]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/page_alloc.c
mm, page_alloc: remove unnecessary variable from free_pcppages_bulk
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
1da177e4 66
7ee3d4e8 67#include <asm/sections.h>
1da177e4 68#include <asm/tlbflush.h>
ac924c60 69#include <asm/div64.h>
1da177e4
LT
70#include "internal.h"
71
c8e251fa
CS
72/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 74#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 75
72812019
LS
76#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77DEFINE_PER_CPU(int, numa_node);
78EXPORT_PER_CPU_SYMBOL(numa_node);
79#endif
80
7aac7898
LS
81#ifdef CONFIG_HAVE_MEMORYLESS_NODES
82/*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 90int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
91#endif
92
1da177e4 93/*
13808910 94 * Array of node states.
1da177e4 95 */
13808910
CL
96nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99#ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101#ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
103#endif
104#ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
106#endif
107 [N_CPU] = { { [0] = 1UL } },
108#endif /* NUMA */
109};
110EXPORT_SYMBOL(node_states);
111
c3d5f5f0
JL
112/* Protect totalram_pages and zone->managed_pages */
113static DEFINE_SPINLOCK(managed_page_count_lock);
114
6c231b7b 115unsigned long totalram_pages __read_mostly;
cb45b0e9 116unsigned long totalreserve_pages __read_mostly;
e48322ab 117unsigned long totalcma_pages __read_mostly;
ab8fabd4 118
1b76b02f 119int percpu_pagelist_fraction;
dcce284a 120gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 121
bb14c2c7
VB
122/*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130static inline int get_pcppage_migratetype(struct page *page)
131{
132 return page->index;
133}
134
135static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136{
137 page->index = migratetype;
138}
139
452aa699
RW
140#ifdef CONFIG_PM_SLEEP
141/*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
c9e664f1
RW
149
150static gfp_t saved_gfp_mask;
151
152void pm_restore_gfp_mask(void)
452aa699
RW
153{
154 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
452aa699
RW
159}
160
c9e664f1 161void pm_restrict_gfp_mask(void)
452aa699 162{
452aa699 163 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
d0164adc 166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 167}
f90ac398
MG
168
169bool pm_suspended_storage(void)
170{
d0164adc 171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
172 return false;
173 return true;
174}
452aa699
RW
175#endif /* CONFIG_PM_SLEEP */
176
d9c23400 177#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 178unsigned int pageblock_order __read_mostly;
d9c23400
MG
179#endif
180
d98c7a09 181static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 182
1da177e4
LT
183/*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
1da177e4 193 */
2f1b6248 194int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 195#ifdef CONFIG_ZONE_DMA
2f1b6248 196 256,
4b51d669 197#endif
fb0e7942 198#ifdef CONFIG_ZONE_DMA32
2f1b6248 199 256,
fb0e7942 200#endif
e53ef38d 201#ifdef CONFIG_HIGHMEM
2a1e274a 202 32,
e53ef38d 203#endif
2a1e274a 204 32,
2f1b6248 205};
1da177e4
LT
206
207EXPORT_SYMBOL(totalram_pages);
1da177e4 208
15ad7cdc 209static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 210#ifdef CONFIG_ZONE_DMA
2f1b6248 211 "DMA",
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248 214 "DMA32",
fb0e7942 215#endif
2f1b6248 216 "Normal",
e53ef38d 217#ifdef CONFIG_HIGHMEM
2a1e274a 218 "HighMem",
e53ef38d 219#endif
2a1e274a 220 "Movable",
033fbae9
DW
221#ifdef CONFIG_ZONE_DEVICE
222 "Device",
223#endif
2f1b6248
CL
224};
225
60f30350
VB
226char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231#ifdef CONFIG_CMA
232 "CMA",
233#endif
234#ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236#endif
237};
238
f1e61557
KS
239compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242#ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244#endif
9a982250
KS
245#ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247#endif
f1e61557
KS
248};
249
1da177e4 250int min_free_kbytes = 1024;
42aa83cb 251int user_min_free_kbytes = -1;
795ae7a0 252int watermark_scale_factor = 10;
1da177e4 253
2c85f51d
JB
254static unsigned long __meminitdata nr_kernel_pages;
255static unsigned long __meminitdata nr_all_pages;
a3142c8e 256static unsigned long __meminitdata dma_reserve;
1da177e4 257
0ee332c1
TH
258#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __initdata required_kernelcore;
262static unsigned long __initdata required_movablecore;
263static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 264static bool mirrored_kernelcore;
0ee332c1
TH
265
266/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267int movable_zone;
268EXPORT_SYMBOL(movable_zone);
269#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 270
418508c1
MS
271#if MAX_NUMNODES > 1
272int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 273int nr_online_nodes __read_mostly = 1;
418508c1 274EXPORT_SYMBOL(nr_node_ids);
62bc62a8 275EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
276#endif
277
9ef9acb0
MG
278int page_group_by_mobility_disabled __read_mostly;
279
3a80a7fa
MG
280#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281static inline void reset_deferred_meminit(pg_data_t *pgdat)
282{
283 pgdat->first_deferred_pfn = ULONG_MAX;
284}
285
286/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 287static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 288{
ae026b2a 289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
3a80a7fa
MG
290 return true;
291
292 return false;
293}
294
7e18adb4
MG
295static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296{
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301}
302
3a80a7fa
MG
303/*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310{
987b3095
LZ
311 unsigned long max_initialise;
312
3a80a7fa
MG
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
987b3095
LZ
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
3a80a7fa 322
3a80a7fa 323 (*nr_initialised)++;
987b3095 324 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331}
332#else
333static inline void reset_deferred_meminit(pg_data_t *pgdat)
334{
335}
336
337static inline bool early_page_uninitialised(unsigned long pfn)
338{
339 return false;
340}
341
7e18adb4
MG
342static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343{
344 return false;
345}
346
3a80a7fa
MG
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
355
ee6f509c 356void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 357{
5d0f3f72
KM
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
360 migratetype = MIGRATE_UNMOVABLE;
361
b2a0ac88
MG
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364}
365
13e7444b 366#ifdef CONFIG_DEBUG_VM
c6a57e19 367static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 368{
bdc8cb98
DH
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 372 unsigned long sp, start_pfn;
c6a57e19 373
bdc8cb98
DH
374 do {
375 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
108bcc96 378 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
b5e6a5a2 382 if (ret)
613813e8
DH
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
b5e6a5a2 386
bdc8cb98 387 return ret;
c6a57e19
DH
388}
389
390static int page_is_consistent(struct zone *zone, struct page *page)
391{
14e07298 392 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 393 return 0;
1da177e4 394 if (zone != page_zone(page))
c6a57e19
DH
395 return 0;
396
397 return 1;
398}
399/*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402static int bad_range(struct zone *zone, struct page *page)
403{
404 if (page_outside_zone_boundaries(zone, page))
1da177e4 405 return 1;
c6a57e19
DH
406 if (!page_is_consistent(zone, page))
407 return 1;
408
1da177e4
LT
409 return 0;
410}
13e7444b
NP
411#else
412static inline int bad_range(struct zone *zone, struct page *page)
413{
414 return 0;
415}
416#endif
417
d230dec1
KS
418static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
1da177e4 420{
d936cf9b
HD
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
2a7684a2
WF
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
22b751c3 427 page_mapcount_reset(page); /* remove PageBuddy */
2a7684a2
WF
428 return;
429 }
430
d936cf9b
HD
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
ff8e8116 441 pr_alert(
1e9e6365 442 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
ff8e8116 451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 452 current->comm, page_to_pfn(page));
ff8e8116
VB
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
4e462112 458 dump_page_owner(page);
3dc14741 459
4f31888c 460 print_modules();
1da177e4 461 dump_stack();
d936cf9b 462out:
8cc3b392 463 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 464 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
466}
467
1da177e4
LT
468/*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
1d798ca3 471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 472 *
1d798ca3
KS
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 475 *
1d798ca3
KS
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
1da177e4 478 *
1d798ca3 479 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 480 * This usage means that zero-order pages may not be compound.
1da177e4 481 */
d98c7a09 482
9a982250 483void free_compound_page(struct page *page)
d98c7a09 484{
d85f3385 485 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
486}
487
d00181b9 488void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
489{
490 int i;
491 int nr_pages = 1 << order;
492
f1e61557 493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
58a84aa9 498 set_page_count(p, 0);
1c290f64 499 p->mapping = TAIL_MAPPING;
1d798ca3 500 set_compound_head(p, page);
18229df5 501 }
53f9263b 502 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
503}
504
c0a32fc5
SG
505#ifdef CONFIG_DEBUG_PAGEALLOC
506unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
507bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 509EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
510bool _debug_guardpage_enabled __read_mostly;
511
031bc574
JK
512static int __init early_debug_pagealloc(char *buf)
513{
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
ea6eabb0
CB
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
031bc574
JK
523 return 0;
524}
525early_param("debug_pagealloc", early_debug_pagealloc);
526
e30825f1
JK
527static bool need_debug_guardpage(void)
528{
031bc574
JK
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
e30825f1
JK
533 return true;
534}
535
536static void init_debug_guardpage(void)
537{
031bc574
JK
538 if (!debug_pagealloc_enabled())
539 return;
540
e30825f1
JK
541 _debug_guardpage_enabled = true;
542}
543
544struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547};
c0a32fc5
SG
548
549static int __init debug_guardpage_minorder_setup(char *buf)
550{
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 554 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
1170532b 558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
559 return 0;
560}
561__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
2847cf95
JK
563static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
c0a32fc5 565{
e30825f1
JK
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
2847cf95
JK
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
578}
579
2847cf95
JK
580static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
c0a32fc5 582{
e30825f1
JK
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
2847cf95
JK
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
594}
595#else
e30825f1 596struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
597static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
c0a32fc5
SG
601#endif
602
7aeb09f9 603static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 604{
4c21e2f2 605 set_page_private(page, order);
676165a8 606 __SetPageBuddy(page);
1da177e4
LT
607}
608
609static inline void rmv_page_order(struct page *page)
610{
676165a8 611 __ClearPageBuddy(page);
4c21e2f2 612 set_page_private(page, 0);
1da177e4
LT
613}
614
1da177e4
LT
615/*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
13e7444b 618 * (a) the buddy is not in a hole &&
676165a8 619 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
676165a8 622 *
cf6fe945
WSH
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
1da177e4 627 *
676165a8 628 * For recording page's order, we use page_private(page).
1da177e4 629 */
cb2b95e1 630static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 631 unsigned int order)
1da177e4 632{
14e07298 633 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 634 return 0;
13e7444b 635
c0a32fc5 636 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
4c5018ce
WY
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
c0a32fc5
SG
642 return 1;
643 }
644
cb2b95e1 645 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
4c5018ce
WY
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
6aa3001b 656 return 1;
676165a8 657 }
6aa3001b 658 return 0;
1da177e4
LT
659}
660
661/*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
1da177e4 677 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
1da177e4 680 * If a block is freed, and its buddy is also free, then this
5f63b720 681 * triggers coalescing into a block of larger size.
1da177e4 682 *
6d49e352 683 * -- nyc
1da177e4
LT
684 */
685
48db57f8 686static inline void __free_one_page(struct page *page,
dc4b0caf 687 unsigned long pfn,
ed0ae21d
MG
688 struct zone *zone, unsigned int order,
689 int migratetype)
1da177e4
LT
690{
691 unsigned long page_idx;
6dda9d55 692 unsigned long combined_idx;
43506fad 693 unsigned long uninitialized_var(buddy_idx);
6dda9d55 694 struct page *buddy;
d9dddbf5
VB
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 698
d29bb978 699 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 701
ed0ae21d 702 VM_BUG_ON(migratetype == -1);
d9dddbf5 703 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 705
d9dddbf5 706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 707
309381fe
SL
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 710
d9dddbf5 711continue_merging:
3c605096 712 while (order < max_order - 1) {
43506fad
KC
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
cb2b95e1 715 if (!page_is_buddy(page, buddy, order))
d9dddbf5 716 goto done_merging;
c0a32fc5
SG
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
2847cf95 722 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
43506fad 728 combined_idx = buddy_idx & page_idx;
1da177e4
LT
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
d9dddbf5
VB
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758done_merging:
1da177e4 759 set_page_order(page, order);
6dda9d55
CZ
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
b7f50cfa 769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 770 struct page *higher_page, *higher_buddy;
43506fad
KC
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 774 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783out:
1da177e4
LT
784 zone->free_area[order].nr_free++;
785}
786
7bfec6f4
MG
787/*
788 * A bad page could be due to a number of fields. Instead of multiple branches,
789 * try and check multiple fields with one check. The caller must do a detailed
790 * check if necessary.
791 */
792static inline bool page_expected_state(struct page *page,
793 unsigned long check_flags)
794{
795 if (unlikely(atomic_read(&page->_mapcount) != -1))
796 return false;
797
798 if (unlikely((unsigned long)page->mapping |
799 page_ref_count(page) |
800#ifdef CONFIG_MEMCG
801 (unsigned long)page->mem_cgroup |
802#endif
803 (page->flags & check_flags)))
804 return false;
805
806 return true;
807}
808
bb552ac6 809static void free_pages_check_bad(struct page *page)
1da177e4 810{
7bfec6f4
MG
811 const char *bad_reason;
812 unsigned long bad_flags;
813
7bfec6f4
MG
814 bad_reason = NULL;
815 bad_flags = 0;
f0b791a3 816
53f9263b 817 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
818 bad_reason = "nonzero mapcount";
819 if (unlikely(page->mapping != NULL))
820 bad_reason = "non-NULL mapping";
fe896d18 821 if (unlikely(page_ref_count(page) != 0))
0139aa7b 822 bad_reason = "nonzero _refcount";
f0b791a3
DH
823 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
824 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
825 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
826 }
9edad6ea
JW
827#ifdef CONFIG_MEMCG
828 if (unlikely(page->mem_cgroup))
829 bad_reason = "page still charged to cgroup";
830#endif
7bfec6f4 831 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
832}
833
834static inline int free_pages_check(struct page *page)
835{
da838d4f 836 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 837 return 0;
bb552ac6
MG
838
839 /* Something has gone sideways, find it */
840 free_pages_check_bad(page);
7bfec6f4 841 return 1;
1da177e4
LT
842}
843
844/*
5f8dcc21 845 * Frees a number of pages from the PCP lists
1da177e4 846 * Assumes all pages on list are in same zone, and of same order.
207f36ee 847 * count is the number of pages to free.
1da177e4
LT
848 *
849 * If the zone was previously in an "all pages pinned" state then look to
850 * see if this freeing clears that state.
851 *
852 * And clear the zone's pages_scanned counter, to hold off the "all pages are
853 * pinned" detection logic.
854 */
5f8dcc21
MG
855static void free_pcppages_bulk(struct zone *zone, int count,
856 struct per_cpu_pages *pcp)
1da177e4 857{
5f8dcc21 858 int migratetype = 0;
a6f9edd6 859 int batch_free = 0;
0d5d823a 860 unsigned long nr_scanned;
3777999d 861 bool isolated_pageblocks;
5f8dcc21 862
c54ad30c 863 spin_lock(&zone->lock);
3777999d 864 isolated_pageblocks = has_isolate_pageblock(zone);
0d5d823a
MG
865 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
866 if (nr_scanned)
867 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 868
e5b31ac2 869 while (count) {
48db57f8 870 struct page *page;
5f8dcc21
MG
871 struct list_head *list;
872
873 /*
a6f9edd6
MG
874 * Remove pages from lists in a round-robin fashion. A
875 * batch_free count is maintained that is incremented when an
876 * empty list is encountered. This is so more pages are freed
877 * off fuller lists instead of spinning excessively around empty
878 * lists
5f8dcc21
MG
879 */
880 do {
a6f9edd6 881 batch_free++;
5f8dcc21
MG
882 if (++migratetype == MIGRATE_PCPTYPES)
883 migratetype = 0;
884 list = &pcp->lists[migratetype];
885 } while (list_empty(list));
48db57f8 886
1d16871d
NK
887 /* This is the only non-empty list. Free them all. */
888 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 889 batch_free = count;
1d16871d 890
a6f9edd6 891 do {
770c8aaa
BZ
892 int mt; /* migratetype of the to-be-freed page */
893
a16601c5 894 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
895 /* must delete as __free_one_page list manipulates */
896 list_del(&page->lru);
aa016d14 897
bb14c2c7 898 mt = get_pcppage_migratetype(page);
aa016d14
VB
899 /* MIGRATE_ISOLATE page should not go to pcplists */
900 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
901 /* Pageblock could have been isolated meanwhile */
3777999d 902 if (unlikely(isolated_pageblocks))
51bb1a40 903 mt = get_pageblock_migratetype(page);
51bb1a40 904
dc4b0caf 905 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 906 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 907 } while (--count && --batch_free && !list_empty(list));
1da177e4 908 }
c54ad30c 909 spin_unlock(&zone->lock);
1da177e4
LT
910}
911
dc4b0caf
MG
912static void free_one_page(struct zone *zone,
913 struct page *page, unsigned long pfn,
7aeb09f9 914 unsigned int order,
ed0ae21d 915 int migratetype)
1da177e4 916{
0d5d823a 917 unsigned long nr_scanned;
006d22d9 918 spin_lock(&zone->lock);
0d5d823a
MG
919 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
920 if (nr_scanned)
921 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 922
ad53f92e
JK
923 if (unlikely(has_isolate_pageblock(zone) ||
924 is_migrate_isolate(migratetype))) {
925 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 926 }
dc4b0caf 927 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 928 spin_unlock(&zone->lock);
48db57f8
NP
929}
930
81422f29
KS
931static int free_tail_pages_check(struct page *head_page, struct page *page)
932{
1d798ca3
KS
933 int ret = 1;
934
935 /*
936 * We rely page->lru.next never has bit 0 set, unless the page
937 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
938 */
939 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
940
941 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
942 ret = 0;
943 goto out;
944 }
9a982250
KS
945 switch (page - head_page) {
946 case 1:
947 /* the first tail page: ->mapping is compound_mapcount() */
53f9263b
KS
948 if (unlikely(compound_mapcount(page))) {
949 bad_page(page, "nonzero compound_mapcount", 0);
950 goto out;
951 }
9a982250
KS
952 break;
953 case 2:
954 /*
955 * the second tail page: ->mapping is
956 * page_deferred_list().next -- ignore value.
957 */
958 break;
959 default:
960 if (page->mapping != TAIL_MAPPING) {
961 bad_page(page, "corrupted mapping in tail page", 0);
962 goto out;
963 }
964 break;
1c290f64 965 }
81422f29
KS
966 if (unlikely(!PageTail(page))) {
967 bad_page(page, "PageTail not set", 0);
1d798ca3 968 goto out;
81422f29 969 }
1d798ca3
KS
970 if (unlikely(compound_head(page) != head_page)) {
971 bad_page(page, "compound_head not consistent", 0);
972 goto out;
81422f29 973 }
1d798ca3
KS
974 ret = 0;
975out:
1c290f64 976 page->mapping = NULL;
1d798ca3
KS
977 clear_compound_head(page);
978 return ret;
81422f29
KS
979}
980
1e8ce83c
RH
981static void __meminit __init_single_page(struct page *page, unsigned long pfn,
982 unsigned long zone, int nid)
983{
1e8ce83c 984 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
985 init_page_count(page);
986 page_mapcount_reset(page);
987 page_cpupid_reset_last(page);
1e8ce83c 988
1e8ce83c
RH
989 INIT_LIST_HEAD(&page->lru);
990#ifdef WANT_PAGE_VIRTUAL
991 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
992 if (!is_highmem_idx(zone))
993 set_page_address(page, __va(pfn << PAGE_SHIFT));
994#endif
995}
996
997static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
998 int nid)
999{
1000 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1001}
1002
7e18adb4
MG
1003#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1004static void init_reserved_page(unsigned long pfn)
1005{
1006 pg_data_t *pgdat;
1007 int nid, zid;
1008
1009 if (!early_page_uninitialised(pfn))
1010 return;
1011
1012 nid = early_pfn_to_nid(pfn);
1013 pgdat = NODE_DATA(nid);
1014
1015 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1016 struct zone *zone = &pgdat->node_zones[zid];
1017
1018 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1019 break;
1020 }
1021 __init_single_pfn(pfn, zid, nid);
1022}
1023#else
1024static inline void init_reserved_page(unsigned long pfn)
1025{
1026}
1027#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1028
92923ca3
NZ
1029/*
1030 * Initialised pages do not have PageReserved set. This function is
1031 * called for each range allocated by the bootmem allocator and
1032 * marks the pages PageReserved. The remaining valid pages are later
1033 * sent to the buddy page allocator.
1034 */
7e18adb4 1035void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
92923ca3
NZ
1036{
1037 unsigned long start_pfn = PFN_DOWN(start);
1038 unsigned long end_pfn = PFN_UP(end);
1039
7e18adb4
MG
1040 for (; start_pfn < end_pfn; start_pfn++) {
1041 if (pfn_valid(start_pfn)) {
1042 struct page *page = pfn_to_page(start_pfn);
1043
1044 init_reserved_page(start_pfn);
1d798ca3
KS
1045
1046 /* Avoid false-positive PageTail() */
1047 INIT_LIST_HEAD(&page->lru);
1048
7e18adb4
MG
1049 SetPageReserved(page);
1050 }
1051 }
92923ca3
NZ
1052}
1053
ec95f53a 1054static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 1055{
d61f8590 1056 int bad = 0;
1da177e4 1057
ab1f306f 1058 VM_BUG_ON_PAGE(PageTail(page), page);
ab1f306f 1059
b413d48a 1060 trace_mm_page_free(page, order);
b1eeab67 1061 kmemcheck_free_shadow(page, order);
b8c73fc2 1062 kasan_free_pages(page, order);
b1eeab67 1063
d61f8590
MG
1064 /*
1065 * Check tail pages before head page information is cleared to
1066 * avoid checking PageCompound for order-0 pages.
1067 */
1068 if (unlikely(order)) {
1069 bool compound = PageCompound(page);
1070 int i;
1071
1072 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1073
1074 for (i = 1; i < (1 << order); i++) {
1075 if (compound)
1076 bad += free_tail_pages_check(page, page + i);
da838d4f
MG
1077 if (unlikely(free_pages_check(page + i))) {
1078 bad++;
1079 continue;
1080 }
1081 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
d61f8590
MG
1082 }
1083 }
17514574 1084 if (PageAnonHead(page))
8dd60a3a 1085 page->mapping = NULL;
81422f29 1086 bad += free_pages_check(page);
8cc3b392 1087 if (bad)
ec95f53a 1088 return false;
689bcebf 1089
da838d4f
MG
1090 page_cpupid_reset_last(page);
1091 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
48c96a36
JK
1092 reset_page_owner(page, order);
1093
3ac7fe5a 1094 if (!PageHighMem(page)) {
b8af2941
PK
1095 debug_check_no_locks_freed(page_address(page),
1096 PAGE_SIZE << order);
3ac7fe5a
TG
1097 debug_check_no_obj_freed(page_address(page),
1098 PAGE_SIZE << order);
1099 }
dafb1367 1100 arch_free_page(page, order);
8823b1db 1101 kernel_poison_pages(page, 1 << order, 0);
48db57f8 1102 kernel_map_pages(page, 1 << order, 0);
dafb1367 1103
ec95f53a
KM
1104 return true;
1105}
1106
1107static void __free_pages_ok(struct page *page, unsigned int order)
1108{
1109 unsigned long flags;
95e34412 1110 int migratetype;
dc4b0caf 1111 unsigned long pfn = page_to_pfn(page);
ec95f53a
KM
1112
1113 if (!free_pages_prepare(page, order))
1114 return;
1115
cfc47a28 1116 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1117 local_irq_save(flags);
f8891e5e 1118 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1119 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1120 local_irq_restore(flags);
1da177e4
LT
1121}
1122
949698a3 1123static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1124{
c3993076 1125 unsigned int nr_pages = 1 << order;
e2d0bd2b 1126 struct page *p = page;
c3993076 1127 unsigned int loop;
a226f6c8 1128
e2d0bd2b
YL
1129 prefetchw(p);
1130 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1131 prefetchw(p + 1);
c3993076
JW
1132 __ClearPageReserved(p);
1133 set_page_count(p, 0);
a226f6c8 1134 }
e2d0bd2b
YL
1135 __ClearPageReserved(p);
1136 set_page_count(p, 0);
c3993076 1137
e2d0bd2b 1138 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1139 set_page_refcounted(page);
1140 __free_pages(page, order);
a226f6c8
DH
1141}
1142
75a592a4
MG
1143#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1144 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1145
75a592a4
MG
1146static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1147
1148int __meminit early_pfn_to_nid(unsigned long pfn)
1149{
7ace9917 1150 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1151 int nid;
1152
7ace9917 1153 spin_lock(&early_pfn_lock);
75a592a4 1154 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917
MG
1155 if (nid < 0)
1156 nid = 0;
1157 spin_unlock(&early_pfn_lock);
1158
1159 return nid;
75a592a4
MG
1160}
1161#endif
1162
1163#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1164static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1165 struct mminit_pfnnid_cache *state)
1166{
1167 int nid;
1168
1169 nid = __early_pfn_to_nid(pfn, state);
1170 if (nid >= 0 && nid != node)
1171 return false;
1172 return true;
1173}
1174
1175/* Only safe to use early in boot when initialisation is single-threaded */
1176static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1177{
1178 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1179}
1180
1181#else
1182
1183static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1184{
1185 return true;
1186}
1187static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1188 struct mminit_pfnnid_cache *state)
1189{
1190 return true;
1191}
1192#endif
1193
1194
0e1cc95b 1195void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1196 unsigned int order)
1197{
1198 if (early_page_uninitialised(pfn))
1199 return;
949698a3 1200 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1201}
1202
7cf91a98
JK
1203/*
1204 * Check that the whole (or subset of) a pageblock given by the interval of
1205 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1206 * with the migration of free compaction scanner. The scanners then need to
1207 * use only pfn_valid_within() check for arches that allow holes within
1208 * pageblocks.
1209 *
1210 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1211 *
1212 * It's possible on some configurations to have a setup like node0 node1 node0
1213 * i.e. it's possible that all pages within a zones range of pages do not
1214 * belong to a single zone. We assume that a border between node0 and node1
1215 * can occur within a single pageblock, but not a node0 node1 node0
1216 * interleaving within a single pageblock. It is therefore sufficient to check
1217 * the first and last page of a pageblock and avoid checking each individual
1218 * page in a pageblock.
1219 */
1220struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1221 unsigned long end_pfn, struct zone *zone)
1222{
1223 struct page *start_page;
1224 struct page *end_page;
1225
1226 /* end_pfn is one past the range we are checking */
1227 end_pfn--;
1228
1229 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1230 return NULL;
1231
1232 start_page = pfn_to_page(start_pfn);
1233
1234 if (page_zone(start_page) != zone)
1235 return NULL;
1236
1237 end_page = pfn_to_page(end_pfn);
1238
1239 /* This gives a shorter code than deriving page_zone(end_page) */
1240 if (page_zone_id(start_page) != page_zone_id(end_page))
1241 return NULL;
1242
1243 return start_page;
1244}
1245
1246void set_zone_contiguous(struct zone *zone)
1247{
1248 unsigned long block_start_pfn = zone->zone_start_pfn;
1249 unsigned long block_end_pfn;
1250
1251 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1252 for (; block_start_pfn < zone_end_pfn(zone);
1253 block_start_pfn = block_end_pfn,
1254 block_end_pfn += pageblock_nr_pages) {
1255
1256 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1257
1258 if (!__pageblock_pfn_to_page(block_start_pfn,
1259 block_end_pfn, zone))
1260 return;
1261 }
1262
1263 /* We confirm that there is no hole */
1264 zone->contiguous = true;
1265}
1266
1267void clear_zone_contiguous(struct zone *zone)
1268{
1269 zone->contiguous = false;
1270}
1271
7e18adb4 1272#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1273static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1274 unsigned long pfn, int nr_pages)
1275{
1276 int i;
1277
1278 if (!page)
1279 return;
1280
1281 /* Free a large naturally-aligned chunk if possible */
1282 if (nr_pages == MAX_ORDER_NR_PAGES &&
1283 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1284 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1285 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1286 return;
1287 }
1288
949698a3
LZ
1289 for (i = 0; i < nr_pages; i++, page++)
1290 __free_pages_boot_core(page, 0);
a4de83dd
MG
1291}
1292
d3cd131d
NS
1293/* Completion tracking for deferred_init_memmap() threads */
1294static atomic_t pgdat_init_n_undone __initdata;
1295static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1296
1297static inline void __init pgdat_init_report_one_done(void)
1298{
1299 if (atomic_dec_and_test(&pgdat_init_n_undone))
1300 complete(&pgdat_init_all_done_comp);
1301}
0e1cc95b 1302
7e18adb4 1303/* Initialise remaining memory on a node */
0e1cc95b 1304static int __init deferred_init_memmap(void *data)
7e18adb4 1305{
0e1cc95b
MG
1306 pg_data_t *pgdat = data;
1307 int nid = pgdat->node_id;
7e18adb4
MG
1308 struct mminit_pfnnid_cache nid_init_state = { };
1309 unsigned long start = jiffies;
1310 unsigned long nr_pages = 0;
1311 unsigned long walk_start, walk_end;
1312 int i, zid;
1313 struct zone *zone;
7e18adb4 1314 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1315 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1316
0e1cc95b 1317 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1318 pgdat_init_report_one_done();
0e1cc95b
MG
1319 return 0;
1320 }
1321
1322 /* Bind memory initialisation thread to a local node if possible */
1323 if (!cpumask_empty(cpumask))
1324 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1325
1326 /* Sanity check boundaries */
1327 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1328 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1329 pgdat->first_deferred_pfn = ULONG_MAX;
1330
1331 /* Only the highest zone is deferred so find it */
1332 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1333 zone = pgdat->node_zones + zid;
1334 if (first_init_pfn < zone_end_pfn(zone))
1335 break;
1336 }
1337
1338 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1339 unsigned long pfn, end_pfn;
54608c3f 1340 struct page *page = NULL;
a4de83dd
MG
1341 struct page *free_base_page = NULL;
1342 unsigned long free_base_pfn = 0;
1343 int nr_to_free = 0;
7e18adb4
MG
1344
1345 end_pfn = min(walk_end, zone_end_pfn(zone));
1346 pfn = first_init_pfn;
1347 if (pfn < walk_start)
1348 pfn = walk_start;
1349 if (pfn < zone->zone_start_pfn)
1350 pfn = zone->zone_start_pfn;
1351
1352 for (; pfn < end_pfn; pfn++) {
54608c3f 1353 if (!pfn_valid_within(pfn))
a4de83dd 1354 goto free_range;
7e18adb4 1355
54608c3f
MG
1356 /*
1357 * Ensure pfn_valid is checked every
1358 * MAX_ORDER_NR_PAGES for memory holes
1359 */
1360 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1361 if (!pfn_valid(pfn)) {
1362 page = NULL;
a4de83dd 1363 goto free_range;
54608c3f
MG
1364 }
1365 }
1366
1367 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1368 page = NULL;
a4de83dd 1369 goto free_range;
54608c3f
MG
1370 }
1371
1372 /* Minimise pfn page lookups and scheduler checks */
1373 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1374 page++;
1375 } else {
a4de83dd
MG
1376 nr_pages += nr_to_free;
1377 deferred_free_range(free_base_page,
1378 free_base_pfn, nr_to_free);
1379 free_base_page = NULL;
1380 free_base_pfn = nr_to_free = 0;
1381
54608c3f
MG
1382 page = pfn_to_page(pfn);
1383 cond_resched();
1384 }
7e18adb4
MG
1385
1386 if (page->flags) {
1387 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1388 goto free_range;
7e18adb4
MG
1389 }
1390
1391 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1392 if (!free_base_page) {
1393 free_base_page = page;
1394 free_base_pfn = pfn;
1395 nr_to_free = 0;
1396 }
1397 nr_to_free++;
1398
1399 /* Where possible, batch up pages for a single free */
1400 continue;
1401free_range:
1402 /* Free the current block of pages to allocator */
1403 nr_pages += nr_to_free;
1404 deferred_free_range(free_base_page, free_base_pfn,
1405 nr_to_free);
1406 free_base_page = NULL;
1407 free_base_pfn = nr_to_free = 0;
7e18adb4 1408 }
a4de83dd 1409
7e18adb4
MG
1410 first_init_pfn = max(end_pfn, first_init_pfn);
1411 }
1412
1413 /* Sanity check that the next zone really is unpopulated */
1414 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1415
0e1cc95b 1416 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1417 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1418
1419 pgdat_init_report_one_done();
0e1cc95b
MG
1420 return 0;
1421}
7cf91a98 1422#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1423
1424void __init page_alloc_init_late(void)
1425{
7cf91a98
JK
1426 struct zone *zone;
1427
1428#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1429 int nid;
1430
d3cd131d
NS
1431 /* There will be num_node_state(N_MEMORY) threads */
1432 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1433 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1434 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1435 }
1436
1437 /* Block until all are initialised */
d3cd131d 1438 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1439
1440 /* Reinit limits that are based on free pages after the kernel is up */
1441 files_maxfiles_init();
7cf91a98
JK
1442#endif
1443
1444 for_each_populated_zone(zone)
1445 set_zone_contiguous(zone);
7e18adb4 1446}
7e18adb4 1447
47118af0 1448#ifdef CONFIG_CMA
9cf510a5 1449/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1450void __init init_cma_reserved_pageblock(struct page *page)
1451{
1452 unsigned i = pageblock_nr_pages;
1453 struct page *p = page;
1454
1455 do {
1456 __ClearPageReserved(p);
1457 set_page_count(p, 0);
1458 } while (++p, --i);
1459
47118af0 1460 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1461
1462 if (pageblock_order >= MAX_ORDER) {
1463 i = pageblock_nr_pages;
1464 p = page;
1465 do {
1466 set_page_refcounted(p);
1467 __free_pages(p, MAX_ORDER - 1);
1468 p += MAX_ORDER_NR_PAGES;
1469 } while (i -= MAX_ORDER_NR_PAGES);
1470 } else {
1471 set_page_refcounted(page);
1472 __free_pages(page, pageblock_order);
1473 }
1474
3dcc0571 1475 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1476}
1477#endif
1da177e4
LT
1478
1479/*
1480 * The order of subdivision here is critical for the IO subsystem.
1481 * Please do not alter this order without good reasons and regression
1482 * testing. Specifically, as large blocks of memory are subdivided,
1483 * the order in which smaller blocks are delivered depends on the order
1484 * they're subdivided in this function. This is the primary factor
1485 * influencing the order in which pages are delivered to the IO
1486 * subsystem according to empirical testing, and this is also justified
1487 * by considering the behavior of a buddy system containing a single
1488 * large block of memory acted on by a series of small allocations.
1489 * This behavior is a critical factor in sglist merging's success.
1490 *
6d49e352 1491 * -- nyc
1da177e4 1492 */
085cc7d5 1493static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1494 int low, int high, struct free_area *area,
1495 int migratetype)
1da177e4
LT
1496{
1497 unsigned long size = 1 << high;
1498
1499 while (high > low) {
1500 area--;
1501 high--;
1502 size >>= 1;
309381fe 1503 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1504
2847cf95 1505 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1506 debug_guardpage_enabled() &&
2847cf95 1507 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1508 /*
1509 * Mark as guard pages (or page), that will allow to
1510 * merge back to allocator when buddy will be freed.
1511 * Corresponding page table entries will not be touched,
1512 * pages will stay not present in virtual address space
1513 */
2847cf95 1514 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1515 continue;
1516 }
b2a0ac88 1517 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1518 area->nr_free++;
1519 set_page_order(&page[size], high);
1520 }
1da177e4
LT
1521}
1522
1da177e4
LT
1523/*
1524 * This page is about to be returned from the page allocator
1525 */
2a7684a2 1526static inline int check_new_page(struct page *page)
1da177e4 1527{
7bfec6f4
MG
1528 const char *bad_reason;
1529 unsigned long bad_flags;
1530
1531 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1532 return 0;
f0b791a3 1533
7bfec6f4
MG
1534 bad_reason = NULL;
1535 bad_flags = 0;
53f9263b 1536 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1537 bad_reason = "nonzero mapcount";
1538 if (unlikely(page->mapping != NULL))
1539 bad_reason = "non-NULL mapping";
fe896d18 1540 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1541 bad_reason = "nonzero _count";
f4c18e6f
NH
1542 if (unlikely(page->flags & __PG_HWPOISON)) {
1543 bad_reason = "HWPoisoned (hardware-corrupted)";
1544 bad_flags = __PG_HWPOISON;
1545 }
f0b791a3
DH
1546 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1547 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1548 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1549 }
9edad6ea
JW
1550#ifdef CONFIG_MEMCG
1551 if (unlikely(page->mem_cgroup))
1552 bad_reason = "page still charged to cgroup";
1553#endif
f0b791a3
DH
1554 if (unlikely(bad_reason)) {
1555 bad_page(page, bad_reason, bad_flags);
689bcebf 1556 return 1;
8cc3b392 1557 }
2a7684a2
WF
1558 return 0;
1559}
1560
1414c7f4
LA
1561static inline bool free_pages_prezeroed(bool poisoned)
1562{
1563 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1564 page_poisoning_enabled() && poisoned;
1565}
1566
75379191 1567static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1568 unsigned int alloc_flags)
2a7684a2
WF
1569{
1570 int i;
1414c7f4 1571 bool poisoned = true;
2a7684a2
WF
1572
1573 for (i = 0; i < (1 << order); i++) {
1574 struct page *p = page + i;
1575 if (unlikely(check_new_page(p)))
1576 return 1;
1414c7f4
LA
1577 if (poisoned)
1578 poisoned &= page_is_poisoned(p);
2a7684a2 1579 }
689bcebf 1580
4c21e2f2 1581 set_page_private(page, 0);
7835e98b 1582 set_page_refcounted(page);
cc102509
NP
1583
1584 arch_alloc_page(page, order);
1da177e4 1585 kernel_map_pages(page, 1 << order, 1);
8823b1db 1586 kernel_poison_pages(page, 1 << order, 1);
b8c73fc2 1587 kasan_alloc_pages(page, order);
17cf4406 1588
1414c7f4 1589 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1590 for (i = 0; i < (1 << order); i++)
1591 clear_highpage(page + i);
17cf4406
NP
1592
1593 if (order && (gfp_flags & __GFP_COMP))
1594 prep_compound_page(page, order);
1595
48c96a36
JK
1596 set_page_owner(page, order, gfp_flags);
1597
75379191 1598 /*
2f064f34 1599 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1600 * allocate the page. The expectation is that the caller is taking
1601 * steps that will free more memory. The caller should avoid the page
1602 * being used for !PFMEMALLOC purposes.
1603 */
2f064f34
MH
1604 if (alloc_flags & ALLOC_NO_WATERMARKS)
1605 set_page_pfmemalloc(page);
1606 else
1607 clear_page_pfmemalloc(page);
75379191 1608
689bcebf 1609 return 0;
1da177e4
LT
1610}
1611
56fd56b8
MG
1612/*
1613 * Go through the free lists for the given migratetype and remove
1614 * the smallest available page from the freelists
1615 */
728ec980
MG
1616static inline
1617struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1618 int migratetype)
1619{
1620 unsigned int current_order;
b8af2941 1621 struct free_area *area;
56fd56b8
MG
1622 struct page *page;
1623
1624 /* Find a page of the appropriate size in the preferred list */
1625 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1626 area = &(zone->free_area[current_order]);
a16601c5 1627 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1628 struct page, lru);
a16601c5
GT
1629 if (!page)
1630 continue;
56fd56b8
MG
1631 list_del(&page->lru);
1632 rmv_page_order(page);
1633 area->nr_free--;
56fd56b8 1634 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1635 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1636 return page;
1637 }
1638
1639 return NULL;
1640}
1641
1642
b2a0ac88
MG
1643/*
1644 * This array describes the order lists are fallen back to when
1645 * the free lists for the desirable migrate type are depleted
1646 */
47118af0 1647static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1648 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1649 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1650 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1651#ifdef CONFIG_CMA
974a786e 1652 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1653#endif
194159fb 1654#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1655 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1656#endif
b2a0ac88
MG
1657};
1658
dc67647b
JK
1659#ifdef CONFIG_CMA
1660static struct page *__rmqueue_cma_fallback(struct zone *zone,
1661 unsigned int order)
1662{
1663 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1664}
1665#else
1666static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1667 unsigned int order) { return NULL; }
1668#endif
1669
c361be55
MG
1670/*
1671 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1672 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1673 * boundary. If alignment is required, use move_freepages_block()
1674 */
435b405c 1675int move_freepages(struct zone *zone,
b69a7288
AB
1676 struct page *start_page, struct page *end_page,
1677 int migratetype)
c361be55
MG
1678{
1679 struct page *page;
d00181b9 1680 unsigned int order;
d100313f 1681 int pages_moved = 0;
c361be55
MG
1682
1683#ifndef CONFIG_HOLES_IN_ZONE
1684 /*
1685 * page_zone is not safe to call in this context when
1686 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1687 * anyway as we check zone boundaries in move_freepages_block().
1688 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1689 * grouping pages by mobility
c361be55 1690 */
97ee4ba7 1691 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1692#endif
1693
1694 for (page = start_page; page <= end_page;) {
344c790e 1695 /* Make sure we are not inadvertently changing nodes */
309381fe 1696 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1697
c361be55
MG
1698 if (!pfn_valid_within(page_to_pfn(page))) {
1699 page++;
1700 continue;
1701 }
1702
1703 if (!PageBuddy(page)) {
1704 page++;
1705 continue;
1706 }
1707
1708 order = page_order(page);
84be48d8
KS
1709 list_move(&page->lru,
1710 &zone->free_area[order].free_list[migratetype]);
c361be55 1711 page += 1 << order;
d100313f 1712 pages_moved += 1 << order;
c361be55
MG
1713 }
1714
d100313f 1715 return pages_moved;
c361be55
MG
1716}
1717
ee6f509c 1718int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1719 int migratetype)
c361be55
MG
1720{
1721 unsigned long start_pfn, end_pfn;
1722 struct page *start_page, *end_page;
1723
1724 start_pfn = page_to_pfn(page);
d9c23400 1725 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1726 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1727 end_page = start_page + pageblock_nr_pages - 1;
1728 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1729
1730 /* Do not cross zone boundaries */
108bcc96 1731 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1732 start_page = page;
108bcc96 1733 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1734 return 0;
1735
1736 return move_freepages(zone, start_page, end_page, migratetype);
1737}
1738
2f66a68f
MG
1739static void change_pageblock_range(struct page *pageblock_page,
1740 int start_order, int migratetype)
1741{
1742 int nr_pageblocks = 1 << (start_order - pageblock_order);
1743
1744 while (nr_pageblocks--) {
1745 set_pageblock_migratetype(pageblock_page, migratetype);
1746 pageblock_page += pageblock_nr_pages;
1747 }
1748}
1749
fef903ef 1750/*
9c0415eb
VB
1751 * When we are falling back to another migratetype during allocation, try to
1752 * steal extra free pages from the same pageblocks to satisfy further
1753 * allocations, instead of polluting multiple pageblocks.
1754 *
1755 * If we are stealing a relatively large buddy page, it is likely there will
1756 * be more free pages in the pageblock, so try to steal them all. For
1757 * reclaimable and unmovable allocations, we steal regardless of page size,
1758 * as fragmentation caused by those allocations polluting movable pageblocks
1759 * is worse than movable allocations stealing from unmovable and reclaimable
1760 * pageblocks.
fef903ef 1761 */
4eb7dce6
JK
1762static bool can_steal_fallback(unsigned int order, int start_mt)
1763{
1764 /*
1765 * Leaving this order check is intended, although there is
1766 * relaxed order check in next check. The reason is that
1767 * we can actually steal whole pageblock if this condition met,
1768 * but, below check doesn't guarantee it and that is just heuristic
1769 * so could be changed anytime.
1770 */
1771 if (order >= pageblock_order)
1772 return true;
1773
1774 if (order >= pageblock_order / 2 ||
1775 start_mt == MIGRATE_RECLAIMABLE ||
1776 start_mt == MIGRATE_UNMOVABLE ||
1777 page_group_by_mobility_disabled)
1778 return true;
1779
1780 return false;
1781}
1782
1783/*
1784 * This function implements actual steal behaviour. If order is large enough,
1785 * we can steal whole pageblock. If not, we first move freepages in this
1786 * pageblock and check whether half of pages are moved or not. If half of
1787 * pages are moved, we can change migratetype of pageblock and permanently
1788 * use it's pages as requested migratetype in the future.
1789 */
1790static void steal_suitable_fallback(struct zone *zone, struct page *page,
1791 int start_type)
fef903ef 1792{
d00181b9 1793 unsigned int current_order = page_order(page);
4eb7dce6 1794 int pages;
fef903ef 1795
fef903ef
SB
1796 /* Take ownership for orders >= pageblock_order */
1797 if (current_order >= pageblock_order) {
1798 change_pageblock_range(page, current_order, start_type);
3a1086fb 1799 return;
fef903ef
SB
1800 }
1801
4eb7dce6 1802 pages = move_freepages_block(zone, page, start_type);
fef903ef 1803
4eb7dce6
JK
1804 /* Claim the whole block if over half of it is free */
1805 if (pages >= (1 << (pageblock_order-1)) ||
1806 page_group_by_mobility_disabled)
1807 set_pageblock_migratetype(page, start_type);
1808}
1809
2149cdae
JK
1810/*
1811 * Check whether there is a suitable fallback freepage with requested order.
1812 * If only_stealable is true, this function returns fallback_mt only if
1813 * we can steal other freepages all together. This would help to reduce
1814 * fragmentation due to mixed migratetype pages in one pageblock.
1815 */
1816int find_suitable_fallback(struct free_area *area, unsigned int order,
1817 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1818{
1819 int i;
1820 int fallback_mt;
1821
1822 if (area->nr_free == 0)
1823 return -1;
1824
1825 *can_steal = false;
1826 for (i = 0;; i++) {
1827 fallback_mt = fallbacks[migratetype][i];
974a786e 1828 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1829 break;
1830
1831 if (list_empty(&area->free_list[fallback_mt]))
1832 continue;
fef903ef 1833
4eb7dce6
JK
1834 if (can_steal_fallback(order, migratetype))
1835 *can_steal = true;
1836
2149cdae
JK
1837 if (!only_stealable)
1838 return fallback_mt;
1839
1840 if (*can_steal)
1841 return fallback_mt;
fef903ef 1842 }
4eb7dce6
JK
1843
1844 return -1;
fef903ef
SB
1845}
1846
0aaa29a5
MG
1847/*
1848 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1849 * there are no empty page blocks that contain a page with a suitable order
1850 */
1851static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1852 unsigned int alloc_order)
1853{
1854 int mt;
1855 unsigned long max_managed, flags;
1856
1857 /*
1858 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1859 * Check is race-prone but harmless.
1860 */
1861 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1862 if (zone->nr_reserved_highatomic >= max_managed)
1863 return;
1864
1865 spin_lock_irqsave(&zone->lock, flags);
1866
1867 /* Recheck the nr_reserved_highatomic limit under the lock */
1868 if (zone->nr_reserved_highatomic >= max_managed)
1869 goto out_unlock;
1870
1871 /* Yoink! */
1872 mt = get_pageblock_migratetype(page);
1873 if (mt != MIGRATE_HIGHATOMIC &&
1874 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1875 zone->nr_reserved_highatomic += pageblock_nr_pages;
1876 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1877 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1878 }
1879
1880out_unlock:
1881 spin_unlock_irqrestore(&zone->lock, flags);
1882}
1883
1884/*
1885 * Used when an allocation is about to fail under memory pressure. This
1886 * potentially hurts the reliability of high-order allocations when under
1887 * intense memory pressure but failed atomic allocations should be easier
1888 * to recover from than an OOM.
1889 */
1890static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1891{
1892 struct zonelist *zonelist = ac->zonelist;
1893 unsigned long flags;
1894 struct zoneref *z;
1895 struct zone *zone;
1896 struct page *page;
1897 int order;
1898
1899 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1900 ac->nodemask) {
1901 /* Preserve at least one pageblock */
1902 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1903 continue;
1904
1905 spin_lock_irqsave(&zone->lock, flags);
1906 for (order = 0; order < MAX_ORDER; order++) {
1907 struct free_area *area = &(zone->free_area[order]);
1908
a16601c5
GT
1909 page = list_first_entry_or_null(
1910 &area->free_list[MIGRATE_HIGHATOMIC],
1911 struct page, lru);
1912 if (!page)
0aaa29a5
MG
1913 continue;
1914
0aaa29a5
MG
1915 /*
1916 * It should never happen but changes to locking could
1917 * inadvertently allow a per-cpu drain to add pages
1918 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1919 * and watch for underflows.
1920 */
1921 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1922 zone->nr_reserved_highatomic);
1923
1924 /*
1925 * Convert to ac->migratetype and avoid the normal
1926 * pageblock stealing heuristics. Minimally, the caller
1927 * is doing the work and needs the pages. More
1928 * importantly, if the block was always converted to
1929 * MIGRATE_UNMOVABLE or another type then the number
1930 * of pageblocks that cannot be completely freed
1931 * may increase.
1932 */
1933 set_pageblock_migratetype(page, ac->migratetype);
1934 move_freepages_block(zone, page, ac->migratetype);
1935 spin_unlock_irqrestore(&zone->lock, flags);
1936 return;
1937 }
1938 spin_unlock_irqrestore(&zone->lock, flags);
1939 }
1940}
1941
b2a0ac88 1942/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 1943static inline struct page *
7aeb09f9 1944__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 1945{
b8af2941 1946 struct free_area *area;
7aeb09f9 1947 unsigned int current_order;
b2a0ac88 1948 struct page *page;
4eb7dce6
JK
1949 int fallback_mt;
1950 bool can_steal;
b2a0ac88
MG
1951
1952 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
1953 for (current_order = MAX_ORDER-1;
1954 current_order >= order && current_order <= MAX_ORDER-1;
1955 --current_order) {
4eb7dce6
JK
1956 area = &(zone->free_area[current_order]);
1957 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 1958 start_migratetype, false, &can_steal);
4eb7dce6
JK
1959 if (fallback_mt == -1)
1960 continue;
b2a0ac88 1961
a16601c5 1962 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
1963 struct page, lru);
1964 if (can_steal)
1965 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 1966
4eb7dce6
JK
1967 /* Remove the page from the freelists */
1968 area->nr_free--;
1969 list_del(&page->lru);
1970 rmv_page_order(page);
3a1086fb 1971
4eb7dce6
JK
1972 expand(zone, page, order, current_order, area,
1973 start_migratetype);
1974 /*
bb14c2c7 1975 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 1976 * migratetype depending on the decisions in
bb14c2c7
VB
1977 * find_suitable_fallback(). This is OK as long as it does not
1978 * differ for MIGRATE_CMA pageblocks. Those can be used as
1979 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 1980 */
bb14c2c7 1981 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 1982
4eb7dce6
JK
1983 trace_mm_page_alloc_extfrag(page, order, current_order,
1984 start_migratetype, fallback_mt);
e0fff1bd 1985
4eb7dce6 1986 return page;
b2a0ac88
MG
1987 }
1988
728ec980 1989 return NULL;
b2a0ac88
MG
1990}
1991
56fd56b8 1992/*
1da177e4
LT
1993 * Do the hard work of removing an element from the buddy allocator.
1994 * Call me with the zone->lock already held.
1995 */
b2a0ac88 1996static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 1997 int migratetype)
1da177e4 1998{
1da177e4
LT
1999 struct page *page;
2000
56fd56b8 2001 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2002 if (unlikely(!page)) {
dc67647b
JK
2003 if (migratetype == MIGRATE_MOVABLE)
2004 page = __rmqueue_cma_fallback(zone, order);
2005
2006 if (!page)
2007 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2008 }
2009
0d3d062a 2010 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2011 return page;
1da177e4
LT
2012}
2013
5f63b720 2014/*
1da177e4
LT
2015 * Obtain a specified number of elements from the buddy allocator, all under
2016 * a single hold of the lock, for efficiency. Add them to the supplied list.
2017 * Returns the number of new pages which were placed at *list.
2018 */
5f63b720 2019static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2020 unsigned long count, struct list_head *list,
b745bc85 2021 int migratetype, bool cold)
1da177e4 2022{
5bcc9f86 2023 int i;
5f63b720 2024
c54ad30c 2025 spin_lock(&zone->lock);
1da177e4 2026 for (i = 0; i < count; ++i) {
6ac0206b 2027 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2028 if (unlikely(page == NULL))
1da177e4 2029 break;
81eabcbe
MG
2030
2031 /*
2032 * Split buddy pages returned by expand() are received here
2033 * in physical page order. The page is added to the callers and
2034 * list and the list head then moves forward. From the callers
2035 * perspective, the linked list is ordered by page number in
2036 * some conditions. This is useful for IO devices that can
2037 * merge IO requests if the physical pages are ordered
2038 * properly.
2039 */
b745bc85 2040 if (likely(!cold))
e084b2d9
MG
2041 list_add(&page->lru, list);
2042 else
2043 list_add_tail(&page->lru, list);
81eabcbe 2044 list = &page->lru;
bb14c2c7 2045 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2046 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2047 -(1 << order));
1da177e4 2048 }
f2260e6b 2049 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2050 spin_unlock(&zone->lock);
085cc7d5 2051 return i;
1da177e4
LT
2052}
2053
4ae7c039 2054#ifdef CONFIG_NUMA
8fce4d8e 2055/*
4037d452
CL
2056 * Called from the vmstat counter updater to drain pagesets of this
2057 * currently executing processor on remote nodes after they have
2058 * expired.
2059 *
879336c3
CL
2060 * Note that this function must be called with the thread pinned to
2061 * a single processor.
8fce4d8e 2062 */
4037d452 2063void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2064{
4ae7c039 2065 unsigned long flags;
7be12fc9 2066 int to_drain, batch;
4ae7c039 2067
4037d452 2068 local_irq_save(flags);
4db0c3c2 2069 batch = READ_ONCE(pcp->batch);
7be12fc9 2070 to_drain = min(pcp->count, batch);
2a13515c
KM
2071 if (to_drain > 0) {
2072 free_pcppages_bulk(zone, to_drain, pcp);
2073 pcp->count -= to_drain;
2074 }
4037d452 2075 local_irq_restore(flags);
4ae7c039
CL
2076}
2077#endif
2078
9f8f2172 2079/*
93481ff0 2080 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2081 *
2082 * The processor must either be the current processor and the
2083 * thread pinned to the current processor or a processor that
2084 * is not online.
2085 */
93481ff0 2086static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2087{
c54ad30c 2088 unsigned long flags;
93481ff0
VB
2089 struct per_cpu_pageset *pset;
2090 struct per_cpu_pages *pcp;
1da177e4 2091
93481ff0
VB
2092 local_irq_save(flags);
2093 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2094
93481ff0
VB
2095 pcp = &pset->pcp;
2096 if (pcp->count) {
2097 free_pcppages_bulk(zone, pcp->count, pcp);
2098 pcp->count = 0;
2099 }
2100 local_irq_restore(flags);
2101}
3dfa5721 2102
93481ff0
VB
2103/*
2104 * Drain pcplists of all zones on the indicated processor.
2105 *
2106 * The processor must either be the current processor and the
2107 * thread pinned to the current processor or a processor that
2108 * is not online.
2109 */
2110static void drain_pages(unsigned int cpu)
2111{
2112 struct zone *zone;
2113
2114 for_each_populated_zone(zone) {
2115 drain_pages_zone(cpu, zone);
1da177e4
LT
2116 }
2117}
1da177e4 2118
9f8f2172
CL
2119/*
2120 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2121 *
2122 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2123 * the single zone's pages.
9f8f2172 2124 */
93481ff0 2125void drain_local_pages(struct zone *zone)
9f8f2172 2126{
93481ff0
VB
2127 int cpu = smp_processor_id();
2128
2129 if (zone)
2130 drain_pages_zone(cpu, zone);
2131 else
2132 drain_pages(cpu);
9f8f2172
CL
2133}
2134
2135/*
74046494
GBY
2136 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2137 *
93481ff0
VB
2138 * When zone parameter is non-NULL, spill just the single zone's pages.
2139 *
74046494
GBY
2140 * Note that this code is protected against sending an IPI to an offline
2141 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2142 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2143 * nothing keeps CPUs from showing up after we populated the cpumask and
2144 * before the call to on_each_cpu_mask().
9f8f2172 2145 */
93481ff0 2146void drain_all_pages(struct zone *zone)
9f8f2172 2147{
74046494 2148 int cpu;
74046494
GBY
2149
2150 /*
2151 * Allocate in the BSS so we wont require allocation in
2152 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2153 */
2154 static cpumask_t cpus_with_pcps;
2155
2156 /*
2157 * We don't care about racing with CPU hotplug event
2158 * as offline notification will cause the notified
2159 * cpu to drain that CPU pcps and on_each_cpu_mask
2160 * disables preemption as part of its processing
2161 */
2162 for_each_online_cpu(cpu) {
93481ff0
VB
2163 struct per_cpu_pageset *pcp;
2164 struct zone *z;
74046494 2165 bool has_pcps = false;
93481ff0
VB
2166
2167 if (zone) {
74046494 2168 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2169 if (pcp->pcp.count)
74046494 2170 has_pcps = true;
93481ff0
VB
2171 } else {
2172 for_each_populated_zone(z) {
2173 pcp = per_cpu_ptr(z->pageset, cpu);
2174 if (pcp->pcp.count) {
2175 has_pcps = true;
2176 break;
2177 }
74046494
GBY
2178 }
2179 }
93481ff0 2180
74046494
GBY
2181 if (has_pcps)
2182 cpumask_set_cpu(cpu, &cpus_with_pcps);
2183 else
2184 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2185 }
93481ff0
VB
2186 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2187 zone, 1);
9f8f2172
CL
2188}
2189
296699de 2190#ifdef CONFIG_HIBERNATION
1da177e4
LT
2191
2192void mark_free_pages(struct zone *zone)
2193{
f623f0db
RW
2194 unsigned long pfn, max_zone_pfn;
2195 unsigned long flags;
7aeb09f9 2196 unsigned int order, t;
86760a2c 2197 struct page *page;
1da177e4 2198
8080fc03 2199 if (zone_is_empty(zone))
1da177e4
LT
2200 return;
2201
2202 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2203
108bcc96 2204 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2205 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2206 if (pfn_valid(pfn)) {
86760a2c 2207 page = pfn_to_page(pfn);
ba6b0979
JK
2208
2209 if (page_zone(page) != zone)
2210 continue;
2211
7be98234
RW
2212 if (!swsusp_page_is_forbidden(page))
2213 swsusp_unset_page_free(page);
f623f0db 2214 }
1da177e4 2215
b2a0ac88 2216 for_each_migratetype_order(order, t) {
86760a2c
GT
2217 list_for_each_entry(page,
2218 &zone->free_area[order].free_list[t], lru) {
f623f0db 2219 unsigned long i;
1da177e4 2220
86760a2c 2221 pfn = page_to_pfn(page);
f623f0db 2222 for (i = 0; i < (1UL << order); i++)
7be98234 2223 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2224 }
b2a0ac88 2225 }
1da177e4
LT
2226 spin_unlock_irqrestore(&zone->lock, flags);
2227}
e2c55dc8 2228#endif /* CONFIG_PM */
1da177e4 2229
1da177e4
LT
2230/*
2231 * Free a 0-order page
b745bc85 2232 * cold == true ? free a cold page : free a hot page
1da177e4 2233 */
b745bc85 2234void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2235{
2236 struct zone *zone = page_zone(page);
2237 struct per_cpu_pages *pcp;
2238 unsigned long flags;
dc4b0caf 2239 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2240 int migratetype;
1da177e4 2241
ec95f53a 2242 if (!free_pages_prepare(page, 0))
689bcebf
HD
2243 return;
2244
dc4b0caf 2245 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2246 set_pcppage_migratetype(page, migratetype);
1da177e4 2247 local_irq_save(flags);
f8891e5e 2248 __count_vm_event(PGFREE);
da456f14 2249
5f8dcc21
MG
2250 /*
2251 * We only track unmovable, reclaimable and movable on pcp lists.
2252 * Free ISOLATE pages back to the allocator because they are being
2253 * offlined but treat RESERVE as movable pages so we can get those
2254 * areas back if necessary. Otherwise, we may have to free
2255 * excessively into the page allocator
2256 */
2257 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2258 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2259 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2260 goto out;
2261 }
2262 migratetype = MIGRATE_MOVABLE;
2263 }
2264
99dcc3e5 2265 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2266 if (!cold)
5f8dcc21 2267 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2268 else
2269 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2270 pcp->count++;
48db57f8 2271 if (pcp->count >= pcp->high) {
4db0c3c2 2272 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2273 free_pcppages_bulk(zone, batch, pcp);
2274 pcp->count -= batch;
48db57f8 2275 }
5f8dcc21
MG
2276
2277out:
1da177e4 2278 local_irq_restore(flags);
1da177e4
LT
2279}
2280
cc59850e
KK
2281/*
2282 * Free a list of 0-order pages
2283 */
b745bc85 2284void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2285{
2286 struct page *page, *next;
2287
2288 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2289 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2290 free_hot_cold_page(page, cold);
2291 }
2292}
2293
8dfcc9ba
NP
2294/*
2295 * split_page takes a non-compound higher-order page, and splits it into
2296 * n (1<<order) sub-pages: page[0..n]
2297 * Each sub-page must be freed individually.
2298 *
2299 * Note: this is probably too low level an operation for use in drivers.
2300 * Please consult with lkml before using this in your driver.
2301 */
2302void split_page(struct page *page, unsigned int order)
2303{
2304 int i;
e2cfc911 2305 gfp_t gfp_mask;
8dfcc9ba 2306
309381fe
SL
2307 VM_BUG_ON_PAGE(PageCompound(page), page);
2308 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2309
2310#ifdef CONFIG_KMEMCHECK
2311 /*
2312 * Split shadow pages too, because free(page[0]) would
2313 * otherwise free the whole shadow.
2314 */
2315 if (kmemcheck_page_is_tracked(page))
2316 split_page(virt_to_page(page[0].shadow), order);
2317#endif
2318
e2cfc911
JK
2319 gfp_mask = get_page_owner_gfp(page);
2320 set_page_owner(page, 0, gfp_mask);
48c96a36 2321 for (i = 1; i < (1 << order); i++) {
7835e98b 2322 set_page_refcounted(page + i);
e2cfc911 2323 set_page_owner(page + i, 0, gfp_mask);
48c96a36 2324 }
8dfcc9ba 2325}
5853ff23 2326EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2327
3c605096 2328int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2329{
748446bb
MG
2330 unsigned long watermark;
2331 struct zone *zone;
2139cbe6 2332 int mt;
748446bb
MG
2333
2334 BUG_ON(!PageBuddy(page));
2335
2336 zone = page_zone(page);
2e30abd1 2337 mt = get_pageblock_migratetype(page);
748446bb 2338
194159fb 2339 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2340 /* Obey watermarks as if the page was being allocated */
2341 watermark = low_wmark_pages(zone) + (1 << order);
2342 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2343 return 0;
2344
8fb74b9f 2345 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2346 }
748446bb
MG
2347
2348 /* Remove page from free list */
2349 list_del(&page->lru);
2350 zone->free_area[order].nr_free--;
2351 rmv_page_order(page);
2139cbe6 2352
e2cfc911 2353 set_page_owner(page, order, __GFP_MOVABLE);
f3a14ced 2354
8fb74b9f 2355 /* Set the pageblock if the isolated page is at least a pageblock */
748446bb
MG
2356 if (order >= pageblock_order - 1) {
2357 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2358 for (; page < endpage; page += pageblock_nr_pages) {
2359 int mt = get_pageblock_migratetype(page);
194159fb 2360 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2361 set_pageblock_migratetype(page,
2362 MIGRATE_MOVABLE);
2363 }
748446bb
MG
2364 }
2365
f3a14ced 2366
8fb74b9f 2367 return 1UL << order;
1fb3f8ca
MG
2368}
2369
2370/*
2371 * Similar to split_page except the page is already free. As this is only
2372 * being used for migration, the migratetype of the block also changes.
2373 * As this is called with interrupts disabled, the caller is responsible
2374 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2375 * are enabled.
2376 *
2377 * Note: this is probably too low level an operation for use in drivers.
2378 * Please consult with lkml before using this in your driver.
2379 */
2380int split_free_page(struct page *page)
2381{
2382 unsigned int order;
2383 int nr_pages;
2384
1fb3f8ca
MG
2385 order = page_order(page);
2386
8fb74b9f 2387 nr_pages = __isolate_free_page(page, order);
1fb3f8ca
MG
2388 if (!nr_pages)
2389 return 0;
2390
2391 /* Split into individual pages */
2392 set_page_refcounted(page);
2393 split_page(page, order);
2394 return nr_pages;
748446bb
MG
2395}
2396
060e7417
MG
2397/*
2398 * Update NUMA hit/miss statistics
2399 *
2400 * Must be called with interrupts disabled.
2401 *
2402 * When __GFP_OTHER_NODE is set assume the node of the preferred
2403 * zone is the local node. This is useful for daemons who allocate
2404 * memory on behalf of other processes.
2405 */
2406static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2407 gfp_t flags)
2408{
2409#ifdef CONFIG_NUMA
2410 int local_nid = numa_node_id();
2411 enum zone_stat_item local_stat = NUMA_LOCAL;
2412
2413 if (unlikely(flags & __GFP_OTHER_NODE)) {
2414 local_stat = NUMA_OTHER;
2415 local_nid = preferred_zone->node;
2416 }
2417
2418 if (z->node == local_nid) {
2419 __inc_zone_state(z, NUMA_HIT);
2420 __inc_zone_state(z, local_stat);
2421 } else {
2422 __inc_zone_state(z, NUMA_MISS);
2423 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2424 }
2425#endif
2426}
2427
1da177e4 2428/*
75379191 2429 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2430 */
0a15c3e9
MG
2431static inline
2432struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2433 struct zone *zone, unsigned int order,
c603844b
MG
2434 gfp_t gfp_flags, unsigned int alloc_flags,
2435 int migratetype)
1da177e4
LT
2436{
2437 unsigned long flags;
689bcebf 2438 struct page *page;
b745bc85 2439 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2440
48db57f8 2441 if (likely(order == 0)) {
1da177e4 2442 struct per_cpu_pages *pcp;
5f8dcc21 2443 struct list_head *list;
1da177e4 2444
1da177e4 2445 local_irq_save(flags);
99dcc3e5
CL
2446 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2447 list = &pcp->lists[migratetype];
5f8dcc21 2448 if (list_empty(list)) {
535131e6 2449 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 2450 pcp->batch, list,
e084b2d9 2451 migratetype, cold);
5f8dcc21 2452 if (unlikely(list_empty(list)))
6fb332fa 2453 goto failed;
535131e6 2454 }
b92a6edd 2455
5f8dcc21 2456 if (cold)
a16601c5 2457 page = list_last_entry(list, struct page, lru);
5f8dcc21 2458 else
a16601c5 2459 page = list_first_entry(list, struct page, lru);
5f8dcc21 2460
754078eb 2461 __dec_zone_state(zone, NR_ALLOC_BATCH);
b92a6edd
MG
2462 list_del(&page->lru);
2463 pcp->count--;
7fb1d9fc 2464 } else {
0f352e53
MH
2465 /*
2466 * We most definitely don't want callers attempting to
2467 * allocate greater than order-1 page units with __GFP_NOFAIL.
2468 */
2469 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2470 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5
MG
2471
2472 page = NULL;
2473 if (alloc_flags & ALLOC_HARDER) {
2474 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2475 if (page)
2476 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2477 }
2478 if (!page)
6ac0206b 2479 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
2480 spin_unlock(&zone->lock);
2481 if (!page)
2482 goto failed;
754078eb 2483 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
d1ce749a 2484 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2485 get_pcppage_migratetype(page));
1da177e4
LT
2486 }
2487
abe5f972 2488 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
57054651
JW
2489 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2490 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
27329369 2491
f8891e5e 2492 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2493 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2494 local_irq_restore(flags);
1da177e4 2495
309381fe 2496 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2497 return page;
a74609fa
NP
2498
2499failed:
2500 local_irq_restore(flags);
a74609fa 2501 return NULL;
1da177e4
LT
2502}
2503
933e312e
AM
2504#ifdef CONFIG_FAIL_PAGE_ALLOC
2505
b2588c4b 2506static struct {
933e312e
AM
2507 struct fault_attr attr;
2508
621a5f7a 2509 bool ignore_gfp_highmem;
71baba4b 2510 bool ignore_gfp_reclaim;
54114994 2511 u32 min_order;
933e312e
AM
2512} fail_page_alloc = {
2513 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2514 .ignore_gfp_reclaim = true,
621a5f7a 2515 .ignore_gfp_highmem = true,
54114994 2516 .min_order = 1,
933e312e
AM
2517};
2518
2519static int __init setup_fail_page_alloc(char *str)
2520{
2521 return setup_fault_attr(&fail_page_alloc.attr, str);
2522}
2523__setup("fail_page_alloc=", setup_fail_page_alloc);
2524
deaf386e 2525static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2526{
54114994 2527 if (order < fail_page_alloc.min_order)
deaf386e 2528 return false;
933e312e 2529 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2530 return false;
933e312e 2531 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2532 return false;
71baba4b
MG
2533 if (fail_page_alloc.ignore_gfp_reclaim &&
2534 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2535 return false;
933e312e
AM
2536
2537 return should_fail(&fail_page_alloc.attr, 1 << order);
2538}
2539
2540#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2541
2542static int __init fail_page_alloc_debugfs(void)
2543{
f4ae40a6 2544 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2545 struct dentry *dir;
933e312e 2546
dd48c085
AM
2547 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2548 &fail_page_alloc.attr);
2549 if (IS_ERR(dir))
2550 return PTR_ERR(dir);
933e312e 2551
b2588c4b 2552 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2553 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2554 goto fail;
2555 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2556 &fail_page_alloc.ignore_gfp_highmem))
2557 goto fail;
2558 if (!debugfs_create_u32("min-order", mode, dir,
2559 &fail_page_alloc.min_order))
2560 goto fail;
2561
2562 return 0;
2563fail:
dd48c085 2564 debugfs_remove_recursive(dir);
933e312e 2565
b2588c4b 2566 return -ENOMEM;
933e312e
AM
2567}
2568
2569late_initcall(fail_page_alloc_debugfs);
2570
2571#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2572
2573#else /* CONFIG_FAIL_PAGE_ALLOC */
2574
deaf386e 2575static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2576{
deaf386e 2577 return false;
933e312e
AM
2578}
2579
2580#endif /* CONFIG_FAIL_PAGE_ALLOC */
2581
1da177e4 2582/*
97a16fc8
MG
2583 * Return true if free base pages are above 'mark'. For high-order checks it
2584 * will return true of the order-0 watermark is reached and there is at least
2585 * one free page of a suitable size. Checking now avoids taking the zone lock
2586 * to check in the allocation paths if no pages are free.
1da177e4 2587 */
7aeb09f9 2588static bool __zone_watermark_ok(struct zone *z, unsigned int order,
c603844b
MG
2589 unsigned long mark, int classzone_idx,
2590 unsigned int alloc_flags,
7aeb09f9 2591 long free_pages)
1da177e4 2592{
d23ad423 2593 long min = mark;
1da177e4 2594 int o;
c603844b 2595 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2596
0aaa29a5 2597 /* free_pages may go negative - that's OK */
df0a6daa 2598 free_pages -= (1 << order) - 1;
0aaa29a5 2599
7fb1d9fc 2600 if (alloc_flags & ALLOC_HIGH)
1da177e4 2601 min -= min / 2;
0aaa29a5
MG
2602
2603 /*
2604 * If the caller does not have rights to ALLOC_HARDER then subtract
2605 * the high-atomic reserves. This will over-estimate the size of the
2606 * atomic reserve but it avoids a search.
2607 */
97a16fc8 2608 if (likely(!alloc_harder))
0aaa29a5
MG
2609 free_pages -= z->nr_reserved_highatomic;
2610 else
1da177e4 2611 min -= min / 4;
e2b19197 2612
d95ea5d1
BZ
2613#ifdef CONFIG_CMA
2614 /* If allocation can't use CMA areas don't use free CMA pages */
2615 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2616 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2617#endif
026b0814 2618
97a16fc8
MG
2619 /*
2620 * Check watermarks for an order-0 allocation request. If these
2621 * are not met, then a high-order request also cannot go ahead
2622 * even if a suitable page happened to be free.
2623 */
2624 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2625 return false;
1da177e4 2626
97a16fc8
MG
2627 /* If this is an order-0 request then the watermark is fine */
2628 if (!order)
2629 return true;
2630
2631 /* For a high-order request, check at least one suitable page is free */
2632 for (o = order; o < MAX_ORDER; o++) {
2633 struct free_area *area = &z->free_area[o];
2634 int mt;
2635
2636 if (!area->nr_free)
2637 continue;
2638
2639 if (alloc_harder)
2640 return true;
1da177e4 2641
97a16fc8
MG
2642 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2643 if (!list_empty(&area->free_list[mt]))
2644 return true;
2645 }
2646
2647#ifdef CONFIG_CMA
2648 if ((alloc_flags & ALLOC_CMA) &&
2649 !list_empty(&area->free_list[MIGRATE_CMA])) {
2650 return true;
2651 }
2652#endif
1da177e4 2653 }
97a16fc8 2654 return false;
88f5acf8
MG
2655}
2656
7aeb09f9 2657bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2658 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2659{
2660 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2661 zone_page_state(z, NR_FREE_PAGES));
2662}
2663
48ee5f36
MG
2664static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2665 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2666{
2667 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2668 long cma_pages = 0;
2669
2670#ifdef CONFIG_CMA
2671 /* If allocation can't use CMA areas don't use free CMA pages */
2672 if (!(alloc_flags & ALLOC_CMA))
2673 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2674#endif
2675
2676 /*
2677 * Fast check for order-0 only. If this fails then the reserves
2678 * need to be calculated. There is a corner case where the check
2679 * passes but only the high-order atomic reserve are free. If
2680 * the caller is !atomic then it'll uselessly search the free
2681 * list. That corner case is then slower but it is harmless.
2682 */
2683 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2684 return true;
2685
2686 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2687 free_pages);
2688}
2689
7aeb09f9 2690bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2691 unsigned long mark, int classzone_idx)
88f5acf8
MG
2692{
2693 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2694
2695 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2696 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2697
e2b19197 2698 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2699 free_pages);
1da177e4
LT
2700}
2701
9276b1bc 2702#ifdef CONFIG_NUMA
81c0a2bb
JW
2703static bool zone_local(struct zone *local_zone, struct zone *zone)
2704{
fff4068c 2705 return local_zone->node == zone->node;
81c0a2bb
JW
2706}
2707
957f822a
DR
2708static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2709{
5f7a75ac
MG
2710 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2711 RECLAIM_DISTANCE;
957f822a 2712}
9276b1bc 2713#else /* CONFIG_NUMA */
81c0a2bb
JW
2714static bool zone_local(struct zone *local_zone, struct zone *zone)
2715{
2716 return true;
2717}
2718
957f822a
DR
2719static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2720{
2721 return true;
2722}
9276b1bc
PJ
2723#endif /* CONFIG_NUMA */
2724
4ffeaf35
MG
2725static void reset_alloc_batches(struct zone *preferred_zone)
2726{
2727 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2728
2729 do {
2730 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2731 high_wmark_pages(zone) - low_wmark_pages(zone) -
2732 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
57054651 2733 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
4ffeaf35
MG
2734 } while (zone++ != preferred_zone);
2735}
2736
7fb1d9fc 2737/*
0798e519 2738 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2739 * a page.
2740 */
2741static struct page *
a9263751
VB
2742get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2743 const struct alloc_context *ac)
753ee728 2744{
c33d6c06 2745 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2746 struct zone *zone;
30534755
MG
2747 bool fair_skipped = false;
2748 bool apply_fair = (alloc_flags & ALLOC_FAIR);
54a6eb5c 2749
9276b1bc 2750zonelist_scan:
7fb1d9fc 2751 /*
9276b1bc 2752 * Scan zonelist, looking for a zone with enough free.
344736f2 2753 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2754 */
c33d6c06 2755 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2756 ac->nodemask) {
be06af00 2757 struct page *page;
e085dbc5
JW
2758 unsigned long mark;
2759
664eedde
MG
2760 if (cpusets_enabled() &&
2761 (alloc_flags & ALLOC_CPUSET) &&
344736f2 2762 !cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2763 continue;
81c0a2bb
JW
2764 /*
2765 * Distribute pages in proportion to the individual
2766 * zone size to ensure fair page aging. The zone a
2767 * page was allocated in should have no effect on the
2768 * time the page has in memory before being reclaimed.
81c0a2bb 2769 */
30534755 2770 if (apply_fair) {
57054651 2771 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
fa379b95 2772 fair_skipped = true;
3a025760 2773 continue;
4ffeaf35 2774 }
c33d6c06 2775 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
30534755
MG
2776 if (fair_skipped)
2777 goto reset_fair;
2778 apply_fair = false;
2779 }
81c0a2bb 2780 }
a756cf59
JW
2781 /*
2782 * When allocating a page cache page for writing, we
2783 * want to get it from a zone that is within its dirty
2784 * limit, such that no single zone holds more than its
2785 * proportional share of globally allowed dirty pages.
2786 * The dirty limits take into account the zone's
2787 * lowmem reserves and high watermark so that kswapd
2788 * should be able to balance it without having to
2789 * write pages from its LRU list.
2790 *
2791 * This may look like it could increase pressure on
2792 * lower zones by failing allocations in higher zones
2793 * before they are full. But the pages that do spill
2794 * over are limited as the lower zones are protected
2795 * by this very same mechanism. It should not become
2796 * a practical burden to them.
2797 *
2798 * XXX: For now, allow allocations to potentially
2799 * exceed the per-zone dirty limit in the slowpath
c9ab0c4f 2800 * (spread_dirty_pages unset) before going into reclaim,
a756cf59
JW
2801 * which is important when on a NUMA setup the allowed
2802 * zones are together not big enough to reach the
2803 * global limit. The proper fix for these situations
2804 * will require awareness of zones in the
2805 * dirty-throttling and the flusher threads.
2806 */
c9ab0c4f 2807 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
800a1e75 2808 continue;
7fb1d9fc 2809
e085dbc5 2810 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2811 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2812 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2813 int ret;
2814
5dab2911
MG
2815 /* Checked here to keep the fast path fast */
2816 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2817 if (alloc_flags & ALLOC_NO_WATERMARKS)
2818 goto try_this_zone;
2819
957f822a 2820 if (zone_reclaim_mode == 0 ||
c33d6c06 2821 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2822 continue;
2823
fa5e084e
MG
2824 ret = zone_reclaim(zone, gfp_mask, order);
2825 switch (ret) {
2826 case ZONE_RECLAIM_NOSCAN:
2827 /* did not scan */
cd38b115 2828 continue;
fa5e084e
MG
2829 case ZONE_RECLAIM_FULL:
2830 /* scanned but unreclaimable */
cd38b115 2831 continue;
fa5e084e
MG
2832 default:
2833 /* did we reclaim enough */
fed2719e 2834 if (zone_watermark_ok(zone, order, mark,
93ea9964 2835 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2836 goto try_this_zone;
2837
fed2719e 2838 continue;
0798e519 2839 }
7fb1d9fc
RS
2840 }
2841
fa5e084e 2842try_this_zone:
c33d6c06 2843 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2844 gfp_mask, alloc_flags, ac->migratetype);
75379191
VB
2845 if (page) {
2846 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2847 goto try_this_zone;
0aaa29a5
MG
2848
2849 /*
2850 * If this is a high-order atomic allocation then check
2851 * if the pageblock should be reserved for the future
2852 */
2853 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2854 reserve_highatomic_pageblock(page, zone, order);
2855
75379191
VB
2856 return page;
2857 }
54a6eb5c 2858 }
9276b1bc 2859
4ffeaf35
MG
2860 /*
2861 * The first pass makes sure allocations are spread fairly within the
2862 * local node. However, the local node might have free pages left
2863 * after the fairness batches are exhausted, and remote zones haven't
2864 * even been considered yet. Try once more without fairness, and
2865 * include remote zones now, before entering the slowpath and waking
2866 * kswapd: prefer spilling to a remote zone over swapping locally.
2867 */
30534755
MG
2868 if (fair_skipped) {
2869reset_fair:
2870 apply_fair = false;
2871 fair_skipped = false;
c33d6c06 2872 reset_alloc_batches(ac->preferred_zoneref->zone);
4ffeaf35 2873 goto zonelist_scan;
30534755 2874 }
4ffeaf35
MG
2875
2876 return NULL;
753ee728
MH
2877}
2878
29423e77
DR
2879/*
2880 * Large machines with many possible nodes should not always dump per-node
2881 * meminfo in irq context.
2882 */
2883static inline bool should_suppress_show_mem(void)
2884{
2885 bool ret = false;
2886
2887#if NODES_SHIFT > 8
2888 ret = in_interrupt();
2889#endif
2890 return ret;
2891}
2892
a238ab5b
DH
2893static DEFINE_RATELIMIT_STATE(nopage_rs,
2894 DEFAULT_RATELIMIT_INTERVAL,
2895 DEFAULT_RATELIMIT_BURST);
2896
d00181b9 2897void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2898{
a238ab5b
DH
2899 unsigned int filter = SHOW_MEM_FILTER_NODES;
2900
c0a32fc5
SG
2901 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2902 debug_guardpage_minorder() > 0)
a238ab5b
DH
2903 return;
2904
2905 /*
2906 * This documents exceptions given to allocations in certain
2907 * contexts that are allowed to allocate outside current's set
2908 * of allowed nodes.
2909 */
2910 if (!(gfp_mask & __GFP_NOMEMALLOC))
2911 if (test_thread_flag(TIF_MEMDIE) ||
2912 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2913 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2914 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2915 filter &= ~SHOW_MEM_FILTER_NODES;
2916
2917 if (fmt) {
3ee9a4f0
JP
2918 struct va_format vaf;
2919 va_list args;
2920
a238ab5b 2921 va_start(args, fmt);
3ee9a4f0
JP
2922
2923 vaf.fmt = fmt;
2924 vaf.va = &args;
2925
2926 pr_warn("%pV", &vaf);
2927
a238ab5b
DH
2928 va_end(args);
2929 }
2930
c5c990e8
VB
2931 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2932 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2933 dump_stack();
2934 if (!should_suppress_show_mem())
2935 show_mem(filter);
2936}
2937
11e33f6a
MG
2938static inline struct page *
2939__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 2940 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 2941{
6e0fc46d
DR
2942 struct oom_control oc = {
2943 .zonelist = ac->zonelist,
2944 .nodemask = ac->nodemask,
2945 .gfp_mask = gfp_mask,
2946 .order = order,
6e0fc46d 2947 };
11e33f6a
MG
2948 struct page *page;
2949
9879de73
JW
2950 *did_some_progress = 0;
2951
9879de73 2952 /*
dc56401f
JW
2953 * Acquire the oom lock. If that fails, somebody else is
2954 * making progress for us.
9879de73 2955 */
dc56401f 2956 if (!mutex_trylock(&oom_lock)) {
9879de73 2957 *did_some_progress = 1;
11e33f6a 2958 schedule_timeout_uninterruptible(1);
1da177e4
LT
2959 return NULL;
2960 }
6b1de916 2961
11e33f6a
MG
2962 /*
2963 * Go through the zonelist yet one more time, keep very high watermark
2964 * here, this is only to catch a parallel oom killing, we must fail if
2965 * we're still under heavy pressure.
2966 */
a9263751
VB
2967 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2968 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 2969 if (page)
11e33f6a
MG
2970 goto out;
2971
4365a567 2972 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
2973 /* Coredumps can quickly deplete all memory reserves */
2974 if (current->flags & PF_DUMPCORE)
2975 goto out;
4365a567
KH
2976 /* The OOM killer will not help higher order allocs */
2977 if (order > PAGE_ALLOC_COSTLY_ORDER)
2978 goto out;
03668b3c 2979 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 2980 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 2981 goto out;
9083905a
JW
2982 if (pm_suspended_storage())
2983 goto out;
3da88fb3
MH
2984 /*
2985 * XXX: GFP_NOFS allocations should rather fail than rely on
2986 * other request to make a forward progress.
2987 * We are in an unfortunate situation where out_of_memory cannot
2988 * do much for this context but let's try it to at least get
2989 * access to memory reserved if the current task is killed (see
2990 * out_of_memory). Once filesystems are ready to handle allocation
2991 * failures more gracefully we should just bail out here.
2992 */
2993
4167e9b2 2994 /* The OOM killer may not free memory on a specific node */
4365a567
KH
2995 if (gfp_mask & __GFP_THISNODE)
2996 goto out;
2997 }
11e33f6a 2998 /* Exhausted what can be done so it's blamo time */
5020e285 2999 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3000 *did_some_progress = 1;
5020e285
MH
3001
3002 if (gfp_mask & __GFP_NOFAIL) {
3003 page = get_page_from_freelist(gfp_mask, order,
3004 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3005 /*
3006 * fallback to ignore cpuset restriction if our nodes
3007 * are depleted
3008 */
3009 if (!page)
3010 page = get_page_from_freelist(gfp_mask, order,
3011 ALLOC_NO_WATERMARKS, ac);
3012 }
3013 }
11e33f6a 3014out:
dc56401f 3015 mutex_unlock(&oom_lock);
11e33f6a
MG
3016 return page;
3017}
3018
56de7263
MG
3019#ifdef CONFIG_COMPACTION
3020/* Try memory compaction for high-order allocations before reclaim */
3021static struct page *
3022__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3023 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3024 enum migrate_mode mode, int *contended_compaction,
3025 bool *deferred_compaction)
56de7263 3026{
53853e2d 3027 unsigned long compact_result;
98dd3b48 3028 struct page *page;
53853e2d
VB
3029
3030 if (!order)
66199712 3031 return NULL;
66199712 3032
c06b1fca 3033 current->flags |= PF_MEMALLOC;
1a6d53a1
VB
3034 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3035 mode, contended_compaction);
c06b1fca 3036 current->flags &= ~PF_MEMALLOC;
56de7263 3037
98dd3b48
VB
3038 switch (compact_result) {
3039 case COMPACT_DEFERRED:
53853e2d 3040 *deferred_compaction = true;
98dd3b48
VB
3041 /* fall-through */
3042 case COMPACT_SKIPPED:
3043 return NULL;
3044 default:
3045 break;
3046 }
53853e2d 3047
98dd3b48
VB
3048 /*
3049 * At least in one zone compaction wasn't deferred or skipped, so let's
3050 * count a compaction stall
3051 */
3052 count_vm_event(COMPACTSTALL);
8fb74b9f 3053
a9263751
VB
3054 page = get_page_from_freelist(gfp_mask, order,
3055 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3056
98dd3b48
VB
3057 if (page) {
3058 struct zone *zone = page_zone(page);
53853e2d 3059
98dd3b48
VB
3060 zone->compact_blockskip_flush = false;
3061 compaction_defer_reset(zone, order, true);
3062 count_vm_event(COMPACTSUCCESS);
3063 return page;
3064 }
56de7263 3065
98dd3b48
VB
3066 /*
3067 * It's bad if compaction run occurs and fails. The most likely reason
3068 * is that pages exist, but not enough to satisfy watermarks.
3069 */
3070 count_vm_event(COMPACTFAIL);
66199712 3071
98dd3b48 3072 cond_resched();
56de7263
MG
3073
3074 return NULL;
3075}
3076#else
3077static inline struct page *
3078__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3079 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751
VB
3080 enum migrate_mode mode, int *contended_compaction,
3081 bool *deferred_compaction)
56de7263
MG
3082{
3083 return NULL;
3084}
3085#endif /* CONFIG_COMPACTION */
3086
bba90710
MS
3087/* Perform direct synchronous page reclaim */
3088static int
a9263751
VB
3089__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3090 const struct alloc_context *ac)
11e33f6a 3091{
11e33f6a 3092 struct reclaim_state reclaim_state;
bba90710 3093 int progress;
11e33f6a
MG
3094
3095 cond_resched();
3096
3097 /* We now go into synchronous reclaim */
3098 cpuset_memory_pressure_bump();
c06b1fca 3099 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3100 lockdep_set_current_reclaim_state(gfp_mask);
3101 reclaim_state.reclaimed_slab = 0;
c06b1fca 3102 current->reclaim_state = &reclaim_state;
11e33f6a 3103
a9263751
VB
3104 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3105 ac->nodemask);
11e33f6a 3106
c06b1fca 3107 current->reclaim_state = NULL;
11e33f6a 3108 lockdep_clear_current_reclaim_state();
c06b1fca 3109 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3110
3111 cond_resched();
3112
bba90710
MS
3113 return progress;
3114}
3115
3116/* The really slow allocator path where we enter direct reclaim */
3117static inline struct page *
3118__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3119 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3120 unsigned long *did_some_progress)
bba90710
MS
3121{
3122 struct page *page = NULL;
3123 bool drained = false;
3124
a9263751 3125 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3126 if (unlikely(!(*did_some_progress)))
3127 return NULL;
11e33f6a 3128
9ee493ce 3129retry:
a9263751
VB
3130 page = get_page_from_freelist(gfp_mask, order,
3131 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3132
3133 /*
3134 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3135 * pages are pinned on the per-cpu lists or in high alloc reserves.
3136 * Shrink them them and try again
9ee493ce
MG
3137 */
3138 if (!page && !drained) {
0aaa29a5 3139 unreserve_highatomic_pageblock(ac);
93481ff0 3140 drain_all_pages(NULL);
9ee493ce
MG
3141 drained = true;
3142 goto retry;
3143 }
3144
11e33f6a
MG
3145 return page;
3146}
3147
a9263751 3148static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3149{
3150 struct zoneref *z;
3151 struct zone *zone;
3152
a9263751
VB
3153 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3154 ac->high_zoneidx, ac->nodemask)
93ea9964 3155 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3a025760
JW
3156}
3157
c603844b 3158static inline unsigned int
341ce06f
PZ
3159gfp_to_alloc_flags(gfp_t gfp_mask)
3160{
c603844b 3161 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3162
a56f57ff 3163 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3164 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3165
341ce06f
PZ
3166 /*
3167 * The caller may dip into page reserves a bit more if the caller
3168 * cannot run direct reclaim, or if the caller has realtime scheduling
3169 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3170 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3171 */
e6223a3b 3172 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3173
d0164adc 3174 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3175 /*
b104a35d
DR
3176 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3177 * if it can't schedule.
5c3240d9 3178 */
b104a35d 3179 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3180 alloc_flags |= ALLOC_HARDER;
523b9458 3181 /*
b104a35d 3182 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3183 * comment for __cpuset_node_allowed().
523b9458 3184 */
341ce06f 3185 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3186 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3187 alloc_flags |= ALLOC_HARDER;
3188
b37f1dd0
MG
3189 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3190 if (gfp_mask & __GFP_MEMALLOC)
3191 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3192 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3193 alloc_flags |= ALLOC_NO_WATERMARKS;
3194 else if (!in_interrupt() &&
3195 ((current->flags & PF_MEMALLOC) ||
3196 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3197 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3198 }
d95ea5d1 3199#ifdef CONFIG_CMA
43e7a34d 3200 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3201 alloc_flags |= ALLOC_CMA;
3202#endif
341ce06f
PZ
3203 return alloc_flags;
3204}
3205
072bb0aa
MG
3206bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3207{
b37f1dd0 3208 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3209}
3210
d0164adc
MG
3211static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3212{
3213 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3214}
3215
11e33f6a
MG
3216static inline struct page *
3217__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3218 struct alloc_context *ac)
11e33f6a 3219{
d0164adc 3220 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3221 struct page *page = NULL;
c603844b 3222 unsigned int alloc_flags;
11e33f6a
MG
3223 unsigned long pages_reclaimed = 0;
3224 unsigned long did_some_progress;
e0b9daeb 3225 enum migrate_mode migration_mode = MIGRATE_ASYNC;
66199712 3226 bool deferred_compaction = false;
1f9efdef 3227 int contended_compaction = COMPACT_CONTENDED_NONE;
1da177e4 3228
72807a74
MG
3229 /*
3230 * In the slowpath, we sanity check order to avoid ever trying to
3231 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3232 * be using allocators in order of preference for an area that is
3233 * too large.
3234 */
1fc28b70
MG
3235 if (order >= MAX_ORDER) {
3236 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3237 return NULL;
1fc28b70 3238 }
1da177e4 3239
d0164adc
MG
3240 /*
3241 * We also sanity check to catch abuse of atomic reserves being used by
3242 * callers that are not in atomic context.
3243 */
3244 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3245 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3246 gfp_mask &= ~__GFP_ATOMIC;
3247
9879de73 3248retry:
d0164adc 3249 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3250 wake_all_kswapds(order, ac);
1da177e4 3251
9bf2229f 3252 /*
7fb1d9fc
RS
3253 * OK, we're below the kswapd watermark and have kicked background
3254 * reclaim. Now things get more complex, so set up alloc_flags according
3255 * to how we want to proceed.
9bf2229f 3256 */
341ce06f 3257 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3258
341ce06f 3259 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3260 page = get_page_from_freelist(gfp_mask, order,
3261 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3262 if (page)
3263 goto got_pg;
1da177e4 3264
11e33f6a 3265 /* Allocate without watermarks if the context allows */
341ce06f 3266 if (alloc_flags & ALLOC_NO_WATERMARKS) {
183f6371
MG
3267 /*
3268 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3269 * the allocation is high priority and these type of
3270 * allocations are system rather than user orientated
3271 */
a9263751 3272 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
33d53103
MH
3273 page = get_page_from_freelist(gfp_mask, order,
3274 ALLOC_NO_WATERMARKS, ac);
3275 if (page)
3276 goto got_pg;
1da177e4
LT
3277 }
3278
d0164adc
MG
3279 /* Caller is not willing to reclaim, we can't balance anything */
3280 if (!can_direct_reclaim) {
aed0a0e3 3281 /*
33d53103
MH
3282 * All existing users of the __GFP_NOFAIL are blockable, so warn
3283 * of any new users that actually allow this type of allocation
3284 * to fail.
aed0a0e3
DR
3285 */
3286 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3287 goto nopage;
aed0a0e3 3288 }
1da177e4 3289
341ce06f 3290 /* Avoid recursion of direct reclaim */
33d53103
MH
3291 if (current->flags & PF_MEMALLOC) {
3292 /*
3293 * __GFP_NOFAIL request from this context is rather bizarre
3294 * because we cannot reclaim anything and only can loop waiting
3295 * for somebody to do a work for us.
3296 */
3297 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3298 cond_resched();
3299 goto retry;
3300 }
341ce06f 3301 goto nopage;
33d53103 3302 }
341ce06f 3303
6583bb64
DR
3304 /* Avoid allocations with no watermarks from looping endlessly */
3305 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3306 goto nopage;
3307
77f1fe6b
MG
3308 /*
3309 * Try direct compaction. The first pass is asynchronous. Subsequent
3310 * attempts after direct reclaim are synchronous
3311 */
a9263751
VB
3312 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3313 migration_mode,
3314 &contended_compaction,
53853e2d 3315 &deferred_compaction);
56de7263
MG
3316 if (page)
3317 goto got_pg;
75f30861 3318
1f9efdef 3319 /* Checks for THP-specific high-order allocations */
d0164adc 3320 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3321 /*
3322 * If compaction is deferred for high-order allocations, it is
3323 * because sync compaction recently failed. If this is the case
3324 * and the caller requested a THP allocation, we do not want
3325 * to heavily disrupt the system, so we fail the allocation
3326 * instead of entering direct reclaim.
3327 */
3328 if (deferred_compaction)
3329 goto nopage;
3330
3331 /*
3332 * In all zones where compaction was attempted (and not
3333 * deferred or skipped), lock contention has been detected.
3334 * For THP allocation we do not want to disrupt the others
3335 * so we fallback to base pages instead.
3336 */
3337 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3338 goto nopage;
3339
3340 /*
3341 * If compaction was aborted due to need_resched(), we do not
3342 * want to further increase allocation latency, unless it is
3343 * khugepaged trying to collapse.
3344 */
3345 if (contended_compaction == COMPACT_CONTENDED_SCHED
3346 && !(current->flags & PF_KTHREAD))
3347 goto nopage;
3348 }
66199712 3349
8fe78048
DR
3350 /*
3351 * It can become very expensive to allocate transparent hugepages at
3352 * fault, so use asynchronous memory compaction for THP unless it is
3353 * khugepaged trying to collapse.
3354 */
d0164adc 3355 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
8fe78048
DR
3356 migration_mode = MIGRATE_SYNC_LIGHT;
3357
11e33f6a 3358 /* Try direct reclaim and then allocating */
a9263751
VB
3359 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3360 &did_some_progress);
11e33f6a
MG
3361 if (page)
3362 goto got_pg;
1da177e4 3363
9083905a
JW
3364 /* Do not loop if specifically requested */
3365 if (gfp_mask & __GFP_NORETRY)
3366 goto noretry;
3367
3368 /* Keep reclaiming pages as long as there is reasonable progress */
a41f24ea 3369 pages_reclaimed += did_some_progress;
9083905a
JW
3370 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3371 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
11e33f6a 3372 /* Wait for some write requests to complete then retry */
c33d6c06 3373 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
9879de73 3374 goto retry;
1da177e4
LT
3375 }
3376
9083905a
JW
3377 /* Reclaim has failed us, start killing things */
3378 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3379 if (page)
3380 goto got_pg;
3381
3382 /* Retry as long as the OOM killer is making progress */
3383 if (did_some_progress)
3384 goto retry;
3385
3386noretry:
3387 /*
3388 * High-order allocations do not necessarily loop after
3389 * direct reclaim and reclaim/compaction depends on compaction
3390 * being called after reclaim so call directly if necessary
3391 */
3392 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3393 ac, migration_mode,
3394 &contended_compaction,
3395 &deferred_compaction);
3396 if (page)
3397 goto got_pg;
1da177e4 3398nopage:
a238ab5b 3399 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3400got_pg:
072bb0aa 3401 return page;
1da177e4 3402}
11e33f6a
MG
3403
3404/*
3405 * This is the 'heart' of the zoned buddy allocator.
3406 */
3407struct page *
3408__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3409 struct zonelist *zonelist, nodemask_t *nodemask)
3410{
5bb1b169 3411 struct page *page;
cc9a6c87 3412 unsigned int cpuset_mems_cookie;
c603844b 3413 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
83d4ca81 3414 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3415 struct alloc_context ac = {
3416 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3417 .zonelist = zonelist,
a9263751
VB
3418 .nodemask = nodemask,
3419 .migratetype = gfpflags_to_migratetype(gfp_mask),
3420 };
11e33f6a 3421
682a3385 3422 if (cpusets_enabled()) {
83d4ca81 3423 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3424 alloc_flags |= ALLOC_CPUSET;
3425 if (!ac.nodemask)
3426 ac.nodemask = &cpuset_current_mems_allowed;
3427 }
3428
dcce284a
BH
3429 gfp_mask &= gfp_allowed_mask;
3430
11e33f6a
MG
3431 lockdep_trace_alloc(gfp_mask);
3432
d0164adc 3433 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3434
3435 if (should_fail_alloc_page(gfp_mask, order))
3436 return NULL;
3437
3438 /*
3439 * Check the zones suitable for the gfp_mask contain at least one
3440 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3441 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3442 */
3443 if (unlikely(!zonelist->_zonerefs->zone))
3444 return NULL;
3445
a9263751 3446 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3447 alloc_flags |= ALLOC_CMA;
3448
cc9a6c87 3449retry_cpuset:
d26914d1 3450 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3451
c9ab0c4f
MG
3452 /* Dirty zone balancing only done in the fast path */
3453 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3454
5117f45d 3455 /* The preferred zone is used for statistics later */
c33d6c06
MG
3456 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3457 ac.high_zoneidx, ac.nodemask);
3458 if (!ac.preferred_zoneref) {
5bb1b169 3459 page = NULL;
4fcb0971 3460 goto no_zone;
5bb1b169
MG
3461 }
3462
5117f45d 3463 /* First allocation attempt */
a9263751 3464 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3465 if (likely(page))
3466 goto out;
11e33f6a 3467
4fcb0971
MG
3468 /*
3469 * Runtime PM, block IO and its error handling path can deadlock
3470 * because I/O on the device might not complete.
3471 */
3472 alloc_mask = memalloc_noio_flags(gfp_mask);
3473 ac.spread_dirty_pages = false;
23f086f9 3474
4fcb0971 3475 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3476
4fcb0971 3477no_zone:
cc9a6c87
MG
3478 /*
3479 * When updating a task's mems_allowed, it is possible to race with
3480 * parallel threads in such a way that an allocation can fail while
3481 * the mask is being updated. If a page allocation is about to fail,
3482 * check if the cpuset changed during allocation and if so, retry.
3483 */
83d4ca81
MG
3484 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3485 alloc_mask = gfp_mask;
cc9a6c87 3486 goto retry_cpuset;
83d4ca81 3487 }
cc9a6c87 3488
4fcb0971
MG
3489out:
3490 if (kmemcheck_enabled && page)
3491 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3492
3493 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3494
11e33f6a 3495 return page;
1da177e4 3496}
d239171e 3497EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3498
3499/*
3500 * Common helper functions.
3501 */
920c7a5d 3502unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3503{
945a1113
AM
3504 struct page *page;
3505
3506 /*
3507 * __get_free_pages() returns a 32-bit address, which cannot represent
3508 * a highmem page
3509 */
3510 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3511
1da177e4
LT
3512 page = alloc_pages(gfp_mask, order);
3513 if (!page)
3514 return 0;
3515 return (unsigned long) page_address(page);
3516}
1da177e4
LT
3517EXPORT_SYMBOL(__get_free_pages);
3518
920c7a5d 3519unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3520{
945a1113 3521 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3522}
1da177e4
LT
3523EXPORT_SYMBOL(get_zeroed_page);
3524
920c7a5d 3525void __free_pages(struct page *page, unsigned int order)
1da177e4 3526{
b5810039 3527 if (put_page_testzero(page)) {
1da177e4 3528 if (order == 0)
b745bc85 3529 free_hot_cold_page(page, false);
1da177e4
LT
3530 else
3531 __free_pages_ok(page, order);
3532 }
3533}
3534
3535EXPORT_SYMBOL(__free_pages);
3536
920c7a5d 3537void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3538{
3539 if (addr != 0) {
725d704e 3540 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3541 __free_pages(virt_to_page((void *)addr), order);
3542 }
3543}
3544
3545EXPORT_SYMBOL(free_pages);
3546
b63ae8ca
AD
3547/*
3548 * Page Fragment:
3549 * An arbitrary-length arbitrary-offset area of memory which resides
3550 * within a 0 or higher order page. Multiple fragments within that page
3551 * are individually refcounted, in the page's reference counter.
3552 *
3553 * The page_frag functions below provide a simple allocation framework for
3554 * page fragments. This is used by the network stack and network device
3555 * drivers to provide a backing region of memory for use as either an
3556 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3557 */
3558static struct page *__page_frag_refill(struct page_frag_cache *nc,
3559 gfp_t gfp_mask)
3560{
3561 struct page *page = NULL;
3562 gfp_t gfp = gfp_mask;
3563
3564#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3565 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3566 __GFP_NOMEMALLOC;
3567 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3568 PAGE_FRAG_CACHE_MAX_ORDER);
3569 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3570#endif
3571 if (unlikely(!page))
3572 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3573
3574 nc->va = page ? page_address(page) : NULL;
3575
3576 return page;
3577}
3578
3579void *__alloc_page_frag(struct page_frag_cache *nc,
3580 unsigned int fragsz, gfp_t gfp_mask)
3581{
3582 unsigned int size = PAGE_SIZE;
3583 struct page *page;
3584 int offset;
3585
3586 if (unlikely(!nc->va)) {
3587refill:
3588 page = __page_frag_refill(nc, gfp_mask);
3589 if (!page)
3590 return NULL;
3591
3592#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3593 /* if size can vary use size else just use PAGE_SIZE */
3594 size = nc->size;
3595#endif
3596 /* Even if we own the page, we do not use atomic_set().
3597 * This would break get_page_unless_zero() users.
3598 */
fe896d18 3599 page_ref_add(page, size - 1);
b63ae8ca
AD
3600
3601 /* reset page count bias and offset to start of new frag */
2f064f34 3602 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3603 nc->pagecnt_bias = size;
3604 nc->offset = size;
3605 }
3606
3607 offset = nc->offset - fragsz;
3608 if (unlikely(offset < 0)) {
3609 page = virt_to_page(nc->va);
3610
fe896d18 3611 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3612 goto refill;
3613
3614#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3615 /* if size can vary use size else just use PAGE_SIZE */
3616 size = nc->size;
3617#endif
3618 /* OK, page count is 0, we can safely set it */
fe896d18 3619 set_page_count(page, size);
b63ae8ca
AD
3620
3621 /* reset page count bias and offset to start of new frag */
3622 nc->pagecnt_bias = size;
3623 offset = size - fragsz;
3624 }
3625
3626 nc->pagecnt_bias--;
3627 nc->offset = offset;
3628
3629 return nc->va + offset;
3630}
3631EXPORT_SYMBOL(__alloc_page_frag);
3632
3633/*
3634 * Frees a page fragment allocated out of either a compound or order 0 page.
3635 */
3636void __free_page_frag(void *addr)
3637{
3638 struct page *page = virt_to_head_page(addr);
3639
3640 if (unlikely(put_page_testzero(page)))
3641 __free_pages_ok(page, compound_order(page));
3642}
3643EXPORT_SYMBOL(__free_page_frag);
3644
6a1a0d3b 3645/*
52383431 3646 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
a9bb7e62
VD
3647 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3648 * equivalent to alloc_pages.
6a1a0d3b 3649 *
52383431
VD
3650 * It should be used when the caller would like to use kmalloc, but since the
3651 * allocation is large, it has to fall back to the page allocator.
3652 */
3653struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3654{
3655 struct page *page;
52383431 3656
52383431 3657 page = alloc_pages(gfp_mask, order);
d05e83a6
VD
3658 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3659 __free_pages(page, order);
3660 page = NULL;
3661 }
52383431
VD
3662 return page;
3663}
3664
3665struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3666{
3667 struct page *page;
52383431 3668
52383431 3669 page = alloc_pages_node(nid, gfp_mask, order);
d05e83a6
VD
3670 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3671 __free_pages(page, order);
3672 page = NULL;
3673 }
52383431
VD
3674 return page;
3675}
3676
3677/*
3678 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3679 * alloc_kmem_pages.
6a1a0d3b 3680 */
52383431 3681void __free_kmem_pages(struct page *page, unsigned int order)
6a1a0d3b 3682{
d05e83a6 3683 memcg_kmem_uncharge(page, order);
6a1a0d3b
GC
3684 __free_pages(page, order);
3685}
3686
52383431 3687void free_kmem_pages(unsigned long addr, unsigned int order)
6a1a0d3b
GC
3688{
3689 if (addr != 0) {
3690 VM_BUG_ON(!virt_addr_valid((void *)addr));
52383431 3691 __free_kmem_pages(virt_to_page((void *)addr), order);
6a1a0d3b
GC
3692 }
3693}
3694
d00181b9
KS
3695static void *make_alloc_exact(unsigned long addr, unsigned int order,
3696 size_t size)
ee85c2e1
AK
3697{
3698 if (addr) {
3699 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3700 unsigned long used = addr + PAGE_ALIGN(size);
3701
3702 split_page(virt_to_page((void *)addr), order);
3703 while (used < alloc_end) {
3704 free_page(used);
3705 used += PAGE_SIZE;
3706 }
3707 }
3708 return (void *)addr;
3709}
3710
2be0ffe2
TT
3711/**
3712 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3713 * @size: the number of bytes to allocate
3714 * @gfp_mask: GFP flags for the allocation
3715 *
3716 * This function is similar to alloc_pages(), except that it allocates the
3717 * minimum number of pages to satisfy the request. alloc_pages() can only
3718 * allocate memory in power-of-two pages.
3719 *
3720 * This function is also limited by MAX_ORDER.
3721 *
3722 * Memory allocated by this function must be released by free_pages_exact().
3723 */
3724void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3725{
3726 unsigned int order = get_order(size);
3727 unsigned long addr;
3728
3729 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3730 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3731}
3732EXPORT_SYMBOL(alloc_pages_exact);
3733
ee85c2e1
AK
3734/**
3735 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3736 * pages on a node.
b5e6ab58 3737 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3738 * @size: the number of bytes to allocate
3739 * @gfp_mask: GFP flags for the allocation
3740 *
3741 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3742 * back.
ee85c2e1 3743 */
e1931811 3744void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3745{
d00181b9 3746 unsigned int order = get_order(size);
ee85c2e1
AK
3747 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3748 if (!p)
3749 return NULL;
3750 return make_alloc_exact((unsigned long)page_address(p), order, size);
3751}
ee85c2e1 3752
2be0ffe2
TT
3753/**
3754 * free_pages_exact - release memory allocated via alloc_pages_exact()
3755 * @virt: the value returned by alloc_pages_exact.
3756 * @size: size of allocation, same value as passed to alloc_pages_exact().
3757 *
3758 * Release the memory allocated by a previous call to alloc_pages_exact.
3759 */
3760void free_pages_exact(void *virt, size_t size)
3761{
3762 unsigned long addr = (unsigned long)virt;
3763 unsigned long end = addr + PAGE_ALIGN(size);
3764
3765 while (addr < end) {
3766 free_page(addr);
3767 addr += PAGE_SIZE;
3768 }
3769}
3770EXPORT_SYMBOL(free_pages_exact);
3771
e0fb5815
ZY
3772/**
3773 * nr_free_zone_pages - count number of pages beyond high watermark
3774 * @offset: The zone index of the highest zone
3775 *
3776 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3777 * high watermark within all zones at or below a given zone index. For each
3778 * zone, the number of pages is calculated as:
834405c3 3779 * managed_pages - high_pages
e0fb5815 3780 */
ebec3862 3781static unsigned long nr_free_zone_pages(int offset)
1da177e4 3782{
dd1a239f 3783 struct zoneref *z;
54a6eb5c
MG
3784 struct zone *zone;
3785
e310fd43 3786 /* Just pick one node, since fallback list is circular */
ebec3862 3787 unsigned long sum = 0;
1da177e4 3788
0e88460d 3789 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3790
54a6eb5c 3791 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3792 unsigned long size = zone->managed_pages;
41858966 3793 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3794 if (size > high)
3795 sum += size - high;
1da177e4
LT
3796 }
3797
3798 return sum;
3799}
3800
e0fb5815
ZY
3801/**
3802 * nr_free_buffer_pages - count number of pages beyond high watermark
3803 *
3804 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3805 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3806 */
ebec3862 3807unsigned long nr_free_buffer_pages(void)
1da177e4 3808{
af4ca457 3809 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3810}
c2f1a551 3811EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3812
e0fb5815
ZY
3813/**
3814 * nr_free_pagecache_pages - count number of pages beyond high watermark
3815 *
3816 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3817 * high watermark within all zones.
1da177e4 3818 */
ebec3862 3819unsigned long nr_free_pagecache_pages(void)
1da177e4 3820{
2a1e274a 3821 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3822}
08e0f6a9
CL
3823
3824static inline void show_node(struct zone *zone)
1da177e4 3825{
e5adfffc 3826 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 3827 printk("Node %d ", zone_to_nid(zone));
1da177e4 3828}
1da177e4 3829
d02bd27b
IR
3830long si_mem_available(void)
3831{
3832 long available;
3833 unsigned long pagecache;
3834 unsigned long wmark_low = 0;
3835 unsigned long pages[NR_LRU_LISTS];
3836 struct zone *zone;
3837 int lru;
3838
3839 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3840 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3841
3842 for_each_zone(zone)
3843 wmark_low += zone->watermark[WMARK_LOW];
3844
3845 /*
3846 * Estimate the amount of memory available for userspace allocations,
3847 * without causing swapping.
3848 */
3849 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3850
3851 /*
3852 * Not all the page cache can be freed, otherwise the system will
3853 * start swapping. Assume at least half of the page cache, or the
3854 * low watermark worth of cache, needs to stay.
3855 */
3856 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3857 pagecache -= min(pagecache / 2, wmark_low);
3858 available += pagecache;
3859
3860 /*
3861 * Part of the reclaimable slab consists of items that are in use,
3862 * and cannot be freed. Cap this estimate at the low watermark.
3863 */
3864 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3865 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3866
3867 if (available < 0)
3868 available = 0;
3869 return available;
3870}
3871EXPORT_SYMBOL_GPL(si_mem_available);
3872
1da177e4
LT
3873void si_meminfo(struct sysinfo *val)
3874{
3875 val->totalram = totalram_pages;
cc7452b6 3876 val->sharedram = global_page_state(NR_SHMEM);
d23ad423 3877 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 3878 val->bufferram = nr_blockdev_pages();
1da177e4
LT
3879 val->totalhigh = totalhigh_pages;
3880 val->freehigh = nr_free_highpages();
1da177e4
LT
3881 val->mem_unit = PAGE_SIZE;
3882}
3883
3884EXPORT_SYMBOL(si_meminfo);
3885
3886#ifdef CONFIG_NUMA
3887void si_meminfo_node(struct sysinfo *val, int nid)
3888{
cdd91a77
JL
3889 int zone_type; /* needs to be signed */
3890 unsigned long managed_pages = 0;
fc2bd799
JK
3891 unsigned long managed_highpages = 0;
3892 unsigned long free_highpages = 0;
1da177e4
LT
3893 pg_data_t *pgdat = NODE_DATA(nid);
3894
cdd91a77
JL
3895 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3896 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3897 val->totalram = managed_pages;
cc7452b6 3898 val->sharedram = node_page_state(nid, NR_SHMEM);
d23ad423 3899 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 3900#ifdef CONFIG_HIGHMEM
fc2bd799
JK
3901 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3902 struct zone *zone = &pgdat->node_zones[zone_type];
3903
3904 if (is_highmem(zone)) {
3905 managed_highpages += zone->managed_pages;
3906 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3907 }
3908 }
3909 val->totalhigh = managed_highpages;
3910 val->freehigh = free_highpages;
98d2b0eb 3911#else
fc2bd799
JK
3912 val->totalhigh = managed_highpages;
3913 val->freehigh = free_highpages;
98d2b0eb 3914#endif
1da177e4
LT
3915 val->mem_unit = PAGE_SIZE;
3916}
3917#endif
3918
ddd588b5 3919/*
7bf02ea2
DR
3920 * Determine whether the node should be displayed or not, depending on whether
3921 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 3922 */
7bf02ea2 3923bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
3924{
3925 bool ret = false;
cc9a6c87 3926 unsigned int cpuset_mems_cookie;
ddd588b5
DR
3927
3928 if (!(flags & SHOW_MEM_FILTER_NODES))
3929 goto out;
3930
cc9a6c87 3931 do {
d26914d1 3932 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3933 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 3934 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
3935out:
3936 return ret;
3937}
3938
1da177e4
LT
3939#define K(x) ((x) << (PAGE_SHIFT-10))
3940
377e4f16
RV
3941static void show_migration_types(unsigned char type)
3942{
3943 static const char types[MIGRATE_TYPES] = {
3944 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 3945 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
3946 [MIGRATE_RECLAIMABLE] = 'E',
3947 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
3948#ifdef CONFIG_CMA
3949 [MIGRATE_CMA] = 'C',
3950#endif
194159fb 3951#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 3952 [MIGRATE_ISOLATE] = 'I',
194159fb 3953#endif
377e4f16
RV
3954 };
3955 char tmp[MIGRATE_TYPES + 1];
3956 char *p = tmp;
3957 int i;
3958
3959 for (i = 0; i < MIGRATE_TYPES; i++) {
3960 if (type & (1 << i))
3961 *p++ = types[i];
3962 }
3963
3964 *p = '\0';
3965 printk("(%s) ", tmp);
3966}
3967
1da177e4
LT
3968/*
3969 * Show free area list (used inside shift_scroll-lock stuff)
3970 * We also calculate the percentage fragmentation. We do this by counting the
3971 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
3972 *
3973 * Bits in @filter:
3974 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3975 * cpuset.
1da177e4 3976 */
7bf02ea2 3977void show_free_areas(unsigned int filter)
1da177e4 3978{
d1bfcdb8 3979 unsigned long free_pcp = 0;
c7241913 3980 int cpu;
1da177e4
LT
3981 struct zone *zone;
3982
ee99c71c 3983 for_each_populated_zone(zone) {
7bf02ea2 3984 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 3985 continue;
d1bfcdb8 3986
761b0677
KK
3987 for_each_online_cpu(cpu)
3988 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
3989 }
3990
a731286d
KM
3991 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3992 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
3993 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3994 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 3995 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 3996 " free:%lu free_pcp:%lu free_cma:%lu\n",
4f98a2fe 3997 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 3998 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
3999 global_page_state(NR_ISOLATED_ANON),
4000 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 4001 global_page_state(NR_INACTIVE_FILE),
a731286d 4002 global_page_state(NR_ISOLATED_FILE),
7b854121 4003 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 4004 global_page_state(NR_FILE_DIRTY),
ce866b34 4005 global_page_state(NR_WRITEBACK),
fd39fc85 4006 global_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4007 global_page_state(NR_SLAB_RECLAIMABLE),
4008 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 4009 global_page_state(NR_FILE_MAPPED),
4b02108a 4010 global_page_state(NR_SHMEM),
a25700a5 4011 global_page_state(NR_PAGETABLE),
d1ce749a 4012 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4013 global_page_state(NR_FREE_PAGES),
4014 free_pcp,
d1ce749a 4015 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4016
ee99c71c 4017 for_each_populated_zone(zone) {
1da177e4
LT
4018 int i;
4019
7bf02ea2 4020 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4021 continue;
d1bfcdb8
KK
4022
4023 free_pcp = 0;
4024 for_each_online_cpu(cpu)
4025 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4026
1da177e4
LT
4027 show_node(zone);
4028 printk("%s"
4029 " free:%lukB"
4030 " min:%lukB"
4031 " low:%lukB"
4032 " high:%lukB"
4f98a2fe
RR
4033 " active_anon:%lukB"
4034 " inactive_anon:%lukB"
4035 " active_file:%lukB"
4036 " inactive_file:%lukB"
7b854121 4037 " unevictable:%lukB"
a731286d
KM
4038 " isolated(anon):%lukB"
4039 " isolated(file):%lukB"
1da177e4 4040 " present:%lukB"
9feedc9d 4041 " managed:%lukB"
4a0aa73f
KM
4042 " mlocked:%lukB"
4043 " dirty:%lukB"
4044 " writeback:%lukB"
4045 " mapped:%lukB"
4b02108a 4046 " shmem:%lukB"
4a0aa73f
KM
4047 " slab_reclaimable:%lukB"
4048 " slab_unreclaimable:%lukB"
c6a7f572 4049 " kernel_stack:%lukB"
4a0aa73f
KM
4050 " pagetables:%lukB"
4051 " unstable:%lukB"
4052 " bounce:%lukB"
d1bfcdb8
KK
4053 " free_pcp:%lukB"
4054 " local_pcp:%ukB"
d1ce749a 4055 " free_cma:%lukB"
4a0aa73f 4056 " writeback_tmp:%lukB"
1da177e4
LT
4057 " pages_scanned:%lu"
4058 " all_unreclaimable? %s"
4059 "\n",
4060 zone->name,
88f5acf8 4061 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4062 K(min_wmark_pages(zone)),
4063 K(low_wmark_pages(zone)),
4064 K(high_wmark_pages(zone)),
4f98a2fe
RR
4065 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4066 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4067 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4068 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 4069 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
4070 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4071 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 4072 K(zone->present_pages),
9feedc9d 4073 K(zone->managed_pages),
4a0aa73f
KM
4074 K(zone_page_state(zone, NR_MLOCK)),
4075 K(zone_page_state(zone, NR_FILE_DIRTY)),
4076 K(zone_page_state(zone, NR_WRITEBACK)),
4077 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 4078 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
4079 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4080 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4081 zone_page_state(zone, NR_KERNEL_STACK) *
4082 THREAD_SIZE / 1024,
4a0aa73f
KM
4083 K(zone_page_state(zone, NR_PAGETABLE)),
4084 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4085 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4086 K(free_pcp),
4087 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4088 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4a0aa73f 4089 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
0d5d823a 4090 K(zone_page_state(zone, NR_PAGES_SCANNED)),
6e543d57 4091 (!zone_reclaimable(zone) ? "yes" : "no")
1da177e4
LT
4092 );
4093 printk("lowmem_reserve[]:");
4094 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4095 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4096 printk("\n");
4097 }
4098
ee99c71c 4099 for_each_populated_zone(zone) {
d00181b9
KS
4100 unsigned int order;
4101 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4102 unsigned char types[MAX_ORDER];
1da177e4 4103
7bf02ea2 4104 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4105 continue;
1da177e4
LT
4106 show_node(zone);
4107 printk("%s: ", zone->name);
1da177e4
LT
4108
4109 spin_lock_irqsave(&zone->lock, flags);
4110 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4111 struct free_area *area = &zone->free_area[order];
4112 int type;
4113
4114 nr[order] = area->nr_free;
8f9de51a 4115 total += nr[order] << order;
377e4f16
RV
4116
4117 types[order] = 0;
4118 for (type = 0; type < MIGRATE_TYPES; type++) {
4119 if (!list_empty(&area->free_list[type]))
4120 types[order] |= 1 << type;
4121 }
1da177e4
LT
4122 }
4123 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4124 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4125 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4126 if (nr[order])
4127 show_migration_types(types[order]);
4128 }
1da177e4
LT
4129 printk("= %lukB\n", K(total));
4130 }
4131
949f7ec5
DR
4132 hugetlb_show_meminfo();
4133
e6f3602d
LW
4134 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4135
1da177e4
LT
4136 show_swap_cache_info();
4137}
4138
19770b32
MG
4139static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4140{
4141 zoneref->zone = zone;
4142 zoneref->zone_idx = zone_idx(zone);
4143}
4144
1da177e4
LT
4145/*
4146 * Builds allocation fallback zone lists.
1a93205b
CL
4147 *
4148 * Add all populated zones of a node to the zonelist.
1da177e4 4149 */
f0c0b2b8 4150static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4151 int nr_zones)
1da177e4 4152{
1a93205b 4153 struct zone *zone;
bc732f1d 4154 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4155
4156 do {
2f6726e5 4157 zone_type--;
070f8032 4158 zone = pgdat->node_zones + zone_type;
1a93205b 4159 if (populated_zone(zone)) {
dd1a239f
MG
4160 zoneref_set_zone(zone,
4161 &zonelist->_zonerefs[nr_zones++]);
070f8032 4162 check_highest_zone(zone_type);
1da177e4 4163 }
2f6726e5 4164 } while (zone_type);
bc732f1d 4165
070f8032 4166 return nr_zones;
1da177e4
LT
4167}
4168
f0c0b2b8
KH
4169
4170/*
4171 * zonelist_order:
4172 * 0 = automatic detection of better ordering.
4173 * 1 = order by ([node] distance, -zonetype)
4174 * 2 = order by (-zonetype, [node] distance)
4175 *
4176 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4177 * the same zonelist. So only NUMA can configure this param.
4178 */
4179#define ZONELIST_ORDER_DEFAULT 0
4180#define ZONELIST_ORDER_NODE 1
4181#define ZONELIST_ORDER_ZONE 2
4182
4183/* zonelist order in the kernel.
4184 * set_zonelist_order() will set this to NODE or ZONE.
4185 */
4186static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4187static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4188
4189
1da177e4 4190#ifdef CONFIG_NUMA
f0c0b2b8
KH
4191/* The value user specified ....changed by config */
4192static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4193/* string for sysctl */
4194#define NUMA_ZONELIST_ORDER_LEN 16
4195char numa_zonelist_order[16] = "default";
4196
4197/*
4198 * interface for configure zonelist ordering.
4199 * command line option "numa_zonelist_order"
4200 * = "[dD]efault - default, automatic configuration.
4201 * = "[nN]ode - order by node locality, then by zone within node
4202 * = "[zZ]one - order by zone, then by locality within zone
4203 */
4204
4205static int __parse_numa_zonelist_order(char *s)
4206{
4207 if (*s == 'd' || *s == 'D') {
4208 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4209 } else if (*s == 'n' || *s == 'N') {
4210 user_zonelist_order = ZONELIST_ORDER_NODE;
4211 } else if (*s == 'z' || *s == 'Z') {
4212 user_zonelist_order = ZONELIST_ORDER_ZONE;
4213 } else {
1170532b 4214 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4215 return -EINVAL;
4216 }
4217 return 0;
4218}
4219
4220static __init int setup_numa_zonelist_order(char *s)
4221{
ecb256f8
VL
4222 int ret;
4223
4224 if (!s)
4225 return 0;
4226
4227 ret = __parse_numa_zonelist_order(s);
4228 if (ret == 0)
4229 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4230
4231 return ret;
f0c0b2b8
KH
4232}
4233early_param("numa_zonelist_order", setup_numa_zonelist_order);
4234
4235/*
4236 * sysctl handler for numa_zonelist_order
4237 */
cccad5b9 4238int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4239 void __user *buffer, size_t *length,
f0c0b2b8
KH
4240 loff_t *ppos)
4241{
4242 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4243 int ret;
443c6f14 4244 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4245
443c6f14 4246 mutex_lock(&zl_order_mutex);
dacbde09
CG
4247 if (write) {
4248 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4249 ret = -EINVAL;
4250 goto out;
4251 }
4252 strcpy(saved_string, (char *)table->data);
4253 }
8d65af78 4254 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4255 if (ret)
443c6f14 4256 goto out;
f0c0b2b8
KH
4257 if (write) {
4258 int oldval = user_zonelist_order;
dacbde09
CG
4259
4260 ret = __parse_numa_zonelist_order((char *)table->data);
4261 if (ret) {
f0c0b2b8
KH
4262 /*
4263 * bogus value. restore saved string
4264 */
dacbde09 4265 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4266 NUMA_ZONELIST_ORDER_LEN);
4267 user_zonelist_order = oldval;
4eaf3f64
HL
4268 } else if (oldval != user_zonelist_order) {
4269 mutex_lock(&zonelists_mutex);
9adb62a5 4270 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4271 mutex_unlock(&zonelists_mutex);
4272 }
f0c0b2b8 4273 }
443c6f14
AK
4274out:
4275 mutex_unlock(&zl_order_mutex);
4276 return ret;
f0c0b2b8
KH
4277}
4278
4279
62bc62a8 4280#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4281static int node_load[MAX_NUMNODES];
4282
1da177e4 4283/**
4dc3b16b 4284 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4285 * @node: node whose fallback list we're appending
4286 * @used_node_mask: nodemask_t of already used nodes
4287 *
4288 * We use a number of factors to determine which is the next node that should
4289 * appear on a given node's fallback list. The node should not have appeared
4290 * already in @node's fallback list, and it should be the next closest node
4291 * according to the distance array (which contains arbitrary distance values
4292 * from each node to each node in the system), and should also prefer nodes
4293 * with no CPUs, since presumably they'll have very little allocation pressure
4294 * on them otherwise.
4295 * It returns -1 if no node is found.
4296 */
f0c0b2b8 4297static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4298{
4cf808eb 4299 int n, val;
1da177e4 4300 int min_val = INT_MAX;
00ef2d2f 4301 int best_node = NUMA_NO_NODE;
a70f7302 4302 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4303
4cf808eb
LT
4304 /* Use the local node if we haven't already */
4305 if (!node_isset(node, *used_node_mask)) {
4306 node_set(node, *used_node_mask);
4307 return node;
4308 }
1da177e4 4309
4b0ef1fe 4310 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4311
4312 /* Don't want a node to appear more than once */
4313 if (node_isset(n, *used_node_mask))
4314 continue;
4315
1da177e4
LT
4316 /* Use the distance array to find the distance */
4317 val = node_distance(node, n);
4318
4cf808eb
LT
4319 /* Penalize nodes under us ("prefer the next node") */
4320 val += (n < node);
4321
1da177e4 4322 /* Give preference to headless and unused nodes */
a70f7302
RR
4323 tmp = cpumask_of_node(n);
4324 if (!cpumask_empty(tmp))
1da177e4
LT
4325 val += PENALTY_FOR_NODE_WITH_CPUS;
4326
4327 /* Slight preference for less loaded node */
4328 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4329 val += node_load[n];
4330
4331 if (val < min_val) {
4332 min_val = val;
4333 best_node = n;
4334 }
4335 }
4336
4337 if (best_node >= 0)
4338 node_set(best_node, *used_node_mask);
4339
4340 return best_node;
4341}
4342
f0c0b2b8
KH
4343
4344/*
4345 * Build zonelists ordered by node and zones within node.
4346 * This results in maximum locality--normal zone overflows into local
4347 * DMA zone, if any--but risks exhausting DMA zone.
4348 */
4349static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4350{
f0c0b2b8 4351 int j;
1da177e4 4352 struct zonelist *zonelist;
f0c0b2b8 4353
54a6eb5c 4354 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4355 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4356 ;
bc732f1d 4357 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4358 zonelist->_zonerefs[j].zone = NULL;
4359 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4360}
4361
523b9458
CL
4362/*
4363 * Build gfp_thisnode zonelists
4364 */
4365static void build_thisnode_zonelists(pg_data_t *pgdat)
4366{
523b9458
CL
4367 int j;
4368 struct zonelist *zonelist;
4369
54a6eb5c 4370 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4371 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4372 zonelist->_zonerefs[j].zone = NULL;
4373 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4374}
4375
f0c0b2b8
KH
4376/*
4377 * Build zonelists ordered by zone and nodes within zones.
4378 * This results in conserving DMA zone[s] until all Normal memory is
4379 * exhausted, but results in overflowing to remote node while memory
4380 * may still exist in local DMA zone.
4381 */
4382static int node_order[MAX_NUMNODES];
4383
4384static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4385{
f0c0b2b8
KH
4386 int pos, j, node;
4387 int zone_type; /* needs to be signed */
4388 struct zone *z;
4389 struct zonelist *zonelist;
4390
54a6eb5c
MG
4391 zonelist = &pgdat->node_zonelists[0];
4392 pos = 0;
4393 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4394 for (j = 0; j < nr_nodes; j++) {
4395 node = node_order[j];
4396 z = &NODE_DATA(node)->node_zones[zone_type];
4397 if (populated_zone(z)) {
dd1a239f
MG
4398 zoneref_set_zone(z,
4399 &zonelist->_zonerefs[pos++]);
54a6eb5c 4400 check_highest_zone(zone_type);
f0c0b2b8
KH
4401 }
4402 }
f0c0b2b8 4403 }
dd1a239f
MG
4404 zonelist->_zonerefs[pos].zone = NULL;
4405 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4406}
4407
3193913c
MG
4408#if defined(CONFIG_64BIT)
4409/*
4410 * Devices that require DMA32/DMA are relatively rare and do not justify a
4411 * penalty to every machine in case the specialised case applies. Default
4412 * to Node-ordering on 64-bit NUMA machines
4413 */
4414static int default_zonelist_order(void)
4415{
4416 return ZONELIST_ORDER_NODE;
4417}
4418#else
4419/*
4420 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4421 * by the kernel. If processes running on node 0 deplete the low memory zone
4422 * then reclaim will occur more frequency increasing stalls and potentially
4423 * be easier to OOM if a large percentage of the zone is under writeback or
4424 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4425 * Hence, default to zone ordering on 32-bit.
4426 */
f0c0b2b8
KH
4427static int default_zonelist_order(void)
4428{
f0c0b2b8
KH
4429 return ZONELIST_ORDER_ZONE;
4430}
3193913c 4431#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4432
4433static void set_zonelist_order(void)
4434{
4435 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4436 current_zonelist_order = default_zonelist_order();
4437 else
4438 current_zonelist_order = user_zonelist_order;
4439}
4440
4441static void build_zonelists(pg_data_t *pgdat)
4442{
c00eb15a 4443 int i, node, load;
1da177e4 4444 nodemask_t used_mask;
f0c0b2b8
KH
4445 int local_node, prev_node;
4446 struct zonelist *zonelist;
d00181b9 4447 unsigned int order = current_zonelist_order;
1da177e4
LT
4448
4449 /* initialize zonelists */
523b9458 4450 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4451 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4452 zonelist->_zonerefs[0].zone = NULL;
4453 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4454 }
4455
4456 /* NUMA-aware ordering of nodes */
4457 local_node = pgdat->node_id;
62bc62a8 4458 load = nr_online_nodes;
1da177e4
LT
4459 prev_node = local_node;
4460 nodes_clear(used_mask);
f0c0b2b8 4461
f0c0b2b8 4462 memset(node_order, 0, sizeof(node_order));
c00eb15a 4463 i = 0;
f0c0b2b8 4464
1da177e4
LT
4465 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4466 /*
4467 * We don't want to pressure a particular node.
4468 * So adding penalty to the first node in same
4469 * distance group to make it round-robin.
4470 */
957f822a
DR
4471 if (node_distance(local_node, node) !=
4472 node_distance(local_node, prev_node))
f0c0b2b8
KH
4473 node_load[node] = load;
4474
1da177e4
LT
4475 prev_node = node;
4476 load--;
f0c0b2b8
KH
4477 if (order == ZONELIST_ORDER_NODE)
4478 build_zonelists_in_node_order(pgdat, node);
4479 else
c00eb15a 4480 node_order[i++] = node; /* remember order */
f0c0b2b8 4481 }
1da177e4 4482
f0c0b2b8
KH
4483 if (order == ZONELIST_ORDER_ZONE) {
4484 /* calculate node order -- i.e., DMA last! */
c00eb15a 4485 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4486 }
523b9458
CL
4487
4488 build_thisnode_zonelists(pgdat);
1da177e4
LT
4489}
4490
7aac7898
LS
4491#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4492/*
4493 * Return node id of node used for "local" allocations.
4494 * I.e., first node id of first zone in arg node's generic zonelist.
4495 * Used for initializing percpu 'numa_mem', which is used primarily
4496 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4497 */
4498int local_memory_node(int node)
4499{
c33d6c06 4500 struct zoneref *z;
7aac7898 4501
c33d6c06 4502 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4503 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4504 NULL);
4505 return z->zone->node;
7aac7898
LS
4506}
4507#endif
f0c0b2b8 4508
1da177e4
LT
4509#else /* CONFIG_NUMA */
4510
f0c0b2b8
KH
4511static void set_zonelist_order(void)
4512{
4513 current_zonelist_order = ZONELIST_ORDER_ZONE;
4514}
4515
4516static void build_zonelists(pg_data_t *pgdat)
1da177e4 4517{
19655d34 4518 int node, local_node;
54a6eb5c
MG
4519 enum zone_type j;
4520 struct zonelist *zonelist;
1da177e4
LT
4521
4522 local_node = pgdat->node_id;
1da177e4 4523
54a6eb5c 4524 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4525 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4526
54a6eb5c
MG
4527 /*
4528 * Now we build the zonelist so that it contains the zones
4529 * of all the other nodes.
4530 * We don't want to pressure a particular node, so when
4531 * building the zones for node N, we make sure that the
4532 * zones coming right after the local ones are those from
4533 * node N+1 (modulo N)
4534 */
4535 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4536 if (!node_online(node))
4537 continue;
bc732f1d 4538 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4539 }
54a6eb5c
MG
4540 for (node = 0; node < local_node; node++) {
4541 if (!node_online(node))
4542 continue;
bc732f1d 4543 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4544 }
4545
dd1a239f
MG
4546 zonelist->_zonerefs[j].zone = NULL;
4547 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4548}
4549
4550#endif /* CONFIG_NUMA */
4551
99dcc3e5
CL
4552/*
4553 * Boot pageset table. One per cpu which is going to be used for all
4554 * zones and all nodes. The parameters will be set in such a way
4555 * that an item put on a list will immediately be handed over to
4556 * the buddy list. This is safe since pageset manipulation is done
4557 * with interrupts disabled.
4558 *
4559 * The boot_pagesets must be kept even after bootup is complete for
4560 * unused processors and/or zones. They do play a role for bootstrapping
4561 * hotplugged processors.
4562 *
4563 * zoneinfo_show() and maybe other functions do
4564 * not check if the processor is online before following the pageset pointer.
4565 * Other parts of the kernel may not check if the zone is available.
4566 */
4567static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4568static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4569static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4570
4eaf3f64
HL
4571/*
4572 * Global mutex to protect against size modification of zonelists
4573 * as well as to serialize pageset setup for the new populated zone.
4574 */
4575DEFINE_MUTEX(zonelists_mutex);
4576
9b1a4d38 4577/* return values int ....just for stop_machine() */
4ed7e022 4578static int __build_all_zonelists(void *data)
1da177e4 4579{
6811378e 4580 int nid;
99dcc3e5 4581 int cpu;
9adb62a5 4582 pg_data_t *self = data;
9276b1bc 4583
7f9cfb31
BL
4584#ifdef CONFIG_NUMA
4585 memset(node_load, 0, sizeof(node_load));
4586#endif
9adb62a5
JL
4587
4588 if (self && !node_online(self->node_id)) {
4589 build_zonelists(self);
9adb62a5
JL
4590 }
4591
9276b1bc 4592 for_each_online_node(nid) {
7ea1530a
CL
4593 pg_data_t *pgdat = NODE_DATA(nid);
4594
4595 build_zonelists(pgdat);
9276b1bc 4596 }
99dcc3e5
CL
4597
4598 /*
4599 * Initialize the boot_pagesets that are going to be used
4600 * for bootstrapping processors. The real pagesets for
4601 * each zone will be allocated later when the per cpu
4602 * allocator is available.
4603 *
4604 * boot_pagesets are used also for bootstrapping offline
4605 * cpus if the system is already booted because the pagesets
4606 * are needed to initialize allocators on a specific cpu too.
4607 * F.e. the percpu allocator needs the page allocator which
4608 * needs the percpu allocator in order to allocate its pagesets
4609 * (a chicken-egg dilemma).
4610 */
7aac7898 4611 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4612 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4613
7aac7898
LS
4614#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4615 /*
4616 * We now know the "local memory node" for each node--
4617 * i.e., the node of the first zone in the generic zonelist.
4618 * Set up numa_mem percpu variable for on-line cpus. During
4619 * boot, only the boot cpu should be on-line; we'll init the
4620 * secondary cpus' numa_mem as they come on-line. During
4621 * node/memory hotplug, we'll fixup all on-line cpus.
4622 */
4623 if (cpu_online(cpu))
4624 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4625#endif
4626 }
4627
6811378e
YG
4628 return 0;
4629}
4630
061f67bc
RV
4631static noinline void __init
4632build_all_zonelists_init(void)
4633{
4634 __build_all_zonelists(NULL);
4635 mminit_verify_zonelist();
4636 cpuset_init_current_mems_allowed();
4637}
4638
4eaf3f64
HL
4639/*
4640 * Called with zonelists_mutex held always
4641 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4642 *
4643 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4644 * [we're only called with non-NULL zone through __meminit paths] and
4645 * (2) call of __init annotated helper build_all_zonelists_init
4646 * [protected by SYSTEM_BOOTING].
4eaf3f64 4647 */
9adb62a5 4648void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4649{
f0c0b2b8
KH
4650 set_zonelist_order();
4651
6811378e 4652 if (system_state == SYSTEM_BOOTING) {
061f67bc 4653 build_all_zonelists_init();
6811378e 4654 } else {
e9959f0f 4655#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4656 if (zone)
4657 setup_zone_pageset(zone);
e9959f0f 4658#endif
dd1895e2
CS
4659 /* we have to stop all cpus to guarantee there is no user
4660 of zonelist */
9adb62a5 4661 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4662 /* cpuset refresh routine should be here */
4663 }
bd1e22b8 4664 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4665 /*
4666 * Disable grouping by mobility if the number of pages in the
4667 * system is too low to allow the mechanism to work. It would be
4668 * more accurate, but expensive to check per-zone. This check is
4669 * made on memory-hotadd so a system can start with mobility
4670 * disabled and enable it later
4671 */
d9c23400 4672 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4673 page_group_by_mobility_disabled = 1;
4674 else
4675 page_group_by_mobility_disabled = 0;
4676
756a025f
JP
4677 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4678 nr_online_nodes,
4679 zonelist_order_name[current_zonelist_order],
4680 page_group_by_mobility_disabled ? "off" : "on",
4681 vm_total_pages);
f0c0b2b8 4682#ifdef CONFIG_NUMA
f88dfff5 4683 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4684#endif
1da177e4
LT
4685}
4686
4687/*
4688 * Helper functions to size the waitqueue hash table.
4689 * Essentially these want to choose hash table sizes sufficiently
4690 * large so that collisions trying to wait on pages are rare.
4691 * But in fact, the number of active page waitqueues on typical
4692 * systems is ridiculously low, less than 200. So this is even
4693 * conservative, even though it seems large.
4694 *
4695 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4696 * waitqueues, i.e. the size of the waitq table given the number of pages.
4697 */
4698#define PAGES_PER_WAITQUEUE 256
4699
cca448fe 4700#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4701static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4702{
4703 unsigned long size = 1;
4704
4705 pages /= PAGES_PER_WAITQUEUE;
4706
4707 while (size < pages)
4708 size <<= 1;
4709
4710 /*
4711 * Once we have dozens or even hundreds of threads sleeping
4712 * on IO we've got bigger problems than wait queue collision.
4713 * Limit the size of the wait table to a reasonable size.
4714 */
4715 size = min(size, 4096UL);
4716
4717 return max(size, 4UL);
4718}
cca448fe
YG
4719#else
4720/*
4721 * A zone's size might be changed by hot-add, so it is not possible to determine
4722 * a suitable size for its wait_table. So we use the maximum size now.
4723 *
4724 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4725 *
4726 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4727 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4728 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4729 *
4730 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4731 * or more by the traditional way. (See above). It equals:
4732 *
4733 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4734 * ia64(16K page size) : = ( 8G + 4M)byte.
4735 * powerpc (64K page size) : = (32G +16M)byte.
4736 */
4737static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4738{
4739 return 4096UL;
4740}
4741#endif
1da177e4
LT
4742
4743/*
4744 * This is an integer logarithm so that shifts can be used later
4745 * to extract the more random high bits from the multiplicative
4746 * hash function before the remainder is taken.
4747 */
4748static inline unsigned long wait_table_bits(unsigned long size)
4749{
4750 return ffz(~size);
4751}
4752
1da177e4
LT
4753/*
4754 * Initially all pages are reserved - free ones are freed
4755 * up by free_all_bootmem() once the early boot process is
4756 * done. Non-atomic initialization, single-pass.
4757 */
c09b4240 4758void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4759 unsigned long start_pfn, enum memmap_context context)
1da177e4 4760{
4b94ffdc 4761 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4762 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4763 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4764 unsigned long pfn;
3a80a7fa 4765 unsigned long nr_initialised = 0;
342332e6
TI
4766#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4767 struct memblock_region *r = NULL, *tmp;
4768#endif
1da177e4 4769
22b31eec
HD
4770 if (highest_memmap_pfn < end_pfn - 1)
4771 highest_memmap_pfn = end_pfn - 1;
4772
4b94ffdc
DW
4773 /*
4774 * Honor reservation requested by the driver for this ZONE_DEVICE
4775 * memory
4776 */
4777 if (altmap && start_pfn == altmap->base_pfn)
4778 start_pfn += altmap->reserve;
4779
cbe8dd4a 4780 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4781 /*
b72d0ffb
AM
4782 * There can be holes in boot-time mem_map[]s handed to this
4783 * function. They do not exist on hotplugged memory.
a2f3aa02 4784 */
b72d0ffb
AM
4785 if (context != MEMMAP_EARLY)
4786 goto not_early;
4787
4788 if (!early_pfn_valid(pfn))
4789 continue;
4790 if (!early_pfn_in_nid(pfn, nid))
4791 continue;
4792 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4793 break;
342332e6
TI
4794
4795#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
4796 /*
4797 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4798 * from zone_movable_pfn[nid] to end of each node should be
4799 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4800 */
4801 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4802 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4803 continue;
342332e6 4804
b72d0ffb
AM
4805 /*
4806 * Check given memblock attribute by firmware which can affect
4807 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4808 * mirrored, it's an overlapped memmap init. skip it.
4809 */
4810 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4811 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4812 for_each_memblock(memory, tmp)
4813 if (pfn < memblock_region_memory_end_pfn(tmp))
4814 break;
4815 r = tmp;
4816 }
4817 if (pfn >= memblock_region_memory_base_pfn(r) &&
4818 memblock_is_mirror(r)) {
4819 /* already initialized as NORMAL */
4820 pfn = memblock_region_memory_end_pfn(r);
4821 continue;
342332e6 4822 }
a2f3aa02 4823 }
b72d0ffb 4824#endif
ac5d2539 4825
b72d0ffb 4826not_early:
ac5d2539
MG
4827 /*
4828 * Mark the block movable so that blocks are reserved for
4829 * movable at startup. This will force kernel allocations
4830 * to reserve their blocks rather than leaking throughout
4831 * the address space during boot when many long-lived
974a786e 4832 * kernel allocations are made.
ac5d2539
MG
4833 *
4834 * bitmap is created for zone's valid pfn range. but memmap
4835 * can be created for invalid pages (for alignment)
4836 * check here not to call set_pageblock_migratetype() against
4837 * pfn out of zone.
4838 */
4839 if (!(pfn & (pageblock_nr_pages - 1))) {
4840 struct page *page = pfn_to_page(pfn);
4841
4842 __init_single_page(page, pfn, zone, nid);
4843 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4844 } else {
4845 __init_single_pfn(pfn, zone, nid);
4846 }
1da177e4
LT
4847 }
4848}
4849
1e548deb 4850static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 4851{
7aeb09f9 4852 unsigned int order, t;
b2a0ac88
MG
4853 for_each_migratetype_order(order, t) {
4854 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
4855 zone->free_area[order].nr_free = 0;
4856 }
4857}
4858
4859#ifndef __HAVE_ARCH_MEMMAP_INIT
4860#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 4861 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
4862#endif
4863
7cd2b0a3 4864static int zone_batchsize(struct zone *zone)
e7c8d5c9 4865{
3a6be87f 4866#ifdef CONFIG_MMU
e7c8d5c9
CL
4867 int batch;
4868
4869 /*
4870 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 4871 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
4872 *
4873 * OK, so we don't know how big the cache is. So guess.
4874 */
b40da049 4875 batch = zone->managed_pages / 1024;
ba56e91c
SR
4876 if (batch * PAGE_SIZE > 512 * 1024)
4877 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
4878 batch /= 4; /* We effectively *= 4 below */
4879 if (batch < 1)
4880 batch = 1;
4881
4882 /*
0ceaacc9
NP
4883 * Clamp the batch to a 2^n - 1 value. Having a power
4884 * of 2 value was found to be more likely to have
4885 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 4886 *
0ceaacc9
NP
4887 * For example if 2 tasks are alternately allocating
4888 * batches of pages, one task can end up with a lot
4889 * of pages of one half of the possible page colors
4890 * and the other with pages of the other colors.
e7c8d5c9 4891 */
9155203a 4892 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 4893
e7c8d5c9 4894 return batch;
3a6be87f
DH
4895
4896#else
4897 /* The deferral and batching of frees should be suppressed under NOMMU
4898 * conditions.
4899 *
4900 * The problem is that NOMMU needs to be able to allocate large chunks
4901 * of contiguous memory as there's no hardware page translation to
4902 * assemble apparent contiguous memory from discontiguous pages.
4903 *
4904 * Queueing large contiguous runs of pages for batching, however,
4905 * causes the pages to actually be freed in smaller chunks. As there
4906 * can be a significant delay between the individual batches being
4907 * recycled, this leads to the once large chunks of space being
4908 * fragmented and becoming unavailable for high-order allocations.
4909 */
4910 return 0;
4911#endif
e7c8d5c9
CL
4912}
4913
8d7a8fa9
CS
4914/*
4915 * pcp->high and pcp->batch values are related and dependent on one another:
4916 * ->batch must never be higher then ->high.
4917 * The following function updates them in a safe manner without read side
4918 * locking.
4919 *
4920 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4921 * those fields changing asynchronously (acording the the above rule).
4922 *
4923 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4924 * outside of boot time (or some other assurance that no concurrent updaters
4925 * exist).
4926 */
4927static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4928 unsigned long batch)
4929{
4930 /* start with a fail safe value for batch */
4931 pcp->batch = 1;
4932 smp_wmb();
4933
4934 /* Update high, then batch, in order */
4935 pcp->high = high;
4936 smp_wmb();
4937
4938 pcp->batch = batch;
4939}
4940
3664033c 4941/* a companion to pageset_set_high() */
4008bab7
CS
4942static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4943{
8d7a8fa9 4944 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
4945}
4946
88c90dbc 4947static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
4948{
4949 struct per_cpu_pages *pcp;
5f8dcc21 4950 int migratetype;
2caaad41 4951
1c6fe946
MD
4952 memset(p, 0, sizeof(*p));
4953
3dfa5721 4954 pcp = &p->pcp;
2caaad41 4955 pcp->count = 0;
5f8dcc21
MG
4956 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4957 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
4958}
4959
88c90dbc
CS
4960static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4961{
4962 pageset_init(p);
4963 pageset_set_batch(p, batch);
4964}
4965
8ad4b1fb 4966/*
3664033c 4967 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
4968 * to the value high for the pageset p.
4969 */
3664033c 4970static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
4971 unsigned long high)
4972{
8d7a8fa9
CS
4973 unsigned long batch = max(1UL, high / 4);
4974 if ((high / 4) > (PAGE_SHIFT * 8))
4975 batch = PAGE_SHIFT * 8;
8ad4b1fb 4976
8d7a8fa9 4977 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
4978}
4979
7cd2b0a3
DR
4980static void pageset_set_high_and_batch(struct zone *zone,
4981 struct per_cpu_pageset *pcp)
56cef2b8 4982{
56cef2b8 4983 if (percpu_pagelist_fraction)
3664033c 4984 pageset_set_high(pcp,
56cef2b8
CS
4985 (zone->managed_pages /
4986 percpu_pagelist_fraction));
4987 else
4988 pageset_set_batch(pcp, zone_batchsize(zone));
4989}
4990
169f6c19
CS
4991static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4992{
4993 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4994
4995 pageset_init(pcp);
4996 pageset_set_high_and_batch(zone, pcp);
4997}
4998
4ed7e022 4999static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5000{
5001 int cpu;
319774e2 5002 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5003 for_each_possible_cpu(cpu)
5004 zone_pageset_init(zone, cpu);
319774e2
WF
5005}
5006
2caaad41 5007/*
99dcc3e5
CL
5008 * Allocate per cpu pagesets and initialize them.
5009 * Before this call only boot pagesets were available.
e7c8d5c9 5010 */
99dcc3e5 5011void __init setup_per_cpu_pageset(void)
e7c8d5c9 5012{
99dcc3e5 5013 struct zone *zone;
e7c8d5c9 5014
319774e2
WF
5015 for_each_populated_zone(zone)
5016 setup_zone_pageset(zone);
e7c8d5c9
CL
5017}
5018
577a32f6 5019static noinline __init_refok
cca448fe 5020int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5021{
5022 int i;
cca448fe 5023 size_t alloc_size;
ed8ece2e
DH
5024
5025 /*
5026 * The per-page waitqueue mechanism uses hashed waitqueues
5027 * per zone.
5028 */
02b694de
YG
5029 zone->wait_table_hash_nr_entries =
5030 wait_table_hash_nr_entries(zone_size_pages);
5031 zone->wait_table_bits =
5032 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5033 alloc_size = zone->wait_table_hash_nr_entries
5034 * sizeof(wait_queue_head_t);
5035
cd94b9db 5036 if (!slab_is_available()) {
cca448fe 5037 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5038 memblock_virt_alloc_node_nopanic(
5039 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5040 } else {
5041 /*
5042 * This case means that a zone whose size was 0 gets new memory
5043 * via memory hot-add.
5044 * But it may be the case that a new node was hot-added. In
5045 * this case vmalloc() will not be able to use this new node's
5046 * memory - this wait_table must be initialized to use this new
5047 * node itself as well.
5048 * To use this new node's memory, further consideration will be
5049 * necessary.
5050 */
8691f3a7 5051 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5052 }
5053 if (!zone->wait_table)
5054 return -ENOMEM;
ed8ece2e 5055
b8af2941 5056 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5057 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5058
5059 return 0;
ed8ece2e
DH
5060}
5061
c09b4240 5062static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5063{
99dcc3e5
CL
5064 /*
5065 * per cpu subsystem is not up at this point. The following code
5066 * relies on the ability of the linker to provide the
5067 * offset of a (static) per cpu variable into the per cpu area.
5068 */
5069 zone->pageset = &boot_pageset;
ed8ece2e 5070
b38a8725 5071 if (populated_zone(zone))
99dcc3e5
CL
5072 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5073 zone->name, zone->present_pages,
5074 zone_batchsize(zone));
ed8ece2e
DH
5075}
5076
4ed7e022 5077int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5078 unsigned long zone_start_pfn,
b171e409 5079 unsigned long size)
ed8ece2e
DH
5080{
5081 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5082 int ret;
5083 ret = zone_wait_table_init(zone, size);
5084 if (ret)
5085 return ret;
ed8ece2e
DH
5086 pgdat->nr_zones = zone_idx(zone) + 1;
5087
ed8ece2e
DH
5088 zone->zone_start_pfn = zone_start_pfn;
5089
708614e6
MG
5090 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5091 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5092 pgdat->node_id,
5093 (unsigned long)zone_idx(zone),
5094 zone_start_pfn, (zone_start_pfn + size));
5095
1e548deb 5096 zone_init_free_lists(zone);
718127cc
YG
5097
5098 return 0;
ed8ece2e
DH
5099}
5100
0ee332c1 5101#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5102#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5103
c713216d
MG
5104/*
5105 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5106 */
8a942fde
MG
5107int __meminit __early_pfn_to_nid(unsigned long pfn,
5108 struct mminit_pfnnid_cache *state)
c713216d 5109{
c13291a5 5110 unsigned long start_pfn, end_pfn;
e76b63f8 5111 int nid;
7c243c71 5112
8a942fde
MG
5113 if (state->last_start <= pfn && pfn < state->last_end)
5114 return state->last_nid;
c713216d 5115
e76b63f8
YL
5116 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5117 if (nid != -1) {
8a942fde
MG
5118 state->last_start = start_pfn;
5119 state->last_end = end_pfn;
5120 state->last_nid = nid;
e76b63f8
YL
5121 }
5122
5123 return nid;
c713216d
MG
5124}
5125#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5126
c713216d 5127/**
6782832e 5128 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5129 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5130 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5131 *
7d018176
ZZ
5132 * If an architecture guarantees that all ranges registered contain no holes
5133 * and may be freed, this this function may be used instead of calling
5134 * memblock_free_early_nid() manually.
c713216d 5135 */
c13291a5 5136void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5137{
c13291a5
TH
5138 unsigned long start_pfn, end_pfn;
5139 int i, this_nid;
edbe7d23 5140
c13291a5
TH
5141 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5142 start_pfn = min(start_pfn, max_low_pfn);
5143 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5144
c13291a5 5145 if (start_pfn < end_pfn)
6782832e
SS
5146 memblock_free_early_nid(PFN_PHYS(start_pfn),
5147 (end_pfn - start_pfn) << PAGE_SHIFT,
5148 this_nid);
edbe7d23 5149 }
edbe7d23 5150}
edbe7d23 5151
c713216d
MG
5152/**
5153 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5154 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5155 *
7d018176
ZZ
5156 * If an architecture guarantees that all ranges registered contain no holes and may
5157 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5158 */
5159void __init sparse_memory_present_with_active_regions(int nid)
5160{
c13291a5
TH
5161 unsigned long start_pfn, end_pfn;
5162 int i, this_nid;
c713216d 5163
c13291a5
TH
5164 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5165 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5166}
5167
5168/**
5169 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5170 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5171 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5172 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5173 *
5174 * It returns the start and end page frame of a node based on information
7d018176 5175 * provided by memblock_set_node(). If called for a node
c713216d 5176 * with no available memory, a warning is printed and the start and end
88ca3b94 5177 * PFNs will be 0.
c713216d 5178 */
a3142c8e 5179void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5180 unsigned long *start_pfn, unsigned long *end_pfn)
5181{
c13291a5 5182 unsigned long this_start_pfn, this_end_pfn;
c713216d 5183 int i;
c13291a5 5184
c713216d
MG
5185 *start_pfn = -1UL;
5186 *end_pfn = 0;
5187
c13291a5
TH
5188 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5189 *start_pfn = min(*start_pfn, this_start_pfn);
5190 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5191 }
5192
633c0666 5193 if (*start_pfn == -1UL)
c713216d 5194 *start_pfn = 0;
c713216d
MG
5195}
5196
2a1e274a
MG
5197/*
5198 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5199 * assumption is made that zones within a node are ordered in monotonic
5200 * increasing memory addresses so that the "highest" populated zone is used
5201 */
b69a7288 5202static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5203{
5204 int zone_index;
5205 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5206 if (zone_index == ZONE_MOVABLE)
5207 continue;
5208
5209 if (arch_zone_highest_possible_pfn[zone_index] >
5210 arch_zone_lowest_possible_pfn[zone_index])
5211 break;
5212 }
5213
5214 VM_BUG_ON(zone_index == -1);
5215 movable_zone = zone_index;
5216}
5217
5218/*
5219 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5220 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5221 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5222 * in each node depending on the size of each node and how evenly kernelcore
5223 * is distributed. This helper function adjusts the zone ranges
5224 * provided by the architecture for a given node by using the end of the
5225 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5226 * zones within a node are in order of monotonic increases memory addresses
5227 */
b69a7288 5228static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5229 unsigned long zone_type,
5230 unsigned long node_start_pfn,
5231 unsigned long node_end_pfn,
5232 unsigned long *zone_start_pfn,
5233 unsigned long *zone_end_pfn)
5234{
5235 /* Only adjust if ZONE_MOVABLE is on this node */
5236 if (zone_movable_pfn[nid]) {
5237 /* Size ZONE_MOVABLE */
5238 if (zone_type == ZONE_MOVABLE) {
5239 *zone_start_pfn = zone_movable_pfn[nid];
5240 *zone_end_pfn = min(node_end_pfn,
5241 arch_zone_highest_possible_pfn[movable_zone]);
5242
2a1e274a
MG
5243 /* Check if this whole range is within ZONE_MOVABLE */
5244 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5245 *zone_start_pfn = *zone_end_pfn;
5246 }
5247}
5248
c713216d
MG
5249/*
5250 * Return the number of pages a zone spans in a node, including holes
5251 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5252 */
6ea6e688 5253static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5254 unsigned long zone_type,
7960aedd
ZY
5255 unsigned long node_start_pfn,
5256 unsigned long node_end_pfn,
d91749c1
TI
5257 unsigned long *zone_start_pfn,
5258 unsigned long *zone_end_pfn,
c713216d
MG
5259 unsigned long *ignored)
5260{
b5685e92 5261 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5262 if (!node_start_pfn && !node_end_pfn)
5263 return 0;
5264
7960aedd 5265 /* Get the start and end of the zone */
d91749c1
TI
5266 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5267 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5268 adjust_zone_range_for_zone_movable(nid, zone_type,
5269 node_start_pfn, node_end_pfn,
d91749c1 5270 zone_start_pfn, zone_end_pfn);
c713216d
MG
5271
5272 /* Check that this node has pages within the zone's required range */
d91749c1 5273 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5274 return 0;
5275
5276 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5277 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5278 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5279
5280 /* Return the spanned pages */
d91749c1 5281 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5282}
5283
5284/*
5285 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5286 * then all holes in the requested range will be accounted for.
c713216d 5287 */
32996250 5288unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5289 unsigned long range_start_pfn,
5290 unsigned long range_end_pfn)
5291{
96e907d1
TH
5292 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5293 unsigned long start_pfn, end_pfn;
5294 int i;
c713216d 5295
96e907d1
TH
5296 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5297 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5298 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5299 nr_absent -= end_pfn - start_pfn;
c713216d 5300 }
96e907d1 5301 return nr_absent;
c713216d
MG
5302}
5303
5304/**
5305 * absent_pages_in_range - Return number of page frames in holes within a range
5306 * @start_pfn: The start PFN to start searching for holes
5307 * @end_pfn: The end PFN to stop searching for holes
5308 *
88ca3b94 5309 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5310 */
5311unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5312 unsigned long end_pfn)
5313{
5314 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5315}
5316
5317/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5318static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5319 unsigned long zone_type,
7960aedd
ZY
5320 unsigned long node_start_pfn,
5321 unsigned long node_end_pfn,
c713216d
MG
5322 unsigned long *ignored)
5323{
96e907d1
TH
5324 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5325 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5326 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5327 unsigned long nr_absent;
9c7cd687 5328
b5685e92 5329 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5330 if (!node_start_pfn && !node_end_pfn)
5331 return 0;
5332
96e907d1
TH
5333 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5334 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5335
2a1e274a
MG
5336 adjust_zone_range_for_zone_movable(nid, zone_type,
5337 node_start_pfn, node_end_pfn,
5338 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5339 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5340
5341 /*
5342 * ZONE_MOVABLE handling.
5343 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5344 * and vice versa.
5345 */
5346 if (zone_movable_pfn[nid]) {
5347 if (mirrored_kernelcore) {
5348 unsigned long start_pfn, end_pfn;
5349 struct memblock_region *r;
5350
5351 for_each_memblock(memory, r) {
5352 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5353 zone_start_pfn, zone_end_pfn);
5354 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5355 zone_start_pfn, zone_end_pfn);
5356
5357 if (zone_type == ZONE_MOVABLE &&
5358 memblock_is_mirror(r))
5359 nr_absent += end_pfn - start_pfn;
5360
5361 if (zone_type == ZONE_NORMAL &&
5362 !memblock_is_mirror(r))
5363 nr_absent += end_pfn - start_pfn;
5364 }
5365 } else {
5366 if (zone_type == ZONE_NORMAL)
5367 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5368 }
5369 }
5370
5371 return nr_absent;
c713216d 5372}
0e0b864e 5373
0ee332c1 5374#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5375static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5376 unsigned long zone_type,
7960aedd
ZY
5377 unsigned long node_start_pfn,
5378 unsigned long node_end_pfn,
d91749c1
TI
5379 unsigned long *zone_start_pfn,
5380 unsigned long *zone_end_pfn,
c713216d
MG
5381 unsigned long *zones_size)
5382{
d91749c1
TI
5383 unsigned int zone;
5384
5385 *zone_start_pfn = node_start_pfn;
5386 for (zone = 0; zone < zone_type; zone++)
5387 *zone_start_pfn += zones_size[zone];
5388
5389 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5390
c713216d
MG
5391 return zones_size[zone_type];
5392}
5393
6ea6e688 5394static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5395 unsigned long zone_type,
7960aedd
ZY
5396 unsigned long node_start_pfn,
5397 unsigned long node_end_pfn,
c713216d
MG
5398 unsigned long *zholes_size)
5399{
5400 if (!zholes_size)
5401 return 0;
5402
5403 return zholes_size[zone_type];
5404}
20e6926d 5405
0ee332c1 5406#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5407
a3142c8e 5408static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5409 unsigned long node_start_pfn,
5410 unsigned long node_end_pfn,
5411 unsigned long *zones_size,
5412 unsigned long *zholes_size)
c713216d 5413{
febd5949 5414 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5415 enum zone_type i;
5416
febd5949
GZ
5417 for (i = 0; i < MAX_NR_ZONES; i++) {
5418 struct zone *zone = pgdat->node_zones + i;
d91749c1 5419 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5420 unsigned long size, real_size;
c713216d 5421
febd5949
GZ
5422 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5423 node_start_pfn,
5424 node_end_pfn,
d91749c1
TI
5425 &zone_start_pfn,
5426 &zone_end_pfn,
febd5949
GZ
5427 zones_size);
5428 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5429 node_start_pfn, node_end_pfn,
5430 zholes_size);
d91749c1
TI
5431 if (size)
5432 zone->zone_start_pfn = zone_start_pfn;
5433 else
5434 zone->zone_start_pfn = 0;
febd5949
GZ
5435 zone->spanned_pages = size;
5436 zone->present_pages = real_size;
5437
5438 totalpages += size;
5439 realtotalpages += real_size;
5440 }
5441
5442 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5443 pgdat->node_present_pages = realtotalpages;
5444 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5445 realtotalpages);
5446}
5447
835c134e
MG
5448#ifndef CONFIG_SPARSEMEM
5449/*
5450 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5451 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5452 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5453 * round what is now in bits to nearest long in bits, then return it in
5454 * bytes.
5455 */
7c45512d 5456static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5457{
5458 unsigned long usemapsize;
5459
7c45512d 5460 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5461 usemapsize = roundup(zonesize, pageblock_nr_pages);
5462 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5463 usemapsize *= NR_PAGEBLOCK_BITS;
5464 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5465
5466 return usemapsize / 8;
5467}
5468
5469static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5470 struct zone *zone,
5471 unsigned long zone_start_pfn,
5472 unsigned long zonesize)
835c134e 5473{
7c45512d 5474 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5475 zone->pageblock_flags = NULL;
58a01a45 5476 if (usemapsize)
6782832e
SS
5477 zone->pageblock_flags =
5478 memblock_virt_alloc_node_nopanic(usemapsize,
5479 pgdat->node_id);
835c134e
MG
5480}
5481#else
7c45512d
LT
5482static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5483 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5484#endif /* CONFIG_SPARSEMEM */
5485
d9c23400 5486#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5487
d9c23400 5488/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5489void __paginginit set_pageblock_order(void)
d9c23400 5490{
955c1cd7
AM
5491 unsigned int order;
5492
d9c23400
MG
5493 /* Check that pageblock_nr_pages has not already been setup */
5494 if (pageblock_order)
5495 return;
5496
955c1cd7
AM
5497 if (HPAGE_SHIFT > PAGE_SHIFT)
5498 order = HUGETLB_PAGE_ORDER;
5499 else
5500 order = MAX_ORDER - 1;
5501
d9c23400
MG
5502 /*
5503 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5504 * This value may be variable depending on boot parameters on IA64 and
5505 * powerpc.
d9c23400
MG
5506 */
5507 pageblock_order = order;
5508}
5509#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5510
ba72cb8c
MG
5511/*
5512 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5513 * is unused as pageblock_order is set at compile-time. See
5514 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5515 * the kernel config
ba72cb8c 5516 */
15ca220e 5517void __paginginit set_pageblock_order(void)
ba72cb8c 5518{
ba72cb8c 5519}
d9c23400
MG
5520
5521#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5522
01cefaef
JL
5523static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5524 unsigned long present_pages)
5525{
5526 unsigned long pages = spanned_pages;
5527
5528 /*
5529 * Provide a more accurate estimation if there are holes within
5530 * the zone and SPARSEMEM is in use. If there are holes within the
5531 * zone, each populated memory region may cost us one or two extra
5532 * memmap pages due to alignment because memmap pages for each
5533 * populated regions may not naturally algined on page boundary.
5534 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5535 */
5536 if (spanned_pages > present_pages + (present_pages >> 4) &&
5537 IS_ENABLED(CONFIG_SPARSEMEM))
5538 pages = present_pages;
5539
5540 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5541}
5542
1da177e4
LT
5543/*
5544 * Set up the zone data structures:
5545 * - mark all pages reserved
5546 * - mark all memory queues empty
5547 * - clear the memory bitmaps
6527af5d
MK
5548 *
5549 * NOTE: pgdat should get zeroed by caller.
1da177e4 5550 */
7f3eb55b 5551static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5552{
2f1b6248 5553 enum zone_type j;
ed8ece2e 5554 int nid = pgdat->node_id;
718127cc 5555 int ret;
1da177e4 5556
208d54e5 5557 pgdat_resize_init(pgdat);
8177a420
AA
5558#ifdef CONFIG_NUMA_BALANCING
5559 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5560 pgdat->numabalancing_migrate_nr_pages = 0;
5561 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5562#endif
5563#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5564 spin_lock_init(&pgdat->split_queue_lock);
5565 INIT_LIST_HEAD(&pgdat->split_queue);
5566 pgdat->split_queue_len = 0;
8177a420 5567#endif
1da177e4 5568 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5569 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5570#ifdef CONFIG_COMPACTION
5571 init_waitqueue_head(&pgdat->kcompactd_wait);
5572#endif
eefa864b 5573 pgdat_page_ext_init(pgdat);
5f63b720 5574
1da177e4
LT
5575 for (j = 0; j < MAX_NR_ZONES; j++) {
5576 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5577 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5578 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5579
febd5949
GZ
5580 size = zone->spanned_pages;
5581 realsize = freesize = zone->present_pages;
1da177e4 5582
0e0b864e 5583 /*
9feedc9d 5584 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5585 * is used by this zone for memmap. This affects the watermark
5586 * and per-cpu initialisations
5587 */
01cefaef 5588 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5589 if (!is_highmem_idx(j)) {
5590 if (freesize >= memmap_pages) {
5591 freesize -= memmap_pages;
5592 if (memmap_pages)
5593 printk(KERN_DEBUG
5594 " %s zone: %lu pages used for memmap\n",
5595 zone_names[j], memmap_pages);
5596 } else
1170532b 5597 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5598 zone_names[j], memmap_pages, freesize);
5599 }
0e0b864e 5600
6267276f 5601 /* Account for reserved pages */
9feedc9d
JL
5602 if (j == 0 && freesize > dma_reserve) {
5603 freesize -= dma_reserve;
d903ef9f 5604 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5605 zone_names[0], dma_reserve);
0e0b864e
MG
5606 }
5607
98d2b0eb 5608 if (!is_highmem_idx(j))
9feedc9d 5609 nr_kernel_pages += freesize;
01cefaef
JL
5610 /* Charge for highmem memmap if there are enough kernel pages */
5611 else if (nr_kernel_pages > memmap_pages * 2)
5612 nr_kernel_pages -= memmap_pages;
9feedc9d 5613 nr_all_pages += freesize;
1da177e4 5614
9feedc9d
JL
5615 /*
5616 * Set an approximate value for lowmem here, it will be adjusted
5617 * when the bootmem allocator frees pages into the buddy system.
5618 * And all highmem pages will be managed by the buddy system.
5619 */
5620 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5621#ifdef CONFIG_NUMA
d5f541ed 5622 zone->node = nid;
9feedc9d 5623 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
9614634f 5624 / 100;
9feedc9d 5625 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5626#endif
1da177e4
LT
5627 zone->name = zone_names[j];
5628 spin_lock_init(&zone->lock);
5629 spin_lock_init(&zone->lru_lock);
bdc8cb98 5630 zone_seqlock_init(zone);
1da177e4 5631 zone->zone_pgdat = pgdat;
ed8ece2e 5632 zone_pcp_init(zone);
81c0a2bb
JW
5633
5634 /* For bootup, initialized properly in watermark setup */
5635 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5636
bea8c150 5637 lruvec_init(&zone->lruvec);
1da177e4
LT
5638 if (!size)
5639 continue;
5640
955c1cd7 5641 set_pageblock_order();
7c45512d 5642 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5643 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5644 BUG_ON(ret);
76cdd58e 5645 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5646 }
5647}
5648
577a32f6 5649static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5650{
b0aeba74 5651 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5652 unsigned long __maybe_unused offset = 0;
5653
1da177e4
LT
5654 /* Skip empty nodes */
5655 if (!pgdat->node_spanned_pages)
5656 return;
5657
d41dee36 5658#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5659 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5660 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5661 /* ia64 gets its own node_mem_map, before this, without bootmem */
5662 if (!pgdat->node_mem_map) {
b0aeba74 5663 unsigned long size, end;
d41dee36
AW
5664 struct page *map;
5665
e984bb43
BP
5666 /*
5667 * The zone's endpoints aren't required to be MAX_ORDER
5668 * aligned but the node_mem_map endpoints must be in order
5669 * for the buddy allocator to function correctly.
5670 */
108bcc96 5671 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5672 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5673 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5674 map = alloc_remap(pgdat->node_id, size);
5675 if (!map)
6782832e
SS
5676 map = memblock_virt_alloc_node_nopanic(size,
5677 pgdat->node_id);
a1c34a3b 5678 pgdat->node_mem_map = map + offset;
1da177e4 5679 }
12d810c1 5680#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5681 /*
5682 * With no DISCONTIG, the global mem_map is just set as node 0's
5683 */
c713216d 5684 if (pgdat == NODE_DATA(0)) {
1da177e4 5685 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5686#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5687 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5688 mem_map -= offset;
0ee332c1 5689#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5690 }
1da177e4 5691#endif
d41dee36 5692#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5693}
5694
9109fb7b
JW
5695void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5696 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5697{
9109fb7b 5698 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5699 unsigned long start_pfn = 0;
5700 unsigned long end_pfn = 0;
9109fb7b 5701
88fdf75d 5702 /* pg_data_t should be reset to zero when it's allocated */
8783b6e2 5703 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
88fdf75d 5704
3a80a7fa 5705 reset_deferred_meminit(pgdat);
1da177e4
LT
5706 pgdat->node_id = nid;
5707 pgdat->node_start_pfn = node_start_pfn;
7960aedd
ZY
5708#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5709 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5710 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5711 (u64)start_pfn << PAGE_SHIFT,
5712 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5713#else
5714 start_pfn = node_start_pfn;
7960aedd
ZY
5715#endif
5716 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5717 zones_size, zholes_size);
1da177e4
LT
5718
5719 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5720#ifdef CONFIG_FLAT_NODE_MEM_MAP
5721 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5722 nid, (unsigned long)pgdat,
5723 (unsigned long)pgdat->node_mem_map);
5724#endif
1da177e4 5725
7f3eb55b 5726 free_area_init_core(pgdat);
1da177e4
LT
5727}
5728
0ee332c1 5729#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5730
5731#if MAX_NUMNODES > 1
5732/*
5733 * Figure out the number of possible node ids.
5734 */
f9872caf 5735void __init setup_nr_node_ids(void)
418508c1 5736{
904a9553 5737 unsigned int highest;
418508c1 5738
904a9553 5739 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5740 nr_node_ids = highest + 1;
5741}
418508c1
MS
5742#endif
5743
1e01979c
TH
5744/**
5745 * node_map_pfn_alignment - determine the maximum internode alignment
5746 *
5747 * This function should be called after node map is populated and sorted.
5748 * It calculates the maximum power of two alignment which can distinguish
5749 * all the nodes.
5750 *
5751 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5752 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5753 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5754 * shifted, 1GiB is enough and this function will indicate so.
5755 *
5756 * This is used to test whether pfn -> nid mapping of the chosen memory
5757 * model has fine enough granularity to avoid incorrect mapping for the
5758 * populated node map.
5759 *
5760 * Returns the determined alignment in pfn's. 0 if there is no alignment
5761 * requirement (single node).
5762 */
5763unsigned long __init node_map_pfn_alignment(void)
5764{
5765 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5766 unsigned long start, end, mask;
1e01979c 5767 int last_nid = -1;
c13291a5 5768 int i, nid;
1e01979c 5769
c13291a5 5770 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5771 if (!start || last_nid < 0 || last_nid == nid) {
5772 last_nid = nid;
5773 last_end = end;
5774 continue;
5775 }
5776
5777 /*
5778 * Start with a mask granular enough to pin-point to the
5779 * start pfn and tick off bits one-by-one until it becomes
5780 * too coarse to separate the current node from the last.
5781 */
5782 mask = ~((1 << __ffs(start)) - 1);
5783 while (mask && last_end <= (start & (mask << 1)))
5784 mask <<= 1;
5785
5786 /* accumulate all internode masks */
5787 accl_mask |= mask;
5788 }
5789
5790 /* convert mask to number of pages */
5791 return ~accl_mask + 1;
5792}
5793
a6af2bc3 5794/* Find the lowest pfn for a node */
b69a7288 5795static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 5796{
a6af2bc3 5797 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
5798 unsigned long start_pfn;
5799 int i;
1abbfb41 5800
c13291a5
TH
5801 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5802 min_pfn = min(min_pfn, start_pfn);
c713216d 5803
a6af2bc3 5804 if (min_pfn == ULONG_MAX) {
1170532b 5805 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
5806 return 0;
5807 }
5808
5809 return min_pfn;
c713216d
MG
5810}
5811
5812/**
5813 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5814 *
5815 * It returns the minimum PFN based on information provided via
7d018176 5816 * memblock_set_node().
c713216d
MG
5817 */
5818unsigned long __init find_min_pfn_with_active_regions(void)
5819{
5820 return find_min_pfn_for_node(MAX_NUMNODES);
5821}
5822
37b07e41
LS
5823/*
5824 * early_calculate_totalpages()
5825 * Sum pages in active regions for movable zone.
4b0ef1fe 5826 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 5827 */
484f51f8 5828static unsigned long __init early_calculate_totalpages(void)
7e63efef 5829{
7e63efef 5830 unsigned long totalpages = 0;
c13291a5
TH
5831 unsigned long start_pfn, end_pfn;
5832 int i, nid;
5833
5834 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5835 unsigned long pages = end_pfn - start_pfn;
7e63efef 5836
37b07e41
LS
5837 totalpages += pages;
5838 if (pages)
4b0ef1fe 5839 node_set_state(nid, N_MEMORY);
37b07e41 5840 }
b8af2941 5841 return totalpages;
7e63efef
MG
5842}
5843
2a1e274a
MG
5844/*
5845 * Find the PFN the Movable zone begins in each node. Kernel memory
5846 * is spread evenly between nodes as long as the nodes have enough
5847 * memory. When they don't, some nodes will have more kernelcore than
5848 * others
5849 */
b224ef85 5850static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
5851{
5852 int i, nid;
5853 unsigned long usable_startpfn;
5854 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 5855 /* save the state before borrow the nodemask */
4b0ef1fe 5856 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 5857 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 5858 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 5859 struct memblock_region *r;
b2f3eebe
TC
5860
5861 /* Need to find movable_zone earlier when movable_node is specified. */
5862 find_usable_zone_for_movable();
5863
5864 /*
5865 * If movable_node is specified, ignore kernelcore and movablecore
5866 * options.
5867 */
5868 if (movable_node_is_enabled()) {
136199f0
EM
5869 for_each_memblock(memory, r) {
5870 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
5871 continue;
5872
136199f0 5873 nid = r->nid;
b2f3eebe 5874
136199f0 5875 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
5876 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5877 min(usable_startpfn, zone_movable_pfn[nid]) :
5878 usable_startpfn;
5879 }
5880
5881 goto out2;
5882 }
2a1e274a 5883
342332e6
TI
5884 /*
5885 * If kernelcore=mirror is specified, ignore movablecore option
5886 */
5887 if (mirrored_kernelcore) {
5888 bool mem_below_4gb_not_mirrored = false;
5889
5890 for_each_memblock(memory, r) {
5891 if (memblock_is_mirror(r))
5892 continue;
5893
5894 nid = r->nid;
5895
5896 usable_startpfn = memblock_region_memory_base_pfn(r);
5897
5898 if (usable_startpfn < 0x100000) {
5899 mem_below_4gb_not_mirrored = true;
5900 continue;
5901 }
5902
5903 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5904 min(usable_startpfn, zone_movable_pfn[nid]) :
5905 usable_startpfn;
5906 }
5907
5908 if (mem_below_4gb_not_mirrored)
5909 pr_warn("This configuration results in unmirrored kernel memory.");
5910
5911 goto out2;
5912 }
5913
7e63efef 5914 /*
b2f3eebe 5915 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
5916 * kernelcore that corresponds so that memory usable for
5917 * any allocation type is evenly spread. If both kernelcore
5918 * and movablecore are specified, then the value of kernelcore
5919 * will be used for required_kernelcore if it's greater than
5920 * what movablecore would have allowed.
5921 */
5922 if (required_movablecore) {
7e63efef
MG
5923 unsigned long corepages;
5924
5925 /*
5926 * Round-up so that ZONE_MOVABLE is at least as large as what
5927 * was requested by the user
5928 */
5929 required_movablecore =
5930 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 5931 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
5932 corepages = totalpages - required_movablecore;
5933
5934 required_kernelcore = max(required_kernelcore, corepages);
5935 }
5936
bde304bd
XQ
5937 /*
5938 * If kernelcore was not specified or kernelcore size is larger
5939 * than totalpages, there is no ZONE_MOVABLE.
5940 */
5941 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 5942 goto out;
2a1e274a
MG
5943
5944 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
5945 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5946
5947restart:
5948 /* Spread kernelcore memory as evenly as possible throughout nodes */
5949 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 5950 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
5951 unsigned long start_pfn, end_pfn;
5952
2a1e274a
MG
5953 /*
5954 * Recalculate kernelcore_node if the division per node
5955 * now exceeds what is necessary to satisfy the requested
5956 * amount of memory for the kernel
5957 */
5958 if (required_kernelcore < kernelcore_node)
5959 kernelcore_node = required_kernelcore / usable_nodes;
5960
5961 /*
5962 * As the map is walked, we track how much memory is usable
5963 * by the kernel using kernelcore_remaining. When it is
5964 * 0, the rest of the node is usable by ZONE_MOVABLE
5965 */
5966 kernelcore_remaining = kernelcore_node;
5967
5968 /* Go through each range of PFNs within this node */
c13291a5 5969 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
5970 unsigned long size_pages;
5971
c13291a5 5972 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
5973 if (start_pfn >= end_pfn)
5974 continue;
5975
5976 /* Account for what is only usable for kernelcore */
5977 if (start_pfn < usable_startpfn) {
5978 unsigned long kernel_pages;
5979 kernel_pages = min(end_pfn, usable_startpfn)
5980 - start_pfn;
5981
5982 kernelcore_remaining -= min(kernel_pages,
5983 kernelcore_remaining);
5984 required_kernelcore -= min(kernel_pages,
5985 required_kernelcore);
5986
5987 /* Continue if range is now fully accounted */
5988 if (end_pfn <= usable_startpfn) {
5989
5990 /*
5991 * Push zone_movable_pfn to the end so
5992 * that if we have to rebalance
5993 * kernelcore across nodes, we will
5994 * not double account here
5995 */
5996 zone_movable_pfn[nid] = end_pfn;
5997 continue;
5998 }
5999 start_pfn = usable_startpfn;
6000 }
6001
6002 /*
6003 * The usable PFN range for ZONE_MOVABLE is from
6004 * start_pfn->end_pfn. Calculate size_pages as the
6005 * number of pages used as kernelcore
6006 */
6007 size_pages = end_pfn - start_pfn;
6008 if (size_pages > kernelcore_remaining)
6009 size_pages = kernelcore_remaining;
6010 zone_movable_pfn[nid] = start_pfn + size_pages;
6011
6012 /*
6013 * Some kernelcore has been met, update counts and
6014 * break if the kernelcore for this node has been
b8af2941 6015 * satisfied
2a1e274a
MG
6016 */
6017 required_kernelcore -= min(required_kernelcore,
6018 size_pages);
6019 kernelcore_remaining -= size_pages;
6020 if (!kernelcore_remaining)
6021 break;
6022 }
6023 }
6024
6025 /*
6026 * If there is still required_kernelcore, we do another pass with one
6027 * less node in the count. This will push zone_movable_pfn[nid] further
6028 * along on the nodes that still have memory until kernelcore is
b8af2941 6029 * satisfied
2a1e274a
MG
6030 */
6031 usable_nodes--;
6032 if (usable_nodes && required_kernelcore > usable_nodes)
6033 goto restart;
6034
b2f3eebe 6035out2:
2a1e274a
MG
6036 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6037 for (nid = 0; nid < MAX_NUMNODES; nid++)
6038 zone_movable_pfn[nid] =
6039 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6040
20e6926d 6041out:
66918dcd 6042 /* restore the node_state */
4b0ef1fe 6043 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6044}
6045
4b0ef1fe
LJ
6046/* Any regular or high memory on that node ? */
6047static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6048{
37b07e41
LS
6049 enum zone_type zone_type;
6050
4b0ef1fe
LJ
6051 if (N_MEMORY == N_NORMAL_MEMORY)
6052 return;
6053
6054 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6055 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6056 if (populated_zone(zone)) {
4b0ef1fe
LJ
6057 node_set_state(nid, N_HIGH_MEMORY);
6058 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6059 zone_type <= ZONE_NORMAL)
6060 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6061 break;
6062 }
37b07e41 6063 }
37b07e41
LS
6064}
6065
c713216d
MG
6066/**
6067 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6068 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6069 *
6070 * This will call free_area_init_node() for each active node in the system.
7d018176 6071 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6072 * zone in each node and their holes is calculated. If the maximum PFN
6073 * between two adjacent zones match, it is assumed that the zone is empty.
6074 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6075 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6076 * starts where the previous one ended. For example, ZONE_DMA32 starts
6077 * at arch_max_dma_pfn.
6078 */
6079void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6080{
c13291a5
TH
6081 unsigned long start_pfn, end_pfn;
6082 int i, nid;
a6af2bc3 6083
c713216d
MG
6084 /* Record where the zone boundaries are */
6085 memset(arch_zone_lowest_possible_pfn, 0,
6086 sizeof(arch_zone_lowest_possible_pfn));
6087 memset(arch_zone_highest_possible_pfn, 0,
6088 sizeof(arch_zone_highest_possible_pfn));
6089 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6090 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6091 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6092 if (i == ZONE_MOVABLE)
6093 continue;
c713216d
MG
6094 arch_zone_lowest_possible_pfn[i] =
6095 arch_zone_highest_possible_pfn[i-1];
6096 arch_zone_highest_possible_pfn[i] =
6097 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6098 }
2a1e274a
MG
6099 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6100 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6101
6102 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6103 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6104 find_zone_movable_pfns_for_nodes();
c713216d 6105
c713216d 6106 /* Print out the zone ranges */
f88dfff5 6107 pr_info("Zone ranges:\n");
2a1e274a
MG
6108 for (i = 0; i < MAX_NR_ZONES; i++) {
6109 if (i == ZONE_MOVABLE)
6110 continue;
f88dfff5 6111 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6112 if (arch_zone_lowest_possible_pfn[i] ==
6113 arch_zone_highest_possible_pfn[i])
f88dfff5 6114 pr_cont("empty\n");
72f0ba02 6115 else
8d29e18a
JG
6116 pr_cont("[mem %#018Lx-%#018Lx]\n",
6117 (u64)arch_zone_lowest_possible_pfn[i]
6118 << PAGE_SHIFT,
6119 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6120 << PAGE_SHIFT) - 1);
2a1e274a
MG
6121 }
6122
6123 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6124 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6125 for (i = 0; i < MAX_NUMNODES; i++) {
6126 if (zone_movable_pfn[i])
8d29e18a
JG
6127 pr_info(" Node %d: %#018Lx\n", i,
6128 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6129 }
c713216d 6130
f2d52fe5 6131 /* Print out the early node map */
f88dfff5 6132 pr_info("Early memory node ranges\n");
c13291a5 6133 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6134 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6135 (u64)start_pfn << PAGE_SHIFT,
6136 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6137
6138 /* Initialise every node */
708614e6 6139 mminit_verify_pageflags_layout();
8ef82866 6140 setup_nr_node_ids();
c713216d
MG
6141 for_each_online_node(nid) {
6142 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6143 free_area_init_node(nid, NULL,
c713216d 6144 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6145
6146 /* Any memory on that node */
6147 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6148 node_set_state(nid, N_MEMORY);
6149 check_for_memory(pgdat, nid);
c713216d
MG
6150 }
6151}
2a1e274a 6152
7e63efef 6153static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6154{
6155 unsigned long long coremem;
6156 if (!p)
6157 return -EINVAL;
6158
6159 coremem = memparse(p, &p);
7e63efef 6160 *core = coremem >> PAGE_SHIFT;
2a1e274a 6161
7e63efef 6162 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6163 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6164
6165 return 0;
6166}
ed7ed365 6167
7e63efef
MG
6168/*
6169 * kernelcore=size sets the amount of memory for use for allocations that
6170 * cannot be reclaimed or migrated.
6171 */
6172static int __init cmdline_parse_kernelcore(char *p)
6173{
342332e6
TI
6174 /* parse kernelcore=mirror */
6175 if (parse_option_str(p, "mirror")) {
6176 mirrored_kernelcore = true;
6177 return 0;
6178 }
6179
7e63efef
MG
6180 return cmdline_parse_core(p, &required_kernelcore);
6181}
6182
6183/*
6184 * movablecore=size sets the amount of memory for use for allocations that
6185 * can be reclaimed or migrated.
6186 */
6187static int __init cmdline_parse_movablecore(char *p)
6188{
6189 return cmdline_parse_core(p, &required_movablecore);
6190}
6191
ed7ed365 6192early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6193early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6194
0ee332c1 6195#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6196
c3d5f5f0
JL
6197void adjust_managed_page_count(struct page *page, long count)
6198{
6199 spin_lock(&managed_page_count_lock);
6200 page_zone(page)->managed_pages += count;
6201 totalram_pages += count;
3dcc0571
JL
6202#ifdef CONFIG_HIGHMEM
6203 if (PageHighMem(page))
6204 totalhigh_pages += count;
6205#endif
c3d5f5f0
JL
6206 spin_unlock(&managed_page_count_lock);
6207}
3dcc0571 6208EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6209
11199692 6210unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6211{
11199692
JL
6212 void *pos;
6213 unsigned long pages = 0;
69afade7 6214
11199692
JL
6215 start = (void *)PAGE_ALIGN((unsigned long)start);
6216 end = (void *)((unsigned long)end & PAGE_MASK);
6217 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6218 if ((unsigned int)poison <= 0xFF)
11199692
JL
6219 memset(pos, poison, PAGE_SIZE);
6220 free_reserved_page(virt_to_page(pos));
69afade7
JL
6221 }
6222
6223 if (pages && s)
11199692 6224 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6225 s, pages << (PAGE_SHIFT - 10), start, end);
6226
6227 return pages;
6228}
11199692 6229EXPORT_SYMBOL(free_reserved_area);
69afade7 6230
cfa11e08
JL
6231#ifdef CONFIG_HIGHMEM
6232void free_highmem_page(struct page *page)
6233{
6234 __free_reserved_page(page);
6235 totalram_pages++;
7b4b2a0d 6236 page_zone(page)->managed_pages++;
cfa11e08
JL
6237 totalhigh_pages++;
6238}
6239#endif
6240
7ee3d4e8
JL
6241
6242void __init mem_init_print_info(const char *str)
6243{
6244 unsigned long physpages, codesize, datasize, rosize, bss_size;
6245 unsigned long init_code_size, init_data_size;
6246
6247 physpages = get_num_physpages();
6248 codesize = _etext - _stext;
6249 datasize = _edata - _sdata;
6250 rosize = __end_rodata - __start_rodata;
6251 bss_size = __bss_stop - __bss_start;
6252 init_data_size = __init_end - __init_begin;
6253 init_code_size = _einittext - _sinittext;
6254
6255 /*
6256 * Detect special cases and adjust section sizes accordingly:
6257 * 1) .init.* may be embedded into .data sections
6258 * 2) .init.text.* may be out of [__init_begin, __init_end],
6259 * please refer to arch/tile/kernel/vmlinux.lds.S.
6260 * 3) .rodata.* may be embedded into .text or .data sections.
6261 */
6262#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6263 do { \
6264 if (start <= pos && pos < end && size > adj) \
6265 size -= adj; \
6266 } while (0)
7ee3d4e8
JL
6267
6268 adj_init_size(__init_begin, __init_end, init_data_size,
6269 _sinittext, init_code_size);
6270 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6271 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6272 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6273 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6274
6275#undef adj_init_size
6276
756a025f 6277 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6278#ifdef CONFIG_HIGHMEM
756a025f 6279 ", %luK highmem"
7ee3d4e8 6280#endif
756a025f
JP
6281 "%s%s)\n",
6282 nr_free_pages() << (PAGE_SHIFT - 10),
6283 physpages << (PAGE_SHIFT - 10),
6284 codesize >> 10, datasize >> 10, rosize >> 10,
6285 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6286 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6287 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6288#ifdef CONFIG_HIGHMEM
756a025f 6289 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6290#endif
756a025f 6291 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6292}
6293
0e0b864e 6294/**
88ca3b94
RD
6295 * set_dma_reserve - set the specified number of pages reserved in the first zone
6296 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6297 *
013110a7 6298 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6299 * In the DMA zone, a significant percentage may be consumed by kernel image
6300 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6301 * function may optionally be used to account for unfreeable pages in the
6302 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6303 * smaller per-cpu batchsize.
0e0b864e
MG
6304 */
6305void __init set_dma_reserve(unsigned long new_dma_reserve)
6306{
6307 dma_reserve = new_dma_reserve;
6308}
6309
1da177e4
LT
6310void __init free_area_init(unsigned long *zones_size)
6311{
9109fb7b 6312 free_area_init_node(0, zones_size,
1da177e4
LT
6313 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6314}
1da177e4 6315
1da177e4
LT
6316static int page_alloc_cpu_notify(struct notifier_block *self,
6317 unsigned long action, void *hcpu)
6318{
6319 int cpu = (unsigned long)hcpu;
1da177e4 6320
8bb78442 6321 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6322 lru_add_drain_cpu(cpu);
9f8f2172
CL
6323 drain_pages(cpu);
6324
6325 /*
6326 * Spill the event counters of the dead processor
6327 * into the current processors event counters.
6328 * This artificially elevates the count of the current
6329 * processor.
6330 */
f8891e5e 6331 vm_events_fold_cpu(cpu);
9f8f2172
CL
6332
6333 /*
6334 * Zero the differential counters of the dead processor
6335 * so that the vm statistics are consistent.
6336 *
6337 * This is only okay since the processor is dead and cannot
6338 * race with what we are doing.
6339 */
2bb921e5 6340 cpu_vm_stats_fold(cpu);
1da177e4
LT
6341 }
6342 return NOTIFY_OK;
6343}
1da177e4
LT
6344
6345void __init page_alloc_init(void)
6346{
6347 hotcpu_notifier(page_alloc_cpu_notify, 0);
6348}
6349
cb45b0e9 6350/*
34b10060 6351 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6352 * or min_free_kbytes changes.
6353 */
6354static void calculate_totalreserve_pages(void)
6355{
6356 struct pglist_data *pgdat;
6357 unsigned long reserve_pages = 0;
2f6726e5 6358 enum zone_type i, j;
cb45b0e9
HA
6359
6360 for_each_online_pgdat(pgdat) {
6361 for (i = 0; i < MAX_NR_ZONES; i++) {
6362 struct zone *zone = pgdat->node_zones + i;
3484b2de 6363 long max = 0;
cb45b0e9
HA
6364
6365 /* Find valid and maximum lowmem_reserve in the zone */
6366 for (j = i; j < MAX_NR_ZONES; j++) {
6367 if (zone->lowmem_reserve[j] > max)
6368 max = zone->lowmem_reserve[j];
6369 }
6370
41858966
MG
6371 /* we treat the high watermark as reserved pages. */
6372 max += high_wmark_pages(zone);
cb45b0e9 6373
b40da049
JL
6374 if (max > zone->managed_pages)
6375 max = zone->managed_pages;
a8d01437
JW
6376
6377 zone->totalreserve_pages = max;
6378
cb45b0e9
HA
6379 reserve_pages += max;
6380 }
6381 }
6382 totalreserve_pages = reserve_pages;
6383}
6384
1da177e4
LT
6385/*
6386 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6387 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6388 * has a correct pages reserved value, so an adequate number of
6389 * pages are left in the zone after a successful __alloc_pages().
6390 */
6391static void setup_per_zone_lowmem_reserve(void)
6392{
6393 struct pglist_data *pgdat;
2f6726e5 6394 enum zone_type j, idx;
1da177e4 6395
ec936fc5 6396 for_each_online_pgdat(pgdat) {
1da177e4
LT
6397 for (j = 0; j < MAX_NR_ZONES; j++) {
6398 struct zone *zone = pgdat->node_zones + j;
b40da049 6399 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6400
6401 zone->lowmem_reserve[j] = 0;
6402
2f6726e5
CL
6403 idx = j;
6404 while (idx) {
1da177e4
LT
6405 struct zone *lower_zone;
6406
2f6726e5
CL
6407 idx--;
6408
1da177e4
LT
6409 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6410 sysctl_lowmem_reserve_ratio[idx] = 1;
6411
6412 lower_zone = pgdat->node_zones + idx;
b40da049 6413 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6414 sysctl_lowmem_reserve_ratio[idx];
b40da049 6415 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6416 }
6417 }
6418 }
cb45b0e9
HA
6419
6420 /* update totalreserve_pages */
6421 calculate_totalreserve_pages();
1da177e4
LT
6422}
6423
cfd3da1e 6424static void __setup_per_zone_wmarks(void)
1da177e4
LT
6425{
6426 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6427 unsigned long lowmem_pages = 0;
6428 struct zone *zone;
6429 unsigned long flags;
6430
6431 /* Calculate total number of !ZONE_HIGHMEM pages */
6432 for_each_zone(zone) {
6433 if (!is_highmem(zone))
b40da049 6434 lowmem_pages += zone->managed_pages;
1da177e4
LT
6435 }
6436
6437 for_each_zone(zone) {
ac924c60
AM
6438 u64 tmp;
6439
1125b4e3 6440 spin_lock_irqsave(&zone->lock, flags);
b40da049 6441 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6442 do_div(tmp, lowmem_pages);
1da177e4
LT
6443 if (is_highmem(zone)) {
6444 /*
669ed175
NP
6445 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6446 * need highmem pages, so cap pages_min to a small
6447 * value here.
6448 *
41858966 6449 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6450 * deltas control asynch page reclaim, and so should
669ed175 6451 * not be capped for highmem.
1da177e4 6452 */
90ae8d67 6453 unsigned long min_pages;
1da177e4 6454
b40da049 6455 min_pages = zone->managed_pages / 1024;
90ae8d67 6456 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6457 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6458 } else {
669ed175
NP
6459 /*
6460 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6461 * proportionate to the zone's size.
6462 */
41858966 6463 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6464 }
6465
795ae7a0
JW
6466 /*
6467 * Set the kswapd watermarks distance according to the
6468 * scale factor in proportion to available memory, but
6469 * ensure a minimum size on small systems.
6470 */
6471 tmp = max_t(u64, tmp >> 2,
6472 mult_frac(zone->managed_pages,
6473 watermark_scale_factor, 10000));
6474
6475 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6476 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6477
81c0a2bb 6478 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
abe5f972
JW
6479 high_wmark_pages(zone) - low_wmark_pages(zone) -
6480 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
81c0a2bb 6481
1125b4e3 6482 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6483 }
cb45b0e9
HA
6484
6485 /* update totalreserve_pages */
6486 calculate_totalreserve_pages();
1da177e4
LT
6487}
6488
cfd3da1e
MG
6489/**
6490 * setup_per_zone_wmarks - called when min_free_kbytes changes
6491 * or when memory is hot-{added|removed}
6492 *
6493 * Ensures that the watermark[min,low,high] values for each zone are set
6494 * correctly with respect to min_free_kbytes.
6495 */
6496void setup_per_zone_wmarks(void)
6497{
6498 mutex_lock(&zonelists_mutex);
6499 __setup_per_zone_wmarks();
6500 mutex_unlock(&zonelists_mutex);
6501}
6502
55a4462a 6503/*
556adecb
RR
6504 * The inactive anon list should be small enough that the VM never has to
6505 * do too much work, but large enough that each inactive page has a chance
6506 * to be referenced again before it is swapped out.
6507 *
6508 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6509 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6510 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6511 * the anonymous pages are kept on the inactive list.
6512 *
6513 * total target max
6514 * memory ratio inactive anon
6515 * -------------------------------------
6516 * 10MB 1 5MB
6517 * 100MB 1 50MB
6518 * 1GB 3 250MB
6519 * 10GB 10 0.9GB
6520 * 100GB 31 3GB
6521 * 1TB 101 10GB
6522 * 10TB 320 32GB
6523 */
1b79acc9 6524static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
556adecb 6525{
96cb4df5 6526 unsigned int gb, ratio;
556adecb 6527
96cb4df5 6528 /* Zone size in gigabytes */
b40da049 6529 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
96cb4df5 6530 if (gb)
556adecb 6531 ratio = int_sqrt(10 * gb);
96cb4df5
MK
6532 else
6533 ratio = 1;
556adecb 6534
96cb4df5
MK
6535 zone->inactive_ratio = ratio;
6536}
556adecb 6537
839a4fcc 6538static void __meminit setup_per_zone_inactive_ratio(void)
96cb4df5
MK
6539{
6540 struct zone *zone;
6541
6542 for_each_zone(zone)
6543 calculate_zone_inactive_ratio(zone);
556adecb
RR
6544}
6545
1da177e4
LT
6546/*
6547 * Initialise min_free_kbytes.
6548 *
6549 * For small machines we want it small (128k min). For large machines
6550 * we want it large (64MB max). But it is not linear, because network
6551 * bandwidth does not increase linearly with machine size. We use
6552 *
b8af2941 6553 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6554 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6555 *
6556 * which yields
6557 *
6558 * 16MB: 512k
6559 * 32MB: 724k
6560 * 64MB: 1024k
6561 * 128MB: 1448k
6562 * 256MB: 2048k
6563 * 512MB: 2896k
6564 * 1024MB: 4096k
6565 * 2048MB: 5792k
6566 * 4096MB: 8192k
6567 * 8192MB: 11584k
6568 * 16384MB: 16384k
6569 */
1b79acc9 6570int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6571{
6572 unsigned long lowmem_kbytes;
5f12733e 6573 int new_min_free_kbytes;
1da177e4
LT
6574
6575 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6576 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6577
6578 if (new_min_free_kbytes > user_min_free_kbytes) {
6579 min_free_kbytes = new_min_free_kbytes;
6580 if (min_free_kbytes < 128)
6581 min_free_kbytes = 128;
6582 if (min_free_kbytes > 65536)
6583 min_free_kbytes = 65536;
6584 } else {
6585 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6586 new_min_free_kbytes, user_min_free_kbytes);
6587 }
bc75d33f 6588 setup_per_zone_wmarks();
a6cccdc3 6589 refresh_zone_stat_thresholds();
1da177e4 6590 setup_per_zone_lowmem_reserve();
556adecb 6591 setup_per_zone_inactive_ratio();
1da177e4
LT
6592 return 0;
6593}
bc22af74 6594core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6595
6596/*
b8af2941 6597 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6598 * that we can call two helper functions whenever min_free_kbytes
6599 * changes.
6600 */
cccad5b9 6601int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6602 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6603{
da8c757b
HP
6604 int rc;
6605
6606 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6607 if (rc)
6608 return rc;
6609
5f12733e
MH
6610 if (write) {
6611 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6612 setup_per_zone_wmarks();
5f12733e 6613 }
1da177e4
LT
6614 return 0;
6615}
6616
795ae7a0
JW
6617int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6618 void __user *buffer, size_t *length, loff_t *ppos)
6619{
6620 int rc;
6621
6622 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6623 if (rc)
6624 return rc;
6625
6626 if (write)
6627 setup_per_zone_wmarks();
6628
6629 return 0;
6630}
6631
9614634f 6632#ifdef CONFIG_NUMA
cccad5b9 6633int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6634 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
6635{
6636 struct zone *zone;
6637 int rc;
6638
8d65af78 6639 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6640 if (rc)
6641 return rc;
6642
6643 for_each_zone(zone)
b40da049 6644 zone->min_unmapped_pages = (zone->managed_pages *
9614634f
CL
6645 sysctl_min_unmapped_ratio) / 100;
6646 return 0;
6647}
0ff38490 6648
cccad5b9 6649int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6650 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
6651{
6652 struct zone *zone;
6653 int rc;
6654
8d65af78 6655 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6656 if (rc)
6657 return rc;
6658
6659 for_each_zone(zone)
b40da049 6660 zone->min_slab_pages = (zone->managed_pages *
0ff38490
CL
6661 sysctl_min_slab_ratio) / 100;
6662 return 0;
6663}
9614634f
CL
6664#endif
6665
1da177e4
LT
6666/*
6667 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6668 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6669 * whenever sysctl_lowmem_reserve_ratio changes.
6670 *
6671 * The reserve ratio obviously has absolutely no relation with the
41858966 6672 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6673 * if in function of the boot time zone sizes.
6674 */
cccad5b9 6675int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6676 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6677{
8d65af78 6678 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6679 setup_per_zone_lowmem_reserve();
6680 return 0;
6681}
6682
8ad4b1fb
RS
6683/*
6684 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6685 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6686 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6687 */
cccad5b9 6688int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6689 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6690{
6691 struct zone *zone;
7cd2b0a3 6692 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6693 int ret;
6694
7cd2b0a3
DR
6695 mutex_lock(&pcp_batch_high_lock);
6696 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6697
8d65af78 6698 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6699 if (!write || ret < 0)
6700 goto out;
6701
6702 /* Sanity checking to avoid pcp imbalance */
6703 if (percpu_pagelist_fraction &&
6704 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6705 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6706 ret = -EINVAL;
6707 goto out;
6708 }
6709
6710 /* No change? */
6711 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6712 goto out;
c8e251fa 6713
364df0eb 6714 for_each_populated_zone(zone) {
7cd2b0a3
DR
6715 unsigned int cpu;
6716
22a7f12b 6717 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6718 pageset_set_high_and_batch(zone,
6719 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6720 }
7cd2b0a3 6721out:
c8e251fa 6722 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6723 return ret;
8ad4b1fb
RS
6724}
6725
a9919c79 6726#ifdef CONFIG_NUMA
f034b5d4 6727int hashdist = HASHDIST_DEFAULT;
1da177e4 6728
1da177e4
LT
6729static int __init set_hashdist(char *str)
6730{
6731 if (!str)
6732 return 0;
6733 hashdist = simple_strtoul(str, &str, 0);
6734 return 1;
6735}
6736__setup("hashdist=", set_hashdist);
6737#endif
6738
6739/*
6740 * allocate a large system hash table from bootmem
6741 * - it is assumed that the hash table must contain an exact power-of-2
6742 * quantity of entries
6743 * - limit is the number of hash buckets, not the total allocation size
6744 */
6745void *__init alloc_large_system_hash(const char *tablename,
6746 unsigned long bucketsize,
6747 unsigned long numentries,
6748 int scale,
6749 int flags,
6750 unsigned int *_hash_shift,
6751 unsigned int *_hash_mask,
31fe62b9
TB
6752 unsigned long low_limit,
6753 unsigned long high_limit)
1da177e4 6754{
31fe62b9 6755 unsigned long long max = high_limit;
1da177e4
LT
6756 unsigned long log2qty, size;
6757 void *table = NULL;
6758
6759 /* allow the kernel cmdline to have a say */
6760 if (!numentries) {
6761 /* round applicable memory size up to nearest megabyte */
04903664 6762 numentries = nr_kernel_pages;
a7e83318
JZ
6763
6764 /* It isn't necessary when PAGE_SIZE >= 1MB */
6765 if (PAGE_SHIFT < 20)
6766 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6767
6768 /* limit to 1 bucket per 2^scale bytes of low memory */
6769 if (scale > PAGE_SHIFT)
6770 numentries >>= (scale - PAGE_SHIFT);
6771 else
6772 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6773
6774 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6775 if (unlikely(flags & HASH_SMALL)) {
6776 /* Makes no sense without HASH_EARLY */
6777 WARN_ON(!(flags & HASH_EARLY));
6778 if (!(numentries >> *_hash_shift)) {
6779 numentries = 1UL << *_hash_shift;
6780 BUG_ON(!numentries);
6781 }
6782 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6783 numentries = PAGE_SIZE / bucketsize;
1da177e4 6784 }
6e692ed3 6785 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6786
6787 /* limit allocation size to 1/16 total memory by default */
6788 if (max == 0) {
6789 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6790 do_div(max, bucketsize);
6791 }
074b8517 6792 max = min(max, 0x80000000ULL);
1da177e4 6793
31fe62b9
TB
6794 if (numentries < low_limit)
6795 numentries = low_limit;
1da177e4
LT
6796 if (numentries > max)
6797 numentries = max;
6798
f0d1b0b3 6799 log2qty = ilog2(numentries);
1da177e4
LT
6800
6801 do {
6802 size = bucketsize << log2qty;
6803 if (flags & HASH_EARLY)
6782832e 6804 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6805 else if (hashdist)
6806 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6807 else {
1037b83b
ED
6808 /*
6809 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
6810 * some pages at the end of hash table which
6811 * alloc_pages_exact() automatically does
1037b83b 6812 */
264ef8a9 6813 if (get_order(size) < MAX_ORDER) {
a1dd268c 6814 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
6815 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6816 }
1da177e4
LT
6817 }
6818 } while (!table && size > PAGE_SIZE && --log2qty);
6819
6820 if (!table)
6821 panic("Failed to allocate %s hash table\n", tablename);
6822
1170532b
JP
6823 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6824 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
6825
6826 if (_hash_shift)
6827 *_hash_shift = log2qty;
6828 if (_hash_mask)
6829 *_hash_mask = (1 << log2qty) - 1;
6830
6831 return table;
6832}
a117e66e 6833
835c134e 6834/* Return a pointer to the bitmap storing bits affecting a block of pages */
f75fb889 6835static inline unsigned long *get_pageblock_bitmap(struct page *page,
835c134e
MG
6836 unsigned long pfn)
6837{
6838#ifdef CONFIG_SPARSEMEM
6839 return __pfn_to_section(pfn)->pageblock_flags;
6840#else
f75fb889 6841 return page_zone(page)->pageblock_flags;
835c134e
MG
6842#endif /* CONFIG_SPARSEMEM */
6843}
6844
f75fb889 6845static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
835c134e
MG
6846{
6847#ifdef CONFIG_SPARSEMEM
6848 pfn &= (PAGES_PER_SECTION-1);
d9c23400 6849 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e 6850#else
f75fb889 6851 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
d9c23400 6852 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
6853#endif /* CONFIG_SPARSEMEM */
6854}
6855
6856/**
1aab4d77 6857 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e 6858 * @page: The page within the block of interest
1aab4d77
RD
6859 * @pfn: The target page frame number
6860 * @end_bitidx: The last bit of interest to retrieve
6861 * @mask: mask of bits that the caller is interested in
6862 *
6863 * Return: pageblock_bits flags
835c134e 6864 */
dc4b0caf 6865unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
e58469ba
MG
6866 unsigned long end_bitidx,
6867 unsigned long mask)
835c134e 6868{
835c134e 6869 unsigned long *bitmap;
dc4b0caf 6870 unsigned long bitidx, word_bitidx;
e58469ba 6871 unsigned long word;
835c134e 6872
f75fb889
MG
6873 bitmap = get_pageblock_bitmap(page, pfn);
6874 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6875 word_bitidx = bitidx / BITS_PER_LONG;
6876 bitidx &= (BITS_PER_LONG-1);
835c134e 6877
e58469ba
MG
6878 word = bitmap[word_bitidx];
6879 bitidx += end_bitidx;
6880 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
835c134e
MG
6881}
6882
6883/**
dc4b0caf 6884 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e 6885 * @page: The page within the block of interest
835c134e 6886 * @flags: The flags to set
1aab4d77
RD
6887 * @pfn: The target page frame number
6888 * @end_bitidx: The last bit of interest
6889 * @mask: mask of bits that the caller is interested in
835c134e 6890 */
dc4b0caf
MG
6891void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6892 unsigned long pfn,
e58469ba
MG
6893 unsigned long end_bitidx,
6894 unsigned long mask)
835c134e 6895{
835c134e 6896 unsigned long *bitmap;
dc4b0caf 6897 unsigned long bitidx, word_bitidx;
e58469ba
MG
6898 unsigned long old_word, word;
6899
6900 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
835c134e 6901
f75fb889
MG
6902 bitmap = get_pageblock_bitmap(page, pfn);
6903 bitidx = pfn_to_bitidx(page, pfn);
e58469ba
MG
6904 word_bitidx = bitidx / BITS_PER_LONG;
6905 bitidx &= (BITS_PER_LONG-1);
6906
f75fb889 6907 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
835c134e 6908
e58469ba
MG
6909 bitidx += end_bitidx;
6910 mask <<= (BITS_PER_LONG - bitidx - 1);
6911 flags <<= (BITS_PER_LONG - bitidx - 1);
6912
4db0c3c2 6913 word = READ_ONCE(bitmap[word_bitidx]);
e58469ba
MG
6914 for (;;) {
6915 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6916 if (word == old_word)
6917 break;
6918 word = old_word;
6919 }
835c134e 6920}
a5d76b54
KH
6921
6922/*
80934513
MK
6923 * This function checks whether pageblock includes unmovable pages or not.
6924 * If @count is not zero, it is okay to include less @count unmovable pages
6925 *
b8af2941 6926 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
6927 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6928 * expect this function should be exact.
a5d76b54 6929 */
b023f468
WC
6930bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6931 bool skip_hwpoisoned_pages)
49ac8255
KH
6932{
6933 unsigned long pfn, iter, found;
47118af0
MN
6934 int mt;
6935
49ac8255
KH
6936 /*
6937 * For avoiding noise data, lru_add_drain_all() should be called
80934513 6938 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
6939 */
6940 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 6941 return false;
47118af0
MN
6942 mt = get_pageblock_migratetype(page);
6943 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 6944 return false;
49ac8255
KH
6945
6946 pfn = page_to_pfn(page);
6947 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6948 unsigned long check = pfn + iter;
6949
29723fcc 6950 if (!pfn_valid_within(check))
49ac8255 6951 continue;
29723fcc 6952
49ac8255 6953 page = pfn_to_page(check);
c8721bbb
NH
6954
6955 /*
6956 * Hugepages are not in LRU lists, but they're movable.
6957 * We need not scan over tail pages bacause we don't
6958 * handle each tail page individually in migration.
6959 */
6960 if (PageHuge(page)) {
6961 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6962 continue;
6963 }
6964
97d255c8
MK
6965 /*
6966 * We can't use page_count without pin a page
6967 * because another CPU can free compound page.
6968 * This check already skips compound tails of THP
0139aa7b 6969 * because their page->_refcount is zero at all time.
97d255c8 6970 */
fe896d18 6971 if (!page_ref_count(page)) {
49ac8255
KH
6972 if (PageBuddy(page))
6973 iter += (1 << page_order(page)) - 1;
6974 continue;
6975 }
97d255c8 6976
b023f468
WC
6977 /*
6978 * The HWPoisoned page may be not in buddy system, and
6979 * page_count() is not 0.
6980 */
6981 if (skip_hwpoisoned_pages && PageHWPoison(page))
6982 continue;
6983
49ac8255
KH
6984 if (!PageLRU(page))
6985 found++;
6986 /*
6b4f7799
JW
6987 * If there are RECLAIMABLE pages, we need to check
6988 * it. But now, memory offline itself doesn't call
6989 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
6990 */
6991 /*
6992 * If the page is not RAM, page_count()should be 0.
6993 * we don't need more check. This is an _used_ not-movable page.
6994 *
6995 * The problematic thing here is PG_reserved pages. PG_reserved
6996 * is set to both of a memory hole page and a _used_ kernel
6997 * page at boot.
6998 */
6999 if (found > count)
80934513 7000 return true;
49ac8255 7001 }
80934513 7002 return false;
49ac8255
KH
7003}
7004
7005bool is_pageblock_removable_nolock(struct page *page)
7006{
656a0706
MH
7007 struct zone *zone;
7008 unsigned long pfn;
687875fb
MH
7009
7010 /*
7011 * We have to be careful here because we are iterating over memory
7012 * sections which are not zone aware so we might end up outside of
7013 * the zone but still within the section.
656a0706
MH
7014 * We have to take care about the node as well. If the node is offline
7015 * its NODE_DATA will be NULL - see page_zone.
687875fb 7016 */
656a0706
MH
7017 if (!node_online(page_to_nid(page)))
7018 return false;
7019
7020 zone = page_zone(page);
7021 pfn = page_to_pfn(page);
108bcc96 7022 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7023 return false;
7024
b023f468 7025 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7026}
0c0e6195 7027
080fe206 7028#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7029
7030static unsigned long pfn_max_align_down(unsigned long pfn)
7031{
7032 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7033 pageblock_nr_pages) - 1);
7034}
7035
7036static unsigned long pfn_max_align_up(unsigned long pfn)
7037{
7038 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7039 pageblock_nr_pages));
7040}
7041
041d3a8c 7042/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7043static int __alloc_contig_migrate_range(struct compact_control *cc,
7044 unsigned long start, unsigned long end)
041d3a8c
MN
7045{
7046 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7047 unsigned long nr_reclaimed;
041d3a8c
MN
7048 unsigned long pfn = start;
7049 unsigned int tries = 0;
7050 int ret = 0;
7051
be49a6e1 7052 migrate_prep();
041d3a8c 7053
bb13ffeb 7054 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7055 if (fatal_signal_pending(current)) {
7056 ret = -EINTR;
7057 break;
7058 }
7059
bb13ffeb
MG
7060 if (list_empty(&cc->migratepages)) {
7061 cc->nr_migratepages = 0;
edc2ca61 7062 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7063 if (!pfn) {
7064 ret = -EINTR;
7065 break;
7066 }
7067 tries = 0;
7068 } else if (++tries == 5) {
7069 ret = ret < 0 ? ret : -EBUSY;
7070 break;
7071 }
7072
beb51eaa
MK
7073 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7074 &cc->migratepages);
7075 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7076
9c620e2b 7077 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7078 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7079 }
2a6f5124
SP
7080 if (ret < 0) {
7081 putback_movable_pages(&cc->migratepages);
7082 return ret;
7083 }
7084 return 0;
041d3a8c
MN
7085}
7086
7087/**
7088 * alloc_contig_range() -- tries to allocate given range of pages
7089 * @start: start PFN to allocate
7090 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7091 * @migratetype: migratetype of the underlaying pageblocks (either
7092 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7093 * in range must have the same migratetype and it must
7094 * be either of the two.
041d3a8c
MN
7095 *
7096 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7097 * aligned, however it's the caller's responsibility to guarantee that
7098 * we are the only thread that changes migrate type of pageblocks the
7099 * pages fall in.
7100 *
7101 * The PFN range must belong to a single zone.
7102 *
7103 * Returns zero on success or negative error code. On success all
7104 * pages which PFN is in [start, end) are allocated for the caller and
7105 * need to be freed with free_contig_range().
7106 */
0815f3d8
MN
7107int alloc_contig_range(unsigned long start, unsigned long end,
7108 unsigned migratetype)
041d3a8c 7109{
041d3a8c 7110 unsigned long outer_start, outer_end;
d00181b9
KS
7111 unsigned int order;
7112 int ret = 0;
041d3a8c 7113
bb13ffeb
MG
7114 struct compact_control cc = {
7115 .nr_migratepages = 0,
7116 .order = -1,
7117 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7118 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7119 .ignore_skip_hint = true,
7120 };
7121 INIT_LIST_HEAD(&cc.migratepages);
7122
041d3a8c
MN
7123 /*
7124 * What we do here is we mark all pageblocks in range as
7125 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7126 * have different sizes, and due to the way page allocator
7127 * work, we align the range to biggest of the two pages so
7128 * that page allocator won't try to merge buddies from
7129 * different pageblocks and change MIGRATE_ISOLATE to some
7130 * other migration type.
7131 *
7132 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7133 * migrate the pages from an unaligned range (ie. pages that
7134 * we are interested in). This will put all the pages in
7135 * range back to page allocator as MIGRATE_ISOLATE.
7136 *
7137 * When this is done, we take the pages in range from page
7138 * allocator removing them from the buddy system. This way
7139 * page allocator will never consider using them.
7140 *
7141 * This lets us mark the pageblocks back as
7142 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7143 * aligned range but not in the unaligned, original range are
7144 * put back to page allocator so that buddy can use them.
7145 */
7146
7147 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7148 pfn_max_align_up(end), migratetype,
7149 false);
041d3a8c 7150 if (ret)
86a595f9 7151 return ret;
041d3a8c 7152
8ef5849f
JK
7153 /*
7154 * In case of -EBUSY, we'd like to know which page causes problem.
7155 * So, just fall through. We will check it in test_pages_isolated().
7156 */
bb13ffeb 7157 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7158 if (ret && ret != -EBUSY)
041d3a8c
MN
7159 goto done;
7160
7161 /*
7162 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7163 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7164 * more, all pages in [start, end) are free in page allocator.
7165 * What we are going to do is to allocate all pages from
7166 * [start, end) (that is remove them from page allocator).
7167 *
7168 * The only problem is that pages at the beginning and at the
7169 * end of interesting range may be not aligned with pages that
7170 * page allocator holds, ie. they can be part of higher order
7171 * pages. Because of this, we reserve the bigger range and
7172 * once this is done free the pages we are not interested in.
7173 *
7174 * We don't have to hold zone->lock here because the pages are
7175 * isolated thus they won't get removed from buddy.
7176 */
7177
7178 lru_add_drain_all();
510f5507 7179 drain_all_pages(cc.zone);
041d3a8c
MN
7180
7181 order = 0;
7182 outer_start = start;
7183 while (!PageBuddy(pfn_to_page(outer_start))) {
7184 if (++order >= MAX_ORDER) {
8ef5849f
JK
7185 outer_start = start;
7186 break;
041d3a8c
MN
7187 }
7188 outer_start &= ~0UL << order;
7189 }
7190
8ef5849f
JK
7191 if (outer_start != start) {
7192 order = page_order(pfn_to_page(outer_start));
7193
7194 /*
7195 * outer_start page could be small order buddy page and
7196 * it doesn't include start page. Adjust outer_start
7197 * in this case to report failed page properly
7198 * on tracepoint in test_pages_isolated()
7199 */
7200 if (outer_start + (1UL << order) <= start)
7201 outer_start = start;
7202 }
7203
041d3a8c 7204 /* Make sure the range is really isolated. */
b023f468 7205 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7206 pr_info("%s: [%lx, %lx) PFNs busy\n",
7207 __func__, outer_start, end);
041d3a8c
MN
7208 ret = -EBUSY;
7209 goto done;
7210 }
7211
49f223a9 7212 /* Grab isolated pages from freelists. */
bb13ffeb 7213 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7214 if (!outer_end) {
7215 ret = -EBUSY;
7216 goto done;
7217 }
7218
7219 /* Free head and tail (if any) */
7220 if (start != outer_start)
7221 free_contig_range(outer_start, start - outer_start);
7222 if (end != outer_end)
7223 free_contig_range(end, outer_end - end);
7224
7225done:
7226 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7227 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7228 return ret;
7229}
7230
7231void free_contig_range(unsigned long pfn, unsigned nr_pages)
7232{
bcc2b02f
MS
7233 unsigned int count = 0;
7234
7235 for (; nr_pages--; pfn++) {
7236 struct page *page = pfn_to_page(pfn);
7237
7238 count += page_count(page) != 1;
7239 __free_page(page);
7240 }
7241 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7242}
7243#endif
7244
4ed7e022 7245#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7246/*
7247 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7248 * page high values need to be recalulated.
7249 */
4ed7e022
JL
7250void __meminit zone_pcp_update(struct zone *zone)
7251{
0a647f38 7252 unsigned cpu;
c8e251fa 7253 mutex_lock(&pcp_batch_high_lock);
0a647f38 7254 for_each_possible_cpu(cpu)
169f6c19
CS
7255 pageset_set_high_and_batch(zone,
7256 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7257 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7258}
7259#endif
7260
340175b7
JL
7261void zone_pcp_reset(struct zone *zone)
7262{
7263 unsigned long flags;
5a883813
MK
7264 int cpu;
7265 struct per_cpu_pageset *pset;
340175b7
JL
7266
7267 /* avoid races with drain_pages() */
7268 local_irq_save(flags);
7269 if (zone->pageset != &boot_pageset) {
5a883813
MK
7270 for_each_online_cpu(cpu) {
7271 pset = per_cpu_ptr(zone->pageset, cpu);
7272 drain_zonestat(zone, pset);
7273 }
340175b7
JL
7274 free_percpu(zone->pageset);
7275 zone->pageset = &boot_pageset;
7276 }
7277 local_irq_restore(flags);
7278}
7279
6dcd73d7 7280#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7281/*
b9eb6319
JK
7282 * All pages in the range must be in a single zone and isolated
7283 * before calling this.
0c0e6195
KH
7284 */
7285void
7286__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7287{
7288 struct page *page;
7289 struct zone *zone;
7aeb09f9 7290 unsigned int order, i;
0c0e6195
KH
7291 unsigned long pfn;
7292 unsigned long flags;
7293 /* find the first valid pfn */
7294 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7295 if (pfn_valid(pfn))
7296 break;
7297 if (pfn == end_pfn)
7298 return;
7299 zone = page_zone(pfn_to_page(pfn));
7300 spin_lock_irqsave(&zone->lock, flags);
7301 pfn = start_pfn;
7302 while (pfn < end_pfn) {
7303 if (!pfn_valid(pfn)) {
7304 pfn++;
7305 continue;
7306 }
7307 page = pfn_to_page(pfn);
b023f468
WC
7308 /*
7309 * The HWPoisoned page may be not in buddy system, and
7310 * page_count() is not 0.
7311 */
7312 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7313 pfn++;
7314 SetPageReserved(page);
7315 continue;
7316 }
7317
0c0e6195
KH
7318 BUG_ON(page_count(page));
7319 BUG_ON(!PageBuddy(page));
7320 order = page_order(page);
7321#ifdef CONFIG_DEBUG_VM
1170532b
JP
7322 pr_info("remove from free list %lx %d %lx\n",
7323 pfn, 1 << order, end_pfn);
0c0e6195
KH
7324#endif
7325 list_del(&page->lru);
7326 rmv_page_order(page);
7327 zone->free_area[order].nr_free--;
0c0e6195
KH
7328 for (i = 0; i < (1 << order); i++)
7329 SetPageReserved((page+i));
7330 pfn += (1 << order);
7331 }
7332 spin_unlock_irqrestore(&zone->lock, flags);
7333}
7334#endif
8d22ba1b 7335
8d22ba1b
WF
7336bool is_free_buddy_page(struct page *page)
7337{
7338 struct zone *zone = page_zone(page);
7339 unsigned long pfn = page_to_pfn(page);
7340 unsigned long flags;
7aeb09f9 7341 unsigned int order;
8d22ba1b
WF
7342
7343 spin_lock_irqsave(&zone->lock, flags);
7344 for (order = 0; order < MAX_ORDER; order++) {
7345 struct page *page_head = page - (pfn & ((1 << order) - 1));
7346
7347 if (PageBuddy(page_head) && page_order(page_head) >= order)
7348 break;
7349 }
7350 spin_unlock_irqrestore(&zone->lock, flags);
7351
7352 return order < MAX_ORDER;
7353}