]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: don't duplicate code in free_pcp_prepare
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
2a7684a2
WF
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
22b751c3 527 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
528 return;
529 }
530
d936cf9b
HD
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
ff8e8116 541 pr_alert(
1e9e6365 542 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
ff8e8116 551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 552 current->comm, page_to_pfn(page));
ff8e8116
VB
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
4e462112 558 dump_page_owner(page);
3dc14741 559
4f31888c 560 print_modules();
1da177e4 561 dump_stack();
d936cf9b 562out:
8cc3b392 563 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 564 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
566}
567
1da177e4
LT
568/*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
1d798ca3 571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 572 *
1d798ca3
KS
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 575 *
1d798ca3
KS
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
1da177e4 578 *
1d798ca3 579 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 580 * This usage means that zero-order pages may not be compound.
1da177e4 581 */
d98c7a09 582
9a982250 583void free_compound_page(struct page *page)
d98c7a09 584{
d85f3385 585 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
586}
587
d00181b9 588void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
589{
590 int i;
591 int nr_pages = 1 << order;
592
f1e61557 593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
58a84aa9 598 set_page_count(p, 0);
1c290f64 599 p->mapping = TAIL_MAPPING;
1d798ca3 600 set_compound_head(p, page);
18229df5 601 }
53f9263b 602 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
603}
604
c0a32fc5
SG
605#ifdef CONFIG_DEBUG_PAGEALLOC
606unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
607bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 609EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
610bool _debug_guardpage_enabled __read_mostly;
611
031bc574
JK
612static int __init early_debug_pagealloc(char *buf)
613{
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
ea6eabb0
CB
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
031bc574
JK
623 return 0;
624}
625early_param("debug_pagealloc", early_debug_pagealloc);
626
e30825f1
JK
627static bool need_debug_guardpage(void)
628{
031bc574
JK
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
e30825f1
JK
633 return true;
634}
635
636static void init_debug_guardpage(void)
637{
031bc574
JK
638 if (!debug_pagealloc_enabled())
639 return;
640
e30825f1
JK
641 _debug_guardpage_enabled = true;
642}
643
644struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647};
c0a32fc5
SG
648
649static int __init debug_guardpage_minorder_setup(char *buf)
650{
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 654 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
1170532b 658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
659 return 0;
660}
661__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
2847cf95
JK
663static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
c0a32fc5 665{
e30825f1
JK
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
678}
679
2847cf95
JK
680static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
c0a32fc5 682{
e30825f1
JK
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
2847cf95
JK
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
694}
695#else
e30825f1 696struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
697static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
c0a32fc5
SG
701#endif
702
7aeb09f9 703static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 704{
4c21e2f2 705 set_page_private(page, order);
676165a8 706 __SetPageBuddy(page);
1da177e4
LT
707}
708
709static inline void rmv_page_order(struct page *page)
710{
676165a8 711 __ClearPageBuddy(page);
4c21e2f2 712 set_page_private(page, 0);
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
13e7444b 718 * (a) the buddy is not in a hole &&
676165a8 719 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
676165a8 722 *
cf6fe945
WSH
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
1da177e4 727 *
676165a8 728 * For recording page's order, we use page_private(page).
1da177e4 729 */
cb2b95e1 730static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 731 unsigned int order)
1da177e4 732{
14e07298 733 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 734 return 0;
13e7444b 735
c0a32fc5 736 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
c0a32fc5
SG
742 return 1;
743 }
744
cb2b95e1 745 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
4c5018ce
WY
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
6aa3001b 756 return 1;
676165a8 757 }
6aa3001b 758 return 0;
1da177e4
LT
759}
760
761/*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
1da177e4 777 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
1da177e4 780 * If a block is freed, and its buddy is also free, then this
5f63b720 781 * triggers coalescing into a block of larger size.
1da177e4 782 *
6d49e352 783 * -- nyc
1da177e4
LT
784 */
785
48db57f8 786static inline void __free_one_page(struct page *page,
dc4b0caf 787 unsigned long pfn,
ed0ae21d
MG
788 struct zone *zone, unsigned int order,
789 int migratetype)
1da177e4
LT
790{
791 unsigned long page_idx;
6dda9d55 792 unsigned long combined_idx;
43506fad 793 unsigned long uninitialized_var(buddy_idx);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
d9dddbf5 806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 807
309381fe
SL
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 810
d9dddbf5 811continue_merging:
3c605096 812 while (order < max_order - 1) {
43506fad
KC
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
cb2b95e1 815 if (!page_is_buddy(page, buddy, order))
d9dddbf5 816 goto done_merging;
c0a32fc5
SG
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
2847cf95 822 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
43506fad 828 combined_idx = buddy_idx & page_idx;
1da177e4
LT
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
d9dddbf5
VB
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858done_merging:
1da177e4 859 set_page_order(page, order);
6dda9d55
CZ
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
b7f50cfa 869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 870 struct page *higher_page, *higher_buddy;
43506fad
KC
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 874 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883out:
1da177e4
LT
884 zone->free_area[order].nr_free++;
885}
886
7bfec6f4
MG
887/*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894{
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900#ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902#endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907}
908
bb552ac6 909static void free_pages_check_bad(struct page *page)
1da177e4 910{
7bfec6f4
MG
911 const char *bad_reason;
912 unsigned long bad_flags;
913
7bfec6f4
MG
914 bad_reason = NULL;
915 bad_flags = 0;
f0b791a3 916
53f9263b 917 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
fe896d18 921 if (unlikely(page_ref_count(page) != 0))
0139aa7b 922 bad_reason = "nonzero _refcount";
f0b791a3
DH
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
9edad6ea
JW
927#ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930#endif
7bfec6f4 931 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
932}
933
934static inline int free_pages_check(struct page *page)
935{
da838d4f 936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 937 return 0;
bb552ac6
MG
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
7bfec6f4 941 return 1;
1da177e4
LT
942}
943
4db7548c
MG
944static int free_tail_pages_check(struct page *head_page, struct page *page)
945{
946 int ret = 1;
947
948 /*
949 * We rely page->lru.next never has bit 0 set, unless the page
950 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
951 */
952 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
953
954 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
955 ret = 0;
956 goto out;
957 }
958 switch (page - head_page) {
959 case 1:
960 /* the first tail page: ->mapping is compound_mapcount() */
961 if (unlikely(compound_mapcount(page))) {
962 bad_page(page, "nonzero compound_mapcount", 0);
963 goto out;
964 }
965 break;
966 case 2:
967 /*
968 * the second tail page: ->mapping is
969 * page_deferred_list().next -- ignore value.
970 */
971 break;
972 default:
973 if (page->mapping != TAIL_MAPPING) {
974 bad_page(page, "corrupted mapping in tail page", 0);
975 goto out;
976 }
977 break;
978 }
979 if (unlikely(!PageTail(page))) {
980 bad_page(page, "PageTail not set", 0);
981 goto out;
982 }
983 if (unlikely(compound_head(page) != head_page)) {
984 bad_page(page, "compound_head not consistent", 0);
985 goto out;
986 }
987 ret = 0;
988out:
989 page->mapping = NULL;
990 clear_compound_head(page);
991 return ret;
992}
993
e2769dbd
MG
994static __always_inline bool free_pages_prepare(struct page *page,
995 unsigned int order, bool check_free)
4db7548c 996{
e2769dbd 997 int bad = 0;
4db7548c 998
4db7548c
MG
999 VM_BUG_ON_PAGE(PageTail(page), page);
1000
e2769dbd
MG
1001 trace_mm_page_free(page, order);
1002 kmemcheck_free_shadow(page, order);
1003 kasan_free_pages(page, order);
1004
1005 /*
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1008 */
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1012
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1014
e2769dbd
MG
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
4db7548c
MG
1025 if (PageAnonHead(page))
1026 page->mapping = NULL;
e2769dbd
MG
1027 if (check_free)
1028 bad += free_pages_check(page);
1029 if (bad)
1030 return false;
4db7548c 1031
e2769dbd
MG
1032 page_cpupid_reset_last(page);
1033 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1034 reset_page_owner(page, order);
4db7548c
MG
1035
1036 if (!PageHighMem(page)) {
1037 debug_check_no_locks_freed(page_address(page),
e2769dbd 1038 PAGE_SIZE << order);
4db7548c 1039 debug_check_no_obj_freed(page_address(page),
e2769dbd 1040 PAGE_SIZE << order);
4db7548c 1041 }
e2769dbd
MG
1042 arch_free_page(page, order);
1043 kernel_poison_pages(page, 1 << order, 0);
1044 kernel_map_pages(page, 1 << order, 0);
4db7548c 1045
4db7548c
MG
1046 return true;
1047}
1048
e2769dbd
MG
1049#ifdef CONFIG_DEBUG_VM
1050static inline bool free_pcp_prepare(struct page *page)
1051{
1052 return free_pages_prepare(page, 0, true);
1053}
1054
1055static inline bool bulkfree_pcp_prepare(struct page *page)
1056{
1057 return false;
1058}
1059#else
1060static bool free_pcp_prepare(struct page *page)
1061{
1062 return free_pages_prepare(page, 0, false);
1063}
1064
4db7548c
MG
1065static bool bulkfree_pcp_prepare(struct page *page)
1066{
1067 return free_pages_check(page);
1068}
1069#endif /* CONFIG_DEBUG_VM */
1070
1da177e4 1071/*
5f8dcc21 1072 * Frees a number of pages from the PCP lists
1da177e4 1073 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1074 * count is the number of pages to free.
1da177e4
LT
1075 *
1076 * If the zone was previously in an "all pages pinned" state then look to
1077 * see if this freeing clears that state.
1078 *
1079 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1080 * pinned" detection logic.
1081 */
5f8dcc21
MG
1082static void free_pcppages_bulk(struct zone *zone, int count,
1083 struct per_cpu_pages *pcp)
1da177e4 1084{
5f8dcc21 1085 int migratetype = 0;
a6f9edd6 1086 int batch_free = 0;
0d5d823a 1087 unsigned long nr_scanned;
3777999d 1088 bool isolated_pageblocks;
5f8dcc21 1089
c54ad30c 1090 spin_lock(&zone->lock);
3777999d 1091 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
1092 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1093 if (nr_scanned)
1094 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1095
e5b31ac2 1096 while (count) {
48db57f8 1097 struct page *page;
5f8dcc21
MG
1098 struct list_head *list;
1099
1100 /*
a6f9edd6
MG
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
5f8dcc21
MG
1106 */
1107 do {
a6f9edd6 1108 batch_free++;
5f8dcc21
MG
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
48db57f8 1113
1d16871d
NK
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1116 batch_free = count;
1d16871d 1117
a6f9edd6 1118 do {
770c8aaa
BZ
1119 int mt; /* migratetype of the to-be-freed page */
1120
a16601c5 1121 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1122 /* must delete as __free_one_page list manipulates */
1123 list_del(&page->lru);
aa016d14 1124
bb14c2c7 1125 mt = get_pcppage_migratetype(page);
aa016d14
VB
1126 /* MIGRATE_ISOLATE page should not go to pcplists */
1127 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1128 /* Pageblock could have been isolated meanwhile */
3777999d 1129 if (unlikely(isolated_pageblocks))
51bb1a40 1130 mt = get_pageblock_migratetype(page);
51bb1a40 1131
4db7548c
MG
1132 if (bulkfree_pcp_prepare(page))
1133 continue;
1134
dc4b0caf 1135 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1136 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1137 } while (--count && --batch_free && !list_empty(list));
1da177e4 1138 }
c54ad30c 1139 spin_unlock(&zone->lock);
1da177e4
LT
1140}
1141
dc4b0caf
MG
1142static void free_one_page(struct zone *zone,
1143 struct page *page, unsigned long pfn,
7aeb09f9 1144 unsigned int order,
ed0ae21d 1145 int migratetype)
1da177e4 1146{
0d5d823a 1147 unsigned long nr_scanned;
006d22d9 1148 spin_lock(&zone->lock);
0d5d823a
MG
1149 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1150 if (nr_scanned)
1151 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1152
ad53f92e
JK
1153 if (unlikely(has_isolate_pageblock(zone) ||
1154 is_migrate_isolate(migratetype))) {
1155 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1156 }
dc4b0caf 1157 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1158 spin_unlock(&zone->lock);
48db57f8
NP
1159}
1160
1e8ce83c
RH
1161static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1162 unsigned long zone, int nid)
1163{
1e8ce83c 1164 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1165 init_page_count(page);
1166 page_mapcount_reset(page);
1167 page_cpupid_reset_last(page);
1e8ce83c 1168
1e8ce83c
RH
1169 INIT_LIST_HEAD(&page->lru);
1170#ifdef WANT_PAGE_VIRTUAL
1171 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1172 if (!is_highmem_idx(zone))
1173 set_page_address(page, __va(pfn << PAGE_SHIFT));
1174#endif
1175}
1176
1177static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1178 int nid)
1179{
1180 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1181}
1182
7e18adb4
MG
1183#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1184static void init_reserved_page(unsigned long pfn)
1185{
1186 pg_data_t *pgdat;
1187 int nid, zid;
1188
1189 if (!early_page_uninitialised(pfn))
1190 return;
1191
1192 nid = early_pfn_to_nid(pfn);
1193 pgdat = NODE_DATA(nid);
1194
1195 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1196 struct zone *zone = &pgdat->node_zones[zid];
1197
1198 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1199 break;
1200 }
1201 __init_single_pfn(pfn, zid, nid);
1202}
1203#else
1204static inline void init_reserved_page(unsigned long pfn)
1205{
1206}
1207#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1208
92923ca3
NZ
1209/*
1210 * Initialised pages do not have PageReserved set. This function is
1211 * called for each range allocated by the bootmem allocator and
1212 * marks the pages PageReserved. The remaining valid pages are later
1213 * sent to the buddy page allocator.
1214 */
7e18adb4 1215void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1216{
1217 unsigned long start_pfn = PFN_DOWN(start);
1218 unsigned long end_pfn = PFN_UP(end);
1219
7e18adb4
MG
1220 for (; start_pfn < end_pfn; start_pfn++) {
1221 if (pfn_valid(start_pfn)) {
1222 struct page *page = pfn_to_page(start_pfn);
1223
1224 init_reserved_page(start_pfn);
1d798ca3
KS
1225
1226 /* Avoid false-positive PageTail() */
1227 INIT_LIST_HEAD(&page->lru);
1228
7e18adb4
MG
1229 SetPageReserved(page);
1230 }
1231 }
92923ca3
NZ
1232}
1233
ec95f53a
KM
1234static void __free_pages_ok(struct page *page, unsigned int order)
1235{
1236 unsigned long flags;
95e34412 1237 int migratetype;
dc4b0caf 1238 unsigned long pfn = page_to_pfn(page);
ec95f53a 1239
e2769dbd 1240 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1241 return;
1242
cfc47a28 1243 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1244 local_irq_save(flags);
f8891e5e 1245 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1246 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1247 local_irq_restore(flags);
1da177e4
LT
1248}
1249
949698a3 1250static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1251{
c3993076 1252 unsigned int nr_pages = 1 << order;
e2d0bd2b 1253 struct page *p = page;
c3993076 1254 unsigned int loop;
a226f6c8 1255
e2d0bd2b
YL
1256 prefetchw(p);
1257 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1258 prefetchw(p + 1);
c3993076
JW
1259 __ClearPageReserved(p);
1260 set_page_count(p, 0);
a226f6c8 1261 }
e2d0bd2b
YL
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
c3993076 1264
e2d0bd2b 1265 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1266 set_page_refcounted(page);
1267 __free_pages(page, order);
a226f6c8
DH
1268}
1269
75a592a4
MG
1270#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1271 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1272
75a592a4
MG
1273static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1274
1275int __meminit early_pfn_to_nid(unsigned long pfn)
1276{
7ace9917 1277 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1278 int nid;
1279
7ace9917 1280 spin_lock(&early_pfn_lock);
75a592a4 1281 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1282 if (nid < 0)
1283 nid = 0;
1284 spin_unlock(&early_pfn_lock);
1285
1286 return nid;
75a592a4
MG
1287}
1288#endif
1289
1290#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1291static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1292 struct mminit_pfnnid_cache *state)
1293{
1294 int nid;
1295
1296 nid = __early_pfn_to_nid(pfn, state);
1297 if (nid >= 0 && nid != node)
1298 return false;
1299 return true;
1300}
1301
1302/* Only safe to use early in boot when initialisation is single-threaded */
1303static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304{
1305 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1306}
1307
1308#else
1309
1310static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1311{
1312 return true;
1313}
1314static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1315 struct mminit_pfnnid_cache *state)
1316{
1317 return true;
1318}
1319#endif
1320
1321
0e1cc95b 1322void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1323 unsigned int order)
1324{
1325 if (early_page_uninitialised(pfn))
1326 return;
949698a3 1327 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1328}
1329
7cf91a98
JK
1330/*
1331 * Check that the whole (or subset of) a pageblock given by the interval of
1332 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1333 * with the migration of free compaction scanner. The scanners then need to
1334 * use only pfn_valid_within() check for arches that allow holes within
1335 * pageblocks.
1336 *
1337 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1338 *
1339 * It's possible on some configurations to have a setup like node0 node1 node0
1340 * i.e. it's possible that all pages within a zones range of pages do not
1341 * belong to a single zone. We assume that a border between node0 and node1
1342 * can occur within a single pageblock, but not a node0 node1 node0
1343 * interleaving within a single pageblock. It is therefore sufficient to check
1344 * the first and last page of a pageblock and avoid checking each individual
1345 * page in a pageblock.
1346 */
1347struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1348 unsigned long end_pfn, struct zone *zone)
1349{
1350 struct page *start_page;
1351 struct page *end_page;
1352
1353 /* end_pfn is one past the range we are checking */
1354 end_pfn--;
1355
1356 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1357 return NULL;
1358
1359 start_page = pfn_to_page(start_pfn);
1360
1361 if (page_zone(start_page) != zone)
1362 return NULL;
1363
1364 end_page = pfn_to_page(end_pfn);
1365
1366 /* This gives a shorter code than deriving page_zone(end_page) */
1367 if (page_zone_id(start_page) != page_zone_id(end_page))
1368 return NULL;
1369
1370 return start_page;
1371}
1372
1373void set_zone_contiguous(struct zone *zone)
1374{
1375 unsigned long block_start_pfn = zone->zone_start_pfn;
1376 unsigned long block_end_pfn;
1377
1378 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1379 for (; block_start_pfn < zone_end_pfn(zone);
1380 block_start_pfn = block_end_pfn,
1381 block_end_pfn += pageblock_nr_pages) {
1382
1383 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1384
1385 if (!__pageblock_pfn_to_page(block_start_pfn,
1386 block_end_pfn, zone))
1387 return;
1388 }
1389
1390 /* We confirm that there is no hole */
1391 zone->contiguous = true;
1392}
1393
1394void clear_zone_contiguous(struct zone *zone)
1395{
1396 zone->contiguous = false;
1397}
1398
7e18adb4 1399#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1400static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1401 unsigned long pfn, int nr_pages)
1402{
1403 int i;
1404
1405 if (!page)
1406 return;
1407
1408 /* Free a large naturally-aligned chunk if possible */
1409 if (nr_pages == MAX_ORDER_NR_PAGES &&
1410 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1411 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1412 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1413 return;
1414 }
1415
949698a3
LZ
1416 for (i = 0; i < nr_pages; i++, page++)
1417 __free_pages_boot_core(page, 0);
a4de83dd
MG
1418}
1419
d3cd131d
NS
1420/* Completion tracking for deferred_init_memmap() threads */
1421static atomic_t pgdat_init_n_undone __initdata;
1422static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1423
1424static inline void __init pgdat_init_report_one_done(void)
1425{
1426 if (atomic_dec_and_test(&pgdat_init_n_undone))
1427 complete(&pgdat_init_all_done_comp);
1428}
0e1cc95b 1429
7e18adb4 1430/* Initialise remaining memory on a node */
0e1cc95b 1431static int __init deferred_init_memmap(void *data)
7e18adb4 1432{
0e1cc95b
MG
1433 pg_data_t *pgdat = data;
1434 int nid = pgdat->node_id;
7e18adb4
MG
1435 struct mminit_pfnnid_cache nid_init_state = { };
1436 unsigned long start = jiffies;
1437 unsigned long nr_pages = 0;
1438 unsigned long walk_start, walk_end;
1439 int i, zid;
1440 struct zone *zone;
7e18adb4 1441 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1442 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1443
0e1cc95b 1444 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1445 pgdat_init_report_one_done();
0e1cc95b
MG
1446 return 0;
1447 }
1448
1449 /* Bind memory initialisation thread to a local node if possible */
1450 if (!cpumask_empty(cpumask))
1451 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1452
1453 /* Sanity check boundaries */
1454 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1455 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1456 pgdat->first_deferred_pfn = ULONG_MAX;
1457
1458 /* Only the highest zone is deferred so find it */
1459 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1460 zone = pgdat->node_zones + zid;
1461 if (first_init_pfn < zone_end_pfn(zone))
1462 break;
1463 }
1464
1465 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1466 unsigned long pfn, end_pfn;
54608c3f 1467 struct page *page = NULL;
a4de83dd
MG
1468 struct page *free_base_page = NULL;
1469 unsigned long free_base_pfn = 0;
1470 int nr_to_free = 0;
7e18adb4
MG
1471
1472 end_pfn = min(walk_end, zone_end_pfn(zone));
1473 pfn = first_init_pfn;
1474 if (pfn < walk_start)
1475 pfn = walk_start;
1476 if (pfn < zone->zone_start_pfn)
1477 pfn = zone->zone_start_pfn;
1478
1479 for (; pfn < end_pfn; pfn++) {
54608c3f 1480 if (!pfn_valid_within(pfn))
a4de83dd 1481 goto free_range;
7e18adb4 1482
54608c3f
MG
1483 /*
1484 * Ensure pfn_valid is checked every
1485 * MAX_ORDER_NR_PAGES for memory holes
1486 */
1487 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1488 if (!pfn_valid(pfn)) {
1489 page = NULL;
a4de83dd 1490 goto free_range;
54608c3f
MG
1491 }
1492 }
1493
1494 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498
1499 /* Minimise pfn page lookups and scheduler checks */
1500 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1501 page++;
1502 } else {
a4de83dd
MG
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page,
1505 free_base_pfn, nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508
54608c3f
MG
1509 page = pfn_to_page(pfn);
1510 cond_resched();
1511 }
7e18adb4
MG
1512
1513 if (page->flags) {
1514 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1515 goto free_range;
7e18adb4
MG
1516 }
1517
1518 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1519 if (!free_base_page) {
1520 free_base_page = page;
1521 free_base_pfn = pfn;
1522 nr_to_free = 0;
1523 }
1524 nr_to_free++;
1525
1526 /* Where possible, batch up pages for a single free */
1527 continue;
1528free_range:
1529 /* Free the current block of pages to allocator */
1530 nr_pages += nr_to_free;
1531 deferred_free_range(free_base_page, free_base_pfn,
1532 nr_to_free);
1533 free_base_page = NULL;
1534 free_base_pfn = nr_to_free = 0;
7e18adb4 1535 }
a4de83dd 1536
7e18adb4
MG
1537 first_init_pfn = max(end_pfn, first_init_pfn);
1538 }
1539
1540 /* Sanity check that the next zone really is unpopulated */
1541 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1542
0e1cc95b 1543 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1544 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1545
1546 pgdat_init_report_one_done();
0e1cc95b
MG
1547 return 0;
1548}
7cf91a98 1549#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1550
1551void __init page_alloc_init_late(void)
1552{
7cf91a98
JK
1553 struct zone *zone;
1554
1555#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1556 int nid;
1557
d3cd131d
NS
1558 /* There will be num_node_state(N_MEMORY) threads */
1559 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1560 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1561 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1562 }
1563
1564 /* Block until all are initialised */
d3cd131d 1565 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1566
1567 /* Reinit limits that are based on free pages after the kernel is up */
1568 files_maxfiles_init();
7cf91a98
JK
1569#endif
1570
1571 for_each_populated_zone(zone)
1572 set_zone_contiguous(zone);
7e18adb4 1573}
7e18adb4 1574
47118af0 1575#ifdef CONFIG_CMA
9cf510a5 1576/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1577void __init init_cma_reserved_pageblock(struct page *page)
1578{
1579 unsigned i = pageblock_nr_pages;
1580 struct page *p = page;
1581
1582 do {
1583 __ClearPageReserved(p);
1584 set_page_count(p, 0);
1585 } while (++p, --i);
1586
47118af0 1587 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1588
1589 if (pageblock_order >= MAX_ORDER) {
1590 i = pageblock_nr_pages;
1591 p = page;
1592 do {
1593 set_page_refcounted(p);
1594 __free_pages(p, MAX_ORDER - 1);
1595 p += MAX_ORDER_NR_PAGES;
1596 } while (i -= MAX_ORDER_NR_PAGES);
1597 } else {
1598 set_page_refcounted(page);
1599 __free_pages(page, pageblock_order);
1600 }
1601
3dcc0571 1602 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1603}
1604#endif
1da177e4
LT
1605
1606/*
1607 * The order of subdivision here is critical for the IO subsystem.
1608 * Please do not alter this order without good reasons and regression
1609 * testing. Specifically, as large blocks of memory are subdivided,
1610 * the order in which smaller blocks are delivered depends on the order
1611 * they're subdivided in this function. This is the primary factor
1612 * influencing the order in which pages are delivered to the IO
1613 * subsystem according to empirical testing, and this is also justified
1614 * by considering the behavior of a buddy system containing a single
1615 * large block of memory acted on by a series of small allocations.
1616 * This behavior is a critical factor in sglist merging's success.
1617 *
6d49e352 1618 * -- nyc
1da177e4 1619 */
085cc7d5 1620static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1621 int low, int high, struct free_area *area,
1622 int migratetype)
1da177e4
LT
1623{
1624 unsigned long size = 1 << high;
1625
1626 while (high > low) {
1627 area--;
1628 high--;
1629 size >>= 1;
309381fe 1630 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1631
2847cf95 1632 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1633 debug_guardpage_enabled() &&
2847cf95 1634 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1635 /*
1636 * Mark as guard pages (or page), that will allow to
1637 * merge back to allocator when buddy will be freed.
1638 * Corresponding page table entries will not be touched,
1639 * pages will stay not present in virtual address space
1640 */
2847cf95 1641 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1642 continue;
1643 }
b2a0ac88 1644 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1645 area->nr_free++;
1646 set_page_order(&page[size], high);
1647 }
1da177e4
LT
1648}
1649
1da177e4
LT
1650/*
1651 * This page is about to be returned from the page allocator
1652 */
2a7684a2 1653static inline int check_new_page(struct page *page)
1da177e4 1654{
7bfec6f4
MG
1655 const char *bad_reason;
1656 unsigned long bad_flags;
1657
1658 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1659 return 0;
f0b791a3 1660
7bfec6f4
MG
1661 bad_reason = NULL;
1662 bad_flags = 0;
53f9263b 1663 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1664 bad_reason = "nonzero mapcount";
1665 if (unlikely(page->mapping != NULL))
1666 bad_reason = "non-NULL mapping";
fe896d18 1667 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1668 bad_reason = "nonzero _count";
f4c18e6f
NH
1669 if (unlikely(page->flags & __PG_HWPOISON)) {
1670 bad_reason = "HWPoisoned (hardware-corrupted)";
1671 bad_flags = __PG_HWPOISON;
1672 }
f0b791a3
DH
1673 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1674 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1675 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1676 }
9edad6ea
JW
1677#ifdef CONFIG_MEMCG
1678 if (unlikely(page->mem_cgroup))
1679 bad_reason = "page still charged to cgroup";
1680#endif
f0b791a3
DH
1681 if (unlikely(bad_reason)) {
1682 bad_page(page, bad_reason, bad_flags);
689bcebf 1683 return 1;
8cc3b392 1684 }
2a7684a2
WF
1685 return 0;
1686}
1687
1414c7f4
LA
1688static inline bool free_pages_prezeroed(bool poisoned)
1689{
1690 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1691 page_poisoning_enabled() && poisoned;
1692}
1693
479f854a
MG
1694#ifdef CONFIG_DEBUG_VM
1695static bool check_pcp_refill(struct page *page)
1696{
1697 return false;
1698}
1699
1700static bool check_new_pcp(struct page *page)
1701{
1702 return check_new_page(page);
1703}
1704#else
1705static bool check_pcp_refill(struct page *page)
1706{
1707 return check_new_page(page);
1708}
1709static bool check_new_pcp(struct page *page)
1710{
1711 return false;
1712}
1713#endif /* CONFIG_DEBUG_VM */
1714
1715static bool check_new_pages(struct page *page, unsigned int order)
1716{
1717 int i;
1718 for (i = 0; i < (1 << order); i++) {
1719 struct page *p = page + i;
1720
1721 if (unlikely(check_new_page(p)))
1722 return true;
1723 }
1724
1725 return false;
1726}
1727
1728static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1729 unsigned int alloc_flags)
2a7684a2
WF
1730{
1731 int i;
1414c7f4 1732 bool poisoned = true;
2a7684a2
WF
1733
1734 for (i = 0; i < (1 << order); i++) {
1735 struct page *p = page + i;
1414c7f4
LA
1736 if (poisoned)
1737 poisoned &= page_is_poisoned(p);
2a7684a2 1738 }
689bcebf 1739
4c21e2f2 1740 set_page_private(page, 0);
7835e98b 1741 set_page_refcounted(page);
cc102509
NP
1742
1743 arch_alloc_page(page, order);
1da177e4 1744 kernel_map_pages(page, 1 << order, 1);
8823b1db 1745 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1746 kasan_alloc_pages(page, order);
17cf4406 1747
1414c7f4 1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
17cf4406
NP
1751
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1754
48c96a36
JK
1755 set_page_owner(page, order, gfp_flags);
1756
75379191 1757 /*
2f064f34 1758 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1759 * allocate the page. The expectation is that the caller is taking
1760 * steps that will free more memory. The caller should avoid the page
1761 * being used for !PFMEMALLOC purposes.
1762 */
2f064f34
MH
1763 if (alloc_flags & ALLOC_NO_WATERMARKS)
1764 set_page_pfmemalloc(page);
1765 else
1766 clear_page_pfmemalloc(page);
1da177e4
LT
1767}
1768
56fd56b8
MG
1769/*
1770 * Go through the free lists for the given migratetype and remove
1771 * the smallest available page from the freelists
1772 */
728ec980
MG
1773static inline
1774struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1775 int migratetype)
1776{
1777 unsigned int current_order;
b8af2941 1778 struct free_area *area;
56fd56b8
MG
1779 struct page *page;
1780
1781 /* Find a page of the appropriate size in the preferred list */
1782 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1783 area = &(zone->free_area[current_order]);
a16601c5 1784 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1785 struct page, lru);
a16601c5
GT
1786 if (!page)
1787 continue;
56fd56b8
MG
1788 list_del(&page->lru);
1789 rmv_page_order(page);
1790 area->nr_free--;
56fd56b8 1791 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1792 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1793 return page;
1794 }
1795
1796 return NULL;
1797}
1798
1799
b2a0ac88
MG
1800/*
1801 * This array describes the order lists are fallen back to when
1802 * the free lists for the desirable migrate type are depleted
1803 */
47118af0 1804static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1805 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1806 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1807 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1808#ifdef CONFIG_CMA
974a786e 1809 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1810#endif
194159fb 1811#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1812 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1813#endif
b2a0ac88
MG
1814};
1815
dc67647b
JK
1816#ifdef CONFIG_CMA
1817static struct page *__rmqueue_cma_fallback(struct zone *zone,
1818 unsigned int order)
1819{
1820 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1821}
1822#else
1823static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1824 unsigned int order) { return NULL; }
1825#endif
1826
c361be55
MG
1827/*
1828 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1829 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1830 * boundary. If alignment is required, use move_freepages_block()
1831 */
435b405c 1832int move_freepages(struct zone *zone,
b69a7288
AB
1833 struct page *start_page, struct page *end_page,
1834 int migratetype)
c361be55
MG
1835{
1836 struct page *page;
d00181b9 1837 unsigned int order;
d100313f 1838 int pages_moved = 0;
c361be55
MG
1839
1840#ifndef CONFIG_HOLES_IN_ZONE
1841 /*
1842 * page_zone is not safe to call in this context when
1843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1844 * anyway as we check zone boundaries in move_freepages_block().
1845 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1846 * grouping pages by mobility
c361be55 1847 */
97ee4ba7 1848 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1849#endif
1850
1851 for (page = start_page; page <= end_page;) {
344c790e 1852 /* Make sure we are not inadvertently changing nodes */
309381fe 1853 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1854
c361be55
MG
1855 if (!pfn_valid_within(page_to_pfn(page))) {
1856 page++;
1857 continue;
1858 }
1859
1860 if (!PageBuddy(page)) {
1861 page++;
1862 continue;
1863 }
1864
1865 order = page_order(page);
84be48d8
KS
1866 list_move(&page->lru,
1867 &zone->free_area[order].free_list[migratetype]);
c361be55 1868 page += 1 << order;
d100313f 1869 pages_moved += 1 << order;
c361be55
MG
1870 }
1871
d100313f 1872 return pages_moved;
c361be55
MG
1873}
1874
ee6f509c 1875int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1876 int migratetype)
c361be55
MG
1877{
1878 unsigned long start_pfn, end_pfn;
1879 struct page *start_page, *end_page;
1880
1881 start_pfn = page_to_pfn(page);
d9c23400 1882 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1883 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1884 end_page = start_page + pageblock_nr_pages - 1;
1885 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1886
1887 /* Do not cross zone boundaries */
108bcc96 1888 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1889 start_page = page;
108bcc96 1890 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1891 return 0;
1892
1893 return move_freepages(zone, start_page, end_page, migratetype);
1894}
1895
2f66a68f
MG
1896static void change_pageblock_range(struct page *pageblock_page,
1897 int start_order, int migratetype)
1898{
1899 int nr_pageblocks = 1 << (start_order - pageblock_order);
1900
1901 while (nr_pageblocks--) {
1902 set_pageblock_migratetype(pageblock_page, migratetype);
1903 pageblock_page += pageblock_nr_pages;
1904 }
1905}
1906
fef903ef 1907/*
9c0415eb
VB
1908 * When we are falling back to another migratetype during allocation, try to
1909 * steal extra free pages from the same pageblocks to satisfy further
1910 * allocations, instead of polluting multiple pageblocks.
1911 *
1912 * If we are stealing a relatively large buddy page, it is likely there will
1913 * be more free pages in the pageblock, so try to steal them all. For
1914 * reclaimable and unmovable allocations, we steal regardless of page size,
1915 * as fragmentation caused by those allocations polluting movable pageblocks
1916 * is worse than movable allocations stealing from unmovable and reclaimable
1917 * pageblocks.
fef903ef 1918 */
4eb7dce6
JK
1919static bool can_steal_fallback(unsigned int order, int start_mt)
1920{
1921 /*
1922 * Leaving this order check is intended, although there is
1923 * relaxed order check in next check. The reason is that
1924 * we can actually steal whole pageblock if this condition met,
1925 * but, below check doesn't guarantee it and that is just heuristic
1926 * so could be changed anytime.
1927 */
1928 if (order >= pageblock_order)
1929 return true;
1930
1931 if (order >= pageblock_order / 2 ||
1932 start_mt == MIGRATE_RECLAIMABLE ||
1933 start_mt == MIGRATE_UNMOVABLE ||
1934 page_group_by_mobility_disabled)
1935 return true;
1936
1937 return false;
1938}
1939
1940/*
1941 * This function implements actual steal behaviour. If order is large enough,
1942 * we can steal whole pageblock. If not, we first move freepages in this
1943 * pageblock and check whether half of pages are moved or not. If half of
1944 * pages are moved, we can change migratetype of pageblock and permanently
1945 * use it's pages as requested migratetype in the future.
1946 */
1947static void steal_suitable_fallback(struct zone *zone, struct page *page,
1948 int start_type)
fef903ef 1949{
d00181b9 1950 unsigned int current_order = page_order(page);
4eb7dce6 1951 int pages;
fef903ef 1952
fef903ef
SB
1953 /* Take ownership for orders >= pageblock_order */
1954 if (current_order >= pageblock_order) {
1955 change_pageblock_range(page, current_order, start_type);
3a1086fb 1956 return;
fef903ef
SB
1957 }
1958
4eb7dce6 1959 pages = move_freepages_block(zone, page, start_type);
fef903ef 1960
4eb7dce6
JK
1961 /* Claim the whole block if over half of it is free */
1962 if (pages >= (1 << (pageblock_order-1)) ||
1963 page_group_by_mobility_disabled)
1964 set_pageblock_migratetype(page, start_type);
1965}
1966
2149cdae
JK
1967/*
1968 * Check whether there is a suitable fallback freepage with requested order.
1969 * If only_stealable is true, this function returns fallback_mt only if
1970 * we can steal other freepages all together. This would help to reduce
1971 * fragmentation due to mixed migratetype pages in one pageblock.
1972 */
1973int find_suitable_fallback(struct free_area *area, unsigned int order,
1974 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1975{
1976 int i;
1977 int fallback_mt;
1978
1979 if (area->nr_free == 0)
1980 return -1;
1981
1982 *can_steal = false;
1983 for (i = 0;; i++) {
1984 fallback_mt = fallbacks[migratetype][i];
974a786e 1985 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1986 break;
1987
1988 if (list_empty(&area->free_list[fallback_mt]))
1989 continue;
fef903ef 1990
4eb7dce6
JK
1991 if (can_steal_fallback(order, migratetype))
1992 *can_steal = true;
1993
2149cdae
JK
1994 if (!only_stealable)
1995 return fallback_mt;
1996
1997 if (*can_steal)
1998 return fallback_mt;
fef903ef 1999 }
4eb7dce6
JK
2000
2001 return -1;
fef903ef
SB
2002}
2003
0aaa29a5
MG
2004/*
2005 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2006 * there are no empty page blocks that contain a page with a suitable order
2007 */
2008static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2009 unsigned int alloc_order)
2010{
2011 int mt;
2012 unsigned long max_managed, flags;
2013
2014 /*
2015 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2016 * Check is race-prone but harmless.
2017 */
2018 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2019 if (zone->nr_reserved_highatomic >= max_managed)
2020 return;
2021
2022 spin_lock_irqsave(&zone->lock, flags);
2023
2024 /* Recheck the nr_reserved_highatomic limit under the lock */
2025 if (zone->nr_reserved_highatomic >= max_managed)
2026 goto out_unlock;
2027
2028 /* Yoink! */
2029 mt = get_pageblock_migratetype(page);
2030 if (mt != MIGRATE_HIGHATOMIC &&
2031 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2032 zone->nr_reserved_highatomic += pageblock_nr_pages;
2033 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2034 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2035 }
2036
2037out_unlock:
2038 spin_unlock_irqrestore(&zone->lock, flags);
2039}
2040
2041/*
2042 * Used when an allocation is about to fail under memory pressure. This
2043 * potentially hurts the reliability of high-order allocations when under
2044 * intense memory pressure but failed atomic allocations should be easier
2045 * to recover from than an OOM.
2046 */
2047static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2048{
2049 struct zonelist *zonelist = ac->zonelist;
2050 unsigned long flags;
2051 struct zoneref *z;
2052 struct zone *zone;
2053 struct page *page;
2054 int order;
2055
2056 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2057 ac->nodemask) {
2058 /* Preserve at least one pageblock */
2059 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2060 continue;
2061
2062 spin_lock_irqsave(&zone->lock, flags);
2063 for (order = 0; order < MAX_ORDER; order++) {
2064 struct free_area *area = &(zone->free_area[order]);
2065
a16601c5
GT
2066 page = list_first_entry_or_null(
2067 &area->free_list[MIGRATE_HIGHATOMIC],
2068 struct page, lru);
2069 if (!page)
0aaa29a5
MG
2070 continue;
2071
0aaa29a5
MG
2072 /*
2073 * It should never happen but changes to locking could
2074 * inadvertently allow a per-cpu drain to add pages
2075 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2076 * and watch for underflows.
2077 */
2078 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2079 zone->nr_reserved_highatomic);
2080
2081 /*
2082 * Convert to ac->migratetype and avoid the normal
2083 * pageblock stealing heuristics. Minimally, the caller
2084 * is doing the work and needs the pages. More
2085 * importantly, if the block was always converted to
2086 * MIGRATE_UNMOVABLE or another type then the number
2087 * of pageblocks that cannot be completely freed
2088 * may increase.
2089 */
2090 set_pageblock_migratetype(page, ac->migratetype);
2091 move_freepages_block(zone, page, ac->migratetype);
2092 spin_unlock_irqrestore(&zone->lock, flags);
2093 return;
2094 }
2095 spin_unlock_irqrestore(&zone->lock, flags);
2096 }
2097}
2098
b2a0ac88 2099/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2100static inline struct page *
7aeb09f9 2101__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2102{
b8af2941 2103 struct free_area *area;
7aeb09f9 2104 unsigned int current_order;
b2a0ac88 2105 struct page *page;
4eb7dce6
JK
2106 int fallback_mt;
2107 bool can_steal;
b2a0ac88
MG
2108
2109 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2110 for (current_order = MAX_ORDER-1;
2111 current_order >= order && current_order <= MAX_ORDER-1;
2112 --current_order) {
4eb7dce6
JK
2113 area = &(zone->free_area[current_order]);
2114 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2115 start_migratetype, false, &can_steal);
4eb7dce6
JK
2116 if (fallback_mt == -1)
2117 continue;
b2a0ac88 2118
a16601c5 2119 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2120 struct page, lru);
2121 if (can_steal)
2122 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2123
4eb7dce6
JK
2124 /* Remove the page from the freelists */
2125 area->nr_free--;
2126 list_del(&page->lru);
2127 rmv_page_order(page);
3a1086fb 2128
4eb7dce6
JK
2129 expand(zone, page, order, current_order, area,
2130 start_migratetype);
2131 /*
bb14c2c7 2132 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2133 * migratetype depending on the decisions in
bb14c2c7
VB
2134 * find_suitable_fallback(). This is OK as long as it does not
2135 * differ for MIGRATE_CMA pageblocks. Those can be used as
2136 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2137 */
bb14c2c7 2138 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2139
4eb7dce6
JK
2140 trace_mm_page_alloc_extfrag(page, order, current_order,
2141 start_migratetype, fallback_mt);
e0fff1bd 2142
4eb7dce6 2143 return page;
b2a0ac88
MG
2144 }
2145
728ec980 2146 return NULL;
b2a0ac88
MG
2147}
2148
56fd56b8 2149/*
1da177e4
LT
2150 * Do the hard work of removing an element from the buddy allocator.
2151 * Call me with the zone->lock already held.
2152 */
b2a0ac88 2153static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2154 int migratetype)
1da177e4 2155{
1da177e4
LT
2156 struct page *page;
2157
56fd56b8 2158 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2159 if (unlikely(!page)) {
dc67647b
JK
2160 if (migratetype == MIGRATE_MOVABLE)
2161 page = __rmqueue_cma_fallback(zone, order);
2162
2163 if (!page)
2164 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2165 }
2166
0d3d062a 2167 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2168 return page;
1da177e4
LT
2169}
2170
5f63b720 2171/*
1da177e4
LT
2172 * Obtain a specified number of elements from the buddy allocator, all under
2173 * a single hold of the lock, for efficiency. Add them to the supplied list.
2174 * Returns the number of new pages which were placed at *list.
2175 */
5f63b720 2176static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2177 unsigned long count, struct list_head *list,
b745bc85 2178 int migratetype, bool cold)
1da177e4 2179{
5bcc9f86 2180 int i;
5f63b720 2181
c54ad30c 2182 spin_lock(&zone->lock);
1da177e4 2183 for (i = 0; i < count; ++i) {
6ac0206b 2184 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2185 if (unlikely(page == NULL))
1da177e4 2186 break;
81eabcbe 2187
479f854a
MG
2188 if (unlikely(check_pcp_refill(page)))
2189 continue;
2190
81eabcbe
MG
2191 /*
2192 * Split buddy pages returned by expand() are received here
2193 * in physical page order. The page is added to the callers and
2194 * list and the list head then moves forward. From the callers
2195 * perspective, the linked list is ordered by page number in
2196 * some conditions. This is useful for IO devices that can
2197 * merge IO requests if the physical pages are ordered
2198 * properly.
2199 */
b745bc85 2200 if (likely(!cold))
e084b2d9
MG
2201 list_add(&page->lru, list);
2202 else
2203 list_add_tail(&page->lru, list);
81eabcbe 2204 list = &page->lru;
bb14c2c7 2205 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2206 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2207 -(1 << order));
1da177e4 2208 }
f2260e6b 2209 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2210 spin_unlock(&zone->lock);
085cc7d5 2211 return i;
1da177e4
LT
2212}
2213
4ae7c039 2214#ifdef CONFIG_NUMA
8fce4d8e 2215/*
4037d452
CL
2216 * Called from the vmstat counter updater to drain pagesets of this
2217 * currently executing processor on remote nodes after they have
2218 * expired.
2219 *
879336c3
CL
2220 * Note that this function must be called with the thread pinned to
2221 * a single processor.
8fce4d8e 2222 */
4037d452 2223void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2224{
4ae7c039 2225 unsigned long flags;
7be12fc9 2226 int to_drain, batch;
4ae7c039 2227
4037d452 2228 local_irq_save(flags);
4db0c3c2 2229 batch = READ_ONCE(pcp->batch);
7be12fc9 2230 to_drain = min(pcp->count, batch);
2a13515c
KM
2231 if (to_drain > 0) {
2232 free_pcppages_bulk(zone, to_drain, pcp);
2233 pcp->count -= to_drain;
2234 }
4037d452 2235 local_irq_restore(flags);
4ae7c039
CL
2236}
2237#endif
2238
9f8f2172 2239/*
93481ff0 2240 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2241 *
2242 * The processor must either be the current processor and the
2243 * thread pinned to the current processor or a processor that
2244 * is not online.
2245 */
93481ff0 2246static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2247{
c54ad30c 2248 unsigned long flags;
93481ff0
VB
2249 struct per_cpu_pageset *pset;
2250 struct per_cpu_pages *pcp;
1da177e4 2251
93481ff0
VB
2252 local_irq_save(flags);
2253 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2254
93481ff0
VB
2255 pcp = &pset->pcp;
2256 if (pcp->count) {
2257 free_pcppages_bulk(zone, pcp->count, pcp);
2258 pcp->count = 0;
2259 }
2260 local_irq_restore(flags);
2261}
3dfa5721 2262
93481ff0
VB
2263/*
2264 * Drain pcplists of all zones on the indicated processor.
2265 *
2266 * The processor must either be the current processor and the
2267 * thread pinned to the current processor or a processor that
2268 * is not online.
2269 */
2270static void drain_pages(unsigned int cpu)
2271{
2272 struct zone *zone;
2273
2274 for_each_populated_zone(zone) {
2275 drain_pages_zone(cpu, zone);
1da177e4
LT
2276 }
2277}
1da177e4 2278
9f8f2172
CL
2279/*
2280 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2281 *
2282 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2283 * the single zone's pages.
9f8f2172 2284 */
93481ff0 2285void drain_local_pages(struct zone *zone)
9f8f2172 2286{
93481ff0
VB
2287 int cpu = smp_processor_id();
2288
2289 if (zone)
2290 drain_pages_zone(cpu, zone);
2291 else
2292 drain_pages(cpu);
9f8f2172
CL
2293}
2294
2295/*
74046494
GBY
2296 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2297 *
93481ff0
VB
2298 * When zone parameter is non-NULL, spill just the single zone's pages.
2299 *
74046494
GBY
2300 * Note that this code is protected against sending an IPI to an offline
2301 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2302 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2303 * nothing keeps CPUs from showing up after we populated the cpumask and
2304 * before the call to on_each_cpu_mask().
9f8f2172 2305 */
93481ff0 2306void drain_all_pages(struct zone *zone)
9f8f2172 2307{
74046494 2308 int cpu;
74046494
GBY
2309
2310 /*
2311 * Allocate in the BSS so we wont require allocation in
2312 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2313 */
2314 static cpumask_t cpus_with_pcps;
2315
2316 /*
2317 * We don't care about racing with CPU hotplug event
2318 * as offline notification will cause the notified
2319 * cpu to drain that CPU pcps and on_each_cpu_mask
2320 * disables preemption as part of its processing
2321 */
2322 for_each_online_cpu(cpu) {
93481ff0
VB
2323 struct per_cpu_pageset *pcp;
2324 struct zone *z;
74046494 2325 bool has_pcps = false;
93481ff0
VB
2326
2327 if (zone) {
74046494 2328 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2329 if (pcp->pcp.count)
74046494 2330 has_pcps = true;
93481ff0
VB
2331 } else {
2332 for_each_populated_zone(z) {
2333 pcp = per_cpu_ptr(z->pageset, cpu);
2334 if (pcp->pcp.count) {
2335 has_pcps = true;
2336 break;
2337 }
74046494
GBY
2338 }
2339 }
93481ff0 2340
74046494
GBY
2341 if (has_pcps)
2342 cpumask_set_cpu(cpu, &cpus_with_pcps);
2343 else
2344 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2345 }
93481ff0
VB
2346 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2347 zone, 1);
9f8f2172
CL
2348}
2349
296699de 2350#ifdef CONFIG_HIBERNATION
1da177e4
LT
2351
2352void mark_free_pages(struct zone *zone)
2353{
f623f0db
RW
2354 unsigned long pfn, max_zone_pfn;
2355 unsigned long flags;
7aeb09f9 2356 unsigned int order, t;
86760a2c 2357 struct page *page;
1da177e4 2358
8080fc03 2359 if (zone_is_empty(zone))
1da177e4
LT
2360 return;
2361
2362 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2363
108bcc96 2364 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2366 if (pfn_valid(pfn)) {
86760a2c 2367 page = pfn_to_page(pfn);
ba6b0979
JK
2368
2369 if (page_zone(page) != zone)
2370 continue;
2371
7be98234
RW
2372 if (!swsusp_page_is_forbidden(page))
2373 swsusp_unset_page_free(page);
f623f0db 2374 }
1da177e4 2375
b2a0ac88 2376 for_each_migratetype_order(order, t) {
86760a2c
GT
2377 list_for_each_entry(page,
2378 &zone->free_area[order].free_list[t], lru) {
f623f0db 2379 unsigned long i;
1da177e4 2380
86760a2c 2381 pfn = page_to_pfn(page);
f623f0db 2382 for (i = 0; i < (1UL << order); i++)
7be98234 2383 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2384 }
b2a0ac88 2385 }
1da177e4
LT
2386 spin_unlock_irqrestore(&zone->lock, flags);
2387}
e2c55dc8 2388#endif /* CONFIG_PM */
1da177e4 2389
1da177e4
LT
2390/*
2391 * Free a 0-order page
b745bc85 2392 * cold == true ? free a cold page : free a hot page
1da177e4 2393 */
b745bc85 2394void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2395{
2396 struct zone *zone = page_zone(page);
2397 struct per_cpu_pages *pcp;
2398 unsigned long flags;
dc4b0caf 2399 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2400 int migratetype;
1da177e4 2401
4db7548c 2402 if (!free_pcp_prepare(page))
689bcebf
HD
2403 return;
2404
dc4b0caf 2405 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2406 set_pcppage_migratetype(page, migratetype);
1da177e4 2407 local_irq_save(flags);
f8891e5e 2408 __count_vm_event(PGFREE);
da456f14 2409
5f8dcc21
MG
2410 /*
2411 * We only track unmovable, reclaimable and movable on pcp lists.
2412 * Free ISOLATE pages back to the allocator because they are being
2413 * offlined but treat RESERVE as movable pages so we can get those
2414 * areas back if necessary. Otherwise, we may have to free
2415 * excessively into the page allocator
2416 */
2417 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2418 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2419 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2420 goto out;
2421 }
2422 migratetype = MIGRATE_MOVABLE;
2423 }
2424
99dcc3e5 2425 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2426 if (!cold)
5f8dcc21 2427 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2428 else
2429 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2430 pcp->count++;
48db57f8 2431 if (pcp->count >= pcp->high) {
4db0c3c2 2432 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2433 free_pcppages_bulk(zone, batch, pcp);
2434 pcp->count -= batch;
48db57f8 2435 }
5f8dcc21
MG
2436
2437out:
1da177e4 2438 local_irq_restore(flags);
1da177e4
LT
2439}
2440
cc59850e
KK
2441/*
2442 * Free a list of 0-order pages
2443 */
b745bc85 2444void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2445{
2446 struct page *page, *next;
2447
2448 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2449 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2450 free_hot_cold_page(page, cold);
2451 }
2452}
2453
8dfcc9ba
NP
2454/*
2455 * split_page takes a non-compound higher-order page, and splits it into
2456 * n (1<<order) sub-pages: page[0..n]
2457 * Each sub-page must be freed individually.
2458 *
2459 * Note: this is probably too low level an operation for use in drivers.
2460 * Please consult with lkml before using this in your driver.
2461 */
2462void split_page(struct page *page, unsigned int order)
2463{
2464 int i;
e2cfc911 2465 gfp_t gfp_mask;
8dfcc9ba 2466
309381fe
SL
2467 VM_BUG_ON_PAGE(PageCompound(page), page);
2468 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2469
2470#ifdef CONFIG_KMEMCHECK
2471 /*
2472 * Split shadow pages too, because free(page[0]) would
2473 * otherwise free the whole shadow.
2474 */
2475 if (kmemcheck_page_is_tracked(page))
2476 split_page(virt_to_page(page[0].shadow), order);
2477#endif
2478
e2cfc911
JK
2479 gfp_mask = get_page_owner_gfp(page);
2480 set_page_owner(page, 0, gfp_mask);
48c96a36 2481 for (i = 1; i < (1 << order); i++) {
7835e98b 2482 set_page_refcounted(page + i);
e2cfc911 2483 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2484 }
8dfcc9ba 2485}
5853ff23 2486EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2487
3c605096 2488int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2489{
748446bb
MG
2490 unsigned long watermark;
2491 struct zone *zone;
2139cbe6 2492 int mt;
748446bb
MG
2493
2494 BUG_ON(!PageBuddy(page));
2495
2496 zone = page_zone(page);
2e30abd1 2497 mt = get_pageblock_migratetype(page);
748446bb 2498
194159fb 2499 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2500 /* Obey watermarks as if the page was being allocated */
2501 watermark = low_wmark_pages(zone) + (1 << order);
2502 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2503 return 0;
2504
8fb74b9f 2505 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2506 }
748446bb
MG
2507
2508 /* Remove page from free list */
2509 list_del(&page->lru);
2510 zone->free_area[order].nr_free--;
2511 rmv_page_order(page);
2139cbe6 2512
e2cfc911 2513 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2514
8fb74b9f 2515 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2516 if (order >= pageblock_order - 1) {
2517 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2518 for (; page < endpage; page += pageblock_nr_pages) {
2519 int mt = get_pageblock_migratetype(page);
194159fb 2520 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2521 set_pageblock_migratetype(page,
2522 MIGRATE_MOVABLE);
2523 }
748446bb
MG
2524 }
2525
f3a14ced 2526
8fb74b9f 2527 return 1UL << order;
1fb3f8ca
MG
2528}
2529
2530/*
2531 * Similar to split_page except the page is already free. As this is only
2532 * being used for migration, the migratetype of the block also changes.
2533 * As this is called with interrupts disabled, the caller is responsible
2534 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2535 * are enabled.
2536 *
2537 * Note: this is probably too low level an operation for use in drivers.
2538 * Please consult with lkml before using this in your driver.
2539 */
2540int split_free_page(struct page *page)
2541{
2542 unsigned int order;
2543 int nr_pages;
2544
1fb3f8ca
MG
2545 order = page_order(page);
2546
8fb74b9f 2547 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2548 if (!nr_pages)
2549 return 0;
2550
2551 /* Split into individual pages */
2552 set_page_refcounted(page);
2553 split_page(page, order);
2554 return nr_pages;
748446bb
MG
2555}
2556
060e7417
MG
2557/*
2558 * Update NUMA hit/miss statistics
2559 *
2560 * Must be called with interrupts disabled.
2561 *
2562 * When __GFP_OTHER_NODE is set assume the node of the preferred
2563 * zone is the local node. This is useful for daemons who allocate
2564 * memory on behalf of other processes.
2565 */
2566static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2567 gfp_t flags)
2568{
2569#ifdef CONFIG_NUMA
2570 int local_nid = numa_node_id();
2571 enum zone_stat_item local_stat = NUMA_LOCAL;
2572
2573 if (unlikely(flags & __GFP_OTHER_NODE)) {
2574 local_stat = NUMA_OTHER;
2575 local_nid = preferred_zone->node;
2576 }
2577
2578 if (z->node == local_nid) {
2579 __inc_zone_state(z, NUMA_HIT);
2580 __inc_zone_state(z, local_stat);
2581 } else {
2582 __inc_zone_state(z, NUMA_MISS);
2583 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2584 }
2585#endif
2586}
2587
1da177e4 2588/*
75379191 2589 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2590 */
0a15c3e9
MG
2591static inline
2592struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2593 struct zone *zone, unsigned int order,
c603844b
MG
2594 gfp_t gfp_flags, unsigned int alloc_flags,
2595 int migratetype)
1da177e4
LT
2596{
2597 unsigned long flags;
689bcebf 2598 struct page *page;
b745bc85 2599 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2600
48db57f8 2601 if (likely(order == 0)) {
1da177e4 2602 struct per_cpu_pages *pcp;
5f8dcc21 2603 struct list_head *list;
1da177e4 2604
1da177e4 2605 local_irq_save(flags);
479f854a
MG
2606 do {
2607 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2608 list = &pcp->lists[migratetype];
2609 if (list_empty(list)) {
2610 pcp->count += rmqueue_bulk(zone, 0,
2611 pcp->batch, list,
2612 migratetype, cold);
2613 if (unlikely(list_empty(list)))
2614 goto failed;
2615 }
b92a6edd 2616
479f854a
MG
2617 if (cold)
2618 page = list_last_entry(list, struct page, lru);
2619 else
2620 page = list_first_entry(list, struct page, lru);
2621 } while (page && check_new_pcp(page));
5f8dcc21 2622
754078eb 2623 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2624 list_del(&page->lru);
2625 pcp->count--;
7fb1d9fc 2626 } else {
0f352e53
MH
2627 /*
2628 * We most definitely don't want callers attempting to
2629 * allocate greater than order-1 page units with __GFP_NOFAIL.
2630 */
2631 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2632 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2633
479f854a
MG
2634 do {
2635 page = NULL;
2636 if (alloc_flags & ALLOC_HARDER) {
2637 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2638 if (page)
2639 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2640 }
2641 if (!page)
2642 page = __rmqueue(zone, order, migratetype);
2643 } while (page && check_new_pages(page, order));
a74609fa
NP
2644 spin_unlock(&zone->lock);
2645 if (!page)
2646 goto failed;
754078eb 2647 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2648 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2649 get_pcppage_migratetype(page));
1da177e4
LT
2650 }
2651
abe5f972 2652 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2653 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2654 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2655
f8891e5e 2656 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2657 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2658 local_irq_restore(flags);
1da177e4 2659
309381fe 2660 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2661 return page;
a74609fa
NP
2662
2663failed:
2664 local_irq_restore(flags);
a74609fa 2665 return NULL;
1da177e4
LT
2666}
2667
933e312e
AM
2668#ifdef CONFIG_FAIL_PAGE_ALLOC
2669
b2588c4b 2670static struct {
933e312e
AM
2671 struct fault_attr attr;
2672
621a5f7a 2673 bool ignore_gfp_highmem;
71baba4b 2674 bool ignore_gfp_reclaim;
54114994 2675 u32 min_order;
933e312e
AM
2676} fail_page_alloc = {
2677 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2678 .ignore_gfp_reclaim = true,
621a5f7a 2679 .ignore_gfp_highmem = true,
54114994 2680 .min_order = 1,
933e312e
AM
2681};
2682
2683static int __init setup_fail_page_alloc(char *str)
2684{
2685 return setup_fault_attr(&fail_page_alloc.attr, str);
2686}
2687__setup("fail_page_alloc=", setup_fail_page_alloc);
2688
deaf386e 2689static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2690{
54114994 2691 if (order < fail_page_alloc.min_order)
deaf386e 2692 return false;
933e312e 2693 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2694 return false;
933e312e 2695 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2696 return false;
71baba4b
MG
2697 if (fail_page_alloc.ignore_gfp_reclaim &&
2698 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2699 return false;
933e312e
AM
2700
2701 return should_fail(&fail_page_alloc.attr, 1 << order);
2702}
2703
2704#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2705
2706static int __init fail_page_alloc_debugfs(void)
2707{
f4ae40a6 2708 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2709 struct dentry *dir;
933e312e 2710
dd48c085
AM
2711 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2712 &fail_page_alloc.attr);
2713 if (IS_ERR(dir))
2714 return PTR_ERR(dir);
933e312e 2715
b2588c4b 2716 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2717 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2718 goto fail;
2719 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2720 &fail_page_alloc.ignore_gfp_highmem))
2721 goto fail;
2722 if (!debugfs_create_u32("min-order", mode, dir,
2723 &fail_page_alloc.min_order))
2724 goto fail;
2725
2726 return 0;
2727fail:
dd48c085 2728 debugfs_remove_recursive(dir);
933e312e 2729
b2588c4b 2730 return -ENOMEM;
933e312e
AM
2731}
2732
2733late_initcall(fail_page_alloc_debugfs);
2734
2735#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2736
2737#else /* CONFIG_FAIL_PAGE_ALLOC */
2738
deaf386e 2739static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2740{
deaf386e 2741 return false;
933e312e
AM
2742}
2743
2744#endif /* CONFIG_FAIL_PAGE_ALLOC */
2745
1da177e4 2746/*
97a16fc8
MG
2747 * Return true if free base pages are above 'mark'. For high-order checks it
2748 * will return true of the order-0 watermark is reached and there is at least
2749 * one free page of a suitable size. Checking now avoids taking the zone lock
2750 * to check in the allocation paths if no pages are free.
1da177e4 2751 */
7aeb09f9 2752static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2753 unsigned long mark, int classzone_idx,
2754 unsigned int alloc_flags,
7aeb09f9 2755 long free_pages)
1da177e4 2756{
d23ad423 2757 long min = mark;
1da177e4 2758 int o;
c603844b 2759 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2760
0aaa29a5 2761 /* free_pages may go negative - that's OK */
df0a6daa 2762 free_pages -= (1 << order) - 1;
0aaa29a5 2763
7fb1d9fc 2764 if (alloc_flags & ALLOC_HIGH)
1da177e4 2765 min -= min / 2;
0aaa29a5
MG
2766
2767 /*
2768 * If the caller does not have rights to ALLOC_HARDER then subtract
2769 * the high-atomic reserves. This will over-estimate the size of the
2770 * atomic reserve but it avoids a search.
2771 */
97a16fc8 2772 if (likely(!alloc_harder))
0aaa29a5
MG
2773 free_pages -= z->nr_reserved_highatomic;
2774 else
1da177e4 2775 min -= min / 4;
e2b19197 2776
d95ea5d1
BZ
2777#ifdef CONFIG_CMA
2778 /* If allocation can't use CMA areas don't use free CMA pages */
2779 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2780 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2781#endif
026b0814 2782
97a16fc8
MG
2783 /*
2784 * Check watermarks for an order-0 allocation request. If these
2785 * are not met, then a high-order request also cannot go ahead
2786 * even if a suitable page happened to be free.
2787 */
2788 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2789 return false;
1da177e4 2790
97a16fc8
MG
2791 /* If this is an order-0 request then the watermark is fine */
2792 if (!order)
2793 return true;
2794
2795 /* For a high-order request, check at least one suitable page is free */
2796 for (o = order; o < MAX_ORDER; o++) {
2797 struct free_area *area = &z->free_area[o];
2798 int mt;
2799
2800 if (!area->nr_free)
2801 continue;
2802
2803 if (alloc_harder)
2804 return true;
1da177e4 2805
97a16fc8
MG
2806 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2807 if (!list_empty(&area->free_list[mt]))
2808 return true;
2809 }
2810
2811#ifdef CONFIG_CMA
2812 if ((alloc_flags & ALLOC_CMA) &&
2813 !list_empty(&area->free_list[MIGRATE_CMA])) {
2814 return true;
2815 }
2816#endif
1da177e4 2817 }
97a16fc8 2818 return false;
88f5acf8
MG
2819}
2820
7aeb09f9 2821bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2822 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2823{
2824 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2825 zone_page_state(z, NR_FREE_PAGES));
2826}
2827
48ee5f36
MG
2828static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2829 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2830{
2831 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2832 long cma_pages = 0;
2833
2834#ifdef CONFIG_CMA
2835 /* If allocation can't use CMA areas don't use free CMA pages */
2836 if (!(alloc_flags & ALLOC_CMA))
2837 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2838#endif
2839
2840 /*
2841 * Fast check for order-0 only. If this fails then the reserves
2842 * need to be calculated. There is a corner case where the check
2843 * passes but only the high-order atomic reserve are free. If
2844 * the caller is !atomic then it'll uselessly search the free
2845 * list. That corner case is then slower but it is harmless.
2846 */
2847 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2848 return true;
2849
2850 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2851 free_pages);
2852}
2853
7aeb09f9 2854bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2855 unsigned long mark, int classzone_idx)
88f5acf8
MG
2856{
2857 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2858
2859 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2860 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2861
e2b19197 2862 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2863 free_pages);
1da177e4
LT
2864}
2865
9276b1bc 2866#ifdef CONFIG_NUMA
81c0a2bb
JW
2867static bool zone_local(struct zone *local_zone, struct zone *zone)
2868{
fff4068c 2869 return local_zone->node == zone->node;
81c0a2bb
JW
2870}
2871
957f822a
DR
2872static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2873{
5f7a75ac
MG
2874 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2875 RECLAIM_DISTANCE;
957f822a 2876}
9276b1bc 2877#else /* CONFIG_NUMA */
81c0a2bb
JW
2878static bool zone_local(struct zone *local_zone, struct zone *zone)
2879{
2880 return true;
2881}
2882
957f822a
DR
2883static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2884{
2885 return true;
2886}
9276b1bc
PJ
2887#endif /* CONFIG_NUMA */
2888
4ffeaf35
MG
2889static void reset_alloc_batches(struct zone *preferred_zone)
2890{
2891 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2892
2893 do {
2894 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2895 high_wmark_pages(zone) - low_wmark_pages(zone) -
2896 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2897 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2898 } while (zone++ != preferred_zone);
2899}
2900
7fb1d9fc 2901/*
0798e519 2902 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2903 * a page.
2904 */
2905static struct page *
a9263751
VB
2906get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2907 const struct alloc_context *ac)
753ee728 2908{
c33d6c06 2909 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2910 struct zone *zone;
30534755
MG
2911 bool fair_skipped = false;
2912 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2913
9276b1bc 2914zonelist_scan:
7fb1d9fc 2915 /*
9276b1bc 2916 * Scan zonelist, looking for a zone with enough free.
344736f2 2917 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2918 */
c33d6c06 2919 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2920 ac->nodemask) {
be06af00 2921 struct page *page;
e085dbc5
JW
2922 unsigned long mark;
2923
664eedde
MG
2924 if (cpusets_enabled() &&
2925 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2926 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2927 continue;
81c0a2bb
JW
2928 /*
2929 * Distribute pages in proportion to the individual
2930 * zone size to ensure fair page aging. The zone a
2931 * page was allocated in should have no effect on the
2932 * time the page has in memory before being reclaimed.
81c0a2bb 2933 */
30534755 2934 if (apply_fair) {
57054651 2935 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2936 fair_skipped = true;
3a025760 2937 continue;
4ffeaf35 2938 }
c33d6c06 2939 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2940 if (fair_skipped)
2941 goto reset_fair;
2942 apply_fair = false;
2943 }
81c0a2bb 2944 }
a756cf59
JW
2945 /*
2946 * When allocating a page cache page for writing, we
2947 * want to get it from a zone that is within its dirty
2948 * limit, such that no single zone holds more than its
2949 * proportional share of globally allowed dirty pages.
2950 * The dirty limits take into account the zone's
2951 * lowmem reserves and high watermark so that kswapd
2952 * should be able to balance it without having to
2953 * write pages from its LRU list.
2954 *
2955 * This may look like it could increase pressure on
2956 * lower zones by failing allocations in higher zones
2957 * before they are full. But the pages that do spill
2958 * over are limited as the lower zones are protected
2959 * by this very same mechanism. It should not become
2960 * a practical burden to them.
2961 *
2962 * XXX: For now, allow allocations to potentially
2963 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2964 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2965 * which is important when on a NUMA setup the allowed
2966 * zones are together not big enough to reach the
2967 * global limit. The proper fix for these situations
2968 * will require awareness of zones in the
2969 * dirty-throttling and the flusher threads.
2970 */
c9ab0c4f 2971 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2972 continue;
7fb1d9fc 2973
e085dbc5 2974 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2975 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2976 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2977 int ret;
2978
5dab2911
MG
2979 /* Checked here to keep the fast path fast */
2980 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2981 if (alloc_flags & ALLOC_NO_WATERMARKS)
2982 goto try_this_zone;
2983
957f822a 2984 if (zone_reclaim_mode == 0 ||
c33d6c06 2985 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2986 continue;
2987
fa5e084e
MG
2988 ret = zone_reclaim(zone, gfp_mask, order);
2989 switch (ret) {
2990 case ZONE_RECLAIM_NOSCAN:
2991 /* did not scan */
cd38b115 2992 continue;
fa5e084e
MG
2993 case ZONE_RECLAIM_FULL:
2994 /* scanned but unreclaimable */
cd38b115 2995 continue;
fa5e084e
MG
2996 default:
2997 /* did we reclaim enough */
fed2719e 2998 if (zone_watermark_ok(zone, order, mark,
93ea9964 2999 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3000 goto try_this_zone;
3001
fed2719e 3002 continue;
0798e519 3003 }
7fb1d9fc
RS
3004 }
3005
fa5e084e 3006try_this_zone:
c33d6c06 3007 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3008 gfp_mask, alloc_flags, ac->migratetype);
75379191 3009 if (page) {
479f854a 3010 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3011
3012 /*
3013 * If this is a high-order atomic allocation then check
3014 * if the pageblock should be reserved for the future
3015 */
3016 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3017 reserve_highatomic_pageblock(page, zone, order);
3018
75379191
VB
3019 return page;
3020 }
54a6eb5c 3021 }
9276b1bc 3022
4ffeaf35
MG
3023 /*
3024 * The first pass makes sure allocations are spread fairly within the
3025 * local node. However, the local node might have free pages left
3026 * after the fairness batches are exhausted, and remote zones haven't
3027 * even been considered yet. Try once more without fairness, and
3028 * include remote zones now, before entering the slowpath and waking
3029 * kswapd: prefer spilling to a remote zone over swapping locally.
3030 */
30534755
MG
3031 if (fair_skipped) {
3032reset_fair:
3033 apply_fair = false;
3034 fair_skipped = false;
c33d6c06 3035 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 3036 goto zonelist_scan;
30534755 3037 }
4ffeaf35
MG
3038
3039 return NULL;
753ee728
MH
3040}
3041
29423e77
DR
3042/*
3043 * Large machines with many possible nodes should not always dump per-node
3044 * meminfo in irq context.
3045 */
3046static inline bool should_suppress_show_mem(void)
3047{
3048 bool ret = false;
3049
3050#if NODES_SHIFT > 8
3051 ret = in_interrupt();
3052#endif
3053 return ret;
3054}
3055
a238ab5b
DH
3056static DEFINE_RATELIMIT_STATE(nopage_rs,
3057 DEFAULT_RATELIMIT_INTERVAL,
3058 DEFAULT_RATELIMIT_BURST);
3059
d00181b9 3060void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 3061{
a238ab5b
DH
3062 unsigned int filter = SHOW_MEM_FILTER_NODES;
3063
c0a32fc5
SG
3064 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3065 debug_guardpage_minorder() > 0)
a238ab5b
DH
3066 return;
3067
3068 /*
3069 * This documents exceptions given to allocations in certain
3070 * contexts that are allowed to allocate outside current's set
3071 * of allowed nodes.
3072 */
3073 if (!(gfp_mask & __GFP_NOMEMALLOC))
3074 if (test_thread_flag(TIF_MEMDIE) ||
3075 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3076 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3077 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3078 filter &= ~SHOW_MEM_FILTER_NODES;
3079
3080 if (fmt) {
3ee9a4f0
JP
3081 struct va_format vaf;
3082 va_list args;
3083
a238ab5b 3084 va_start(args, fmt);
3ee9a4f0
JP
3085
3086 vaf.fmt = fmt;
3087 vaf.va = &args;
3088
3089 pr_warn("%pV", &vaf);
3090
a238ab5b
DH
3091 va_end(args);
3092 }
3093
c5c990e8
VB
3094 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3095 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3096 dump_stack();
3097 if (!should_suppress_show_mem())
3098 show_mem(filter);
3099}
3100
11e33f6a
MG
3101static inline struct page *
3102__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3103 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3104{
6e0fc46d
DR
3105 struct oom_control oc = {
3106 .zonelist = ac->zonelist,
3107 .nodemask = ac->nodemask,
3108 .gfp_mask = gfp_mask,
3109 .order = order,
6e0fc46d 3110 };
11e33f6a
MG
3111 struct page *page;
3112
9879de73
JW
3113 *did_some_progress = 0;
3114
9879de73 3115 /*
dc56401f
JW
3116 * Acquire the oom lock. If that fails, somebody else is
3117 * making progress for us.
9879de73 3118 */
dc56401f 3119 if (!mutex_trylock(&oom_lock)) {
9879de73 3120 *did_some_progress = 1;
11e33f6a 3121 schedule_timeout_uninterruptible(1);
1da177e4
LT
3122 return NULL;
3123 }
6b1de916 3124
11e33f6a
MG
3125 /*
3126 * Go through the zonelist yet one more time, keep very high watermark
3127 * here, this is only to catch a parallel oom killing, we must fail if
3128 * we're still under heavy pressure.
3129 */
a9263751
VB
3130 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3131 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3132 if (page)
11e33f6a
MG
3133 goto out;
3134
4365a567 3135 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3136 /* Coredumps can quickly deplete all memory reserves */
3137 if (current->flags & PF_DUMPCORE)
3138 goto out;
4365a567
KH
3139 /* The OOM killer will not help higher order allocs */
3140 if (order > PAGE_ALLOC_COSTLY_ORDER)
3141 goto out;
03668b3c 3142 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3143 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3144 goto out;
9083905a
JW
3145 if (pm_suspended_storage())
3146 goto out;
3da88fb3
MH
3147 /*
3148 * XXX: GFP_NOFS allocations should rather fail than rely on
3149 * other request to make a forward progress.
3150 * We are in an unfortunate situation where out_of_memory cannot
3151 * do much for this context but let's try it to at least get
3152 * access to memory reserved if the current task is killed (see
3153 * out_of_memory). Once filesystems are ready to handle allocation
3154 * failures more gracefully we should just bail out here.
3155 */
3156
4167e9b2 3157 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3158 if (gfp_mask & __GFP_THISNODE)
3159 goto out;
3160 }
11e33f6a 3161 /* Exhausted what can be done so it's blamo time */
5020e285 3162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3163 *did_some_progress = 1;
5020e285
MH
3164
3165 if (gfp_mask & __GFP_NOFAIL) {
3166 page = get_page_from_freelist(gfp_mask, order,
3167 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3168 /*
3169 * fallback to ignore cpuset restriction if our nodes
3170 * are depleted
3171 */
3172 if (!page)
3173 page = get_page_from_freelist(gfp_mask, order,
3174 ALLOC_NO_WATERMARKS, ac);
3175 }
3176 }
11e33f6a 3177out:
dc56401f 3178 mutex_unlock(&oom_lock);
11e33f6a
MG
3179 return page;
3180}
3181
56de7263
MG
3182#ifdef CONFIG_COMPACTION
3183/* Try memory compaction for high-order allocations before reclaim */
3184static struct page *
3185__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3186 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3187 enum migrate_mode mode, int *contended_compaction,
3188 bool *deferred_compaction)
56de7263 3189{
53853e2d 3190 unsigned long compact_result;
98dd3b48 3191 struct page *page;
53853e2d
VB
3192
3193 if (!order)
66199712 3194 return NULL;
66199712 3195
c06b1fca 3196 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3197 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3198 mode, contended_compaction);
c06b1fca 3199 current->flags &= ~PF_MEMALLOC;
56de7263 3200
98dd3b48
VB
3201 switch (compact_result) {
3202 case COMPACT_DEFERRED:
53853e2d 3203 *deferred_compaction = true;
98dd3b48
VB
3204 /* fall-through */
3205 case COMPACT_SKIPPED:
3206 return NULL;
3207 default:
3208 break;
3209 }
53853e2d 3210
98dd3b48
VB
3211 /*
3212 * At least in one zone compaction wasn't deferred or skipped, so let's
3213 * count a compaction stall
3214 */
3215 count_vm_event(COMPACTSTALL);
8fb74b9f 3216
a9263751
VB
3217 page = get_page_from_freelist(gfp_mask, order,
3218 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3219
98dd3b48
VB
3220 if (page) {
3221 struct zone *zone = page_zone(page);
53853e2d 3222
98dd3b48
VB
3223 zone->compact_blockskip_flush = false;
3224 compaction_defer_reset(zone, order, true);
3225 count_vm_event(COMPACTSUCCESS);
3226 return page;
3227 }
56de7263 3228
98dd3b48
VB
3229 /*
3230 * It's bad if compaction run occurs and fails. The most likely reason
3231 * is that pages exist, but not enough to satisfy watermarks.
3232 */
3233 count_vm_event(COMPACTFAIL);
66199712 3234
98dd3b48 3235 cond_resched();
56de7263
MG
3236
3237 return NULL;
3238}
3239#else
3240static inline struct page *
3241__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3242 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3243 enum migrate_mode mode, int *contended_compaction,
3244 bool *deferred_compaction)
56de7263
MG
3245{
3246 return NULL;
3247}
3248#endif /* CONFIG_COMPACTION */
3249
bba90710
MS
3250/* Perform direct synchronous page reclaim */
3251static int
a9263751
VB
3252__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3253 const struct alloc_context *ac)
11e33f6a 3254{
11e33f6a 3255 struct reclaim_state reclaim_state;
bba90710 3256 int progress;
11e33f6a
MG
3257
3258 cond_resched();
3259
3260 /* We now go into synchronous reclaim */
3261 cpuset_memory_pressure_bump();
c06b1fca 3262 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3263 lockdep_set_current_reclaim_state(gfp_mask);
3264 reclaim_state.reclaimed_slab = 0;
c06b1fca 3265 current->reclaim_state = &reclaim_state;
11e33f6a 3266
a9263751
VB
3267 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3268 ac->nodemask);
11e33f6a 3269
c06b1fca 3270 current->reclaim_state = NULL;
11e33f6a 3271 lockdep_clear_current_reclaim_state();
c06b1fca 3272 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3273
3274 cond_resched();
3275
bba90710
MS
3276 return progress;
3277}
3278
3279/* The really slow allocator path where we enter direct reclaim */
3280static inline struct page *
3281__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3282 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3283 unsigned long *did_some_progress)
bba90710
MS
3284{
3285 struct page *page = NULL;
3286 bool drained = false;
3287
a9263751 3288 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3289 if (unlikely(!(*did_some_progress)))
3290 return NULL;
11e33f6a 3291
9ee493ce 3292retry:
a9263751
VB
3293 page = get_page_from_freelist(gfp_mask, order,
3294 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3295
3296 /*
3297 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3298 * pages are pinned on the per-cpu lists or in high alloc reserves.
3299 * Shrink them them and try again
9ee493ce
MG
3300 */
3301 if (!page && !drained) {
0aaa29a5 3302 unreserve_highatomic_pageblock(ac);
93481ff0 3303 drain_all_pages(NULL);
9ee493ce
MG
3304 drained = true;
3305 goto retry;
3306 }
3307
11e33f6a
MG
3308 return page;
3309}
3310
a9263751 3311static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3312{
3313 struct zoneref *z;
3314 struct zone *zone;
3315
a9263751
VB
3316 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3317 ac->high_zoneidx, ac->nodemask)
93ea9964 3318 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3319}
3320
c603844b 3321static inline unsigned int
341ce06f
PZ
3322gfp_to_alloc_flags(gfp_t gfp_mask)
3323{
c603844b 3324 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3325
a56f57ff 3326 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3327 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3328
341ce06f
PZ
3329 /*
3330 * The caller may dip into page reserves a bit more if the caller
3331 * cannot run direct reclaim, or if the caller has realtime scheduling
3332 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3333 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3334 */
e6223a3b 3335 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3336
d0164adc 3337 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3338 /*
b104a35d
DR
3339 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3340 * if it can't schedule.
5c3240d9 3341 */
b104a35d 3342 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3343 alloc_flags |= ALLOC_HARDER;
523b9458 3344 /*
b104a35d 3345 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3346 * comment for __cpuset_node_allowed().
523b9458 3347 */
341ce06f 3348 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3349 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3350 alloc_flags |= ALLOC_HARDER;
3351
b37f1dd0
MG
3352 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3353 if (gfp_mask & __GFP_MEMALLOC)
3354 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3355 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3356 alloc_flags |= ALLOC_NO_WATERMARKS;
3357 else if (!in_interrupt() &&
3358 ((current->flags & PF_MEMALLOC) ||
3359 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3360 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3361 }
d95ea5d1 3362#ifdef CONFIG_CMA
43e7a34d 3363 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3364 alloc_flags |= ALLOC_CMA;
3365#endif
341ce06f
PZ
3366 return alloc_flags;
3367}
3368
072bb0aa
MG
3369bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3370{
b37f1dd0 3371 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3372}
3373
d0164adc
MG
3374static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3375{
3376 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3377}
3378
11e33f6a
MG
3379static inline struct page *
3380__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3381 struct alloc_context *ac)
11e33f6a 3382{
d0164adc 3383 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3384 struct page *page = NULL;
c603844b 3385 unsigned int alloc_flags;
11e33f6a
MG
3386 unsigned long pages_reclaimed = 0;
3387 unsigned long did_some_progress;
e0b9daeb 3388 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3389 bool deferred_compaction = false;
1f9efdef 3390 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3391
72807a74
MG
3392 /*
3393 * In the slowpath, we sanity check order to avoid ever trying to
3394 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3395 * be using allocators in order of preference for an area that is
3396 * too large.
3397 */
1fc28b70
MG
3398 if (order >= MAX_ORDER) {
3399 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3400 return NULL;
1fc28b70 3401 }
1da177e4 3402
d0164adc
MG
3403 /*
3404 * We also sanity check to catch abuse of atomic reserves being used by
3405 * callers that are not in atomic context.
3406 */
3407 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3408 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3409 gfp_mask &= ~__GFP_ATOMIC;
3410
9879de73 3411retry:
d0164adc 3412 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3413 wake_all_kswapds(order, ac);
1da177e4 3414
9bf2229f 3415 /*
7fb1d9fc
RS
3416 * OK, we're below the kswapd watermark and have kicked background
3417 * reclaim. Now things get more complex, so set up alloc_flags according
3418 * to how we want to proceed.
9bf2229f 3419 */
341ce06f 3420 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3421
341ce06f 3422 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3423 page = get_page_from_freelist(gfp_mask, order,
3424 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3425 if (page)
3426 goto got_pg;
1da177e4 3427
11e33f6a 3428 /* Allocate without watermarks if the context allows */
341ce06f 3429 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3430 /*
3431 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3432 * the allocation is high priority and these type of
3433 * allocations are system rather than user orientated
3434 */
a9263751 3435 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3436 page = get_page_from_freelist(gfp_mask, order,
3437 ALLOC_NO_WATERMARKS, ac);
3438 if (page)
3439 goto got_pg;
1da177e4
LT
3440 }
3441
d0164adc
MG
3442 /* Caller is not willing to reclaim, we can't balance anything */
3443 if (!can_direct_reclaim) {
aed0a0e3 3444 /*
33d53103
MH
3445 * All existing users of the __GFP_NOFAIL are blockable, so warn
3446 * of any new users that actually allow this type of allocation
3447 * to fail.
aed0a0e3
DR
3448 */
3449 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3450 goto nopage;
aed0a0e3 3451 }
1da177e4 3452
341ce06f 3453 /* Avoid recursion of direct reclaim */
33d53103
MH
3454 if (current->flags & PF_MEMALLOC) {
3455 /*
3456 * __GFP_NOFAIL request from this context is rather bizarre
3457 * because we cannot reclaim anything and only can loop waiting
3458 * for somebody to do a work for us.
3459 */
3460 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3461 cond_resched();
3462 goto retry;
3463 }
341ce06f 3464 goto nopage;
33d53103 3465 }
341ce06f 3466
6583bb64
DR
3467 /* Avoid allocations with no watermarks from looping endlessly */
3468 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3469 goto nopage;
3470
77f1fe6b
MG
3471 /*
3472 * Try direct compaction. The first pass is asynchronous. Subsequent
3473 * attempts after direct reclaim are synchronous
3474 */
a9263751
VB
3475 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3476 migration_mode,
3477 &contended_compaction,
53853e2d 3478 &deferred_compaction);
56de7263
MG
3479 if (page)
3480 goto got_pg;
75f30861 3481
1f9efdef 3482 /* Checks for THP-specific high-order allocations */
d0164adc 3483 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3484 /*
3485 * If compaction is deferred for high-order allocations, it is
3486 * because sync compaction recently failed. If this is the case
3487 * and the caller requested a THP allocation, we do not want
3488 * to heavily disrupt the system, so we fail the allocation
3489 * instead of entering direct reclaim.
3490 */
3491 if (deferred_compaction)
3492 goto nopage;
3493
3494 /*
3495 * In all zones where compaction was attempted (and not
3496 * deferred or skipped), lock contention has been detected.
3497 * For THP allocation we do not want to disrupt the others
3498 * so we fallback to base pages instead.
3499 */
3500 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3501 goto nopage;
3502
3503 /*
3504 * If compaction was aborted due to need_resched(), we do not
3505 * want to further increase allocation latency, unless it is
3506 * khugepaged trying to collapse.
3507 */
3508 if (contended_compaction == COMPACT_CONTENDED_SCHED
3509 && !(current->flags & PF_KTHREAD))
3510 goto nopage;
3511 }
66199712 3512
8fe78048
DR
3513 /*
3514 * It can become very expensive to allocate transparent hugepages at
3515 * fault, so use asynchronous memory compaction for THP unless it is
3516 * khugepaged trying to collapse.
3517 */
d0164adc 3518 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3519 migration_mode = MIGRATE_SYNC_LIGHT;
3520
11e33f6a 3521 /* Try direct reclaim and then allocating */
a9263751
VB
3522 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3523 &did_some_progress);
11e33f6a
MG
3524 if (page)
3525 goto got_pg;
1da177e4 3526
9083905a
JW
3527 /* Do not loop if specifically requested */
3528 if (gfp_mask & __GFP_NORETRY)
3529 goto noretry;
3530
3531 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3532 pages_reclaimed += did_some_progress;
9083905a
JW
3533 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3534 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3535 /* Wait for some write requests to complete then retry */
c33d6c06 3536 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3537 goto retry;
1da177e4
LT
3538 }
3539
9083905a
JW
3540 /* Reclaim has failed us, start killing things */
3541 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3542 if (page)
3543 goto got_pg;
3544
3545 /* Retry as long as the OOM killer is making progress */
3546 if (did_some_progress)
3547 goto retry;
3548
3549noretry:
3550 /*
3551 * High-order allocations do not necessarily loop after
3552 * direct reclaim and reclaim/compaction depends on compaction
3553 * being called after reclaim so call directly if necessary
3554 */
3555 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3556 ac, migration_mode,
3557 &contended_compaction,
3558 &deferred_compaction);
3559 if (page)
3560 goto got_pg;
1da177e4 3561nopage:
a238ab5b 3562 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3563got_pg:
072bb0aa 3564 return page;
1da177e4 3565}
11e33f6a
MG
3566
3567/*
3568 * This is the 'heart' of the zoned buddy allocator.
3569 */
3570struct page *
3571__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3572 struct zonelist *zonelist, nodemask_t *nodemask)
3573{
5bb1b169 3574 struct page *page;
cc9a6c87 3575 unsigned int cpuset_mems_cookie;
c603844b 3576 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3577 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3578 struct alloc_context ac = {
3579 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3580 .zonelist = zonelist,
a9263751
VB
3581 .nodemask = nodemask,
3582 .migratetype = gfpflags_to_migratetype(gfp_mask),
3583 };
11e33f6a 3584
682a3385 3585 if (cpusets_enabled()) {
83d4ca81 3586 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3587 alloc_flags |= ALLOC_CPUSET;
3588 if (!ac.nodemask)
3589 ac.nodemask = &cpuset_current_mems_allowed;
3590 }
3591
dcce284a
BH
3592 gfp_mask &= gfp_allowed_mask;
3593
11e33f6a
MG
3594 lockdep_trace_alloc(gfp_mask);
3595
d0164adc 3596 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3597
3598 if (should_fail_alloc_page(gfp_mask, order))
3599 return NULL;
3600
3601 /*
3602 * Check the zones suitable for the gfp_mask contain at least one
3603 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3604 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3605 */
3606 if (unlikely(!zonelist->_zonerefs->zone))
3607 return NULL;
3608
a9263751 3609 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3610 alloc_flags |= ALLOC_CMA;
3611
cc9a6c87 3612retry_cpuset:
d26914d1 3613 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3614
c9ab0c4f
MG
3615 /* Dirty zone balancing only done in the fast path */
3616 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3617
5117f45d 3618 /* The preferred zone is used for statistics later */
c33d6c06
MG
3619 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3620 ac.high_zoneidx, ac.nodemask);
3621 if (!ac.preferred_zoneref) {
5bb1b169 3622 page = NULL;
4fcb0971 3623 goto no_zone;
5bb1b169
MG
3624 }
3625
5117f45d 3626 /* First allocation attempt */
a9263751 3627 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3628 if (likely(page))
3629 goto out;
11e33f6a 3630
4fcb0971
MG
3631 /*
3632 * Runtime PM, block IO and its error handling path can deadlock
3633 * because I/O on the device might not complete.
3634 */
3635 alloc_mask = memalloc_noio_flags(gfp_mask);
3636 ac.spread_dirty_pages = false;
23f086f9 3637
4fcb0971 3638 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3639
4fcb0971 3640no_zone:
cc9a6c87
MG
3641 /*
3642 * When updating a task's mems_allowed, it is possible to race with
3643 * parallel threads in such a way that an allocation can fail while
3644 * the mask is being updated. If a page allocation is about to fail,
3645 * check if the cpuset changed during allocation and if so, retry.
3646 */
83d4ca81
MG
3647 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3648 alloc_mask = gfp_mask;
cc9a6c87 3649 goto retry_cpuset;
83d4ca81 3650 }
cc9a6c87 3651
4fcb0971
MG
3652out:
3653 if (kmemcheck_enabled && page)
3654 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3655
3656 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3657
11e33f6a 3658 return page;
1da177e4 3659}
d239171e 3660EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3661
3662/*
3663 * Common helper functions.
3664 */
920c7a5d 3665unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3666{
945a1113
AM
3667 struct page *page;
3668
3669 /*
3670 * __get_free_pages() returns a 32-bit address, which cannot represent
3671 * a highmem page
3672 */
3673 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3674
1da177e4
LT
3675 page = alloc_pages(gfp_mask, order);
3676 if (!page)
3677 return 0;
3678 return (unsigned long) page_address(page);
3679}
1da177e4
LT
3680EXPORT_SYMBOL(__get_free_pages);
3681
920c7a5d 3682unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3683{
945a1113 3684 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3685}
1da177e4
LT
3686EXPORT_SYMBOL(get_zeroed_page);
3687
920c7a5d 3688void __free_pages(struct page *page, unsigned int order)
1da177e4 3689{
b5810039 3690 if (put_page_testzero(page)) {
1da177e4 3691 if (order == 0)
b745bc85 3692 free_hot_cold_page(page, false);
1da177e4
LT
3693 else
3694 __free_pages_ok(page, order);
3695 }
3696}
3697
3698EXPORT_SYMBOL(__free_pages);
3699
920c7a5d 3700void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3701{
3702 if (addr != 0) {
725d704e 3703 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3704 __free_pages(virt_to_page((void *)addr), order);
3705 }
3706}
3707
3708EXPORT_SYMBOL(free_pages);
3709
b63ae8ca
AD
3710/*
3711 * Page Fragment:
3712 * An arbitrary-length arbitrary-offset area of memory which resides
3713 * within a 0 or higher order page. Multiple fragments within that page
3714 * are individually refcounted, in the page's reference counter.
3715 *
3716 * The page_frag functions below provide a simple allocation framework for
3717 * page fragments. This is used by the network stack and network device
3718 * drivers to provide a backing region of memory for use as either an
3719 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3720 */
3721static struct page *__page_frag_refill(struct page_frag_cache *nc,
3722 gfp_t gfp_mask)
3723{
3724 struct page *page = NULL;
3725 gfp_t gfp = gfp_mask;
3726
3727#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3728 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3729 __GFP_NOMEMALLOC;
3730 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3731 PAGE_FRAG_CACHE_MAX_ORDER);
3732 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3733#endif
3734 if (unlikely(!page))
3735 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3736
3737 nc->va = page ? page_address(page) : NULL;
3738
3739 return page;
3740}
3741
3742void *__alloc_page_frag(struct page_frag_cache *nc,
3743 unsigned int fragsz, gfp_t gfp_mask)
3744{
3745 unsigned int size = PAGE_SIZE;
3746 struct page *page;
3747 int offset;
3748
3749 if (unlikely(!nc->va)) {
3750refill:
3751 page = __page_frag_refill(nc, gfp_mask);
3752 if (!page)
3753 return NULL;
3754
3755#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3756 /* if size can vary use size else just use PAGE_SIZE */
3757 size = nc->size;
3758#endif
3759 /* Even if we own the page, we do not use atomic_set().
3760 * This would break get_page_unless_zero() users.
3761 */
fe896d18 3762 page_ref_add(page, size - 1);
b63ae8ca
AD
3763
3764 /* reset page count bias and offset to start of new frag */
2f064f34 3765 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3766 nc->pagecnt_bias = size;
3767 nc->offset = size;
3768 }
3769
3770 offset = nc->offset - fragsz;
3771 if (unlikely(offset < 0)) {
3772 page = virt_to_page(nc->va);
3773
fe896d18 3774 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3775 goto refill;
3776
3777#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3778 /* if size can vary use size else just use PAGE_SIZE */
3779 size = nc->size;
3780#endif
3781 /* OK, page count is 0, we can safely set it */
fe896d18 3782 set_page_count(page, size);
b63ae8ca
AD
3783
3784 /* reset page count bias and offset to start of new frag */
3785 nc->pagecnt_bias = size;
3786 offset = size - fragsz;
3787 }
3788
3789 nc->pagecnt_bias--;
3790 nc->offset = offset;
3791
3792 return nc->va + offset;
3793}
3794EXPORT_SYMBOL(__alloc_page_frag);
3795
3796/*
3797 * Frees a page fragment allocated out of either a compound or order 0 page.
3798 */
3799void __free_page_frag(void *addr)
3800{
3801 struct page *page = virt_to_head_page(addr);
3802
3803 if (unlikely(put_page_testzero(page)))
3804 __free_pages_ok(page, compound_order(page));
3805}
3806EXPORT_SYMBOL(__free_page_frag);
3807
6a1a0d3b 3808/*
52383431 3809 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3810 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3811 * equivalent to alloc_pages.
6a1a0d3b 3812 *
52383431
VD
3813 * It should be used when the caller would like to use kmalloc, but since the
3814 * allocation is large, it has to fall back to the page allocator.
3815 */
3816struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3817{
3818 struct page *page;
52383431 3819
52383431 3820 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3821 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3822 __free_pages(page, order);
3823 page = NULL;
3824 }
52383431
VD
3825 return page;
3826}
3827
3828struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3829{
3830 struct page *page;
52383431 3831
52383431 3832 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3833 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3834 __free_pages(page, order);
3835 page = NULL;
3836 }
52383431
VD
3837 return page;
3838}
3839
3840/*
3841 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3842 * alloc_kmem_pages.
6a1a0d3b 3843 */
52383431 3844void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3845{
d05e83a6 3846 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3847 __free_pages(page, order);
3848}
3849
52383431 3850void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3851{
3852 if (addr != 0) {
3853 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3854 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3855 }
3856}
3857
d00181b9
KS
3858static void *make_alloc_exact(unsigned long addr, unsigned int order,
3859 size_t size)
ee85c2e1
AK
3860{
3861 if (addr) {
3862 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3863 unsigned long used = addr + PAGE_ALIGN(size);
3864
3865 split_page(virt_to_page((void *)addr), order);
3866 while (used < alloc_end) {
3867 free_page(used);
3868 used += PAGE_SIZE;
3869 }
3870 }
3871 return (void *)addr;
3872}
3873
2be0ffe2
TT
3874/**
3875 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3876 * @size: the number of bytes to allocate
3877 * @gfp_mask: GFP flags for the allocation
3878 *
3879 * This function is similar to alloc_pages(), except that it allocates the
3880 * minimum number of pages to satisfy the request. alloc_pages() can only
3881 * allocate memory in power-of-two pages.
3882 *
3883 * This function is also limited by MAX_ORDER.
3884 *
3885 * Memory allocated by this function must be released by free_pages_exact().
3886 */
3887void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3888{
3889 unsigned int order = get_order(size);
3890 unsigned long addr;
3891
3892 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3893 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3894}
3895EXPORT_SYMBOL(alloc_pages_exact);
3896
ee85c2e1
AK
3897/**
3898 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3899 * pages on a node.
b5e6ab58 3900 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3901 * @size: the number of bytes to allocate
3902 * @gfp_mask: GFP flags for the allocation
3903 *
3904 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3905 * back.
ee85c2e1 3906 */
e1931811 3907void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3908{
d00181b9 3909 unsigned int order = get_order(size);
ee85c2e1
AK
3910 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3911 if (!p)
3912 return NULL;
3913 return make_alloc_exact((unsigned long)page_address(p), order, size);
3914}
ee85c2e1 3915
2be0ffe2
TT
3916/**
3917 * free_pages_exact - release memory allocated via alloc_pages_exact()
3918 * @virt: the value returned by alloc_pages_exact.
3919 * @size: size of allocation, same value as passed to alloc_pages_exact().
3920 *
3921 * Release the memory allocated by a previous call to alloc_pages_exact.
3922 */
3923void free_pages_exact(void *virt, size_t size)
3924{
3925 unsigned long addr = (unsigned long)virt;
3926 unsigned long end = addr + PAGE_ALIGN(size);
3927
3928 while (addr < end) {
3929 free_page(addr);
3930 addr += PAGE_SIZE;
3931 }
3932}
3933EXPORT_SYMBOL(free_pages_exact);
3934
e0fb5815
ZY
3935/**
3936 * nr_free_zone_pages - count number of pages beyond high watermark
3937 * @offset: The zone index of the highest zone
3938 *
3939 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3940 * high watermark within all zones at or below a given zone index. For each
3941 * zone, the number of pages is calculated as:
834405c3 3942 * managed_pages - high_pages
e0fb5815 3943 */
ebec3862 3944static unsigned long nr_free_zone_pages(int offset)
1da177e4 3945{
dd1a239f 3946 struct zoneref *z;
54a6eb5c
MG
3947 struct zone *zone;
3948
e310fd43 3949 /* Just pick one node, since fallback list is circular */
ebec3862 3950 unsigned long sum = 0;
1da177e4 3951
0e88460d 3952 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3953
54a6eb5c 3954 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3955 unsigned long size = zone->managed_pages;
41858966 3956 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3957 if (size > high)
3958 sum += size - high;
1da177e4
LT
3959 }
3960
3961 return sum;
3962}
3963
e0fb5815
ZY
3964/**
3965 * nr_free_buffer_pages - count number of pages beyond high watermark
3966 *
3967 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3968 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3969 */
ebec3862 3970unsigned long nr_free_buffer_pages(void)
1da177e4 3971{
af4ca457 3972 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3973}
c2f1a551 3974EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3975
e0fb5815
ZY
3976/**
3977 * nr_free_pagecache_pages - count number of pages beyond high watermark
3978 *
3979 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3980 * high watermark within all zones.
1da177e4 3981 */
ebec3862 3982unsigned long nr_free_pagecache_pages(void)
1da177e4 3983{
2a1e274a 3984 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3985}
08e0f6a9
CL
3986
3987static inline void show_node(struct zone *zone)
1da177e4 3988{
e5adfffc 3989 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3990 printk("Node %d ", zone_to_nid(zone));
1da177e4 3991}
1da177e4 3992
d02bd27b
IR
3993long si_mem_available(void)
3994{
3995 long available;
3996 unsigned long pagecache;
3997 unsigned long wmark_low = 0;
3998 unsigned long pages[NR_LRU_LISTS];
3999 struct zone *zone;
4000 int lru;
4001
4002 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4003 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4004
4005 for_each_zone(zone)
4006 wmark_low += zone->watermark[WMARK_LOW];
4007
4008 /*
4009 * Estimate the amount of memory available for userspace allocations,
4010 * without causing swapping.
4011 */
4012 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4013
4014 /*
4015 * Not all the page cache can be freed, otherwise the system will
4016 * start swapping. Assume at least half of the page cache, or the
4017 * low watermark worth of cache, needs to stay.
4018 */
4019 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4020 pagecache -= min(pagecache / 2, wmark_low);
4021 available += pagecache;
4022
4023 /*
4024 * Part of the reclaimable slab consists of items that are in use,
4025 * and cannot be freed. Cap this estimate at the low watermark.
4026 */
4027 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4028 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4029
4030 if (available < 0)
4031 available = 0;
4032 return available;
4033}
4034EXPORT_SYMBOL_GPL(si_mem_available);
4035
1da177e4
LT
4036void si_meminfo(struct sysinfo *val)
4037{
4038 val->totalram = totalram_pages;
cc7452b6 4039 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 4040 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4041 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4042 val->totalhigh = totalhigh_pages;
4043 val->freehigh = nr_free_highpages();
1da177e4
LT
4044 val->mem_unit = PAGE_SIZE;
4045}
4046
4047EXPORT_SYMBOL(si_meminfo);
4048
4049#ifdef CONFIG_NUMA
4050void si_meminfo_node(struct sysinfo *val, int nid)
4051{
cdd91a77
JL
4052 int zone_type; /* needs to be signed */
4053 unsigned long managed_pages = 0;
fc2bd799
JK
4054 unsigned long managed_highpages = 0;
4055 unsigned long free_highpages = 0;
1da177e4
LT
4056 pg_data_t *pgdat = NODE_DATA(nid);
4057
cdd91a77
JL
4058 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4059 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4060 val->totalram = managed_pages;
cc7452b6 4061 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 4062 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4063#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4064 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4065 struct zone *zone = &pgdat->node_zones[zone_type];
4066
4067 if (is_highmem(zone)) {
4068 managed_highpages += zone->managed_pages;
4069 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4070 }
4071 }
4072 val->totalhigh = managed_highpages;
4073 val->freehigh = free_highpages;
98d2b0eb 4074#else
fc2bd799
JK
4075 val->totalhigh = managed_highpages;
4076 val->freehigh = free_highpages;
98d2b0eb 4077#endif
1da177e4
LT
4078 val->mem_unit = PAGE_SIZE;
4079}
4080#endif
4081
ddd588b5 4082/*
7bf02ea2
DR
4083 * Determine whether the node should be displayed or not, depending on whether
4084 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4085 */
7bf02ea2 4086bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4087{
4088 bool ret = false;
cc9a6c87 4089 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4090
4091 if (!(flags & SHOW_MEM_FILTER_NODES))
4092 goto out;
4093
cc9a6c87 4094 do {
d26914d1 4095 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4096 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4097 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4098out:
4099 return ret;
4100}
4101
1da177e4
LT
4102#define K(x) ((x) << (PAGE_SHIFT-10))
4103
377e4f16
RV
4104static void show_migration_types(unsigned char type)
4105{
4106 static const char types[MIGRATE_TYPES] = {
4107 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4108 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4109 [MIGRATE_RECLAIMABLE] = 'E',
4110 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4111#ifdef CONFIG_CMA
4112 [MIGRATE_CMA] = 'C',
4113#endif
194159fb 4114#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4115 [MIGRATE_ISOLATE] = 'I',
194159fb 4116#endif
377e4f16
RV
4117 };
4118 char tmp[MIGRATE_TYPES + 1];
4119 char *p = tmp;
4120 int i;
4121
4122 for (i = 0; i < MIGRATE_TYPES; i++) {
4123 if (type & (1 << i))
4124 *p++ = types[i];
4125 }
4126
4127 *p = '\0';
4128 printk("(%s) ", tmp);
4129}
4130
1da177e4
LT
4131/*
4132 * Show free area list (used inside shift_scroll-lock stuff)
4133 * We also calculate the percentage fragmentation. We do this by counting the
4134 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4135 *
4136 * Bits in @filter:
4137 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4138 * cpuset.
1da177e4 4139 */
7bf02ea2 4140void show_free_areas(unsigned int filter)
1da177e4 4141{
d1bfcdb8 4142 unsigned long free_pcp = 0;
c7241913 4143 int cpu;
1da177e4
LT
4144 struct zone *zone;
4145
ee99c71c 4146 for_each_populated_zone(zone) {
7bf02ea2 4147 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4148 continue;
d1bfcdb8 4149
761b0677
KK
4150 for_each_online_cpu(cpu)
4151 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4152 }
4153
a731286d
KM
4154 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4155 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4156 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4157 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4158 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4159 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 4160 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 4161 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
4162 global_page_state(NR_ISOLATED_ANON),
4163 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4164 global_page_state(NR_INACTIVE_FILE),
a731286d 4165 global_page_state(NR_ISOLATED_FILE),
7b854121 4166 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4167 global_page_state(NR_FILE_DIRTY),
ce866b34 4168 global_page_state(NR_WRITEBACK),
fd39fc85 4169 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4170 global_page_state(NR_SLAB_RECLAIMABLE),
4171 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4172 global_page_state(NR_FILE_MAPPED),
4b02108a 4173 global_page_state(NR_SHMEM),
a25700a5 4174 global_page_state(NR_PAGETABLE),
d1ce749a 4175 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4176 global_page_state(NR_FREE_PAGES),
4177 free_pcp,
d1ce749a 4178 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4179
ee99c71c 4180 for_each_populated_zone(zone) {
1da177e4
LT
4181 int i;
4182
7bf02ea2 4183 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4184 continue;
d1bfcdb8
KK
4185
4186 free_pcp = 0;
4187 for_each_online_cpu(cpu)
4188 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4189
1da177e4
LT
4190 show_node(zone);
4191 printk("%s"
4192 " free:%lukB"
4193 " min:%lukB"
4194 " low:%lukB"
4195 " high:%lukB"
4f98a2fe
RR
4196 " active_anon:%lukB"
4197 " inactive_anon:%lukB"
4198 " active_file:%lukB"
4199 " inactive_file:%lukB"
7b854121 4200 " unevictable:%lukB"
a731286d
KM
4201 " isolated(anon):%lukB"
4202 " isolated(file):%lukB"
1da177e4 4203 " present:%lukB"
9feedc9d 4204 " managed:%lukB"
4a0aa73f
KM
4205 " mlocked:%lukB"
4206 " dirty:%lukB"
4207 " writeback:%lukB"
4208 " mapped:%lukB"
4b02108a 4209 " shmem:%lukB"
4a0aa73f
KM
4210 " slab_reclaimable:%lukB"
4211 " slab_unreclaimable:%lukB"
c6a7f572 4212 " kernel_stack:%lukB"
4a0aa73f
KM
4213 " pagetables:%lukB"
4214 " unstable:%lukB"
4215 " bounce:%lukB"
d1bfcdb8
KK
4216 " free_pcp:%lukB"
4217 " local_pcp:%ukB"
d1ce749a 4218 " free_cma:%lukB"
4a0aa73f 4219 " writeback_tmp:%lukB"
1da177e4
LT
4220 " pages_scanned:%lu"
4221 " all_unreclaimable? %s"
4222 "\n",
4223 zone->name,
88f5acf8 4224 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4225 K(min_wmark_pages(zone)),
4226 K(low_wmark_pages(zone)),
4227 K(high_wmark_pages(zone)),
4f98a2fe
RR
4228 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4229 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4230 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4231 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4232 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4233 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4234 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4235 K(zone->present_pages),
9feedc9d 4236 K(zone->managed_pages),
4a0aa73f
KM
4237 K(zone_page_state(zone, NR_MLOCK)),
4238 K(zone_page_state(zone, NR_FILE_DIRTY)),
4239 K(zone_page_state(zone, NR_WRITEBACK)),
4240 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4241 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4242 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4243 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4244 zone_page_state(zone, NR_KERNEL_STACK) *
4245 THREAD_SIZE / 1024,
4a0aa73f
KM
4246 K(zone_page_state(zone, NR_PAGETABLE)),
4247 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4248 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4249 K(free_pcp),
4250 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4251 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4252 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4253 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4254 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4255 );
4256 printk("lowmem_reserve[]:");
4257 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4258 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4259 printk("\n");
4260 }
4261
ee99c71c 4262 for_each_populated_zone(zone) {
d00181b9
KS
4263 unsigned int order;
4264 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4265 unsigned char types[MAX_ORDER];
1da177e4 4266
7bf02ea2 4267 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4268 continue;
1da177e4
LT
4269 show_node(zone);
4270 printk("%s: ", zone->name);
1da177e4
LT
4271
4272 spin_lock_irqsave(&zone->lock, flags);
4273 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4274 struct free_area *area = &zone->free_area[order];
4275 int type;
4276
4277 nr[order] = area->nr_free;
8f9de51a 4278 total += nr[order] << order;
377e4f16
RV
4279
4280 types[order] = 0;
4281 for (type = 0; type < MIGRATE_TYPES; type++) {
4282 if (!list_empty(&area->free_list[type]))
4283 types[order] |= 1 << type;
4284 }
1da177e4
LT
4285 }
4286 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4287 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4288 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4289 if (nr[order])
4290 show_migration_types(types[order]);
4291 }
1da177e4
LT
4292 printk("= %lukB\n", K(total));
4293 }
4294
949f7ec5
DR
4295 hugetlb_show_meminfo();
4296
e6f3602d
LW
4297 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4298
1da177e4
LT
4299 show_swap_cache_info();
4300}
4301
19770b32
MG
4302static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4303{
4304 zoneref->zone = zone;
4305 zoneref->zone_idx = zone_idx(zone);
4306}
4307
1da177e4
LT
4308/*
4309 * Builds allocation fallback zone lists.
1a93205b
CL
4310 *
4311 * Add all populated zones of a node to the zonelist.
1da177e4 4312 */
f0c0b2b8 4313static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4314 int nr_zones)
1da177e4 4315{
1a93205b 4316 struct zone *zone;
bc732f1d 4317 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4318
4319 do {
2f6726e5 4320 zone_type--;
070f8032 4321 zone = pgdat->node_zones + zone_type;
1a93205b 4322 if (populated_zone(zone)) {
dd1a239f
MG
4323 zoneref_set_zone(zone,
4324 &zonelist->_zonerefs[nr_zones++]);
070f8032 4325 check_highest_zone(zone_type);
1da177e4 4326 }
2f6726e5 4327 } while (zone_type);
bc732f1d 4328
070f8032 4329 return nr_zones;
1da177e4
LT
4330}
4331
f0c0b2b8
KH
4332
4333/*
4334 * zonelist_order:
4335 * 0 = automatic detection of better ordering.
4336 * 1 = order by ([node] distance, -zonetype)
4337 * 2 = order by (-zonetype, [node] distance)
4338 *
4339 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4340 * the same zonelist. So only NUMA can configure this param.
4341 */
4342#define ZONELIST_ORDER_DEFAULT 0
4343#define ZONELIST_ORDER_NODE 1
4344#define ZONELIST_ORDER_ZONE 2
4345
4346/* zonelist order in the kernel.
4347 * set_zonelist_order() will set this to NODE or ZONE.
4348 */
4349static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4350static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4351
4352
1da177e4 4353#ifdef CONFIG_NUMA
f0c0b2b8
KH
4354/* The value user specified ....changed by config */
4355static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4356/* string for sysctl */
4357#define NUMA_ZONELIST_ORDER_LEN 16
4358char numa_zonelist_order[16] = "default";
4359
4360/*
4361 * interface for configure zonelist ordering.
4362 * command line option "numa_zonelist_order"
4363 * = "[dD]efault - default, automatic configuration.
4364 * = "[nN]ode - order by node locality, then by zone within node
4365 * = "[zZ]one - order by zone, then by locality within zone
4366 */
4367
4368static int __parse_numa_zonelist_order(char *s)
4369{
4370 if (*s == 'd' || *s == 'D') {
4371 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4372 } else if (*s == 'n' || *s == 'N') {
4373 user_zonelist_order = ZONELIST_ORDER_NODE;
4374 } else if (*s == 'z' || *s == 'Z') {
4375 user_zonelist_order = ZONELIST_ORDER_ZONE;
4376 } else {
1170532b 4377 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4378 return -EINVAL;
4379 }
4380 return 0;
4381}
4382
4383static __init int setup_numa_zonelist_order(char *s)
4384{
ecb256f8
VL
4385 int ret;
4386
4387 if (!s)
4388 return 0;
4389
4390 ret = __parse_numa_zonelist_order(s);
4391 if (ret == 0)
4392 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4393
4394 return ret;
f0c0b2b8
KH
4395}
4396early_param("numa_zonelist_order", setup_numa_zonelist_order);
4397
4398/*
4399 * sysctl handler for numa_zonelist_order
4400 */
cccad5b9 4401int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4402 void __user *buffer, size_t *length,
f0c0b2b8
KH
4403 loff_t *ppos)
4404{
4405 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4406 int ret;
443c6f14 4407 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4408
443c6f14 4409 mutex_lock(&zl_order_mutex);
dacbde09
CG
4410 if (write) {
4411 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4412 ret = -EINVAL;
4413 goto out;
4414 }
4415 strcpy(saved_string, (char *)table->data);
4416 }
8d65af78 4417 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4418 if (ret)
443c6f14 4419 goto out;
f0c0b2b8
KH
4420 if (write) {
4421 int oldval = user_zonelist_order;
dacbde09
CG
4422
4423 ret = __parse_numa_zonelist_order((char *)table->data);
4424 if (ret) {
f0c0b2b8
KH
4425 /*
4426 * bogus value. restore saved string
4427 */
dacbde09 4428 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4429 NUMA_ZONELIST_ORDER_LEN);
4430 user_zonelist_order = oldval;
4eaf3f64
HL
4431 } else if (oldval != user_zonelist_order) {
4432 mutex_lock(&zonelists_mutex);
9adb62a5 4433 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4434 mutex_unlock(&zonelists_mutex);
4435 }
f0c0b2b8 4436 }
443c6f14
AK
4437out:
4438 mutex_unlock(&zl_order_mutex);
4439 return ret;
f0c0b2b8
KH
4440}
4441
4442
62bc62a8 4443#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4444static int node_load[MAX_NUMNODES];
4445
1da177e4 4446/**
4dc3b16b 4447 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4448 * @node: node whose fallback list we're appending
4449 * @used_node_mask: nodemask_t of already used nodes
4450 *
4451 * We use a number of factors to determine which is the next node that should
4452 * appear on a given node's fallback list. The node should not have appeared
4453 * already in @node's fallback list, and it should be the next closest node
4454 * according to the distance array (which contains arbitrary distance values
4455 * from each node to each node in the system), and should also prefer nodes
4456 * with no CPUs, since presumably they'll have very little allocation pressure
4457 * on them otherwise.
4458 * It returns -1 if no node is found.
4459 */
f0c0b2b8 4460static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4461{
4cf808eb 4462 int n, val;
1da177e4 4463 int min_val = INT_MAX;
00ef2d2f 4464 int best_node = NUMA_NO_NODE;
a70f7302 4465 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4466
4cf808eb
LT
4467 /* Use the local node if we haven't already */
4468 if (!node_isset(node, *used_node_mask)) {
4469 node_set(node, *used_node_mask);
4470 return node;
4471 }
1da177e4 4472
4b0ef1fe 4473 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4474
4475 /* Don't want a node to appear more than once */
4476 if (node_isset(n, *used_node_mask))
4477 continue;
4478
1da177e4
LT
4479 /* Use the distance array to find the distance */
4480 val = node_distance(node, n);
4481
4cf808eb
LT
4482 /* Penalize nodes under us ("prefer the next node") */
4483 val += (n < node);
4484
1da177e4 4485 /* Give preference to headless and unused nodes */
a70f7302
RR
4486 tmp = cpumask_of_node(n);
4487 if (!cpumask_empty(tmp))
1da177e4
LT
4488 val += PENALTY_FOR_NODE_WITH_CPUS;
4489
4490 /* Slight preference for less loaded node */
4491 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4492 val += node_load[n];
4493
4494 if (val < min_val) {
4495 min_val = val;
4496 best_node = n;
4497 }
4498 }
4499
4500 if (best_node >= 0)
4501 node_set(best_node, *used_node_mask);
4502
4503 return best_node;
4504}
4505
f0c0b2b8
KH
4506
4507/*
4508 * Build zonelists ordered by node and zones within node.
4509 * This results in maximum locality--normal zone overflows into local
4510 * DMA zone, if any--but risks exhausting DMA zone.
4511 */
4512static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4513{
f0c0b2b8 4514 int j;
1da177e4 4515 struct zonelist *zonelist;
f0c0b2b8 4516
54a6eb5c 4517 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4518 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4519 ;
bc732f1d 4520 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4521 zonelist->_zonerefs[j].zone = NULL;
4522 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4523}
4524
523b9458
CL
4525/*
4526 * Build gfp_thisnode zonelists
4527 */
4528static void build_thisnode_zonelists(pg_data_t *pgdat)
4529{
523b9458
CL
4530 int j;
4531 struct zonelist *zonelist;
4532
54a6eb5c 4533 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4534 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4535 zonelist->_zonerefs[j].zone = NULL;
4536 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4537}
4538
f0c0b2b8
KH
4539/*
4540 * Build zonelists ordered by zone and nodes within zones.
4541 * This results in conserving DMA zone[s] until all Normal memory is
4542 * exhausted, but results in overflowing to remote node while memory
4543 * may still exist in local DMA zone.
4544 */
4545static int node_order[MAX_NUMNODES];
4546
4547static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4548{
f0c0b2b8
KH
4549 int pos, j, node;
4550 int zone_type; /* needs to be signed */
4551 struct zone *z;
4552 struct zonelist *zonelist;
4553
54a6eb5c
MG
4554 zonelist = &pgdat->node_zonelists[0];
4555 pos = 0;
4556 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4557 for (j = 0; j < nr_nodes; j++) {
4558 node = node_order[j];
4559 z = &NODE_DATA(node)->node_zones[zone_type];
4560 if (populated_zone(z)) {
dd1a239f
MG
4561 zoneref_set_zone(z,
4562 &zonelist->_zonerefs[pos++]);
54a6eb5c 4563 check_highest_zone(zone_type);
f0c0b2b8
KH
4564 }
4565 }
f0c0b2b8 4566 }
dd1a239f
MG
4567 zonelist->_zonerefs[pos].zone = NULL;
4568 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4569}
4570
3193913c
MG
4571#if defined(CONFIG_64BIT)
4572/*
4573 * Devices that require DMA32/DMA are relatively rare and do not justify a
4574 * penalty to every machine in case the specialised case applies. Default
4575 * to Node-ordering on 64-bit NUMA machines
4576 */
4577static int default_zonelist_order(void)
4578{
4579 return ZONELIST_ORDER_NODE;
4580}
4581#else
4582/*
4583 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4584 * by the kernel. If processes running on node 0 deplete the low memory zone
4585 * then reclaim will occur more frequency increasing stalls and potentially
4586 * be easier to OOM if a large percentage of the zone is under writeback or
4587 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4588 * Hence, default to zone ordering on 32-bit.
4589 */
f0c0b2b8
KH
4590static int default_zonelist_order(void)
4591{
f0c0b2b8
KH
4592 return ZONELIST_ORDER_ZONE;
4593}
3193913c 4594#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4595
4596static void set_zonelist_order(void)
4597{
4598 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4599 current_zonelist_order = default_zonelist_order();
4600 else
4601 current_zonelist_order = user_zonelist_order;
4602}
4603
4604static void build_zonelists(pg_data_t *pgdat)
4605{
c00eb15a 4606 int i, node, load;
1da177e4 4607 nodemask_t used_mask;
f0c0b2b8
KH
4608 int local_node, prev_node;
4609 struct zonelist *zonelist;
d00181b9 4610 unsigned int order = current_zonelist_order;
1da177e4
LT
4611
4612 /* initialize zonelists */
523b9458 4613 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4614 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4615 zonelist->_zonerefs[0].zone = NULL;
4616 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4617 }
4618
4619 /* NUMA-aware ordering of nodes */
4620 local_node = pgdat->node_id;
62bc62a8 4621 load = nr_online_nodes;
1da177e4
LT
4622 prev_node = local_node;
4623 nodes_clear(used_mask);
f0c0b2b8 4624
f0c0b2b8 4625 memset(node_order, 0, sizeof(node_order));
c00eb15a 4626 i = 0;
f0c0b2b8 4627
1da177e4
LT
4628 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4629 /*
4630 * We don't want to pressure a particular node.
4631 * So adding penalty to the first node in same
4632 * distance group to make it round-robin.
4633 */
957f822a
DR
4634 if (node_distance(local_node, node) !=
4635 node_distance(local_node, prev_node))
f0c0b2b8
KH
4636 node_load[node] = load;
4637
1da177e4
LT
4638 prev_node = node;
4639 load--;
f0c0b2b8
KH
4640 if (order == ZONELIST_ORDER_NODE)
4641 build_zonelists_in_node_order(pgdat, node);
4642 else
c00eb15a 4643 node_order[i++] = node; /* remember order */
f0c0b2b8 4644 }
1da177e4 4645
f0c0b2b8
KH
4646 if (order == ZONELIST_ORDER_ZONE) {
4647 /* calculate node order -- i.e., DMA last! */
c00eb15a 4648 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4649 }
523b9458
CL
4650
4651 build_thisnode_zonelists(pgdat);
1da177e4
LT
4652}
4653
7aac7898
LS
4654#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4655/*
4656 * Return node id of node used for "local" allocations.
4657 * I.e., first node id of first zone in arg node's generic zonelist.
4658 * Used for initializing percpu 'numa_mem', which is used primarily
4659 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4660 */
4661int local_memory_node(int node)
4662{
c33d6c06 4663 struct zoneref *z;
7aac7898 4664
c33d6c06 4665 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4666 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4667 NULL);
4668 return z->zone->node;
7aac7898
LS
4669}
4670#endif
f0c0b2b8 4671
1da177e4
LT
4672#else /* CONFIG_NUMA */
4673
f0c0b2b8
KH
4674static void set_zonelist_order(void)
4675{
4676 current_zonelist_order = ZONELIST_ORDER_ZONE;
4677}
4678
4679static void build_zonelists(pg_data_t *pgdat)
1da177e4 4680{
19655d34 4681 int node, local_node;
54a6eb5c
MG
4682 enum zone_type j;
4683 struct zonelist *zonelist;
1da177e4
LT
4684
4685 local_node = pgdat->node_id;
1da177e4 4686
54a6eb5c 4687 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4688 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4689
54a6eb5c
MG
4690 /*
4691 * Now we build the zonelist so that it contains the zones
4692 * of all the other nodes.
4693 * We don't want to pressure a particular node, so when
4694 * building the zones for node N, we make sure that the
4695 * zones coming right after the local ones are those from
4696 * node N+1 (modulo N)
4697 */
4698 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4699 if (!node_online(node))
4700 continue;
bc732f1d 4701 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4702 }
54a6eb5c
MG
4703 for (node = 0; node < local_node; node++) {
4704 if (!node_online(node))
4705 continue;
bc732f1d 4706 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4707 }
4708
dd1a239f
MG
4709 zonelist->_zonerefs[j].zone = NULL;
4710 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4711}
4712
4713#endif /* CONFIG_NUMA */
4714
99dcc3e5
CL
4715/*
4716 * Boot pageset table. One per cpu which is going to be used for all
4717 * zones and all nodes. The parameters will be set in such a way
4718 * that an item put on a list will immediately be handed over to
4719 * the buddy list. This is safe since pageset manipulation is done
4720 * with interrupts disabled.
4721 *
4722 * The boot_pagesets must be kept even after bootup is complete for
4723 * unused processors and/or zones. They do play a role for bootstrapping
4724 * hotplugged processors.
4725 *
4726 * zoneinfo_show() and maybe other functions do
4727 * not check if the processor is online before following the pageset pointer.
4728 * Other parts of the kernel may not check if the zone is available.
4729 */
4730static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4731static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4732static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4733
4eaf3f64
HL
4734/*
4735 * Global mutex to protect against size modification of zonelists
4736 * as well as to serialize pageset setup for the new populated zone.
4737 */
4738DEFINE_MUTEX(zonelists_mutex);
4739
9b1a4d38 4740/* return values int ....just for stop_machine() */
4ed7e022 4741static int __build_all_zonelists(void *data)
1da177e4 4742{
6811378e 4743 int nid;
99dcc3e5 4744 int cpu;
9adb62a5 4745 pg_data_t *self = data;
9276b1bc 4746
7f9cfb31
BL
4747#ifdef CONFIG_NUMA
4748 memset(node_load, 0, sizeof(node_load));
4749#endif
9adb62a5
JL
4750
4751 if (self && !node_online(self->node_id)) {
4752 build_zonelists(self);
9adb62a5
JL
4753 }
4754
9276b1bc 4755 for_each_online_node(nid) {
7ea1530a
CL
4756 pg_data_t *pgdat = NODE_DATA(nid);
4757
4758 build_zonelists(pgdat);
9276b1bc 4759 }
99dcc3e5
CL
4760
4761 /*
4762 * Initialize the boot_pagesets that are going to be used
4763 * for bootstrapping processors. The real pagesets for
4764 * each zone will be allocated later when the per cpu
4765 * allocator is available.
4766 *
4767 * boot_pagesets are used also for bootstrapping offline
4768 * cpus if the system is already booted because the pagesets
4769 * are needed to initialize allocators on a specific cpu too.
4770 * F.e. the percpu allocator needs the page allocator which
4771 * needs the percpu allocator in order to allocate its pagesets
4772 * (a chicken-egg dilemma).
4773 */
7aac7898 4774 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4775 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4776
7aac7898
LS
4777#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4778 /*
4779 * We now know the "local memory node" for each node--
4780 * i.e., the node of the first zone in the generic zonelist.
4781 * Set up numa_mem percpu variable for on-line cpus. During
4782 * boot, only the boot cpu should be on-line; we'll init the
4783 * secondary cpus' numa_mem as they come on-line. During
4784 * node/memory hotplug, we'll fixup all on-line cpus.
4785 */
4786 if (cpu_online(cpu))
4787 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4788#endif
4789 }
4790
6811378e
YG
4791 return 0;
4792}
4793
061f67bc
RV
4794static noinline void __init
4795build_all_zonelists_init(void)
4796{
4797 __build_all_zonelists(NULL);
4798 mminit_verify_zonelist();
4799 cpuset_init_current_mems_allowed();
4800}
4801
4eaf3f64
HL
4802/*
4803 * Called with zonelists_mutex held always
4804 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4805 *
4806 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4807 * [we're only called with non-NULL zone through __meminit paths] and
4808 * (2) call of __init annotated helper build_all_zonelists_init
4809 * [protected by SYSTEM_BOOTING].
4eaf3f64 4810 */
9adb62a5 4811void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4812{
f0c0b2b8
KH
4813 set_zonelist_order();
4814
6811378e 4815 if (system_state == SYSTEM_BOOTING) {
061f67bc 4816 build_all_zonelists_init();
6811378e 4817 } else {
e9959f0f 4818#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4819 if (zone)
4820 setup_zone_pageset(zone);
e9959f0f 4821#endif
dd1895e2
CS
4822 /* we have to stop all cpus to guarantee there is no user
4823 of zonelist */
9adb62a5 4824 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4825 /* cpuset refresh routine should be here */
4826 }
bd1e22b8 4827 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4828 /*
4829 * Disable grouping by mobility if the number of pages in the
4830 * system is too low to allow the mechanism to work. It would be
4831 * more accurate, but expensive to check per-zone. This check is
4832 * made on memory-hotadd so a system can start with mobility
4833 * disabled and enable it later
4834 */
d9c23400 4835 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4836 page_group_by_mobility_disabled = 1;
4837 else
4838 page_group_by_mobility_disabled = 0;
4839
756a025f
JP
4840 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4841 nr_online_nodes,
4842 zonelist_order_name[current_zonelist_order],
4843 page_group_by_mobility_disabled ? "off" : "on",
4844 vm_total_pages);
f0c0b2b8 4845#ifdef CONFIG_NUMA
f88dfff5 4846 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4847#endif
1da177e4
LT
4848}
4849
4850/*
4851 * Helper functions to size the waitqueue hash table.
4852 * Essentially these want to choose hash table sizes sufficiently
4853 * large so that collisions trying to wait on pages are rare.
4854 * But in fact, the number of active page waitqueues on typical
4855 * systems is ridiculously low, less than 200. So this is even
4856 * conservative, even though it seems large.
4857 *
4858 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4859 * waitqueues, i.e. the size of the waitq table given the number of pages.
4860 */
4861#define PAGES_PER_WAITQUEUE 256
4862
cca448fe 4863#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4864static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4865{
4866 unsigned long size = 1;
4867
4868 pages /= PAGES_PER_WAITQUEUE;
4869
4870 while (size < pages)
4871 size <<= 1;
4872
4873 /*
4874 * Once we have dozens or even hundreds of threads sleeping
4875 * on IO we've got bigger problems than wait queue collision.
4876 * Limit the size of the wait table to a reasonable size.
4877 */
4878 size = min(size, 4096UL);
4879
4880 return max(size, 4UL);
4881}
cca448fe
YG
4882#else
4883/*
4884 * A zone's size might be changed by hot-add, so it is not possible to determine
4885 * a suitable size for its wait_table. So we use the maximum size now.
4886 *
4887 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4888 *
4889 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4890 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4891 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4892 *
4893 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4894 * or more by the traditional way. (See above). It equals:
4895 *
4896 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4897 * ia64(16K page size) : = ( 8G + 4M)byte.
4898 * powerpc (64K page size) : = (32G +16M)byte.
4899 */
4900static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4901{
4902 return 4096UL;
4903}
4904#endif
1da177e4
LT
4905
4906/*
4907 * This is an integer logarithm so that shifts can be used later
4908 * to extract the more random high bits from the multiplicative
4909 * hash function before the remainder is taken.
4910 */
4911static inline unsigned long wait_table_bits(unsigned long size)
4912{
4913 return ffz(~size);
4914}
4915
1da177e4
LT
4916/*
4917 * Initially all pages are reserved - free ones are freed
4918 * up by free_all_bootmem() once the early boot process is
4919 * done. Non-atomic initialization, single-pass.
4920 */
c09b4240 4921void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4922 unsigned long start_pfn, enum memmap_context context)
1da177e4 4923{
4b94ffdc 4924 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4925 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4926 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4927 unsigned long pfn;
3a80a7fa 4928 unsigned long nr_initialised = 0;
342332e6
TI
4929#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4930 struct memblock_region *r = NULL, *tmp;
4931#endif
1da177e4 4932
22b31eec
HD
4933 if (highest_memmap_pfn < end_pfn - 1)
4934 highest_memmap_pfn = end_pfn - 1;
4935
4b94ffdc
DW
4936 /*
4937 * Honor reservation requested by the driver for this ZONE_DEVICE
4938 * memory
4939 */
4940 if (altmap && start_pfn == altmap->base_pfn)
4941 start_pfn += altmap->reserve;
4942
cbe8dd4a 4943 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4944 /*
b72d0ffb
AM
4945 * There can be holes in boot-time mem_map[]s handed to this
4946 * function. They do not exist on hotplugged memory.
a2f3aa02 4947 */
b72d0ffb
AM
4948 if (context != MEMMAP_EARLY)
4949 goto not_early;
4950
4951 if (!early_pfn_valid(pfn))
4952 continue;
4953 if (!early_pfn_in_nid(pfn, nid))
4954 continue;
4955 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4956 break;
342332e6
TI
4957
4958#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4959 /*
4960 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4961 * from zone_movable_pfn[nid] to end of each node should be
4962 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4963 */
4964 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4965 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4966 continue;
342332e6 4967
b72d0ffb
AM
4968 /*
4969 * Check given memblock attribute by firmware which can affect
4970 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4971 * mirrored, it's an overlapped memmap init. skip it.
4972 */
4973 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4974 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4975 for_each_memblock(memory, tmp)
4976 if (pfn < memblock_region_memory_end_pfn(tmp))
4977 break;
4978 r = tmp;
4979 }
4980 if (pfn >= memblock_region_memory_base_pfn(r) &&
4981 memblock_is_mirror(r)) {
4982 /* already initialized as NORMAL */
4983 pfn = memblock_region_memory_end_pfn(r);
4984 continue;
342332e6 4985 }
a2f3aa02 4986 }
b72d0ffb 4987#endif
ac5d2539 4988
b72d0ffb 4989not_early:
ac5d2539
MG
4990 /*
4991 * Mark the block movable so that blocks are reserved for
4992 * movable at startup. This will force kernel allocations
4993 * to reserve their blocks rather than leaking throughout
4994 * the address space during boot when many long-lived
974a786e 4995 * kernel allocations are made.
ac5d2539
MG
4996 *
4997 * bitmap is created for zone's valid pfn range. but memmap
4998 * can be created for invalid pages (for alignment)
4999 * check here not to call set_pageblock_migratetype() against
5000 * pfn out of zone.
5001 */
5002 if (!(pfn & (pageblock_nr_pages - 1))) {
5003 struct page *page = pfn_to_page(pfn);
5004
5005 __init_single_page(page, pfn, zone, nid);
5006 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5007 } else {
5008 __init_single_pfn(pfn, zone, nid);
5009 }
1da177e4
LT
5010 }
5011}
5012
1e548deb 5013static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5014{
7aeb09f9 5015 unsigned int order, t;
b2a0ac88
MG
5016 for_each_migratetype_order(order, t) {
5017 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5018 zone->free_area[order].nr_free = 0;
5019 }
5020}
5021
5022#ifndef __HAVE_ARCH_MEMMAP_INIT
5023#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5024 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5025#endif
5026
7cd2b0a3 5027static int zone_batchsize(struct zone *zone)
e7c8d5c9 5028{
3a6be87f 5029#ifdef CONFIG_MMU
e7c8d5c9
CL
5030 int batch;
5031
5032 /*
5033 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5034 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5035 *
5036 * OK, so we don't know how big the cache is. So guess.
5037 */
b40da049 5038 batch = zone->managed_pages / 1024;
ba56e91c
SR
5039 if (batch * PAGE_SIZE > 512 * 1024)
5040 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5041 batch /= 4; /* We effectively *= 4 below */
5042 if (batch < 1)
5043 batch = 1;
5044
5045 /*
0ceaacc9
NP
5046 * Clamp the batch to a 2^n - 1 value. Having a power
5047 * of 2 value was found to be more likely to have
5048 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5049 *
0ceaacc9
NP
5050 * For example if 2 tasks are alternately allocating
5051 * batches of pages, one task can end up with a lot
5052 * of pages of one half of the possible page colors
5053 * and the other with pages of the other colors.
e7c8d5c9 5054 */
9155203a 5055 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5056
e7c8d5c9 5057 return batch;
3a6be87f
DH
5058
5059#else
5060 /* The deferral and batching of frees should be suppressed under NOMMU
5061 * conditions.
5062 *
5063 * The problem is that NOMMU needs to be able to allocate large chunks
5064 * of contiguous memory as there's no hardware page translation to
5065 * assemble apparent contiguous memory from discontiguous pages.
5066 *
5067 * Queueing large contiguous runs of pages for batching, however,
5068 * causes the pages to actually be freed in smaller chunks. As there
5069 * can be a significant delay between the individual batches being
5070 * recycled, this leads to the once large chunks of space being
5071 * fragmented and becoming unavailable for high-order allocations.
5072 */
5073 return 0;
5074#endif
e7c8d5c9
CL
5075}
5076
8d7a8fa9
CS
5077/*
5078 * pcp->high and pcp->batch values are related and dependent on one another:
5079 * ->batch must never be higher then ->high.
5080 * The following function updates them in a safe manner without read side
5081 * locking.
5082 *
5083 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5084 * those fields changing asynchronously (acording the the above rule).
5085 *
5086 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5087 * outside of boot time (or some other assurance that no concurrent updaters
5088 * exist).
5089 */
5090static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5091 unsigned long batch)
5092{
5093 /* start with a fail safe value for batch */
5094 pcp->batch = 1;
5095 smp_wmb();
5096
5097 /* Update high, then batch, in order */
5098 pcp->high = high;
5099 smp_wmb();
5100
5101 pcp->batch = batch;
5102}
5103
3664033c 5104/* a companion to pageset_set_high() */
4008bab7
CS
5105static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5106{
8d7a8fa9 5107 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5108}
5109
88c90dbc 5110static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5111{
5112 struct per_cpu_pages *pcp;
5f8dcc21 5113 int migratetype;
2caaad41 5114
1c6fe946
MD
5115 memset(p, 0, sizeof(*p));
5116
3dfa5721 5117 pcp = &p->pcp;
2caaad41 5118 pcp->count = 0;
5f8dcc21
MG
5119 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5120 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5121}
5122
88c90dbc
CS
5123static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5124{
5125 pageset_init(p);
5126 pageset_set_batch(p, batch);
5127}
5128
8ad4b1fb 5129/*
3664033c 5130 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5131 * to the value high for the pageset p.
5132 */
3664033c 5133static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5134 unsigned long high)
5135{
8d7a8fa9
CS
5136 unsigned long batch = max(1UL, high / 4);
5137 if ((high / 4) > (PAGE_SHIFT * 8))
5138 batch = PAGE_SHIFT * 8;
8ad4b1fb 5139
8d7a8fa9 5140 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5141}
5142
7cd2b0a3
DR
5143static void pageset_set_high_and_batch(struct zone *zone,
5144 struct per_cpu_pageset *pcp)
56cef2b8 5145{
56cef2b8 5146 if (percpu_pagelist_fraction)
3664033c 5147 pageset_set_high(pcp,
56cef2b8
CS
5148 (zone->managed_pages /
5149 percpu_pagelist_fraction));
5150 else
5151 pageset_set_batch(pcp, zone_batchsize(zone));
5152}
5153
169f6c19
CS
5154static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5155{
5156 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5157
5158 pageset_init(pcp);
5159 pageset_set_high_and_batch(zone, pcp);
5160}
5161
4ed7e022 5162static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5163{
5164 int cpu;
319774e2 5165 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5166 for_each_possible_cpu(cpu)
5167 zone_pageset_init(zone, cpu);
319774e2
WF
5168}
5169
2caaad41 5170/*
99dcc3e5
CL
5171 * Allocate per cpu pagesets and initialize them.
5172 * Before this call only boot pagesets were available.
e7c8d5c9 5173 */
99dcc3e5 5174void __init setup_per_cpu_pageset(void)
e7c8d5c9 5175{
99dcc3e5 5176 struct zone *zone;
e7c8d5c9 5177
319774e2
WF
5178 for_each_populated_zone(zone)
5179 setup_zone_pageset(zone);
e7c8d5c9
CL
5180}
5181
577a32f6 5182static noinline __init_refok
cca448fe 5183int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5184{
5185 int i;
cca448fe 5186 size_t alloc_size;
ed8ece2e
DH
5187
5188 /*
5189 * The per-page waitqueue mechanism uses hashed waitqueues
5190 * per zone.
5191 */
02b694de
YG
5192 zone->wait_table_hash_nr_entries =
5193 wait_table_hash_nr_entries(zone_size_pages);
5194 zone->wait_table_bits =
5195 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5196 alloc_size = zone->wait_table_hash_nr_entries
5197 * sizeof(wait_queue_head_t);
5198
cd94b9db 5199 if (!slab_is_available()) {
cca448fe 5200 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5201 memblock_virt_alloc_node_nopanic(
5202 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5203 } else {
5204 /*
5205 * This case means that a zone whose size was 0 gets new memory
5206 * via memory hot-add.
5207 * But it may be the case that a new node was hot-added. In
5208 * this case vmalloc() will not be able to use this new node's
5209 * memory - this wait_table must be initialized to use this new
5210 * node itself as well.
5211 * To use this new node's memory, further consideration will be
5212 * necessary.
5213 */
8691f3a7 5214 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5215 }
5216 if (!zone->wait_table)
5217 return -ENOMEM;
ed8ece2e 5218
b8af2941 5219 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5220 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5221
5222 return 0;
ed8ece2e
DH
5223}
5224
c09b4240 5225static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5226{
99dcc3e5
CL
5227 /*
5228 * per cpu subsystem is not up at this point. The following code
5229 * relies on the ability of the linker to provide the
5230 * offset of a (static) per cpu variable into the per cpu area.
5231 */
5232 zone->pageset = &boot_pageset;
ed8ece2e 5233
b38a8725 5234 if (populated_zone(zone))
99dcc3e5
CL
5235 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5236 zone->name, zone->present_pages,
5237 zone_batchsize(zone));
ed8ece2e
DH
5238}
5239
4ed7e022 5240int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5241 unsigned long zone_start_pfn,
b171e409 5242 unsigned long size)
ed8ece2e
DH
5243{
5244 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5245 int ret;
5246 ret = zone_wait_table_init(zone, size);
5247 if (ret)
5248 return ret;
ed8ece2e
DH
5249 pgdat->nr_zones = zone_idx(zone) + 1;
5250
ed8ece2e
DH
5251 zone->zone_start_pfn = zone_start_pfn;
5252
708614e6
MG
5253 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5254 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5255 pgdat->node_id,
5256 (unsigned long)zone_idx(zone),
5257 zone_start_pfn, (zone_start_pfn + size));
5258
1e548deb 5259 zone_init_free_lists(zone);
718127cc
YG
5260
5261 return 0;
ed8ece2e
DH
5262}
5263
0ee332c1 5264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5265#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5266
c713216d
MG
5267/*
5268 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5269 */
8a942fde
MG
5270int __meminit __early_pfn_to_nid(unsigned long pfn,
5271 struct mminit_pfnnid_cache *state)
c713216d 5272{
c13291a5 5273 unsigned long start_pfn, end_pfn;
e76b63f8 5274 int nid;
7c243c71 5275
8a942fde
MG
5276 if (state->last_start <= pfn && pfn < state->last_end)
5277 return state->last_nid;
c713216d 5278
e76b63f8
YL
5279 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5280 if (nid != -1) {
8a942fde
MG
5281 state->last_start = start_pfn;
5282 state->last_end = end_pfn;
5283 state->last_nid = nid;
e76b63f8
YL
5284 }
5285
5286 return nid;
c713216d
MG
5287}
5288#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5289
c713216d 5290/**
6782832e 5291 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5292 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5293 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5294 *
7d018176
ZZ
5295 * If an architecture guarantees that all ranges registered contain no holes
5296 * and may be freed, this this function may be used instead of calling
5297 * memblock_free_early_nid() manually.
c713216d 5298 */
c13291a5 5299void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5300{
c13291a5
TH
5301 unsigned long start_pfn, end_pfn;
5302 int i, this_nid;
edbe7d23 5303
c13291a5
TH
5304 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5305 start_pfn = min(start_pfn, max_low_pfn);
5306 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5307
c13291a5 5308 if (start_pfn < end_pfn)
6782832e
SS
5309 memblock_free_early_nid(PFN_PHYS(start_pfn),
5310 (end_pfn - start_pfn) << PAGE_SHIFT,
5311 this_nid);
edbe7d23 5312 }
edbe7d23 5313}
edbe7d23 5314
c713216d
MG
5315/**
5316 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5317 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5318 *
7d018176
ZZ
5319 * If an architecture guarantees that all ranges registered contain no holes and may
5320 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5321 */
5322void __init sparse_memory_present_with_active_regions(int nid)
5323{
c13291a5
TH
5324 unsigned long start_pfn, end_pfn;
5325 int i, this_nid;
c713216d 5326
c13291a5
TH
5327 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5328 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5329}
5330
5331/**
5332 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5333 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5334 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5335 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5336 *
5337 * It returns the start and end page frame of a node based on information
7d018176 5338 * provided by memblock_set_node(). If called for a node
c713216d 5339 * with no available memory, a warning is printed and the start and end
88ca3b94 5340 * PFNs will be 0.
c713216d 5341 */
a3142c8e 5342void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5343 unsigned long *start_pfn, unsigned long *end_pfn)
5344{
c13291a5 5345 unsigned long this_start_pfn, this_end_pfn;
c713216d 5346 int i;
c13291a5 5347
c713216d
MG
5348 *start_pfn = -1UL;
5349 *end_pfn = 0;
5350
c13291a5
TH
5351 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5352 *start_pfn = min(*start_pfn, this_start_pfn);
5353 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5354 }
5355
633c0666 5356 if (*start_pfn == -1UL)
c713216d 5357 *start_pfn = 0;
c713216d
MG
5358}
5359
2a1e274a
MG
5360/*
5361 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5362 * assumption is made that zones within a node are ordered in monotonic
5363 * increasing memory addresses so that the "highest" populated zone is used
5364 */
b69a7288 5365static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5366{
5367 int zone_index;
5368 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5369 if (zone_index == ZONE_MOVABLE)
5370 continue;
5371
5372 if (arch_zone_highest_possible_pfn[zone_index] >
5373 arch_zone_lowest_possible_pfn[zone_index])
5374 break;
5375 }
5376
5377 VM_BUG_ON(zone_index == -1);
5378 movable_zone = zone_index;
5379}
5380
5381/*
5382 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5383 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5384 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5385 * in each node depending on the size of each node and how evenly kernelcore
5386 * is distributed. This helper function adjusts the zone ranges
5387 * provided by the architecture for a given node by using the end of the
5388 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5389 * zones within a node are in order of monotonic increases memory addresses
5390 */
b69a7288 5391static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5392 unsigned long zone_type,
5393 unsigned long node_start_pfn,
5394 unsigned long node_end_pfn,
5395 unsigned long *zone_start_pfn,
5396 unsigned long *zone_end_pfn)
5397{
5398 /* Only adjust if ZONE_MOVABLE is on this node */
5399 if (zone_movable_pfn[nid]) {
5400 /* Size ZONE_MOVABLE */
5401 if (zone_type == ZONE_MOVABLE) {
5402 *zone_start_pfn = zone_movable_pfn[nid];
5403 *zone_end_pfn = min(node_end_pfn,
5404 arch_zone_highest_possible_pfn[movable_zone]);
5405
2a1e274a
MG
5406 /* Check if this whole range is within ZONE_MOVABLE */
5407 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5408 *zone_start_pfn = *zone_end_pfn;
5409 }
5410}
5411
c713216d
MG
5412/*
5413 * Return the number of pages a zone spans in a node, including holes
5414 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5415 */
6ea6e688 5416static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5417 unsigned long zone_type,
7960aedd
ZY
5418 unsigned long node_start_pfn,
5419 unsigned long node_end_pfn,
d91749c1
TI
5420 unsigned long *zone_start_pfn,
5421 unsigned long *zone_end_pfn,
c713216d
MG
5422 unsigned long *ignored)
5423{
b5685e92 5424 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5425 if (!node_start_pfn && !node_end_pfn)
5426 return 0;
5427
7960aedd 5428 /* Get the start and end of the zone */
d91749c1
TI
5429 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5430 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5431 adjust_zone_range_for_zone_movable(nid, zone_type,
5432 node_start_pfn, node_end_pfn,
d91749c1 5433 zone_start_pfn, zone_end_pfn);
c713216d
MG
5434
5435 /* Check that this node has pages within the zone's required range */
d91749c1 5436 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5437 return 0;
5438
5439 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5440 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5441 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5442
5443 /* Return the spanned pages */
d91749c1 5444 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5445}
5446
5447/*
5448 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5449 * then all holes in the requested range will be accounted for.
c713216d 5450 */
32996250 5451unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5452 unsigned long range_start_pfn,
5453 unsigned long range_end_pfn)
5454{
96e907d1
TH
5455 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5456 unsigned long start_pfn, end_pfn;
5457 int i;
c713216d 5458
96e907d1
TH
5459 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5460 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5461 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5462 nr_absent -= end_pfn - start_pfn;
c713216d 5463 }
96e907d1 5464 return nr_absent;
c713216d
MG
5465}
5466
5467/**
5468 * absent_pages_in_range - Return number of page frames in holes within a range
5469 * @start_pfn: The start PFN to start searching for holes
5470 * @end_pfn: The end PFN to stop searching for holes
5471 *
88ca3b94 5472 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5473 */
5474unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5475 unsigned long end_pfn)
5476{
5477 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5478}
5479
5480/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5481static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5482 unsigned long zone_type,
7960aedd
ZY
5483 unsigned long node_start_pfn,
5484 unsigned long node_end_pfn,
c713216d
MG
5485 unsigned long *ignored)
5486{
96e907d1
TH
5487 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5488 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5489 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5490 unsigned long nr_absent;
9c7cd687 5491
b5685e92 5492 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5493 if (!node_start_pfn && !node_end_pfn)
5494 return 0;
5495
96e907d1
TH
5496 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5497 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5498
2a1e274a
MG
5499 adjust_zone_range_for_zone_movable(nid, zone_type,
5500 node_start_pfn, node_end_pfn,
5501 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5502 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5503
5504 /*
5505 * ZONE_MOVABLE handling.
5506 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5507 * and vice versa.
5508 */
5509 if (zone_movable_pfn[nid]) {
5510 if (mirrored_kernelcore) {
5511 unsigned long start_pfn, end_pfn;
5512 struct memblock_region *r;
5513
5514 for_each_memblock(memory, r) {
5515 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5516 zone_start_pfn, zone_end_pfn);
5517 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5518 zone_start_pfn, zone_end_pfn);
5519
5520 if (zone_type == ZONE_MOVABLE &&
5521 memblock_is_mirror(r))
5522 nr_absent += end_pfn - start_pfn;
5523
5524 if (zone_type == ZONE_NORMAL &&
5525 !memblock_is_mirror(r))
5526 nr_absent += end_pfn - start_pfn;
5527 }
5528 } else {
5529 if (zone_type == ZONE_NORMAL)
5530 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5531 }
5532 }
5533
5534 return nr_absent;
c713216d 5535}
0e0b864e 5536
0ee332c1 5537#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5538static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5539 unsigned long zone_type,
7960aedd
ZY
5540 unsigned long node_start_pfn,
5541 unsigned long node_end_pfn,
d91749c1
TI
5542 unsigned long *zone_start_pfn,
5543 unsigned long *zone_end_pfn,
c713216d
MG
5544 unsigned long *zones_size)
5545{
d91749c1
TI
5546 unsigned int zone;
5547
5548 *zone_start_pfn = node_start_pfn;
5549 for (zone = 0; zone < zone_type; zone++)
5550 *zone_start_pfn += zones_size[zone];
5551
5552 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5553
c713216d
MG
5554 return zones_size[zone_type];
5555}
5556
6ea6e688 5557static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5558 unsigned long zone_type,
7960aedd
ZY
5559 unsigned long node_start_pfn,
5560 unsigned long node_end_pfn,
c713216d
MG
5561 unsigned long *zholes_size)
5562{
5563 if (!zholes_size)
5564 return 0;
5565
5566 return zholes_size[zone_type];
5567}
20e6926d 5568
0ee332c1 5569#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5570
a3142c8e 5571static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5572 unsigned long node_start_pfn,
5573 unsigned long node_end_pfn,
5574 unsigned long *zones_size,
5575 unsigned long *zholes_size)
c713216d 5576{
febd5949 5577 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5578 enum zone_type i;
5579
febd5949
GZ
5580 for (i = 0; i < MAX_NR_ZONES; i++) {
5581 struct zone *zone = pgdat->node_zones + i;
d91749c1 5582 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5583 unsigned long size, real_size;
c713216d 5584
febd5949
GZ
5585 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5586 node_start_pfn,
5587 node_end_pfn,
d91749c1
TI
5588 &zone_start_pfn,
5589 &zone_end_pfn,
febd5949
GZ
5590 zones_size);
5591 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5592 node_start_pfn, node_end_pfn,
5593 zholes_size);
d91749c1
TI
5594 if (size)
5595 zone->zone_start_pfn = zone_start_pfn;
5596 else
5597 zone->zone_start_pfn = 0;
febd5949
GZ
5598 zone->spanned_pages = size;
5599 zone->present_pages = real_size;
5600
5601 totalpages += size;
5602 realtotalpages += real_size;
5603 }
5604
5605 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5606 pgdat->node_present_pages = realtotalpages;
5607 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5608 realtotalpages);
5609}
5610
835c134e
MG
5611#ifndef CONFIG_SPARSEMEM
5612/*
5613 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5614 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5615 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5616 * round what is now in bits to nearest long in bits, then return it in
5617 * bytes.
5618 */
7c45512d 5619static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5620{
5621 unsigned long usemapsize;
5622
7c45512d 5623 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5624 usemapsize = roundup(zonesize, pageblock_nr_pages);
5625 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5626 usemapsize *= NR_PAGEBLOCK_BITS;
5627 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5628
5629 return usemapsize / 8;
5630}
5631
5632static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5633 struct zone *zone,
5634 unsigned long zone_start_pfn,
5635 unsigned long zonesize)
835c134e 5636{
7c45512d 5637 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5638 zone->pageblock_flags = NULL;
58a01a45 5639 if (usemapsize)
6782832e
SS
5640 zone->pageblock_flags =
5641 memblock_virt_alloc_node_nopanic(usemapsize,
5642 pgdat->node_id);
835c134e
MG
5643}
5644#else
7c45512d
LT
5645static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5646 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5647#endif /* CONFIG_SPARSEMEM */
5648
d9c23400 5649#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5650
d9c23400 5651/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5652void __paginginit set_pageblock_order(void)
d9c23400 5653{
955c1cd7
AM
5654 unsigned int order;
5655
d9c23400
MG
5656 /* Check that pageblock_nr_pages has not already been setup */
5657 if (pageblock_order)
5658 return;
5659
955c1cd7
AM
5660 if (HPAGE_SHIFT > PAGE_SHIFT)
5661 order = HUGETLB_PAGE_ORDER;
5662 else
5663 order = MAX_ORDER - 1;
5664
d9c23400
MG
5665 /*
5666 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5667 * This value may be variable depending on boot parameters on IA64 and
5668 * powerpc.
d9c23400
MG
5669 */
5670 pageblock_order = order;
5671}
5672#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5673
ba72cb8c
MG
5674/*
5675 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5676 * is unused as pageblock_order is set at compile-time. See
5677 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5678 * the kernel config
ba72cb8c 5679 */
15ca220e 5680void __paginginit set_pageblock_order(void)
ba72cb8c 5681{
ba72cb8c 5682}
d9c23400
MG
5683
5684#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5685
01cefaef
JL
5686static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5687 unsigned long present_pages)
5688{
5689 unsigned long pages = spanned_pages;
5690
5691 /*
5692 * Provide a more accurate estimation if there are holes within
5693 * the zone and SPARSEMEM is in use. If there are holes within the
5694 * zone, each populated memory region may cost us one or two extra
5695 * memmap pages due to alignment because memmap pages for each
5696 * populated regions may not naturally algined on page boundary.
5697 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5698 */
5699 if (spanned_pages > present_pages + (present_pages >> 4) &&
5700 IS_ENABLED(CONFIG_SPARSEMEM))
5701 pages = present_pages;
5702
5703 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5704}
5705
1da177e4
LT
5706/*
5707 * Set up the zone data structures:
5708 * - mark all pages reserved
5709 * - mark all memory queues empty
5710 * - clear the memory bitmaps
6527af5d
MK
5711 *
5712 * NOTE: pgdat should get zeroed by caller.
1da177e4 5713 */
7f3eb55b 5714static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5715{
2f1b6248 5716 enum zone_type j;
ed8ece2e 5717 int nid = pgdat->node_id;
718127cc 5718 int ret;
1da177e4 5719
208d54e5 5720 pgdat_resize_init(pgdat);
8177a420
AA
5721#ifdef CONFIG_NUMA_BALANCING
5722 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5723 pgdat->numabalancing_migrate_nr_pages = 0;
5724 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5725#endif
5726#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5727 spin_lock_init(&pgdat->split_queue_lock);
5728 INIT_LIST_HEAD(&pgdat->split_queue);
5729 pgdat->split_queue_len = 0;
8177a420 5730#endif
1da177e4 5731 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5732 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5733#ifdef CONFIG_COMPACTION
5734 init_waitqueue_head(&pgdat->kcompactd_wait);
5735#endif
eefa864b 5736 pgdat_page_ext_init(pgdat);
5f63b720 5737
1da177e4
LT
5738 for (j = 0; j < MAX_NR_ZONES; j++) {
5739 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5740 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5741 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5742
febd5949
GZ
5743 size = zone->spanned_pages;
5744 realsize = freesize = zone->present_pages;
1da177e4 5745
0e0b864e 5746 /*
9feedc9d 5747 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5748 * is used by this zone for memmap. This affects the watermark
5749 * and per-cpu initialisations
5750 */
01cefaef 5751 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5752 if (!is_highmem_idx(j)) {
5753 if (freesize >= memmap_pages) {
5754 freesize -= memmap_pages;
5755 if (memmap_pages)
5756 printk(KERN_DEBUG
5757 " %s zone: %lu pages used for memmap\n",
5758 zone_names[j], memmap_pages);
5759 } else
1170532b 5760 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5761 zone_names[j], memmap_pages, freesize);
5762 }
0e0b864e 5763
6267276f 5764 /* Account for reserved pages */
9feedc9d
JL
5765 if (j == 0 && freesize > dma_reserve) {
5766 freesize -= dma_reserve;
d903ef9f 5767 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5768 zone_names[0], dma_reserve);
0e0b864e
MG
5769 }
5770
98d2b0eb 5771 if (!is_highmem_idx(j))
9feedc9d 5772 nr_kernel_pages += freesize;
01cefaef
JL
5773 /* Charge for highmem memmap if there are enough kernel pages */
5774 else if (nr_kernel_pages > memmap_pages * 2)
5775 nr_kernel_pages -= memmap_pages;
9feedc9d 5776 nr_all_pages += freesize;
1da177e4 5777
9feedc9d
JL
5778 /*
5779 * Set an approximate value for lowmem here, it will be adjusted
5780 * when the bootmem allocator frees pages into the buddy system.
5781 * And all highmem pages will be managed by the buddy system.
5782 */
5783 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5784#ifdef CONFIG_NUMA
d5f541ed 5785 zone->node = nid;
9feedc9d 5786 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5787 / 100;
9feedc9d 5788 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5789#endif
1da177e4
LT
5790 zone->name = zone_names[j];
5791 spin_lock_init(&zone->lock);
5792 spin_lock_init(&zone->lru_lock);
bdc8cb98 5793 zone_seqlock_init(zone);
1da177e4 5794 zone->zone_pgdat = pgdat;
ed8ece2e 5795 zone_pcp_init(zone);
81c0a2bb
JW
5796
5797 /* For bootup, initialized properly in watermark setup */
5798 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5799
bea8c150 5800 lruvec_init(&zone->lruvec);
1da177e4
LT
5801 if (!size)
5802 continue;
5803
955c1cd7 5804 set_pageblock_order();
7c45512d 5805 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5806 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5807 BUG_ON(ret);
76cdd58e 5808 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5809 }
5810}
5811
577a32f6 5812static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5813{
b0aeba74 5814 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5815 unsigned long __maybe_unused offset = 0;
5816
1da177e4
LT
5817 /* Skip empty nodes */
5818 if (!pgdat->node_spanned_pages)
5819 return;
5820
d41dee36 5821#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5822 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5823 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5824 /* ia64 gets its own node_mem_map, before this, without bootmem */
5825 if (!pgdat->node_mem_map) {
b0aeba74 5826 unsigned long size, end;
d41dee36
AW
5827 struct page *map;
5828
e984bb43
BP
5829 /*
5830 * The zone's endpoints aren't required to be MAX_ORDER
5831 * aligned but the node_mem_map endpoints must be in order
5832 * for the buddy allocator to function correctly.
5833 */
108bcc96 5834 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5835 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5836 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5837 map = alloc_remap(pgdat->node_id, size);
5838 if (!map)
6782832e
SS
5839 map = memblock_virt_alloc_node_nopanic(size,
5840 pgdat->node_id);
a1c34a3b 5841 pgdat->node_mem_map = map + offset;
1da177e4 5842 }
12d810c1 5843#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5844 /*
5845 * With no DISCONTIG, the global mem_map is just set as node 0's
5846 */
c713216d 5847 if (pgdat == NODE_DATA(0)) {
1da177e4 5848 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5849#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5850 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5851 mem_map -= offset;
0ee332c1 5852#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5853 }
1da177e4 5854#endif
d41dee36 5855#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5856}
5857
9109fb7b
JW
5858void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5859 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5860{
9109fb7b 5861 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5862 unsigned long start_pfn = 0;
5863 unsigned long end_pfn = 0;
9109fb7b 5864
88fdf75d 5865 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5866 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5867
3a80a7fa 5868 reset_deferred_meminit(pgdat);
1da177e4
LT
5869 pgdat->node_id = nid;
5870 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5871#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5872 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5873 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5874 (u64)start_pfn << PAGE_SHIFT,
5875 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5876#else
5877 start_pfn = node_start_pfn;
7960aedd
ZY
5878#endif
5879 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5880 zones_size, zholes_size);
1da177e4
LT
5881
5882 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5883#ifdef CONFIG_FLAT_NODE_MEM_MAP
5884 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5885 nid, (unsigned long)pgdat,
5886 (unsigned long)pgdat->node_mem_map);
5887#endif
1da177e4 5888
7f3eb55b 5889 free_area_init_core(pgdat);
1da177e4
LT
5890}
5891
0ee332c1 5892#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5893
5894#if MAX_NUMNODES > 1
5895/*
5896 * Figure out the number of possible node ids.
5897 */
f9872caf 5898void __init setup_nr_node_ids(void)
418508c1 5899{
904a9553 5900 unsigned int highest;
418508c1 5901
904a9553 5902 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5903 nr_node_ids = highest + 1;
5904}
418508c1
MS
5905#endif
5906
1e01979c
TH
5907/**
5908 * node_map_pfn_alignment - determine the maximum internode alignment
5909 *
5910 * This function should be called after node map is populated and sorted.
5911 * It calculates the maximum power of two alignment which can distinguish
5912 * all the nodes.
5913 *
5914 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5915 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5916 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5917 * shifted, 1GiB is enough and this function will indicate so.
5918 *
5919 * This is used to test whether pfn -> nid mapping of the chosen memory
5920 * model has fine enough granularity to avoid incorrect mapping for the
5921 * populated node map.
5922 *
5923 * Returns the determined alignment in pfn's. 0 if there is no alignment
5924 * requirement (single node).
5925 */
5926unsigned long __init node_map_pfn_alignment(void)
5927{
5928 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5929 unsigned long start, end, mask;
1e01979c 5930 int last_nid = -1;
c13291a5 5931 int i, nid;
1e01979c 5932
c13291a5 5933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5934 if (!start || last_nid < 0 || last_nid == nid) {
5935 last_nid = nid;
5936 last_end = end;
5937 continue;
5938 }
5939
5940 /*
5941 * Start with a mask granular enough to pin-point to the
5942 * start pfn and tick off bits one-by-one until it becomes
5943 * too coarse to separate the current node from the last.
5944 */
5945 mask = ~((1 << __ffs(start)) - 1);
5946 while (mask && last_end <= (start & (mask << 1)))
5947 mask <<= 1;
5948
5949 /* accumulate all internode masks */
5950 accl_mask |= mask;
5951 }
5952
5953 /* convert mask to number of pages */
5954 return ~accl_mask + 1;
5955}
5956
a6af2bc3 5957/* Find the lowest pfn for a node */
b69a7288 5958static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5959{
a6af2bc3 5960 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5961 unsigned long start_pfn;
5962 int i;
1abbfb41 5963
c13291a5
TH
5964 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5965 min_pfn = min(min_pfn, start_pfn);
c713216d 5966
a6af2bc3 5967 if (min_pfn == ULONG_MAX) {
1170532b 5968 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5969 return 0;
5970 }
5971
5972 return min_pfn;
c713216d
MG
5973}
5974
5975/**
5976 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5977 *
5978 * It returns the minimum PFN based on information provided via
7d018176 5979 * memblock_set_node().
c713216d
MG
5980 */
5981unsigned long __init find_min_pfn_with_active_regions(void)
5982{
5983 return find_min_pfn_for_node(MAX_NUMNODES);
5984}
5985
37b07e41
LS
5986/*
5987 * early_calculate_totalpages()
5988 * Sum pages in active regions for movable zone.
4b0ef1fe 5989 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5990 */
484f51f8 5991static unsigned long __init early_calculate_totalpages(void)
7e63efef 5992{
7e63efef 5993 unsigned long totalpages = 0;
c13291a5
TH
5994 unsigned long start_pfn, end_pfn;
5995 int i, nid;
5996
5997 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5998 unsigned long pages = end_pfn - start_pfn;
7e63efef 5999
37b07e41
LS
6000 totalpages += pages;
6001 if (pages)
4b0ef1fe 6002 node_set_state(nid, N_MEMORY);
37b07e41 6003 }
b8af2941 6004 return totalpages;
7e63efef
MG
6005}
6006
2a1e274a
MG
6007/*
6008 * Find the PFN the Movable zone begins in each node. Kernel memory
6009 * is spread evenly between nodes as long as the nodes have enough
6010 * memory. When they don't, some nodes will have more kernelcore than
6011 * others
6012 */
b224ef85 6013static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6014{
6015 int i, nid;
6016 unsigned long usable_startpfn;
6017 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6018 /* save the state before borrow the nodemask */
4b0ef1fe 6019 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6020 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6021 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6022 struct memblock_region *r;
b2f3eebe
TC
6023
6024 /* Need to find movable_zone earlier when movable_node is specified. */
6025 find_usable_zone_for_movable();
6026
6027 /*
6028 * If movable_node is specified, ignore kernelcore and movablecore
6029 * options.
6030 */
6031 if (movable_node_is_enabled()) {
136199f0
EM
6032 for_each_memblock(memory, r) {
6033 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6034 continue;
6035
136199f0 6036 nid = r->nid;
b2f3eebe 6037
136199f0 6038 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6039 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6040 min(usable_startpfn, zone_movable_pfn[nid]) :
6041 usable_startpfn;
6042 }
6043
6044 goto out2;
6045 }
2a1e274a 6046
342332e6
TI
6047 /*
6048 * If kernelcore=mirror is specified, ignore movablecore option
6049 */
6050 if (mirrored_kernelcore) {
6051 bool mem_below_4gb_not_mirrored = false;
6052
6053 for_each_memblock(memory, r) {
6054 if (memblock_is_mirror(r))
6055 continue;
6056
6057 nid = r->nid;
6058
6059 usable_startpfn = memblock_region_memory_base_pfn(r);
6060
6061 if (usable_startpfn < 0x100000) {
6062 mem_below_4gb_not_mirrored = true;
6063 continue;
6064 }
6065
6066 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6067 min(usable_startpfn, zone_movable_pfn[nid]) :
6068 usable_startpfn;
6069 }
6070
6071 if (mem_below_4gb_not_mirrored)
6072 pr_warn("This configuration results in unmirrored kernel memory.");
6073
6074 goto out2;
6075 }
6076
7e63efef 6077 /*
b2f3eebe 6078 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6079 * kernelcore that corresponds so that memory usable for
6080 * any allocation type is evenly spread. If both kernelcore
6081 * and movablecore are specified, then the value of kernelcore
6082 * will be used for required_kernelcore if it's greater than
6083 * what movablecore would have allowed.
6084 */
6085 if (required_movablecore) {
7e63efef
MG
6086 unsigned long corepages;
6087
6088 /*
6089 * Round-up so that ZONE_MOVABLE is at least as large as what
6090 * was requested by the user
6091 */
6092 required_movablecore =
6093 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6094 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6095 corepages = totalpages - required_movablecore;
6096
6097 required_kernelcore = max(required_kernelcore, corepages);
6098 }
6099
bde304bd
XQ
6100 /*
6101 * If kernelcore was not specified or kernelcore size is larger
6102 * than totalpages, there is no ZONE_MOVABLE.
6103 */
6104 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6105 goto out;
2a1e274a
MG
6106
6107 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6108 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6109
6110restart:
6111 /* Spread kernelcore memory as evenly as possible throughout nodes */
6112 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6113 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6114 unsigned long start_pfn, end_pfn;
6115
2a1e274a
MG
6116 /*
6117 * Recalculate kernelcore_node if the division per node
6118 * now exceeds what is necessary to satisfy the requested
6119 * amount of memory for the kernel
6120 */
6121 if (required_kernelcore < kernelcore_node)
6122 kernelcore_node = required_kernelcore / usable_nodes;
6123
6124 /*
6125 * As the map is walked, we track how much memory is usable
6126 * by the kernel using kernelcore_remaining. When it is
6127 * 0, the rest of the node is usable by ZONE_MOVABLE
6128 */
6129 kernelcore_remaining = kernelcore_node;
6130
6131 /* Go through each range of PFNs within this node */
c13291a5 6132 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6133 unsigned long size_pages;
6134
c13291a5 6135 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6136 if (start_pfn >= end_pfn)
6137 continue;
6138
6139 /* Account for what is only usable for kernelcore */
6140 if (start_pfn < usable_startpfn) {
6141 unsigned long kernel_pages;
6142 kernel_pages = min(end_pfn, usable_startpfn)
6143 - start_pfn;
6144
6145 kernelcore_remaining -= min(kernel_pages,
6146 kernelcore_remaining);
6147 required_kernelcore -= min(kernel_pages,
6148 required_kernelcore);
6149
6150 /* Continue if range is now fully accounted */
6151 if (end_pfn <= usable_startpfn) {
6152
6153 /*
6154 * Push zone_movable_pfn to the end so
6155 * that if we have to rebalance
6156 * kernelcore across nodes, we will
6157 * not double account here
6158 */
6159 zone_movable_pfn[nid] = end_pfn;
6160 continue;
6161 }
6162 start_pfn = usable_startpfn;
6163 }
6164
6165 /*
6166 * The usable PFN range for ZONE_MOVABLE is from
6167 * start_pfn->end_pfn. Calculate size_pages as the
6168 * number of pages used as kernelcore
6169 */
6170 size_pages = end_pfn - start_pfn;
6171 if (size_pages > kernelcore_remaining)
6172 size_pages = kernelcore_remaining;
6173 zone_movable_pfn[nid] = start_pfn + size_pages;
6174
6175 /*
6176 * Some kernelcore has been met, update counts and
6177 * break if the kernelcore for this node has been
b8af2941 6178 * satisfied
2a1e274a
MG
6179 */
6180 required_kernelcore -= min(required_kernelcore,
6181 size_pages);
6182 kernelcore_remaining -= size_pages;
6183 if (!kernelcore_remaining)
6184 break;
6185 }
6186 }
6187
6188 /*
6189 * If there is still required_kernelcore, we do another pass with one
6190 * less node in the count. This will push zone_movable_pfn[nid] further
6191 * along on the nodes that still have memory until kernelcore is
b8af2941 6192 * satisfied
2a1e274a
MG
6193 */
6194 usable_nodes--;
6195 if (usable_nodes && required_kernelcore > usable_nodes)
6196 goto restart;
6197
b2f3eebe 6198out2:
2a1e274a
MG
6199 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6200 for (nid = 0; nid < MAX_NUMNODES; nid++)
6201 zone_movable_pfn[nid] =
6202 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6203
20e6926d 6204out:
66918dcd 6205 /* restore the node_state */
4b0ef1fe 6206 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6207}
6208
4b0ef1fe
LJ
6209/* Any regular or high memory on that node ? */
6210static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6211{
37b07e41
LS
6212 enum zone_type zone_type;
6213
4b0ef1fe
LJ
6214 if (N_MEMORY == N_NORMAL_MEMORY)
6215 return;
6216
6217 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6218 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6219 if (populated_zone(zone)) {
4b0ef1fe
LJ
6220 node_set_state(nid, N_HIGH_MEMORY);
6221 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6222 zone_type <= ZONE_NORMAL)
6223 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6224 break;
6225 }
37b07e41 6226 }
37b07e41
LS
6227}
6228
c713216d
MG
6229/**
6230 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6231 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6232 *
6233 * This will call free_area_init_node() for each active node in the system.
7d018176 6234 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6235 * zone in each node and their holes is calculated. If the maximum PFN
6236 * between two adjacent zones match, it is assumed that the zone is empty.
6237 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6238 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6239 * starts where the previous one ended. For example, ZONE_DMA32 starts
6240 * at arch_max_dma_pfn.
6241 */
6242void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6243{
c13291a5
TH
6244 unsigned long start_pfn, end_pfn;
6245 int i, nid;
a6af2bc3 6246
c713216d
MG
6247 /* Record where the zone boundaries are */
6248 memset(arch_zone_lowest_possible_pfn, 0,
6249 sizeof(arch_zone_lowest_possible_pfn));
6250 memset(arch_zone_highest_possible_pfn, 0,
6251 sizeof(arch_zone_highest_possible_pfn));
6252 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6253 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6254 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6255 if (i == ZONE_MOVABLE)
6256 continue;
c713216d
MG
6257 arch_zone_lowest_possible_pfn[i] =
6258 arch_zone_highest_possible_pfn[i-1];
6259 arch_zone_highest_possible_pfn[i] =
6260 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6261 }
2a1e274a
MG
6262 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6263 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6264
6265 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6266 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6267 find_zone_movable_pfns_for_nodes();
c713216d 6268
c713216d 6269 /* Print out the zone ranges */
f88dfff5 6270 pr_info("Zone ranges:\n");
2a1e274a
MG
6271 for (i = 0; i < MAX_NR_ZONES; i++) {
6272 if (i == ZONE_MOVABLE)
6273 continue;
f88dfff5 6274 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6275 if (arch_zone_lowest_possible_pfn[i] ==
6276 arch_zone_highest_possible_pfn[i])
f88dfff5 6277 pr_cont("empty\n");
72f0ba02 6278 else
8d29e18a
JG
6279 pr_cont("[mem %#018Lx-%#018Lx]\n",
6280 (u64)arch_zone_lowest_possible_pfn[i]
6281 << PAGE_SHIFT,
6282 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6283 << PAGE_SHIFT) - 1);
2a1e274a
MG
6284 }
6285
6286 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6287 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6288 for (i = 0; i < MAX_NUMNODES; i++) {
6289 if (zone_movable_pfn[i])
8d29e18a
JG
6290 pr_info(" Node %d: %#018Lx\n", i,
6291 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6292 }
c713216d 6293
f2d52fe5 6294 /* Print out the early node map */
f88dfff5 6295 pr_info("Early memory node ranges\n");
c13291a5 6296 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6297 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6298 (u64)start_pfn << PAGE_SHIFT,
6299 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6300
6301 /* Initialise every node */
708614e6 6302 mminit_verify_pageflags_layout();
8ef82866 6303 setup_nr_node_ids();
c713216d
MG
6304 for_each_online_node(nid) {
6305 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6306 free_area_init_node(nid, NULL,
c713216d 6307 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6308
6309 /* Any memory on that node */
6310 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6311 node_set_state(nid, N_MEMORY);
6312 check_for_memory(pgdat, nid);
c713216d
MG
6313 }
6314}
2a1e274a 6315
7e63efef 6316static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6317{
6318 unsigned long long coremem;
6319 if (!p)
6320 return -EINVAL;
6321
6322 coremem = memparse(p, &p);
7e63efef 6323 *core = coremem >> PAGE_SHIFT;
2a1e274a 6324
7e63efef 6325 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6326 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6327
6328 return 0;
6329}
ed7ed365 6330
7e63efef
MG
6331/*
6332 * kernelcore=size sets the amount of memory for use for allocations that
6333 * cannot be reclaimed or migrated.
6334 */
6335static int __init cmdline_parse_kernelcore(char *p)
6336{
342332e6
TI
6337 /* parse kernelcore=mirror */
6338 if (parse_option_str(p, "mirror")) {
6339 mirrored_kernelcore = true;
6340 return 0;
6341 }
6342
7e63efef
MG
6343 return cmdline_parse_core(p, &required_kernelcore);
6344}
6345
6346/*
6347 * movablecore=size sets the amount of memory for use for allocations that
6348 * can be reclaimed or migrated.
6349 */
6350static int __init cmdline_parse_movablecore(char *p)
6351{
6352 return cmdline_parse_core(p, &required_movablecore);
6353}
6354
ed7ed365 6355early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6356early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6357
0ee332c1 6358#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6359
c3d5f5f0
JL
6360void adjust_managed_page_count(struct page *page, long count)
6361{
6362 spin_lock(&managed_page_count_lock);
6363 page_zone(page)->managed_pages += count;
6364 totalram_pages += count;
3dcc0571
JL
6365#ifdef CONFIG_HIGHMEM
6366 if (PageHighMem(page))
6367 totalhigh_pages += count;
6368#endif
c3d5f5f0
JL
6369 spin_unlock(&managed_page_count_lock);
6370}
3dcc0571 6371EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6372
11199692 6373unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6374{
11199692
JL
6375 void *pos;
6376 unsigned long pages = 0;
69afade7 6377
11199692
JL
6378 start = (void *)PAGE_ALIGN((unsigned long)start);
6379 end = (void *)((unsigned long)end & PAGE_MASK);
6380 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6381 if ((unsigned int)poison <= 0xFF)
11199692
JL
6382 memset(pos, poison, PAGE_SIZE);
6383 free_reserved_page(virt_to_page(pos));
69afade7
JL
6384 }
6385
6386 if (pages && s)
11199692 6387 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6388 s, pages << (PAGE_SHIFT - 10), start, end);
6389
6390 return pages;
6391}
11199692 6392EXPORT_SYMBOL(free_reserved_area);
69afade7 6393
cfa11e08
JL
6394#ifdef CONFIG_HIGHMEM
6395void free_highmem_page(struct page *page)
6396{
6397 __free_reserved_page(page);
6398 totalram_pages++;
7b4b2a0d 6399 page_zone(page)->managed_pages++;
cfa11e08
JL
6400 totalhigh_pages++;
6401}
6402#endif
6403
7ee3d4e8
JL
6404
6405void __init mem_init_print_info(const char *str)
6406{
6407 unsigned long physpages, codesize, datasize, rosize, bss_size;
6408 unsigned long init_code_size, init_data_size;
6409
6410 physpages = get_num_physpages();
6411 codesize = _etext - _stext;
6412 datasize = _edata - _sdata;
6413 rosize = __end_rodata - __start_rodata;
6414 bss_size = __bss_stop - __bss_start;
6415 init_data_size = __init_end - __init_begin;
6416 init_code_size = _einittext - _sinittext;
6417
6418 /*
6419 * Detect special cases and adjust section sizes accordingly:
6420 * 1) .init.* may be embedded into .data sections
6421 * 2) .init.text.* may be out of [__init_begin, __init_end],
6422 * please refer to arch/tile/kernel/vmlinux.lds.S.
6423 * 3) .rodata.* may be embedded into .text or .data sections.
6424 */
6425#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6426 do { \
6427 if (start <= pos && pos < end && size > adj) \
6428 size -= adj; \
6429 } while (0)
7ee3d4e8
JL
6430
6431 adj_init_size(__init_begin, __init_end, init_data_size,
6432 _sinittext, init_code_size);
6433 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6434 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6435 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6436 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6437
6438#undef adj_init_size
6439
756a025f 6440 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6441#ifdef CONFIG_HIGHMEM
756a025f 6442 ", %luK highmem"
7ee3d4e8 6443#endif
756a025f
JP
6444 "%s%s)\n",
6445 nr_free_pages() << (PAGE_SHIFT - 10),
6446 physpages << (PAGE_SHIFT - 10),
6447 codesize >> 10, datasize >> 10, rosize >> 10,
6448 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6449 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6450 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6451#ifdef CONFIG_HIGHMEM
756a025f 6452 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6453#endif
756a025f 6454 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6455}
6456
0e0b864e 6457/**
88ca3b94
RD
6458 * set_dma_reserve - set the specified number of pages reserved in the first zone
6459 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6460 *
013110a7 6461 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6462 * In the DMA zone, a significant percentage may be consumed by kernel image
6463 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6464 * function may optionally be used to account for unfreeable pages in the
6465 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6466 * smaller per-cpu batchsize.
0e0b864e
MG
6467 */
6468void __init set_dma_reserve(unsigned long new_dma_reserve)
6469{
6470 dma_reserve = new_dma_reserve;
6471}
6472
1da177e4
LT
6473void __init free_area_init(unsigned long *zones_size)
6474{
9109fb7b 6475 free_area_init_node(0, zones_size,
1da177e4
LT
6476 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6477}
1da177e4 6478
1da177e4
LT
6479static int page_alloc_cpu_notify(struct notifier_block *self,
6480 unsigned long action, void *hcpu)
6481{
6482 int cpu = (unsigned long)hcpu;
1da177e4 6483
8bb78442 6484 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6485 lru_add_drain_cpu(cpu);
9f8f2172
CL
6486 drain_pages(cpu);
6487
6488 /*
6489 * Spill the event counters of the dead processor
6490 * into the current processors event counters.
6491 * This artificially elevates the count of the current
6492 * processor.
6493 */
f8891e5e 6494 vm_events_fold_cpu(cpu);
9f8f2172
CL
6495
6496 /*
6497 * Zero the differential counters of the dead processor
6498 * so that the vm statistics are consistent.
6499 *
6500 * This is only okay since the processor is dead and cannot
6501 * race with what we are doing.
6502 */
2bb921e5 6503 cpu_vm_stats_fold(cpu);
1da177e4
LT
6504 }
6505 return NOTIFY_OK;
6506}
1da177e4
LT
6507
6508void __init page_alloc_init(void)
6509{
6510 hotcpu_notifier(page_alloc_cpu_notify, 0);
6511}
6512
cb45b0e9 6513/*
34b10060 6514 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6515 * or min_free_kbytes changes.
6516 */
6517static void calculate_totalreserve_pages(void)
6518{
6519 struct pglist_data *pgdat;
6520 unsigned long reserve_pages = 0;
2f6726e5 6521 enum zone_type i, j;
cb45b0e9
HA
6522
6523 for_each_online_pgdat(pgdat) {
6524 for (i = 0; i < MAX_NR_ZONES; i++) {
6525 struct zone *zone = pgdat->node_zones + i;
3484b2de 6526 long max = 0;
cb45b0e9
HA
6527
6528 /* Find valid and maximum lowmem_reserve in the zone */
6529 for (j = i; j < MAX_NR_ZONES; j++) {
6530 if (zone->lowmem_reserve[j] > max)
6531 max = zone->lowmem_reserve[j];
6532 }
6533
41858966
MG
6534 /* we treat the high watermark as reserved pages. */
6535 max += high_wmark_pages(zone);
cb45b0e9 6536
b40da049
JL
6537 if (max > zone->managed_pages)
6538 max = zone->managed_pages;
a8d01437
JW
6539
6540 zone->totalreserve_pages = max;
6541
cb45b0e9
HA
6542 reserve_pages += max;
6543 }
6544 }
6545 totalreserve_pages = reserve_pages;
6546}
6547
1da177e4
LT
6548/*
6549 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6550 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6551 * has a correct pages reserved value, so an adequate number of
6552 * pages are left in the zone after a successful __alloc_pages().
6553 */
6554static void setup_per_zone_lowmem_reserve(void)
6555{
6556 struct pglist_data *pgdat;
2f6726e5 6557 enum zone_type j, idx;
1da177e4 6558
ec936fc5 6559 for_each_online_pgdat(pgdat) {
1da177e4
LT
6560 for (j = 0; j < MAX_NR_ZONES; j++) {
6561 struct zone *zone = pgdat->node_zones + j;
b40da049 6562 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6563
6564 zone->lowmem_reserve[j] = 0;
6565
2f6726e5
CL
6566 idx = j;
6567 while (idx) {
1da177e4
LT
6568 struct zone *lower_zone;
6569
2f6726e5
CL
6570 idx--;
6571
1da177e4
LT
6572 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6573 sysctl_lowmem_reserve_ratio[idx] = 1;
6574
6575 lower_zone = pgdat->node_zones + idx;
b40da049 6576 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6577 sysctl_lowmem_reserve_ratio[idx];
b40da049 6578 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6579 }
6580 }
6581 }
cb45b0e9
HA
6582
6583 /* update totalreserve_pages */
6584 calculate_totalreserve_pages();
1da177e4
LT
6585}
6586
cfd3da1e 6587static void __setup_per_zone_wmarks(void)
1da177e4
LT
6588{
6589 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6590 unsigned long lowmem_pages = 0;
6591 struct zone *zone;
6592 unsigned long flags;
6593
6594 /* Calculate total number of !ZONE_HIGHMEM pages */
6595 for_each_zone(zone) {
6596 if (!is_highmem(zone))
b40da049 6597 lowmem_pages += zone->managed_pages;
1da177e4
LT
6598 }
6599
6600 for_each_zone(zone) {
ac924c60
AM
6601 u64 tmp;
6602
1125b4e3 6603 spin_lock_irqsave(&zone->lock, flags);
b40da049 6604 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6605 do_div(tmp, lowmem_pages);
1da177e4
LT
6606 if (is_highmem(zone)) {
6607 /*
669ed175
NP
6608 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6609 * need highmem pages, so cap pages_min to a small
6610 * value here.
6611 *
41858966 6612 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6613 * deltas control asynch page reclaim, and so should
669ed175 6614 * not be capped for highmem.
1da177e4 6615 */
90ae8d67 6616 unsigned long min_pages;
1da177e4 6617
b40da049 6618 min_pages = zone->managed_pages / 1024;
90ae8d67 6619 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6620 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6621 } else {
669ed175
NP
6622 /*
6623 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6624 * proportionate to the zone's size.
6625 */
41858966 6626 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6627 }
6628
795ae7a0
JW
6629 /*
6630 * Set the kswapd watermarks distance according to the
6631 * scale factor in proportion to available memory, but
6632 * ensure a minimum size on small systems.
6633 */
6634 tmp = max_t(u64, tmp >> 2,
6635 mult_frac(zone->managed_pages,
6636 watermark_scale_factor, 10000));
6637
6638 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6639 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6640
81c0a2bb 6641 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6642 high_wmark_pages(zone) - low_wmark_pages(zone) -
6643 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6644
1125b4e3 6645 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6646 }
cb45b0e9
HA
6647
6648 /* update totalreserve_pages */
6649 calculate_totalreserve_pages();
1da177e4
LT
6650}
6651
cfd3da1e
MG
6652/**
6653 * setup_per_zone_wmarks - called when min_free_kbytes changes
6654 * or when memory is hot-{added|removed}
6655 *
6656 * Ensures that the watermark[min,low,high] values for each zone are set
6657 * correctly with respect to min_free_kbytes.
6658 */
6659void setup_per_zone_wmarks(void)
6660{
6661 mutex_lock(&zonelists_mutex);
6662 __setup_per_zone_wmarks();
6663 mutex_unlock(&zonelists_mutex);
6664}
6665
55a4462a 6666/*
556adecb
RR
6667 * The inactive anon list should be small enough that the VM never has to
6668 * do too much work, but large enough that each inactive page has a chance
6669 * to be referenced again before it is swapped out.
6670 *
6671 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6672 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6673 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6674 * the anonymous pages are kept on the inactive list.
6675 *
6676 * total target max
6677 * memory ratio inactive anon
6678 * -------------------------------------
6679 * 10MB 1 5MB
6680 * 100MB 1 50MB
6681 * 1GB 3 250MB
6682 * 10GB 10 0.9GB
6683 * 100GB 31 3GB
6684 * 1TB 101 10GB
6685 * 10TB 320 32GB
6686 */
1b79acc9 6687static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6688{
96cb4df5 6689 unsigned int gb, ratio;
556adecb 6690
96cb4df5 6691 /* Zone size in gigabytes */
b40da049 6692 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6693 if (gb)
556adecb 6694 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6695 else
6696 ratio = 1;
556adecb 6697
96cb4df5
MK
6698 zone->inactive_ratio = ratio;
6699}
556adecb 6700
839a4fcc 6701static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6702{
6703 struct zone *zone;
6704
6705 for_each_zone(zone)
6706 calculate_zone_inactive_ratio(zone);
556adecb
RR
6707}
6708
1da177e4
LT
6709/*
6710 * Initialise min_free_kbytes.
6711 *
6712 * For small machines we want it small (128k min). For large machines
6713 * we want it large (64MB max). But it is not linear, because network
6714 * bandwidth does not increase linearly with machine size. We use
6715 *
b8af2941 6716 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6717 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6718 *
6719 * which yields
6720 *
6721 * 16MB: 512k
6722 * 32MB: 724k
6723 * 64MB: 1024k
6724 * 128MB: 1448k
6725 * 256MB: 2048k
6726 * 512MB: 2896k
6727 * 1024MB: 4096k
6728 * 2048MB: 5792k
6729 * 4096MB: 8192k
6730 * 8192MB: 11584k
6731 * 16384MB: 16384k
6732 */
1b79acc9 6733int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6734{
6735 unsigned long lowmem_kbytes;
5f12733e 6736 int new_min_free_kbytes;
1da177e4
LT
6737
6738 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6739 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6740
6741 if (new_min_free_kbytes > user_min_free_kbytes) {
6742 min_free_kbytes = new_min_free_kbytes;
6743 if (min_free_kbytes < 128)
6744 min_free_kbytes = 128;
6745 if (min_free_kbytes > 65536)
6746 min_free_kbytes = 65536;
6747 } else {
6748 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6749 new_min_free_kbytes, user_min_free_kbytes);
6750 }
bc75d33f 6751 setup_per_zone_wmarks();
a6cccdc3 6752 refresh_zone_stat_thresholds();
1da177e4 6753 setup_per_zone_lowmem_reserve();
556adecb 6754 setup_per_zone_inactive_ratio();
1da177e4
LT
6755 return 0;
6756}
bc22af74 6757core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6758
6759/*
b8af2941 6760 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6761 * that we can call two helper functions whenever min_free_kbytes
6762 * changes.
6763 */
cccad5b9 6764int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6765 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6766{
da8c757b
HP
6767 int rc;
6768
6769 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6770 if (rc)
6771 return rc;
6772
5f12733e
MH
6773 if (write) {
6774 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6775 setup_per_zone_wmarks();
5f12733e 6776 }
1da177e4
LT
6777 return 0;
6778}
6779
795ae7a0
JW
6780int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6781 void __user *buffer, size_t *length, loff_t *ppos)
6782{
6783 int rc;
6784
6785 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6786 if (rc)
6787 return rc;
6788
6789 if (write)
6790 setup_per_zone_wmarks();
6791
6792 return 0;
6793}
6794
9614634f 6795#ifdef CONFIG_NUMA
cccad5b9 6796int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6797 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6798{
6799 struct zone *zone;
6800 int rc;
6801
8d65af78 6802 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6803 if (rc)
6804 return rc;
6805
6806 for_each_zone(zone)
b40da049 6807 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6808 sysctl_min_unmapped_ratio) / 100;
6809 return 0;
6810}
0ff38490 6811
cccad5b9 6812int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6813 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6814{
6815 struct zone *zone;
6816 int rc;
6817
8d65af78 6818 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6819 if (rc)
6820 return rc;
6821
6822 for_each_zone(zone)
b40da049 6823 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6824 sysctl_min_slab_ratio) / 100;
6825 return 0;
6826}
9614634f
CL
6827#endif
6828
1da177e4
LT
6829/*
6830 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6831 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6832 * whenever sysctl_lowmem_reserve_ratio changes.
6833 *
6834 * The reserve ratio obviously has absolutely no relation with the
41858966 6835 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6836 * if in function of the boot time zone sizes.
6837 */
cccad5b9 6838int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6839 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6840{
8d65af78 6841 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6842 setup_per_zone_lowmem_reserve();
6843 return 0;
6844}
6845
8ad4b1fb
RS
6846/*
6847 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6848 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6849 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6850 */
cccad5b9 6851int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6852 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6853{
6854 struct zone *zone;
7cd2b0a3 6855 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6856 int ret;
6857
7cd2b0a3
DR
6858 mutex_lock(&pcp_batch_high_lock);
6859 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6860
8d65af78 6861 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6862 if (!write || ret < 0)
6863 goto out;
6864
6865 /* Sanity checking to avoid pcp imbalance */
6866 if (percpu_pagelist_fraction &&
6867 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6868 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6869 ret = -EINVAL;
6870 goto out;
6871 }
6872
6873 /* No change? */
6874 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6875 goto out;
c8e251fa 6876
364df0eb 6877 for_each_populated_zone(zone) {
7cd2b0a3
DR
6878 unsigned int cpu;
6879
22a7f12b 6880 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6881 pageset_set_high_and_batch(zone,
6882 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6883 }
7cd2b0a3 6884out:
c8e251fa 6885 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6886 return ret;
8ad4b1fb
RS
6887}
6888
a9919c79 6889#ifdef CONFIG_NUMA
f034b5d4 6890int hashdist = HASHDIST_DEFAULT;
1da177e4 6891
1da177e4
LT
6892static int __init set_hashdist(char *str)
6893{
6894 if (!str)
6895 return 0;
6896 hashdist = simple_strtoul(str, &str, 0);
6897 return 1;
6898}
6899__setup("hashdist=", set_hashdist);
6900#endif
6901
6902/*
6903 * allocate a large system hash table from bootmem
6904 * - it is assumed that the hash table must contain an exact power-of-2
6905 * quantity of entries
6906 * - limit is the number of hash buckets, not the total allocation size
6907 */
6908void *__init alloc_large_system_hash(const char *tablename,
6909 unsigned long bucketsize,
6910 unsigned long numentries,
6911 int scale,
6912 int flags,
6913 unsigned int *_hash_shift,
6914 unsigned int *_hash_mask,
31fe62b9
TB
6915 unsigned long low_limit,
6916 unsigned long high_limit)
1da177e4 6917{
31fe62b9 6918 unsigned long long max = high_limit;
1da177e4
LT
6919 unsigned long log2qty, size;
6920 void *table = NULL;
6921
6922 /* allow the kernel cmdline to have a say */
6923 if (!numentries) {
6924 /* round applicable memory size up to nearest megabyte */
04903664 6925 numentries = nr_kernel_pages;
a7e83318
JZ
6926
6927 /* It isn't necessary when PAGE_SIZE >= 1MB */
6928 if (PAGE_SHIFT < 20)
6929 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6930
6931 /* limit to 1 bucket per 2^scale bytes of low memory */
6932 if (scale > PAGE_SHIFT)
6933 numentries >>= (scale - PAGE_SHIFT);
6934 else
6935 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6936
6937 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6938 if (unlikely(flags & HASH_SMALL)) {
6939 /* Makes no sense without HASH_EARLY */
6940 WARN_ON(!(flags & HASH_EARLY));
6941 if (!(numentries >> *_hash_shift)) {
6942 numentries = 1UL << *_hash_shift;
6943 BUG_ON(!numentries);
6944 }
6945 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6946 numentries = PAGE_SIZE / bucketsize;
1da177e4 6947 }
6e692ed3 6948 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6949
6950 /* limit allocation size to 1/16 total memory by default */
6951 if (max == 0) {
6952 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6953 do_div(max, bucketsize);
6954 }
074b8517 6955 max = min(max, 0x80000000ULL);
1da177e4 6956
31fe62b9
TB
6957 if (numentries < low_limit)
6958 numentries = low_limit;
1da177e4
LT
6959 if (numentries > max)
6960 numentries = max;
6961
f0d1b0b3 6962 log2qty = ilog2(numentries);
1da177e4
LT
6963
6964 do {
6965 size = bucketsize << log2qty;
6966 if (flags & HASH_EARLY)
6782832e 6967 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6968 else if (hashdist)
6969 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6970 else {
1037b83b
ED
6971 /*
6972 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6973 * some pages at the end of hash table which
6974 * alloc_pages_exact() automatically does
1037b83b 6975 */
264ef8a9 6976 if (get_order(size) < MAX_ORDER) {
a1dd268c 6977 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6978 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6979 }
1da177e4
LT
6980 }
6981 } while (!table && size > PAGE_SIZE && --log2qty);
6982
6983 if (!table)
6984 panic("Failed to allocate %s hash table\n", tablename);
6985
1170532b
JP
6986 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6987 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6988
6989 if (_hash_shift)
6990 *_hash_shift = log2qty;
6991 if (_hash_mask)
6992 *_hash_mask = (1 << log2qty) - 1;
6993
6994 return table;
6995}
a117e66e 6996
a5d76b54 6997/*
80934513
MK
6998 * This function checks whether pageblock includes unmovable pages or not.
6999 * If @count is not zero, it is okay to include less @count unmovable pages
7000 *
b8af2941 7001 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7002 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7003 * expect this function should be exact.
a5d76b54 7004 */
b023f468
WC
7005bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7006 bool skip_hwpoisoned_pages)
49ac8255
KH
7007{
7008 unsigned long pfn, iter, found;
47118af0
MN
7009 int mt;
7010
49ac8255
KH
7011 /*
7012 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7013 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7014 */
7015 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7016 return false;
47118af0
MN
7017 mt = get_pageblock_migratetype(page);
7018 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7019 return false;
49ac8255
KH
7020
7021 pfn = page_to_pfn(page);
7022 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7023 unsigned long check = pfn + iter;
7024
29723fcc 7025 if (!pfn_valid_within(check))
49ac8255 7026 continue;
29723fcc 7027
49ac8255 7028 page = pfn_to_page(check);
c8721bbb
NH
7029
7030 /*
7031 * Hugepages are not in LRU lists, but they're movable.
7032 * We need not scan over tail pages bacause we don't
7033 * handle each tail page individually in migration.
7034 */
7035 if (PageHuge(page)) {
7036 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7037 continue;
7038 }
7039
97d255c8
MK
7040 /*
7041 * We can't use page_count without pin a page
7042 * because another CPU can free compound page.
7043 * This check already skips compound tails of THP
0139aa7b 7044 * because their page->_refcount is zero at all time.
97d255c8 7045 */
fe896d18 7046 if (!page_ref_count(page)) {
49ac8255
KH
7047 if (PageBuddy(page))
7048 iter += (1 << page_order(page)) - 1;
7049 continue;
7050 }
97d255c8 7051
b023f468
WC
7052 /*
7053 * The HWPoisoned page may be not in buddy system, and
7054 * page_count() is not 0.
7055 */
7056 if (skip_hwpoisoned_pages && PageHWPoison(page))
7057 continue;
7058
49ac8255
KH
7059 if (!PageLRU(page))
7060 found++;
7061 /*
6b4f7799
JW
7062 * If there are RECLAIMABLE pages, we need to check
7063 * it. But now, memory offline itself doesn't call
7064 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7065 */
7066 /*
7067 * If the page is not RAM, page_count()should be 0.
7068 * we don't need more check. This is an _used_ not-movable page.
7069 *
7070 * The problematic thing here is PG_reserved pages. PG_reserved
7071 * is set to both of a memory hole page and a _used_ kernel
7072 * page at boot.
7073 */
7074 if (found > count)
80934513 7075 return true;
49ac8255 7076 }
80934513 7077 return false;
49ac8255
KH
7078}
7079
7080bool is_pageblock_removable_nolock(struct page *page)
7081{
656a0706
MH
7082 struct zone *zone;
7083 unsigned long pfn;
687875fb
MH
7084
7085 /*
7086 * We have to be careful here because we are iterating over memory
7087 * sections which are not zone aware so we might end up outside of
7088 * the zone but still within the section.
656a0706
MH
7089 * We have to take care about the node as well. If the node is offline
7090 * its NODE_DATA will be NULL - see page_zone.
687875fb 7091 */
656a0706
MH
7092 if (!node_online(page_to_nid(page)))
7093 return false;
7094
7095 zone = page_zone(page);
7096 pfn = page_to_pfn(page);
108bcc96 7097 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7098 return false;
7099
b023f468 7100 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7101}
0c0e6195 7102
080fe206 7103#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7104
7105static unsigned long pfn_max_align_down(unsigned long pfn)
7106{
7107 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7108 pageblock_nr_pages) - 1);
7109}
7110
7111static unsigned long pfn_max_align_up(unsigned long pfn)
7112{
7113 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7114 pageblock_nr_pages));
7115}
7116
041d3a8c 7117/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7118static int __alloc_contig_migrate_range(struct compact_control *cc,
7119 unsigned long start, unsigned long end)
041d3a8c
MN
7120{
7121 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7122 unsigned long nr_reclaimed;
041d3a8c
MN
7123 unsigned long pfn = start;
7124 unsigned int tries = 0;
7125 int ret = 0;
7126
be49a6e1 7127 migrate_prep();
041d3a8c 7128
bb13ffeb 7129 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7130 if (fatal_signal_pending(current)) {
7131 ret = -EINTR;
7132 break;
7133 }
7134
bb13ffeb
MG
7135 if (list_empty(&cc->migratepages)) {
7136 cc->nr_migratepages = 0;
edc2ca61 7137 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7138 if (!pfn) {
7139 ret = -EINTR;
7140 break;
7141 }
7142 tries = 0;
7143 } else if (++tries == 5) {
7144 ret = ret < 0 ? ret : -EBUSY;
7145 break;
7146 }
7147
beb51eaa
MK
7148 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7149 &cc->migratepages);
7150 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7151
9c620e2b 7152 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7153 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7154 }
2a6f5124
SP
7155 if (ret < 0) {
7156 putback_movable_pages(&cc->migratepages);
7157 return ret;
7158 }
7159 return 0;
041d3a8c
MN
7160}
7161
7162/**
7163 * alloc_contig_range() -- tries to allocate given range of pages
7164 * @start: start PFN to allocate
7165 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7166 * @migratetype: migratetype of the underlaying pageblocks (either
7167 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7168 * in range must have the same migratetype and it must
7169 * be either of the two.
041d3a8c
MN
7170 *
7171 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7172 * aligned, however it's the caller's responsibility to guarantee that
7173 * we are the only thread that changes migrate type of pageblocks the
7174 * pages fall in.
7175 *
7176 * The PFN range must belong to a single zone.
7177 *
7178 * Returns zero on success or negative error code. On success all
7179 * pages which PFN is in [start, end) are allocated for the caller and
7180 * need to be freed with free_contig_range().
7181 */
0815f3d8
MN
7182int alloc_contig_range(unsigned long start, unsigned long end,
7183 unsigned migratetype)
041d3a8c 7184{
041d3a8c 7185 unsigned long outer_start, outer_end;
d00181b9
KS
7186 unsigned int order;
7187 int ret = 0;
041d3a8c 7188
bb13ffeb
MG
7189 struct compact_control cc = {
7190 .nr_migratepages = 0,
7191 .order = -1,
7192 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7193 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7194 .ignore_skip_hint = true,
7195 };
7196 INIT_LIST_HEAD(&cc.migratepages);
7197
041d3a8c
MN
7198 /*
7199 * What we do here is we mark all pageblocks in range as
7200 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7201 * have different sizes, and due to the way page allocator
7202 * work, we align the range to biggest of the two pages so
7203 * that page allocator won't try to merge buddies from
7204 * different pageblocks and change MIGRATE_ISOLATE to some
7205 * other migration type.
7206 *
7207 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7208 * migrate the pages from an unaligned range (ie. pages that
7209 * we are interested in). This will put all the pages in
7210 * range back to page allocator as MIGRATE_ISOLATE.
7211 *
7212 * When this is done, we take the pages in range from page
7213 * allocator removing them from the buddy system. This way
7214 * page allocator will never consider using them.
7215 *
7216 * This lets us mark the pageblocks back as
7217 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7218 * aligned range but not in the unaligned, original range are
7219 * put back to page allocator so that buddy can use them.
7220 */
7221
7222 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7223 pfn_max_align_up(end), migratetype,
7224 false);
041d3a8c 7225 if (ret)
86a595f9 7226 return ret;
041d3a8c 7227
8ef5849f
JK
7228 /*
7229 * In case of -EBUSY, we'd like to know which page causes problem.
7230 * So, just fall through. We will check it in test_pages_isolated().
7231 */
bb13ffeb 7232 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7233 if (ret && ret != -EBUSY)
041d3a8c
MN
7234 goto done;
7235
7236 /*
7237 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7238 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7239 * more, all pages in [start, end) are free in page allocator.
7240 * What we are going to do is to allocate all pages from
7241 * [start, end) (that is remove them from page allocator).
7242 *
7243 * The only problem is that pages at the beginning and at the
7244 * end of interesting range may be not aligned with pages that
7245 * page allocator holds, ie. they can be part of higher order
7246 * pages. Because of this, we reserve the bigger range and
7247 * once this is done free the pages we are not interested in.
7248 *
7249 * We don't have to hold zone->lock here because the pages are
7250 * isolated thus they won't get removed from buddy.
7251 */
7252
7253 lru_add_drain_all();
510f5507 7254 drain_all_pages(cc.zone);
041d3a8c
MN
7255
7256 order = 0;
7257 outer_start = start;
7258 while (!PageBuddy(pfn_to_page(outer_start))) {
7259 if (++order >= MAX_ORDER) {
8ef5849f
JK
7260 outer_start = start;
7261 break;
041d3a8c
MN
7262 }
7263 outer_start &= ~0UL << order;
7264 }
7265
8ef5849f
JK
7266 if (outer_start != start) {
7267 order = page_order(pfn_to_page(outer_start));
7268
7269 /*
7270 * outer_start page could be small order buddy page and
7271 * it doesn't include start page. Adjust outer_start
7272 * in this case to report failed page properly
7273 * on tracepoint in test_pages_isolated()
7274 */
7275 if (outer_start + (1UL << order) <= start)
7276 outer_start = start;
7277 }
7278
041d3a8c 7279 /* Make sure the range is really isolated. */
b023f468 7280 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7281 pr_info("%s: [%lx, %lx) PFNs busy\n",
7282 __func__, outer_start, end);
041d3a8c
MN
7283 ret = -EBUSY;
7284 goto done;
7285 }
7286
49f223a9 7287 /* Grab isolated pages from freelists. */
bb13ffeb 7288 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7289 if (!outer_end) {
7290 ret = -EBUSY;
7291 goto done;
7292 }
7293
7294 /* Free head and tail (if any) */
7295 if (start != outer_start)
7296 free_contig_range(outer_start, start - outer_start);
7297 if (end != outer_end)
7298 free_contig_range(end, outer_end - end);
7299
7300done:
7301 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7302 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7303 return ret;
7304}
7305
7306void free_contig_range(unsigned long pfn, unsigned nr_pages)
7307{
bcc2b02f
MS
7308 unsigned int count = 0;
7309
7310 for (; nr_pages--; pfn++) {
7311 struct page *page = pfn_to_page(pfn);
7312
7313 count += page_count(page) != 1;
7314 __free_page(page);
7315 }
7316 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7317}
7318#endif
7319
4ed7e022 7320#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7321/*
7322 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7323 * page high values need to be recalulated.
7324 */
4ed7e022
JL
7325void __meminit zone_pcp_update(struct zone *zone)
7326{
0a647f38 7327 unsigned cpu;
c8e251fa 7328 mutex_lock(&pcp_batch_high_lock);
0a647f38 7329 for_each_possible_cpu(cpu)
169f6c19
CS
7330 pageset_set_high_and_batch(zone,
7331 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7332 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7333}
7334#endif
7335
340175b7
JL
7336void zone_pcp_reset(struct zone *zone)
7337{
7338 unsigned long flags;
5a883813
MK
7339 int cpu;
7340 struct per_cpu_pageset *pset;
340175b7
JL
7341
7342 /* avoid races with drain_pages() */
7343 local_irq_save(flags);
7344 if (zone->pageset != &boot_pageset) {
5a883813
MK
7345 for_each_online_cpu(cpu) {
7346 pset = per_cpu_ptr(zone->pageset, cpu);
7347 drain_zonestat(zone, pset);
7348 }
340175b7
JL
7349 free_percpu(zone->pageset);
7350 zone->pageset = &boot_pageset;
7351 }
7352 local_irq_restore(flags);
7353}
7354
6dcd73d7 7355#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7356/*
b9eb6319
JK
7357 * All pages in the range must be in a single zone and isolated
7358 * before calling this.
0c0e6195
KH
7359 */
7360void
7361__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7362{
7363 struct page *page;
7364 struct zone *zone;
7aeb09f9 7365 unsigned int order, i;
0c0e6195
KH
7366 unsigned long pfn;
7367 unsigned long flags;
7368 /* find the first valid pfn */
7369 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7370 if (pfn_valid(pfn))
7371 break;
7372 if (pfn == end_pfn)
7373 return;
7374 zone = page_zone(pfn_to_page(pfn));
7375 spin_lock_irqsave(&zone->lock, flags);
7376 pfn = start_pfn;
7377 while (pfn < end_pfn) {
7378 if (!pfn_valid(pfn)) {
7379 pfn++;
7380 continue;
7381 }
7382 page = pfn_to_page(pfn);
b023f468
WC
7383 /*
7384 * The HWPoisoned page may be not in buddy system, and
7385 * page_count() is not 0.
7386 */
7387 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7388 pfn++;
7389 SetPageReserved(page);
7390 continue;
7391 }
7392
0c0e6195
KH
7393 BUG_ON(page_count(page));
7394 BUG_ON(!PageBuddy(page));
7395 order = page_order(page);
7396#ifdef CONFIG_DEBUG_VM
1170532b
JP
7397 pr_info("remove from free list %lx %d %lx\n",
7398 pfn, 1 << order, end_pfn);
0c0e6195
KH
7399#endif
7400 list_del(&page->lru);
7401 rmv_page_order(page);
7402 zone->free_area[order].nr_free--;
0c0e6195
KH
7403 for (i = 0; i < (1 << order); i++)
7404 SetPageReserved((page+i));
7405 pfn += (1 << order);
7406 }
7407 spin_unlock_irqrestore(&zone->lock, flags);
7408}
7409#endif
8d22ba1b 7410
8d22ba1b
WF
7411bool is_free_buddy_page(struct page *page)
7412{
7413 struct zone *zone = page_zone(page);
7414 unsigned long pfn = page_to_pfn(page);
7415 unsigned long flags;
7aeb09f9 7416 unsigned int order;
8d22ba1b
WF
7417
7418 spin_lock_irqsave(&zone->lock, flags);
7419 for (order = 0; order < MAX_ORDER; order++) {
7420 struct page *page_head = page - (pfn & ((1 << order) - 1));
7421
7422 if (PageBuddy(page_head) && page_order(page_head) >= order)
7423 break;
7424 }
7425 spin_unlock_irqrestore(&zone->lock, flags);
7426
7427 return order < MAX_ORDER;
7428}