]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
OpenZFS 8607 - variable set but not used
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
36da08ef 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
c30e58c4 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
36da08ef 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
d3c2ae1c 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 62 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 66 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
2aa34383 80 * uses method 1, while the internal ARC algorithms for
d3cc8b15 81 * adjusting the cache use method 2. We therefore provide two
34dc7c2f 82 * types of locks: 1) the hash table lock array, and 2) the
2aa34383 83 * ARC list locks.
34dc7c2f 84 *
5c839890
BC
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
2aa34383 96 * Each ARC state also has a mutex which is used to protect the
34dc7c2f 97 * buffer list associated with the state. When attempting to
2aa34383 98 * obtain a hash table lock while holding an ARC list lock you
34dc7c2f
BB
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
ab26409d
BB
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
34dc7c2f
BB
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
b9541d6b 113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
d3c2ae1c
GW
122/*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
2aa34383 138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
a6255b7f 139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
2aa34383
DK
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
a6255b7f
DQ
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
2aa34383
DK
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
a6255b7f 146 * compressed ARC functionality is disabled, the b_pabd will point to an
2aa34383
DK
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
d3c2ae1c
GW
156 * "overhead_size" kstat.
157 *
2aa34383
DK
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
d3c2ae1c 165 *
2aa34383
DK
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
d3c2ae1c 171 *
2aa34383
DK
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
a6255b7f 185 * | b_pabd +-+ |b_next +---->+-----------+
2aa34383
DK
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
d3c2ae1c
GW
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
2aa34383
DK
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
a6255b7f
DQ
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
2aa34383
DK
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
d3c2ae1c
GW
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
2aa34383
DK
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
d3c2ae1c
GW
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
a6255b7f 227 * | b_pabd +-+ |---------| |b_next +-->NULL
d3c2ae1c
GW
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
a6255b7f 241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
d3c2ae1c 242 * since the physical block is about to be rewritten. The new data contents
2aa34383
DK
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
a6255b7f 246 * a newly allocated b_pabd. Writes are always done into buffers which have
2aa34383
DK
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
d3c2ae1c 251 *
a6255b7f
DQ
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
2aa34383 254 * that when compressed ARC is enabled that the L2ARC blocks are identical
d3c2ae1c
GW
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
2aa34383 258 * ARC is disabled, then the L2ARC's block must be transformed to look
d3c2ae1c
GW
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
b5256303
TC
261 *
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
275 * cannot be shared.
d3c2ae1c
GW
276 */
277
34dc7c2f
BB
278#include <sys/spa.h>
279#include <sys/zio.h>
d3c2ae1c 280#include <sys/spa_impl.h>
3a17a7a9 281#include <sys/zio_compress.h>
d3c2ae1c 282#include <sys/zio_checksum.h>
34dc7c2f
BB
283#include <sys/zfs_context.h>
284#include <sys/arc.h>
36da08ef 285#include <sys/refcount.h>
b128c09f 286#include <sys/vdev.h>
9babb374 287#include <sys/vdev_impl.h>
e8b96c60 288#include <sys/dsl_pool.h>
a6255b7f 289#include <sys/zio_checksum.h>
ca0bf58d 290#include <sys/multilist.h>
a6255b7f 291#include <sys/abd.h>
b5256303
TC
292#include <sys/zil.h>
293#include <sys/fm/fs/zfs.h>
34dc7c2f
BB
294#ifdef _KERNEL
295#include <sys/vmsystm.h>
296#include <vm/anon.h>
297#include <sys/fs/swapnode.h>
ab26409d 298#include <sys/zpl.h>
aaed7c40 299#include <linux/mm_compat.h>
34dc7c2f
BB
300#endif
301#include <sys/callb.h>
302#include <sys/kstat.h>
570827e1 303#include <sys/dmu_tx.h>
428870ff 304#include <zfs_fletcher.h>
59ec819a 305#include <sys/arc_impl.h>
49ee64e5 306#include <sys/trace_arc.h>
34dc7c2f 307
498877ba
MA
308#ifndef _KERNEL
309/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
310boolean_t arc_watch = B_FALSE;
311#endif
312
ca0bf58d
PS
313static kmutex_t arc_reclaim_lock;
314static kcondvar_t arc_reclaim_thread_cv;
315static boolean_t arc_reclaim_thread_exit;
316static kcondvar_t arc_reclaim_waiters_cv;
317
e8b96c60 318/*
ca0bf58d
PS
319 * The number of headers to evict in arc_evict_state_impl() before
320 * dropping the sublist lock and evicting from another sublist. A lower
321 * value means we're more likely to evict the "correct" header (i.e. the
322 * oldest header in the arc state), but comes with higher overhead
323 * (i.e. more invocations of arc_evict_state_impl()).
324 */
325int zfs_arc_evict_batch_limit = 10;
326
34dc7c2f 327/* number of seconds before growing cache again */
ca67b33a 328static int arc_grow_retry = 5;
34dc7c2f 329
a6255b7f 330/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
ca67b33a 331int zfs_arc_overflow_shift = 8;
62422785 332
728d6ae9
BB
333/* shift of arc_c for calculating both min and max arc_p */
334static int arc_p_min_shift = 4;
335
d164b209 336/* log2(fraction of arc to reclaim) */
ca67b33a 337static int arc_shrink_shift = 7;
d164b209 338
03b60eee
DB
339/* percent of pagecache to reclaim arc to */
340#ifdef _KERNEL
341static uint_t zfs_arc_pc_percent = 0;
342#endif
343
34dc7c2f 344/*
ca67b33a
MA
345 * log2(fraction of ARC which must be free to allow growing).
346 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
347 * when reading a new block into the ARC, we will evict an equal-sized block
348 * from the ARC.
349 *
350 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
351 * we will still not allow it to grow.
34dc7c2f 352 */
ca67b33a 353int arc_no_grow_shift = 5;
bce45ec9 354
49ddb315 355
ca0bf58d
PS
356/*
357 * minimum lifespan of a prefetch block in clock ticks
358 * (initialized in arc_init())
359 */
ca67b33a 360static int arc_min_prefetch_lifespan;
ca0bf58d 361
e8b96c60
MA
362/*
363 * If this percent of memory is free, don't throttle.
364 */
365int arc_lotsfree_percent = 10;
366
34dc7c2f
BB
367static int arc_dead;
368
b128c09f
BB
369/*
370 * The arc has filled available memory and has now warmed up.
371 */
372static boolean_t arc_warm;
373
d3c2ae1c
GW
374/*
375 * log2 fraction of the zio arena to keep free.
376 */
377int arc_zio_arena_free_shift = 2;
378
34dc7c2f
BB
379/*
380 * These tunables are for performance analysis.
381 */
c28b2279
BB
382unsigned long zfs_arc_max = 0;
383unsigned long zfs_arc_min = 0;
384unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 385unsigned long zfs_arc_meta_min = 0;
25458cbe
TC
386unsigned long zfs_arc_dnode_limit = 0;
387unsigned long zfs_arc_dnode_reduce_percent = 10;
ca67b33a
MA
388int zfs_arc_grow_retry = 0;
389int zfs_arc_shrink_shift = 0;
728d6ae9 390int zfs_arc_p_min_shift = 0;
ca67b33a 391int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 392
d3c2ae1c
GW
393int zfs_compressed_arc_enabled = B_TRUE;
394
9907cc1c
G
395/*
396 * ARC will evict meta buffers that exceed arc_meta_limit. This
397 * tunable make arc_meta_limit adjustable for different workloads.
398 */
399unsigned long zfs_arc_meta_limit_percent = 75;
400
401/*
402 * Percentage that can be consumed by dnodes of ARC meta buffers.
403 */
404unsigned long zfs_arc_dnode_limit_percent = 10;
405
bc888666 406/*
ca67b33a 407 * These tunables are Linux specific
bc888666 408 */
11f552fa 409unsigned long zfs_arc_sys_free = 0;
ca67b33a
MA
410int zfs_arc_min_prefetch_lifespan = 0;
411int zfs_arc_p_aggressive_disable = 1;
412int zfs_arc_p_dampener_disable = 1;
413int zfs_arc_meta_prune = 10000;
414int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
415int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 416int zfs_arc_lotsfree_percent = 10;
bc888666 417
34dc7c2f
BB
418/* The 6 states: */
419static arc_state_t ARC_anon;
420static arc_state_t ARC_mru;
421static arc_state_t ARC_mru_ghost;
422static arc_state_t ARC_mfu;
423static arc_state_t ARC_mfu_ghost;
424static arc_state_t ARC_l2c_only;
425
426typedef struct arc_stats {
427 kstat_named_t arcstat_hits;
428 kstat_named_t arcstat_misses;
429 kstat_named_t arcstat_demand_data_hits;
430 kstat_named_t arcstat_demand_data_misses;
431 kstat_named_t arcstat_demand_metadata_hits;
432 kstat_named_t arcstat_demand_metadata_misses;
433 kstat_named_t arcstat_prefetch_data_hits;
434 kstat_named_t arcstat_prefetch_data_misses;
435 kstat_named_t arcstat_prefetch_metadata_hits;
436 kstat_named_t arcstat_prefetch_metadata_misses;
437 kstat_named_t arcstat_mru_hits;
438 kstat_named_t arcstat_mru_ghost_hits;
439 kstat_named_t arcstat_mfu_hits;
440 kstat_named_t arcstat_mfu_ghost_hits;
441 kstat_named_t arcstat_deleted;
e49f1e20
WA
442 /*
443 * Number of buffers that could not be evicted because the hash lock
444 * was held by another thread. The lock may not necessarily be held
445 * by something using the same buffer, since hash locks are shared
446 * by multiple buffers.
447 */
34dc7c2f 448 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
449 /*
450 * Number of buffers skipped because they have I/O in progress, are
451 * indrect prefetch buffers that have not lived long enough, or are
452 * not from the spa we're trying to evict from.
453 */
34dc7c2f 454 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
455 /*
456 * Number of times arc_evict_state() was unable to evict enough
457 * buffers to reach its target amount.
458 */
459 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
460 kstat_named_t arcstat_evict_l2_cached;
461 kstat_named_t arcstat_evict_l2_eligible;
462 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 463 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
464 kstat_named_t arcstat_hash_elements;
465 kstat_named_t arcstat_hash_elements_max;
466 kstat_named_t arcstat_hash_collisions;
467 kstat_named_t arcstat_hash_chains;
468 kstat_named_t arcstat_hash_chain_max;
469 kstat_named_t arcstat_p;
470 kstat_named_t arcstat_c;
471 kstat_named_t arcstat_c_min;
472 kstat_named_t arcstat_c_max;
473 kstat_named_t arcstat_size;
d3c2ae1c 474 /*
a6255b7f 475 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
d3c2ae1c
GW
476 * Note that the compressed bytes may match the uncompressed bytes
477 * if the block is either not compressed or compressed arc is disabled.
478 */
479 kstat_named_t arcstat_compressed_size;
480 /*
a6255b7f 481 * Uncompressed size of the data stored in b_pabd. If compressed
d3c2ae1c
GW
482 * arc is disabled then this value will be identical to the stat
483 * above.
484 */
485 kstat_named_t arcstat_uncompressed_size;
486 /*
487 * Number of bytes stored in all the arc_buf_t's. This is classified
488 * as "overhead" since this data is typically short-lived and will
489 * be evicted from the arc when it becomes unreferenced unless the
490 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
491 * values have been set (see comment in dbuf.c for more information).
492 */
493 kstat_named_t arcstat_overhead_size;
500445c0
PS
494 /*
495 * Number of bytes consumed by internal ARC structures necessary
496 * for tracking purposes; these structures are not actually
497 * backed by ARC buffers. This includes arc_buf_hdr_t structures
498 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
499 * caches), and arc_buf_t structures (allocated via arc_buf_t
500 * cache).
501 */
34dc7c2f 502 kstat_named_t arcstat_hdr_size;
500445c0
PS
503 /*
504 * Number of bytes consumed by ARC buffers of type equal to
505 * ARC_BUFC_DATA. This is generally consumed by buffers backing
506 * on disk user data (e.g. plain file contents).
507 */
d164b209 508 kstat_named_t arcstat_data_size;
500445c0
PS
509 /*
510 * Number of bytes consumed by ARC buffers of type equal to
511 * ARC_BUFC_METADATA. This is generally consumed by buffers
512 * backing on disk data that is used for internal ZFS
513 * structures (e.g. ZAP, dnode, indirect blocks, etc).
514 */
515 kstat_named_t arcstat_metadata_size;
516 /*
25458cbe 517 * Number of bytes consumed by dmu_buf_impl_t objects.
500445c0 518 */
25458cbe
TC
519 kstat_named_t arcstat_dbuf_size;
520 /*
521 * Number of bytes consumed by dnode_t objects.
522 */
523 kstat_named_t arcstat_dnode_size;
524 /*
525 * Number of bytes consumed by bonus buffers.
526 */
527 kstat_named_t arcstat_bonus_size;
500445c0
PS
528 /*
529 * Total number of bytes consumed by ARC buffers residing in the
530 * arc_anon state. This includes *all* buffers in the arc_anon
531 * state; e.g. data, metadata, evictable, and unevictable buffers
532 * are all included in this value.
533 */
13be560d 534 kstat_named_t arcstat_anon_size;
500445c0
PS
535 /*
536 * Number of bytes consumed by ARC buffers that meet the
537 * following criteria: backing buffers of type ARC_BUFC_DATA,
538 * residing in the arc_anon state, and are eligible for eviction
539 * (e.g. have no outstanding holds on the buffer).
540 */
541 kstat_named_t arcstat_anon_evictable_data;
542 /*
543 * Number of bytes consumed by ARC buffers that meet the
544 * following criteria: backing buffers of type ARC_BUFC_METADATA,
545 * residing in the arc_anon state, and are eligible for eviction
546 * (e.g. have no outstanding holds on the buffer).
547 */
548 kstat_named_t arcstat_anon_evictable_metadata;
549 /*
550 * Total number of bytes consumed by ARC buffers residing in the
551 * arc_mru state. This includes *all* buffers in the arc_mru
552 * state; e.g. data, metadata, evictable, and unevictable buffers
553 * are all included in this value.
554 */
13be560d 555 kstat_named_t arcstat_mru_size;
500445c0
PS
556 /*
557 * Number of bytes consumed by ARC buffers that meet the
558 * following criteria: backing buffers of type ARC_BUFC_DATA,
559 * residing in the arc_mru state, and are eligible for eviction
560 * (e.g. have no outstanding holds on the buffer).
561 */
562 kstat_named_t arcstat_mru_evictable_data;
563 /*
564 * Number of bytes consumed by ARC buffers that meet the
565 * following criteria: backing buffers of type ARC_BUFC_METADATA,
566 * residing in the arc_mru state, and are eligible for eviction
567 * (e.g. have no outstanding holds on the buffer).
568 */
569 kstat_named_t arcstat_mru_evictable_metadata;
570 /*
571 * Total number of bytes that *would have been* consumed by ARC
572 * buffers in the arc_mru_ghost state. The key thing to note
573 * here, is the fact that this size doesn't actually indicate
574 * RAM consumption. The ghost lists only consist of headers and
575 * don't actually have ARC buffers linked off of these headers.
576 * Thus, *if* the headers had associated ARC buffers, these
577 * buffers *would have* consumed this number of bytes.
578 */
13be560d 579 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
580 /*
581 * Number of bytes that *would have been* consumed by ARC
582 * buffers that are eligible for eviction, of type
583 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
584 */
585 kstat_named_t arcstat_mru_ghost_evictable_data;
586 /*
587 * Number of bytes that *would have been* consumed by ARC
588 * buffers that are eligible for eviction, of type
589 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
590 */
591 kstat_named_t arcstat_mru_ghost_evictable_metadata;
592 /*
593 * Total number of bytes consumed by ARC buffers residing in the
594 * arc_mfu state. This includes *all* buffers in the arc_mfu
595 * state; e.g. data, metadata, evictable, and unevictable buffers
596 * are all included in this value.
597 */
13be560d 598 kstat_named_t arcstat_mfu_size;
500445c0
PS
599 /*
600 * Number of bytes consumed by ARC buffers that are eligible for
601 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
602 * state.
603 */
604 kstat_named_t arcstat_mfu_evictable_data;
605 /*
606 * Number of bytes consumed by ARC buffers that are eligible for
607 * eviction, of type ARC_BUFC_METADATA, and reside in the
608 * arc_mfu state.
609 */
610 kstat_named_t arcstat_mfu_evictable_metadata;
611 /*
612 * Total number of bytes that *would have been* consumed by ARC
613 * buffers in the arc_mfu_ghost state. See the comment above
614 * arcstat_mru_ghost_size for more details.
615 */
13be560d 616 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
617 /*
618 * Number of bytes that *would have been* consumed by ARC
619 * buffers that are eligible for eviction, of type
620 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
621 */
622 kstat_named_t arcstat_mfu_ghost_evictable_data;
623 /*
624 * Number of bytes that *would have been* consumed by ARC
625 * buffers that are eligible for eviction, of type
626 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
627 */
628 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
629 kstat_named_t arcstat_l2_hits;
630 kstat_named_t arcstat_l2_misses;
631 kstat_named_t arcstat_l2_feeds;
632 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
633 kstat_named_t arcstat_l2_read_bytes;
634 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
635 kstat_named_t arcstat_l2_writes_sent;
636 kstat_named_t arcstat_l2_writes_done;
637 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 638 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
639 kstat_named_t arcstat_l2_evict_lock_retry;
640 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 641 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f
BB
642 kstat_named_t arcstat_l2_free_on_write;
643 kstat_named_t arcstat_l2_abort_lowmem;
644 kstat_named_t arcstat_l2_cksum_bad;
645 kstat_named_t arcstat_l2_io_error;
01850391
AG
646 kstat_named_t arcstat_l2_lsize;
647 kstat_named_t arcstat_l2_psize;
34dc7c2f
BB
648 kstat_named_t arcstat_l2_hdr_size;
649 kstat_named_t arcstat_memory_throttle_count;
7cb67b45
BB
650 kstat_named_t arcstat_memory_direct_count;
651 kstat_named_t arcstat_memory_indirect_count;
70f02287
BB
652 kstat_named_t arcstat_memory_all_bytes;
653 kstat_named_t arcstat_memory_free_bytes;
654 kstat_named_t arcstat_memory_available_bytes;
1834f2d8
BB
655 kstat_named_t arcstat_no_grow;
656 kstat_named_t arcstat_tempreserve;
657 kstat_named_t arcstat_loaned_bytes;
ab26409d 658 kstat_named_t arcstat_prune;
1834f2d8
BB
659 kstat_named_t arcstat_meta_used;
660 kstat_named_t arcstat_meta_limit;
25458cbe 661 kstat_named_t arcstat_dnode_limit;
1834f2d8 662 kstat_named_t arcstat_meta_max;
ca0bf58d 663 kstat_named_t arcstat_meta_min;
7f60329a
MA
664 kstat_named_t arcstat_sync_wait_for_async;
665 kstat_named_t arcstat_demand_hit_predictive_prefetch;
11f552fa
BB
666 kstat_named_t arcstat_need_free;
667 kstat_named_t arcstat_sys_free;
b5256303 668 kstat_named_t arcstat_raw_size;
34dc7c2f
BB
669} arc_stats_t;
670
671static arc_stats_t arc_stats = {
672 { "hits", KSTAT_DATA_UINT64 },
673 { "misses", KSTAT_DATA_UINT64 },
674 { "demand_data_hits", KSTAT_DATA_UINT64 },
675 { "demand_data_misses", KSTAT_DATA_UINT64 },
676 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
677 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
678 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
679 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
680 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
681 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
682 { "mru_hits", KSTAT_DATA_UINT64 },
683 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
684 { "mfu_hits", KSTAT_DATA_UINT64 },
685 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
686 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
687 { "mutex_miss", KSTAT_DATA_UINT64 },
688 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 689 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
690 { "evict_l2_cached", KSTAT_DATA_UINT64 },
691 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
692 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 693 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
694 { "hash_elements", KSTAT_DATA_UINT64 },
695 { "hash_elements_max", KSTAT_DATA_UINT64 },
696 { "hash_collisions", KSTAT_DATA_UINT64 },
697 { "hash_chains", KSTAT_DATA_UINT64 },
698 { "hash_chain_max", KSTAT_DATA_UINT64 },
699 { "p", KSTAT_DATA_UINT64 },
700 { "c", KSTAT_DATA_UINT64 },
701 { "c_min", KSTAT_DATA_UINT64 },
702 { "c_max", KSTAT_DATA_UINT64 },
703 { "size", KSTAT_DATA_UINT64 },
d3c2ae1c
GW
704 { "compressed_size", KSTAT_DATA_UINT64 },
705 { "uncompressed_size", KSTAT_DATA_UINT64 },
706 { "overhead_size", KSTAT_DATA_UINT64 },
34dc7c2f 707 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 708 { "data_size", KSTAT_DATA_UINT64 },
500445c0 709 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
710 { "dbuf_size", KSTAT_DATA_UINT64 },
711 { "dnode_size", KSTAT_DATA_UINT64 },
712 { "bonus_size", KSTAT_DATA_UINT64 },
13be560d 713 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
714 { "anon_evictable_data", KSTAT_DATA_UINT64 },
715 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 716 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
717 { "mru_evictable_data", KSTAT_DATA_UINT64 },
718 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 719 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
720 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
721 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 722 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
723 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
724 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 725 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
726 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
727 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
728 { "l2_hits", KSTAT_DATA_UINT64 },
729 { "l2_misses", KSTAT_DATA_UINT64 },
730 { "l2_feeds", KSTAT_DATA_UINT64 },
731 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
732 { "l2_read_bytes", KSTAT_DATA_UINT64 },
733 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
734 { "l2_writes_sent", KSTAT_DATA_UINT64 },
735 { "l2_writes_done", KSTAT_DATA_UINT64 },
736 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 737 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
738 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
739 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 740 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f
BB
741 { "l2_free_on_write", KSTAT_DATA_UINT64 },
742 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
743 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
744 { "l2_io_error", KSTAT_DATA_UINT64 },
745 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 746 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 747 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 748 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
749 { "memory_direct_count", KSTAT_DATA_UINT64 },
750 { "memory_indirect_count", KSTAT_DATA_UINT64 },
70f02287
BB
751 { "memory_all_bytes", KSTAT_DATA_UINT64 },
752 { "memory_free_bytes", KSTAT_DATA_UINT64 },
753 { "memory_available_bytes", KSTAT_DATA_INT64 },
1834f2d8
BB
754 { "arc_no_grow", KSTAT_DATA_UINT64 },
755 { "arc_tempreserve", KSTAT_DATA_UINT64 },
756 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 757 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
758 { "arc_meta_used", KSTAT_DATA_UINT64 },
759 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 760 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 761 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 762 { "arc_meta_min", KSTAT_DATA_UINT64 },
7f60329a
MA
763 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
764 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
11f552fa 765 { "arc_need_free", KSTAT_DATA_UINT64 },
b5256303
TC
766 { "arc_sys_free", KSTAT_DATA_UINT64 },
767 { "arc_raw_size", KSTAT_DATA_UINT64 }
34dc7c2f
BB
768};
769
770#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
771
772#define ARCSTAT_INCR(stat, val) \
d3cc8b15 773 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 774
428870ff 775#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
776#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
777
778#define ARCSTAT_MAX(stat, val) { \
779 uint64_t m; \
780 while ((val) > (m = arc_stats.stat.value.ui64) && \
781 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
782 continue; \
783}
784
785#define ARCSTAT_MAXSTAT(stat) \
786 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
787
788/*
789 * We define a macro to allow ARC hits/misses to be easily broken down by
790 * two separate conditions, giving a total of four different subtypes for
791 * each of hits and misses (so eight statistics total).
792 */
793#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
794 if (cond1) { \
795 if (cond2) { \
796 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
797 } else { \
798 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
799 } \
800 } else { \
801 if (cond2) { \
802 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
803 } else { \
804 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
805 } \
806 }
807
808kstat_t *arc_ksp;
428870ff 809static arc_state_t *arc_anon;
34dc7c2f
BB
810static arc_state_t *arc_mru;
811static arc_state_t *arc_mru_ghost;
812static arc_state_t *arc_mfu;
813static arc_state_t *arc_mfu_ghost;
814static arc_state_t *arc_l2c_only;
815
816/*
817 * There are several ARC variables that are critical to export as kstats --
818 * but we don't want to have to grovel around in the kstat whenever we wish to
819 * manipulate them. For these variables, we therefore define them to be in
820 * terms of the statistic variable. This assures that we are not introducing
821 * the possibility of inconsistency by having shadow copies of the variables,
822 * while still allowing the code to be readable.
823 */
824#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
825#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
826#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
827#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
828#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
d3c2ae1c 829#define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
1834f2d8
BB
830#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
831#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 832#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
25458cbe 833#define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
ca0bf58d 834#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
835#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
836#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
25458cbe
TC
837#define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
838#define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
839#define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
11f552fa
BB
840#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
841#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
34dc7c2f 842
b5256303
TC
843/* size of all b_rabd's in entire arc */
844#define arc_raw_size ARCSTAT(arcstat_raw_size)
d3c2ae1c
GW
845/* compressed size of entire arc */
846#define arc_compressed_size ARCSTAT(arcstat_compressed_size)
847/* uncompressed size of entire arc */
848#define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
849/* number of bytes in the arc from arc_buf_t's */
850#define arc_overhead_size ARCSTAT(arcstat_overhead_size)
3a17a7a9 851
ab26409d
BB
852static list_t arc_prune_list;
853static kmutex_t arc_prune_mtx;
f6046738 854static taskq_t *arc_prune_taskq;
428870ff 855
34dc7c2f
BB
856#define GHOST_STATE(state) \
857 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
858 (state) == arc_l2c_only)
859
2a432414
GW
860#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
861#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
862#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
863#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
d3c2ae1c
GW
864#define HDR_COMPRESSION_ENABLED(hdr) \
865 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
b9541d6b 866
2a432414
GW
867#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
868#define HDR_L2_READING(hdr) \
d3c2ae1c
GW
869 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
870 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
871#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
872#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
873#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
b5256303
TC
874#define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
875#define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
d3c2ae1c 876#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
34dc7c2f 877
b9541d6b 878#define HDR_ISTYPE_METADATA(hdr) \
d3c2ae1c 879 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
b9541d6b
CW
880#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
881
882#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
883#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
b5256303
TC
884#define HDR_HAS_RABD(hdr) \
885 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
886 (hdr)->b_crypt_hdr.b_rabd != NULL)
887#define HDR_ENCRYPTED(hdr) \
888 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
889#define HDR_AUTHENTICATED(hdr) \
890 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
b9541d6b 891
d3c2ae1c
GW
892/* For storing compression mode in b_flags */
893#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
894
895#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
896 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
897#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
898 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
899
900#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
524b4217
DK
901#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
902#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
b5256303 903#define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
d3c2ae1c 904
34dc7c2f
BB
905/*
906 * Other sizes
907 */
908
b5256303
TC
909#define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
910#define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
b9541d6b 911#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
912
913/*
914 * Hash table routines
915 */
916
00b46022
BB
917#define HT_LOCK_ALIGN 64
918#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
919
920struct ht_lock {
921 kmutex_t ht_lock;
922#ifdef _KERNEL
00b46022 923 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
924#endif
925};
926
b31d8ea7 927#define BUF_LOCKS 8192
34dc7c2f
BB
928typedef struct buf_hash_table {
929 uint64_t ht_mask;
930 arc_buf_hdr_t **ht_table;
931 struct ht_lock ht_locks[BUF_LOCKS];
932} buf_hash_table_t;
933
934static buf_hash_table_t buf_hash_table;
935
936#define BUF_HASH_INDEX(spa, dva, birth) \
937 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
938#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
939#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
940#define HDR_LOCK(hdr) \
941 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
942
943uint64_t zfs_crc64_table[256];
944
945/*
946 * Level 2 ARC
947 */
948
949#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 950#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd 951
3a17a7a9
SK
952/*
953 * If we discover during ARC scan any buffers to be compressed, we boost
954 * our headroom for the next scanning cycle by this percentage multiple.
955 */
956#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
957#define L2ARC_FEED_SECS 1 /* caching interval secs */
958#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 959
4aafab91
G
960/*
961 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
962 * and each of the state has two types: data and metadata.
963 */
964#define L2ARC_FEED_TYPES 4
965
34dc7c2f
BB
966#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
967#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
968
d3cc8b15 969/* L2ARC Performance Tunables */
abd8610c
BB
970unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
971unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
972unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 973unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
974unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
975unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
976int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
977int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 978int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
979
980/*
981 * L2ARC Internals
982 */
34dc7c2f
BB
983static list_t L2ARC_dev_list; /* device list */
984static list_t *l2arc_dev_list; /* device list pointer */
985static kmutex_t l2arc_dev_mtx; /* device list mutex */
986static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
987static list_t L2ARC_free_on_write; /* free after write buf list */
988static list_t *l2arc_free_on_write; /* free after write list ptr */
989static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
990static uint64_t l2arc_ndev; /* number of devices */
991
992typedef struct l2arc_read_callback {
2aa34383 993 arc_buf_hdr_t *l2rcb_hdr; /* read header */
3a17a7a9 994 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 995 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9 996 int l2rcb_flags; /* original flags */
82710e99 997 abd_t *l2rcb_abd; /* temporary buffer */
34dc7c2f
BB
998} l2arc_read_callback_t;
999
34dc7c2f
BB
1000typedef struct l2arc_data_free {
1001 /* protected by l2arc_free_on_write_mtx */
a6255b7f 1002 abd_t *l2df_abd;
34dc7c2f 1003 size_t l2df_size;
d3c2ae1c 1004 arc_buf_contents_t l2df_type;
34dc7c2f
BB
1005 list_node_t l2df_list_node;
1006} l2arc_data_free_t;
1007
b5256303
TC
1008typedef enum arc_fill_flags {
1009 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
1010 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
1011 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
1012 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
1013 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
1014} arc_fill_flags_t;
1015
34dc7c2f
BB
1016static kmutex_t l2arc_feed_thr_lock;
1017static kcondvar_t l2arc_feed_thr_cv;
1018static uint8_t l2arc_thread_exit;
1019
a6255b7f 1020static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
d3c2ae1c 1021static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
a6255b7f
DQ
1022static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1023static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
d3c2ae1c 1024static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
a6255b7f 1025static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
b5256303
TC
1026static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
1027static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t);
2a432414 1028static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 1029static boolean_t arc_is_overflowing(void);
2a432414 1030static void arc_buf_watch(arc_buf_t *);
ca67b33a 1031static void arc_tuning_update(void);
25458cbe 1032static void arc_prune_async(int64_t);
9edb3695 1033static uint64_t arc_all_memory(void);
2a432414 1034
b9541d6b
CW
1035static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1036static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
d3c2ae1c
GW
1037static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1038static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
b9541d6b 1039
2a432414
GW
1040static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1041static void l2arc_read_done(zio_t *);
34dc7c2f
BB
1042
1043static uint64_t
d164b209 1044buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 1045{
34dc7c2f
BB
1046 uint8_t *vdva = (uint8_t *)dva;
1047 uint64_t crc = -1ULL;
1048 int i;
1049
1050 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1051
1052 for (i = 0; i < sizeof (dva_t); i++)
1053 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1054
d164b209 1055 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
1056
1057 return (crc);
1058}
1059
d3c2ae1c
GW
1060#define HDR_EMPTY(hdr) \
1061 ((hdr)->b_dva.dva_word[0] == 0 && \
1062 (hdr)->b_dva.dva_word[1] == 0)
34dc7c2f 1063
d3c2ae1c
GW
1064#define HDR_EQUAL(spa, dva, birth, hdr) \
1065 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1066 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1067 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
34dc7c2f 1068
428870ff
BB
1069static void
1070buf_discard_identity(arc_buf_hdr_t *hdr)
1071{
1072 hdr->b_dva.dva_word[0] = 0;
1073 hdr->b_dva.dva_word[1] = 0;
1074 hdr->b_birth = 0;
428870ff
BB
1075}
1076
34dc7c2f 1077static arc_buf_hdr_t *
9b67f605 1078buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 1079{
9b67f605
MA
1080 const dva_t *dva = BP_IDENTITY(bp);
1081 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
1082 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1083 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1084 arc_buf_hdr_t *hdr;
34dc7c2f
BB
1085
1086 mutex_enter(hash_lock);
2a432414
GW
1087 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1088 hdr = hdr->b_hash_next) {
d3c2ae1c 1089 if (HDR_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 1090 *lockp = hash_lock;
2a432414 1091 return (hdr);
34dc7c2f
BB
1092 }
1093 }
1094 mutex_exit(hash_lock);
1095 *lockp = NULL;
1096 return (NULL);
1097}
1098
1099/*
1100 * Insert an entry into the hash table. If there is already an element
1101 * equal to elem in the hash table, then the already existing element
1102 * will be returned and the new element will not be inserted.
1103 * Otherwise returns NULL.
b9541d6b 1104 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
1105 */
1106static arc_buf_hdr_t *
2a432414 1107buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 1108{
2a432414 1109 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 1110 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1111 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
1112 uint32_t i;
1113
2a432414
GW
1114 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1115 ASSERT(hdr->b_birth != 0);
1116 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
1117
1118 if (lockp != NULL) {
1119 *lockp = hash_lock;
1120 mutex_enter(hash_lock);
1121 } else {
1122 ASSERT(MUTEX_HELD(hash_lock));
1123 }
1124
2a432414
GW
1125 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1126 fhdr = fhdr->b_hash_next, i++) {
d3c2ae1c 1127 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
2a432414 1128 return (fhdr);
34dc7c2f
BB
1129 }
1130
2a432414
GW
1131 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1132 buf_hash_table.ht_table[idx] = hdr;
d3c2ae1c 1133 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1134
1135 /* collect some hash table performance data */
1136 if (i > 0) {
1137 ARCSTAT_BUMP(arcstat_hash_collisions);
1138 if (i == 1)
1139 ARCSTAT_BUMP(arcstat_hash_chains);
1140
1141 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1142 }
1143
1144 ARCSTAT_BUMP(arcstat_hash_elements);
1145 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1146
1147 return (NULL);
1148}
1149
1150static void
2a432414 1151buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 1152{
2a432414
GW
1153 arc_buf_hdr_t *fhdr, **hdrp;
1154 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
1155
1156 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 1157 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 1158
2a432414
GW
1159 hdrp = &buf_hash_table.ht_table[idx];
1160 while ((fhdr = *hdrp) != hdr) {
d3c2ae1c 1161 ASSERT3P(fhdr, !=, NULL);
2a432414 1162 hdrp = &fhdr->b_hash_next;
34dc7c2f 1163 }
2a432414
GW
1164 *hdrp = hdr->b_hash_next;
1165 hdr->b_hash_next = NULL;
d3c2ae1c 1166 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1167
1168 /* collect some hash table performance data */
1169 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1170
1171 if (buf_hash_table.ht_table[idx] &&
1172 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1173 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1174}
1175
1176/*
1177 * Global data structures and functions for the buf kmem cache.
1178 */
b5256303 1179
b9541d6b 1180static kmem_cache_t *hdr_full_cache;
b5256303 1181static kmem_cache_t *hdr_full_crypt_cache;
b9541d6b 1182static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
1183static kmem_cache_t *buf_cache;
1184
1185static void
1186buf_fini(void)
1187{
1188 int i;
1189
00b46022 1190#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1191 /*
1192 * Large allocations which do not require contiguous pages
1193 * should be using vmem_free() in the linux kernel\
1194 */
00b46022
BB
1195 vmem_free(buf_hash_table.ht_table,
1196 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1197#else
34dc7c2f
BB
1198 kmem_free(buf_hash_table.ht_table,
1199 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 1200#endif
34dc7c2f
BB
1201 for (i = 0; i < BUF_LOCKS; i++)
1202 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b 1203 kmem_cache_destroy(hdr_full_cache);
b5256303 1204 kmem_cache_destroy(hdr_full_crypt_cache);
b9541d6b 1205 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
1206 kmem_cache_destroy(buf_cache);
1207}
1208
1209/*
1210 * Constructor callback - called when the cache is empty
1211 * and a new buf is requested.
1212 */
1213/* ARGSUSED */
1214static int
b9541d6b
CW
1215hdr_full_cons(void *vbuf, void *unused, int kmflag)
1216{
1217 arc_buf_hdr_t *hdr = vbuf;
1218
1219 bzero(hdr, HDR_FULL_SIZE);
1220 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1221 refcount_create(&hdr->b_l1hdr.b_refcnt);
1222 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1223 list_link_init(&hdr->b_l1hdr.b_arc_node);
1224 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1225 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1226 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1227
1228 return (0);
1229}
1230
b5256303
TC
1231/* ARGSUSED */
1232static int
1233hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1234{
1235 arc_buf_hdr_t *hdr = vbuf;
1236
1237 hdr_full_cons(vbuf, unused, kmflag);
1238 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1239 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1240
1241 return (0);
1242}
1243
b9541d6b
CW
1244/* ARGSUSED */
1245static int
1246hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1247{
2a432414
GW
1248 arc_buf_hdr_t *hdr = vbuf;
1249
b9541d6b
CW
1250 bzero(hdr, HDR_L2ONLY_SIZE);
1251 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1252
34dc7c2f
BB
1253 return (0);
1254}
1255
b128c09f
BB
1256/* ARGSUSED */
1257static int
1258buf_cons(void *vbuf, void *unused, int kmflag)
1259{
1260 arc_buf_t *buf = vbuf;
1261
1262 bzero(buf, sizeof (arc_buf_t));
428870ff 1263 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1264 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1265
b128c09f
BB
1266 return (0);
1267}
1268
34dc7c2f
BB
1269/*
1270 * Destructor callback - called when a cached buf is
1271 * no longer required.
1272 */
1273/* ARGSUSED */
1274static void
b9541d6b 1275hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1276{
2a432414 1277 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1278
d3c2ae1c 1279 ASSERT(HDR_EMPTY(hdr));
b9541d6b
CW
1280 cv_destroy(&hdr->b_l1hdr.b_cv);
1281 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1282 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1283 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1284 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1285}
1286
b5256303
TC
1287/* ARGSUSED */
1288static void
1289hdr_full_crypt_dest(void *vbuf, void *unused)
1290{
1291 arc_buf_hdr_t *hdr = vbuf;
1292
1293 hdr_full_dest(vbuf, unused);
1294 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1295}
1296
b9541d6b
CW
1297/* ARGSUSED */
1298static void
1299hdr_l2only_dest(void *vbuf, void *unused)
1300{
1301 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1302
d3c2ae1c 1303 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1304 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1305}
1306
b128c09f
BB
1307/* ARGSUSED */
1308static void
1309buf_dest(void *vbuf, void *unused)
1310{
1311 arc_buf_t *buf = vbuf;
1312
428870ff 1313 mutex_destroy(&buf->b_evict_lock);
d164b209 1314 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1315}
1316
8c8af9d8
BB
1317/*
1318 * Reclaim callback -- invoked when memory is low.
1319 */
1320/* ARGSUSED */
1321static void
1322hdr_recl(void *unused)
1323{
1324 dprintf("hdr_recl called\n");
1325 /*
1326 * umem calls the reclaim func when we destroy the buf cache,
1327 * which is after we do arc_fini().
1328 */
1329 if (!arc_dead)
1330 cv_signal(&arc_reclaim_thread_cv);
1331}
1332
34dc7c2f
BB
1333static void
1334buf_init(void)
1335{
2db28197 1336 uint64_t *ct = NULL;
34dc7c2f
BB
1337 uint64_t hsize = 1ULL << 12;
1338 int i, j;
1339
1340 /*
1341 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1342 * with an average block size of zfs_arc_average_blocksize (default 8K).
1343 * By default, the table will take up
1344 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1345 */
9edb3695 1346 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
34dc7c2f
BB
1347 hsize <<= 1;
1348retry:
1349 buf_hash_table.ht_mask = hsize - 1;
00b46022 1350#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1351 /*
1352 * Large allocations which do not require contiguous pages
1353 * should be using vmem_alloc() in the linux kernel
1354 */
00b46022
BB
1355 buf_hash_table.ht_table =
1356 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1357#else
34dc7c2f
BB
1358 buf_hash_table.ht_table =
1359 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1360#endif
34dc7c2f
BB
1361 if (buf_hash_table.ht_table == NULL) {
1362 ASSERT(hsize > (1ULL << 8));
1363 hsize >>= 1;
1364 goto retry;
1365 }
1366
b9541d6b 1367 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
8c8af9d8 1368 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
b5256303
TC
1369 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1370 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1371 hdr_recl, NULL, NULL, 0);
b9541d6b 1372 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
8c8af9d8 1373 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
b9541d6b 1374 NULL, NULL, 0);
34dc7c2f 1375 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1376 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1377
1378 for (i = 0; i < 256; i++)
1379 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1380 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1381
1382 for (i = 0; i < BUF_LOCKS; i++) {
1383 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1384 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1385 }
1386}
1387
d3c2ae1c 1388#define ARC_MINTIME (hz>>4) /* 62 ms */
ca0bf58d 1389
2aa34383
DK
1390/*
1391 * This is the size that the buf occupies in memory. If the buf is compressed,
1392 * it will correspond to the compressed size. You should use this method of
1393 * getting the buf size unless you explicitly need the logical size.
1394 */
1395uint64_t
1396arc_buf_size(arc_buf_t *buf)
1397{
1398 return (ARC_BUF_COMPRESSED(buf) ?
1399 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1400}
1401
1402uint64_t
1403arc_buf_lsize(arc_buf_t *buf)
1404{
1405 return (HDR_GET_LSIZE(buf->b_hdr));
1406}
1407
b5256303
TC
1408/*
1409 * This function will return B_TRUE if the buffer is encrypted in memory.
1410 * This buffer can be decrypted by calling arc_untransform().
1411 */
1412boolean_t
1413arc_is_encrypted(arc_buf_t *buf)
1414{
1415 return (ARC_BUF_ENCRYPTED(buf) != 0);
1416}
1417
1418/*
1419 * Returns B_TRUE if the buffer represents data that has not had its MAC
1420 * verified yet.
1421 */
1422boolean_t
1423arc_is_unauthenticated(arc_buf_t *buf)
1424{
1425 return (HDR_NOAUTH(buf->b_hdr) != 0);
1426}
1427
1428void
1429arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1430 uint8_t *iv, uint8_t *mac)
1431{
1432 arc_buf_hdr_t *hdr = buf->b_hdr;
1433
1434 ASSERT(HDR_PROTECTED(hdr));
1435
1436 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1437 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1438 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1439 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1440 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1441}
1442
1443/*
1444 * Indicates how this buffer is compressed in memory. If it is not compressed
1445 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1446 * arc_untransform() as long as it is also unencrypted.
1447 */
2aa34383
DK
1448enum zio_compress
1449arc_get_compression(arc_buf_t *buf)
1450{
1451 return (ARC_BUF_COMPRESSED(buf) ?
1452 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1453}
1454
b5256303
TC
1455/*
1456 * Return the compression algorithm used to store this data in the ARC. If ARC
1457 * compression is enabled or this is an encrypted block, this will be the same
1458 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1459 */
1460static inline enum zio_compress
1461arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1462{
1463 return (HDR_COMPRESSION_ENABLED(hdr) ?
1464 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1465}
1466
d3c2ae1c
GW
1467static inline boolean_t
1468arc_buf_is_shared(arc_buf_t *buf)
1469{
1470 boolean_t shared = (buf->b_data != NULL &&
a6255b7f
DQ
1471 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1472 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1473 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
d3c2ae1c 1474 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
2aa34383
DK
1475 IMPLY(shared, ARC_BUF_SHARED(buf));
1476 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
524b4217
DK
1477
1478 /*
1479 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1480 * already being shared" requirement prevents us from doing that.
1481 */
1482
d3c2ae1c
GW
1483 return (shared);
1484}
ca0bf58d 1485
a7004725
DK
1486/*
1487 * Free the checksum associated with this header. If there is no checksum, this
1488 * is a no-op.
1489 */
d3c2ae1c
GW
1490static inline void
1491arc_cksum_free(arc_buf_hdr_t *hdr)
1492{
1493 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303 1494
d3c2ae1c
GW
1495 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1496 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1497 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1498 hdr->b_l1hdr.b_freeze_cksum = NULL;
b9541d6b 1499 }
d3c2ae1c 1500 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
b9541d6b
CW
1501}
1502
a7004725
DK
1503/*
1504 * Return true iff at least one of the bufs on hdr is not compressed.
b5256303 1505 * Encrypted buffers count as compressed.
a7004725
DK
1506 */
1507static boolean_t
1508arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1509{
1510 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1511 if (!ARC_BUF_COMPRESSED(b)) {
1512 return (B_TRUE);
1513 }
1514 }
1515 return (B_FALSE);
1516}
1517
1518
524b4217
DK
1519/*
1520 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1521 * matches the checksum that is stored in the hdr. If there is no checksum,
1522 * or if the buf is compressed, this is a no-op.
1523 */
34dc7c2f
BB
1524static void
1525arc_cksum_verify(arc_buf_t *buf)
1526{
d3c2ae1c 1527 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f
BB
1528 zio_cksum_t zc;
1529
1530 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1531 return;
1532
524b4217 1533 if (ARC_BUF_COMPRESSED(buf)) {
a7004725
DK
1534 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1535 arc_hdr_has_uncompressed_buf(hdr));
524b4217
DK
1536 return;
1537 }
1538
d3c2ae1c
GW
1539 ASSERT(HDR_HAS_L1HDR(hdr));
1540
1541 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1542 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1543 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1544 return;
1545 }
2aa34383 1546
3c67d83a 1547 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
d3c2ae1c 1548 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
34dc7c2f 1549 panic("buffer modified while frozen!");
d3c2ae1c 1550 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1551}
1552
b5256303
TC
1553/*
1554 * This function makes the assumption that data stored in the L2ARC
1555 * will be transformed exactly as it is in the main pool. Because of
1556 * this we can verify the checksum against the reading process's bp.
1557 */
d3c2ae1c
GW
1558static boolean_t
1559arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
34dc7c2f 1560{
d3c2ae1c
GW
1561 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1562 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
34dc7c2f 1563
d3c2ae1c
GW
1564 /*
1565 * Block pointers always store the checksum for the logical data.
1566 * If the block pointer has the gang bit set, then the checksum
1567 * it represents is for the reconstituted data and not for an
1568 * individual gang member. The zio pipeline, however, must be able to
1569 * determine the checksum of each of the gang constituents so it
1570 * treats the checksum comparison differently than what we need
1571 * for l2arc blocks. This prevents us from using the
1572 * zio_checksum_error() interface directly. Instead we must call the
1573 * zio_checksum_error_impl() so that we can ensure the checksum is
1574 * generated using the correct checksum algorithm and accounts for the
1575 * logical I/O size and not just a gang fragment.
1576 */
b5256303 1577 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
a6255b7f 1578 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
d3c2ae1c 1579 zio->io_offset, NULL) == 0);
34dc7c2f
BB
1580}
1581
524b4217
DK
1582/*
1583 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1584 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1585 * isn't modified later on. If buf is compressed or there is already a checksum
1586 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1587 */
34dc7c2f 1588static void
d3c2ae1c 1589arc_cksum_compute(arc_buf_t *buf)
34dc7c2f 1590{
d3c2ae1c
GW
1591 arc_buf_hdr_t *hdr = buf->b_hdr;
1592
1593 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
34dc7c2f
BB
1594 return;
1595
d3c2ae1c 1596 ASSERT(HDR_HAS_L1HDR(hdr));
2aa34383 1597
b9541d6b 1598 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
d3c2ae1c 1599 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
a7004725 1600 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
2aa34383
DK
1601 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1602 return;
1603 } else if (ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 1604 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1605 return;
1606 }
2aa34383 1607
b5256303 1608 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2aa34383 1609 ASSERT(!ARC_BUF_COMPRESSED(buf));
d3c2ae1c
GW
1610 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1611 KM_SLEEP);
3c67d83a 1612 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
d3c2ae1c
GW
1613 hdr->b_l1hdr.b_freeze_cksum);
1614 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1615 arc_buf_watch(buf);
1616}
1617
1618#ifndef _KERNEL
1619void
1620arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1621{
02730c33 1622 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
498877ba
MA
1623}
1624#endif
1625
1626/* ARGSUSED */
1627static void
1628arc_buf_unwatch(arc_buf_t *buf)
1629{
1630#ifndef _KERNEL
1631 if (arc_watch) {
a7004725 1632 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
498877ba
MA
1633 PROT_READ | PROT_WRITE));
1634 }
1635#endif
1636}
1637
1638/* ARGSUSED */
1639static void
1640arc_buf_watch(arc_buf_t *buf)
1641{
1642#ifndef _KERNEL
1643 if (arc_watch)
2aa34383 1644 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
d3c2ae1c 1645 PROT_READ));
498877ba 1646#endif
34dc7c2f
BB
1647}
1648
b9541d6b
CW
1649static arc_buf_contents_t
1650arc_buf_type(arc_buf_hdr_t *hdr)
1651{
d3c2ae1c 1652 arc_buf_contents_t type;
b9541d6b 1653 if (HDR_ISTYPE_METADATA(hdr)) {
d3c2ae1c 1654 type = ARC_BUFC_METADATA;
b9541d6b 1655 } else {
d3c2ae1c 1656 type = ARC_BUFC_DATA;
b9541d6b 1657 }
d3c2ae1c
GW
1658 VERIFY3U(hdr->b_type, ==, type);
1659 return (type);
b9541d6b
CW
1660}
1661
2aa34383
DK
1662boolean_t
1663arc_is_metadata(arc_buf_t *buf)
1664{
1665 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1666}
1667
b9541d6b
CW
1668static uint32_t
1669arc_bufc_to_flags(arc_buf_contents_t type)
1670{
1671 switch (type) {
1672 case ARC_BUFC_DATA:
1673 /* metadata field is 0 if buffer contains normal data */
1674 return (0);
1675 case ARC_BUFC_METADATA:
1676 return (ARC_FLAG_BUFC_METADATA);
1677 default:
1678 break;
1679 }
1680 panic("undefined ARC buffer type!");
1681 return ((uint32_t)-1);
1682}
1683
34dc7c2f
BB
1684void
1685arc_buf_thaw(arc_buf_t *buf)
1686{
d3c2ae1c
GW
1687 arc_buf_hdr_t *hdr = buf->b_hdr;
1688
2aa34383
DK
1689 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1690 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1691
524b4217 1692 arc_cksum_verify(buf);
34dc7c2f 1693
2aa34383
DK
1694 /*
1695 * Compressed buffers do not manipulate the b_freeze_cksum or
1696 * allocate b_thawed.
1697 */
1698 if (ARC_BUF_COMPRESSED(buf)) {
a7004725
DK
1699 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1700 arc_hdr_has_uncompressed_buf(hdr));
2aa34383
DK
1701 return;
1702 }
1703
d3c2ae1c
GW
1704 ASSERT(HDR_HAS_L1HDR(hdr));
1705 arc_cksum_free(hdr);
498877ba 1706 arc_buf_unwatch(buf);
34dc7c2f
BB
1707}
1708
1709void
1710arc_buf_freeze(arc_buf_t *buf)
1711{
d3c2ae1c 1712 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1713 kmutex_t *hash_lock;
1714
34dc7c2f
BB
1715 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1716 return;
1717
2aa34383 1718 if (ARC_BUF_COMPRESSED(buf)) {
a7004725
DK
1719 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1720 arc_hdr_has_uncompressed_buf(hdr));
2aa34383
DK
1721 return;
1722 }
1723
d3c2ae1c 1724 hash_lock = HDR_LOCK(hdr);
428870ff
BB
1725 mutex_enter(hash_lock);
1726
d3c2ae1c
GW
1727 ASSERT(HDR_HAS_L1HDR(hdr));
1728 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1729 hdr->b_l1hdr.b_state == arc_anon);
1730 arc_cksum_compute(buf);
428870ff 1731 mutex_exit(hash_lock);
34dc7c2f
BB
1732}
1733
d3c2ae1c
GW
1734/*
1735 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1736 * the following functions should be used to ensure that the flags are
1737 * updated in a thread-safe way. When manipulating the flags either
1738 * the hash_lock must be held or the hdr must be undiscoverable. This
1739 * ensures that we're not racing with any other threads when updating
1740 * the flags.
1741 */
1742static inline void
1743arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1744{
1745 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1746 hdr->b_flags |= flags;
1747}
1748
1749static inline void
1750arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1751{
1752 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1753 hdr->b_flags &= ~flags;
1754}
1755
1756/*
1757 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1758 * done in a special way since we have to clear and set bits
1759 * at the same time. Consumers that wish to set the compression bits
1760 * must use this function to ensure that the flags are updated in
1761 * thread-safe manner.
1762 */
1763static void
1764arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1765{
1766 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1767
1768 /*
1769 * Holes and embedded blocks will always have a psize = 0 so
1770 * we ignore the compression of the blkptr and set the
d3c2ae1c
GW
1771 * want to uncompress them. Mark them as uncompressed.
1772 */
1773 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1774 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c 1775 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
d3c2ae1c
GW
1776 } else {
1777 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c
GW
1778 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1779 }
b5256303
TC
1780
1781 HDR_SET_COMPRESS(hdr, cmp);
1782 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
d3c2ae1c
GW
1783}
1784
524b4217
DK
1785/*
1786 * Looks for another buf on the same hdr which has the data decompressed, copies
1787 * from it, and returns true. If no such buf exists, returns false.
1788 */
1789static boolean_t
1790arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1791{
1792 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217
DK
1793 boolean_t copied = B_FALSE;
1794
1795 ASSERT(HDR_HAS_L1HDR(hdr));
1796 ASSERT3P(buf->b_data, !=, NULL);
1797 ASSERT(!ARC_BUF_COMPRESSED(buf));
1798
a7004725 1799 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
524b4217
DK
1800 from = from->b_next) {
1801 /* can't use our own data buffer */
1802 if (from == buf) {
1803 continue;
1804 }
1805
1806 if (!ARC_BUF_COMPRESSED(from)) {
1807 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1808 copied = B_TRUE;
1809 break;
1810 }
1811 }
1812
1813 /*
1814 * There were no decompressed bufs, so there should not be a
1815 * checksum on the hdr either.
1816 */
1817 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1818
1819 return (copied);
1820}
1821
b5256303
TC
1822/*
1823 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1824 */
1825static uint64_t
1826arc_hdr_size(arc_buf_hdr_t *hdr)
1827{
1828 uint64_t size;
1829
1830 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1831 HDR_GET_PSIZE(hdr) > 0) {
1832 size = HDR_GET_PSIZE(hdr);
1833 } else {
1834 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1835 size = HDR_GET_LSIZE(hdr);
1836 }
1837 return (size);
1838}
1839
1840static int
1841arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1842{
1843 int ret;
1844 uint64_t csize;
1845 uint64_t lsize = HDR_GET_LSIZE(hdr);
1846 uint64_t psize = HDR_GET_PSIZE(hdr);
1847 void *tmpbuf = NULL;
1848 abd_t *abd = hdr->b_l1hdr.b_pabd;
1849
1850 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1851 ASSERT(HDR_AUTHENTICATED(hdr));
1852 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1853
1854 /*
1855 * The MAC is calculated on the compressed data that is stored on disk.
1856 * However, if compressed arc is disabled we will only have the
1857 * decompressed data available to us now. Compress it into a temporary
1858 * abd so we can verify the MAC. The performance overhead of this will
1859 * be relatively low, since most objects in an encrypted objset will
1860 * be encrypted (instead of authenticated) anyway.
1861 */
1862 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1863 !HDR_COMPRESSION_ENABLED(hdr)) {
1864 tmpbuf = zio_buf_alloc(lsize);
1865 abd = abd_get_from_buf(tmpbuf, lsize);
1866 abd_take_ownership_of_buf(abd, B_TRUE);
1867
1868 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1869 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1870 ASSERT3U(csize, <=, psize);
1871 abd_zero_off(abd, csize, psize - csize);
1872 }
1873
1874 /*
1875 * Authentication is best effort. We authenticate whenever the key is
1876 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1877 */
1878 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1879 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1880 ASSERT3U(lsize, ==, psize);
1881 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1882 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1883 } else {
1884 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1885 hdr->b_crypt_hdr.b_mac);
1886 }
1887
1888 if (ret == 0)
1889 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1890 else if (ret != ENOENT)
1891 goto error;
1892
1893 if (tmpbuf != NULL)
1894 abd_free(abd);
1895
1896 return (0);
1897
1898error:
1899 if (tmpbuf != NULL)
1900 abd_free(abd);
1901
1902 return (ret);
1903}
1904
1905/*
1906 * This function will take a header that only has raw encrypted data in
1907 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1908 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1909 * also decompress the data.
1910 */
1911static int
1912arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1913{
1914 int ret;
1915 dsl_crypto_key_t *dck = NULL;
1916 abd_t *cabd = NULL;
1917 void *tmp = NULL;
1918 boolean_t no_crypt = B_FALSE;
1919 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1920
1921 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
1922 ASSERT(HDR_ENCRYPTED(hdr));
1923
1924 arc_hdr_alloc_abd(hdr, B_FALSE);
1925
1926 /*
1927 * We must be careful to use the passed-in dsobj value here and
1928 * not the value in b_dsobj. b_dsobj is meant to be a best guess for
1929 * the L2ARC, which has the luxury of being able to fail without real
1930 * consequences (the data simply won't make it to the L2ARC). In
1931 * reality, the dsobj stored in the header may belong to a dataset
1932 * that has been unmounted or otherwise disowned, meaning the key
1933 * won't be accessible via that dsobj anymore.
1934 */
1935 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
1936 if (ret != 0) {
1937 ret = SET_ERROR(EACCES);
1938 goto error;
1939 }
1940
1941 ret = zio_do_crypt_abd(B_FALSE, &dck->dck_key,
1942 hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_ot,
1943 hdr->b_crypt_hdr.b_iv, hdr->b_crypt_hdr.b_mac,
1944 HDR_GET_PSIZE(hdr), bswap, hdr->b_l1hdr.b_pabd,
1945 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1946 if (ret != 0)
1947 goto error;
1948
1949 if (no_crypt) {
1950 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1951 HDR_GET_PSIZE(hdr));
1952 }
1953
1954 /*
1955 * If this header has disabled arc compression but the b_pabd is
1956 * compressed after decrypting it, we need to decompress the newly
1957 * decrypted data.
1958 */
1959 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1960 !HDR_COMPRESSION_ENABLED(hdr)) {
1961 /*
1962 * We want to make sure that we are correctly honoring the
1963 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1964 * and then loan a buffer from it, rather than allocating a
1965 * linear buffer and wrapping it in an abd later.
1966 */
1967 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
1968 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1969
1970 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1971 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1972 HDR_GET_LSIZE(hdr));
1973 if (ret != 0) {
1974 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1975 goto error;
1976 }
1977
1978 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1979 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1980 arc_hdr_size(hdr), hdr);
1981 hdr->b_l1hdr.b_pabd = cabd;
1982 }
1983
1984 spa_keystore_dsl_key_rele(spa, dck, FTAG);
1985
1986 return (0);
1987
1988error:
1989 arc_hdr_free_abd(hdr, B_FALSE);
1990 if (dck != NULL)
1991 spa_keystore_dsl_key_rele(spa, dck, FTAG);
1992 if (cabd != NULL)
1993 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1994
1995 return (ret);
1996}
1997
1998/*
1999 * This function is called during arc_buf_fill() to prepare the header's
2000 * abd plaintext pointer for use. This involves authenticated protected
2001 * data and decrypting encrypted data into the plaintext abd.
2002 */
2003static int
2004arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
2005 uint64_t dsobj, boolean_t noauth)
2006{
2007 int ret;
2008
2009 ASSERT(HDR_PROTECTED(hdr));
2010
2011 if (hash_lock != NULL)
2012 mutex_enter(hash_lock);
2013
2014 if (HDR_NOAUTH(hdr) && !noauth) {
2015 /*
2016 * The caller requested authenticated data but our data has
2017 * not been authenticated yet. Verify the MAC now if we can.
2018 */
2019 ret = arc_hdr_authenticate(hdr, spa, dsobj);
2020 if (ret != 0)
2021 goto error;
2022 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2023 /*
2024 * If we only have the encrypted version of the data, but the
2025 * unencrypted version was requested we take this opportunity
2026 * to store the decrypted version in the header for future use.
2027 */
2028 ret = arc_hdr_decrypt(hdr, spa, dsobj);
2029 if (ret != 0)
2030 goto error;
2031 }
2032
2033 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2034
2035 if (hash_lock != NULL)
2036 mutex_exit(hash_lock);
2037
2038 return (0);
2039
2040error:
2041 if (hash_lock != NULL)
2042 mutex_exit(hash_lock);
2043
2044 return (ret);
2045}
2046
2047/*
2048 * This function is used by the dbuf code to decrypt bonus buffers in place.
2049 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2050 * block, so we use the hash lock here to protect against concurrent calls to
2051 * arc_buf_fill().
2052 */
2053static void
2054arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2055{
2056 arc_buf_hdr_t *hdr = buf->b_hdr;
2057
2058 ASSERT(HDR_ENCRYPTED(hdr));
2059 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2060 ASSERT(HDR_LOCK(hdr) == NULL || MUTEX_HELD(HDR_LOCK(hdr)));
2061 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2062
2063 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2064 arc_buf_size(buf));
2065 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2066 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2067 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2068}
2069
524b4217
DK
2070/*
2071 * Given a buf that has a data buffer attached to it, this function will
2072 * efficiently fill the buf with data of the specified compression setting from
2073 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2074 * are already sharing a data buf, no copy is performed.
2075 *
2076 * If the buf is marked as compressed but uncompressed data was requested, this
2077 * will allocate a new data buffer for the buf, remove that flag, and fill the
2078 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2079 * uncompressed data, and (since we haven't added support for it yet) if you
2080 * want compressed data your buf must already be marked as compressed and have
2081 * the correct-sized data buffer.
2082 */
2083static int
b5256303 2084arc_buf_fill(arc_buf_t *buf, spa_t *spa, uint64_t dsobj, arc_fill_flags_t flags)
d3c2ae1c 2085{
b5256303 2086 int error = 0;
d3c2ae1c 2087 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
2088 boolean_t hdr_compressed =
2089 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2090 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2091 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
d3c2ae1c 2092 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
b5256303 2093 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
d3c2ae1c 2094
524b4217 2095 ASSERT3P(buf->b_data, !=, NULL);
b5256303 2096 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
524b4217 2097 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
b5256303
TC
2098 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2099 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2100 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2101 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2102
2103 /*
2104 * If the caller wanted encrypted data we just need to copy it from
2105 * b_rabd and potentially byteswap it. We won't be able to do any
2106 * further transforms on it.
2107 */
2108 if (encrypted) {
2109 ASSERT(HDR_HAS_RABD(hdr));
2110 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2111 HDR_GET_PSIZE(hdr));
2112 goto byteswap;
2113 }
2114
2115 /*
2116 * Adjust encrypted and authenticated headers to accomodate the
2117 * request if needed.
2118 */
2119 if (HDR_PROTECTED(hdr)) {
2120 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2121 dsobj, !!(flags & ARC_FILL_NOAUTH));
2122 if (error != 0)
2123 return (error);
2124 }
2125
2126 /*
2127 * There is a special case here for dnode blocks which are
2128 * decrypting their bonus buffers. These blocks may request to
2129 * be decrypted in-place. This is necessary because there may
2130 * be many dnodes pointing into this buffer and there is
2131 * currently no method to synchronize replacing the backing
2132 * b_data buffer and updating all of the pointers. Here we use
2133 * the hash lock to ensure there are no races. If the need
2134 * arises for other types to be decrypted in-place, they must
2135 * add handling here as well.
2136 */
2137 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2138 ASSERT(!hdr_compressed);
2139 ASSERT(!compressed);
2140 ASSERT(!encrypted);
2141
2142 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2143 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2144
2145 if (hash_lock != NULL)
2146 mutex_enter(hash_lock);
2147 arc_buf_untransform_in_place(buf, hash_lock);
2148 if (hash_lock != NULL)
2149 mutex_exit(hash_lock);
2150
2151 /* Compute the hdr's checksum if necessary */
2152 arc_cksum_compute(buf);
2153 }
2154
2155 return (0);
2156 }
524b4217
DK
2157
2158 if (hdr_compressed == compressed) {
2aa34383 2159 if (!arc_buf_is_shared(buf)) {
a6255b7f 2160 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
524b4217 2161 arc_buf_size(buf));
2aa34383 2162 }
d3c2ae1c 2163 } else {
524b4217
DK
2164 ASSERT(hdr_compressed);
2165 ASSERT(!compressed);
d3c2ae1c 2166 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2aa34383
DK
2167
2168 /*
524b4217
DK
2169 * If the buf is sharing its data with the hdr, unlink it and
2170 * allocate a new data buffer for the buf.
2aa34383 2171 */
524b4217
DK
2172 if (arc_buf_is_shared(buf)) {
2173 ASSERT(ARC_BUF_COMPRESSED(buf));
2174
2175 /* We need to give the buf it's own b_data */
2176 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2aa34383
DK
2177 buf->b_data =
2178 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2179 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2180
524b4217 2181 /* Previously overhead was 0; just add new overhead */
2aa34383 2182 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
524b4217
DK
2183 } else if (ARC_BUF_COMPRESSED(buf)) {
2184 /* We need to reallocate the buf's b_data */
2185 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2186 buf);
2187 buf->b_data =
2188 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2189
2190 /* We increased the size of b_data; update overhead */
2191 ARCSTAT_INCR(arcstat_overhead_size,
2192 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2aa34383
DK
2193 }
2194
524b4217
DK
2195 /*
2196 * Regardless of the buf's previous compression settings, it
2197 * should not be compressed at the end of this function.
2198 */
2199 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2200
2201 /*
2202 * Try copying the data from another buf which already has a
2203 * decompressed version. If that's not possible, it's time to
2204 * bite the bullet and decompress the data from the hdr.
2205 */
2206 if (arc_buf_try_copy_decompressed_data(buf)) {
2207 /* Skip byteswapping and checksumming (already done) */
2208 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2209 return (0);
2210 } else {
b5256303 2211 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
a6255b7f 2212 hdr->b_l1hdr.b_pabd, buf->b_data,
524b4217
DK
2213 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2214
2215 /*
2216 * Absent hardware errors or software bugs, this should
2217 * be impossible, but log it anyway so we can debug it.
2218 */
2219 if (error != 0) {
2220 zfs_dbgmsg(
2221 "hdr %p, compress %d, psize %d, lsize %d",
b5256303 2222 hdr, arc_hdr_get_compress(hdr),
524b4217
DK
2223 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2224 return (SET_ERROR(EIO));
2225 }
d3c2ae1c
GW
2226 }
2227 }
524b4217 2228
b5256303 2229byteswap:
524b4217 2230 /* Byteswap the buf's data if necessary */
d3c2ae1c
GW
2231 if (bswap != DMU_BSWAP_NUMFUNCS) {
2232 ASSERT(!HDR_SHARED_DATA(hdr));
2233 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2234 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2235 }
524b4217
DK
2236
2237 /* Compute the hdr's checksum if necessary */
d3c2ae1c 2238 arc_cksum_compute(buf);
524b4217 2239
d3c2ae1c
GW
2240 return (0);
2241}
2242
2243/*
b5256303
TC
2244 * If this function is being called to decrypt an encrypted buffer or verify an
2245 * authenticated one, the key must be loaded and a mapping must be made
2246 * available in the keystore via spa_keystore_create_mapping() or one of its
2247 * callers.
d3c2ae1c 2248 */
b5256303
TC
2249int
2250arc_untransform(arc_buf_t *buf, spa_t *spa, uint64_t dsobj, boolean_t in_place)
d3c2ae1c 2251{
b5256303 2252 arc_fill_flags_t flags = 0;
d3c2ae1c 2253
b5256303
TC
2254 if (in_place)
2255 flags |= ARC_FILL_IN_PLACE;
2256
2257 return (arc_buf_fill(buf, spa, dsobj, flags));
d3c2ae1c
GW
2258}
2259
2260/*
2261 * Increment the amount of evictable space in the arc_state_t's refcount.
2262 * We account for the space used by the hdr and the arc buf individually
2263 * so that we can add and remove them from the refcount individually.
2264 */
34dc7c2f 2265static void
d3c2ae1c
GW
2266arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2267{
2268 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2269
2270 ASSERT(HDR_HAS_L1HDR(hdr));
2271
2272 if (GHOST_STATE(state)) {
2273 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2274 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2275 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2276 ASSERT(!HDR_HAS_RABD(hdr));
2aa34383
DK
2277 (void) refcount_add_many(&state->arcs_esize[type],
2278 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2279 return;
2280 }
2281
2282 ASSERT(!GHOST_STATE(state));
a6255b7f 2283 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
2284 (void) refcount_add_many(&state->arcs_esize[type],
2285 arc_hdr_size(hdr), hdr);
2286 }
b5256303
TC
2287 if (HDR_HAS_RABD(hdr)) {
2288 (void) refcount_add_many(&state->arcs_esize[type],
2289 HDR_GET_PSIZE(hdr), hdr);
2290 }
2291
1c27024e
DB
2292 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2293 buf = buf->b_next) {
2aa34383 2294 if (arc_buf_is_shared(buf))
d3c2ae1c 2295 continue;
2aa34383
DK
2296 (void) refcount_add_many(&state->arcs_esize[type],
2297 arc_buf_size(buf), buf);
d3c2ae1c
GW
2298 }
2299}
2300
2301/*
2302 * Decrement the amount of evictable space in the arc_state_t's refcount.
2303 * We account for the space used by the hdr and the arc buf individually
2304 * so that we can add and remove them from the refcount individually.
2305 */
2306static void
2aa34383 2307arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
d3c2ae1c
GW
2308{
2309 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2310
2311 ASSERT(HDR_HAS_L1HDR(hdr));
2312
2313 if (GHOST_STATE(state)) {
2314 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2315 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2316 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2317 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c 2318 (void) refcount_remove_many(&state->arcs_esize[type],
2aa34383 2319 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2320 return;
2321 }
2322
2323 ASSERT(!GHOST_STATE(state));
a6255b7f 2324 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
2325 (void) refcount_remove_many(&state->arcs_esize[type],
2326 arc_hdr_size(hdr), hdr);
2327 }
b5256303
TC
2328 if (HDR_HAS_RABD(hdr)) {
2329 (void) refcount_remove_many(&state->arcs_esize[type],
2330 HDR_GET_PSIZE(hdr), hdr);
2331 }
2332
1c27024e
DB
2333 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2334 buf = buf->b_next) {
2aa34383 2335 if (arc_buf_is_shared(buf))
d3c2ae1c 2336 continue;
d3c2ae1c 2337 (void) refcount_remove_many(&state->arcs_esize[type],
2aa34383 2338 arc_buf_size(buf), buf);
d3c2ae1c
GW
2339 }
2340}
2341
2342/*
2343 * Add a reference to this hdr indicating that someone is actively
2344 * referencing that memory. When the refcount transitions from 0 to 1,
2345 * we remove it from the respective arc_state_t list to indicate that
2346 * it is not evictable.
2347 */
2348static void
2349add_reference(arc_buf_hdr_t *hdr, void *tag)
34dc7c2f 2350{
b9541d6b
CW
2351 arc_state_t *state;
2352
2353 ASSERT(HDR_HAS_L1HDR(hdr));
d3c2ae1c
GW
2354 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2355 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
2356 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2357 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2358 }
34dc7c2f 2359
b9541d6b
CW
2360 state = hdr->b_l1hdr.b_state;
2361
2362 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2363 (state != arc_anon)) {
2364 /* We don't use the L2-only state list. */
2365 if (state != arc_l2c_only) {
64fc7762 2366 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
d3c2ae1c 2367 hdr);
2aa34383 2368 arc_evictable_space_decrement(hdr, state);
34dc7c2f 2369 }
b128c09f 2370 /* remove the prefetch flag if we get a reference */
d3c2ae1c 2371 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
2372 }
2373}
2374
d3c2ae1c
GW
2375/*
2376 * Remove a reference from this hdr. When the reference transitions from
2377 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2378 * list making it eligible for eviction.
2379 */
34dc7c2f 2380static int
2a432414 2381remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
2382{
2383 int cnt;
b9541d6b 2384 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 2385
b9541d6b 2386 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
2387 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2388 ASSERT(!GHOST_STATE(state));
2389
b9541d6b
CW
2390 /*
2391 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2392 * check to prevent usage of the arc_l2c_only list.
2393 */
2394 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 2395 (state != arc_anon)) {
64fc7762 2396 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
d3c2ae1c
GW
2397 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2398 arc_evictable_space_increment(hdr, state);
34dc7c2f
BB
2399 }
2400 return (cnt);
2401}
2402
e0b0ca98
BB
2403/*
2404 * Returns detailed information about a specific arc buffer. When the
2405 * state_index argument is set the function will calculate the arc header
2406 * list position for its arc state. Since this requires a linear traversal
2407 * callers are strongly encourage not to do this. However, it can be helpful
2408 * for targeted analysis so the functionality is provided.
2409 */
2410void
2411arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2412{
2413 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
2414 l1arc_buf_hdr_t *l1hdr = NULL;
2415 l2arc_buf_hdr_t *l2hdr = NULL;
2416 arc_state_t *state = NULL;
2417
8887c7d7
TC
2418 memset(abi, 0, sizeof (arc_buf_info_t));
2419
2420 if (hdr == NULL)
2421 return;
2422
2423 abi->abi_flags = hdr->b_flags;
2424
b9541d6b
CW
2425 if (HDR_HAS_L1HDR(hdr)) {
2426 l1hdr = &hdr->b_l1hdr;
2427 state = l1hdr->b_state;
2428 }
2429 if (HDR_HAS_L2HDR(hdr))
2430 l2hdr = &hdr->b_l2hdr;
e0b0ca98 2431
b9541d6b 2432 if (l1hdr) {
d3c2ae1c 2433 abi->abi_bufcnt = l1hdr->b_bufcnt;
b9541d6b
CW
2434 abi->abi_access = l1hdr->b_arc_access;
2435 abi->abi_mru_hits = l1hdr->b_mru_hits;
2436 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2437 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2438 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2439 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2440 }
2441
2442 if (l2hdr) {
2443 abi->abi_l2arc_dattr = l2hdr->b_daddr;
b9541d6b
CW
2444 abi->abi_l2arc_hits = l2hdr->b_hits;
2445 }
2446
e0b0ca98 2447 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 2448 abi->abi_state_contents = arc_buf_type(hdr);
d3c2ae1c 2449 abi->abi_size = arc_hdr_size(hdr);
e0b0ca98
BB
2450}
2451
34dc7c2f 2452/*
ca0bf58d 2453 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
2454 * for the buffer must be held by the caller.
2455 */
2456static void
2a432414
GW
2457arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2458 kmutex_t *hash_lock)
34dc7c2f 2459{
b9541d6b
CW
2460 arc_state_t *old_state;
2461 int64_t refcnt;
d3c2ae1c
GW
2462 uint32_t bufcnt;
2463 boolean_t update_old, update_new;
b9541d6b
CW
2464 arc_buf_contents_t buftype = arc_buf_type(hdr);
2465
2466 /*
2467 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2468 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2469 * L1 hdr doesn't always exist when we change state to arc_anon before
2470 * destroying a header, in which case reallocating to add the L1 hdr is
2471 * pointless.
2472 */
2473 if (HDR_HAS_L1HDR(hdr)) {
2474 old_state = hdr->b_l1hdr.b_state;
2475 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
d3c2ae1c 2476 bufcnt = hdr->b_l1hdr.b_bufcnt;
b5256303
TC
2477 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2478 HDR_HAS_RABD(hdr));
b9541d6b
CW
2479 } else {
2480 old_state = arc_l2c_only;
2481 refcnt = 0;
d3c2ae1c
GW
2482 bufcnt = 0;
2483 update_old = B_FALSE;
b9541d6b 2484 }
d3c2ae1c 2485 update_new = update_old;
34dc7c2f
BB
2486
2487 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 2488 ASSERT3P(new_state, !=, old_state);
d3c2ae1c
GW
2489 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2490 ASSERT(old_state != arc_anon || bufcnt <= 1);
34dc7c2f
BB
2491
2492 /*
2493 * If this buffer is evictable, transfer it from the
2494 * old state list to the new state list.
2495 */
2496 if (refcnt == 0) {
b9541d6b 2497 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 2498 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2499 multilist_remove(old_state->arcs_list[buftype], hdr);
34dc7c2f 2500
d3c2ae1c
GW
2501 if (GHOST_STATE(old_state)) {
2502 ASSERT0(bufcnt);
2503 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2504 update_old = B_TRUE;
34dc7c2f 2505 }
2aa34383 2506 arc_evictable_space_decrement(hdr, old_state);
34dc7c2f 2507 }
b9541d6b 2508 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b
CW
2509 /*
2510 * An L1 header always exists here, since if we're
2511 * moving to some L1-cached state (i.e. not l2c_only or
2512 * anonymous), we realloc the header to add an L1hdr
2513 * beforehand.
2514 */
2515 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2516 multilist_insert(new_state->arcs_list[buftype], hdr);
34dc7c2f 2517
34dc7c2f 2518 if (GHOST_STATE(new_state)) {
d3c2ae1c
GW
2519 ASSERT0(bufcnt);
2520 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2521 update_new = B_TRUE;
34dc7c2f 2522 }
d3c2ae1c 2523 arc_evictable_space_increment(hdr, new_state);
34dc7c2f
BB
2524 }
2525 }
2526
d3c2ae1c 2527 ASSERT(!HDR_EMPTY(hdr));
2a432414
GW
2528 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2529 buf_hash_remove(hdr);
34dc7c2f 2530
b9541d6b 2531 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef 2532
d3c2ae1c 2533 if (update_new && new_state != arc_l2c_only) {
36da08ef
PS
2534 ASSERT(HDR_HAS_L1HDR(hdr));
2535 if (GHOST_STATE(new_state)) {
d3c2ae1c 2536 ASSERT0(bufcnt);
36da08ef
PS
2537
2538 /*
d3c2ae1c 2539 * When moving a header to a ghost state, we first
36da08ef 2540 * remove all arc buffers. Thus, we'll have a
d3c2ae1c 2541 * bufcnt of zero, and no arc buffer to use for
36da08ef
PS
2542 * the reference. As a result, we use the arc
2543 * header pointer for the reference.
2544 */
2545 (void) refcount_add_many(&new_state->arcs_size,
d3c2ae1c 2546 HDR_GET_LSIZE(hdr), hdr);
a6255b7f 2547 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2548 ASSERT(!HDR_HAS_RABD(hdr));
36da08ef 2549 } else {
d3c2ae1c 2550 uint32_t buffers = 0;
36da08ef
PS
2551
2552 /*
2553 * Each individual buffer holds a unique reference,
2554 * thus we must remove each of these references one
2555 * at a time.
2556 */
1c27024e 2557 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2558 buf = buf->b_next) {
d3c2ae1c
GW
2559 ASSERT3U(bufcnt, !=, 0);
2560 buffers++;
2561
2562 /*
2563 * When the arc_buf_t is sharing the data
2564 * block with the hdr, the owner of the
2565 * reference belongs to the hdr. Only
2566 * add to the refcount if the arc_buf_t is
2567 * not shared.
2568 */
2aa34383 2569 if (arc_buf_is_shared(buf))
d3c2ae1c 2570 continue;
d3c2ae1c 2571
36da08ef 2572 (void) refcount_add_many(&new_state->arcs_size,
2aa34383 2573 arc_buf_size(buf), buf);
d3c2ae1c
GW
2574 }
2575 ASSERT3U(bufcnt, ==, buffers);
2576
a6255b7f 2577 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
2578 (void) refcount_add_many(&new_state->arcs_size,
2579 arc_hdr_size(hdr), hdr);
b5256303
TC
2580 }
2581
2582 if (HDR_HAS_RABD(hdr)) {
2583 (void) refcount_add_many(&new_state->arcs_size,
2584 HDR_GET_PSIZE(hdr), hdr);
36da08ef
PS
2585 }
2586 }
2587 }
2588
d3c2ae1c 2589 if (update_old && old_state != arc_l2c_only) {
36da08ef
PS
2590 ASSERT(HDR_HAS_L1HDR(hdr));
2591 if (GHOST_STATE(old_state)) {
d3c2ae1c 2592 ASSERT0(bufcnt);
a6255b7f 2593 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2594 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c 2595
36da08ef
PS
2596 /*
2597 * When moving a header off of a ghost state,
d3c2ae1c
GW
2598 * the header will not contain any arc buffers.
2599 * We use the arc header pointer for the reference
2600 * which is exactly what we did when we put the
2601 * header on the ghost state.
36da08ef
PS
2602 */
2603
36da08ef 2604 (void) refcount_remove_many(&old_state->arcs_size,
d3c2ae1c 2605 HDR_GET_LSIZE(hdr), hdr);
36da08ef 2606 } else {
d3c2ae1c 2607 uint32_t buffers = 0;
36da08ef
PS
2608
2609 /*
2610 * Each individual buffer holds a unique reference,
2611 * thus we must remove each of these references one
2612 * at a time.
2613 */
1c27024e 2614 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2615 buf = buf->b_next) {
d3c2ae1c
GW
2616 ASSERT3U(bufcnt, !=, 0);
2617 buffers++;
2618
2619 /*
2620 * When the arc_buf_t is sharing the data
2621 * block with the hdr, the owner of the
2622 * reference belongs to the hdr. Only
2623 * add to the refcount if the arc_buf_t is
2624 * not shared.
2625 */
2aa34383 2626 if (arc_buf_is_shared(buf))
d3c2ae1c 2627 continue;
d3c2ae1c 2628
36da08ef 2629 (void) refcount_remove_many(
2aa34383 2630 &old_state->arcs_size, arc_buf_size(buf),
d3c2ae1c 2631 buf);
36da08ef 2632 }
d3c2ae1c 2633 ASSERT3U(bufcnt, ==, buffers);
b5256303
TC
2634 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2635 HDR_HAS_RABD(hdr));
2636
2637 if (hdr->b_l1hdr.b_pabd != NULL) {
2638 (void) refcount_remove_many(
2639 &old_state->arcs_size, arc_hdr_size(hdr),
2640 hdr);
2641 }
2642
2643 if (HDR_HAS_RABD(hdr)) {
2644 (void) refcount_remove_many(
2645 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2646 hdr);
2647 }
36da08ef 2648 }
34dc7c2f 2649 }
36da08ef 2650
b9541d6b
CW
2651 if (HDR_HAS_L1HDR(hdr))
2652 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 2653
b9541d6b
CW
2654 /*
2655 * L2 headers should never be on the L2 state list since they don't
2656 * have L1 headers allocated.
2657 */
64fc7762
MA
2658 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2659 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
2660}
2661
2662void
d164b209 2663arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 2664{
d164b209
BB
2665 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2666
2667 switch (type) {
e75c13c3
BB
2668 default:
2669 break;
d164b209
BB
2670 case ARC_SPACE_DATA:
2671 ARCSTAT_INCR(arcstat_data_size, space);
2672 break;
cc7f677c 2673 case ARC_SPACE_META:
500445c0 2674 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 2675 break;
25458cbe
TC
2676 case ARC_SPACE_BONUS:
2677 ARCSTAT_INCR(arcstat_bonus_size, space);
2678 break;
2679 case ARC_SPACE_DNODE:
2680 ARCSTAT_INCR(arcstat_dnode_size, space);
2681 break;
2682 case ARC_SPACE_DBUF:
2683 ARCSTAT_INCR(arcstat_dbuf_size, space);
d164b209
BB
2684 break;
2685 case ARC_SPACE_HDRS:
2686 ARCSTAT_INCR(arcstat_hdr_size, space);
2687 break;
2688 case ARC_SPACE_L2HDRS:
2689 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2690 break;
2691 }
2692
500445c0 2693 if (type != ARC_SPACE_DATA)
cc7f677c
PS
2694 ARCSTAT_INCR(arcstat_meta_used, space);
2695
34dc7c2f
BB
2696 atomic_add_64(&arc_size, space);
2697}
2698
2699void
d164b209 2700arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 2701{
d164b209
BB
2702 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2703
2704 switch (type) {
e75c13c3
BB
2705 default:
2706 break;
d164b209
BB
2707 case ARC_SPACE_DATA:
2708 ARCSTAT_INCR(arcstat_data_size, -space);
2709 break;
cc7f677c 2710 case ARC_SPACE_META:
500445c0 2711 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 2712 break;
25458cbe
TC
2713 case ARC_SPACE_BONUS:
2714 ARCSTAT_INCR(arcstat_bonus_size, -space);
2715 break;
2716 case ARC_SPACE_DNODE:
2717 ARCSTAT_INCR(arcstat_dnode_size, -space);
2718 break;
2719 case ARC_SPACE_DBUF:
2720 ARCSTAT_INCR(arcstat_dbuf_size, -space);
d164b209
BB
2721 break;
2722 case ARC_SPACE_HDRS:
2723 ARCSTAT_INCR(arcstat_hdr_size, -space);
2724 break;
2725 case ARC_SPACE_L2HDRS:
2726 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2727 break;
2728 }
2729
cc7f677c
PS
2730 if (type != ARC_SPACE_DATA) {
2731 ASSERT(arc_meta_used >= space);
500445c0
PS
2732 if (arc_meta_max < arc_meta_used)
2733 arc_meta_max = arc_meta_used;
cc7f677c
PS
2734 ARCSTAT_INCR(arcstat_meta_used, -space);
2735 }
2736
34dc7c2f
BB
2737 ASSERT(arc_size >= space);
2738 atomic_add_64(&arc_size, -space);
2739}
2740
d3c2ae1c 2741/*
524b4217 2742 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
a6255b7f 2743 * with the hdr's b_pabd.
d3c2ae1c 2744 */
524b4217
DK
2745static boolean_t
2746arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2747{
524b4217
DK
2748 /*
2749 * The criteria for sharing a hdr's data are:
b5256303
TC
2750 * 1. the buffer is not encrypted
2751 * 2. the hdr's compression matches the buf's compression
2752 * 3. the hdr doesn't need to be byteswapped
2753 * 4. the hdr isn't already being shared
2754 * 5. the buf is either compressed or it is the last buf in the hdr list
524b4217 2755 *
b5256303 2756 * Criterion #5 maintains the invariant that shared uncompressed
524b4217
DK
2757 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2758 * might ask, "if a compressed buf is allocated first, won't that be the
2759 * last thing in the list?", but in that case it's impossible to create
2760 * a shared uncompressed buf anyway (because the hdr must be compressed
2761 * to have the compressed buf). You might also think that #3 is
2762 * sufficient to make this guarantee, however it's possible
2763 * (specifically in the rare L2ARC write race mentioned in
2764 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2765 * is sharable, but wasn't at the time of its allocation. Rather than
2766 * allow a new shared uncompressed buf to be created and then shuffle
2767 * the list around to make it the last element, this simply disallows
2768 * sharing if the new buf isn't the first to be added.
2769 */
2770 ASSERT3P(buf->b_hdr, ==, hdr);
b5256303
TC
2771 boolean_t hdr_compressed =
2772 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
a7004725 2773 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
b5256303
TC
2774 return (!ARC_BUF_ENCRYPTED(buf) &&
2775 buf_compressed == hdr_compressed &&
524b4217
DK
2776 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2777 !HDR_SHARED_DATA(hdr) &&
2778 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2779}
2780
2781/*
2782 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2783 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2784 * copy was made successfully, or an error code otherwise.
2785 */
2786static int
b5256303
TC
2787arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj, void *tag,
2788 boolean_t encrypted, boolean_t compressed, boolean_t noauth,
524b4217 2789 boolean_t fill, arc_buf_t **ret)
34dc7c2f 2790{
34dc7c2f 2791 arc_buf_t *buf;
b5256303 2792 arc_fill_flags_t flags = ARC_FILL_LOCKED;
34dc7c2f 2793
d3c2ae1c
GW
2794 ASSERT(HDR_HAS_L1HDR(hdr));
2795 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2796 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2797 hdr->b_type == ARC_BUFC_METADATA);
524b4217
DK
2798 ASSERT3P(ret, !=, NULL);
2799 ASSERT3P(*ret, ==, NULL);
b5256303 2800 IMPLY(encrypted, compressed);
d3c2ae1c 2801
b9541d6b
CW
2802 hdr->b_l1hdr.b_mru_hits = 0;
2803 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2804 hdr->b_l1hdr.b_mfu_hits = 0;
2805 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2806 hdr->b_l1hdr.b_l2_hits = 0;
2807
524b4217 2808 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
34dc7c2f
BB
2809 buf->b_hdr = hdr;
2810 buf->b_data = NULL;
2aa34383 2811 buf->b_next = hdr->b_l1hdr.b_buf;
524b4217 2812 buf->b_flags = 0;
b9541d6b 2813
d3c2ae1c
GW
2814 add_reference(hdr, tag);
2815
2816 /*
2817 * We're about to change the hdr's b_flags. We must either
2818 * hold the hash_lock or be undiscoverable.
2819 */
2820 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2821
2822 /*
524b4217 2823 * Only honor requests for compressed bufs if the hdr is actually
b5256303
TC
2824 * compressed. This must be overriden if the buffer is encrypted since
2825 * encrypted buffers cannot be decompressed.
524b4217 2826 */
b5256303
TC
2827 if (encrypted) {
2828 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2829 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2830 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2831 } else if (compressed &&
2832 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
524b4217 2833 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
2834 flags |= ARC_FILL_COMPRESSED;
2835 }
2836
2837 if (noauth) {
2838 ASSERT0(encrypted);
2839 flags |= ARC_FILL_NOAUTH;
2840 }
524b4217 2841
524b4217
DK
2842 /*
2843 * If the hdr's data can be shared then we share the data buffer and
2844 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2aa34383 2845 * allocate a new buffer to store the buf's data.
524b4217 2846 *
a6255b7f
DQ
2847 * There are two additional restrictions here because we're sharing
2848 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2849 * actively involved in an L2ARC write, because if this buf is used by
2850 * an arc_write() then the hdr's data buffer will be released when the
524b4217 2851 * write completes, even though the L2ARC write might still be using it.
a6255b7f
DQ
2852 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2853 * need to be ABD-aware.
d3c2ae1c 2854 */
a7004725 2855 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
b5256303 2856 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
524b4217
DK
2857
2858 /* Set up b_data and sharing */
2859 if (can_share) {
a6255b7f 2860 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
524b4217 2861 buf->b_flags |= ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2862 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2863 } else {
524b4217
DK
2864 buf->b_data =
2865 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2866 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
d3c2ae1c
GW
2867 }
2868 VERIFY3P(buf->b_data, !=, NULL);
b9541d6b
CW
2869
2870 hdr->b_l1hdr.b_buf = buf;
d3c2ae1c 2871 hdr->b_l1hdr.b_bufcnt += 1;
b5256303
TC
2872 if (encrypted)
2873 hdr->b_crypt_hdr.b_ebufcnt += 1;
b9541d6b 2874
524b4217
DK
2875 /*
2876 * If the user wants the data from the hdr, we need to either copy or
2877 * decompress the data.
2878 */
2879 if (fill) {
b5256303 2880 return (arc_buf_fill(buf, spa, dsobj, flags));
524b4217 2881 }
d3c2ae1c 2882
524b4217 2883 return (0);
34dc7c2f
BB
2884}
2885
9babb374
BB
2886static char *arc_onloan_tag = "onloan";
2887
a7004725
DK
2888static inline void
2889arc_loaned_bytes_update(int64_t delta)
2890{
2891 atomic_add_64(&arc_loaned_bytes, delta);
2892
2893 /* assert that it did not wrap around */
2894 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2895}
2896
9babb374
BB
2897/*
2898 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2899 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2900 * buffers must be returned to the arc before they can be used by the DMU or
2901 * freed.
2902 */
2903arc_buf_t *
2aa34383 2904arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
9babb374 2905{
2aa34383
DK
2906 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2907 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
9babb374 2908
a7004725
DK
2909 arc_loaned_bytes_update(size);
2910
9babb374
BB
2911 return (buf);
2912}
2913
2aa34383
DK
2914arc_buf_t *
2915arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2916 enum zio_compress compression_type)
2917{
2918 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2919 psize, lsize, compression_type);
2920
a7004725
DK
2921 arc_loaned_bytes_update(psize);
2922
2aa34383
DK
2923 return (buf);
2924}
2925
b5256303
TC
2926arc_buf_t *
2927arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2928 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2929 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2930 enum zio_compress compression_type)
2931{
2932 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2933 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
2934
2935 atomic_add_64(&arc_loaned_bytes, psize);
2936 return (buf);
2937}
2938
2aa34383 2939
9babb374
BB
2940/*
2941 * Return a loaned arc buffer to the arc.
2942 */
2943void
2944arc_return_buf(arc_buf_t *buf, void *tag)
2945{
2946 arc_buf_hdr_t *hdr = buf->b_hdr;
2947
d3c2ae1c 2948 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b
CW
2949 ASSERT(HDR_HAS_L1HDR(hdr));
2950 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2951 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374 2952
a7004725 2953 arc_loaned_bytes_update(-arc_buf_size(buf));
9babb374
BB
2954}
2955
428870ff
BB
2956/* Detach an arc_buf from a dbuf (tag) */
2957void
2958arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2959{
b9541d6b 2960 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff 2961
d3c2ae1c 2962 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b
CW
2963 ASSERT(HDR_HAS_L1HDR(hdr));
2964 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2965 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff 2966
a7004725 2967 arc_loaned_bytes_update(arc_buf_size(buf));
428870ff
BB
2968}
2969
d3c2ae1c 2970static void
a6255b7f 2971l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
34dc7c2f 2972{
d3c2ae1c 2973 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
34dc7c2f 2974
a6255b7f 2975 df->l2df_abd = abd;
d3c2ae1c
GW
2976 df->l2df_size = size;
2977 df->l2df_type = type;
2978 mutex_enter(&l2arc_free_on_write_mtx);
2979 list_insert_head(l2arc_free_on_write, df);
2980 mutex_exit(&l2arc_free_on_write_mtx);
2981}
428870ff 2982
d3c2ae1c 2983static void
b5256303 2984arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c
GW
2985{
2986 arc_state_t *state = hdr->b_l1hdr.b_state;
2987 arc_buf_contents_t type = arc_buf_type(hdr);
b5256303 2988 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
1eb5bfa3 2989
d3c2ae1c
GW
2990 /* protected by hash lock, if in the hash table */
2991 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2992 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2993 ASSERT(state != arc_anon && state != arc_l2c_only);
2994
2995 (void) refcount_remove_many(&state->arcs_esize[type],
2996 size, hdr);
1eb5bfa3 2997 }
d3c2ae1c 2998 (void) refcount_remove_many(&state->arcs_size, size, hdr);
423e7b62
AG
2999 if (type == ARC_BUFC_METADATA) {
3000 arc_space_return(size, ARC_SPACE_META);
3001 } else {
3002 ASSERT(type == ARC_BUFC_DATA);
3003 arc_space_return(size, ARC_SPACE_DATA);
3004 }
d3c2ae1c 3005
b5256303
TC
3006 if (free_rdata) {
3007 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3008 } else {
3009 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3010 }
34dc7c2f
BB
3011}
3012
d3c2ae1c
GW
3013/*
3014 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3015 * data buffer, we transfer the refcount ownership to the hdr and update
3016 * the appropriate kstats.
3017 */
3018static void
3019arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
34dc7c2f 3020{
524b4217 3021 ASSERT(arc_can_share(hdr, buf));
a6255b7f 3022 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3023 ASSERT(!ARC_BUF_ENCRYPTED(buf));
d3c2ae1c 3024 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
34dc7c2f
BB
3025
3026 /*
d3c2ae1c
GW
3027 * Start sharing the data buffer. We transfer the
3028 * refcount ownership to the hdr since it always owns
3029 * the refcount whenever an arc_buf_t is shared.
34dc7c2f 3030 */
d3c2ae1c 3031 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
a6255b7f
DQ
3032 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3033 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3034 HDR_ISTYPE_METADATA(hdr));
d3c2ae1c 3035 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
524b4217 3036 buf->b_flags |= ARC_BUF_FLAG_SHARED;
34dc7c2f 3037
d3c2ae1c
GW
3038 /*
3039 * Since we've transferred ownership to the hdr we need
3040 * to increment its compressed and uncompressed kstats and
3041 * decrement the overhead size.
3042 */
3043 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3044 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2aa34383 3045 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
34dc7c2f
BB
3046}
3047
ca0bf58d 3048static void
d3c2ae1c 3049arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
ca0bf58d 3050{
d3c2ae1c 3051 ASSERT(arc_buf_is_shared(buf));
a6255b7f 3052 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c 3053 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
ca0bf58d 3054
d3c2ae1c
GW
3055 /*
3056 * We are no longer sharing this buffer so we need
3057 * to transfer its ownership to the rightful owner.
3058 */
3059 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
3060 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
a6255b7f
DQ
3061 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3062 abd_put(hdr->b_l1hdr.b_pabd);
3063 hdr->b_l1hdr.b_pabd = NULL;
524b4217 3064 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
3065
3066 /*
3067 * Since the buffer is no longer shared between
3068 * the arc buf and the hdr, count it as overhead.
3069 */
3070 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3071 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2aa34383 3072 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
ca0bf58d
PS
3073}
3074
34dc7c2f 3075/*
2aa34383
DK
3076 * Remove an arc_buf_t from the hdr's buf list and return the last
3077 * arc_buf_t on the list. If no buffers remain on the list then return
3078 * NULL.
3079 */
3080static arc_buf_t *
3081arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3082{
2aa34383
DK
3083 ASSERT(HDR_HAS_L1HDR(hdr));
3084 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3085
a7004725
DK
3086 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3087 arc_buf_t *lastbuf = NULL;
3088
2aa34383
DK
3089 /*
3090 * Remove the buf from the hdr list and locate the last
3091 * remaining buffer on the list.
3092 */
3093 while (*bufp != NULL) {
3094 if (*bufp == buf)
3095 *bufp = buf->b_next;
3096
3097 /*
3098 * If we've removed a buffer in the middle of
3099 * the list then update the lastbuf and update
3100 * bufp.
3101 */
3102 if (*bufp != NULL) {
3103 lastbuf = *bufp;
3104 bufp = &(*bufp)->b_next;
3105 }
3106 }
3107 buf->b_next = NULL;
3108 ASSERT3P(lastbuf, !=, buf);
3109 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3110 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3111 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3112
3113 return (lastbuf);
3114}
3115
3116/*
3117 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3118 * list and free it.
34dc7c2f
BB
3119 */
3120static void
2aa34383 3121arc_buf_destroy_impl(arc_buf_t *buf)
34dc7c2f 3122{
498877ba 3123 arc_buf_hdr_t *hdr = buf->b_hdr;
ca0bf58d
PS
3124
3125 /*
524b4217
DK
3126 * Free up the data associated with the buf but only if we're not
3127 * sharing this with the hdr. If we are sharing it with the hdr, the
3128 * hdr is responsible for doing the free.
ca0bf58d 3129 */
d3c2ae1c
GW
3130 if (buf->b_data != NULL) {
3131 /*
3132 * We're about to change the hdr's b_flags. We must either
3133 * hold the hash_lock or be undiscoverable.
3134 */
3135 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3136
524b4217 3137 arc_cksum_verify(buf);
d3c2ae1c
GW
3138 arc_buf_unwatch(buf);
3139
2aa34383 3140 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
3141 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3142 } else {
2aa34383 3143 uint64_t size = arc_buf_size(buf);
d3c2ae1c
GW
3144 arc_free_data_buf(hdr, buf->b_data, size, buf);
3145 ARCSTAT_INCR(arcstat_overhead_size, -size);
3146 }
3147 buf->b_data = NULL;
3148
3149 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3150 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303
TC
3151
3152 if (ARC_BUF_ENCRYPTED(buf))
3153 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3154
3155 /*
440a3eb9 3156 * If we have no more encrypted buffers and we've already
b5256303
TC
3157 * gotten a copy of the decrypted data we can free b_rabd to
3158 * save some space.
3159 */
3160 if (hdr->b_crypt_hdr.b_ebufcnt == 0 && HDR_HAS_RABD(hdr) &&
440a3eb9 3161 hdr->b_l1hdr.b_pabd != NULL && !HDR_IO_IN_PROGRESS(hdr)) {
b5256303 3162 arc_hdr_free_abd(hdr, B_TRUE);
440a3eb9 3163 }
d3c2ae1c
GW
3164 }
3165
a7004725 3166 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 3167
524b4217 3168 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2aa34383 3169 /*
524b4217 3170 * If the current arc_buf_t is sharing its data buffer with the
a6255b7f 3171 * hdr, then reassign the hdr's b_pabd to share it with the new
524b4217
DK
3172 * buffer at the end of the list. The shared buffer is always
3173 * the last one on the hdr's buffer list.
3174 *
3175 * There is an equivalent case for compressed bufs, but since
3176 * they aren't guaranteed to be the last buf in the list and
3177 * that is an exceedingly rare case, we just allow that space be
b5256303
TC
3178 * wasted temporarily. We must also be careful not to share
3179 * encrypted buffers, since they cannot be shared.
2aa34383 3180 */
b5256303 3181 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
524b4217 3182 /* Only one buf can be shared at once */
2aa34383 3183 VERIFY(!arc_buf_is_shared(lastbuf));
524b4217
DK
3184 /* hdr is uncompressed so can't have compressed buf */
3185 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
d3c2ae1c 3186
a6255b7f 3187 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 3188 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 3189
2aa34383
DK
3190 /*
3191 * We must setup a new shared block between the
3192 * last buffer and the hdr. The data would have
3193 * been allocated by the arc buf so we need to transfer
3194 * ownership to the hdr since it's now being shared.
3195 */
3196 arc_share_buf(hdr, lastbuf);
3197 }
3198 } else if (HDR_SHARED_DATA(hdr)) {
d3c2ae1c 3199 /*
2aa34383
DK
3200 * Uncompressed shared buffers are always at the end
3201 * of the list. Compressed buffers don't have the
3202 * same requirements. This makes it hard to
3203 * simply assert that the lastbuf is shared so
3204 * we rely on the hdr's compression flags to determine
3205 * if we have a compressed, shared buffer.
d3c2ae1c 3206 */
2aa34383
DK
3207 ASSERT3P(lastbuf, !=, NULL);
3208 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 3209 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
ca0bf58d
PS
3210 }
3211
a7004725
DK
3212 /*
3213 * Free the checksum if we're removing the last uncompressed buf from
3214 * this hdr.
3215 */
3216 if (!arc_hdr_has_uncompressed_buf(hdr)) {
d3c2ae1c 3217 arc_cksum_free(hdr);
a7004725 3218 }
d3c2ae1c
GW
3219
3220 /* clean up the buf */
3221 buf->b_hdr = NULL;
3222 kmem_cache_free(buf_cache, buf);
3223}
3224
3225static void
b5256303 3226arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
d3c2ae1c 3227{
b5256303
TC
3228 uint64_t size;
3229
d3c2ae1c
GW
3230 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3231 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3232 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3233 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
d3c2ae1c 3234
b5256303
TC
3235 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3236 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
d3c2ae1c 3237
b5256303
TC
3238 if (alloc_rdata) {
3239 size = HDR_GET_PSIZE(hdr);
3240 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3241 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3242 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3243 ARCSTAT_INCR(arcstat_raw_size, size);
3244 } else {
3245 size = arc_hdr_size(hdr);
3246 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3247 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3248 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3249 }
3250
3251 ARCSTAT_INCR(arcstat_compressed_size, size);
d3c2ae1c
GW
3252 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3253}
3254
3255static void
b5256303 3256arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c 3257{
b5256303
TC
3258 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3259
d3c2ae1c 3260 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3261 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3262 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
d3c2ae1c 3263
ca0bf58d 3264 /*
d3c2ae1c
GW
3265 * If the hdr is currently being written to the l2arc then
3266 * we defer freeing the data by adding it to the l2arc_free_on_write
3267 * list. The l2arc will free the data once it's finished
3268 * writing it to the l2arc device.
ca0bf58d 3269 */
d3c2ae1c 3270 if (HDR_L2_WRITING(hdr)) {
b5256303 3271 arc_hdr_free_on_write(hdr, free_rdata);
d3c2ae1c 3272 ARCSTAT_BUMP(arcstat_l2_free_on_write);
b5256303
TC
3273 } else if (free_rdata) {
3274 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
d3c2ae1c 3275 } else {
b5256303 3276 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
ca0bf58d
PS
3277 }
3278
b5256303
TC
3279 if (free_rdata) {
3280 hdr->b_crypt_hdr.b_rabd = NULL;
3281 ARCSTAT_INCR(arcstat_raw_size, -size);
3282 } else {
3283 hdr->b_l1hdr.b_pabd = NULL;
3284 }
3285
3286 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3287 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3288
3289 ARCSTAT_INCR(arcstat_compressed_size, -size);
d3c2ae1c
GW
3290 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3291}
3292
3293static arc_buf_hdr_t *
3294arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
b5256303
TC
3295 boolean_t protected, enum zio_compress compression_type,
3296 arc_buf_contents_t type, boolean_t alloc_rdata)
d3c2ae1c
GW
3297{
3298 arc_buf_hdr_t *hdr;
3299
d3c2ae1c 3300 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
b5256303
TC
3301 if (protected) {
3302 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3303 } else {
3304 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3305 }
d3c2ae1c 3306
d3c2ae1c
GW
3307 ASSERT(HDR_EMPTY(hdr));
3308 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3309 HDR_SET_PSIZE(hdr, psize);
3310 HDR_SET_LSIZE(hdr, lsize);
3311 hdr->b_spa = spa;
3312 hdr->b_type = type;
3313 hdr->b_flags = 0;
3314 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2aa34383 3315 arc_hdr_set_compress(hdr, compression_type);
b5256303
TC
3316 if (protected)
3317 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
ca0bf58d 3318
d3c2ae1c
GW
3319 hdr->b_l1hdr.b_state = arc_anon;
3320 hdr->b_l1hdr.b_arc_access = 0;
3321 hdr->b_l1hdr.b_bufcnt = 0;
3322 hdr->b_l1hdr.b_buf = NULL;
ca0bf58d 3323
d3c2ae1c
GW
3324 /*
3325 * Allocate the hdr's buffer. This will contain either
3326 * the compressed or uncompressed data depending on the block
3327 * it references and compressed arc enablement.
3328 */
b5256303 3329 arc_hdr_alloc_abd(hdr, alloc_rdata);
d3c2ae1c 3330 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 3331
d3c2ae1c 3332 return (hdr);
ca0bf58d
PS
3333}
3334
bd089c54 3335/*
d3c2ae1c
GW
3336 * Transition between the two allocation states for the arc_buf_hdr struct.
3337 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3338 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3339 * version is used when a cache buffer is only in the L2ARC in order to reduce
3340 * memory usage.
bd089c54 3341 */
d3c2ae1c
GW
3342static arc_buf_hdr_t *
3343arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
34dc7c2f 3344{
1c27024e
DB
3345 ASSERT(HDR_HAS_L2HDR(hdr));
3346
d3c2ae1c
GW
3347 arc_buf_hdr_t *nhdr;
3348 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
34dc7c2f 3349
d3c2ae1c
GW
3350 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3351 (old == hdr_l2only_cache && new == hdr_full_cache));
34dc7c2f 3352
b5256303
TC
3353 /*
3354 * if the caller wanted a new full header and the header is to be
3355 * encrypted we will actually allocate the header from the full crypt
3356 * cache instead. The same applies to freeing from the old cache.
3357 */
3358 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3359 new = hdr_full_crypt_cache;
3360 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3361 old = hdr_full_crypt_cache;
3362
d3c2ae1c 3363 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
428870ff 3364
d3c2ae1c
GW
3365 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3366 buf_hash_remove(hdr);
ca0bf58d 3367
d3c2ae1c 3368 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
34dc7c2f 3369
b5256303 3370 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
d3c2ae1c
GW
3371 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3372 /*
3373 * arc_access and arc_change_state need to be aware that a
3374 * header has just come out of L2ARC, so we set its state to
3375 * l2c_only even though it's about to change.
3376 */
3377 nhdr->b_l1hdr.b_state = arc_l2c_only;
34dc7c2f 3378
d3c2ae1c 3379 /* Verify previous threads set to NULL before freeing */
a6255b7f 3380 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3381 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3382 } else {
3383 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3384 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3385 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
36da08ef 3386
d3c2ae1c
GW
3387 /*
3388 * If we've reached here, We must have been called from
3389 * arc_evict_hdr(), as such we should have already been
3390 * removed from any ghost list we were previously on
3391 * (which protects us from racing with arc_evict_state),
3392 * thus no locking is needed during this check.
3393 */
3394 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1eb5bfa3
GW
3395
3396 /*
d3c2ae1c
GW
3397 * A buffer must not be moved into the arc_l2c_only
3398 * state if it's not finished being written out to the
a6255b7f 3399 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
d3c2ae1c 3400 * might try to be accessed, even though it was removed.
1eb5bfa3 3401 */
d3c2ae1c 3402 VERIFY(!HDR_L2_WRITING(hdr));
a6255b7f 3403 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3404 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3405
3406 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
34dc7c2f 3407 }
d3c2ae1c
GW
3408 /*
3409 * The header has been reallocated so we need to re-insert it into any
3410 * lists it was on.
3411 */
3412 (void) buf_hash_insert(nhdr, NULL);
34dc7c2f 3413
d3c2ae1c 3414 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
34dc7c2f 3415
d3c2ae1c
GW
3416 mutex_enter(&dev->l2ad_mtx);
3417
3418 /*
3419 * We must place the realloc'ed header back into the list at
3420 * the same spot. Otherwise, if it's placed earlier in the list,
3421 * l2arc_write_buffers() could find it during the function's
3422 * write phase, and try to write it out to the l2arc.
3423 */
3424 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3425 list_remove(&dev->l2ad_buflist, hdr);
34dc7c2f 3426
d3c2ae1c 3427 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 3428
d3c2ae1c
GW
3429 /*
3430 * Since we're using the pointer address as the tag when
3431 * incrementing and decrementing the l2ad_alloc refcount, we
3432 * must remove the old pointer (that we're about to destroy) and
3433 * add the new pointer to the refcount. Otherwise we'd remove
3434 * the wrong pointer address when calling arc_hdr_destroy() later.
3435 */
3436
3437 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
3438 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
3439
3440 buf_discard_identity(hdr);
3441 kmem_cache_free(old, hdr);
3442
3443 return (nhdr);
3444}
3445
b5256303
TC
3446/*
3447 * This function allows an L1 header to be reallocated as a crypt
3448 * header and vice versa. If we are going to a crypt header, the
3449 * new fields will be zeroed out.
3450 */
3451static arc_buf_hdr_t *
3452arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3453{
3454 arc_buf_hdr_t *nhdr;
3455 arc_buf_t *buf;
3456 kmem_cache_t *ncache, *ocache;
3457
3458 ASSERT(HDR_HAS_L1HDR(hdr));
3459 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3460 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3461 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3462
3463 if (need_crypt) {
3464 ncache = hdr_full_crypt_cache;
3465 ocache = hdr_full_cache;
3466 } else {
3467 ncache = hdr_full_cache;
3468 ocache = hdr_full_crypt_cache;
3469 }
3470
3471 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3472 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
3473 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3474 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3475 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3476 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3477 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3478 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3479 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3480 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3481 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3482 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3483 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3484 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3485 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3486
3487 /*
3488 * This refcount_add() exists only to ensure that the individual
3489 * arc buffers always point to a header that is referenced, avoiding
3490 * a small race condition that could trigger ASSERTs.
3491 */
3492 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3493
3494 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3495 mutex_enter(&buf->b_evict_lock);
3496 buf->b_hdr = nhdr;
3497 mutex_exit(&buf->b_evict_lock);
3498 }
3499
3500 refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3501 (void) refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3502
3503 if (need_crypt) {
3504 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3505 } else {
3506 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3507 }
3508
3509 buf_discard_identity(hdr);
3510 kmem_cache_free(ocache, hdr);
3511
3512 return (nhdr);
3513}
3514
3515/*
3516 * This function is used by the send / receive code to convert a newly
3517 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3518 * is also used to allow the root objset block to be uupdated without altering
3519 * its embedded MACs. Both block types will always be uncompressed so we do not
3520 * have to worry about compression type or psize.
3521 */
3522void
3523arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3524 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3525 const uint8_t *mac)
3526{
3527 arc_buf_hdr_t *hdr = buf->b_hdr;
3528
3529 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3530 ASSERT(HDR_HAS_L1HDR(hdr));
3531 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3532
3533 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3534 if (!HDR_PROTECTED(hdr))
3535 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3536 hdr->b_crypt_hdr.b_dsobj = dsobj;
3537 hdr->b_crypt_hdr.b_ot = ot;
3538 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3539 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3540 if (!arc_hdr_has_uncompressed_buf(hdr))
3541 arc_cksum_free(hdr);
3542
3543 if (salt != NULL)
3544 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3545 if (iv != NULL)
3546 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3547 if (mac != NULL)
3548 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3549}
3550
d3c2ae1c
GW
3551/*
3552 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3553 * The buf is returned thawed since we expect the consumer to modify it.
3554 */
3555arc_buf_t *
2aa34383 3556arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
d3c2ae1c 3557{
d3c2ae1c 3558 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
b5256303 3559 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
d3c2ae1c 3560 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2aa34383 3561
a7004725 3562 arc_buf_t *buf = NULL;
b5256303
TC
3563 VERIFY0(arc_buf_alloc_impl(hdr, spa, 0, tag, B_FALSE, B_FALSE,
3564 B_FALSE, B_FALSE, &buf));
d3c2ae1c 3565 arc_buf_thaw(buf);
2aa34383
DK
3566
3567 return (buf);
3568}
3569
3570/*
3571 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3572 * for bufs containing metadata.
3573 */
3574arc_buf_t *
3575arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3576 enum zio_compress compression_type)
3577{
2aa34383
DK
3578 ASSERT3U(lsize, >, 0);
3579 ASSERT3U(lsize, >=, psize);
b5256303
TC
3580 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3581 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
2aa34383 3582
a7004725 3583 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
b5256303 3584 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
2aa34383
DK
3585 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3586
a7004725 3587 arc_buf_t *buf = NULL;
b5256303
TC
3588 VERIFY0(arc_buf_alloc_impl(hdr, spa, 0, tag, B_FALSE,
3589 B_TRUE, B_FALSE, B_FALSE, &buf));
2aa34383
DK
3590 arc_buf_thaw(buf);
3591 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3592
a6255b7f
DQ
3593 if (!arc_buf_is_shared(buf)) {
3594 /*
3595 * To ensure that the hdr has the correct data in it if we call
b5256303 3596 * arc_untransform() on this buf before it's been written to
a6255b7f
DQ
3597 * disk, it's easiest if we just set up sharing between the
3598 * buf and the hdr.
3599 */
3600 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
b5256303 3601 arc_hdr_free_abd(hdr, B_FALSE);
a6255b7f
DQ
3602 arc_share_buf(hdr, buf);
3603 }
3604
d3c2ae1c 3605 return (buf);
34dc7c2f
BB
3606}
3607
b5256303
TC
3608arc_buf_t *
3609arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3610 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3611 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3612 enum zio_compress compression_type)
3613{
3614 arc_buf_hdr_t *hdr;
3615 arc_buf_t *buf;
3616 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3617 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3618
3619 ASSERT3U(lsize, >, 0);
3620 ASSERT3U(lsize, >=, psize);
3621 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3622 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3623
3624 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3625 compression_type, type, B_TRUE);
3626 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3627
3628 hdr->b_crypt_hdr.b_dsobj = dsobj;
3629 hdr->b_crypt_hdr.b_ot = ot;
3630 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3631 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3632 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3633 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3634 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3635
3636 /*
3637 * This buffer will be considered encrypted even if the ot is not an
3638 * encrypted type. It will become authenticated instead in
3639 * arc_write_ready().
3640 */
3641 buf = NULL;
3642 VERIFY0(arc_buf_alloc_impl(hdr, spa, dsobj, tag, B_TRUE, B_TRUE,
3643 B_FALSE, B_FALSE, &buf));
3644 arc_buf_thaw(buf);
3645 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3646
3647 return (buf);
3648}
3649
d962d5da
PS
3650static void
3651arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3652{
3653 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3654 l2arc_dev_t *dev = l2hdr->b_dev;
01850391 3655 uint64_t psize = arc_hdr_size(hdr);
d962d5da
PS
3656
3657 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3658 ASSERT(HDR_HAS_L2HDR(hdr));
3659
3660 list_remove(&dev->l2ad_buflist, hdr);
3661
01850391
AG
3662 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3663 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
d962d5da 3664
01850391 3665 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
d962d5da 3666
01850391 3667 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
d3c2ae1c 3668 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
d962d5da
PS
3669}
3670
34dc7c2f
BB
3671static void
3672arc_hdr_destroy(arc_buf_hdr_t *hdr)
3673{
b9541d6b
CW
3674 if (HDR_HAS_L1HDR(hdr)) {
3675 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
d3c2ae1c 3676 hdr->b_l1hdr.b_bufcnt > 0);
b9541d6b
CW
3677 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3678 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3679 }
34dc7c2f 3680 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
3681 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3682
d3c2ae1c
GW
3683 if (!HDR_EMPTY(hdr))
3684 buf_discard_identity(hdr);
3685
b9541d6b 3686 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
3687 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3688 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 3689
d962d5da
PS
3690 if (!buflist_held)
3691 mutex_enter(&dev->l2ad_mtx);
b9541d6b 3692
ca0bf58d 3693 /*
d962d5da
PS
3694 * Even though we checked this conditional above, we
3695 * need to check this again now that we have the
3696 * l2ad_mtx. This is because we could be racing with
3697 * another thread calling l2arc_evict() which might have
3698 * destroyed this header's L2 portion as we were waiting
3699 * to acquire the l2ad_mtx. If that happens, we don't
3700 * want to re-destroy the header's L2 portion.
ca0bf58d 3701 */
d962d5da
PS
3702 if (HDR_HAS_L2HDR(hdr))
3703 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
3704
3705 if (!buflist_held)
d962d5da 3706 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
3707 }
3708
d3c2ae1c
GW
3709 if (HDR_HAS_L1HDR(hdr)) {
3710 arc_cksum_free(hdr);
b9541d6b 3711
d3c2ae1c 3712 while (hdr->b_l1hdr.b_buf != NULL)
2aa34383 3713 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
34dc7c2f 3714
b5256303
TC
3715 if (hdr->b_l1hdr.b_pabd != NULL) {
3716 arc_hdr_free_abd(hdr, B_FALSE);
3717 }
3718
440a3eb9 3719 if (HDR_HAS_RABD(hdr))
b5256303 3720 arc_hdr_free_abd(hdr, B_TRUE);
b9541d6b
CW
3721 }
3722
34dc7c2f 3723 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 3724 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 3725 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b 3726 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b5256303
TC
3727
3728 if (!HDR_PROTECTED(hdr)) {
3729 kmem_cache_free(hdr_full_cache, hdr);
3730 } else {
3731 kmem_cache_free(hdr_full_crypt_cache, hdr);
3732 }
b9541d6b
CW
3733 } else {
3734 kmem_cache_free(hdr_l2only_cache, hdr);
3735 }
34dc7c2f
BB
3736}
3737
3738void
d3c2ae1c 3739arc_buf_destroy(arc_buf_t *buf, void* tag)
34dc7c2f
BB
3740{
3741 arc_buf_hdr_t *hdr = buf->b_hdr;
96c080cb 3742 kmutex_t *hash_lock = HDR_LOCK(hdr);
34dc7c2f 3743
b9541d6b 3744 if (hdr->b_l1hdr.b_state == arc_anon) {
d3c2ae1c
GW
3745 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3746 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3747 VERIFY0(remove_reference(hdr, NULL, tag));
3748 arc_hdr_destroy(hdr);
3749 return;
34dc7c2f
BB
3750 }
3751
3752 mutex_enter(hash_lock);
d3c2ae1c
GW
3753 ASSERT3P(hdr, ==, buf->b_hdr);
3754 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
428870ff 3755 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
d3c2ae1c
GW
3756 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3757 ASSERT3P(buf->b_data, !=, NULL);
34dc7c2f
BB
3758
3759 (void) remove_reference(hdr, hash_lock, tag);
2aa34383 3760 arc_buf_destroy_impl(buf);
34dc7c2f 3761 mutex_exit(hash_lock);
34dc7c2f
BB
3762}
3763
34dc7c2f 3764/*
ca0bf58d
PS
3765 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3766 * state of the header is dependent on its state prior to entering this
3767 * function. The following transitions are possible:
34dc7c2f 3768 *
ca0bf58d
PS
3769 * - arc_mru -> arc_mru_ghost
3770 * - arc_mfu -> arc_mfu_ghost
3771 * - arc_mru_ghost -> arc_l2c_only
3772 * - arc_mru_ghost -> deleted
3773 * - arc_mfu_ghost -> arc_l2c_only
3774 * - arc_mfu_ghost -> deleted
34dc7c2f 3775 */
ca0bf58d
PS
3776static int64_t
3777arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3778{
ca0bf58d
PS
3779 arc_state_t *evicted_state, *state;
3780 int64_t bytes_evicted = 0;
34dc7c2f 3781
ca0bf58d
PS
3782 ASSERT(MUTEX_HELD(hash_lock));
3783 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 3784
ca0bf58d
PS
3785 state = hdr->b_l1hdr.b_state;
3786 if (GHOST_STATE(state)) {
3787 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c 3788 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
e8b96c60
MA
3789
3790 /*
ca0bf58d 3791 * l2arc_write_buffers() relies on a header's L1 portion
a6255b7f 3792 * (i.e. its b_pabd field) during it's write phase.
ca0bf58d
PS
3793 * Thus, we cannot push a header onto the arc_l2c_only
3794 * state (removing its L1 piece) until the header is
3795 * done being written to the l2arc.
e8b96c60 3796 */
ca0bf58d
PS
3797 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3798 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3799 return (bytes_evicted);
e8b96c60
MA
3800 }
3801
ca0bf58d 3802 ARCSTAT_BUMP(arcstat_deleted);
d3c2ae1c 3803 bytes_evicted += HDR_GET_LSIZE(hdr);
428870ff 3804
ca0bf58d 3805 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 3806
ca0bf58d 3807 if (HDR_HAS_L2HDR(hdr)) {
a6255b7f 3808 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
b5256303 3809 ASSERT(!HDR_HAS_RABD(hdr));
ca0bf58d
PS
3810 /*
3811 * This buffer is cached on the 2nd Level ARC;
3812 * don't destroy the header.
3813 */
3814 arc_change_state(arc_l2c_only, hdr, hash_lock);
3815 /*
3816 * dropping from L1+L2 cached to L2-only,
3817 * realloc to remove the L1 header.
3818 */
3819 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3820 hdr_l2only_cache);
34dc7c2f 3821 } else {
ca0bf58d
PS
3822 arc_change_state(arc_anon, hdr, hash_lock);
3823 arc_hdr_destroy(hdr);
34dc7c2f 3824 }
ca0bf58d 3825 return (bytes_evicted);
34dc7c2f
BB
3826 }
3827
ca0bf58d
PS
3828 ASSERT(state == arc_mru || state == arc_mfu);
3829 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 3830
ca0bf58d
PS
3831 /* prefetch buffers have a minimum lifespan */
3832 if (HDR_IO_IN_PROGRESS(hdr) ||
3833 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3834 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3835 arc_min_prefetch_lifespan)) {
3836 ARCSTAT_BUMP(arcstat_evict_skip);
3837 return (bytes_evicted);
da8ccd0e
PS
3838 }
3839
ca0bf58d 3840 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3841 while (hdr->b_l1hdr.b_buf) {
3842 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3843 if (!mutex_tryenter(&buf->b_evict_lock)) {
3844 ARCSTAT_BUMP(arcstat_mutex_miss);
3845 break;
3846 }
3847 if (buf->b_data != NULL)
d3c2ae1c
GW
3848 bytes_evicted += HDR_GET_LSIZE(hdr);
3849 mutex_exit(&buf->b_evict_lock);
2aa34383 3850 arc_buf_destroy_impl(buf);
ca0bf58d 3851 }
34dc7c2f 3852
ca0bf58d 3853 if (HDR_HAS_L2HDR(hdr)) {
d3c2ae1c 3854 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
ca0bf58d 3855 } else {
d3c2ae1c
GW
3856 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3857 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3858 HDR_GET_LSIZE(hdr));
3859 } else {
3860 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3861 HDR_GET_LSIZE(hdr));
3862 }
ca0bf58d 3863 }
34dc7c2f 3864
d3c2ae1c
GW
3865 if (hdr->b_l1hdr.b_bufcnt == 0) {
3866 arc_cksum_free(hdr);
3867
3868 bytes_evicted += arc_hdr_size(hdr);
3869
3870 /*
3871 * If this hdr is being evicted and has a compressed
3872 * buffer then we discard it here before we change states.
3873 * This ensures that the accounting is updated correctly
a6255b7f 3874 * in arc_free_data_impl().
d3c2ae1c 3875 */
b5256303
TC
3876 if (hdr->b_l1hdr.b_pabd != NULL)
3877 arc_hdr_free_abd(hdr, B_FALSE);
3878
3879 if (HDR_HAS_RABD(hdr))
3880 arc_hdr_free_abd(hdr, B_TRUE);
d3c2ae1c 3881
ca0bf58d
PS
3882 arc_change_state(evicted_state, hdr, hash_lock);
3883 ASSERT(HDR_IN_HASH_TABLE(hdr));
d3c2ae1c 3884 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
ca0bf58d
PS
3885 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3886 }
34dc7c2f 3887
ca0bf58d 3888 return (bytes_evicted);
34dc7c2f
BB
3889}
3890
ca0bf58d
PS
3891static uint64_t
3892arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3893 uint64_t spa, int64_t bytes)
34dc7c2f 3894{
ca0bf58d
PS
3895 multilist_sublist_t *mls;
3896 uint64_t bytes_evicted = 0;
3897 arc_buf_hdr_t *hdr;
34dc7c2f 3898 kmutex_t *hash_lock;
ca0bf58d 3899 int evict_count = 0;
34dc7c2f 3900
ca0bf58d 3901 ASSERT3P(marker, !=, NULL);
96c080cb 3902 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
3903
3904 mls = multilist_sublist_lock(ml, idx);
572e2857 3905
ca0bf58d
PS
3906 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3907 hdr = multilist_sublist_prev(mls, marker)) {
3908 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3909 (evict_count >= zfs_arc_evict_batch_limit))
3910 break;
3911
3912 /*
3913 * To keep our iteration location, move the marker
3914 * forward. Since we're not holding hdr's hash lock, we
3915 * must be very careful and not remove 'hdr' from the
3916 * sublist. Otherwise, other consumers might mistake the
3917 * 'hdr' as not being on a sublist when they call the
3918 * multilist_link_active() function (they all rely on
3919 * the hash lock protecting concurrent insertions and
3920 * removals). multilist_sublist_move_forward() was
3921 * specifically implemented to ensure this is the case
3922 * (only 'marker' will be removed and re-inserted).
3923 */
3924 multilist_sublist_move_forward(mls, marker);
3925
3926 /*
3927 * The only case where the b_spa field should ever be
3928 * zero, is the marker headers inserted by
3929 * arc_evict_state(). It's possible for multiple threads
3930 * to be calling arc_evict_state() concurrently (e.g.
3931 * dsl_pool_close() and zio_inject_fault()), so we must
3932 * skip any markers we see from these other threads.
3933 */
2a432414 3934 if (hdr->b_spa == 0)
572e2857
BB
3935 continue;
3936
ca0bf58d
PS
3937 /* we're only interested in evicting buffers of a certain spa */
3938 if (spa != 0 && hdr->b_spa != spa) {
3939 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 3940 continue;
ca0bf58d
PS
3941 }
3942
3943 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
3944
3945 /*
ca0bf58d
PS
3946 * We aren't calling this function from any code path
3947 * that would already be holding a hash lock, so we're
3948 * asserting on this assumption to be defensive in case
3949 * this ever changes. Without this check, it would be
3950 * possible to incorrectly increment arcstat_mutex_miss
3951 * below (e.g. if the code changed such that we called
3952 * this function with a hash lock held).
e8b96c60 3953 */
ca0bf58d
PS
3954 ASSERT(!MUTEX_HELD(hash_lock));
3955
34dc7c2f 3956 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
3957 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3958 mutex_exit(hash_lock);
34dc7c2f 3959
ca0bf58d 3960 bytes_evicted += evicted;
34dc7c2f 3961
572e2857 3962 /*
ca0bf58d
PS
3963 * If evicted is zero, arc_evict_hdr() must have
3964 * decided to skip this header, don't increment
3965 * evict_count in this case.
572e2857 3966 */
ca0bf58d
PS
3967 if (evicted != 0)
3968 evict_count++;
3969
3970 /*
3971 * If arc_size isn't overflowing, signal any
3972 * threads that might happen to be waiting.
3973 *
3974 * For each header evicted, we wake up a single
3975 * thread. If we used cv_broadcast, we could
3976 * wake up "too many" threads causing arc_size
3977 * to significantly overflow arc_c; since
a6255b7f 3978 * arc_get_data_impl() doesn't check for overflow
ca0bf58d
PS
3979 * when it's woken up (it doesn't because it's
3980 * possible for the ARC to be overflowing while
3981 * full of un-evictable buffers, and the
3982 * function should proceed in this case).
3983 *
3984 * If threads are left sleeping, due to not
3985 * using cv_broadcast, they will be woken up
3986 * just before arc_reclaim_thread() sleeps.
3987 */
3988 mutex_enter(&arc_reclaim_lock);
3989 if (!arc_is_overflowing())
3990 cv_signal(&arc_reclaim_waiters_cv);
3991 mutex_exit(&arc_reclaim_lock);
e8b96c60 3992 } else {
ca0bf58d 3993 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 3994 }
34dc7c2f 3995 }
34dc7c2f 3996
ca0bf58d 3997 multilist_sublist_unlock(mls);
34dc7c2f 3998
ca0bf58d 3999 return (bytes_evicted);
34dc7c2f
BB
4000}
4001
ca0bf58d
PS
4002/*
4003 * Evict buffers from the given arc state, until we've removed the
4004 * specified number of bytes. Move the removed buffers to the
4005 * appropriate evict state.
4006 *
4007 * This function makes a "best effort". It skips over any buffers
4008 * it can't get a hash_lock on, and so, may not catch all candidates.
4009 * It may also return without evicting as much space as requested.
4010 *
4011 * If bytes is specified using the special value ARC_EVICT_ALL, this
4012 * will evict all available (i.e. unlocked and evictable) buffers from
4013 * the given arc state; which is used by arc_flush().
4014 */
4015static uint64_t
4016arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4017 arc_buf_contents_t type)
34dc7c2f 4018{
ca0bf58d 4019 uint64_t total_evicted = 0;
64fc7762 4020 multilist_t *ml = state->arcs_list[type];
ca0bf58d
PS
4021 int num_sublists;
4022 arc_buf_hdr_t **markers;
ca0bf58d 4023
96c080cb 4024 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
4025
4026 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
4027
4028 /*
ca0bf58d
PS
4029 * If we've tried to evict from each sublist, made some
4030 * progress, but still have not hit the target number of bytes
4031 * to evict, we want to keep trying. The markers allow us to
4032 * pick up where we left off for each individual sublist, rather
4033 * than starting from the tail each time.
d164b209 4034 */
ca0bf58d 4035 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
1c27024e 4036 for (int i = 0; i < num_sublists; i++) {
ca0bf58d 4037 multilist_sublist_t *mls;
34dc7c2f 4038
ca0bf58d
PS
4039 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4040
4041 /*
4042 * A b_spa of 0 is used to indicate that this header is
4043 * a marker. This fact is used in arc_adjust_type() and
4044 * arc_evict_state_impl().
4045 */
4046 markers[i]->b_spa = 0;
34dc7c2f 4047
ca0bf58d
PS
4048 mls = multilist_sublist_lock(ml, i);
4049 multilist_sublist_insert_tail(mls, markers[i]);
4050 multilist_sublist_unlock(mls);
34dc7c2f
BB
4051 }
4052
d164b209 4053 /*
ca0bf58d
PS
4054 * While we haven't hit our target number of bytes to evict, or
4055 * we're evicting all available buffers.
d164b209 4056 */
ca0bf58d 4057 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
25458cbe
TC
4058 int sublist_idx = multilist_get_random_index(ml);
4059 uint64_t scan_evicted = 0;
4060
4061 /*
4062 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4063 * Request that 10% of the LRUs be scanned by the superblock
4064 * shrinker.
4065 */
4066 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
4067 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
4068 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
4069
ca0bf58d
PS
4070 /*
4071 * Start eviction using a randomly selected sublist,
4072 * this is to try and evenly balance eviction across all
4073 * sublists. Always starting at the same sublist
4074 * (e.g. index 0) would cause evictions to favor certain
4075 * sublists over others.
4076 */
1c27024e 4077 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4078 uint64_t bytes_remaining;
4079 uint64_t bytes_evicted;
d164b209 4080
ca0bf58d
PS
4081 if (bytes == ARC_EVICT_ALL)
4082 bytes_remaining = ARC_EVICT_ALL;
4083 else if (total_evicted < bytes)
4084 bytes_remaining = bytes - total_evicted;
4085 else
4086 break;
34dc7c2f 4087
ca0bf58d
PS
4088 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4089 markers[sublist_idx], spa, bytes_remaining);
4090
4091 scan_evicted += bytes_evicted;
4092 total_evicted += bytes_evicted;
4093
4094 /* we've reached the end, wrap to the beginning */
4095 if (++sublist_idx >= num_sublists)
4096 sublist_idx = 0;
4097 }
4098
4099 /*
4100 * If we didn't evict anything during this scan, we have
4101 * no reason to believe we'll evict more during another
4102 * scan, so break the loop.
4103 */
4104 if (scan_evicted == 0) {
4105 /* This isn't possible, let's make that obvious */
4106 ASSERT3S(bytes, !=, 0);
34dc7c2f 4107
ca0bf58d
PS
4108 /*
4109 * When bytes is ARC_EVICT_ALL, the only way to
4110 * break the loop is when scan_evicted is zero.
4111 * In that case, we actually have evicted enough,
4112 * so we don't want to increment the kstat.
4113 */
4114 if (bytes != ARC_EVICT_ALL) {
4115 ASSERT3S(total_evicted, <, bytes);
4116 ARCSTAT_BUMP(arcstat_evict_not_enough);
4117 }
d164b209 4118
ca0bf58d
PS
4119 break;
4120 }
d164b209 4121 }
34dc7c2f 4122
1c27024e 4123 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4124 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4125 multilist_sublist_remove(mls, markers[i]);
4126 multilist_sublist_unlock(mls);
34dc7c2f 4127
ca0bf58d 4128 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 4129 }
ca0bf58d
PS
4130 kmem_free(markers, sizeof (*markers) * num_sublists);
4131
4132 return (total_evicted);
4133}
4134
4135/*
4136 * Flush all "evictable" data of the given type from the arc state
4137 * specified. This will not evict any "active" buffers (i.e. referenced).
4138 *
d3c2ae1c 4139 * When 'retry' is set to B_FALSE, the function will make a single pass
ca0bf58d
PS
4140 * over the state and evict any buffers that it can. Since it doesn't
4141 * continually retry the eviction, it might end up leaving some buffers
4142 * in the ARC due to lock misses.
4143 *
d3c2ae1c 4144 * When 'retry' is set to B_TRUE, the function will continually retry the
ca0bf58d
PS
4145 * eviction until *all* evictable buffers have been removed from the
4146 * state. As a result, if concurrent insertions into the state are
4147 * allowed (e.g. if the ARC isn't shutting down), this function might
4148 * wind up in an infinite loop, continually trying to evict buffers.
4149 */
4150static uint64_t
4151arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4152 boolean_t retry)
4153{
4154 uint64_t evicted = 0;
4155
d3c2ae1c 4156 while (refcount_count(&state->arcs_esize[type]) != 0) {
ca0bf58d
PS
4157 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4158
4159 if (!retry)
4160 break;
4161 }
4162
4163 return (evicted);
34dc7c2f
BB
4164}
4165
ab26409d 4166/*
ef5b2e10
BB
4167 * Helper function for arc_prune_async() it is responsible for safely
4168 * handling the execution of a registered arc_prune_func_t.
ab26409d
BB
4169 */
4170static void
f6046738 4171arc_prune_task(void *ptr)
ab26409d 4172{
f6046738
BB
4173 arc_prune_t *ap = (arc_prune_t *)ptr;
4174 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 4175
f6046738
BB
4176 if (func != NULL)
4177 func(ap->p_adjust, ap->p_private);
ab26409d 4178
4442f60d 4179 refcount_remove(&ap->p_refcnt, func);
f6046738 4180}
ab26409d 4181
f6046738
BB
4182/*
4183 * Notify registered consumers they must drop holds on a portion of the ARC
4184 * buffered they reference. This provides a mechanism to ensure the ARC can
4185 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4186 * is analogous to dnlc_reduce_cache() but more generic.
4187 *
ef5b2e10 4188 * This operation is performed asynchronously so it may be safely called
ca67b33a 4189 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
4190 * for each registered arc_prune_t and the arc_prune_task() is responsible
4191 * for releasing it once the registered arc_prune_func_t has completed.
4192 */
4193static void
4194arc_prune_async(int64_t adjust)
4195{
4196 arc_prune_t *ap;
ab26409d 4197
f6046738
BB
4198 mutex_enter(&arc_prune_mtx);
4199 for (ap = list_head(&arc_prune_list); ap != NULL;
4200 ap = list_next(&arc_prune_list, ap)) {
ab26409d 4201
f6046738
BB
4202 if (refcount_count(&ap->p_refcnt) >= 2)
4203 continue;
ab26409d 4204
f6046738
BB
4205 refcount_add(&ap->p_refcnt, ap->p_pfunc);
4206 ap->p_adjust = adjust;
b60eac3d 4207 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
48d3eb40 4208 ap, TQ_SLEEP) == TASKQID_INVALID) {
b60eac3d 4209 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
4210 continue;
4211 }
f6046738 4212 ARCSTAT_BUMP(arcstat_prune);
ab26409d 4213 }
ab26409d
BB
4214 mutex_exit(&arc_prune_mtx);
4215}
4216
ca0bf58d
PS
4217/*
4218 * Evict the specified number of bytes from the state specified,
4219 * restricting eviction to the spa and type given. This function
4220 * prevents us from trying to evict more from a state's list than
4221 * is "evictable", and to skip evicting altogether when passed a
4222 * negative value for "bytes". In contrast, arc_evict_state() will
4223 * evict everything it can, when passed a negative value for "bytes".
4224 */
4225static uint64_t
4226arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4227 arc_buf_contents_t type)
4228{
4229 int64_t delta;
4230
d3c2ae1c
GW
4231 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
4232 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
ca0bf58d
PS
4233 return (arc_evict_state(state, spa, delta, type));
4234 }
4235
4236 return (0);
4237}
4238
4239/*
4240 * The goal of this function is to evict enough meta data buffers from the
4241 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4242 * more complicated than it appears because it is common for data buffers
4243 * to have holds on meta data buffers. In addition, dnode meta data buffers
4244 * will be held by the dnodes in the block preventing them from being freed.
4245 * This means we can't simply traverse the ARC and expect to always find
4246 * enough unheld meta data buffer to release.
4247 *
4248 * Therefore, this function has been updated to make alternating passes
4249 * over the ARC releasing data buffers and then newly unheld meta data
4250 * buffers. This ensures forward progress is maintained and arc_meta_used
4251 * will decrease. Normally this is sufficient, but if required the ARC
4252 * will call the registered prune callbacks causing dentry and inodes to
4253 * be dropped from the VFS cache. This will make dnode meta data buffers
4254 * available for reclaim.
4255 */
4256static uint64_t
f6046738 4257arc_adjust_meta_balanced(void)
ca0bf58d 4258{
25e2ab16
TC
4259 int64_t delta, prune = 0, adjustmnt;
4260 uint64_t total_evicted = 0;
ca0bf58d 4261 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 4262 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
4263
4264restart:
4265 /*
4266 * This slightly differs than the way we evict from the mru in
4267 * arc_adjust because we don't have a "target" value (i.e. no
4268 * "meta" arc_p). As a result, I think we can completely
4269 * cannibalize the metadata in the MRU before we evict the
4270 * metadata from the MFU. I think we probably need to implement a
4271 * "metadata arc_p" value to do this properly.
4272 */
4273 adjustmnt = arc_meta_used - arc_meta_limit;
4274
d3c2ae1c
GW
4275 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4276 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
4277 adjustmnt);
ca0bf58d
PS
4278 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4279 adjustmnt -= delta;
4280 }
4281
4282 /*
4283 * We can't afford to recalculate adjustmnt here. If we do,
4284 * new metadata buffers can sneak into the MRU or ANON lists,
4285 * thus penalize the MFU metadata. Although the fudge factor is
4286 * small, it has been empirically shown to be significant for
4287 * certain workloads (e.g. creating many empty directories). As
4288 * such, we use the original calculation for adjustmnt, and
4289 * simply decrement the amount of data evicted from the MRU.
4290 */
4291
d3c2ae1c
GW
4292 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4293 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
4294 adjustmnt);
ca0bf58d
PS
4295 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4296 }
4297
4298 adjustmnt = arc_meta_used - arc_meta_limit;
4299
d3c2ae1c
GW
4300 if (adjustmnt > 0 &&
4301 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4302 delta = MIN(adjustmnt,
d3c2ae1c 4303 refcount_count(&arc_mru_ghost->arcs_esize[type]));
ca0bf58d
PS
4304 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4305 adjustmnt -= delta;
4306 }
4307
d3c2ae1c
GW
4308 if (adjustmnt > 0 &&
4309 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4310 delta = MIN(adjustmnt,
d3c2ae1c 4311 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
ca0bf58d
PS
4312 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4313 }
4314
4315 /*
4316 * If after attempting to make the requested adjustment to the ARC
4317 * the meta limit is still being exceeded then request that the
4318 * higher layers drop some cached objects which have holds on ARC
4319 * meta buffers. Requests to the upper layers will be made with
4320 * increasingly large scan sizes until the ARC is below the limit.
4321 */
4322 if (arc_meta_used > arc_meta_limit) {
4323 if (type == ARC_BUFC_DATA) {
4324 type = ARC_BUFC_METADATA;
4325 } else {
4326 type = ARC_BUFC_DATA;
4327
4328 if (zfs_arc_meta_prune) {
4329 prune += zfs_arc_meta_prune;
f6046738 4330 arc_prune_async(prune);
ca0bf58d
PS
4331 }
4332 }
4333
4334 if (restarts > 0) {
4335 restarts--;
4336 goto restart;
4337 }
4338 }
4339 return (total_evicted);
4340}
4341
f6046738
BB
4342/*
4343 * Evict metadata buffers from the cache, such that arc_meta_used is
4344 * capped by the arc_meta_limit tunable.
4345 */
4346static uint64_t
4347arc_adjust_meta_only(void)
4348{
4349 uint64_t total_evicted = 0;
4350 int64_t target;
4351
4352 /*
4353 * If we're over the meta limit, we want to evict enough
4354 * metadata to get back under the meta limit. We don't want to
4355 * evict so much that we drop the MRU below arc_p, though. If
4356 * we're over the meta limit more than we're over arc_p, we
4357 * evict some from the MRU here, and some from the MFU below.
4358 */
4359 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef
PS
4360 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4361 refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738
BB
4362
4363 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4364
4365 /*
4366 * Similar to the above, we want to evict enough bytes to get us
4367 * below the meta limit, but not so much as to drop us below the
2aa34383 4368 * space allotted to the MFU (which is defined as arc_c - arc_p).
f6046738
BB
4369 */
4370 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef 4371 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
f6046738
BB
4372
4373 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4374
4375 return (total_evicted);
4376}
4377
4378static uint64_t
4379arc_adjust_meta(void)
4380{
4381 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4382 return (arc_adjust_meta_only());
4383 else
4384 return (arc_adjust_meta_balanced());
4385}
4386
ca0bf58d
PS
4387/*
4388 * Return the type of the oldest buffer in the given arc state
4389 *
4390 * This function will select a random sublist of type ARC_BUFC_DATA and
4391 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4392 * is compared, and the type which contains the "older" buffer will be
4393 * returned.
4394 */
4395static arc_buf_contents_t
4396arc_adjust_type(arc_state_t *state)
4397{
64fc7762
MA
4398 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4399 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
ca0bf58d
PS
4400 int data_idx = multilist_get_random_index(data_ml);
4401 int meta_idx = multilist_get_random_index(meta_ml);
4402 multilist_sublist_t *data_mls;
4403 multilist_sublist_t *meta_mls;
4404 arc_buf_contents_t type;
4405 arc_buf_hdr_t *data_hdr;
4406 arc_buf_hdr_t *meta_hdr;
4407
4408 /*
4409 * We keep the sublist lock until we're finished, to prevent
4410 * the headers from being destroyed via arc_evict_state().
4411 */
4412 data_mls = multilist_sublist_lock(data_ml, data_idx);
4413 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4414
4415 /*
4416 * These two loops are to ensure we skip any markers that
4417 * might be at the tail of the lists due to arc_evict_state().
4418 */
4419
4420 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4421 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4422 if (data_hdr->b_spa != 0)
4423 break;
4424 }
4425
4426 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4427 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4428 if (meta_hdr->b_spa != 0)
4429 break;
4430 }
4431
4432 if (data_hdr == NULL && meta_hdr == NULL) {
4433 type = ARC_BUFC_DATA;
4434 } else if (data_hdr == NULL) {
4435 ASSERT3P(meta_hdr, !=, NULL);
4436 type = ARC_BUFC_METADATA;
4437 } else if (meta_hdr == NULL) {
4438 ASSERT3P(data_hdr, !=, NULL);
4439 type = ARC_BUFC_DATA;
4440 } else {
4441 ASSERT3P(data_hdr, !=, NULL);
4442 ASSERT3P(meta_hdr, !=, NULL);
4443
4444 /* The headers can't be on the sublist without an L1 header */
4445 ASSERT(HDR_HAS_L1HDR(data_hdr));
4446 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4447
4448 if (data_hdr->b_l1hdr.b_arc_access <
4449 meta_hdr->b_l1hdr.b_arc_access) {
4450 type = ARC_BUFC_DATA;
4451 } else {
4452 type = ARC_BUFC_METADATA;
4453 }
4454 }
4455
4456 multilist_sublist_unlock(meta_mls);
4457 multilist_sublist_unlock(data_mls);
4458
4459 return (type);
4460}
4461
4462/*
4463 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4464 */
4465static uint64_t
4466arc_adjust(void)
4467{
4468 uint64_t total_evicted = 0;
4469 uint64_t bytes;
4470 int64_t target;
4471
4472 /*
4473 * If we're over arc_meta_limit, we want to correct that before
4474 * potentially evicting data buffers below.
4475 */
4476 total_evicted += arc_adjust_meta();
4477
4478 /*
4479 * Adjust MRU size
4480 *
4481 * If we're over the target cache size, we want to evict enough
4482 * from the list to get back to our target size. We don't want
4483 * to evict too much from the MRU, such that it drops below
4484 * arc_p. So, if we're over our target cache size more than
4485 * the MRU is over arc_p, we'll evict enough to get back to
4486 * arc_p here, and then evict more from the MFU below.
4487 */
4488 target = MIN((int64_t)(arc_size - arc_c),
36da08ef
PS
4489 (int64_t)(refcount_count(&arc_anon->arcs_size) +
4490 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
ca0bf58d
PS
4491
4492 /*
4493 * If we're below arc_meta_min, always prefer to evict data.
4494 * Otherwise, try to satisfy the requested number of bytes to
4495 * evict from the type which contains older buffers; in an
4496 * effort to keep newer buffers in the cache regardless of their
4497 * type. If we cannot satisfy the number of bytes from this
4498 * type, spill over into the next type.
4499 */
4500 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
4501 arc_meta_used > arc_meta_min) {
4502 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4503 total_evicted += bytes;
4504
4505 /*
4506 * If we couldn't evict our target number of bytes from
4507 * metadata, we try to get the rest from data.
4508 */
4509 target -= bytes;
4510
4511 total_evicted +=
4512 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4513 } else {
4514 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4515 total_evicted += bytes;
4516
4517 /*
4518 * If we couldn't evict our target number of bytes from
4519 * data, we try to get the rest from metadata.
4520 */
4521 target -= bytes;
4522
4523 total_evicted +=
4524 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4525 }
4526
4527 /*
4528 * Adjust MFU size
4529 *
4530 * Now that we've tried to evict enough from the MRU to get its
4531 * size back to arc_p, if we're still above the target cache
4532 * size, we evict the rest from the MFU.
4533 */
4534 target = arc_size - arc_c;
4535
a7b10a93 4536 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
ca0bf58d
PS
4537 arc_meta_used > arc_meta_min) {
4538 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4539 total_evicted += bytes;
4540
4541 /*
4542 * If we couldn't evict our target number of bytes from
4543 * metadata, we try to get the rest from data.
4544 */
4545 target -= bytes;
4546
4547 total_evicted +=
4548 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4549 } else {
4550 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4551 total_evicted += bytes;
4552
4553 /*
4554 * If we couldn't evict our target number of bytes from
4555 * data, we try to get the rest from data.
4556 */
4557 target -= bytes;
4558
4559 total_evicted +=
4560 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4561 }
4562
4563 /*
4564 * Adjust ghost lists
4565 *
4566 * In addition to the above, the ARC also defines target values
4567 * for the ghost lists. The sum of the mru list and mru ghost
4568 * list should never exceed the target size of the cache, and
4569 * the sum of the mru list, mfu list, mru ghost list, and mfu
4570 * ghost list should never exceed twice the target size of the
4571 * cache. The following logic enforces these limits on the ghost
4572 * caches, and evicts from them as needed.
4573 */
36da08ef
PS
4574 target = refcount_count(&arc_mru->arcs_size) +
4575 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d
PS
4576
4577 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4578 total_evicted += bytes;
4579
4580 target -= bytes;
4581
4582 total_evicted +=
4583 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4584
4585 /*
4586 * We assume the sum of the mru list and mfu list is less than
4587 * or equal to arc_c (we enforced this above), which means we
4588 * can use the simpler of the two equations below:
4589 *
4590 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4591 * mru ghost + mfu ghost <= arc_c
4592 */
36da08ef
PS
4593 target = refcount_count(&arc_mru_ghost->arcs_size) +
4594 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d
PS
4595
4596 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4597 total_evicted += bytes;
4598
4599 target -= bytes;
4600
4601 total_evicted +=
4602 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4603
4604 return (total_evicted);
4605}
4606
ca0bf58d
PS
4607void
4608arc_flush(spa_t *spa, boolean_t retry)
ab26409d 4609{
ca0bf58d 4610 uint64_t guid = 0;
94520ca4 4611
bc888666 4612 /*
d3c2ae1c 4613 * If retry is B_TRUE, a spa must not be specified since we have
ca0bf58d
PS
4614 * no good way to determine if all of a spa's buffers have been
4615 * evicted from an arc state.
bc888666 4616 */
ca0bf58d 4617 ASSERT(!retry || spa == 0);
d164b209 4618
b9541d6b 4619 if (spa != NULL)
3541dc6d 4620 guid = spa_load_guid(spa);
d164b209 4621
ca0bf58d
PS
4622 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4623 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4624
4625 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4626 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4627
4628 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4629 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 4630
ca0bf58d
PS
4631 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4632 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f
BB
4633}
4634
34dc7c2f 4635void
ca67b33a 4636arc_shrink(int64_t to_free)
34dc7c2f 4637{
1b8951b3 4638 uint64_t c = arc_c;
34dc7c2f 4639
1b8951b3
TC
4640 if (c > to_free && c - to_free > arc_c_min) {
4641 arc_c = c - to_free;
ca67b33a 4642 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
4643 if (arc_c > arc_size)
4644 arc_c = MAX(arc_size, arc_c_min);
4645 if (arc_p > arc_c)
4646 arc_p = (arc_c >> 1);
4647 ASSERT(arc_c >= arc_c_min);
4648 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
4649 } else {
4650 arc_c = arc_c_min;
34dc7c2f
BB
4651 }
4652
4653 if (arc_size > arc_c)
ca0bf58d 4654 (void) arc_adjust();
34dc7c2f
BB
4655}
4656
9edb3695
BB
4657/*
4658 * Return maximum amount of memory that we could possibly use. Reduced
4659 * to half of all memory in user space which is primarily used for testing.
4660 */
4661static uint64_t
4662arc_all_memory(void)
4663{
4664#ifdef _KERNEL
70f02287
BB
4665#ifdef CONFIG_HIGHMEM
4666 return (ptob(totalram_pages - totalhigh_pages));
4667#else
4668 return (ptob(totalram_pages));
4669#endif /* CONFIG_HIGHMEM */
9edb3695
BB
4670#else
4671 return (ptob(physmem) / 2);
70f02287 4672#endif /* _KERNEL */
9edb3695
BB
4673}
4674
70f02287
BB
4675/*
4676 * Return the amount of memory that is considered free. In user space
4677 * which is primarily used for testing we pretend that free memory ranges
4678 * from 0-20% of all memory.
4679 */
787acae0
GDN
4680static uint64_t
4681arc_free_memory(void)
4682{
70f02287
BB
4683#ifdef _KERNEL
4684#ifdef CONFIG_HIGHMEM
4685 struct sysinfo si;
4686 si_meminfo(&si);
4687 return (ptob(si.freeram - si.freehigh));
4688#else
787acae0 4689#ifdef ZFS_GLOBAL_NODE_PAGE_STATE
70f02287 4690 return (ptob(nr_free_pages() +
787acae0
GDN
4691 global_node_page_state(NR_INACTIVE_FILE) +
4692 global_node_page_state(NR_INACTIVE_ANON) +
70f02287 4693 global_node_page_state(NR_SLAB_RECLAIMABLE)));
787acae0 4694#else
70f02287 4695 return (ptob(nr_free_pages() +
787acae0
GDN
4696 global_page_state(NR_INACTIVE_FILE) +
4697 global_page_state(NR_INACTIVE_ANON) +
70f02287
BB
4698 global_page_state(NR_SLAB_RECLAIMABLE)));
4699#endif /* ZFS_GLOBAL_NODE_PAGE_STATE */
4700#endif /* CONFIG_HIGHMEM */
4701#else
4702 return (spa_get_random(arc_all_memory() * 20 / 100));
4703#endif /* _KERNEL */
787acae0 4704}
787acae0 4705
ca67b33a
MA
4706typedef enum free_memory_reason_t {
4707 FMR_UNKNOWN,
4708 FMR_NEEDFREE,
4709 FMR_LOTSFREE,
4710 FMR_SWAPFS_MINFREE,
4711 FMR_PAGES_PP_MAXIMUM,
4712 FMR_HEAP_ARENA,
4713 FMR_ZIO_ARENA,
4714} free_memory_reason_t;
4715
4716int64_t last_free_memory;
4717free_memory_reason_t last_free_reason;
4718
4719#ifdef _KERNEL
ca67b33a
MA
4720/*
4721 * Additional reserve of pages for pp_reserve.
4722 */
4723int64_t arc_pages_pp_reserve = 64;
4724
4725/*
4726 * Additional reserve of pages for swapfs.
4727 */
4728int64_t arc_swapfs_reserve = 64;
ca67b33a
MA
4729#endif /* _KERNEL */
4730
4731/*
4732 * Return the amount of memory that can be consumed before reclaim will be
4733 * needed. Positive if there is sufficient free memory, negative indicates
4734 * the amount of memory that needs to be freed up.
4735 */
4736static int64_t
4737arc_available_memory(void)
4738{
4739 int64_t lowest = INT64_MAX;
4740 free_memory_reason_t r = FMR_UNKNOWN;
ca67b33a 4741#ifdef _KERNEL
ca67b33a 4742 int64_t n;
11f552fa 4743#ifdef __linux__
70f02287
BB
4744#ifdef freemem
4745#undef freemem
4746#endif
11f552fa
BB
4747 pgcnt_t needfree = btop(arc_need_free);
4748 pgcnt_t lotsfree = btop(arc_sys_free);
4749 pgcnt_t desfree = 0;
70f02287 4750 pgcnt_t freemem = btop(arc_free_memory());
9edb3695
BB
4751#endif
4752
ca67b33a
MA
4753 if (needfree > 0) {
4754 n = PAGESIZE * (-needfree);
4755 if (n < lowest) {
4756 lowest = n;
4757 r = FMR_NEEDFREE;
4758 }
4759 }
4760
4761 /*
4762 * check that we're out of range of the pageout scanner. It starts to
4763 * schedule paging if freemem is less than lotsfree and needfree.
4764 * lotsfree is the high-water mark for pageout, and needfree is the
4765 * number of needed free pages. We add extra pages here to make sure
4766 * the scanner doesn't start up while we're freeing memory.
4767 */
70f02287 4768 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
ca67b33a
MA
4769 if (n < lowest) {
4770 lowest = n;
4771 r = FMR_LOTSFREE;
4772 }
4773
11f552fa 4774#ifndef __linux__
ca67b33a
MA
4775 /*
4776 * check to make sure that swapfs has enough space so that anon
4777 * reservations can still succeed. anon_resvmem() checks that the
4778 * availrmem is greater than swapfs_minfree, and the number of reserved
4779 * swap pages. We also add a bit of extra here just to prevent
4780 * circumstances from getting really dire.
4781 */
4782 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4783 desfree - arc_swapfs_reserve);
4784 if (n < lowest) {
4785 lowest = n;
4786 r = FMR_SWAPFS_MINFREE;
4787 }
4788
ca67b33a
MA
4789 /*
4790 * Check that we have enough availrmem that memory locking (e.g., via
4791 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4792 * stores the number of pages that cannot be locked; when availrmem
4793 * drops below pages_pp_maximum, page locking mechanisms such as
4794 * page_pp_lock() will fail.)
4795 */
4796 n = PAGESIZE * (availrmem - pages_pp_maximum -
4797 arc_pages_pp_reserve);
4798 if (n < lowest) {
4799 lowest = n;
4800 r = FMR_PAGES_PP_MAXIMUM;
4801 }
11f552fa 4802#endif
ca67b33a 4803
70f02287 4804#if defined(_ILP32)
ca67b33a 4805 /*
70f02287 4806 * If we're on a 32-bit platform, it's possible that we'll exhaust the
ca67b33a
MA
4807 * kernel heap space before we ever run out of available physical
4808 * memory. Most checks of the size of the heap_area compare against
4809 * tune.t_minarmem, which is the minimum available real memory that we
4810 * can have in the system. However, this is generally fixed at 25 pages
4811 * which is so low that it's useless. In this comparison, we seek to
4812 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4813 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4814 * free)
4815 */
4816 n = vmem_size(heap_arena, VMEM_FREE) -
4817 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4818 if (n < lowest) {
4819 lowest = n;
4820 r = FMR_HEAP_ARENA;
4821 }
4822#endif
4823
4824 /*
4825 * If zio data pages are being allocated out of a separate heap segment,
4826 * then enforce that the size of available vmem for this arena remains
d3c2ae1c 4827 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
ca67b33a 4828 *
d3c2ae1c
GW
4829 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4830 * memory (in the zio_arena) free, which can avoid memory
4831 * fragmentation issues.
ca67b33a
MA
4832 */
4833 if (zio_arena != NULL) {
9edb3695
BB
4834 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4835 (vmem_size(zio_arena, VMEM_ALLOC) >>
4836 arc_zio_arena_free_shift);
ca67b33a
MA
4837 if (n < lowest) {
4838 lowest = n;
4839 r = FMR_ZIO_ARENA;
4840 }
4841 }
11f552fa 4842#else /* _KERNEL */
ca67b33a
MA
4843 /* Every 100 calls, free a small amount */
4844 if (spa_get_random(100) == 0)
4845 lowest = -1024;
11f552fa 4846#endif /* _KERNEL */
ca67b33a
MA
4847
4848 last_free_memory = lowest;
4849 last_free_reason = r;
4850
4851 return (lowest);
4852}
4853
4854/*
4855 * Determine if the system is under memory pressure and is asking
d3c2ae1c 4856 * to reclaim memory. A return value of B_TRUE indicates that the system
ca67b33a
MA
4857 * is under memory pressure and that the arc should adjust accordingly.
4858 */
4859static boolean_t
4860arc_reclaim_needed(void)
4861{
4862 return (arc_available_memory() < 0);
4863}
4864
34dc7c2f 4865static void
ca67b33a 4866arc_kmem_reap_now(void)
34dc7c2f
BB
4867{
4868 size_t i;
4869 kmem_cache_t *prev_cache = NULL;
4870 kmem_cache_t *prev_data_cache = NULL;
4871 extern kmem_cache_t *zio_buf_cache[];
4872 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 4873 extern kmem_cache_t *range_seg_cache;
34dc7c2f 4874
70f02287 4875#ifdef _KERNEL
f6046738
BB
4876 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4877 /*
4878 * We are exceeding our meta-data cache limit.
4879 * Prune some entries to release holds on meta-data.
4880 */
ef5b2e10 4881 arc_prune_async(zfs_arc_meta_prune);
f6046738 4882 }
70f02287
BB
4883#if defined(_ILP32)
4884 /*
4885 * Reclaim unused memory from all kmem caches.
4886 */
4887 kmem_reap();
4888#endif
4889#endif
f6046738 4890
34dc7c2f 4891 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
70f02287 4892#if defined(_ILP32)
d0c614ec 4893 /* reach upper limit of cache size on 32-bit */
4894 if (zio_buf_cache[i] == NULL)
4895 break;
4896#endif
34dc7c2f
BB
4897 if (zio_buf_cache[i] != prev_cache) {
4898 prev_cache = zio_buf_cache[i];
4899 kmem_cache_reap_now(zio_buf_cache[i]);
4900 }
4901 if (zio_data_buf_cache[i] != prev_data_cache) {
4902 prev_data_cache = zio_data_buf_cache[i];
4903 kmem_cache_reap_now(zio_data_buf_cache[i]);
4904 }
4905 }
ca0bf58d 4906 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
4907 kmem_cache_reap_now(hdr_full_cache);
4908 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 4909 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
4910
4911 if (zio_arena != NULL) {
4912 /*
4913 * Ask the vmem arena to reclaim unused memory from its
4914 * quantum caches.
4915 */
4916 vmem_qcache_reap(zio_arena);
4917 }
34dc7c2f
BB
4918}
4919
302f753f 4920/*
a6255b7f 4921 * Threads can block in arc_get_data_impl() waiting for this thread to evict
ca0bf58d 4922 * enough data and signal them to proceed. When this happens, the threads in
a6255b7f 4923 * arc_get_data_impl() are sleeping while holding the hash lock for their
ca0bf58d
PS
4924 * particular arc header. Thus, we must be careful to never sleep on a
4925 * hash lock in this thread. This is to prevent the following deadlock:
4926 *
a6255b7f 4927 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
ca0bf58d
PS
4928 * waiting for the reclaim thread to signal it.
4929 *
4930 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4931 * fails, and goes to sleep forever.
4932 *
4933 * This possible deadlock is avoided by always acquiring a hash lock
4934 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 4935 */
867959b5 4936/* ARGSUSED */
34dc7c2f 4937static void
c25b8f99 4938arc_reclaim_thread(void *unused)
34dc7c2f 4939{
ca67b33a 4940 fstrans_cookie_t cookie = spl_fstrans_mark();
ae6d0c60 4941 hrtime_t growtime = 0;
34dc7c2f
BB
4942 callb_cpr_t cpr;
4943
ca0bf58d 4944 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 4945
ca0bf58d 4946 mutex_enter(&arc_reclaim_lock);
ca67b33a 4947 while (!arc_reclaim_thread_exit) {
ca67b33a 4948 uint64_t evicted = 0;
30fffb90 4949 uint64_t need_free = arc_need_free;
ca67b33a 4950 arc_tuning_update();
34dc7c2f 4951
d3c2ae1c
GW
4952 /*
4953 * This is necessary in order for the mdb ::arc dcmd to
4954 * show up to date information. Since the ::arc command
4955 * does not call the kstat's update function, without
4956 * this call, the command may show stale stats for the
4957 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4958 * with this change, the data might be up to 1 second
4959 * out of date; but that should suffice. The arc_state_t
4960 * structures can be queried directly if more accurate
4961 * information is needed.
4962 */
4963#ifndef __linux__
4964 if (arc_ksp != NULL)
4965 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4966#endif
ca67b33a 4967 mutex_exit(&arc_reclaim_lock);
34dc7c2f 4968
0a252dae
GM
4969 /*
4970 * We call arc_adjust() before (possibly) calling
4971 * arc_kmem_reap_now(), so that we can wake up
4972 * arc_get_data_buf() sooner.
4973 */
4974 evicted = arc_adjust();
4975
4976 int64_t free_memory = arc_available_memory();
ca67b33a 4977 if (free_memory < 0) {
34dc7c2f 4978
ca67b33a 4979 arc_no_grow = B_TRUE;
b128c09f 4980 arc_warm = B_TRUE;
34dc7c2f 4981
ca67b33a
MA
4982 /*
4983 * Wait at least zfs_grow_retry (default 5) seconds
4984 * before considering growing.
4985 */
ae6d0c60 4986 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
6a8f9b6b 4987
ca67b33a 4988 arc_kmem_reap_now();
34dc7c2f 4989
ca67b33a
MA
4990 /*
4991 * If we are still low on memory, shrink the ARC
4992 * so that we have arc_shrink_min free space.
4993 */
4994 free_memory = arc_available_memory();
34dc7c2f 4995
1c27024e
DB
4996 int64_t to_free =
4997 (arc_c >> arc_shrink_shift) - free_memory;
ca67b33a
MA
4998 if (to_free > 0) {
4999#ifdef _KERNEL
30fffb90 5000 to_free = MAX(to_free, need_free);
ca67b33a
MA
5001#endif
5002 arc_shrink(to_free);
5003 }
5004 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5005 arc_no_grow = B_TRUE;
ae6d0c60 5006 } else if (gethrtime() >= growtime) {
ca67b33a
MA
5007 arc_no_grow = B_FALSE;
5008 }
bce45ec9 5009
ca67b33a 5010 mutex_enter(&arc_reclaim_lock);
bce45ec9 5011
ca67b33a
MA
5012 /*
5013 * If evicted is zero, we couldn't evict anything via
5014 * arc_adjust(). This could be due to hash lock
5015 * collisions, but more likely due to the majority of
5016 * arc buffers being unevictable. Therefore, even if
5017 * arc_size is above arc_c, another pass is unlikely to
5018 * be helpful and could potentially cause us to enter an
5019 * infinite loop.
5020 */
5021 if (arc_size <= arc_c || evicted == 0) {
5022 /*
5023 * We're either no longer overflowing, or we
5024 * can't evict anything more, so we should wake
30fffb90
DB
5025 * up any threads before we go to sleep and remove
5026 * the bytes we were working on from arc_need_free
5027 * since nothing more will be done here.
ca67b33a
MA
5028 */
5029 cv_broadcast(&arc_reclaim_waiters_cv);
30fffb90 5030 ARCSTAT_INCR(arcstat_need_free, -need_free);
bce45ec9 5031
ca67b33a
MA
5032 /*
5033 * Block until signaled, or after one second (we
5034 * might need to perform arc_kmem_reap_now()
5035 * even if we aren't being signalled)
5036 */
5037 CALLB_CPR_SAFE_BEGIN(&cpr);
a9bb2b68 5038 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
ae6d0c60 5039 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
ca67b33a
MA
5040 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
5041 }
ca0bf58d 5042 }
bce45ec9 5043
d3c2ae1c 5044 arc_reclaim_thread_exit = B_FALSE;
ca0bf58d
PS
5045 cv_broadcast(&arc_reclaim_thread_cv);
5046 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
5047 spl_fstrans_unmark(cookie);
5048 thread_exit();
5049}
5050
7cb67b45
BB
5051#ifdef _KERNEL
5052/*
302f753f
BB
5053 * Determine the amount of memory eligible for eviction contained in the
5054 * ARC. All clean data reported by the ghost lists can always be safely
5055 * evicted. Due to arc_c_min, the same does not hold for all clean data
5056 * contained by the regular mru and mfu lists.
5057 *
5058 * In the case of the regular mru and mfu lists, we need to report as
5059 * much clean data as possible, such that evicting that same reported
5060 * data will not bring arc_size below arc_c_min. Thus, in certain
5061 * circumstances, the total amount of clean data in the mru and mfu
5062 * lists might not actually be evictable.
5063 *
5064 * The following two distinct cases are accounted for:
5065 *
5066 * 1. The sum of the amount of dirty data contained by both the mru and
5067 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5068 * is greater than or equal to arc_c_min.
5069 * (i.e. amount of dirty data >= arc_c_min)
5070 *
5071 * This is the easy case; all clean data contained by the mru and mfu
5072 * lists is evictable. Evicting all clean data can only drop arc_size
5073 * to the amount of dirty data, which is greater than arc_c_min.
5074 *
5075 * 2. The sum of the amount of dirty data contained by both the mru and
5076 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5077 * is less than arc_c_min.
5078 * (i.e. arc_c_min > amount of dirty data)
5079 *
5080 * 2.1. arc_size is greater than or equal arc_c_min.
5081 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5082 *
5083 * In this case, not all clean data from the regular mru and mfu
5084 * lists is actually evictable; we must leave enough clean data
5085 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5086 * evictable data from the two lists combined, is exactly the
5087 * difference between arc_size and arc_c_min.
5088 *
5089 * 2.2. arc_size is less than arc_c_min
5090 * (i.e. arc_c_min > arc_size > amount of dirty data)
5091 *
5092 * In this case, none of the data contained in the mru and mfu
5093 * lists is evictable, even if it's clean. Since arc_size is
5094 * already below arc_c_min, evicting any more would only
5095 * increase this negative difference.
7cb67b45 5096 */
302f753f 5097static uint64_t
4ea3f864
GM
5098arc_evictable_memory(void)
5099{
302f753f 5100 uint64_t arc_clean =
d3c2ae1c
GW
5101 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
5102 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
5103 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
5104 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
302f753f
BB
5105 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
5106
03b60eee
DB
5107 /*
5108 * Scale reported evictable memory in proportion to page cache, cap
5109 * at specified min/max.
5110 */
2209e409
DB
5111#ifdef ZFS_GLOBAL_NODE_PAGE_STATE
5112 uint64_t min = (ptob(global_node_page_state(NR_FILE_PAGES)) / 100) *
5113 zfs_arc_pc_percent;
5114#else
03b60eee
DB
5115 uint64_t min = (ptob(global_page_state(NR_FILE_PAGES)) / 100) *
5116 zfs_arc_pc_percent;
2209e409 5117#endif
03b60eee
DB
5118 min = MAX(arc_c_min, MIN(arc_c_max, min));
5119
5120 if (arc_dirty >= min)
9b50146d 5121 return (arc_clean);
302f753f 5122
03b60eee 5123 return (MAX((int64_t)arc_size - (int64_t)min, 0));
302f753f
BB
5124}
5125
ed6e9cc2
TC
5126/*
5127 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5128 * number of objects which can potentially be freed. If it is nonzero,
5129 * the request is to free that many objects.
5130 *
5131 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5132 * in struct shrinker and also require the shrinker to return the number
5133 * of objects freed.
5134 *
5135 * Older kernels require the shrinker to return the number of freeable
5136 * objects following the freeing of nr_to_free.
5137 */
5138static spl_shrinker_t
7e7baeca 5139__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 5140{
ed6e9cc2 5141 int64_t pages;
7cb67b45 5142
302f753f
BB
5143 /* The arc is considered warm once reclaim has occurred */
5144 if (unlikely(arc_warm == B_FALSE))
5145 arc_warm = B_TRUE;
7cb67b45 5146
302f753f 5147 /* Return the potential number of reclaimable pages */
ed6e9cc2 5148 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
5149 if (sc->nr_to_scan == 0)
5150 return (pages);
3fd70ee6
BB
5151
5152 /* Not allowed to perform filesystem reclaim */
7e7baeca 5153 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 5154 return (SHRINK_STOP);
3fd70ee6 5155
7cb67b45 5156 /* Reclaim in progress */
b855550c
DB
5157 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
5158 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
2e91c2fb 5159 return (0);
b855550c 5160 }
7cb67b45 5161
ca0bf58d
PS
5162 mutex_exit(&arc_reclaim_lock);
5163
302f753f
BB
5164 /*
5165 * Evict the requested number of pages by shrinking arc_c the
44813aef 5166 * requested amount.
302f753f
BB
5167 */
5168 if (pages > 0) {
ca67b33a 5169 arc_shrink(ptob(sc->nr_to_scan));
44813aef
DB
5170 if (current_is_kswapd())
5171 arc_kmem_reap_now();
ed6e9cc2 5172#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4149bf49
DB
5173 pages = MAX((int64_t)pages -
5174 (int64_t)btop(arc_evictable_memory()), 0);
ed6e9cc2 5175#else
1e3cb67b 5176 pages = btop(arc_evictable_memory());
ed6e9cc2 5177#endif
1a31dcf5
DB
5178 /*
5179 * We've shrunk what we can, wake up threads.
5180 */
5181 cv_broadcast(&arc_reclaim_waiters_cv);
44813aef 5182 } else
ed6e9cc2 5183 pages = SHRINK_STOP;
302f753f
BB
5184
5185 /*
5186 * When direct reclaim is observed it usually indicates a rapid
5187 * increase in memory pressure. This occurs because the kswapd
5188 * threads were unable to asynchronously keep enough free memory
5189 * available. In this case set arc_no_grow to briefly pause arc
5190 * growth to avoid compounding the memory pressure.
5191 */
7cb67b45 5192 if (current_is_kswapd()) {
302f753f 5193 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 5194 } else {
302f753f 5195 arc_no_grow = B_TRUE;
44813aef 5196 arc_kmem_reap_now();
302f753f 5197 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
5198 }
5199
1e3cb67b 5200 return (pages);
7cb67b45 5201}
7e7baeca 5202SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
5203
5204SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
5205#endif /* _KERNEL */
5206
34dc7c2f
BB
5207/*
5208 * Adapt arc info given the number of bytes we are trying to add and
4e33ba4c 5209 * the state that we are coming from. This function is only called
34dc7c2f
BB
5210 * when we are adding new content to the cache.
5211 */
5212static void
5213arc_adapt(int bytes, arc_state_t *state)
5214{
5215 int mult;
728d6ae9 5216 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
36da08ef
PS
5217 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
5218 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f
BB
5219
5220 if (state == arc_l2c_only)
5221 return;
5222
5223 ASSERT(bytes > 0);
5224 /*
5225 * Adapt the target size of the MRU list:
5226 * - if we just hit in the MRU ghost list, then increase
5227 * the target size of the MRU list.
5228 * - if we just hit in the MFU ghost list, then increase
5229 * the target size of the MFU list by decreasing the
5230 * target size of the MRU list.
5231 */
5232 if (state == arc_mru_ghost) {
36da08ef 5233 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
5234 if (!zfs_arc_p_dampener_disable)
5235 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 5236
728d6ae9 5237 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 5238 } else if (state == arc_mfu_ghost) {
d164b209
BB
5239 uint64_t delta;
5240
36da08ef 5241 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
5242 if (!zfs_arc_p_dampener_disable)
5243 mult = MIN(mult, 10);
34dc7c2f 5244
d164b209 5245 delta = MIN(bytes * mult, arc_p);
728d6ae9 5246 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
5247 }
5248 ASSERT((int64_t)arc_p >= 0);
5249
ca67b33a
MA
5250 if (arc_reclaim_needed()) {
5251 cv_signal(&arc_reclaim_thread_cv);
5252 return;
5253 }
5254
34dc7c2f
BB
5255 if (arc_no_grow)
5256 return;
5257
5258 if (arc_c >= arc_c_max)
5259 return;
5260
5261 /*
5262 * If we're within (2 * maxblocksize) bytes of the target
5263 * cache size, increment the target cache size
5264 */
935434ef 5265 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
121b3cae 5266 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
5267 atomic_add_64(&arc_c, (int64_t)bytes);
5268 if (arc_c > arc_c_max)
5269 arc_c = arc_c_max;
5270 else if (state == arc_anon)
5271 atomic_add_64(&arc_p, (int64_t)bytes);
5272 if (arc_p > arc_c)
5273 arc_p = arc_c;
5274 }
5275 ASSERT((int64_t)arc_p >= 0);
5276}
5277
5278/*
ca0bf58d
PS
5279 * Check if arc_size has grown past our upper threshold, determined by
5280 * zfs_arc_overflow_shift.
34dc7c2f 5281 */
ca0bf58d
PS
5282static boolean_t
5283arc_is_overflowing(void)
34dc7c2f 5284{
ca0bf58d
PS
5285 /* Always allow at least one block of overflow */
5286 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5287 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 5288
ca0bf58d 5289 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
5290}
5291
a6255b7f
DQ
5292static abd_t *
5293arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5294{
5295 arc_buf_contents_t type = arc_buf_type(hdr);
5296
5297 arc_get_data_impl(hdr, size, tag);
5298 if (type == ARC_BUFC_METADATA) {
5299 return (abd_alloc(size, B_TRUE));
5300 } else {
5301 ASSERT(type == ARC_BUFC_DATA);
5302 return (abd_alloc(size, B_FALSE));
5303 }
5304}
5305
5306static void *
5307arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5308{
5309 arc_buf_contents_t type = arc_buf_type(hdr);
5310
5311 arc_get_data_impl(hdr, size, tag);
5312 if (type == ARC_BUFC_METADATA) {
5313 return (zio_buf_alloc(size));
5314 } else {
5315 ASSERT(type == ARC_BUFC_DATA);
5316 return (zio_data_buf_alloc(size));
5317 }
5318}
5319
34dc7c2f 5320/*
d3c2ae1c
GW
5321 * Allocate a block and return it to the caller. If we are hitting the
5322 * hard limit for the cache size, we must sleep, waiting for the eviction
5323 * thread to catch up. If we're past the target size but below the hard
5324 * limit, we'll only signal the reclaim thread and continue on.
34dc7c2f 5325 */
a6255b7f
DQ
5326static void
5327arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
34dc7c2f 5328{
a6255b7f
DQ
5329 arc_state_t *state = hdr->b_l1hdr.b_state;
5330 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
5331
5332 arc_adapt(size, state);
5333
5334 /*
ca0bf58d
PS
5335 * If arc_size is currently overflowing, and has grown past our
5336 * upper limit, we must be adding data faster than the evict
5337 * thread can evict. Thus, to ensure we don't compound the
5338 * problem by adding more data and forcing arc_size to grow even
5339 * further past it's target size, we halt and wait for the
5340 * eviction thread to catch up.
5341 *
5342 * It's also possible that the reclaim thread is unable to evict
5343 * enough buffers to get arc_size below the overflow limit (e.g.
5344 * due to buffers being un-evictable, or hash lock collisions).
5345 * In this case, we want to proceed regardless if we're
5346 * overflowing; thus we don't use a while loop here.
34dc7c2f 5347 */
ca0bf58d
PS
5348 if (arc_is_overflowing()) {
5349 mutex_enter(&arc_reclaim_lock);
5350
5351 /*
5352 * Now that we've acquired the lock, we may no longer be
5353 * over the overflow limit, lets check.
5354 *
5355 * We're ignoring the case of spurious wake ups. If that
5356 * were to happen, it'd let this thread consume an ARC
5357 * buffer before it should have (i.e. before we're under
5358 * the overflow limit and were signalled by the reclaim
5359 * thread). As long as that is a rare occurrence, it
5360 * shouldn't cause any harm.
5361 */
5362 if (arc_is_overflowing()) {
5363 cv_signal(&arc_reclaim_thread_cv);
5364 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 5365 }
34dc7c2f 5366
ca0bf58d 5367 mutex_exit(&arc_reclaim_lock);
34dc7c2f 5368 }
ab26409d 5369
d3c2ae1c 5370 VERIFY3U(hdr->b_type, ==, type);
da8ccd0e 5371 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
5372 arc_space_consume(size, ARC_SPACE_META);
5373 } else {
ca0bf58d 5374 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
5375 }
5376
34dc7c2f
BB
5377 /*
5378 * Update the state size. Note that ghost states have a
5379 * "ghost size" and so don't need to be updated.
5380 */
d3c2ae1c 5381 if (!GHOST_STATE(state)) {
34dc7c2f 5382
d3c2ae1c 5383 (void) refcount_add_many(&state->arcs_size, size, tag);
ca0bf58d
PS
5384
5385 /*
5386 * If this is reached via arc_read, the link is
5387 * protected by the hash lock. If reached via
5388 * arc_buf_alloc, the header should not be accessed by
5389 * any other thread. And, if reached via arc_read_done,
5390 * the hash lock will protect it if it's found in the
5391 * hash table; otherwise no other thread should be
5392 * trying to [add|remove]_reference it.
5393 */
5394 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b 5395 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
5396 (void) refcount_add_many(&state->arcs_esize[type],
5397 size, tag);
34dc7c2f 5398 }
d3c2ae1c 5399
34dc7c2f
BB
5400 /*
5401 * If we are growing the cache, and we are adding anonymous
5402 * data, and we have outgrown arc_p, update arc_p
5403 */
ca0bf58d 5404 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
36da08ef
PS
5405 (refcount_count(&arc_anon->arcs_size) +
5406 refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
5407 arc_p = MIN(arc_c, arc_p + size);
5408 }
a6255b7f
DQ
5409}
5410
5411static void
5412arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5413{
5414 arc_free_data_impl(hdr, size, tag);
5415 abd_free(abd);
5416}
5417
5418static void
5419arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5420{
5421 arc_buf_contents_t type = arc_buf_type(hdr);
5422
5423 arc_free_data_impl(hdr, size, tag);
5424 if (type == ARC_BUFC_METADATA) {
5425 zio_buf_free(buf, size);
5426 } else {
5427 ASSERT(type == ARC_BUFC_DATA);
5428 zio_data_buf_free(buf, size);
5429 }
d3c2ae1c
GW
5430}
5431
5432/*
5433 * Free the arc data buffer.
5434 */
5435static void
a6255b7f 5436arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
d3c2ae1c
GW
5437{
5438 arc_state_t *state = hdr->b_l1hdr.b_state;
5439 arc_buf_contents_t type = arc_buf_type(hdr);
5440
5441 /* protected by hash lock, if in the hash table */
5442 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5443 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5444 ASSERT(state != arc_anon && state != arc_l2c_only);
5445
5446 (void) refcount_remove_many(&state->arcs_esize[type],
5447 size, tag);
5448 }
5449 (void) refcount_remove_many(&state->arcs_size, size, tag);
5450
5451 VERIFY3U(hdr->b_type, ==, type);
5452 if (type == ARC_BUFC_METADATA) {
d3c2ae1c
GW
5453 arc_space_return(size, ARC_SPACE_META);
5454 } else {
5455 ASSERT(type == ARC_BUFC_DATA);
d3c2ae1c
GW
5456 arc_space_return(size, ARC_SPACE_DATA);
5457 }
34dc7c2f
BB
5458}
5459
5460/*
5461 * This routine is called whenever a buffer is accessed.
5462 * NOTE: the hash lock is dropped in this function.
5463 */
5464static void
2a432414 5465arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 5466{
428870ff
BB
5467 clock_t now;
5468
34dc7c2f 5469 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 5470 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 5471
b9541d6b 5472 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
5473 /*
5474 * This buffer is not in the cache, and does not
5475 * appear in our "ghost" list. Add the new buffer
5476 * to the MRU state.
5477 */
5478
b9541d6b
CW
5479 ASSERT0(hdr->b_l1hdr.b_arc_access);
5480 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5481 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5482 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 5483
b9541d6b 5484 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
5485 now = ddi_get_lbolt();
5486
34dc7c2f
BB
5487 /*
5488 * If this buffer is here because of a prefetch, then either:
5489 * - clear the flag if this is a "referencing" read
5490 * (any subsequent access will bump this into the MFU state).
5491 * or
5492 * - move the buffer to the head of the list if this is
5493 * another prefetch (to make it less likely to be evicted).
5494 */
b9541d6b
CW
5495 if (HDR_PREFETCH(hdr)) {
5496 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
5497 /* link protected by hash lock */
5498 ASSERT(multilist_link_active(
b9541d6b 5499 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 5500 } else {
d3c2ae1c 5501 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
b9541d6b 5502 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
5503 ARCSTAT_BUMP(arcstat_mru_hits);
5504 }
b9541d6b 5505 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
5506 return;
5507 }
5508
5509 /*
5510 * This buffer has been "accessed" only once so far,
5511 * but it is still in the cache. Move it to the MFU
5512 * state.
5513 */
b9541d6b
CW
5514 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5515 ARC_MINTIME)) {
34dc7c2f
BB
5516 /*
5517 * More than 125ms have passed since we
5518 * instantiated this buffer. Move it to the
5519 * most frequently used state.
5520 */
b9541d6b 5521 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
5522 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5523 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5524 }
b9541d6b 5525 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 5526 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 5527 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
5528 arc_state_t *new_state;
5529 /*
5530 * This buffer has been "accessed" recently, but
5531 * was evicted from the cache. Move it to the
5532 * MFU state.
5533 */
5534
b9541d6b 5535 if (HDR_PREFETCH(hdr)) {
34dc7c2f 5536 new_state = arc_mru;
b9541d6b 5537 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
d3c2ae1c 5538 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2a432414 5539 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5540 } else {
5541 new_state = arc_mfu;
2a432414 5542 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5543 }
5544
b9541d6b 5545 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 5546 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5547
b9541d6b 5548 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 5549 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 5550 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
5551 /*
5552 * This buffer has been accessed more than once and is
5553 * still in the cache. Keep it in the MFU state.
5554 *
5555 * NOTE: an add_reference() that occurred when we did
5556 * the arc_read() will have kicked this off the list.
5557 * If it was a prefetch, we will explicitly move it to
5558 * the head of the list now.
5559 */
b9541d6b
CW
5560 if ((HDR_PREFETCH(hdr)) != 0) {
5561 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
5562 /* link protected by hash_lock */
5563 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 5564 }
b9541d6b 5565 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 5566 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
5567 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5568 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
5569 arc_state_t *new_state = arc_mfu;
5570 /*
5571 * This buffer has been accessed more than once but has
5572 * been evicted from the cache. Move it back to the
5573 * MFU state.
5574 */
5575
b9541d6b 5576 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
5577 /*
5578 * This is a prefetch access...
5579 * move this block back to the MRU state.
5580 */
b9541d6b 5581 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
5582 new_state = arc_mru;
5583 }
5584
b9541d6b 5585 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5586 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5587 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5588
b9541d6b 5589 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 5590 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 5591 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
5592 /*
5593 * This buffer is on the 2nd Level ARC.
5594 */
5595
b9541d6b 5596 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5597 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5598 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5599 } else {
b9541d6b
CW
5600 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5601 hdr->b_l1hdr.b_state);
34dc7c2f
BB
5602 }
5603}
5604
b5256303 5605/* a generic arc_read_done_func_t which you can use */
34dc7c2f
BB
5606/* ARGSUSED */
5607void
b5256303 5608arc_bcopy_func(zio_t *zio, int error, arc_buf_t *buf, void *arg)
34dc7c2f 5609{
b5256303 5610 if (error == 0)
2aa34383 5611 bcopy(buf->b_data, arg, arc_buf_size(buf));
d3c2ae1c 5612 arc_buf_destroy(buf, arg);
34dc7c2f
BB
5613}
5614
b5256303 5615/* a generic arc_read_done_func_t */
34dc7c2f 5616void
b5256303 5617arc_getbuf_func(zio_t *zio, int error, arc_buf_t *buf, void *arg)
34dc7c2f
BB
5618{
5619 arc_buf_t **bufp = arg;
b5256303 5620 if (error != 0) {
d3c2ae1c 5621 arc_buf_destroy(buf, arg);
34dc7c2f
BB
5622 *bufp = NULL;
5623 } else {
5624 *bufp = buf;
428870ff 5625 ASSERT(buf->b_data);
34dc7c2f
BB
5626 }
5627}
5628
d3c2ae1c
GW
5629static void
5630arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5631{
5632 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5633 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
b5256303 5634 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
d3c2ae1c
GW
5635 } else {
5636 if (HDR_COMPRESSION_ENABLED(hdr)) {
b5256303 5637 ASSERT3U(arc_hdr_get_compress(hdr), ==,
d3c2ae1c
GW
5638 BP_GET_COMPRESS(bp));
5639 }
5640 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5641 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
b5256303 5642 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
d3c2ae1c
GW
5643 }
5644}
5645
34dc7c2f
BB
5646static void
5647arc_read_done(zio_t *zio)
5648{
b5256303 5649 blkptr_t *bp = zio->io_bp;
d3c2ae1c 5650 arc_buf_hdr_t *hdr = zio->io_private;
9b67f605 5651 kmutex_t *hash_lock = NULL;
524b4217
DK
5652 arc_callback_t *callback_list;
5653 arc_callback_t *acb;
2aa34383 5654 boolean_t freeable = B_FALSE;
524b4217 5655 boolean_t no_zio_error = (zio->io_error == 0);
a7004725 5656
34dc7c2f
BB
5657 /*
5658 * The hdr was inserted into hash-table and removed from lists
5659 * prior to starting I/O. We should find this header, since
5660 * it's in the hash table, and it should be legit since it's
5661 * not possible to evict it during the I/O. The only possible
5662 * reason for it not to be found is if we were freed during the
5663 * read.
5664 */
9b67f605 5665 if (HDR_IN_HASH_TABLE(hdr)) {
31df97cd
DB
5666 arc_buf_hdr_t *found;
5667
9b67f605
MA
5668 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5669 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5670 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5671 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5672 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5673
31df97cd 5674 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
9b67f605 5675
d3c2ae1c 5676 ASSERT((found == hdr &&
9b67f605
MA
5677 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5678 (found == hdr && HDR_L2_READING(hdr)));
d3c2ae1c
GW
5679 ASSERT3P(hash_lock, !=, NULL);
5680 }
5681
b5256303
TC
5682 if (BP_IS_PROTECTED(bp)) {
5683 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5684 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5685 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5686 hdr->b_crypt_hdr.b_iv);
5687
5688 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5689 void *tmpbuf;
5690
5691 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5692 sizeof (zil_chain_t));
5693 zio_crypt_decode_mac_zil(tmpbuf,
5694 hdr->b_crypt_hdr.b_mac);
5695 abd_return_buf(zio->io_abd, tmpbuf,
5696 sizeof (zil_chain_t));
5697 } else {
5698 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5699 }
5700 }
5701
524b4217 5702 if (no_zio_error) {
d3c2ae1c
GW
5703 /* byteswap if necessary */
5704 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5705 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5706 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5707 } else {
5708 hdr->b_l1hdr.b_byteswap =
5709 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5710 }
5711 } else {
5712 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5713 }
9b67f605 5714 }
34dc7c2f 5715
d3c2ae1c 5716 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
b9541d6b 5717 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
d3c2ae1c 5718 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f 5719
b9541d6b 5720 callback_list = hdr->b_l1hdr.b_acb;
d3c2ae1c 5721 ASSERT3P(callback_list, !=, NULL);
34dc7c2f 5722
524b4217 5723 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
5724 /*
5725 * Only call arc_access on anonymous buffers. This is because
5726 * if we've issued an I/O for an evicted buffer, we've already
5727 * called arc_access (to prevent any simultaneous readers from
5728 * getting confused).
5729 */
5730 arc_access(hdr, hash_lock);
5731 }
5732
524b4217
DK
5733 /*
5734 * If a read request has a callback (i.e. acb_done is not NULL), then we
5735 * make a buf containing the data according to the parameters which were
5736 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5737 * aren't needlessly decompressing the data multiple times.
5738 */
a7004725 5739 int callback_cnt = 0;
2aa34383
DK
5740 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5741 if (!acb->acb_done)
5742 continue;
5743
524b4217 5744 /* This is a demand read since prefetches don't use callbacks */
2aa34383 5745 callback_cnt++;
524b4217 5746
b5256303 5747 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
440a3eb9
TC
5748 acb->acb_dsobj, acb->acb_private, acb->acb_encrypted,
5749 acb->acb_compressed, acb->acb_noauth, no_zio_error,
5750 &acb->acb_buf);
b5256303
TC
5751
5752 /*
440a3eb9 5753 * Assert non-speculative zios didn't fail because an
b5256303
TC
5754 * encryption key wasn't loaded
5755 */
440a3eb9 5756 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) || error == 0);
b5256303
TC
5757
5758 /*
5759 * If we failed to decrypt, report an error now (as the zio
5760 * layer would have done if it had done the transforms).
5761 */
5762 if (error == ECKSUM) {
5763 ASSERT(BP_IS_PROTECTED(bp));
5764 error = SET_ERROR(EIO);
5765 spa_log_error(zio->io_spa, &zio->io_bookmark);
5766 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5767 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
5768 zio->io_spa, NULL, &zio->io_bookmark, zio,
5769 0, 0);
5770 }
5771 }
5772
524b4217
DK
5773 if (no_zio_error) {
5774 zio->io_error = error;
34dc7c2f
BB
5775 }
5776 }
b9541d6b 5777 hdr->b_l1hdr.b_acb = NULL;
d3c2ae1c 5778 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
440a3eb9 5779 if (callback_cnt == 0)
b5256303 5780 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
34dc7c2f 5781
b9541d6b
CW
5782 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5783 callback_list != NULL);
34dc7c2f 5784
524b4217 5785 if (no_zio_error) {
d3c2ae1c
GW
5786 arc_hdr_verify(hdr, zio->io_bp);
5787 } else {
5788 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
b9541d6b 5789 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
5790 arc_change_state(arc_anon, hdr, hash_lock);
5791 if (HDR_IN_HASH_TABLE(hdr))
5792 buf_hash_remove(hdr);
b9541d6b 5793 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5794 }
5795
5796 /*
5797 * Broadcast before we drop the hash_lock to avoid the possibility
5798 * that the hdr (and hence the cv) might be freed before we get to
5799 * the cv_broadcast().
5800 */
b9541d6b 5801 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 5802
b9541d6b 5803 if (hash_lock != NULL) {
34dc7c2f
BB
5804 mutex_exit(hash_lock);
5805 } else {
5806 /*
5807 * This block was freed while we waited for the read to
5808 * complete. It has been removed from the hash table and
5809 * moved to the anonymous state (so that it won't show up
5810 * in the cache).
5811 */
b9541d6b
CW
5812 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5813 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5814 }
5815
5816 /* execute each callback and free its structure */
5817 while ((acb = callback_list) != NULL) {
b5256303
TC
5818 if (acb->acb_done) {
5819 acb->acb_done(zio, zio->io_error, acb->acb_buf,
5820 acb->acb_private);
5821 }
34dc7c2f
BB
5822
5823 if (acb->acb_zio_dummy != NULL) {
5824 acb->acb_zio_dummy->io_error = zio->io_error;
5825 zio_nowait(acb->acb_zio_dummy);
5826 }
5827
5828 callback_list = acb->acb_next;
5829 kmem_free(acb, sizeof (arc_callback_t));
5830 }
5831
5832 if (freeable)
5833 arc_hdr_destroy(hdr);
5834}
5835
5836/*
5c839890 5837 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
5838 * cache. If the block is found in the cache, invoke the provided
5839 * callback immediately and return. Note that the `zio' parameter
5840 * in the callback will be NULL in this case, since no IO was
5841 * required. If the block is not in the cache pass the read request
5842 * on to the spa with a substitute callback function, so that the
5843 * requested block will be added to the cache.
5844 *
5845 * If a read request arrives for a block that has a read in-progress,
5846 * either wait for the in-progress read to complete (and return the
5847 * results); or, if this is a read with a "done" func, add a record
5848 * to the read to invoke the "done" func when the read completes,
5849 * and return; or just return.
5850 *
5851 * arc_read_done() will invoke all the requested "done" functions
5852 * for readers of this block.
5853 */
5854int
b5256303
TC
5855arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5856 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5857 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 5858{
9b67f605 5859 arc_buf_hdr_t *hdr = NULL;
9b67f605 5860 kmutex_t *hash_lock = NULL;
34dc7c2f 5861 zio_t *rzio;
3541dc6d 5862 uint64_t guid = spa_load_guid(spa);
b5256303
TC
5863 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5864 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5865 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5866 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5867 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
1421c891 5868 int rc = 0;
34dc7c2f 5869
9b67f605
MA
5870 ASSERT(!BP_IS_EMBEDDED(bp) ||
5871 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5872
34dc7c2f 5873top:
9b67f605
MA
5874 if (!BP_IS_EMBEDDED(bp)) {
5875 /*
5876 * Embedded BP's have no DVA and require no I/O to "read".
5877 * Create an anonymous arc buf to back it.
5878 */
5879 hdr = buf_hash_find(guid, bp, &hash_lock);
5880 }
5881
b5256303
TC
5882 /*
5883 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5884 * we maintain encrypted data seperately from compressed / uncompressed
5885 * data. If the user is requesting raw encrypted data and we don't have
5886 * that in the header we will read from disk to guarantee that we can
5887 * get it even if the encryption keys aren't loaded.
5888 */
5889 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5890 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
d3c2ae1c 5891 arc_buf_t *buf = NULL;
2a432414 5892 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
5893
5894 if (HDR_IO_IN_PROGRESS(hdr)) {
5895
7f60329a
MA
5896 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5897 priority == ZIO_PRIORITY_SYNC_READ) {
5898 /*
5899 * This sync read must wait for an
5900 * in-progress async read (e.g. a predictive
5901 * prefetch). Async reads are queued
5902 * separately at the vdev_queue layer, so
5903 * this is a form of priority inversion.
5904 * Ideally, we would "inherit" the demand
5905 * i/o's priority by moving the i/o from
5906 * the async queue to the synchronous queue,
5907 * but there is currently no mechanism to do
5908 * so. Track this so that we can evaluate
5909 * the magnitude of this potential performance
5910 * problem.
5911 *
5912 * Note that if the prefetch i/o is already
5913 * active (has been issued to the device),
5914 * the prefetch improved performance, because
5915 * we issued it sooner than we would have
5916 * without the prefetch.
5917 */
5918 DTRACE_PROBE1(arc__sync__wait__for__async,
5919 arc_buf_hdr_t *, hdr);
5920 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5921 }
5922 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
d3c2ae1c
GW
5923 arc_hdr_clear_flags(hdr,
5924 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a
MA
5925 }
5926
2a432414 5927 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 5928 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
5929 mutex_exit(hash_lock);
5930 goto top;
5931 }
2a432414 5932 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
5933
5934 if (done) {
7f60329a 5935 arc_callback_t *acb = NULL;
34dc7c2f
BB
5936
5937 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 5938 KM_SLEEP);
34dc7c2f
BB
5939 acb->acb_done = done;
5940 acb->acb_private = private;
a7004725 5941 acb->acb_compressed = compressed_read;
440a3eb9
TC
5942 acb->acb_encrypted = encrypted_read;
5943 acb->acb_noauth = noauth_read;
5944 acb->acb_dsobj = zb->zb_objset;
34dc7c2f
BB
5945 if (pio != NULL)
5946 acb->acb_zio_dummy = zio_null(pio,
d164b209 5947 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f 5948
d3c2ae1c 5949 ASSERT3P(acb->acb_done, !=, NULL);
b9541d6b
CW
5950 acb->acb_next = hdr->b_l1hdr.b_acb;
5951 hdr->b_l1hdr.b_acb = acb;
34dc7c2f 5952 mutex_exit(hash_lock);
1421c891 5953 goto out;
34dc7c2f
BB
5954 }
5955 mutex_exit(hash_lock);
1421c891 5956 goto out;
34dc7c2f
BB
5957 }
5958
b9541d6b
CW
5959 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5960 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
5961
5962 if (done) {
7f60329a
MA
5963 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5964 /*
5965 * This is a demand read which does not have to
5966 * wait for i/o because we did a predictive
5967 * prefetch i/o for it, which has completed.
5968 */
5969 DTRACE_PROBE1(
5970 arc__demand__hit__predictive__prefetch,
5971 arc_buf_hdr_t *, hdr);
5972 ARCSTAT_BUMP(
5973 arcstat_demand_hit_predictive_prefetch);
d3c2ae1c
GW
5974 arc_hdr_clear_flags(hdr,
5975 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a 5976 }
d3c2ae1c
GW
5977 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5978
524b4217 5979 /* Get a buf with the desired data in it. */
b5256303
TC
5980 rc = arc_buf_alloc_impl(hdr, spa, zb->zb_objset,
5981 private, encrypted_read, compressed_read,
5982 noauth_read, B_TRUE, &buf);
440a3eb9 5983 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) || rc == 0);
2a432414 5984 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 5985 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
d3c2ae1c 5986 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
5987 }
5988 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5989 arc_access(hdr, hash_lock);
2a432414 5990 if (*arc_flags & ARC_FLAG_L2CACHE)
d3c2ae1c 5991 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f
BB
5992 mutex_exit(hash_lock);
5993 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
5994 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5995 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
5996 data, metadata, hits);
5997
5998 if (done)
b5256303 5999 done(NULL, rc, buf, private);
34dc7c2f 6000 } else {
d3c2ae1c
GW
6001 uint64_t lsize = BP_GET_LSIZE(bp);
6002 uint64_t psize = BP_GET_PSIZE(bp);
9b67f605 6003 arc_callback_t *acb;
b128c09f 6004 vdev_t *vd = NULL;
a117a6d6 6005 uint64_t addr = 0;
d164b209 6006 boolean_t devw = B_FALSE;
d3c2ae1c 6007 uint64_t size;
440a3eb9 6008 abd_t *hdr_abd;
34dc7c2f 6009
5f6d0b6f
BB
6010 /*
6011 * Gracefully handle a damaged logical block size as a
1cdb86cb 6012 * checksum error.
5f6d0b6f 6013 */
d3c2ae1c 6014 if (lsize > spa_maxblocksize(spa)) {
1cdb86cb 6015 rc = SET_ERROR(ECKSUM);
5f6d0b6f
BB
6016 goto out;
6017 }
6018
34dc7c2f
BB
6019 if (hdr == NULL) {
6020 /* this block is not in the cache */
9b67f605 6021 arc_buf_hdr_t *exists = NULL;
34dc7c2f 6022 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
d3c2ae1c 6023 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
b5256303
TC
6024 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6025 encrypted_read);
d3c2ae1c 6026
9b67f605
MA
6027 if (!BP_IS_EMBEDDED(bp)) {
6028 hdr->b_dva = *BP_IDENTITY(bp);
6029 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
6030 exists = buf_hash_insert(hdr, &hash_lock);
6031 }
6032 if (exists != NULL) {
34dc7c2f
BB
6033 /* somebody beat us to the hash insert */
6034 mutex_exit(hash_lock);
428870ff 6035 buf_discard_identity(hdr);
d3c2ae1c 6036 arc_hdr_destroy(hdr);
34dc7c2f
BB
6037 goto top; /* restart the IO request */
6038 }
34dc7c2f 6039 } else {
b9541d6b 6040 /*
b5256303
TC
6041 * This block is in the ghost cache or encrypted data
6042 * was requested and we didn't have it. If it was
6043 * L2-only (and thus didn't have an L1 hdr),
6044 * we realloc the header to add an L1 hdr.
b9541d6b
CW
6045 */
6046 if (!HDR_HAS_L1HDR(hdr)) {
6047 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6048 hdr_full_cache);
6049 }
6050
b5256303
TC
6051 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6052 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6053 ASSERT(!HDR_HAS_RABD(hdr));
6054 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6055 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
6056 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6057 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6058 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6059 /*
6060 * If this header already had an IO in progress
6061 * and we are performing another IO to fetch
6062 * encrypted data we must wait until the first
6063 * IO completes so as not to confuse
6064 * arc_read_done(). This should be very rare
6065 * and so the performance impact shouldn't
6066 * matter.
6067 */
6068 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6069 mutex_exit(hash_lock);
6070 goto top;
6071 }
34dc7c2f 6072
7f60329a 6073 /*
d3c2ae1c 6074 * This is a delicate dance that we play here.
b5256303
TC
6075 * This hdr might be in the ghost list so we access
6076 * it to move it out of the ghost list before we
d3c2ae1c
GW
6077 * initiate the read. If it's a prefetch then
6078 * it won't have a callback so we'll remove the
6079 * reference that arc_buf_alloc_impl() created. We
6080 * do this after we've called arc_access() to
6081 * avoid hitting an assert in remove_reference().
7f60329a 6082 */
428870ff 6083 arc_access(hdr, hash_lock);
b5256303 6084 arc_hdr_alloc_abd(hdr, encrypted_read);
d3c2ae1c 6085 }
d3c2ae1c 6086
b5256303
TC
6087 if (encrypted_read) {
6088 ASSERT(HDR_HAS_RABD(hdr));
6089 size = HDR_GET_PSIZE(hdr);
6090 hdr_abd = hdr->b_crypt_hdr.b_rabd;
d3c2ae1c 6091 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
6092 } else {
6093 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6094 size = arc_hdr_size(hdr);
6095 hdr_abd = hdr->b_l1hdr.b_pabd;
6096
6097 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6098 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6099 }
6100
6101 /*
6102 * For authenticated bp's, we do not ask the ZIO layer
6103 * to authenticate them since this will cause the entire
6104 * IO to fail if the key isn't loaded. Instead, we
6105 * defer authentication until arc_buf_fill(), which will
6106 * verify the data when the key is available.
6107 */
6108 if (BP_IS_AUTHENTICATED(bp))
6109 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
34dc7c2f
BB
6110 }
6111
b5256303
TC
6112 if (*arc_flags & ARC_FLAG_PREFETCH &&
6113 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
d3c2ae1c
GW
6114 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
6115 if (*arc_flags & ARC_FLAG_L2CACHE)
6116 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
b5256303
TC
6117 if (BP_IS_AUTHENTICATED(bp))
6118 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
d3c2ae1c
GW
6119 if (BP_GET_LEVEL(bp) > 0)
6120 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
7f60329a 6121 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
d3c2ae1c 6122 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
b9541d6b 6123 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 6124
79c76d5b 6125 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
6126 acb->acb_done = done;
6127 acb->acb_private = private;
2aa34383 6128 acb->acb_compressed = compressed_read;
b5256303
TC
6129 acb->acb_encrypted = encrypted_read;
6130 acb->acb_noauth = noauth_read;
440a3eb9 6131 acb->acb_dsobj = zb->zb_objset;
34dc7c2f 6132
d3c2ae1c 6133 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b9541d6b 6134 hdr->b_l1hdr.b_acb = acb;
d3c2ae1c 6135 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f 6136
b9541d6b
CW
6137 if (HDR_HAS_L2HDR(hdr) &&
6138 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6139 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6140 addr = hdr->b_l2hdr.b_daddr;
b128c09f
BB
6141 /*
6142 * Lock out device removal.
6143 */
6144 if (vdev_is_dead(vd) ||
6145 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6146 vd = NULL;
6147 }
6148
d3c2ae1c
GW
6149 if (priority == ZIO_PRIORITY_ASYNC_READ)
6150 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6151 else
6152 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6153
9b67f605
MA
6154 if (hash_lock != NULL)
6155 mutex_exit(hash_lock);
b128c09f 6156
e49f1e20
WA
6157 /*
6158 * At this point, we have a level 1 cache miss. Try again in
6159 * L2ARC if possible.
6160 */
d3c2ae1c
GW
6161 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6162
428870ff 6163 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
d3c2ae1c 6164 uint64_t, lsize, zbookmark_phys_t *, zb);
34dc7c2f 6165 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
6166 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6167 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
6168 data, metadata, misses);
6169
d164b209 6170 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
6171 /*
6172 * Read from the L2ARC if the following are true:
b128c09f
BB
6173 * 1. The L2ARC vdev was previously cached.
6174 * 2. This buffer still has L2ARC metadata.
6175 * 3. This buffer isn't currently writing to the L2ARC.
6176 * 4. The L2ARC entry wasn't evicted, which may
6177 * also have invalidated the vdev.
d164b209 6178 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 6179 */
b9541d6b 6180 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
6181 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6182 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f 6183 l2arc_read_callback_t *cb;
82710e99
GDN
6184 abd_t *abd;
6185 uint64_t asize;
34dc7c2f
BB
6186
6187 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6188 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 6189 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 6190
34dc7c2f 6191 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 6192 KM_SLEEP);
d3c2ae1c 6193 cb->l2rcb_hdr = hdr;
34dc7c2f
BB
6194 cb->l2rcb_bp = *bp;
6195 cb->l2rcb_zb = *zb;
b128c09f 6196 cb->l2rcb_flags = zio_flags;
34dc7c2f 6197
82710e99
GDN
6198 asize = vdev_psize_to_asize(vd, size);
6199 if (asize != size) {
6200 abd = abd_alloc_for_io(asize,
6201 HDR_ISTYPE_METADATA(hdr));
6202 cb->l2rcb_abd = abd;
6203 } else {
b5256303 6204 abd = hdr_abd;
82710e99
GDN
6205 }
6206
a117a6d6 6207 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
82710e99 6208 addr + asize <= vd->vdev_psize -
a117a6d6
GW
6209 VDEV_LABEL_END_SIZE);
6210
34dc7c2f 6211 /*
b128c09f
BB
6212 * l2arc read. The SCL_L2ARC lock will be
6213 * released by l2arc_read_done().
3a17a7a9
SK
6214 * Issue a null zio if the underlying buffer
6215 * was squashed to zero size by compression.
34dc7c2f 6216 */
b5256303 6217 ASSERT3U(arc_hdr_get_compress(hdr), !=,
d3c2ae1c
GW
6218 ZIO_COMPRESS_EMPTY);
6219 rzio = zio_read_phys(pio, vd, addr,
82710e99 6220 asize, abd,
d3c2ae1c
GW
6221 ZIO_CHECKSUM_OFF,
6222 l2arc_read_done, cb, priority,
6223 zio_flags | ZIO_FLAG_DONT_CACHE |
6224 ZIO_FLAG_CANFAIL |
6225 ZIO_FLAG_DONT_PROPAGATE |
6226 ZIO_FLAG_DONT_RETRY, B_FALSE);
6227
34dc7c2f
BB
6228 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6229 zio_t *, rzio);
b5256303
TC
6230 ARCSTAT_INCR(arcstat_l2_read_bytes,
6231 HDR_GET_PSIZE(hdr));
34dc7c2f 6232
2a432414 6233 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 6234 zio_nowait(rzio);
1421c891 6235 goto out;
b128c09f 6236 }
34dc7c2f 6237
2a432414 6238 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 6239 if (zio_wait(rzio) == 0)
1421c891 6240 goto out;
b128c09f
BB
6241
6242 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
6243 } else {
6244 DTRACE_PROBE1(l2arc__miss,
6245 arc_buf_hdr_t *, hdr);
6246 ARCSTAT_BUMP(arcstat_l2_misses);
6247 if (HDR_L2_WRITING(hdr))
6248 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 6249 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 6250 }
d164b209
BB
6251 } else {
6252 if (vd != NULL)
6253 spa_config_exit(spa, SCL_L2ARC, vd);
6254 if (l2arc_ndev != 0) {
6255 DTRACE_PROBE1(l2arc__miss,
6256 arc_buf_hdr_t *, hdr);
6257 ARCSTAT_BUMP(arcstat_l2_misses);
6258 }
34dc7c2f 6259 }
34dc7c2f 6260
b5256303 6261 rzio = zio_read(pio, spa, bp, hdr_abd, size,
d3c2ae1c 6262 arc_read_done, hdr, priority, zio_flags, zb);
34dc7c2f 6263
2a432414 6264 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
6265 rc = zio_wait(rzio);
6266 goto out;
6267 }
34dc7c2f 6268
2a432414 6269 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6270 zio_nowait(rzio);
6271 }
1421c891
PS
6272
6273out:
6274 spa_read_history_add(spa, zb, *arc_flags);
6275 return (rc);
34dc7c2f
BB
6276}
6277
ab26409d
BB
6278arc_prune_t *
6279arc_add_prune_callback(arc_prune_func_t *func, void *private)
6280{
6281 arc_prune_t *p;
6282
d1d7e268 6283 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
6284 p->p_pfunc = func;
6285 p->p_private = private;
6286 list_link_init(&p->p_node);
6287 refcount_create(&p->p_refcnt);
6288
6289 mutex_enter(&arc_prune_mtx);
6290 refcount_add(&p->p_refcnt, &arc_prune_list);
6291 list_insert_head(&arc_prune_list, p);
6292 mutex_exit(&arc_prune_mtx);
6293
6294 return (p);
6295}
6296
6297void
6298arc_remove_prune_callback(arc_prune_t *p)
6299{
4442f60d 6300 boolean_t wait = B_FALSE;
ab26409d
BB
6301 mutex_enter(&arc_prune_mtx);
6302 list_remove(&arc_prune_list, p);
4442f60d
CC
6303 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6304 wait = B_TRUE;
ab26409d 6305 mutex_exit(&arc_prune_mtx);
4442f60d
CC
6306
6307 /* wait for arc_prune_task to finish */
6308 if (wait)
6309 taskq_wait_outstanding(arc_prune_taskq, 0);
6310 ASSERT0(refcount_count(&p->p_refcnt));
6311 refcount_destroy(&p->p_refcnt);
6312 kmem_free(p, sizeof (*p));
ab26409d
BB
6313}
6314
df4474f9
MA
6315/*
6316 * Notify the arc that a block was freed, and thus will never be used again.
6317 */
6318void
6319arc_freed(spa_t *spa, const blkptr_t *bp)
6320{
6321 arc_buf_hdr_t *hdr;
6322 kmutex_t *hash_lock;
6323 uint64_t guid = spa_load_guid(spa);
6324
9b67f605
MA
6325 ASSERT(!BP_IS_EMBEDDED(bp));
6326
6327 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
6328 if (hdr == NULL)
6329 return;
df4474f9 6330
d3c2ae1c
GW
6331 /*
6332 * We might be trying to free a block that is still doing I/O
6333 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6334 * dmu_sync-ed block). If this block is being prefetched, then it
6335 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6336 * until the I/O completes. A block may also have a reference if it is
6337 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6338 * have written the new block to its final resting place on disk but
6339 * without the dedup flag set. This would have left the hdr in the MRU
6340 * state and discoverable. When the txg finally syncs it detects that
6341 * the block was overridden in open context and issues an override I/O.
6342 * Since this is a dedup block, the override I/O will determine if the
6343 * block is already in the DDT. If so, then it will replace the io_bp
6344 * with the bp from the DDT and allow the I/O to finish. When the I/O
6345 * reaches the done callback, dbuf_write_override_done, it will
6346 * check to see if the io_bp and io_bp_override are identical.
6347 * If they are not, then it indicates that the bp was replaced with
6348 * the bp in the DDT and the override bp is freed. This allows
6349 * us to arrive here with a reference on a block that is being
6350 * freed. So if we have an I/O in progress, or a reference to
6351 * this hdr, then we don't destroy the hdr.
6352 */
6353 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
6354 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
6355 arc_change_state(arc_anon, hdr, hash_lock);
6356 arc_hdr_destroy(hdr);
df4474f9 6357 mutex_exit(hash_lock);
bd089c54 6358 } else {
d3c2ae1c 6359 mutex_exit(hash_lock);
34dc7c2f 6360 }
34dc7c2f 6361
34dc7c2f
BB
6362}
6363
6364/*
e49f1e20
WA
6365 * Release this buffer from the cache, making it an anonymous buffer. This
6366 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 6367 * If the buffer has more than one reference, we must make
b128c09f 6368 * a new hdr for the buffer.
34dc7c2f
BB
6369 */
6370void
6371arc_release(arc_buf_t *buf, void *tag)
6372{
b9541d6b 6373 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 6374
428870ff 6375 /*
ca0bf58d 6376 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
6377 * 0 || it's the dnode file), then it must be syncing context.
6378 * But we don't know that information at this level.
6379 */
6380
6381 mutex_enter(&buf->b_evict_lock);
b128c09f 6382
ca0bf58d
PS
6383 ASSERT(HDR_HAS_L1HDR(hdr));
6384
b9541d6b
CW
6385 /*
6386 * We don't grab the hash lock prior to this check, because if
6387 * the buffer's header is in the arc_anon state, it won't be
6388 * linked into the hash table.
6389 */
6390 if (hdr->b_l1hdr.b_state == arc_anon) {
6391 mutex_exit(&buf->b_evict_lock);
6392 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6393 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6394 ASSERT(!HDR_HAS_L2HDR(hdr));
d3c2ae1c 6395 ASSERT(HDR_EMPTY(hdr));
34dc7c2f 6396
d3c2ae1c 6397 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
b9541d6b
CW
6398 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6399 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6400
b9541d6b 6401 hdr->b_l1hdr.b_arc_access = 0;
d3c2ae1c
GW
6402
6403 /*
6404 * If the buf is being overridden then it may already
6405 * have a hdr that is not empty.
6406 */
6407 buf_discard_identity(hdr);
b9541d6b
CW
6408 arc_buf_thaw(buf);
6409
6410 return;
34dc7c2f
BB
6411 }
6412
1c27024e 6413 kmutex_t *hash_lock = HDR_LOCK(hdr);
b9541d6b
CW
6414 mutex_enter(hash_lock);
6415
6416 /*
6417 * This assignment is only valid as long as the hash_lock is
6418 * held, we must be careful not to reference state or the
6419 * b_state field after dropping the lock.
6420 */
1c27024e 6421 arc_state_t *state = hdr->b_l1hdr.b_state;
b9541d6b
CW
6422 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6423 ASSERT3P(state, !=, arc_anon);
6424
6425 /* this buffer is not on any list */
2aa34383 6426 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
b9541d6b
CW
6427
6428 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 6429 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
6430
6431 /*
d962d5da
PS
6432 * We have to recheck this conditional again now that
6433 * we're holding the l2ad_mtx to prevent a race with
6434 * another thread which might be concurrently calling
6435 * l2arc_evict(). In that case, l2arc_evict() might have
6436 * destroyed the header's L2 portion as we were waiting
6437 * to acquire the l2ad_mtx.
ca0bf58d 6438 */
d962d5da
PS
6439 if (HDR_HAS_L2HDR(hdr))
6440 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 6441
b9541d6b 6442 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
6443 }
6444
34dc7c2f
BB
6445 /*
6446 * Do we have more than one buf?
6447 */
d3c2ae1c 6448 if (hdr->b_l1hdr.b_bufcnt > 1) {
34dc7c2f 6449 arc_buf_hdr_t *nhdr;
d164b209 6450 uint64_t spa = hdr->b_spa;
d3c2ae1c
GW
6451 uint64_t psize = HDR_GET_PSIZE(hdr);
6452 uint64_t lsize = HDR_GET_LSIZE(hdr);
b5256303
TC
6453 boolean_t protected = HDR_PROTECTED(hdr);
6454 enum zio_compress compress = arc_hdr_get_compress(hdr);
b9541d6b 6455 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c 6456 VERIFY3U(hdr->b_type, ==, type);
34dc7c2f 6457
b9541d6b 6458 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
d3c2ae1c
GW
6459 (void) remove_reference(hdr, hash_lock, tag);
6460
524b4217 6461 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 6462 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
524b4217
DK
6463 ASSERT(ARC_BUF_LAST(buf));
6464 }
d3c2ae1c 6465
34dc7c2f 6466 /*
428870ff 6467 * Pull the data off of this hdr and attach it to
d3c2ae1c
GW
6468 * a new anonymous hdr. Also find the last buffer
6469 * in the hdr's buffer list.
34dc7c2f 6470 */
a7004725 6471 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 6472 ASSERT3P(lastbuf, !=, NULL);
34dc7c2f 6473
d3c2ae1c
GW
6474 /*
6475 * If the current arc_buf_t and the hdr are sharing their data
524b4217 6476 * buffer, then we must stop sharing that block.
d3c2ae1c
GW
6477 */
6478 if (arc_buf_is_shared(buf)) {
6479 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
d3c2ae1c
GW
6480 VERIFY(!arc_buf_is_shared(lastbuf));
6481
6482 /*
6483 * First, sever the block sharing relationship between
a7004725 6484 * buf and the arc_buf_hdr_t.
d3c2ae1c
GW
6485 */
6486 arc_unshare_buf(hdr, buf);
2aa34383
DK
6487
6488 /*
a6255b7f 6489 * Now we need to recreate the hdr's b_pabd. Since we
524b4217 6490 * have lastbuf handy, we try to share with it, but if
a6255b7f 6491 * we can't then we allocate a new b_pabd and copy the
524b4217 6492 * data from buf into it.
2aa34383 6493 */
524b4217
DK
6494 if (arc_can_share(hdr, lastbuf)) {
6495 arc_share_buf(hdr, lastbuf);
6496 } else {
b5256303 6497 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
6498 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6499 buf->b_data, psize);
2aa34383 6500 }
d3c2ae1c
GW
6501 VERIFY3P(lastbuf->b_data, !=, NULL);
6502 } else if (HDR_SHARED_DATA(hdr)) {
2aa34383
DK
6503 /*
6504 * Uncompressed shared buffers are always at the end
6505 * of the list. Compressed buffers don't have the
6506 * same requirements. This makes it hard to
6507 * simply assert that the lastbuf is shared so
6508 * we rely on the hdr's compression flags to determine
6509 * if we have a compressed, shared buffer.
6510 */
6511 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 6512 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2aa34383 6513 ASSERT(!ARC_BUF_SHARED(buf));
d3c2ae1c 6514 }
b5256303
TC
6515
6516 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
b9541d6b 6517 ASSERT3P(state, !=, arc_l2c_only);
36da08ef 6518
d3c2ae1c 6519 (void) refcount_remove_many(&state->arcs_size,
2aa34383 6520 arc_buf_size(buf), buf);
36da08ef 6521
b9541d6b 6522 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
b9541d6b 6523 ASSERT3P(state, !=, arc_l2c_only);
d3c2ae1c 6524 (void) refcount_remove_many(&state->arcs_esize[type],
2aa34383 6525 arc_buf_size(buf), buf);
34dc7c2f 6526 }
1eb5bfa3 6527
d3c2ae1c 6528 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303
TC
6529 if (ARC_BUF_ENCRYPTED(buf))
6530 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6531
34dc7c2f 6532 arc_cksum_verify(buf);
498877ba 6533 arc_buf_unwatch(buf);
34dc7c2f 6534
f486f584
TC
6535 /* if this is the last uncompressed buf free the checksum */
6536 if (!arc_hdr_has_uncompressed_buf(hdr))
6537 arc_cksum_free(hdr);
6538
34dc7c2f
BB
6539 mutex_exit(hash_lock);
6540
d3c2ae1c 6541 /*
a6255b7f 6542 * Allocate a new hdr. The new hdr will contain a b_pabd
d3c2ae1c
GW
6543 * buffer which will be freed in arc_write().
6544 */
b5256303
TC
6545 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6546 compress, type, HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6547 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6548 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6549 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
6550 VERIFY3U(nhdr->b_type, ==, type);
6551 ASSERT(!HDR_SHARED_DATA(nhdr));
b9541d6b 6552
d3c2ae1c
GW
6553 nhdr->b_l1hdr.b_buf = buf;
6554 nhdr->b_l1hdr.b_bufcnt = 1;
b5256303
TC
6555 if (ARC_BUF_ENCRYPTED(buf))
6556 nhdr->b_crypt_hdr.b_ebufcnt = 1;
b9541d6b
CW
6557 nhdr->b_l1hdr.b_mru_hits = 0;
6558 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6559 nhdr->b_l1hdr.b_mfu_hits = 0;
6560 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6561 nhdr->b_l1hdr.b_l2_hits = 0;
b9541d6b 6562 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 6563 buf->b_hdr = nhdr;
d3c2ae1c 6564
428870ff 6565 mutex_exit(&buf->b_evict_lock);
d3c2ae1c
GW
6566 (void) refcount_add_many(&arc_anon->arcs_size,
6567 HDR_GET_LSIZE(nhdr), buf);
34dc7c2f 6568 } else {
428870ff 6569 mutex_exit(&buf->b_evict_lock);
b9541d6b 6570 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
6571 /* protected by hash lock, or hdr is on arc_anon */
6572 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 6573 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
6574 hdr->b_l1hdr.b_mru_hits = 0;
6575 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6576 hdr->b_l1hdr.b_mfu_hits = 0;
6577 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6578 hdr->b_l1hdr.b_l2_hits = 0;
6579 arc_change_state(arc_anon, hdr, hash_lock);
6580 hdr->b_l1hdr.b_arc_access = 0;
34dc7c2f 6581
b5256303 6582 mutex_exit(hash_lock);
428870ff 6583 buf_discard_identity(hdr);
34dc7c2f
BB
6584 arc_buf_thaw(buf);
6585 }
34dc7c2f
BB
6586}
6587
6588int
6589arc_released(arc_buf_t *buf)
6590{
b128c09f
BB
6591 int released;
6592
428870ff 6593 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
6594 released = (buf->b_data != NULL &&
6595 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 6596 mutex_exit(&buf->b_evict_lock);
b128c09f 6597 return (released);
34dc7c2f
BB
6598}
6599
34dc7c2f
BB
6600#ifdef ZFS_DEBUG
6601int
6602arc_referenced(arc_buf_t *buf)
6603{
b128c09f
BB
6604 int referenced;
6605
428870ff 6606 mutex_enter(&buf->b_evict_lock);
b9541d6b 6607 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 6608 mutex_exit(&buf->b_evict_lock);
b128c09f 6609 return (referenced);
34dc7c2f
BB
6610}
6611#endif
6612
6613static void
6614arc_write_ready(zio_t *zio)
6615{
6616 arc_write_callback_t *callback = zio->io_private;
6617 arc_buf_t *buf = callback->awcb_buf;
6618 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
6619 blkptr_t *bp = zio->io_bp;
6620 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
a6255b7f 6621 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 6622
b9541d6b
CW
6623 ASSERT(HDR_HAS_L1HDR(hdr));
6624 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
d3c2ae1c 6625 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
b128c09f 6626
34dc7c2f 6627 /*
d3c2ae1c
GW
6628 * If we're reexecuting this zio because the pool suspended, then
6629 * cleanup any state that was previously set the first time the
2aa34383 6630 * callback was invoked.
34dc7c2f 6631 */
d3c2ae1c
GW
6632 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6633 arc_cksum_free(hdr);
6634 arc_buf_unwatch(buf);
a6255b7f 6635 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 6636 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
6637 arc_unshare_buf(hdr, buf);
6638 } else {
b5256303 6639 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 6640 }
34dc7c2f 6641 }
b5256303
TC
6642
6643 if (HDR_HAS_RABD(hdr))
6644 arc_hdr_free_abd(hdr, B_TRUE);
34dc7c2f 6645 }
a6255b7f 6646 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 6647 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6648 ASSERT(!HDR_SHARED_DATA(hdr));
6649 ASSERT(!arc_buf_is_shared(buf));
6650
6651 callback->awcb_ready(zio, buf, callback->awcb_private);
6652
6653 if (HDR_IO_IN_PROGRESS(hdr))
6654 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6655
d3c2ae1c
GW
6656 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6657
b5256303
TC
6658 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6659 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6660
6661 if (BP_IS_PROTECTED(bp)) {
6662 /* ZIL blocks are written through zio_rewrite */
6663 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6664 ASSERT(HDR_PROTECTED(hdr));
6665
6666 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6667 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6668 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6669 hdr->b_crypt_hdr.b_iv);
6670 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6671 }
6672
6673 /*
6674 * If this block was written for raw encryption but the zio layer
6675 * ended up only authenticating it, adjust the buffer flags now.
6676 */
6677 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6678 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6679 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6680 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6681 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6682 }
6683
6684 /* this must be done after the buffer flags are adjusted */
6685 arc_cksum_compute(buf);
6686
1c27024e 6687 enum zio_compress compress;
b5256303 6688 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
d3c2ae1c
GW
6689 compress = ZIO_COMPRESS_OFF;
6690 } else {
b5256303
TC
6691 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6692 compress = BP_GET_COMPRESS(bp);
d3c2ae1c
GW
6693 }
6694 HDR_SET_PSIZE(hdr, psize);
6695 arc_hdr_set_compress(hdr, compress);
6696
4807c0ba
TC
6697 if (zio->io_error != 0 || psize == 0)
6698 goto out;
6699
d3c2ae1c 6700 /*
b5256303
TC
6701 * Fill the hdr with data. If the buffer is encrypted we have no choice
6702 * but to copy the data into b_radb. If the hdr is compressed, the data
6703 * we want is available from the zio, otherwise we can take it from
6704 * the buf.
a6255b7f
DQ
6705 *
6706 * We might be able to share the buf's data with the hdr here. However,
6707 * doing so would cause the ARC to be full of linear ABDs if we write a
6708 * lot of shareable data. As a compromise, we check whether scattered
6709 * ABDs are allowed, and assume that if they are then the user wants
6710 * the ARC to be primarily filled with them regardless of the data being
6711 * written. Therefore, if they're allowed then we allocate one and copy
6712 * the data into it; otherwise, we share the data directly if we can.
d3c2ae1c 6713 */
b5256303 6714 if (ARC_BUF_ENCRYPTED(buf)) {
4807c0ba 6715 ASSERT3U(psize, >, 0);
b5256303
TC
6716 ASSERT(ARC_BUF_COMPRESSED(buf));
6717 arc_hdr_alloc_abd(hdr, B_TRUE);
6718 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6719 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
a6255b7f
DQ
6720 /*
6721 * Ideally, we would always copy the io_abd into b_pabd, but the
6722 * user may have disabled compressed ARC, thus we must check the
6723 * hdr's compression setting rather than the io_bp's.
6724 */
b5256303 6725 if (BP_IS_ENCRYPTED(bp)) {
a6255b7f 6726 ASSERT3U(psize, >, 0);
b5256303
TC
6727 arc_hdr_alloc_abd(hdr, B_TRUE);
6728 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6729 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6730 !ARC_BUF_COMPRESSED(buf)) {
6731 ASSERT3U(psize, >, 0);
6732 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
6733 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6734 } else {
6735 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
b5256303 6736 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
6737 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6738 arc_buf_size(buf));
6739 }
d3c2ae1c 6740 } else {
a6255b7f 6741 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
2aa34383 6742 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
d3c2ae1c 6743 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
d3c2ae1c 6744
d3c2ae1c 6745 arc_share_buf(hdr, buf);
d3c2ae1c 6746 }
a6255b7f 6747
4807c0ba 6748out:
b5256303 6749 arc_hdr_verify(hdr, bp);
a6255b7f 6750 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6751}
6752
bc77ba73
PD
6753static void
6754arc_write_children_ready(zio_t *zio)
6755{
6756 arc_write_callback_t *callback = zio->io_private;
6757 arc_buf_t *buf = callback->awcb_buf;
6758
6759 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6760}
6761
e8b96c60
MA
6762/*
6763 * The SPA calls this callback for each physical write that happens on behalf
6764 * of a logical write. See the comment in dbuf_write_physdone() for details.
6765 */
6766static void
6767arc_write_physdone(zio_t *zio)
6768{
6769 arc_write_callback_t *cb = zio->io_private;
6770 if (cb->awcb_physdone != NULL)
6771 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6772}
6773
34dc7c2f
BB
6774static void
6775arc_write_done(zio_t *zio)
6776{
6777 arc_write_callback_t *callback = zio->io_private;
6778 arc_buf_t *buf = callback->awcb_buf;
6779 arc_buf_hdr_t *hdr = buf->b_hdr;
6780
d3c2ae1c 6781 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
428870ff
BB
6782
6783 if (zio->io_error == 0) {
d3c2ae1c
GW
6784 arc_hdr_verify(hdr, zio->io_bp);
6785
9b67f605 6786 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
6787 buf_discard_identity(hdr);
6788 } else {
6789 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6790 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 6791 }
428870ff 6792 } else {
d3c2ae1c 6793 ASSERT(HDR_EMPTY(hdr));
428870ff 6794 }
34dc7c2f 6795
34dc7c2f 6796 /*
9b67f605
MA
6797 * If the block to be written was all-zero or compressed enough to be
6798 * embedded in the BP, no write was performed so there will be no
6799 * dva/birth/checksum. The buffer must therefore remain anonymous
6800 * (and uncached).
34dc7c2f 6801 */
d3c2ae1c 6802 if (!HDR_EMPTY(hdr)) {
34dc7c2f
BB
6803 arc_buf_hdr_t *exists;
6804 kmutex_t *hash_lock;
6805
524b4217 6806 ASSERT3U(zio->io_error, ==, 0);
428870ff 6807
34dc7c2f
BB
6808 arc_cksum_verify(buf);
6809
6810 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 6811 if (exists != NULL) {
34dc7c2f
BB
6812 /*
6813 * This can only happen if we overwrite for
6814 * sync-to-convergence, because we remove
6815 * buffers from the hash table when we arc_free().
6816 */
428870ff
BB
6817 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6818 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6819 panic("bad overwrite, hdr=%p exists=%p",
6820 (void *)hdr, (void *)exists);
b9541d6b
CW
6821 ASSERT(refcount_is_zero(
6822 &exists->b_l1hdr.b_refcnt));
428870ff
BB
6823 arc_change_state(arc_anon, exists, hash_lock);
6824 mutex_exit(hash_lock);
6825 arc_hdr_destroy(exists);
6826 exists = buf_hash_insert(hdr, &hash_lock);
6827 ASSERT3P(exists, ==, NULL);
03c6040b
GW
6828 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6829 /* nopwrite */
6830 ASSERT(zio->io_prop.zp_nopwrite);
6831 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6832 panic("bad nopwrite, hdr=%p exists=%p",
6833 (void *)hdr, (void *)exists);
428870ff
BB
6834 } else {
6835 /* Dedup */
d3c2ae1c 6836 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
b9541d6b 6837 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
6838 ASSERT(BP_GET_DEDUP(zio->io_bp));
6839 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6840 }
34dc7c2f 6841 }
d3c2ae1c 6842 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
b128c09f 6843 /* if it's not anon, we are doing a scrub */
b9541d6b 6844 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 6845 arc_access(hdr, hash_lock);
34dc7c2f 6846 mutex_exit(hash_lock);
34dc7c2f 6847 } else {
d3c2ae1c 6848 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f
BB
6849 }
6850
b9541d6b 6851 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 6852 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f 6853
a6255b7f 6854 abd_put(zio->io_abd);
34dc7c2f
BB
6855 kmem_free(callback, sizeof (arc_write_callback_t));
6856}
6857
6858zio_t *
428870ff 6859arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
d3c2ae1c 6860 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
b5256303
TC
6861 const zio_prop_t *zp, arc_write_done_func_t *ready,
6862 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
6863 arc_write_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 6864 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
6865{
6866 arc_buf_hdr_t *hdr = buf->b_hdr;
6867 arc_write_callback_t *callback;
b128c09f 6868 zio_t *zio;
82644107 6869 zio_prop_t localprop = *zp;
34dc7c2f 6870
d3c2ae1c
GW
6871 ASSERT3P(ready, !=, NULL);
6872 ASSERT3P(done, !=, NULL);
34dc7c2f 6873 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b 6874 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c
GW
6875 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6876 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
b128c09f 6877 if (l2arc)
d3c2ae1c 6878 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
82644107 6879
b5256303
TC
6880 if (ARC_BUF_ENCRYPTED(buf)) {
6881 ASSERT(ARC_BUF_COMPRESSED(buf));
6882 localprop.zp_encrypt = B_TRUE;
6883 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6884 localprop.zp_byteorder =
6885 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
6886 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
6887 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
6888 ZIO_DATA_SALT_LEN);
6889 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
6890 ZIO_DATA_IV_LEN);
6891 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
6892 ZIO_DATA_MAC_LEN);
6893 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
6894 localprop.zp_nopwrite = B_FALSE;
6895 localprop.zp_copies =
6896 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
6897 }
2aa34383 6898 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
6899 } else if (ARC_BUF_COMPRESSED(buf)) {
6900 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6901 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6902 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2aa34383 6903 }
79c76d5b 6904 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 6905 callback->awcb_ready = ready;
bc77ba73 6906 callback->awcb_children_ready = children_ready;
e8b96c60 6907 callback->awcb_physdone = physdone;
34dc7c2f
BB
6908 callback->awcb_done = done;
6909 callback->awcb_private = private;
6910 callback->awcb_buf = buf;
b128c09f 6911
d3c2ae1c 6912 /*
a6255b7f 6913 * The hdr's b_pabd is now stale, free it now. A new data block
d3c2ae1c
GW
6914 * will be allocated when the zio pipeline calls arc_write_ready().
6915 */
a6255b7f 6916 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
6917 /*
6918 * If the buf is currently sharing the data block with
6919 * the hdr then we need to break that relationship here.
6920 * The hdr will remain with a NULL data pointer and the
6921 * buf will take sole ownership of the block.
6922 */
6923 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
6924 arc_unshare_buf(hdr, buf);
6925 } else {
b5256303 6926 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c
GW
6927 }
6928 VERIFY3P(buf->b_data, !=, NULL);
d3c2ae1c 6929 }
b5256303
TC
6930
6931 if (HDR_HAS_RABD(hdr))
6932 arc_hdr_free_abd(hdr, B_TRUE);
6933
6934 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6935
d3c2ae1c 6936 ASSERT(!arc_buf_is_shared(buf));
a6255b7f 6937 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 6938
a6255b7f
DQ
6939 zio = zio_write(pio, spa, txg, bp,
6940 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
82644107 6941 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
bc77ba73
PD
6942 (children_ready != NULL) ? arc_write_children_ready : NULL,
6943 arc_write_physdone, arc_write_done, callback,
e8b96c60 6944 priority, zio_flags, zb);
34dc7c2f
BB
6945
6946 return (zio);
6947}
6948
34dc7c2f 6949static int
e8b96c60 6950arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
6951{
6952#ifdef _KERNEL
70f02287 6953 uint64_t available_memory = arc_free_memory();
7e8bddd0
BB
6954 static uint64_t page_load = 0;
6955 static uint64_t last_txg = 0;
0c5493d4 6956
70f02287 6957#if defined(_ILP32)
9edb3695
BB
6958 available_memory =
6959 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6960#endif
6961
6962 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
ca67b33a
MA
6963 return (0);
6964
7e8bddd0
BB
6965 if (txg > last_txg) {
6966 last_txg = txg;
6967 page_load = 0;
6968 }
7e8bddd0
BB
6969 /*
6970 * If we are in pageout, we know that memory is already tight,
6971 * the arc is already going to be evicting, so we just want to
6972 * continue to let page writes occur as quickly as possible.
6973 */
6974 if (current_is_kswapd()) {
70f02287 6975 if (page_load > MAX(arc_sys_free / 4, available_memory) / 4) {
7e8bddd0
BB
6976 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6977 return (SET_ERROR(ERESTART));
6978 }
6979 /* Note: reserve is inflated, so we deflate */
6980 page_load += reserve / 8;
6981 return (0);
6982 } else if (page_load > 0 && arc_reclaim_needed()) {
ca67b33a 6983 /* memory is low, delay before restarting */
34dc7c2f 6984 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 6985 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 6986 return (SET_ERROR(EAGAIN));
34dc7c2f 6987 }
7e8bddd0 6988 page_load = 0;
34dc7c2f
BB
6989#endif
6990 return (0);
6991}
6992
6993void
6994arc_tempreserve_clear(uint64_t reserve)
6995{
6996 atomic_add_64(&arc_tempreserve, -reserve);
6997 ASSERT((int64_t)arc_tempreserve >= 0);
6998}
6999
7000int
7001arc_tempreserve_space(uint64_t reserve, uint64_t txg)
7002{
7003 int error;
9babb374 7004 uint64_t anon_size;
34dc7c2f 7005
1b8951b3
TC
7006 if (!arc_no_grow &&
7007 reserve > arc_c/4 &&
7008 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 7009 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
7010
7011 /*
7012 * Throttle when the calculated memory footprint for the TXG
7013 * exceeds the target ARC size.
7014 */
570827e1
BB
7015 if (reserve > arc_c) {
7016 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 7017 return (SET_ERROR(ERESTART));
570827e1 7018 }
34dc7c2f 7019
9babb374
BB
7020 /*
7021 * Don't count loaned bufs as in flight dirty data to prevent long
7022 * network delays from blocking transactions that are ready to be
7023 * assigned to a txg.
7024 */
a7004725
DK
7025
7026 /* assert that it has not wrapped around */
7027 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7028
36da08ef
PS
7029 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
7030 arc_loaned_bytes), 0);
9babb374 7031
34dc7c2f
BB
7032 /*
7033 * Writes will, almost always, require additional memory allocations
d3cc8b15 7034 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
7035 * make sure that there is sufficient available memory for this.
7036 */
e8b96c60
MA
7037 error = arc_memory_throttle(reserve, txg);
7038 if (error != 0)
34dc7c2f
BB
7039 return (error);
7040
7041 /*
7042 * Throttle writes when the amount of dirty data in the cache
7043 * gets too large. We try to keep the cache less than half full
7044 * of dirty blocks so that our sync times don't grow too large.
7045 * Note: if two requests come in concurrently, we might let them
7046 * both succeed, when one of them should fail. Not a huge deal.
7047 */
9babb374
BB
7048
7049 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
7050 anon_size > arc_c / 4) {
d3c2ae1c
GW
7051 uint64_t meta_esize =
7052 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7053 uint64_t data_esize =
7054 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
34dc7c2f
BB
7055 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7056 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
d3c2ae1c
GW
7057 arc_tempreserve >> 10, meta_esize >> 10,
7058 data_esize >> 10, reserve >> 10, arc_c >> 10);
570827e1 7059 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 7060 return (SET_ERROR(ERESTART));
34dc7c2f
BB
7061 }
7062 atomic_add_64(&arc_tempreserve, reserve);
7063 return (0);
7064}
7065
13be560d
BB
7066static void
7067arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7068 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7069{
36da08ef 7070 size->value.ui64 = refcount_count(&state->arcs_size);
d3c2ae1c
GW
7071 evict_data->value.ui64 =
7072 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7073 evict_metadata->value.ui64 =
7074 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
13be560d
BB
7075}
7076
7077static int
7078arc_kstat_update(kstat_t *ksp, int rw)
7079{
7080 arc_stats_t *as = ksp->ks_data;
7081
7082 if (rw == KSTAT_WRITE) {
ecb2b7dc 7083 return (SET_ERROR(EACCES));
13be560d
BB
7084 } else {
7085 arc_kstat_update_state(arc_anon,
7086 &as->arcstat_anon_size,
500445c0
PS
7087 &as->arcstat_anon_evictable_data,
7088 &as->arcstat_anon_evictable_metadata);
13be560d
BB
7089 arc_kstat_update_state(arc_mru,
7090 &as->arcstat_mru_size,
500445c0
PS
7091 &as->arcstat_mru_evictable_data,
7092 &as->arcstat_mru_evictable_metadata);
13be560d
BB
7093 arc_kstat_update_state(arc_mru_ghost,
7094 &as->arcstat_mru_ghost_size,
500445c0
PS
7095 &as->arcstat_mru_ghost_evictable_data,
7096 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
7097 arc_kstat_update_state(arc_mfu,
7098 &as->arcstat_mfu_size,
500445c0
PS
7099 &as->arcstat_mfu_evictable_data,
7100 &as->arcstat_mfu_evictable_metadata);
fc41c640 7101 arc_kstat_update_state(arc_mfu_ghost,
13be560d 7102 &as->arcstat_mfu_ghost_size,
500445c0
PS
7103 &as->arcstat_mfu_ghost_evictable_data,
7104 &as->arcstat_mfu_ghost_evictable_metadata);
70f02287
BB
7105
7106 as->arcstat_memory_all_bytes.value.ui64 =
7107 arc_all_memory();
7108 as->arcstat_memory_free_bytes.value.ui64 =
7109 arc_free_memory();
7110 as->arcstat_memory_available_bytes.value.i64 =
7111 arc_available_memory();
13be560d
BB
7112 }
7113
7114 return (0);
7115}
7116
ca0bf58d
PS
7117/*
7118 * This function *must* return indices evenly distributed between all
7119 * sublists of the multilist. This is needed due to how the ARC eviction
7120 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7121 * distributed between all sublists and uses this assumption when
7122 * deciding which sublist to evict from and how much to evict from it.
7123 */
7124unsigned int
7125arc_state_multilist_index_func(multilist_t *ml, void *obj)
7126{
7127 arc_buf_hdr_t *hdr = obj;
7128
7129 /*
7130 * We rely on b_dva to generate evenly distributed index
7131 * numbers using buf_hash below. So, as an added precaution,
7132 * let's make sure we never add empty buffers to the arc lists.
7133 */
d3c2ae1c 7134 ASSERT(!HDR_EMPTY(hdr));
ca0bf58d
PS
7135
7136 /*
7137 * The assumption here, is the hash value for a given
7138 * arc_buf_hdr_t will remain constant throughout its lifetime
7139 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7140 * Thus, we don't need to store the header's sublist index
7141 * on insertion, as this index can be recalculated on removal.
7142 *
7143 * Also, the low order bits of the hash value are thought to be
7144 * distributed evenly. Otherwise, in the case that the multilist
7145 * has a power of two number of sublists, each sublists' usage
7146 * would not be evenly distributed.
7147 */
7148 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7149 multilist_get_num_sublists(ml));
7150}
7151
ca67b33a
MA
7152/*
7153 * Called during module initialization and periodically thereafter to
7154 * apply reasonable changes to the exposed performance tunings. Non-zero
7155 * zfs_* values which differ from the currently set values will be applied.
7156 */
7157static void
7158arc_tuning_update(void)
7159{
b8a97fb1 7160 uint64_t allmem = arc_all_memory();
7161 unsigned long limit;
9edb3695 7162
ca67b33a
MA
7163 /* Valid range: 64M - <all physical memory> */
7164 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
9edb3695 7165 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
ca67b33a
MA
7166 (zfs_arc_max > arc_c_min)) {
7167 arc_c_max = zfs_arc_max;
7168 arc_c = arc_c_max;
7169 arc_p = (arc_c >> 1);
b8a97fb1 7170 if (arc_meta_limit > arc_c_max)
7171 arc_meta_limit = arc_c_max;
7172 if (arc_dnode_limit > arc_meta_limit)
7173 arc_dnode_limit = arc_meta_limit;
ca67b33a
MA
7174 }
7175
7176 /* Valid range: 32M - <arc_c_max> */
7177 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7178 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7179 (zfs_arc_min <= arc_c_max)) {
7180 arc_c_min = zfs_arc_min;
7181 arc_c = MAX(arc_c, arc_c_min);
7182 }
7183
7184 /* Valid range: 16M - <arc_c_max> */
7185 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7186 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7187 (zfs_arc_meta_min <= arc_c_max)) {
7188 arc_meta_min = zfs_arc_meta_min;
b8a97fb1 7189 if (arc_meta_limit < arc_meta_min)
7190 arc_meta_limit = arc_meta_min;
7191 if (arc_dnode_limit < arc_meta_min)
7192 arc_dnode_limit = arc_meta_min;
ca67b33a
MA
7193 }
7194
7195 /* Valid range: <arc_meta_min> - <arc_c_max> */
b8a97fb1 7196 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7197 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7198 if ((limit != arc_meta_limit) &&
7199 (limit >= arc_meta_min) &&
7200 (limit <= arc_c_max))
7201 arc_meta_limit = limit;
7202
7203 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7204 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7205 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7206 if ((limit != arc_dnode_limit) &&
7207 (limit >= arc_meta_min) &&
7208 (limit <= arc_meta_limit))
7209 arc_dnode_limit = limit;
25458cbe 7210
ca67b33a
MA
7211 /* Valid range: 1 - N */
7212 if (zfs_arc_grow_retry)
7213 arc_grow_retry = zfs_arc_grow_retry;
7214
7215 /* Valid range: 1 - N */
7216 if (zfs_arc_shrink_shift) {
7217 arc_shrink_shift = zfs_arc_shrink_shift;
7218 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7219 }
7220
728d6ae9
BB
7221 /* Valid range: 1 - N */
7222 if (zfs_arc_p_min_shift)
7223 arc_p_min_shift = zfs_arc_p_min_shift;
7224
ca67b33a
MA
7225 /* Valid range: 1 - N ticks */
7226 if (zfs_arc_min_prefetch_lifespan)
7227 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
11f552fa 7228
7e8bddd0
BB
7229 /* Valid range: 0 - 100 */
7230 if ((zfs_arc_lotsfree_percent >= 0) &&
7231 (zfs_arc_lotsfree_percent <= 100))
7232 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7233
11f552fa
BB
7234 /* Valid range: 0 - <all physical memory> */
7235 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
9edb3695 7236 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7e8bddd0 7237
ca67b33a
MA
7238}
7239
d3c2ae1c
GW
7240static void
7241arc_state_init(void)
7242{
7243 arc_anon = &ARC_anon;
7244 arc_mru = &ARC_mru;
7245 arc_mru_ghost = &ARC_mru_ghost;
7246 arc_mfu = &ARC_mfu;
7247 arc_mfu_ghost = &ARC_mfu_ghost;
7248 arc_l2c_only = &ARC_l2c_only;
7249
64fc7762
MA
7250 arc_mru->arcs_list[ARC_BUFC_METADATA] =
7251 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7252 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7253 arc_state_multilist_index_func);
64fc7762
MA
7254 arc_mru->arcs_list[ARC_BUFC_DATA] =
7255 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7256 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7257 arc_state_multilist_index_func);
64fc7762
MA
7258 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7259 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7260 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7261 arc_state_multilist_index_func);
64fc7762
MA
7262 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7263 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7264 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7265 arc_state_multilist_index_func);
64fc7762
MA
7266 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7267 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7268 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7269 arc_state_multilist_index_func);
64fc7762
MA
7270 arc_mfu->arcs_list[ARC_BUFC_DATA] =
7271 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7272 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7273 arc_state_multilist_index_func);
64fc7762
MA
7274 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7275 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7276 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7277 arc_state_multilist_index_func);
64fc7762
MA
7278 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7279 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7280 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7281 arc_state_multilist_index_func);
64fc7762
MA
7282 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7283 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7284 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7285 arc_state_multilist_index_func);
64fc7762
MA
7286 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7287 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7288 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7289 arc_state_multilist_index_func);
d3c2ae1c
GW
7290
7291 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7292 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7293 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7294 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7295 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7296 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7297 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7298 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7299 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7300 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7301 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7302 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7303
7304 refcount_create(&arc_anon->arcs_size);
7305 refcount_create(&arc_mru->arcs_size);
7306 refcount_create(&arc_mru_ghost->arcs_size);
7307 refcount_create(&arc_mfu->arcs_size);
7308 refcount_create(&arc_mfu_ghost->arcs_size);
7309 refcount_create(&arc_l2c_only->arcs_size);
7310
7311 arc_anon->arcs_state = ARC_STATE_ANON;
7312 arc_mru->arcs_state = ARC_STATE_MRU;
7313 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7314 arc_mfu->arcs_state = ARC_STATE_MFU;
7315 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7316 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7317}
7318
7319static void
7320arc_state_fini(void)
7321{
7322 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7323 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7324 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7325 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7326 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7327 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7328 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7329 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7330 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7331 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7332 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7333 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7334
7335 refcount_destroy(&arc_anon->arcs_size);
7336 refcount_destroy(&arc_mru->arcs_size);
7337 refcount_destroy(&arc_mru_ghost->arcs_size);
7338 refcount_destroy(&arc_mfu->arcs_size);
7339 refcount_destroy(&arc_mfu_ghost->arcs_size);
7340 refcount_destroy(&arc_l2c_only->arcs_size);
7341
64fc7762
MA
7342 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7343 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7344 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7345 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7346 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7347 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7348 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7349 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7350 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7351 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
d3c2ae1c
GW
7352}
7353
7354uint64_t
e71cade6 7355arc_target_bytes(void)
d3c2ae1c 7356{
e71cade6 7357 return (arc_c);
d3c2ae1c
GW
7358}
7359
34dc7c2f
BB
7360void
7361arc_init(void)
7362{
9edb3695 7363 uint64_t percent, allmem = arc_all_memory();
ca67b33a 7364
ca0bf58d
PS
7365 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
7366 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
7367 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
7368
34dc7c2f 7369 /* Convert seconds to clock ticks */
ca67b33a 7370 arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f 7371
34dc7c2f 7372#ifdef _KERNEL
7cb67b45
BB
7373 /*
7374 * Register a shrinker to support synchronous (direct) memory
7375 * reclaim from the arc. This is done to prevent kswapd from
7376 * swapping out pages when it is preferable to shrink the arc.
7377 */
7378 spl_register_shrinker(&arc_shrinker);
11f552fa
BB
7379
7380 /* Set to 1/64 of all memory or a minimum of 512K */
9edb3695 7381 arc_sys_free = MAX(allmem / 64, (512 * 1024));
11f552fa 7382 arc_need_free = 0;
34dc7c2f
BB
7383#endif
7384
0a1f8cd9
TC
7385 /* Set max to 1/2 of all memory */
7386 arc_c_max = allmem / 2;
7387
4ce3c45a
BB
7388#ifdef _KERNEL
7389 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7390 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7391#else
ab5cbbd1
BB
7392 /*
7393 * In userland, there's only the memory pressure that we artificially
7394 * create (see arc_available_memory()). Don't let arc_c get too
7395 * small, because it can cause transactions to be larger than
7396 * arc_c, causing arc_tempreserve_space() to fail.
7397 */
0a1f8cd9 7398 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1
BB
7399#endif
7400
34dc7c2f
BB
7401 arc_c = arc_c_max;
7402 arc_p = (arc_c >> 1);
d3c2ae1c 7403 arc_size = 0;
34dc7c2f 7404
ca67b33a
MA
7405 /* Set min to 1/2 of arc_c_min */
7406 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7407 /* Initialize maximum observed usage to zero */
1834f2d8 7408 arc_meta_max = 0;
9907cc1c
G
7409 /*
7410 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7411 * arc_meta_min, and a ceiling of arc_c_max.
7412 */
7413 percent = MIN(zfs_arc_meta_limit_percent, 100);
7414 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7415 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7416 arc_dnode_limit = (percent * arc_meta_limit) / 100;
34dc7c2f 7417
ca67b33a
MA
7418 /* Apply user specified tunings */
7419 arc_tuning_update();
c52fca13 7420
34dc7c2f
BB
7421 /* if kmem_flags are set, lets try to use less memory */
7422 if (kmem_debugging())
7423 arc_c = arc_c / 2;
7424 if (arc_c < arc_c_min)
7425 arc_c = arc_c_min;
7426
d3c2ae1c 7427 arc_state_init();
34dc7c2f
BB
7428 buf_init();
7429
ab26409d
BB
7430 list_create(&arc_prune_list, sizeof (arc_prune_t),
7431 offsetof(arc_prune_t, p_node));
ab26409d 7432 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 7433
1229323d 7434 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
aa9af22c 7435 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 7436
d3c2ae1c
GW
7437 arc_reclaim_thread_exit = B_FALSE;
7438
34dc7c2f
BB
7439 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7440 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7441
7442 if (arc_ksp != NULL) {
7443 arc_ksp->ks_data = &arc_stats;
13be560d 7444 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
7445 kstat_install(arc_ksp);
7446 }
7447
ca67b33a 7448 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
1229323d 7449 TS_RUN, defclsyspri);
34dc7c2f 7450
d3c2ae1c 7451 arc_dead = B_FALSE;
b128c09f 7452 arc_warm = B_FALSE;
34dc7c2f 7453
e8b96c60
MA
7454 /*
7455 * Calculate maximum amount of dirty data per pool.
7456 *
7457 * If it has been set by a module parameter, take that.
7458 * Otherwise, use a percentage of physical memory defined by
7459 * zfs_dirty_data_max_percent (default 10%) with a cap at
e99932f7 7460 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
e8b96c60
MA
7461 */
7462 if (zfs_dirty_data_max_max == 0)
e99932f7
BB
7463 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7464 allmem * zfs_dirty_data_max_max_percent / 100);
e8b96c60
MA
7465
7466 if (zfs_dirty_data_max == 0) {
9edb3695 7467 zfs_dirty_data_max = allmem *
e8b96c60
MA
7468 zfs_dirty_data_max_percent / 100;
7469 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7470 zfs_dirty_data_max_max);
7471 }
34dc7c2f
BB
7472}
7473
7474void
7475arc_fini(void)
7476{
ab26409d
BB
7477 arc_prune_t *p;
7478
7cb67b45
BB
7479#ifdef _KERNEL
7480 spl_unregister_shrinker(&arc_shrinker);
7481#endif /* _KERNEL */
7482
ca0bf58d 7483 mutex_enter(&arc_reclaim_lock);
d3c2ae1c 7484 arc_reclaim_thread_exit = B_TRUE;
ca0bf58d
PS
7485 /*
7486 * The reclaim thread will set arc_reclaim_thread_exit back to
d3c2ae1c 7487 * B_FALSE when it is finished exiting; we're waiting for that.
ca0bf58d
PS
7488 */
7489 while (arc_reclaim_thread_exit) {
7490 cv_signal(&arc_reclaim_thread_cv);
7491 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
7492 }
7493 mutex_exit(&arc_reclaim_lock);
7494
d3c2ae1c
GW
7495 /* Use B_TRUE to ensure *all* buffers are evicted */
7496 arc_flush(NULL, B_TRUE);
34dc7c2f 7497
d3c2ae1c 7498 arc_dead = B_TRUE;
34dc7c2f
BB
7499
7500 if (arc_ksp != NULL) {
7501 kstat_delete(arc_ksp);
7502 arc_ksp = NULL;
7503 }
7504
f6046738
BB
7505 taskq_wait(arc_prune_taskq);
7506 taskq_destroy(arc_prune_taskq);
7507
ab26409d
BB
7508 mutex_enter(&arc_prune_mtx);
7509 while ((p = list_head(&arc_prune_list)) != NULL) {
7510 list_remove(&arc_prune_list, p);
7511 refcount_remove(&p->p_refcnt, &arc_prune_list);
7512 refcount_destroy(&p->p_refcnt);
7513 kmem_free(p, sizeof (*p));
7514 }
7515 mutex_exit(&arc_prune_mtx);
7516
7517 list_destroy(&arc_prune_list);
7518 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
7519 mutex_destroy(&arc_reclaim_lock);
7520 cv_destroy(&arc_reclaim_thread_cv);
7521 cv_destroy(&arc_reclaim_waiters_cv);
7522
d3c2ae1c 7523 arc_state_fini();
34dc7c2f 7524 buf_fini();
9babb374 7525
b9541d6b 7526 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
7527}
7528
7529/*
7530 * Level 2 ARC
7531 *
7532 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7533 * It uses dedicated storage devices to hold cached data, which are populated
7534 * using large infrequent writes. The main role of this cache is to boost
7535 * the performance of random read workloads. The intended L2ARC devices
7536 * include short-stroked disks, solid state disks, and other media with
7537 * substantially faster read latency than disk.
7538 *
7539 * +-----------------------+
7540 * | ARC |
7541 * +-----------------------+
7542 * | ^ ^
7543 * | | |
7544 * l2arc_feed_thread() arc_read()
7545 * | | |
7546 * | l2arc read |
7547 * V | |
7548 * +---------------+ |
7549 * | L2ARC | |
7550 * +---------------+ |
7551 * | ^ |
7552 * l2arc_write() | |
7553 * | | |
7554 * V | |
7555 * +-------+ +-------+
7556 * | vdev | | vdev |
7557 * | cache | | cache |
7558 * +-------+ +-------+
7559 * +=========+ .-----.
7560 * : L2ARC : |-_____-|
7561 * : devices : | Disks |
7562 * +=========+ `-_____-'
7563 *
7564 * Read requests are satisfied from the following sources, in order:
7565 *
7566 * 1) ARC
7567 * 2) vdev cache of L2ARC devices
7568 * 3) L2ARC devices
7569 * 4) vdev cache of disks
7570 * 5) disks
7571 *
7572 * Some L2ARC device types exhibit extremely slow write performance.
7573 * To accommodate for this there are some significant differences between
7574 * the L2ARC and traditional cache design:
7575 *
7576 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7577 * the ARC behave as usual, freeing buffers and placing headers on ghost
7578 * lists. The ARC does not send buffers to the L2ARC during eviction as
7579 * this would add inflated write latencies for all ARC memory pressure.
7580 *
7581 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7582 * It does this by periodically scanning buffers from the eviction-end of
7583 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
7584 * not already there. It scans until a headroom of buffers is satisfied,
7585 * which itself is a buffer for ARC eviction. If a compressible buffer is
7586 * found during scanning and selected for writing to an L2ARC device, we
7587 * temporarily boost scanning headroom during the next scan cycle to make
7588 * sure we adapt to compression effects (which might significantly reduce
7589 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
7590 * l2arc_feed_thread(), illustrated below; example sizes are included to
7591 * provide a better sense of ratio than this diagram:
7592 *
7593 * head --> tail
7594 * +---------------------+----------+
7595 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7596 * +---------------------+----------+ | o L2ARC eligible
7597 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7598 * +---------------------+----------+ |
7599 * 15.9 Gbytes ^ 32 Mbytes |
7600 * headroom |
7601 * l2arc_feed_thread()
7602 * |
7603 * l2arc write hand <--[oooo]--'
7604 * | 8 Mbyte
7605 * | write max
7606 * V
7607 * +==============================+
7608 * L2ARC dev |####|#|###|###| |####| ... |
7609 * +==============================+
7610 * 32 Gbytes
7611 *
7612 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7613 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7614 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7615 * safe to say that this is an uncommon case, since buffers at the end of
7616 * the ARC lists have moved there due to inactivity.
7617 *
7618 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7619 * then the L2ARC simply misses copying some buffers. This serves as a
7620 * pressure valve to prevent heavy read workloads from both stalling the ARC
7621 * with waits and clogging the L2ARC with writes. This also helps prevent
7622 * the potential for the L2ARC to churn if it attempts to cache content too
7623 * quickly, such as during backups of the entire pool.
7624 *
b128c09f
BB
7625 * 5. After system boot and before the ARC has filled main memory, there are
7626 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7627 * lists can remain mostly static. Instead of searching from tail of these
7628 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7629 * for eligible buffers, greatly increasing its chance of finding them.
7630 *
7631 * The L2ARC device write speed is also boosted during this time so that
7632 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7633 * there are no L2ARC reads, and no fear of degrading read performance
7634 * through increased writes.
7635 *
7636 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
7637 * the vdev queue can aggregate them into larger and fewer writes. Each
7638 * device is written to in a rotor fashion, sweeping writes through
7639 * available space then repeating.
7640 *
b128c09f 7641 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
7642 * write buffers back to disk based storage.
7643 *
b128c09f 7644 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
7645 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7646 *
7647 * The performance of the L2ARC can be tweaked by a number of tunables, which
7648 * may be necessary for different workloads:
7649 *
7650 * l2arc_write_max max write bytes per interval
b128c09f 7651 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
7652 * l2arc_noprefetch skip caching prefetched buffers
7653 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
7654 * l2arc_headroom_boost when we find compressed buffers during ARC
7655 * scanning, we multiply headroom by this
7656 * percentage factor for the next scan cycle,
7657 * since more compressed buffers are likely to
7658 * be present
34dc7c2f
BB
7659 * l2arc_feed_secs seconds between L2ARC writing
7660 *
7661 * Tunables may be removed or added as future performance improvements are
7662 * integrated, and also may become zpool properties.
d164b209
BB
7663 *
7664 * There are three key functions that control how the L2ARC warms up:
7665 *
7666 * l2arc_write_eligible() check if a buffer is eligible to cache
7667 * l2arc_write_size() calculate how much to write
7668 * l2arc_write_interval() calculate sleep delay between writes
7669 *
7670 * These three functions determine what to write, how much, and how quickly
7671 * to send writes.
34dc7c2f
BB
7672 */
7673
d164b209 7674static boolean_t
2a432414 7675l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
7676{
7677 /*
7678 * A buffer is *not* eligible for the L2ARC if it:
7679 * 1. belongs to a different spa.
428870ff
BB
7680 * 2. is already cached on the L2ARC.
7681 * 3. has an I/O in progress (it may be an incomplete read).
7682 * 4. is flagged not eligible (zfs property).
d164b209 7683 */
b9541d6b 7684 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 7685 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
7686 return (B_FALSE);
7687
7688 return (B_TRUE);
7689}
7690
7691static uint64_t
3a17a7a9 7692l2arc_write_size(void)
d164b209
BB
7693{
7694 uint64_t size;
7695
3a17a7a9
SK
7696 /*
7697 * Make sure our globals have meaningful values in case the user
7698 * altered them.
7699 */
7700 size = l2arc_write_max;
7701 if (size == 0) {
7702 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
7703 "be greater than zero, resetting it to the default (%d)",
7704 L2ARC_WRITE_SIZE);
7705 size = l2arc_write_max = L2ARC_WRITE_SIZE;
7706 }
d164b209
BB
7707
7708 if (arc_warm == B_FALSE)
3a17a7a9 7709 size += l2arc_write_boost;
d164b209
BB
7710
7711 return (size);
7712
7713}
7714
7715static clock_t
7716l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
7717{
428870ff 7718 clock_t interval, next, now;
d164b209
BB
7719
7720 /*
7721 * If the ARC lists are busy, increase our write rate; if the
7722 * lists are stale, idle back. This is achieved by checking
7723 * how much we previously wrote - if it was more than half of
7724 * what we wanted, schedule the next write much sooner.
7725 */
7726 if (l2arc_feed_again && wrote > (wanted / 2))
7727 interval = (hz * l2arc_feed_min_ms) / 1000;
7728 else
7729 interval = hz * l2arc_feed_secs;
7730
428870ff
BB
7731 now = ddi_get_lbolt();
7732 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
7733
7734 return (next);
7735}
7736
34dc7c2f
BB
7737/*
7738 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 7739 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
7740 */
7741static l2arc_dev_t *
7742l2arc_dev_get_next(void)
7743{
b128c09f 7744 l2arc_dev_t *first, *next = NULL;
34dc7c2f 7745
b128c09f
BB
7746 /*
7747 * Lock out the removal of spas (spa_namespace_lock), then removal
7748 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
7749 * both locks will be dropped and a spa config lock held instead.
7750 */
7751 mutex_enter(&spa_namespace_lock);
7752 mutex_enter(&l2arc_dev_mtx);
7753
7754 /* if there are no vdevs, there is nothing to do */
7755 if (l2arc_ndev == 0)
7756 goto out;
7757
7758 first = NULL;
7759 next = l2arc_dev_last;
7760 do {
7761 /* loop around the list looking for a non-faulted vdev */
7762 if (next == NULL) {
34dc7c2f 7763 next = list_head(l2arc_dev_list);
b128c09f
BB
7764 } else {
7765 next = list_next(l2arc_dev_list, next);
7766 if (next == NULL)
7767 next = list_head(l2arc_dev_list);
7768 }
7769
7770 /* if we have come back to the start, bail out */
7771 if (first == NULL)
7772 first = next;
7773 else if (next == first)
7774 break;
7775
7776 } while (vdev_is_dead(next->l2ad_vdev));
7777
7778 /* if we were unable to find any usable vdevs, return NULL */
7779 if (vdev_is_dead(next->l2ad_vdev))
7780 next = NULL;
34dc7c2f
BB
7781
7782 l2arc_dev_last = next;
7783
b128c09f
BB
7784out:
7785 mutex_exit(&l2arc_dev_mtx);
7786
7787 /*
7788 * Grab the config lock to prevent the 'next' device from being
7789 * removed while we are writing to it.
7790 */
7791 if (next != NULL)
7792 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7793 mutex_exit(&spa_namespace_lock);
7794
34dc7c2f
BB
7795 return (next);
7796}
7797
b128c09f
BB
7798/*
7799 * Free buffers that were tagged for destruction.
7800 */
7801static void
0bc8fd78 7802l2arc_do_free_on_write(void)
b128c09f
BB
7803{
7804 list_t *buflist;
7805 l2arc_data_free_t *df, *df_prev;
7806
7807 mutex_enter(&l2arc_free_on_write_mtx);
7808 buflist = l2arc_free_on_write;
7809
7810 for (df = list_tail(buflist); df; df = df_prev) {
7811 df_prev = list_prev(buflist, df);
a6255b7f
DQ
7812 ASSERT3P(df->l2df_abd, !=, NULL);
7813 abd_free(df->l2df_abd);
b128c09f
BB
7814 list_remove(buflist, df);
7815 kmem_free(df, sizeof (l2arc_data_free_t));
7816 }
7817
7818 mutex_exit(&l2arc_free_on_write_mtx);
7819}
7820
34dc7c2f
BB
7821/*
7822 * A write to a cache device has completed. Update all headers to allow
7823 * reads from these buffers to begin.
7824 */
7825static void
7826l2arc_write_done(zio_t *zio)
7827{
7828 l2arc_write_callback_t *cb;
7829 l2arc_dev_t *dev;
7830 list_t *buflist;
2a432414 7831 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 7832 kmutex_t *hash_lock;
3bec585e 7833 int64_t bytes_dropped = 0;
34dc7c2f
BB
7834
7835 cb = zio->io_private;
d3c2ae1c 7836 ASSERT3P(cb, !=, NULL);
34dc7c2f 7837 dev = cb->l2wcb_dev;
d3c2ae1c 7838 ASSERT3P(dev, !=, NULL);
34dc7c2f 7839 head = cb->l2wcb_head;
d3c2ae1c 7840 ASSERT3P(head, !=, NULL);
b9541d6b 7841 buflist = &dev->l2ad_buflist;
d3c2ae1c 7842 ASSERT3P(buflist, !=, NULL);
34dc7c2f
BB
7843 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7844 l2arc_write_callback_t *, cb);
7845
7846 if (zio->io_error != 0)
7847 ARCSTAT_BUMP(arcstat_l2_writes_error);
7848
34dc7c2f
BB
7849 /*
7850 * All writes completed, or an error was hit.
7851 */
ca0bf58d
PS
7852top:
7853 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
7854 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7855 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 7856
2a432414 7857 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
7858
7859 /*
7860 * We cannot use mutex_enter or else we can deadlock
7861 * with l2arc_write_buffers (due to swapping the order
7862 * the hash lock and l2ad_mtx are taken).
7863 */
34dc7c2f
BB
7864 if (!mutex_tryenter(hash_lock)) {
7865 /*
ca0bf58d
PS
7866 * Missed the hash lock. We must retry so we
7867 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 7868 */
ca0bf58d
PS
7869 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7870
7871 /*
7872 * We don't want to rescan the headers we've
7873 * already marked as having been written out, so
7874 * we reinsert the head node so we can pick up
7875 * where we left off.
7876 */
7877 list_remove(buflist, head);
7878 list_insert_after(buflist, hdr, head);
7879
7880 mutex_exit(&dev->l2ad_mtx);
7881
7882 /*
7883 * We wait for the hash lock to become available
7884 * to try and prevent busy waiting, and increase
7885 * the chance we'll be able to acquire the lock
7886 * the next time around.
7887 */
7888 mutex_enter(hash_lock);
7889 mutex_exit(hash_lock);
7890 goto top;
34dc7c2f
BB
7891 }
7892
b9541d6b 7893 /*
ca0bf58d
PS
7894 * We could not have been moved into the arc_l2c_only
7895 * state while in-flight due to our ARC_FLAG_L2_WRITING
7896 * bit being set. Let's just ensure that's being enforced.
7897 */
7898 ASSERT(HDR_HAS_L1HDR(hdr));
7899
8a09d5fd
BB
7900 /*
7901 * Skipped - drop L2ARC entry and mark the header as no
7902 * longer L2 eligibile.
7903 */
d3c2ae1c 7904 if (zio->io_error != 0) {
34dc7c2f 7905 /*
b128c09f 7906 * Error - drop L2ARC entry.
34dc7c2f 7907 */
2a432414 7908 list_remove(buflist, hdr);
d3c2ae1c 7909 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
b9541d6b 7910
01850391
AG
7911 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7912 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
d962d5da 7913
d3c2ae1c 7914 bytes_dropped += arc_hdr_size(hdr);
d962d5da 7915 (void) refcount_remove_many(&dev->l2ad_alloc,
d3c2ae1c 7916 arc_hdr_size(hdr), hdr);
34dc7c2f
BB
7917 }
7918
7919 /*
ca0bf58d
PS
7920 * Allow ARC to begin reads and ghost list evictions to
7921 * this L2ARC entry.
34dc7c2f 7922 */
d3c2ae1c 7923 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
34dc7c2f
BB
7924
7925 mutex_exit(hash_lock);
7926 }
7927
7928 atomic_inc_64(&l2arc_writes_done);
7929 list_remove(buflist, head);
b9541d6b
CW
7930 ASSERT(!HDR_HAS_L1HDR(head));
7931 kmem_cache_free(hdr_l2only_cache, head);
7932 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 7933
3bec585e
SK
7934 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7935
b128c09f 7936 l2arc_do_free_on_write();
34dc7c2f
BB
7937
7938 kmem_free(cb, sizeof (l2arc_write_callback_t));
7939}
7940
b5256303
TC
7941static int
7942l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
7943{
7944 int ret;
7945 spa_t *spa = zio->io_spa;
7946 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
7947 blkptr_t *bp = zio->io_bp;
7948 dsl_crypto_key_t *dck = NULL;
7949 uint8_t salt[ZIO_DATA_SALT_LEN];
7950 uint8_t iv[ZIO_DATA_IV_LEN];
7951 uint8_t mac[ZIO_DATA_MAC_LEN];
7952 boolean_t no_crypt = B_FALSE;
7953
7954 /*
7955 * ZIL data is never be written to the L2ARC, so we don't need
7956 * special handling for its unique MAC storage.
7957 */
7958 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7959 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
440a3eb9 7960 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 7961
440a3eb9
TC
7962 /*
7963 * If the data was encrypted, decrypt it now. Note that
7964 * we must check the bp here and not the hdr, since the
7965 * hdr does not have its encryption parameters updated
7966 * until arc_read_done().
7967 */
7968 if (BP_IS_ENCRYPTED(bp)) {
b5256303
TC
7969 abd_t *eabd = arc_get_data_abd(hdr,
7970 arc_hdr_size(hdr), hdr);
7971
7972 zio_crypt_decode_params_bp(bp, salt, iv);
7973 zio_crypt_decode_mac_bp(bp, mac);
7974
7975 ret = spa_keystore_lookup_key(spa,
7976 cb->l2rcb_zb.zb_objset, FTAG, &dck);
7977 if (ret != 0) {
7978 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7979 goto error;
7980 }
7981
7982 ret = zio_do_crypt_abd(B_FALSE, &dck->dck_key,
7983 salt, BP_GET_TYPE(bp), iv, mac, HDR_GET_PSIZE(hdr),
7984 BP_SHOULD_BYTESWAP(bp), eabd, hdr->b_l1hdr.b_pabd,
7985 &no_crypt);
7986 if (ret != 0) {
7987 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
7988 spa_keystore_dsl_key_rele(spa, dck, FTAG);
7989 goto error;
7990 }
7991
7992 spa_keystore_dsl_key_rele(spa, dck, FTAG);
7993
7994 /*
7995 * If we actually performed decryption, replace b_pabd
7996 * with the decrypted data. Otherwise we can just throw
7997 * our decryption buffer away.
7998 */
7999 if (!no_crypt) {
8000 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8001 arc_hdr_size(hdr), hdr);
8002 hdr->b_l1hdr.b_pabd = eabd;
8003 zio->io_abd = eabd;
8004 } else {
8005 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8006 }
8007 }
8008
8009 /*
8010 * If the L2ARC block was compressed, but ARC compression
8011 * is disabled we decompress the data into a new buffer and
8012 * replace the existing data.
8013 */
8014 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8015 !HDR_COMPRESSION_ENABLED(hdr)) {
8016 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8017 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8018
8019 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8020 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8021 HDR_GET_LSIZE(hdr));
8022 if (ret != 0) {
8023 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8024 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8025 goto error;
8026 }
8027
8028 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8029 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8030 arc_hdr_size(hdr), hdr);
8031 hdr->b_l1hdr.b_pabd = cabd;
8032 zio->io_abd = cabd;
8033 zio->io_size = HDR_GET_LSIZE(hdr);
8034 }
8035
8036 return (0);
8037
8038error:
8039 return (ret);
8040}
8041
8042
34dc7c2f
BB
8043/*
8044 * A read to a cache device completed. Validate buffer contents before
8045 * handing over to the regular ARC routines.
8046 */
8047static void
8048l2arc_read_done(zio_t *zio)
8049{
b5256303 8050 int tfm_error = 0;
34dc7c2f
BB
8051 l2arc_read_callback_t *cb;
8052 arc_buf_hdr_t *hdr;
34dc7c2f 8053 kmutex_t *hash_lock;
b5256303 8054 boolean_t valid_cksum, using_rdata;
b128c09f 8055
d3c2ae1c 8056 ASSERT3P(zio->io_vd, !=, NULL);
b128c09f
BB
8057 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8058
8059 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
8060
8061 cb = zio->io_private;
d3c2ae1c
GW
8062 ASSERT3P(cb, !=, NULL);
8063 hdr = cb->l2rcb_hdr;
8064 ASSERT3P(hdr, !=, NULL);
34dc7c2f 8065
d3c2ae1c 8066 hash_lock = HDR_LOCK(hdr);
34dc7c2f 8067 mutex_enter(hash_lock);
428870ff 8068 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 8069
82710e99
GDN
8070 /*
8071 * If the data was read into a temporary buffer,
8072 * move it and free the buffer.
8073 */
8074 if (cb->l2rcb_abd != NULL) {
8075 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8076 if (zio->io_error == 0) {
8077 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
8078 arc_hdr_size(hdr));
8079 }
8080
8081 /*
8082 * The following must be done regardless of whether
8083 * there was an error:
8084 * - free the temporary buffer
8085 * - point zio to the real ARC buffer
8086 * - set zio size accordingly
8087 * These are required because zio is either re-used for
8088 * an I/O of the block in the case of the error
8089 * or the zio is passed to arc_read_done() and it
8090 * needs real data.
8091 */
8092 abd_free(cb->l2rcb_abd);
8093 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
440a3eb9
TC
8094
8095 if (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8096 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT)) {
8097 ASSERT(HDR_HAS_RABD(hdr));
8098 zio->io_abd = zio->io_orig_abd =
8099 hdr->b_crypt_hdr.b_rabd;
8100 } else {
8101 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8102 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8103 }
82710e99
GDN
8104 }
8105
a6255b7f 8106 ASSERT3P(zio->io_abd, !=, NULL);
3a17a7a9 8107
34dc7c2f
BB
8108 /*
8109 * Check this survived the L2ARC journey.
8110 */
b5256303
TC
8111 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8112 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
d3c2ae1c
GW
8113 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8114 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8115
8116 valid_cksum = arc_cksum_is_equal(hdr, zio);
b5256303
TC
8117 using_rdata = (HDR_HAS_RABD(hdr) &&
8118 zio->io_abd == hdr->b_crypt_hdr.b_rabd);
8119
8120 /*
8121 * b_rabd will always match the data as it exists on disk if it is
8122 * being used. Therefore if we are reading into b_rabd we do not
8123 * attempt to untransform the data.
8124 */
8125 if (valid_cksum && !using_rdata)
8126 tfm_error = l2arc_untransform(zio, cb);
8127
8128 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8129 !HDR_L2_EVICTED(hdr)) {
34dc7c2f 8130 mutex_exit(hash_lock);
d3c2ae1c 8131 zio->io_private = hdr;
34dc7c2f
BB
8132 arc_read_done(zio);
8133 } else {
8134 mutex_exit(hash_lock);
8135 /*
8136 * Buffer didn't survive caching. Increment stats and
8137 * reissue to the original storage device.
8138 */
b128c09f 8139 if (zio->io_error != 0) {
34dc7c2f 8140 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 8141 } else {
2e528b49 8142 zio->io_error = SET_ERROR(EIO);
b128c09f 8143 }
b5256303 8144 if (!valid_cksum || tfm_error != 0)
34dc7c2f
BB
8145 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8146
34dc7c2f 8147 /*
b128c09f
BB
8148 * If there's no waiter, issue an async i/o to the primary
8149 * storage now. If there *is* a waiter, the caller must
8150 * issue the i/o in a context where it's OK to block.
34dc7c2f 8151 */
d164b209
BB
8152 if (zio->io_waiter == NULL) {
8153 zio_t *pio = zio_unique_parent(zio);
b5256303
TC
8154 void *abd = (using_rdata) ?
8155 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
d164b209
BB
8156
8157 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8158
d3c2ae1c 8159 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
b5256303 8160 abd, zio->io_size, arc_read_done,
d3c2ae1c
GW
8161 hdr, zio->io_priority, cb->l2rcb_flags,
8162 &cb->l2rcb_zb));
d164b209 8163 }
34dc7c2f
BB
8164 }
8165
8166 kmem_free(cb, sizeof (l2arc_read_callback_t));
8167}
8168
8169/*
8170 * This is the list priority from which the L2ARC will search for pages to
8171 * cache. This is used within loops (0..3) to cycle through lists in the
8172 * desired order. This order can have a significant effect on cache
8173 * performance.
8174 *
8175 * Currently the metadata lists are hit first, MFU then MRU, followed by
8176 * the data lists. This function returns a locked list, and also returns
8177 * the lock pointer.
8178 */
ca0bf58d
PS
8179static multilist_sublist_t *
8180l2arc_sublist_lock(int list_num)
34dc7c2f 8181{
ca0bf58d
PS
8182 multilist_t *ml = NULL;
8183 unsigned int idx;
34dc7c2f 8184
4aafab91 8185 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
34dc7c2f
BB
8186
8187 switch (list_num) {
8188 case 0:
64fc7762 8189 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8190 break;
8191 case 1:
64fc7762 8192 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8193 break;
8194 case 2:
64fc7762 8195 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
8196 break;
8197 case 3:
64fc7762 8198 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f 8199 break;
4aafab91
G
8200 default:
8201 return (NULL);
34dc7c2f
BB
8202 }
8203
ca0bf58d
PS
8204 /*
8205 * Return a randomly-selected sublist. This is acceptable
8206 * because the caller feeds only a little bit of data for each
8207 * call (8MB). Subsequent calls will result in different
8208 * sublists being selected.
8209 */
8210 idx = multilist_get_random_index(ml);
8211 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
8212}
8213
8214/*
8215 * Evict buffers from the device write hand to the distance specified in
8216 * bytes. This distance may span populated buffers, it may span nothing.
8217 * This is clearing a region on the L2ARC device ready for writing.
8218 * If the 'all' boolean is set, every buffer is evicted.
8219 */
8220static void
8221l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8222{
8223 list_t *buflist;
2a432414 8224 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
8225 kmutex_t *hash_lock;
8226 uint64_t taddr;
8227
b9541d6b 8228 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
8229
8230 if (!all && dev->l2ad_first) {
8231 /*
8232 * This is the first sweep through the device. There is
8233 * nothing to evict.
8234 */
8235 return;
8236 }
8237
b128c09f 8238 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
8239 /*
8240 * When nearing the end of the device, evict to the end
8241 * before the device write hand jumps to the start.
8242 */
8243 taddr = dev->l2ad_end;
8244 } else {
8245 taddr = dev->l2ad_hand + distance;
8246 }
8247 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8248 uint64_t, taddr, boolean_t, all);
8249
8250top:
b9541d6b 8251 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8252 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8253 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8254
2a432414 8255 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8256
8257 /*
8258 * We cannot use mutex_enter or else we can deadlock
8259 * with l2arc_write_buffers (due to swapping the order
8260 * the hash lock and l2ad_mtx are taken).
8261 */
34dc7c2f
BB
8262 if (!mutex_tryenter(hash_lock)) {
8263 /*
8264 * Missed the hash lock. Retry.
8265 */
8266 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 8267 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
8268 mutex_enter(hash_lock);
8269 mutex_exit(hash_lock);
8270 goto top;
8271 }
8272
f06f53fa
AG
8273 /*
8274 * A header can't be on this list if it doesn't have L2 header.
8275 */
8276 ASSERT(HDR_HAS_L2HDR(hdr));
34dc7c2f 8277
f06f53fa
AG
8278 /* Ensure this header has finished being written. */
8279 ASSERT(!HDR_L2_WRITING(hdr));
8280 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8281
8282 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
b9541d6b 8283 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
8284 /*
8285 * We've evicted to the target address,
8286 * or the end of the device.
8287 */
8288 mutex_exit(hash_lock);
8289 break;
8290 }
8291
b9541d6b 8292 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 8293 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
8294 /*
8295 * This doesn't exist in the ARC. Destroy.
8296 * arc_hdr_destroy() will call list_remove()
01850391 8297 * and decrement arcstat_l2_lsize.
34dc7c2f 8298 */
2a432414
GW
8299 arc_change_state(arc_anon, hdr, hash_lock);
8300 arc_hdr_destroy(hdr);
34dc7c2f 8301 } else {
b9541d6b
CW
8302 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8303 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
8304 /*
8305 * Invalidate issued or about to be issued
8306 * reads, since we may be about to write
8307 * over this location.
8308 */
2a432414 8309 if (HDR_L2_READING(hdr)) {
b128c09f 8310 ARCSTAT_BUMP(arcstat_l2_evict_reading);
d3c2ae1c 8311 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
b128c09f
BB
8312 }
8313
d962d5da 8314 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
8315 }
8316 mutex_exit(hash_lock);
8317 }
b9541d6b 8318 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
8319}
8320
b5256303
TC
8321/*
8322 * Handle any abd transforms that might be required for writing to the L2ARC.
8323 * If successful, this function will always return an abd with the data
8324 * transformed as it is on disk in a new abd of asize bytes.
8325 */
8326static int
8327l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8328 abd_t **abd_out)
8329{
8330 int ret;
8331 void *tmp = NULL;
8332 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8333 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8334 uint64_t psize = HDR_GET_PSIZE(hdr);
8335 uint64_t size = arc_hdr_size(hdr);
8336 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8337 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8338 dsl_crypto_key_t *dck = NULL;
8339 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
4807c0ba 8340 boolean_t no_crypt = B_FALSE;
b5256303
TC
8341
8342 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8343 !HDR_COMPRESSION_ENABLED(hdr)) ||
8344 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8345 ASSERT3U(psize, <=, asize);
8346
8347 /*
8348 * If this data simply needs its own buffer, we simply allocate it
8349 * and copy the data. This may be done to elimiate a depedency on a
8350 * shared buffer or to reallocate the buffer to match asize.
8351 */
4807c0ba
TC
8352 if (HDR_HAS_RABD(hdr) && asize != psize) {
8353 ASSERT3U(size, ==, psize);
8354 to_write = abd_alloc_for_io(asize, ismd);
8355 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, size);
8356 if (size != asize)
8357 abd_zero_off(to_write, size, asize - size);
8358 goto out;
8359 }
8360
b5256303
TC
8361 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8362 !HDR_ENCRYPTED(hdr)) {
8363 ASSERT3U(size, ==, psize);
8364 to_write = abd_alloc_for_io(asize, ismd);
8365 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8366 if (size != asize)
8367 abd_zero_off(to_write, size, asize - size);
8368 goto out;
8369 }
8370
8371 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8372 cabd = abd_alloc_for_io(asize, ismd);
8373 tmp = abd_borrow_buf(cabd, asize);
8374
8375 psize = zio_compress_data(compress, to_write, tmp, size);
8376 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8377 if (psize < asize)
8378 bzero((char *)tmp + psize, asize - psize);
8379 psize = HDR_GET_PSIZE(hdr);
8380 abd_return_buf_copy(cabd, tmp, asize);
8381 to_write = cabd;
8382 }
8383
8384 if (HDR_ENCRYPTED(hdr)) {
8385 eabd = abd_alloc_for_io(asize, ismd);
8386
8387 /*
8388 * If the dataset was disowned before the buffer
8389 * made it to this point, the key to re-encrypt
8390 * it won't be available. In this case we simply
8391 * won't write the buffer to the L2ARC.
8392 */
8393 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8394 FTAG, &dck);
8395 if (ret != 0)
8396 goto error;
8397
8398 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
8399 hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_ot,
8400 hdr->b_crypt_hdr.b_iv, mac, psize, bswap, to_write,
8401 eabd, &no_crypt);
8402 if (ret != 0)
8403 goto error;
8404
4807c0ba
TC
8405 if (no_crypt)
8406 abd_copy(eabd, to_write, psize);
b5256303
TC
8407
8408 if (psize != asize)
8409 abd_zero_off(eabd, psize, asize - psize);
8410
8411 /* assert that the MAC we got here matches the one we saved */
8412 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8413 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8414
8415 if (to_write == cabd)
8416 abd_free(cabd);
8417
8418 to_write = eabd;
8419 }
8420
8421out:
8422 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8423 *abd_out = to_write;
8424 return (0);
8425
8426error:
8427 if (dck != NULL)
8428 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8429 if (cabd != NULL)
8430 abd_free(cabd);
8431 if (eabd != NULL)
8432 abd_free(eabd);
8433
8434 *abd_out = NULL;
8435 return (ret);
8436}
8437
34dc7c2f
BB
8438/*
8439 * Find and write ARC buffers to the L2ARC device.
8440 *
2a432414 8441 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 8442 * for reading until they have completed writing.
3a17a7a9
SK
8443 * The headroom_boost is an in-out parameter used to maintain headroom boost
8444 * state between calls to this function.
8445 *
8446 * Returns the number of bytes actually written (which may be smaller than
8447 * the delta by which the device hand has changed due to alignment).
34dc7c2f 8448 */
d164b209 8449static uint64_t
d3c2ae1c 8450l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f 8451{
2a432414 8452 arc_buf_hdr_t *hdr, *hdr_prev, *head;
01850391 8453 uint64_t write_asize, write_psize, write_lsize, headroom;
3a17a7a9 8454 boolean_t full;
34dc7c2f
BB
8455 l2arc_write_callback_t *cb;
8456 zio_t *pio, *wzio;
3541dc6d 8457 uint64_t guid = spa_load_guid(spa);
34dc7c2f 8458
d3c2ae1c 8459 ASSERT3P(dev->l2ad_vdev, !=, NULL);
3a17a7a9 8460
34dc7c2f 8461 pio = NULL;
01850391 8462 write_lsize = write_asize = write_psize = 0;
34dc7c2f 8463 full = B_FALSE;
b9541d6b 8464 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
d3c2ae1c 8465 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
3a17a7a9 8466
34dc7c2f
BB
8467 /*
8468 * Copy buffers for L2ARC writing.
8469 */
1c27024e 8470 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
ca0bf58d 8471 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
8472 uint64_t passed_sz = 0;
8473
4aafab91
G
8474 VERIFY3P(mls, !=, NULL);
8475
b128c09f
BB
8476 /*
8477 * L2ARC fast warmup.
8478 *
8479 * Until the ARC is warm and starts to evict, read from the
8480 * head of the ARC lists rather than the tail.
8481 */
b128c09f 8482 if (arc_warm == B_FALSE)
ca0bf58d 8483 hdr = multilist_sublist_head(mls);
b128c09f 8484 else
ca0bf58d 8485 hdr = multilist_sublist_tail(mls);
b128c09f 8486
3a17a7a9 8487 headroom = target_sz * l2arc_headroom;
d3c2ae1c 8488 if (zfs_compressed_arc_enabled)
3a17a7a9
SK
8489 headroom = (headroom * l2arc_headroom_boost) / 100;
8490
2a432414 8491 for (; hdr; hdr = hdr_prev) {
3a17a7a9 8492 kmutex_t *hash_lock;
b5256303 8493 abd_t *to_write = NULL;
3a17a7a9 8494
b128c09f 8495 if (arc_warm == B_FALSE)
ca0bf58d 8496 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 8497 else
ca0bf58d 8498 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 8499
2a432414 8500 hash_lock = HDR_LOCK(hdr);
3a17a7a9 8501 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
8502 /*
8503 * Skip this buffer rather than waiting.
8504 */
8505 continue;
8506 }
8507
d3c2ae1c 8508 passed_sz += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
8509 if (passed_sz > headroom) {
8510 /*
8511 * Searched too far.
8512 */
8513 mutex_exit(hash_lock);
8514 break;
8515 }
8516
2a432414 8517 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
8518 mutex_exit(hash_lock);
8519 continue;
8520 }
8521
01850391
AG
8522 /*
8523 * We rely on the L1 portion of the header below, so
8524 * it's invalid for this header to have been evicted out
8525 * of the ghost cache, prior to being written out. The
8526 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8527 */
8528 ASSERT(HDR_HAS_L1HDR(hdr));
8529
8530 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
01850391 8531 ASSERT3U(arc_hdr_size(hdr), >, 0);
b5256303
TC
8532 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8533 HDR_HAS_RABD(hdr));
8534 uint64_t psize = HDR_GET_PSIZE(hdr);
01850391
AG
8535 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8536 psize);
8537
8538 if ((write_asize + asize) > target_sz) {
34dc7c2f
BB
8539 full = B_TRUE;
8540 mutex_exit(hash_lock);
8541 break;
8542 }
8543
b5256303
TC
8544 /*
8545 * We rely on the L1 portion of the header below, so
8546 * it's invalid for this header to have been evicted out
8547 * of the ghost cache, prior to being written out. The
8548 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8549 */
8550 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8551 ASSERT(HDR_HAS_L1HDR(hdr));
8552
8553 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8554 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8555 HDR_HAS_RABD(hdr));
8556 ASSERT3U(arc_hdr_size(hdr), >, 0);
8557
8558 /*
8559 * If this header has b_rabd, we can use this since it
8560 * must always match the data exactly as it exists on
8561 * disk. Otherwise, the L2ARC can normally use the
8562 * hdr's data, but if we're sharing data between the
8563 * hdr and one of its bufs, L2ARC needs its own copy of
8564 * the data so that the ZIO below can't race with the
8565 * buf consumer. To ensure that this copy will be
8566 * available for the lifetime of the ZIO and be cleaned
8567 * up afterwards, we add it to the l2arc_free_on_write
8568 * queue. If we need to apply any transforms to the
8569 * data (compression, encryption) we will also need the
8570 * extra buffer.
8571 */
8572 if (HDR_HAS_RABD(hdr) && psize == asize) {
8573 to_write = hdr->b_crypt_hdr.b_rabd;
8574 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8575 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8576 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8577 psize == asize) {
8578 to_write = hdr->b_l1hdr.b_pabd;
8579 } else {
8580 int ret;
8581 arc_buf_contents_t type = arc_buf_type(hdr);
8582
8583 ret = l2arc_apply_transforms(spa, hdr, asize,
8584 &to_write);
8585 if (ret != 0) {
8586 arc_hdr_clear_flags(hdr,
8587 ARC_FLAG_L2_WRITING);
8588 mutex_exit(hash_lock);
8589 continue;
8590 }
8591
8592 l2arc_free_abd_on_write(to_write, asize, type);
8593 }
8594
34dc7c2f
BB
8595 if (pio == NULL) {
8596 /*
8597 * Insert a dummy header on the buflist so
8598 * l2arc_write_done() can find where the
8599 * write buffers begin without searching.
8600 */
ca0bf58d 8601 mutex_enter(&dev->l2ad_mtx);
b9541d6b 8602 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 8603 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 8604
96c080cb
BB
8605 cb = kmem_alloc(
8606 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
8607 cb->l2wcb_dev = dev;
8608 cb->l2wcb_head = head;
8609 pio = zio_root(spa, l2arc_write_done, cb,
8610 ZIO_FLAG_CANFAIL);
8611 }
8612
b9541d6b 8613 hdr->b_l2hdr.b_dev = dev;
b9541d6b 8614 hdr->b_l2hdr.b_hits = 0;
3a17a7a9 8615
d3c2ae1c 8616 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
b5256303 8617 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
3a17a7a9 8618
ca0bf58d 8619 mutex_enter(&dev->l2ad_mtx);
b9541d6b 8620 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 8621 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 8622
b5256303
TC
8623 (void) refcount_add_many(&dev->l2ad_alloc,
8624 arc_hdr_size(hdr), hdr);
3a17a7a9 8625
34dc7c2f 8626 wzio = zio_write_phys(pio, dev->l2ad_vdev,
82710e99 8627 hdr->b_l2hdr.b_daddr, asize, to_write,
d3c2ae1c
GW
8628 ZIO_CHECKSUM_OFF, NULL, hdr,
8629 ZIO_PRIORITY_ASYNC_WRITE,
34dc7c2f
BB
8630 ZIO_FLAG_CANFAIL, B_FALSE);
8631
01850391 8632 write_lsize += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
8633 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
8634 zio_t *, wzio);
d962d5da 8635
01850391
AG
8636 write_psize += psize;
8637 write_asize += asize;
d3c2ae1c
GW
8638 dev->l2ad_hand += asize;
8639
8640 mutex_exit(hash_lock);
8641
8642 (void) zio_nowait(wzio);
34dc7c2f 8643 }
d3c2ae1c
GW
8644
8645 multilist_sublist_unlock(mls);
8646
8647 if (full == B_TRUE)
8648 break;
34dc7c2f 8649 }
34dc7c2f 8650
d3c2ae1c
GW
8651 /* No buffers selected for writing? */
8652 if (pio == NULL) {
01850391 8653 ASSERT0(write_lsize);
d3c2ae1c
GW
8654 ASSERT(!HDR_HAS_L1HDR(head));
8655 kmem_cache_free(hdr_l2only_cache, head);
8656 return (0);
8657 }
34dc7c2f 8658
3a17a7a9 8659 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 8660 ARCSTAT_BUMP(arcstat_l2_writes_sent);
01850391
AG
8661 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
8662 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
8663 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
8664 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
34dc7c2f
BB
8665
8666 /*
8667 * Bump device hand to the device start if it is approaching the end.
8668 * l2arc_evict() will already have evicted ahead for this case.
8669 */
b128c09f 8670 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 8671 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
8672 dev->l2ad_first = B_FALSE;
8673 }
8674
d164b209 8675 dev->l2ad_writing = B_TRUE;
34dc7c2f 8676 (void) zio_wait(pio);
d164b209
BB
8677 dev->l2ad_writing = B_FALSE;
8678
3a17a7a9
SK
8679 return (write_asize);
8680}
8681
34dc7c2f
BB
8682/*
8683 * This thread feeds the L2ARC at regular intervals. This is the beating
8684 * heart of the L2ARC.
8685 */
867959b5 8686/* ARGSUSED */
34dc7c2f 8687static void
c25b8f99 8688l2arc_feed_thread(void *unused)
34dc7c2f
BB
8689{
8690 callb_cpr_t cpr;
8691 l2arc_dev_t *dev;
8692 spa_t *spa;
d164b209 8693 uint64_t size, wrote;
428870ff 8694 clock_t begin, next = ddi_get_lbolt();
40d06e3c 8695 fstrans_cookie_t cookie;
34dc7c2f
BB
8696
8697 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
8698
8699 mutex_enter(&l2arc_feed_thr_lock);
8700
40d06e3c 8701 cookie = spl_fstrans_mark();
34dc7c2f 8702 while (l2arc_thread_exit == 0) {
34dc7c2f 8703 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 8704 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 8705 &l2arc_feed_thr_lock, next);
34dc7c2f 8706 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 8707 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
8708
8709 /*
b128c09f 8710 * Quick check for L2ARC devices.
34dc7c2f
BB
8711 */
8712 mutex_enter(&l2arc_dev_mtx);
8713 if (l2arc_ndev == 0) {
8714 mutex_exit(&l2arc_dev_mtx);
8715 continue;
8716 }
b128c09f 8717 mutex_exit(&l2arc_dev_mtx);
428870ff 8718 begin = ddi_get_lbolt();
34dc7c2f
BB
8719
8720 /*
b128c09f
BB
8721 * This selects the next l2arc device to write to, and in
8722 * doing so the next spa to feed from: dev->l2ad_spa. This
8723 * will return NULL if there are now no l2arc devices or if
8724 * they are all faulted.
8725 *
8726 * If a device is returned, its spa's config lock is also
8727 * held to prevent device removal. l2arc_dev_get_next()
8728 * will grab and release l2arc_dev_mtx.
34dc7c2f 8729 */
b128c09f 8730 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 8731 continue;
b128c09f
BB
8732
8733 spa = dev->l2ad_spa;
d3c2ae1c 8734 ASSERT3P(spa, !=, NULL);
34dc7c2f 8735
572e2857
BB
8736 /*
8737 * If the pool is read-only then force the feed thread to
8738 * sleep a little longer.
8739 */
8740 if (!spa_writeable(spa)) {
8741 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
8742 spa_config_exit(spa, SCL_L2ARC, dev);
8743 continue;
8744 }
8745
34dc7c2f 8746 /*
b128c09f 8747 * Avoid contributing to memory pressure.
34dc7c2f 8748 */
ca67b33a 8749 if (arc_reclaim_needed()) {
b128c09f
BB
8750 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
8751 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
8752 continue;
8753 }
b128c09f 8754
34dc7c2f
BB
8755 ARCSTAT_BUMP(arcstat_l2_feeds);
8756
3a17a7a9 8757 size = l2arc_write_size();
b128c09f 8758
34dc7c2f
BB
8759 /*
8760 * Evict L2ARC buffers that will be overwritten.
8761 */
b128c09f 8762 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
8763
8764 /*
8765 * Write ARC buffers.
8766 */
d3c2ae1c 8767 wrote = l2arc_write_buffers(spa, dev, size);
d164b209
BB
8768
8769 /*
8770 * Calculate interval between writes.
8771 */
8772 next = l2arc_write_interval(begin, size, wrote);
b128c09f 8773 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 8774 }
40d06e3c 8775 spl_fstrans_unmark(cookie);
34dc7c2f
BB
8776
8777 l2arc_thread_exit = 0;
8778 cv_broadcast(&l2arc_feed_thr_cv);
8779 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
8780 thread_exit();
8781}
8782
b128c09f
BB
8783boolean_t
8784l2arc_vdev_present(vdev_t *vd)
8785{
8786 l2arc_dev_t *dev;
8787
8788 mutex_enter(&l2arc_dev_mtx);
8789 for (dev = list_head(l2arc_dev_list); dev != NULL;
8790 dev = list_next(l2arc_dev_list, dev)) {
8791 if (dev->l2ad_vdev == vd)
8792 break;
8793 }
8794 mutex_exit(&l2arc_dev_mtx);
8795
8796 return (dev != NULL);
8797}
8798
34dc7c2f
BB
8799/*
8800 * Add a vdev for use by the L2ARC. By this point the spa has already
8801 * validated the vdev and opened it.
8802 */
8803void
9babb374 8804l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
8805{
8806 l2arc_dev_t *adddev;
8807
b128c09f
BB
8808 ASSERT(!l2arc_vdev_present(vd));
8809
34dc7c2f
BB
8810 /*
8811 * Create a new l2arc device entry.
8812 */
8813 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
8814 adddev->l2ad_spa = spa;
8815 adddev->l2ad_vdev = vd;
9babb374
BB
8816 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
8817 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 8818 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 8819 adddev->l2ad_first = B_TRUE;
d164b209 8820 adddev->l2ad_writing = B_FALSE;
98f72a53 8821 list_link_init(&adddev->l2ad_node);
34dc7c2f 8822
b9541d6b 8823 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
8824 /*
8825 * This is a list of all ARC buffers that are still valid on the
8826 * device.
8827 */
b9541d6b
CW
8828 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
8829 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 8830
428870ff 8831 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
d962d5da 8832 refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
8833
8834 /*
8835 * Add device to global list
8836 */
8837 mutex_enter(&l2arc_dev_mtx);
8838 list_insert_head(l2arc_dev_list, adddev);
8839 atomic_inc_64(&l2arc_ndev);
8840 mutex_exit(&l2arc_dev_mtx);
8841}
8842
8843/*
8844 * Remove a vdev from the L2ARC.
8845 */
8846void
8847l2arc_remove_vdev(vdev_t *vd)
8848{
8849 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
8850
34dc7c2f
BB
8851 /*
8852 * Find the device by vdev
8853 */
8854 mutex_enter(&l2arc_dev_mtx);
8855 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
8856 nextdev = list_next(l2arc_dev_list, dev);
8857 if (vd == dev->l2ad_vdev) {
8858 remdev = dev;
8859 break;
8860 }
8861 }
d3c2ae1c 8862 ASSERT3P(remdev, !=, NULL);
34dc7c2f
BB
8863
8864 /*
8865 * Remove device from global list
8866 */
8867 list_remove(l2arc_dev_list, remdev);
8868 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
8869 atomic_dec_64(&l2arc_ndev);
8870 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
8871
8872 /*
8873 * Clear all buflists and ARC references. L2ARC device flush.
8874 */
8875 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
8876 list_destroy(&remdev->l2ad_buflist);
8877 mutex_destroy(&remdev->l2ad_mtx);
d962d5da 8878 refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 8879 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
8880}
8881
8882void
b128c09f 8883l2arc_init(void)
34dc7c2f
BB
8884{
8885 l2arc_thread_exit = 0;
8886 l2arc_ndev = 0;
8887 l2arc_writes_sent = 0;
8888 l2arc_writes_done = 0;
8889
8890 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
8891 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
8892 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
8893 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
8894
8895 l2arc_dev_list = &L2ARC_dev_list;
8896 l2arc_free_on_write = &L2ARC_free_on_write;
8897 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
8898 offsetof(l2arc_dev_t, l2ad_node));
8899 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
8900 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
8901}
8902
8903void
b128c09f 8904l2arc_fini(void)
34dc7c2f 8905{
b128c09f
BB
8906 /*
8907 * This is called from dmu_fini(), which is called from spa_fini();
8908 * Because of this, we can assume that all l2arc devices have
8909 * already been removed when the pools themselves were removed.
8910 */
8911
8912 l2arc_do_free_on_write();
34dc7c2f
BB
8913
8914 mutex_destroy(&l2arc_feed_thr_lock);
8915 cv_destroy(&l2arc_feed_thr_cv);
8916 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
8917 mutex_destroy(&l2arc_free_on_write_mtx);
8918
8919 list_destroy(l2arc_dev_list);
8920 list_destroy(l2arc_free_on_write);
8921}
b128c09f
BB
8922
8923void
8924l2arc_start(void)
8925{
fb5f0bc8 8926 if (!(spa_mode_global & FWRITE))
b128c09f
BB
8927 return;
8928
8929 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 8930 TS_RUN, defclsyspri);
b128c09f
BB
8931}
8932
8933void
8934l2arc_stop(void)
8935{
fb5f0bc8 8936 if (!(spa_mode_global & FWRITE))
b128c09f
BB
8937 return;
8938
8939 mutex_enter(&l2arc_feed_thr_lock);
8940 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
8941 l2arc_thread_exit = 1;
8942 while (l2arc_thread_exit != 0)
8943 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
8944 mutex_exit(&l2arc_feed_thr_lock);
8945}
c28b2279
BB
8946
8947#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
8948EXPORT_SYMBOL(arc_buf_size);
8949EXPORT_SYMBOL(arc_write);
c28b2279 8950EXPORT_SYMBOL(arc_read);
e0b0ca98 8951EXPORT_SYMBOL(arc_buf_info);
c28b2279 8952EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
8953EXPORT_SYMBOL(arc_add_prune_callback);
8954EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 8955
02730c33 8956/* BEGIN CSTYLED */
bce45ec9 8957module_param(zfs_arc_min, ulong, 0644);
c409e464 8958MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 8959
bce45ec9 8960module_param(zfs_arc_max, ulong, 0644);
c409e464 8961MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 8962
bce45ec9 8963module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 8964MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 8965
9907cc1c
G
8966module_param(zfs_arc_meta_limit_percent, ulong, 0644);
8967MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
8968 "Percent of arc size for arc meta limit");
8969
ca0bf58d
PS
8970module_param(zfs_arc_meta_min, ulong, 0644);
8971MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
8972
bce45ec9 8973module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 8974MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 8975
ca67b33a 8976module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
8977MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
8978 "Limit number of restarts in arc_adjust_meta");
8979
f6046738
BB
8980module_param(zfs_arc_meta_strategy, int, 0644);
8981MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
8982
bce45ec9 8983module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
8984MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
8985
89c8cac4
PS
8986module_param(zfs_arc_p_aggressive_disable, int, 0644);
8987MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
8988
62422785
PS
8989module_param(zfs_arc_p_dampener_disable, int, 0644);
8990MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
8991
bce45ec9 8992module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
8993MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
8994
03b60eee
DB
8995module_param(zfs_arc_pc_percent, uint, 0644);
8996MODULE_PARM_DESC(zfs_arc_pc_percent,
8997 "Percent of pagecache to reclaim arc to");
8998
728d6ae9
BB
8999module_param(zfs_arc_p_min_shift, int, 0644);
9000MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
9001
49ddb315
MA
9002module_param(zfs_arc_average_blocksize, int, 0444);
9003MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
9004
d3c2ae1c 9005module_param(zfs_compressed_arc_enabled, int, 0644);
544596c5 9006MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
d3c2ae1c 9007
bce45ec9
BB
9008module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
9009MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
9010
9011module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
9012MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
9013
bce45ec9 9014module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
9015MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
9016
bce45ec9 9017module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
9018MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
9019
3a17a7a9
SK
9020module_param(l2arc_headroom_boost, ulong, 0644);
9021MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
9022
bce45ec9 9023module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
9024MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
9025
bce45ec9 9026module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
9027MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
9028
bce45ec9 9029module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
9030MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
9031
bce45ec9 9032module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
9033MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
9034
bce45ec9 9035module_param(l2arc_norw, int, 0644);
abd8610c
BB
9036MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
9037
7e8bddd0
BB
9038module_param(zfs_arc_lotsfree_percent, int, 0644);
9039MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
9040 "System free memory I/O throttle in bytes");
9041
11f552fa
BB
9042module_param(zfs_arc_sys_free, ulong, 0644);
9043MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
9044
25458cbe
TC
9045module_param(zfs_arc_dnode_limit, ulong, 0644);
9046MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
9047
9907cc1c
G
9048module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
9049MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
9050 "Percent of ARC meta buffers for dnodes");
9051
25458cbe
TC
9052module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
9053MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
9054 "Percentage of excess dnodes to try to unpin");
02730c33 9055/* END CSTYLED */
c28b2279 9056#endif