock_virt_alloc_node_nopanic(size,
5588 pgdat->node_id);
a1c34a3b 5589 pgdat->node_mem_map = map + offset;
1da177e4 5590 }
12d810c1 5591#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5592 /*
5593 * With no DISCONTIG, the global mem_map is just set as node 0's
5594 */
c713216d 5595 if (pgdat == NODE_DATA(0)) {
1da177e4 5596 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5597#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5598 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5599 mem_map -= offset;
0ee332c1 5600#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5601 }
1da177e4 5602#endif
d41dee36 5603#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5604}
5605
9109fb7b
JW
5606void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5607 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5608{
9109fb7b 5609 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5610 unsigned long start_pfn = 0;
5611 unsigned long end_pfn = 0;
9109fb7b 5612
88fdf75d 5613 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5614 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5615
3a80a7fa 5616 reset_deferred_meminit(pgdat);
1da177e4
LT
5617 pgdat->node_id = nid;
5618 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5619#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5620 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5621 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5622 (u64)start_pfn << PAGE_SHIFT,
5623 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5624#else
5625 start_pfn = node_start_pfn;
7960aedd
ZY
5626#endif
5627 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5628 zones_size, zholes_size);
1da177e4
LT
5629
5630 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5631#ifdef CONFIG_FLAT_NODE_MEM_MAP
5632 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5633 nid, (unsigned long)pgdat,
5634 (unsigned long)pgdat->node_mem_map);
5635#endif
1da177e4 5636
7f3eb55b 5637 free_area_init_core(pgdat);
1da177e4
LT
5638}
5639
0ee332c1 5640#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5641
5642#if MAX_NUMNODES > 1
5643/*
5644 * Figure out the number of possible node ids.
5645 */
f9872caf 5646void __init setup_nr_node_ids(void)
418508c1 5647{
904a9553 5648 unsigned int highest;
418508c1 5649
904a9553 5650 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5651 nr_node_ids = highest + 1;
5652}
418508c1
MS
5653#endif
5654
1e01979c
TH
5655/**
5656 * node_map_pfn_alignment - determine the maximum internode alignment
5657 *
5658 * This function should be called after node map is populated and sorted.
5659 * It calculates the maximum power of two alignment which can distinguish
5660 * all the nodes.
5661 *
5662 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5663 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5664 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5665 * shifted, 1GiB is enough and this function will indicate so.
5666 *
5667 * This is used to test whether pfn -> nid mapping of the chosen memory
5668 * model has fine enough granularity to avoid incorrect mapping for the
5669 * populated node map.
5670 *
5671 * Returns the determined alignment in pfn's. 0 if there is no alignment
5672 * requirement (single node).
5673 */
5674unsigned long __init node_map_pfn_alignment(void)
5675{
5676 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5677 unsigned long start, end, mask;
1e01979c 5678 int last_nid = -1;
c13291a5 5679 int i, nid;
1e01979c 5680
c13291a5 5681 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5682 if (!start || last_nid < 0 || last_nid == nid) {
5683 last_nid = nid;
5684 last_end = end;
5685 continue;
5686 }
5687
5688 /*
5689 * Start with a mask granular enough to pin-point to the
5690 * start pfn and tick off bits one-by-one until it becomes
5691 * too coarse to separate the current node from the last.
5692 */
5693 mask = ~((1 << __ffs(start)) - 1);
5694 while (mask && last_end <= (start & (mask << 1)))
5695 mask <<= 1;
5696
5697 /* accumulate all internode masks */
5698 accl_mask |= mask;
5699 }
5700
5701 /* convert mask to number of pages */
5702 return ~accl_mask + 1;
5703}
5704
a6af2bc3 5705/* Find the lowest pfn for a node */
b69a7288 5706static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5707{
a6af2bc3 5708 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5709 unsigned long start_pfn;
5710 int i;
1abbfb41 5711
c13291a5
TH
5712 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5713 min_pfn = min(min_pfn, start_pfn);
c713216d 5714
a6af2bc3 5715 if (min_pfn == ULONG_MAX) {
1170532b 5716 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5717 return 0;
5718 }
5719
5720 return min_pfn;
c713216d
MG
5721}
5722
5723/**
5724 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5725 *
5726 * It returns the minimum PFN based on information provided via
7d018176 5727 * memblock_set_node().
c713216d
MG
5728 */
5729unsigned long __init find_min_pfn_with_active_regions(void)
5730{
5731 return find_min_pfn_for_node(MAX_NUMNODES);
5732}
5733
37b07e41
LS
5734/*
5735 * early_calculate_totalpages()
5736 * Sum pages in active regions for movable zone.
4b0ef1fe 5737 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5738 */
484f51f8 5739static unsigned long __init early_calculate_totalpages(void)
7e63efef 5740{
7e63efef 5741 unsigned long totalpages = 0;
c13291a5
TH
5742 unsigned long start_pfn, end_pfn;
5743 int i, nid;
5744
5745 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5746 unsigned long pages = end_pfn - start_pfn;
7e63efef 5747
37b07e41
LS
5748 totalpages += pages;
5749 if (pages)
4b0ef1fe 5750 node_set_state(nid, N_MEMORY);
37b07e41 5751 }
b8af2941 5752 return totalpages;
7e63efef
MG
5753}
5754
2a1e274a
MG
5755/*
5756 * Find the PFN the Movable zone begins in each node. Kernel memory
5757 * is spread evenly between nodes as long as the nodes have enough
5758 * memory. When they don't, some nodes will have more kernelcore than
5759 * others
5760 */
b224ef85 5761static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5762{
5763 int i, nid;
5764 unsigned long usable_startpfn;
5765 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5766 /* save the state before borrow the nodemask */
4b0ef1fe 5767 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5768 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5769 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5770 struct memblock_region *r;
b2f3eebe
TC
5771
5772 /* Need to find movable_zone earlier when movable_node is specified. */
5773 find_usable_zone_for_movable();
5774
5775 /*
5776 * If movable_node is specified, ignore kernelcore and movablecore
5777 * options.
5778 */
5779 if (movable_node_is_enabled()) {
136199f0
EM
5780 for_each_memblock(memory, r) {
5781 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5782 continue;
5783
136199f0 5784 nid = r->nid;
b2f3eebe 5785
136199f0 5786 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5787 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5788 min(usable_startpfn, zone_movable_pfn[nid]) :
5789 usable_startpfn;
5790 }
5791
5792 goto out2;
5793 }
2a1e274a 5794
342332e6
TI
5795 /*
5796 * If kernelcore=mirror is specified, ignore movablecore option
5797 */
5798 if (mirrored_kernelcore) {
5799 bool mem_below_4gb_not_mirrored = false;
5800
5801 for_each_memblock(memory, r) {
5802 if (memblock_is_mirror(r))
5803 continue;
5804
5805 nid = r->nid;
5806
5807 usable_startpfn = memblock_region_memory_base_pfn(r);
5808
5809 if (usable_startpfn < 0x100000) {
5810 mem_below_4gb_not_mirrored = true;
5811 continue;
5812 }
5813
5814 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5815 min(usable_startpfn, zone_movable_pfn[nid]) :
5816 usable_startpfn;
5817 }
5818
5819 if (mem_below_4gb_not_mirrored)
5820 pr_warn("This configuration results in unmirrored kernel memory.");
5821
5822 goto out2;
5823 }
5824
7e63efef 5825 /*
b2f3eebe 5826 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5827 * kernelcore that corresponds so that memory usable for
5828 * any allocation type is evenly spread. If both kernelcore
5829 * and movablecore are specified, then the value of kernelcore
5830 * will be used for required_kernelcore if it's greater than
5831 * what movablecore would have allowed.
5832 */
5833 if (required_movablecore) {
7e63efef
MG
5834 unsigned long corepages;
5835
5836 /*
5837 * Round-up so that ZONE_MOVABLE is at least as large as what
5838 * was requested by the user
5839 */
5840 required_movablecore =
5841 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5842 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5843 corepages = totalpages - required_movablecore;
5844
5845 required_kernelcore = max(required_kernelcore, corepages);
5846 }
5847
bde304bd
XQ
5848 /*
5849 * If kernelcore was not specified or kernelcore size is larger
5850 * than totalpages, there is no ZONE_MOVABLE.
5851 */
5852 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5853 goto out;
2a1e274a
MG
5854
5855 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5856 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5857
5858restart:
5859 /* Spread kernelcore memory as evenly as possible throughout nodes */
5860 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5861 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5862 unsigned long start_pfn, end_pfn;
5863
2a1e274a
MG
5864 /*
5865 * Recalculate kernelcore_node if the division per node
5866 * now exceeds what is necessary to satisfy the requested
5867 * amount of memory for the kernel
5868 */
5869 if (required_kernelcore < kernelcore_node)
5870 kernelcore_node = required_kernelcore / usable_nodes;
5871
5872 /*
5873 * As the map is walked, we track how much memory is usable
5874 * by the kernel using kernelcore_remaining. When it is
5875 * 0, the rest of the node is usable by ZONE_MOVABLE
5876 */
5877 kernelcore_remaining = kernelcore_node;
5878
5879 /* Go through each range of PFNs within this node */
c13291a5 5880 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5881 unsigned long size_pages;
5882
c13291a5 5883 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5884 if (start_pfn >= end_pfn)
5885 continue;
5886
5887 /* Account for what is only usable for kernelcore */
5888 if (start_pfn < usable_startpfn) {
5889 unsigned long kernel_pages;
5890 kernel_pages = min(end_pfn, usable_startpfn)
5891 - start_pfn;
5892
5893 kernelcore_remaining -= min(kernel_pages,
5894 kernelcore_remaining);
5895 required_kernelcore -= min(kernel_pages,
5896 required_kernelcore);
5897
5898 /* Continue if range is now fully accounted */
5899 if (end_pfn <= usable_startpfn) {
5900
5901 /*
5902 * Push zone_movable_pfn to the end so
5903 * that if we have to rebalance
5904 * kernelcore across nodes, we will
5905 * not double account here
5906 */
5907 zone_movable_pfn[nid] = end_pfn;
5908 continue;
5909 }
5910 start_pfn = usable_startpfn;
5911 }
5912
5913 /*
5914 * The usable PFN range for ZONE_MOVABLE is from
5915 * start_pfn->end_pfn. Calculate size_pages as the
5916 * number of pages used as kernelcore
5917 */
5918 size_pages = end_pfn - start_pfn;
5919 if (size_pages > kernelcore_remaining)
5920 size_pages = kernelcore_remaining;
5921 zone_movable_pfn[nid] = start_pfn + size_pages;
5922
5923 /*
5924 * Some kernelcore has been met, update counts and
5925 * break if the kernelcore for this node has been
b8af2941 5926 * satisfied
2a1e274a
MG
5927 */
5928 required_kernelcore -= min(required_kernelcore,
5929 size_pages);
5930 kernelcore_remaining -= size_pages;
5931 if (!kernelcore_remaining)
5932 break;
5933 }
5934 }
5935
5936 /*
5937 * If there is still required_kernelcore, we do another pass with one
5938 * less node in the count. This will push zone_movable_pfn[nid] further
5939 * along on the nodes that still have memory until kernelcore is
b8af2941 5940 * satisfied
2a1e274a
MG
5941 */
5942 usable_nodes--;
5943 if (usable_nodes && required_kernelcore > usable_nodes)
5944 goto restart;
5945
b2f3eebe 5946out2:
2a1e274a
MG
5947 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5948 for (nid = 0; nid < MAX_NUMNODES; nid++)
5949 zone_movable_pfn[nid] =
5950 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5951
20e6926d 5952out:
66918dcd 5953 /* restore the node_state */
4b0ef1fe 5954 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5955}
5956
4b0ef1fe
LJ
5957/* Any regular or high memory on that node ? */
5958static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5959{
37b07e41
LS
5960 enum zone_type zone_type;
5961
4b0ef1fe
LJ
5962 if (N_MEMORY == N_NORMAL_MEMORY)
5963 return;
5964
5965 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5966 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5967 if (populated_zone(zone)) {
4b0ef1fe
LJ
5968 node_set_state(nid, N_HIGH_MEMORY);
5969 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5970 zone_type <= ZONE_NORMAL)
5971 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5972 break;
5973 }
37b07e41 5974 }
37b07e41
LS
5975}
5976
c713216d
MG
5977/**
5978 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5979 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5980 *
5981 * This will call free_area_init_node() for each active node in the system.
7d018176 5982 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5983 * zone in each node and their holes is calculated. If the maximum PFN
5984 * between two adjacent zones match, it is assumed that the zone is empty.
5985 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5986 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5987 * starts where the previous one ended. For example, ZONE_DMA32 starts
5988 * at arch_max_dma_pfn.
5989 */
5990void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5991{
c13291a5
TH
5992 unsigned long start_pfn, end_pfn;
5993 int i, nid;
a6af2bc3 5994
c713216d
MG
5995 /* Record where the zone boundaries are */
5996 memset(arch_zone_lowest_possible_pfn, 0,
5997 sizeof(arch_zone_lowest_possible_pfn));
5998 memset(arch_zone_highest_possible_pfn, 0,
5999 sizeof(arch_zone_highest_possible_pfn));
6000 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6001 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6002 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6003 if (i == ZONE_MOVABLE)
6004 continue;
c713216d
MG
6005 arch_zone_lowest_possible_pfn[i] =
6006 arch_zone_highest_possible_pfn[i-1];
6007 arch_zone_highest_possible_pfn[i] =
6008 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6009 }
2a1e274a
MG
6010 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6011 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6012
6013 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6014 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6015 find_zone_movable_pfns_for_nodes();
c713216d 6016
c713216d 6017 /* Print out the zone ranges */
f88dfff5 6018 pr_info("Zone ranges:\n");
2a1e274a
MG
6019 for (i = 0; i < MAX_NR_ZONES; i++) {
6020 if (i == ZONE_MOVABLE)
6021 continue;
f88dfff5 6022 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6023 if (arch_zone_lowest_possible_pfn[i] ==
6024 arch_zone_highest_possible_pfn[i])
f88dfff5 6025 pr_cont("empty\n");
72f0ba02 6026 else
8d29e18a
JG
6027 pr_cont("[mem %#018Lx-%#018Lx]\n",
6028 (u64)arch_zone_lowest_possible_pfn[i]
6029 << PAGE_SHIFT,
6030 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6031 << PAGE_SHIFT) - 1);
2a1e274a
MG
6032 }
6033
6034 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6035 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6036 for (i = 0; i < MAX_NUMNODES; i++) {
6037 if (zone_movable_pfn[i])
8d29e18a
JG
6038 pr_info(" Node %d: %#018Lx\n", i,
6039 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6040 }
c713216d 6041
f2d52fe5 6042 /* Print out the early node map */
f88dfff5 6043 pr_info("Early memory node ranges\n");
c13291a5 6044 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6045 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6046 (u64)start_pfn << PAGE_SHIFT,
6047 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6048
6049 /* Initialise every node */
708614e6 6050 mminit_verify_pageflags_layout();
8ef82866 6051 setup_nr_node_ids();
c713216d
MG
6052 for_each_online_node(nid) {
6053 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6054 free_area_init_node(nid, NULL,
c713216d 6055 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6056
6057 /* Any memory on that node */
6058 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6059 node_set_state(nid, N_MEMORY);
6060 check_for_memory(pgdat, nid);
c713216d
MG
6061 }
6062}
2a1e274a 6063
7e63efef 6064static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6065{
6066 unsigned long long coremem;
6067 if (!p)
6068 return -EINVAL;
6069
6070 coremem = memparse(p, &p);
7e63efef 6071 *core = coremem >> PAGE_SHIFT;
2a1e274a 6072
7e63efef 6073 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6074 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6075
6076 return 0;
6077}
ed7ed365 6078
7e63efef
MG
6079/*
6080 * kernelcore=size sets the amount of memory for use for allocations that
6081 * cannot be reclaimed or migrated.
6082 */
6083static int __init cmdline_parse_kernelcore(char *p)
6084{
342332e6
TI
6085 /* parse kernelcore=mirror */
6086 if (parse_option_str(p, "mirror")) {
6087 mirrored_kernelcore = true;
6088 return 0;
6089 }
6090
7e63efef
MG
6091 return cmdline_parse_core(p, &required_kernelcore);
6092}
6093
6094/*
6095 * movablecore=size sets the amount of memory for use for allocations that
6096 * can be reclaimed or migrated.
6097 */
6098static int __init cmdline_parse_movablecore(char *p)
6099{
6100 return cmdline_parse_core(p, &required_movablecore);
6101}
6102
ed7ed365 6103early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6104early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6105
0ee332c1 6106#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6107
c3d5f5f0
JL
6108void adjust_managed_page_count(struct page *page, long count)
6109{
6110 spin_lock(&managed_page_count_lock);
6111 page_zone(page)->managed_pages += count;
6112 totalram_pages += count;
3dcc0571
JL
6113#ifdef CONFIG_HIGHMEM
6114 if (PageHighMem(page))
6115 totalhigh_pages += count;
6116#endif
c3d5f5f0
JL
6117 spin_unlock(&managed_page_count_lock);
6118}
3dcc0571 6119EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6120
11199692 6121unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6122{
11199692
JL
6123 void *pos;
6124 unsigned long pages = 0;
69afade7 6125
11199692
JL
6126 start = (void *)PAGE_ALIGN((unsigned long)start);
6127 end = (void *)((unsigned long)end & PAGE_MASK);
6128 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6129 if ((unsigned int)poison <= 0xFF)
11199692
JL
6130 memset(pos, poison, PAGE_SIZE);
6131 free_reserved_page(virt_to_page(pos));
69afade7
JL
6132 }
6133
6134 if (pages && s)
11199692 6135 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6136 s, pages << (PAGE_SHIFT - 10), start, end);
6137
6138 return pages;
6139}
11199692 6140EXPORT_SYMBOL(free_reserved_area);
69afade7 6141
cfa11e08
JL
6142#ifdef CONFIG_HIGHMEM
6143void free_highmem_page(struct page *page)
6144{
6145 __free_reserved_page(page);
6146 totalram_pages++;
7b4b2a0d 6147 page_zone(page)->managed_pages++;
cfa11e08
JL
6148 totalhigh_pages++;
6149}
6150#endif
6151
7ee3d4e8
JL
6152
6153void __init mem_init_print_info(const char *str)
6154{
6155 unsigned long physpages, codesize, datasize, rosize, bss_size;
6156 unsigned long init_code_size, init_data_size;
6157
6158 physpages = get_num_physpages();
6159 codesize = _etext - _stext;
6160 datasize = _edata - _sdata;
6161 rosize = __end_rodata - __start_rodata;
6162 bss_size = __bss_stop - __bss_start;
6163 init_data_size = __init_end - __init_begin;
6164 init_code_size = _einittext - _sinittext;
6165
6166 /*
6167 * Detect special cases and adjust section sizes accordingly:
6168 * 1) .init.* may be embedded into .data sections
6169 * 2) .init.text.* may be out of [__init_begin, __init_end],
6170 * please refer to arch/tile/kernel/vmlinux.lds.S.
6171 * 3) .rodata.* may be embedded into .text or .data sections.
6172 */
6173#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6174 do { \
6175 if (start <= pos && pos < end && size > adj) \
6176 size -= adj; \
6177 } while (0)
7ee3d4e8
JL
6178
6179 adj_init_size(__init_begin, __init_end, init_data_size,
6180 _sinittext, init_code_size);
6181 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6182 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6183 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6184 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6185
6186#undef adj_init_size
6187
756a025f 6188 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6189#ifdef CONFIG_HIGHMEM
756a025f 6190 ", %luK highmem"
7ee3d4e8 6191#endif
756a025f
JP
6192 "%s%s)\n",
6193 nr_free_pages() << (PAGE_SHIFT - 10),
6194 physpages << (PAGE_SHIFT - 10),
6195 codesize >> 10, datasize >> 10, rosize >> 10,
6196 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6197 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6198 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6199#ifdef CONFIG_HIGHMEM
756a025f 6200 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6201#endif
756a025f 6202 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6203}
6204
0e0b864e 6205/**
88ca3b94
RD
6206 * set_dma_reserve - set the specified number of pages reserved in the first zone
6207 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6208 *
013110a7 6209 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6210 * In the DMA zone, a significant percentage may be consumed by kernel image
6211 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6212 * function may optionally be used to account for unfreeable pages in the
6213 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6214 * smaller per-cpu batchsize.
0e0b864e
MG
6215 */
6216void __init set_dma_reserve(unsigned long new_dma_reserve)
6217{
6218 dma_reserve = new_dma_reserve;
6219}
6220
1da177e4
LT
6221void __init free_area_init(unsigned long *zones_size)
6222{
9109fb7b 6223 free_area_init_node(0, zones_size,
1da177e4
LT
6224 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6225}
1da177e4 6226
1da177e4
LT
6227static int page_alloc_cpu_notify(struct notifier_block *self,
6228 unsigned long action, void *hcpu)
6229{
6230 int cpu = (unsigned long)hcpu;
1da177e4 6231
8bb78442 6232 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6233 lru_add_drain_cpu(cpu);
9f8f2172
CL
6234 drain_pages(cpu);
6235
6236 /*
6237 * Spill the event counters of the dead processor
6238 * into the current processors event counters.
6239 * This artificially elevates the count of the current
6240 * processor.
6241 */
f8891e5e 6242 vm_events_fold_cpu(cpu);
9f8f2172
CL
6243
6244 /*
6245 * Zero the differential counters of the dead processor
6246 * so that the vm statistics are consistent.
6247 *
6248 * This is only okay since the processor is dead and cannot
6249 * race with what we are doing.
6250 */
2bb921e5 6251 cpu_vm_stats_fold(cpu);
1da177e4
LT
6252 }
6253 return NOTIFY_OK;
6254}
1da177e4
LT
6255
6256void __init page_alloc_init(void)
6257{
6258 hotcpu_notifier(page_alloc_cpu_notify, 0);
6259}
6260
cb45b0e9 6261/*
34b10060 6262 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6263 * or min_free_kbytes changes.
6264 */
6265static void calculate_totalreserve_pages(void)
6266{
6267 struct pglist_data *pgdat;
6268 unsigned long reserve_pages = 0;
2f6726e5 6269 enum zone_type i, j;
cb45b0e9
HA
6270
6271 for_each_online_pgdat(pgdat) {
6272 for (i = 0; i < MAX_NR_ZONES; i++) {
6273 struct zone *zone = pgdat->node_zones + i;
3484b2de 6274 long max = 0;
cb45b0e9
HA
6275
6276 /* Find valid and maximum lowmem_reserve in the zone */
6277 for (j = i; j < MAX_NR_ZONES; j++) {
6278 if (zone->lowmem_reserve[j] > max)
6279 max = zone->lowmem_reserve[j];
6280 }
6281
41858966
MG
6282 /* we treat the high watermark as reserved pages. */
6283 max += high_wmark_pages(zone);
cb45b0e9 6284
b40da049
JL
6285 if (max > zone->managed_pages)
6286 max = zone->managed_pages;
a8d01437
JW
6287
6288 zone->totalreserve_pages = max;
6289
cb45b0e9
HA
6290 reserve_pages += max;
6291 }
6292 }
6293 totalreserve_pages = reserve_pages;
6294}
6295
1da177e4
LT
6296/*
6297 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6298 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6299 * has a correct pages reserved value, so an adequate number of
6300 * pages are left in the zone after a successful __alloc_pages().
6301 */
6302static void setup_per_zone_lowmem_reserve(void)
6303{
6304 struct pglist_data *pgdat;
2f6726e5 6305 enum zone_type j, idx;
1da177e4 6306
ec936fc5 6307 for_each_online_pgdat(pgdat) {
1da177e4
LT
6308 for (j = 0; j < MAX_NR_ZONES; j++) {
6309 struct zone *zone = pgdat->node_zones + j;
b40da049 6310 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6311
6312 zone->lowmem_reserve[j] = 0;
6313
2f6726e5
CL
6314 idx = j;
6315 while (idx) {
1da177e4
LT
6316 struct zone *lower_zone;
6317
2f6726e5
CL
6318 idx--;
6319
1da177e4
LT
6320 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6321 sysctl_lowmem_reserve_ratio[idx] = 1;
6322
6323 lower_zone = pgdat->node_zones + idx;
b40da049 6324 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6325 sysctl_lowmem_reserve_ratio[idx];
b40da049 6326 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6327 }
6328 }
6329 }
cb45b0e9
HA
6330
6331 /* update totalreserve_pages */
6332 calculate_totalreserve_pages();
1da177e4
LT
6333}
6334
cfd3da1e 6335static void __setup_per_zone_wmarks(void)
1da177e4
LT
6336{
6337 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6338 unsigned long lowmem_pages = 0;
6339 struct zone *zone;
6340 unsigned long flags;
6341
6342 /* Calculate total number of !ZONE_HIGHMEM pages */
6343 for_each_zone(zone) {
6344 if (!is_highmem(zone))
b40da049 6345 lowmem_pages += zone->managed_pages;
1da177e4
LT
6346 }
6347
6348 for_each_zone(zone) {
ac924c60
AM
6349 u64 tmp;
6350
1125b4e3 6351 spin_lock_irqsave(&zone->lock, flags);
b40da049 6352 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6353 do_div(tmp, lowmem_pages);
1da177e4
LT
6354 if (is_highmem(zone)) {
6355 /*
669ed175
NP
6356 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6357 * need highmem pages, so cap pages_min to a small
6358 * value here.
6359 *
41858966 6360 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6361 * deltas control asynch page reclaim, and so should
669ed175 6362 * not be capped for highmem.
1da177e4 6363 */
90ae8d67 6364 unsigned long min_pages;
1da177e4 6365
b40da049 6366 min_pages = zone->managed_pages / 1024;
90ae8d67 6367 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6368 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6369 } else {
669ed175
NP
6370 /*
6371 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6372 * proportionate to the zone's size.
6373 */
41858966 6374 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6375 }
6376
795ae7a0
JW
6377 /*
6378 * Set the kswapd watermarks distance according to the
6379 * scale factor in proportion to available memory, but
6380 * ensure a minimum size on small systems.
6381 */
6382 tmp = max_t(u64, tmp >> 2,
6383 mult_frac(zone->managed_pages,
6384 watermark_scale_factor, 10000));
6385
6386 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6387 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6388
81c0a2bb 6389 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6390 high_wmark_pages(zone) - low_wmark_pages(zone) -
6391 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6392
1125b4e3 6393 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6394 }
cb45b0e9
HA
6395
6396 /* update totalreserve_pages */
6397 calculate_totalreserve_pages();
1da177e4
LT
6398}
6399
cfd3da1e
MG
6400/**
6401 * setup_per_zone_wmarks - called when min_free_kbytes changes
6402 * or when memory is hot-{added|removed}
6403 *
6404 * Ensures that the watermark[min,low,high] values for each zone are set
6405 * correctly with respect to min_free_kbytes.
6406 */
6407void setup_per_zone_wmarks(void)
6408{
6409 mutex_lock(&zonelists_mutex);
6410 __setup_per_zone_wmarks();
6411 mutex_unlock(&zonelists_mutex);
6412}
6413
55a4462a 6414/*
556adecb
RR
6415 * The inactive anon list should be small enough that the VM never has to
6416 * do too much work, but large enough that each inactive page has a chance
6417 * to be referenced again before it is swapped out.
6418 *
6419 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6420 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6421 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6422 * the anonymous pages are kept on the inactive list.
6423 *
6424 * total target max
6425 * memory ratio inactive anon
6426 * -------------------------------------
6427 * 10MB 1 5MB
6428 * 100MB 1 50MB
6429 * 1GB 3 250MB
6430 * 10GB 10 0.9GB
6431 * 100GB 31 3GB
6432 * 1TB 101 10GB
6433 * 10TB 320 32GB
6434 */
1b79acc9 6435static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6436{
96cb4df5 6437 unsigned int gb, ratio;
556adecb 6438
96cb4df5 6439 /* Zone size in gigabytes */
b40da049 6440 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6441 if (gb)
556adecb 6442 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6443 else
6444 ratio = 1;
556adecb 6445
96cb4df5
MK
6446 zone->inactive_ratio = ratio;
6447}
556adecb 6448
839a4fcc 6449static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6450{
6451 struct zone *zone;
6452
6453 for_each_zone(zone)
6454 calculate_zone_inactive_ratio(zone);
556adecb
RR
6455}
6456
1da177e4
LT
6457/*
6458 * Initialise min_free_kbytes.
6459 *
6460 * For small machines we want it small (128k min). For large machines
6461 * we want it large (64MB max). But it is not linear, because network
6462 * bandwidth does not increase linearly with machine size. We use
6463 *
b8af2941 6464 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6465 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6466 *
6467 * which yields
6468 *
6469 * 16MB: 512k
6470 * 32MB: 724k
6471 * 64MB: 1024k
6472 * 128MB: 1448k
6473 * 256MB: 2048k
6474 * 512MB: 2896k
6475 * 1024MB: 4096k
6476 * 2048MB: 5792k
6477 * 4096MB: 8192k
6478 * 8192MB: 11584k
6479 * 16384MB: 16384k
6480 */
1b79acc9 6481int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6482{
6483 unsigned long lowmem_kbytes;
5f12733e 6484 int new_min_free_kbytes;
1da177e4
LT
6485
6486 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6487 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6488
6489 if (new_min_free_kbytes > user_min_free_kbytes) {
6490 min_free_kbytes = new_min_free_kbytes;
6491 if (min_free_kbytes < 128)
6492 min_free_kbytes = 128;
6493 if (min_free_kbytes > 65536)
6494 min_free_kbytes = 65536;
6495 } else {
6496 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6497 new_min_free_kbytes, user_min_free_kbytes);
6498 }
bc75d33f 6499 setup_per_zone_wmarks();
a6cccdc3 6500 refresh_zone_stat_thresholds();
1da177e4 6501 setup_per_zone_lowmem_reserve();
556adecb 6502 setup_per_zone_inactive_ratio();
1da177e4
LT
6503 return 0;
6504}
bc22af74 6505core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6506
6507/*
b8af2941 6508 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6509 * that we can call two helper functions whenever min_free_kbytes
6510 * changes.
6511 */
cccad5b9 6512int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6513 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6514{
da8c757b
HP
6515 int rc;
6516
6517 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6518 if (rc)
6519 return rc;
6520
5f12733e
MH
6521 if (write) {
6522 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6523 setup_per_zone_wmarks();
5f12733e 6524 }
1da177e4
LT
6525 return 0;
6526}
6527
795ae7a0
JW
6528int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6529 void __user *buffer, size_t *length, loff_t *ppos)
6530{
6531 int rc;
6532
6533 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6534 if (rc)
6535 return rc;
6536
6537 if (write)
6538 setup_per_zone_wmarks();
6539
6540 return 0;
6541}
6542
9614634f 6543#ifdef CONFIG_NUMA
cccad5b9 6544int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6545 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6546{
6547 struct zone *zone;
6548 int rc;
6549
8d65af78 6550 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6551 if (rc)
6552 return rc;
6553
6554 for_each_zone(zone)
b40da049 6555 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6556 sysctl_min_unmapped_ratio) / 100;
6557 return 0;
6558}
0ff38490 6559
cccad5b9 6560int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6561 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6562{
6563 struct zone *zone;
6564 int rc;
6565
8d65af78 6566 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6567 if (rc)
6568 return rc;
6569
6570 for_each_zone(zone)
b40da049 6571 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6572 sysctl_min_slab_ratio) / 100;
6573 return 0;
6574}
9614634f
CL
6575#endif
6576
1da177e4
LT
6577/*
6578 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6579 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6580 * whenever sysctl_lowmem_reserve_ratio changes.
6581 *
6582 * The reserve ratio obviously has absolutely no relation with the
41858966 6583 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6584 * if in function of the boot time zone sizes.
6585 */
cccad5b9 6586int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6587 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6588{
8d65af78 6589 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6590 setup_per_zone_lowmem_reserve();
6591 return 0;
6592}
6593
8ad4b1fb
RS
6594/*
6595 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6596 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6597 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6598 */
cccad5b9 6599int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6600 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6601{
6602 struct zone *zone;
7cd2b0a3 6603 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6604 int ret;
6605
7cd2b0a3
DR
6606 mutex_lock(&pcp_batch_high_lock);
6607 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6608
8d65af78 6609 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6610 if (!write || ret < 0)
6611 goto out;
6612
6613 /* Sanity checking to avoid pcp imbalance */
6614 if (percpu_pagelist_fraction &&
6615 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6616 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6617 ret = -EINVAL;
6618 goto out;
6619 }
6620
6621 /* No change? */
6622 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6623 goto out;
c8e251fa 6624
364df0eb 6625 for_each_populated_zone(zone) {
7cd2b0a3
DR
6626 unsigned int cpu;
6627
22a7f12b 6628 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6629 pageset_set_high_and_batch(zone,
6630 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6631 }
7cd2b0a3 6632out:
c8e251fa 6633 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6634 return ret;
8ad4b1fb
RS
6635}
6636
a9919c79 6637#ifdef CONFIG_NUMA
f034b5d4 6638int hashdist = HASHDIST_DEFAULT;
1da177e4 6639
1da177e4
LT
6640static int __init set_hashdist(char *str)
6641{
6642 if (!str)
6643 return 0;
6644 hashdist = simple_strtoul(str, &str, 0);
6645 return 1;
6646}
6647__setup("hashdist=", set_hashdist);
6648#endif
6649
6650/*
6651 * allocate a large system hash table from bootmem
6652 * - it is assumed that the hash table must contain an exact power-of-2
6653 * quantity of entries
6654 * - limit is the number of hash buckets, not the total allocation size
6655 */
6656void *__init alloc_large_system_hash(const char *tablename,
6657 unsigned long bucketsize,
6658 unsigned long numentries,
6659 int scale,
6660 int flags,
6661 unsigned int *_hash_shift,
6662 unsigned int *_hash_mask,
31fe62b9
TB
6663 unsigned long low_limit,
6664 unsigned long high_limit)
1da177e4 6665{
31fe62b9 6666 unsigned long long max = high_limit;
1da177e4
LT
6667 unsigned long log2qty, size;
6668 void *table = NULL;
6669
6670 /* allow the kernel cmdline to have a say */
6671 if (!numentries) {
6672 /* round applicable memory size up to nearest megabyte */
04903664 6673 numentries = nr_kernel_pages;
a7e83318
JZ
6674
6675 /* It isn't necessary when PAGE_SIZE >= 1MB */
6676 if (PAGE_SHIFT < 20)
6677 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6678
6679 /* limit to 1 bucket per 2^scale bytes of low memory */
6680 if (scale > PAGE_SHIFT)
6681 numentries >>= (scale - PAGE_SHIFT);
6682 else
6683 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6684
6685 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6686 if (unlikely(flags & HASH_SMALL)) {
6687 /* Makes no sense without HASH_EARLY */
6688 WARN_ON(!(flags & HASH_EARLY));
6689 if (!(numentries >> *_hash_shift)) {
6690 numentries = 1UL << *_hash_shift;
6691 BUG_ON(!numentries);
6692 }
6693 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6694 numentries = PAGE_SIZE / bucketsize;
1da177e4 6695 }
6e692ed3 6696 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6697
6698 /* limit allocation size to 1/16 total memory by default */
6699 if (max == 0) {
6700 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6701 do_div(max, bucketsize);
6702 }
074b8517 6703 max = min(max, 0x80000000ULL);
1da177e4 6704
31fe62b9
TB
6705 if (numentries < low_limit)
6706 numentries = low_limit;
1da177e4
LT
6707 if (numentries > max)
6708 numentries = max;
6709
f0d1b0b3 6710 log2qty = ilog2(numentries);
1da177e4
LT
6711
6712 do {
6713 size = bucketsize << log2qty;
6714 if (flags & HASH_EARLY)
6782832e 6715 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6716 else if (hashdist)
6717 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6718 else {
1037b83b
ED
6719 /*
6720 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6721 * some pages at the end of hash table which
6722 * alloc_pages_exact() automatically does
1037b83b 6723 */
264ef8a9 6724 if (get_order(size) < MAX_ORDER) {
a1dd268c 6725 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6726 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6727 }
1da177e4
LT
6728 }
6729 } while (!table && size > PAGE_SIZE && --log2qty);
6730
6731 if (!table)
6732 panic("Failed to allocate %s hash table\n", tablename);
6733
1170532b
JP
6734 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6735 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6736
6737 if (_hash_shift)
6738 *_hash_shift = log2qty;
6739 if (_hash_mask)
6740 *_hash_mask = (1 << log2qty) - 1;
6741
6742 return table;
6743}
a117e66e 6744
835c134e
MG
6745/* Return a pointer to the bitmap storing bits affecting a block of pages */
6746static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6747 unsigned long pfn)
6748{
6749#ifdef CONFIG_SPARSEMEM
6750 return __pfn_to_section(pfn)->pageblock_flags;
6751#else
6752 return zone->pageblock_flags;
6753#endif /* CONFIG_SPARSEMEM */
6754}
6755
6756static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6757{
6758#ifdef CONFIG_SPARSEMEM
6759 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6760 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6761#else
c060f943 6762 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6763 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6764#endif /* CONFIG_SPARSEMEM */
6765}
6766
6767/**
1aab4d77 6768 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6769 * @page: The page within the block of interest
1aab4d77
RD
6770 * @pfn: The target page frame number
6771 * @end_bitidx: The last bit of interest to retrieve
6772 * @mask: mask of bits that the caller is interested in
6773 *
6774 * Return: pageblock_bits flags
835c134e 6775 */
dc4b0caf 6776unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6777 unsigned long end_bitidx,
6778 unsigned long mask)
835c134e
MG
6779{
6780 struct zone *zone;
6781 unsigned long *bitmap;
dc4b0caf 6782 unsigned long bitidx, word_bitidx;
e58469ba 6783 unsigned long word;
835c134e
MG
6784
6785 zone = page_zone(page);
835c134e
MG
6786 bitmap = get_pageblock_bitmap(zone, pfn);
6787 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6788 word_bitidx = bitidx / BITS_PER_LONG;
6789 bitidx &= (BITS_PER_LONG-1);
835c134e 6790
e58469ba
MG
6791 word = bitmap[word_bitidx];
6792 bitidx += end_bitidx;
6793 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6794}
6795
6796/**
dc4b0caf 6797 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6798 * @page: The page within the block of interest
835c134e 6799 * @flags: The flags to set
1aab4d77
RD
6800 * @pfn: The target page frame number
6801 * @end_bitidx: The last bit of interest
6802 * @mask: mask of bits that the caller is interested in
835c134e 6803 */
dc4b0caf
MG
6804void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6805 unsigned long pfn,
e58469ba
MG
6806 unsigned long end_bitidx,
6807 unsigned long mask)
835c134e
MG
6808{
6809 struct zone *zone;
6810 unsigned long *bitmap;
dc4b0caf 6811 unsigned long bitidx, word_bitidx;
e58469ba
MG
6812 unsigned long old_word, word;
6813
6814 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6815
6816 zone = page_zone(page);
835c134e
MG
6817 bitmap = get_pageblock_bitmap(zone, pfn);
6818 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6819 word_bitidx = bitidx / BITS_PER_LONG;
6820 bitidx &= (BITS_PER_LONG-1);
6821
309381fe 6822 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6823
e58469ba
MG
6824 bitidx += end_bitidx;
6825 mask <<= (BITS_PER_LONG - bitidx - 1);
6826 flags <<= (BITS_PER_LONG - bitidx - 1);
6827
4db0c3c2 6828 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6829 for (;;) {
6830 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6831 if (word == old_word)
6832 break;
6833 word = old_word;
6834 }
835c134e 6835}
a5d76b54
KH
6836
6837/*
80934513
MK
6838 * This function checks whether pageblock includes unmovable pages or not.
6839 * If @count is not zero, it is okay to include less @count unmovable pages
6840 *
b8af2941 6841 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6842 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6843 * expect this function should be exact.
a5d76b54 6844 */
b023f468
WC
6845bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6846 bool skip_hwpoisoned_pages)
49ac8255
KH
6847{
6848 unsigned long pfn, iter, found;
47118af0
MN
6849 int mt;
6850
49ac8255
KH
6851 /*
6852 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6853 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6854 */
6855 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6856 return false;
47118af0
MN
6857 mt = get_pageblock_migratetype(page);
6858 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6859 return false;
49ac8255
KH
6860
6861 pfn = page_to_pfn(page);
6862 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6863 unsigned long check = pfn + iter;
6864
29723fcc 6865 if (!pfn_valid_within(check))
49ac8255 6866 continue;
29723fcc 6867
49ac8255 6868 page = pfn_to_page(check);
c8721bbb
NH
6869
6870 /*
6871 * Hugepages are not in LRU lists, but they're movable.
6872 * We need not scan over tail pages bacause we don't
6873 * handle each tail page individually in migration.
6874 */
6875 if (PageHuge(page)) {
6876 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6877 continue;
6878 }
6879
97d255c8
MK
6880 /*
6881 * We can't use page_count without pin a page
6882 * because another CPU can free compound page.
6883 * This check already skips compound tails of THP
0139aa7b 6884 * because their page->_refcount is zero at all time.
97d255c8 6885 */
fe896d18 6886 if (!page_ref_count(page)) {
49ac8255
KH
6887 if (PageBuddy(page))
6888 iter += (1 << page_order(page)) - 1;
6889 continue;
6890 }
97d255c8 6891
b023f468
WC
6892 /*
6893 * The HWPoisoned page may be not in buddy system, and
6894 * page_count() is not 0.
6895 */
6896 if (skip_hwpoisoned_pages && PageHWPoison(page))
6897 continue;
6898
49ac8255
KH
6899 if (!PageLRU(page))
6900 found++;
6901 /*
6b4f7799
JW
6902 * If there are RECLAIMABLE pages, we need to check
6903 * it. But now, memory offline itself doesn't call
6904 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6905 */
6906 /*
6907 * If the page is not RAM, page_count()should be 0.
6908 * we don't need more check. This is an _used_ not-movable page.
6909 *
6910 * The problematic thing here is PG_reserved pages. PG_reserved
6911 * is set to both of a memory hole page and a _used_ kernel
6912 * page at boot.
6913 */
6914 if (found > count)
80934513 6915 return true;
49ac8255 6916 }
80934513 6917 return false;
49ac8255
KH
6918}
6919
6920bool is_pageblock_removable_nolock(struct page *page)
6921{
656a0706
MH
6922 struct zone *zone;
6923 unsigned long pfn;
687875fb
MH
6924
6925 /*
6926 * We have to be careful here because we are iterating over memory
6927 * sections which are not zone aware so we might end up outside of
6928 * the zone but still within the section.
656a0706
MH
6929 * We have to take care about the node as well. If the node is offline
6930 * its NODE_DATA will be NULL - see page_zone.
687875fb 6931 */
656a0706
MH
6932 if (!node_online(page_to_nid(page)))
6933 return false;
6934
6935 zone = page_zone(page);
6936 pfn = page_to_pfn(page);
108bcc96 6937 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6938 return false;
6939
b023f468 6940 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6941}
0c0e6195 6942
080fe206 6943#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
6944
6945static unsigned long pfn_max_align_down(unsigned long pfn)
6946{
6947 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6948 pageblock_nr_pages) - 1);
6949}
6950
6951static unsigned long pfn_max_align_up(unsigned long pfn)
6952{
6953 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6954 pageblock_nr_pages));
6955}
6956
041d3a8c 6957/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6958static int __alloc_contig_migrate_range(struct compact_control *cc,
6959 unsigned long start, unsigned long end)
041d3a8c
MN
6960{
6961 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6962 unsigned long nr_reclaimed;
041d3a8c
MN
6963 unsigned long pfn = start;
6964 unsigned int tries = 0;
6965 int ret = 0;
6966
be49a6e1 6967 migrate_prep();
041d3a8c 6968
bb13ffeb 6969 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6970 if (fatal_signal_pending(current)) {
6971 ret = -EINTR;
6972 break;
6973 }
6974
bb13ffeb
MG
6975 if (list_empty(&cc->migratepages)) {
6976 cc->nr_migratepages = 0;
edc2ca61 6977 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6978 if (!pfn) {
6979 ret = -EINTR;
6980 break;
6981 }
6982 tries = 0;
6983 } else if (++tries == 5) {
6984 ret = ret < 0 ? ret : -EBUSY;
6985 break;
6986 }
6987
beb51eaa
MK
6988 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6989 &cc->migratepages);
6990 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6991
9c620e2b 6992 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6993 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6994 }
2a6f5124
SP
6995 if (ret < 0) {
6996 putback_movable_pages(&cc->migratepages);
6997 return ret;
6998 }
6999 return 0;
041d3a8c
MN
7000}
7001
7002/**
7003 * alloc_contig_range() -- tries to allocate given range of pages
7004 * @start: start PFN to allocate
7005 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7006 * @migratetype: migratetype of the underlaying pageblocks (either
7007 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7008 * in range must have the same migratetype and it must
7009 * be either of the two.
041d3a8c
MN
7010 *
7011 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7012 * aligned, however it's the caller's responsibility to guarantee that
7013 * we are the only thread that changes migrate type of pageblocks the
7014 * pages fall in.
7015 *
7016 * The PFN range must belong to a single zone.
7017 *
7018 * Returns zero on success or negative error code. On success all
7019 * pages which PFN is in [start, end) are allocated for the caller and
7020 * need to be freed with free_contig_range().
7021 */
0815f3d8
MN
7022int alloc_contig_range(unsigned long start, unsigned long end,
7023 unsigned migratetype)
041d3a8c 7024{
041d3a8c 7025 unsigned long outer_start, outer_end;
d00181b9
KS
7026 unsigned int order;
7027 int ret = 0;
041d3a8c 7028
bb13ffeb
MG
7029 struct compact_control cc = {
7030 .nr_migratepages = 0,
7031 .order = -1,
7032 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7033 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7034 .ignore_skip_hint = true,
7035 };
7036 INIT_LIST_HEAD(&cc.migratepages);
7037
041d3a8c
MN
7038 /*
7039 * What we do here is we mark all pageblocks in range as
7040 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7041 * have different sizes, and due to the way page allocator
7042 * work, we align the range to biggest of the two pages so
7043 * that page allocator won't try to merge buddies from
7044 * different pageblocks and change MIGRATE_ISOLATE to some
7045 * other migration type.
7046 *
7047 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7048 * migrate the pages from an unaligned range (ie. pages that
7049 * we are interested in). This will put all the pages in
7050 * range back to page allocator as MIGRATE_ISOLATE.
7051 *
7052 * When this is done, we take the pages in range from page
7053 * allocator removing them from the buddy system. This way
7054 * page allocator will never consider using them.
7055 *
7056 * This lets us mark the pageblocks back as
7057 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7058 * aligned range but not in the unaligned, original range are
7059 * put back to page allocator so that buddy can use them.
7060 */
7061
7062 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7063 pfn_max_align_up(end), migratetype,
7064 false);
041d3a8c 7065 if (ret)
86a595f9 7066 return ret;
041d3a8c 7067
8ef5849f
JK
7068 /*
7069 * In case of -EBUSY, we'd like to know which page causes problem.
7070 * So, just fall through. We will check it in test_pages_isolated().
7071 */
bb13ffeb 7072 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7073 if (ret && ret != -EBUSY)
041d3a8c
MN
7074 goto done;
7075
7076 /*
7077 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7078 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7079 * more, all pages in [start, end) are free in page allocator.
7080 * What we are going to do is to allocate all pages from
7081 * [start, end) (that is remove them from page allocator).
7082 *
7083 * The only problem is that pages at the beginning and at the
7084 * end of interesting range may be not aligned with pages that
7085 * page allocator holds, ie. they can be part of higher order
7086 * pages. Because of this, we reserve the bigger range and
7087 * once this is done free the pages we are not interested in.
7088 *
7089 * We don't have to hold zone->lock here because the pages are
7090 * isolated thus they won't get removed from buddy.
7091 */
7092
7093 lru_add_drain_all();
510f5507 7094 drain_all_pages(cc.zone);
041d3a8c
MN
7095
7096 order = 0;
7097 outer_start = start;
7098 while (!PageBuddy(pfn_to_page(outer_start))) {
7099 if (++order >= MAX_ORDER) {
8ef5849f
JK
7100 outer_start = start;
7101 break;
041d3a8c
MN
7102 }
7103 outer_start &= ~0UL << order;
7104 }
7105
8ef5849f
JK
7106 if (outer_start != start) {
7107 order = page_order(pfn_to_page(outer_start));
7108
7109 /*
7110 * outer_start page could be small order buddy page and
7111 * it doesn't include start page. Adjust outer_start
7112 * in this case to report failed page properly
7113 * on tracepoint in test_pages_isolated()
7114 */
7115 if (outer_start + (1UL << order) <= start)
7116 outer_start = start;
7117 }
7118
041d3a8c 7119 /* Make sure the range is really isolated. */
b023f468 7120 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7121 pr_info("%s: [%lx, %lx) PFNs busy\n",
7122 __func__, outer_start, end);
041d3a8c
MN
7123 ret = -EBUSY;
7124 goto done;
7125 }
7126
49f223a9 7127 /* Grab isolated pages from freelists. */
bb13ffeb 7128 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7129 if (!outer_end) {
7130 ret = -EBUSY;
7131 goto done;
7132 }
7133
7134 /* Free head and tail (if any) */
7135 if (start != outer_start)
7136 free_contig_range(outer_start, start - outer_start);
7137 if (end != outer_end)
7138 free_contig_range(end, outer_end - end);
7139
7140done:
7141 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7142 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7143 return ret;
7144}
7145
7146void free_contig_range(unsigned long pfn, unsigned nr_pages)
7147{
bcc2b02f
MS
7148 unsigned int count = 0;
7149
7150 for (; nr_pages--; pfn++) {
7151 struct page *page = pfn_to_page(pfn);
7152
7153 count += page_count(page) != 1;
7154 __free_page(page);
7155 }
7156 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7157}
7158#endif
7159
4ed7e022 7160#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7161/*
7162 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7163 * page high values need to be recalulated.
7164 */
4ed7e022
JL
7165void __meminit zone_pcp_update(struct zone *zone)
7166{
0a647f38 7167 unsigned cpu;
c8e251fa 7168 mutex_lock(&pcp_batch_high_lock);
0a647f38 7169 for_each_possible_cpu(cpu)
169f6c19
CS
7170 pageset_set_high_and_batch(zone,
7171 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7172 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7173}
7174#endif
7175
340175b7
JL
7176void zone_pcp_reset(struct zone *zone)
7177{
7178 unsigned long flags;
5a883813
MK
7179 int cpu;
7180 struct per_cpu_pageset *pset;
340175b7
JL
7181
7182 /* avoid races with drain_pages() */
7183 local_irq_save(flags);
7184 if (zone->pageset != &boot_pageset) {
5a883813
MK
7185 for_each_online_cpu(cpu) {
7186 pset = per_cpu_ptr(zone->pageset, cpu);
7187 drain_zonestat(zone, pset);
7188 }
340175b7
JL
7189 free_percpu(zone->pageset);
7190 zone->pageset = &boot_pageset;
7191 }
7192 local_irq_restore(flags);
7193}
7194
6dcd73d7 7195#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7196/*
b9eb6319
JK
7197 * All pages in the range must be in a single zone and isolated
7198 * before calling this.
0c0e6195
KH
7199 */
7200void
7201__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7202{
7203 struct page *page;
7204 struct zone *zone;
7aeb09f9 7205 unsigned int order, i;
0c0e6195
KH
7206 unsigned long pfn;
7207 unsigned long flags;
7208 /* find the first valid pfn */
7209 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7210 if (pfn_valid(pfn))
7211 break;
7212 if (pfn == end_pfn)
7213 return;
7214 zone = page_zone(pfn_to_page(pfn));
7215 spin_lock_irqsave(&zone->lock, flags);
7216 pfn = start_pfn;
7217 while (pfn < end_pfn) {
7218 if (!pfn_valid(pfn)) {
7219 pfn++;
7220 continue;
7221 }
7222 page = pfn_to_page(pfn);
b023f468
WC
7223 /*
7224 * The HWPoisoned page may be not in buddy system, and
7225 * page_count() is not 0.
7226 */
7227 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7228 pfn++;
7229 SetPageReserved(page);
7230 continue;
7231 }
7232
0c0e6195
KH
7233 BUG_ON(page_count(page));
7234 BUG_ON(!PageBuddy(page));
7235 order = page_order(page);
7236#ifdef CONFIG_DEBUG_VM
1170532b
JP
7237 pr_info("remove from free list %lx %d %lx\n",
7238 pfn, 1 << order, end_pfn);
0c0e6195
KH
7239#endif
7240 list_del(&page->lru);
7241 rmv_page_order(page);
7242 zone->free_area[order].nr_free--;
0c0e6195
KH
7243 for (i = 0; i < (1 << order); i++)
7244 SetPageReserved((page+i));
7245 pfn += (1 << order);
7246 }
7247 spin_unlock_irqrestore(&zone->lock, flags);
7248}
7249#endif
8d22ba1b 7250
8d22ba1b
WF
7251bool is_free_buddy_page(struct page *page)
7252{
7253 struct zone *zone = page_zone(page);
7254 unsigned long pfn = page_to_pfn(page);
7255 unsigned long flags;
7aeb09f9 7256 unsigned int order;
8d22ba1b
WF
7257
7258 spin_lock_irqsave(&zone->lock, flags);
7259 for (order = 0; order < MAX_ORDER; order++) {
7260 struct page *page_head = page - (pfn & ((1 << order) - 1));
7261
7262 if (PageBuddy(page_head) && page_order(page_head) >= order)
7263 break;
7264 }
7265 spin_unlock_irqrestore(&zone->lock, flags);
7266
7267 return order < MAX_ORDER;
7268}