]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm: allow GFP_{FS,IO} for page_cache_read page cache allocation
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
e30825f1 60#include <linux/page_ext.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
1da177e4 65
7ee3d4e8 66#include <asm/sections.h>
1da177e4 67#include <asm/tlbflush.h>
ac924c60 68#include <asm/div64.h>
1da177e4
LT
69#include "internal.h"
70
c8e251fa
CS
71/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 73#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 74
72812019
LS
75#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76DEFINE_PER_CPU(int, numa_node);
77EXPORT_PER_CPU_SYMBOL(numa_node);
78#endif
79
7aac7898
LS
80#ifdef CONFIG_HAVE_MEMORYLESS_NODES
81/*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 89int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
90#endif
91
1da177e4 92/*
13808910 93 * Array of node states.
1da177e4 94 */
13808910
CL
95nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98#ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100#ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
102#endif
103#ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
105#endif
106 [N_CPU] = { { [0] = 1UL } },
107#endif /* NUMA */
108};
109EXPORT_SYMBOL(node_states);
110
c3d5f5f0
JL
111/* Protect totalram_pages and zone->managed_pages */
112static DEFINE_SPINLOCK(managed_page_count_lock);
113
6c231b7b 114unsigned long totalram_pages __read_mostly;
cb45b0e9 115unsigned long totalreserve_pages __read_mostly;
e48322ab 116unsigned long totalcma_pages __read_mostly;
ab8fabd4
JW
117/*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123unsigned long dirty_balance_reserve __read_mostly;
124
1b76b02f 125int percpu_pagelist_fraction;
dcce284a 126gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 127
bb14c2c7
VB
128/*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136static inline int get_pcppage_migratetype(struct page *page)
137{
138 return page->index;
139}
140
141static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142{
143 page->index = migratetype;
144}
145
452aa699
RW
146#ifdef CONFIG_PM_SLEEP
147/*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
c9e664f1
RW
155
156static gfp_t saved_gfp_mask;
157
158void pm_restore_gfp_mask(void)
452aa699
RW
159{
160 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
452aa699
RW
165}
166
c9e664f1 167void pm_restrict_gfp_mask(void)
452aa699 168{
452aa699 169 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
d0164adc 172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 173}
f90ac398
MG
174
175bool pm_suspended_storage(void)
176{
d0164adc 177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
178 return false;
179 return true;
180}
452aa699
RW
181#endif /* CONFIG_PM_SLEEP */
182
d9c23400 183#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 184unsigned int pageblock_order __read_mostly;
d9c23400
MG
185#endif
186
d98c7a09 187static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 188
1da177e4
LT
189/*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
1da177e4 199 */
2f1b6248 200int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 201#ifdef CONFIG_ZONE_DMA
2f1b6248 202 256,
4b51d669 203#endif
fb0e7942 204#ifdef CONFIG_ZONE_DMA32
2f1b6248 205 256,
fb0e7942 206#endif
e53ef38d 207#ifdef CONFIG_HIGHMEM
2a1e274a 208 32,
e53ef38d 209#endif
2a1e274a 210 32,
2f1b6248 211};
1da177e4
LT
212
213EXPORT_SYMBOL(totalram_pages);
1da177e4 214
15ad7cdc 215static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 216#ifdef CONFIG_ZONE_DMA
2f1b6248 217 "DMA",
4b51d669 218#endif
fb0e7942 219#ifdef CONFIG_ZONE_DMA32
2f1b6248 220 "DMA32",
fb0e7942 221#endif
2f1b6248 222 "Normal",
e53ef38d 223#ifdef CONFIG_HIGHMEM
2a1e274a 224 "HighMem",
e53ef38d 225#endif
2a1e274a 226 "Movable",
033fbae9
DW
227#ifdef CONFIG_ZONE_DEVICE
228 "Device",
229#endif
2f1b6248
CL
230};
231
f1e61557
KS
232static void free_compound_page(struct page *page);
233compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236#ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238#endif
239};
240
1da177e4 241int min_free_kbytes = 1024;
42aa83cb 242int user_min_free_kbytes = -1;
1da177e4 243
2c85f51d
JB
244static unsigned long __meminitdata nr_kernel_pages;
245static unsigned long __meminitdata nr_all_pages;
a3142c8e 246static unsigned long __meminitdata dma_reserve;
1da177e4 247
0ee332c1
TH
248#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
249static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
250static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
251static unsigned long __initdata required_kernelcore;
252static unsigned long __initdata required_movablecore;
253static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
254
255/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
256int movable_zone;
257EXPORT_SYMBOL(movable_zone);
258#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 259
418508c1
MS
260#if MAX_NUMNODES > 1
261int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 262int nr_online_nodes __read_mostly = 1;
418508c1 263EXPORT_SYMBOL(nr_node_ids);
62bc62a8 264EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
265#endif
266
9ef9acb0
MG
267int page_group_by_mobility_disabled __read_mostly;
268
3a80a7fa
MG
269#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
270static inline void reset_deferred_meminit(pg_data_t *pgdat)
271{
272 pgdat->first_deferred_pfn = ULONG_MAX;
273}
274
275/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 276static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 277{
ae026b2a 278 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
279 return true;
280
281 return false;
282}
283
7e18adb4
MG
284static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
285{
286 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
287 return true;
288
289 return false;
290}
291
3a80a7fa
MG
292/*
293 * Returns false when the remaining initialisation should be deferred until
294 * later in the boot cycle when it can be parallelised.
295 */
296static inline bool update_defer_init(pg_data_t *pgdat,
297 unsigned long pfn, unsigned long zone_end,
298 unsigned long *nr_initialised)
299{
300 /* Always populate low zones for address-contrained allocations */
301 if (zone_end < pgdat_end_pfn(pgdat))
302 return true;
303
304 /* Initialise at least 2G of the highest zone */
305 (*nr_initialised)++;
306 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
307 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
308 pgdat->first_deferred_pfn = pfn;
309 return false;
310 }
311
312 return true;
313}
314#else
315static inline void reset_deferred_meminit(pg_data_t *pgdat)
316{
317}
318
319static inline bool early_page_uninitialised(unsigned long pfn)
320{
321 return false;
322}
323
7e18adb4
MG
324static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
325{
326 return false;
327}
328
3a80a7fa
MG
329static inline bool update_defer_init(pg_data_t *pgdat,
330 unsigned long pfn, unsigned long zone_end,
331 unsigned long *nr_initialised)
332{
333 return true;
334}
335#endif
336
337
ee6f509c 338void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 339{
5d0f3f72
KM
340 if (unlikely(page_group_by_mobility_disabled &&
341 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
342 migratetype = MIGRATE_UNMOVABLE;
343
b2a0ac88
MG
344 set_pageblock_flags_group(page, (unsigned long)migratetype,
345 PB_migrate, PB_migrate_end);
346}
347
13e7444b 348#ifdef CONFIG_DEBUG_VM
c6a57e19 349static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 350{
bdc8cb98
DH
351 int ret = 0;
352 unsigned seq;
353 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 354 unsigned long sp, start_pfn;
c6a57e19 355
bdc8cb98
DH
356 do {
357 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
358 start_pfn = zone->zone_start_pfn;
359 sp = zone->spanned_pages;
108bcc96 360 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
361 ret = 1;
362 } while (zone_span_seqretry(zone, seq));
363
b5e6a5a2 364 if (ret)
613813e8
DH
365 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
366 pfn, zone_to_nid(zone), zone->name,
367 start_pfn, start_pfn + sp);
b5e6a5a2 368
bdc8cb98 369 return ret;
c6a57e19
DH
370}
371
372static int page_is_consistent(struct zone *zone, struct page *page)
373{
14e07298 374 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 375 return 0;
1da177e4 376 if (zone != page_zone(page))
c6a57e19
DH
377 return 0;
378
379 return 1;
380}
381/*
382 * Temporary debugging check for pages not lying within a given zone.
383 */
384static int bad_range(struct zone *zone, struct page *page)
385{
386 if (page_outside_zone_boundaries(zone, page))
1da177e4 387 return 1;
c6a57e19
DH
388 if (!page_is_consistent(zone, page))
389 return 1;
390
1da177e4
LT
391 return 0;
392}
13e7444b
NP
393#else
394static inline int bad_range(struct zone *zone, struct page *page)
395{
396 return 0;
397}
398#endif
399
d230dec1
KS
400static void bad_page(struct page *page, const char *reason,
401 unsigned long bad_flags)
1da177e4 402{
d936cf9b
HD
403 static unsigned long resume;
404 static unsigned long nr_shown;
405 static unsigned long nr_unshown;
406
2a7684a2
WF
407 /* Don't complain about poisoned pages */
408 if (PageHWPoison(page)) {
22b751c3 409 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
410 return;
411 }
412
d936cf9b
HD
413 /*
414 * Allow a burst of 60 reports, then keep quiet for that minute;
415 * or allow a steady drip of one report per second.
416 */
417 if (nr_shown == 60) {
418 if (time_before(jiffies, resume)) {
419 nr_unshown++;
420 goto out;
421 }
422 if (nr_unshown) {
1e9e6365
HD
423 printk(KERN_ALERT
424 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
425 nr_unshown);
426 nr_unshown = 0;
427 }
428 nr_shown = 0;
429 }
430 if (nr_shown++ == 0)
431 resume = jiffies + 60 * HZ;
432
1e9e6365 433 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 434 current->comm, page_to_pfn(page));
f0b791a3 435 dump_page_badflags(page, reason, bad_flags);
3dc14741 436
4f31888c 437 print_modules();
1da177e4 438 dump_stack();
d936cf9b 439out:
8cc3b392 440 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 441 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 442 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
443}
444
1da177e4
LT
445/*
446 * Higher-order pages are called "compound pages". They are structured thusly:
447 *
1d798ca3 448 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 449 *
1d798ca3
KS
450 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
451 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 452 *
1d798ca3
KS
453 * The first tail page's ->compound_dtor holds the offset in array of compound
454 * page destructors. See compound_page_dtors.
1da177e4 455 *
1d798ca3 456 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 457 * This usage means that zero-order pages may not be compound.
1da177e4 458 */
d98c7a09
HD
459
460static void free_compound_page(struct page *page)
461{
d85f3385 462 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
463}
464
d00181b9 465void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
466{
467 int i;
468 int nr_pages = 1 << order;
469
f1e61557 470 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
471 set_compound_order(page, order);
472 __SetPageHead(page);
473 for (i = 1; i < nr_pages; i++) {
474 struct page *p = page + i;
58a84aa9 475 set_page_count(p, 0);
1d798ca3 476 set_compound_head(p, page);
18229df5
AW
477 }
478}
479
c0a32fc5
SG
480#ifdef CONFIG_DEBUG_PAGEALLOC
481unsigned int _debug_guardpage_minorder;
031bc574 482bool _debug_pagealloc_enabled __read_mostly;
e30825f1
JK
483bool _debug_guardpage_enabled __read_mostly;
484
031bc574
JK
485static int __init early_debug_pagealloc(char *buf)
486{
487 if (!buf)
488 return -EINVAL;
489
490 if (strcmp(buf, "on") == 0)
491 _debug_pagealloc_enabled = true;
492
493 return 0;
494}
495early_param("debug_pagealloc", early_debug_pagealloc);
496
e30825f1
JK
497static bool need_debug_guardpage(void)
498{
031bc574
JK
499 /* If we don't use debug_pagealloc, we don't need guard page */
500 if (!debug_pagealloc_enabled())
501 return false;
502
e30825f1
JK
503 return true;
504}
505
506static void init_debug_guardpage(void)
507{
031bc574
JK
508 if (!debug_pagealloc_enabled())
509 return;
510
e30825f1
JK
511 _debug_guardpage_enabled = true;
512}
513
514struct page_ext_operations debug_guardpage_ops = {
515 .need = need_debug_guardpage,
516 .init = init_debug_guardpage,
517};
c0a32fc5
SG
518
519static int __init debug_guardpage_minorder_setup(char *buf)
520{
521 unsigned long res;
522
523 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
524 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
525 return 0;
526 }
527 _debug_guardpage_minorder = res;
528 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
529 return 0;
530}
531__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
532
2847cf95
JK
533static inline void set_page_guard(struct zone *zone, struct page *page,
534 unsigned int order, int migratetype)
c0a32fc5 535{
e30825f1
JK
536 struct page_ext *page_ext;
537
538 if (!debug_guardpage_enabled())
539 return;
540
541 page_ext = lookup_page_ext(page);
542 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
543
2847cf95
JK
544 INIT_LIST_HEAD(&page->lru);
545 set_page_private(page, order);
546 /* Guard pages are not available for any usage */
547 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
548}
549
2847cf95
JK
550static inline void clear_page_guard(struct zone *zone, struct page *page,
551 unsigned int order, int migratetype)
c0a32fc5 552{
e30825f1
JK
553 struct page_ext *page_ext;
554
555 if (!debug_guardpage_enabled())
556 return;
557
558 page_ext = lookup_page_ext(page);
559 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
560
2847cf95
JK
561 set_page_private(page, 0);
562 if (!is_migrate_isolate(migratetype))
563 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
564}
565#else
e30825f1 566struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
567static inline void set_page_guard(struct zone *zone, struct page *page,
568 unsigned int order, int migratetype) {}
569static inline void clear_page_guard(struct zone *zone, struct page *page,
570 unsigned int order, int migratetype) {}
c0a32fc5
SG
571#endif
572
7aeb09f9 573static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 574{
4c21e2f2 575 set_page_private(page, order);
676165a8 576 __SetPageBuddy(page);
1da177e4
LT
577}
578
579static inline void rmv_page_order(struct page *page)
580{
676165a8 581 __ClearPageBuddy(page);
4c21e2f2 582 set_page_private(page, 0);
1da177e4
LT
583}
584
1da177e4
LT
585/*
586 * This function checks whether a page is free && is the buddy
587 * we can do coalesce a page and its buddy if
13e7444b 588 * (a) the buddy is not in a hole &&
676165a8 589 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
590 * (c) a page and its buddy have the same order &&
591 * (d) a page and its buddy are in the same zone.
676165a8 592 *
cf6fe945
WSH
593 * For recording whether a page is in the buddy system, we set ->_mapcount
594 * PAGE_BUDDY_MAPCOUNT_VALUE.
595 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
596 * serialized by zone->lock.
1da177e4 597 *
676165a8 598 * For recording page's order, we use page_private(page).
1da177e4 599 */
cb2b95e1 600static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 601 unsigned int order)
1da177e4 602{
14e07298 603 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 604 return 0;
13e7444b 605
c0a32fc5 606 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
607 if (page_zone_id(page) != page_zone_id(buddy))
608 return 0;
609
4c5018ce
WY
610 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
611
c0a32fc5
SG
612 return 1;
613 }
614
cb2b95e1 615 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
616 /*
617 * zone check is done late to avoid uselessly
618 * calculating zone/node ids for pages that could
619 * never merge.
620 */
621 if (page_zone_id(page) != page_zone_id(buddy))
622 return 0;
623
4c5018ce
WY
624 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
625
6aa3001b 626 return 1;
676165a8 627 }
6aa3001b 628 return 0;
1da177e4
LT
629}
630
631/*
632 * Freeing function for a buddy system allocator.
633 *
634 * The concept of a buddy system is to maintain direct-mapped table
635 * (containing bit values) for memory blocks of various "orders".
636 * The bottom level table contains the map for the smallest allocatable
637 * units of memory (here, pages), and each level above it describes
638 * pairs of units from the levels below, hence, "buddies".
639 * At a high level, all that happens here is marking the table entry
640 * at the bottom level available, and propagating the changes upward
641 * as necessary, plus some accounting needed to play nicely with other
642 * parts of the VM system.
643 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
644 * free pages of length of (1 << order) and marked with _mapcount
645 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
646 * field.
1da177e4 647 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
648 * other. That is, if we allocate a small block, and both were
649 * free, the remainder of the region must be split into blocks.
1da177e4 650 * If a block is freed, and its buddy is also free, then this
5f63b720 651 * triggers coalescing into a block of larger size.
1da177e4 652 *
6d49e352 653 * -- nyc
1da177e4
LT
654 */
655
48db57f8 656static inline void __free_one_page(struct page *page,
dc4b0caf 657 unsigned long pfn,
ed0ae21d
MG
658 struct zone *zone, unsigned int order,
659 int migratetype)
1da177e4
LT
660{
661 unsigned long page_idx;
6dda9d55 662 unsigned long combined_idx;
43506fad 663 unsigned long uninitialized_var(buddy_idx);
6dda9d55 664 struct page *buddy;
d00181b9 665 unsigned int max_order = MAX_ORDER;
1da177e4 666
d29bb978 667 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 668 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 669
ed0ae21d 670 VM_BUG_ON(migratetype == -1);
3c605096
JK
671 if (is_migrate_isolate(migratetype)) {
672 /*
673 * We restrict max order of merging to prevent merge
674 * between freepages on isolate pageblock and normal
675 * pageblock. Without this, pageblock isolation
676 * could cause incorrect freepage accounting.
677 */
d00181b9 678 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
3c605096 679 } else {
8f82b55d 680 __mod_zone_freepage_state(zone, 1 << order, migratetype);
3c605096 681 }
ed0ae21d 682
3c605096 683 page_idx = pfn & ((1 << max_order) - 1);
1da177e4 684
309381fe
SL
685 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
686 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 687
3c605096 688 while (order < max_order - 1) {
43506fad
KC
689 buddy_idx = __find_buddy_index(page_idx, order);
690 buddy = page + (buddy_idx - page_idx);
cb2b95e1 691 if (!page_is_buddy(page, buddy, order))
3c82d0ce 692 break;
c0a32fc5
SG
693 /*
694 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
695 * merge with it and move up one order.
696 */
697 if (page_is_guard(buddy)) {
2847cf95 698 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
699 } else {
700 list_del(&buddy->lru);
701 zone->free_area[order].nr_free--;
702 rmv_page_order(buddy);
703 }
43506fad 704 combined_idx = buddy_idx & page_idx;
1da177e4
LT
705 page = page + (combined_idx - page_idx);
706 page_idx = combined_idx;
707 order++;
708 }
709 set_page_order(page, order);
6dda9d55
CZ
710
711 /*
712 * If this is not the largest possible page, check if the buddy
713 * of the next-highest order is free. If it is, it's possible
714 * that pages are being freed that will coalesce soon. In case,
715 * that is happening, add the free page to the tail of the list
716 * so it's less likely to be used soon and more likely to be merged
717 * as a higher order page
718 */
b7f50cfa 719 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 720 struct page *higher_page, *higher_buddy;
43506fad
KC
721 combined_idx = buddy_idx & page_idx;
722 higher_page = page + (combined_idx - page_idx);
723 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 724 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
725 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
726 list_add_tail(&page->lru,
727 &zone->free_area[order].free_list[migratetype]);
728 goto out;
729 }
730 }
731
732 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
733out:
1da177e4
LT
734 zone->free_area[order].nr_free++;
735}
736
224abf92 737static inline int free_pages_check(struct page *page)
1da177e4 738{
d230dec1 739 const char *bad_reason = NULL;
f0b791a3
DH
740 unsigned long bad_flags = 0;
741
742 if (unlikely(page_mapcount(page)))
743 bad_reason = "nonzero mapcount";
744 if (unlikely(page->mapping != NULL))
745 bad_reason = "non-NULL mapping";
746 if (unlikely(atomic_read(&page->_count) != 0))
747 bad_reason = "nonzero _count";
748 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
749 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
750 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
751 }
9edad6ea
JW
752#ifdef CONFIG_MEMCG
753 if (unlikely(page->mem_cgroup))
754 bad_reason = "page still charged to cgroup";
755#endif
f0b791a3
DH
756 if (unlikely(bad_reason)) {
757 bad_page(page, bad_reason, bad_flags);
79f4b7bf 758 return 1;
8cc3b392 759 }
90572890 760 page_cpupid_reset_last(page);
79f4b7bf
HD
761 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
762 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
763 return 0;
1da177e4
LT
764}
765
766/*
5f8dcc21 767 * Frees a number of pages from the PCP lists
1da177e4 768 * Assumes all pages on list are in same zone, and of same order.
207f36ee 769 * count is the number of pages to free.
1da177e4
LT
770 *
771 * If the zone was previously in an "all pages pinned" state then look to
772 * see if this freeing clears that state.
773 *
774 * And clear the zone's pages_scanned counter, to hold off the "all pages are
775 * pinned" detection logic.
776 */
5f8dcc21
MG
777static void free_pcppages_bulk(struct zone *zone, int count,
778 struct per_cpu_pages *pcp)
1da177e4 779{
5f8dcc21 780 int migratetype = 0;
a6f9edd6 781 int batch_free = 0;
72853e29 782 int to_free = count;
0d5d823a 783 unsigned long nr_scanned;
5f8dcc21 784
c54ad30c 785 spin_lock(&zone->lock);
0d5d823a
MG
786 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
787 if (nr_scanned)
788 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 789
72853e29 790 while (to_free) {
48db57f8 791 struct page *page;
5f8dcc21
MG
792 struct list_head *list;
793
794 /*
a6f9edd6
MG
795 * Remove pages from lists in a round-robin fashion. A
796 * batch_free count is maintained that is incremented when an
797 * empty list is encountered. This is so more pages are freed
798 * off fuller lists instead of spinning excessively around empty
799 * lists
5f8dcc21
MG
800 */
801 do {
a6f9edd6 802 batch_free++;
5f8dcc21
MG
803 if (++migratetype == MIGRATE_PCPTYPES)
804 migratetype = 0;
805 list = &pcp->lists[migratetype];
806 } while (list_empty(list));
48db57f8 807
1d16871d
NK
808 /* This is the only non-empty list. Free them all. */
809 if (batch_free == MIGRATE_PCPTYPES)
810 batch_free = to_free;
811
a6f9edd6 812 do {
770c8aaa
BZ
813 int mt; /* migratetype of the to-be-freed page */
814
a6f9edd6
MG
815 page = list_entry(list->prev, struct page, lru);
816 /* must delete as __free_one_page list manipulates */
817 list_del(&page->lru);
aa016d14 818
bb14c2c7 819 mt = get_pcppage_migratetype(page);
aa016d14
VB
820 /* MIGRATE_ISOLATE page should not go to pcplists */
821 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
822 /* Pageblock could have been isolated meanwhile */
8f82b55d 823 if (unlikely(has_isolate_pageblock(zone)))
51bb1a40 824 mt = get_pageblock_migratetype(page);
51bb1a40 825
dc4b0caf 826 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 827 trace_mm_page_pcpu_drain(page, 0, mt);
72853e29 828 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 829 }
c54ad30c 830 spin_unlock(&zone->lock);
1da177e4
LT
831}
832
dc4b0caf
MG
833static void free_one_page(struct zone *zone,
834 struct page *page, unsigned long pfn,
7aeb09f9 835 unsigned int order,
ed0ae21d 836 int migratetype)
1da177e4 837{
0d5d823a 838 unsigned long nr_scanned;
006d22d9 839 spin_lock(&zone->lock);
0d5d823a
MG
840 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
841 if (nr_scanned)
842 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 843
ad53f92e
JK
844 if (unlikely(has_isolate_pageblock(zone) ||
845 is_migrate_isolate(migratetype))) {
846 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 847 }
dc4b0caf 848 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 849 spin_unlock(&zone->lock);
48db57f8
NP
850}
851
81422f29
KS
852static int free_tail_pages_check(struct page *head_page, struct page *page)
853{
1d798ca3
KS
854 int ret = 1;
855
856 /*
857 * We rely page->lru.next never has bit 0 set, unless the page
858 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
859 */
860 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
861
862 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
863 ret = 0;
864 goto out;
865 }
81422f29
KS
866 if (unlikely(!PageTail(page))) {
867 bad_page(page, "PageTail not set", 0);
1d798ca3 868 goto out;
81422f29 869 }
1d798ca3
KS
870 if (unlikely(compound_head(page) != head_page)) {
871 bad_page(page, "compound_head not consistent", 0);
872 goto out;
81422f29 873 }
1d798ca3
KS
874 ret = 0;
875out:
876 clear_compound_head(page);
877 return ret;
81422f29
KS
878}
879
1e8ce83c
RH
880static void __meminit __init_single_page(struct page *page, unsigned long pfn,
881 unsigned long zone, int nid)
882{
1e8ce83c 883 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
884 init_page_count(page);
885 page_mapcount_reset(page);
886 page_cpupid_reset_last(page);
1e8ce83c 887
1e8ce83c
RH
888 INIT_LIST_HEAD(&page->lru);
889#ifdef WANT_PAGE_VIRTUAL
890 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
891 if (!is_highmem_idx(zone))
892 set_page_address(page, __va(pfn << PAGE_SHIFT));
893#endif
894}
895
896static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
897 int nid)
898{
899 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
900}
901
7e18adb4
MG
902#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
903static void init_reserved_page(unsigned long pfn)
904{
905 pg_data_t *pgdat;
906 int nid, zid;
907
908 if (!early_page_uninitialised(pfn))
909 return;
910
911 nid = early_pfn_to_nid(pfn);
912 pgdat = NODE_DATA(nid);
913
914 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
915 struct zone *zone = &pgdat->node_zones[zid];
916
917 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
918 break;
919 }
920 __init_single_pfn(pfn, zid, nid);
921}
922#else
923static inline void init_reserved_page(unsigned long pfn)
924{
925}
926#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
927
92923ca3
NZ
928/*
929 * Initialised pages do not have PageReserved set. This function is
930 * called for each range allocated by the bootmem allocator and
931 * marks the pages PageReserved. The remaining valid pages are later
932 * sent to the buddy page allocator.
933 */
7e18adb4 934void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
935{
936 unsigned long start_pfn = PFN_DOWN(start);
937 unsigned long end_pfn = PFN_UP(end);
938
7e18adb4
MG
939 for (; start_pfn < end_pfn; start_pfn++) {
940 if (pfn_valid(start_pfn)) {
941 struct page *page = pfn_to_page(start_pfn);
942
943 init_reserved_page(start_pfn);
1d798ca3
KS
944
945 /* Avoid false-positive PageTail() */
946 INIT_LIST_HEAD(&page->lru);
947
7e18adb4
MG
948 SetPageReserved(page);
949 }
950 }
92923ca3
NZ
951}
952
ec95f53a 953static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 954{
81422f29
KS
955 bool compound = PageCompound(page);
956 int i, bad = 0;
1da177e4 957
ab1f306f 958 VM_BUG_ON_PAGE(PageTail(page), page);
81422f29 959 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
ab1f306f 960
b413d48a 961 trace_mm_page_free(page, order);
b1eeab67 962 kmemcheck_free_shadow(page, order);
b8c73fc2 963 kasan_free_pages(page, order);
b1eeab67 964
8dd60a3a
AA
965 if (PageAnon(page))
966 page->mapping = NULL;
81422f29
KS
967 bad += free_pages_check(page);
968 for (i = 1; i < (1 << order); i++) {
969 if (compound)
970 bad += free_tail_pages_check(page, page + i);
8dd60a3a 971 bad += free_pages_check(page + i);
81422f29 972 }
8cc3b392 973 if (bad)
ec95f53a 974 return false;
689bcebf 975
48c96a36
JK
976 reset_page_owner(page, order);
977
3ac7fe5a 978 if (!PageHighMem(page)) {
b8af2941
PK
979 debug_check_no_locks_freed(page_address(page),
980 PAGE_SIZE << order);
3ac7fe5a
TG
981 debug_check_no_obj_freed(page_address(page),
982 PAGE_SIZE << order);
983 }
dafb1367 984 arch_free_page(page, order);
48db57f8 985 kernel_map_pages(page, 1 << order, 0);
dafb1367 986
ec95f53a
KM
987 return true;
988}
989
990static void __free_pages_ok(struct page *page, unsigned int order)
991{
992 unsigned long flags;
95e34412 993 int migratetype;
dc4b0caf 994 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
995
996 if (!free_pages_prepare(page, order))
997 return;
998
cfc47a28 999 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1000 local_irq_save(flags);
f8891e5e 1001 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1002 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1003 local_irq_restore(flags);
1da177e4
LT
1004}
1005
0e1cc95b 1006static void __init __free_pages_boot_core(struct page *page,
3a80a7fa 1007 unsigned long pfn, unsigned int order)
a226f6c8 1008{
c3993076 1009 unsigned int nr_pages = 1 << order;
e2d0bd2b 1010 struct page *p = page;
c3993076 1011 unsigned int loop;
a226f6c8 1012
e2d0bd2b
YL
1013 prefetchw(p);
1014 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1015 prefetchw(p + 1);
c3993076
JW
1016 __ClearPageReserved(p);
1017 set_page_count(p, 0);
a226f6c8 1018 }
e2d0bd2b
YL
1019 __ClearPageReserved(p);
1020 set_page_count(p, 0);
c3993076 1021
e2d0bd2b 1022 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1023 set_page_refcounted(page);
1024 __free_pages(page, order);
a226f6c8
DH
1025}
1026
75a592a4
MG
1027#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1028 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1029
75a592a4
MG
1030static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1031
1032int __meminit early_pfn_to_nid(unsigned long pfn)
1033{
7ace9917 1034 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1035 int nid;
1036
7ace9917 1037 spin_lock(&early_pfn_lock);
75a592a4 1038 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1039 if (nid < 0)
1040 nid = 0;
1041 spin_unlock(&early_pfn_lock);
1042
1043 return nid;
75a592a4
MG
1044}
1045#endif
1046
1047#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1048static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1049 struct mminit_pfnnid_cache *state)
1050{
1051 int nid;
1052
1053 nid = __early_pfn_to_nid(pfn, state);
1054 if (nid >= 0 && nid != node)
1055 return false;
1056 return true;
1057}
1058
1059/* Only safe to use early in boot when initialisation is single-threaded */
1060static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1061{
1062 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1063}
1064
1065#else
1066
1067static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1068{
1069 return true;
1070}
1071static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1072 struct mminit_pfnnid_cache *state)
1073{
1074 return true;
1075}
1076#endif
1077
1078
0e1cc95b 1079void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1080 unsigned int order)
1081{
1082 if (early_page_uninitialised(pfn))
1083 return;
1084 return __free_pages_boot_core(page, pfn, order);
1085}
1086
7e18adb4 1087#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1088static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1089 unsigned long pfn, int nr_pages)
1090{
1091 int i;
1092
1093 if (!page)
1094 return;
1095
1096 /* Free a large naturally-aligned chunk if possible */
1097 if (nr_pages == MAX_ORDER_NR_PAGES &&
1098 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1099 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a4de83dd
MG
1100 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1101 return;
1102 }
1103
1104 for (i = 0; i < nr_pages; i++, page++, pfn++)
1105 __free_pages_boot_core(page, pfn, 0);
1106}
1107
d3cd131d
NS
1108/* Completion tracking for deferred_init_memmap() threads */
1109static atomic_t pgdat_init_n_undone __initdata;
1110static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1111
1112static inline void __init pgdat_init_report_one_done(void)
1113{
1114 if (atomic_dec_and_test(&pgdat_init_n_undone))
1115 complete(&pgdat_init_all_done_comp);
1116}
0e1cc95b 1117
7e18adb4 1118/* Initialise remaining memory on a node */
0e1cc95b 1119static int __init deferred_init_memmap(void *data)
7e18adb4 1120{
0e1cc95b
MG
1121 pg_data_t *pgdat = data;
1122 int nid = pgdat->node_id;
7e18adb4
MG
1123 struct mminit_pfnnid_cache nid_init_state = { };
1124 unsigned long start = jiffies;
1125 unsigned long nr_pages = 0;
1126 unsigned long walk_start, walk_end;
1127 int i, zid;
1128 struct zone *zone;
7e18adb4 1129 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1130 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1131
0e1cc95b 1132 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1133 pgdat_init_report_one_done();
0e1cc95b
MG
1134 return 0;
1135 }
1136
1137 /* Bind memory initialisation thread to a local node if possible */
1138 if (!cpumask_empty(cpumask))
1139 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1140
1141 /* Sanity check boundaries */
1142 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1143 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1144 pgdat->first_deferred_pfn = ULONG_MAX;
1145
1146 /* Only the highest zone is deferred so find it */
1147 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1148 zone = pgdat->node_zones + zid;
1149 if (first_init_pfn < zone_end_pfn(zone))
1150 break;
1151 }
1152
1153 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1154 unsigned long pfn, end_pfn;
54608c3f 1155 struct page *page = NULL;
a4de83dd
MG
1156 struct page *free_base_page = NULL;
1157 unsigned long free_base_pfn = 0;
1158 int nr_to_free = 0;
7e18adb4
MG
1159
1160 end_pfn = min(walk_end, zone_end_pfn(zone));
1161 pfn = first_init_pfn;
1162 if (pfn < walk_start)
1163 pfn = walk_start;
1164 if (pfn < zone->zone_start_pfn)
1165 pfn = zone->zone_start_pfn;
1166
1167 for (; pfn < end_pfn; pfn++) {
54608c3f 1168 if (!pfn_valid_within(pfn))
a4de83dd 1169 goto free_range;
7e18adb4 1170
54608c3f
MG
1171 /*
1172 * Ensure pfn_valid is checked every
1173 * MAX_ORDER_NR_PAGES for memory holes
1174 */
1175 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1176 if (!pfn_valid(pfn)) {
1177 page = NULL;
a4de83dd 1178 goto free_range;
54608c3f
MG
1179 }
1180 }
1181
1182 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1183 page = NULL;
a4de83dd 1184 goto free_range;
54608c3f
MG
1185 }
1186
1187 /* Minimise pfn page lookups and scheduler checks */
1188 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1189 page++;
1190 } else {
a4de83dd
MG
1191 nr_pages += nr_to_free;
1192 deferred_free_range(free_base_page,
1193 free_base_pfn, nr_to_free);
1194 free_base_page = NULL;
1195 free_base_pfn = nr_to_free = 0;
1196
54608c3f
MG
1197 page = pfn_to_page(pfn);
1198 cond_resched();
1199 }
7e18adb4
MG
1200
1201 if (page->flags) {
1202 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1203 goto free_range;
7e18adb4
MG
1204 }
1205
1206 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1207 if (!free_base_page) {
1208 free_base_page = page;
1209 free_base_pfn = pfn;
1210 nr_to_free = 0;
1211 }
1212 nr_to_free++;
1213
1214 /* Where possible, batch up pages for a single free */
1215 continue;
1216free_range:
1217 /* Free the current block of pages to allocator */
1218 nr_pages += nr_to_free;
1219 deferred_free_range(free_base_page, free_base_pfn,
1220 nr_to_free);
1221 free_base_page = NULL;
1222 free_base_pfn = nr_to_free = 0;
7e18adb4 1223 }
a4de83dd 1224
7e18adb4
MG
1225 first_init_pfn = max(end_pfn, first_init_pfn);
1226 }
1227
1228 /* Sanity check that the next zone really is unpopulated */
1229 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1230
0e1cc95b 1231 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1232 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1233
1234 pgdat_init_report_one_done();
0e1cc95b
MG
1235 return 0;
1236}
1237
1238void __init page_alloc_init_late(void)
1239{
1240 int nid;
1241
d3cd131d
NS
1242 /* There will be num_node_state(N_MEMORY) threads */
1243 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1244 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1245 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1246 }
1247
1248 /* Block until all are initialised */
d3cd131d 1249 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1250
1251 /* Reinit limits that are based on free pages after the kernel is up */
1252 files_maxfiles_init();
7e18adb4
MG
1253}
1254#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1255
47118af0 1256#ifdef CONFIG_CMA
9cf510a5 1257/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1258void __init init_cma_reserved_pageblock(struct page *page)
1259{
1260 unsigned i = pageblock_nr_pages;
1261 struct page *p = page;
1262
1263 do {
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
1266 } while (++p, --i);
1267
47118af0 1268 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1269
1270 if (pageblock_order >= MAX_ORDER) {
1271 i = pageblock_nr_pages;
1272 p = page;
1273 do {
1274 set_page_refcounted(p);
1275 __free_pages(p, MAX_ORDER - 1);
1276 p += MAX_ORDER_NR_PAGES;
1277 } while (i -= MAX_ORDER_NR_PAGES);
1278 } else {
1279 set_page_refcounted(page);
1280 __free_pages(page, pageblock_order);
1281 }
1282
3dcc0571 1283 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1284}
1285#endif
1da177e4
LT
1286
1287/*
1288 * The order of subdivision here is critical for the IO subsystem.
1289 * Please do not alter this order without good reasons and regression
1290 * testing. Specifically, as large blocks of memory are subdivided,
1291 * the order in which smaller blocks are delivered depends on the order
1292 * they're subdivided in this function. This is the primary factor
1293 * influencing the order in which pages are delivered to the IO
1294 * subsystem according to empirical testing, and this is also justified
1295 * by considering the behavior of a buddy system containing a single
1296 * large block of memory acted on by a series of small allocations.
1297 * This behavior is a critical factor in sglist merging's success.
1298 *
6d49e352 1299 * -- nyc
1da177e4 1300 */
085cc7d5 1301static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1302 int low, int high, struct free_area *area,
1303 int migratetype)
1da177e4
LT
1304{
1305 unsigned long size = 1 << high;
1306
1307 while (high > low) {
1308 area--;
1309 high--;
1310 size >>= 1;
309381fe 1311 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1312
2847cf95 1313 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1314 debug_guardpage_enabled() &&
2847cf95 1315 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1316 /*
1317 * Mark as guard pages (or page), that will allow to
1318 * merge back to allocator when buddy will be freed.
1319 * Corresponding page table entries will not be touched,
1320 * pages will stay not present in virtual address space
1321 */
2847cf95 1322 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1323 continue;
1324 }
b2a0ac88 1325 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1326 area->nr_free++;
1327 set_page_order(&page[size], high);
1328 }
1da177e4
LT
1329}
1330
1da177e4
LT
1331/*
1332 * This page is about to be returned from the page allocator
1333 */
2a7684a2 1334static inline int check_new_page(struct page *page)
1da177e4 1335{
d230dec1 1336 const char *bad_reason = NULL;
f0b791a3
DH
1337 unsigned long bad_flags = 0;
1338
1339 if (unlikely(page_mapcount(page)))
1340 bad_reason = "nonzero mapcount";
1341 if (unlikely(page->mapping != NULL))
1342 bad_reason = "non-NULL mapping";
1343 if (unlikely(atomic_read(&page->_count) != 0))
1344 bad_reason = "nonzero _count";
f4c18e6f
NH
1345 if (unlikely(page->flags & __PG_HWPOISON)) {
1346 bad_reason = "HWPoisoned (hardware-corrupted)";
1347 bad_flags = __PG_HWPOISON;
1348 }
f0b791a3
DH
1349 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1350 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1351 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1352 }
9edad6ea
JW
1353#ifdef CONFIG_MEMCG
1354 if (unlikely(page->mem_cgroup))
1355 bad_reason = "page still charged to cgroup";
1356#endif
f0b791a3
DH
1357 if (unlikely(bad_reason)) {
1358 bad_page(page, bad_reason, bad_flags);
689bcebf 1359 return 1;
8cc3b392 1360 }
2a7684a2
WF
1361 return 0;
1362}
1363
75379191
VB
1364static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1365 int alloc_flags)
2a7684a2
WF
1366{
1367 int i;
1368
1369 for (i = 0; i < (1 << order); i++) {
1370 struct page *p = page + i;
1371 if (unlikely(check_new_page(p)))
1372 return 1;
1373 }
689bcebf 1374
4c21e2f2 1375 set_page_private(page, 0);
7835e98b 1376 set_page_refcounted(page);
cc102509
NP
1377
1378 arch_alloc_page(page, order);
1da177e4 1379 kernel_map_pages(page, 1 << order, 1);
b8c73fc2 1380 kasan_alloc_pages(page, order);
17cf4406
NP
1381
1382 if (gfp_flags & __GFP_ZERO)
f4d2897b
AA
1383 for (i = 0; i < (1 << order); i++)
1384 clear_highpage(page + i);
17cf4406
NP
1385
1386 if (order && (gfp_flags & __GFP_COMP))
1387 prep_compound_page(page, order);
1388
48c96a36
JK
1389 set_page_owner(page, order, gfp_flags);
1390
75379191 1391 /*
2f064f34 1392 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1393 * allocate the page. The expectation is that the caller is taking
1394 * steps that will free more memory. The caller should avoid the page
1395 * being used for !PFMEMALLOC purposes.
1396 */
2f064f34
MH
1397 if (alloc_flags & ALLOC_NO_WATERMARKS)
1398 set_page_pfmemalloc(page);
1399 else
1400 clear_page_pfmemalloc(page);
75379191 1401
689bcebf 1402 return 0;
1da177e4
LT
1403}
1404
56fd56b8
MG
1405/*
1406 * Go through the free lists for the given migratetype and remove
1407 * the smallest available page from the freelists
1408 */
728ec980
MG
1409static inline
1410struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1411 int migratetype)
1412{
1413 unsigned int current_order;
b8af2941 1414 struct free_area *area;
56fd56b8
MG
1415 struct page *page;
1416
1417 /* Find a page of the appropriate size in the preferred list */
1418 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1419 area = &(zone->free_area[current_order]);
1420 if (list_empty(&area->free_list[migratetype]))
1421 continue;
1422
1423 page = list_entry(area->free_list[migratetype].next,
1424 struct page, lru);
1425 list_del(&page->lru);
1426 rmv_page_order(page);
1427 area->nr_free--;
56fd56b8 1428 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1429 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1430 return page;
1431 }
1432
1433 return NULL;
1434}
1435
1436
b2a0ac88
MG
1437/*
1438 * This array describes the order lists are fallen back to when
1439 * the free lists for the desirable migrate type are depleted
1440 */
47118af0 1441static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1442 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1443 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1444 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1445#ifdef CONFIG_CMA
974a786e 1446 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1447#endif
194159fb 1448#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1449 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1450#endif
b2a0ac88
MG
1451};
1452
dc67647b
JK
1453#ifdef CONFIG_CMA
1454static struct page *__rmqueue_cma_fallback(struct zone *zone,
1455 unsigned int order)
1456{
1457 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1458}
1459#else
1460static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1461 unsigned int order) { return NULL; }
1462#endif
1463
c361be55
MG
1464/*
1465 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1466 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1467 * boundary. If alignment is required, use move_freepages_block()
1468 */
435b405c 1469int move_freepages(struct zone *zone,
b69a7288
AB
1470 struct page *start_page, struct page *end_page,
1471 int migratetype)
c361be55
MG
1472{
1473 struct page *page;
d00181b9 1474 unsigned int order;
d100313f 1475 int pages_moved = 0;
c361be55
MG
1476
1477#ifndef CONFIG_HOLES_IN_ZONE
1478 /*
1479 * page_zone is not safe to call in this context when
1480 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1481 * anyway as we check zone boundaries in move_freepages_block().
1482 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1483 * grouping pages by mobility
c361be55 1484 */
97ee4ba7 1485 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1486#endif
1487
1488 for (page = start_page; page <= end_page;) {
344c790e 1489 /* Make sure we are not inadvertently changing nodes */
309381fe 1490 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1491
c361be55
MG
1492 if (!pfn_valid_within(page_to_pfn(page))) {
1493 page++;
1494 continue;
1495 }
1496
1497 if (!PageBuddy(page)) {
1498 page++;
1499 continue;
1500 }
1501
1502 order = page_order(page);
84be48d8
KS
1503 list_move(&page->lru,
1504 &zone->free_area[order].free_list[migratetype]);
c361be55 1505 page += 1 << order;
d100313f 1506 pages_moved += 1 << order;
c361be55
MG
1507 }
1508
d100313f 1509 return pages_moved;
c361be55
MG
1510}
1511
ee6f509c 1512int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1513 int migratetype)
c361be55
MG
1514{
1515 unsigned long start_pfn, end_pfn;
1516 struct page *start_page, *end_page;
1517
1518 start_pfn = page_to_pfn(page);
d9c23400 1519 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1520 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1521 end_page = start_page + pageblock_nr_pages - 1;
1522 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1523
1524 /* Do not cross zone boundaries */
108bcc96 1525 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1526 start_page = page;
108bcc96 1527 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1528 return 0;
1529
1530 return move_freepages(zone, start_page, end_page, migratetype);
1531}
1532
2f66a68f
MG
1533static void change_pageblock_range(struct page *pageblock_page,
1534 int start_order, int migratetype)
1535{
1536 int nr_pageblocks = 1 << (start_order - pageblock_order);
1537
1538 while (nr_pageblocks--) {
1539 set_pageblock_migratetype(pageblock_page, migratetype);
1540 pageblock_page += pageblock_nr_pages;
1541 }
1542}
1543
fef903ef 1544/*
9c0415eb
VB
1545 * When we are falling back to another migratetype during allocation, try to
1546 * steal extra free pages from the same pageblocks to satisfy further
1547 * allocations, instead of polluting multiple pageblocks.
1548 *
1549 * If we are stealing a relatively large buddy page, it is likely there will
1550 * be more free pages in the pageblock, so try to steal them all. For
1551 * reclaimable and unmovable allocations, we steal regardless of page size,
1552 * as fragmentation caused by those allocations polluting movable pageblocks
1553 * is worse than movable allocations stealing from unmovable and reclaimable
1554 * pageblocks.
fef903ef 1555 */
4eb7dce6
JK
1556static bool can_steal_fallback(unsigned int order, int start_mt)
1557{
1558 /*
1559 * Leaving this order check is intended, although there is
1560 * relaxed order check in next check. The reason is that
1561 * we can actually steal whole pageblock if this condition met,
1562 * but, below check doesn't guarantee it and that is just heuristic
1563 * so could be changed anytime.
1564 */
1565 if (order >= pageblock_order)
1566 return true;
1567
1568 if (order >= pageblock_order / 2 ||
1569 start_mt == MIGRATE_RECLAIMABLE ||
1570 start_mt == MIGRATE_UNMOVABLE ||
1571 page_group_by_mobility_disabled)
1572 return true;
1573
1574 return false;
1575}
1576
1577/*
1578 * This function implements actual steal behaviour. If order is large enough,
1579 * we can steal whole pageblock. If not, we first move freepages in this
1580 * pageblock and check whether half of pages are moved or not. If half of
1581 * pages are moved, we can change migratetype of pageblock and permanently
1582 * use it's pages as requested migratetype in the future.
1583 */
1584static void steal_suitable_fallback(struct zone *zone, struct page *page,
1585 int start_type)
fef903ef 1586{
d00181b9 1587 unsigned int current_order = page_order(page);
4eb7dce6 1588 int pages;
fef903ef 1589
fef903ef
SB
1590 /* Take ownership for orders >= pageblock_order */
1591 if (current_order >= pageblock_order) {
1592 change_pageblock_range(page, current_order, start_type);
3a1086fb 1593 return;
fef903ef
SB
1594 }
1595
4eb7dce6 1596 pages = move_freepages_block(zone, page, start_type);
fef903ef 1597
4eb7dce6
JK
1598 /* Claim the whole block if over half of it is free */
1599 if (pages >= (1 << (pageblock_order-1)) ||
1600 page_group_by_mobility_disabled)
1601 set_pageblock_migratetype(page, start_type);
1602}
1603
2149cdae
JK
1604/*
1605 * Check whether there is a suitable fallback freepage with requested order.
1606 * If only_stealable is true, this function returns fallback_mt only if
1607 * we can steal other freepages all together. This would help to reduce
1608 * fragmentation due to mixed migratetype pages in one pageblock.
1609 */
1610int find_suitable_fallback(struct free_area *area, unsigned int order,
1611 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1612{
1613 int i;
1614 int fallback_mt;
1615
1616 if (area->nr_free == 0)
1617 return -1;
1618
1619 *can_steal = false;
1620 for (i = 0;; i++) {
1621 fallback_mt = fallbacks[migratetype][i];
974a786e 1622 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1623 break;
1624
1625 if (list_empty(&area->free_list[fallback_mt]))
1626 continue;
fef903ef 1627
4eb7dce6
JK
1628 if (can_steal_fallback(order, migratetype))
1629 *can_steal = true;
1630
2149cdae
JK
1631 if (!only_stealable)
1632 return fallback_mt;
1633
1634 if (*can_steal)
1635 return fallback_mt;
fef903ef 1636 }
4eb7dce6
JK
1637
1638 return -1;
fef903ef
SB
1639}
1640
0aaa29a5
MG
1641/*
1642 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1643 * there are no empty page blocks that contain a page with a suitable order
1644 */
1645static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1646 unsigned int alloc_order)
1647{
1648 int mt;
1649 unsigned long max_managed, flags;
1650
1651 /*
1652 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1653 * Check is race-prone but harmless.
1654 */
1655 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1656 if (zone->nr_reserved_highatomic >= max_managed)
1657 return;
1658
1659 spin_lock_irqsave(&zone->lock, flags);
1660
1661 /* Recheck the nr_reserved_highatomic limit under the lock */
1662 if (zone->nr_reserved_highatomic >= max_managed)
1663 goto out_unlock;
1664
1665 /* Yoink! */
1666 mt = get_pageblock_migratetype(page);
1667 if (mt != MIGRATE_HIGHATOMIC &&
1668 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1669 zone->nr_reserved_highatomic += pageblock_nr_pages;
1670 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1671 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1672 }
1673
1674out_unlock:
1675 spin_unlock_irqrestore(&zone->lock, flags);
1676}
1677
1678/*
1679 * Used when an allocation is about to fail under memory pressure. This
1680 * potentially hurts the reliability of high-order allocations when under
1681 * intense memory pressure but failed atomic allocations should be easier
1682 * to recover from than an OOM.
1683 */
1684static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1685{
1686 struct zonelist *zonelist = ac->zonelist;
1687 unsigned long flags;
1688 struct zoneref *z;
1689 struct zone *zone;
1690 struct page *page;
1691 int order;
1692
1693 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1694 ac->nodemask) {
1695 /* Preserve at least one pageblock */
1696 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1697 continue;
1698
1699 spin_lock_irqsave(&zone->lock, flags);
1700 for (order = 0; order < MAX_ORDER; order++) {
1701 struct free_area *area = &(zone->free_area[order]);
1702
1703 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1704 continue;
1705
1706 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1707 struct page, lru);
1708
1709 /*
1710 * It should never happen but changes to locking could
1711 * inadvertently allow a per-cpu drain to add pages
1712 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1713 * and watch for underflows.
1714 */
1715 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1716 zone->nr_reserved_highatomic);
1717
1718 /*
1719 * Convert to ac->migratetype and avoid the normal
1720 * pageblock stealing heuristics. Minimally, the caller
1721 * is doing the work and needs the pages. More
1722 * importantly, if the block was always converted to
1723 * MIGRATE_UNMOVABLE or another type then the number
1724 * of pageblocks that cannot be completely freed
1725 * may increase.
1726 */
1727 set_pageblock_migratetype(page, ac->migratetype);
1728 move_freepages_block(zone, page, ac->migratetype);
1729 spin_unlock_irqrestore(&zone->lock, flags);
1730 return;
1731 }
1732 spin_unlock_irqrestore(&zone->lock, flags);
1733 }
1734}
1735
b2a0ac88 1736/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1737static inline struct page *
7aeb09f9 1738__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1739{
b8af2941 1740 struct free_area *area;
7aeb09f9 1741 unsigned int current_order;
b2a0ac88 1742 struct page *page;
4eb7dce6
JK
1743 int fallback_mt;
1744 bool can_steal;
b2a0ac88
MG
1745
1746 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1747 for (current_order = MAX_ORDER-1;
1748 current_order >= order && current_order <= MAX_ORDER-1;
1749 --current_order) {
4eb7dce6
JK
1750 area = &(zone->free_area[current_order]);
1751 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1752 start_migratetype, false, &can_steal);
4eb7dce6
JK
1753 if (fallback_mt == -1)
1754 continue;
b2a0ac88 1755
4eb7dce6
JK
1756 page = list_entry(area->free_list[fallback_mt].next,
1757 struct page, lru);
1758 if (can_steal)
1759 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1760
4eb7dce6
JK
1761 /* Remove the page from the freelists */
1762 area->nr_free--;
1763 list_del(&page->lru);
1764 rmv_page_order(page);
3a1086fb 1765
4eb7dce6
JK
1766 expand(zone, page, order, current_order, area,
1767 start_migratetype);
1768 /*
bb14c2c7 1769 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1770 * migratetype depending on the decisions in
bb14c2c7
VB
1771 * find_suitable_fallback(). This is OK as long as it does not
1772 * differ for MIGRATE_CMA pageblocks. Those can be used as
1773 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1774 */
bb14c2c7 1775 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1776
4eb7dce6
JK
1777 trace_mm_page_alloc_extfrag(page, order, current_order,
1778 start_migratetype, fallback_mt);
e0fff1bd 1779
4eb7dce6 1780 return page;
b2a0ac88
MG
1781 }
1782
728ec980 1783 return NULL;
b2a0ac88
MG
1784}
1785
56fd56b8 1786/*
1da177e4
LT
1787 * Do the hard work of removing an element from the buddy allocator.
1788 * Call me with the zone->lock already held.
1789 */
b2a0ac88 1790static struct page *__rmqueue(struct zone *zone, unsigned int order,
0aaa29a5 1791 int migratetype, gfp_t gfp_flags)
1da177e4 1792{
1da177e4
LT
1793 struct page *page;
1794
56fd56b8 1795 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 1796 if (unlikely(!page)) {
dc67647b
JK
1797 if (migratetype == MIGRATE_MOVABLE)
1798 page = __rmqueue_cma_fallback(zone, order);
1799
1800 if (!page)
1801 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
1802 }
1803
0d3d062a 1804 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1805 return page;
1da177e4
LT
1806}
1807
5f63b720 1808/*
1da177e4
LT
1809 * Obtain a specified number of elements from the buddy allocator, all under
1810 * a single hold of the lock, for efficiency. Add them to the supplied list.
1811 * Returns the number of new pages which were placed at *list.
1812 */
5f63b720 1813static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1814 unsigned long count, struct list_head *list,
b745bc85 1815 int migratetype, bool cold)
1da177e4 1816{
5bcc9f86 1817 int i;
5f63b720 1818
c54ad30c 1819 spin_lock(&zone->lock);
1da177e4 1820 for (i = 0; i < count; ++i) {
0aaa29a5 1821 struct page *page = __rmqueue(zone, order, migratetype, 0);
085cc7d5 1822 if (unlikely(page == NULL))
1da177e4 1823 break;
81eabcbe
MG
1824
1825 /*
1826 * Split buddy pages returned by expand() are received here
1827 * in physical page order. The page is added to the callers and
1828 * list and the list head then moves forward. From the callers
1829 * perspective, the linked list is ordered by page number in
1830 * some conditions. This is useful for IO devices that can
1831 * merge IO requests if the physical pages are ordered
1832 * properly.
1833 */
b745bc85 1834 if (likely(!cold))
e084b2d9
MG
1835 list_add(&page->lru, list);
1836 else
1837 list_add_tail(&page->lru, list);
81eabcbe 1838 list = &page->lru;
bb14c2c7 1839 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
1840 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1841 -(1 << order));
1da177e4 1842 }
f2260e6b 1843 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1844 spin_unlock(&zone->lock);
085cc7d5 1845 return i;
1da177e4
LT
1846}
1847
4ae7c039 1848#ifdef CONFIG_NUMA
8fce4d8e 1849/*
4037d452
CL
1850 * Called from the vmstat counter updater to drain pagesets of this
1851 * currently executing processor on remote nodes after they have
1852 * expired.
1853 *
879336c3
CL
1854 * Note that this function must be called with the thread pinned to
1855 * a single processor.
8fce4d8e 1856 */
4037d452 1857void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1858{
4ae7c039 1859 unsigned long flags;
7be12fc9 1860 int to_drain, batch;
4ae7c039 1861
4037d452 1862 local_irq_save(flags);
4db0c3c2 1863 batch = READ_ONCE(pcp->batch);
7be12fc9 1864 to_drain = min(pcp->count, batch);
2a13515c
KM
1865 if (to_drain > 0) {
1866 free_pcppages_bulk(zone, to_drain, pcp);
1867 pcp->count -= to_drain;
1868 }
4037d452 1869 local_irq_restore(flags);
4ae7c039
CL
1870}
1871#endif
1872
9f8f2172 1873/*
93481ff0 1874 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
1875 *
1876 * The processor must either be the current processor and the
1877 * thread pinned to the current processor or a processor that
1878 * is not online.
1879 */
93481ff0 1880static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 1881{
c54ad30c 1882 unsigned long flags;
93481ff0
VB
1883 struct per_cpu_pageset *pset;
1884 struct per_cpu_pages *pcp;
1da177e4 1885
93481ff0
VB
1886 local_irq_save(flags);
1887 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 1888
93481ff0
VB
1889 pcp = &pset->pcp;
1890 if (pcp->count) {
1891 free_pcppages_bulk(zone, pcp->count, pcp);
1892 pcp->count = 0;
1893 }
1894 local_irq_restore(flags);
1895}
3dfa5721 1896
93481ff0
VB
1897/*
1898 * Drain pcplists of all zones on the indicated processor.
1899 *
1900 * The processor must either be the current processor and the
1901 * thread pinned to the current processor or a processor that
1902 * is not online.
1903 */
1904static void drain_pages(unsigned int cpu)
1905{
1906 struct zone *zone;
1907
1908 for_each_populated_zone(zone) {
1909 drain_pages_zone(cpu, zone);
1da177e4
LT
1910 }
1911}
1da177e4 1912
9f8f2172
CL
1913/*
1914 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
1915 *
1916 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1917 * the single zone's pages.
9f8f2172 1918 */
93481ff0 1919void drain_local_pages(struct zone *zone)
9f8f2172 1920{
93481ff0
VB
1921 int cpu = smp_processor_id();
1922
1923 if (zone)
1924 drain_pages_zone(cpu, zone);
1925 else
1926 drain_pages(cpu);
9f8f2172
CL
1927}
1928
1929/*
74046494
GBY
1930 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1931 *
93481ff0
VB
1932 * When zone parameter is non-NULL, spill just the single zone's pages.
1933 *
74046494
GBY
1934 * Note that this code is protected against sending an IPI to an offline
1935 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1936 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1937 * nothing keeps CPUs from showing up after we populated the cpumask and
1938 * before the call to on_each_cpu_mask().
9f8f2172 1939 */
93481ff0 1940void drain_all_pages(struct zone *zone)
9f8f2172 1941{
74046494 1942 int cpu;
74046494
GBY
1943
1944 /*
1945 * Allocate in the BSS so we wont require allocation in
1946 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1947 */
1948 static cpumask_t cpus_with_pcps;
1949
1950 /*
1951 * We don't care about racing with CPU hotplug event
1952 * as offline notification will cause the notified
1953 * cpu to drain that CPU pcps and on_each_cpu_mask
1954 * disables preemption as part of its processing
1955 */
1956 for_each_online_cpu(cpu) {
93481ff0
VB
1957 struct per_cpu_pageset *pcp;
1958 struct zone *z;
74046494 1959 bool has_pcps = false;
93481ff0
VB
1960
1961 if (zone) {
74046494 1962 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 1963 if (pcp->pcp.count)
74046494 1964 has_pcps = true;
93481ff0
VB
1965 } else {
1966 for_each_populated_zone(z) {
1967 pcp = per_cpu_ptr(z->pageset, cpu);
1968 if (pcp->pcp.count) {
1969 has_pcps = true;
1970 break;
1971 }
74046494
GBY
1972 }
1973 }
93481ff0 1974
74046494
GBY
1975 if (has_pcps)
1976 cpumask_set_cpu(cpu, &cpus_with_pcps);
1977 else
1978 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1979 }
93481ff0
VB
1980 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1981 zone, 1);
9f8f2172
CL
1982}
1983
296699de 1984#ifdef CONFIG_HIBERNATION
1da177e4
LT
1985
1986void mark_free_pages(struct zone *zone)
1987{
f623f0db
RW
1988 unsigned long pfn, max_zone_pfn;
1989 unsigned long flags;
7aeb09f9 1990 unsigned int order, t;
1da177e4
LT
1991 struct list_head *curr;
1992
8080fc03 1993 if (zone_is_empty(zone))
1da177e4
LT
1994 return;
1995
1996 spin_lock_irqsave(&zone->lock, flags);
f623f0db 1997
108bcc96 1998 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
1999 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2000 if (pfn_valid(pfn)) {
2001 struct page *page = pfn_to_page(pfn);
2002
7be98234
RW
2003 if (!swsusp_page_is_forbidden(page))
2004 swsusp_unset_page_free(page);
f623f0db 2005 }
1da177e4 2006
b2a0ac88
MG
2007 for_each_migratetype_order(order, t) {
2008 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 2009 unsigned long i;
1da177e4 2010
f623f0db
RW
2011 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2012 for (i = 0; i < (1UL << order); i++)
7be98234 2013 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2014 }
b2a0ac88 2015 }
1da177e4
LT
2016 spin_unlock_irqrestore(&zone->lock, flags);
2017}
e2c55dc8 2018#endif /* CONFIG_PM */
1da177e4 2019
1da177e4
LT
2020/*
2021 * Free a 0-order page
b745bc85 2022 * cold == true ? free a cold page : free a hot page
1da177e4 2023 */
b745bc85 2024void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2025{
2026 struct zone *zone = page_zone(page);
2027 struct per_cpu_pages *pcp;
2028 unsigned long flags;
dc4b0caf 2029 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2030 int migratetype;
1da177e4 2031
ec95f53a 2032 if (!free_pages_prepare(page, 0))
689bcebf
HD
2033 return;
2034
dc4b0caf 2035 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2036 set_pcppage_migratetype(page, migratetype);
1da177e4 2037 local_irq_save(flags);
f8891e5e 2038 __count_vm_event(PGFREE);
da456f14 2039
5f8dcc21
MG
2040 /*
2041 * We only track unmovable, reclaimable and movable on pcp lists.
2042 * Free ISOLATE pages back to the allocator because they are being
2043 * offlined but treat RESERVE as movable pages so we can get those
2044 * areas back if necessary. Otherwise, we may have to free
2045 * excessively into the page allocator
2046 */
2047 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2048 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2049 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2050 goto out;
2051 }
2052 migratetype = MIGRATE_MOVABLE;
2053 }
2054
99dcc3e5 2055 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2056 if (!cold)
5f8dcc21 2057 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2058 else
2059 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2060 pcp->count++;
48db57f8 2061 if (pcp->count >= pcp->high) {
4db0c3c2 2062 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2063 free_pcppages_bulk(zone, batch, pcp);
2064 pcp->count -= batch;
48db57f8 2065 }
5f8dcc21
MG
2066
2067out:
1da177e4 2068 local_irq_restore(flags);
1da177e4
LT
2069}
2070
cc59850e
KK
2071/*
2072 * Free a list of 0-order pages
2073 */
b745bc85 2074void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2075{
2076 struct page *page, *next;
2077
2078 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2079 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2080 free_hot_cold_page(page, cold);
2081 }
2082}
2083
8dfcc9ba
NP
2084/*
2085 * split_page takes a non-compound higher-order page, and splits it into
2086 * n (1<<order) sub-pages: page[0..n]
2087 * Each sub-page must be freed individually.
2088 *
2089 * Note: this is probably too low level an operation for use in drivers.
2090 * Please consult with lkml before using this in your driver.
2091 */
2092void split_page(struct page *page, unsigned int order)
2093{
2094 int i;
e2cfc911 2095 gfp_t gfp_mask;
8dfcc9ba 2096
309381fe
SL
2097 VM_BUG_ON_PAGE(PageCompound(page), page);
2098 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2099
2100#ifdef CONFIG_KMEMCHECK
2101 /*
2102 * Split shadow pages too, because free(page[0]) would
2103 * otherwise free the whole shadow.
2104 */
2105 if (kmemcheck_page_is_tracked(page))
2106 split_page(virt_to_page(page[0].shadow), order);
2107#endif
2108
e2cfc911
JK
2109 gfp_mask = get_page_owner_gfp(page);
2110 set_page_owner(page, 0, gfp_mask);
48c96a36 2111 for (i = 1; i < (1 << order); i++) {
7835e98b 2112 set_page_refcounted(page + i);
e2cfc911 2113 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2114 }
8dfcc9ba 2115}
5853ff23 2116EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2117
3c605096 2118int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2119{
748446bb
MG
2120 unsigned long watermark;
2121 struct zone *zone;
2139cbe6 2122 int mt;
748446bb
MG
2123
2124 BUG_ON(!PageBuddy(page));
2125
2126 zone = page_zone(page);
2e30abd1 2127 mt = get_pageblock_migratetype(page);
748446bb 2128
194159fb 2129 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2130 /* Obey watermarks as if the page was being allocated */
2131 watermark = low_wmark_pages(zone) + (1 << order);
2132 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2133 return 0;
2134
8fb74b9f 2135 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2136 }
748446bb
MG
2137
2138 /* Remove page from free list */
2139 list_del(&page->lru);
2140 zone->free_area[order].nr_free--;
2141 rmv_page_order(page);
2139cbe6 2142
e2cfc911 2143 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2144
8fb74b9f 2145 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2146 if (order >= pageblock_order - 1) {
2147 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2148 for (; page < endpage; page += pageblock_nr_pages) {
2149 int mt = get_pageblock_migratetype(page);
194159fb 2150 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2151 set_pageblock_migratetype(page,
2152 MIGRATE_MOVABLE);
2153 }
748446bb
MG
2154 }
2155
f3a14ced 2156
8fb74b9f 2157 return 1UL << order;
1fb3f8ca
MG
2158}
2159
2160/*
2161 * Similar to split_page except the page is already free. As this is only
2162 * being used for migration, the migratetype of the block also changes.
2163 * As this is called with interrupts disabled, the caller is responsible
2164 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2165 * are enabled.
2166 *
2167 * Note: this is probably too low level an operation for use in drivers.
2168 * Please consult with lkml before using this in your driver.
2169 */
2170int split_free_page(struct page *page)
2171{
2172 unsigned int order;
2173 int nr_pages;
2174
1fb3f8ca
MG
2175 order = page_order(page);
2176
8fb74b9f 2177 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2178 if (!nr_pages)
2179 return 0;
2180
2181 /* Split into individual pages */
2182 set_page_refcounted(page);
2183 split_page(page, order);
2184 return nr_pages;
748446bb
MG
2185}
2186
1da177e4 2187/*
75379191 2188 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2189 */
0a15c3e9
MG
2190static inline
2191struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2192 struct zone *zone, unsigned int order,
0aaa29a5 2193 gfp_t gfp_flags, int alloc_flags, int migratetype)
1da177e4
LT
2194{
2195 unsigned long flags;
689bcebf 2196 struct page *page;
b745bc85 2197 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2198
48db57f8 2199 if (likely(order == 0)) {
1da177e4 2200 struct per_cpu_pages *pcp;
5f8dcc21 2201 struct list_head *list;
1da177e4 2202
1da177e4 2203 local_irq_save(flags);
99dcc3e5
CL
2204 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2205 list = &pcp->lists[migratetype];
5f8dcc21 2206 if (list_empty(list)) {
535131e6 2207 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2208 pcp->batch, list,
e084b2d9 2209 migratetype, cold);
5f8dcc21 2210 if (unlikely(list_empty(list)))
6fb332fa 2211 goto failed;
535131e6 2212 }
b92a6edd 2213
5f8dcc21
MG
2214 if (cold)
2215 page = list_entry(list->prev, struct page, lru);
2216 else
2217 page = list_entry(list->next, struct page, lru);
2218
b92a6edd
MG
2219 list_del(&page->lru);
2220 pcp->count--;
7fb1d9fc 2221 } else {
dab48dab
AM
2222 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2223 /*
2224 * __GFP_NOFAIL is not to be used in new code.
2225 *
2226 * All __GFP_NOFAIL callers should be fixed so that they
2227 * properly detect and handle allocation failures.
2228 *
2229 * We most definitely don't want callers attempting to
4923abf9 2230 * allocate greater than order-1 page units with
dab48dab
AM
2231 * __GFP_NOFAIL.
2232 */
4923abf9 2233 WARN_ON_ONCE(order > 1);
dab48dab 2234 }
1da177e4 2235 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2236
2237 page = NULL;
2238 if (alloc_flags & ALLOC_HARDER) {
2239 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2240 if (page)
2241 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2242 }
2243 if (!page)
2244 page = __rmqueue(zone, order, migratetype, gfp_flags);
a74609fa
NP
2245 spin_unlock(&zone->lock);
2246 if (!page)
2247 goto failed;
d1ce749a 2248 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2249 get_pcppage_migratetype(page));
1da177e4
LT
2250 }
2251
3a025760 2252 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
abe5f972 2253 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2254 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2255 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2256
f8891e5e 2257 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2258 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2259 local_irq_restore(flags);
1da177e4 2260
309381fe 2261 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2262 return page;
a74609fa
NP
2263
2264failed:
2265 local_irq_restore(flags);
a74609fa 2266 return NULL;
1da177e4
LT
2267}
2268
933e312e
AM
2269#ifdef CONFIG_FAIL_PAGE_ALLOC
2270
b2588c4b 2271static struct {
933e312e
AM
2272 struct fault_attr attr;
2273
621a5f7a 2274 bool ignore_gfp_highmem;
71baba4b 2275 bool ignore_gfp_reclaim;
54114994 2276 u32 min_order;
933e312e
AM
2277} fail_page_alloc = {
2278 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2279 .ignore_gfp_reclaim = true,
621a5f7a 2280 .ignore_gfp_highmem = true,
54114994 2281 .min_order = 1,
933e312e
AM
2282};
2283
2284static int __init setup_fail_page_alloc(char *str)
2285{
2286 return setup_fault_attr(&fail_page_alloc.attr, str);
2287}
2288__setup("fail_page_alloc=", setup_fail_page_alloc);
2289
deaf386e 2290static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2291{
54114994 2292 if (order < fail_page_alloc.min_order)
deaf386e 2293 return false;
933e312e 2294 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2295 return false;
933e312e 2296 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2297 return false;
71baba4b
MG
2298 if (fail_page_alloc.ignore_gfp_reclaim &&
2299 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2300 return false;
933e312e
AM
2301
2302 return should_fail(&fail_page_alloc.attr, 1 << order);
2303}
2304
2305#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2306
2307static int __init fail_page_alloc_debugfs(void)
2308{
f4ae40a6 2309 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2310 struct dentry *dir;
933e312e 2311
dd48c085
AM
2312 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2313 &fail_page_alloc.attr);
2314 if (IS_ERR(dir))
2315 return PTR_ERR(dir);
933e312e 2316
b2588c4b 2317 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2318 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2319 goto fail;
2320 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2321 &fail_page_alloc.ignore_gfp_highmem))
2322 goto fail;
2323 if (!debugfs_create_u32("min-order", mode, dir,
2324 &fail_page_alloc.min_order))
2325 goto fail;
2326
2327 return 0;
2328fail:
dd48c085 2329 debugfs_remove_recursive(dir);
933e312e 2330
b2588c4b 2331 return -ENOMEM;
933e312e
AM
2332}
2333
2334late_initcall(fail_page_alloc_debugfs);
2335
2336#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2337
2338#else /* CONFIG_FAIL_PAGE_ALLOC */
2339
deaf386e 2340static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2341{
deaf386e 2342 return false;
933e312e
AM
2343}
2344
2345#endif /* CONFIG_FAIL_PAGE_ALLOC */
2346
1da177e4 2347/*
97a16fc8
MG
2348 * Return true if free base pages are above 'mark'. For high-order checks it
2349 * will return true of the order-0 watermark is reached and there is at least
2350 * one free page of a suitable size. Checking now avoids taking the zone lock
2351 * to check in the allocation paths if no pages are free.
1da177e4 2352 */
7aeb09f9
MG
2353static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2354 unsigned long mark, int classzone_idx, int alloc_flags,
2355 long free_pages)
1da177e4 2356{
d23ad423 2357 long min = mark;
1da177e4 2358 int o;
97a16fc8 2359 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2360
0aaa29a5 2361 /* free_pages may go negative - that's OK */
df0a6daa 2362 free_pages -= (1 << order) - 1;
0aaa29a5 2363
7fb1d9fc 2364 if (alloc_flags & ALLOC_HIGH)
1da177e4 2365 min -= min / 2;
0aaa29a5
MG
2366
2367 /*
2368 * If the caller does not have rights to ALLOC_HARDER then subtract
2369 * the high-atomic reserves. This will over-estimate the size of the
2370 * atomic reserve but it avoids a search.
2371 */
97a16fc8 2372 if (likely(!alloc_harder))
0aaa29a5
MG
2373 free_pages -= z->nr_reserved_highatomic;
2374 else
1da177e4 2375 min -= min / 4;
e2b19197 2376
d95ea5d1
BZ
2377#ifdef CONFIG_CMA
2378 /* If allocation can't use CMA areas don't use free CMA pages */
2379 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2380 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2381#endif
026b0814 2382
97a16fc8
MG
2383 /*
2384 * Check watermarks for an order-0 allocation request. If these
2385 * are not met, then a high-order request also cannot go ahead
2386 * even if a suitable page happened to be free.
2387 */
2388 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2389 return false;
1da177e4 2390
97a16fc8
MG
2391 /* If this is an order-0 request then the watermark is fine */
2392 if (!order)
2393 return true;
2394
2395 /* For a high-order request, check at least one suitable page is free */
2396 for (o = order; o < MAX_ORDER; o++) {
2397 struct free_area *area = &z->free_area[o];
2398 int mt;
2399
2400 if (!area->nr_free)
2401 continue;
2402
2403 if (alloc_harder)
2404 return true;
1da177e4 2405
97a16fc8
MG
2406 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2407 if (!list_empty(&area->free_list[mt]))
2408 return true;
2409 }
2410
2411#ifdef CONFIG_CMA
2412 if ((alloc_flags & ALLOC_CMA) &&
2413 !list_empty(&area->free_list[MIGRATE_CMA])) {
2414 return true;
2415 }
2416#endif
1da177e4 2417 }
97a16fc8 2418 return false;
88f5acf8
MG
2419}
2420
7aeb09f9 2421bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
88f5acf8
MG
2422 int classzone_idx, int alloc_flags)
2423{
2424 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2425 zone_page_state(z, NR_FREE_PAGES));
2426}
2427
7aeb09f9 2428bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2429 unsigned long mark, int classzone_idx)
88f5acf8
MG
2430{
2431 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2432
2433 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2434 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2435
e2b19197 2436 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2437 free_pages);
1da177e4
LT
2438}
2439
9276b1bc 2440#ifdef CONFIG_NUMA
81c0a2bb
JW
2441static bool zone_local(struct zone *local_zone, struct zone *zone)
2442{
fff4068c 2443 return local_zone->node == zone->node;
81c0a2bb
JW
2444}
2445
957f822a
DR
2446static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2447{
5f7a75ac
MG
2448 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2449 RECLAIM_DISTANCE;
957f822a 2450}
9276b1bc 2451#else /* CONFIG_NUMA */
81c0a2bb
JW
2452static bool zone_local(struct zone *local_zone, struct zone *zone)
2453{
2454 return true;
2455}
2456
957f822a
DR
2457static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2458{
2459 return true;
2460}
9276b1bc
PJ
2461#endif /* CONFIG_NUMA */
2462
4ffeaf35
MG
2463static void reset_alloc_batches(struct zone *preferred_zone)
2464{
2465 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2466
2467 do {
2468 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2469 high_wmark_pages(zone) - low_wmark_pages(zone) -
2470 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2471 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2472 } while (zone++ != preferred_zone);
2473}
2474
7fb1d9fc 2475/*
0798e519 2476 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2477 * a page.
2478 */
2479static struct page *
a9263751
VB
2480get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2481 const struct alloc_context *ac)
753ee728 2482{
a9263751 2483 struct zonelist *zonelist = ac->zonelist;
dd1a239f 2484 struct zoneref *z;
7fb1d9fc 2485 struct page *page = NULL;
5117f45d 2486 struct zone *zone;
4ffeaf35
MG
2487 int nr_fair_skipped = 0;
2488 bool zonelist_rescan;
54a6eb5c 2489
9276b1bc 2490zonelist_scan:
4ffeaf35
MG
2491 zonelist_rescan = false;
2492
7fb1d9fc 2493 /*
9276b1bc 2494 * Scan zonelist, looking for a zone with enough free.
344736f2 2495 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2496 */
a9263751
VB
2497 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2498 ac->nodemask) {
e085dbc5
JW
2499 unsigned long mark;
2500
664eedde
MG
2501 if (cpusets_enabled() &&
2502 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2503 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2504 continue;
81c0a2bb
JW
2505 /*
2506 * Distribute pages in proportion to the individual
2507 * zone size to ensure fair page aging. The zone a
2508 * page was allocated in should have no effect on the
2509 * time the page has in memory before being reclaimed.
81c0a2bb 2510 */
3a025760 2511 if (alloc_flags & ALLOC_FAIR) {
a9263751 2512 if (!zone_local(ac->preferred_zone, zone))
f7b5d647 2513 break;
57054651 2514 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
4ffeaf35 2515 nr_fair_skipped++;
3a025760 2516 continue;
4ffeaf35 2517 }
81c0a2bb 2518 }
a756cf59
JW
2519 /*
2520 * When allocating a page cache page for writing, we
2521 * want to get it from a zone that is within its dirty
2522 * limit, such that no single zone holds more than its
2523 * proportional share of globally allowed dirty pages.
2524 * The dirty limits take into account the zone's
2525 * lowmem reserves and high watermark so that kswapd
2526 * should be able to balance it without having to
2527 * write pages from its LRU list.
2528 *
2529 * This may look like it could increase pressure on
2530 * lower zones by failing allocations in higher zones
2531 * before they are full. But the pages that do spill
2532 * over are limited as the lower zones are protected
2533 * by this very same mechanism. It should not become
2534 * a practical burden to them.
2535 *
2536 * XXX: For now, allow allocations to potentially
2537 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2538 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2539 * which is important when on a NUMA setup the allowed
2540 * zones are together not big enough to reach the
2541 * global limit. The proper fix for these situations
2542 * will require awareness of zones in the
2543 * dirty-throttling and the flusher threads.
2544 */
c9ab0c4f 2545 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2546 continue;
7fb1d9fc 2547
e085dbc5
JW
2548 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2549 if (!zone_watermark_ok(zone, order, mark,
a9263751 2550 ac->classzone_idx, alloc_flags)) {
fa5e084e
MG
2551 int ret;
2552
5dab2911
MG
2553 /* Checked here to keep the fast path fast */
2554 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2555 if (alloc_flags & ALLOC_NO_WATERMARKS)
2556 goto try_this_zone;
2557
957f822a 2558 if (zone_reclaim_mode == 0 ||
a9263751 2559 !zone_allows_reclaim(ac->preferred_zone, zone))
cd38b115
MG
2560 continue;
2561
fa5e084e
MG
2562 ret = zone_reclaim(zone, gfp_mask, order);
2563 switch (ret) {
2564 case ZONE_RECLAIM_NOSCAN:
2565 /* did not scan */
cd38b115 2566 continue;
fa5e084e
MG
2567 case ZONE_RECLAIM_FULL:
2568 /* scanned but unreclaimable */
cd38b115 2569 continue;
fa5e084e
MG
2570 default:
2571 /* did we reclaim enough */
fed2719e 2572 if (zone_watermark_ok(zone, order, mark,
a9263751 2573 ac->classzone_idx, alloc_flags))
fed2719e
MG
2574 goto try_this_zone;
2575
fed2719e 2576 continue;
0798e519 2577 }
7fb1d9fc
RS
2578 }
2579
fa5e084e 2580try_this_zone:
a9263751 2581 page = buffered_rmqueue(ac->preferred_zone, zone, order,
0aaa29a5 2582 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2583 if (page) {
2584 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2585 goto try_this_zone;
0aaa29a5
MG
2586
2587 /*
2588 * If this is a high-order atomic allocation then check
2589 * if the pageblock should be reserved for the future
2590 */
2591 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2592 reserve_highatomic_pageblock(page, zone, order);
2593
75379191
VB
2594 return page;
2595 }
54a6eb5c 2596 }
9276b1bc 2597
4ffeaf35
MG
2598 /*
2599 * The first pass makes sure allocations are spread fairly within the
2600 * local node. However, the local node might have free pages left
2601 * after the fairness batches are exhausted, and remote zones haven't
2602 * even been considered yet. Try once more without fairness, and
2603 * include remote zones now, before entering the slowpath and waking
2604 * kswapd: prefer spilling to a remote zone over swapping locally.
2605 */
2606 if (alloc_flags & ALLOC_FAIR) {
2607 alloc_flags &= ~ALLOC_FAIR;
2608 if (nr_fair_skipped) {
2609 zonelist_rescan = true;
a9263751 2610 reset_alloc_batches(ac->preferred_zone);
4ffeaf35
MG
2611 }
2612 if (nr_online_nodes > 1)
2613 zonelist_rescan = true;
2614 }
2615
4ffeaf35
MG
2616 if (zonelist_rescan)
2617 goto zonelist_scan;
2618
2619 return NULL;
753ee728
MH
2620}
2621
29423e77
DR
2622/*
2623 * Large machines with many possible nodes should not always dump per-node
2624 * meminfo in irq context.
2625 */
2626static inline bool should_suppress_show_mem(void)
2627{
2628 bool ret = false;
2629
2630#if NODES_SHIFT > 8
2631 ret = in_interrupt();
2632#endif
2633 return ret;
2634}
2635
a238ab5b
DH
2636static DEFINE_RATELIMIT_STATE(nopage_rs,
2637 DEFAULT_RATELIMIT_INTERVAL,
2638 DEFAULT_RATELIMIT_BURST);
2639
d00181b9 2640void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2641{
a238ab5b
DH
2642 unsigned int filter = SHOW_MEM_FILTER_NODES;
2643
c0a32fc5
SG
2644 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2645 debug_guardpage_minorder() > 0)
a238ab5b
DH
2646 return;
2647
2648 /*
2649 * This documents exceptions given to allocations in certain
2650 * contexts that are allowed to allocate outside current's set
2651 * of allowed nodes.
2652 */
2653 if (!(gfp_mask & __GFP_NOMEMALLOC))
2654 if (test_thread_flag(TIF_MEMDIE) ||
2655 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2656 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2657 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2658 filter &= ~SHOW_MEM_FILTER_NODES;
2659
2660 if (fmt) {
3ee9a4f0
JP
2661 struct va_format vaf;
2662 va_list args;
2663
a238ab5b 2664 va_start(args, fmt);
3ee9a4f0
JP
2665
2666 vaf.fmt = fmt;
2667 vaf.va = &args;
2668
2669 pr_warn("%pV", &vaf);
2670
a238ab5b
DH
2671 va_end(args);
2672 }
2673
d00181b9 2674 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
3ee9a4f0 2675 current->comm, order, gfp_mask);
a238ab5b
DH
2676
2677 dump_stack();
2678 if (!should_suppress_show_mem())
2679 show_mem(filter);
2680}
2681
11e33f6a
MG
2682static inline struct page *
2683__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2684 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2685{
6e0fc46d
DR
2686 struct oom_control oc = {
2687 .zonelist = ac->zonelist,
2688 .nodemask = ac->nodemask,
2689 .gfp_mask = gfp_mask,
2690 .order = order,
6e0fc46d 2691 };
11e33f6a
MG
2692 struct page *page;
2693
9879de73
JW
2694 *did_some_progress = 0;
2695
9879de73 2696 /*
dc56401f
JW
2697 * Acquire the oom lock. If that fails, somebody else is
2698 * making progress for us.
9879de73 2699 */
dc56401f 2700 if (!mutex_trylock(&oom_lock)) {
9879de73 2701 *did_some_progress = 1;
11e33f6a 2702 schedule_timeout_uninterruptible(1);
1da177e4
LT
2703 return NULL;
2704 }
6b1de916 2705
11e33f6a
MG
2706 /*
2707 * Go through the zonelist yet one more time, keep very high watermark
2708 * here, this is only to catch a parallel oom killing, we must fail if
2709 * we're still under heavy pressure.
2710 */
a9263751
VB
2711 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2712 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2713 if (page)
11e33f6a
MG
2714 goto out;
2715
4365a567 2716 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2717 /* Coredumps can quickly deplete all memory reserves */
2718 if (current->flags & PF_DUMPCORE)
2719 goto out;
4365a567
KH
2720 /* The OOM killer will not help higher order allocs */
2721 if (order > PAGE_ALLOC_COSTLY_ORDER)
2722 goto out;
03668b3c 2723 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2724 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2725 goto out;
9083905a 2726 /* The OOM killer does not compensate for IO-less reclaim */
cc873177
JW
2727 if (!(gfp_mask & __GFP_FS)) {
2728 /*
2729 * XXX: Page reclaim didn't yield anything,
2730 * and the OOM killer can't be invoked, but
9083905a 2731 * keep looping as per tradition.
cc873177
JW
2732 */
2733 *did_some_progress = 1;
9879de73 2734 goto out;
cc873177 2735 }
9083905a
JW
2736 if (pm_suspended_storage())
2737 goto out;
4167e9b2 2738 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2739 if (gfp_mask & __GFP_THISNODE)
2740 goto out;
2741 }
11e33f6a 2742 /* Exhausted what can be done so it's blamo time */
6e0fc46d 2743 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
c32b3cbe 2744 *did_some_progress = 1;
11e33f6a 2745out:
dc56401f 2746 mutex_unlock(&oom_lock);
11e33f6a
MG
2747 return page;
2748}
2749
56de7263
MG
2750#ifdef CONFIG_COMPACTION
2751/* Try memory compaction for high-order allocations before reclaim */
2752static struct page *
2753__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2754 int alloc_flags, const struct alloc_context *ac,
2755 enum migrate_mode mode, int *contended_compaction,
2756 bool *deferred_compaction)
56de7263 2757{
53853e2d 2758 unsigned long compact_result;
98dd3b48 2759 struct page *page;
53853e2d
VB
2760
2761 if (!order)
66199712 2762 return NULL;
66199712 2763
c06b1fca 2764 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
2765 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2766 mode, contended_compaction);
c06b1fca 2767 current->flags &= ~PF_MEMALLOC;
56de7263 2768
98dd3b48
VB
2769 switch (compact_result) {
2770 case COMPACT_DEFERRED:
53853e2d 2771 *deferred_compaction = true;
98dd3b48
VB
2772 /* fall-through */
2773 case COMPACT_SKIPPED:
2774 return NULL;
2775 default:
2776 break;
2777 }
53853e2d 2778
98dd3b48
VB
2779 /*
2780 * At least in one zone compaction wasn't deferred or skipped, so let's
2781 * count a compaction stall
2782 */
2783 count_vm_event(COMPACTSTALL);
8fb74b9f 2784
a9263751
VB
2785 page = get_page_from_freelist(gfp_mask, order,
2786 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 2787
98dd3b48
VB
2788 if (page) {
2789 struct zone *zone = page_zone(page);
53853e2d 2790
98dd3b48
VB
2791 zone->compact_blockskip_flush = false;
2792 compaction_defer_reset(zone, order, true);
2793 count_vm_event(COMPACTSUCCESS);
2794 return page;
2795 }
56de7263 2796
98dd3b48
VB
2797 /*
2798 * It's bad if compaction run occurs and fails. The most likely reason
2799 * is that pages exist, but not enough to satisfy watermarks.
2800 */
2801 count_vm_event(COMPACTFAIL);
66199712 2802
98dd3b48 2803 cond_resched();
56de7263
MG
2804
2805 return NULL;
2806}
2807#else
2808static inline struct page *
2809__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2810 int alloc_flags, const struct alloc_context *ac,
2811 enum migrate_mode mode, int *contended_compaction,
2812 bool *deferred_compaction)
56de7263
MG
2813{
2814 return NULL;
2815}
2816#endif /* CONFIG_COMPACTION */
2817
bba90710
MS
2818/* Perform direct synchronous page reclaim */
2819static int
a9263751
VB
2820__perform_reclaim(gfp_t gfp_mask, unsigned int order,
2821 const struct alloc_context *ac)
11e33f6a 2822{
11e33f6a 2823 struct reclaim_state reclaim_state;
bba90710 2824 int progress;
11e33f6a
MG
2825
2826 cond_resched();
2827
2828 /* We now go into synchronous reclaim */
2829 cpuset_memory_pressure_bump();
c06b1fca 2830 current->flags |= PF_MEMALLOC;
11e33f6a
MG
2831 lockdep_set_current_reclaim_state(gfp_mask);
2832 reclaim_state.reclaimed_slab = 0;
c06b1fca 2833 current->reclaim_state = &reclaim_state;
11e33f6a 2834
a9263751
VB
2835 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2836 ac->nodemask);
11e33f6a 2837
c06b1fca 2838 current->reclaim_state = NULL;
11e33f6a 2839 lockdep_clear_current_reclaim_state();
c06b1fca 2840 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
2841
2842 cond_resched();
2843
bba90710
MS
2844 return progress;
2845}
2846
2847/* The really slow allocator path where we enter direct reclaim */
2848static inline struct page *
2849__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
a9263751
VB
2850 int alloc_flags, const struct alloc_context *ac,
2851 unsigned long *did_some_progress)
bba90710
MS
2852{
2853 struct page *page = NULL;
2854 bool drained = false;
2855
a9263751 2856 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
2857 if (unlikely(!(*did_some_progress)))
2858 return NULL;
11e33f6a 2859
9ee493ce 2860retry:
a9263751
VB
2861 page = get_page_from_freelist(gfp_mask, order,
2862 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
2863
2864 /*
2865 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
2866 * pages are pinned on the per-cpu lists or in high alloc reserves.
2867 * Shrink them them and try again
9ee493ce
MG
2868 */
2869 if (!page && !drained) {
0aaa29a5 2870 unreserve_highatomic_pageblock(ac);
93481ff0 2871 drain_all_pages(NULL);
9ee493ce
MG
2872 drained = true;
2873 goto retry;
2874 }
2875
11e33f6a
MG
2876 return page;
2877}
2878
a9263751 2879static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
2880{
2881 struct zoneref *z;
2882 struct zone *zone;
2883
a9263751
VB
2884 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2885 ac->high_zoneidx, ac->nodemask)
2886 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3a025760
JW
2887}
2888
341ce06f
PZ
2889static inline int
2890gfp_to_alloc_flags(gfp_t gfp_mask)
2891{
341ce06f 2892 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 2893
a56f57ff 2894 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 2895 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 2896
341ce06f
PZ
2897 /*
2898 * The caller may dip into page reserves a bit more if the caller
2899 * cannot run direct reclaim, or if the caller has realtime scheduling
2900 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 2901 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 2902 */
e6223a3b 2903 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 2904
d0164adc 2905 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 2906 /*
b104a35d
DR
2907 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2908 * if it can't schedule.
5c3240d9 2909 */
b104a35d 2910 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 2911 alloc_flags |= ALLOC_HARDER;
523b9458 2912 /*
b104a35d 2913 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 2914 * comment for __cpuset_node_allowed().
523b9458 2915 */
341ce06f 2916 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 2917 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
2918 alloc_flags |= ALLOC_HARDER;
2919
b37f1dd0
MG
2920 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2921 if (gfp_mask & __GFP_MEMALLOC)
2922 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
2923 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2924 alloc_flags |= ALLOC_NO_WATERMARKS;
2925 else if (!in_interrupt() &&
2926 ((current->flags & PF_MEMALLOC) ||
2927 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 2928 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 2929 }
d95ea5d1 2930#ifdef CONFIG_CMA
43e7a34d 2931 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
2932 alloc_flags |= ALLOC_CMA;
2933#endif
341ce06f
PZ
2934 return alloc_flags;
2935}
2936
072bb0aa
MG
2937bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2938{
b37f1dd0 2939 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
2940}
2941
d0164adc
MG
2942static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2943{
2944 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2945}
2946
11e33f6a
MG
2947static inline struct page *
2948__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 2949 struct alloc_context *ac)
11e33f6a 2950{
d0164adc 2951 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a
MG
2952 struct page *page = NULL;
2953 int alloc_flags;
2954 unsigned long pages_reclaimed = 0;
2955 unsigned long did_some_progress;
e0b9daeb 2956 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 2957 bool deferred_compaction = false;
1f9efdef 2958 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 2959
72807a74
MG
2960 /*
2961 * In the slowpath, we sanity check order to avoid ever trying to
2962 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2963 * be using allocators in order of preference for an area that is
2964 * too large.
2965 */
1fc28b70
MG
2966 if (order >= MAX_ORDER) {
2967 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2968 return NULL;
1fc28b70 2969 }
1da177e4 2970
d0164adc
MG
2971 /*
2972 * We also sanity check to catch abuse of atomic reserves being used by
2973 * callers that are not in atomic context.
2974 */
2975 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2976 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2977 gfp_mask &= ~__GFP_ATOMIC;
2978
952f3b51 2979 /*
4167e9b2
DR
2980 * If this allocation cannot block and it is for a specific node, then
2981 * fail early. There's no need to wakeup kswapd or retry for a
2982 * speculative node-specific allocation.
952f3b51 2983 */
d0164adc 2984 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
952f3b51
CL
2985 goto nopage;
2986
9879de73 2987retry:
d0164adc 2988 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 2989 wake_all_kswapds(order, ac);
1da177e4 2990
9bf2229f 2991 /*
7fb1d9fc
RS
2992 * OK, we're below the kswapd watermark and have kicked background
2993 * reclaim. Now things get more complex, so set up alloc_flags according
2994 * to how we want to proceed.
9bf2229f 2995 */
341ce06f 2996 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2997
f33261d7
DR
2998 /*
2999 * Find the true preferred zone if the allocation is unconstrained by
3000 * cpusets.
3001 */
a9263751 3002 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
d8846374 3003 struct zoneref *preferred_zoneref;
a9263751
VB
3004 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3005 ac->high_zoneidx, NULL, &ac->preferred_zone);
3006 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
d8846374 3007 }
f33261d7 3008
341ce06f 3009 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3010 page = get_page_from_freelist(gfp_mask, order,
3011 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3012 if (page)
3013 goto got_pg;
1da177e4 3014
11e33f6a 3015 /* Allocate without watermarks if the context allows */
341ce06f 3016 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3017 /*
3018 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3019 * the allocation is high priority and these type of
3020 * allocations are system rather than user orientated
3021 */
a9263751 3022 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3023 page = get_page_from_freelist(gfp_mask, order,
3024 ALLOC_NO_WATERMARKS, ac);
3025 if (page)
3026 goto got_pg;
1da177e4
LT
3027 }
3028
d0164adc
MG
3029 /* Caller is not willing to reclaim, we can't balance anything */
3030 if (!can_direct_reclaim) {
aed0a0e3 3031 /*
33d53103
MH
3032 * All existing users of the __GFP_NOFAIL are blockable, so warn
3033 * of any new users that actually allow this type of allocation
3034 * to fail.
aed0a0e3
DR
3035 */
3036 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3037 goto nopage;
aed0a0e3 3038 }
1da177e4 3039
341ce06f 3040 /* Avoid recursion of direct reclaim */
33d53103
MH
3041 if (current->flags & PF_MEMALLOC) {
3042 /*
3043 * __GFP_NOFAIL request from this context is rather bizarre
3044 * because we cannot reclaim anything and only can loop waiting
3045 * for somebody to do a work for us.
3046 */
3047 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3048 cond_resched();
3049 goto retry;
3050 }
341ce06f 3051 goto nopage;
33d53103 3052 }
341ce06f 3053
6583bb64
DR
3054 /* Avoid allocations with no watermarks from looping endlessly */
3055 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3056 goto nopage;
3057
77f1fe6b
MG
3058 /*
3059 * Try direct compaction. The first pass is asynchronous. Subsequent
3060 * attempts after direct reclaim are synchronous
3061 */
a9263751
VB
3062 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3063 migration_mode,
3064 &contended_compaction,
53853e2d 3065 &deferred_compaction);
56de7263
MG
3066 if (page)
3067 goto got_pg;
75f30861 3068
1f9efdef 3069 /* Checks for THP-specific high-order allocations */
d0164adc 3070 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3071 /*
3072 * If compaction is deferred for high-order allocations, it is
3073 * because sync compaction recently failed. If this is the case
3074 * and the caller requested a THP allocation, we do not want
3075 * to heavily disrupt the system, so we fail the allocation
3076 * instead of entering direct reclaim.
3077 */
3078 if (deferred_compaction)
3079 goto nopage;
3080
3081 /*
3082 * In all zones where compaction was attempted (and not
3083 * deferred or skipped), lock contention has been detected.
3084 * For THP allocation we do not want to disrupt the others
3085 * so we fallback to base pages instead.
3086 */
3087 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3088 goto nopage;
3089
3090 /*
3091 * If compaction was aborted due to need_resched(), we do not
3092 * want to further increase allocation latency, unless it is
3093 * khugepaged trying to collapse.
3094 */
3095 if (contended_compaction == COMPACT_CONTENDED_SCHED
3096 && !(current->flags & PF_KTHREAD))
3097 goto nopage;
3098 }
66199712 3099
8fe78048
DR
3100 /*
3101 * It can become very expensive to allocate transparent hugepages at
3102 * fault, so use asynchronous memory compaction for THP unless it is
3103 * khugepaged trying to collapse.
3104 */
d0164adc 3105 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3106 migration_mode = MIGRATE_SYNC_LIGHT;
3107
11e33f6a 3108 /* Try direct reclaim and then allocating */
a9263751
VB
3109 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3110 &did_some_progress);
11e33f6a
MG
3111 if (page)
3112 goto got_pg;
1da177e4 3113
9083905a
JW
3114 /* Do not loop if specifically requested */
3115 if (gfp_mask & __GFP_NORETRY)
3116 goto noretry;
3117
3118 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3119 pages_reclaimed += did_some_progress;
9083905a
JW
3120 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3121 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3122 /* Wait for some write requests to complete then retry */
a9263751 3123 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
9879de73 3124 goto retry;
1da177e4
LT
3125 }
3126
9083905a
JW
3127 /* Reclaim has failed us, start killing things */
3128 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3129 if (page)
3130 goto got_pg;
3131
3132 /* Retry as long as the OOM killer is making progress */
3133 if (did_some_progress)
3134 goto retry;
3135
3136noretry:
3137 /*
3138 * High-order allocations do not necessarily loop after
3139 * direct reclaim and reclaim/compaction depends on compaction
3140 * being called after reclaim so call directly if necessary
3141 */
3142 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3143 ac, migration_mode,
3144 &contended_compaction,
3145 &deferred_compaction);
3146 if (page)
3147 goto got_pg;
1da177e4 3148nopage:
a238ab5b 3149 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3150got_pg:
072bb0aa 3151 return page;
1da177e4 3152}
11e33f6a
MG
3153
3154/*
3155 * This is the 'heart' of the zoned buddy allocator.
3156 */
3157struct page *
3158__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3159 struct zonelist *zonelist, nodemask_t *nodemask)
3160{
d8846374 3161 struct zoneref *preferred_zoneref;
cc9a6c87 3162 struct page *page = NULL;
cc9a6c87 3163 unsigned int cpuset_mems_cookie;
3a025760 3164 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
91fbdc0f 3165 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3166 struct alloc_context ac = {
3167 .high_zoneidx = gfp_zone(gfp_mask),
3168 .nodemask = nodemask,
3169 .migratetype = gfpflags_to_migratetype(gfp_mask),
3170 };
11e33f6a 3171
dcce284a
BH
3172 gfp_mask &= gfp_allowed_mask;
3173
11e33f6a
MG
3174 lockdep_trace_alloc(gfp_mask);
3175
d0164adc 3176 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3177
3178 if (should_fail_alloc_page(gfp_mask, order))
3179 return NULL;
3180
3181 /*
3182 * Check the zones suitable for the gfp_mask contain at least one
3183 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3184 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3185 */
3186 if (unlikely(!zonelist->_zonerefs->zone))
3187 return NULL;
3188
a9263751 3189 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3190 alloc_flags |= ALLOC_CMA;
3191
cc9a6c87 3192retry_cpuset:
d26914d1 3193 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3194
a9263751
VB
3195 /* We set it here, as __alloc_pages_slowpath might have changed it */
3196 ac.zonelist = zonelist;
c9ab0c4f
MG
3197
3198 /* Dirty zone balancing only done in the fast path */
3199 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3200
5117f45d 3201 /* The preferred zone is used for statistics later */
a9263751
VB
3202 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3203 ac.nodemask ? : &cpuset_current_mems_allowed,
3204 &ac.preferred_zone);
3205 if (!ac.preferred_zone)
cc9a6c87 3206 goto out;
a9263751 3207 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
5117f45d
MG
3208
3209 /* First allocation attempt */
91fbdc0f 3210 alloc_mask = gfp_mask|__GFP_HARDWALL;
a9263751 3211 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
21caf2fc
ML
3212 if (unlikely(!page)) {
3213 /*
3214 * Runtime PM, block IO and its error handling path
3215 * can deadlock because I/O on the device might not
3216 * complete.
3217 */
91fbdc0f 3218 alloc_mask = memalloc_noio_flags(gfp_mask);
c9ab0c4f 3219 ac.spread_dirty_pages = false;
91fbdc0f 3220
a9263751 3221 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
21caf2fc 3222 }
11e33f6a 3223
23f086f9
XQ
3224 if (kmemcheck_enabled && page)
3225 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3226
a9263751 3227 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
cc9a6c87
MG
3228
3229out:
3230 /*
3231 * When updating a task's mems_allowed, it is possible to race with
3232 * parallel threads in such a way that an allocation can fail while
3233 * the mask is being updated. If a page allocation is about to fail,
3234 * check if the cpuset changed during allocation and if so, retry.
3235 */
d26914d1 3236 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87
MG
3237 goto retry_cpuset;
3238
11e33f6a 3239 return page;
1da177e4 3240}
d239171e 3241EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3242
3243/*
3244 * Common helper functions.
3245 */
920c7a5d 3246unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3247{
945a1113
AM
3248 struct page *page;
3249
3250 /*
3251 * __get_free_pages() returns a 32-bit address, which cannot represent
3252 * a highmem page
3253 */
3254 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3255
1da177e4
LT
3256 page = alloc_pages(gfp_mask, order);
3257 if (!page)
3258 return 0;
3259 return (unsigned long) page_address(page);
3260}
1da177e4
LT
3261EXPORT_SYMBOL(__get_free_pages);
3262
920c7a5d 3263unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3264{
945a1113 3265 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3266}
1da177e4
LT
3267EXPORT_SYMBOL(get_zeroed_page);
3268
920c7a5d 3269void __free_pages(struct page *page, unsigned int order)
1da177e4 3270{
b5810039 3271 if (put_page_testzero(page)) {
1da177e4 3272 if (order == 0)
b745bc85 3273 free_hot_cold_page(page, false);
1da177e4
LT
3274 else
3275 __free_pages_ok(page, order);
3276 }
3277}
3278
3279EXPORT_SYMBOL(__free_pages);
3280
920c7a5d 3281void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3282{
3283 if (addr != 0) {
725d704e 3284 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3285 __free_pages(virt_to_page((void *)addr), order);
3286 }
3287}
3288
3289EXPORT_SYMBOL(free_pages);
3290
b63ae8ca
AD
3291/*
3292 * Page Fragment:
3293 * An arbitrary-length arbitrary-offset area of memory which resides
3294 * within a 0 or higher order page. Multiple fragments within that page
3295 * are individually refcounted, in the page's reference counter.
3296 *
3297 * The page_frag functions below provide a simple allocation framework for
3298 * page fragments. This is used by the network stack and network device
3299 * drivers to provide a backing region of memory for use as either an
3300 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3301 */
3302static struct page *__page_frag_refill(struct page_frag_cache *nc,
3303 gfp_t gfp_mask)
3304{
3305 struct page *page = NULL;
3306 gfp_t gfp = gfp_mask;
3307
3308#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3309 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3310 __GFP_NOMEMALLOC;
3311 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3312 PAGE_FRAG_CACHE_MAX_ORDER);
3313 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3314#endif
3315 if (unlikely(!page))
3316 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3317
3318 nc->va = page ? page_address(page) : NULL;
3319
3320 return page;
3321}
3322
3323void *__alloc_page_frag(struct page_frag_cache *nc,
3324 unsigned int fragsz, gfp_t gfp_mask)
3325{
3326 unsigned int size = PAGE_SIZE;
3327 struct page *page;
3328 int offset;
3329
3330 if (unlikely(!nc->va)) {
3331refill:
3332 page = __page_frag_refill(nc, gfp_mask);
3333 if (!page)
3334 return NULL;
3335
3336#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3337 /* if size can vary use size else just use PAGE_SIZE */
3338 size = nc->size;
3339#endif
3340 /* Even if we own the page, we do not use atomic_set().
3341 * This would break get_page_unless_zero() users.
3342 */
3343 atomic_add(size - 1, &page->_count);
3344
3345 /* reset page count bias and offset to start of new frag */
2f064f34 3346 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3347 nc->pagecnt_bias = size;
3348 nc->offset = size;
3349 }
3350
3351 offset = nc->offset - fragsz;
3352 if (unlikely(offset < 0)) {
3353 page = virt_to_page(nc->va);
3354
3355 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3356 goto refill;
3357
3358#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3359 /* if size can vary use size else just use PAGE_SIZE */
3360 size = nc->size;
3361#endif
3362 /* OK, page count is 0, we can safely set it */
3363 atomic_set(&page->_count, size);
3364
3365 /* reset page count bias and offset to start of new frag */
3366 nc->pagecnt_bias = size;
3367 offset = size - fragsz;
3368 }
3369
3370 nc->pagecnt_bias--;
3371 nc->offset = offset;
3372
3373 return nc->va + offset;
3374}
3375EXPORT_SYMBOL(__alloc_page_frag);
3376
3377/*
3378 * Frees a page fragment allocated out of either a compound or order 0 page.
3379 */
3380void __free_page_frag(void *addr)
3381{
3382 struct page *page = virt_to_head_page(addr);
3383
3384 if (unlikely(put_page_testzero(page)))
3385 __free_pages_ok(page, compound_order(page));
3386}
3387EXPORT_SYMBOL(__free_page_frag);
3388
6a1a0d3b 3389/*
52383431 3390 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3391 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3392 * equivalent to alloc_pages.
6a1a0d3b 3393 *
52383431
VD
3394 * It should be used when the caller would like to use kmalloc, but since the
3395 * allocation is large, it has to fall back to the page allocator.
3396 */
3397struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3398{
3399 struct page *page;
52383431 3400
52383431 3401 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3402 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3403 __free_pages(page, order);
3404 page = NULL;
3405 }
52383431
VD
3406 return page;
3407}
3408
3409struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3410{
3411 struct page *page;
52383431 3412
52383431 3413 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3414 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3415 __free_pages(page, order);
3416 page = NULL;
3417 }
52383431
VD
3418 return page;
3419}
3420
3421/*
3422 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3423 * alloc_kmem_pages.
6a1a0d3b 3424 */
52383431 3425void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3426{
d05e83a6 3427 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3428 __free_pages(page, order);
3429}
3430
52383431 3431void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3432{
3433 if (addr != 0) {
3434 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3435 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3436 }
3437}
3438
d00181b9
KS
3439static void *make_alloc_exact(unsigned long addr, unsigned int order,
3440 size_t size)
ee85c2e1
AK
3441{
3442 if (addr) {
3443 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3444 unsigned long used = addr + PAGE_ALIGN(size);
3445
3446 split_page(virt_to_page((void *)addr), order);
3447 while (used < alloc_end) {
3448 free_page(used);
3449 used += PAGE_SIZE;
3450 }
3451 }
3452 return (void *)addr;
3453}
3454
2be0ffe2
TT
3455/**
3456 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3457 * @size: the number of bytes to allocate
3458 * @gfp_mask: GFP flags for the allocation
3459 *
3460 * This function is similar to alloc_pages(), except that it allocates the
3461 * minimum number of pages to satisfy the request. alloc_pages() can only
3462 * allocate memory in power-of-two pages.
3463 *
3464 * This function is also limited by MAX_ORDER.
3465 *
3466 * Memory allocated by this function must be released by free_pages_exact().
3467 */
3468void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3469{
3470 unsigned int order = get_order(size);
3471 unsigned long addr;
3472
3473 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3474 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3475}
3476EXPORT_SYMBOL(alloc_pages_exact);
3477
ee85c2e1
AK
3478/**
3479 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3480 * pages on a node.
b5e6ab58 3481 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3482 * @size: the number of bytes to allocate
3483 * @gfp_mask: GFP flags for the allocation
3484 *
3485 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3486 * back.
ee85c2e1 3487 */
e1931811 3488void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3489{
d00181b9 3490 unsigned int order = get_order(size);
ee85c2e1
AK
3491 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3492 if (!p)
3493 return NULL;
3494 return make_alloc_exact((unsigned long)page_address(p), order, size);
3495}
ee85c2e1 3496
2be0ffe2
TT
3497/**
3498 * free_pages_exact - release memory allocated via alloc_pages_exact()
3499 * @virt: the value returned by alloc_pages_exact.
3500 * @size: size of allocation, same value as passed to alloc_pages_exact().
3501 *
3502 * Release the memory allocated by a previous call to alloc_pages_exact.
3503 */
3504void free_pages_exact(void *virt, size_t size)
3505{
3506 unsigned long addr = (unsigned long)virt;
3507 unsigned long end = addr + PAGE_ALIGN(size);
3508
3509 while (addr < end) {
3510 free_page(addr);
3511 addr += PAGE_SIZE;
3512 }
3513}
3514EXPORT_SYMBOL(free_pages_exact);
3515
e0fb5815
ZY
3516/**
3517 * nr_free_zone_pages - count number of pages beyond high watermark
3518 * @offset: The zone index of the highest zone
3519 *
3520 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3521 * high watermark within all zones at or below a given zone index. For each
3522 * zone, the number of pages is calculated as:
834405c3 3523 * managed_pages - high_pages
e0fb5815 3524 */
ebec3862 3525static unsigned long nr_free_zone_pages(int offset)
1da177e4 3526{
dd1a239f 3527 struct zoneref *z;
54a6eb5c
MG
3528 struct zone *zone;
3529
e310fd43 3530 /* Just pick one node, since fallback list is circular */
ebec3862 3531 unsigned long sum = 0;
1da177e4 3532
0e88460d 3533 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3534
54a6eb5c 3535 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3536 unsigned long size = zone->managed_pages;
41858966 3537 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3538 if (size > high)
3539 sum += size - high;
1da177e4
LT
3540 }
3541
3542 return sum;
3543}
3544
e0fb5815
ZY
3545/**
3546 * nr_free_buffer_pages - count number of pages beyond high watermark
3547 *
3548 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3549 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3550 */
ebec3862 3551unsigned long nr_free_buffer_pages(void)
1da177e4 3552{
af4ca457 3553 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3554}
c2f1a551 3555EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3556
e0fb5815
ZY
3557/**
3558 * nr_free_pagecache_pages - count number of pages beyond high watermark
3559 *
3560 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3561 * high watermark within all zones.
1da177e4 3562 */
ebec3862 3563unsigned long nr_free_pagecache_pages(void)
1da177e4 3564{
2a1e274a 3565 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3566}
08e0f6a9
CL
3567
3568static inline void show_node(struct zone *zone)
1da177e4 3569{
e5adfffc 3570 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3571 printk("Node %d ", zone_to_nid(zone));
1da177e4 3572}
1da177e4 3573
1da177e4
LT
3574void si_meminfo(struct sysinfo *val)
3575{
3576 val->totalram = totalram_pages;
cc7452b6 3577 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3578 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3579 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3580 val->totalhigh = totalhigh_pages;
3581 val->freehigh = nr_free_highpages();
1da177e4
LT
3582 val->mem_unit = PAGE_SIZE;
3583}
3584
3585EXPORT_SYMBOL(si_meminfo);
3586
3587#ifdef CONFIG_NUMA
3588void si_meminfo_node(struct sysinfo *val, int nid)
3589{
cdd91a77
JL
3590 int zone_type; /* needs to be signed */
3591 unsigned long managed_pages = 0;
1da177e4
LT
3592 pg_data_t *pgdat = NODE_DATA(nid);
3593
cdd91a77
JL
3594 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3595 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3596 val->totalram = managed_pages;
cc7452b6 3597 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3598 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3599#ifdef CONFIG_HIGHMEM
b40da049 3600 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
d23ad423
CL
3601 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3602 NR_FREE_PAGES);
98d2b0eb
CL
3603#else
3604 val->totalhigh = 0;
3605 val->freehigh = 0;
3606#endif
1da177e4
LT
3607 val->mem_unit = PAGE_SIZE;
3608}
3609#endif
3610
ddd588b5 3611/*
7bf02ea2
DR
3612 * Determine whether the node should be displayed or not, depending on whether
3613 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3614 */
7bf02ea2 3615bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3616{
3617 bool ret = false;
cc9a6c87 3618 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3619
3620 if (!(flags & SHOW_MEM_FILTER_NODES))
3621 goto out;
3622
cc9a6c87 3623 do {
d26914d1 3624 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3625 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3626 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3627out:
3628 return ret;
3629}
3630
1da177e4
LT
3631#define K(x) ((x) << (PAGE_SHIFT-10))
3632
377e4f16
RV
3633static void show_migration_types(unsigned char type)
3634{
3635 static const char types[MIGRATE_TYPES] = {
3636 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3637 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3638 [MIGRATE_RECLAIMABLE] = 'E',
3639 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3640#ifdef CONFIG_CMA
3641 [MIGRATE_CMA] = 'C',
3642#endif
194159fb 3643#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3644 [MIGRATE_ISOLATE] = 'I',
194159fb 3645#endif
377e4f16
RV
3646 };
3647 char tmp[MIGRATE_TYPES + 1];
3648 char *p = tmp;
3649 int i;
3650
3651 for (i = 0; i < MIGRATE_TYPES; i++) {
3652 if (type & (1 << i))
3653 *p++ = types[i];
3654 }
3655
3656 *p = '\0';
3657 printk("(%s) ", tmp);
3658}
3659
1da177e4
LT
3660/*
3661 * Show free area list (used inside shift_scroll-lock stuff)
3662 * We also calculate the percentage fragmentation. We do this by counting the
3663 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3664 *
3665 * Bits in @filter:
3666 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3667 * cpuset.
1da177e4 3668 */
7bf02ea2 3669void show_free_areas(unsigned int filter)
1da177e4 3670{
d1bfcdb8 3671 unsigned long free_pcp = 0;
c7241913 3672 int cpu;
1da177e4
LT
3673 struct zone *zone;
3674
ee99c71c 3675 for_each_populated_zone(zone) {
7bf02ea2 3676 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3677 continue;
d1bfcdb8 3678
761b0677
KK
3679 for_each_online_cpu(cpu)
3680 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3681 }
3682
a731286d
KM
3683 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3684 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3685 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3686 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3687 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3688 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3689 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3690 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3691 global_page_state(NR_ISOLATED_ANON),
3692 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 3693 global_page_state(NR_INACTIVE_FILE),
a731286d 3694 global_page_state(NR_ISOLATED_FILE),
7b854121 3695 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 3696 global_page_state(NR_FILE_DIRTY),
ce866b34 3697 global_page_state(NR_WRITEBACK),
fd39fc85 3698 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
3699 global_page_state(NR_SLAB_RECLAIMABLE),
3700 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 3701 global_page_state(NR_FILE_MAPPED),
4b02108a 3702 global_page_state(NR_SHMEM),
a25700a5 3703 global_page_state(NR_PAGETABLE),
d1ce749a 3704 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
3705 global_page_state(NR_FREE_PAGES),
3706 free_pcp,
d1ce749a 3707 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 3708
ee99c71c 3709 for_each_populated_zone(zone) {
1da177e4
LT
3710 int i;
3711
7bf02ea2 3712 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3713 continue;
d1bfcdb8
KK
3714
3715 free_pcp = 0;
3716 for_each_online_cpu(cpu)
3717 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3718
1da177e4
LT
3719 show_node(zone);
3720 printk("%s"
3721 " free:%lukB"
3722 " min:%lukB"
3723 " low:%lukB"
3724 " high:%lukB"
4f98a2fe
RR
3725 " active_anon:%lukB"
3726 " inactive_anon:%lukB"
3727 " active_file:%lukB"
3728 " inactive_file:%lukB"
7b854121 3729 " unevictable:%lukB"
a731286d
KM
3730 " isolated(anon):%lukB"
3731 " isolated(file):%lukB"
1da177e4 3732 " present:%lukB"
9feedc9d 3733 " managed:%lukB"
4a0aa73f
KM
3734 " mlocked:%lukB"
3735 " dirty:%lukB"
3736 " writeback:%lukB"
3737 " mapped:%lukB"
4b02108a 3738 " shmem:%lukB"
4a0aa73f
KM
3739 " slab_reclaimable:%lukB"
3740 " slab_unreclaimable:%lukB"
c6a7f572 3741 " kernel_stack:%lukB"
4a0aa73f
KM
3742 " pagetables:%lukB"
3743 " unstable:%lukB"
3744 " bounce:%lukB"
d1bfcdb8
KK
3745 " free_pcp:%lukB"
3746 " local_pcp:%ukB"
d1ce749a 3747 " free_cma:%lukB"
4a0aa73f 3748 " writeback_tmp:%lukB"
1da177e4
LT
3749 " pages_scanned:%lu"
3750 " all_unreclaimable? %s"
3751 "\n",
3752 zone->name,
88f5acf8 3753 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
3754 K(min_wmark_pages(zone)),
3755 K(low_wmark_pages(zone)),
3756 K(high_wmark_pages(zone)),
4f98a2fe
RR
3757 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3758 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3759 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3760 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 3761 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
3762 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3763 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 3764 K(zone->present_pages),
9feedc9d 3765 K(zone->managed_pages),
4a0aa73f
KM
3766 K(zone_page_state(zone, NR_MLOCK)),
3767 K(zone_page_state(zone, NR_FILE_DIRTY)),
3768 K(zone_page_state(zone, NR_WRITEBACK)),
3769 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 3770 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
3771 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3772 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
3773 zone_page_state(zone, NR_KERNEL_STACK) *
3774 THREAD_SIZE / 1024,
4a0aa73f
KM
3775 K(zone_page_state(zone, NR_PAGETABLE)),
3776 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3777 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
3778 K(free_pcp),
3779 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 3780 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 3781 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 3782 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 3783 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
3784 );
3785 printk("lowmem_reserve[]:");
3786 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 3787 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
3788 printk("\n");
3789 }
3790
ee99c71c 3791 for_each_populated_zone(zone) {
d00181b9
KS
3792 unsigned int order;
3793 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 3794 unsigned char types[MAX_ORDER];
1da177e4 3795
7bf02ea2 3796 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3797 continue;
1da177e4
LT
3798 show_node(zone);
3799 printk("%s: ", zone->name);
1da177e4
LT
3800
3801 spin_lock_irqsave(&zone->lock, flags);
3802 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
3803 struct free_area *area = &zone->free_area[order];
3804 int type;
3805
3806 nr[order] = area->nr_free;
8f9de51a 3807 total += nr[order] << order;
377e4f16
RV
3808
3809 types[order] = 0;
3810 for (type = 0; type < MIGRATE_TYPES; type++) {
3811 if (!list_empty(&area->free_list[type]))
3812 types[order] |= 1 << type;
3813 }
1da177e4
LT
3814 }
3815 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 3816 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 3817 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
3818 if (nr[order])
3819 show_migration_types(types[order]);
3820 }
1da177e4
LT
3821 printk("= %lukB\n", K(total));
3822 }
3823
949f7ec5
DR
3824 hugetlb_show_meminfo();
3825
e6f3602d
LW
3826 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3827
1da177e4
LT
3828 show_swap_cache_info();
3829}
3830
19770b32
MG
3831static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3832{
3833 zoneref->zone = zone;
3834 zoneref->zone_idx = zone_idx(zone);
3835}
3836
1da177e4
LT
3837/*
3838 * Builds allocation fallback zone lists.
1a93205b
CL
3839 *
3840 * Add all populated zones of a node to the zonelist.
1da177e4 3841 */
f0c0b2b8 3842static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 3843 int nr_zones)
1da177e4 3844{
1a93205b 3845 struct zone *zone;
bc732f1d 3846 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
3847
3848 do {
2f6726e5 3849 zone_type--;
070f8032 3850 zone = pgdat->node_zones + zone_type;
1a93205b 3851 if (populated_zone(zone)) {
dd1a239f
MG
3852 zoneref_set_zone(zone,
3853 &zonelist->_zonerefs[nr_zones++]);
070f8032 3854 check_highest_zone(zone_type);
1da177e4 3855 }
2f6726e5 3856 } while (zone_type);
bc732f1d 3857
070f8032 3858 return nr_zones;
1da177e4
LT
3859}
3860
f0c0b2b8
KH
3861
3862/*
3863 * zonelist_order:
3864 * 0 = automatic detection of better ordering.
3865 * 1 = order by ([node] distance, -zonetype)
3866 * 2 = order by (-zonetype, [node] distance)
3867 *
3868 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3869 * the same zonelist. So only NUMA can configure this param.
3870 */
3871#define ZONELIST_ORDER_DEFAULT 0
3872#define ZONELIST_ORDER_NODE 1
3873#define ZONELIST_ORDER_ZONE 2
3874
3875/* zonelist order in the kernel.
3876 * set_zonelist_order() will set this to NODE or ZONE.
3877 */
3878static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3879static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3880
3881
1da177e4 3882#ifdef CONFIG_NUMA
f0c0b2b8
KH
3883/* The value user specified ....changed by config */
3884static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3885/* string for sysctl */
3886#define NUMA_ZONELIST_ORDER_LEN 16
3887char numa_zonelist_order[16] = "default";
3888
3889/*
3890 * interface for configure zonelist ordering.
3891 * command line option "numa_zonelist_order"
3892 * = "[dD]efault - default, automatic configuration.
3893 * = "[nN]ode - order by node locality, then by zone within node
3894 * = "[zZ]one - order by zone, then by locality within zone
3895 */
3896
3897static int __parse_numa_zonelist_order(char *s)
3898{
3899 if (*s == 'd' || *s == 'D') {
3900 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3901 } else if (*s == 'n' || *s == 'N') {
3902 user_zonelist_order = ZONELIST_ORDER_NODE;
3903 } else if (*s == 'z' || *s == 'Z') {
3904 user_zonelist_order = ZONELIST_ORDER_ZONE;
3905 } else {
3906 printk(KERN_WARNING
3907 "Ignoring invalid numa_zonelist_order value: "
3908 "%s\n", s);
3909 return -EINVAL;
3910 }
3911 return 0;
3912}
3913
3914static __init int setup_numa_zonelist_order(char *s)
3915{
ecb256f8
VL
3916 int ret;
3917
3918 if (!s)
3919 return 0;
3920
3921 ret = __parse_numa_zonelist_order(s);
3922 if (ret == 0)
3923 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3924
3925 return ret;
f0c0b2b8
KH
3926}
3927early_param("numa_zonelist_order", setup_numa_zonelist_order);
3928
3929/*
3930 * sysctl handler for numa_zonelist_order
3931 */
cccad5b9 3932int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 3933 void __user *buffer, size_t *length,
f0c0b2b8
KH
3934 loff_t *ppos)
3935{
3936 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3937 int ret;
443c6f14 3938 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 3939
443c6f14 3940 mutex_lock(&zl_order_mutex);
dacbde09
CG
3941 if (write) {
3942 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3943 ret = -EINVAL;
3944 goto out;
3945 }
3946 strcpy(saved_string, (char *)table->data);
3947 }
8d65af78 3948 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 3949 if (ret)
443c6f14 3950 goto out;
f0c0b2b8
KH
3951 if (write) {
3952 int oldval = user_zonelist_order;
dacbde09
CG
3953
3954 ret = __parse_numa_zonelist_order((char *)table->data);
3955 if (ret) {
f0c0b2b8
KH
3956 /*
3957 * bogus value. restore saved string
3958 */
dacbde09 3959 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
3960 NUMA_ZONELIST_ORDER_LEN);
3961 user_zonelist_order = oldval;
4eaf3f64
HL
3962 } else if (oldval != user_zonelist_order) {
3963 mutex_lock(&zonelists_mutex);
9adb62a5 3964 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
3965 mutex_unlock(&zonelists_mutex);
3966 }
f0c0b2b8 3967 }
443c6f14
AK
3968out:
3969 mutex_unlock(&zl_order_mutex);
3970 return ret;
f0c0b2b8
KH
3971}
3972
3973
62bc62a8 3974#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
3975static int node_load[MAX_NUMNODES];
3976
1da177e4 3977/**
4dc3b16b 3978 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
3979 * @node: node whose fallback list we're appending
3980 * @used_node_mask: nodemask_t of already used nodes
3981 *
3982 * We use a number of factors to determine which is the next node that should
3983 * appear on a given node's fallback list. The node should not have appeared
3984 * already in @node's fallback list, and it should be the next closest node
3985 * according to the distance array (which contains arbitrary distance values
3986 * from each node to each node in the system), and should also prefer nodes
3987 * with no CPUs, since presumably they'll have very little allocation pressure
3988 * on them otherwise.
3989 * It returns -1 if no node is found.
3990 */
f0c0b2b8 3991static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 3992{
4cf808eb 3993 int n, val;
1da177e4 3994 int min_val = INT_MAX;
00ef2d2f 3995 int best_node = NUMA_NO_NODE;
a70f7302 3996 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 3997
4cf808eb
LT
3998 /* Use the local node if we haven't already */
3999 if (!node_isset(node, *used_node_mask)) {
4000 node_set(node, *used_node_mask);
4001 return node;
4002 }
1da177e4 4003
4b0ef1fe 4004 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4005
4006 /* Don't want a node to appear more than once */
4007 if (node_isset(n, *used_node_mask))
4008 continue;
4009
1da177e4
LT
4010 /* Use the distance array to find the distance */
4011 val = node_distance(node, n);
4012
4cf808eb
LT
4013 /* Penalize nodes under us ("prefer the next node") */
4014 val += (n < node);
4015
1da177e4 4016 /* Give preference to headless and unused nodes */
a70f7302
RR
4017 tmp = cpumask_of_node(n);
4018 if (!cpumask_empty(tmp))
1da177e4
LT
4019 val += PENALTY_FOR_NODE_WITH_CPUS;
4020
4021 /* Slight preference for less loaded node */
4022 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4023 val += node_load[n];
4024
4025 if (val < min_val) {
4026 min_val = val;
4027 best_node = n;
4028 }
4029 }
4030
4031 if (best_node >= 0)
4032 node_set(best_node, *used_node_mask);
4033
4034 return best_node;
4035}
4036
f0c0b2b8
KH
4037
4038/*
4039 * Build zonelists ordered by node and zones within node.
4040 * This results in maximum locality--normal zone overflows into local
4041 * DMA zone, if any--but risks exhausting DMA zone.
4042 */
4043static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4044{
f0c0b2b8 4045 int j;
1da177e4 4046 struct zonelist *zonelist;
f0c0b2b8 4047
54a6eb5c 4048 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4049 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4050 ;
bc732f1d 4051 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4052 zonelist->_zonerefs[j].zone = NULL;
4053 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4054}
4055
523b9458
CL
4056/*
4057 * Build gfp_thisnode zonelists
4058 */
4059static void build_thisnode_zonelists(pg_data_t *pgdat)
4060{
523b9458
CL
4061 int j;
4062 struct zonelist *zonelist;
4063
54a6eb5c 4064 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4065 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4066 zonelist->_zonerefs[j].zone = NULL;
4067 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4068}
4069
f0c0b2b8
KH
4070/*
4071 * Build zonelists ordered by zone and nodes within zones.
4072 * This results in conserving DMA zone[s] until all Normal memory is
4073 * exhausted, but results in overflowing to remote node while memory
4074 * may still exist in local DMA zone.
4075 */
4076static int node_order[MAX_NUMNODES];
4077
4078static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4079{
f0c0b2b8
KH
4080 int pos, j, node;
4081 int zone_type; /* needs to be signed */
4082 struct zone *z;
4083 struct zonelist *zonelist;
4084
54a6eb5c
MG
4085 zonelist = &pgdat->node_zonelists[0];
4086 pos = 0;
4087 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4088 for (j = 0; j < nr_nodes; j++) {
4089 node = node_order[j];
4090 z = &NODE_DATA(node)->node_zones[zone_type];
4091 if (populated_zone(z)) {
dd1a239f
MG
4092 zoneref_set_zone(z,
4093 &zonelist->_zonerefs[pos++]);
54a6eb5c 4094 check_highest_zone(zone_type);
f0c0b2b8
KH
4095 }
4096 }
f0c0b2b8 4097 }
dd1a239f
MG
4098 zonelist->_zonerefs[pos].zone = NULL;
4099 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4100}
4101
3193913c
MG
4102#if defined(CONFIG_64BIT)
4103/*
4104 * Devices that require DMA32/DMA are relatively rare and do not justify a
4105 * penalty to every machine in case the specialised case applies. Default
4106 * to Node-ordering on 64-bit NUMA machines
4107 */
4108static int default_zonelist_order(void)
4109{
4110 return ZONELIST_ORDER_NODE;
4111}
4112#else
4113/*
4114 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4115 * by the kernel. If processes running on node 0 deplete the low memory zone
4116 * then reclaim will occur more frequency increasing stalls and potentially
4117 * be easier to OOM if a large percentage of the zone is under writeback or
4118 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4119 * Hence, default to zone ordering on 32-bit.
4120 */
f0c0b2b8
KH
4121static int default_zonelist_order(void)
4122{
f0c0b2b8
KH
4123 return ZONELIST_ORDER_ZONE;
4124}
3193913c 4125#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4126
4127static void set_zonelist_order(void)
4128{
4129 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4130 current_zonelist_order = default_zonelist_order();
4131 else
4132 current_zonelist_order = user_zonelist_order;
4133}
4134
4135static void build_zonelists(pg_data_t *pgdat)
4136{
c00eb15a 4137 int i, node, load;
1da177e4 4138 nodemask_t used_mask;
f0c0b2b8
KH
4139 int local_node, prev_node;
4140 struct zonelist *zonelist;
d00181b9 4141 unsigned int order = current_zonelist_order;
1da177e4
LT
4142
4143 /* initialize zonelists */
523b9458 4144 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4145 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4146 zonelist->_zonerefs[0].zone = NULL;
4147 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4148 }
4149
4150 /* NUMA-aware ordering of nodes */
4151 local_node = pgdat->node_id;
62bc62a8 4152 load = nr_online_nodes;
1da177e4
LT
4153 prev_node = local_node;
4154 nodes_clear(used_mask);
f0c0b2b8 4155
f0c0b2b8 4156 memset(node_order, 0, sizeof(node_order));
c00eb15a 4157 i = 0;
f0c0b2b8 4158
1da177e4
LT
4159 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4160 /*
4161 * We don't want to pressure a particular node.
4162 * So adding penalty to the first node in same
4163 * distance group to make it round-robin.
4164 */
957f822a
DR
4165 if (node_distance(local_node, node) !=
4166 node_distance(local_node, prev_node))
f0c0b2b8
KH
4167 node_load[node] = load;
4168
1da177e4
LT
4169 prev_node = node;
4170 load--;
f0c0b2b8
KH
4171 if (order == ZONELIST_ORDER_NODE)
4172 build_zonelists_in_node_order(pgdat, node);
4173 else
c00eb15a 4174 node_order[i++] = node; /* remember order */
f0c0b2b8 4175 }
1da177e4 4176
f0c0b2b8
KH
4177 if (order == ZONELIST_ORDER_ZONE) {
4178 /* calculate node order -- i.e., DMA last! */
c00eb15a 4179 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4180 }
523b9458
CL
4181
4182 build_thisnode_zonelists(pgdat);
1da177e4
LT
4183}
4184
7aac7898
LS
4185#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4186/*
4187 * Return node id of node used for "local" allocations.
4188 * I.e., first node id of first zone in arg node's generic zonelist.
4189 * Used for initializing percpu 'numa_mem', which is used primarily
4190 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4191 */
4192int local_memory_node(int node)
4193{
4194 struct zone *zone;
4195
4196 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4197 gfp_zone(GFP_KERNEL),
4198 NULL,
4199 &zone);
4200 return zone->node;
4201}
4202#endif
f0c0b2b8 4203
1da177e4
LT
4204#else /* CONFIG_NUMA */
4205
f0c0b2b8
KH
4206static void set_zonelist_order(void)
4207{
4208 current_zonelist_order = ZONELIST_ORDER_ZONE;
4209}
4210
4211static void build_zonelists(pg_data_t *pgdat)
1da177e4 4212{
19655d34 4213 int node, local_node;
54a6eb5c
MG
4214 enum zone_type j;
4215 struct zonelist *zonelist;
1da177e4
LT
4216
4217 local_node = pgdat->node_id;
1da177e4 4218
54a6eb5c 4219 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4220 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4221
54a6eb5c
MG
4222 /*
4223 * Now we build the zonelist so that it contains the zones
4224 * of all the other nodes.
4225 * We don't want to pressure a particular node, so when
4226 * building the zones for node N, we make sure that the
4227 * zones coming right after the local ones are those from
4228 * node N+1 (modulo N)
4229 */
4230 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4231 if (!node_online(node))
4232 continue;
bc732f1d 4233 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4234 }
54a6eb5c
MG
4235 for (node = 0; node < local_node; node++) {
4236 if (!node_online(node))
4237 continue;
bc732f1d 4238 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4239 }
4240
dd1a239f
MG
4241 zonelist->_zonerefs[j].zone = NULL;
4242 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4243}
4244
4245#endif /* CONFIG_NUMA */
4246
99dcc3e5
CL
4247/*
4248 * Boot pageset table. One per cpu which is going to be used for all
4249 * zones and all nodes. The parameters will be set in such a way
4250 * that an item put on a list will immediately be handed over to
4251 * the buddy list. This is safe since pageset manipulation is done
4252 * with interrupts disabled.
4253 *
4254 * The boot_pagesets must be kept even after bootup is complete for
4255 * unused processors and/or zones. They do play a role for bootstrapping
4256 * hotplugged processors.
4257 *
4258 * zoneinfo_show() and maybe other functions do
4259 * not check if the processor is online before following the pageset pointer.
4260 * Other parts of the kernel may not check if the zone is available.
4261 */
4262static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4263static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4264static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4265
4eaf3f64
HL
4266/*
4267 * Global mutex to protect against size modification of zonelists
4268 * as well as to serialize pageset setup for the new populated zone.
4269 */
4270DEFINE_MUTEX(zonelists_mutex);
4271
9b1a4d38 4272/* return values int ....just for stop_machine() */
4ed7e022 4273static int __build_all_zonelists(void *data)
1da177e4 4274{
6811378e 4275 int nid;
99dcc3e5 4276 int cpu;
9adb62a5 4277 pg_data_t *self = data;
9276b1bc 4278
7f9cfb31
BL
4279#ifdef CONFIG_NUMA
4280 memset(node_load, 0, sizeof(node_load));
4281#endif
9adb62a5
JL
4282
4283 if (self && !node_online(self->node_id)) {
4284 build_zonelists(self);
9adb62a5
JL
4285 }
4286
9276b1bc 4287 for_each_online_node(nid) {
7ea1530a
CL
4288 pg_data_t *pgdat = NODE_DATA(nid);
4289
4290 build_zonelists(pgdat);
9276b1bc 4291 }
99dcc3e5
CL
4292
4293 /*
4294 * Initialize the boot_pagesets that are going to be used
4295 * for bootstrapping processors. The real pagesets for
4296 * each zone will be allocated later when the per cpu
4297 * allocator is available.
4298 *
4299 * boot_pagesets are used also for bootstrapping offline
4300 * cpus if the system is already booted because the pagesets
4301 * are needed to initialize allocators on a specific cpu too.
4302 * F.e. the percpu allocator needs the page allocator which
4303 * needs the percpu allocator in order to allocate its pagesets
4304 * (a chicken-egg dilemma).
4305 */
7aac7898 4306 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4307 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4308
7aac7898
LS
4309#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4310 /*
4311 * We now know the "local memory node" for each node--
4312 * i.e., the node of the first zone in the generic zonelist.
4313 * Set up numa_mem percpu variable for on-line cpus. During
4314 * boot, only the boot cpu should be on-line; we'll init the
4315 * secondary cpus' numa_mem as they come on-line. During
4316 * node/memory hotplug, we'll fixup all on-line cpus.
4317 */
4318 if (cpu_online(cpu))
4319 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4320#endif
4321 }
4322
6811378e
YG
4323 return 0;
4324}
4325
061f67bc
RV
4326static noinline void __init
4327build_all_zonelists_init(void)
4328{
4329 __build_all_zonelists(NULL);
4330 mminit_verify_zonelist();
4331 cpuset_init_current_mems_allowed();
4332}
4333
4eaf3f64
HL
4334/*
4335 * Called with zonelists_mutex held always
4336 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4337 *
4338 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4339 * [we're only called with non-NULL zone through __meminit paths] and
4340 * (2) call of __init annotated helper build_all_zonelists_init
4341 * [protected by SYSTEM_BOOTING].
4eaf3f64 4342 */
9adb62a5 4343void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4344{
f0c0b2b8
KH
4345 set_zonelist_order();
4346
6811378e 4347 if (system_state == SYSTEM_BOOTING) {
061f67bc 4348 build_all_zonelists_init();
6811378e 4349 } else {
e9959f0f 4350#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4351 if (zone)
4352 setup_zone_pageset(zone);
e9959f0f 4353#endif
dd1895e2
CS
4354 /* we have to stop all cpus to guarantee there is no user
4355 of zonelist */
9adb62a5 4356 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4357 /* cpuset refresh routine should be here */
4358 }
bd1e22b8 4359 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4360 /*
4361 * Disable grouping by mobility if the number of pages in the
4362 * system is too low to allow the mechanism to work. It would be
4363 * more accurate, but expensive to check per-zone. This check is
4364 * made on memory-hotadd so a system can start with mobility
4365 * disabled and enable it later
4366 */
d9c23400 4367 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4368 page_group_by_mobility_disabled = 1;
4369 else
4370 page_group_by_mobility_disabled = 0;
4371
f88dfff5 4372 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
9ef9acb0 4373 "Total pages: %ld\n",
62bc62a8 4374 nr_online_nodes,
f0c0b2b8 4375 zonelist_order_name[current_zonelist_order],
9ef9acb0 4376 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
4377 vm_total_pages);
4378#ifdef CONFIG_NUMA
f88dfff5 4379 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4380#endif
1da177e4
LT
4381}
4382
4383/*
4384 * Helper functions to size the waitqueue hash table.
4385 * Essentially these want to choose hash table sizes sufficiently
4386 * large so that collisions trying to wait on pages are rare.
4387 * But in fact, the number of active page waitqueues on typical
4388 * systems is ridiculously low, less than 200. So this is even
4389 * conservative, even though it seems large.
4390 *
4391 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4392 * waitqueues, i.e. the size of the waitq table given the number of pages.
4393 */
4394#define PAGES_PER_WAITQUEUE 256
4395
cca448fe 4396#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4397static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4398{
4399 unsigned long size = 1;
4400
4401 pages /= PAGES_PER_WAITQUEUE;
4402
4403 while (size < pages)
4404 size <<= 1;
4405
4406 /*
4407 * Once we have dozens or even hundreds of threads sleeping
4408 * on IO we've got bigger problems than wait queue collision.
4409 * Limit the size of the wait table to a reasonable size.
4410 */
4411 size = min(size, 4096UL);
4412
4413 return max(size, 4UL);
4414}
cca448fe
YG
4415#else
4416/*
4417 * A zone's size might be changed by hot-add, so it is not possible to determine
4418 * a suitable size for its wait_table. So we use the maximum size now.
4419 *
4420 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4421 *
4422 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4423 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4424 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4425 *
4426 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4427 * or more by the traditional way. (See above). It equals:
4428 *
4429 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4430 * ia64(16K page size) : = ( 8G + 4M)byte.
4431 * powerpc (64K page size) : = (32G +16M)byte.
4432 */
4433static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4434{
4435 return 4096UL;
4436}
4437#endif
1da177e4
LT
4438
4439/*
4440 * This is an integer logarithm so that shifts can be used later
4441 * to extract the more random high bits from the multiplicative
4442 * hash function before the remainder is taken.
4443 */
4444static inline unsigned long wait_table_bits(unsigned long size)
4445{
4446 return ffz(~size);
4447}
4448
1da177e4
LT
4449/*
4450 * Initially all pages are reserved - free ones are freed
4451 * up by free_all_bootmem() once the early boot process is
4452 * done. Non-atomic initialization, single-pass.
4453 */
c09b4240 4454void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4455 unsigned long start_pfn, enum memmap_context context)
1da177e4 4456{
3a80a7fa 4457 pg_data_t *pgdat = NODE_DATA(nid);
29751f69
AW
4458 unsigned long end_pfn = start_pfn + size;
4459 unsigned long pfn;
86051ca5 4460 struct zone *z;
3a80a7fa 4461 unsigned long nr_initialised = 0;
1da177e4 4462
22b31eec
HD
4463 if (highest_memmap_pfn < end_pfn - 1)
4464 highest_memmap_pfn = end_pfn - 1;
4465
3a80a7fa 4466 z = &pgdat->node_zones[zone];
cbe8dd4a 4467 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
4468 /*
4469 * There can be holes in boot-time mem_map[]s
4470 * handed to this function. They do not
4471 * exist on hotplugged memory.
4472 */
4473 if (context == MEMMAP_EARLY) {
4474 if (!early_pfn_valid(pfn))
4475 continue;
4476 if (!early_pfn_in_nid(pfn, nid))
4477 continue;
3a80a7fa
MG
4478 if (!update_defer_init(pgdat, pfn, end_pfn,
4479 &nr_initialised))
4480 break;
a2f3aa02 4481 }
ac5d2539
MG
4482
4483 /*
4484 * Mark the block movable so that blocks are reserved for
4485 * movable at startup. This will force kernel allocations
4486 * to reserve their blocks rather than leaking throughout
4487 * the address space during boot when many long-lived
974a786e 4488 * kernel allocations are made.
ac5d2539
MG
4489 *
4490 * bitmap is created for zone's valid pfn range. but memmap
4491 * can be created for invalid pages (for alignment)
4492 * check here not to call set_pageblock_migratetype() against
4493 * pfn out of zone.
4494 */
4495 if (!(pfn & (pageblock_nr_pages - 1))) {
4496 struct page *page = pfn_to_page(pfn);
4497
4498 __init_single_page(page, pfn, zone, nid);
4499 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4500 } else {
4501 __init_single_pfn(pfn, zone, nid);
4502 }
1da177e4
LT
4503 }
4504}
4505
1e548deb 4506static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4507{
7aeb09f9 4508 unsigned int order, t;
b2a0ac88
MG
4509 for_each_migratetype_order(order, t) {
4510 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4511 zone->free_area[order].nr_free = 0;
4512 }
4513}
4514
4515#ifndef __HAVE_ARCH_MEMMAP_INIT
4516#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4517 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4518#endif
4519
7cd2b0a3 4520static int zone_batchsize(struct zone *zone)
e7c8d5c9 4521{
3a6be87f 4522#ifdef CONFIG_MMU
e7c8d5c9
CL
4523 int batch;
4524
4525 /*
4526 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4527 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4528 *
4529 * OK, so we don't know how big the cache is. So guess.
4530 */
b40da049 4531 batch = zone->managed_pages / 1024;
ba56e91c
SR
4532 if (batch * PAGE_SIZE > 512 * 1024)
4533 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4534 batch /= 4; /* We effectively *= 4 below */
4535 if (batch < 1)
4536 batch = 1;
4537
4538 /*
0ceaacc9
NP
4539 * Clamp the batch to a 2^n - 1 value. Having a power
4540 * of 2 value was found to be more likely to have
4541 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4542 *
0ceaacc9
NP
4543 * For example if 2 tasks are alternately allocating
4544 * batches of pages, one task can end up with a lot
4545 * of pages of one half of the possible page colors
4546 * and the other with pages of the other colors.
e7c8d5c9 4547 */
9155203a 4548 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4549
e7c8d5c9 4550 return batch;
3a6be87f
DH
4551
4552#else
4553 /* The deferral and batching of frees should be suppressed under NOMMU
4554 * conditions.
4555 *
4556 * The problem is that NOMMU needs to be able to allocate large chunks
4557 * of contiguous memory as there's no hardware page translation to
4558 * assemble apparent contiguous memory from discontiguous pages.
4559 *
4560 * Queueing large contiguous runs of pages for batching, however,
4561 * causes the pages to actually be freed in smaller chunks. As there
4562 * can be a significant delay between the individual batches being
4563 * recycled, this leads to the once large chunks of space being
4564 * fragmented and becoming unavailable for high-order allocations.
4565 */
4566 return 0;
4567#endif
e7c8d5c9
CL
4568}
4569
8d7a8fa9
CS
4570/*
4571 * pcp->high and pcp->batch values are related and dependent on one another:
4572 * ->batch must never be higher then ->high.
4573 * The following function updates them in a safe manner without read side
4574 * locking.
4575 *
4576 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4577 * those fields changing asynchronously (acording the the above rule).
4578 *
4579 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4580 * outside of boot time (or some other assurance that no concurrent updaters
4581 * exist).
4582 */
4583static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4584 unsigned long batch)
4585{
4586 /* start with a fail safe value for batch */
4587 pcp->batch = 1;
4588 smp_wmb();
4589
4590 /* Update high, then batch, in order */
4591 pcp->high = high;
4592 smp_wmb();
4593
4594 pcp->batch = batch;
4595}
4596
3664033c 4597/* a companion to pageset_set_high() */
4008bab7
CS
4598static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4599{
8d7a8fa9 4600 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4601}
4602
88c90dbc 4603static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4604{
4605 struct per_cpu_pages *pcp;
5f8dcc21 4606 int migratetype;
2caaad41 4607
1c6fe946
MD
4608 memset(p, 0, sizeof(*p));
4609
3dfa5721 4610 pcp = &p->pcp;
2caaad41 4611 pcp->count = 0;
5f8dcc21
MG
4612 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4613 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4614}
4615
88c90dbc
CS
4616static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4617{
4618 pageset_init(p);
4619 pageset_set_batch(p, batch);
4620}
4621
8ad4b1fb 4622/*
3664033c 4623 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4624 * to the value high for the pageset p.
4625 */
3664033c 4626static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4627 unsigned long high)
4628{
8d7a8fa9
CS
4629 unsigned long batch = max(1UL, high / 4);
4630 if ((high / 4) > (PAGE_SHIFT * 8))
4631 batch = PAGE_SHIFT * 8;
8ad4b1fb 4632
8d7a8fa9 4633 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4634}
4635
7cd2b0a3
DR
4636static void pageset_set_high_and_batch(struct zone *zone,
4637 struct per_cpu_pageset *pcp)
56cef2b8 4638{
56cef2b8 4639 if (percpu_pagelist_fraction)
3664033c 4640 pageset_set_high(pcp,
56cef2b8
CS
4641 (zone->managed_pages /
4642 percpu_pagelist_fraction));
4643 else
4644 pageset_set_batch(pcp, zone_batchsize(zone));
4645}
4646
169f6c19
CS
4647static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4648{
4649 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4650
4651 pageset_init(pcp);
4652 pageset_set_high_and_batch(zone, pcp);
4653}
4654
4ed7e022 4655static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
4656{
4657 int cpu;
319774e2 4658 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
4659 for_each_possible_cpu(cpu)
4660 zone_pageset_init(zone, cpu);
319774e2
WF
4661}
4662
2caaad41 4663/*
99dcc3e5
CL
4664 * Allocate per cpu pagesets and initialize them.
4665 * Before this call only boot pagesets were available.
e7c8d5c9 4666 */
99dcc3e5 4667void __init setup_per_cpu_pageset(void)
e7c8d5c9 4668{
99dcc3e5 4669 struct zone *zone;
e7c8d5c9 4670
319774e2
WF
4671 for_each_populated_zone(zone)
4672 setup_zone_pageset(zone);
e7c8d5c9
CL
4673}
4674
577a32f6 4675static noinline __init_refok
cca448fe 4676int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
4677{
4678 int i;
cca448fe 4679 size_t alloc_size;
ed8ece2e
DH
4680
4681 /*
4682 * The per-page waitqueue mechanism uses hashed waitqueues
4683 * per zone.
4684 */
02b694de
YG
4685 zone->wait_table_hash_nr_entries =
4686 wait_table_hash_nr_entries(zone_size_pages);
4687 zone->wait_table_bits =
4688 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
4689 alloc_size = zone->wait_table_hash_nr_entries
4690 * sizeof(wait_queue_head_t);
4691
cd94b9db 4692 if (!slab_is_available()) {
cca448fe 4693 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
4694 memblock_virt_alloc_node_nopanic(
4695 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
4696 } else {
4697 /*
4698 * This case means that a zone whose size was 0 gets new memory
4699 * via memory hot-add.
4700 * But it may be the case that a new node was hot-added. In
4701 * this case vmalloc() will not be able to use this new node's
4702 * memory - this wait_table must be initialized to use this new
4703 * node itself as well.
4704 * To use this new node's memory, further consideration will be
4705 * necessary.
4706 */
8691f3a7 4707 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
4708 }
4709 if (!zone->wait_table)
4710 return -ENOMEM;
ed8ece2e 4711
b8af2941 4712 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 4713 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
4714
4715 return 0;
ed8ece2e
DH
4716}
4717
c09b4240 4718static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 4719{
99dcc3e5
CL
4720 /*
4721 * per cpu subsystem is not up at this point. The following code
4722 * relies on the ability of the linker to provide the
4723 * offset of a (static) per cpu variable into the per cpu area.
4724 */
4725 zone->pageset = &boot_pageset;
ed8ece2e 4726
b38a8725 4727 if (populated_zone(zone))
99dcc3e5
CL
4728 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4729 zone->name, zone->present_pages,
4730 zone_batchsize(zone));
ed8ece2e
DH
4731}
4732
4ed7e022 4733int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 4734 unsigned long zone_start_pfn,
b171e409 4735 unsigned long size)
ed8ece2e
DH
4736{
4737 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
4738 int ret;
4739 ret = zone_wait_table_init(zone, size);
4740 if (ret)
4741 return ret;
ed8ece2e
DH
4742 pgdat->nr_zones = zone_idx(zone) + 1;
4743
ed8ece2e
DH
4744 zone->zone_start_pfn = zone_start_pfn;
4745
708614e6
MG
4746 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4747 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4748 pgdat->node_id,
4749 (unsigned long)zone_idx(zone),
4750 zone_start_pfn, (zone_start_pfn + size));
4751
1e548deb 4752 zone_init_free_lists(zone);
718127cc
YG
4753
4754 return 0;
ed8ece2e
DH
4755}
4756
0ee332c1 4757#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 4758#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 4759
c713216d
MG
4760/*
4761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 4762 */
8a942fde
MG
4763int __meminit __early_pfn_to_nid(unsigned long pfn,
4764 struct mminit_pfnnid_cache *state)
c713216d 4765{
c13291a5 4766 unsigned long start_pfn, end_pfn;
e76b63f8 4767 int nid;
7c243c71 4768
8a942fde
MG
4769 if (state->last_start <= pfn && pfn < state->last_end)
4770 return state->last_nid;
c713216d 4771
e76b63f8
YL
4772 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4773 if (nid != -1) {
8a942fde
MG
4774 state->last_start = start_pfn;
4775 state->last_end = end_pfn;
4776 state->last_nid = nid;
e76b63f8
YL
4777 }
4778
4779 return nid;
c713216d
MG
4780}
4781#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4782
c713216d 4783/**
6782832e 4784 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 4785 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 4786 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 4787 *
7d018176
ZZ
4788 * If an architecture guarantees that all ranges registered contain no holes
4789 * and may be freed, this this function may be used instead of calling
4790 * memblock_free_early_nid() manually.
c713216d 4791 */
c13291a5 4792void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 4793{
c13291a5
TH
4794 unsigned long start_pfn, end_pfn;
4795 int i, this_nid;
edbe7d23 4796
c13291a5
TH
4797 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4798 start_pfn = min(start_pfn, max_low_pfn);
4799 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 4800
c13291a5 4801 if (start_pfn < end_pfn)
6782832e
SS
4802 memblock_free_early_nid(PFN_PHYS(start_pfn),
4803 (end_pfn - start_pfn) << PAGE_SHIFT,
4804 this_nid);
edbe7d23 4805 }
edbe7d23 4806}
edbe7d23 4807
c713216d
MG
4808/**
4809 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 4810 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 4811 *
7d018176
ZZ
4812 * If an architecture guarantees that all ranges registered contain no holes and may
4813 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
4814 */
4815void __init sparse_memory_present_with_active_regions(int nid)
4816{
c13291a5
TH
4817 unsigned long start_pfn, end_pfn;
4818 int i, this_nid;
c713216d 4819
c13291a5
TH
4820 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4821 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
4822}
4823
4824/**
4825 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
4826 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4827 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4828 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
4829 *
4830 * It returns the start and end page frame of a node based on information
7d018176 4831 * provided by memblock_set_node(). If called for a node
c713216d 4832 * with no available memory, a warning is printed and the start and end
88ca3b94 4833 * PFNs will be 0.
c713216d 4834 */
a3142c8e 4835void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
4836 unsigned long *start_pfn, unsigned long *end_pfn)
4837{
c13291a5 4838 unsigned long this_start_pfn, this_end_pfn;
c713216d 4839 int i;
c13291a5 4840
c713216d
MG
4841 *start_pfn = -1UL;
4842 *end_pfn = 0;
4843
c13291a5
TH
4844 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4845 *start_pfn = min(*start_pfn, this_start_pfn);
4846 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
4847 }
4848
633c0666 4849 if (*start_pfn == -1UL)
c713216d 4850 *start_pfn = 0;
c713216d
MG
4851}
4852
2a1e274a
MG
4853/*
4854 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4855 * assumption is made that zones within a node are ordered in monotonic
4856 * increasing memory addresses so that the "highest" populated zone is used
4857 */
b69a7288 4858static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
4859{
4860 int zone_index;
4861 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4862 if (zone_index == ZONE_MOVABLE)
4863 continue;
4864
4865 if (arch_zone_highest_possible_pfn[zone_index] >
4866 arch_zone_lowest_possible_pfn[zone_index])
4867 break;
4868 }
4869
4870 VM_BUG_ON(zone_index == -1);
4871 movable_zone = zone_index;
4872}
4873
4874/*
4875 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 4876 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
4877 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4878 * in each node depending on the size of each node and how evenly kernelcore
4879 * is distributed. This helper function adjusts the zone ranges
4880 * provided by the architecture for a given node by using the end of the
4881 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4882 * zones within a node are in order of monotonic increases memory addresses
4883 */
b69a7288 4884static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
4885 unsigned long zone_type,
4886 unsigned long node_start_pfn,
4887 unsigned long node_end_pfn,
4888 unsigned long *zone_start_pfn,
4889 unsigned long *zone_end_pfn)
4890{
4891 /* Only adjust if ZONE_MOVABLE is on this node */
4892 if (zone_movable_pfn[nid]) {
4893 /* Size ZONE_MOVABLE */
4894 if (zone_type == ZONE_MOVABLE) {
4895 *zone_start_pfn = zone_movable_pfn[nid];
4896 *zone_end_pfn = min(node_end_pfn,
4897 arch_zone_highest_possible_pfn[movable_zone]);
4898
4899 /* Adjust for ZONE_MOVABLE starting within this range */
4900 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4901 *zone_end_pfn > zone_movable_pfn[nid]) {
4902 *zone_end_pfn = zone_movable_pfn[nid];
4903
4904 /* Check if this whole range is within ZONE_MOVABLE */
4905 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4906 *zone_start_pfn = *zone_end_pfn;
4907 }
4908}
4909
c713216d
MG
4910/*
4911 * Return the number of pages a zone spans in a node, including holes
4912 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4913 */
6ea6e688 4914static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 4915 unsigned long zone_type,
7960aedd
ZY
4916 unsigned long node_start_pfn,
4917 unsigned long node_end_pfn,
c713216d
MG
4918 unsigned long *ignored)
4919{
c713216d
MG
4920 unsigned long zone_start_pfn, zone_end_pfn;
4921
b5685e92 4922 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4923 if (!node_start_pfn && !node_end_pfn)
4924 return 0;
4925
7960aedd 4926 /* Get the start and end of the zone */
c713216d
MG
4927 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4928 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
4929 adjust_zone_range_for_zone_movable(nid, zone_type,
4930 node_start_pfn, node_end_pfn,
4931 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
4932
4933 /* Check that this node has pages within the zone's required range */
4934 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4935 return 0;
4936
4937 /* Move the zone boundaries inside the node if necessary */
4938 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4939 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4940
4941 /* Return the spanned pages */
4942 return zone_end_pfn - zone_start_pfn;
4943}
4944
4945/*
4946 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 4947 * then all holes in the requested range will be accounted for.
c713216d 4948 */
32996250 4949unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
4950 unsigned long range_start_pfn,
4951 unsigned long range_end_pfn)
4952{
96e907d1
TH
4953 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4954 unsigned long start_pfn, end_pfn;
4955 int i;
c713216d 4956
96e907d1
TH
4957 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4958 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4959 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4960 nr_absent -= end_pfn - start_pfn;
c713216d 4961 }
96e907d1 4962 return nr_absent;
c713216d
MG
4963}
4964
4965/**
4966 * absent_pages_in_range - Return number of page frames in holes within a range
4967 * @start_pfn: The start PFN to start searching for holes
4968 * @end_pfn: The end PFN to stop searching for holes
4969 *
88ca3b94 4970 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
4971 */
4972unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4973 unsigned long end_pfn)
4974{
4975 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4976}
4977
4978/* Return the number of page frames in holes in a zone on a node */
6ea6e688 4979static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 4980 unsigned long zone_type,
7960aedd
ZY
4981 unsigned long node_start_pfn,
4982 unsigned long node_end_pfn,
c713216d
MG
4983 unsigned long *ignored)
4984{
96e907d1
TH
4985 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4986 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687
MG
4987 unsigned long zone_start_pfn, zone_end_pfn;
4988
b5685e92 4989 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
4990 if (!node_start_pfn && !node_end_pfn)
4991 return 0;
4992
96e907d1
TH
4993 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4994 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 4995
2a1e274a
MG
4996 adjust_zone_range_for_zone_movable(nid, zone_type,
4997 node_start_pfn, node_end_pfn,
4998 &zone_start_pfn, &zone_end_pfn);
9c7cd687 4999 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 5000}
0e0b864e 5001
0ee332c1 5002#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5003static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5004 unsigned long zone_type,
7960aedd
ZY
5005 unsigned long node_start_pfn,
5006 unsigned long node_end_pfn,
c713216d
MG
5007 unsigned long *zones_size)
5008{
5009 return zones_size[zone_type];
5010}
5011
6ea6e688 5012static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5013 unsigned long zone_type,
7960aedd
ZY
5014 unsigned long node_start_pfn,
5015 unsigned long node_end_pfn,
c713216d
MG
5016 unsigned long *zholes_size)
5017{
5018 if (!zholes_size)
5019 return 0;
5020
5021 return zholes_size[zone_type];
5022}
20e6926d 5023
0ee332c1 5024#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5025
a3142c8e 5026static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5027 unsigned long node_start_pfn,
5028 unsigned long node_end_pfn,
5029 unsigned long *zones_size,
5030 unsigned long *zholes_size)
c713216d 5031{
febd5949 5032 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5033 enum zone_type i;
5034
febd5949
GZ
5035 for (i = 0; i < MAX_NR_ZONES; i++) {
5036 struct zone *zone = pgdat->node_zones + i;
5037 unsigned long size, real_size;
c713216d 5038
febd5949
GZ
5039 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5040 node_start_pfn,
5041 node_end_pfn,
5042 zones_size);
5043 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5044 node_start_pfn, node_end_pfn,
5045 zholes_size);
febd5949
GZ
5046 zone->spanned_pages = size;
5047 zone->present_pages = real_size;
5048
5049 totalpages += size;
5050 realtotalpages += real_size;
5051 }
5052
5053 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5054 pgdat->node_present_pages = realtotalpages;
5055 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5056 realtotalpages);
5057}
5058
835c134e
MG
5059#ifndef CONFIG_SPARSEMEM
5060/*
5061 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5062 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5063 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5064 * round what is now in bits to nearest long in bits, then return it in
5065 * bytes.
5066 */
7c45512d 5067static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5068{
5069 unsigned long usemapsize;
5070
7c45512d 5071 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5072 usemapsize = roundup(zonesize, pageblock_nr_pages);
5073 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5074 usemapsize *= NR_PAGEBLOCK_BITS;
5075 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5076
5077 return usemapsize / 8;
5078}
5079
5080static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5081 struct zone *zone,
5082 unsigned long zone_start_pfn,
5083 unsigned long zonesize)
835c134e 5084{
7c45512d 5085 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5086 zone->pageblock_flags = NULL;
58a01a45 5087 if (usemapsize)
6782832e
SS
5088 zone->pageblock_flags =
5089 memblock_virt_alloc_node_nopanic(usemapsize,
5090 pgdat->node_id);
835c134e
MG
5091}
5092#else
7c45512d
LT
5093static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5094 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5095#endif /* CONFIG_SPARSEMEM */
5096
d9c23400 5097#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5098
d9c23400 5099/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5100void __paginginit set_pageblock_order(void)
d9c23400 5101{
955c1cd7
AM
5102 unsigned int order;
5103
d9c23400
MG
5104 /* Check that pageblock_nr_pages has not already been setup */
5105 if (pageblock_order)
5106 return;
5107
955c1cd7
AM
5108 if (HPAGE_SHIFT > PAGE_SHIFT)
5109 order = HUGETLB_PAGE_ORDER;
5110 else
5111 order = MAX_ORDER - 1;
5112
d9c23400
MG
5113 /*
5114 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5115 * This value may be variable depending on boot parameters on IA64 and
5116 * powerpc.
d9c23400
MG
5117 */
5118 pageblock_order = order;
5119}
5120#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5121
ba72cb8c
MG
5122/*
5123 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5124 * is unused as pageblock_order is set at compile-time. See
5125 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5126 * the kernel config
ba72cb8c 5127 */
15ca220e 5128void __paginginit set_pageblock_order(void)
ba72cb8c 5129{
ba72cb8c 5130}
d9c23400
MG
5131
5132#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5133
01cefaef
JL
5134static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5135 unsigned long present_pages)
5136{
5137 unsigned long pages = spanned_pages;
5138
5139 /*
5140 * Provide a more accurate estimation if there are holes within
5141 * the zone and SPARSEMEM is in use. If there are holes within the
5142 * zone, each populated memory region may cost us one or two extra
5143 * memmap pages due to alignment because memmap pages for each
5144 * populated regions may not naturally algined on page boundary.
5145 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5146 */
5147 if (spanned_pages > present_pages + (present_pages >> 4) &&
5148 IS_ENABLED(CONFIG_SPARSEMEM))
5149 pages = present_pages;
5150
5151 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5152}
5153
1da177e4
LT
5154/*
5155 * Set up the zone data structures:
5156 * - mark all pages reserved
5157 * - mark all memory queues empty
5158 * - clear the memory bitmaps
6527af5d
MK
5159 *
5160 * NOTE: pgdat should get zeroed by caller.
1da177e4 5161 */
7f3eb55b 5162static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5163{
2f1b6248 5164 enum zone_type j;
ed8ece2e 5165 int nid = pgdat->node_id;
1da177e4 5166 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 5167 int ret;
1da177e4 5168
208d54e5 5169 pgdat_resize_init(pgdat);
8177a420
AA
5170#ifdef CONFIG_NUMA_BALANCING
5171 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5172 pgdat->numabalancing_migrate_nr_pages = 0;
5173 pgdat->numabalancing_migrate_next_window = jiffies;
5174#endif
1da177e4 5175 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5176 init_waitqueue_head(&pgdat->pfmemalloc_wait);
eefa864b 5177 pgdat_page_ext_init(pgdat);
5f63b720 5178
1da177e4
LT
5179 for (j = 0; j < MAX_NR_ZONES; j++) {
5180 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5181 unsigned long size, realsize, freesize, memmap_pages;
1da177e4 5182
febd5949
GZ
5183 size = zone->spanned_pages;
5184 realsize = freesize = zone->present_pages;
1da177e4 5185
0e0b864e 5186 /*
9feedc9d 5187 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5188 * is used by this zone for memmap. This affects the watermark
5189 * and per-cpu initialisations
5190 */
01cefaef 5191 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5192 if (!is_highmem_idx(j)) {
5193 if (freesize >= memmap_pages) {
5194 freesize -= memmap_pages;
5195 if (memmap_pages)
5196 printk(KERN_DEBUG
5197 " %s zone: %lu pages used for memmap\n",
5198 zone_names[j], memmap_pages);
5199 } else
5200 printk(KERN_WARNING
5201 " %s zone: %lu pages exceeds freesize %lu\n",
5202 zone_names[j], memmap_pages, freesize);
5203 }
0e0b864e 5204
6267276f 5205 /* Account for reserved pages */
9feedc9d
JL
5206 if (j == 0 && freesize > dma_reserve) {
5207 freesize -= dma_reserve;
d903ef9f 5208 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5209 zone_names[0], dma_reserve);
0e0b864e
MG
5210 }
5211
98d2b0eb 5212 if (!is_highmem_idx(j))
9feedc9d 5213 nr_kernel_pages += freesize;
01cefaef
JL
5214 /* Charge for highmem memmap if there are enough kernel pages */
5215 else if (nr_kernel_pages > memmap_pages * 2)
5216 nr_kernel_pages -= memmap_pages;
9feedc9d 5217 nr_all_pages += freesize;
1da177e4 5218
9feedc9d
JL
5219 /*
5220 * Set an approximate value for lowmem here, it will be adjusted
5221 * when the bootmem allocator frees pages into the buddy system.
5222 * And all highmem pages will be managed by the buddy system.
5223 */
5224 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5225#ifdef CONFIG_NUMA
d5f541ed 5226 zone->node = nid;
9feedc9d 5227 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5228 / 100;
9feedc9d 5229 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5230#endif
1da177e4
LT
5231 zone->name = zone_names[j];
5232 spin_lock_init(&zone->lock);
5233 spin_lock_init(&zone->lru_lock);
bdc8cb98 5234 zone_seqlock_init(zone);
1da177e4 5235 zone->zone_pgdat = pgdat;
ed8ece2e 5236 zone_pcp_init(zone);
81c0a2bb
JW
5237
5238 /* For bootup, initialized properly in watermark setup */
5239 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5240
bea8c150 5241 lruvec_init(&zone->lruvec);
1da177e4
LT
5242 if (!size)
5243 continue;
5244
955c1cd7 5245 set_pageblock_order();
7c45512d 5246 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5247 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5248 BUG_ON(ret);
76cdd58e 5249 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 5250 zone_start_pfn += size;
1da177e4
LT
5251 }
5252}
5253
577a32f6 5254static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5255{
b0aeba74 5256 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5257 unsigned long __maybe_unused offset = 0;
5258
1da177e4
LT
5259 /* Skip empty nodes */
5260 if (!pgdat->node_spanned_pages)
5261 return;
5262
d41dee36 5263#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5264 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5265 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5266 /* ia64 gets its own node_mem_map, before this, without bootmem */
5267 if (!pgdat->node_mem_map) {
b0aeba74 5268 unsigned long size, end;
d41dee36
AW
5269 struct page *map;
5270
e984bb43
BP
5271 /*
5272 * The zone's endpoints aren't required to be MAX_ORDER
5273 * aligned but the node_mem_map endpoints must be in order
5274 * for the buddy allocator to function correctly.
5275 */
108bcc96 5276 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5277 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5278 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5279 map = alloc_remap(pgdat->node_id, size);
5280 if (!map)
6782832e
SS
5281 map = memblock_virt_alloc_node_nopanic(size,
5282 pgdat->node_id);
a1c34a3b 5283 pgdat->node_mem_map = map + offset;
1da177e4 5284 }
12d810c1 5285#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5286 /*
5287 * With no DISCONTIG, the global mem_map is just set as node 0's
5288 */
c713216d 5289 if (pgdat == NODE_DATA(0)) {
1da177e4 5290 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5291#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5292 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5293 mem_map -= offset;
0ee332c1 5294#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5295 }
1da177e4 5296#endif
d41dee36 5297#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5298}
5299
9109fb7b
JW
5300void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5301 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5302{
9109fb7b 5303 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5304 unsigned long start_pfn = 0;
5305 unsigned long end_pfn = 0;
9109fb7b 5306
88fdf75d 5307 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5308 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5309
3a80a7fa 5310 reset_deferred_meminit(pgdat);
1da177e4
LT
5311 pgdat->node_id = nid;
5312 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5313#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5314 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5315 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5316 (u64)start_pfn << PAGE_SHIFT,
5317 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7960aedd
ZY
5318#endif
5319 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5320 zones_size, zholes_size);
1da177e4
LT
5321
5322 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5323#ifdef CONFIG_FLAT_NODE_MEM_MAP
5324 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5325 nid, (unsigned long)pgdat,
5326 (unsigned long)pgdat->node_mem_map);
5327#endif
1da177e4 5328
7f3eb55b 5329 free_area_init_core(pgdat);
1da177e4
LT
5330}
5331
0ee332c1 5332#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5333
5334#if MAX_NUMNODES > 1
5335/*
5336 * Figure out the number of possible node ids.
5337 */
f9872caf 5338void __init setup_nr_node_ids(void)
418508c1 5339{
904a9553 5340 unsigned int highest;
418508c1 5341
904a9553 5342 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5343 nr_node_ids = highest + 1;
5344}
418508c1
MS
5345#endif
5346
1e01979c
TH
5347/**
5348 * node_map_pfn_alignment - determine the maximum internode alignment
5349 *
5350 * This function should be called after node map is populated and sorted.
5351 * It calculates the maximum power of two alignment which can distinguish
5352 * all the nodes.
5353 *
5354 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5355 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5356 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5357 * shifted, 1GiB is enough and this function will indicate so.
5358 *
5359 * This is used to test whether pfn -> nid mapping of the chosen memory
5360 * model has fine enough granularity to avoid incorrect mapping for the
5361 * populated node map.
5362 *
5363 * Returns the determined alignment in pfn's. 0 if there is no alignment
5364 * requirement (single node).
5365 */
5366unsigned long __init node_map_pfn_alignment(void)
5367{
5368 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5369 unsigned long start, end, mask;
1e01979c 5370 int last_nid = -1;
c13291a5 5371 int i, nid;
1e01979c 5372
c13291a5 5373 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5374 if (!start || last_nid < 0 || last_nid == nid) {
5375 last_nid = nid;
5376 last_end = end;
5377 continue;
5378 }
5379
5380 /*
5381 * Start with a mask granular enough to pin-point to the
5382 * start pfn and tick off bits one-by-one until it becomes
5383 * too coarse to separate the current node from the last.
5384 */
5385 mask = ~((1 << __ffs(start)) - 1);
5386 while (mask && last_end <= (start & (mask << 1)))
5387 mask <<= 1;
5388
5389 /* accumulate all internode masks */
5390 accl_mask |= mask;
5391 }
5392
5393 /* convert mask to number of pages */
5394 return ~accl_mask + 1;
5395}
5396
a6af2bc3 5397/* Find the lowest pfn for a node */
b69a7288 5398static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5399{
a6af2bc3 5400 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5401 unsigned long start_pfn;
5402 int i;
1abbfb41 5403
c13291a5
TH
5404 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5405 min_pfn = min(min_pfn, start_pfn);
c713216d 5406
a6af2bc3
MG
5407 if (min_pfn == ULONG_MAX) {
5408 printk(KERN_WARNING
2bc0d261 5409 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5410 return 0;
5411 }
5412
5413 return min_pfn;
c713216d
MG
5414}
5415
5416/**
5417 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5418 *
5419 * It returns the minimum PFN based on information provided via
7d018176 5420 * memblock_set_node().
c713216d
MG
5421 */
5422unsigned long __init find_min_pfn_with_active_regions(void)
5423{
5424 return find_min_pfn_for_node(MAX_NUMNODES);
5425}
5426
37b07e41
LS
5427/*
5428 * early_calculate_totalpages()
5429 * Sum pages in active regions for movable zone.
4b0ef1fe 5430 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5431 */
484f51f8 5432static unsigned long __init early_calculate_totalpages(void)
7e63efef 5433{
7e63efef 5434 unsigned long totalpages = 0;
c13291a5
TH
5435 unsigned long start_pfn, end_pfn;
5436 int i, nid;
5437
5438 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5439 unsigned long pages = end_pfn - start_pfn;
7e63efef 5440
37b07e41
LS
5441 totalpages += pages;
5442 if (pages)
4b0ef1fe 5443 node_set_state(nid, N_MEMORY);
37b07e41 5444 }
b8af2941 5445 return totalpages;
7e63efef
MG
5446}
5447
2a1e274a
MG
5448/*
5449 * Find the PFN the Movable zone begins in each node. Kernel memory
5450 * is spread evenly between nodes as long as the nodes have enough
5451 * memory. When they don't, some nodes will have more kernelcore than
5452 * others
5453 */
b224ef85 5454static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5455{
5456 int i, nid;
5457 unsigned long usable_startpfn;
5458 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5459 /* save the state before borrow the nodemask */
4b0ef1fe 5460 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5461 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5462 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5463 struct memblock_region *r;
b2f3eebe
TC
5464
5465 /* Need to find movable_zone earlier when movable_node is specified. */
5466 find_usable_zone_for_movable();
5467
5468 /*
5469 * If movable_node is specified, ignore kernelcore and movablecore
5470 * options.
5471 */
5472 if (movable_node_is_enabled()) {
136199f0
EM
5473 for_each_memblock(memory, r) {
5474 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5475 continue;
5476
136199f0 5477 nid = r->nid;
b2f3eebe 5478
136199f0 5479 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5480 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5481 min(usable_startpfn, zone_movable_pfn[nid]) :
5482 usable_startpfn;
5483 }
5484
5485 goto out2;
5486 }
2a1e274a 5487
7e63efef 5488 /*
b2f3eebe 5489 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5490 * kernelcore that corresponds so that memory usable for
5491 * any allocation type is evenly spread. If both kernelcore
5492 * and movablecore are specified, then the value of kernelcore
5493 * will be used for required_kernelcore if it's greater than
5494 * what movablecore would have allowed.
5495 */
5496 if (required_movablecore) {
7e63efef
MG
5497 unsigned long corepages;
5498
5499 /*
5500 * Round-up so that ZONE_MOVABLE is at least as large as what
5501 * was requested by the user
5502 */
5503 required_movablecore =
5504 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5505 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5506 corepages = totalpages - required_movablecore;
5507
5508 required_kernelcore = max(required_kernelcore, corepages);
5509 }
5510
bde304bd
XQ
5511 /*
5512 * If kernelcore was not specified or kernelcore size is larger
5513 * than totalpages, there is no ZONE_MOVABLE.
5514 */
5515 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5516 goto out;
2a1e274a
MG
5517
5518 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5519 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5520
5521restart:
5522 /* Spread kernelcore memory as evenly as possible throughout nodes */
5523 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5524 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5525 unsigned long start_pfn, end_pfn;
5526
2a1e274a
MG
5527 /*
5528 * Recalculate kernelcore_node if the division per node
5529 * now exceeds what is necessary to satisfy the requested
5530 * amount of memory for the kernel
5531 */
5532 if (required_kernelcore < kernelcore_node)
5533 kernelcore_node = required_kernelcore / usable_nodes;
5534
5535 /*
5536 * As the map is walked, we track how much memory is usable
5537 * by the kernel using kernelcore_remaining. When it is
5538 * 0, the rest of the node is usable by ZONE_MOVABLE
5539 */
5540 kernelcore_remaining = kernelcore_node;
5541
5542 /* Go through each range of PFNs within this node */
c13291a5 5543 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5544 unsigned long size_pages;
5545
c13291a5 5546 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5547 if (start_pfn >= end_pfn)
5548 continue;
5549
5550 /* Account for what is only usable for kernelcore */
5551 if (start_pfn < usable_startpfn) {
5552 unsigned long kernel_pages;
5553 kernel_pages = min(end_pfn, usable_startpfn)
5554 - start_pfn;
5555
5556 kernelcore_remaining -= min(kernel_pages,
5557 kernelcore_remaining);
5558 required_kernelcore -= min(kernel_pages,
5559 required_kernelcore);
5560
5561 /* Continue if range is now fully accounted */
5562 if (end_pfn <= usable_startpfn) {
5563
5564 /*
5565 * Push zone_movable_pfn to the end so
5566 * that if we have to rebalance
5567 * kernelcore across nodes, we will
5568 * not double account here
5569 */
5570 zone_movable_pfn[nid] = end_pfn;
5571 continue;
5572 }
5573 start_pfn = usable_startpfn;
5574 }
5575
5576 /*
5577 * The usable PFN range for ZONE_MOVABLE is from
5578 * start_pfn->end_pfn. Calculate size_pages as the
5579 * number of pages used as kernelcore
5580 */
5581 size_pages = end_pfn - start_pfn;
5582 if (size_pages > kernelcore_remaining)
5583 size_pages = kernelcore_remaining;
5584 zone_movable_pfn[nid] = start_pfn + size_pages;
5585
5586 /*
5587 * Some kernelcore has been met, update counts and
5588 * break if the kernelcore for this node has been
b8af2941 5589 * satisfied
2a1e274a
MG
5590 */
5591 required_kernelcore -= min(required_kernelcore,
5592 size_pages);
5593 kernelcore_remaining -= size_pages;
5594 if (!kernelcore_remaining)
5595 break;
5596 }
5597 }
5598
5599 /*
5600 * If there is still required_kernelcore, we do another pass with one
5601 * less node in the count. This will push zone_movable_pfn[nid] further
5602 * along on the nodes that still have memory until kernelcore is
b8af2941 5603 * satisfied
2a1e274a
MG
5604 */
5605 usable_nodes--;
5606 if (usable_nodes && required_kernelcore > usable_nodes)
5607 goto restart;
5608
b2f3eebe 5609out2:
2a1e274a
MG
5610 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5611 for (nid = 0; nid < MAX_NUMNODES; nid++)
5612 zone_movable_pfn[nid] =
5613 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 5614
20e6926d 5615out:
66918dcd 5616 /* restore the node_state */
4b0ef1fe 5617 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
5618}
5619
4b0ef1fe
LJ
5620/* Any regular or high memory on that node ? */
5621static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 5622{
37b07e41
LS
5623 enum zone_type zone_type;
5624
4b0ef1fe
LJ
5625 if (N_MEMORY == N_NORMAL_MEMORY)
5626 return;
5627
5628 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 5629 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 5630 if (populated_zone(zone)) {
4b0ef1fe
LJ
5631 node_set_state(nid, N_HIGH_MEMORY);
5632 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5633 zone_type <= ZONE_NORMAL)
5634 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
5635 break;
5636 }
37b07e41 5637 }
37b07e41
LS
5638}
5639
c713216d
MG
5640/**
5641 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 5642 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
5643 *
5644 * This will call free_area_init_node() for each active node in the system.
7d018176 5645 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
5646 * zone in each node and their holes is calculated. If the maximum PFN
5647 * between two adjacent zones match, it is assumed that the zone is empty.
5648 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5649 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5650 * starts where the previous one ended. For example, ZONE_DMA32 starts
5651 * at arch_max_dma_pfn.
5652 */
5653void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5654{
c13291a5
TH
5655 unsigned long start_pfn, end_pfn;
5656 int i, nid;
a6af2bc3 5657
c713216d
MG
5658 /* Record where the zone boundaries are */
5659 memset(arch_zone_lowest_possible_pfn, 0,
5660 sizeof(arch_zone_lowest_possible_pfn));
5661 memset(arch_zone_highest_possible_pfn, 0,
5662 sizeof(arch_zone_highest_possible_pfn));
5663 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5664 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5665 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
5666 if (i == ZONE_MOVABLE)
5667 continue;
c713216d
MG
5668 arch_zone_lowest_possible_pfn[i] =
5669 arch_zone_highest_possible_pfn[i-1];
5670 arch_zone_highest_possible_pfn[i] =
5671 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5672 }
2a1e274a
MG
5673 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5674 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5675
5676 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5677 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 5678 find_zone_movable_pfns_for_nodes();
c713216d 5679
c713216d 5680 /* Print out the zone ranges */
f88dfff5 5681 pr_info("Zone ranges:\n");
2a1e274a
MG
5682 for (i = 0; i < MAX_NR_ZONES; i++) {
5683 if (i == ZONE_MOVABLE)
5684 continue;
f88dfff5 5685 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
5686 if (arch_zone_lowest_possible_pfn[i] ==
5687 arch_zone_highest_possible_pfn[i])
f88dfff5 5688 pr_cont("empty\n");
72f0ba02 5689 else
8d29e18a
JG
5690 pr_cont("[mem %#018Lx-%#018Lx]\n",
5691 (u64)arch_zone_lowest_possible_pfn[i]
5692 << PAGE_SHIFT,
5693 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 5694 << PAGE_SHIFT) - 1);
2a1e274a
MG
5695 }
5696
5697 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 5698 pr_info("Movable zone start for each node\n");
2a1e274a
MG
5699 for (i = 0; i < MAX_NUMNODES; i++) {
5700 if (zone_movable_pfn[i])
8d29e18a
JG
5701 pr_info(" Node %d: %#018Lx\n", i,
5702 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 5703 }
c713216d 5704
f2d52fe5 5705 /* Print out the early node map */
f88dfff5 5706 pr_info("Early memory node ranges\n");
c13291a5 5707 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
5708 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5709 (u64)start_pfn << PAGE_SHIFT,
5710 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
5711
5712 /* Initialise every node */
708614e6 5713 mminit_verify_pageflags_layout();
8ef82866 5714 setup_nr_node_ids();
c713216d
MG
5715 for_each_online_node(nid) {
5716 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 5717 free_area_init_node(nid, NULL,
c713216d 5718 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
5719
5720 /* Any memory on that node */
5721 if (pgdat->node_present_pages)
4b0ef1fe
LJ
5722 node_set_state(nid, N_MEMORY);
5723 check_for_memory(pgdat, nid);
c713216d
MG
5724 }
5725}
2a1e274a 5726
7e63efef 5727static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
5728{
5729 unsigned long long coremem;
5730 if (!p)
5731 return -EINVAL;
5732
5733 coremem = memparse(p, &p);
7e63efef 5734 *core = coremem >> PAGE_SHIFT;
2a1e274a 5735
7e63efef 5736 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
5737 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5738
5739 return 0;
5740}
ed7ed365 5741
7e63efef
MG
5742/*
5743 * kernelcore=size sets the amount of memory for use for allocations that
5744 * cannot be reclaimed or migrated.
5745 */
5746static int __init cmdline_parse_kernelcore(char *p)
5747{
5748 return cmdline_parse_core(p, &required_kernelcore);
5749}
5750
5751/*
5752 * movablecore=size sets the amount of memory for use for allocations that
5753 * can be reclaimed or migrated.
5754 */
5755static int __init cmdline_parse_movablecore(char *p)
5756{
5757 return cmdline_parse_core(p, &required_movablecore);
5758}
5759
ed7ed365 5760early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 5761early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 5762
0ee332c1 5763#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5764
c3d5f5f0
JL
5765void adjust_managed_page_count(struct page *page, long count)
5766{
5767 spin_lock(&managed_page_count_lock);
5768 page_zone(page)->managed_pages += count;
5769 totalram_pages += count;
3dcc0571
JL
5770#ifdef CONFIG_HIGHMEM
5771 if (PageHighMem(page))
5772 totalhigh_pages += count;
5773#endif
c3d5f5f0
JL
5774 spin_unlock(&managed_page_count_lock);
5775}
3dcc0571 5776EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 5777
11199692 5778unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 5779{
11199692
JL
5780 void *pos;
5781 unsigned long pages = 0;
69afade7 5782
11199692
JL
5783 start = (void *)PAGE_ALIGN((unsigned long)start);
5784 end = (void *)((unsigned long)end & PAGE_MASK);
5785 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 5786 if ((unsigned int)poison <= 0xFF)
11199692
JL
5787 memset(pos, poison, PAGE_SIZE);
5788 free_reserved_page(virt_to_page(pos));
69afade7
JL
5789 }
5790
5791 if (pages && s)
11199692 5792 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
5793 s, pages << (PAGE_SHIFT - 10), start, end);
5794
5795 return pages;
5796}
11199692 5797EXPORT_SYMBOL(free_reserved_area);
69afade7 5798
cfa11e08
JL
5799#ifdef CONFIG_HIGHMEM
5800void free_highmem_page(struct page *page)
5801{
5802 __free_reserved_page(page);
5803 totalram_pages++;
7b4b2a0d 5804 page_zone(page)->managed_pages++;
cfa11e08
JL
5805 totalhigh_pages++;
5806}
5807#endif
5808
7ee3d4e8
JL
5809
5810void __init mem_init_print_info(const char *str)
5811{
5812 unsigned long physpages, codesize, datasize, rosize, bss_size;
5813 unsigned long init_code_size, init_data_size;
5814
5815 physpages = get_num_physpages();
5816 codesize = _etext - _stext;
5817 datasize = _edata - _sdata;
5818 rosize = __end_rodata - __start_rodata;
5819 bss_size = __bss_stop - __bss_start;
5820 init_data_size = __init_end - __init_begin;
5821 init_code_size = _einittext - _sinittext;
5822
5823 /*
5824 * Detect special cases and adjust section sizes accordingly:
5825 * 1) .init.* may be embedded into .data sections
5826 * 2) .init.text.* may be out of [__init_begin, __init_end],
5827 * please refer to arch/tile/kernel/vmlinux.lds.S.
5828 * 3) .rodata.* may be embedded into .text or .data sections.
5829 */
5830#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
5831 do { \
5832 if (start <= pos && pos < end && size > adj) \
5833 size -= adj; \
5834 } while (0)
7ee3d4e8
JL
5835
5836 adj_init_size(__init_begin, __init_end, init_data_size,
5837 _sinittext, init_code_size);
5838 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5839 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5840 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5841 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5842
5843#undef adj_init_size
5844
f88dfff5 5845 pr_info("Memory: %luK/%luK available "
7ee3d4e8 5846 "(%luK kernel code, %luK rwdata, %luK rodata, "
e48322ab 5847 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8
JL
5848#ifdef CONFIG_HIGHMEM
5849 ", %luK highmem"
5850#endif
5851 "%s%s)\n",
5852 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5853 codesize >> 10, datasize >> 10, rosize >> 10,
5854 (init_data_size + init_code_size) >> 10, bss_size >> 10,
e48322ab
PK
5855 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5856 totalcma_pages << (PAGE_SHIFT-10),
7ee3d4e8
JL
5857#ifdef CONFIG_HIGHMEM
5858 totalhigh_pages << (PAGE_SHIFT-10),
5859#endif
5860 str ? ", " : "", str ? str : "");
5861}
5862
0e0b864e 5863/**
88ca3b94
RD
5864 * set_dma_reserve - set the specified number of pages reserved in the first zone
5865 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 5866 *
013110a7 5867 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
5868 * In the DMA zone, a significant percentage may be consumed by kernel image
5869 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
5870 * function may optionally be used to account for unfreeable pages in the
5871 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5872 * smaller per-cpu batchsize.
0e0b864e
MG
5873 */
5874void __init set_dma_reserve(unsigned long new_dma_reserve)
5875{
5876 dma_reserve = new_dma_reserve;
5877}
5878
1da177e4
LT
5879void __init free_area_init(unsigned long *zones_size)
5880{
9109fb7b 5881 free_area_init_node(0, zones_size,
1da177e4
LT
5882 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5883}
1da177e4 5884
1da177e4
LT
5885static int page_alloc_cpu_notify(struct notifier_block *self,
5886 unsigned long action, void *hcpu)
5887{
5888 int cpu = (unsigned long)hcpu;
1da177e4 5889
8bb78442 5890 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 5891 lru_add_drain_cpu(cpu);
9f8f2172
CL
5892 drain_pages(cpu);
5893
5894 /*
5895 * Spill the event counters of the dead processor
5896 * into the current processors event counters.
5897 * This artificially elevates the count of the current
5898 * processor.
5899 */
f8891e5e 5900 vm_events_fold_cpu(cpu);
9f8f2172
CL
5901
5902 /*
5903 * Zero the differential counters of the dead processor
5904 * so that the vm statistics are consistent.
5905 *
5906 * This is only okay since the processor is dead and cannot
5907 * race with what we are doing.
5908 */
2bb921e5 5909 cpu_vm_stats_fold(cpu);
1da177e4
LT
5910 }
5911 return NOTIFY_OK;
5912}
1da177e4
LT
5913
5914void __init page_alloc_init(void)
5915{
5916 hotcpu_notifier(page_alloc_cpu_notify, 0);
5917}
5918
cb45b0e9 5919/*
34b10060 5920 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
5921 * or min_free_kbytes changes.
5922 */
5923static void calculate_totalreserve_pages(void)
5924{
5925 struct pglist_data *pgdat;
5926 unsigned long reserve_pages = 0;
2f6726e5 5927 enum zone_type i, j;
cb45b0e9
HA
5928
5929 for_each_online_pgdat(pgdat) {
5930 for (i = 0; i < MAX_NR_ZONES; i++) {
5931 struct zone *zone = pgdat->node_zones + i;
3484b2de 5932 long max = 0;
cb45b0e9
HA
5933
5934 /* Find valid and maximum lowmem_reserve in the zone */
5935 for (j = i; j < MAX_NR_ZONES; j++) {
5936 if (zone->lowmem_reserve[j] > max)
5937 max = zone->lowmem_reserve[j];
5938 }
5939
41858966
MG
5940 /* we treat the high watermark as reserved pages. */
5941 max += high_wmark_pages(zone);
cb45b0e9 5942
b40da049
JL
5943 if (max > zone->managed_pages)
5944 max = zone->managed_pages;
cb45b0e9 5945 reserve_pages += max;
ab8fabd4
JW
5946 /*
5947 * Lowmem reserves are not available to
5948 * GFP_HIGHUSER page cache allocations and
5949 * kswapd tries to balance zones to their high
5950 * watermark. As a result, neither should be
5951 * regarded as dirtyable memory, to prevent a
5952 * situation where reclaim has to clean pages
5953 * in order to balance the zones.
5954 */
5955 zone->dirty_balance_reserve = max;
cb45b0e9
HA
5956 }
5957 }
ab8fabd4 5958 dirty_balance_reserve = reserve_pages;
cb45b0e9
HA
5959 totalreserve_pages = reserve_pages;
5960}
5961
1da177e4
LT
5962/*
5963 * setup_per_zone_lowmem_reserve - called whenever
34b10060 5964 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
5965 * has a correct pages reserved value, so an adequate number of
5966 * pages are left in the zone after a successful __alloc_pages().
5967 */
5968static void setup_per_zone_lowmem_reserve(void)
5969{
5970 struct pglist_data *pgdat;
2f6726e5 5971 enum zone_type j, idx;
1da177e4 5972
ec936fc5 5973 for_each_online_pgdat(pgdat) {
1da177e4
LT
5974 for (j = 0; j < MAX_NR_ZONES; j++) {
5975 struct zone *zone = pgdat->node_zones + j;
b40da049 5976 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
5977
5978 zone->lowmem_reserve[j] = 0;
5979
2f6726e5
CL
5980 idx = j;
5981 while (idx) {
1da177e4
LT
5982 struct zone *lower_zone;
5983
2f6726e5
CL
5984 idx--;
5985
1da177e4
LT
5986 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5987 sysctl_lowmem_reserve_ratio[idx] = 1;
5988
5989 lower_zone = pgdat->node_zones + idx;
b40da049 5990 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 5991 sysctl_lowmem_reserve_ratio[idx];
b40da049 5992 managed_pages += lower_zone->managed_pages;
1da177e4
LT
5993 }
5994 }
5995 }
cb45b0e9
HA
5996
5997 /* update totalreserve_pages */
5998 calculate_totalreserve_pages();
1da177e4
LT
5999}
6000
cfd3da1e 6001static void __setup_per_zone_wmarks(void)
1da177e4
LT
6002{
6003 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6004 unsigned long lowmem_pages = 0;
6005 struct zone *zone;
6006 unsigned long flags;
6007
6008 /* Calculate total number of !ZONE_HIGHMEM pages */
6009 for_each_zone(zone) {
6010 if (!is_highmem(zone))
b40da049 6011 lowmem_pages += zone->managed_pages;
1da177e4
LT
6012 }
6013
6014 for_each_zone(zone) {
ac924c60
AM
6015 u64 tmp;
6016
1125b4e3 6017 spin_lock_irqsave(&zone->lock, flags);
b40da049 6018 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6019 do_div(tmp, lowmem_pages);
1da177e4
LT
6020 if (is_highmem(zone)) {
6021 /*
669ed175
NP
6022 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6023 * need highmem pages, so cap pages_min to a small
6024 * value here.
6025 *
41858966 6026 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6027 * deltas control asynch page reclaim, and so should
669ed175 6028 * not be capped for highmem.
1da177e4 6029 */
90ae8d67 6030 unsigned long min_pages;
1da177e4 6031
b40da049 6032 min_pages = zone->managed_pages / 1024;
90ae8d67 6033 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6034 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6035 } else {
669ed175
NP
6036 /*
6037 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6038 * proportionate to the zone's size.
6039 */
41858966 6040 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6041 }
6042
41858966
MG
6043 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6044 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
49f223a9 6045
81c0a2bb 6046 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6047 high_wmark_pages(zone) - low_wmark_pages(zone) -
6048 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6049
1125b4e3 6050 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6051 }
cb45b0e9
HA
6052
6053 /* update totalreserve_pages */
6054 calculate_totalreserve_pages();
1da177e4
LT
6055}
6056
cfd3da1e
MG
6057/**
6058 * setup_per_zone_wmarks - called when min_free_kbytes changes
6059 * or when memory is hot-{added|removed}
6060 *
6061 * Ensures that the watermark[min,low,high] values for each zone are set
6062 * correctly with respect to min_free_kbytes.
6063 */
6064void setup_per_zone_wmarks(void)
6065{
6066 mutex_lock(&zonelists_mutex);
6067 __setup_per_zone_wmarks();
6068 mutex_unlock(&zonelists_mutex);
6069}
6070
55a4462a 6071/*
556adecb
RR
6072 * The inactive anon list should be small enough that the VM never has to
6073 * do too much work, but large enough that each inactive page has a chance
6074 * to be referenced again before it is swapped out.
6075 *
6076 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6077 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6078 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6079 * the anonymous pages are kept on the inactive list.
6080 *
6081 * total target max
6082 * memory ratio inactive anon
6083 * -------------------------------------
6084 * 10MB 1 5MB
6085 * 100MB 1 50MB
6086 * 1GB 3 250MB
6087 * 10GB 10 0.9GB
6088 * 100GB 31 3GB
6089 * 1TB 101 10GB
6090 * 10TB 320 32GB
6091 */
1b79acc9 6092static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6093{
96cb4df5 6094 unsigned int gb, ratio;
556adecb 6095
96cb4df5 6096 /* Zone size in gigabytes */
b40da049 6097 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6098 if (gb)
556adecb 6099 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6100 else
6101 ratio = 1;
556adecb 6102
96cb4df5
MK
6103 zone->inactive_ratio = ratio;
6104}
556adecb 6105
839a4fcc 6106static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6107{
6108 struct zone *zone;
6109
6110 for_each_zone(zone)
6111 calculate_zone_inactive_ratio(zone);
556adecb
RR
6112}
6113
1da177e4
LT
6114/*
6115 * Initialise min_free_kbytes.
6116 *
6117 * For small machines we want it small (128k min). For large machines
6118 * we want it large (64MB max). But it is not linear, because network
6119 * bandwidth does not increase linearly with machine size. We use
6120 *
b8af2941 6121 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6122 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6123 *
6124 * which yields
6125 *
6126 * 16MB: 512k
6127 * 32MB: 724k
6128 * 64MB: 1024k
6129 * 128MB: 1448k
6130 * 256MB: 2048k
6131 * 512MB: 2896k
6132 * 1024MB: 4096k
6133 * 2048MB: 5792k
6134 * 4096MB: 8192k
6135 * 8192MB: 11584k
6136 * 16384MB: 16384k
6137 */
1b79acc9 6138int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6139{
6140 unsigned long lowmem_kbytes;
5f12733e 6141 int new_min_free_kbytes;
1da177e4
LT
6142
6143 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6144 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6145
6146 if (new_min_free_kbytes > user_min_free_kbytes) {
6147 min_free_kbytes = new_min_free_kbytes;
6148 if (min_free_kbytes < 128)
6149 min_free_kbytes = 128;
6150 if (min_free_kbytes > 65536)
6151 min_free_kbytes = 65536;
6152 } else {
6153 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6154 new_min_free_kbytes, user_min_free_kbytes);
6155 }
bc75d33f 6156 setup_per_zone_wmarks();
a6cccdc3 6157 refresh_zone_stat_thresholds();
1da177e4 6158 setup_per_zone_lowmem_reserve();
556adecb 6159 setup_per_zone_inactive_ratio();
1da177e4
LT
6160 return 0;
6161}
bc75d33f 6162module_init(init_per_zone_wmark_min)
1da177e4
LT
6163
6164/*
b8af2941 6165 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6166 * that we can call two helper functions whenever min_free_kbytes
6167 * changes.
6168 */
cccad5b9 6169int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6170 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6171{
da8c757b
HP
6172 int rc;
6173
6174 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6175 if (rc)
6176 return rc;
6177
5f12733e
MH
6178 if (write) {
6179 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6180 setup_per_zone_wmarks();
5f12733e 6181 }
1da177e4
LT
6182 return 0;
6183}
6184
9614634f 6185#ifdef CONFIG_NUMA
cccad5b9 6186int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6187 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6188{
6189 struct zone *zone;
6190 int rc;
6191
8d65af78 6192 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6193 if (rc)
6194 return rc;
6195
6196 for_each_zone(zone)
b40da049 6197 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6198 sysctl_min_unmapped_ratio) / 100;
6199 return 0;
6200}
0ff38490 6201
cccad5b9 6202int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6203 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6204{
6205 struct zone *zone;
6206 int rc;
6207
8d65af78 6208 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6209 if (rc)
6210 return rc;
6211
6212 for_each_zone(zone)
b40da049 6213 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6214 sysctl_min_slab_ratio) / 100;
6215 return 0;
6216}
9614634f
CL
6217#endif
6218
1da177e4
LT
6219/*
6220 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6221 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6222 * whenever sysctl_lowmem_reserve_ratio changes.
6223 *
6224 * The reserve ratio obviously has absolutely no relation with the
41858966 6225 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6226 * if in function of the boot time zone sizes.
6227 */
cccad5b9 6228int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6229 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6230{
8d65af78 6231 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6232 setup_per_zone_lowmem_reserve();
6233 return 0;
6234}
6235
8ad4b1fb
RS
6236/*
6237 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6238 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6239 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6240 */
cccad5b9 6241int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6242 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6243{
6244 struct zone *zone;
7cd2b0a3 6245 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6246 int ret;
6247
7cd2b0a3
DR
6248 mutex_lock(&pcp_batch_high_lock);
6249 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6250
8d65af78 6251 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6252 if (!write || ret < 0)
6253 goto out;
6254
6255 /* Sanity checking to avoid pcp imbalance */
6256 if (percpu_pagelist_fraction &&
6257 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6258 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6259 ret = -EINVAL;
6260 goto out;
6261 }
6262
6263 /* No change? */
6264 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6265 goto out;
c8e251fa 6266
364df0eb 6267 for_each_populated_zone(zone) {
7cd2b0a3
DR
6268 unsigned int cpu;
6269
22a7f12b 6270 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6271 pageset_set_high_and_batch(zone,
6272 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6273 }
7cd2b0a3 6274out:
c8e251fa 6275 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6276 return ret;
8ad4b1fb
RS
6277}
6278
a9919c79 6279#ifdef CONFIG_NUMA
f034b5d4 6280int hashdist = HASHDIST_DEFAULT;
1da177e4 6281
1da177e4
LT
6282static int __init set_hashdist(char *str)
6283{
6284 if (!str)
6285 return 0;
6286 hashdist = simple_strtoul(str, &str, 0);
6287 return 1;
6288}
6289__setup("hashdist=", set_hashdist);
6290#endif
6291
6292/*
6293 * allocate a large system hash table from bootmem
6294 * - it is assumed that the hash table must contain an exact power-of-2
6295 * quantity of entries
6296 * - limit is the number of hash buckets, not the total allocation size
6297 */
6298void *__init alloc_large_system_hash(const char *tablename,
6299 unsigned long bucketsize,
6300 unsigned long numentries,
6301 int scale,
6302 int flags,
6303 unsigned int *_hash_shift,
6304 unsigned int *_hash_mask,
31fe62b9
TB
6305 unsigned long low_limit,
6306 unsigned long high_limit)
1da177e4 6307{
31fe62b9 6308 unsigned long long max = high_limit;
1da177e4
LT
6309 unsigned long log2qty, size;
6310 void *table = NULL;
6311
6312 /* allow the kernel cmdline to have a say */
6313 if (!numentries) {
6314 /* round applicable memory size up to nearest megabyte */
04903664 6315 numentries = nr_kernel_pages;
a7e83318
JZ
6316
6317 /* It isn't necessary when PAGE_SIZE >= 1MB */
6318 if (PAGE_SHIFT < 20)
6319 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6320
6321 /* limit to 1 bucket per 2^scale bytes of low memory */
6322 if (scale > PAGE_SHIFT)
6323 numentries >>= (scale - PAGE_SHIFT);
6324 else
6325 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6326
6327 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6328 if (unlikely(flags & HASH_SMALL)) {
6329 /* Makes no sense without HASH_EARLY */
6330 WARN_ON(!(flags & HASH_EARLY));
6331 if (!(numentries >> *_hash_shift)) {
6332 numentries = 1UL << *_hash_shift;
6333 BUG_ON(!numentries);
6334 }
6335 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6336 numentries = PAGE_SIZE / bucketsize;
1da177e4 6337 }
6e692ed3 6338 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6339
6340 /* limit allocation size to 1/16 total memory by default */
6341 if (max == 0) {
6342 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6343 do_div(max, bucketsize);
6344 }
074b8517 6345 max = min(max, 0x80000000ULL);
1da177e4 6346
31fe62b9
TB
6347 if (numentries < low_limit)
6348 numentries = low_limit;
1da177e4
LT
6349 if (numentries > max)
6350 numentries = max;
6351
f0d1b0b3 6352 log2qty = ilog2(numentries);
1da177e4
LT
6353
6354 do {
6355 size = bucketsize << log2qty;
6356 if (flags & HASH_EARLY)
6782832e 6357 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6358 else if (hashdist)
6359 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6360 else {
1037b83b
ED
6361 /*
6362 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6363 * some pages at the end of hash table which
6364 * alloc_pages_exact() automatically does
1037b83b 6365 */
264ef8a9 6366 if (get_order(size) < MAX_ORDER) {
a1dd268c 6367 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6368 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6369 }
1da177e4
LT
6370 }
6371 } while (!table && size > PAGE_SIZE && --log2qty);
6372
6373 if (!table)
6374 panic("Failed to allocate %s hash table\n", tablename);
6375
f241e660 6376 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 6377 tablename,
f241e660 6378 (1UL << log2qty),
f0d1b0b3 6379 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
6380 size);
6381
6382 if (_hash_shift)
6383 *_hash_shift = log2qty;
6384 if (_hash_mask)
6385 *_hash_mask = (1 << log2qty) - 1;
6386
6387 return table;
6388}
a117e66e 6389
835c134e
MG
6390/* Return a pointer to the bitmap storing bits affecting a block of pages */
6391static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6392 unsigned long pfn)
6393{
6394#ifdef CONFIG_SPARSEMEM
6395 return __pfn_to_section(pfn)->pageblock_flags;
6396#else
6397 return zone->pageblock_flags;
6398#endif /* CONFIG_SPARSEMEM */
6399}
6400
6401static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6402{
6403#ifdef CONFIG_SPARSEMEM
6404 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6405 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6406#else
c060f943 6407 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
d9c23400 6408 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6409#endif /* CONFIG_SPARSEMEM */
6410}
6411
6412/**
1aab4d77 6413 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6414 * @page: The page within the block of interest
1aab4d77
RD
6415 * @pfn: The target page frame number
6416 * @end_bitidx: The last bit of interest to retrieve
6417 * @mask: mask of bits that the caller is interested in
6418 *
6419 * Return: pageblock_bits flags
835c134e 6420 */
dc4b0caf 6421unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6422 unsigned long end_bitidx,
6423 unsigned long mask)
835c134e
MG
6424{
6425 struct zone *zone;
6426 unsigned long *bitmap;
dc4b0caf 6427 unsigned long bitidx, word_bitidx;
e58469ba 6428 unsigned long word;
835c134e
MG
6429
6430 zone = page_zone(page);
835c134e
MG
6431 bitmap = get_pageblock_bitmap(zone, pfn);
6432 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6433 word_bitidx = bitidx / BITS_PER_LONG;
6434 bitidx &= (BITS_PER_LONG-1);
835c134e 6435
e58469ba
MG
6436 word = bitmap[word_bitidx];
6437 bitidx += end_bitidx;
6438 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6439}
6440
6441/**
dc4b0caf 6442 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6443 * @page: The page within the block of interest
835c134e 6444 * @flags: The flags to set
1aab4d77
RD
6445 * @pfn: The target page frame number
6446 * @end_bitidx: The last bit of interest
6447 * @mask: mask of bits that the caller is interested in
835c134e 6448 */
dc4b0caf
MG
6449void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6450 unsigned long pfn,
e58469ba
MG
6451 unsigned long end_bitidx,
6452 unsigned long mask)
835c134e
MG
6453{
6454 struct zone *zone;
6455 unsigned long *bitmap;
dc4b0caf 6456 unsigned long bitidx, word_bitidx;
e58469ba
MG
6457 unsigned long old_word, word;
6458
6459 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e
MG
6460
6461 zone = page_zone(page);
835c134e
MG
6462 bitmap = get_pageblock_bitmap(zone, pfn);
6463 bitidx = pfn_to_bitidx(zone, pfn);
e58469ba
MG
6464 word_bitidx = bitidx / BITS_PER_LONG;
6465 bitidx &= (BITS_PER_LONG-1);
6466
309381fe 6467 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
835c134e 6468
e58469ba
MG
6469 bitidx += end_bitidx;
6470 mask <<= (BITS_PER_LONG - bitidx - 1);
6471 flags <<= (BITS_PER_LONG - bitidx - 1);
6472
4db0c3c2 6473 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6474 for (;;) {
6475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6476 if (word == old_word)
6477 break;
6478 word = old_word;
6479 }
835c134e 6480}
a5d76b54
KH
6481
6482/*
80934513
MK
6483 * This function checks whether pageblock includes unmovable pages or not.
6484 * If @count is not zero, it is okay to include less @count unmovable pages
6485 *
b8af2941 6486 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6487 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6488 * expect this function should be exact.
a5d76b54 6489 */
b023f468
WC
6490bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6491 bool skip_hwpoisoned_pages)
49ac8255
KH
6492{
6493 unsigned long pfn, iter, found;
47118af0
MN
6494 int mt;
6495
49ac8255
KH
6496 /*
6497 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6498 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6499 */
6500 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6501 return false;
47118af0
MN
6502 mt = get_pageblock_migratetype(page);
6503 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6504 return false;
49ac8255
KH
6505
6506 pfn = page_to_pfn(page);
6507 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6508 unsigned long check = pfn + iter;
6509
29723fcc 6510 if (!pfn_valid_within(check))
49ac8255 6511 continue;
29723fcc 6512
49ac8255 6513 page = pfn_to_page(check);
c8721bbb
NH
6514
6515 /*
6516 * Hugepages are not in LRU lists, but they're movable.
6517 * We need not scan over tail pages bacause we don't
6518 * handle each tail page individually in migration.
6519 */
6520 if (PageHuge(page)) {
6521 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6522 continue;
6523 }
6524
97d255c8
MK
6525 /*
6526 * We can't use page_count without pin a page
6527 * because another CPU can free compound page.
6528 * This check already skips compound tails of THP
6529 * because their page->_count is zero at all time.
6530 */
6531 if (!atomic_read(&page->_count)) {
49ac8255
KH
6532 if (PageBuddy(page))
6533 iter += (1 << page_order(page)) - 1;
6534 continue;
6535 }
97d255c8 6536
b023f468
WC
6537 /*
6538 * The HWPoisoned page may be not in buddy system, and
6539 * page_count() is not 0.
6540 */
6541 if (skip_hwpoisoned_pages && PageHWPoison(page))
6542 continue;
6543
49ac8255
KH
6544 if (!PageLRU(page))
6545 found++;
6546 /*
6b4f7799
JW
6547 * If there are RECLAIMABLE pages, we need to check
6548 * it. But now, memory offline itself doesn't call
6549 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6550 */
6551 /*
6552 * If the page is not RAM, page_count()should be 0.
6553 * we don't need more check. This is an _used_ not-movable page.
6554 *
6555 * The problematic thing here is PG_reserved pages. PG_reserved
6556 * is set to both of a memory hole page and a _used_ kernel
6557 * page at boot.
6558 */
6559 if (found > count)
80934513 6560 return true;
49ac8255 6561 }
80934513 6562 return false;
49ac8255
KH
6563}
6564
6565bool is_pageblock_removable_nolock(struct page *page)
6566{
656a0706
MH
6567 struct zone *zone;
6568 unsigned long pfn;
687875fb
MH
6569
6570 /*
6571 * We have to be careful here because we are iterating over memory
6572 * sections which are not zone aware so we might end up outside of
6573 * the zone but still within the section.
656a0706
MH
6574 * We have to take care about the node as well. If the node is offline
6575 * its NODE_DATA will be NULL - see page_zone.
687875fb 6576 */
656a0706
MH
6577 if (!node_online(page_to_nid(page)))
6578 return false;
6579
6580 zone = page_zone(page);
6581 pfn = page_to_pfn(page);
108bcc96 6582 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
6583 return false;
6584
b023f468 6585 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 6586}
0c0e6195 6587
041d3a8c
MN
6588#ifdef CONFIG_CMA
6589
6590static unsigned long pfn_max_align_down(unsigned long pfn)
6591{
6592 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6593 pageblock_nr_pages) - 1);
6594}
6595
6596static unsigned long pfn_max_align_up(unsigned long pfn)
6597{
6598 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6599 pageblock_nr_pages));
6600}
6601
041d3a8c 6602/* [start, end) must belong to a single zone. */
bb13ffeb
MG
6603static int __alloc_contig_migrate_range(struct compact_control *cc,
6604 unsigned long start, unsigned long end)
041d3a8c
MN
6605{
6606 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 6607 unsigned long nr_reclaimed;
041d3a8c
MN
6608 unsigned long pfn = start;
6609 unsigned int tries = 0;
6610 int ret = 0;
6611
be49a6e1 6612 migrate_prep();
041d3a8c 6613
bb13ffeb 6614 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
6615 if (fatal_signal_pending(current)) {
6616 ret = -EINTR;
6617 break;
6618 }
6619
bb13ffeb
MG
6620 if (list_empty(&cc->migratepages)) {
6621 cc->nr_migratepages = 0;
edc2ca61 6622 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
6623 if (!pfn) {
6624 ret = -EINTR;
6625 break;
6626 }
6627 tries = 0;
6628 } else if (++tries == 5) {
6629 ret = ret < 0 ? ret : -EBUSY;
6630 break;
6631 }
6632
beb51eaa
MK
6633 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6634 &cc->migratepages);
6635 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 6636
9c620e2b 6637 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 6638 NULL, 0, cc->mode, MR_CMA);
041d3a8c 6639 }
2a6f5124
SP
6640 if (ret < 0) {
6641 putback_movable_pages(&cc->migratepages);
6642 return ret;
6643 }
6644 return 0;
041d3a8c
MN
6645}
6646
6647/**
6648 * alloc_contig_range() -- tries to allocate given range of pages
6649 * @start: start PFN to allocate
6650 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
6651 * @migratetype: migratetype of the underlaying pageblocks (either
6652 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6653 * in range must have the same migratetype and it must
6654 * be either of the two.
041d3a8c
MN
6655 *
6656 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6657 * aligned, however it's the caller's responsibility to guarantee that
6658 * we are the only thread that changes migrate type of pageblocks the
6659 * pages fall in.
6660 *
6661 * The PFN range must belong to a single zone.
6662 *
6663 * Returns zero on success or negative error code. On success all
6664 * pages which PFN is in [start, end) are allocated for the caller and
6665 * need to be freed with free_contig_range().
6666 */
0815f3d8
MN
6667int alloc_contig_range(unsigned long start, unsigned long end,
6668 unsigned migratetype)
041d3a8c 6669{
041d3a8c 6670 unsigned long outer_start, outer_end;
d00181b9
KS
6671 unsigned int order;
6672 int ret = 0;
041d3a8c 6673
bb13ffeb
MG
6674 struct compact_control cc = {
6675 .nr_migratepages = 0,
6676 .order = -1,
6677 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 6678 .mode = MIGRATE_SYNC,
bb13ffeb
MG
6679 .ignore_skip_hint = true,
6680 };
6681 INIT_LIST_HEAD(&cc.migratepages);
6682
041d3a8c
MN
6683 /*
6684 * What we do here is we mark all pageblocks in range as
6685 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6686 * have different sizes, and due to the way page allocator
6687 * work, we align the range to biggest of the two pages so
6688 * that page allocator won't try to merge buddies from
6689 * different pageblocks and change MIGRATE_ISOLATE to some
6690 * other migration type.
6691 *
6692 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6693 * migrate the pages from an unaligned range (ie. pages that
6694 * we are interested in). This will put all the pages in
6695 * range back to page allocator as MIGRATE_ISOLATE.
6696 *
6697 * When this is done, we take the pages in range from page
6698 * allocator removing them from the buddy system. This way
6699 * page allocator will never consider using them.
6700 *
6701 * This lets us mark the pageblocks back as
6702 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6703 * aligned range but not in the unaligned, original range are
6704 * put back to page allocator so that buddy can use them.
6705 */
6706
6707 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
6708 pfn_max_align_up(end), migratetype,
6709 false);
041d3a8c 6710 if (ret)
86a595f9 6711 return ret;
041d3a8c 6712
8ef5849f
JK
6713 /*
6714 * In case of -EBUSY, we'd like to know which page causes problem.
6715 * So, just fall through. We will check it in test_pages_isolated().
6716 */
bb13ffeb 6717 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 6718 if (ret && ret != -EBUSY)
041d3a8c
MN
6719 goto done;
6720
6721 /*
6722 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6723 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6724 * more, all pages in [start, end) are free in page allocator.
6725 * What we are going to do is to allocate all pages from
6726 * [start, end) (that is remove them from page allocator).
6727 *
6728 * The only problem is that pages at the beginning and at the
6729 * end of interesting range may be not aligned with pages that
6730 * page allocator holds, ie. they can be part of higher order
6731 * pages. Because of this, we reserve the bigger range and
6732 * once this is done free the pages we are not interested in.
6733 *
6734 * We don't have to hold zone->lock here because the pages are
6735 * isolated thus they won't get removed from buddy.
6736 */
6737
6738 lru_add_drain_all();
510f5507 6739 drain_all_pages(cc.zone);
041d3a8c
MN
6740
6741 order = 0;
6742 outer_start = start;
6743 while (!PageBuddy(pfn_to_page(outer_start))) {
6744 if (++order >= MAX_ORDER) {
8ef5849f
JK
6745 outer_start = start;
6746 break;
041d3a8c
MN
6747 }
6748 outer_start &= ~0UL << order;
6749 }
6750
8ef5849f
JK
6751 if (outer_start != start) {
6752 order = page_order(pfn_to_page(outer_start));
6753
6754 /*
6755 * outer_start page could be small order buddy page and
6756 * it doesn't include start page. Adjust outer_start
6757 * in this case to report failed page properly
6758 * on tracepoint in test_pages_isolated()
6759 */
6760 if (outer_start + (1UL << order) <= start)
6761 outer_start = start;
6762 }
6763
041d3a8c 6764 /* Make sure the range is really isolated. */
b023f468 6765 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
6766 pr_info("%s: [%lx, %lx) PFNs busy\n",
6767 __func__, outer_start, end);
041d3a8c
MN
6768 ret = -EBUSY;
6769 goto done;
6770 }
6771
49f223a9 6772 /* Grab isolated pages from freelists. */
bb13ffeb 6773 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
6774 if (!outer_end) {
6775 ret = -EBUSY;
6776 goto done;
6777 }
6778
6779 /* Free head and tail (if any) */
6780 if (start != outer_start)
6781 free_contig_range(outer_start, start - outer_start);
6782 if (end != outer_end)
6783 free_contig_range(end, outer_end - end);
6784
6785done:
6786 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 6787 pfn_max_align_up(end), migratetype);
041d3a8c
MN
6788 return ret;
6789}
6790
6791void free_contig_range(unsigned long pfn, unsigned nr_pages)
6792{
bcc2b02f
MS
6793 unsigned int count = 0;
6794
6795 for (; nr_pages--; pfn++) {
6796 struct page *page = pfn_to_page(pfn);
6797
6798 count += page_count(page) != 1;
6799 __free_page(page);
6800 }
6801 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
6802}
6803#endif
6804
4ed7e022 6805#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
6806/*
6807 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6808 * page high values need to be recalulated.
6809 */
4ed7e022
JL
6810void __meminit zone_pcp_update(struct zone *zone)
6811{
0a647f38 6812 unsigned cpu;
c8e251fa 6813 mutex_lock(&pcp_batch_high_lock);
0a647f38 6814 for_each_possible_cpu(cpu)
169f6c19
CS
6815 pageset_set_high_and_batch(zone,
6816 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 6817 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
6818}
6819#endif
6820
340175b7
JL
6821void zone_pcp_reset(struct zone *zone)
6822{
6823 unsigned long flags;
5a883813
MK
6824 int cpu;
6825 struct per_cpu_pageset *pset;
340175b7
JL
6826
6827 /* avoid races with drain_pages() */
6828 local_irq_save(flags);
6829 if (zone->pageset != &boot_pageset) {
5a883813
MK
6830 for_each_online_cpu(cpu) {
6831 pset = per_cpu_ptr(zone->pageset, cpu);
6832 drain_zonestat(zone, pset);
6833 }
340175b7
JL
6834 free_percpu(zone->pageset);
6835 zone->pageset = &boot_pageset;
6836 }
6837 local_irq_restore(flags);
6838}
6839
6dcd73d7 6840#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195
KH
6841/*
6842 * All pages in the range must be isolated before calling this.
6843 */
6844void
6845__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6846{
6847 struct page *page;
6848 struct zone *zone;
7aeb09f9 6849 unsigned int order, i;
0c0e6195
KH
6850 unsigned long pfn;
6851 unsigned long flags;
6852 /* find the first valid pfn */
6853 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6854 if (pfn_valid(pfn))
6855 break;
6856 if (pfn == end_pfn)
6857 return;
6858 zone = page_zone(pfn_to_page(pfn));
6859 spin_lock_irqsave(&zone->lock, flags);
6860 pfn = start_pfn;
6861 while (pfn < end_pfn) {
6862 if (!pfn_valid(pfn)) {
6863 pfn++;
6864 continue;
6865 }
6866 page = pfn_to_page(pfn);
b023f468
WC
6867 /*
6868 * The HWPoisoned page may be not in buddy system, and
6869 * page_count() is not 0.
6870 */
6871 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6872 pfn++;
6873 SetPageReserved(page);
6874 continue;
6875 }
6876
0c0e6195
KH
6877 BUG_ON(page_count(page));
6878 BUG_ON(!PageBuddy(page));
6879 order = page_order(page);
6880#ifdef CONFIG_DEBUG_VM
6881 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6882 pfn, 1 << order, end_pfn);
6883#endif
6884 list_del(&page->lru);
6885 rmv_page_order(page);
6886 zone->free_area[order].nr_free--;
0c0e6195
KH
6887 for (i = 0; i < (1 << order); i++)
6888 SetPageReserved((page+i));
6889 pfn += (1 << order);
6890 }
6891 spin_unlock_irqrestore(&zone->lock, flags);
6892}
6893#endif
8d22ba1b
WF
6894
6895#ifdef CONFIG_MEMORY_FAILURE
6896bool is_free_buddy_page(struct page *page)
6897{
6898 struct zone *zone = page_zone(page);
6899 unsigned long pfn = page_to_pfn(page);
6900 unsigned long flags;
7aeb09f9 6901 unsigned int order;
8d22ba1b
WF
6902
6903 spin_lock_irqsave(&zone->lock, flags);
6904 for (order = 0; order < MAX_ORDER; order++) {
6905 struct page *page_head = page - (pfn & ((1 << order) - 1));
6906
6907 if (PageBuddy(page_head) && page_order(page_head) >= order)
6908 break;
6909 }
6910 spin_unlock_irqrestore(&zone->lock, flags);
6911
6912 return order < MAX_ORDER;
6913}
6914#endif