]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Fix typo/etc in module/zfs/zfs_ctldir.c
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3ec34e55 23 * Copyright (c) 2018, Joyent, Inc.
c3bd3fb4 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
36da08ef 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
3ec34e55 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 62 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 66 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
2aa34383 80 * uses method 1, while the internal ARC algorithms for
d3cc8b15 81 * adjusting the cache use method 2. We therefore provide two
34dc7c2f 82 * types of locks: 1) the hash table lock array, and 2) the
2aa34383 83 * ARC list locks.
34dc7c2f 84 *
5c839890
BC
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
2aa34383 96 * Each ARC state also has a mutex which is used to protect the
34dc7c2f 97 * buffer list associated with the state. When attempting to
2aa34383 98 * obtain a hash table lock while holding an ARC list lock you
34dc7c2f
BB
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
ab26409d
BB
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
34dc7c2f
BB
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
b9541d6b 113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
d3c2ae1c
GW
122/*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
2aa34383 138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
a6255b7f 139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
2aa34383
DK
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
a6255b7f
DQ
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
2aa34383
DK
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
a6255b7f 146 * compressed ARC functionality is disabled, the b_pabd will point to an
2aa34383
DK
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
d3c2ae1c
GW
156 * "overhead_size" kstat.
157 *
2aa34383
DK
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
d3c2ae1c 165 *
2aa34383
DK
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
d3c2ae1c 171 *
2aa34383
DK
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
a6255b7f 185 * | b_pabd +-+ |b_next +---->+-----------+
2aa34383
DK
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
d3c2ae1c
GW
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
2aa34383
DK
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
a6255b7f
DQ
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
2aa34383
DK
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
d3c2ae1c
GW
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
2aa34383
DK
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
d3c2ae1c
GW
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
a6255b7f 227 * | b_pabd +-+ |---------| |b_next +-->NULL
d3c2ae1c
GW
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
a6255b7f 241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
d3c2ae1c 242 * since the physical block is about to be rewritten. The new data contents
2aa34383
DK
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
a6255b7f 246 * a newly allocated b_pabd. Writes are always done into buffers which have
2aa34383
DK
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
d3c2ae1c 251 *
a6255b7f
DQ
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
2aa34383 254 * that when compressed ARC is enabled that the L2ARC blocks are identical
d3c2ae1c
GW
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
2aa34383 258 * ARC is disabled, then the L2ARC's block must be transformed to look
d3c2ae1c
GW
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
b5256303
TC
261 *
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
275 * cannot be shared.
d3c2ae1c
GW
276 */
277
34dc7c2f
BB
278#include <sys/spa.h>
279#include <sys/zio.h>
d3c2ae1c 280#include <sys/spa_impl.h>
3a17a7a9 281#include <sys/zio_compress.h>
d3c2ae1c 282#include <sys/zio_checksum.h>
34dc7c2f
BB
283#include <sys/zfs_context.h>
284#include <sys/arc.h>
36da08ef 285#include <sys/refcount.h>
b128c09f 286#include <sys/vdev.h>
9babb374 287#include <sys/vdev_impl.h>
e8b96c60 288#include <sys/dsl_pool.h>
a6255b7f 289#include <sys/zio_checksum.h>
ca0bf58d 290#include <sys/multilist.h>
a6255b7f 291#include <sys/abd.h>
b5256303
TC
292#include <sys/zil.h>
293#include <sys/fm/fs/zfs.h>
34dc7c2f 294#ifdef _KERNEL
93ce2b4c 295#include <sys/shrinker.h>
34dc7c2f 296#include <sys/vmsystm.h>
ab26409d 297#include <sys/zpl.h>
e9a77290 298#include <linux/page_compat.h>
34dc7c2f
BB
299#endif
300#include <sys/callb.h>
301#include <sys/kstat.h>
3ec34e55 302#include <sys/zthr.h>
428870ff 303#include <zfs_fletcher.h>
59ec819a 304#include <sys/arc_impl.h>
49ee64e5 305#include <sys/trace_arc.h>
37fb3e43
PD
306#include <sys/aggsum.h>
307#include <sys/cityhash.h>
34dc7c2f 308
498877ba
MA
309#ifndef _KERNEL
310/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
311boolean_t arc_watch = B_FALSE;
312#endif
313
3ec34e55
BL
314/*
315 * This thread's job is to keep enough free memory in the system, by
316 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
317 * arc_available_memory().
318 */
319static zthr_t *arc_reap_zthr;
320
321/*
322 * This thread's job is to keep arc_size under arc_c, by calling
323 * arc_adjust(), which improves arc_is_overflowing().
324 */
325static zthr_t *arc_adjust_zthr;
326
327static kmutex_t arc_adjust_lock;
328static kcondvar_t arc_adjust_waiters_cv;
329static boolean_t arc_adjust_needed = B_FALSE;
ca0bf58d 330
e8b96c60 331/*
ca0bf58d
PS
332 * The number of headers to evict in arc_evict_state_impl() before
333 * dropping the sublist lock and evicting from another sublist. A lower
334 * value means we're more likely to evict the "correct" header (i.e. the
335 * oldest header in the arc state), but comes with higher overhead
336 * (i.e. more invocations of arc_evict_state_impl()).
337 */
338int zfs_arc_evict_batch_limit = 10;
339
34dc7c2f 340/* number of seconds before growing cache again */
3ec34e55
BL
341static int arc_grow_retry = 5;
342
343/*
344 * Minimum time between calls to arc_kmem_reap_soon().
345 */
346int arc_kmem_cache_reap_retry_ms = 1000;
34dc7c2f 347
a6255b7f 348/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
3ec34e55 349int zfs_arc_overflow_shift = 8;
62422785 350
728d6ae9 351/* shift of arc_c for calculating both min and max arc_p */
3ec34e55 352int arc_p_min_shift = 4;
728d6ae9 353
d164b209 354/* log2(fraction of arc to reclaim) */
3ec34e55 355static int arc_shrink_shift = 7;
d164b209 356
03b60eee
DB
357/* percent of pagecache to reclaim arc to */
358#ifdef _KERNEL
3ec34e55 359static uint_t zfs_arc_pc_percent = 0;
03b60eee
DB
360#endif
361
34dc7c2f 362/*
ca67b33a
MA
363 * log2(fraction of ARC which must be free to allow growing).
364 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
365 * when reading a new block into the ARC, we will evict an equal-sized block
366 * from the ARC.
367 *
368 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
369 * we will still not allow it to grow.
34dc7c2f 370 */
ca67b33a 371int arc_no_grow_shift = 5;
bce45ec9 372
49ddb315 373
ca0bf58d
PS
374/*
375 * minimum lifespan of a prefetch block in clock ticks
376 * (initialized in arc_init())
377 */
d4a72f23
TC
378static int arc_min_prefetch_ms;
379static int arc_min_prescient_prefetch_ms;
ca0bf58d 380
e8b96c60
MA
381/*
382 * If this percent of memory is free, don't throttle.
383 */
384int arc_lotsfree_percent = 10;
385
3ec34e55
BL
386/*
387 * hdr_recl() uses this to determine if the arc is up and running.
388 */
389static boolean_t arc_initialized;
34dc7c2f 390
b128c09f
BB
391/*
392 * The arc has filled available memory and has now warmed up.
393 */
394static boolean_t arc_warm;
395
d3c2ae1c
GW
396/*
397 * log2 fraction of the zio arena to keep free.
398 */
399int arc_zio_arena_free_shift = 2;
400
34dc7c2f
BB
401/*
402 * These tunables are for performance analysis.
403 */
c28b2279
BB
404unsigned long zfs_arc_max = 0;
405unsigned long zfs_arc_min = 0;
406unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 407unsigned long zfs_arc_meta_min = 0;
25458cbe
TC
408unsigned long zfs_arc_dnode_limit = 0;
409unsigned long zfs_arc_dnode_reduce_percent = 10;
ca67b33a
MA
410int zfs_arc_grow_retry = 0;
411int zfs_arc_shrink_shift = 0;
728d6ae9 412int zfs_arc_p_min_shift = 0;
ca67b33a 413int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 414
dae3e9ea
DB
415/*
416 * ARC dirty data constraints for arc_tempreserve_space() throttle.
417 */
418unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
419unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
420unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
421
422/*
423 * Enable or disable compressed arc buffers.
424 */
d3c2ae1c
GW
425int zfs_compressed_arc_enabled = B_TRUE;
426
9907cc1c
G
427/*
428 * ARC will evict meta buffers that exceed arc_meta_limit. This
429 * tunable make arc_meta_limit adjustable for different workloads.
430 */
431unsigned long zfs_arc_meta_limit_percent = 75;
432
433/*
434 * Percentage that can be consumed by dnodes of ARC meta buffers.
435 */
436unsigned long zfs_arc_dnode_limit_percent = 10;
437
bc888666 438/*
ca67b33a 439 * These tunables are Linux specific
bc888666 440 */
11f552fa 441unsigned long zfs_arc_sys_free = 0;
d4a72f23
TC
442int zfs_arc_min_prefetch_ms = 0;
443int zfs_arc_min_prescient_prefetch_ms = 0;
ca67b33a
MA
444int zfs_arc_p_dampener_disable = 1;
445int zfs_arc_meta_prune = 10000;
446int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
447int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 448int zfs_arc_lotsfree_percent = 10;
bc888666 449
34dc7c2f
BB
450/* The 6 states: */
451static arc_state_t ARC_anon;
452static arc_state_t ARC_mru;
453static arc_state_t ARC_mru_ghost;
454static arc_state_t ARC_mfu;
455static arc_state_t ARC_mfu_ghost;
456static arc_state_t ARC_l2c_only;
457
458typedef struct arc_stats {
459 kstat_named_t arcstat_hits;
460 kstat_named_t arcstat_misses;
461 kstat_named_t arcstat_demand_data_hits;
462 kstat_named_t arcstat_demand_data_misses;
463 kstat_named_t arcstat_demand_metadata_hits;
464 kstat_named_t arcstat_demand_metadata_misses;
465 kstat_named_t arcstat_prefetch_data_hits;
466 kstat_named_t arcstat_prefetch_data_misses;
467 kstat_named_t arcstat_prefetch_metadata_hits;
468 kstat_named_t arcstat_prefetch_metadata_misses;
469 kstat_named_t arcstat_mru_hits;
470 kstat_named_t arcstat_mru_ghost_hits;
471 kstat_named_t arcstat_mfu_hits;
472 kstat_named_t arcstat_mfu_ghost_hits;
473 kstat_named_t arcstat_deleted;
e49f1e20
WA
474 /*
475 * Number of buffers that could not be evicted because the hash lock
476 * was held by another thread. The lock may not necessarily be held
477 * by something using the same buffer, since hash locks are shared
478 * by multiple buffers.
479 */
34dc7c2f 480 kstat_named_t arcstat_mutex_miss;
0873bb63
BB
481 /*
482 * Number of buffers skipped when updating the access state due to the
483 * header having already been released after acquiring the hash lock.
484 */
485 kstat_named_t arcstat_access_skip;
e49f1e20
WA
486 /*
487 * Number of buffers skipped because they have I/O in progress, are
0873bb63 488 * indirect prefetch buffers that have not lived long enough, or are
e49f1e20
WA
489 * not from the spa we're trying to evict from.
490 */
34dc7c2f 491 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
492 /*
493 * Number of times arc_evict_state() was unable to evict enough
494 * buffers to reach its target amount.
495 */
496 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
497 kstat_named_t arcstat_evict_l2_cached;
498 kstat_named_t arcstat_evict_l2_eligible;
499 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 500 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
501 kstat_named_t arcstat_hash_elements;
502 kstat_named_t arcstat_hash_elements_max;
503 kstat_named_t arcstat_hash_collisions;
504 kstat_named_t arcstat_hash_chains;
505 kstat_named_t arcstat_hash_chain_max;
506 kstat_named_t arcstat_p;
507 kstat_named_t arcstat_c;
508 kstat_named_t arcstat_c_min;
509 kstat_named_t arcstat_c_max;
37fb3e43 510 /* Not updated directly; only synced in arc_kstat_update. */
34dc7c2f 511 kstat_named_t arcstat_size;
d3c2ae1c 512 /*
a6255b7f 513 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
d3c2ae1c
GW
514 * Note that the compressed bytes may match the uncompressed bytes
515 * if the block is either not compressed or compressed arc is disabled.
516 */
517 kstat_named_t arcstat_compressed_size;
518 /*
a6255b7f 519 * Uncompressed size of the data stored in b_pabd. If compressed
d3c2ae1c
GW
520 * arc is disabled then this value will be identical to the stat
521 * above.
522 */
523 kstat_named_t arcstat_uncompressed_size;
524 /*
525 * Number of bytes stored in all the arc_buf_t's. This is classified
526 * as "overhead" since this data is typically short-lived and will
527 * be evicted from the arc when it becomes unreferenced unless the
528 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
529 * values have been set (see comment in dbuf.c for more information).
530 */
531 kstat_named_t arcstat_overhead_size;
500445c0
PS
532 /*
533 * Number of bytes consumed by internal ARC structures necessary
534 * for tracking purposes; these structures are not actually
535 * backed by ARC buffers. This includes arc_buf_hdr_t structures
536 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
537 * caches), and arc_buf_t structures (allocated via arc_buf_t
538 * cache).
37fb3e43 539 * Not updated directly; only synced in arc_kstat_update.
500445c0 540 */
34dc7c2f 541 kstat_named_t arcstat_hdr_size;
500445c0
PS
542 /*
543 * Number of bytes consumed by ARC buffers of type equal to
544 * ARC_BUFC_DATA. This is generally consumed by buffers backing
545 * on disk user data (e.g. plain file contents).
37fb3e43 546 * Not updated directly; only synced in arc_kstat_update.
500445c0 547 */
d164b209 548 kstat_named_t arcstat_data_size;
500445c0
PS
549 /*
550 * Number of bytes consumed by ARC buffers of type equal to
551 * ARC_BUFC_METADATA. This is generally consumed by buffers
552 * backing on disk data that is used for internal ZFS
553 * structures (e.g. ZAP, dnode, indirect blocks, etc).
37fb3e43 554 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
555 */
556 kstat_named_t arcstat_metadata_size;
557 /*
25458cbe 558 * Number of bytes consumed by dmu_buf_impl_t objects.
37fb3e43 559 * Not updated directly; only synced in arc_kstat_update.
500445c0 560 */
25458cbe
TC
561 kstat_named_t arcstat_dbuf_size;
562 /*
563 * Number of bytes consumed by dnode_t objects.
37fb3e43 564 * Not updated directly; only synced in arc_kstat_update.
25458cbe
TC
565 */
566 kstat_named_t arcstat_dnode_size;
567 /*
568 * Number of bytes consumed by bonus buffers.
37fb3e43 569 * Not updated directly; only synced in arc_kstat_update.
25458cbe
TC
570 */
571 kstat_named_t arcstat_bonus_size;
500445c0
PS
572 /*
573 * Total number of bytes consumed by ARC buffers residing in the
574 * arc_anon state. This includes *all* buffers in the arc_anon
575 * state; e.g. data, metadata, evictable, and unevictable buffers
576 * are all included in this value.
37fb3e43 577 * Not updated directly; only synced in arc_kstat_update.
500445c0 578 */
13be560d 579 kstat_named_t arcstat_anon_size;
500445c0
PS
580 /*
581 * Number of bytes consumed by ARC buffers that meet the
582 * following criteria: backing buffers of type ARC_BUFC_DATA,
583 * residing in the arc_anon state, and are eligible for eviction
584 * (e.g. have no outstanding holds on the buffer).
37fb3e43 585 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
586 */
587 kstat_named_t arcstat_anon_evictable_data;
588 /*
589 * Number of bytes consumed by ARC buffers that meet the
590 * following criteria: backing buffers of type ARC_BUFC_METADATA,
591 * residing in the arc_anon state, and are eligible for eviction
592 * (e.g. have no outstanding holds on the buffer).
37fb3e43 593 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
594 */
595 kstat_named_t arcstat_anon_evictable_metadata;
596 /*
597 * Total number of bytes consumed by ARC buffers residing in the
598 * arc_mru state. This includes *all* buffers in the arc_mru
599 * state; e.g. data, metadata, evictable, and unevictable buffers
600 * are all included in this value.
37fb3e43 601 * Not updated directly; only synced in arc_kstat_update.
500445c0 602 */
13be560d 603 kstat_named_t arcstat_mru_size;
500445c0
PS
604 /*
605 * Number of bytes consumed by ARC buffers that meet the
606 * following criteria: backing buffers of type ARC_BUFC_DATA,
607 * residing in the arc_mru state, and are eligible for eviction
608 * (e.g. have no outstanding holds on the buffer).
37fb3e43 609 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
610 */
611 kstat_named_t arcstat_mru_evictable_data;
612 /*
613 * Number of bytes consumed by ARC buffers that meet the
614 * following criteria: backing buffers of type ARC_BUFC_METADATA,
615 * residing in the arc_mru state, and are eligible for eviction
616 * (e.g. have no outstanding holds on the buffer).
37fb3e43 617 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
618 */
619 kstat_named_t arcstat_mru_evictable_metadata;
620 /*
621 * Total number of bytes that *would have been* consumed by ARC
622 * buffers in the arc_mru_ghost state. The key thing to note
623 * here, is the fact that this size doesn't actually indicate
624 * RAM consumption. The ghost lists only consist of headers and
625 * don't actually have ARC buffers linked off of these headers.
626 * Thus, *if* the headers had associated ARC buffers, these
627 * buffers *would have* consumed this number of bytes.
37fb3e43 628 * Not updated directly; only synced in arc_kstat_update.
500445c0 629 */
13be560d 630 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
631 /*
632 * Number of bytes that *would have been* consumed by ARC
633 * buffers that are eligible for eviction, of type
634 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
37fb3e43 635 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
636 */
637 kstat_named_t arcstat_mru_ghost_evictable_data;
638 /*
639 * Number of bytes that *would have been* consumed by ARC
640 * buffers that are eligible for eviction, of type
641 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
37fb3e43 642 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
643 */
644 kstat_named_t arcstat_mru_ghost_evictable_metadata;
645 /*
646 * Total number of bytes consumed by ARC buffers residing in the
647 * arc_mfu state. This includes *all* buffers in the arc_mfu
648 * state; e.g. data, metadata, evictable, and unevictable buffers
649 * are all included in this value.
37fb3e43 650 * Not updated directly; only synced in arc_kstat_update.
500445c0 651 */
13be560d 652 kstat_named_t arcstat_mfu_size;
500445c0
PS
653 /*
654 * Number of bytes consumed by ARC buffers that are eligible for
655 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
656 * state.
37fb3e43 657 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
658 */
659 kstat_named_t arcstat_mfu_evictable_data;
660 /*
661 * Number of bytes consumed by ARC buffers that are eligible for
662 * eviction, of type ARC_BUFC_METADATA, and reside in the
663 * arc_mfu state.
37fb3e43 664 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
665 */
666 kstat_named_t arcstat_mfu_evictable_metadata;
667 /*
668 * Total number of bytes that *would have been* consumed by ARC
669 * buffers in the arc_mfu_ghost state. See the comment above
670 * arcstat_mru_ghost_size for more details.
37fb3e43 671 * Not updated directly; only synced in arc_kstat_update.
500445c0 672 */
13be560d 673 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
674 /*
675 * Number of bytes that *would have been* consumed by ARC
676 * buffers that are eligible for eviction, of type
677 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
37fb3e43 678 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
679 */
680 kstat_named_t arcstat_mfu_ghost_evictable_data;
681 /*
682 * Number of bytes that *would have been* consumed by ARC
683 * buffers that are eligible for eviction, of type
684 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
37fb3e43 685 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
686 */
687 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
688 kstat_named_t arcstat_l2_hits;
689 kstat_named_t arcstat_l2_misses;
690 kstat_named_t arcstat_l2_feeds;
691 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
692 kstat_named_t arcstat_l2_read_bytes;
693 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
694 kstat_named_t arcstat_l2_writes_sent;
695 kstat_named_t arcstat_l2_writes_done;
696 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 697 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
698 kstat_named_t arcstat_l2_evict_lock_retry;
699 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 700 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f
BB
701 kstat_named_t arcstat_l2_free_on_write;
702 kstat_named_t arcstat_l2_abort_lowmem;
703 kstat_named_t arcstat_l2_cksum_bad;
704 kstat_named_t arcstat_l2_io_error;
01850391
AG
705 kstat_named_t arcstat_l2_lsize;
706 kstat_named_t arcstat_l2_psize;
37fb3e43 707 /* Not updated directly; only synced in arc_kstat_update. */
34dc7c2f
BB
708 kstat_named_t arcstat_l2_hdr_size;
709 kstat_named_t arcstat_memory_throttle_count;
7cb67b45
BB
710 kstat_named_t arcstat_memory_direct_count;
711 kstat_named_t arcstat_memory_indirect_count;
70f02287
BB
712 kstat_named_t arcstat_memory_all_bytes;
713 kstat_named_t arcstat_memory_free_bytes;
714 kstat_named_t arcstat_memory_available_bytes;
1834f2d8
BB
715 kstat_named_t arcstat_no_grow;
716 kstat_named_t arcstat_tempreserve;
717 kstat_named_t arcstat_loaned_bytes;
ab26409d 718 kstat_named_t arcstat_prune;
37fb3e43 719 /* Not updated directly; only synced in arc_kstat_update. */
1834f2d8
BB
720 kstat_named_t arcstat_meta_used;
721 kstat_named_t arcstat_meta_limit;
25458cbe 722 kstat_named_t arcstat_dnode_limit;
1834f2d8 723 kstat_named_t arcstat_meta_max;
ca0bf58d 724 kstat_named_t arcstat_meta_min;
a8b2e306 725 kstat_named_t arcstat_async_upgrade_sync;
7f60329a 726 kstat_named_t arcstat_demand_hit_predictive_prefetch;
d4a72f23 727 kstat_named_t arcstat_demand_hit_prescient_prefetch;
11f552fa
BB
728 kstat_named_t arcstat_need_free;
729 kstat_named_t arcstat_sys_free;
b5256303 730 kstat_named_t arcstat_raw_size;
34dc7c2f
BB
731} arc_stats_t;
732
733static arc_stats_t arc_stats = {
734 { "hits", KSTAT_DATA_UINT64 },
735 { "misses", KSTAT_DATA_UINT64 },
736 { "demand_data_hits", KSTAT_DATA_UINT64 },
737 { "demand_data_misses", KSTAT_DATA_UINT64 },
738 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
739 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
740 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
741 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
742 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
743 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
744 { "mru_hits", KSTAT_DATA_UINT64 },
745 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
746 { "mfu_hits", KSTAT_DATA_UINT64 },
747 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
748 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f 749 { "mutex_miss", KSTAT_DATA_UINT64 },
0873bb63 750 { "access_skip", KSTAT_DATA_UINT64 },
34dc7c2f 751 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 752 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
753 { "evict_l2_cached", KSTAT_DATA_UINT64 },
754 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
755 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 756 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
757 { "hash_elements", KSTAT_DATA_UINT64 },
758 { "hash_elements_max", KSTAT_DATA_UINT64 },
759 { "hash_collisions", KSTAT_DATA_UINT64 },
760 { "hash_chains", KSTAT_DATA_UINT64 },
761 { "hash_chain_max", KSTAT_DATA_UINT64 },
762 { "p", KSTAT_DATA_UINT64 },
763 { "c", KSTAT_DATA_UINT64 },
764 { "c_min", KSTAT_DATA_UINT64 },
765 { "c_max", KSTAT_DATA_UINT64 },
766 { "size", KSTAT_DATA_UINT64 },
d3c2ae1c
GW
767 { "compressed_size", KSTAT_DATA_UINT64 },
768 { "uncompressed_size", KSTAT_DATA_UINT64 },
769 { "overhead_size", KSTAT_DATA_UINT64 },
34dc7c2f 770 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 771 { "data_size", KSTAT_DATA_UINT64 },
500445c0 772 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
773 { "dbuf_size", KSTAT_DATA_UINT64 },
774 { "dnode_size", KSTAT_DATA_UINT64 },
775 { "bonus_size", KSTAT_DATA_UINT64 },
13be560d 776 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
777 { "anon_evictable_data", KSTAT_DATA_UINT64 },
778 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 779 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
780 { "mru_evictable_data", KSTAT_DATA_UINT64 },
781 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 782 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
783 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
784 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 785 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
786 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
787 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 788 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
789 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
790 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
791 { "l2_hits", KSTAT_DATA_UINT64 },
792 { "l2_misses", KSTAT_DATA_UINT64 },
793 { "l2_feeds", KSTAT_DATA_UINT64 },
794 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
795 { "l2_read_bytes", KSTAT_DATA_UINT64 },
796 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
797 { "l2_writes_sent", KSTAT_DATA_UINT64 },
798 { "l2_writes_done", KSTAT_DATA_UINT64 },
799 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 800 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
801 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
802 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 803 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f
BB
804 { "l2_free_on_write", KSTAT_DATA_UINT64 },
805 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
806 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
807 { "l2_io_error", KSTAT_DATA_UINT64 },
808 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 809 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 810 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 811 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
812 { "memory_direct_count", KSTAT_DATA_UINT64 },
813 { "memory_indirect_count", KSTAT_DATA_UINT64 },
70f02287
BB
814 { "memory_all_bytes", KSTAT_DATA_UINT64 },
815 { "memory_free_bytes", KSTAT_DATA_UINT64 },
816 { "memory_available_bytes", KSTAT_DATA_INT64 },
1834f2d8
BB
817 { "arc_no_grow", KSTAT_DATA_UINT64 },
818 { "arc_tempreserve", KSTAT_DATA_UINT64 },
819 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 820 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
821 { "arc_meta_used", KSTAT_DATA_UINT64 },
822 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 823 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 824 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 825 { "arc_meta_min", KSTAT_DATA_UINT64 },
a8b2e306 826 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
7f60329a 827 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
d4a72f23 828 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
11f552fa 829 { "arc_need_free", KSTAT_DATA_UINT64 },
b5256303
TC
830 { "arc_sys_free", KSTAT_DATA_UINT64 },
831 { "arc_raw_size", KSTAT_DATA_UINT64 }
34dc7c2f
BB
832};
833
834#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
835
836#define ARCSTAT_INCR(stat, val) \
d3cc8b15 837 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 838
428870ff 839#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
840#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
841
842#define ARCSTAT_MAX(stat, val) { \
843 uint64_t m; \
844 while ((val) > (m = arc_stats.stat.value.ui64) && \
845 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
846 continue; \
847}
848
849#define ARCSTAT_MAXSTAT(stat) \
850 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
851
852/*
853 * We define a macro to allow ARC hits/misses to be easily broken down by
854 * two separate conditions, giving a total of four different subtypes for
855 * each of hits and misses (so eight statistics total).
856 */
857#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
858 if (cond1) { \
859 if (cond2) { \
860 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
861 } else { \
862 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
863 } \
864 } else { \
865 if (cond2) { \
866 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
867 } else { \
868 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
869 } \
870 }
871
872kstat_t *arc_ksp;
428870ff 873static arc_state_t *arc_anon;
34dc7c2f
BB
874static arc_state_t *arc_mru;
875static arc_state_t *arc_mru_ghost;
876static arc_state_t *arc_mfu;
877static arc_state_t *arc_mfu_ghost;
878static arc_state_t *arc_l2c_only;
879
880/*
881 * There are several ARC variables that are critical to export as kstats --
882 * but we don't want to have to grovel around in the kstat whenever we wish to
883 * manipulate them. For these variables, we therefore define them to be in
884 * terms of the statistic variable. This assures that we are not introducing
885 * the possibility of inconsistency by having shadow copies of the variables,
886 * while still allowing the code to be readable.
887 */
34dc7c2f
BB
888#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
889#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
890#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
891#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
d3c2ae1c 892#define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
1834f2d8
BB
893#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
894#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 895#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
25458cbe 896#define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
ca0bf58d 897#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133 898#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
11f552fa
BB
899#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
900#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
34dc7c2f 901
b5256303
TC
902/* size of all b_rabd's in entire arc */
903#define arc_raw_size ARCSTAT(arcstat_raw_size)
d3c2ae1c
GW
904/* compressed size of entire arc */
905#define arc_compressed_size ARCSTAT(arcstat_compressed_size)
906/* uncompressed size of entire arc */
907#define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
908/* number of bytes in the arc from arc_buf_t's */
909#define arc_overhead_size ARCSTAT(arcstat_overhead_size)
3a17a7a9 910
37fb3e43
PD
911/*
912 * There are also some ARC variables that we want to export, but that are
913 * updated so often that having the canonical representation be the statistic
914 * variable causes a performance bottleneck. We want to use aggsum_t's for these
915 * instead, but still be able to export the kstat in the same way as before.
916 * The solution is to always use the aggsum version, except in the kstat update
917 * callback.
918 */
919aggsum_t arc_size;
920aggsum_t arc_meta_used;
921aggsum_t astat_data_size;
922aggsum_t astat_metadata_size;
923aggsum_t astat_dbuf_size;
924aggsum_t astat_dnode_size;
925aggsum_t astat_bonus_size;
926aggsum_t astat_hdr_size;
927aggsum_t astat_l2_hdr_size;
928
3ec34e55 929static hrtime_t arc_growtime;
ab26409d
BB
930static list_t arc_prune_list;
931static kmutex_t arc_prune_mtx;
f6046738 932static taskq_t *arc_prune_taskq;
428870ff 933
34dc7c2f
BB
934#define GHOST_STATE(state) \
935 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
936 (state) == arc_l2c_only)
937
2a432414
GW
938#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
939#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
940#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
941#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
d4a72f23
TC
942#define HDR_PRESCIENT_PREFETCH(hdr) \
943 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
d3c2ae1c
GW
944#define HDR_COMPRESSION_ENABLED(hdr) \
945 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
b9541d6b 946
2a432414
GW
947#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
948#define HDR_L2_READING(hdr) \
d3c2ae1c
GW
949 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
950 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
951#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
952#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
953#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
b5256303
TC
954#define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
955#define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
d3c2ae1c 956#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
34dc7c2f 957
b9541d6b 958#define HDR_ISTYPE_METADATA(hdr) \
d3c2ae1c 959 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
b9541d6b
CW
960#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
961
962#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
963#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
b5256303
TC
964#define HDR_HAS_RABD(hdr) \
965 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
966 (hdr)->b_crypt_hdr.b_rabd != NULL)
967#define HDR_ENCRYPTED(hdr) \
968 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
969#define HDR_AUTHENTICATED(hdr) \
970 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
b9541d6b 971
d3c2ae1c
GW
972/* For storing compression mode in b_flags */
973#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
974
975#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
976 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
977#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
978 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
979
980#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
524b4217
DK
981#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
982#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
b5256303 983#define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
d3c2ae1c 984
34dc7c2f
BB
985/*
986 * Other sizes
987 */
988
b5256303
TC
989#define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
990#define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
b9541d6b 991#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
992
993/*
994 * Hash table routines
995 */
996
00b46022
BB
997#define HT_LOCK_ALIGN 64
998#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
999
1000struct ht_lock {
1001 kmutex_t ht_lock;
1002#ifdef _KERNEL
00b46022 1003 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
1004#endif
1005};
1006
b31d8ea7 1007#define BUF_LOCKS 8192
34dc7c2f
BB
1008typedef struct buf_hash_table {
1009 uint64_t ht_mask;
1010 arc_buf_hdr_t **ht_table;
1011 struct ht_lock ht_locks[BUF_LOCKS];
1012} buf_hash_table_t;
1013
1014static buf_hash_table_t buf_hash_table;
1015
1016#define BUF_HASH_INDEX(spa, dva, birth) \
1017 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1018#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1019#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
1020#define HDR_LOCK(hdr) \
1021 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
1022
1023uint64_t zfs_crc64_table[256];
1024
1025/*
1026 * Level 2 ARC
1027 */
1028
1029#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 1030#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd 1031
3a17a7a9
SK
1032/*
1033 * If we discover during ARC scan any buffers to be compressed, we boost
1034 * our headroom for the next scanning cycle by this percentage multiple.
1035 */
1036#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
1037#define L2ARC_FEED_SECS 1 /* caching interval secs */
1038#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 1039
4aafab91
G
1040/*
1041 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
1042 * and each of the state has two types: data and metadata.
1043 */
1044#define L2ARC_FEED_TYPES 4
1045
34dc7c2f
BB
1046#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
1047#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
1048
d3cc8b15 1049/* L2ARC Performance Tunables */
abd8610c
BB
1050unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
1051unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
1052unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 1053unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
1054unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
1055unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
1056int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
1057int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 1058int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
1059
1060/*
1061 * L2ARC Internals
1062 */
34dc7c2f
BB
1063static list_t L2ARC_dev_list; /* device list */
1064static list_t *l2arc_dev_list; /* device list pointer */
1065static kmutex_t l2arc_dev_mtx; /* device list mutex */
1066static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
1067static list_t L2ARC_free_on_write; /* free after write buf list */
1068static list_t *l2arc_free_on_write; /* free after write list ptr */
1069static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
1070static uint64_t l2arc_ndev; /* number of devices */
1071
1072typedef struct l2arc_read_callback {
2aa34383 1073 arc_buf_hdr_t *l2rcb_hdr; /* read header */
3a17a7a9 1074 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 1075 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9 1076 int l2rcb_flags; /* original flags */
82710e99 1077 abd_t *l2rcb_abd; /* temporary buffer */
34dc7c2f
BB
1078} l2arc_read_callback_t;
1079
34dc7c2f
BB
1080typedef struct l2arc_data_free {
1081 /* protected by l2arc_free_on_write_mtx */
a6255b7f 1082 abd_t *l2df_abd;
34dc7c2f 1083 size_t l2df_size;
d3c2ae1c 1084 arc_buf_contents_t l2df_type;
34dc7c2f
BB
1085 list_node_t l2df_list_node;
1086} l2arc_data_free_t;
1087
b5256303
TC
1088typedef enum arc_fill_flags {
1089 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
1090 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
1091 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
1092 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
1093 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
1094} arc_fill_flags_t;
1095
34dc7c2f
BB
1096static kmutex_t l2arc_feed_thr_lock;
1097static kcondvar_t l2arc_feed_thr_cv;
1098static uint8_t l2arc_thread_exit;
1099
a6255b7f 1100static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
d3c2ae1c 1101static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
a6255b7f
DQ
1102static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1103static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
d3c2ae1c 1104static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
a6255b7f 1105static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
b5256303
TC
1106static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
1107static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t);
2a432414 1108static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 1109static boolean_t arc_is_overflowing(void);
2a432414 1110static void arc_buf_watch(arc_buf_t *);
ca67b33a 1111static void arc_tuning_update(void);
25458cbe 1112static void arc_prune_async(int64_t);
9edb3695 1113static uint64_t arc_all_memory(void);
2a432414 1114
b9541d6b
CW
1115static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1116static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
d3c2ae1c
GW
1117static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1118static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
b9541d6b 1119
2a432414
GW
1120static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1121static void l2arc_read_done(zio_t *);
34dc7c2f 1122
37fb3e43
PD
1123
1124/*
1125 * We use Cityhash for this. It's fast, and has good hash properties without
1126 * requiring any large static buffers.
1127 */
34dc7c2f 1128static uint64_t
d164b209 1129buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 1130{
37fb3e43 1131 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
34dc7c2f
BB
1132}
1133
d3c2ae1c
GW
1134#define HDR_EMPTY(hdr) \
1135 ((hdr)->b_dva.dva_word[0] == 0 && \
1136 (hdr)->b_dva.dva_word[1] == 0)
34dc7c2f 1137
ca6c7a94
BB
1138#define HDR_EMPTY_OR_LOCKED(hdr) \
1139 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1140
d3c2ae1c
GW
1141#define HDR_EQUAL(spa, dva, birth, hdr) \
1142 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1143 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1144 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
34dc7c2f 1145
428870ff
BB
1146static void
1147buf_discard_identity(arc_buf_hdr_t *hdr)
1148{
1149 hdr->b_dva.dva_word[0] = 0;
1150 hdr->b_dva.dva_word[1] = 0;
1151 hdr->b_birth = 0;
428870ff
BB
1152}
1153
34dc7c2f 1154static arc_buf_hdr_t *
9b67f605 1155buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 1156{
9b67f605
MA
1157 const dva_t *dva = BP_IDENTITY(bp);
1158 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
1159 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1160 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1161 arc_buf_hdr_t *hdr;
34dc7c2f
BB
1162
1163 mutex_enter(hash_lock);
2a432414
GW
1164 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1165 hdr = hdr->b_hash_next) {
d3c2ae1c 1166 if (HDR_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 1167 *lockp = hash_lock;
2a432414 1168 return (hdr);
34dc7c2f
BB
1169 }
1170 }
1171 mutex_exit(hash_lock);
1172 *lockp = NULL;
1173 return (NULL);
1174}
1175
1176/*
1177 * Insert an entry into the hash table. If there is already an element
1178 * equal to elem in the hash table, then the already existing element
1179 * will be returned and the new element will not be inserted.
1180 * Otherwise returns NULL.
b9541d6b 1181 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
1182 */
1183static arc_buf_hdr_t *
2a432414 1184buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 1185{
2a432414 1186 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 1187 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1188 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
1189 uint32_t i;
1190
2a432414
GW
1191 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1192 ASSERT(hdr->b_birth != 0);
1193 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
1194
1195 if (lockp != NULL) {
1196 *lockp = hash_lock;
1197 mutex_enter(hash_lock);
1198 } else {
1199 ASSERT(MUTEX_HELD(hash_lock));
1200 }
1201
2a432414
GW
1202 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1203 fhdr = fhdr->b_hash_next, i++) {
d3c2ae1c 1204 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
2a432414 1205 return (fhdr);
34dc7c2f
BB
1206 }
1207
2a432414
GW
1208 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1209 buf_hash_table.ht_table[idx] = hdr;
d3c2ae1c 1210 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1211
1212 /* collect some hash table performance data */
1213 if (i > 0) {
1214 ARCSTAT_BUMP(arcstat_hash_collisions);
1215 if (i == 1)
1216 ARCSTAT_BUMP(arcstat_hash_chains);
1217
1218 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1219 }
1220
1221 ARCSTAT_BUMP(arcstat_hash_elements);
1222 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1223
1224 return (NULL);
1225}
1226
1227static void
2a432414 1228buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 1229{
2a432414
GW
1230 arc_buf_hdr_t *fhdr, **hdrp;
1231 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
1232
1233 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 1234 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 1235
2a432414
GW
1236 hdrp = &buf_hash_table.ht_table[idx];
1237 while ((fhdr = *hdrp) != hdr) {
d3c2ae1c 1238 ASSERT3P(fhdr, !=, NULL);
2a432414 1239 hdrp = &fhdr->b_hash_next;
34dc7c2f 1240 }
2a432414
GW
1241 *hdrp = hdr->b_hash_next;
1242 hdr->b_hash_next = NULL;
d3c2ae1c 1243 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1244
1245 /* collect some hash table performance data */
1246 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1247
1248 if (buf_hash_table.ht_table[idx] &&
1249 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1250 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1251}
1252
1253/*
1254 * Global data structures and functions for the buf kmem cache.
1255 */
b5256303 1256
b9541d6b 1257static kmem_cache_t *hdr_full_cache;
b5256303 1258static kmem_cache_t *hdr_full_crypt_cache;
b9541d6b 1259static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
1260static kmem_cache_t *buf_cache;
1261
1262static void
1263buf_fini(void)
1264{
1265 int i;
1266
93ce2b4c 1267#if defined(_KERNEL)
d1d7e268
MK
1268 /*
1269 * Large allocations which do not require contiguous pages
1270 * should be using vmem_free() in the linux kernel\
1271 */
00b46022
BB
1272 vmem_free(buf_hash_table.ht_table,
1273 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1274#else
34dc7c2f
BB
1275 kmem_free(buf_hash_table.ht_table,
1276 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 1277#endif
34dc7c2f
BB
1278 for (i = 0; i < BUF_LOCKS; i++)
1279 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b 1280 kmem_cache_destroy(hdr_full_cache);
b5256303 1281 kmem_cache_destroy(hdr_full_crypt_cache);
b9541d6b 1282 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
1283 kmem_cache_destroy(buf_cache);
1284}
1285
1286/*
1287 * Constructor callback - called when the cache is empty
1288 * and a new buf is requested.
1289 */
1290/* ARGSUSED */
1291static int
b9541d6b
CW
1292hdr_full_cons(void *vbuf, void *unused, int kmflag)
1293{
1294 arc_buf_hdr_t *hdr = vbuf;
1295
1296 bzero(hdr, HDR_FULL_SIZE);
ae76f45c 1297 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
b9541d6b 1298 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
424fd7c3 1299 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
b9541d6b
CW
1300 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1301 list_link_init(&hdr->b_l1hdr.b_arc_node);
1302 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1303 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1304 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1305
1306 return (0);
1307}
1308
b5256303
TC
1309/* ARGSUSED */
1310static int
1311hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1312{
1313 arc_buf_hdr_t *hdr = vbuf;
1314
1315 hdr_full_cons(vbuf, unused, kmflag);
1316 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1317 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1318
1319 return (0);
1320}
1321
b9541d6b
CW
1322/* ARGSUSED */
1323static int
1324hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1325{
2a432414
GW
1326 arc_buf_hdr_t *hdr = vbuf;
1327
b9541d6b
CW
1328 bzero(hdr, HDR_L2ONLY_SIZE);
1329 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1330
34dc7c2f
BB
1331 return (0);
1332}
1333
b128c09f
BB
1334/* ARGSUSED */
1335static int
1336buf_cons(void *vbuf, void *unused, int kmflag)
1337{
1338 arc_buf_t *buf = vbuf;
1339
1340 bzero(buf, sizeof (arc_buf_t));
428870ff 1341 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1342 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1343
b128c09f
BB
1344 return (0);
1345}
1346
34dc7c2f
BB
1347/*
1348 * Destructor callback - called when a cached buf is
1349 * no longer required.
1350 */
1351/* ARGSUSED */
1352static void
b9541d6b 1353hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1354{
2a432414 1355 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1356
d3c2ae1c 1357 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1358 cv_destroy(&hdr->b_l1hdr.b_cv);
424fd7c3 1359 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
b9541d6b 1360 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1361 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1362 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1363}
1364
b5256303
TC
1365/* ARGSUSED */
1366static void
1367hdr_full_crypt_dest(void *vbuf, void *unused)
1368{
1369 arc_buf_hdr_t *hdr = vbuf;
1370
1371 hdr_full_dest(vbuf, unused);
1372 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1373}
1374
b9541d6b
CW
1375/* ARGSUSED */
1376static void
1377hdr_l2only_dest(void *vbuf, void *unused)
1378{
1379 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1380
d3c2ae1c 1381 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1382 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1383}
1384
b128c09f
BB
1385/* ARGSUSED */
1386static void
1387buf_dest(void *vbuf, void *unused)
1388{
1389 arc_buf_t *buf = vbuf;
1390
428870ff 1391 mutex_destroy(&buf->b_evict_lock);
d164b209 1392 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1393}
1394
8c8af9d8
BB
1395/*
1396 * Reclaim callback -- invoked when memory is low.
1397 */
1398/* ARGSUSED */
1399static void
1400hdr_recl(void *unused)
1401{
1402 dprintf("hdr_recl called\n");
1403 /*
1404 * umem calls the reclaim func when we destroy the buf cache,
1405 * which is after we do arc_fini().
1406 */
3ec34e55
BL
1407 if (arc_initialized)
1408 zthr_wakeup(arc_reap_zthr);
8c8af9d8
BB
1409}
1410
34dc7c2f
BB
1411static void
1412buf_init(void)
1413{
2db28197 1414 uint64_t *ct = NULL;
34dc7c2f
BB
1415 uint64_t hsize = 1ULL << 12;
1416 int i, j;
1417
1418 /*
1419 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1420 * with an average block size of zfs_arc_average_blocksize (default 8K).
1421 * By default, the table will take up
1422 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1423 */
9edb3695 1424 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
34dc7c2f
BB
1425 hsize <<= 1;
1426retry:
1427 buf_hash_table.ht_mask = hsize - 1;
93ce2b4c 1428#if defined(_KERNEL)
d1d7e268
MK
1429 /*
1430 * Large allocations which do not require contiguous pages
1431 * should be using vmem_alloc() in the linux kernel
1432 */
00b46022
BB
1433 buf_hash_table.ht_table =
1434 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1435#else
34dc7c2f
BB
1436 buf_hash_table.ht_table =
1437 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1438#endif
34dc7c2f
BB
1439 if (buf_hash_table.ht_table == NULL) {
1440 ASSERT(hsize > (1ULL << 8));
1441 hsize >>= 1;
1442 goto retry;
1443 }
1444
b9541d6b 1445 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
8c8af9d8 1446 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
b5256303
TC
1447 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1448 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1449 hdr_recl, NULL, NULL, 0);
b9541d6b 1450 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
8c8af9d8 1451 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
b9541d6b 1452 NULL, NULL, 0);
34dc7c2f 1453 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1454 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1455
1456 for (i = 0; i < 256; i++)
1457 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1458 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1459
1460 for (i = 0; i < BUF_LOCKS; i++) {
1461 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1462 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1463 }
1464}
1465
d3c2ae1c 1466#define ARC_MINTIME (hz>>4) /* 62 ms */
ca0bf58d 1467
2aa34383
DK
1468/*
1469 * This is the size that the buf occupies in memory. If the buf is compressed,
1470 * it will correspond to the compressed size. You should use this method of
1471 * getting the buf size unless you explicitly need the logical size.
1472 */
1473uint64_t
1474arc_buf_size(arc_buf_t *buf)
1475{
1476 return (ARC_BUF_COMPRESSED(buf) ?
1477 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1478}
1479
1480uint64_t
1481arc_buf_lsize(arc_buf_t *buf)
1482{
1483 return (HDR_GET_LSIZE(buf->b_hdr));
1484}
1485
b5256303
TC
1486/*
1487 * This function will return B_TRUE if the buffer is encrypted in memory.
1488 * This buffer can be decrypted by calling arc_untransform().
1489 */
1490boolean_t
1491arc_is_encrypted(arc_buf_t *buf)
1492{
1493 return (ARC_BUF_ENCRYPTED(buf) != 0);
1494}
1495
1496/*
1497 * Returns B_TRUE if the buffer represents data that has not had its MAC
1498 * verified yet.
1499 */
1500boolean_t
1501arc_is_unauthenticated(arc_buf_t *buf)
1502{
1503 return (HDR_NOAUTH(buf->b_hdr) != 0);
1504}
1505
1506void
1507arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1508 uint8_t *iv, uint8_t *mac)
1509{
1510 arc_buf_hdr_t *hdr = buf->b_hdr;
1511
1512 ASSERT(HDR_PROTECTED(hdr));
1513
1514 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1515 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1516 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1517 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1518 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1519}
1520
1521/*
1522 * Indicates how this buffer is compressed in memory. If it is not compressed
1523 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1524 * arc_untransform() as long as it is also unencrypted.
1525 */
2aa34383
DK
1526enum zio_compress
1527arc_get_compression(arc_buf_t *buf)
1528{
1529 return (ARC_BUF_COMPRESSED(buf) ?
1530 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1531}
1532
b5256303
TC
1533/*
1534 * Return the compression algorithm used to store this data in the ARC. If ARC
1535 * compression is enabled or this is an encrypted block, this will be the same
1536 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1537 */
1538static inline enum zio_compress
1539arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1540{
1541 return (HDR_COMPRESSION_ENABLED(hdr) ?
1542 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1543}
1544
d3c2ae1c
GW
1545static inline boolean_t
1546arc_buf_is_shared(arc_buf_t *buf)
1547{
1548 boolean_t shared = (buf->b_data != NULL &&
a6255b7f
DQ
1549 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1550 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1551 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
d3c2ae1c 1552 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
2aa34383
DK
1553 IMPLY(shared, ARC_BUF_SHARED(buf));
1554 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
524b4217
DK
1555
1556 /*
1557 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1558 * already being shared" requirement prevents us from doing that.
1559 */
1560
d3c2ae1c
GW
1561 return (shared);
1562}
ca0bf58d 1563
a7004725
DK
1564/*
1565 * Free the checksum associated with this header. If there is no checksum, this
1566 * is a no-op.
1567 */
d3c2ae1c
GW
1568static inline void
1569arc_cksum_free(arc_buf_hdr_t *hdr)
1570{
1571 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303 1572
d3c2ae1c
GW
1573 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1574 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1575 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1576 hdr->b_l1hdr.b_freeze_cksum = NULL;
b9541d6b 1577 }
d3c2ae1c 1578 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
b9541d6b
CW
1579}
1580
a7004725
DK
1581/*
1582 * Return true iff at least one of the bufs on hdr is not compressed.
b5256303 1583 * Encrypted buffers count as compressed.
a7004725
DK
1584 */
1585static boolean_t
1586arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1587{
ca6c7a94 1588 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
149ce888 1589
a7004725
DK
1590 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1591 if (!ARC_BUF_COMPRESSED(b)) {
1592 return (B_TRUE);
1593 }
1594 }
1595 return (B_FALSE);
1596}
1597
1598
524b4217
DK
1599/*
1600 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1601 * matches the checksum that is stored in the hdr. If there is no checksum,
1602 * or if the buf is compressed, this is a no-op.
1603 */
34dc7c2f
BB
1604static void
1605arc_cksum_verify(arc_buf_t *buf)
1606{
d3c2ae1c 1607 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f
BB
1608 zio_cksum_t zc;
1609
1610 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1611 return;
1612
149ce888 1613 if (ARC_BUF_COMPRESSED(buf))
524b4217 1614 return;
524b4217 1615
d3c2ae1c
GW
1616 ASSERT(HDR_HAS_L1HDR(hdr));
1617
1618 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
149ce888 1619
d3c2ae1c
GW
1620 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1621 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1622 return;
1623 }
2aa34383 1624
3c67d83a 1625 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
d3c2ae1c 1626 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
34dc7c2f 1627 panic("buffer modified while frozen!");
d3c2ae1c 1628 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1629}
1630
b5256303
TC
1631/*
1632 * This function makes the assumption that data stored in the L2ARC
1633 * will be transformed exactly as it is in the main pool. Because of
1634 * this we can verify the checksum against the reading process's bp.
1635 */
d3c2ae1c
GW
1636static boolean_t
1637arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
34dc7c2f 1638{
d3c2ae1c
GW
1639 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1640 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
34dc7c2f 1641
d3c2ae1c
GW
1642 /*
1643 * Block pointers always store the checksum for the logical data.
1644 * If the block pointer has the gang bit set, then the checksum
1645 * it represents is for the reconstituted data and not for an
1646 * individual gang member. The zio pipeline, however, must be able to
1647 * determine the checksum of each of the gang constituents so it
1648 * treats the checksum comparison differently than what we need
1649 * for l2arc blocks. This prevents us from using the
1650 * zio_checksum_error() interface directly. Instead we must call the
1651 * zio_checksum_error_impl() so that we can ensure the checksum is
1652 * generated using the correct checksum algorithm and accounts for the
1653 * logical I/O size and not just a gang fragment.
1654 */
b5256303 1655 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
a6255b7f 1656 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
d3c2ae1c 1657 zio->io_offset, NULL) == 0);
34dc7c2f
BB
1658}
1659
524b4217
DK
1660/*
1661 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1662 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1663 * isn't modified later on. If buf is compressed or there is already a checksum
1664 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1665 */
34dc7c2f 1666static void
d3c2ae1c 1667arc_cksum_compute(arc_buf_t *buf)
34dc7c2f 1668{
d3c2ae1c
GW
1669 arc_buf_hdr_t *hdr = buf->b_hdr;
1670
1671 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
34dc7c2f
BB
1672 return;
1673
d3c2ae1c 1674 ASSERT(HDR_HAS_L1HDR(hdr));
2aa34383 1675
b9541d6b 1676 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
149ce888 1677 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 1678 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1679 return;
1680 }
2aa34383 1681
b5256303 1682 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2aa34383 1683 ASSERT(!ARC_BUF_COMPRESSED(buf));
d3c2ae1c
GW
1684 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1685 KM_SLEEP);
3c67d83a 1686 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
d3c2ae1c
GW
1687 hdr->b_l1hdr.b_freeze_cksum);
1688 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1689 arc_buf_watch(buf);
1690}
1691
1692#ifndef _KERNEL
1693void
1694arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1695{
02730c33 1696 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
498877ba
MA
1697}
1698#endif
1699
1700/* ARGSUSED */
1701static void
1702arc_buf_unwatch(arc_buf_t *buf)
1703{
1704#ifndef _KERNEL
1705 if (arc_watch) {
a7004725 1706 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
498877ba
MA
1707 PROT_READ | PROT_WRITE));
1708 }
1709#endif
1710}
1711
1712/* ARGSUSED */
1713static void
1714arc_buf_watch(arc_buf_t *buf)
1715{
1716#ifndef _KERNEL
1717 if (arc_watch)
2aa34383 1718 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
d3c2ae1c 1719 PROT_READ));
498877ba 1720#endif
34dc7c2f
BB
1721}
1722
b9541d6b
CW
1723static arc_buf_contents_t
1724arc_buf_type(arc_buf_hdr_t *hdr)
1725{
d3c2ae1c 1726 arc_buf_contents_t type;
b9541d6b 1727 if (HDR_ISTYPE_METADATA(hdr)) {
d3c2ae1c 1728 type = ARC_BUFC_METADATA;
b9541d6b 1729 } else {
d3c2ae1c 1730 type = ARC_BUFC_DATA;
b9541d6b 1731 }
d3c2ae1c
GW
1732 VERIFY3U(hdr->b_type, ==, type);
1733 return (type);
b9541d6b
CW
1734}
1735
2aa34383
DK
1736boolean_t
1737arc_is_metadata(arc_buf_t *buf)
1738{
1739 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1740}
1741
b9541d6b
CW
1742static uint32_t
1743arc_bufc_to_flags(arc_buf_contents_t type)
1744{
1745 switch (type) {
1746 case ARC_BUFC_DATA:
1747 /* metadata field is 0 if buffer contains normal data */
1748 return (0);
1749 case ARC_BUFC_METADATA:
1750 return (ARC_FLAG_BUFC_METADATA);
1751 default:
1752 break;
1753 }
1754 panic("undefined ARC buffer type!");
1755 return ((uint32_t)-1);
1756}
1757
34dc7c2f
BB
1758void
1759arc_buf_thaw(arc_buf_t *buf)
1760{
d3c2ae1c
GW
1761 arc_buf_hdr_t *hdr = buf->b_hdr;
1762
2aa34383
DK
1763 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1764 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1765
524b4217 1766 arc_cksum_verify(buf);
34dc7c2f 1767
2aa34383 1768 /*
149ce888 1769 * Compressed buffers do not manipulate the b_freeze_cksum.
2aa34383 1770 */
149ce888 1771 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1772 return;
2aa34383 1773
d3c2ae1c
GW
1774 ASSERT(HDR_HAS_L1HDR(hdr));
1775 arc_cksum_free(hdr);
498877ba 1776 arc_buf_unwatch(buf);
34dc7c2f
BB
1777}
1778
1779void
1780arc_buf_freeze(arc_buf_t *buf)
1781{
1782 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1783 return;
1784
149ce888 1785 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1786 return;
428870ff 1787
149ce888 1788 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
d3c2ae1c 1789 arc_cksum_compute(buf);
34dc7c2f
BB
1790}
1791
d3c2ae1c
GW
1792/*
1793 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1794 * the following functions should be used to ensure that the flags are
1795 * updated in a thread-safe way. When manipulating the flags either
1796 * the hash_lock must be held or the hdr must be undiscoverable. This
1797 * ensures that we're not racing with any other threads when updating
1798 * the flags.
1799 */
1800static inline void
1801arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1802{
ca6c7a94 1803 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1804 hdr->b_flags |= flags;
1805}
1806
1807static inline void
1808arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1809{
ca6c7a94 1810 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1811 hdr->b_flags &= ~flags;
1812}
1813
1814/*
1815 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1816 * done in a special way since we have to clear and set bits
1817 * at the same time. Consumers that wish to set the compression bits
1818 * must use this function to ensure that the flags are updated in
1819 * thread-safe manner.
1820 */
1821static void
1822arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1823{
ca6c7a94 1824 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1825
1826 /*
1827 * Holes and embedded blocks will always have a psize = 0 so
1828 * we ignore the compression of the blkptr and set the
d3c2ae1c
GW
1829 * want to uncompress them. Mark them as uncompressed.
1830 */
1831 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1832 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c 1833 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
d3c2ae1c
GW
1834 } else {
1835 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c
GW
1836 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1837 }
b5256303
TC
1838
1839 HDR_SET_COMPRESS(hdr, cmp);
1840 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
d3c2ae1c
GW
1841}
1842
524b4217
DK
1843/*
1844 * Looks for another buf on the same hdr which has the data decompressed, copies
1845 * from it, and returns true. If no such buf exists, returns false.
1846 */
1847static boolean_t
1848arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1849{
1850 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217
DK
1851 boolean_t copied = B_FALSE;
1852
1853 ASSERT(HDR_HAS_L1HDR(hdr));
1854 ASSERT3P(buf->b_data, !=, NULL);
1855 ASSERT(!ARC_BUF_COMPRESSED(buf));
1856
a7004725 1857 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
524b4217
DK
1858 from = from->b_next) {
1859 /* can't use our own data buffer */
1860 if (from == buf) {
1861 continue;
1862 }
1863
1864 if (!ARC_BUF_COMPRESSED(from)) {
1865 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1866 copied = B_TRUE;
1867 break;
1868 }
1869 }
1870
1871 /*
1872 * There were no decompressed bufs, so there should not be a
1873 * checksum on the hdr either.
1874 */
1875 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1876
1877 return (copied);
1878}
1879
b5256303
TC
1880/*
1881 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1882 */
1883static uint64_t
1884arc_hdr_size(arc_buf_hdr_t *hdr)
1885{
1886 uint64_t size;
1887
1888 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1889 HDR_GET_PSIZE(hdr) > 0) {
1890 size = HDR_GET_PSIZE(hdr);
1891 } else {
1892 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1893 size = HDR_GET_LSIZE(hdr);
1894 }
1895 return (size);
1896}
1897
1898static int
1899arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1900{
1901 int ret;
1902 uint64_t csize;
1903 uint64_t lsize = HDR_GET_LSIZE(hdr);
1904 uint64_t psize = HDR_GET_PSIZE(hdr);
1905 void *tmpbuf = NULL;
1906 abd_t *abd = hdr->b_l1hdr.b_pabd;
1907
ca6c7a94 1908 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1909 ASSERT(HDR_AUTHENTICATED(hdr));
1910 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1911
1912 /*
1913 * The MAC is calculated on the compressed data that is stored on disk.
1914 * However, if compressed arc is disabled we will only have the
1915 * decompressed data available to us now. Compress it into a temporary
1916 * abd so we can verify the MAC. The performance overhead of this will
1917 * be relatively low, since most objects in an encrypted objset will
1918 * be encrypted (instead of authenticated) anyway.
1919 */
1920 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1921 !HDR_COMPRESSION_ENABLED(hdr)) {
1922 tmpbuf = zio_buf_alloc(lsize);
1923 abd = abd_get_from_buf(tmpbuf, lsize);
1924 abd_take_ownership_of_buf(abd, B_TRUE);
1925
1926 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1927 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1928 ASSERT3U(csize, <=, psize);
1929 abd_zero_off(abd, csize, psize - csize);
1930 }
1931
1932 /*
1933 * Authentication is best effort. We authenticate whenever the key is
1934 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1935 */
1936 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1937 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1938 ASSERT3U(lsize, ==, psize);
1939 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1940 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1941 } else {
1942 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1943 hdr->b_crypt_hdr.b_mac);
1944 }
1945
1946 if (ret == 0)
1947 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1948 else if (ret != ENOENT)
1949 goto error;
1950
1951 if (tmpbuf != NULL)
1952 abd_free(abd);
1953
1954 return (0);
1955
1956error:
1957 if (tmpbuf != NULL)
1958 abd_free(abd);
1959
1960 return (ret);
1961}
1962
1963/*
1964 * This function will take a header that only has raw encrypted data in
1965 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1966 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1967 * also decompress the data.
1968 */
1969static int
be9a5c35 1970arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
b5256303
TC
1971{
1972 int ret;
b5256303
TC
1973 abd_t *cabd = NULL;
1974 void *tmp = NULL;
1975 boolean_t no_crypt = B_FALSE;
1976 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1977
ca6c7a94 1978 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1979 ASSERT(HDR_ENCRYPTED(hdr));
1980
1981 arc_hdr_alloc_abd(hdr, B_FALSE);
1982
be9a5c35
TC
1983 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1984 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1985 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
b5256303
TC
1986 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1987 if (ret != 0)
1988 goto error;
1989
1990 if (no_crypt) {
1991 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1992 HDR_GET_PSIZE(hdr));
1993 }
1994
1995 /*
1996 * If this header has disabled arc compression but the b_pabd is
1997 * compressed after decrypting it, we need to decompress the newly
1998 * decrypted data.
1999 */
2000 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
2001 !HDR_COMPRESSION_ENABLED(hdr)) {
2002 /*
2003 * We want to make sure that we are correctly honoring the
2004 * zfs_abd_scatter_enabled setting, so we allocate an abd here
2005 * and then loan a buffer from it, rather than allocating a
2006 * linear buffer and wrapping it in an abd later.
2007 */
2008 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2009 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
2010
2011 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2012 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
2013 HDR_GET_LSIZE(hdr));
2014 if (ret != 0) {
2015 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
2016 goto error;
2017 }
2018
2019 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
2020 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2021 arc_hdr_size(hdr), hdr);
2022 hdr->b_l1hdr.b_pabd = cabd;
2023 }
2024
b5256303
TC
2025 return (0);
2026
2027error:
2028 arc_hdr_free_abd(hdr, B_FALSE);
b5256303
TC
2029 if (cabd != NULL)
2030 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
2031
2032 return (ret);
2033}
2034
2035/*
2036 * This function is called during arc_buf_fill() to prepare the header's
2037 * abd plaintext pointer for use. This involves authenticated protected
2038 * data and decrypting encrypted data into the plaintext abd.
2039 */
2040static int
2041arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
be9a5c35 2042 const zbookmark_phys_t *zb, boolean_t noauth)
b5256303
TC
2043{
2044 int ret;
2045
2046 ASSERT(HDR_PROTECTED(hdr));
2047
2048 if (hash_lock != NULL)
2049 mutex_enter(hash_lock);
2050
2051 if (HDR_NOAUTH(hdr) && !noauth) {
2052 /*
2053 * The caller requested authenticated data but our data has
2054 * not been authenticated yet. Verify the MAC now if we can.
2055 */
be9a5c35 2056 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
b5256303
TC
2057 if (ret != 0)
2058 goto error;
2059 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2060 /*
2061 * If we only have the encrypted version of the data, but the
2062 * unencrypted version was requested we take this opportunity
2063 * to store the decrypted version in the header for future use.
2064 */
be9a5c35 2065 ret = arc_hdr_decrypt(hdr, spa, zb);
b5256303
TC
2066 if (ret != 0)
2067 goto error;
2068 }
2069
2070 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2071
2072 if (hash_lock != NULL)
2073 mutex_exit(hash_lock);
2074
2075 return (0);
2076
2077error:
2078 if (hash_lock != NULL)
2079 mutex_exit(hash_lock);
2080
2081 return (ret);
2082}
2083
2084/*
2085 * This function is used by the dbuf code to decrypt bonus buffers in place.
2086 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2087 * block, so we use the hash lock here to protect against concurrent calls to
2088 * arc_buf_fill().
2089 */
2090static void
2091arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2092{
2093 arc_buf_hdr_t *hdr = buf->b_hdr;
2094
2095 ASSERT(HDR_ENCRYPTED(hdr));
2096 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
ca6c7a94 2097 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
2098 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2099
2100 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2101 arc_buf_size(buf));
2102 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2103 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2104 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2105}
2106
524b4217
DK
2107/*
2108 * Given a buf that has a data buffer attached to it, this function will
2109 * efficiently fill the buf with data of the specified compression setting from
2110 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2111 * are already sharing a data buf, no copy is performed.
2112 *
2113 * If the buf is marked as compressed but uncompressed data was requested, this
2114 * will allocate a new data buffer for the buf, remove that flag, and fill the
2115 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2116 * uncompressed data, and (since we haven't added support for it yet) if you
2117 * want compressed data your buf must already be marked as compressed and have
2118 * the correct-sized data buffer.
2119 */
2120static int
be9a5c35
TC
2121arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2122 arc_fill_flags_t flags)
d3c2ae1c 2123{
b5256303 2124 int error = 0;
d3c2ae1c 2125 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
2126 boolean_t hdr_compressed =
2127 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2128 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2129 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
d3c2ae1c 2130 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
b5256303 2131 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
d3c2ae1c 2132
524b4217 2133 ASSERT3P(buf->b_data, !=, NULL);
b5256303 2134 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
524b4217 2135 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
b5256303
TC
2136 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2137 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2138 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2139 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2140
2141 /*
2142 * If the caller wanted encrypted data we just need to copy it from
2143 * b_rabd and potentially byteswap it. We won't be able to do any
2144 * further transforms on it.
2145 */
2146 if (encrypted) {
2147 ASSERT(HDR_HAS_RABD(hdr));
2148 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2149 HDR_GET_PSIZE(hdr));
2150 goto byteswap;
2151 }
2152
2153 /*
69830602
TC
2154 * Adjust encrypted and authenticated headers to accomodate
2155 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2156 * allowed to fail decryption due to keys not being loaded
2157 * without being marked as an IO error.
b5256303
TC
2158 */
2159 if (HDR_PROTECTED(hdr)) {
2160 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
be9a5c35 2161 zb, !!(flags & ARC_FILL_NOAUTH));
69830602
TC
2162 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2163 return (error);
2164 } else if (error != 0) {
e7504d7a
TC
2165 if (hash_lock != NULL)
2166 mutex_enter(hash_lock);
2c24b5b1 2167 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2168 if (hash_lock != NULL)
2169 mutex_exit(hash_lock);
b5256303 2170 return (error);
2c24b5b1 2171 }
b5256303
TC
2172 }
2173
2174 /*
2175 * There is a special case here for dnode blocks which are
2176 * decrypting their bonus buffers. These blocks may request to
2177 * be decrypted in-place. This is necessary because there may
2178 * be many dnodes pointing into this buffer and there is
2179 * currently no method to synchronize replacing the backing
2180 * b_data buffer and updating all of the pointers. Here we use
2181 * the hash lock to ensure there are no races. If the need
2182 * arises for other types to be decrypted in-place, they must
2183 * add handling here as well.
2184 */
2185 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2186 ASSERT(!hdr_compressed);
2187 ASSERT(!compressed);
2188 ASSERT(!encrypted);
2189
2190 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2191 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2192
2193 if (hash_lock != NULL)
2194 mutex_enter(hash_lock);
2195 arc_buf_untransform_in_place(buf, hash_lock);
2196 if (hash_lock != NULL)
2197 mutex_exit(hash_lock);
2198
2199 /* Compute the hdr's checksum if necessary */
2200 arc_cksum_compute(buf);
2201 }
2202
2203 return (0);
2204 }
524b4217
DK
2205
2206 if (hdr_compressed == compressed) {
2aa34383 2207 if (!arc_buf_is_shared(buf)) {
a6255b7f 2208 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
524b4217 2209 arc_buf_size(buf));
2aa34383 2210 }
d3c2ae1c 2211 } else {
524b4217
DK
2212 ASSERT(hdr_compressed);
2213 ASSERT(!compressed);
d3c2ae1c 2214 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2aa34383
DK
2215
2216 /*
524b4217
DK
2217 * If the buf is sharing its data with the hdr, unlink it and
2218 * allocate a new data buffer for the buf.
2aa34383 2219 */
524b4217
DK
2220 if (arc_buf_is_shared(buf)) {
2221 ASSERT(ARC_BUF_COMPRESSED(buf));
2222
2223 /* We need to give the buf it's own b_data */
2224 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2aa34383
DK
2225 buf->b_data =
2226 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2227 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2228
524b4217 2229 /* Previously overhead was 0; just add new overhead */
2aa34383 2230 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
524b4217
DK
2231 } else if (ARC_BUF_COMPRESSED(buf)) {
2232 /* We need to reallocate the buf's b_data */
2233 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2234 buf);
2235 buf->b_data =
2236 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2237
2238 /* We increased the size of b_data; update overhead */
2239 ARCSTAT_INCR(arcstat_overhead_size,
2240 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2aa34383
DK
2241 }
2242
524b4217
DK
2243 /*
2244 * Regardless of the buf's previous compression settings, it
2245 * should not be compressed at the end of this function.
2246 */
2247 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2248
2249 /*
2250 * Try copying the data from another buf which already has a
2251 * decompressed version. If that's not possible, it's time to
2252 * bite the bullet and decompress the data from the hdr.
2253 */
2254 if (arc_buf_try_copy_decompressed_data(buf)) {
2255 /* Skip byteswapping and checksumming (already done) */
2256 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2257 return (0);
2258 } else {
b5256303 2259 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
a6255b7f 2260 hdr->b_l1hdr.b_pabd, buf->b_data,
524b4217
DK
2261 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2262
2263 /*
2264 * Absent hardware errors or software bugs, this should
2265 * be impossible, but log it anyway so we can debug it.
2266 */
2267 if (error != 0) {
2268 zfs_dbgmsg(
a887d653 2269 "hdr %px, compress %d, psize %d, lsize %d",
b5256303 2270 hdr, arc_hdr_get_compress(hdr),
524b4217 2271 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
e7504d7a
TC
2272 if (hash_lock != NULL)
2273 mutex_enter(hash_lock);
2c24b5b1 2274 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2275 if (hash_lock != NULL)
2276 mutex_exit(hash_lock);
524b4217
DK
2277 return (SET_ERROR(EIO));
2278 }
d3c2ae1c
GW
2279 }
2280 }
524b4217 2281
b5256303 2282byteswap:
524b4217 2283 /* Byteswap the buf's data if necessary */
d3c2ae1c
GW
2284 if (bswap != DMU_BSWAP_NUMFUNCS) {
2285 ASSERT(!HDR_SHARED_DATA(hdr));
2286 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2287 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2288 }
524b4217
DK
2289
2290 /* Compute the hdr's checksum if necessary */
d3c2ae1c 2291 arc_cksum_compute(buf);
524b4217 2292
d3c2ae1c
GW
2293 return (0);
2294}
2295
2296/*
b5256303
TC
2297 * If this function is being called to decrypt an encrypted buffer or verify an
2298 * authenticated one, the key must be loaded and a mapping must be made
2299 * available in the keystore via spa_keystore_create_mapping() or one of its
2300 * callers.
d3c2ae1c 2301 */
b5256303 2302int
a2c2ed1b
TC
2303arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2304 boolean_t in_place)
d3c2ae1c 2305{
a2c2ed1b 2306 int ret;
b5256303 2307 arc_fill_flags_t flags = 0;
d3c2ae1c 2308
b5256303
TC
2309 if (in_place)
2310 flags |= ARC_FILL_IN_PLACE;
2311
be9a5c35 2312 ret = arc_buf_fill(buf, spa, zb, flags);
a2c2ed1b
TC
2313 if (ret == ECKSUM) {
2314 /*
2315 * Convert authentication and decryption errors to EIO
2316 * (and generate an ereport) before leaving the ARC.
2317 */
2318 ret = SET_ERROR(EIO);
be9a5c35 2319 spa_log_error(spa, zb);
a2c2ed1b
TC
2320 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2321 spa, NULL, zb, NULL, 0, 0);
2322 }
2323
2324 return (ret);
d3c2ae1c
GW
2325}
2326
2327/*
2328 * Increment the amount of evictable space in the arc_state_t's refcount.
2329 * We account for the space used by the hdr and the arc buf individually
2330 * so that we can add and remove them from the refcount individually.
2331 */
34dc7c2f 2332static void
d3c2ae1c
GW
2333arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2334{
2335 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2336
2337 ASSERT(HDR_HAS_L1HDR(hdr));
2338
2339 if (GHOST_STATE(state)) {
2340 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2341 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2342 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2343 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2344 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2345 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2346 return;
2347 }
2348
2349 ASSERT(!GHOST_STATE(state));
a6255b7f 2350 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2351 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c
GW
2352 arc_hdr_size(hdr), hdr);
2353 }
b5256303 2354 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2355 (void) zfs_refcount_add_many(&state->arcs_esize[type],
b5256303
TC
2356 HDR_GET_PSIZE(hdr), hdr);
2357 }
2358
1c27024e
DB
2359 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2360 buf = buf->b_next) {
2aa34383 2361 if (arc_buf_is_shared(buf))
d3c2ae1c 2362 continue;
424fd7c3 2363 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2364 arc_buf_size(buf), buf);
d3c2ae1c
GW
2365 }
2366}
2367
2368/*
2369 * Decrement the amount of evictable space in the arc_state_t's refcount.
2370 * We account for the space used by the hdr and the arc buf individually
2371 * so that we can add and remove them from the refcount individually.
2372 */
2373static void
2aa34383 2374arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
d3c2ae1c
GW
2375{
2376 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2377
2378 ASSERT(HDR_HAS_L1HDR(hdr));
2379
2380 if (GHOST_STATE(state)) {
2381 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2382 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2383 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2384 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2385 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2386 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2387 return;
2388 }
2389
2390 ASSERT(!GHOST_STATE(state));
a6255b7f 2391 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2392 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
2393 arc_hdr_size(hdr), hdr);
2394 }
b5256303 2395 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2396 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
b5256303
TC
2397 HDR_GET_PSIZE(hdr), hdr);
2398 }
2399
1c27024e
DB
2400 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2401 buf = buf->b_next) {
2aa34383 2402 if (arc_buf_is_shared(buf))
d3c2ae1c 2403 continue;
424fd7c3 2404 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2405 arc_buf_size(buf), buf);
d3c2ae1c
GW
2406 }
2407}
2408
2409/*
2410 * Add a reference to this hdr indicating that someone is actively
2411 * referencing that memory. When the refcount transitions from 0 to 1,
2412 * we remove it from the respective arc_state_t list to indicate that
2413 * it is not evictable.
2414 */
2415static void
2416add_reference(arc_buf_hdr_t *hdr, void *tag)
34dc7c2f 2417{
b9541d6b
CW
2418 arc_state_t *state;
2419
2420 ASSERT(HDR_HAS_L1HDR(hdr));
ca6c7a94 2421 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
d3c2ae1c 2422 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
424fd7c3 2423 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
2424 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2425 }
34dc7c2f 2426
b9541d6b
CW
2427 state = hdr->b_l1hdr.b_state;
2428
c13060e4 2429 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
b9541d6b
CW
2430 (state != arc_anon)) {
2431 /* We don't use the L2-only state list. */
2432 if (state != arc_l2c_only) {
64fc7762 2433 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
d3c2ae1c 2434 hdr);
2aa34383 2435 arc_evictable_space_decrement(hdr, state);
34dc7c2f 2436 }
b128c09f 2437 /* remove the prefetch flag if we get a reference */
d3c2ae1c 2438 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
2439 }
2440}
2441
d3c2ae1c
GW
2442/*
2443 * Remove a reference from this hdr. When the reference transitions from
2444 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2445 * list making it eligible for eviction.
2446 */
34dc7c2f 2447static int
2a432414 2448remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
2449{
2450 int cnt;
b9541d6b 2451 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 2452
b9541d6b 2453 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
2454 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2455 ASSERT(!GHOST_STATE(state));
2456
b9541d6b
CW
2457 /*
2458 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2459 * check to prevent usage of the arc_l2c_only list.
2460 */
424fd7c3 2461 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 2462 (state != arc_anon)) {
64fc7762 2463 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
d3c2ae1c
GW
2464 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2465 arc_evictable_space_increment(hdr, state);
34dc7c2f
BB
2466 }
2467 return (cnt);
2468}
2469
e0b0ca98
BB
2470/*
2471 * Returns detailed information about a specific arc buffer. When the
2472 * state_index argument is set the function will calculate the arc header
2473 * list position for its arc state. Since this requires a linear traversal
2474 * callers are strongly encourage not to do this. However, it can be helpful
2475 * for targeted analysis so the functionality is provided.
2476 */
2477void
2478arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2479{
2480 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
2481 l1arc_buf_hdr_t *l1hdr = NULL;
2482 l2arc_buf_hdr_t *l2hdr = NULL;
2483 arc_state_t *state = NULL;
2484
8887c7d7
TC
2485 memset(abi, 0, sizeof (arc_buf_info_t));
2486
2487 if (hdr == NULL)
2488 return;
2489
2490 abi->abi_flags = hdr->b_flags;
2491
b9541d6b
CW
2492 if (HDR_HAS_L1HDR(hdr)) {
2493 l1hdr = &hdr->b_l1hdr;
2494 state = l1hdr->b_state;
2495 }
2496 if (HDR_HAS_L2HDR(hdr))
2497 l2hdr = &hdr->b_l2hdr;
e0b0ca98 2498
b9541d6b 2499 if (l1hdr) {
d3c2ae1c 2500 abi->abi_bufcnt = l1hdr->b_bufcnt;
b9541d6b
CW
2501 abi->abi_access = l1hdr->b_arc_access;
2502 abi->abi_mru_hits = l1hdr->b_mru_hits;
2503 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2504 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2505 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
424fd7c3 2506 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
b9541d6b
CW
2507 }
2508
2509 if (l2hdr) {
2510 abi->abi_l2arc_dattr = l2hdr->b_daddr;
b9541d6b
CW
2511 abi->abi_l2arc_hits = l2hdr->b_hits;
2512 }
2513
e0b0ca98 2514 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 2515 abi->abi_state_contents = arc_buf_type(hdr);
d3c2ae1c 2516 abi->abi_size = arc_hdr_size(hdr);
e0b0ca98
BB
2517}
2518
34dc7c2f 2519/*
ca0bf58d 2520 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
2521 * for the buffer must be held by the caller.
2522 */
2523static void
2a432414
GW
2524arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2525 kmutex_t *hash_lock)
34dc7c2f 2526{
b9541d6b
CW
2527 arc_state_t *old_state;
2528 int64_t refcnt;
d3c2ae1c
GW
2529 uint32_t bufcnt;
2530 boolean_t update_old, update_new;
b9541d6b
CW
2531 arc_buf_contents_t buftype = arc_buf_type(hdr);
2532
2533 /*
2534 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2535 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2536 * L1 hdr doesn't always exist when we change state to arc_anon before
2537 * destroying a header, in which case reallocating to add the L1 hdr is
2538 * pointless.
2539 */
2540 if (HDR_HAS_L1HDR(hdr)) {
2541 old_state = hdr->b_l1hdr.b_state;
424fd7c3 2542 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
d3c2ae1c 2543 bufcnt = hdr->b_l1hdr.b_bufcnt;
b5256303
TC
2544 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2545 HDR_HAS_RABD(hdr));
b9541d6b
CW
2546 } else {
2547 old_state = arc_l2c_only;
2548 refcnt = 0;
d3c2ae1c
GW
2549 bufcnt = 0;
2550 update_old = B_FALSE;
b9541d6b 2551 }
d3c2ae1c 2552 update_new = update_old;
34dc7c2f
BB
2553
2554 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 2555 ASSERT3P(new_state, !=, old_state);
d3c2ae1c
GW
2556 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2557 ASSERT(old_state != arc_anon || bufcnt <= 1);
34dc7c2f
BB
2558
2559 /*
2560 * If this buffer is evictable, transfer it from the
2561 * old state list to the new state list.
2562 */
2563 if (refcnt == 0) {
b9541d6b 2564 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 2565 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2566 multilist_remove(old_state->arcs_list[buftype], hdr);
34dc7c2f 2567
d3c2ae1c
GW
2568 if (GHOST_STATE(old_state)) {
2569 ASSERT0(bufcnt);
2570 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2571 update_old = B_TRUE;
34dc7c2f 2572 }
2aa34383 2573 arc_evictable_space_decrement(hdr, old_state);
34dc7c2f 2574 }
b9541d6b 2575 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b
CW
2576 /*
2577 * An L1 header always exists here, since if we're
2578 * moving to some L1-cached state (i.e. not l2c_only or
2579 * anonymous), we realloc the header to add an L1hdr
2580 * beforehand.
2581 */
2582 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2583 multilist_insert(new_state->arcs_list[buftype], hdr);
34dc7c2f 2584
34dc7c2f 2585 if (GHOST_STATE(new_state)) {
d3c2ae1c
GW
2586 ASSERT0(bufcnt);
2587 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2588 update_new = B_TRUE;
34dc7c2f 2589 }
d3c2ae1c 2590 arc_evictable_space_increment(hdr, new_state);
34dc7c2f
BB
2591 }
2592 }
2593
d3c2ae1c 2594 ASSERT(!HDR_EMPTY(hdr));
2a432414
GW
2595 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2596 buf_hash_remove(hdr);
34dc7c2f 2597
b9541d6b 2598 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef 2599
d3c2ae1c 2600 if (update_new && new_state != arc_l2c_only) {
36da08ef
PS
2601 ASSERT(HDR_HAS_L1HDR(hdr));
2602 if (GHOST_STATE(new_state)) {
d3c2ae1c 2603 ASSERT0(bufcnt);
36da08ef
PS
2604
2605 /*
d3c2ae1c 2606 * When moving a header to a ghost state, we first
36da08ef 2607 * remove all arc buffers. Thus, we'll have a
d3c2ae1c 2608 * bufcnt of zero, and no arc buffer to use for
36da08ef
PS
2609 * the reference. As a result, we use the arc
2610 * header pointer for the reference.
2611 */
424fd7c3 2612 (void) zfs_refcount_add_many(&new_state->arcs_size,
d3c2ae1c 2613 HDR_GET_LSIZE(hdr), hdr);
a6255b7f 2614 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2615 ASSERT(!HDR_HAS_RABD(hdr));
36da08ef 2616 } else {
d3c2ae1c 2617 uint32_t buffers = 0;
36da08ef
PS
2618
2619 /*
2620 * Each individual buffer holds a unique reference,
2621 * thus we must remove each of these references one
2622 * at a time.
2623 */
1c27024e 2624 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2625 buf = buf->b_next) {
d3c2ae1c
GW
2626 ASSERT3U(bufcnt, !=, 0);
2627 buffers++;
2628
2629 /*
2630 * When the arc_buf_t is sharing the data
2631 * block with the hdr, the owner of the
2632 * reference belongs to the hdr. Only
2633 * add to the refcount if the arc_buf_t is
2634 * not shared.
2635 */
2aa34383 2636 if (arc_buf_is_shared(buf))
d3c2ae1c 2637 continue;
d3c2ae1c 2638
424fd7c3
TS
2639 (void) zfs_refcount_add_many(
2640 &new_state->arcs_size,
2aa34383 2641 arc_buf_size(buf), buf);
d3c2ae1c
GW
2642 }
2643 ASSERT3U(bufcnt, ==, buffers);
2644
a6255b7f 2645 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3
TS
2646 (void) zfs_refcount_add_many(
2647 &new_state->arcs_size,
d3c2ae1c 2648 arc_hdr_size(hdr), hdr);
b5256303
TC
2649 }
2650
2651 if (HDR_HAS_RABD(hdr)) {
424fd7c3
TS
2652 (void) zfs_refcount_add_many(
2653 &new_state->arcs_size,
b5256303 2654 HDR_GET_PSIZE(hdr), hdr);
36da08ef
PS
2655 }
2656 }
2657 }
2658
d3c2ae1c 2659 if (update_old && old_state != arc_l2c_only) {
36da08ef
PS
2660 ASSERT(HDR_HAS_L1HDR(hdr));
2661 if (GHOST_STATE(old_state)) {
d3c2ae1c 2662 ASSERT0(bufcnt);
a6255b7f 2663 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2664 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c 2665
36da08ef
PS
2666 /*
2667 * When moving a header off of a ghost state,
d3c2ae1c
GW
2668 * the header will not contain any arc buffers.
2669 * We use the arc header pointer for the reference
2670 * which is exactly what we did when we put the
2671 * header on the ghost state.
36da08ef
PS
2672 */
2673
424fd7c3 2674 (void) zfs_refcount_remove_many(&old_state->arcs_size,
d3c2ae1c 2675 HDR_GET_LSIZE(hdr), hdr);
36da08ef 2676 } else {
d3c2ae1c 2677 uint32_t buffers = 0;
36da08ef
PS
2678
2679 /*
2680 * Each individual buffer holds a unique reference,
2681 * thus we must remove each of these references one
2682 * at a time.
2683 */
1c27024e 2684 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2685 buf = buf->b_next) {
d3c2ae1c
GW
2686 ASSERT3U(bufcnt, !=, 0);
2687 buffers++;
2688
2689 /*
2690 * When the arc_buf_t is sharing the data
2691 * block with the hdr, the owner of the
2692 * reference belongs to the hdr. Only
2693 * add to the refcount if the arc_buf_t is
2694 * not shared.
2695 */
2aa34383 2696 if (arc_buf_is_shared(buf))
d3c2ae1c 2697 continue;
d3c2ae1c 2698
424fd7c3 2699 (void) zfs_refcount_remove_many(
2aa34383 2700 &old_state->arcs_size, arc_buf_size(buf),
d3c2ae1c 2701 buf);
36da08ef 2702 }
d3c2ae1c 2703 ASSERT3U(bufcnt, ==, buffers);
b5256303
TC
2704 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2705 HDR_HAS_RABD(hdr));
2706
2707 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2708 (void) zfs_refcount_remove_many(
b5256303
TC
2709 &old_state->arcs_size, arc_hdr_size(hdr),
2710 hdr);
2711 }
2712
2713 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2714 (void) zfs_refcount_remove_many(
b5256303
TC
2715 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2716 hdr);
2717 }
36da08ef 2718 }
34dc7c2f 2719 }
36da08ef 2720
b9541d6b
CW
2721 if (HDR_HAS_L1HDR(hdr))
2722 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 2723
b9541d6b
CW
2724 /*
2725 * L2 headers should never be on the L2 state list since they don't
2726 * have L1 headers allocated.
2727 */
64fc7762
MA
2728 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2729 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
2730}
2731
2732void
d164b209 2733arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 2734{
d164b209
BB
2735 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2736
2737 switch (type) {
e75c13c3
BB
2738 default:
2739 break;
d164b209 2740 case ARC_SPACE_DATA:
37fb3e43 2741 aggsum_add(&astat_data_size, space);
d164b209 2742 break;
cc7f677c 2743 case ARC_SPACE_META:
37fb3e43 2744 aggsum_add(&astat_metadata_size, space);
cc7f677c 2745 break;
25458cbe 2746 case ARC_SPACE_BONUS:
37fb3e43 2747 aggsum_add(&astat_bonus_size, space);
25458cbe
TC
2748 break;
2749 case ARC_SPACE_DNODE:
37fb3e43 2750 aggsum_add(&astat_dnode_size, space);
25458cbe
TC
2751 break;
2752 case ARC_SPACE_DBUF:
37fb3e43 2753 aggsum_add(&astat_dbuf_size, space);
d164b209
BB
2754 break;
2755 case ARC_SPACE_HDRS:
37fb3e43 2756 aggsum_add(&astat_hdr_size, space);
d164b209
BB
2757 break;
2758 case ARC_SPACE_L2HDRS:
37fb3e43 2759 aggsum_add(&astat_l2_hdr_size, space);
d164b209
BB
2760 break;
2761 }
2762
500445c0 2763 if (type != ARC_SPACE_DATA)
37fb3e43 2764 aggsum_add(&arc_meta_used, space);
cc7f677c 2765
37fb3e43 2766 aggsum_add(&arc_size, space);
34dc7c2f
BB
2767}
2768
2769void
d164b209 2770arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 2771{
d164b209
BB
2772 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2773
2774 switch (type) {
e75c13c3
BB
2775 default:
2776 break;
d164b209 2777 case ARC_SPACE_DATA:
37fb3e43 2778 aggsum_add(&astat_data_size, -space);
d164b209 2779 break;
cc7f677c 2780 case ARC_SPACE_META:
37fb3e43 2781 aggsum_add(&astat_metadata_size, -space);
cc7f677c 2782 break;
25458cbe 2783 case ARC_SPACE_BONUS:
37fb3e43 2784 aggsum_add(&astat_bonus_size, -space);
25458cbe
TC
2785 break;
2786 case ARC_SPACE_DNODE:
37fb3e43 2787 aggsum_add(&astat_dnode_size, -space);
25458cbe
TC
2788 break;
2789 case ARC_SPACE_DBUF:
37fb3e43 2790 aggsum_add(&astat_dbuf_size, -space);
d164b209
BB
2791 break;
2792 case ARC_SPACE_HDRS:
37fb3e43 2793 aggsum_add(&astat_hdr_size, -space);
d164b209
BB
2794 break;
2795 case ARC_SPACE_L2HDRS:
37fb3e43 2796 aggsum_add(&astat_l2_hdr_size, -space);
d164b209
BB
2797 break;
2798 }
2799
cc7f677c 2800 if (type != ARC_SPACE_DATA) {
37fb3e43
PD
2801 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2802 /*
2803 * We use the upper bound here rather than the precise value
2804 * because the arc_meta_max value doesn't need to be
2805 * precise. It's only consumed by humans via arcstats.
2806 */
2807 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2808 arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2809 aggsum_add(&arc_meta_used, -space);
cc7f677c
PS
2810 }
2811
37fb3e43
PD
2812 ASSERT(aggsum_compare(&arc_size, space) >= 0);
2813 aggsum_add(&arc_size, -space);
34dc7c2f
BB
2814}
2815
d3c2ae1c 2816/*
524b4217 2817 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
a6255b7f 2818 * with the hdr's b_pabd.
d3c2ae1c 2819 */
524b4217
DK
2820static boolean_t
2821arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2822{
524b4217
DK
2823 /*
2824 * The criteria for sharing a hdr's data are:
b5256303
TC
2825 * 1. the buffer is not encrypted
2826 * 2. the hdr's compression matches the buf's compression
2827 * 3. the hdr doesn't need to be byteswapped
2828 * 4. the hdr isn't already being shared
2829 * 5. the buf is either compressed or it is the last buf in the hdr list
524b4217 2830 *
b5256303 2831 * Criterion #5 maintains the invariant that shared uncompressed
524b4217
DK
2832 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2833 * might ask, "if a compressed buf is allocated first, won't that be the
2834 * last thing in the list?", but in that case it's impossible to create
2835 * a shared uncompressed buf anyway (because the hdr must be compressed
2836 * to have the compressed buf). You might also think that #3 is
2837 * sufficient to make this guarantee, however it's possible
2838 * (specifically in the rare L2ARC write race mentioned in
2839 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2840 * is sharable, but wasn't at the time of its allocation. Rather than
2841 * allow a new shared uncompressed buf to be created and then shuffle
2842 * the list around to make it the last element, this simply disallows
2843 * sharing if the new buf isn't the first to be added.
2844 */
2845 ASSERT3P(buf->b_hdr, ==, hdr);
b5256303
TC
2846 boolean_t hdr_compressed =
2847 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
a7004725 2848 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
b5256303
TC
2849 return (!ARC_BUF_ENCRYPTED(buf) &&
2850 buf_compressed == hdr_compressed &&
524b4217
DK
2851 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2852 !HDR_SHARED_DATA(hdr) &&
2853 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2854}
2855
2856/*
2857 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2858 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2859 * copy was made successfully, or an error code otherwise.
2860 */
2861static int
be9a5c35
TC
2862arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2863 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
524b4217 2864 boolean_t fill, arc_buf_t **ret)
34dc7c2f 2865{
34dc7c2f 2866 arc_buf_t *buf;
b5256303 2867 arc_fill_flags_t flags = ARC_FILL_LOCKED;
34dc7c2f 2868
d3c2ae1c
GW
2869 ASSERT(HDR_HAS_L1HDR(hdr));
2870 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2871 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2872 hdr->b_type == ARC_BUFC_METADATA);
524b4217
DK
2873 ASSERT3P(ret, !=, NULL);
2874 ASSERT3P(*ret, ==, NULL);
b5256303 2875 IMPLY(encrypted, compressed);
d3c2ae1c 2876
b9541d6b
CW
2877 hdr->b_l1hdr.b_mru_hits = 0;
2878 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2879 hdr->b_l1hdr.b_mfu_hits = 0;
2880 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2881 hdr->b_l1hdr.b_l2_hits = 0;
2882
524b4217 2883 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
34dc7c2f
BB
2884 buf->b_hdr = hdr;
2885 buf->b_data = NULL;
2aa34383 2886 buf->b_next = hdr->b_l1hdr.b_buf;
524b4217 2887 buf->b_flags = 0;
b9541d6b 2888
d3c2ae1c
GW
2889 add_reference(hdr, tag);
2890
2891 /*
2892 * We're about to change the hdr's b_flags. We must either
2893 * hold the hash_lock or be undiscoverable.
2894 */
ca6c7a94 2895 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
2896
2897 /*
524b4217 2898 * Only honor requests for compressed bufs if the hdr is actually
b5256303
TC
2899 * compressed. This must be overriden if the buffer is encrypted since
2900 * encrypted buffers cannot be decompressed.
524b4217 2901 */
b5256303
TC
2902 if (encrypted) {
2903 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2904 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2905 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2906 } else if (compressed &&
2907 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
524b4217 2908 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
2909 flags |= ARC_FILL_COMPRESSED;
2910 }
2911
2912 if (noauth) {
2913 ASSERT0(encrypted);
2914 flags |= ARC_FILL_NOAUTH;
2915 }
524b4217 2916
524b4217
DK
2917 /*
2918 * If the hdr's data can be shared then we share the data buffer and
2919 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2aa34383 2920 * allocate a new buffer to store the buf's data.
524b4217 2921 *
a6255b7f
DQ
2922 * There are two additional restrictions here because we're sharing
2923 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2924 * actively involved in an L2ARC write, because if this buf is used by
2925 * an arc_write() then the hdr's data buffer will be released when the
524b4217 2926 * write completes, even though the L2ARC write might still be using it.
a6255b7f
DQ
2927 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2928 * need to be ABD-aware.
d3c2ae1c 2929 */
a7004725 2930 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
b5256303 2931 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
524b4217
DK
2932
2933 /* Set up b_data and sharing */
2934 if (can_share) {
a6255b7f 2935 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
524b4217 2936 buf->b_flags |= ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2937 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2938 } else {
524b4217
DK
2939 buf->b_data =
2940 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2941 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
d3c2ae1c
GW
2942 }
2943 VERIFY3P(buf->b_data, !=, NULL);
b9541d6b
CW
2944
2945 hdr->b_l1hdr.b_buf = buf;
d3c2ae1c 2946 hdr->b_l1hdr.b_bufcnt += 1;
b5256303
TC
2947 if (encrypted)
2948 hdr->b_crypt_hdr.b_ebufcnt += 1;
b9541d6b 2949
524b4217
DK
2950 /*
2951 * If the user wants the data from the hdr, we need to either copy or
2952 * decompress the data.
2953 */
2954 if (fill) {
be9a5c35
TC
2955 ASSERT3P(zb, !=, NULL);
2956 return (arc_buf_fill(buf, spa, zb, flags));
524b4217 2957 }
d3c2ae1c 2958
524b4217 2959 return (0);
34dc7c2f
BB
2960}
2961
9babb374
BB
2962static char *arc_onloan_tag = "onloan";
2963
a7004725
DK
2964static inline void
2965arc_loaned_bytes_update(int64_t delta)
2966{
2967 atomic_add_64(&arc_loaned_bytes, delta);
2968
2969 /* assert that it did not wrap around */
2970 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2971}
2972
9babb374
BB
2973/*
2974 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2975 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2976 * buffers must be returned to the arc before they can be used by the DMU or
2977 * freed.
2978 */
2979arc_buf_t *
2aa34383 2980arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
9babb374 2981{
2aa34383
DK
2982 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2983 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
9babb374 2984
5152a740 2985 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2986
9babb374
BB
2987 return (buf);
2988}
2989
2aa34383
DK
2990arc_buf_t *
2991arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2992 enum zio_compress compression_type)
2993{
2994 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2995 psize, lsize, compression_type);
2996
5152a740 2997 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2998
2aa34383
DK
2999 return (buf);
3000}
3001
b5256303
TC
3002arc_buf_t *
3003arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
3004 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3005 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3006 enum zio_compress compression_type)
3007{
3008 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
3009 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
3010
3011 atomic_add_64(&arc_loaned_bytes, psize);
3012 return (buf);
3013}
3014
2aa34383 3015
9babb374
BB
3016/*
3017 * Return a loaned arc buffer to the arc.
3018 */
3019void
3020arc_return_buf(arc_buf_t *buf, void *tag)
3021{
3022 arc_buf_hdr_t *hdr = buf->b_hdr;
3023
d3c2ae1c 3024 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 3025 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 3026 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
424fd7c3 3027 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374 3028
a7004725 3029 arc_loaned_bytes_update(-arc_buf_size(buf));
9babb374
BB
3030}
3031
428870ff
BB
3032/* Detach an arc_buf from a dbuf (tag) */
3033void
3034arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
3035{
b9541d6b 3036 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff 3037
d3c2ae1c 3038 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 3039 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 3040 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
424fd7c3 3041 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff 3042
a7004725 3043 arc_loaned_bytes_update(arc_buf_size(buf));
428870ff
BB
3044}
3045
d3c2ae1c 3046static void
a6255b7f 3047l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
34dc7c2f 3048{
d3c2ae1c 3049 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
34dc7c2f 3050
a6255b7f 3051 df->l2df_abd = abd;
d3c2ae1c
GW
3052 df->l2df_size = size;
3053 df->l2df_type = type;
3054 mutex_enter(&l2arc_free_on_write_mtx);
3055 list_insert_head(l2arc_free_on_write, df);
3056 mutex_exit(&l2arc_free_on_write_mtx);
3057}
428870ff 3058
d3c2ae1c 3059static void
b5256303 3060arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c
GW
3061{
3062 arc_state_t *state = hdr->b_l1hdr.b_state;
3063 arc_buf_contents_t type = arc_buf_type(hdr);
b5256303 3064 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
1eb5bfa3 3065
d3c2ae1c
GW
3066 /* protected by hash lock, if in the hash table */
3067 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 3068 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
3069 ASSERT(state != arc_anon && state != arc_l2c_only);
3070
424fd7c3 3071 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c 3072 size, hdr);
1eb5bfa3 3073 }
424fd7c3 3074 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
423e7b62
AG
3075 if (type == ARC_BUFC_METADATA) {
3076 arc_space_return(size, ARC_SPACE_META);
3077 } else {
3078 ASSERT(type == ARC_BUFC_DATA);
3079 arc_space_return(size, ARC_SPACE_DATA);
3080 }
d3c2ae1c 3081
b5256303
TC
3082 if (free_rdata) {
3083 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3084 } else {
3085 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3086 }
34dc7c2f
BB
3087}
3088
d3c2ae1c
GW
3089/*
3090 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3091 * data buffer, we transfer the refcount ownership to the hdr and update
3092 * the appropriate kstats.
3093 */
3094static void
3095arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
34dc7c2f 3096{
524b4217 3097 ASSERT(arc_can_share(hdr, buf));
a6255b7f 3098 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3099 ASSERT(!ARC_BUF_ENCRYPTED(buf));
ca6c7a94 3100 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
34dc7c2f
BB
3101
3102 /*
d3c2ae1c
GW
3103 * Start sharing the data buffer. We transfer the
3104 * refcount ownership to the hdr since it always owns
3105 * the refcount whenever an arc_buf_t is shared.
34dc7c2f 3106 */
d7e4b30a
BB
3107 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3108 arc_hdr_size(hdr), buf, hdr);
a6255b7f
DQ
3109 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3110 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3111 HDR_ISTYPE_METADATA(hdr));
d3c2ae1c 3112 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
524b4217 3113 buf->b_flags |= ARC_BUF_FLAG_SHARED;
34dc7c2f 3114
d3c2ae1c
GW
3115 /*
3116 * Since we've transferred ownership to the hdr we need
3117 * to increment its compressed and uncompressed kstats and
3118 * decrement the overhead size.
3119 */
3120 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3121 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2aa34383 3122 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
34dc7c2f
BB
3123}
3124
ca0bf58d 3125static void
d3c2ae1c 3126arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
ca0bf58d 3127{
d3c2ae1c 3128 ASSERT(arc_buf_is_shared(buf));
a6255b7f 3129 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
ca6c7a94 3130 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
ca0bf58d 3131
d3c2ae1c
GW
3132 /*
3133 * We are no longer sharing this buffer so we need
3134 * to transfer its ownership to the rightful owner.
3135 */
d7e4b30a
BB
3136 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3137 arc_hdr_size(hdr), hdr, buf);
d3c2ae1c 3138 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
a6255b7f
DQ
3139 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3140 abd_put(hdr->b_l1hdr.b_pabd);
3141 hdr->b_l1hdr.b_pabd = NULL;
524b4217 3142 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
3143
3144 /*
3145 * Since the buffer is no longer shared between
3146 * the arc buf and the hdr, count it as overhead.
3147 */
3148 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3149 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2aa34383 3150 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
ca0bf58d
PS
3151}
3152
34dc7c2f 3153/*
2aa34383
DK
3154 * Remove an arc_buf_t from the hdr's buf list and return the last
3155 * arc_buf_t on the list. If no buffers remain on the list then return
3156 * NULL.
3157 */
3158static arc_buf_t *
3159arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3160{
2aa34383 3161 ASSERT(HDR_HAS_L1HDR(hdr));
ca6c7a94 3162 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2aa34383 3163
a7004725
DK
3164 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3165 arc_buf_t *lastbuf = NULL;
3166
2aa34383
DK
3167 /*
3168 * Remove the buf from the hdr list and locate the last
3169 * remaining buffer on the list.
3170 */
3171 while (*bufp != NULL) {
3172 if (*bufp == buf)
3173 *bufp = buf->b_next;
3174
3175 /*
3176 * If we've removed a buffer in the middle of
3177 * the list then update the lastbuf and update
3178 * bufp.
3179 */
3180 if (*bufp != NULL) {
3181 lastbuf = *bufp;
3182 bufp = &(*bufp)->b_next;
3183 }
3184 }
3185 buf->b_next = NULL;
3186 ASSERT3P(lastbuf, !=, buf);
3187 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3188 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3189 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3190
3191 return (lastbuf);
3192}
3193
3194/*
3195 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3196 * list and free it.
34dc7c2f
BB
3197 */
3198static void
2aa34383 3199arc_buf_destroy_impl(arc_buf_t *buf)
34dc7c2f 3200{
498877ba 3201 arc_buf_hdr_t *hdr = buf->b_hdr;
ca0bf58d
PS
3202
3203 /*
524b4217
DK
3204 * Free up the data associated with the buf but only if we're not
3205 * sharing this with the hdr. If we are sharing it with the hdr, the
3206 * hdr is responsible for doing the free.
ca0bf58d 3207 */
d3c2ae1c
GW
3208 if (buf->b_data != NULL) {
3209 /*
3210 * We're about to change the hdr's b_flags. We must either
3211 * hold the hash_lock or be undiscoverable.
3212 */
ca6c7a94 3213 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c 3214
524b4217 3215 arc_cksum_verify(buf);
d3c2ae1c
GW
3216 arc_buf_unwatch(buf);
3217
2aa34383 3218 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
3219 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3220 } else {
2aa34383 3221 uint64_t size = arc_buf_size(buf);
d3c2ae1c
GW
3222 arc_free_data_buf(hdr, buf->b_data, size, buf);
3223 ARCSTAT_INCR(arcstat_overhead_size, -size);
3224 }
3225 buf->b_data = NULL;
3226
3227 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3228 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303 3229
da5d4697 3230 if (ARC_BUF_ENCRYPTED(buf)) {
b5256303
TC
3231 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3232
da5d4697
D
3233 /*
3234 * If we have no more encrypted buffers and we've
3235 * already gotten a copy of the decrypted data we can
3236 * free b_rabd to save some space.
3237 */
3238 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3239 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3240 !HDR_IO_IN_PROGRESS(hdr)) {
3241 arc_hdr_free_abd(hdr, B_TRUE);
3242 }
440a3eb9 3243 }
d3c2ae1c
GW
3244 }
3245
a7004725 3246 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 3247
524b4217 3248 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2aa34383 3249 /*
524b4217 3250 * If the current arc_buf_t is sharing its data buffer with the
a6255b7f 3251 * hdr, then reassign the hdr's b_pabd to share it with the new
524b4217
DK
3252 * buffer at the end of the list. The shared buffer is always
3253 * the last one on the hdr's buffer list.
3254 *
3255 * There is an equivalent case for compressed bufs, but since
3256 * they aren't guaranteed to be the last buf in the list and
3257 * that is an exceedingly rare case, we just allow that space be
b5256303
TC
3258 * wasted temporarily. We must also be careful not to share
3259 * encrypted buffers, since they cannot be shared.
2aa34383 3260 */
b5256303 3261 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
524b4217 3262 /* Only one buf can be shared at once */
2aa34383 3263 VERIFY(!arc_buf_is_shared(lastbuf));
524b4217
DK
3264 /* hdr is uncompressed so can't have compressed buf */
3265 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
d3c2ae1c 3266
a6255b7f 3267 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 3268 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 3269
2aa34383
DK
3270 /*
3271 * We must setup a new shared block between the
3272 * last buffer and the hdr. The data would have
3273 * been allocated by the arc buf so we need to transfer
3274 * ownership to the hdr since it's now being shared.
3275 */
3276 arc_share_buf(hdr, lastbuf);
3277 }
3278 } else if (HDR_SHARED_DATA(hdr)) {
d3c2ae1c 3279 /*
2aa34383
DK
3280 * Uncompressed shared buffers are always at the end
3281 * of the list. Compressed buffers don't have the
3282 * same requirements. This makes it hard to
3283 * simply assert that the lastbuf is shared so
3284 * we rely on the hdr's compression flags to determine
3285 * if we have a compressed, shared buffer.
d3c2ae1c 3286 */
2aa34383
DK
3287 ASSERT3P(lastbuf, !=, NULL);
3288 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 3289 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
ca0bf58d
PS
3290 }
3291
a7004725
DK
3292 /*
3293 * Free the checksum if we're removing the last uncompressed buf from
3294 * this hdr.
3295 */
3296 if (!arc_hdr_has_uncompressed_buf(hdr)) {
d3c2ae1c 3297 arc_cksum_free(hdr);
a7004725 3298 }
d3c2ae1c
GW
3299
3300 /* clean up the buf */
3301 buf->b_hdr = NULL;
3302 kmem_cache_free(buf_cache, buf);
3303}
3304
3305static void
b5256303 3306arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
d3c2ae1c 3307{
b5256303
TC
3308 uint64_t size;
3309
d3c2ae1c
GW
3310 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3311 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3312 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3313 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
d3c2ae1c 3314
b5256303
TC
3315 if (alloc_rdata) {
3316 size = HDR_GET_PSIZE(hdr);
3317 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3318 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3319 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3320 ARCSTAT_INCR(arcstat_raw_size, size);
3321 } else {
3322 size = arc_hdr_size(hdr);
3323 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3324 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3325 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3326 }
3327
3328 ARCSTAT_INCR(arcstat_compressed_size, size);
d3c2ae1c
GW
3329 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3330}
3331
3332static void
b5256303 3333arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c 3334{
b5256303
TC
3335 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3336
d3c2ae1c 3337 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3338 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3339 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
d3c2ae1c 3340
ca0bf58d 3341 /*
d3c2ae1c
GW
3342 * If the hdr is currently being written to the l2arc then
3343 * we defer freeing the data by adding it to the l2arc_free_on_write
3344 * list. The l2arc will free the data once it's finished
3345 * writing it to the l2arc device.
ca0bf58d 3346 */
d3c2ae1c 3347 if (HDR_L2_WRITING(hdr)) {
b5256303 3348 arc_hdr_free_on_write(hdr, free_rdata);
d3c2ae1c 3349 ARCSTAT_BUMP(arcstat_l2_free_on_write);
b5256303
TC
3350 } else if (free_rdata) {
3351 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
d3c2ae1c 3352 } else {
b5256303 3353 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
ca0bf58d
PS
3354 }
3355
b5256303
TC
3356 if (free_rdata) {
3357 hdr->b_crypt_hdr.b_rabd = NULL;
3358 ARCSTAT_INCR(arcstat_raw_size, -size);
3359 } else {
3360 hdr->b_l1hdr.b_pabd = NULL;
3361 }
3362
3363 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3364 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3365
3366 ARCSTAT_INCR(arcstat_compressed_size, -size);
d3c2ae1c
GW
3367 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3368}
3369
3370static arc_buf_hdr_t *
3371arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
b5256303
TC
3372 boolean_t protected, enum zio_compress compression_type,
3373 arc_buf_contents_t type, boolean_t alloc_rdata)
d3c2ae1c
GW
3374{
3375 arc_buf_hdr_t *hdr;
3376
d3c2ae1c 3377 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
b5256303
TC
3378 if (protected) {
3379 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3380 } else {
3381 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3382 }
d3c2ae1c 3383
d3c2ae1c
GW
3384 ASSERT(HDR_EMPTY(hdr));
3385 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3386 HDR_SET_PSIZE(hdr, psize);
3387 HDR_SET_LSIZE(hdr, lsize);
3388 hdr->b_spa = spa;
3389 hdr->b_type = type;
3390 hdr->b_flags = 0;
3391 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2aa34383 3392 arc_hdr_set_compress(hdr, compression_type);
b5256303
TC
3393 if (protected)
3394 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
ca0bf58d 3395
d3c2ae1c
GW
3396 hdr->b_l1hdr.b_state = arc_anon;
3397 hdr->b_l1hdr.b_arc_access = 0;
3398 hdr->b_l1hdr.b_bufcnt = 0;
3399 hdr->b_l1hdr.b_buf = NULL;
ca0bf58d 3400
d3c2ae1c
GW
3401 /*
3402 * Allocate the hdr's buffer. This will contain either
3403 * the compressed or uncompressed data depending on the block
3404 * it references and compressed arc enablement.
3405 */
b5256303 3406 arc_hdr_alloc_abd(hdr, alloc_rdata);
424fd7c3 3407 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 3408
d3c2ae1c 3409 return (hdr);
ca0bf58d
PS
3410}
3411
bd089c54 3412/*
d3c2ae1c
GW
3413 * Transition between the two allocation states for the arc_buf_hdr struct.
3414 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3415 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3416 * version is used when a cache buffer is only in the L2ARC in order to reduce
3417 * memory usage.
bd089c54 3418 */
d3c2ae1c
GW
3419static arc_buf_hdr_t *
3420arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
34dc7c2f 3421{
1c27024e
DB
3422 ASSERT(HDR_HAS_L2HDR(hdr));
3423
d3c2ae1c
GW
3424 arc_buf_hdr_t *nhdr;
3425 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
34dc7c2f 3426
d3c2ae1c
GW
3427 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3428 (old == hdr_l2only_cache && new == hdr_full_cache));
34dc7c2f 3429
b5256303
TC
3430 /*
3431 * if the caller wanted a new full header and the header is to be
3432 * encrypted we will actually allocate the header from the full crypt
3433 * cache instead. The same applies to freeing from the old cache.
3434 */
3435 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3436 new = hdr_full_crypt_cache;
3437 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3438 old = hdr_full_crypt_cache;
3439
d3c2ae1c 3440 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
428870ff 3441
d3c2ae1c
GW
3442 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3443 buf_hash_remove(hdr);
ca0bf58d 3444
d3c2ae1c 3445 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
34dc7c2f 3446
b5256303 3447 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
d3c2ae1c
GW
3448 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3449 /*
3450 * arc_access and arc_change_state need to be aware that a
3451 * header has just come out of L2ARC, so we set its state to
3452 * l2c_only even though it's about to change.
3453 */
3454 nhdr->b_l1hdr.b_state = arc_l2c_only;
34dc7c2f 3455
d3c2ae1c 3456 /* Verify previous threads set to NULL before freeing */
a6255b7f 3457 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3458 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3459 } else {
3460 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3461 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3462 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
36da08ef 3463
d3c2ae1c
GW
3464 /*
3465 * If we've reached here, We must have been called from
3466 * arc_evict_hdr(), as such we should have already been
3467 * removed from any ghost list we were previously on
3468 * (which protects us from racing with arc_evict_state),
3469 * thus no locking is needed during this check.
3470 */
3471 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1eb5bfa3
GW
3472
3473 /*
d3c2ae1c
GW
3474 * A buffer must not be moved into the arc_l2c_only
3475 * state if it's not finished being written out to the
a6255b7f 3476 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
d3c2ae1c 3477 * might try to be accessed, even though it was removed.
1eb5bfa3 3478 */
d3c2ae1c 3479 VERIFY(!HDR_L2_WRITING(hdr));
a6255b7f 3480 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3481 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3482
3483 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
34dc7c2f 3484 }
d3c2ae1c
GW
3485 /*
3486 * The header has been reallocated so we need to re-insert it into any
3487 * lists it was on.
3488 */
3489 (void) buf_hash_insert(nhdr, NULL);
34dc7c2f 3490
d3c2ae1c 3491 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
34dc7c2f 3492
d3c2ae1c
GW
3493 mutex_enter(&dev->l2ad_mtx);
3494
3495 /*
3496 * We must place the realloc'ed header back into the list at
3497 * the same spot. Otherwise, if it's placed earlier in the list,
3498 * l2arc_write_buffers() could find it during the function's
3499 * write phase, and try to write it out to the l2arc.
3500 */
3501 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3502 list_remove(&dev->l2ad_buflist, hdr);
34dc7c2f 3503
d3c2ae1c 3504 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 3505
d3c2ae1c
GW
3506 /*
3507 * Since we're using the pointer address as the tag when
3508 * incrementing and decrementing the l2ad_alloc refcount, we
3509 * must remove the old pointer (that we're about to destroy) and
3510 * add the new pointer to the refcount. Otherwise we'd remove
3511 * the wrong pointer address when calling arc_hdr_destroy() later.
3512 */
3513
424fd7c3
TS
3514 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3515 arc_hdr_size(hdr), hdr);
3516 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3517 arc_hdr_size(nhdr), nhdr);
d3c2ae1c
GW
3518
3519 buf_discard_identity(hdr);
3520 kmem_cache_free(old, hdr);
3521
3522 return (nhdr);
3523}
3524
b5256303
TC
3525/*
3526 * This function allows an L1 header to be reallocated as a crypt
3527 * header and vice versa. If we are going to a crypt header, the
3528 * new fields will be zeroed out.
3529 */
3530static arc_buf_hdr_t *
3531arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3532{
3533 arc_buf_hdr_t *nhdr;
3534 arc_buf_t *buf;
3535 kmem_cache_t *ncache, *ocache;
b7ddeaef 3536 unsigned nsize, osize;
b5256303 3537
b7ddeaef
TC
3538 /*
3539 * This function requires that hdr is in the arc_anon state.
3540 * Therefore it won't have any L2ARC data for us to worry
3541 * about copying.
3542 */
b5256303 3543 ASSERT(HDR_HAS_L1HDR(hdr));
b7ddeaef 3544 ASSERT(!HDR_HAS_L2HDR(hdr));
b5256303
TC
3545 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3546 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3547 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b7ddeaef
TC
3548 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3549 ASSERT3P(hdr->b_hash_next, ==, NULL);
b5256303
TC
3550
3551 if (need_crypt) {
3552 ncache = hdr_full_crypt_cache;
b7ddeaef 3553 nsize = sizeof (hdr->b_crypt_hdr);
b5256303 3554 ocache = hdr_full_cache;
b7ddeaef 3555 osize = HDR_FULL_SIZE;
b5256303
TC
3556 } else {
3557 ncache = hdr_full_cache;
b7ddeaef 3558 nsize = HDR_FULL_SIZE;
b5256303 3559 ocache = hdr_full_crypt_cache;
b7ddeaef 3560 osize = sizeof (hdr->b_crypt_hdr);
b5256303
TC
3561 }
3562
3563 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
b7ddeaef
TC
3564
3565 /*
3566 * Copy all members that aren't locks or condvars to the new header.
3567 * No lists are pointing to us (as we asserted above), so we don't
3568 * need to worry about the list nodes.
3569 */
3570 nhdr->b_dva = hdr->b_dva;
3571 nhdr->b_birth = hdr->b_birth;
3572 nhdr->b_type = hdr->b_type;
3573 nhdr->b_flags = hdr->b_flags;
3574 nhdr->b_psize = hdr->b_psize;
3575 nhdr->b_lsize = hdr->b_lsize;
3576 nhdr->b_spa = hdr->b_spa;
b5256303
TC
3577 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3578 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3579 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3580 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3581 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3582 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3583 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3584 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3585 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3586 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3587 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3588 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
b5256303
TC
3589
3590 /*
c13060e4 3591 * This zfs_refcount_add() exists only to ensure that the individual
b5256303
TC
3592 * arc buffers always point to a header that is referenced, avoiding
3593 * a small race condition that could trigger ASSERTs.
3594 */
c13060e4 3595 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
b7ddeaef 3596 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
b5256303
TC
3597 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3598 mutex_enter(&buf->b_evict_lock);
3599 buf->b_hdr = nhdr;
3600 mutex_exit(&buf->b_evict_lock);
3601 }
3602
424fd7c3
TS
3603 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3604 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3605 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
b5256303
TC
3606
3607 if (need_crypt) {
3608 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3609 } else {
3610 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3611 }
3612
b7ddeaef
TC
3613 /* unset all members of the original hdr */
3614 bzero(&hdr->b_dva, sizeof (dva_t));
3615 hdr->b_birth = 0;
3616 hdr->b_type = ARC_BUFC_INVALID;
3617 hdr->b_flags = 0;
3618 hdr->b_psize = 0;
3619 hdr->b_lsize = 0;
3620 hdr->b_spa = 0;
3621 hdr->b_l1hdr.b_freeze_cksum = NULL;
3622 hdr->b_l1hdr.b_buf = NULL;
3623 hdr->b_l1hdr.b_bufcnt = 0;
3624 hdr->b_l1hdr.b_byteswap = 0;
3625 hdr->b_l1hdr.b_state = NULL;
3626 hdr->b_l1hdr.b_arc_access = 0;
3627 hdr->b_l1hdr.b_mru_hits = 0;
3628 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3629 hdr->b_l1hdr.b_mfu_hits = 0;
3630 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3631 hdr->b_l1hdr.b_l2_hits = 0;
3632 hdr->b_l1hdr.b_acb = NULL;
3633 hdr->b_l1hdr.b_pabd = NULL;
3634
3635 if (ocache == hdr_full_crypt_cache) {
3636 ASSERT(!HDR_HAS_RABD(hdr));
3637 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3638 hdr->b_crypt_hdr.b_ebufcnt = 0;
3639 hdr->b_crypt_hdr.b_dsobj = 0;
3640 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3641 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3642 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3643 }
3644
b5256303
TC
3645 buf_discard_identity(hdr);
3646 kmem_cache_free(ocache, hdr);
3647
3648 return (nhdr);
3649}
3650
3651/*
3652 * This function is used by the send / receive code to convert a newly
3653 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3654 * is also used to allow the root objset block to be uupdated without altering
3655 * its embedded MACs. Both block types will always be uncompressed so we do not
3656 * have to worry about compression type or psize.
3657 */
3658void
3659arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3660 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3661 const uint8_t *mac)
3662{
3663 arc_buf_hdr_t *hdr = buf->b_hdr;
3664
3665 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3666 ASSERT(HDR_HAS_L1HDR(hdr));
3667 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3668
3669 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3670 if (!HDR_PROTECTED(hdr))
3671 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3672 hdr->b_crypt_hdr.b_dsobj = dsobj;
3673 hdr->b_crypt_hdr.b_ot = ot;
3674 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3675 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3676 if (!arc_hdr_has_uncompressed_buf(hdr))
3677 arc_cksum_free(hdr);
3678
3679 if (salt != NULL)
3680 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3681 if (iv != NULL)
3682 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3683 if (mac != NULL)
3684 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3685}
3686
d3c2ae1c
GW
3687/*
3688 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3689 * The buf is returned thawed since we expect the consumer to modify it.
3690 */
3691arc_buf_t *
2aa34383 3692arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
d3c2ae1c 3693{
d3c2ae1c 3694 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
b5256303 3695 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
2aa34383 3696
a7004725 3697 arc_buf_t *buf = NULL;
be9a5c35 3698 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
b5256303 3699 B_FALSE, B_FALSE, &buf));
d3c2ae1c 3700 arc_buf_thaw(buf);
2aa34383
DK
3701
3702 return (buf);
3703}
3704
3705/*
3706 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3707 * for bufs containing metadata.
3708 */
3709arc_buf_t *
3710arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3711 enum zio_compress compression_type)
3712{
2aa34383
DK
3713 ASSERT3U(lsize, >, 0);
3714 ASSERT3U(lsize, >=, psize);
b5256303
TC
3715 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3716 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
2aa34383 3717
a7004725 3718 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
b5256303 3719 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
2aa34383 3720
a7004725 3721 arc_buf_t *buf = NULL;
be9a5c35 3722 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
b5256303 3723 B_TRUE, B_FALSE, B_FALSE, &buf));
2aa34383
DK
3724 arc_buf_thaw(buf);
3725 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3726
a6255b7f
DQ
3727 if (!arc_buf_is_shared(buf)) {
3728 /*
3729 * To ensure that the hdr has the correct data in it if we call
b5256303 3730 * arc_untransform() on this buf before it's been written to
a6255b7f
DQ
3731 * disk, it's easiest if we just set up sharing between the
3732 * buf and the hdr.
3733 */
3734 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
b5256303 3735 arc_hdr_free_abd(hdr, B_FALSE);
a6255b7f
DQ
3736 arc_share_buf(hdr, buf);
3737 }
3738
d3c2ae1c 3739 return (buf);
34dc7c2f
BB
3740}
3741
b5256303
TC
3742arc_buf_t *
3743arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3744 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3745 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3746 enum zio_compress compression_type)
3747{
3748 arc_buf_hdr_t *hdr;
3749 arc_buf_t *buf;
3750 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3751 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3752
3753 ASSERT3U(lsize, >, 0);
3754 ASSERT3U(lsize, >=, psize);
3755 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3756 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3757
3758 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3759 compression_type, type, B_TRUE);
b5256303
TC
3760
3761 hdr->b_crypt_hdr.b_dsobj = dsobj;
3762 hdr->b_crypt_hdr.b_ot = ot;
3763 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3764 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3765 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3766 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3767 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3768
3769 /*
3770 * This buffer will be considered encrypted even if the ot is not an
3771 * encrypted type. It will become authenticated instead in
3772 * arc_write_ready().
3773 */
3774 buf = NULL;
be9a5c35 3775 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
b5256303
TC
3776 B_FALSE, B_FALSE, &buf));
3777 arc_buf_thaw(buf);
3778 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3779
3780 return (buf);
3781}
3782
d962d5da
PS
3783static void
3784arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3785{
3786 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3787 l2arc_dev_t *dev = l2hdr->b_dev;
7558997d
SD
3788 uint64_t psize = HDR_GET_PSIZE(hdr);
3789 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
d962d5da
PS
3790
3791 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3792 ASSERT(HDR_HAS_L2HDR(hdr));
3793
3794 list_remove(&dev->l2ad_buflist, hdr);
3795
01850391
AG
3796 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3797 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
d962d5da 3798
7558997d 3799 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
d962d5da 3800
7558997d
SD
3801 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3802 hdr);
d3c2ae1c 3803 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
d962d5da
PS
3804}
3805
34dc7c2f
BB
3806static void
3807arc_hdr_destroy(arc_buf_hdr_t *hdr)
3808{
b9541d6b
CW
3809 if (HDR_HAS_L1HDR(hdr)) {
3810 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
d3c2ae1c 3811 hdr->b_l1hdr.b_bufcnt > 0);
424fd7c3 3812 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
b9541d6b
CW
3813 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3814 }
34dc7c2f 3815 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
3816 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3817
3818 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
3819 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3820 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 3821
d962d5da
PS
3822 if (!buflist_held)
3823 mutex_enter(&dev->l2ad_mtx);
b9541d6b 3824
ca0bf58d 3825 /*
d962d5da
PS
3826 * Even though we checked this conditional above, we
3827 * need to check this again now that we have the
3828 * l2ad_mtx. This is because we could be racing with
3829 * another thread calling l2arc_evict() which might have
3830 * destroyed this header's L2 portion as we were waiting
3831 * to acquire the l2ad_mtx. If that happens, we don't
3832 * want to re-destroy the header's L2 portion.
ca0bf58d 3833 */
d962d5da
PS
3834 if (HDR_HAS_L2HDR(hdr))
3835 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
3836
3837 if (!buflist_held)
d962d5da 3838 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
3839 }
3840
ca6c7a94
BB
3841 /*
3842 * The header's identify can only be safely discarded once it is no
3843 * longer discoverable. This requires removing it from the hash table
3844 * and the l2arc header list. After this point the hash lock can not
3845 * be used to protect the header.
3846 */
3847 if (!HDR_EMPTY(hdr))
3848 buf_discard_identity(hdr);
3849
d3c2ae1c
GW
3850 if (HDR_HAS_L1HDR(hdr)) {
3851 arc_cksum_free(hdr);
b9541d6b 3852
d3c2ae1c 3853 while (hdr->b_l1hdr.b_buf != NULL)
2aa34383 3854 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
34dc7c2f 3855
ca6c7a94 3856 if (hdr->b_l1hdr.b_pabd != NULL)
b5256303 3857 arc_hdr_free_abd(hdr, B_FALSE);
b5256303 3858
440a3eb9 3859 if (HDR_HAS_RABD(hdr))
b5256303 3860 arc_hdr_free_abd(hdr, B_TRUE);
b9541d6b
CW
3861 }
3862
34dc7c2f 3863 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 3864 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 3865 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b 3866 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b5256303
TC
3867
3868 if (!HDR_PROTECTED(hdr)) {
3869 kmem_cache_free(hdr_full_cache, hdr);
3870 } else {
3871 kmem_cache_free(hdr_full_crypt_cache, hdr);
3872 }
b9541d6b
CW
3873 } else {
3874 kmem_cache_free(hdr_l2only_cache, hdr);
3875 }
34dc7c2f
BB
3876}
3877
3878void
d3c2ae1c 3879arc_buf_destroy(arc_buf_t *buf, void* tag)
34dc7c2f
BB
3880{
3881 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 3882
b9541d6b 3883 if (hdr->b_l1hdr.b_state == arc_anon) {
d3c2ae1c
GW
3884 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3885 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3886 VERIFY0(remove_reference(hdr, NULL, tag));
3887 arc_hdr_destroy(hdr);
3888 return;
34dc7c2f
BB
3889 }
3890
ca6c7a94 3891 kmutex_t *hash_lock = HDR_LOCK(hdr);
34dc7c2f 3892 mutex_enter(hash_lock);
ca6c7a94 3893
d3c2ae1c
GW
3894 ASSERT3P(hdr, ==, buf->b_hdr);
3895 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
428870ff 3896 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
d3c2ae1c
GW
3897 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3898 ASSERT3P(buf->b_data, !=, NULL);
34dc7c2f
BB
3899
3900 (void) remove_reference(hdr, hash_lock, tag);
2aa34383 3901 arc_buf_destroy_impl(buf);
34dc7c2f 3902 mutex_exit(hash_lock);
34dc7c2f
BB
3903}
3904
34dc7c2f 3905/*
ca0bf58d
PS
3906 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3907 * state of the header is dependent on its state prior to entering this
3908 * function. The following transitions are possible:
34dc7c2f 3909 *
ca0bf58d
PS
3910 * - arc_mru -> arc_mru_ghost
3911 * - arc_mfu -> arc_mfu_ghost
3912 * - arc_mru_ghost -> arc_l2c_only
3913 * - arc_mru_ghost -> deleted
3914 * - arc_mfu_ghost -> arc_l2c_only
3915 * - arc_mfu_ghost -> deleted
34dc7c2f 3916 */
ca0bf58d
PS
3917static int64_t
3918arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3919{
ca0bf58d
PS
3920 arc_state_t *evicted_state, *state;
3921 int64_t bytes_evicted = 0;
d4a72f23
TC
3922 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3923 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
34dc7c2f 3924
ca0bf58d
PS
3925 ASSERT(MUTEX_HELD(hash_lock));
3926 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 3927
ca0bf58d
PS
3928 state = hdr->b_l1hdr.b_state;
3929 if (GHOST_STATE(state)) {
3930 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c 3931 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
e8b96c60
MA
3932
3933 /*
ca0bf58d 3934 * l2arc_write_buffers() relies on a header's L1 portion
a6255b7f 3935 * (i.e. its b_pabd field) during it's write phase.
ca0bf58d
PS
3936 * Thus, we cannot push a header onto the arc_l2c_only
3937 * state (removing its L1 piece) until the header is
3938 * done being written to the l2arc.
e8b96c60 3939 */
ca0bf58d
PS
3940 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3941 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3942 return (bytes_evicted);
e8b96c60
MA
3943 }
3944
ca0bf58d 3945 ARCSTAT_BUMP(arcstat_deleted);
d3c2ae1c 3946 bytes_evicted += HDR_GET_LSIZE(hdr);
428870ff 3947
ca0bf58d 3948 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 3949
ca0bf58d 3950 if (HDR_HAS_L2HDR(hdr)) {
a6255b7f 3951 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
b5256303 3952 ASSERT(!HDR_HAS_RABD(hdr));
ca0bf58d
PS
3953 /*
3954 * This buffer is cached on the 2nd Level ARC;
3955 * don't destroy the header.
3956 */
3957 arc_change_state(arc_l2c_only, hdr, hash_lock);
3958 /*
3959 * dropping from L1+L2 cached to L2-only,
3960 * realloc to remove the L1 header.
3961 */
3962 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3963 hdr_l2only_cache);
34dc7c2f 3964 } else {
ca0bf58d
PS
3965 arc_change_state(arc_anon, hdr, hash_lock);
3966 arc_hdr_destroy(hdr);
34dc7c2f 3967 }
ca0bf58d 3968 return (bytes_evicted);
34dc7c2f
BB
3969 }
3970
ca0bf58d
PS
3971 ASSERT(state == arc_mru || state == arc_mfu);
3972 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 3973
ca0bf58d
PS
3974 /* prefetch buffers have a minimum lifespan */
3975 if (HDR_IO_IN_PROGRESS(hdr) ||
3976 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2b84817f
TC
3977 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3978 MSEC_TO_TICK(min_lifetime))) {
ca0bf58d
PS
3979 ARCSTAT_BUMP(arcstat_evict_skip);
3980 return (bytes_evicted);
da8ccd0e
PS
3981 }
3982
424fd7c3 3983 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3984 while (hdr->b_l1hdr.b_buf) {
3985 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3986 if (!mutex_tryenter(&buf->b_evict_lock)) {
3987 ARCSTAT_BUMP(arcstat_mutex_miss);
3988 break;
3989 }
3990 if (buf->b_data != NULL)
d3c2ae1c
GW
3991 bytes_evicted += HDR_GET_LSIZE(hdr);
3992 mutex_exit(&buf->b_evict_lock);
2aa34383 3993 arc_buf_destroy_impl(buf);
ca0bf58d 3994 }
34dc7c2f 3995
ca0bf58d 3996 if (HDR_HAS_L2HDR(hdr)) {
d3c2ae1c 3997 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
ca0bf58d 3998 } else {
d3c2ae1c
GW
3999 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
4000 ARCSTAT_INCR(arcstat_evict_l2_eligible,
4001 HDR_GET_LSIZE(hdr));
4002 } else {
4003 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
4004 HDR_GET_LSIZE(hdr));
4005 }
ca0bf58d 4006 }
34dc7c2f 4007
d3c2ae1c
GW
4008 if (hdr->b_l1hdr.b_bufcnt == 0) {
4009 arc_cksum_free(hdr);
4010
4011 bytes_evicted += arc_hdr_size(hdr);
4012
4013 /*
4014 * If this hdr is being evicted and has a compressed
4015 * buffer then we discard it here before we change states.
4016 * This ensures that the accounting is updated correctly
a6255b7f 4017 * in arc_free_data_impl().
d3c2ae1c 4018 */
b5256303
TC
4019 if (hdr->b_l1hdr.b_pabd != NULL)
4020 arc_hdr_free_abd(hdr, B_FALSE);
4021
4022 if (HDR_HAS_RABD(hdr))
4023 arc_hdr_free_abd(hdr, B_TRUE);
d3c2ae1c 4024
ca0bf58d
PS
4025 arc_change_state(evicted_state, hdr, hash_lock);
4026 ASSERT(HDR_IN_HASH_TABLE(hdr));
d3c2ae1c 4027 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
ca0bf58d
PS
4028 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4029 }
34dc7c2f 4030
ca0bf58d 4031 return (bytes_evicted);
34dc7c2f
BB
4032}
4033
ca0bf58d
PS
4034static uint64_t
4035arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4036 uint64_t spa, int64_t bytes)
34dc7c2f 4037{
ca0bf58d
PS
4038 multilist_sublist_t *mls;
4039 uint64_t bytes_evicted = 0;
4040 arc_buf_hdr_t *hdr;
34dc7c2f 4041 kmutex_t *hash_lock;
ca0bf58d 4042 int evict_count = 0;
34dc7c2f 4043
ca0bf58d 4044 ASSERT3P(marker, !=, NULL);
96c080cb 4045 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
4046
4047 mls = multilist_sublist_lock(ml, idx);
572e2857 4048
ca0bf58d
PS
4049 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
4050 hdr = multilist_sublist_prev(mls, marker)) {
4051 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
4052 (evict_count >= zfs_arc_evict_batch_limit))
4053 break;
4054
4055 /*
4056 * To keep our iteration location, move the marker
4057 * forward. Since we're not holding hdr's hash lock, we
4058 * must be very careful and not remove 'hdr' from the
4059 * sublist. Otherwise, other consumers might mistake the
4060 * 'hdr' as not being on a sublist when they call the
4061 * multilist_link_active() function (they all rely on
4062 * the hash lock protecting concurrent insertions and
4063 * removals). multilist_sublist_move_forward() was
4064 * specifically implemented to ensure this is the case
4065 * (only 'marker' will be removed and re-inserted).
4066 */
4067 multilist_sublist_move_forward(mls, marker);
4068
4069 /*
4070 * The only case where the b_spa field should ever be
4071 * zero, is the marker headers inserted by
4072 * arc_evict_state(). It's possible for multiple threads
4073 * to be calling arc_evict_state() concurrently (e.g.
4074 * dsl_pool_close() and zio_inject_fault()), so we must
4075 * skip any markers we see from these other threads.
4076 */
2a432414 4077 if (hdr->b_spa == 0)
572e2857
BB
4078 continue;
4079
ca0bf58d
PS
4080 /* we're only interested in evicting buffers of a certain spa */
4081 if (spa != 0 && hdr->b_spa != spa) {
4082 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 4083 continue;
ca0bf58d
PS
4084 }
4085
4086 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
4087
4088 /*
ca0bf58d
PS
4089 * We aren't calling this function from any code path
4090 * that would already be holding a hash lock, so we're
4091 * asserting on this assumption to be defensive in case
4092 * this ever changes. Without this check, it would be
4093 * possible to incorrectly increment arcstat_mutex_miss
4094 * below (e.g. if the code changed such that we called
4095 * this function with a hash lock held).
e8b96c60 4096 */
ca0bf58d
PS
4097 ASSERT(!MUTEX_HELD(hash_lock));
4098
34dc7c2f 4099 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
4100 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
4101 mutex_exit(hash_lock);
34dc7c2f 4102
ca0bf58d 4103 bytes_evicted += evicted;
34dc7c2f 4104
572e2857 4105 /*
ca0bf58d
PS
4106 * If evicted is zero, arc_evict_hdr() must have
4107 * decided to skip this header, don't increment
4108 * evict_count in this case.
572e2857 4109 */
ca0bf58d
PS
4110 if (evicted != 0)
4111 evict_count++;
4112
4113 /*
4114 * If arc_size isn't overflowing, signal any
4115 * threads that might happen to be waiting.
4116 *
4117 * For each header evicted, we wake up a single
4118 * thread. If we used cv_broadcast, we could
4119 * wake up "too many" threads causing arc_size
4120 * to significantly overflow arc_c; since
a6255b7f 4121 * arc_get_data_impl() doesn't check for overflow
ca0bf58d
PS
4122 * when it's woken up (it doesn't because it's
4123 * possible for the ARC to be overflowing while
4124 * full of un-evictable buffers, and the
4125 * function should proceed in this case).
4126 *
4127 * If threads are left sleeping, due to not
3ec34e55
BL
4128 * using cv_broadcast here, they will be woken
4129 * up via cv_broadcast in arc_adjust_cb() just
4130 * before arc_adjust_zthr sleeps.
ca0bf58d 4131 */
3ec34e55 4132 mutex_enter(&arc_adjust_lock);
ca0bf58d 4133 if (!arc_is_overflowing())
3ec34e55
BL
4134 cv_signal(&arc_adjust_waiters_cv);
4135 mutex_exit(&arc_adjust_lock);
e8b96c60 4136 } else {
ca0bf58d 4137 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 4138 }
34dc7c2f 4139 }
34dc7c2f 4140
ca0bf58d 4141 multilist_sublist_unlock(mls);
34dc7c2f 4142
ca0bf58d 4143 return (bytes_evicted);
34dc7c2f
BB
4144}
4145
ca0bf58d
PS
4146/*
4147 * Evict buffers from the given arc state, until we've removed the
4148 * specified number of bytes. Move the removed buffers to the
4149 * appropriate evict state.
4150 *
4151 * This function makes a "best effort". It skips over any buffers
4152 * it can't get a hash_lock on, and so, may not catch all candidates.
4153 * It may also return without evicting as much space as requested.
4154 *
4155 * If bytes is specified using the special value ARC_EVICT_ALL, this
4156 * will evict all available (i.e. unlocked and evictable) buffers from
4157 * the given arc state; which is used by arc_flush().
4158 */
4159static uint64_t
4160arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4161 arc_buf_contents_t type)
34dc7c2f 4162{
ca0bf58d 4163 uint64_t total_evicted = 0;
64fc7762 4164 multilist_t *ml = state->arcs_list[type];
ca0bf58d
PS
4165 int num_sublists;
4166 arc_buf_hdr_t **markers;
ca0bf58d 4167
96c080cb 4168 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
4169
4170 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
4171
4172 /*
ca0bf58d
PS
4173 * If we've tried to evict from each sublist, made some
4174 * progress, but still have not hit the target number of bytes
4175 * to evict, we want to keep trying. The markers allow us to
4176 * pick up where we left off for each individual sublist, rather
4177 * than starting from the tail each time.
d164b209 4178 */
ca0bf58d 4179 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
1c27024e 4180 for (int i = 0; i < num_sublists; i++) {
ca0bf58d 4181 multilist_sublist_t *mls;
34dc7c2f 4182
ca0bf58d
PS
4183 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4184
4185 /*
4186 * A b_spa of 0 is used to indicate that this header is
4187 * a marker. This fact is used in arc_adjust_type() and
4188 * arc_evict_state_impl().
4189 */
4190 markers[i]->b_spa = 0;
34dc7c2f 4191
ca0bf58d
PS
4192 mls = multilist_sublist_lock(ml, i);
4193 multilist_sublist_insert_tail(mls, markers[i]);
4194 multilist_sublist_unlock(mls);
34dc7c2f
BB
4195 }
4196
d164b209 4197 /*
ca0bf58d
PS
4198 * While we haven't hit our target number of bytes to evict, or
4199 * we're evicting all available buffers.
d164b209 4200 */
ca0bf58d 4201 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
25458cbe
TC
4202 int sublist_idx = multilist_get_random_index(ml);
4203 uint64_t scan_evicted = 0;
4204
4205 /*
4206 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4207 * Request that 10% of the LRUs be scanned by the superblock
4208 * shrinker.
4209 */
37fb3e43
PD
4210 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size,
4211 arc_dnode_limit) > 0) {
4212 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) -
4213 arc_dnode_limit) / sizeof (dnode_t) /
4214 zfs_arc_dnode_reduce_percent);
4215 }
25458cbe 4216
ca0bf58d
PS
4217 /*
4218 * Start eviction using a randomly selected sublist,
4219 * this is to try and evenly balance eviction across all
4220 * sublists. Always starting at the same sublist
4221 * (e.g. index 0) would cause evictions to favor certain
4222 * sublists over others.
4223 */
1c27024e 4224 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4225 uint64_t bytes_remaining;
4226 uint64_t bytes_evicted;
d164b209 4227
ca0bf58d
PS
4228 if (bytes == ARC_EVICT_ALL)
4229 bytes_remaining = ARC_EVICT_ALL;
4230 else if (total_evicted < bytes)
4231 bytes_remaining = bytes - total_evicted;
4232 else
4233 break;
34dc7c2f 4234
ca0bf58d
PS
4235 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4236 markers[sublist_idx], spa, bytes_remaining);
4237
4238 scan_evicted += bytes_evicted;
4239 total_evicted += bytes_evicted;
4240
4241 /* we've reached the end, wrap to the beginning */
4242 if (++sublist_idx >= num_sublists)
4243 sublist_idx = 0;
4244 }
4245
4246 /*
4247 * If we didn't evict anything during this scan, we have
4248 * no reason to believe we'll evict more during another
4249 * scan, so break the loop.
4250 */
4251 if (scan_evicted == 0) {
4252 /* This isn't possible, let's make that obvious */
4253 ASSERT3S(bytes, !=, 0);
34dc7c2f 4254
ca0bf58d
PS
4255 /*
4256 * When bytes is ARC_EVICT_ALL, the only way to
4257 * break the loop is when scan_evicted is zero.
4258 * In that case, we actually have evicted enough,
4259 * so we don't want to increment the kstat.
4260 */
4261 if (bytes != ARC_EVICT_ALL) {
4262 ASSERT3S(total_evicted, <, bytes);
4263 ARCSTAT_BUMP(arcstat_evict_not_enough);
4264 }
d164b209 4265
ca0bf58d
PS
4266 break;
4267 }
d164b209 4268 }
34dc7c2f 4269
1c27024e 4270 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4271 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4272 multilist_sublist_remove(mls, markers[i]);
4273 multilist_sublist_unlock(mls);
34dc7c2f 4274
ca0bf58d 4275 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 4276 }
ca0bf58d
PS
4277 kmem_free(markers, sizeof (*markers) * num_sublists);
4278
4279 return (total_evicted);
4280}
4281
4282/*
4283 * Flush all "evictable" data of the given type from the arc state
4284 * specified. This will not evict any "active" buffers (i.e. referenced).
4285 *
d3c2ae1c 4286 * When 'retry' is set to B_FALSE, the function will make a single pass
ca0bf58d
PS
4287 * over the state and evict any buffers that it can. Since it doesn't
4288 * continually retry the eviction, it might end up leaving some buffers
4289 * in the ARC due to lock misses.
4290 *
d3c2ae1c 4291 * When 'retry' is set to B_TRUE, the function will continually retry the
ca0bf58d
PS
4292 * eviction until *all* evictable buffers have been removed from the
4293 * state. As a result, if concurrent insertions into the state are
4294 * allowed (e.g. if the ARC isn't shutting down), this function might
4295 * wind up in an infinite loop, continually trying to evict buffers.
4296 */
4297static uint64_t
4298arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4299 boolean_t retry)
4300{
4301 uint64_t evicted = 0;
4302
424fd7c3 4303 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
ca0bf58d
PS
4304 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4305
4306 if (!retry)
4307 break;
4308 }
4309
4310 return (evicted);
34dc7c2f
BB
4311}
4312
ab26409d 4313/*
ef5b2e10
BB
4314 * Helper function for arc_prune_async() it is responsible for safely
4315 * handling the execution of a registered arc_prune_func_t.
ab26409d
BB
4316 */
4317static void
f6046738 4318arc_prune_task(void *ptr)
ab26409d 4319{
f6046738
BB
4320 arc_prune_t *ap = (arc_prune_t *)ptr;
4321 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 4322
f6046738
BB
4323 if (func != NULL)
4324 func(ap->p_adjust, ap->p_private);
ab26409d 4325
424fd7c3 4326 zfs_refcount_remove(&ap->p_refcnt, func);
f6046738 4327}
ab26409d 4328
f6046738
BB
4329/*
4330 * Notify registered consumers they must drop holds on a portion of the ARC
4331 * buffered they reference. This provides a mechanism to ensure the ARC can
4332 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4333 * is analogous to dnlc_reduce_cache() but more generic.
4334 *
ef5b2e10 4335 * This operation is performed asynchronously so it may be safely called
ca67b33a 4336 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
4337 * for each registered arc_prune_t and the arc_prune_task() is responsible
4338 * for releasing it once the registered arc_prune_func_t has completed.
4339 */
4340static void
4341arc_prune_async(int64_t adjust)
4342{
4343 arc_prune_t *ap;
ab26409d 4344
f6046738
BB
4345 mutex_enter(&arc_prune_mtx);
4346 for (ap = list_head(&arc_prune_list); ap != NULL;
4347 ap = list_next(&arc_prune_list, ap)) {
ab26409d 4348
424fd7c3 4349 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
f6046738 4350 continue;
ab26409d 4351
c13060e4 4352 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
f6046738 4353 ap->p_adjust = adjust;
b60eac3d 4354 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
48d3eb40 4355 ap, TQ_SLEEP) == TASKQID_INVALID) {
424fd7c3 4356 zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
b60eac3d 4357 continue;
4358 }
f6046738 4359 ARCSTAT_BUMP(arcstat_prune);
ab26409d 4360 }
ab26409d
BB
4361 mutex_exit(&arc_prune_mtx);
4362}
4363
ca0bf58d
PS
4364/*
4365 * Evict the specified number of bytes from the state specified,
4366 * restricting eviction to the spa and type given. This function
4367 * prevents us from trying to evict more from a state's list than
4368 * is "evictable", and to skip evicting altogether when passed a
4369 * negative value for "bytes". In contrast, arc_evict_state() will
4370 * evict everything it can, when passed a negative value for "bytes".
4371 */
4372static uint64_t
4373arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4374 arc_buf_contents_t type)
4375{
4376 int64_t delta;
4377
424fd7c3
TS
4378 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4379 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4380 bytes);
ca0bf58d
PS
4381 return (arc_evict_state(state, spa, delta, type));
4382 }
4383
4384 return (0);
4385}
4386
4387/*
4388 * The goal of this function is to evict enough meta data buffers from the
4389 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4390 * more complicated than it appears because it is common for data buffers
4391 * to have holds on meta data buffers. In addition, dnode meta data buffers
4392 * will be held by the dnodes in the block preventing them from being freed.
4393 * This means we can't simply traverse the ARC and expect to always find
4394 * enough unheld meta data buffer to release.
4395 *
4396 * Therefore, this function has been updated to make alternating passes
4397 * over the ARC releasing data buffers and then newly unheld meta data
37fb3e43 4398 * buffers. This ensures forward progress is maintained and meta_used
ca0bf58d
PS
4399 * will decrease. Normally this is sufficient, but if required the ARC
4400 * will call the registered prune callbacks causing dentry and inodes to
4401 * be dropped from the VFS cache. This will make dnode meta data buffers
4402 * available for reclaim.
4403 */
4404static uint64_t
37fb3e43 4405arc_adjust_meta_balanced(uint64_t meta_used)
ca0bf58d 4406{
25e2ab16
TC
4407 int64_t delta, prune = 0, adjustmnt;
4408 uint64_t total_evicted = 0;
ca0bf58d 4409 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 4410 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
4411
4412restart:
4413 /*
4414 * This slightly differs than the way we evict from the mru in
4415 * arc_adjust because we don't have a "target" value (i.e. no
4416 * "meta" arc_p). As a result, I think we can completely
4417 * cannibalize the metadata in the MRU before we evict the
4418 * metadata from the MFU. I think we probably need to implement a
4419 * "metadata arc_p" value to do this properly.
4420 */
37fb3e43 4421 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4422
424fd7c3
TS
4423 if (adjustmnt > 0 &&
4424 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4425 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
d3c2ae1c 4426 adjustmnt);
ca0bf58d
PS
4427 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4428 adjustmnt -= delta;
4429 }
4430
4431 /*
4432 * We can't afford to recalculate adjustmnt here. If we do,
4433 * new metadata buffers can sneak into the MRU or ANON lists,
4434 * thus penalize the MFU metadata. Although the fudge factor is
4435 * small, it has been empirically shown to be significant for
4436 * certain workloads (e.g. creating many empty directories). As
4437 * such, we use the original calculation for adjustmnt, and
4438 * simply decrement the amount of data evicted from the MRU.
4439 */
4440
424fd7c3
TS
4441 if (adjustmnt > 0 &&
4442 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4443 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
d3c2ae1c 4444 adjustmnt);
ca0bf58d
PS
4445 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4446 }
4447
37fb3e43 4448 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4449
d3c2ae1c 4450 if (adjustmnt > 0 &&
424fd7c3 4451 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4452 delta = MIN(adjustmnt,
424fd7c3 4453 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
ca0bf58d
PS
4454 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4455 adjustmnt -= delta;
4456 }
4457
d3c2ae1c 4458 if (adjustmnt > 0 &&
424fd7c3 4459 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4460 delta = MIN(adjustmnt,
424fd7c3 4461 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
ca0bf58d
PS
4462 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4463 }
4464
4465 /*
4466 * If after attempting to make the requested adjustment to the ARC
4467 * the meta limit is still being exceeded then request that the
4468 * higher layers drop some cached objects which have holds on ARC
4469 * meta buffers. Requests to the upper layers will be made with
4470 * increasingly large scan sizes until the ARC is below the limit.
4471 */
37fb3e43 4472 if (meta_used > arc_meta_limit) {
ca0bf58d
PS
4473 if (type == ARC_BUFC_DATA) {
4474 type = ARC_BUFC_METADATA;
4475 } else {
4476 type = ARC_BUFC_DATA;
4477
4478 if (zfs_arc_meta_prune) {
4479 prune += zfs_arc_meta_prune;
f6046738 4480 arc_prune_async(prune);
ca0bf58d
PS
4481 }
4482 }
4483
4484 if (restarts > 0) {
4485 restarts--;
4486 goto restart;
4487 }
4488 }
4489 return (total_evicted);
4490}
4491
f6046738
BB
4492/*
4493 * Evict metadata buffers from the cache, such that arc_meta_used is
4494 * capped by the arc_meta_limit tunable.
4495 */
4496static uint64_t
37fb3e43 4497arc_adjust_meta_only(uint64_t meta_used)
f6046738
BB
4498{
4499 uint64_t total_evicted = 0;
4500 int64_t target;
4501
4502 /*
4503 * If we're over the meta limit, we want to evict enough
4504 * metadata to get back under the meta limit. We don't want to
4505 * evict so much that we drop the MRU below arc_p, though. If
4506 * we're over the meta limit more than we're over arc_p, we
4507 * evict some from the MRU here, and some from the MFU below.
4508 */
37fb3e43 4509 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3
TS
4510 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4511 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738
BB
4512
4513 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4514
4515 /*
4516 * Similar to the above, we want to evict enough bytes to get us
4517 * below the meta limit, but not so much as to drop us below the
2aa34383 4518 * space allotted to the MFU (which is defined as arc_c - arc_p).
f6046738 4519 */
37fb3e43 4520 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3 4521 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
37fb3e43 4522 (arc_c - arc_p)));
f6046738
BB
4523
4524 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4525
4526 return (total_evicted);
4527}
4528
4529static uint64_t
37fb3e43 4530arc_adjust_meta(uint64_t meta_used)
f6046738
BB
4531{
4532 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
37fb3e43 4533 return (arc_adjust_meta_only(meta_used));
f6046738 4534 else
37fb3e43 4535 return (arc_adjust_meta_balanced(meta_used));
f6046738
BB
4536}
4537
ca0bf58d
PS
4538/*
4539 * Return the type of the oldest buffer in the given arc state
4540 *
4541 * This function will select a random sublist of type ARC_BUFC_DATA and
4542 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4543 * is compared, and the type which contains the "older" buffer will be
4544 * returned.
4545 */
4546static arc_buf_contents_t
4547arc_adjust_type(arc_state_t *state)
4548{
64fc7762
MA
4549 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4550 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
ca0bf58d
PS
4551 int data_idx = multilist_get_random_index(data_ml);
4552 int meta_idx = multilist_get_random_index(meta_ml);
4553 multilist_sublist_t *data_mls;
4554 multilist_sublist_t *meta_mls;
4555 arc_buf_contents_t type;
4556 arc_buf_hdr_t *data_hdr;
4557 arc_buf_hdr_t *meta_hdr;
4558
4559 /*
4560 * We keep the sublist lock until we're finished, to prevent
4561 * the headers from being destroyed via arc_evict_state().
4562 */
4563 data_mls = multilist_sublist_lock(data_ml, data_idx);
4564 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4565
4566 /*
4567 * These two loops are to ensure we skip any markers that
4568 * might be at the tail of the lists due to arc_evict_state().
4569 */
4570
4571 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4572 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4573 if (data_hdr->b_spa != 0)
4574 break;
4575 }
4576
4577 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4578 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4579 if (meta_hdr->b_spa != 0)
4580 break;
4581 }
4582
4583 if (data_hdr == NULL && meta_hdr == NULL) {
4584 type = ARC_BUFC_DATA;
4585 } else if (data_hdr == NULL) {
4586 ASSERT3P(meta_hdr, !=, NULL);
4587 type = ARC_BUFC_METADATA;
4588 } else if (meta_hdr == NULL) {
4589 ASSERT3P(data_hdr, !=, NULL);
4590 type = ARC_BUFC_DATA;
4591 } else {
4592 ASSERT3P(data_hdr, !=, NULL);
4593 ASSERT3P(meta_hdr, !=, NULL);
4594
4595 /* The headers can't be on the sublist without an L1 header */
4596 ASSERT(HDR_HAS_L1HDR(data_hdr));
4597 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4598
4599 if (data_hdr->b_l1hdr.b_arc_access <
4600 meta_hdr->b_l1hdr.b_arc_access) {
4601 type = ARC_BUFC_DATA;
4602 } else {
4603 type = ARC_BUFC_METADATA;
4604 }
4605 }
4606
4607 multilist_sublist_unlock(meta_mls);
4608 multilist_sublist_unlock(data_mls);
4609
4610 return (type);
4611}
4612
4613/*
4614 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4615 */
4616static uint64_t
4617arc_adjust(void)
4618{
4619 uint64_t total_evicted = 0;
4620 uint64_t bytes;
4621 int64_t target;
37fb3e43
PD
4622 uint64_t asize = aggsum_value(&arc_size);
4623 uint64_t ameta = aggsum_value(&arc_meta_used);
ca0bf58d
PS
4624
4625 /*
4626 * If we're over arc_meta_limit, we want to correct that before
4627 * potentially evicting data buffers below.
4628 */
37fb3e43 4629 total_evicted += arc_adjust_meta(ameta);
ca0bf58d
PS
4630
4631 /*
4632 * Adjust MRU size
4633 *
4634 * If we're over the target cache size, we want to evict enough
4635 * from the list to get back to our target size. We don't want
4636 * to evict too much from the MRU, such that it drops below
4637 * arc_p. So, if we're over our target cache size more than
4638 * the MRU is over arc_p, we'll evict enough to get back to
4639 * arc_p here, and then evict more from the MFU below.
4640 */
37fb3e43 4641 target = MIN((int64_t)(asize - arc_c),
424fd7c3
TS
4642 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4643 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
ca0bf58d
PS
4644
4645 /*
4646 * If we're below arc_meta_min, always prefer to evict data.
4647 * Otherwise, try to satisfy the requested number of bytes to
4648 * evict from the type which contains older buffers; in an
4649 * effort to keep newer buffers in the cache regardless of their
4650 * type. If we cannot satisfy the number of bytes from this
4651 * type, spill over into the next type.
4652 */
4653 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
37fb3e43 4654 ameta > arc_meta_min) {
ca0bf58d
PS
4655 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4656 total_evicted += bytes;
4657
4658 /*
4659 * If we couldn't evict our target number of bytes from
4660 * metadata, we try to get the rest from data.
4661 */
4662 target -= bytes;
4663
4664 total_evicted +=
4665 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4666 } else {
4667 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4668 total_evicted += bytes;
4669
4670 /*
4671 * If we couldn't evict our target number of bytes from
4672 * data, we try to get the rest from metadata.
4673 */
4674 target -= bytes;
4675
4676 total_evicted +=
4677 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4678 }
4679
0405eeea
RE
4680 /*
4681 * Re-sum ARC stats after the first round of evictions.
4682 */
4683 asize = aggsum_value(&arc_size);
4684 ameta = aggsum_value(&arc_meta_used);
4685
4686
ca0bf58d
PS
4687 /*
4688 * Adjust MFU size
4689 *
4690 * Now that we've tried to evict enough from the MRU to get its
4691 * size back to arc_p, if we're still above the target cache
4692 * size, we evict the rest from the MFU.
4693 */
37fb3e43 4694 target = asize - arc_c;
ca0bf58d 4695
a7b10a93 4696 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
37fb3e43 4697 ameta > arc_meta_min) {
ca0bf58d
PS
4698 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4699 total_evicted += bytes;
4700
4701 /*
4702 * If we couldn't evict our target number of bytes from
4703 * metadata, we try to get the rest from data.
4704 */
4705 target -= bytes;
4706
4707 total_evicted +=
4708 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4709 } else {
4710 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4711 total_evicted += bytes;
4712
4713 /*
4714 * If we couldn't evict our target number of bytes from
4715 * data, we try to get the rest from data.
4716 */
4717 target -= bytes;
4718
4719 total_evicted +=
4720 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4721 }
4722
4723 /*
4724 * Adjust ghost lists
4725 *
4726 * In addition to the above, the ARC also defines target values
4727 * for the ghost lists. The sum of the mru list and mru ghost
4728 * list should never exceed the target size of the cache, and
4729 * the sum of the mru list, mfu list, mru ghost list, and mfu
4730 * ghost list should never exceed twice the target size of the
4731 * cache. The following logic enforces these limits on the ghost
4732 * caches, and evicts from them as needed.
4733 */
424fd7c3
TS
4734 target = zfs_refcount_count(&arc_mru->arcs_size) +
4735 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d
PS
4736
4737 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4738 total_evicted += bytes;
4739
4740 target -= bytes;
4741
4742 total_evicted +=
4743 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4744
4745 /*
4746 * We assume the sum of the mru list and mfu list is less than
4747 * or equal to arc_c (we enforced this above), which means we
4748 * can use the simpler of the two equations below:
4749 *
4750 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4751 * mru ghost + mfu ghost <= arc_c
4752 */
424fd7c3
TS
4753 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4754 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d
PS
4755
4756 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4757 total_evicted += bytes;
4758
4759 target -= bytes;
4760
4761 total_evicted +=
4762 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4763
4764 return (total_evicted);
4765}
4766
ca0bf58d
PS
4767void
4768arc_flush(spa_t *spa, boolean_t retry)
ab26409d 4769{
ca0bf58d 4770 uint64_t guid = 0;
94520ca4 4771
bc888666 4772 /*
d3c2ae1c 4773 * If retry is B_TRUE, a spa must not be specified since we have
ca0bf58d
PS
4774 * no good way to determine if all of a spa's buffers have been
4775 * evicted from an arc state.
bc888666 4776 */
ca0bf58d 4777 ASSERT(!retry || spa == 0);
d164b209 4778
b9541d6b 4779 if (spa != NULL)
3541dc6d 4780 guid = spa_load_guid(spa);
d164b209 4781
ca0bf58d
PS
4782 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4783 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4784
4785 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4786 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4787
4788 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4789 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 4790
ca0bf58d
PS
4791 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4792 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f
BB
4793}
4794
3ec34e55
BL
4795static void
4796arc_reduce_target_size(int64_t to_free)
34dc7c2f 4797{
37fb3e43 4798 uint64_t asize = aggsum_value(&arc_size);
1b8951b3 4799 uint64_t c = arc_c;
34dc7c2f 4800
1b8951b3
TC
4801 if (c > to_free && c - to_free > arc_c_min) {
4802 arc_c = c - to_free;
ca67b33a 4803 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
37fb3e43
PD
4804 if (asize < arc_c)
4805 arc_c = MAX(asize, arc_c_min);
34dc7c2f
BB
4806 if (arc_p > arc_c)
4807 arc_p = (arc_c >> 1);
4808 ASSERT(arc_c >= arc_c_min);
4809 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
4810 } else {
4811 arc_c = arc_c_min;
34dc7c2f
BB
4812 }
4813
3ec34e55
BL
4814 if (asize > arc_c) {
4815 /* See comment in arc_adjust_cb_check() on why lock+flag */
4816 mutex_enter(&arc_adjust_lock);
4817 arc_adjust_needed = B_TRUE;
4818 mutex_exit(&arc_adjust_lock);
4819 zthr_wakeup(arc_adjust_zthr);
4820 }
34dc7c2f 4821}
9edb3695
BB
4822/*
4823 * Return maximum amount of memory that we could possibly use. Reduced
4824 * to half of all memory in user space which is primarily used for testing.
4825 */
4826static uint64_t
4827arc_all_memory(void)
4828{
4829#ifdef _KERNEL
70f02287 4830#ifdef CONFIG_HIGHMEM
de3e0b91 4831 return (ptob(zfs_totalram_pages - zfs_totalhigh_pages));
70f02287 4832#else
031cea17 4833 return (ptob(zfs_totalram_pages));
70f02287 4834#endif /* CONFIG_HIGHMEM */
9edb3695
BB
4835#else
4836 return (ptob(physmem) / 2);
70f02287 4837#endif /* _KERNEL */
9edb3695
BB
4838}
4839
70f02287
BB
4840/*
4841 * Return the amount of memory that is considered free. In user space
4842 * which is primarily used for testing we pretend that free memory ranges
4843 * from 0-20% of all memory.
4844 */
787acae0
GDN
4845static uint64_t
4846arc_free_memory(void)
4847{
70f02287
BB
4848#ifdef _KERNEL
4849#ifdef CONFIG_HIGHMEM
4850 struct sysinfo si;
4851 si_meminfo(&si);
4852 return (ptob(si.freeram - si.freehigh));
4853#else
70f02287 4854 return (ptob(nr_free_pages() +
e9a77290 4855 nr_inactive_file_pages() +
4856 nr_inactive_anon_pages() +
4857 nr_slab_reclaimable_pages()));
4858
70f02287
BB
4859#endif /* CONFIG_HIGHMEM */
4860#else
4861 return (spa_get_random(arc_all_memory() * 20 / 100));
4862#endif /* _KERNEL */
787acae0 4863}
787acae0 4864
ca67b33a
MA
4865typedef enum free_memory_reason_t {
4866 FMR_UNKNOWN,
4867 FMR_NEEDFREE,
4868 FMR_LOTSFREE,
4869 FMR_SWAPFS_MINFREE,
4870 FMR_PAGES_PP_MAXIMUM,
4871 FMR_HEAP_ARENA,
4872 FMR_ZIO_ARENA,
4873} free_memory_reason_t;
4874
4875int64_t last_free_memory;
4876free_memory_reason_t last_free_reason;
4877
4878#ifdef _KERNEL
ca67b33a
MA
4879/*
4880 * Additional reserve of pages for pp_reserve.
4881 */
4882int64_t arc_pages_pp_reserve = 64;
4883
4884/*
4885 * Additional reserve of pages for swapfs.
4886 */
4887int64_t arc_swapfs_reserve = 64;
ca67b33a
MA
4888#endif /* _KERNEL */
4889
4890/*
4891 * Return the amount of memory that can be consumed before reclaim will be
4892 * needed. Positive if there is sufficient free memory, negative indicates
4893 * the amount of memory that needs to be freed up.
4894 */
4895static int64_t
4896arc_available_memory(void)
4897{
4898 int64_t lowest = INT64_MAX;
4899 free_memory_reason_t r = FMR_UNKNOWN;
ca67b33a 4900#ifdef _KERNEL
ca67b33a 4901 int64_t n;
11f552fa 4902#ifdef __linux__
70f02287
BB
4903#ifdef freemem
4904#undef freemem
4905#endif
11f552fa
BB
4906 pgcnt_t needfree = btop(arc_need_free);
4907 pgcnt_t lotsfree = btop(arc_sys_free);
4908 pgcnt_t desfree = 0;
70f02287 4909 pgcnt_t freemem = btop(arc_free_memory());
9edb3695
BB
4910#endif
4911
ca67b33a
MA
4912 if (needfree > 0) {
4913 n = PAGESIZE * (-needfree);
4914 if (n < lowest) {
4915 lowest = n;
4916 r = FMR_NEEDFREE;
4917 }
4918 }
4919
4920 /*
4921 * check that we're out of range of the pageout scanner. It starts to
4922 * schedule paging if freemem is less than lotsfree and needfree.
4923 * lotsfree is the high-water mark for pageout, and needfree is the
4924 * number of needed free pages. We add extra pages here to make sure
4925 * the scanner doesn't start up while we're freeing memory.
4926 */
70f02287 4927 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
ca67b33a
MA
4928 if (n < lowest) {
4929 lowest = n;
4930 r = FMR_LOTSFREE;
4931 }
4932
11f552fa 4933#ifndef __linux__
ca67b33a
MA
4934 /*
4935 * check to make sure that swapfs has enough space so that anon
4936 * reservations can still succeed. anon_resvmem() checks that the
4937 * availrmem is greater than swapfs_minfree, and the number of reserved
4938 * swap pages. We also add a bit of extra here just to prevent
4939 * circumstances from getting really dire.
4940 */
4941 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4942 desfree - arc_swapfs_reserve);
4943 if (n < lowest) {
4944 lowest = n;
4945 r = FMR_SWAPFS_MINFREE;
4946 }
4947
ca67b33a
MA
4948 /*
4949 * Check that we have enough availrmem that memory locking (e.g., via
4950 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4951 * stores the number of pages that cannot be locked; when availrmem
4952 * drops below pages_pp_maximum, page locking mechanisms such as
4953 * page_pp_lock() will fail.)
4954 */
4955 n = PAGESIZE * (availrmem - pages_pp_maximum -
4956 arc_pages_pp_reserve);
4957 if (n < lowest) {
4958 lowest = n;
4959 r = FMR_PAGES_PP_MAXIMUM;
4960 }
11f552fa 4961#endif
ca67b33a 4962
70f02287 4963#if defined(_ILP32)
ca67b33a 4964 /*
70f02287 4965 * If we're on a 32-bit platform, it's possible that we'll exhaust the
ca67b33a
MA
4966 * kernel heap space before we ever run out of available physical
4967 * memory. Most checks of the size of the heap_area compare against
4968 * tune.t_minarmem, which is the minimum available real memory that we
4969 * can have in the system. However, this is generally fixed at 25 pages
4970 * which is so low that it's useless. In this comparison, we seek to
4971 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4972 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4973 * free)
4974 */
4975 n = vmem_size(heap_arena, VMEM_FREE) -
4976 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4977 if (n < lowest) {
4978 lowest = n;
4979 r = FMR_HEAP_ARENA;
4980 }
4981#endif
4982
4983 /*
4984 * If zio data pages are being allocated out of a separate heap segment,
4985 * then enforce that the size of available vmem for this arena remains
d3c2ae1c 4986 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
ca67b33a 4987 *
d3c2ae1c
GW
4988 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4989 * memory (in the zio_arena) free, which can avoid memory
4990 * fragmentation issues.
ca67b33a
MA
4991 */
4992 if (zio_arena != NULL) {
9edb3695
BB
4993 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4994 (vmem_size(zio_arena, VMEM_ALLOC) >>
4995 arc_zio_arena_free_shift);
ca67b33a
MA
4996 if (n < lowest) {
4997 lowest = n;
4998 r = FMR_ZIO_ARENA;
4999 }
5000 }
11f552fa 5001#else /* _KERNEL */
ca67b33a
MA
5002 /* Every 100 calls, free a small amount */
5003 if (spa_get_random(100) == 0)
5004 lowest = -1024;
11f552fa 5005#endif /* _KERNEL */
ca67b33a
MA
5006
5007 last_free_memory = lowest;
5008 last_free_reason = r;
5009
5010 return (lowest);
5011}
5012
5013/*
5014 * Determine if the system is under memory pressure and is asking
d3c2ae1c 5015 * to reclaim memory. A return value of B_TRUE indicates that the system
ca67b33a
MA
5016 * is under memory pressure and that the arc should adjust accordingly.
5017 */
5018static boolean_t
5019arc_reclaim_needed(void)
5020{
5021 return (arc_available_memory() < 0);
5022}
5023
34dc7c2f 5024static void
3ec34e55 5025arc_kmem_reap_soon(void)
34dc7c2f
BB
5026{
5027 size_t i;
5028 kmem_cache_t *prev_cache = NULL;
5029 kmem_cache_t *prev_data_cache = NULL;
5030 extern kmem_cache_t *zio_buf_cache[];
5031 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 5032 extern kmem_cache_t *range_seg_cache;
34dc7c2f 5033
70f02287 5034#ifdef _KERNEL
37fb3e43
PD
5035 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) &&
5036 zfs_arc_meta_prune) {
f6046738
BB
5037 /*
5038 * We are exceeding our meta-data cache limit.
5039 * Prune some entries to release holds on meta-data.
5040 */
ef5b2e10 5041 arc_prune_async(zfs_arc_meta_prune);
f6046738 5042 }
70f02287
BB
5043#if defined(_ILP32)
5044 /*
5045 * Reclaim unused memory from all kmem caches.
5046 */
5047 kmem_reap();
5048#endif
5049#endif
f6046738 5050
34dc7c2f 5051 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
70f02287 5052#if defined(_ILP32)
d0c614ec 5053 /* reach upper limit of cache size on 32-bit */
5054 if (zio_buf_cache[i] == NULL)
5055 break;
5056#endif
34dc7c2f
BB
5057 if (zio_buf_cache[i] != prev_cache) {
5058 prev_cache = zio_buf_cache[i];
5059 kmem_cache_reap_now(zio_buf_cache[i]);
5060 }
5061 if (zio_data_buf_cache[i] != prev_data_cache) {
5062 prev_data_cache = zio_data_buf_cache[i];
5063 kmem_cache_reap_now(zio_data_buf_cache[i]);
5064 }
5065 }
ca0bf58d 5066 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
5067 kmem_cache_reap_now(hdr_full_cache);
5068 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 5069 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
5070
5071 if (zio_arena != NULL) {
5072 /*
5073 * Ask the vmem arena to reclaim unused memory from its
5074 * quantum caches.
5075 */
5076 vmem_qcache_reap(zio_arena);
5077 }
34dc7c2f
BB
5078}
5079
3ec34e55
BL
5080/* ARGSUSED */
5081static boolean_t
5082arc_adjust_cb_check(void *arg, zthr_t *zthr)
5083{
cffa8372
JG
5084 /*
5085 * This is necessary so that any changes which may have been made to
5086 * many of the zfs_arc_* module parameters will be propagated to
5087 * their actual internal variable counterparts. Without this,
5088 * changing those module params at runtime would have no effect.
5089 */
5090 arc_tuning_update();
5091
3ec34e55
BL
5092 /*
5093 * This is necessary in order to keep the kstat information
5094 * up to date for tools that display kstat data such as the
5095 * mdb ::arc dcmd and the Linux crash utility. These tools
5096 * typically do not call kstat's update function, but simply
5097 * dump out stats from the most recent update. Without
5098 * this call, these commands may show stale stats for the
5099 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
5100 * with this change, the data might be up to 1 second
5101 * out of date(the arc_adjust_zthr has a maximum sleep
5102 * time of 1 second); but that should suffice. The
5103 * arc_state_t structures can be queried directly if more
5104 * accurate information is needed.
5105 */
5106 if (arc_ksp != NULL)
5107 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
5108
5109 /*
5110 * We have to rely on arc_get_data_impl() to tell us when to adjust,
5111 * rather than checking if we are overflowing here, so that we are
5112 * sure to not leave arc_get_data_impl() waiting on
5113 * arc_adjust_waiters_cv. If we have become "not overflowing" since
5114 * arc_get_data_impl() checked, we need to wake it up. We could
5115 * broadcast the CV here, but arc_get_data_impl() may have not yet
5116 * gone to sleep. We would need to use a mutex to ensure that this
5117 * function doesn't broadcast until arc_get_data_impl() has gone to
5118 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of
5119 * such a lock would necessarily be incorrect with respect to the
5120 * zthr_lock, which is held before this function is called, and is
5121 * held by arc_get_data_impl() when it calls zthr_wakeup().
5122 */
5123 return (arc_adjust_needed);
5124}
5125
302f753f 5126/*
3ec34e55
BL
5127 * Keep arc_size under arc_c by running arc_adjust which evicts data
5128 * from the ARC.
302f753f 5129 */
867959b5 5130/* ARGSUSED */
61c3391a 5131static void
3ec34e55 5132arc_adjust_cb(void *arg, zthr_t *zthr)
34dc7c2f 5133{
3ec34e55
BL
5134 uint64_t evicted = 0;
5135 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5136
3ec34e55
BL
5137 /* Evict from cache */
5138 evicted = arc_adjust();
34dc7c2f 5139
3ec34e55
BL
5140 /*
5141 * If evicted is zero, we couldn't evict anything
5142 * via arc_adjust(). This could be due to hash lock
5143 * collisions, but more likely due to the majority of
5144 * arc buffers being unevictable. Therefore, even if
5145 * arc_size is above arc_c, another pass is unlikely to
5146 * be helpful and could potentially cause us to enter an
5147 * infinite loop. Additionally, zthr_iscancelled() is
5148 * checked here so that if the arc is shutting down, the
5149 * broadcast will wake any remaining arc adjust waiters.
5150 */
5151 mutex_enter(&arc_adjust_lock);
5152 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
5153 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
5154 if (!arc_adjust_needed) {
d3c2ae1c 5155 /*
3ec34e55
BL
5156 * We're either no longer overflowing, or we
5157 * can't evict anything more, so we should wake
5158 * arc_get_data_impl() sooner.
d3c2ae1c 5159 */
3ec34e55
BL
5160 cv_broadcast(&arc_adjust_waiters_cv);
5161 arc_need_free = 0;
5162 }
5163 mutex_exit(&arc_adjust_lock);
5164 spl_fstrans_unmark(cookie);
3ec34e55
BL
5165}
5166
5167/* ARGSUSED */
5168static boolean_t
5169arc_reap_cb_check(void *arg, zthr_t *zthr)
5170{
5171 int64_t free_memory = arc_available_memory();
5172
5173 /*
5174 * If a kmem reap is already active, don't schedule more. We must
5175 * check for this because kmem_cache_reap_soon() won't actually
5176 * block on the cache being reaped (this is to prevent callers from
5177 * becoming implicitly blocked by a system-wide kmem reap -- which,
5178 * on a system with many, many full magazines, can take minutes).
5179 */
5180 if (!kmem_cache_reap_active() && free_memory < 0) {
34dc7c2f 5181
3ec34e55
BL
5182 arc_no_grow = B_TRUE;
5183 arc_warm = B_TRUE;
0a252dae 5184 /*
3ec34e55
BL
5185 * Wait at least zfs_grow_retry (default 5) seconds
5186 * before considering growing.
0a252dae 5187 */
3ec34e55
BL
5188 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
5189 return (B_TRUE);
5190 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5191 arc_no_grow = B_TRUE;
5192 } else if (gethrtime() >= arc_growtime) {
5193 arc_no_grow = B_FALSE;
5194 }
0a252dae 5195
3ec34e55
BL
5196 return (B_FALSE);
5197}
34dc7c2f 5198
3ec34e55
BL
5199/*
5200 * Keep enough free memory in the system by reaping the ARC's kmem
5201 * caches. To cause more slabs to be reapable, we may reduce the
5202 * target size of the cache (arc_c), causing the arc_adjust_cb()
5203 * to free more buffers.
5204 */
5205/* ARGSUSED */
61c3391a 5206static void
3ec34e55
BL
5207arc_reap_cb(void *arg, zthr_t *zthr)
5208{
5209 int64_t free_memory;
5210 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5211
3ec34e55
BL
5212 /*
5213 * Kick off asynchronous kmem_reap()'s of all our caches.
5214 */
5215 arc_kmem_reap_soon();
6a8f9b6b 5216
3ec34e55
BL
5217 /*
5218 * Wait at least arc_kmem_cache_reap_retry_ms between
5219 * arc_kmem_reap_soon() calls. Without this check it is possible to
5220 * end up in a situation where we spend lots of time reaping
5221 * caches, while we're near arc_c_min. Waiting here also gives the
5222 * subsequent free memory check a chance of finding that the
5223 * asynchronous reap has already freed enough memory, and we don't
5224 * need to call arc_reduce_target_size().
5225 */
5226 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
34dc7c2f 5227
3ec34e55
BL
5228 /*
5229 * Reduce the target size as needed to maintain the amount of free
5230 * memory in the system at a fraction of the arc_size (1/128th by
5231 * default). If oversubscribed (free_memory < 0) then reduce the
5232 * target arc_size by the deficit amount plus the fractional
5233 * amount. If free memory is positive but less then the fractional
5234 * amount, reduce by what is needed to hit the fractional amount.
5235 */
5236 free_memory = arc_available_memory();
34dc7c2f 5237
3ec34e55
BL
5238 int64_t to_free =
5239 (arc_c >> arc_shrink_shift) - free_memory;
5240 if (to_free > 0) {
ca67b33a 5241#ifdef _KERNEL
3ec34e55 5242 to_free = MAX(to_free, arc_need_free);
ca67b33a 5243#endif
3ec34e55 5244 arc_reduce_target_size(to_free);
ca0bf58d 5245 }
ca0bf58d 5246 spl_fstrans_unmark(cookie);
ca0bf58d
PS
5247}
5248
7cb67b45
BB
5249#ifdef _KERNEL
5250/*
302f753f
BB
5251 * Determine the amount of memory eligible for eviction contained in the
5252 * ARC. All clean data reported by the ghost lists can always be safely
5253 * evicted. Due to arc_c_min, the same does not hold for all clean data
5254 * contained by the regular mru and mfu lists.
5255 *
5256 * In the case of the regular mru and mfu lists, we need to report as
5257 * much clean data as possible, such that evicting that same reported
5258 * data will not bring arc_size below arc_c_min. Thus, in certain
5259 * circumstances, the total amount of clean data in the mru and mfu
5260 * lists might not actually be evictable.
5261 *
5262 * The following two distinct cases are accounted for:
5263 *
5264 * 1. The sum of the amount of dirty data contained by both the mru and
5265 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5266 * is greater than or equal to arc_c_min.
5267 * (i.e. amount of dirty data >= arc_c_min)
5268 *
5269 * This is the easy case; all clean data contained by the mru and mfu
5270 * lists is evictable. Evicting all clean data can only drop arc_size
5271 * to the amount of dirty data, which is greater than arc_c_min.
5272 *
5273 * 2. The sum of the amount of dirty data contained by both the mru and
5274 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5275 * is less than arc_c_min.
5276 * (i.e. arc_c_min > amount of dirty data)
5277 *
5278 * 2.1. arc_size is greater than or equal arc_c_min.
5279 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5280 *
5281 * In this case, not all clean data from the regular mru and mfu
5282 * lists is actually evictable; we must leave enough clean data
5283 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5284 * evictable data from the two lists combined, is exactly the
5285 * difference between arc_size and arc_c_min.
5286 *
5287 * 2.2. arc_size is less than arc_c_min
5288 * (i.e. arc_c_min > arc_size > amount of dirty data)
5289 *
5290 * In this case, none of the data contained in the mru and mfu
5291 * lists is evictable, even if it's clean. Since arc_size is
5292 * already below arc_c_min, evicting any more would only
5293 * increase this negative difference.
7cb67b45 5294 */
302f753f 5295static uint64_t
4ea3f864
GM
5296arc_evictable_memory(void)
5297{
37fb3e43 5298 int64_t asize = aggsum_value(&arc_size);
302f753f 5299 uint64_t arc_clean =
424fd7c3
TS
5300 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
5301 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
5302 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
5303 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
37fb3e43 5304 uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
302f753f 5305
03b60eee
DB
5306 /*
5307 * Scale reported evictable memory in proportion to page cache, cap
5308 * at specified min/max.
5309 */
e9a77290 5310 uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
03b60eee
DB
5311 min = MAX(arc_c_min, MIN(arc_c_max, min));
5312
5313 if (arc_dirty >= min)
9b50146d 5314 return (arc_clean);
302f753f 5315
37fb3e43 5316 return (MAX((int64_t)asize - (int64_t)min, 0));
302f753f
BB
5317}
5318
ed6e9cc2
TC
5319/*
5320 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5321 * number of objects which can potentially be freed. If it is nonzero,
5322 * the request is to free that many objects.
5323 *
5324 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5325 * in struct shrinker and also require the shrinker to return the number
5326 * of objects freed.
5327 *
5328 * Older kernels require the shrinker to return the number of freeable
5329 * objects following the freeing of nr_to_free.
5330 */
5331static spl_shrinker_t
7e7baeca 5332__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 5333{
ed6e9cc2 5334 int64_t pages;
7cb67b45 5335
302f753f
BB
5336 /* The arc is considered warm once reclaim has occurred */
5337 if (unlikely(arc_warm == B_FALSE))
5338 arc_warm = B_TRUE;
7cb67b45 5339
302f753f 5340 /* Return the potential number of reclaimable pages */
ed6e9cc2 5341 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
5342 if (sc->nr_to_scan == 0)
5343 return (pages);
3fd70ee6
BB
5344
5345 /* Not allowed to perform filesystem reclaim */
7e7baeca 5346 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 5347 return (SHRINK_STOP);
3fd70ee6 5348
7cb67b45 5349 /* Reclaim in progress */
3ec34e55 5350 if (mutex_tryenter(&arc_adjust_lock) == 0) {
b855550c 5351 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
2e91c2fb 5352 return (0);
b855550c 5353 }
7cb67b45 5354
3ec34e55 5355 mutex_exit(&arc_adjust_lock);
ca0bf58d 5356
302f753f
BB
5357 /*
5358 * Evict the requested number of pages by shrinking arc_c the
44813aef 5359 * requested amount.
302f753f
BB
5360 */
5361 if (pages > 0) {
3ec34e55 5362 arc_reduce_target_size(ptob(sc->nr_to_scan));
44813aef 5363 if (current_is_kswapd())
3ec34e55 5364 arc_kmem_reap_soon();
ed6e9cc2 5365#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4149bf49
DB
5366 pages = MAX((int64_t)pages -
5367 (int64_t)btop(arc_evictable_memory()), 0);
ed6e9cc2 5368#else
1e3cb67b 5369 pages = btop(arc_evictable_memory());
ed6e9cc2 5370#endif
1a31dcf5
DB
5371 /*
5372 * We've shrunk what we can, wake up threads.
5373 */
3ec34e55 5374 cv_broadcast(&arc_adjust_waiters_cv);
44813aef 5375 } else
ed6e9cc2 5376 pages = SHRINK_STOP;
302f753f
BB
5377
5378 /*
5379 * When direct reclaim is observed it usually indicates a rapid
5380 * increase in memory pressure. This occurs because the kswapd
5381 * threads were unable to asynchronously keep enough free memory
5382 * available. In this case set arc_no_grow to briefly pause arc
5383 * growth to avoid compounding the memory pressure.
5384 */
7cb67b45 5385 if (current_is_kswapd()) {
302f753f 5386 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 5387 } else {
302f753f 5388 arc_no_grow = B_TRUE;
3ec34e55 5389 arc_kmem_reap_soon();
302f753f 5390 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
5391 }
5392
1e3cb67b 5393 return (pages);
7cb67b45 5394}
7e7baeca 5395SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
5396
5397SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
5398#endif /* _KERNEL */
5399
34dc7c2f
BB
5400/*
5401 * Adapt arc info given the number of bytes we are trying to add and
4e33ba4c 5402 * the state that we are coming from. This function is only called
34dc7c2f
BB
5403 * when we are adding new content to the cache.
5404 */
5405static void
5406arc_adapt(int bytes, arc_state_t *state)
5407{
5408 int mult;
728d6ae9 5409 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
424fd7c3
TS
5410 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5411 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f
BB
5412
5413 if (state == arc_l2c_only)
5414 return;
5415
5416 ASSERT(bytes > 0);
5417 /*
5418 * Adapt the target size of the MRU list:
5419 * - if we just hit in the MRU ghost list, then increase
5420 * the target size of the MRU list.
5421 * - if we just hit in the MFU ghost list, then increase
5422 * the target size of the MFU list by decreasing the
5423 * target size of the MRU list.
5424 */
5425 if (state == arc_mru_ghost) {
36da08ef 5426 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
5427 if (!zfs_arc_p_dampener_disable)
5428 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 5429
728d6ae9 5430 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 5431 } else if (state == arc_mfu_ghost) {
d164b209
BB
5432 uint64_t delta;
5433
36da08ef 5434 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
5435 if (!zfs_arc_p_dampener_disable)
5436 mult = MIN(mult, 10);
34dc7c2f 5437
d164b209 5438 delta = MIN(bytes * mult, arc_p);
728d6ae9 5439 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
5440 }
5441 ASSERT((int64_t)arc_p >= 0);
5442
3ec34e55
BL
5443 /*
5444 * Wake reap thread if we do not have any available memory
5445 */
ca67b33a 5446 if (arc_reclaim_needed()) {
3ec34e55 5447 zthr_wakeup(arc_reap_zthr);
ca67b33a
MA
5448 return;
5449 }
5450
34dc7c2f
BB
5451 if (arc_no_grow)
5452 return;
5453
5454 if (arc_c >= arc_c_max)
5455 return;
5456
5457 /*
5458 * If we're within (2 * maxblocksize) bytes of the target
5459 * cache size, increment the target cache size
5460 */
935434ef 5461 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
37fb3e43
PD
5462 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >=
5463 0) {
34dc7c2f
BB
5464 atomic_add_64(&arc_c, (int64_t)bytes);
5465 if (arc_c > arc_c_max)
5466 arc_c = arc_c_max;
5467 else if (state == arc_anon)
5468 atomic_add_64(&arc_p, (int64_t)bytes);
5469 if (arc_p > arc_c)
5470 arc_p = arc_c;
5471 }
5472 ASSERT((int64_t)arc_p >= 0);
5473}
5474
5475/*
ca0bf58d
PS
5476 * Check if arc_size has grown past our upper threshold, determined by
5477 * zfs_arc_overflow_shift.
34dc7c2f 5478 */
ca0bf58d
PS
5479static boolean_t
5480arc_is_overflowing(void)
34dc7c2f 5481{
ca0bf58d
PS
5482 /* Always allow at least one block of overflow */
5483 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5484 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 5485
37fb3e43
PD
5486 /*
5487 * We just compare the lower bound here for performance reasons. Our
5488 * primary goals are to make sure that the arc never grows without
5489 * bound, and that it can reach its maximum size. This check
5490 * accomplishes both goals. The maximum amount we could run over by is
5491 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5492 * in the ARC. In practice, that's in the tens of MB, which is low
5493 * enough to be safe.
5494 */
5495 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
34dc7c2f
BB
5496}
5497
a6255b7f
DQ
5498static abd_t *
5499arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5500{
5501 arc_buf_contents_t type = arc_buf_type(hdr);
5502
5503 arc_get_data_impl(hdr, size, tag);
5504 if (type == ARC_BUFC_METADATA) {
5505 return (abd_alloc(size, B_TRUE));
5506 } else {
5507 ASSERT(type == ARC_BUFC_DATA);
5508 return (abd_alloc(size, B_FALSE));
5509 }
5510}
5511
5512static void *
5513arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5514{
5515 arc_buf_contents_t type = arc_buf_type(hdr);
5516
5517 arc_get_data_impl(hdr, size, tag);
5518 if (type == ARC_BUFC_METADATA) {
5519 return (zio_buf_alloc(size));
5520 } else {
5521 ASSERT(type == ARC_BUFC_DATA);
5522 return (zio_data_buf_alloc(size));
5523 }
5524}
5525
34dc7c2f 5526/*
d3c2ae1c
GW
5527 * Allocate a block and return it to the caller. If we are hitting the
5528 * hard limit for the cache size, we must sleep, waiting for the eviction
5529 * thread to catch up. If we're past the target size but below the hard
5530 * limit, we'll only signal the reclaim thread and continue on.
34dc7c2f 5531 */
a6255b7f
DQ
5532static void
5533arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
34dc7c2f 5534{
a6255b7f
DQ
5535 arc_state_t *state = hdr->b_l1hdr.b_state;
5536 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
5537
5538 arc_adapt(size, state);
5539
5540 /*
ca0bf58d
PS
5541 * If arc_size is currently overflowing, and has grown past our
5542 * upper limit, we must be adding data faster than the evict
5543 * thread can evict. Thus, to ensure we don't compound the
5544 * problem by adding more data and forcing arc_size to grow even
5545 * further past it's target size, we halt and wait for the
5546 * eviction thread to catch up.
5547 *
5548 * It's also possible that the reclaim thread is unable to evict
5549 * enough buffers to get arc_size below the overflow limit (e.g.
5550 * due to buffers being un-evictable, or hash lock collisions).
5551 * In this case, we want to proceed regardless if we're
5552 * overflowing; thus we don't use a while loop here.
34dc7c2f 5553 */
ca0bf58d 5554 if (arc_is_overflowing()) {
3ec34e55 5555 mutex_enter(&arc_adjust_lock);
ca0bf58d
PS
5556
5557 /*
5558 * Now that we've acquired the lock, we may no longer be
5559 * over the overflow limit, lets check.
5560 *
5561 * We're ignoring the case of spurious wake ups. If that
5562 * were to happen, it'd let this thread consume an ARC
5563 * buffer before it should have (i.e. before we're under
5564 * the overflow limit and were signalled by the reclaim
5565 * thread). As long as that is a rare occurrence, it
5566 * shouldn't cause any harm.
5567 */
5568 if (arc_is_overflowing()) {
3ec34e55
BL
5569 arc_adjust_needed = B_TRUE;
5570 zthr_wakeup(arc_adjust_zthr);
5571 (void) cv_wait(&arc_adjust_waiters_cv,
5572 &arc_adjust_lock);
34dc7c2f 5573 }
3ec34e55 5574 mutex_exit(&arc_adjust_lock);
34dc7c2f 5575 }
ab26409d 5576
d3c2ae1c 5577 VERIFY3U(hdr->b_type, ==, type);
da8ccd0e 5578 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
5579 arc_space_consume(size, ARC_SPACE_META);
5580 } else {
ca0bf58d 5581 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
5582 }
5583
34dc7c2f
BB
5584 /*
5585 * Update the state size. Note that ghost states have a
5586 * "ghost size" and so don't need to be updated.
5587 */
d3c2ae1c 5588 if (!GHOST_STATE(state)) {
34dc7c2f 5589
424fd7c3 5590 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
ca0bf58d
PS
5591
5592 /*
5593 * If this is reached via arc_read, the link is
5594 * protected by the hash lock. If reached via
5595 * arc_buf_alloc, the header should not be accessed by
5596 * any other thread. And, if reached via arc_read_done,
5597 * the hash lock will protect it if it's found in the
5598 * hash table; otherwise no other thread should be
5599 * trying to [add|remove]_reference it.
5600 */
5601 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3
TS
5602 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5603 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c 5604 size, tag);
34dc7c2f 5605 }
d3c2ae1c 5606
34dc7c2f
BB
5607 /*
5608 * If we are growing the cache, and we are adding anonymous
5609 * data, and we have outgrown arc_p, update arc_p
5610 */
37fb3e43
PD
5611 if (aggsum_compare(&arc_size, arc_c) < 0 &&
5612 hdr->b_l1hdr.b_state == arc_anon &&
424fd7c3
TS
5613 (zfs_refcount_count(&arc_anon->arcs_size) +
5614 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
5615 arc_p = MIN(arc_c, arc_p + size);
5616 }
a6255b7f
DQ
5617}
5618
5619static void
5620arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5621{
5622 arc_free_data_impl(hdr, size, tag);
5623 abd_free(abd);
5624}
5625
5626static void
5627arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5628{
5629 arc_buf_contents_t type = arc_buf_type(hdr);
5630
5631 arc_free_data_impl(hdr, size, tag);
5632 if (type == ARC_BUFC_METADATA) {
5633 zio_buf_free(buf, size);
5634 } else {
5635 ASSERT(type == ARC_BUFC_DATA);
5636 zio_data_buf_free(buf, size);
5637 }
d3c2ae1c
GW
5638}
5639
5640/*
5641 * Free the arc data buffer.
5642 */
5643static void
a6255b7f 5644arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
d3c2ae1c
GW
5645{
5646 arc_state_t *state = hdr->b_l1hdr.b_state;
5647 arc_buf_contents_t type = arc_buf_type(hdr);
5648
5649 /* protected by hash lock, if in the hash table */
5650 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 5651 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
5652 ASSERT(state != arc_anon && state != arc_l2c_only);
5653
424fd7c3 5654 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
5655 size, tag);
5656 }
424fd7c3 5657 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
d3c2ae1c
GW
5658
5659 VERIFY3U(hdr->b_type, ==, type);
5660 if (type == ARC_BUFC_METADATA) {
d3c2ae1c
GW
5661 arc_space_return(size, ARC_SPACE_META);
5662 } else {
5663 ASSERT(type == ARC_BUFC_DATA);
d3c2ae1c
GW
5664 arc_space_return(size, ARC_SPACE_DATA);
5665 }
34dc7c2f
BB
5666}
5667
5668/*
5669 * This routine is called whenever a buffer is accessed.
5670 * NOTE: the hash lock is dropped in this function.
5671 */
5672static void
2a432414 5673arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 5674{
428870ff
BB
5675 clock_t now;
5676
34dc7c2f 5677 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 5678 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 5679
b9541d6b 5680 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
5681 /*
5682 * This buffer is not in the cache, and does not
5683 * appear in our "ghost" list. Add the new buffer
5684 * to the MRU state.
5685 */
5686
b9541d6b
CW
5687 ASSERT0(hdr->b_l1hdr.b_arc_access);
5688 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5689 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5690 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 5691
b9541d6b 5692 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
5693 now = ddi_get_lbolt();
5694
34dc7c2f
BB
5695 /*
5696 * If this buffer is here because of a prefetch, then either:
5697 * - clear the flag if this is a "referencing" read
5698 * (any subsequent access will bump this into the MFU state).
5699 * or
5700 * - move the buffer to the head of the list if this is
5701 * another prefetch (to make it less likely to be evicted).
5702 */
d4a72f23 5703 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
424fd7c3 5704 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
5705 /* link protected by hash lock */
5706 ASSERT(multilist_link_active(
b9541d6b 5707 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 5708 } else {
d4a72f23
TC
5709 arc_hdr_clear_flags(hdr,
5710 ARC_FLAG_PREFETCH |
5711 ARC_FLAG_PRESCIENT_PREFETCH);
b9541d6b 5712 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
5713 ARCSTAT_BUMP(arcstat_mru_hits);
5714 }
b9541d6b 5715 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
5716 return;
5717 }
5718
5719 /*
5720 * This buffer has been "accessed" only once so far,
5721 * but it is still in the cache. Move it to the MFU
5722 * state.
5723 */
b9541d6b
CW
5724 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5725 ARC_MINTIME)) {
34dc7c2f
BB
5726 /*
5727 * More than 125ms have passed since we
5728 * instantiated this buffer. Move it to the
5729 * most frequently used state.
5730 */
b9541d6b 5731 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
5732 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5733 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5734 }
b9541d6b 5735 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 5736 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 5737 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
5738 arc_state_t *new_state;
5739 /*
5740 * This buffer has been "accessed" recently, but
5741 * was evicted from the cache. Move it to the
5742 * MFU state.
5743 */
5744
d4a72f23 5745 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f 5746 new_state = arc_mru;
424fd7c3 5747 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
d4a72f23
TC
5748 arc_hdr_clear_flags(hdr,
5749 ARC_FLAG_PREFETCH |
5750 ARC_FLAG_PRESCIENT_PREFETCH);
5751 }
2a432414 5752 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5753 } else {
5754 new_state = arc_mfu;
2a432414 5755 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5756 }
5757
b9541d6b 5758 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 5759 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5760
b9541d6b 5761 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 5762 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 5763 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
5764 /*
5765 * This buffer has been accessed more than once and is
5766 * still in the cache. Keep it in the MFU state.
5767 *
5768 * NOTE: an add_reference() that occurred when we did
5769 * the arc_read() will have kicked this off the list.
5770 * If it was a prefetch, we will explicitly move it to
5771 * the head of the list now.
5772 */
d4a72f23 5773
b9541d6b 5774 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 5775 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
5776 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5777 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
5778 arc_state_t *new_state = arc_mfu;
5779 /*
5780 * This buffer has been accessed more than once but has
5781 * been evicted from the cache. Move it back to the
5782 * MFU state.
5783 */
5784
d4a72f23 5785 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f
BB
5786 /*
5787 * This is a prefetch access...
5788 * move this block back to the MRU state.
5789 */
34dc7c2f
BB
5790 new_state = arc_mru;
5791 }
5792
b9541d6b 5793 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5794 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5795 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5796
b9541d6b 5797 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 5798 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 5799 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
5800 /*
5801 * This buffer is on the 2nd Level ARC.
5802 */
5803
b9541d6b 5804 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5805 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5806 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5807 } else {
b9541d6b
CW
5808 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5809 hdr->b_l1hdr.b_state);
34dc7c2f
BB
5810 }
5811}
5812
0873bb63
BB
5813/*
5814 * This routine is called by dbuf_hold() to update the arc_access() state
5815 * which otherwise would be skipped for entries in the dbuf cache.
5816 */
5817void
5818arc_buf_access(arc_buf_t *buf)
5819{
5820 mutex_enter(&buf->b_evict_lock);
5821 arc_buf_hdr_t *hdr = buf->b_hdr;
5822
5823 /*
5824 * Avoid taking the hash_lock when possible as an optimization.
5825 * The header must be checked again under the hash_lock in order
5826 * to handle the case where it is concurrently being released.
5827 */
5828 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5829 mutex_exit(&buf->b_evict_lock);
5830 return;
5831 }
5832
5833 kmutex_t *hash_lock = HDR_LOCK(hdr);
5834 mutex_enter(hash_lock);
5835
5836 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5837 mutex_exit(hash_lock);
5838 mutex_exit(&buf->b_evict_lock);
5839 ARCSTAT_BUMP(arcstat_access_skip);
5840 return;
5841 }
5842
5843 mutex_exit(&buf->b_evict_lock);
5844
5845 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5846 hdr->b_l1hdr.b_state == arc_mfu);
5847
5848 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5849 arc_access(hdr, hash_lock);
5850 mutex_exit(hash_lock);
5851
5852 ARCSTAT_BUMP(arcstat_hits);
5853 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5854 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5855}
5856
b5256303 5857/* a generic arc_read_done_func_t which you can use */
34dc7c2f
BB
5858/* ARGSUSED */
5859void
d4a72f23
TC
5860arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5861 arc_buf_t *buf, void *arg)
34dc7c2f 5862{
d4a72f23
TC
5863 if (buf == NULL)
5864 return;
5865
5866 bcopy(buf->b_data, arg, arc_buf_size(buf));
d3c2ae1c 5867 arc_buf_destroy(buf, arg);
34dc7c2f
BB
5868}
5869
b5256303 5870/* a generic arc_read_done_func_t */
d4a72f23 5871/* ARGSUSED */
34dc7c2f 5872void
d4a72f23
TC
5873arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5874 arc_buf_t *buf, void *arg)
34dc7c2f
BB
5875{
5876 arc_buf_t **bufp = arg;
d4a72f23
TC
5877
5878 if (buf == NULL) {
c3bd3fb4 5879 ASSERT(zio == NULL || zio->io_error != 0);
34dc7c2f
BB
5880 *bufp = NULL;
5881 } else {
c3bd3fb4 5882 ASSERT(zio == NULL || zio->io_error == 0);
34dc7c2f 5883 *bufp = buf;
c3bd3fb4 5884 ASSERT(buf->b_data != NULL);
34dc7c2f
BB
5885 }
5886}
5887
d3c2ae1c
GW
5888static void
5889arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5890{
5891 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5892 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
b5256303 5893 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
d3c2ae1c
GW
5894 } else {
5895 if (HDR_COMPRESSION_ENABLED(hdr)) {
b5256303 5896 ASSERT3U(arc_hdr_get_compress(hdr), ==,
d3c2ae1c
GW
5897 BP_GET_COMPRESS(bp));
5898 }
5899 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5900 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
b5256303 5901 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
d3c2ae1c
GW
5902 }
5903}
5904
34dc7c2f
BB
5905static void
5906arc_read_done(zio_t *zio)
5907{
b5256303 5908 blkptr_t *bp = zio->io_bp;
d3c2ae1c 5909 arc_buf_hdr_t *hdr = zio->io_private;
9b67f605 5910 kmutex_t *hash_lock = NULL;
524b4217
DK
5911 arc_callback_t *callback_list;
5912 arc_callback_t *acb;
2aa34383 5913 boolean_t freeable = B_FALSE;
a7004725 5914
34dc7c2f
BB
5915 /*
5916 * The hdr was inserted into hash-table and removed from lists
5917 * prior to starting I/O. We should find this header, since
5918 * it's in the hash table, and it should be legit since it's
5919 * not possible to evict it during the I/O. The only possible
5920 * reason for it not to be found is if we were freed during the
5921 * read.
5922 */
9b67f605 5923 if (HDR_IN_HASH_TABLE(hdr)) {
31df97cd
DB
5924 arc_buf_hdr_t *found;
5925
9b67f605
MA
5926 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5927 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5928 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5929 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5930 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5931
31df97cd 5932 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
9b67f605 5933
d3c2ae1c 5934 ASSERT((found == hdr &&
9b67f605
MA
5935 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5936 (found == hdr && HDR_L2_READING(hdr)));
d3c2ae1c
GW
5937 ASSERT3P(hash_lock, !=, NULL);
5938 }
5939
b5256303
TC
5940 if (BP_IS_PROTECTED(bp)) {
5941 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5942 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5943 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5944 hdr->b_crypt_hdr.b_iv);
5945
5946 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5947 void *tmpbuf;
5948
5949 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5950 sizeof (zil_chain_t));
5951 zio_crypt_decode_mac_zil(tmpbuf,
5952 hdr->b_crypt_hdr.b_mac);
5953 abd_return_buf(zio->io_abd, tmpbuf,
5954 sizeof (zil_chain_t));
5955 } else {
5956 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5957 }
5958 }
5959
d4a72f23 5960 if (zio->io_error == 0) {
d3c2ae1c
GW
5961 /* byteswap if necessary */
5962 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5963 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5964 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5965 } else {
5966 hdr->b_l1hdr.b_byteswap =
5967 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5968 }
5969 } else {
5970 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5971 }
9b67f605 5972 }
34dc7c2f 5973
d3c2ae1c 5974 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
b9541d6b 5975 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
d3c2ae1c 5976 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f 5977
b9541d6b 5978 callback_list = hdr->b_l1hdr.b_acb;
d3c2ae1c 5979 ASSERT3P(callback_list, !=, NULL);
34dc7c2f 5980
d4a72f23
TC
5981 if (hash_lock && zio->io_error == 0 &&
5982 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
5983 /*
5984 * Only call arc_access on anonymous buffers. This is because
5985 * if we've issued an I/O for an evicted buffer, we've already
5986 * called arc_access (to prevent any simultaneous readers from
5987 * getting confused).
5988 */
5989 arc_access(hdr, hash_lock);
5990 }
5991
524b4217
DK
5992 /*
5993 * If a read request has a callback (i.e. acb_done is not NULL), then we
5994 * make a buf containing the data according to the parameters which were
5995 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5996 * aren't needlessly decompressing the data multiple times.
5997 */
a7004725 5998 int callback_cnt = 0;
2aa34383
DK
5999 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
6000 if (!acb->acb_done)
6001 continue;
6002
2aa34383 6003 callback_cnt++;
524b4217 6004
d4a72f23
TC
6005 if (zio->io_error != 0)
6006 continue;
6007
b5256303 6008 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
be9a5c35 6009 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
d4a72f23 6010 acb->acb_compressed, acb->acb_noauth, B_TRUE,
440a3eb9 6011 &acb->acb_buf);
b5256303
TC
6012
6013 /*
440a3eb9 6014 * Assert non-speculative zios didn't fail because an
b5256303
TC
6015 * encryption key wasn't loaded
6016 */
a2c2ed1b 6017 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 6018 error != EACCES);
b5256303
TC
6019
6020 /*
6021 * If we failed to decrypt, report an error now (as the zio
6022 * layer would have done if it had done the transforms).
6023 */
6024 if (error == ECKSUM) {
6025 ASSERT(BP_IS_PROTECTED(bp));
6026 error = SET_ERROR(EIO);
b5256303 6027 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
be9a5c35 6028 spa_log_error(zio->io_spa, &acb->acb_zb);
b5256303 6029 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
be9a5c35 6030 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
b5256303
TC
6031 }
6032 }
6033
c3bd3fb4
TC
6034 if (error != 0) {
6035 /*
6036 * Decompression or decryption failed. Set
6037 * io_error so that when we call acb_done
6038 * (below), we will indicate that the read
6039 * failed. Note that in the unusual case
6040 * where one callback is compressed and another
6041 * uncompressed, we will mark all of them
6042 * as failed, even though the uncompressed
6043 * one can't actually fail. In this case,
6044 * the hdr will not be anonymous, because
6045 * if there are multiple callbacks, it's
6046 * because multiple threads found the same
6047 * arc buf in the hash table.
6048 */
524b4217 6049 zio->io_error = error;
c3bd3fb4 6050 }
34dc7c2f 6051 }
c3bd3fb4
TC
6052
6053 /*
6054 * If there are multiple callbacks, we must have the hash lock,
6055 * because the only way for multiple threads to find this hdr is
6056 * in the hash table. This ensures that if there are multiple
6057 * callbacks, the hdr is not anonymous. If it were anonymous,
6058 * we couldn't use arc_buf_destroy() in the error case below.
6059 */
6060 ASSERT(callback_cnt < 2 || hash_lock != NULL);
6061
b9541d6b 6062 hdr->b_l1hdr.b_acb = NULL;
d3c2ae1c 6063 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
440a3eb9 6064 if (callback_cnt == 0)
b5256303 6065 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
34dc7c2f 6066
424fd7c3 6067 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
b9541d6b 6068 callback_list != NULL);
34dc7c2f 6069
d4a72f23 6070 if (zio->io_error == 0) {
d3c2ae1c
GW
6071 arc_hdr_verify(hdr, zio->io_bp);
6072 } else {
6073 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
b9541d6b 6074 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
6075 arc_change_state(arc_anon, hdr, hash_lock);
6076 if (HDR_IN_HASH_TABLE(hdr))
6077 buf_hash_remove(hdr);
424fd7c3 6078 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
6079 }
6080
6081 /*
6082 * Broadcast before we drop the hash_lock to avoid the possibility
6083 * that the hdr (and hence the cv) might be freed before we get to
6084 * the cv_broadcast().
6085 */
b9541d6b 6086 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 6087
b9541d6b 6088 if (hash_lock != NULL) {
34dc7c2f
BB
6089 mutex_exit(hash_lock);
6090 } else {
6091 /*
6092 * This block was freed while we waited for the read to
6093 * complete. It has been removed from the hash table and
6094 * moved to the anonymous state (so that it won't show up
6095 * in the cache).
6096 */
b9541d6b 6097 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
424fd7c3 6098 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
6099 }
6100
6101 /* execute each callback and free its structure */
6102 while ((acb = callback_list) != NULL) {
c3bd3fb4
TC
6103 if (acb->acb_done != NULL) {
6104 if (zio->io_error != 0 && acb->acb_buf != NULL) {
6105 /*
6106 * If arc_buf_alloc_impl() fails during
6107 * decompression, the buf will still be
6108 * allocated, and needs to be freed here.
6109 */
6110 arc_buf_destroy(acb->acb_buf,
6111 acb->acb_private);
6112 acb->acb_buf = NULL;
6113 }
d4a72f23
TC
6114 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
6115 acb->acb_buf, acb->acb_private);
b5256303 6116 }
34dc7c2f
BB
6117
6118 if (acb->acb_zio_dummy != NULL) {
6119 acb->acb_zio_dummy->io_error = zio->io_error;
6120 zio_nowait(acb->acb_zio_dummy);
6121 }
6122
6123 callback_list = acb->acb_next;
6124 kmem_free(acb, sizeof (arc_callback_t));
6125 }
6126
6127 if (freeable)
6128 arc_hdr_destroy(hdr);
6129}
6130
6131/*
5c839890 6132 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
6133 * cache. If the block is found in the cache, invoke the provided
6134 * callback immediately and return. Note that the `zio' parameter
6135 * in the callback will be NULL in this case, since no IO was
6136 * required. If the block is not in the cache pass the read request
6137 * on to the spa with a substitute callback function, so that the
6138 * requested block will be added to the cache.
6139 *
6140 * If a read request arrives for a block that has a read in-progress,
6141 * either wait for the in-progress read to complete (and return the
6142 * results); or, if this is a read with a "done" func, add a record
6143 * to the read to invoke the "done" func when the read completes,
6144 * and return; or just return.
6145 *
6146 * arc_read_done() will invoke all the requested "done" functions
6147 * for readers of this block.
6148 */
6149int
b5256303
TC
6150arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
6151 arc_read_done_func_t *done, void *private, zio_priority_t priority,
6152 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 6153{
9b67f605 6154 arc_buf_hdr_t *hdr = NULL;
9b67f605 6155 kmutex_t *hash_lock = NULL;
34dc7c2f 6156 zio_t *rzio;
3541dc6d 6157 uint64_t guid = spa_load_guid(spa);
b5256303
TC
6158 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
6159 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
6160 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
6161 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
6162 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
0902c457 6163 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
1421c891 6164 int rc = 0;
34dc7c2f 6165
0902c457 6166 ASSERT(!embedded_bp ||
9b67f605
MA
6167 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
6168
34dc7c2f 6169top:
0902c457 6170 if (!embedded_bp) {
9b67f605
MA
6171 /*
6172 * Embedded BP's have no DVA and require no I/O to "read".
6173 * Create an anonymous arc buf to back it.
6174 */
6175 hdr = buf_hash_find(guid, bp, &hash_lock);
6176 }
6177
b5256303
TC
6178 /*
6179 * Determine if we have an L1 cache hit or a cache miss. For simplicity
6180 * we maintain encrypted data seperately from compressed / uncompressed
6181 * data. If the user is requesting raw encrypted data and we don't have
6182 * that in the header we will read from disk to guarantee that we can
6183 * get it even if the encryption keys aren't loaded.
6184 */
6185 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
6186 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
d3c2ae1c 6187 arc_buf_t *buf = NULL;
2a432414 6188 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
6189
6190 if (HDR_IO_IN_PROGRESS(hdr)) {
a8b2e306 6191 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
34dc7c2f 6192
a8b2e306 6193 ASSERT3P(head_zio, !=, NULL);
7f60329a
MA
6194 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
6195 priority == ZIO_PRIORITY_SYNC_READ) {
6196 /*
a8b2e306
TC
6197 * This is a sync read that needs to wait for
6198 * an in-flight async read. Request that the
6199 * zio have its priority upgraded.
7f60329a 6200 */
a8b2e306
TC
6201 zio_change_priority(head_zio, priority);
6202 DTRACE_PROBE1(arc__async__upgrade__sync,
7f60329a 6203 arc_buf_hdr_t *, hdr);
a8b2e306 6204 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
7f60329a
MA
6205 }
6206 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
d3c2ae1c
GW
6207 arc_hdr_clear_flags(hdr,
6208 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a
MA
6209 }
6210
2a432414 6211 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 6212 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
6213 mutex_exit(hash_lock);
6214 goto top;
6215 }
2a432414 6216 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6217
6218 if (done) {
7f60329a 6219 arc_callback_t *acb = NULL;
34dc7c2f
BB
6220
6221 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 6222 KM_SLEEP);
34dc7c2f
BB
6223 acb->acb_done = done;
6224 acb->acb_private = private;
a7004725 6225 acb->acb_compressed = compressed_read;
440a3eb9
TC
6226 acb->acb_encrypted = encrypted_read;
6227 acb->acb_noauth = noauth_read;
be9a5c35 6228 acb->acb_zb = *zb;
34dc7c2f
BB
6229 if (pio != NULL)
6230 acb->acb_zio_dummy = zio_null(pio,
d164b209 6231 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f 6232
d3c2ae1c 6233 ASSERT3P(acb->acb_done, !=, NULL);
a8b2e306 6234 acb->acb_zio_head = head_zio;
b9541d6b
CW
6235 acb->acb_next = hdr->b_l1hdr.b_acb;
6236 hdr->b_l1hdr.b_acb = acb;
34dc7c2f 6237 mutex_exit(hash_lock);
1421c891 6238 goto out;
34dc7c2f
BB
6239 }
6240 mutex_exit(hash_lock);
1421c891 6241 goto out;
34dc7c2f
BB
6242 }
6243
b9541d6b
CW
6244 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6245 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
6246
6247 if (done) {
7f60329a
MA
6248 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6249 /*
6250 * This is a demand read which does not have to
6251 * wait for i/o because we did a predictive
6252 * prefetch i/o for it, which has completed.
6253 */
6254 DTRACE_PROBE1(
6255 arc__demand__hit__predictive__prefetch,
6256 arc_buf_hdr_t *, hdr);
6257 ARCSTAT_BUMP(
6258 arcstat_demand_hit_predictive_prefetch);
d3c2ae1c
GW
6259 arc_hdr_clear_flags(hdr,
6260 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a 6261 }
d4a72f23
TC
6262
6263 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6264 ARCSTAT_BUMP(
6265 arcstat_demand_hit_prescient_prefetch);
6266 arc_hdr_clear_flags(hdr,
6267 ARC_FLAG_PRESCIENT_PREFETCH);
6268 }
6269
0902c457 6270 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
d3c2ae1c 6271
524b4217 6272 /* Get a buf with the desired data in it. */
be9a5c35
TC
6273 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6274 encrypted_read, compressed_read, noauth_read,
6275 B_TRUE, &buf);
a2c2ed1b
TC
6276 if (rc == ECKSUM) {
6277 /*
6278 * Convert authentication and decryption errors
be9a5c35
TC
6279 * to EIO (and generate an ereport if needed)
6280 * before leaving the ARC.
a2c2ed1b
TC
6281 */
6282 rc = SET_ERROR(EIO);
be9a5c35
TC
6283 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6284 spa_log_error(spa, zb);
6285 zfs_ereport_post(
6286 FM_EREPORT_ZFS_AUTHENTICATION,
6287 spa, NULL, zb, NULL, 0, 0);
6288 }
a2c2ed1b 6289 }
d4a72f23 6290 if (rc != 0) {
2c24b5b1
TC
6291 (void) remove_reference(hdr, hash_lock,
6292 private);
6293 arc_buf_destroy_impl(buf);
d4a72f23
TC
6294 buf = NULL;
6295 }
6296
a2c2ed1b
TC
6297 /* assert any errors weren't due to unloaded keys */
6298 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 6299 rc != EACCES);
2a432414 6300 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
424fd7c3 6301 zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
d3c2ae1c 6302 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
6303 }
6304 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6305 arc_access(hdr, hash_lock);
d4a72f23
TC
6306 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6307 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
2a432414 6308 if (*arc_flags & ARC_FLAG_L2CACHE)
d3c2ae1c 6309 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f
BB
6310 mutex_exit(hash_lock);
6311 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
6312 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6313 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
6314 data, metadata, hits);
6315
6316 if (done)
d4a72f23 6317 done(NULL, zb, bp, buf, private);
34dc7c2f 6318 } else {
d3c2ae1c
GW
6319 uint64_t lsize = BP_GET_LSIZE(bp);
6320 uint64_t psize = BP_GET_PSIZE(bp);
9b67f605 6321 arc_callback_t *acb;
b128c09f 6322 vdev_t *vd = NULL;
a117a6d6 6323 uint64_t addr = 0;
d164b209 6324 boolean_t devw = B_FALSE;
d3c2ae1c 6325 uint64_t size;
440a3eb9 6326 abd_t *hdr_abd;
34dc7c2f 6327
5f6d0b6f
BB
6328 /*
6329 * Gracefully handle a damaged logical block size as a
1cdb86cb 6330 * checksum error.
5f6d0b6f 6331 */
d3c2ae1c 6332 if (lsize > spa_maxblocksize(spa)) {
1cdb86cb 6333 rc = SET_ERROR(ECKSUM);
5f6d0b6f
BB
6334 goto out;
6335 }
6336
34dc7c2f 6337 if (hdr == NULL) {
0902c457
TC
6338 /*
6339 * This block is not in the cache or it has
6340 * embedded data.
6341 */
9b67f605 6342 arc_buf_hdr_t *exists = NULL;
34dc7c2f 6343 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
d3c2ae1c 6344 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
b5256303
TC
6345 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6346 encrypted_read);
d3c2ae1c 6347
0902c457 6348 if (!embedded_bp) {
9b67f605
MA
6349 hdr->b_dva = *BP_IDENTITY(bp);
6350 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
6351 exists = buf_hash_insert(hdr, &hash_lock);
6352 }
6353 if (exists != NULL) {
34dc7c2f
BB
6354 /* somebody beat us to the hash insert */
6355 mutex_exit(hash_lock);
428870ff 6356 buf_discard_identity(hdr);
d3c2ae1c 6357 arc_hdr_destroy(hdr);
34dc7c2f
BB
6358 goto top; /* restart the IO request */
6359 }
34dc7c2f 6360 } else {
b9541d6b 6361 /*
b5256303
TC
6362 * This block is in the ghost cache or encrypted data
6363 * was requested and we didn't have it. If it was
6364 * L2-only (and thus didn't have an L1 hdr),
6365 * we realloc the header to add an L1 hdr.
b9541d6b
CW
6366 */
6367 if (!HDR_HAS_L1HDR(hdr)) {
6368 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6369 hdr_full_cache);
6370 }
6371
b5256303
TC
6372 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6373 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6374 ASSERT(!HDR_HAS_RABD(hdr));
6375 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
424fd7c3
TS
6376 ASSERT0(zfs_refcount_count(
6377 &hdr->b_l1hdr.b_refcnt));
b5256303
TC
6378 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6379 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6380 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6381 /*
6382 * If this header already had an IO in progress
6383 * and we are performing another IO to fetch
6384 * encrypted data we must wait until the first
6385 * IO completes so as not to confuse
6386 * arc_read_done(). This should be very rare
6387 * and so the performance impact shouldn't
6388 * matter.
6389 */
6390 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6391 mutex_exit(hash_lock);
6392 goto top;
6393 }
34dc7c2f 6394
7f60329a 6395 /*
d3c2ae1c 6396 * This is a delicate dance that we play here.
b5256303
TC
6397 * This hdr might be in the ghost list so we access
6398 * it to move it out of the ghost list before we
d3c2ae1c
GW
6399 * initiate the read. If it's a prefetch then
6400 * it won't have a callback so we'll remove the
6401 * reference that arc_buf_alloc_impl() created. We
6402 * do this after we've called arc_access() to
6403 * avoid hitting an assert in remove_reference().
7f60329a 6404 */
428870ff 6405 arc_access(hdr, hash_lock);
b5256303 6406 arc_hdr_alloc_abd(hdr, encrypted_read);
d3c2ae1c 6407 }
d3c2ae1c 6408
b5256303
TC
6409 if (encrypted_read) {
6410 ASSERT(HDR_HAS_RABD(hdr));
6411 size = HDR_GET_PSIZE(hdr);
6412 hdr_abd = hdr->b_crypt_hdr.b_rabd;
d3c2ae1c 6413 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
6414 } else {
6415 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6416 size = arc_hdr_size(hdr);
6417 hdr_abd = hdr->b_l1hdr.b_pabd;
6418
6419 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6420 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6421 }
6422
6423 /*
6424 * For authenticated bp's, we do not ask the ZIO layer
6425 * to authenticate them since this will cause the entire
6426 * IO to fail if the key isn't loaded. Instead, we
6427 * defer authentication until arc_buf_fill(), which will
6428 * verify the data when the key is available.
6429 */
6430 if (BP_IS_AUTHENTICATED(bp))
6431 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
34dc7c2f
BB
6432 }
6433
b5256303 6434 if (*arc_flags & ARC_FLAG_PREFETCH &&
424fd7c3 6435 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
d3c2ae1c 6436 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
d4a72f23
TC
6437 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6438 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
d3c2ae1c
GW
6439 if (*arc_flags & ARC_FLAG_L2CACHE)
6440 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
b5256303
TC
6441 if (BP_IS_AUTHENTICATED(bp))
6442 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
d3c2ae1c
GW
6443 if (BP_GET_LEVEL(bp) > 0)
6444 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
7f60329a 6445 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
d3c2ae1c 6446 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
b9541d6b 6447 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 6448
79c76d5b 6449 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
6450 acb->acb_done = done;
6451 acb->acb_private = private;
2aa34383 6452 acb->acb_compressed = compressed_read;
b5256303
TC
6453 acb->acb_encrypted = encrypted_read;
6454 acb->acb_noauth = noauth_read;
be9a5c35 6455 acb->acb_zb = *zb;
34dc7c2f 6456
d3c2ae1c 6457 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b9541d6b 6458 hdr->b_l1hdr.b_acb = acb;
d3c2ae1c 6459 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f 6460
b9541d6b
CW
6461 if (HDR_HAS_L2HDR(hdr) &&
6462 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6463 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6464 addr = hdr->b_l2hdr.b_daddr;
b128c09f 6465 /*
a1d477c2 6466 * Lock out L2ARC device removal.
b128c09f
BB
6467 */
6468 if (vdev_is_dead(vd) ||
6469 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6470 vd = NULL;
6471 }
6472
a8b2e306
TC
6473 /*
6474 * We count both async reads and scrub IOs as asynchronous so
6475 * that both can be upgraded in the event of a cache hit while
6476 * the read IO is still in-flight.
6477 */
6478 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6479 priority == ZIO_PRIORITY_SCRUB)
d3c2ae1c
GW
6480 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6481 else
6482 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6483
e49f1e20 6484 /*
0902c457
TC
6485 * At this point, we have a level 1 cache miss or a blkptr
6486 * with embedded data. Try again in L2ARC if possible.
e49f1e20 6487 */
d3c2ae1c
GW
6488 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6489
0902c457
TC
6490 /*
6491 * Skip ARC stat bump for block pointers with embedded
6492 * data. The data are read from the blkptr itself via
6493 * decode_embedded_bp_compressed().
6494 */
6495 if (!embedded_bp) {
6496 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6497 blkptr_t *, bp, uint64_t, lsize,
6498 zbookmark_phys_t *, zb);
6499 ARCSTAT_BUMP(arcstat_misses);
6500 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6501 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6502 metadata, misses);
6503 }
34dc7c2f 6504
d164b209 6505 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
6506 /*
6507 * Read from the L2ARC if the following are true:
b128c09f
BB
6508 * 1. The L2ARC vdev was previously cached.
6509 * 2. This buffer still has L2ARC metadata.
6510 * 3. This buffer isn't currently writing to the L2ARC.
6511 * 4. The L2ARC entry wasn't evicted, which may
6512 * also have invalidated the vdev.
d164b209 6513 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 6514 */
b9541d6b 6515 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
6516 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6517 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f 6518 l2arc_read_callback_t *cb;
82710e99
GDN
6519 abd_t *abd;
6520 uint64_t asize;
34dc7c2f
BB
6521
6522 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6523 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 6524 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 6525
34dc7c2f 6526 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 6527 KM_SLEEP);
d3c2ae1c 6528 cb->l2rcb_hdr = hdr;
34dc7c2f
BB
6529 cb->l2rcb_bp = *bp;
6530 cb->l2rcb_zb = *zb;
b128c09f 6531 cb->l2rcb_flags = zio_flags;
34dc7c2f 6532
82710e99
GDN
6533 asize = vdev_psize_to_asize(vd, size);
6534 if (asize != size) {
6535 abd = abd_alloc_for_io(asize,
6536 HDR_ISTYPE_METADATA(hdr));
6537 cb->l2rcb_abd = abd;
6538 } else {
b5256303 6539 abd = hdr_abd;
82710e99
GDN
6540 }
6541
a117a6d6 6542 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
82710e99 6543 addr + asize <= vd->vdev_psize -
a117a6d6
GW
6544 VDEV_LABEL_END_SIZE);
6545
34dc7c2f 6546 /*
b128c09f
BB
6547 * l2arc read. The SCL_L2ARC lock will be
6548 * released by l2arc_read_done().
3a17a7a9
SK
6549 * Issue a null zio if the underlying buffer
6550 * was squashed to zero size by compression.
34dc7c2f 6551 */
b5256303 6552 ASSERT3U(arc_hdr_get_compress(hdr), !=,
d3c2ae1c
GW
6553 ZIO_COMPRESS_EMPTY);
6554 rzio = zio_read_phys(pio, vd, addr,
82710e99 6555 asize, abd,
d3c2ae1c
GW
6556 ZIO_CHECKSUM_OFF,
6557 l2arc_read_done, cb, priority,
6558 zio_flags | ZIO_FLAG_DONT_CACHE |
6559 ZIO_FLAG_CANFAIL |
6560 ZIO_FLAG_DONT_PROPAGATE |
6561 ZIO_FLAG_DONT_RETRY, B_FALSE);
a8b2e306
TC
6562 acb->acb_zio_head = rzio;
6563
6564 if (hash_lock != NULL)
6565 mutex_exit(hash_lock);
d3c2ae1c 6566
34dc7c2f
BB
6567 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6568 zio_t *, rzio);
b5256303
TC
6569 ARCSTAT_INCR(arcstat_l2_read_bytes,
6570 HDR_GET_PSIZE(hdr));
34dc7c2f 6571
2a432414 6572 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 6573 zio_nowait(rzio);
1421c891 6574 goto out;
b128c09f 6575 }
34dc7c2f 6576
2a432414 6577 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 6578 if (zio_wait(rzio) == 0)
1421c891 6579 goto out;
b128c09f
BB
6580
6581 /* l2arc read error; goto zio_read() */
a8b2e306
TC
6582 if (hash_lock != NULL)
6583 mutex_enter(hash_lock);
34dc7c2f
BB
6584 } else {
6585 DTRACE_PROBE1(l2arc__miss,
6586 arc_buf_hdr_t *, hdr);
6587 ARCSTAT_BUMP(arcstat_l2_misses);
6588 if (HDR_L2_WRITING(hdr))
6589 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 6590 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 6591 }
d164b209
BB
6592 } else {
6593 if (vd != NULL)
6594 spa_config_exit(spa, SCL_L2ARC, vd);
0902c457
TC
6595 /*
6596 * Skip ARC stat bump for block pointers with
6597 * embedded data. The data are read from the blkptr
6598 * itself via decode_embedded_bp_compressed().
6599 */
6600 if (l2arc_ndev != 0 && !embedded_bp) {
d164b209
BB
6601 DTRACE_PROBE1(l2arc__miss,
6602 arc_buf_hdr_t *, hdr);
6603 ARCSTAT_BUMP(arcstat_l2_misses);
6604 }
34dc7c2f 6605 }
34dc7c2f 6606
b5256303 6607 rzio = zio_read(pio, spa, bp, hdr_abd, size,
d3c2ae1c 6608 arc_read_done, hdr, priority, zio_flags, zb);
a8b2e306
TC
6609 acb->acb_zio_head = rzio;
6610
6611 if (hash_lock != NULL)
6612 mutex_exit(hash_lock);
34dc7c2f 6613
2a432414 6614 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
6615 rc = zio_wait(rzio);
6616 goto out;
6617 }
34dc7c2f 6618
2a432414 6619 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6620 zio_nowait(rzio);
6621 }
1421c891
PS
6622
6623out:
157ef7f6 6624 /* embedded bps don't actually go to disk */
0902c457 6625 if (!embedded_bp)
157ef7f6 6626 spa_read_history_add(spa, zb, *arc_flags);
1421c891 6627 return (rc);
34dc7c2f
BB
6628}
6629
ab26409d
BB
6630arc_prune_t *
6631arc_add_prune_callback(arc_prune_func_t *func, void *private)
6632{
6633 arc_prune_t *p;
6634
d1d7e268 6635 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
6636 p->p_pfunc = func;
6637 p->p_private = private;
6638 list_link_init(&p->p_node);
424fd7c3 6639 zfs_refcount_create(&p->p_refcnt);
ab26409d
BB
6640
6641 mutex_enter(&arc_prune_mtx);
c13060e4 6642 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
ab26409d
BB
6643 list_insert_head(&arc_prune_list, p);
6644 mutex_exit(&arc_prune_mtx);
6645
6646 return (p);
6647}
6648
6649void
6650arc_remove_prune_callback(arc_prune_t *p)
6651{
4442f60d 6652 boolean_t wait = B_FALSE;
ab26409d
BB
6653 mutex_enter(&arc_prune_mtx);
6654 list_remove(&arc_prune_list, p);
424fd7c3 6655 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
4442f60d 6656 wait = B_TRUE;
ab26409d 6657 mutex_exit(&arc_prune_mtx);
4442f60d
CC
6658
6659 /* wait for arc_prune_task to finish */
6660 if (wait)
6661 taskq_wait_outstanding(arc_prune_taskq, 0);
424fd7c3
TS
6662 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6663 zfs_refcount_destroy(&p->p_refcnt);
4442f60d 6664 kmem_free(p, sizeof (*p));
ab26409d
BB
6665}
6666
df4474f9
MA
6667/*
6668 * Notify the arc that a block was freed, and thus will never be used again.
6669 */
6670void
6671arc_freed(spa_t *spa, const blkptr_t *bp)
6672{
6673 arc_buf_hdr_t *hdr;
6674 kmutex_t *hash_lock;
6675 uint64_t guid = spa_load_guid(spa);
6676
9b67f605
MA
6677 ASSERT(!BP_IS_EMBEDDED(bp));
6678
6679 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
6680 if (hdr == NULL)
6681 return;
df4474f9 6682
d3c2ae1c
GW
6683 /*
6684 * We might be trying to free a block that is still doing I/O
6685 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6686 * dmu_sync-ed block). If this block is being prefetched, then it
6687 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6688 * until the I/O completes. A block may also have a reference if it is
6689 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6690 * have written the new block to its final resting place on disk but
6691 * without the dedup flag set. This would have left the hdr in the MRU
6692 * state and discoverable. When the txg finally syncs it detects that
6693 * the block was overridden in open context and issues an override I/O.
6694 * Since this is a dedup block, the override I/O will determine if the
6695 * block is already in the DDT. If so, then it will replace the io_bp
6696 * with the bp from the DDT and allow the I/O to finish. When the I/O
6697 * reaches the done callback, dbuf_write_override_done, it will
6698 * check to see if the io_bp and io_bp_override are identical.
6699 * If they are not, then it indicates that the bp was replaced with
6700 * the bp in the DDT and the override bp is freed. This allows
6701 * us to arrive here with a reference on a block that is being
6702 * freed. So if we have an I/O in progress, or a reference to
6703 * this hdr, then we don't destroy the hdr.
6704 */
6705 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
424fd7c3 6706 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
d3c2ae1c
GW
6707 arc_change_state(arc_anon, hdr, hash_lock);
6708 arc_hdr_destroy(hdr);
df4474f9 6709 mutex_exit(hash_lock);
bd089c54 6710 } else {
d3c2ae1c 6711 mutex_exit(hash_lock);
34dc7c2f 6712 }
34dc7c2f 6713
34dc7c2f
BB
6714}
6715
6716/*
e49f1e20
WA
6717 * Release this buffer from the cache, making it an anonymous buffer. This
6718 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 6719 * If the buffer has more than one reference, we must make
b128c09f 6720 * a new hdr for the buffer.
34dc7c2f
BB
6721 */
6722void
6723arc_release(arc_buf_t *buf, void *tag)
6724{
b9541d6b 6725 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 6726
428870ff 6727 /*
ca0bf58d 6728 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
6729 * 0 || it's the dnode file), then it must be syncing context.
6730 * But we don't know that information at this level.
6731 */
6732
6733 mutex_enter(&buf->b_evict_lock);
b128c09f 6734
ca0bf58d
PS
6735 ASSERT(HDR_HAS_L1HDR(hdr));
6736
b9541d6b
CW
6737 /*
6738 * We don't grab the hash lock prior to this check, because if
6739 * the buffer's header is in the arc_anon state, it won't be
6740 * linked into the hash table.
6741 */
6742 if (hdr->b_l1hdr.b_state == arc_anon) {
6743 mutex_exit(&buf->b_evict_lock);
6744 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6745 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6746 ASSERT(!HDR_HAS_L2HDR(hdr));
d3c2ae1c 6747 ASSERT(HDR_EMPTY(hdr));
34dc7c2f 6748
d3c2ae1c 6749 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
424fd7c3 6750 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
b9541d6b
CW
6751 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6752
b9541d6b 6753 hdr->b_l1hdr.b_arc_access = 0;
d3c2ae1c
GW
6754
6755 /*
6756 * If the buf is being overridden then it may already
6757 * have a hdr that is not empty.
6758 */
6759 buf_discard_identity(hdr);
b9541d6b
CW
6760 arc_buf_thaw(buf);
6761
6762 return;
34dc7c2f
BB
6763 }
6764
1c27024e 6765 kmutex_t *hash_lock = HDR_LOCK(hdr);
b9541d6b
CW
6766 mutex_enter(hash_lock);
6767
6768 /*
6769 * This assignment is only valid as long as the hash_lock is
6770 * held, we must be careful not to reference state or the
6771 * b_state field after dropping the lock.
6772 */
1c27024e 6773 arc_state_t *state = hdr->b_l1hdr.b_state;
b9541d6b
CW
6774 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6775 ASSERT3P(state, !=, arc_anon);
6776
6777 /* this buffer is not on any list */
424fd7c3 6778 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
b9541d6b
CW
6779
6780 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 6781 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
6782
6783 /*
d962d5da
PS
6784 * We have to recheck this conditional again now that
6785 * we're holding the l2ad_mtx to prevent a race with
6786 * another thread which might be concurrently calling
6787 * l2arc_evict(). In that case, l2arc_evict() might have
6788 * destroyed the header's L2 portion as we were waiting
6789 * to acquire the l2ad_mtx.
ca0bf58d 6790 */
d962d5da
PS
6791 if (HDR_HAS_L2HDR(hdr))
6792 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 6793
b9541d6b 6794 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
6795 }
6796
34dc7c2f
BB
6797 /*
6798 * Do we have more than one buf?
6799 */
d3c2ae1c 6800 if (hdr->b_l1hdr.b_bufcnt > 1) {
34dc7c2f 6801 arc_buf_hdr_t *nhdr;
d164b209 6802 uint64_t spa = hdr->b_spa;
d3c2ae1c
GW
6803 uint64_t psize = HDR_GET_PSIZE(hdr);
6804 uint64_t lsize = HDR_GET_LSIZE(hdr);
b5256303
TC
6805 boolean_t protected = HDR_PROTECTED(hdr);
6806 enum zio_compress compress = arc_hdr_get_compress(hdr);
b9541d6b 6807 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c 6808 VERIFY3U(hdr->b_type, ==, type);
34dc7c2f 6809
b9541d6b 6810 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
d3c2ae1c
GW
6811 (void) remove_reference(hdr, hash_lock, tag);
6812
524b4217 6813 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 6814 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
524b4217
DK
6815 ASSERT(ARC_BUF_LAST(buf));
6816 }
d3c2ae1c 6817
34dc7c2f 6818 /*
428870ff 6819 * Pull the data off of this hdr and attach it to
d3c2ae1c
GW
6820 * a new anonymous hdr. Also find the last buffer
6821 * in the hdr's buffer list.
34dc7c2f 6822 */
a7004725 6823 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 6824 ASSERT3P(lastbuf, !=, NULL);
34dc7c2f 6825
d3c2ae1c
GW
6826 /*
6827 * If the current arc_buf_t and the hdr are sharing their data
524b4217 6828 * buffer, then we must stop sharing that block.
d3c2ae1c
GW
6829 */
6830 if (arc_buf_is_shared(buf)) {
6831 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
d3c2ae1c
GW
6832 VERIFY(!arc_buf_is_shared(lastbuf));
6833
6834 /*
6835 * First, sever the block sharing relationship between
a7004725 6836 * buf and the arc_buf_hdr_t.
d3c2ae1c
GW
6837 */
6838 arc_unshare_buf(hdr, buf);
2aa34383
DK
6839
6840 /*
a6255b7f 6841 * Now we need to recreate the hdr's b_pabd. Since we
524b4217 6842 * have lastbuf handy, we try to share with it, but if
a6255b7f 6843 * we can't then we allocate a new b_pabd and copy the
524b4217 6844 * data from buf into it.
2aa34383 6845 */
524b4217
DK
6846 if (arc_can_share(hdr, lastbuf)) {
6847 arc_share_buf(hdr, lastbuf);
6848 } else {
b5256303 6849 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
6850 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6851 buf->b_data, psize);
2aa34383 6852 }
d3c2ae1c
GW
6853 VERIFY3P(lastbuf->b_data, !=, NULL);
6854 } else if (HDR_SHARED_DATA(hdr)) {
2aa34383
DK
6855 /*
6856 * Uncompressed shared buffers are always at the end
6857 * of the list. Compressed buffers don't have the
6858 * same requirements. This makes it hard to
6859 * simply assert that the lastbuf is shared so
6860 * we rely on the hdr's compression flags to determine
6861 * if we have a compressed, shared buffer.
6862 */
6863 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 6864 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2aa34383 6865 ASSERT(!ARC_BUF_SHARED(buf));
d3c2ae1c 6866 }
b5256303
TC
6867
6868 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
b9541d6b 6869 ASSERT3P(state, !=, arc_l2c_only);
36da08ef 6870
424fd7c3 6871 (void) zfs_refcount_remove_many(&state->arcs_size,
2aa34383 6872 arc_buf_size(buf), buf);
36da08ef 6873
424fd7c3 6874 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
b9541d6b 6875 ASSERT3P(state, !=, arc_l2c_only);
424fd7c3
TS
6876 (void) zfs_refcount_remove_many(
6877 &state->arcs_esize[type],
2aa34383 6878 arc_buf_size(buf), buf);
34dc7c2f 6879 }
1eb5bfa3 6880
d3c2ae1c 6881 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303
TC
6882 if (ARC_BUF_ENCRYPTED(buf))
6883 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6884
34dc7c2f 6885 arc_cksum_verify(buf);
498877ba 6886 arc_buf_unwatch(buf);
34dc7c2f 6887
f486f584
TC
6888 /* if this is the last uncompressed buf free the checksum */
6889 if (!arc_hdr_has_uncompressed_buf(hdr))
6890 arc_cksum_free(hdr);
6891
34dc7c2f
BB
6892 mutex_exit(hash_lock);
6893
d3c2ae1c 6894 /*
a6255b7f 6895 * Allocate a new hdr. The new hdr will contain a b_pabd
d3c2ae1c
GW
6896 * buffer which will be freed in arc_write().
6897 */
b5256303
TC
6898 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6899 compress, type, HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6900 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6901 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
424fd7c3 6902 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
6903 VERIFY3U(nhdr->b_type, ==, type);
6904 ASSERT(!HDR_SHARED_DATA(nhdr));
b9541d6b 6905
d3c2ae1c
GW
6906 nhdr->b_l1hdr.b_buf = buf;
6907 nhdr->b_l1hdr.b_bufcnt = 1;
b5256303
TC
6908 if (ARC_BUF_ENCRYPTED(buf))
6909 nhdr->b_crypt_hdr.b_ebufcnt = 1;
b9541d6b
CW
6910 nhdr->b_l1hdr.b_mru_hits = 0;
6911 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6912 nhdr->b_l1hdr.b_mfu_hits = 0;
6913 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6914 nhdr->b_l1hdr.b_l2_hits = 0;
c13060e4 6915 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 6916 buf->b_hdr = nhdr;
d3c2ae1c 6917
428870ff 6918 mutex_exit(&buf->b_evict_lock);
424fd7c3 6919 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
5e8ff256 6920 arc_buf_size(buf), buf);
34dc7c2f 6921 } else {
428870ff 6922 mutex_exit(&buf->b_evict_lock);
424fd7c3 6923 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
6924 /* protected by hash lock, or hdr is on arc_anon */
6925 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 6926 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
6927 hdr->b_l1hdr.b_mru_hits = 0;
6928 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6929 hdr->b_l1hdr.b_mfu_hits = 0;
6930 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6931 hdr->b_l1hdr.b_l2_hits = 0;
6932 arc_change_state(arc_anon, hdr, hash_lock);
6933 hdr->b_l1hdr.b_arc_access = 0;
34dc7c2f 6934
b5256303 6935 mutex_exit(hash_lock);
428870ff 6936 buf_discard_identity(hdr);
34dc7c2f
BB
6937 arc_buf_thaw(buf);
6938 }
34dc7c2f
BB
6939}
6940
6941int
6942arc_released(arc_buf_t *buf)
6943{
b128c09f
BB
6944 int released;
6945
428870ff 6946 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
6947 released = (buf->b_data != NULL &&
6948 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 6949 mutex_exit(&buf->b_evict_lock);
b128c09f 6950 return (released);
34dc7c2f
BB
6951}
6952
34dc7c2f
BB
6953#ifdef ZFS_DEBUG
6954int
6955arc_referenced(arc_buf_t *buf)
6956{
b128c09f
BB
6957 int referenced;
6958
428870ff 6959 mutex_enter(&buf->b_evict_lock);
424fd7c3 6960 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 6961 mutex_exit(&buf->b_evict_lock);
b128c09f 6962 return (referenced);
34dc7c2f
BB
6963}
6964#endif
6965
6966static void
6967arc_write_ready(zio_t *zio)
6968{
6969 arc_write_callback_t *callback = zio->io_private;
6970 arc_buf_t *buf = callback->awcb_buf;
6971 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
6972 blkptr_t *bp = zio->io_bp;
6973 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
a6255b7f 6974 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 6975
b9541d6b 6976 ASSERT(HDR_HAS_L1HDR(hdr));
424fd7c3 6977 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
d3c2ae1c 6978 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
b128c09f 6979
34dc7c2f 6980 /*
d3c2ae1c
GW
6981 * If we're reexecuting this zio because the pool suspended, then
6982 * cleanup any state that was previously set the first time the
2aa34383 6983 * callback was invoked.
34dc7c2f 6984 */
d3c2ae1c
GW
6985 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6986 arc_cksum_free(hdr);
6987 arc_buf_unwatch(buf);
a6255b7f 6988 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 6989 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
6990 arc_unshare_buf(hdr, buf);
6991 } else {
b5256303 6992 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 6993 }
34dc7c2f 6994 }
b5256303
TC
6995
6996 if (HDR_HAS_RABD(hdr))
6997 arc_hdr_free_abd(hdr, B_TRUE);
34dc7c2f 6998 }
a6255b7f 6999 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 7000 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
7001 ASSERT(!HDR_SHARED_DATA(hdr));
7002 ASSERT(!arc_buf_is_shared(buf));
7003
7004 callback->awcb_ready(zio, buf, callback->awcb_private);
7005
7006 if (HDR_IO_IN_PROGRESS(hdr))
7007 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
7008
d3c2ae1c
GW
7009 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7010
b5256303
TC
7011 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
7012 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
7013
7014 if (BP_IS_PROTECTED(bp)) {
7015 /* ZIL blocks are written through zio_rewrite */
7016 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7017 ASSERT(HDR_PROTECTED(hdr));
7018
ae76f45c
TC
7019 if (BP_SHOULD_BYTESWAP(bp)) {
7020 if (BP_GET_LEVEL(bp) > 0) {
7021 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
7022 } else {
7023 hdr->b_l1hdr.b_byteswap =
7024 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
7025 }
7026 } else {
7027 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
7028 }
7029
b5256303
TC
7030 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
7031 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
7032 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
7033 hdr->b_crypt_hdr.b_iv);
7034 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
7035 }
7036
7037 /*
7038 * If this block was written for raw encryption but the zio layer
7039 * ended up only authenticating it, adjust the buffer flags now.
7040 */
7041 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
7042 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
7043 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
7044 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
7045 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b1d21733
TC
7046 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
7047 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
7048 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
7049 }
7050
7051 /* this must be done after the buffer flags are adjusted */
7052 arc_cksum_compute(buf);
7053
1c27024e 7054 enum zio_compress compress;
b5256303 7055 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
d3c2ae1c
GW
7056 compress = ZIO_COMPRESS_OFF;
7057 } else {
b5256303
TC
7058 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
7059 compress = BP_GET_COMPRESS(bp);
d3c2ae1c
GW
7060 }
7061 HDR_SET_PSIZE(hdr, psize);
7062 arc_hdr_set_compress(hdr, compress);
7063
4807c0ba
TC
7064 if (zio->io_error != 0 || psize == 0)
7065 goto out;
7066
d3c2ae1c 7067 /*
b5256303
TC
7068 * Fill the hdr with data. If the buffer is encrypted we have no choice
7069 * but to copy the data into b_radb. If the hdr is compressed, the data
7070 * we want is available from the zio, otherwise we can take it from
7071 * the buf.
a6255b7f
DQ
7072 *
7073 * We might be able to share the buf's data with the hdr here. However,
7074 * doing so would cause the ARC to be full of linear ABDs if we write a
7075 * lot of shareable data. As a compromise, we check whether scattered
7076 * ABDs are allowed, and assume that if they are then the user wants
7077 * the ARC to be primarily filled with them regardless of the data being
7078 * written. Therefore, if they're allowed then we allocate one and copy
7079 * the data into it; otherwise, we share the data directly if we can.
d3c2ae1c 7080 */
b5256303 7081 if (ARC_BUF_ENCRYPTED(buf)) {
4807c0ba 7082 ASSERT3U(psize, >, 0);
b5256303
TC
7083 ASSERT(ARC_BUF_COMPRESSED(buf));
7084 arc_hdr_alloc_abd(hdr, B_TRUE);
7085 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
7086 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
a6255b7f
DQ
7087 /*
7088 * Ideally, we would always copy the io_abd into b_pabd, but the
7089 * user may have disabled compressed ARC, thus we must check the
7090 * hdr's compression setting rather than the io_bp's.
7091 */
b5256303 7092 if (BP_IS_ENCRYPTED(bp)) {
a6255b7f 7093 ASSERT3U(psize, >, 0);
b5256303
TC
7094 arc_hdr_alloc_abd(hdr, B_TRUE);
7095 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
7096 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
7097 !ARC_BUF_COMPRESSED(buf)) {
7098 ASSERT3U(psize, >, 0);
7099 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
7100 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
7101 } else {
7102 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
b5256303 7103 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
7104 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
7105 arc_buf_size(buf));
7106 }
d3c2ae1c 7107 } else {
a6255b7f 7108 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
2aa34383 7109 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
d3c2ae1c 7110 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
d3c2ae1c 7111
d3c2ae1c 7112 arc_share_buf(hdr, buf);
d3c2ae1c 7113 }
a6255b7f 7114
4807c0ba 7115out:
b5256303 7116 arc_hdr_verify(hdr, bp);
a6255b7f 7117 spl_fstrans_unmark(cookie);
34dc7c2f
BB
7118}
7119
bc77ba73
PD
7120static void
7121arc_write_children_ready(zio_t *zio)
7122{
7123 arc_write_callback_t *callback = zio->io_private;
7124 arc_buf_t *buf = callback->awcb_buf;
7125
7126 callback->awcb_children_ready(zio, buf, callback->awcb_private);
7127}
7128
e8b96c60
MA
7129/*
7130 * The SPA calls this callback for each physical write that happens on behalf
7131 * of a logical write. See the comment in dbuf_write_physdone() for details.
7132 */
7133static void
7134arc_write_physdone(zio_t *zio)
7135{
7136 arc_write_callback_t *cb = zio->io_private;
7137 if (cb->awcb_physdone != NULL)
7138 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
7139}
7140
34dc7c2f
BB
7141static void
7142arc_write_done(zio_t *zio)
7143{
7144 arc_write_callback_t *callback = zio->io_private;
7145 arc_buf_t *buf = callback->awcb_buf;
7146 arc_buf_hdr_t *hdr = buf->b_hdr;
7147
d3c2ae1c 7148 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
428870ff
BB
7149
7150 if (zio->io_error == 0) {
d3c2ae1c
GW
7151 arc_hdr_verify(hdr, zio->io_bp);
7152
9b67f605 7153 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
7154 buf_discard_identity(hdr);
7155 } else {
7156 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
7157 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 7158 }
428870ff 7159 } else {
d3c2ae1c 7160 ASSERT(HDR_EMPTY(hdr));
428870ff 7161 }
34dc7c2f 7162
34dc7c2f 7163 /*
9b67f605
MA
7164 * If the block to be written was all-zero or compressed enough to be
7165 * embedded in the BP, no write was performed so there will be no
7166 * dva/birth/checksum. The buffer must therefore remain anonymous
7167 * (and uncached).
34dc7c2f 7168 */
d3c2ae1c 7169 if (!HDR_EMPTY(hdr)) {
34dc7c2f
BB
7170 arc_buf_hdr_t *exists;
7171 kmutex_t *hash_lock;
7172
524b4217 7173 ASSERT3U(zio->io_error, ==, 0);
428870ff 7174
34dc7c2f
BB
7175 arc_cksum_verify(buf);
7176
7177 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 7178 if (exists != NULL) {
34dc7c2f
BB
7179 /*
7180 * This can only happen if we overwrite for
7181 * sync-to-convergence, because we remove
7182 * buffers from the hash table when we arc_free().
7183 */
428870ff
BB
7184 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
7185 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7186 panic("bad overwrite, hdr=%p exists=%p",
7187 (void *)hdr, (void *)exists);
424fd7c3 7188 ASSERT(zfs_refcount_is_zero(
b9541d6b 7189 &exists->b_l1hdr.b_refcnt));
428870ff 7190 arc_change_state(arc_anon, exists, hash_lock);
428870ff 7191 arc_hdr_destroy(exists);
ca6c7a94 7192 mutex_exit(hash_lock);
428870ff
BB
7193 exists = buf_hash_insert(hdr, &hash_lock);
7194 ASSERT3P(exists, ==, NULL);
03c6040b
GW
7195 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7196 /* nopwrite */
7197 ASSERT(zio->io_prop.zp_nopwrite);
7198 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7199 panic("bad nopwrite, hdr=%p exists=%p",
7200 (void *)hdr, (void *)exists);
428870ff
BB
7201 } else {
7202 /* Dedup */
d3c2ae1c 7203 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
b9541d6b 7204 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
7205 ASSERT(BP_GET_DEDUP(zio->io_bp));
7206 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
7207 }
34dc7c2f 7208 }
d3c2ae1c 7209 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
b128c09f 7210 /* if it's not anon, we are doing a scrub */
b9541d6b 7211 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 7212 arc_access(hdr, hash_lock);
34dc7c2f 7213 mutex_exit(hash_lock);
34dc7c2f 7214 } else {
d3c2ae1c 7215 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f
BB
7216 }
7217
424fd7c3 7218 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 7219 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f 7220
a6255b7f 7221 abd_put(zio->io_abd);
34dc7c2f
BB
7222 kmem_free(callback, sizeof (arc_write_callback_t));
7223}
7224
7225zio_t *
428870ff 7226arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
d3c2ae1c 7227 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
b5256303
TC
7228 const zio_prop_t *zp, arc_write_done_func_t *ready,
7229 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7230 arc_write_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 7231 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
7232{
7233 arc_buf_hdr_t *hdr = buf->b_hdr;
7234 arc_write_callback_t *callback;
b128c09f 7235 zio_t *zio;
82644107 7236 zio_prop_t localprop = *zp;
34dc7c2f 7237
d3c2ae1c
GW
7238 ASSERT3P(ready, !=, NULL);
7239 ASSERT3P(done, !=, NULL);
34dc7c2f 7240 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b 7241 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c
GW
7242 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7243 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
b128c09f 7244 if (l2arc)
d3c2ae1c 7245 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
82644107 7246
b5256303
TC
7247 if (ARC_BUF_ENCRYPTED(buf)) {
7248 ASSERT(ARC_BUF_COMPRESSED(buf));
7249 localprop.zp_encrypt = B_TRUE;
7250 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7251 localprop.zp_byteorder =
7252 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7253 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7254 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7255 ZIO_DATA_SALT_LEN);
7256 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7257 ZIO_DATA_IV_LEN);
7258 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7259 ZIO_DATA_MAC_LEN);
7260 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7261 localprop.zp_nopwrite = B_FALSE;
7262 localprop.zp_copies =
7263 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7264 }
2aa34383 7265 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
7266 } else if (ARC_BUF_COMPRESSED(buf)) {
7267 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7268 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7269 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2aa34383 7270 }
79c76d5b 7271 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 7272 callback->awcb_ready = ready;
bc77ba73 7273 callback->awcb_children_ready = children_ready;
e8b96c60 7274 callback->awcb_physdone = physdone;
34dc7c2f
BB
7275 callback->awcb_done = done;
7276 callback->awcb_private = private;
7277 callback->awcb_buf = buf;
b128c09f 7278
d3c2ae1c 7279 /*
a6255b7f 7280 * The hdr's b_pabd is now stale, free it now. A new data block
d3c2ae1c
GW
7281 * will be allocated when the zio pipeline calls arc_write_ready().
7282 */
a6255b7f 7283 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
7284 /*
7285 * If the buf is currently sharing the data block with
7286 * the hdr then we need to break that relationship here.
7287 * The hdr will remain with a NULL data pointer and the
7288 * buf will take sole ownership of the block.
7289 */
7290 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
7291 arc_unshare_buf(hdr, buf);
7292 } else {
b5256303 7293 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c
GW
7294 }
7295 VERIFY3P(buf->b_data, !=, NULL);
d3c2ae1c 7296 }
b5256303
TC
7297
7298 if (HDR_HAS_RABD(hdr))
7299 arc_hdr_free_abd(hdr, B_TRUE);
7300
71a24c3c
TC
7301 if (!(zio_flags & ZIO_FLAG_RAW))
7302 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
b5256303 7303
d3c2ae1c 7304 ASSERT(!arc_buf_is_shared(buf));
a6255b7f 7305 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 7306
a6255b7f
DQ
7307 zio = zio_write(pio, spa, txg, bp,
7308 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
82644107 7309 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
bc77ba73
PD
7310 (children_ready != NULL) ? arc_write_children_ready : NULL,
7311 arc_write_physdone, arc_write_done, callback,
e8b96c60 7312 priority, zio_flags, zb);
34dc7c2f
BB
7313
7314 return (zio);
7315}
7316
34dc7c2f 7317static int
dae3e9ea 7318arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
34dc7c2f
BB
7319{
7320#ifdef _KERNEL
70f02287 7321 uint64_t available_memory = arc_free_memory();
0c5493d4 7322
70f02287 7323#if defined(_ILP32)
9edb3695
BB
7324 available_memory =
7325 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
7326#endif
7327
7328 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
ca67b33a
MA
7329 return (0);
7330
dae3e9ea
DB
7331 if (txg > spa->spa_lowmem_last_txg) {
7332 spa->spa_lowmem_last_txg = txg;
7333 spa->spa_lowmem_page_load = 0;
7e8bddd0 7334 }
7e8bddd0
BB
7335 /*
7336 * If we are in pageout, we know that memory is already tight,
7337 * the arc is already going to be evicting, so we just want to
7338 * continue to let page writes occur as quickly as possible.
7339 */
7340 if (current_is_kswapd()) {
dae3e9ea
DB
7341 if (spa->spa_lowmem_page_load >
7342 MAX(arc_sys_free / 4, available_memory) / 4) {
7e8bddd0
BB
7343 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
7344 return (SET_ERROR(ERESTART));
7345 }
7346 /* Note: reserve is inflated, so we deflate */
dae3e9ea 7347 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
7e8bddd0 7348 return (0);
dae3e9ea 7349 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
ca67b33a 7350 /* memory is low, delay before restarting */
34dc7c2f 7351 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 7352 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 7353 return (SET_ERROR(EAGAIN));
34dc7c2f 7354 }
dae3e9ea
DB
7355 spa->spa_lowmem_page_load = 0;
7356#endif /* _KERNEL */
34dc7c2f
BB
7357 return (0);
7358}
7359
7360void
7361arc_tempreserve_clear(uint64_t reserve)
7362{
7363 atomic_add_64(&arc_tempreserve, -reserve);
7364 ASSERT((int64_t)arc_tempreserve >= 0);
7365}
7366
7367int
dae3e9ea 7368arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
34dc7c2f
BB
7369{
7370 int error;
9babb374 7371 uint64_t anon_size;
34dc7c2f 7372
1b8951b3
TC
7373 if (!arc_no_grow &&
7374 reserve > arc_c/4 &&
7375 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 7376 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
7377
7378 /*
7379 * Throttle when the calculated memory footprint for the TXG
7380 * exceeds the target ARC size.
7381 */
570827e1
BB
7382 if (reserve > arc_c) {
7383 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 7384 return (SET_ERROR(ERESTART));
570827e1 7385 }
34dc7c2f 7386
9babb374
BB
7387 /*
7388 * Don't count loaned bufs as in flight dirty data to prevent long
7389 * network delays from blocking transactions that are ready to be
7390 * assigned to a txg.
7391 */
a7004725
DK
7392
7393 /* assert that it has not wrapped around */
7394 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7395
424fd7c3 7396 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
36da08ef 7397 arc_loaned_bytes), 0);
9babb374 7398
34dc7c2f
BB
7399 /*
7400 * Writes will, almost always, require additional memory allocations
d3cc8b15 7401 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
7402 * make sure that there is sufficient available memory for this.
7403 */
dae3e9ea 7404 error = arc_memory_throttle(spa, reserve, txg);
e8b96c60 7405 if (error != 0)
34dc7c2f
BB
7406 return (error);
7407
7408 /*
7409 * Throttle writes when the amount of dirty data in the cache
7410 * gets too large. We try to keep the cache less than half full
7411 * of dirty blocks so that our sync times don't grow too large.
dae3e9ea
DB
7412 *
7413 * In the case of one pool being built on another pool, we want
7414 * to make sure we don't end up throttling the lower (backing)
7415 * pool when the upper pool is the majority contributor to dirty
7416 * data. To insure we make forward progress during throttling, we
7417 * also check the current pool's net dirty data and only throttle
7418 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7419 * data in the cache.
7420 *
34dc7c2f
BB
7421 * Note: if two requests come in concurrently, we might let them
7422 * both succeed, when one of them should fail. Not a huge deal.
7423 */
dae3e9ea
DB
7424 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7425 uint64_t spa_dirty_anon = spa_dirty_data(spa);
9babb374 7426
dae3e9ea
DB
7427 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
7428 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
7429 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
2fd92c3d 7430#ifdef ZFS_DEBUG
424fd7c3
TS
7431 uint64_t meta_esize = zfs_refcount_count(
7432 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
d3c2ae1c 7433 uint64_t data_esize =
424fd7c3 7434 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
34dc7c2f
BB
7435 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7436 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
d3c2ae1c
GW
7437 arc_tempreserve >> 10, meta_esize >> 10,
7438 data_esize >> 10, reserve >> 10, arc_c >> 10);
2fd92c3d 7439#endif
570827e1 7440 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 7441 return (SET_ERROR(ERESTART));
34dc7c2f
BB
7442 }
7443 atomic_add_64(&arc_tempreserve, reserve);
7444 return (0);
7445}
7446
13be560d
BB
7447static void
7448arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7449 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7450{
424fd7c3 7451 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
d3c2ae1c 7452 evict_data->value.ui64 =
424fd7c3 7453 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
d3c2ae1c 7454 evict_metadata->value.ui64 =
424fd7c3 7455 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
13be560d
BB
7456}
7457
7458static int
7459arc_kstat_update(kstat_t *ksp, int rw)
7460{
7461 arc_stats_t *as = ksp->ks_data;
7462
7463 if (rw == KSTAT_WRITE) {
ecb2b7dc 7464 return (SET_ERROR(EACCES));
13be560d
BB
7465 } else {
7466 arc_kstat_update_state(arc_anon,
7467 &as->arcstat_anon_size,
500445c0
PS
7468 &as->arcstat_anon_evictable_data,
7469 &as->arcstat_anon_evictable_metadata);
13be560d
BB
7470 arc_kstat_update_state(arc_mru,
7471 &as->arcstat_mru_size,
500445c0
PS
7472 &as->arcstat_mru_evictable_data,
7473 &as->arcstat_mru_evictable_metadata);
13be560d
BB
7474 arc_kstat_update_state(arc_mru_ghost,
7475 &as->arcstat_mru_ghost_size,
500445c0
PS
7476 &as->arcstat_mru_ghost_evictable_data,
7477 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
7478 arc_kstat_update_state(arc_mfu,
7479 &as->arcstat_mfu_size,
500445c0
PS
7480 &as->arcstat_mfu_evictable_data,
7481 &as->arcstat_mfu_evictable_metadata);
fc41c640 7482 arc_kstat_update_state(arc_mfu_ghost,
13be560d 7483 &as->arcstat_mfu_ghost_size,
500445c0
PS
7484 &as->arcstat_mfu_ghost_evictable_data,
7485 &as->arcstat_mfu_ghost_evictable_metadata);
70f02287 7486
37fb3e43
PD
7487 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
7488 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
7489 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
7490 ARCSTAT(arcstat_metadata_size) =
7491 aggsum_value(&astat_metadata_size);
7492 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
7493 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
7494 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size);
7495 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size);
7496 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size);
7497
70f02287
BB
7498 as->arcstat_memory_all_bytes.value.ui64 =
7499 arc_all_memory();
7500 as->arcstat_memory_free_bytes.value.ui64 =
7501 arc_free_memory();
7502 as->arcstat_memory_available_bytes.value.i64 =
7503 arc_available_memory();
13be560d
BB
7504 }
7505
7506 return (0);
7507}
7508
ca0bf58d
PS
7509/*
7510 * This function *must* return indices evenly distributed between all
7511 * sublists of the multilist. This is needed due to how the ARC eviction
7512 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7513 * distributed between all sublists and uses this assumption when
7514 * deciding which sublist to evict from and how much to evict from it.
7515 */
7516unsigned int
7517arc_state_multilist_index_func(multilist_t *ml, void *obj)
7518{
7519 arc_buf_hdr_t *hdr = obj;
7520
7521 /*
7522 * We rely on b_dva to generate evenly distributed index
7523 * numbers using buf_hash below. So, as an added precaution,
7524 * let's make sure we never add empty buffers to the arc lists.
7525 */
d3c2ae1c 7526 ASSERT(!HDR_EMPTY(hdr));
ca0bf58d
PS
7527
7528 /*
7529 * The assumption here, is the hash value for a given
7530 * arc_buf_hdr_t will remain constant throughout its lifetime
7531 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7532 * Thus, we don't need to store the header's sublist index
7533 * on insertion, as this index can be recalculated on removal.
7534 *
7535 * Also, the low order bits of the hash value are thought to be
7536 * distributed evenly. Otherwise, in the case that the multilist
7537 * has a power of two number of sublists, each sublists' usage
7538 * would not be evenly distributed.
7539 */
7540 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7541 multilist_get_num_sublists(ml));
7542}
7543
ca67b33a
MA
7544/*
7545 * Called during module initialization and periodically thereafter to
7546 * apply reasonable changes to the exposed performance tunings. Non-zero
7547 * zfs_* values which differ from the currently set values will be applied.
7548 */
7549static void
7550arc_tuning_update(void)
7551{
b8a97fb1 7552 uint64_t allmem = arc_all_memory();
7553 unsigned long limit;
9edb3695 7554
ca67b33a
MA
7555 /* Valid range: 64M - <all physical memory> */
7556 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7403d074 7557 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) &&
ca67b33a
MA
7558 (zfs_arc_max > arc_c_min)) {
7559 arc_c_max = zfs_arc_max;
7560 arc_c = arc_c_max;
7561 arc_p = (arc_c >> 1);
b8a97fb1 7562 if (arc_meta_limit > arc_c_max)
7563 arc_meta_limit = arc_c_max;
7564 if (arc_dnode_limit > arc_meta_limit)
7565 arc_dnode_limit = arc_meta_limit;
ca67b33a
MA
7566 }
7567
7568 /* Valid range: 32M - <arc_c_max> */
7569 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7570 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7571 (zfs_arc_min <= arc_c_max)) {
7572 arc_c_min = zfs_arc_min;
7573 arc_c = MAX(arc_c, arc_c_min);
7574 }
7575
7576 /* Valid range: 16M - <arc_c_max> */
7577 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7578 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7579 (zfs_arc_meta_min <= arc_c_max)) {
7580 arc_meta_min = zfs_arc_meta_min;
b8a97fb1 7581 if (arc_meta_limit < arc_meta_min)
7582 arc_meta_limit = arc_meta_min;
7583 if (arc_dnode_limit < arc_meta_min)
7584 arc_dnode_limit = arc_meta_min;
ca67b33a
MA
7585 }
7586
7587 /* Valid range: <arc_meta_min> - <arc_c_max> */
b8a97fb1 7588 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7589 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7590 if ((limit != arc_meta_limit) &&
7591 (limit >= arc_meta_min) &&
7592 (limit <= arc_c_max))
7593 arc_meta_limit = limit;
7594
7595 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7596 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7597 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7598 if ((limit != arc_dnode_limit) &&
7599 (limit >= arc_meta_min) &&
7600 (limit <= arc_meta_limit))
7601 arc_dnode_limit = limit;
25458cbe 7602
ca67b33a
MA
7603 /* Valid range: 1 - N */
7604 if (zfs_arc_grow_retry)
7605 arc_grow_retry = zfs_arc_grow_retry;
7606
7607 /* Valid range: 1 - N */
7608 if (zfs_arc_shrink_shift) {
7609 arc_shrink_shift = zfs_arc_shrink_shift;
7610 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7611 }
7612
728d6ae9
BB
7613 /* Valid range: 1 - N */
7614 if (zfs_arc_p_min_shift)
7615 arc_p_min_shift = zfs_arc_p_min_shift;
7616
d4a72f23
TC
7617 /* Valid range: 1 - N ms */
7618 if (zfs_arc_min_prefetch_ms)
7619 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7620
7621 /* Valid range: 1 - N ms */
7622 if (zfs_arc_min_prescient_prefetch_ms) {
7623 arc_min_prescient_prefetch_ms =
7624 zfs_arc_min_prescient_prefetch_ms;
7625 }
11f552fa 7626
7e8bddd0
BB
7627 /* Valid range: 0 - 100 */
7628 if ((zfs_arc_lotsfree_percent >= 0) &&
7629 (zfs_arc_lotsfree_percent <= 100))
7630 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7631
11f552fa
BB
7632 /* Valid range: 0 - <all physical memory> */
7633 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
9edb3695 7634 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7e8bddd0 7635
ca67b33a
MA
7636}
7637
d3c2ae1c
GW
7638static void
7639arc_state_init(void)
7640{
7641 arc_anon = &ARC_anon;
7642 arc_mru = &ARC_mru;
7643 arc_mru_ghost = &ARC_mru_ghost;
7644 arc_mfu = &ARC_mfu;
7645 arc_mfu_ghost = &ARC_mfu_ghost;
7646 arc_l2c_only = &ARC_l2c_only;
7647
64fc7762
MA
7648 arc_mru->arcs_list[ARC_BUFC_METADATA] =
7649 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7650 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7651 arc_state_multilist_index_func);
64fc7762
MA
7652 arc_mru->arcs_list[ARC_BUFC_DATA] =
7653 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7654 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7655 arc_state_multilist_index_func);
64fc7762
MA
7656 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7657 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7658 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7659 arc_state_multilist_index_func);
64fc7762
MA
7660 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7661 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7662 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7663 arc_state_multilist_index_func);
64fc7762
MA
7664 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7665 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7666 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7667 arc_state_multilist_index_func);
64fc7762
MA
7668 arc_mfu->arcs_list[ARC_BUFC_DATA] =
7669 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7670 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7671 arc_state_multilist_index_func);
64fc7762
MA
7672 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7673 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7674 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7675 arc_state_multilist_index_func);
64fc7762
MA
7676 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7677 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7678 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7679 arc_state_multilist_index_func);
64fc7762
MA
7680 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7681 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7682 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7683 arc_state_multilist_index_func);
64fc7762
MA
7684 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7685 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7686 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7687 arc_state_multilist_index_func);
d3c2ae1c 7688
424fd7c3
TS
7689 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7690 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7691 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7692 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7693 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7694 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7695 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7696 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7697 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7698 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7699 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7700 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7701
7702 zfs_refcount_create(&arc_anon->arcs_size);
7703 zfs_refcount_create(&arc_mru->arcs_size);
7704 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7705 zfs_refcount_create(&arc_mfu->arcs_size);
7706 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7707 zfs_refcount_create(&arc_l2c_only->arcs_size);
d3c2ae1c 7708
37fb3e43
PD
7709 aggsum_init(&arc_meta_used, 0);
7710 aggsum_init(&arc_size, 0);
7711 aggsum_init(&astat_data_size, 0);
7712 aggsum_init(&astat_metadata_size, 0);
7713 aggsum_init(&astat_hdr_size, 0);
7714 aggsum_init(&astat_l2_hdr_size, 0);
7715 aggsum_init(&astat_bonus_size, 0);
7716 aggsum_init(&astat_dnode_size, 0);
7717 aggsum_init(&astat_dbuf_size, 0);
7718
d3c2ae1c
GW
7719 arc_anon->arcs_state = ARC_STATE_ANON;
7720 arc_mru->arcs_state = ARC_STATE_MRU;
7721 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7722 arc_mfu->arcs_state = ARC_STATE_MFU;
7723 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7724 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7725}
7726
7727static void
7728arc_state_fini(void)
7729{
424fd7c3
TS
7730 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7731 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7732 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7733 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7734 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7735 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7736 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7737 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7738 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7739 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7740 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7741 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7742
7743 zfs_refcount_destroy(&arc_anon->arcs_size);
7744 zfs_refcount_destroy(&arc_mru->arcs_size);
7745 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7746 zfs_refcount_destroy(&arc_mfu->arcs_size);
7747 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7748 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
d3c2ae1c 7749
64fc7762
MA
7750 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7751 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7752 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7753 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7754 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7755 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7756 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7757 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7758 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7759 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
37fb3e43
PD
7760
7761 aggsum_fini(&arc_meta_used);
7762 aggsum_fini(&arc_size);
7763 aggsum_fini(&astat_data_size);
7764 aggsum_fini(&astat_metadata_size);
7765 aggsum_fini(&astat_hdr_size);
7766 aggsum_fini(&astat_l2_hdr_size);
7767 aggsum_fini(&astat_bonus_size);
7768 aggsum_fini(&astat_dnode_size);
7769 aggsum_fini(&astat_dbuf_size);
d3c2ae1c
GW
7770}
7771
7772uint64_t
e71cade6 7773arc_target_bytes(void)
d3c2ae1c 7774{
e71cade6 7775 return (arc_c);
d3c2ae1c
GW
7776}
7777
34dc7c2f
BB
7778void
7779arc_init(void)
7780{
9edb3695 7781 uint64_t percent, allmem = arc_all_memory();
3ec34e55
BL
7782 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7783 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
ca0bf58d 7784
2b84817f
TC
7785 arc_min_prefetch_ms = 1000;
7786 arc_min_prescient_prefetch_ms = 6000;
34dc7c2f 7787
34dc7c2f 7788#ifdef _KERNEL
7cb67b45
BB
7789 /*
7790 * Register a shrinker to support synchronous (direct) memory
7791 * reclaim from the arc. This is done to prevent kswapd from
7792 * swapping out pages when it is preferable to shrink the arc.
7793 */
7794 spl_register_shrinker(&arc_shrinker);
11f552fa
BB
7795
7796 /* Set to 1/64 of all memory or a minimum of 512K */
9edb3695 7797 arc_sys_free = MAX(allmem / 64, (512 * 1024));
11f552fa 7798 arc_need_free = 0;
34dc7c2f
BB
7799#endif
7800
0a1f8cd9
TC
7801 /* Set max to 1/2 of all memory */
7802 arc_c_max = allmem / 2;
7803
4ce3c45a
BB
7804#ifdef _KERNEL
7805 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7806 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7807#else
ab5cbbd1
BB
7808 /*
7809 * In userland, there's only the memory pressure that we artificially
7810 * create (see arc_available_memory()). Don't let arc_c get too
7811 * small, because it can cause transactions to be larger than
7812 * arc_c, causing arc_tempreserve_space() to fail.
7813 */
0a1f8cd9 7814 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1
BB
7815#endif
7816
34dc7c2f
BB
7817 arc_c = arc_c_max;
7818 arc_p = (arc_c >> 1);
7819
ca67b33a
MA
7820 /* Set min to 1/2 of arc_c_min */
7821 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7822 /* Initialize maximum observed usage to zero */
1834f2d8 7823 arc_meta_max = 0;
9907cc1c
G
7824 /*
7825 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7826 * arc_meta_min, and a ceiling of arc_c_max.
7827 */
7828 percent = MIN(zfs_arc_meta_limit_percent, 100);
7829 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7830 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7831 arc_dnode_limit = (percent * arc_meta_limit) / 100;
34dc7c2f 7832
ca67b33a
MA
7833 /* Apply user specified tunings */
7834 arc_tuning_update();
c52fca13 7835
34dc7c2f
BB
7836 /* if kmem_flags are set, lets try to use less memory */
7837 if (kmem_debugging())
7838 arc_c = arc_c / 2;
7839 if (arc_c < arc_c_min)
7840 arc_c = arc_c_min;
7841
d3c2ae1c 7842 arc_state_init();
3ec34e55
BL
7843
7844 /*
7845 * The arc must be "uninitialized", so that hdr_recl() (which is
7846 * registered by buf_init()) will not access arc_reap_zthr before
7847 * it is created.
7848 */
7849 ASSERT(!arc_initialized);
34dc7c2f
BB
7850 buf_init();
7851
ab26409d
BB
7852 list_create(&arc_prune_list, sizeof (arc_prune_t),
7853 offsetof(arc_prune_t, p_node));
ab26409d 7854 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 7855
1229323d 7856 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
aa9af22c 7857 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 7858
34dc7c2f
BB
7859 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7860 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7861
7862 if (arc_ksp != NULL) {
7863 arc_ksp->ks_data = &arc_stats;
13be560d 7864 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
7865 kstat_install(arc_ksp);
7866 }
7867
3ec34e55
BL
7868 arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7869 arc_adjust_cb, NULL);
7870 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7871 arc_reap_cb, NULL, SEC2NSEC(1));
34dc7c2f 7872
3ec34e55 7873 arc_initialized = B_TRUE;
b128c09f 7874 arc_warm = B_FALSE;
34dc7c2f 7875
e8b96c60
MA
7876 /*
7877 * Calculate maximum amount of dirty data per pool.
7878 *
7879 * If it has been set by a module parameter, take that.
7880 * Otherwise, use a percentage of physical memory defined by
7881 * zfs_dirty_data_max_percent (default 10%) with a cap at
e99932f7 7882 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
e8b96c60
MA
7883 */
7884 if (zfs_dirty_data_max_max == 0)
e99932f7
BB
7885 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7886 allmem * zfs_dirty_data_max_max_percent / 100);
e8b96c60
MA
7887
7888 if (zfs_dirty_data_max == 0) {
9edb3695 7889 zfs_dirty_data_max = allmem *
e8b96c60
MA
7890 zfs_dirty_data_max_percent / 100;
7891 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7892 zfs_dirty_data_max_max);
7893 }
34dc7c2f
BB
7894}
7895
7896void
7897arc_fini(void)
7898{
ab26409d
BB
7899 arc_prune_t *p;
7900
7cb67b45
BB
7901#ifdef _KERNEL
7902 spl_unregister_shrinker(&arc_shrinker);
7903#endif /* _KERNEL */
7904
d3c2ae1c
GW
7905 /* Use B_TRUE to ensure *all* buffers are evicted */
7906 arc_flush(NULL, B_TRUE);
34dc7c2f 7907
3ec34e55 7908 arc_initialized = B_FALSE;
34dc7c2f
BB
7909
7910 if (arc_ksp != NULL) {
7911 kstat_delete(arc_ksp);
7912 arc_ksp = NULL;
7913 }
7914
f6046738
BB
7915 taskq_wait(arc_prune_taskq);
7916 taskq_destroy(arc_prune_taskq);
7917
ab26409d
BB
7918 mutex_enter(&arc_prune_mtx);
7919 while ((p = list_head(&arc_prune_list)) != NULL) {
7920 list_remove(&arc_prune_list, p);
424fd7c3
TS
7921 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7922 zfs_refcount_destroy(&p->p_refcnt);
ab26409d
BB
7923 kmem_free(p, sizeof (*p));
7924 }
7925 mutex_exit(&arc_prune_mtx);
7926
7927 list_destroy(&arc_prune_list);
7928 mutex_destroy(&arc_prune_mtx);
3ec34e55
BL
7929 (void) zthr_cancel(arc_adjust_zthr);
7930 zthr_destroy(arc_adjust_zthr);
7931
7932 (void) zthr_cancel(arc_reap_zthr);
7933 zthr_destroy(arc_reap_zthr);
7934
7935 mutex_destroy(&arc_adjust_lock);
7936 cv_destroy(&arc_adjust_waiters_cv);
ca0bf58d 7937
ae3d8491
PD
7938 /*
7939 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7940 * trigger the release of kmem magazines, which can callback to
7941 * arc_space_return() which accesses aggsums freed in act_state_fini().
7942 */
34dc7c2f 7943 buf_fini();
ae3d8491 7944 arc_state_fini();
9babb374 7945
b9541d6b 7946 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
7947}
7948
7949/*
7950 * Level 2 ARC
7951 *
7952 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7953 * It uses dedicated storage devices to hold cached data, which are populated
7954 * using large infrequent writes. The main role of this cache is to boost
7955 * the performance of random read workloads. The intended L2ARC devices
7956 * include short-stroked disks, solid state disks, and other media with
7957 * substantially faster read latency than disk.
7958 *
7959 * +-----------------------+
7960 * | ARC |
7961 * +-----------------------+
7962 * | ^ ^
7963 * | | |
7964 * l2arc_feed_thread() arc_read()
7965 * | | |
7966 * | l2arc read |
7967 * V | |
7968 * +---------------+ |
7969 * | L2ARC | |
7970 * +---------------+ |
7971 * | ^ |
7972 * l2arc_write() | |
7973 * | | |
7974 * V | |
7975 * +-------+ +-------+
7976 * | vdev | | vdev |
7977 * | cache | | cache |
7978 * +-------+ +-------+
7979 * +=========+ .-----.
7980 * : L2ARC : |-_____-|
7981 * : devices : | Disks |
7982 * +=========+ `-_____-'
7983 *
7984 * Read requests are satisfied from the following sources, in order:
7985 *
7986 * 1) ARC
7987 * 2) vdev cache of L2ARC devices
7988 * 3) L2ARC devices
7989 * 4) vdev cache of disks
7990 * 5) disks
7991 *
7992 * Some L2ARC device types exhibit extremely slow write performance.
7993 * To accommodate for this there are some significant differences between
7994 * the L2ARC and traditional cache design:
7995 *
7996 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7997 * the ARC behave as usual, freeing buffers and placing headers on ghost
7998 * lists. The ARC does not send buffers to the L2ARC during eviction as
7999 * this would add inflated write latencies for all ARC memory pressure.
8000 *
8001 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8002 * It does this by periodically scanning buffers from the eviction-end of
8003 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
8004 * not already there. It scans until a headroom of buffers is satisfied,
8005 * which itself is a buffer for ARC eviction. If a compressible buffer is
8006 * found during scanning and selected for writing to an L2ARC device, we
8007 * temporarily boost scanning headroom during the next scan cycle to make
8008 * sure we adapt to compression effects (which might significantly reduce
8009 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
8010 * l2arc_feed_thread(), illustrated below; example sizes are included to
8011 * provide a better sense of ratio than this diagram:
8012 *
8013 * head --> tail
8014 * +---------------------+----------+
8015 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8016 * +---------------------+----------+ | o L2ARC eligible
8017 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8018 * +---------------------+----------+ |
8019 * 15.9 Gbytes ^ 32 Mbytes |
8020 * headroom |
8021 * l2arc_feed_thread()
8022 * |
8023 * l2arc write hand <--[oooo]--'
8024 * | 8 Mbyte
8025 * | write max
8026 * V
8027 * +==============================+
8028 * L2ARC dev |####|#|###|###| |####| ... |
8029 * +==============================+
8030 * 32 Gbytes
8031 *
8032 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8033 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8034 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8035 * safe to say that this is an uncommon case, since buffers at the end of
8036 * the ARC lists have moved there due to inactivity.
8037 *
8038 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8039 * then the L2ARC simply misses copying some buffers. This serves as a
8040 * pressure valve to prevent heavy read workloads from both stalling the ARC
8041 * with waits and clogging the L2ARC with writes. This also helps prevent
8042 * the potential for the L2ARC to churn if it attempts to cache content too
8043 * quickly, such as during backups of the entire pool.
8044 *
b128c09f
BB
8045 * 5. After system boot and before the ARC has filled main memory, there are
8046 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8047 * lists can remain mostly static. Instead of searching from tail of these
8048 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8049 * for eligible buffers, greatly increasing its chance of finding them.
8050 *
8051 * The L2ARC device write speed is also boosted during this time so that
8052 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8053 * there are no L2ARC reads, and no fear of degrading read performance
8054 * through increased writes.
8055 *
8056 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
8057 * the vdev queue can aggregate them into larger and fewer writes. Each
8058 * device is written to in a rotor fashion, sweeping writes through
8059 * available space then repeating.
8060 *
b128c09f 8061 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
8062 * write buffers back to disk based storage.
8063 *
b128c09f 8064 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
8065 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8066 *
8067 * The performance of the L2ARC can be tweaked by a number of tunables, which
8068 * may be necessary for different workloads:
8069 *
8070 * l2arc_write_max max write bytes per interval
b128c09f 8071 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
8072 * l2arc_noprefetch skip caching prefetched buffers
8073 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
8074 * l2arc_headroom_boost when we find compressed buffers during ARC
8075 * scanning, we multiply headroom by this
8076 * percentage factor for the next scan cycle,
8077 * since more compressed buffers are likely to
8078 * be present
34dc7c2f
BB
8079 * l2arc_feed_secs seconds between L2ARC writing
8080 *
8081 * Tunables may be removed or added as future performance improvements are
8082 * integrated, and also may become zpool properties.
d164b209
BB
8083 *
8084 * There are three key functions that control how the L2ARC warms up:
8085 *
8086 * l2arc_write_eligible() check if a buffer is eligible to cache
8087 * l2arc_write_size() calculate how much to write
8088 * l2arc_write_interval() calculate sleep delay between writes
8089 *
8090 * These three functions determine what to write, how much, and how quickly
8091 * to send writes.
34dc7c2f
BB
8092 */
8093
d164b209 8094static boolean_t
2a432414 8095l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
8096{
8097 /*
8098 * A buffer is *not* eligible for the L2ARC if it:
8099 * 1. belongs to a different spa.
428870ff
BB
8100 * 2. is already cached on the L2ARC.
8101 * 3. has an I/O in progress (it may be an incomplete read).
8102 * 4. is flagged not eligible (zfs property).
d164b209 8103 */
b9541d6b 8104 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 8105 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
8106 return (B_FALSE);
8107
8108 return (B_TRUE);
8109}
8110
8111static uint64_t
3a17a7a9 8112l2arc_write_size(void)
d164b209
BB
8113{
8114 uint64_t size;
8115
3a17a7a9
SK
8116 /*
8117 * Make sure our globals have meaningful values in case the user
8118 * altered them.
8119 */
8120 size = l2arc_write_max;
8121 if (size == 0) {
8122 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8123 "be greater than zero, resetting it to the default (%d)",
8124 L2ARC_WRITE_SIZE);
8125 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8126 }
d164b209
BB
8127
8128 if (arc_warm == B_FALSE)
3a17a7a9 8129 size += l2arc_write_boost;
d164b209
BB
8130
8131 return (size);
8132
8133}
8134
8135static clock_t
8136l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8137{
428870ff 8138 clock_t interval, next, now;
d164b209
BB
8139
8140 /*
8141 * If the ARC lists are busy, increase our write rate; if the
8142 * lists are stale, idle back. This is achieved by checking
8143 * how much we previously wrote - if it was more than half of
8144 * what we wanted, schedule the next write much sooner.
8145 */
8146 if (l2arc_feed_again && wrote > (wanted / 2))
8147 interval = (hz * l2arc_feed_min_ms) / 1000;
8148 else
8149 interval = hz * l2arc_feed_secs;
8150
428870ff
BB
8151 now = ddi_get_lbolt();
8152 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
8153
8154 return (next);
8155}
8156
34dc7c2f
BB
8157/*
8158 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 8159 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
8160 */
8161static l2arc_dev_t *
8162l2arc_dev_get_next(void)
8163{
b128c09f 8164 l2arc_dev_t *first, *next = NULL;
34dc7c2f 8165
b128c09f
BB
8166 /*
8167 * Lock out the removal of spas (spa_namespace_lock), then removal
8168 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8169 * both locks will be dropped and a spa config lock held instead.
8170 */
8171 mutex_enter(&spa_namespace_lock);
8172 mutex_enter(&l2arc_dev_mtx);
8173
8174 /* if there are no vdevs, there is nothing to do */
8175 if (l2arc_ndev == 0)
8176 goto out;
8177
8178 first = NULL;
8179 next = l2arc_dev_last;
8180 do {
8181 /* loop around the list looking for a non-faulted vdev */
8182 if (next == NULL) {
34dc7c2f 8183 next = list_head(l2arc_dev_list);
b128c09f
BB
8184 } else {
8185 next = list_next(l2arc_dev_list, next);
8186 if (next == NULL)
8187 next = list_head(l2arc_dev_list);
8188 }
8189
8190 /* if we have come back to the start, bail out */
8191 if (first == NULL)
8192 first = next;
8193 else if (next == first)
8194 break;
8195
8196 } while (vdev_is_dead(next->l2ad_vdev));
8197
8198 /* if we were unable to find any usable vdevs, return NULL */
8199 if (vdev_is_dead(next->l2ad_vdev))
8200 next = NULL;
34dc7c2f
BB
8201
8202 l2arc_dev_last = next;
8203
b128c09f
BB
8204out:
8205 mutex_exit(&l2arc_dev_mtx);
8206
8207 /*
8208 * Grab the config lock to prevent the 'next' device from being
8209 * removed while we are writing to it.
8210 */
8211 if (next != NULL)
8212 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8213 mutex_exit(&spa_namespace_lock);
8214
34dc7c2f
BB
8215 return (next);
8216}
8217
b128c09f
BB
8218/*
8219 * Free buffers that were tagged for destruction.
8220 */
8221static void
0bc8fd78 8222l2arc_do_free_on_write(void)
b128c09f
BB
8223{
8224 list_t *buflist;
8225 l2arc_data_free_t *df, *df_prev;
8226
8227 mutex_enter(&l2arc_free_on_write_mtx);
8228 buflist = l2arc_free_on_write;
8229
8230 for (df = list_tail(buflist); df; df = df_prev) {
8231 df_prev = list_prev(buflist, df);
a6255b7f
DQ
8232 ASSERT3P(df->l2df_abd, !=, NULL);
8233 abd_free(df->l2df_abd);
b128c09f
BB
8234 list_remove(buflist, df);
8235 kmem_free(df, sizeof (l2arc_data_free_t));
8236 }
8237
8238 mutex_exit(&l2arc_free_on_write_mtx);
8239}
8240
34dc7c2f
BB
8241/*
8242 * A write to a cache device has completed. Update all headers to allow
8243 * reads from these buffers to begin.
8244 */
8245static void
8246l2arc_write_done(zio_t *zio)
8247{
8248 l2arc_write_callback_t *cb;
8249 l2arc_dev_t *dev;
8250 list_t *buflist;
2a432414 8251 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 8252 kmutex_t *hash_lock;
3bec585e 8253 int64_t bytes_dropped = 0;
34dc7c2f
BB
8254
8255 cb = zio->io_private;
d3c2ae1c 8256 ASSERT3P(cb, !=, NULL);
34dc7c2f 8257 dev = cb->l2wcb_dev;
d3c2ae1c 8258 ASSERT3P(dev, !=, NULL);
34dc7c2f 8259 head = cb->l2wcb_head;
d3c2ae1c 8260 ASSERT3P(head, !=, NULL);
b9541d6b 8261 buflist = &dev->l2ad_buflist;
d3c2ae1c 8262 ASSERT3P(buflist, !=, NULL);
34dc7c2f
BB
8263 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8264 l2arc_write_callback_t *, cb);
8265
8266 if (zio->io_error != 0)
8267 ARCSTAT_BUMP(arcstat_l2_writes_error);
8268
34dc7c2f
BB
8269 /*
8270 * All writes completed, or an error was hit.
8271 */
ca0bf58d
PS
8272top:
8273 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8274 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8275 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8276
2a432414 8277 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8278
8279 /*
8280 * We cannot use mutex_enter or else we can deadlock
8281 * with l2arc_write_buffers (due to swapping the order
8282 * the hash lock and l2ad_mtx are taken).
8283 */
34dc7c2f
BB
8284 if (!mutex_tryenter(hash_lock)) {
8285 /*
ca0bf58d
PS
8286 * Missed the hash lock. We must retry so we
8287 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 8288 */
ca0bf58d
PS
8289 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8290
8291 /*
8292 * We don't want to rescan the headers we've
8293 * already marked as having been written out, so
8294 * we reinsert the head node so we can pick up
8295 * where we left off.
8296 */
8297 list_remove(buflist, head);
8298 list_insert_after(buflist, hdr, head);
8299
8300 mutex_exit(&dev->l2ad_mtx);
8301
8302 /*
8303 * We wait for the hash lock to become available
8304 * to try and prevent busy waiting, and increase
8305 * the chance we'll be able to acquire the lock
8306 * the next time around.
8307 */
8308 mutex_enter(hash_lock);
8309 mutex_exit(hash_lock);
8310 goto top;
34dc7c2f
BB
8311 }
8312
b9541d6b 8313 /*
ca0bf58d
PS
8314 * We could not have been moved into the arc_l2c_only
8315 * state while in-flight due to our ARC_FLAG_L2_WRITING
8316 * bit being set. Let's just ensure that's being enforced.
8317 */
8318 ASSERT(HDR_HAS_L1HDR(hdr));
8319
8a09d5fd
BB
8320 /*
8321 * Skipped - drop L2ARC entry and mark the header as no
8322 * longer L2 eligibile.
8323 */
d3c2ae1c 8324 if (zio->io_error != 0) {
34dc7c2f 8325 /*
b128c09f 8326 * Error - drop L2ARC entry.
34dc7c2f 8327 */
2a432414 8328 list_remove(buflist, hdr);
d3c2ae1c 8329 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
b9541d6b 8330
7558997d
SD
8331 uint64_t psize = HDR_GET_PSIZE(hdr);
8332 ARCSTAT_INCR(arcstat_l2_psize, -psize);
01850391 8333 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
d962d5da 8334
7558997d
SD
8335 bytes_dropped +=
8336 vdev_psize_to_asize(dev->l2ad_vdev, psize);
424fd7c3 8337 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
d3c2ae1c 8338 arc_hdr_size(hdr), hdr);
34dc7c2f
BB
8339 }
8340
8341 /*
ca0bf58d
PS
8342 * Allow ARC to begin reads and ghost list evictions to
8343 * this L2ARC entry.
34dc7c2f 8344 */
d3c2ae1c 8345 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
34dc7c2f
BB
8346
8347 mutex_exit(hash_lock);
8348 }
8349
8350 atomic_inc_64(&l2arc_writes_done);
8351 list_remove(buflist, head);
b9541d6b
CW
8352 ASSERT(!HDR_HAS_L1HDR(head));
8353 kmem_cache_free(hdr_l2only_cache, head);
8354 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 8355
3bec585e
SK
8356 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8357
b128c09f 8358 l2arc_do_free_on_write();
34dc7c2f
BB
8359
8360 kmem_free(cb, sizeof (l2arc_write_callback_t));
8361}
8362
b5256303
TC
8363static int
8364l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8365{
8366 int ret;
8367 spa_t *spa = zio->io_spa;
8368 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8369 blkptr_t *bp = zio->io_bp;
b5256303
TC
8370 uint8_t salt[ZIO_DATA_SALT_LEN];
8371 uint8_t iv[ZIO_DATA_IV_LEN];
8372 uint8_t mac[ZIO_DATA_MAC_LEN];
8373 boolean_t no_crypt = B_FALSE;
8374
8375 /*
8376 * ZIL data is never be written to the L2ARC, so we don't need
8377 * special handling for its unique MAC storage.
8378 */
8379 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8380 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
440a3eb9 8381 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 8382
440a3eb9
TC
8383 /*
8384 * If the data was encrypted, decrypt it now. Note that
8385 * we must check the bp here and not the hdr, since the
8386 * hdr does not have its encryption parameters updated
8387 * until arc_read_done().
8388 */
8389 if (BP_IS_ENCRYPTED(bp)) {
be9a5c35 8390 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
b5256303
TC
8391
8392 zio_crypt_decode_params_bp(bp, salt, iv);
8393 zio_crypt_decode_mac_bp(bp, mac);
8394
be9a5c35
TC
8395 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8396 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8397 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8398 hdr->b_l1hdr.b_pabd, &no_crypt);
b5256303
TC
8399 if (ret != 0) {
8400 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
b5256303
TC
8401 goto error;
8402 }
8403
b5256303
TC
8404 /*
8405 * If we actually performed decryption, replace b_pabd
8406 * with the decrypted data. Otherwise we can just throw
8407 * our decryption buffer away.
8408 */
8409 if (!no_crypt) {
8410 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8411 arc_hdr_size(hdr), hdr);
8412 hdr->b_l1hdr.b_pabd = eabd;
8413 zio->io_abd = eabd;
8414 } else {
8415 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8416 }
8417 }
8418
8419 /*
8420 * If the L2ARC block was compressed, but ARC compression
8421 * is disabled we decompress the data into a new buffer and
8422 * replace the existing data.
8423 */
8424 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8425 !HDR_COMPRESSION_ENABLED(hdr)) {
8426 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8427 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8428
8429 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8430 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8431 HDR_GET_LSIZE(hdr));
8432 if (ret != 0) {
8433 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8434 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8435 goto error;
8436 }
8437
8438 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8439 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8440 arc_hdr_size(hdr), hdr);
8441 hdr->b_l1hdr.b_pabd = cabd;
8442 zio->io_abd = cabd;
8443 zio->io_size = HDR_GET_LSIZE(hdr);
8444 }
8445
8446 return (0);
8447
8448error:
8449 return (ret);
8450}
8451
8452
34dc7c2f
BB
8453/*
8454 * A read to a cache device completed. Validate buffer contents before
8455 * handing over to the regular ARC routines.
8456 */
8457static void
8458l2arc_read_done(zio_t *zio)
8459{
b5256303 8460 int tfm_error = 0;
b405837a 8461 l2arc_read_callback_t *cb = zio->io_private;
34dc7c2f 8462 arc_buf_hdr_t *hdr;
34dc7c2f 8463 kmutex_t *hash_lock;
b405837a
TC
8464 boolean_t valid_cksum;
8465 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8466 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
b128c09f 8467
d3c2ae1c 8468 ASSERT3P(zio->io_vd, !=, NULL);
b128c09f
BB
8469 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8470
8471 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f 8472
d3c2ae1c
GW
8473 ASSERT3P(cb, !=, NULL);
8474 hdr = cb->l2rcb_hdr;
8475 ASSERT3P(hdr, !=, NULL);
34dc7c2f 8476
d3c2ae1c 8477 hash_lock = HDR_LOCK(hdr);
34dc7c2f 8478 mutex_enter(hash_lock);
428870ff 8479 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 8480
82710e99
GDN
8481 /*
8482 * If the data was read into a temporary buffer,
8483 * move it and free the buffer.
8484 */
8485 if (cb->l2rcb_abd != NULL) {
8486 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8487 if (zio->io_error == 0) {
b405837a
TC
8488 if (using_rdata) {
8489 abd_copy(hdr->b_crypt_hdr.b_rabd,
8490 cb->l2rcb_abd, arc_hdr_size(hdr));
8491 } else {
8492 abd_copy(hdr->b_l1hdr.b_pabd,
8493 cb->l2rcb_abd, arc_hdr_size(hdr));
8494 }
82710e99
GDN
8495 }
8496
8497 /*
8498 * The following must be done regardless of whether
8499 * there was an error:
8500 * - free the temporary buffer
8501 * - point zio to the real ARC buffer
8502 * - set zio size accordingly
8503 * These are required because zio is either re-used for
8504 * an I/O of the block in the case of the error
8505 * or the zio is passed to arc_read_done() and it
8506 * needs real data.
8507 */
8508 abd_free(cb->l2rcb_abd);
8509 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
440a3eb9 8510
b405837a 8511 if (using_rdata) {
440a3eb9
TC
8512 ASSERT(HDR_HAS_RABD(hdr));
8513 zio->io_abd = zio->io_orig_abd =
8514 hdr->b_crypt_hdr.b_rabd;
8515 } else {
8516 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8517 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8518 }
82710e99
GDN
8519 }
8520
a6255b7f 8521 ASSERT3P(zio->io_abd, !=, NULL);
3a17a7a9 8522
34dc7c2f
BB
8523 /*
8524 * Check this survived the L2ARC journey.
8525 */
b5256303
TC
8526 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8527 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
d3c2ae1c
GW
8528 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8529 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8530
8531 valid_cksum = arc_cksum_is_equal(hdr, zio);
b5256303
TC
8532
8533 /*
8534 * b_rabd will always match the data as it exists on disk if it is
8535 * being used. Therefore if we are reading into b_rabd we do not
8536 * attempt to untransform the data.
8537 */
8538 if (valid_cksum && !using_rdata)
8539 tfm_error = l2arc_untransform(zio, cb);
8540
8541 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8542 !HDR_L2_EVICTED(hdr)) {
34dc7c2f 8543 mutex_exit(hash_lock);
d3c2ae1c 8544 zio->io_private = hdr;
34dc7c2f
BB
8545 arc_read_done(zio);
8546 } else {
8547 mutex_exit(hash_lock);
8548 /*
8549 * Buffer didn't survive caching. Increment stats and
8550 * reissue to the original storage device.
8551 */
b128c09f 8552 if (zio->io_error != 0) {
34dc7c2f 8553 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 8554 } else {
2e528b49 8555 zio->io_error = SET_ERROR(EIO);
b128c09f 8556 }
b5256303 8557 if (!valid_cksum || tfm_error != 0)
34dc7c2f
BB
8558 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8559
34dc7c2f 8560 /*
b128c09f
BB
8561 * If there's no waiter, issue an async i/o to the primary
8562 * storage now. If there *is* a waiter, the caller must
8563 * issue the i/o in a context where it's OK to block.
34dc7c2f 8564 */
d164b209
BB
8565 if (zio->io_waiter == NULL) {
8566 zio_t *pio = zio_unique_parent(zio);
b5256303
TC
8567 void *abd = (using_rdata) ?
8568 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
d164b209
BB
8569
8570 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8571
d3c2ae1c 8572 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
b5256303 8573 abd, zio->io_size, arc_read_done,
d3c2ae1c
GW
8574 hdr, zio->io_priority, cb->l2rcb_flags,
8575 &cb->l2rcb_zb));
d164b209 8576 }
34dc7c2f
BB
8577 }
8578
8579 kmem_free(cb, sizeof (l2arc_read_callback_t));
8580}
8581
8582/*
8583 * This is the list priority from which the L2ARC will search for pages to
8584 * cache. This is used within loops (0..3) to cycle through lists in the
8585 * desired order. This order can have a significant effect on cache
8586 * performance.
8587 *
8588 * Currently the metadata lists are hit first, MFU then MRU, followed by
8589 * the data lists. This function returns a locked list, and also returns
8590 * the lock pointer.
8591 */
ca0bf58d
PS
8592static multilist_sublist_t *
8593l2arc_sublist_lock(int list_num)
34dc7c2f 8594{
ca0bf58d
PS
8595 multilist_t *ml = NULL;
8596 unsigned int idx;
34dc7c2f 8597
4aafab91 8598 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
34dc7c2f
BB
8599
8600 switch (list_num) {
8601 case 0:
64fc7762 8602 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8603 break;
8604 case 1:
64fc7762 8605 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8606 break;
8607 case 2:
64fc7762 8608 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
8609 break;
8610 case 3:
64fc7762 8611 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f 8612 break;
4aafab91
G
8613 default:
8614 return (NULL);
34dc7c2f
BB
8615 }
8616
ca0bf58d
PS
8617 /*
8618 * Return a randomly-selected sublist. This is acceptable
8619 * because the caller feeds only a little bit of data for each
8620 * call (8MB). Subsequent calls will result in different
8621 * sublists being selected.
8622 */
8623 idx = multilist_get_random_index(ml);
8624 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
8625}
8626
8627/*
8628 * Evict buffers from the device write hand to the distance specified in
8629 * bytes. This distance may span populated buffers, it may span nothing.
8630 * This is clearing a region on the L2ARC device ready for writing.
8631 * If the 'all' boolean is set, every buffer is evicted.
8632 */
8633static void
8634l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8635{
8636 list_t *buflist;
2a432414 8637 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
8638 kmutex_t *hash_lock;
8639 uint64_t taddr;
8640
b9541d6b 8641 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
8642
8643 if (!all && dev->l2ad_first) {
8644 /*
8645 * This is the first sweep through the device. There is
8646 * nothing to evict.
8647 */
8648 return;
8649 }
8650
b128c09f 8651 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
8652 /*
8653 * When nearing the end of the device, evict to the end
8654 * before the device write hand jumps to the start.
8655 */
8656 taddr = dev->l2ad_end;
8657 } else {
8658 taddr = dev->l2ad_hand + distance;
8659 }
8660 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8661 uint64_t, taddr, boolean_t, all);
8662
8663top:
b9541d6b 8664 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8665 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8666 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8667
ca6c7a94 8668 ASSERT(!HDR_EMPTY(hdr));
2a432414 8669 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8670
8671 /*
8672 * We cannot use mutex_enter or else we can deadlock
8673 * with l2arc_write_buffers (due to swapping the order
8674 * the hash lock and l2ad_mtx are taken).
8675 */
34dc7c2f
BB
8676 if (!mutex_tryenter(hash_lock)) {
8677 /*
8678 * Missed the hash lock. Retry.
8679 */
8680 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 8681 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
8682 mutex_enter(hash_lock);
8683 mutex_exit(hash_lock);
8684 goto top;
8685 }
8686
f06f53fa
AG
8687 /*
8688 * A header can't be on this list if it doesn't have L2 header.
8689 */
8690 ASSERT(HDR_HAS_L2HDR(hdr));
34dc7c2f 8691
f06f53fa
AG
8692 /* Ensure this header has finished being written. */
8693 ASSERT(!HDR_L2_WRITING(hdr));
8694 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8695
8696 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
b9541d6b 8697 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
8698 /*
8699 * We've evicted to the target address,
8700 * or the end of the device.
8701 */
8702 mutex_exit(hash_lock);
8703 break;
8704 }
8705
b9541d6b 8706 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 8707 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
8708 /*
8709 * This doesn't exist in the ARC. Destroy.
8710 * arc_hdr_destroy() will call list_remove()
01850391 8711 * and decrement arcstat_l2_lsize.
34dc7c2f 8712 */
2a432414
GW
8713 arc_change_state(arc_anon, hdr, hash_lock);
8714 arc_hdr_destroy(hdr);
34dc7c2f 8715 } else {
b9541d6b
CW
8716 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8717 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
8718 /*
8719 * Invalidate issued or about to be issued
8720 * reads, since we may be about to write
8721 * over this location.
8722 */
2a432414 8723 if (HDR_L2_READING(hdr)) {
b128c09f 8724 ARCSTAT_BUMP(arcstat_l2_evict_reading);
d3c2ae1c 8725 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
b128c09f
BB
8726 }
8727
d962d5da 8728 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
8729 }
8730 mutex_exit(hash_lock);
8731 }
b9541d6b 8732 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
8733}
8734
b5256303
TC
8735/*
8736 * Handle any abd transforms that might be required for writing to the L2ARC.
8737 * If successful, this function will always return an abd with the data
8738 * transformed as it is on disk in a new abd of asize bytes.
8739 */
8740static int
8741l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8742 abd_t **abd_out)
8743{
8744 int ret;
8745 void *tmp = NULL;
8746 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8747 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8748 uint64_t psize = HDR_GET_PSIZE(hdr);
8749 uint64_t size = arc_hdr_size(hdr);
8750 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8751 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8752 dsl_crypto_key_t *dck = NULL;
8753 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
4807c0ba 8754 boolean_t no_crypt = B_FALSE;
b5256303
TC
8755
8756 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8757 !HDR_COMPRESSION_ENABLED(hdr)) ||
8758 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8759 ASSERT3U(psize, <=, asize);
8760
8761 /*
8762 * If this data simply needs its own buffer, we simply allocate it
8763 * and copy the data. This may be done to elimiate a depedency on a
8764 * shared buffer or to reallocate the buffer to match asize.
8765 */
4807c0ba 8766 if (HDR_HAS_RABD(hdr) && asize != psize) {
10adee27 8767 ASSERT3U(asize, >=, psize);
4807c0ba 8768 to_write = abd_alloc_for_io(asize, ismd);
10adee27
TC
8769 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8770 if (psize != asize)
8771 abd_zero_off(to_write, psize, asize - psize);
4807c0ba
TC
8772 goto out;
8773 }
8774
b5256303
TC
8775 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8776 !HDR_ENCRYPTED(hdr)) {
8777 ASSERT3U(size, ==, psize);
8778 to_write = abd_alloc_for_io(asize, ismd);
8779 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8780 if (size != asize)
8781 abd_zero_off(to_write, size, asize - size);
8782 goto out;
8783 }
8784
8785 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8786 cabd = abd_alloc_for_io(asize, ismd);
8787 tmp = abd_borrow_buf(cabd, asize);
8788
8789 psize = zio_compress_data(compress, to_write, tmp, size);
8790 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8791 if (psize < asize)
8792 bzero((char *)tmp + psize, asize - psize);
8793 psize = HDR_GET_PSIZE(hdr);
8794 abd_return_buf_copy(cabd, tmp, asize);
8795 to_write = cabd;
8796 }
8797
8798 if (HDR_ENCRYPTED(hdr)) {
8799 eabd = abd_alloc_for_io(asize, ismd);
8800
8801 /*
8802 * If the dataset was disowned before the buffer
8803 * made it to this point, the key to re-encrypt
8804 * it won't be available. In this case we simply
8805 * won't write the buffer to the L2ARC.
8806 */
8807 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8808 FTAG, &dck);
8809 if (ret != 0)
8810 goto error;
8811
8812 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
be9a5c35
TC
8813 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8814 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8815 &no_crypt);
b5256303
TC
8816 if (ret != 0)
8817 goto error;
8818
4807c0ba
TC
8819 if (no_crypt)
8820 abd_copy(eabd, to_write, psize);
b5256303
TC
8821
8822 if (psize != asize)
8823 abd_zero_off(eabd, psize, asize - psize);
8824
8825 /* assert that the MAC we got here matches the one we saved */
8826 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8827 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8828
8829 if (to_write == cabd)
8830 abd_free(cabd);
8831
8832 to_write = eabd;
8833 }
8834
8835out:
8836 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8837 *abd_out = to_write;
8838 return (0);
8839
8840error:
8841 if (dck != NULL)
8842 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8843 if (cabd != NULL)
8844 abd_free(cabd);
8845 if (eabd != NULL)
8846 abd_free(eabd);
8847
8848 *abd_out = NULL;
8849 return (ret);
8850}
8851
34dc7c2f
BB
8852/*
8853 * Find and write ARC buffers to the L2ARC device.
8854 *
2a432414 8855 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 8856 * for reading until they have completed writing.
3a17a7a9
SK
8857 * The headroom_boost is an in-out parameter used to maintain headroom boost
8858 * state between calls to this function.
8859 *
8860 * Returns the number of bytes actually written (which may be smaller than
8861 * the delta by which the device hand has changed due to alignment).
34dc7c2f 8862 */
d164b209 8863static uint64_t
d3c2ae1c 8864l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f 8865{
2a432414 8866 arc_buf_hdr_t *hdr, *hdr_prev, *head;
01850391 8867 uint64_t write_asize, write_psize, write_lsize, headroom;
3a17a7a9 8868 boolean_t full;
34dc7c2f
BB
8869 l2arc_write_callback_t *cb;
8870 zio_t *pio, *wzio;
3541dc6d 8871 uint64_t guid = spa_load_guid(spa);
34dc7c2f 8872
d3c2ae1c 8873 ASSERT3P(dev->l2ad_vdev, !=, NULL);
3a17a7a9 8874
34dc7c2f 8875 pio = NULL;
01850391 8876 write_lsize = write_asize = write_psize = 0;
34dc7c2f 8877 full = B_FALSE;
b9541d6b 8878 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
d3c2ae1c 8879 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
3a17a7a9 8880
34dc7c2f
BB
8881 /*
8882 * Copy buffers for L2ARC writing.
8883 */
1c27024e 8884 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
ca0bf58d 8885 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
8886 uint64_t passed_sz = 0;
8887
4aafab91
G
8888 VERIFY3P(mls, !=, NULL);
8889
b128c09f
BB
8890 /*
8891 * L2ARC fast warmup.
8892 *
8893 * Until the ARC is warm and starts to evict, read from the
8894 * head of the ARC lists rather than the tail.
8895 */
b128c09f 8896 if (arc_warm == B_FALSE)
ca0bf58d 8897 hdr = multilist_sublist_head(mls);
b128c09f 8898 else
ca0bf58d 8899 hdr = multilist_sublist_tail(mls);
b128c09f 8900
3a17a7a9 8901 headroom = target_sz * l2arc_headroom;
d3c2ae1c 8902 if (zfs_compressed_arc_enabled)
3a17a7a9
SK
8903 headroom = (headroom * l2arc_headroom_boost) / 100;
8904
2a432414 8905 for (; hdr; hdr = hdr_prev) {
3a17a7a9 8906 kmutex_t *hash_lock;
b5256303 8907 abd_t *to_write = NULL;
3a17a7a9 8908
b128c09f 8909 if (arc_warm == B_FALSE)
ca0bf58d 8910 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 8911 else
ca0bf58d 8912 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 8913
2a432414 8914 hash_lock = HDR_LOCK(hdr);
3a17a7a9 8915 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
8916 /*
8917 * Skip this buffer rather than waiting.
8918 */
8919 continue;
8920 }
8921
d3c2ae1c 8922 passed_sz += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
8923 if (passed_sz > headroom) {
8924 /*
8925 * Searched too far.
8926 */
8927 mutex_exit(hash_lock);
8928 break;
8929 }
8930
2a432414 8931 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
8932 mutex_exit(hash_lock);
8933 continue;
8934 }
8935
01850391
AG
8936 /*
8937 * We rely on the L1 portion of the header below, so
8938 * it's invalid for this header to have been evicted out
8939 * of the ghost cache, prior to being written out. The
8940 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8941 */
8942 ASSERT(HDR_HAS_L1HDR(hdr));
8943
8944 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
01850391 8945 ASSERT3U(arc_hdr_size(hdr), >, 0);
b5256303
TC
8946 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8947 HDR_HAS_RABD(hdr));
8948 uint64_t psize = HDR_GET_PSIZE(hdr);
01850391
AG
8949 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8950 psize);
8951
8952 if ((write_asize + asize) > target_sz) {
34dc7c2f
BB
8953 full = B_TRUE;
8954 mutex_exit(hash_lock);
8955 break;
8956 }
8957
b5256303
TC
8958 /*
8959 * We rely on the L1 portion of the header below, so
8960 * it's invalid for this header to have been evicted out
8961 * of the ghost cache, prior to being written out. The
8962 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8963 */
8964 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8965 ASSERT(HDR_HAS_L1HDR(hdr));
8966
8967 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8968 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8969 HDR_HAS_RABD(hdr));
8970 ASSERT3U(arc_hdr_size(hdr), >, 0);
8971
8972 /*
8973 * If this header has b_rabd, we can use this since it
8974 * must always match the data exactly as it exists on
8975 * disk. Otherwise, the L2ARC can normally use the
8976 * hdr's data, but if we're sharing data between the
8977 * hdr and one of its bufs, L2ARC needs its own copy of
8978 * the data so that the ZIO below can't race with the
8979 * buf consumer. To ensure that this copy will be
8980 * available for the lifetime of the ZIO and be cleaned
8981 * up afterwards, we add it to the l2arc_free_on_write
8982 * queue. If we need to apply any transforms to the
8983 * data (compression, encryption) we will also need the
8984 * extra buffer.
8985 */
8986 if (HDR_HAS_RABD(hdr) && psize == asize) {
8987 to_write = hdr->b_crypt_hdr.b_rabd;
8988 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8989 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8990 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8991 psize == asize) {
8992 to_write = hdr->b_l1hdr.b_pabd;
8993 } else {
8994 int ret;
8995 arc_buf_contents_t type = arc_buf_type(hdr);
8996
8997 ret = l2arc_apply_transforms(spa, hdr, asize,
8998 &to_write);
8999 if (ret != 0) {
9000 arc_hdr_clear_flags(hdr,
9001 ARC_FLAG_L2_WRITING);
9002 mutex_exit(hash_lock);
9003 continue;
9004 }
9005
9006 l2arc_free_abd_on_write(to_write, asize, type);
9007 }
9008
34dc7c2f
BB
9009 if (pio == NULL) {
9010 /*
9011 * Insert a dummy header on the buflist so
9012 * l2arc_write_done() can find where the
9013 * write buffers begin without searching.
9014 */
ca0bf58d 9015 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9016 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 9017 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9018
96c080cb
BB
9019 cb = kmem_alloc(
9020 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
9021 cb->l2wcb_dev = dev;
9022 cb->l2wcb_head = head;
9023 pio = zio_root(spa, l2arc_write_done, cb,
9024 ZIO_FLAG_CANFAIL);
9025 }
9026
b9541d6b 9027 hdr->b_l2hdr.b_dev = dev;
b9541d6b 9028 hdr->b_l2hdr.b_hits = 0;
3a17a7a9 9029
d3c2ae1c 9030 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
b5256303 9031 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
3a17a7a9 9032
ca0bf58d 9033 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9034 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 9035 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9036
424fd7c3 9037 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
b5256303 9038 arc_hdr_size(hdr), hdr);
3a17a7a9 9039
34dc7c2f 9040 wzio = zio_write_phys(pio, dev->l2ad_vdev,
82710e99 9041 hdr->b_l2hdr.b_daddr, asize, to_write,
d3c2ae1c
GW
9042 ZIO_CHECKSUM_OFF, NULL, hdr,
9043 ZIO_PRIORITY_ASYNC_WRITE,
34dc7c2f
BB
9044 ZIO_FLAG_CANFAIL, B_FALSE);
9045
01850391 9046 write_lsize += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
9047 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9048 zio_t *, wzio);
d962d5da 9049
01850391
AG
9050 write_psize += psize;
9051 write_asize += asize;
d3c2ae1c 9052 dev->l2ad_hand += asize;
7558997d 9053 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
d3c2ae1c
GW
9054
9055 mutex_exit(hash_lock);
9056
9057 (void) zio_nowait(wzio);
34dc7c2f 9058 }
d3c2ae1c
GW
9059
9060 multilist_sublist_unlock(mls);
9061
9062 if (full == B_TRUE)
9063 break;
34dc7c2f 9064 }
34dc7c2f 9065
d3c2ae1c
GW
9066 /* No buffers selected for writing? */
9067 if (pio == NULL) {
01850391 9068 ASSERT0(write_lsize);
d3c2ae1c
GW
9069 ASSERT(!HDR_HAS_L1HDR(head));
9070 kmem_cache_free(hdr_l2only_cache, head);
9071 return (0);
9072 }
34dc7c2f 9073
3a17a7a9 9074 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 9075 ARCSTAT_BUMP(arcstat_l2_writes_sent);
01850391
AG
9076 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9077 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
9078 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
34dc7c2f
BB
9079
9080 /*
9081 * Bump device hand to the device start if it is approaching the end.
9082 * l2arc_evict() will already have evicted ahead for this case.
9083 */
b128c09f 9084 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 9085 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
9086 dev->l2ad_first = B_FALSE;
9087 }
9088
d164b209 9089 dev->l2ad_writing = B_TRUE;
34dc7c2f 9090 (void) zio_wait(pio);
d164b209
BB
9091 dev->l2ad_writing = B_FALSE;
9092
3a17a7a9
SK
9093 return (write_asize);
9094}
9095
34dc7c2f
BB
9096/*
9097 * This thread feeds the L2ARC at regular intervals. This is the beating
9098 * heart of the L2ARC.
9099 */
867959b5 9100/* ARGSUSED */
34dc7c2f 9101static void
c25b8f99 9102l2arc_feed_thread(void *unused)
34dc7c2f
BB
9103{
9104 callb_cpr_t cpr;
9105 l2arc_dev_t *dev;
9106 spa_t *spa;
d164b209 9107 uint64_t size, wrote;
428870ff 9108 clock_t begin, next = ddi_get_lbolt();
40d06e3c 9109 fstrans_cookie_t cookie;
34dc7c2f
BB
9110
9111 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9112
9113 mutex_enter(&l2arc_feed_thr_lock);
9114
40d06e3c 9115 cookie = spl_fstrans_mark();
34dc7c2f 9116 while (l2arc_thread_exit == 0) {
34dc7c2f 9117 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 9118 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 9119 &l2arc_feed_thr_lock, next);
34dc7c2f 9120 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 9121 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
9122
9123 /*
b128c09f 9124 * Quick check for L2ARC devices.
34dc7c2f
BB
9125 */
9126 mutex_enter(&l2arc_dev_mtx);
9127 if (l2arc_ndev == 0) {
9128 mutex_exit(&l2arc_dev_mtx);
9129 continue;
9130 }
b128c09f 9131 mutex_exit(&l2arc_dev_mtx);
428870ff 9132 begin = ddi_get_lbolt();
34dc7c2f
BB
9133
9134 /*
b128c09f
BB
9135 * This selects the next l2arc device to write to, and in
9136 * doing so the next spa to feed from: dev->l2ad_spa. This
9137 * will return NULL if there are now no l2arc devices or if
9138 * they are all faulted.
9139 *
9140 * If a device is returned, its spa's config lock is also
9141 * held to prevent device removal. l2arc_dev_get_next()
9142 * will grab and release l2arc_dev_mtx.
34dc7c2f 9143 */
b128c09f 9144 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 9145 continue;
b128c09f
BB
9146
9147 spa = dev->l2ad_spa;
d3c2ae1c 9148 ASSERT3P(spa, !=, NULL);
34dc7c2f 9149
572e2857
BB
9150 /*
9151 * If the pool is read-only then force the feed thread to
9152 * sleep a little longer.
9153 */
9154 if (!spa_writeable(spa)) {
9155 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9156 spa_config_exit(spa, SCL_L2ARC, dev);
9157 continue;
9158 }
9159
34dc7c2f 9160 /*
b128c09f 9161 * Avoid contributing to memory pressure.
34dc7c2f 9162 */
ca67b33a 9163 if (arc_reclaim_needed()) {
b128c09f
BB
9164 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9165 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
9166 continue;
9167 }
b128c09f 9168
34dc7c2f
BB
9169 ARCSTAT_BUMP(arcstat_l2_feeds);
9170
3a17a7a9 9171 size = l2arc_write_size();
b128c09f 9172
34dc7c2f
BB
9173 /*
9174 * Evict L2ARC buffers that will be overwritten.
9175 */
b128c09f 9176 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
9177
9178 /*
9179 * Write ARC buffers.
9180 */
d3c2ae1c 9181 wrote = l2arc_write_buffers(spa, dev, size);
d164b209
BB
9182
9183 /*
9184 * Calculate interval between writes.
9185 */
9186 next = l2arc_write_interval(begin, size, wrote);
b128c09f 9187 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 9188 }
40d06e3c 9189 spl_fstrans_unmark(cookie);
34dc7c2f
BB
9190
9191 l2arc_thread_exit = 0;
9192 cv_broadcast(&l2arc_feed_thr_cv);
9193 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9194 thread_exit();
9195}
9196
b128c09f
BB
9197boolean_t
9198l2arc_vdev_present(vdev_t *vd)
9199{
9200 l2arc_dev_t *dev;
9201
9202 mutex_enter(&l2arc_dev_mtx);
9203 for (dev = list_head(l2arc_dev_list); dev != NULL;
9204 dev = list_next(l2arc_dev_list, dev)) {
9205 if (dev->l2ad_vdev == vd)
9206 break;
9207 }
9208 mutex_exit(&l2arc_dev_mtx);
9209
9210 return (dev != NULL);
9211}
9212
34dc7c2f
BB
9213/*
9214 * Add a vdev for use by the L2ARC. By this point the spa has already
9215 * validated the vdev and opened it.
9216 */
9217void
9babb374 9218l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
9219{
9220 l2arc_dev_t *adddev;
9221
b128c09f
BB
9222 ASSERT(!l2arc_vdev_present(vd));
9223
34dc7c2f
BB
9224 /*
9225 * Create a new l2arc device entry.
9226 */
9227 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9228 adddev->l2ad_spa = spa;
9229 adddev->l2ad_vdev = vd;
9babb374
BB
9230 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
9231 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 9232 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 9233 adddev->l2ad_first = B_TRUE;
d164b209 9234 adddev->l2ad_writing = B_FALSE;
98f72a53 9235 list_link_init(&adddev->l2ad_node);
34dc7c2f 9236
b9541d6b 9237 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9238 /*
9239 * This is a list of all ARC buffers that are still valid on the
9240 * device.
9241 */
b9541d6b
CW
9242 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9243 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 9244
428870ff 9245 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
424fd7c3 9246 zfs_refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
9247
9248 /*
9249 * Add device to global list
9250 */
9251 mutex_enter(&l2arc_dev_mtx);
9252 list_insert_head(l2arc_dev_list, adddev);
9253 atomic_inc_64(&l2arc_ndev);
9254 mutex_exit(&l2arc_dev_mtx);
9255}
9256
9257/*
9258 * Remove a vdev from the L2ARC.
9259 */
9260void
9261l2arc_remove_vdev(vdev_t *vd)
9262{
9263 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
9264
34dc7c2f
BB
9265 /*
9266 * Find the device by vdev
9267 */
9268 mutex_enter(&l2arc_dev_mtx);
9269 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
9270 nextdev = list_next(l2arc_dev_list, dev);
9271 if (vd == dev->l2ad_vdev) {
9272 remdev = dev;
9273 break;
9274 }
9275 }
d3c2ae1c 9276 ASSERT3P(remdev, !=, NULL);
34dc7c2f
BB
9277
9278 /*
9279 * Remove device from global list
9280 */
9281 list_remove(l2arc_dev_list, remdev);
9282 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
9283 atomic_dec_64(&l2arc_ndev);
9284 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
9285
9286 /*
9287 * Clear all buflists and ARC references. L2ARC device flush.
9288 */
9289 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
9290 list_destroy(&remdev->l2ad_buflist);
9291 mutex_destroy(&remdev->l2ad_mtx);
424fd7c3 9292 zfs_refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 9293 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
9294}
9295
9296void
b128c09f 9297l2arc_init(void)
34dc7c2f
BB
9298{
9299 l2arc_thread_exit = 0;
9300 l2arc_ndev = 0;
9301 l2arc_writes_sent = 0;
9302 l2arc_writes_done = 0;
9303
9304 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9305 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9306 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9307 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9308
9309 l2arc_dev_list = &L2ARC_dev_list;
9310 l2arc_free_on_write = &L2ARC_free_on_write;
9311 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9312 offsetof(l2arc_dev_t, l2ad_node));
9313 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9314 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
9315}
9316
9317void
b128c09f 9318l2arc_fini(void)
34dc7c2f 9319{
b128c09f
BB
9320 /*
9321 * This is called from dmu_fini(), which is called from spa_fini();
9322 * Because of this, we can assume that all l2arc devices have
9323 * already been removed when the pools themselves were removed.
9324 */
9325
9326 l2arc_do_free_on_write();
34dc7c2f
BB
9327
9328 mutex_destroy(&l2arc_feed_thr_lock);
9329 cv_destroy(&l2arc_feed_thr_cv);
9330 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
9331 mutex_destroy(&l2arc_free_on_write_mtx);
9332
9333 list_destroy(l2arc_dev_list);
9334 list_destroy(l2arc_free_on_write);
9335}
b128c09f
BB
9336
9337void
9338l2arc_start(void)
9339{
fb5f0bc8 9340 if (!(spa_mode_global & FWRITE))
b128c09f
BB
9341 return;
9342
9343 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 9344 TS_RUN, defclsyspri);
b128c09f
BB
9345}
9346
9347void
9348l2arc_stop(void)
9349{
fb5f0bc8 9350 if (!(spa_mode_global & FWRITE))
b128c09f
BB
9351 return;
9352
9353 mutex_enter(&l2arc_feed_thr_lock);
9354 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
9355 l2arc_thread_exit = 1;
9356 while (l2arc_thread_exit != 0)
9357 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9358 mutex_exit(&l2arc_feed_thr_lock);
9359}
c28b2279 9360
93ce2b4c 9361#if defined(_KERNEL)
0f699108
AZ
9362EXPORT_SYMBOL(arc_buf_size);
9363EXPORT_SYMBOL(arc_write);
c28b2279 9364EXPORT_SYMBOL(arc_read);
e0b0ca98 9365EXPORT_SYMBOL(arc_buf_info);
c28b2279 9366EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
9367EXPORT_SYMBOL(arc_add_prune_callback);
9368EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 9369
02730c33 9370/* BEGIN CSTYLED */
bce45ec9 9371module_param(zfs_arc_min, ulong, 0644);
c409e464 9372MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 9373
bce45ec9 9374module_param(zfs_arc_max, ulong, 0644);
c409e464 9375MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 9376
bce45ec9 9377module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 9378MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 9379
9907cc1c
G
9380module_param(zfs_arc_meta_limit_percent, ulong, 0644);
9381MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
9382 "Percent of arc size for arc meta limit");
9383
ca0bf58d
PS
9384module_param(zfs_arc_meta_min, ulong, 0644);
9385MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
9386
bce45ec9 9387module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 9388MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 9389
ca67b33a 9390module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
9391MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
9392 "Limit number of restarts in arc_adjust_meta");
9393
f6046738
BB
9394module_param(zfs_arc_meta_strategy, int, 0644);
9395MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
9396
bce45ec9 9397module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
9398MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
9399
62422785
PS
9400module_param(zfs_arc_p_dampener_disable, int, 0644);
9401MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
9402
bce45ec9 9403module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
9404MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
9405
03b60eee
DB
9406module_param(zfs_arc_pc_percent, uint, 0644);
9407MODULE_PARM_DESC(zfs_arc_pc_percent,
9408 "Percent of pagecache to reclaim arc to");
9409
728d6ae9
BB
9410module_param(zfs_arc_p_min_shift, int, 0644);
9411MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
9412
49ddb315
MA
9413module_param(zfs_arc_average_blocksize, int, 0444);
9414MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
9415
d3c2ae1c 9416module_param(zfs_compressed_arc_enabled, int, 0644);
544596c5 9417MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
d3c2ae1c 9418
d4a72f23
TC
9419module_param(zfs_arc_min_prefetch_ms, int, 0644);
9420MODULE_PARM_DESC(zfs_arc_min_prefetch_ms, "Min life of prefetch block in ms");
9421
9422module_param(zfs_arc_min_prescient_prefetch_ms, int, 0644);
9423MODULE_PARM_DESC(zfs_arc_min_prescient_prefetch_ms,
9424 "Min life of prescient prefetched block in ms");
bce45ec9
BB
9425
9426module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
9427MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
9428
bce45ec9 9429module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
9430MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
9431
bce45ec9 9432module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
9433MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
9434
3a17a7a9
SK
9435module_param(l2arc_headroom_boost, ulong, 0644);
9436MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
9437
bce45ec9 9438module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
9439MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
9440
bce45ec9 9441module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
9442MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
9443
bce45ec9 9444module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
9445MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
9446
bce45ec9 9447module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
9448MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
9449
bce45ec9 9450module_param(l2arc_norw, int, 0644);
abd8610c
BB
9451MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
9452
7e8bddd0
BB
9453module_param(zfs_arc_lotsfree_percent, int, 0644);
9454MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
9455 "System free memory I/O throttle in bytes");
9456
11f552fa
BB
9457module_param(zfs_arc_sys_free, ulong, 0644);
9458MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
9459
25458cbe
TC
9460module_param(zfs_arc_dnode_limit, ulong, 0644);
9461MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
9462
9907cc1c
G
9463module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
9464MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
9465 "Percent of ARC meta buffers for dnodes");
9466
25458cbe
TC
9467module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
9468MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
9469 "Percentage of excess dnodes to try to unpin");
02730c33 9470/* END CSTYLED */
c28b2279 9471#endif