]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Remove NOTE(CONSTCOND) and note.h
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3ec34e55 23 * Copyright (c) 2018, Joyent, Inc.
4f072827 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
77f6826b
GA
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
e3570464 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
77f6826b 28 * Copyright (c) 2020, George Amanakis. All rights reserved.
10b3c7f5
MN
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
fc34dfba
AJ
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
34dc7c2f
BB
35 */
36
34dc7c2f
BB
37/*
38 * DVA-based Adjustable Replacement Cache
39 *
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
44 *
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
55 *
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
61 *
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
68 *
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 70 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
e1cfd73f 73 * have variable sized cache blocks (ranging from 512 bytes to
d3cc8b15 74 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
77 *
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
80 */
81
82/*
83 * The locking model:
84 *
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
2aa34383 88 * uses method 1, while the internal ARC algorithms for
d3cc8b15 89 * adjusting the cache use method 2. We therefore provide two
34dc7c2f 90 * types of locks: 1) the hash table lock array, and 2) the
2aa34383 91 * ARC list locks.
34dc7c2f 92 *
5c839890
BC
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
96 *
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
100 *
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
103 *
2aa34383 104 * Each ARC state also has a mutex which is used to protect the
34dc7c2f 105 * buffer list associated with the state. When attempting to
2aa34383 106 * obtain a hash table lock while holding an ARC list lock you
34dc7c2f
BB
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
b9541d6b 121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
d3c2ae1c
GW
130/*
131 * ARC operation:
132 *
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
141 *
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
2aa34383 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
a6255b7f 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
2aa34383
DK
148 *
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
a6255b7f
DQ
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
2aa34383
DK
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
a6255b7f 154 * compressed ARC functionality is disabled, the b_pabd will point to an
2aa34383
DK
155 * uncompressed version of the on-disk data.
156 *
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
d3c2ae1c
GW
164 * "overhead_size" kstat.
165 *
2aa34383
DK
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
d3c2ae1c 173 *
2aa34383
DK
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
178 * buffer).
d3c2ae1c 179 *
2aa34383
DK
180 * arc_buf_hdr_t
181 * +-----------+
182 * | fields |
183 * | common to |
184 * | L1- and |
185 * | L2ARC |
186 * +-----------+
187 * | l2arc_buf_hdr_t
188 * | |
189 * +-----------+
190 * | l1arc_buf_hdr_t
191 * | | arc_buf_t
192 * | b_buf +------------>+-----------+ arc_buf_t
a6255b7f 193 * | b_pabd +-+ |b_next +---->+-----------+
2aa34383
DK
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
199 * compressed | | | |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
203 * data | |
204 * | |
205 * +------+
d3c2ae1c
GW
206 *
207 * When a consumer reads a block, the ARC must first look to see if the
2aa34383
DK
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
a6255b7f
DQ
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
2aa34383
DK
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
d3c2ae1c
GW
217 *
218 * The diagram below shows an example of an uncompressed ARC hdr that is
2aa34383
DK
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
d3c2ae1c
GW
221 *
222 * arc_buf_hdr_t
223 * +-----------+
224 * | |
225 * | |
226 * | |
227 * +-----------+
228 * l2arc_buf_hdr_t| |
229 * | |
230 * +-----------+
231 * l1arc_buf_hdr_t| |
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
a6255b7f 235 * | b_pabd +-+ |---------| |b_next +-->NULL
d3c2ae1c
GW
236 * +-----------+ | | | +---------+
237 * | |b_data +-+ | |
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
240 * | | | |
241 * uncompressed | | | |
242 * data +------+ | |
243 * ^ +->+------+ |
244 * | uncompressed | | |
245 * | data | | |
246 * | +------+ |
247 * +---------------------------------+
248 *
a6255b7f 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
d3c2ae1c 250 * since the physical block is about to be rewritten. The new data contents
2aa34383
DK
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will bcopy the transformed on-disk block into
a6255b7f 254 * a newly allocated b_pabd. Writes are always done into buffers which have
2aa34383
DK
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
d3c2ae1c 259 *
a6255b7f
DQ
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
2aa34383 262 * that when compressed ARC is enabled that the L2ARC blocks are identical
d3c2ae1c
GW
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
2aa34383 266 * ARC is disabled, then the L2ARC's block must be transformed to look
d3c2ae1c
GW
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
b5256303
TC
269 *
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
e1cfd73f 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
b5256303
TC
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
283 * cannot be shared.
d3c2ae1c
GW
284 */
285
34dc7c2f
BB
286#include <sys/spa.h>
287#include <sys/zio.h>
d3c2ae1c 288#include <sys/spa_impl.h>
3a17a7a9 289#include <sys/zio_compress.h>
d3c2ae1c 290#include <sys/zio_checksum.h>
34dc7c2f
BB
291#include <sys/zfs_context.h>
292#include <sys/arc.h>
27d96d22 293#include <sys/zfs_refcount.h>
b128c09f 294#include <sys/vdev.h>
9babb374 295#include <sys/vdev_impl.h>
e8b96c60 296#include <sys/dsl_pool.h>
ca0bf58d 297#include <sys/multilist.h>
a6255b7f 298#include <sys/abd.h>
b5256303
TC
299#include <sys/zil.h>
300#include <sys/fm/fs/zfs.h>
34dc7c2f
BB
301#include <sys/callb.h>
302#include <sys/kstat.h>
3ec34e55 303#include <sys/zthr.h>
428870ff 304#include <zfs_fletcher.h>
59ec819a 305#include <sys/arc_impl.h>
e5d1c27e 306#include <sys/trace_zfs.h>
37fb3e43 307#include <sys/aggsum.h>
86706441 308#include <sys/wmsum.h>
3f387973 309#include <cityhash.h>
b7654bd7 310#include <sys/vdev_trim.h>
64e0fe14 311#include <sys/zfs_racct.h>
8a171ccd 312#include <sys/zstd/zstd.h>
34dc7c2f 313
498877ba
MA
314#ifndef _KERNEL
315/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316boolean_t arc_watch = B_FALSE;
317#endif
318
3ec34e55
BL
319/*
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
323 */
3442c2a0 324static zthr_t *arc_reap_zthr;
3ec34e55
BL
325
326/*
327 * This thread's job is to keep arc_size under arc_c, by calling
5dd92909 328 * arc_evict(), which improves arc_is_overflowing().
3ec34e55 329 */
3442c2a0 330static zthr_t *arc_evict_zthr;
3ec34e55 331
3442c2a0
MA
332static kmutex_t arc_evict_lock;
333static boolean_t arc_evict_needed = B_FALSE;
334
335/*
336 * Count of bytes evicted since boot.
337 */
338static uint64_t arc_evict_count;
339
340/*
341 * List of arc_evict_waiter_t's, representing threads waiting for the
342 * arc_evict_count to reach specific values.
343 */
344static list_t arc_evict_waiters;
345
346/*
347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
348 * the requested amount of data to be evicted. For example, by default for
349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
350 * Since this is above 100%, it ensures that progress is made towards getting
351 * arc_size under arc_c. Since this is finite, it ensures that allocations
352 * can still happen, even during the potentially long time that arc_size is
353 * more than arc_c.
354 */
355int zfs_arc_eviction_pct = 200;
ca0bf58d 356
e8b96c60 357/*
ca0bf58d
PS
358 * The number of headers to evict in arc_evict_state_impl() before
359 * dropping the sublist lock and evicting from another sublist. A lower
360 * value means we're more likely to evict the "correct" header (i.e. the
361 * oldest header in the arc state), but comes with higher overhead
362 * (i.e. more invocations of arc_evict_state_impl()).
363 */
364int zfs_arc_evict_batch_limit = 10;
365
34dc7c2f 366/* number of seconds before growing cache again */
c9c9c1e2 367int arc_grow_retry = 5;
3ec34e55
BL
368
369/*
370 * Minimum time between calls to arc_kmem_reap_soon().
371 */
372int arc_kmem_cache_reap_retry_ms = 1000;
34dc7c2f 373
a6255b7f 374/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
3ec34e55 375int zfs_arc_overflow_shift = 8;
62422785 376
728d6ae9 377/* shift of arc_c for calculating both min and max arc_p */
3ec34e55 378int arc_p_min_shift = 4;
728d6ae9 379
d164b209 380/* log2(fraction of arc to reclaim) */
c9c9c1e2 381int arc_shrink_shift = 7;
d164b209 382
03b60eee
DB
383/* percent of pagecache to reclaim arc to */
384#ifdef _KERNEL
c9c9c1e2 385uint_t zfs_arc_pc_percent = 0;
03b60eee
DB
386#endif
387
34dc7c2f 388/*
ca67b33a
MA
389 * log2(fraction of ARC which must be free to allow growing).
390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391 * when reading a new block into the ARC, we will evict an equal-sized block
392 * from the ARC.
393 *
394 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395 * we will still not allow it to grow.
34dc7c2f 396 */
ca67b33a 397int arc_no_grow_shift = 5;
bce45ec9 398
49ddb315 399
ca0bf58d
PS
400/*
401 * minimum lifespan of a prefetch block in clock ticks
402 * (initialized in arc_init())
403 */
d4a72f23
TC
404static int arc_min_prefetch_ms;
405static int arc_min_prescient_prefetch_ms;
ca0bf58d 406
e8b96c60
MA
407/*
408 * If this percent of memory is free, don't throttle.
409 */
410int arc_lotsfree_percent = 10;
411
b128c09f
BB
412/*
413 * The arc has filled available memory and has now warmed up.
414 */
c9c9c1e2 415boolean_t arc_warm;
b128c09f 416
34dc7c2f
BB
417/*
418 * These tunables are for performance analysis.
419 */
c28b2279
BB
420unsigned long zfs_arc_max = 0;
421unsigned long zfs_arc_min = 0;
422unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 423unsigned long zfs_arc_meta_min = 0;
25458cbe
TC
424unsigned long zfs_arc_dnode_limit = 0;
425unsigned long zfs_arc_dnode_reduce_percent = 10;
ca67b33a
MA
426int zfs_arc_grow_retry = 0;
427int zfs_arc_shrink_shift = 0;
728d6ae9 428int zfs_arc_p_min_shift = 0;
ca67b33a 429int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 430
dae3e9ea
DB
431/*
432 * ARC dirty data constraints for arc_tempreserve_space() throttle.
433 */
434unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
435unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
436unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
437
438/*
439 * Enable or disable compressed arc buffers.
440 */
d3c2ae1c
GW
441int zfs_compressed_arc_enabled = B_TRUE;
442
9907cc1c
G
443/*
444 * ARC will evict meta buffers that exceed arc_meta_limit. This
445 * tunable make arc_meta_limit adjustable for different workloads.
446 */
447unsigned long zfs_arc_meta_limit_percent = 75;
448
449/*
450 * Percentage that can be consumed by dnodes of ARC meta buffers.
451 */
452unsigned long zfs_arc_dnode_limit_percent = 10;
453
bc888666 454/*
ca67b33a 455 * These tunables are Linux specific
bc888666 456 */
11f552fa 457unsigned long zfs_arc_sys_free = 0;
d4a72f23
TC
458int zfs_arc_min_prefetch_ms = 0;
459int zfs_arc_min_prescient_prefetch_ms = 0;
ca67b33a
MA
460int zfs_arc_p_dampener_disable = 1;
461int zfs_arc_meta_prune = 10000;
462int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
463int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 464int zfs_arc_lotsfree_percent = 10;
bc888666 465
34dc7c2f 466/* The 6 states: */
13a4027a
MM
467arc_state_t ARC_anon;
468arc_state_t ARC_mru;
469arc_state_t ARC_mru_ghost;
470arc_state_t ARC_mfu;
471arc_state_t ARC_mfu_ghost;
472arc_state_t ARC_l2c_only;
34dc7c2f 473
c9c9c1e2 474arc_stats_t arc_stats = {
34dc7c2f
BB
475 { "hits", KSTAT_DATA_UINT64 },
476 { "misses", KSTAT_DATA_UINT64 },
477 { "demand_data_hits", KSTAT_DATA_UINT64 },
478 { "demand_data_misses", KSTAT_DATA_UINT64 },
479 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
480 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
481 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
482 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
483 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
484 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
485 { "mru_hits", KSTAT_DATA_UINT64 },
486 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
487 { "mfu_hits", KSTAT_DATA_UINT64 },
488 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
489 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f 490 { "mutex_miss", KSTAT_DATA_UINT64 },
0873bb63 491 { "access_skip", KSTAT_DATA_UINT64 },
34dc7c2f 492 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 493 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
494 { "evict_l2_cached", KSTAT_DATA_UINT64 },
495 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
08532162
GA
496 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
497 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
428870ff 498 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 499 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
500 { "hash_elements", KSTAT_DATA_UINT64 },
501 { "hash_elements_max", KSTAT_DATA_UINT64 },
502 { "hash_collisions", KSTAT_DATA_UINT64 },
503 { "hash_chains", KSTAT_DATA_UINT64 },
504 { "hash_chain_max", KSTAT_DATA_UINT64 },
505 { "p", KSTAT_DATA_UINT64 },
506 { "c", KSTAT_DATA_UINT64 },
507 { "c_min", KSTAT_DATA_UINT64 },
508 { "c_max", KSTAT_DATA_UINT64 },
509 { "size", KSTAT_DATA_UINT64 },
d3c2ae1c
GW
510 { "compressed_size", KSTAT_DATA_UINT64 },
511 { "uncompressed_size", KSTAT_DATA_UINT64 },
512 { "overhead_size", KSTAT_DATA_UINT64 },
34dc7c2f 513 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 514 { "data_size", KSTAT_DATA_UINT64 },
500445c0 515 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
516 { "dbuf_size", KSTAT_DATA_UINT64 },
517 { "dnode_size", KSTAT_DATA_UINT64 },
518 { "bonus_size", KSTAT_DATA_UINT64 },
1c2725a1
MM
519#if defined(COMPAT_FREEBSD11)
520 { "other_size", KSTAT_DATA_UINT64 },
521#endif
13be560d 522 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
523 { "anon_evictable_data", KSTAT_DATA_UINT64 },
524 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 525 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
526 { "mru_evictable_data", KSTAT_DATA_UINT64 },
527 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 528 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
529 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
530 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 531 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
532 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
533 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 534 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
535 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
536 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
537 { "l2_hits", KSTAT_DATA_UINT64 },
538 { "l2_misses", KSTAT_DATA_UINT64 },
08532162
GA
539 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
540 { "l2_mru_asize", KSTAT_DATA_UINT64 },
541 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
542 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
543 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
34dc7c2f
BB
544 { "l2_feeds", KSTAT_DATA_UINT64 },
545 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
546 { "l2_read_bytes", KSTAT_DATA_UINT64 },
547 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
548 { "l2_writes_sent", KSTAT_DATA_UINT64 },
549 { "l2_writes_done", KSTAT_DATA_UINT64 },
550 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 551 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
552 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
553 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 554 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f
BB
555 { "l2_free_on_write", KSTAT_DATA_UINT64 },
556 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
557 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
558 { "l2_io_error", KSTAT_DATA_UINT64 },
559 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 560 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 561 { "l2_hdr_size", KSTAT_DATA_UINT64 },
77f6826b 562 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
657fd33b
GA
563 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
564 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
565 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
77f6826b
GA
566 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
567 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
568 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
569 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
570 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
571 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
572 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
573 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
657fd33b 574 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
77f6826b
GA
575 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
576 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
77f6826b 577 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
1834f2d8 578 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
579 { "memory_direct_count", KSTAT_DATA_UINT64 },
580 { "memory_indirect_count", KSTAT_DATA_UINT64 },
70f02287
BB
581 { "memory_all_bytes", KSTAT_DATA_UINT64 },
582 { "memory_free_bytes", KSTAT_DATA_UINT64 },
583 { "memory_available_bytes", KSTAT_DATA_INT64 },
1834f2d8
BB
584 { "arc_no_grow", KSTAT_DATA_UINT64 },
585 { "arc_tempreserve", KSTAT_DATA_UINT64 },
586 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 587 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
588 { "arc_meta_used", KSTAT_DATA_UINT64 },
589 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 590 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 591 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 592 { "arc_meta_min", KSTAT_DATA_UINT64 },
a8b2e306 593 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
7f60329a 594 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
d4a72f23 595 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
11f552fa 596 { "arc_need_free", KSTAT_DATA_UINT64 },
b5256303 597 { "arc_sys_free", KSTAT_DATA_UINT64 },
1dc32a67
MA
598 { "arc_raw_size", KSTAT_DATA_UINT64 },
599 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
85ec5cba 600 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
34dc7c2f
BB
601};
602
c4c162c1
AM
603arc_sums_t arc_sums;
604
34dc7c2f
BB
605#define ARCSTAT_MAX(stat, val) { \
606 uint64_t m; \
607 while ((val) > (m = arc_stats.stat.value.ui64) && \
608 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
609 continue; \
610}
611
34dc7c2f
BB
612/*
613 * We define a macro to allow ARC hits/misses to be easily broken down by
614 * two separate conditions, giving a total of four different subtypes for
615 * each of hits and misses (so eight statistics total).
616 */
617#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
618 if (cond1) { \
619 if (cond2) { \
620 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
621 } else { \
622 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
623 } \
624 } else { \
625 if (cond2) { \
626 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
627 } else { \
628 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
629 } \
630 }
631
77f6826b
GA
632/*
633 * This macro allows us to use kstats as floating averages. Each time we
634 * update this kstat, we first factor it and the update value by
635 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
636 * average. This macro assumes that integer loads and stores are atomic, but
637 * is not safe for multiple writers updating the kstat in parallel (only the
638 * last writer's update will remain).
639 */
640#define ARCSTAT_F_AVG_FACTOR 3
641#define ARCSTAT_F_AVG(stat, value) \
642 do { \
643 uint64_t x = ARCSTAT(stat); \
644 x = x - x / ARCSTAT_F_AVG_FACTOR + \
645 (value) / ARCSTAT_F_AVG_FACTOR; \
646 ARCSTAT(stat) = x; \
77f6826b
GA
647 } while (0)
648
34dc7c2f 649kstat_t *arc_ksp;
c9c9c1e2 650
34dc7c2f
BB
651/*
652 * There are several ARC variables that are critical to export as kstats --
653 * but we don't want to have to grovel around in the kstat whenever we wish to
654 * manipulate them. For these variables, we therefore define them to be in
655 * terms of the statistic variable. This assures that we are not introducing
656 * the possibility of inconsistency by having shadow copies of the variables,
657 * while still allowing the code to be readable.
658 */
1834f2d8
BB
659#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
660#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 661#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
03fdcb9a
MM
662/* max size for dnodes */
663#define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
ca0bf58d 664#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
3442c2a0 665#define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
34dc7c2f 666
c9c9c1e2
MM
667hrtime_t arc_growtime;
668list_t arc_prune_list;
669kmutex_t arc_prune_mtx;
670taskq_t *arc_prune_taskq;
428870ff 671
34dc7c2f
BB
672#define GHOST_STATE(state) \
673 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
674 (state) == arc_l2c_only)
675
2a432414
GW
676#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
677#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
678#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
679#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
d4a72f23
TC
680#define HDR_PRESCIENT_PREFETCH(hdr) \
681 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
d3c2ae1c
GW
682#define HDR_COMPRESSION_ENABLED(hdr) \
683 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
b9541d6b 684
2a432414
GW
685#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
686#define HDR_L2_READING(hdr) \
d3c2ae1c
GW
687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
689#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
690#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
691#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
b5256303
TC
692#define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
693#define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
d3c2ae1c 694#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
34dc7c2f 695
b9541d6b 696#define HDR_ISTYPE_METADATA(hdr) \
d3c2ae1c 697 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
b9541d6b
CW
698#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
699
700#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
701#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
b5256303
TC
702#define HDR_HAS_RABD(hdr) \
703 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
704 (hdr)->b_crypt_hdr.b_rabd != NULL)
705#define HDR_ENCRYPTED(hdr) \
706 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
707#define HDR_AUTHENTICATED(hdr) \
708 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
b9541d6b 709
d3c2ae1c
GW
710/* For storing compression mode in b_flags */
711#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
712
713#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
714 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
715#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
716 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
717
718#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
524b4217
DK
719#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
720#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
b5256303 721#define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
d3c2ae1c 722
34dc7c2f
BB
723/*
724 * Other sizes
725 */
726
b5256303
TC
727#define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
728#define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
b9541d6b 729#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
730
731/*
732 * Hash table routines
733 */
734
490c845e 735#define BUF_LOCKS 2048
34dc7c2f
BB
736typedef struct buf_hash_table {
737 uint64_t ht_mask;
738 arc_buf_hdr_t **ht_table;
490c845e 739 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
34dc7c2f
BB
740} buf_hash_table_t;
741
742static buf_hash_table_t buf_hash_table;
743
744#define BUF_HASH_INDEX(spa, dva, birth) \
745 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
490c845e 746#define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
428870ff
BB
747#define HDR_LOCK(hdr) \
748 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
749
750uint64_t zfs_crc64_table[256];
751
752/*
753 * Level 2 ARC
754 */
755
756#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 757#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd 758
3a17a7a9
SK
759/*
760 * If we discover during ARC scan any buffers to be compressed, we boost
761 * our headroom for the next scanning cycle by this percentage multiple.
762 */
763#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
764#define L2ARC_FEED_SECS 1 /* caching interval secs */
765#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 766
4aafab91
G
767/*
768 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
769 * and each of the state has two types: data and metadata.
770 */
771#define L2ARC_FEED_TYPES 4
772
d3cc8b15 773/* L2ARC Performance Tunables */
abd8610c
BB
774unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
775unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
776unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 777unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
778unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
779unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
780int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
781int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 782int l2arc_norw = B_FALSE; /* no reads during writes */
523e1295 783int l2arc_meta_percent = 33; /* limit on headers size */
34dc7c2f
BB
784
785/*
786 * L2ARC Internals
787 */
34dc7c2f
BB
788static list_t L2ARC_dev_list; /* device list */
789static list_t *l2arc_dev_list; /* device list pointer */
790static kmutex_t l2arc_dev_mtx; /* device list mutex */
791static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
792static list_t L2ARC_free_on_write; /* free after write buf list */
793static list_t *l2arc_free_on_write; /* free after write list ptr */
794static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
795static uint64_t l2arc_ndev; /* number of devices */
796
797typedef struct l2arc_read_callback {
2aa34383 798 arc_buf_hdr_t *l2rcb_hdr; /* read header */
3a17a7a9 799 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 800 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9 801 int l2rcb_flags; /* original flags */
82710e99 802 abd_t *l2rcb_abd; /* temporary buffer */
34dc7c2f
BB
803} l2arc_read_callback_t;
804
34dc7c2f
BB
805typedef struct l2arc_data_free {
806 /* protected by l2arc_free_on_write_mtx */
a6255b7f 807 abd_t *l2df_abd;
34dc7c2f 808 size_t l2df_size;
d3c2ae1c 809 arc_buf_contents_t l2df_type;
34dc7c2f
BB
810 list_node_t l2df_list_node;
811} l2arc_data_free_t;
812
b5256303
TC
813typedef enum arc_fill_flags {
814 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
815 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
816 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
817 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
818 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
819} arc_fill_flags_t;
820
f7de776d
AM
821typedef enum arc_ovf_level {
822 ARC_OVF_NONE, /* ARC within target size. */
823 ARC_OVF_SOME, /* ARC is slightly overflowed. */
824 ARC_OVF_SEVERE /* ARC is severely overflowed. */
825} arc_ovf_level_t;
826
34dc7c2f
BB
827static kmutex_t l2arc_feed_thr_lock;
828static kcondvar_t l2arc_feed_thr_cv;
829static uint8_t l2arc_thread_exit;
830
77f6826b
GA
831static kmutex_t l2arc_rebuild_thr_lock;
832static kcondvar_t l2arc_rebuild_thr_cv;
833
e111c802
MM
834enum arc_hdr_alloc_flags {
835 ARC_HDR_ALLOC_RDATA = 0x1,
836 ARC_HDR_DO_ADAPT = 0x2,
837};
838
839
840static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
d3c2ae1c 841static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
e111c802 842static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, boolean_t);
a6255b7f 843static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
d3c2ae1c 844static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
a6255b7f 845static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
b5256303 846static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
e111c802 847static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
2a432414 848static void arc_access(arc_buf_hdr_t *, kmutex_t *);
2a432414
GW
849static void arc_buf_watch(arc_buf_t *);
850
b9541d6b
CW
851static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
852static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
d3c2ae1c
GW
853static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
854static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
b9541d6b 855
2a432414
GW
856static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
857static void l2arc_read_done(zio_t *);
cfd59f90 858static void l2arc_do_free_on_write(void);
08532162
GA
859static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
860 boolean_t state_only);
861
862#define l2arc_hdr_arcstats_increment(hdr) \
863 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
864#define l2arc_hdr_arcstats_decrement(hdr) \
865 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
866#define l2arc_hdr_arcstats_increment_state(hdr) \
867 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
868#define l2arc_hdr_arcstats_decrement_state(hdr) \
869 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
34dc7c2f 870
feb3a7ee
GA
871/*
872 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
873 * metadata and data are cached from ARC into L2ARC.
874 */
875int l2arc_mfuonly = 0;
876
b7654bd7
GA
877/*
878 * L2ARC TRIM
879 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
880 * the current write size (l2arc_write_max) we should TRIM if we
881 * have filled the device. It is defined as a percentage of the
882 * write size. If set to 100 we trim twice the space required to
883 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
884 * It also enables TRIM of the whole L2ARC device upon creation or
885 * addition to an existing pool or if the header of the device is
886 * invalid upon importing a pool or onlining a cache device. The
887 * default is 0, which disables TRIM on L2ARC altogether as it can
888 * put significant stress on the underlying storage devices. This
889 * will vary depending of how well the specific device handles
890 * these commands.
891 */
892unsigned long l2arc_trim_ahead = 0;
893
77f6826b
GA
894/*
895 * Performance tuning of L2ARC persistence:
896 *
897 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
898 * an L2ARC device (either at pool import or later) will attempt
899 * to rebuild L2ARC buffer contents.
900 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
901 * whether log blocks are written to the L2ARC device. If the L2ARC
902 * device is less than 1GB, the amount of data l2arc_evict()
903 * evicts is significant compared to the amount of restored L2ARC
904 * data. In this case do not write log blocks in L2ARC in order
905 * not to waste space.
906 */
907int l2arc_rebuild_enabled = B_TRUE;
908unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
909
910/* L2ARC persistence rebuild control routines. */
911void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
3eaf76a8 912static void l2arc_dev_rebuild_thread(void *arg);
77f6826b
GA
913static int l2arc_rebuild(l2arc_dev_t *dev);
914
915/* L2ARC persistence read I/O routines. */
916static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
917static int l2arc_log_blk_read(l2arc_dev_t *dev,
918 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
919 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
920 zio_t *this_io, zio_t **next_io);
921static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
922 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
923static void l2arc_log_blk_fetch_abort(zio_t *zio);
924
925/* L2ARC persistence block restoration routines. */
926static void l2arc_log_blk_restore(l2arc_dev_t *dev,
a76e4e67 927 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
77f6826b
GA
928static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
929 l2arc_dev_t *dev);
930
931/* L2ARC persistence write I/O routines. */
77f6826b
GA
932static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
933 l2arc_write_callback_t *cb);
934
dd4bc569 935/* L2ARC persistence auxiliary routines. */
77f6826b
GA
936boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
937 const l2arc_log_blkptr_t *lbp);
938static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
939 const arc_buf_hdr_t *ab);
940boolean_t l2arc_range_check_overlap(uint64_t bottom,
941 uint64_t top, uint64_t check);
942static void l2arc_blk_fetch_done(zio_t *zio);
943static inline uint64_t
944 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
37fb3e43
PD
945
946/*
947 * We use Cityhash for this. It's fast, and has good hash properties without
948 * requiring any large static buffers.
949 */
34dc7c2f 950static uint64_t
d164b209 951buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 952{
37fb3e43 953 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
34dc7c2f
BB
954}
955
d3c2ae1c
GW
956#define HDR_EMPTY(hdr) \
957 ((hdr)->b_dva.dva_word[0] == 0 && \
958 (hdr)->b_dva.dva_word[1] == 0)
34dc7c2f 959
ca6c7a94
BB
960#define HDR_EMPTY_OR_LOCKED(hdr) \
961 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
962
d3c2ae1c
GW
963#define HDR_EQUAL(spa, dva, birth, hdr) \
964 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
965 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
966 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
34dc7c2f 967
428870ff
BB
968static void
969buf_discard_identity(arc_buf_hdr_t *hdr)
970{
971 hdr->b_dva.dva_word[0] = 0;
972 hdr->b_dva.dva_word[1] = 0;
973 hdr->b_birth = 0;
428870ff
BB
974}
975
34dc7c2f 976static arc_buf_hdr_t *
9b67f605 977buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 978{
9b67f605
MA
979 const dva_t *dva = BP_IDENTITY(bp);
980 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
981 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
982 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 983 arc_buf_hdr_t *hdr;
34dc7c2f
BB
984
985 mutex_enter(hash_lock);
2a432414
GW
986 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
987 hdr = hdr->b_hash_next) {
d3c2ae1c 988 if (HDR_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 989 *lockp = hash_lock;
2a432414 990 return (hdr);
34dc7c2f
BB
991 }
992 }
993 mutex_exit(hash_lock);
994 *lockp = NULL;
995 return (NULL);
996}
997
998/*
999 * Insert an entry into the hash table. If there is already an element
1000 * equal to elem in the hash table, then the already existing element
1001 * will be returned and the new element will not be inserted.
1002 * Otherwise returns NULL.
b9541d6b 1003 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
1004 */
1005static arc_buf_hdr_t *
2a432414 1006buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 1007{
2a432414 1008 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 1009 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1010 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
1011 uint32_t i;
1012
2a432414
GW
1013 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1014 ASSERT(hdr->b_birth != 0);
1015 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
1016
1017 if (lockp != NULL) {
1018 *lockp = hash_lock;
1019 mutex_enter(hash_lock);
1020 } else {
1021 ASSERT(MUTEX_HELD(hash_lock));
1022 }
1023
2a432414
GW
1024 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1025 fhdr = fhdr->b_hash_next, i++) {
d3c2ae1c 1026 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
2a432414 1027 return (fhdr);
34dc7c2f
BB
1028 }
1029
2a432414
GW
1030 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1031 buf_hash_table.ht_table[idx] = hdr;
d3c2ae1c 1032 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1033
1034 /* collect some hash table performance data */
1035 if (i > 0) {
1036 ARCSTAT_BUMP(arcstat_hash_collisions);
1037 if (i == 1)
1038 ARCSTAT_BUMP(arcstat_hash_chains);
1039
1040 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1041 }
c4c162c1
AM
1042 uint64_t he = atomic_inc_64_nv(
1043 &arc_stats.arcstat_hash_elements.value.ui64);
1044 ARCSTAT_MAX(arcstat_hash_elements_max, he);
34dc7c2f
BB
1045
1046 return (NULL);
1047}
1048
1049static void
2a432414 1050buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 1051{
2a432414
GW
1052 arc_buf_hdr_t *fhdr, **hdrp;
1053 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
1054
1055 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 1056 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 1057
2a432414
GW
1058 hdrp = &buf_hash_table.ht_table[idx];
1059 while ((fhdr = *hdrp) != hdr) {
d3c2ae1c 1060 ASSERT3P(fhdr, !=, NULL);
2a432414 1061 hdrp = &fhdr->b_hash_next;
34dc7c2f 1062 }
2a432414
GW
1063 *hdrp = hdr->b_hash_next;
1064 hdr->b_hash_next = NULL;
d3c2ae1c 1065 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1066
1067 /* collect some hash table performance data */
c4c162c1 1068 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
34dc7c2f
BB
1069
1070 if (buf_hash_table.ht_table[idx] &&
1071 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1072 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1073}
1074
1075/*
1076 * Global data structures and functions for the buf kmem cache.
1077 */
b5256303 1078
b9541d6b 1079static kmem_cache_t *hdr_full_cache;
b5256303 1080static kmem_cache_t *hdr_full_crypt_cache;
b9541d6b 1081static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
1082static kmem_cache_t *buf_cache;
1083
1084static void
1085buf_fini(void)
1086{
1087 int i;
1088
93ce2b4c 1089#if defined(_KERNEL)
d1d7e268
MK
1090 /*
1091 * Large allocations which do not require contiguous pages
1092 * should be using vmem_free() in the linux kernel\
1093 */
00b46022
BB
1094 vmem_free(buf_hash_table.ht_table,
1095 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1096#else
34dc7c2f
BB
1097 kmem_free(buf_hash_table.ht_table,
1098 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 1099#endif
34dc7c2f 1100 for (i = 0; i < BUF_LOCKS; i++)
490c845e 1101 mutex_destroy(BUF_HASH_LOCK(i));
b9541d6b 1102 kmem_cache_destroy(hdr_full_cache);
b5256303 1103 kmem_cache_destroy(hdr_full_crypt_cache);
b9541d6b 1104 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
1105 kmem_cache_destroy(buf_cache);
1106}
1107
1108/*
1109 * Constructor callback - called when the cache is empty
1110 * and a new buf is requested.
1111 */
1112/* ARGSUSED */
1113static int
b9541d6b
CW
1114hdr_full_cons(void *vbuf, void *unused, int kmflag)
1115{
1116 arc_buf_hdr_t *hdr = vbuf;
1117
1118 bzero(hdr, HDR_FULL_SIZE);
ae76f45c 1119 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
b9541d6b 1120 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
424fd7c3 1121 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
b9541d6b
CW
1122 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1123 list_link_init(&hdr->b_l1hdr.b_arc_node);
1124 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1125 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1126 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1127
1128 return (0);
1129}
1130
b5256303
TC
1131/* ARGSUSED */
1132static int
1133hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1134{
1135 arc_buf_hdr_t *hdr = vbuf;
1136
1137 hdr_full_cons(vbuf, unused, kmflag);
1138 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1139 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1140
1141 return (0);
1142}
1143
b9541d6b
CW
1144/* ARGSUSED */
1145static int
1146hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1147{
2a432414
GW
1148 arc_buf_hdr_t *hdr = vbuf;
1149
b9541d6b
CW
1150 bzero(hdr, HDR_L2ONLY_SIZE);
1151 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1152
34dc7c2f
BB
1153 return (0);
1154}
1155
b128c09f
BB
1156/* ARGSUSED */
1157static int
1158buf_cons(void *vbuf, void *unused, int kmflag)
1159{
1160 arc_buf_t *buf = vbuf;
1161
1162 bzero(buf, sizeof (arc_buf_t));
428870ff 1163 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1164 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1165
b128c09f
BB
1166 return (0);
1167}
1168
34dc7c2f
BB
1169/*
1170 * Destructor callback - called when a cached buf is
1171 * no longer required.
1172 */
1173/* ARGSUSED */
1174static void
b9541d6b 1175hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1176{
2a432414 1177 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1178
d3c2ae1c 1179 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1180 cv_destroy(&hdr->b_l1hdr.b_cv);
424fd7c3 1181 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
b9541d6b 1182 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1183 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1184 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1185}
1186
b5256303
TC
1187/* ARGSUSED */
1188static void
1189hdr_full_crypt_dest(void *vbuf, void *unused)
1190{
1191 arc_buf_hdr_t *hdr = vbuf;
1192
1193 hdr_full_dest(vbuf, unused);
1194 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1195}
1196
b9541d6b
CW
1197/* ARGSUSED */
1198static void
1199hdr_l2only_dest(void *vbuf, void *unused)
1200{
2a8ba608 1201 arc_buf_hdr_t *hdr __maybe_unused = vbuf;
b9541d6b 1202
d3c2ae1c 1203 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1204 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1205}
1206
b128c09f
BB
1207/* ARGSUSED */
1208static void
1209buf_dest(void *vbuf, void *unused)
1210{
1211 arc_buf_t *buf = vbuf;
1212
428870ff 1213 mutex_destroy(&buf->b_evict_lock);
d164b209 1214 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1215}
1216
34dc7c2f
BB
1217static void
1218buf_init(void)
1219{
2db28197 1220 uint64_t *ct = NULL;
34dc7c2f
BB
1221 uint64_t hsize = 1ULL << 12;
1222 int i, j;
1223
1224 /*
1225 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1226 * with an average block size of zfs_arc_average_blocksize (default 8K).
1227 * By default, the table will take up
1228 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1229 */
9edb3695 1230 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
34dc7c2f
BB
1231 hsize <<= 1;
1232retry:
1233 buf_hash_table.ht_mask = hsize - 1;
93ce2b4c 1234#if defined(_KERNEL)
d1d7e268
MK
1235 /*
1236 * Large allocations which do not require contiguous pages
1237 * should be using vmem_alloc() in the linux kernel
1238 */
00b46022
BB
1239 buf_hash_table.ht_table =
1240 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1241#else
34dc7c2f
BB
1242 buf_hash_table.ht_table =
1243 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1244#endif
34dc7c2f
BB
1245 if (buf_hash_table.ht_table == NULL) {
1246 ASSERT(hsize > (1ULL << 8));
1247 hsize >>= 1;
1248 goto retry;
1249 }
1250
b9541d6b 1251 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
026e529c 1252 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
b5256303
TC
1253 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1254 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
026e529c 1255 NULL, NULL, NULL, 0);
b9541d6b 1256 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
026e529c 1257 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
b9541d6b 1258 NULL, NULL, 0);
34dc7c2f 1259 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1260 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1261
1262 for (i = 0; i < 256; i++)
1263 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1264 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1265
490c845e
AM
1266 for (i = 0; i < BUF_LOCKS; i++)
1267 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1268}
1269
d3c2ae1c 1270#define ARC_MINTIME (hz>>4) /* 62 ms */
ca0bf58d 1271
2aa34383
DK
1272/*
1273 * This is the size that the buf occupies in memory. If the buf is compressed,
1274 * it will correspond to the compressed size. You should use this method of
1275 * getting the buf size unless you explicitly need the logical size.
1276 */
1277uint64_t
1278arc_buf_size(arc_buf_t *buf)
1279{
1280 return (ARC_BUF_COMPRESSED(buf) ?
1281 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1282}
1283
1284uint64_t
1285arc_buf_lsize(arc_buf_t *buf)
1286{
1287 return (HDR_GET_LSIZE(buf->b_hdr));
1288}
1289
b5256303
TC
1290/*
1291 * This function will return B_TRUE if the buffer is encrypted in memory.
1292 * This buffer can be decrypted by calling arc_untransform().
1293 */
1294boolean_t
1295arc_is_encrypted(arc_buf_t *buf)
1296{
1297 return (ARC_BUF_ENCRYPTED(buf) != 0);
1298}
1299
1300/*
1301 * Returns B_TRUE if the buffer represents data that has not had its MAC
1302 * verified yet.
1303 */
1304boolean_t
1305arc_is_unauthenticated(arc_buf_t *buf)
1306{
1307 return (HDR_NOAUTH(buf->b_hdr) != 0);
1308}
1309
1310void
1311arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1312 uint8_t *iv, uint8_t *mac)
1313{
1314 arc_buf_hdr_t *hdr = buf->b_hdr;
1315
1316 ASSERT(HDR_PROTECTED(hdr));
1317
1318 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1319 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1320 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1321 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1322 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1323}
1324
1325/*
1326 * Indicates how this buffer is compressed in memory. If it is not compressed
1327 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1328 * arc_untransform() as long as it is also unencrypted.
1329 */
2aa34383
DK
1330enum zio_compress
1331arc_get_compression(arc_buf_t *buf)
1332{
1333 return (ARC_BUF_COMPRESSED(buf) ?
1334 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1335}
1336
b5256303
TC
1337/*
1338 * Return the compression algorithm used to store this data in the ARC. If ARC
1339 * compression is enabled or this is an encrypted block, this will be the same
1340 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1341 */
1342static inline enum zio_compress
1343arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1344{
1345 return (HDR_COMPRESSION_ENABLED(hdr) ?
1346 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1347}
1348
10b3c7f5
MN
1349uint8_t
1350arc_get_complevel(arc_buf_t *buf)
1351{
1352 return (buf->b_hdr->b_complevel);
1353}
1354
d3c2ae1c
GW
1355static inline boolean_t
1356arc_buf_is_shared(arc_buf_t *buf)
1357{
1358 boolean_t shared = (buf->b_data != NULL &&
a6255b7f
DQ
1359 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1360 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1361 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
d3c2ae1c 1362 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
2aa34383
DK
1363 IMPLY(shared, ARC_BUF_SHARED(buf));
1364 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
524b4217
DK
1365
1366 /*
1367 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1368 * already being shared" requirement prevents us from doing that.
1369 */
1370
d3c2ae1c
GW
1371 return (shared);
1372}
ca0bf58d 1373
a7004725
DK
1374/*
1375 * Free the checksum associated with this header. If there is no checksum, this
1376 * is a no-op.
1377 */
d3c2ae1c
GW
1378static inline void
1379arc_cksum_free(arc_buf_hdr_t *hdr)
1380{
1381 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303 1382
d3c2ae1c
GW
1383 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1384 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1385 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1386 hdr->b_l1hdr.b_freeze_cksum = NULL;
b9541d6b 1387 }
d3c2ae1c 1388 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
b9541d6b
CW
1389}
1390
a7004725
DK
1391/*
1392 * Return true iff at least one of the bufs on hdr is not compressed.
b5256303 1393 * Encrypted buffers count as compressed.
a7004725
DK
1394 */
1395static boolean_t
1396arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1397{
ca6c7a94 1398 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
149ce888 1399
a7004725
DK
1400 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1401 if (!ARC_BUF_COMPRESSED(b)) {
1402 return (B_TRUE);
1403 }
1404 }
1405 return (B_FALSE);
1406}
1407
1408
524b4217
DK
1409/*
1410 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1411 * matches the checksum that is stored in the hdr. If there is no checksum,
1412 * or if the buf is compressed, this is a no-op.
1413 */
34dc7c2f
BB
1414static void
1415arc_cksum_verify(arc_buf_t *buf)
1416{
d3c2ae1c 1417 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f
BB
1418 zio_cksum_t zc;
1419
1420 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1421 return;
1422
149ce888 1423 if (ARC_BUF_COMPRESSED(buf))
524b4217 1424 return;
524b4217 1425
d3c2ae1c
GW
1426 ASSERT(HDR_HAS_L1HDR(hdr));
1427
1428 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
149ce888 1429
d3c2ae1c
GW
1430 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1431 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1432 return;
1433 }
2aa34383 1434
3c67d83a 1435 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
d3c2ae1c 1436 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
34dc7c2f 1437 panic("buffer modified while frozen!");
d3c2ae1c 1438 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1439}
1440
b5256303
TC
1441/*
1442 * This function makes the assumption that data stored in the L2ARC
1443 * will be transformed exactly as it is in the main pool. Because of
1444 * this we can verify the checksum against the reading process's bp.
1445 */
d3c2ae1c
GW
1446static boolean_t
1447arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
34dc7c2f 1448{
d3c2ae1c
GW
1449 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1450 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
34dc7c2f 1451
d3c2ae1c
GW
1452 /*
1453 * Block pointers always store the checksum for the logical data.
1454 * If the block pointer has the gang bit set, then the checksum
1455 * it represents is for the reconstituted data and not for an
1456 * individual gang member. The zio pipeline, however, must be able to
1457 * determine the checksum of each of the gang constituents so it
1458 * treats the checksum comparison differently than what we need
1459 * for l2arc blocks. This prevents us from using the
1460 * zio_checksum_error() interface directly. Instead we must call the
1461 * zio_checksum_error_impl() so that we can ensure the checksum is
1462 * generated using the correct checksum algorithm and accounts for the
1463 * logical I/O size and not just a gang fragment.
1464 */
b5256303 1465 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
a6255b7f 1466 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
d3c2ae1c 1467 zio->io_offset, NULL) == 0);
34dc7c2f
BB
1468}
1469
524b4217
DK
1470/*
1471 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1472 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1473 * isn't modified later on. If buf is compressed or there is already a checksum
1474 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1475 */
34dc7c2f 1476static void
d3c2ae1c 1477arc_cksum_compute(arc_buf_t *buf)
34dc7c2f 1478{
d3c2ae1c
GW
1479 arc_buf_hdr_t *hdr = buf->b_hdr;
1480
1481 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
34dc7c2f
BB
1482 return;
1483
d3c2ae1c 1484 ASSERT(HDR_HAS_L1HDR(hdr));
2aa34383 1485
b9541d6b 1486 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
149ce888 1487 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 1488 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1489 return;
1490 }
2aa34383 1491
b5256303 1492 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2aa34383 1493 ASSERT(!ARC_BUF_COMPRESSED(buf));
d3c2ae1c
GW
1494 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1495 KM_SLEEP);
3c67d83a 1496 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
d3c2ae1c
GW
1497 hdr->b_l1hdr.b_freeze_cksum);
1498 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1499 arc_buf_watch(buf);
1500}
1501
1502#ifndef _KERNEL
1503void
1504arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1505{
02730c33 1506 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
498877ba
MA
1507}
1508#endif
1509
1510/* ARGSUSED */
1511static void
1512arc_buf_unwatch(arc_buf_t *buf)
1513{
1514#ifndef _KERNEL
1515 if (arc_watch) {
a7004725 1516 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
498877ba
MA
1517 PROT_READ | PROT_WRITE));
1518 }
1519#endif
1520}
1521
1522/* ARGSUSED */
1523static void
1524arc_buf_watch(arc_buf_t *buf)
1525{
1526#ifndef _KERNEL
1527 if (arc_watch)
2aa34383 1528 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
d3c2ae1c 1529 PROT_READ));
498877ba 1530#endif
34dc7c2f
BB
1531}
1532
b9541d6b
CW
1533static arc_buf_contents_t
1534arc_buf_type(arc_buf_hdr_t *hdr)
1535{
d3c2ae1c 1536 arc_buf_contents_t type;
b9541d6b 1537 if (HDR_ISTYPE_METADATA(hdr)) {
d3c2ae1c 1538 type = ARC_BUFC_METADATA;
b9541d6b 1539 } else {
d3c2ae1c 1540 type = ARC_BUFC_DATA;
b9541d6b 1541 }
d3c2ae1c
GW
1542 VERIFY3U(hdr->b_type, ==, type);
1543 return (type);
b9541d6b
CW
1544}
1545
2aa34383
DK
1546boolean_t
1547arc_is_metadata(arc_buf_t *buf)
1548{
1549 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1550}
1551
b9541d6b
CW
1552static uint32_t
1553arc_bufc_to_flags(arc_buf_contents_t type)
1554{
1555 switch (type) {
1556 case ARC_BUFC_DATA:
1557 /* metadata field is 0 if buffer contains normal data */
1558 return (0);
1559 case ARC_BUFC_METADATA:
1560 return (ARC_FLAG_BUFC_METADATA);
1561 default:
1562 break;
1563 }
1564 panic("undefined ARC buffer type!");
1565 return ((uint32_t)-1);
1566}
1567
34dc7c2f
BB
1568void
1569arc_buf_thaw(arc_buf_t *buf)
1570{
d3c2ae1c
GW
1571 arc_buf_hdr_t *hdr = buf->b_hdr;
1572
2aa34383
DK
1573 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1574 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1575
524b4217 1576 arc_cksum_verify(buf);
34dc7c2f 1577
2aa34383 1578 /*
149ce888 1579 * Compressed buffers do not manipulate the b_freeze_cksum.
2aa34383 1580 */
149ce888 1581 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1582 return;
2aa34383 1583
d3c2ae1c
GW
1584 ASSERT(HDR_HAS_L1HDR(hdr));
1585 arc_cksum_free(hdr);
498877ba 1586 arc_buf_unwatch(buf);
34dc7c2f
BB
1587}
1588
1589void
1590arc_buf_freeze(arc_buf_t *buf)
1591{
1592 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1593 return;
1594
149ce888 1595 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1596 return;
428870ff 1597
149ce888 1598 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
d3c2ae1c 1599 arc_cksum_compute(buf);
34dc7c2f
BB
1600}
1601
d3c2ae1c
GW
1602/*
1603 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1604 * the following functions should be used to ensure that the flags are
1605 * updated in a thread-safe way. When manipulating the flags either
1606 * the hash_lock must be held or the hdr must be undiscoverable. This
1607 * ensures that we're not racing with any other threads when updating
1608 * the flags.
1609 */
1610static inline void
1611arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1612{
ca6c7a94 1613 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1614 hdr->b_flags |= flags;
1615}
1616
1617static inline void
1618arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1619{
ca6c7a94 1620 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1621 hdr->b_flags &= ~flags;
1622}
1623
1624/*
1625 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1626 * done in a special way since we have to clear and set bits
1627 * at the same time. Consumers that wish to set the compression bits
1628 * must use this function to ensure that the flags are updated in
1629 * thread-safe manner.
1630 */
1631static void
1632arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1633{
ca6c7a94 1634 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1635
1636 /*
1637 * Holes and embedded blocks will always have a psize = 0 so
1638 * we ignore the compression of the blkptr and set the
d3c2ae1c
GW
1639 * want to uncompress them. Mark them as uncompressed.
1640 */
1641 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1642 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c 1643 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
d3c2ae1c
GW
1644 } else {
1645 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c
GW
1646 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1647 }
b5256303
TC
1648
1649 HDR_SET_COMPRESS(hdr, cmp);
1650 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
d3c2ae1c
GW
1651}
1652
524b4217
DK
1653/*
1654 * Looks for another buf on the same hdr which has the data decompressed, copies
1655 * from it, and returns true. If no such buf exists, returns false.
1656 */
1657static boolean_t
1658arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1659{
1660 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217
DK
1661 boolean_t copied = B_FALSE;
1662
1663 ASSERT(HDR_HAS_L1HDR(hdr));
1664 ASSERT3P(buf->b_data, !=, NULL);
1665 ASSERT(!ARC_BUF_COMPRESSED(buf));
1666
a7004725 1667 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
524b4217
DK
1668 from = from->b_next) {
1669 /* can't use our own data buffer */
1670 if (from == buf) {
1671 continue;
1672 }
1673
1674 if (!ARC_BUF_COMPRESSED(from)) {
1675 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1676 copied = B_TRUE;
1677 break;
1678 }
1679 }
1680
1681 /*
1682 * There were no decompressed bufs, so there should not be a
1683 * checksum on the hdr either.
1684 */
46db9d61
BB
1685 if (zfs_flags & ZFS_DEBUG_MODIFY)
1686 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
524b4217
DK
1687
1688 return (copied);
1689}
1690
77f6826b
GA
1691/*
1692 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1693 * This is used during l2arc reconstruction to make empty ARC buffers
1694 * which circumvent the regular disk->arc->l2arc path and instead come
1695 * into being in the reverse order, i.e. l2arc->arc.
1696 */
65c7cc49 1697static arc_buf_hdr_t *
77f6826b
GA
1698arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1699 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
10b3c7f5 1700 enum zio_compress compress, uint8_t complevel, boolean_t protected,
08532162 1701 boolean_t prefetch, arc_state_type_t arcs_state)
77f6826b
GA
1702{
1703 arc_buf_hdr_t *hdr;
1704
1705 ASSERT(size != 0);
1706 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1707 hdr->b_birth = birth;
1708 hdr->b_type = type;
1709 hdr->b_flags = 0;
1710 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1711 HDR_SET_LSIZE(hdr, size);
1712 HDR_SET_PSIZE(hdr, psize);
1713 arc_hdr_set_compress(hdr, compress);
10b3c7f5 1714 hdr->b_complevel = complevel;
77f6826b
GA
1715 if (protected)
1716 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1717 if (prefetch)
1718 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1719 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1720
1721 hdr->b_dva = dva;
1722
1723 hdr->b_l2hdr.b_dev = dev;
1724 hdr->b_l2hdr.b_daddr = daddr;
08532162 1725 hdr->b_l2hdr.b_arcs_state = arcs_state;
77f6826b
GA
1726
1727 return (hdr);
1728}
1729
b5256303
TC
1730/*
1731 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1732 */
1733static uint64_t
1734arc_hdr_size(arc_buf_hdr_t *hdr)
1735{
1736 uint64_t size;
1737
1738 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1739 HDR_GET_PSIZE(hdr) > 0) {
1740 size = HDR_GET_PSIZE(hdr);
1741 } else {
1742 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1743 size = HDR_GET_LSIZE(hdr);
1744 }
1745 return (size);
1746}
1747
1748static int
1749arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1750{
1751 int ret;
1752 uint64_t csize;
1753 uint64_t lsize = HDR_GET_LSIZE(hdr);
1754 uint64_t psize = HDR_GET_PSIZE(hdr);
1755 void *tmpbuf = NULL;
1756 abd_t *abd = hdr->b_l1hdr.b_pabd;
1757
ca6c7a94 1758 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1759 ASSERT(HDR_AUTHENTICATED(hdr));
1760 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1761
1762 /*
1763 * The MAC is calculated on the compressed data that is stored on disk.
1764 * However, if compressed arc is disabled we will only have the
1765 * decompressed data available to us now. Compress it into a temporary
1766 * abd so we can verify the MAC. The performance overhead of this will
1767 * be relatively low, since most objects in an encrypted objset will
1768 * be encrypted (instead of authenticated) anyway.
1769 */
1770 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1771 !HDR_COMPRESSION_ENABLED(hdr)) {
1772 tmpbuf = zio_buf_alloc(lsize);
1773 abd = abd_get_from_buf(tmpbuf, lsize);
1774 abd_take_ownership_of_buf(abd, B_TRUE);
b5256303 1775 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
10b3c7f5 1776 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
b5256303
TC
1777 ASSERT3U(csize, <=, psize);
1778 abd_zero_off(abd, csize, psize - csize);
1779 }
1780
1781 /*
1782 * Authentication is best effort. We authenticate whenever the key is
1783 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1784 */
1785 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1786 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1787 ASSERT3U(lsize, ==, psize);
1788 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1789 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1790 } else {
1791 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1792 hdr->b_crypt_hdr.b_mac);
1793 }
1794
1795 if (ret == 0)
1796 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1797 else if (ret != ENOENT)
1798 goto error;
1799
1800 if (tmpbuf != NULL)
1801 abd_free(abd);
1802
1803 return (0);
1804
1805error:
1806 if (tmpbuf != NULL)
1807 abd_free(abd);
1808
1809 return (ret);
1810}
1811
1812/*
1813 * This function will take a header that only has raw encrypted data in
1814 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1815 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1816 * also decompress the data.
1817 */
1818static int
be9a5c35 1819arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
b5256303
TC
1820{
1821 int ret;
b5256303
TC
1822 abd_t *cabd = NULL;
1823 void *tmp = NULL;
1824 boolean_t no_crypt = B_FALSE;
1825 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1826
ca6c7a94 1827 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1828 ASSERT(HDR_ENCRYPTED(hdr));
1829
e111c802 1830 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
b5256303 1831
be9a5c35
TC
1832 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1833 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1834 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
b5256303
TC
1835 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1836 if (ret != 0)
1837 goto error;
1838
1839 if (no_crypt) {
1840 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1841 HDR_GET_PSIZE(hdr));
1842 }
1843
1844 /*
1845 * If this header has disabled arc compression but the b_pabd is
1846 * compressed after decrypting it, we need to decompress the newly
1847 * decrypted data.
1848 */
1849 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1850 !HDR_COMPRESSION_ENABLED(hdr)) {
1851 /*
1852 * We want to make sure that we are correctly honoring the
1853 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1854 * and then loan a buffer from it, rather than allocating a
1855 * linear buffer and wrapping it in an abd later.
1856 */
e111c802 1857 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr, B_TRUE);
b5256303
TC
1858 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1859
1860 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1861 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
10b3c7f5 1862 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
b5256303
TC
1863 if (ret != 0) {
1864 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1865 goto error;
1866 }
1867
1868 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1869 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1870 arc_hdr_size(hdr), hdr);
1871 hdr->b_l1hdr.b_pabd = cabd;
1872 }
1873
b5256303
TC
1874 return (0);
1875
1876error:
1877 arc_hdr_free_abd(hdr, B_FALSE);
b5256303
TC
1878 if (cabd != NULL)
1879 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1880
1881 return (ret);
1882}
1883
1884/*
1885 * This function is called during arc_buf_fill() to prepare the header's
1886 * abd plaintext pointer for use. This involves authenticated protected
1887 * data and decrypting encrypted data into the plaintext abd.
1888 */
1889static int
1890arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
be9a5c35 1891 const zbookmark_phys_t *zb, boolean_t noauth)
b5256303
TC
1892{
1893 int ret;
1894
1895 ASSERT(HDR_PROTECTED(hdr));
1896
1897 if (hash_lock != NULL)
1898 mutex_enter(hash_lock);
1899
1900 if (HDR_NOAUTH(hdr) && !noauth) {
1901 /*
1902 * The caller requested authenticated data but our data has
1903 * not been authenticated yet. Verify the MAC now if we can.
1904 */
be9a5c35 1905 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
b5256303
TC
1906 if (ret != 0)
1907 goto error;
1908 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1909 /*
1910 * If we only have the encrypted version of the data, but the
1911 * unencrypted version was requested we take this opportunity
1912 * to store the decrypted version in the header for future use.
1913 */
be9a5c35 1914 ret = arc_hdr_decrypt(hdr, spa, zb);
b5256303
TC
1915 if (ret != 0)
1916 goto error;
1917 }
1918
1919 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1920
1921 if (hash_lock != NULL)
1922 mutex_exit(hash_lock);
1923
1924 return (0);
1925
1926error:
1927 if (hash_lock != NULL)
1928 mutex_exit(hash_lock);
1929
1930 return (ret);
1931}
1932
1933/*
1934 * This function is used by the dbuf code to decrypt bonus buffers in place.
1935 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1936 * block, so we use the hash lock here to protect against concurrent calls to
1937 * arc_buf_fill().
1938 */
1939static void
1940arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
1941{
1942 arc_buf_hdr_t *hdr = buf->b_hdr;
1943
1944 ASSERT(HDR_ENCRYPTED(hdr));
1945 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
ca6c7a94 1946 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1947 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1948
1949 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1950 arc_buf_size(buf));
1951 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1952 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1953 hdr->b_crypt_hdr.b_ebufcnt -= 1;
1954}
1955
524b4217
DK
1956/*
1957 * Given a buf that has a data buffer attached to it, this function will
1958 * efficiently fill the buf with data of the specified compression setting from
1959 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1960 * are already sharing a data buf, no copy is performed.
1961 *
1962 * If the buf is marked as compressed but uncompressed data was requested, this
1963 * will allocate a new data buffer for the buf, remove that flag, and fill the
1964 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1965 * uncompressed data, and (since we haven't added support for it yet) if you
1966 * want compressed data your buf must already be marked as compressed and have
1967 * the correct-sized data buffer.
1968 */
1969static int
be9a5c35
TC
1970arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1971 arc_fill_flags_t flags)
d3c2ae1c 1972{
b5256303 1973 int error = 0;
d3c2ae1c 1974 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
1975 boolean_t hdr_compressed =
1976 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1977 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1978 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
d3c2ae1c 1979 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
b5256303 1980 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
d3c2ae1c 1981
524b4217 1982 ASSERT3P(buf->b_data, !=, NULL);
b5256303 1983 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
524b4217 1984 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
b5256303
TC
1985 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
1986 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
1987 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
1988 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
1989
1990 /*
1991 * If the caller wanted encrypted data we just need to copy it from
1992 * b_rabd and potentially byteswap it. We won't be able to do any
1993 * further transforms on it.
1994 */
1995 if (encrypted) {
1996 ASSERT(HDR_HAS_RABD(hdr));
1997 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
1998 HDR_GET_PSIZE(hdr));
1999 goto byteswap;
2000 }
2001
2002 /*
e1cfd73f 2003 * Adjust encrypted and authenticated headers to accommodate
69830602
TC
2004 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2005 * allowed to fail decryption due to keys not being loaded
2006 * without being marked as an IO error.
b5256303
TC
2007 */
2008 if (HDR_PROTECTED(hdr)) {
2009 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
be9a5c35 2010 zb, !!(flags & ARC_FILL_NOAUTH));
69830602
TC
2011 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2012 return (error);
2013 } else if (error != 0) {
e7504d7a
TC
2014 if (hash_lock != NULL)
2015 mutex_enter(hash_lock);
2c24b5b1 2016 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2017 if (hash_lock != NULL)
2018 mutex_exit(hash_lock);
b5256303 2019 return (error);
2c24b5b1 2020 }
b5256303
TC
2021 }
2022
2023 /*
2024 * There is a special case here for dnode blocks which are
2025 * decrypting their bonus buffers. These blocks may request to
2026 * be decrypted in-place. This is necessary because there may
2027 * be many dnodes pointing into this buffer and there is
2028 * currently no method to synchronize replacing the backing
2029 * b_data buffer and updating all of the pointers. Here we use
2030 * the hash lock to ensure there are no races. If the need
2031 * arises for other types to be decrypted in-place, they must
2032 * add handling here as well.
2033 */
2034 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2035 ASSERT(!hdr_compressed);
2036 ASSERT(!compressed);
2037 ASSERT(!encrypted);
2038
2039 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2040 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2041
2042 if (hash_lock != NULL)
2043 mutex_enter(hash_lock);
2044 arc_buf_untransform_in_place(buf, hash_lock);
2045 if (hash_lock != NULL)
2046 mutex_exit(hash_lock);
2047
2048 /* Compute the hdr's checksum if necessary */
2049 arc_cksum_compute(buf);
2050 }
2051
2052 return (0);
2053 }
524b4217
DK
2054
2055 if (hdr_compressed == compressed) {
2aa34383 2056 if (!arc_buf_is_shared(buf)) {
a6255b7f 2057 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
524b4217 2058 arc_buf_size(buf));
2aa34383 2059 }
d3c2ae1c 2060 } else {
524b4217
DK
2061 ASSERT(hdr_compressed);
2062 ASSERT(!compressed);
d3c2ae1c 2063 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2aa34383
DK
2064
2065 /*
524b4217
DK
2066 * If the buf is sharing its data with the hdr, unlink it and
2067 * allocate a new data buffer for the buf.
2aa34383 2068 */
524b4217
DK
2069 if (arc_buf_is_shared(buf)) {
2070 ASSERT(ARC_BUF_COMPRESSED(buf));
2071
e1cfd73f 2072 /* We need to give the buf its own b_data */
524b4217 2073 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2aa34383
DK
2074 buf->b_data =
2075 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2076 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2077
524b4217 2078 /* Previously overhead was 0; just add new overhead */
2aa34383 2079 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
524b4217
DK
2080 } else if (ARC_BUF_COMPRESSED(buf)) {
2081 /* We need to reallocate the buf's b_data */
2082 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2083 buf);
2084 buf->b_data =
2085 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2086
2087 /* We increased the size of b_data; update overhead */
2088 ARCSTAT_INCR(arcstat_overhead_size,
2089 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2aa34383
DK
2090 }
2091
524b4217
DK
2092 /*
2093 * Regardless of the buf's previous compression settings, it
2094 * should not be compressed at the end of this function.
2095 */
2096 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2097
2098 /*
2099 * Try copying the data from another buf which already has a
2100 * decompressed version. If that's not possible, it's time to
2101 * bite the bullet and decompress the data from the hdr.
2102 */
2103 if (arc_buf_try_copy_decompressed_data(buf)) {
2104 /* Skip byteswapping and checksumming (already done) */
524b4217
DK
2105 return (0);
2106 } else {
b5256303 2107 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
a6255b7f 2108 hdr->b_l1hdr.b_pabd, buf->b_data,
10b3c7f5
MN
2109 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2110 &hdr->b_complevel);
524b4217
DK
2111
2112 /*
2113 * Absent hardware errors or software bugs, this should
2114 * be impossible, but log it anyway so we can debug it.
2115 */
2116 if (error != 0) {
2117 zfs_dbgmsg(
a887d653 2118 "hdr %px, compress %d, psize %d, lsize %d",
b5256303 2119 hdr, arc_hdr_get_compress(hdr),
524b4217 2120 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
e7504d7a
TC
2121 if (hash_lock != NULL)
2122 mutex_enter(hash_lock);
2c24b5b1 2123 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2124 if (hash_lock != NULL)
2125 mutex_exit(hash_lock);
524b4217
DK
2126 return (SET_ERROR(EIO));
2127 }
d3c2ae1c
GW
2128 }
2129 }
524b4217 2130
b5256303 2131byteswap:
524b4217 2132 /* Byteswap the buf's data if necessary */
d3c2ae1c
GW
2133 if (bswap != DMU_BSWAP_NUMFUNCS) {
2134 ASSERT(!HDR_SHARED_DATA(hdr));
2135 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2136 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2137 }
524b4217
DK
2138
2139 /* Compute the hdr's checksum if necessary */
d3c2ae1c 2140 arc_cksum_compute(buf);
524b4217 2141
d3c2ae1c
GW
2142 return (0);
2143}
2144
2145/*
b5256303
TC
2146 * If this function is being called to decrypt an encrypted buffer or verify an
2147 * authenticated one, the key must be loaded and a mapping must be made
2148 * available in the keystore via spa_keystore_create_mapping() or one of its
2149 * callers.
d3c2ae1c 2150 */
b5256303 2151int
a2c2ed1b
TC
2152arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2153 boolean_t in_place)
d3c2ae1c 2154{
a2c2ed1b 2155 int ret;
b5256303 2156 arc_fill_flags_t flags = 0;
d3c2ae1c 2157
b5256303
TC
2158 if (in_place)
2159 flags |= ARC_FILL_IN_PLACE;
2160
be9a5c35 2161 ret = arc_buf_fill(buf, spa, zb, flags);
a2c2ed1b
TC
2162 if (ret == ECKSUM) {
2163 /*
2164 * Convert authentication and decryption errors to EIO
2165 * (and generate an ereport) before leaving the ARC.
2166 */
2167 ret = SET_ERROR(EIO);
be9a5c35 2168 spa_log_error(spa, zb);
1144586b 2169 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
4f072827 2170 spa, NULL, zb, NULL, 0);
a2c2ed1b
TC
2171 }
2172
2173 return (ret);
d3c2ae1c
GW
2174}
2175
2176/*
2177 * Increment the amount of evictable space in the arc_state_t's refcount.
2178 * We account for the space used by the hdr and the arc buf individually
2179 * so that we can add and remove them from the refcount individually.
2180 */
34dc7c2f 2181static void
d3c2ae1c
GW
2182arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2183{
2184 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2185
2186 ASSERT(HDR_HAS_L1HDR(hdr));
2187
2188 if (GHOST_STATE(state)) {
2189 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2190 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2191 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2192 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2193 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2194 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2195 return;
2196 }
2197
a6255b7f 2198 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2199 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c
GW
2200 arc_hdr_size(hdr), hdr);
2201 }
b5256303 2202 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2203 (void) zfs_refcount_add_many(&state->arcs_esize[type],
b5256303
TC
2204 HDR_GET_PSIZE(hdr), hdr);
2205 }
2206
1c27024e
DB
2207 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2208 buf = buf->b_next) {
2aa34383 2209 if (arc_buf_is_shared(buf))
d3c2ae1c 2210 continue;
424fd7c3 2211 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2212 arc_buf_size(buf), buf);
d3c2ae1c
GW
2213 }
2214}
2215
2216/*
2217 * Decrement the amount of evictable space in the arc_state_t's refcount.
2218 * We account for the space used by the hdr and the arc buf individually
2219 * so that we can add and remove them from the refcount individually.
2220 */
2221static void
2aa34383 2222arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
d3c2ae1c
GW
2223{
2224 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2225
2226 ASSERT(HDR_HAS_L1HDR(hdr));
2227
2228 if (GHOST_STATE(state)) {
2229 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2230 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2231 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2232 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2233 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2234 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2235 return;
2236 }
2237
a6255b7f 2238 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2239 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
2240 arc_hdr_size(hdr), hdr);
2241 }
b5256303 2242 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2243 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
b5256303
TC
2244 HDR_GET_PSIZE(hdr), hdr);
2245 }
2246
1c27024e
DB
2247 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2248 buf = buf->b_next) {
2aa34383 2249 if (arc_buf_is_shared(buf))
d3c2ae1c 2250 continue;
424fd7c3 2251 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2252 arc_buf_size(buf), buf);
d3c2ae1c
GW
2253 }
2254}
2255
2256/*
2257 * Add a reference to this hdr indicating that someone is actively
2258 * referencing that memory. When the refcount transitions from 0 to 1,
2259 * we remove it from the respective arc_state_t list to indicate that
2260 * it is not evictable.
2261 */
2262static void
2263add_reference(arc_buf_hdr_t *hdr, void *tag)
34dc7c2f 2264{
b9541d6b
CW
2265 arc_state_t *state;
2266
2267 ASSERT(HDR_HAS_L1HDR(hdr));
ca6c7a94 2268 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
d3c2ae1c 2269 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
424fd7c3 2270 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
2271 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2272 }
34dc7c2f 2273
b9541d6b
CW
2274 state = hdr->b_l1hdr.b_state;
2275
c13060e4 2276 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
b9541d6b
CW
2277 (state != arc_anon)) {
2278 /* We don't use the L2-only state list. */
2279 if (state != arc_l2c_only) {
ffdf019c 2280 multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
d3c2ae1c 2281 hdr);
2aa34383 2282 arc_evictable_space_decrement(hdr, state);
34dc7c2f 2283 }
b128c09f 2284 /* remove the prefetch flag if we get a reference */
08532162
GA
2285 if (HDR_HAS_L2HDR(hdr))
2286 l2arc_hdr_arcstats_decrement_state(hdr);
d3c2ae1c 2287 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
08532162
GA
2288 if (HDR_HAS_L2HDR(hdr))
2289 l2arc_hdr_arcstats_increment_state(hdr);
34dc7c2f
BB
2290 }
2291}
2292
d3c2ae1c
GW
2293/*
2294 * Remove a reference from this hdr. When the reference transitions from
2295 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2296 * list making it eligible for eviction.
2297 */
34dc7c2f 2298static int
2a432414 2299remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
2300{
2301 int cnt;
b9541d6b 2302 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 2303
b9541d6b 2304 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
2305 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2306 ASSERT(!GHOST_STATE(state));
2307
b9541d6b
CW
2308 /*
2309 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2310 * check to prevent usage of the arc_l2c_only list.
2311 */
424fd7c3 2312 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 2313 (state != arc_anon)) {
ffdf019c 2314 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
d3c2ae1c
GW
2315 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2316 arc_evictable_space_increment(hdr, state);
34dc7c2f
BB
2317 }
2318 return (cnt);
2319}
2320
e0b0ca98
BB
2321/*
2322 * Returns detailed information about a specific arc buffer. When the
2323 * state_index argument is set the function will calculate the arc header
2324 * list position for its arc state. Since this requires a linear traversal
2325 * callers are strongly encourage not to do this. However, it can be helpful
2326 * for targeted analysis so the functionality is provided.
2327 */
2328void
2329arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2330{
2331 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
2332 l1arc_buf_hdr_t *l1hdr = NULL;
2333 l2arc_buf_hdr_t *l2hdr = NULL;
2334 arc_state_t *state = NULL;
2335
8887c7d7
TC
2336 memset(abi, 0, sizeof (arc_buf_info_t));
2337
2338 if (hdr == NULL)
2339 return;
2340
2341 abi->abi_flags = hdr->b_flags;
2342
b9541d6b
CW
2343 if (HDR_HAS_L1HDR(hdr)) {
2344 l1hdr = &hdr->b_l1hdr;
2345 state = l1hdr->b_state;
2346 }
2347 if (HDR_HAS_L2HDR(hdr))
2348 l2hdr = &hdr->b_l2hdr;
e0b0ca98 2349
b9541d6b 2350 if (l1hdr) {
d3c2ae1c 2351 abi->abi_bufcnt = l1hdr->b_bufcnt;
b9541d6b
CW
2352 abi->abi_access = l1hdr->b_arc_access;
2353 abi->abi_mru_hits = l1hdr->b_mru_hits;
2354 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2355 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2356 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
424fd7c3 2357 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
b9541d6b
CW
2358 }
2359
2360 if (l2hdr) {
2361 abi->abi_l2arc_dattr = l2hdr->b_daddr;
b9541d6b
CW
2362 abi->abi_l2arc_hits = l2hdr->b_hits;
2363 }
2364
e0b0ca98 2365 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 2366 abi->abi_state_contents = arc_buf_type(hdr);
d3c2ae1c 2367 abi->abi_size = arc_hdr_size(hdr);
e0b0ca98
BB
2368}
2369
34dc7c2f 2370/*
ca0bf58d 2371 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
2372 * for the buffer must be held by the caller.
2373 */
2374static void
2a432414
GW
2375arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2376 kmutex_t *hash_lock)
34dc7c2f 2377{
b9541d6b
CW
2378 arc_state_t *old_state;
2379 int64_t refcnt;
d3c2ae1c
GW
2380 uint32_t bufcnt;
2381 boolean_t update_old, update_new;
b9541d6b
CW
2382 arc_buf_contents_t buftype = arc_buf_type(hdr);
2383
2384 /*
2385 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2386 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2387 * L1 hdr doesn't always exist when we change state to arc_anon before
2388 * destroying a header, in which case reallocating to add the L1 hdr is
2389 * pointless.
2390 */
2391 if (HDR_HAS_L1HDR(hdr)) {
2392 old_state = hdr->b_l1hdr.b_state;
424fd7c3 2393 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
d3c2ae1c 2394 bufcnt = hdr->b_l1hdr.b_bufcnt;
b5256303
TC
2395 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2396 HDR_HAS_RABD(hdr));
b9541d6b
CW
2397 } else {
2398 old_state = arc_l2c_only;
2399 refcnt = 0;
d3c2ae1c
GW
2400 bufcnt = 0;
2401 update_old = B_FALSE;
b9541d6b 2402 }
d3c2ae1c 2403 update_new = update_old;
34dc7c2f
BB
2404
2405 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 2406 ASSERT3P(new_state, !=, old_state);
d3c2ae1c
GW
2407 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2408 ASSERT(old_state != arc_anon || bufcnt <= 1);
34dc7c2f
BB
2409
2410 /*
2411 * If this buffer is evictable, transfer it from the
2412 * old state list to the new state list.
2413 */
2414 if (refcnt == 0) {
b9541d6b 2415 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 2416 ASSERT(HDR_HAS_L1HDR(hdr));
ffdf019c 2417 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f 2418
d3c2ae1c
GW
2419 if (GHOST_STATE(old_state)) {
2420 ASSERT0(bufcnt);
2421 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2422 update_old = B_TRUE;
34dc7c2f 2423 }
2aa34383 2424 arc_evictable_space_decrement(hdr, old_state);
34dc7c2f 2425 }
b9541d6b 2426 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b
CW
2427 /*
2428 * An L1 header always exists here, since if we're
2429 * moving to some L1-cached state (i.e. not l2c_only or
2430 * anonymous), we realloc the header to add an L1hdr
2431 * beforehand.
2432 */
2433 ASSERT(HDR_HAS_L1HDR(hdr));
ffdf019c 2434 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f 2435
34dc7c2f 2436 if (GHOST_STATE(new_state)) {
d3c2ae1c
GW
2437 ASSERT0(bufcnt);
2438 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2439 update_new = B_TRUE;
34dc7c2f 2440 }
d3c2ae1c 2441 arc_evictable_space_increment(hdr, new_state);
34dc7c2f
BB
2442 }
2443 }
2444
d3c2ae1c 2445 ASSERT(!HDR_EMPTY(hdr));
2a432414
GW
2446 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2447 buf_hash_remove(hdr);
34dc7c2f 2448
b9541d6b 2449 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef 2450
d3c2ae1c 2451 if (update_new && new_state != arc_l2c_only) {
36da08ef
PS
2452 ASSERT(HDR_HAS_L1HDR(hdr));
2453 if (GHOST_STATE(new_state)) {
d3c2ae1c 2454 ASSERT0(bufcnt);
36da08ef
PS
2455
2456 /*
d3c2ae1c 2457 * When moving a header to a ghost state, we first
36da08ef 2458 * remove all arc buffers. Thus, we'll have a
d3c2ae1c 2459 * bufcnt of zero, and no arc buffer to use for
36da08ef
PS
2460 * the reference. As a result, we use the arc
2461 * header pointer for the reference.
2462 */
424fd7c3 2463 (void) zfs_refcount_add_many(&new_state->arcs_size,
d3c2ae1c 2464 HDR_GET_LSIZE(hdr), hdr);
a6255b7f 2465 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2466 ASSERT(!HDR_HAS_RABD(hdr));
36da08ef 2467 } else {
d3c2ae1c 2468 uint32_t buffers = 0;
36da08ef
PS
2469
2470 /*
2471 * Each individual buffer holds a unique reference,
2472 * thus we must remove each of these references one
2473 * at a time.
2474 */
1c27024e 2475 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2476 buf = buf->b_next) {
d3c2ae1c
GW
2477 ASSERT3U(bufcnt, !=, 0);
2478 buffers++;
2479
2480 /*
2481 * When the arc_buf_t is sharing the data
2482 * block with the hdr, the owner of the
2483 * reference belongs to the hdr. Only
2484 * add to the refcount if the arc_buf_t is
2485 * not shared.
2486 */
2aa34383 2487 if (arc_buf_is_shared(buf))
d3c2ae1c 2488 continue;
d3c2ae1c 2489
424fd7c3
TS
2490 (void) zfs_refcount_add_many(
2491 &new_state->arcs_size,
2aa34383 2492 arc_buf_size(buf), buf);
d3c2ae1c
GW
2493 }
2494 ASSERT3U(bufcnt, ==, buffers);
2495
a6255b7f 2496 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3
TS
2497 (void) zfs_refcount_add_many(
2498 &new_state->arcs_size,
d3c2ae1c 2499 arc_hdr_size(hdr), hdr);
b5256303
TC
2500 }
2501
2502 if (HDR_HAS_RABD(hdr)) {
424fd7c3
TS
2503 (void) zfs_refcount_add_many(
2504 &new_state->arcs_size,
b5256303 2505 HDR_GET_PSIZE(hdr), hdr);
36da08ef
PS
2506 }
2507 }
2508 }
2509
d3c2ae1c 2510 if (update_old && old_state != arc_l2c_only) {
36da08ef
PS
2511 ASSERT(HDR_HAS_L1HDR(hdr));
2512 if (GHOST_STATE(old_state)) {
d3c2ae1c 2513 ASSERT0(bufcnt);
a6255b7f 2514 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2515 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c 2516
36da08ef
PS
2517 /*
2518 * When moving a header off of a ghost state,
d3c2ae1c
GW
2519 * the header will not contain any arc buffers.
2520 * We use the arc header pointer for the reference
2521 * which is exactly what we did when we put the
2522 * header on the ghost state.
36da08ef
PS
2523 */
2524
424fd7c3 2525 (void) zfs_refcount_remove_many(&old_state->arcs_size,
d3c2ae1c 2526 HDR_GET_LSIZE(hdr), hdr);
36da08ef 2527 } else {
d3c2ae1c 2528 uint32_t buffers = 0;
36da08ef
PS
2529
2530 /*
2531 * Each individual buffer holds a unique reference,
2532 * thus we must remove each of these references one
2533 * at a time.
2534 */
1c27024e 2535 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2536 buf = buf->b_next) {
d3c2ae1c
GW
2537 ASSERT3U(bufcnt, !=, 0);
2538 buffers++;
2539
2540 /*
2541 * When the arc_buf_t is sharing the data
2542 * block with the hdr, the owner of the
2543 * reference belongs to the hdr. Only
2544 * add to the refcount if the arc_buf_t is
2545 * not shared.
2546 */
2aa34383 2547 if (arc_buf_is_shared(buf))
d3c2ae1c 2548 continue;
d3c2ae1c 2549
424fd7c3 2550 (void) zfs_refcount_remove_many(
2aa34383 2551 &old_state->arcs_size, arc_buf_size(buf),
d3c2ae1c 2552 buf);
36da08ef 2553 }
d3c2ae1c 2554 ASSERT3U(bufcnt, ==, buffers);
b5256303
TC
2555 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2556 HDR_HAS_RABD(hdr));
2557
2558 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2559 (void) zfs_refcount_remove_many(
b5256303
TC
2560 &old_state->arcs_size, arc_hdr_size(hdr),
2561 hdr);
2562 }
2563
2564 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2565 (void) zfs_refcount_remove_many(
b5256303
TC
2566 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2567 hdr);
2568 }
36da08ef 2569 }
34dc7c2f 2570 }
36da08ef 2571
08532162 2572 if (HDR_HAS_L1HDR(hdr)) {
b9541d6b 2573 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 2574
08532162
GA
2575 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2576 l2arc_hdr_arcstats_decrement_state(hdr);
2577 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2578 l2arc_hdr_arcstats_increment_state(hdr);
2579 }
2580 }
2581
b9541d6b
CW
2582 /*
2583 * L2 headers should never be on the L2 state list since they don't
2584 * have L1 headers allocated.
2585 */
ffdf019c
AM
2586 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2587 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
2588}
2589
2590void
d164b209 2591arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 2592{
d164b209
BB
2593 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2594
2595 switch (type) {
e75c13c3
BB
2596 default:
2597 break;
d164b209 2598 case ARC_SPACE_DATA:
c4c162c1 2599 ARCSTAT_INCR(arcstat_data_size, space);
d164b209 2600 break;
cc7f677c 2601 case ARC_SPACE_META:
c4c162c1 2602 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 2603 break;
25458cbe 2604 case ARC_SPACE_BONUS:
c4c162c1 2605 ARCSTAT_INCR(arcstat_bonus_size, space);
25458cbe
TC
2606 break;
2607 case ARC_SPACE_DNODE:
c4c162c1 2608 aggsum_add(&arc_sums.arcstat_dnode_size, space);
25458cbe
TC
2609 break;
2610 case ARC_SPACE_DBUF:
c4c162c1 2611 ARCSTAT_INCR(arcstat_dbuf_size, space);
d164b209
BB
2612 break;
2613 case ARC_SPACE_HDRS:
c4c162c1 2614 ARCSTAT_INCR(arcstat_hdr_size, space);
d164b209
BB
2615 break;
2616 case ARC_SPACE_L2HDRS:
c4c162c1 2617 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
d164b209 2618 break;
85ec5cba
MA
2619 case ARC_SPACE_ABD_CHUNK_WASTE:
2620 /*
2621 * Note: this includes space wasted by all scatter ABD's, not
2622 * just those allocated by the ARC. But the vast majority of
2623 * scatter ABD's come from the ARC, because other users are
2624 * very short-lived.
2625 */
c4c162c1 2626 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
85ec5cba 2627 break;
d164b209
BB
2628 }
2629
85ec5cba 2630 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
c4c162c1 2631 aggsum_add(&arc_sums.arcstat_meta_used, space);
cc7f677c 2632
c4c162c1 2633 aggsum_add(&arc_sums.arcstat_size, space);
34dc7c2f
BB
2634}
2635
2636void
d164b209 2637arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 2638{
d164b209
BB
2639 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2640
2641 switch (type) {
e75c13c3
BB
2642 default:
2643 break;
d164b209 2644 case ARC_SPACE_DATA:
c4c162c1 2645 ARCSTAT_INCR(arcstat_data_size, -space);
d164b209 2646 break;
cc7f677c 2647 case ARC_SPACE_META:
c4c162c1 2648 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 2649 break;
25458cbe 2650 case ARC_SPACE_BONUS:
c4c162c1 2651 ARCSTAT_INCR(arcstat_bonus_size, -space);
25458cbe
TC
2652 break;
2653 case ARC_SPACE_DNODE:
c4c162c1 2654 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
25458cbe
TC
2655 break;
2656 case ARC_SPACE_DBUF:
c4c162c1 2657 ARCSTAT_INCR(arcstat_dbuf_size, -space);
d164b209
BB
2658 break;
2659 case ARC_SPACE_HDRS:
c4c162c1 2660 ARCSTAT_INCR(arcstat_hdr_size, -space);
d164b209
BB
2661 break;
2662 case ARC_SPACE_L2HDRS:
c4c162c1 2663 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
d164b209 2664 break;
85ec5cba 2665 case ARC_SPACE_ABD_CHUNK_WASTE:
c4c162c1 2666 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
85ec5cba 2667 break;
d164b209
BB
2668 }
2669
85ec5cba 2670 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
c4c162c1
AM
2671 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used,
2672 space) >= 0);
2673 ARCSTAT_MAX(arcstat_meta_max,
2674 aggsum_upper_bound(&arc_sums.arcstat_meta_used));
2675 aggsum_add(&arc_sums.arcstat_meta_used, -space);
cc7f677c
PS
2676 }
2677
c4c162c1
AM
2678 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2679 aggsum_add(&arc_sums.arcstat_size, -space);
34dc7c2f
BB
2680}
2681
d3c2ae1c 2682/*
524b4217 2683 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
a6255b7f 2684 * with the hdr's b_pabd.
d3c2ae1c 2685 */
524b4217
DK
2686static boolean_t
2687arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2688{
524b4217
DK
2689 /*
2690 * The criteria for sharing a hdr's data are:
b5256303
TC
2691 * 1. the buffer is not encrypted
2692 * 2. the hdr's compression matches the buf's compression
2693 * 3. the hdr doesn't need to be byteswapped
2694 * 4. the hdr isn't already being shared
2695 * 5. the buf is either compressed or it is the last buf in the hdr list
524b4217 2696 *
b5256303 2697 * Criterion #5 maintains the invariant that shared uncompressed
524b4217
DK
2698 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2699 * might ask, "if a compressed buf is allocated first, won't that be the
2700 * last thing in the list?", but in that case it's impossible to create
2701 * a shared uncompressed buf anyway (because the hdr must be compressed
2702 * to have the compressed buf). You might also think that #3 is
2703 * sufficient to make this guarantee, however it's possible
2704 * (specifically in the rare L2ARC write race mentioned in
2705 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
e1cfd73f 2706 * is shareable, but wasn't at the time of its allocation. Rather than
524b4217
DK
2707 * allow a new shared uncompressed buf to be created and then shuffle
2708 * the list around to make it the last element, this simply disallows
2709 * sharing if the new buf isn't the first to be added.
2710 */
2711 ASSERT3P(buf->b_hdr, ==, hdr);
b5256303
TC
2712 boolean_t hdr_compressed =
2713 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
a7004725 2714 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
b5256303
TC
2715 return (!ARC_BUF_ENCRYPTED(buf) &&
2716 buf_compressed == hdr_compressed &&
524b4217
DK
2717 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2718 !HDR_SHARED_DATA(hdr) &&
2719 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2720}
2721
2722/*
2723 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2724 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2725 * copy was made successfully, or an error code otherwise.
2726 */
2727static int
be9a5c35
TC
2728arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2729 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
524b4217 2730 boolean_t fill, arc_buf_t **ret)
34dc7c2f 2731{
34dc7c2f 2732 arc_buf_t *buf;
b5256303 2733 arc_fill_flags_t flags = ARC_FILL_LOCKED;
34dc7c2f 2734
d3c2ae1c
GW
2735 ASSERT(HDR_HAS_L1HDR(hdr));
2736 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2737 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2738 hdr->b_type == ARC_BUFC_METADATA);
524b4217
DK
2739 ASSERT3P(ret, !=, NULL);
2740 ASSERT3P(*ret, ==, NULL);
b5256303 2741 IMPLY(encrypted, compressed);
d3c2ae1c 2742
b9541d6b
CW
2743 hdr->b_l1hdr.b_mru_hits = 0;
2744 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2745 hdr->b_l1hdr.b_mfu_hits = 0;
2746 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2747 hdr->b_l1hdr.b_l2_hits = 0;
2748
524b4217 2749 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
34dc7c2f
BB
2750 buf->b_hdr = hdr;
2751 buf->b_data = NULL;
2aa34383 2752 buf->b_next = hdr->b_l1hdr.b_buf;
524b4217 2753 buf->b_flags = 0;
b9541d6b 2754
d3c2ae1c
GW
2755 add_reference(hdr, tag);
2756
2757 /*
2758 * We're about to change the hdr's b_flags. We must either
2759 * hold the hash_lock or be undiscoverable.
2760 */
ca6c7a94 2761 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
2762
2763 /*
524b4217 2764 * Only honor requests for compressed bufs if the hdr is actually
e1cfd73f 2765 * compressed. This must be overridden if the buffer is encrypted since
b5256303 2766 * encrypted buffers cannot be decompressed.
524b4217 2767 */
b5256303
TC
2768 if (encrypted) {
2769 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2770 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2771 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2772 } else if (compressed &&
2773 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
524b4217 2774 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
2775 flags |= ARC_FILL_COMPRESSED;
2776 }
2777
2778 if (noauth) {
2779 ASSERT0(encrypted);
2780 flags |= ARC_FILL_NOAUTH;
2781 }
524b4217 2782
524b4217
DK
2783 /*
2784 * If the hdr's data can be shared then we share the data buffer and
2785 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
5662fd57
MA
2786 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2787 * buffer to store the buf's data.
524b4217 2788 *
a6255b7f
DQ
2789 * There are two additional restrictions here because we're sharing
2790 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2791 * actively involved in an L2ARC write, because if this buf is used by
2792 * an arc_write() then the hdr's data buffer will be released when the
524b4217 2793 * write completes, even though the L2ARC write might still be using it.
a6255b7f 2794 * Second, the hdr's ABD must be linear so that the buf's user doesn't
5662fd57
MA
2795 * need to be ABD-aware. It must be allocated via
2796 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2797 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2798 * page" buffers because the ABD code needs to handle freeing them
2799 * specially.
2800 */
2801 boolean_t can_share = arc_can_share(hdr, buf) &&
2802 !HDR_L2_WRITING(hdr) &&
2803 hdr->b_l1hdr.b_pabd != NULL &&
2804 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2805 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
524b4217
DK
2806
2807 /* Set up b_data and sharing */
2808 if (can_share) {
a6255b7f 2809 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
524b4217 2810 buf->b_flags |= ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2811 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2812 } else {
524b4217
DK
2813 buf->b_data =
2814 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2815 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
d3c2ae1c
GW
2816 }
2817 VERIFY3P(buf->b_data, !=, NULL);
b9541d6b
CW
2818
2819 hdr->b_l1hdr.b_buf = buf;
d3c2ae1c 2820 hdr->b_l1hdr.b_bufcnt += 1;
b5256303
TC
2821 if (encrypted)
2822 hdr->b_crypt_hdr.b_ebufcnt += 1;
b9541d6b 2823
524b4217
DK
2824 /*
2825 * If the user wants the data from the hdr, we need to either copy or
2826 * decompress the data.
2827 */
2828 if (fill) {
be9a5c35
TC
2829 ASSERT3P(zb, !=, NULL);
2830 return (arc_buf_fill(buf, spa, zb, flags));
524b4217 2831 }
d3c2ae1c 2832
524b4217 2833 return (0);
34dc7c2f
BB
2834}
2835
9babb374
BB
2836static char *arc_onloan_tag = "onloan";
2837
a7004725
DK
2838static inline void
2839arc_loaned_bytes_update(int64_t delta)
2840{
2841 atomic_add_64(&arc_loaned_bytes, delta);
2842
2843 /* assert that it did not wrap around */
2844 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2845}
2846
9babb374
BB
2847/*
2848 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2849 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2850 * buffers must be returned to the arc before they can be used by the DMU or
2851 * freed.
2852 */
2853arc_buf_t *
2aa34383 2854arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
9babb374 2855{
2aa34383
DK
2856 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2857 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
9babb374 2858
5152a740 2859 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2860
9babb374
BB
2861 return (buf);
2862}
2863
2aa34383
DK
2864arc_buf_t *
2865arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
10b3c7f5 2866 enum zio_compress compression_type, uint8_t complevel)
2aa34383
DK
2867{
2868 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
10b3c7f5 2869 psize, lsize, compression_type, complevel);
2aa34383 2870
5152a740 2871 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2872
2aa34383
DK
2873 return (buf);
2874}
2875
b5256303
TC
2876arc_buf_t *
2877arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2878 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2879 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
10b3c7f5 2880 enum zio_compress compression_type, uint8_t complevel)
b5256303
TC
2881{
2882 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
10b3c7f5
MN
2883 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2884 complevel);
b5256303
TC
2885
2886 atomic_add_64(&arc_loaned_bytes, psize);
2887 return (buf);
2888}
2889
2aa34383 2890
9babb374
BB
2891/*
2892 * Return a loaned arc buffer to the arc.
2893 */
2894void
2895arc_return_buf(arc_buf_t *buf, void *tag)
2896{
2897 arc_buf_hdr_t *hdr = buf->b_hdr;
2898
d3c2ae1c 2899 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 2900 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 2901 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
424fd7c3 2902 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374 2903
a7004725 2904 arc_loaned_bytes_update(-arc_buf_size(buf));
9babb374
BB
2905}
2906
428870ff
BB
2907/* Detach an arc_buf from a dbuf (tag) */
2908void
2909arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2910{
b9541d6b 2911 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff 2912
d3c2ae1c 2913 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 2914 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 2915 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
424fd7c3 2916 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff 2917
a7004725 2918 arc_loaned_bytes_update(arc_buf_size(buf));
428870ff
BB
2919}
2920
d3c2ae1c 2921static void
a6255b7f 2922l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
34dc7c2f 2923{
d3c2ae1c 2924 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
34dc7c2f 2925
a6255b7f 2926 df->l2df_abd = abd;
d3c2ae1c
GW
2927 df->l2df_size = size;
2928 df->l2df_type = type;
2929 mutex_enter(&l2arc_free_on_write_mtx);
2930 list_insert_head(l2arc_free_on_write, df);
2931 mutex_exit(&l2arc_free_on_write_mtx);
2932}
428870ff 2933
d3c2ae1c 2934static void
b5256303 2935arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c
GW
2936{
2937 arc_state_t *state = hdr->b_l1hdr.b_state;
2938 arc_buf_contents_t type = arc_buf_type(hdr);
b5256303 2939 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
1eb5bfa3 2940
d3c2ae1c
GW
2941 /* protected by hash lock, if in the hash table */
2942 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 2943 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
2944 ASSERT(state != arc_anon && state != arc_l2c_only);
2945
424fd7c3 2946 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c 2947 size, hdr);
1eb5bfa3 2948 }
424fd7c3 2949 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
423e7b62
AG
2950 if (type == ARC_BUFC_METADATA) {
2951 arc_space_return(size, ARC_SPACE_META);
2952 } else {
2953 ASSERT(type == ARC_BUFC_DATA);
2954 arc_space_return(size, ARC_SPACE_DATA);
2955 }
d3c2ae1c 2956
b5256303
TC
2957 if (free_rdata) {
2958 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2959 } else {
2960 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2961 }
34dc7c2f
BB
2962}
2963
d3c2ae1c
GW
2964/*
2965 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2966 * data buffer, we transfer the refcount ownership to the hdr and update
2967 * the appropriate kstats.
2968 */
2969static void
2970arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
34dc7c2f 2971{
524b4217 2972 ASSERT(arc_can_share(hdr, buf));
a6255b7f 2973 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2974 ASSERT(!ARC_BUF_ENCRYPTED(buf));
ca6c7a94 2975 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
34dc7c2f
BB
2976
2977 /*
d3c2ae1c
GW
2978 * Start sharing the data buffer. We transfer the
2979 * refcount ownership to the hdr since it always owns
2980 * the refcount whenever an arc_buf_t is shared.
34dc7c2f 2981 */
d7e4b30a
BB
2982 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2983 arc_hdr_size(hdr), buf, hdr);
a6255b7f
DQ
2984 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2985 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2986 HDR_ISTYPE_METADATA(hdr));
d3c2ae1c 2987 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
524b4217 2988 buf->b_flags |= ARC_BUF_FLAG_SHARED;
34dc7c2f 2989
d3c2ae1c
GW
2990 /*
2991 * Since we've transferred ownership to the hdr we need
2992 * to increment its compressed and uncompressed kstats and
2993 * decrement the overhead size.
2994 */
2995 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2996 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2aa34383 2997 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
34dc7c2f
BB
2998}
2999
ca0bf58d 3000static void
d3c2ae1c 3001arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
ca0bf58d 3002{
d3c2ae1c 3003 ASSERT(arc_buf_is_shared(buf));
a6255b7f 3004 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
ca6c7a94 3005 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
ca0bf58d 3006
d3c2ae1c
GW
3007 /*
3008 * We are no longer sharing this buffer so we need
3009 * to transfer its ownership to the rightful owner.
3010 */
d7e4b30a
BB
3011 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3012 arc_hdr_size(hdr), hdr, buf);
d3c2ae1c 3013 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
a6255b7f 3014 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
e2af2acc 3015 abd_free(hdr->b_l1hdr.b_pabd);
a6255b7f 3016 hdr->b_l1hdr.b_pabd = NULL;
524b4217 3017 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
3018
3019 /*
3020 * Since the buffer is no longer shared between
3021 * the arc buf and the hdr, count it as overhead.
3022 */
3023 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3024 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2aa34383 3025 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
ca0bf58d
PS
3026}
3027
34dc7c2f 3028/*
2aa34383
DK
3029 * Remove an arc_buf_t from the hdr's buf list and return the last
3030 * arc_buf_t on the list. If no buffers remain on the list then return
3031 * NULL.
3032 */
3033static arc_buf_t *
3034arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3035{
2aa34383 3036 ASSERT(HDR_HAS_L1HDR(hdr));
ca6c7a94 3037 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2aa34383 3038
a7004725
DK
3039 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3040 arc_buf_t *lastbuf = NULL;
3041
2aa34383
DK
3042 /*
3043 * Remove the buf from the hdr list and locate the last
3044 * remaining buffer on the list.
3045 */
3046 while (*bufp != NULL) {
3047 if (*bufp == buf)
3048 *bufp = buf->b_next;
3049
3050 /*
3051 * If we've removed a buffer in the middle of
3052 * the list then update the lastbuf and update
3053 * bufp.
3054 */
3055 if (*bufp != NULL) {
3056 lastbuf = *bufp;
3057 bufp = &(*bufp)->b_next;
3058 }
3059 }
3060 buf->b_next = NULL;
3061 ASSERT3P(lastbuf, !=, buf);
3062 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3063 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3064 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3065
3066 return (lastbuf);
3067}
3068
3069/*
e1cfd73f 3070 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
2aa34383 3071 * list and free it.
34dc7c2f
BB
3072 */
3073static void
2aa34383 3074arc_buf_destroy_impl(arc_buf_t *buf)
34dc7c2f 3075{
498877ba 3076 arc_buf_hdr_t *hdr = buf->b_hdr;
ca0bf58d
PS
3077
3078 /*
524b4217
DK
3079 * Free up the data associated with the buf but only if we're not
3080 * sharing this with the hdr. If we are sharing it with the hdr, the
3081 * hdr is responsible for doing the free.
ca0bf58d 3082 */
d3c2ae1c
GW
3083 if (buf->b_data != NULL) {
3084 /*
3085 * We're about to change the hdr's b_flags. We must either
3086 * hold the hash_lock or be undiscoverable.
3087 */
ca6c7a94 3088 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c 3089
524b4217 3090 arc_cksum_verify(buf);
d3c2ae1c
GW
3091 arc_buf_unwatch(buf);
3092
2aa34383 3093 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
3094 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3095 } else {
2aa34383 3096 uint64_t size = arc_buf_size(buf);
d3c2ae1c
GW
3097 arc_free_data_buf(hdr, buf->b_data, size, buf);
3098 ARCSTAT_INCR(arcstat_overhead_size, -size);
3099 }
3100 buf->b_data = NULL;
3101
3102 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3103 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303 3104
da5d4697 3105 if (ARC_BUF_ENCRYPTED(buf)) {
b5256303
TC
3106 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3107
da5d4697
D
3108 /*
3109 * If we have no more encrypted buffers and we've
3110 * already gotten a copy of the decrypted data we can
3111 * free b_rabd to save some space.
3112 */
3113 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3114 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3115 !HDR_IO_IN_PROGRESS(hdr)) {
3116 arc_hdr_free_abd(hdr, B_TRUE);
3117 }
440a3eb9 3118 }
d3c2ae1c
GW
3119 }
3120
a7004725 3121 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 3122
524b4217 3123 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2aa34383 3124 /*
524b4217 3125 * If the current arc_buf_t is sharing its data buffer with the
a6255b7f 3126 * hdr, then reassign the hdr's b_pabd to share it with the new
524b4217
DK
3127 * buffer at the end of the list. The shared buffer is always
3128 * the last one on the hdr's buffer list.
3129 *
3130 * There is an equivalent case for compressed bufs, but since
3131 * they aren't guaranteed to be the last buf in the list and
3132 * that is an exceedingly rare case, we just allow that space be
b5256303
TC
3133 * wasted temporarily. We must also be careful not to share
3134 * encrypted buffers, since they cannot be shared.
2aa34383 3135 */
b5256303 3136 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
524b4217 3137 /* Only one buf can be shared at once */
2aa34383 3138 VERIFY(!arc_buf_is_shared(lastbuf));
524b4217
DK
3139 /* hdr is uncompressed so can't have compressed buf */
3140 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
d3c2ae1c 3141
a6255b7f 3142 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 3143 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 3144
2aa34383
DK
3145 /*
3146 * We must setup a new shared block between the
3147 * last buffer and the hdr. The data would have
3148 * been allocated by the arc buf so we need to transfer
3149 * ownership to the hdr since it's now being shared.
3150 */
3151 arc_share_buf(hdr, lastbuf);
3152 }
3153 } else if (HDR_SHARED_DATA(hdr)) {
d3c2ae1c 3154 /*
2aa34383
DK
3155 * Uncompressed shared buffers are always at the end
3156 * of the list. Compressed buffers don't have the
3157 * same requirements. This makes it hard to
3158 * simply assert that the lastbuf is shared so
3159 * we rely on the hdr's compression flags to determine
3160 * if we have a compressed, shared buffer.
d3c2ae1c 3161 */
2aa34383
DK
3162 ASSERT3P(lastbuf, !=, NULL);
3163 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 3164 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
ca0bf58d
PS
3165 }
3166
a7004725
DK
3167 /*
3168 * Free the checksum if we're removing the last uncompressed buf from
3169 * this hdr.
3170 */
3171 if (!arc_hdr_has_uncompressed_buf(hdr)) {
d3c2ae1c 3172 arc_cksum_free(hdr);
a7004725 3173 }
d3c2ae1c
GW
3174
3175 /* clean up the buf */
3176 buf->b_hdr = NULL;
3177 kmem_cache_free(buf_cache, buf);
3178}
3179
3180static void
e111c802 3181arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
d3c2ae1c 3182{
b5256303 3183 uint64_t size;
e111c802
MM
3184 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3185 boolean_t do_adapt = ((alloc_flags & ARC_HDR_DO_ADAPT) != 0);
b5256303 3186
d3c2ae1c
GW
3187 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3188 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3189 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3190 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
d3c2ae1c 3191
b5256303
TC
3192 if (alloc_rdata) {
3193 size = HDR_GET_PSIZE(hdr);
3194 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
e111c802
MM
3195 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3196 do_adapt);
b5256303
TC
3197 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3198 ARCSTAT_INCR(arcstat_raw_size, size);
3199 } else {
3200 size = arc_hdr_size(hdr);
3201 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
e111c802
MM
3202 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3203 do_adapt);
b5256303
TC
3204 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3205 }
3206
3207 ARCSTAT_INCR(arcstat_compressed_size, size);
d3c2ae1c
GW
3208 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3209}
3210
3211static void
b5256303 3212arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c 3213{
b5256303
TC
3214 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3215
d3c2ae1c 3216 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3217 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3218 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
d3c2ae1c 3219
ca0bf58d 3220 /*
d3c2ae1c
GW
3221 * If the hdr is currently being written to the l2arc then
3222 * we defer freeing the data by adding it to the l2arc_free_on_write
3223 * list. The l2arc will free the data once it's finished
3224 * writing it to the l2arc device.
ca0bf58d 3225 */
d3c2ae1c 3226 if (HDR_L2_WRITING(hdr)) {
b5256303 3227 arc_hdr_free_on_write(hdr, free_rdata);
d3c2ae1c 3228 ARCSTAT_BUMP(arcstat_l2_free_on_write);
b5256303
TC
3229 } else if (free_rdata) {
3230 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
d3c2ae1c 3231 } else {
b5256303 3232 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
ca0bf58d
PS
3233 }
3234
b5256303
TC
3235 if (free_rdata) {
3236 hdr->b_crypt_hdr.b_rabd = NULL;
3237 ARCSTAT_INCR(arcstat_raw_size, -size);
3238 } else {
3239 hdr->b_l1hdr.b_pabd = NULL;
3240 }
3241
3242 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3243 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3244
3245 ARCSTAT_INCR(arcstat_compressed_size, -size);
d3c2ae1c
GW
3246 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3247}
3248
3249static arc_buf_hdr_t *
3250arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
10b3c7f5 3251 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
b5256303 3252 arc_buf_contents_t type, boolean_t alloc_rdata)
d3c2ae1c
GW
3253{
3254 arc_buf_hdr_t *hdr;
e111c802 3255 int flags = ARC_HDR_DO_ADAPT;
d3c2ae1c 3256
d3c2ae1c 3257 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
b5256303
TC
3258 if (protected) {
3259 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3260 } else {
3261 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3262 }
e111c802 3263 flags |= alloc_rdata ? ARC_HDR_ALLOC_RDATA : 0;
d3c2ae1c 3264
d3c2ae1c
GW
3265 ASSERT(HDR_EMPTY(hdr));
3266 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3267 HDR_SET_PSIZE(hdr, psize);
3268 HDR_SET_LSIZE(hdr, lsize);
3269 hdr->b_spa = spa;
3270 hdr->b_type = type;
3271 hdr->b_flags = 0;
3272 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2aa34383 3273 arc_hdr_set_compress(hdr, compression_type);
10b3c7f5 3274 hdr->b_complevel = complevel;
b5256303
TC
3275 if (protected)
3276 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
ca0bf58d 3277
d3c2ae1c
GW
3278 hdr->b_l1hdr.b_state = arc_anon;
3279 hdr->b_l1hdr.b_arc_access = 0;
3280 hdr->b_l1hdr.b_bufcnt = 0;
3281 hdr->b_l1hdr.b_buf = NULL;
ca0bf58d 3282
d3c2ae1c
GW
3283 /*
3284 * Allocate the hdr's buffer. This will contain either
3285 * the compressed or uncompressed data depending on the block
3286 * it references and compressed arc enablement.
3287 */
e111c802 3288 arc_hdr_alloc_abd(hdr, flags);
424fd7c3 3289 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 3290
d3c2ae1c 3291 return (hdr);
ca0bf58d
PS
3292}
3293
bd089c54 3294/*
d3c2ae1c
GW
3295 * Transition between the two allocation states for the arc_buf_hdr struct.
3296 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3297 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3298 * version is used when a cache buffer is only in the L2ARC in order to reduce
3299 * memory usage.
bd089c54 3300 */
d3c2ae1c
GW
3301static arc_buf_hdr_t *
3302arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
34dc7c2f 3303{
1c27024e
DB
3304 ASSERT(HDR_HAS_L2HDR(hdr));
3305
d3c2ae1c
GW
3306 arc_buf_hdr_t *nhdr;
3307 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
34dc7c2f 3308
d3c2ae1c
GW
3309 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3310 (old == hdr_l2only_cache && new == hdr_full_cache));
34dc7c2f 3311
b5256303
TC
3312 /*
3313 * if the caller wanted a new full header and the header is to be
3314 * encrypted we will actually allocate the header from the full crypt
3315 * cache instead. The same applies to freeing from the old cache.
3316 */
3317 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3318 new = hdr_full_crypt_cache;
3319 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3320 old = hdr_full_crypt_cache;
3321
d3c2ae1c 3322 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
428870ff 3323
d3c2ae1c
GW
3324 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3325 buf_hash_remove(hdr);
ca0bf58d 3326
d3c2ae1c 3327 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
34dc7c2f 3328
b5256303 3329 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
d3c2ae1c
GW
3330 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3331 /*
3332 * arc_access and arc_change_state need to be aware that a
3333 * header has just come out of L2ARC, so we set its state to
3334 * l2c_only even though it's about to change.
3335 */
3336 nhdr->b_l1hdr.b_state = arc_l2c_only;
34dc7c2f 3337
d3c2ae1c 3338 /* Verify previous threads set to NULL before freeing */
a6255b7f 3339 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3340 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3341 } else {
3342 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3343 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3344 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
36da08ef 3345
d3c2ae1c
GW
3346 /*
3347 * If we've reached here, We must have been called from
3348 * arc_evict_hdr(), as such we should have already been
3349 * removed from any ghost list we were previously on
3350 * (which protects us from racing with arc_evict_state),
3351 * thus no locking is needed during this check.
3352 */
3353 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1eb5bfa3
GW
3354
3355 /*
d3c2ae1c
GW
3356 * A buffer must not be moved into the arc_l2c_only
3357 * state if it's not finished being written out to the
a6255b7f 3358 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
d3c2ae1c 3359 * might try to be accessed, even though it was removed.
1eb5bfa3 3360 */
d3c2ae1c 3361 VERIFY(!HDR_L2_WRITING(hdr));
a6255b7f 3362 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3363 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3364
3365 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
34dc7c2f 3366 }
d3c2ae1c
GW
3367 /*
3368 * The header has been reallocated so we need to re-insert it into any
3369 * lists it was on.
3370 */
3371 (void) buf_hash_insert(nhdr, NULL);
34dc7c2f 3372
d3c2ae1c 3373 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
34dc7c2f 3374
d3c2ae1c
GW
3375 mutex_enter(&dev->l2ad_mtx);
3376
3377 /*
3378 * We must place the realloc'ed header back into the list at
3379 * the same spot. Otherwise, if it's placed earlier in the list,
3380 * l2arc_write_buffers() could find it during the function's
3381 * write phase, and try to write it out to the l2arc.
3382 */
3383 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3384 list_remove(&dev->l2ad_buflist, hdr);
34dc7c2f 3385
d3c2ae1c 3386 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 3387
d3c2ae1c
GW
3388 /*
3389 * Since we're using the pointer address as the tag when
3390 * incrementing and decrementing the l2ad_alloc refcount, we
3391 * must remove the old pointer (that we're about to destroy) and
3392 * add the new pointer to the refcount. Otherwise we'd remove
3393 * the wrong pointer address when calling arc_hdr_destroy() later.
3394 */
3395
424fd7c3
TS
3396 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3397 arc_hdr_size(hdr), hdr);
3398 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3399 arc_hdr_size(nhdr), nhdr);
d3c2ae1c
GW
3400
3401 buf_discard_identity(hdr);
3402 kmem_cache_free(old, hdr);
3403
3404 return (nhdr);
3405}
3406
b5256303
TC
3407/*
3408 * This function allows an L1 header to be reallocated as a crypt
3409 * header and vice versa. If we are going to a crypt header, the
3410 * new fields will be zeroed out.
3411 */
3412static arc_buf_hdr_t *
3413arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3414{
3415 arc_buf_hdr_t *nhdr;
3416 arc_buf_t *buf;
3417 kmem_cache_t *ncache, *ocache;
3418
b7ddeaef
TC
3419 /*
3420 * This function requires that hdr is in the arc_anon state.
3421 * Therefore it won't have any L2ARC data for us to worry
3422 * about copying.
3423 */
b5256303 3424 ASSERT(HDR_HAS_L1HDR(hdr));
b7ddeaef 3425 ASSERT(!HDR_HAS_L2HDR(hdr));
b5256303
TC
3426 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3427 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3428 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b7ddeaef
TC
3429 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3430 ASSERT3P(hdr->b_hash_next, ==, NULL);
b5256303
TC
3431
3432 if (need_crypt) {
3433 ncache = hdr_full_crypt_cache;
3434 ocache = hdr_full_cache;
3435 } else {
3436 ncache = hdr_full_cache;
3437 ocache = hdr_full_crypt_cache;
3438 }
3439
3440 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
b7ddeaef
TC
3441
3442 /*
3443 * Copy all members that aren't locks or condvars to the new header.
3444 * No lists are pointing to us (as we asserted above), so we don't
3445 * need to worry about the list nodes.
3446 */
3447 nhdr->b_dva = hdr->b_dva;
3448 nhdr->b_birth = hdr->b_birth;
3449 nhdr->b_type = hdr->b_type;
3450 nhdr->b_flags = hdr->b_flags;
3451 nhdr->b_psize = hdr->b_psize;
3452 nhdr->b_lsize = hdr->b_lsize;
3453 nhdr->b_spa = hdr->b_spa;
b5256303
TC
3454 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3455 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3456 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3457 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3458 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3459 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3460 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3461 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3462 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3463 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3464 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3465 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
b5256303
TC
3466
3467 /*
c13060e4 3468 * This zfs_refcount_add() exists only to ensure that the individual
b5256303
TC
3469 * arc buffers always point to a header that is referenced, avoiding
3470 * a small race condition that could trigger ASSERTs.
3471 */
c13060e4 3472 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
b7ddeaef 3473 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
b5256303
TC
3474 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3475 mutex_enter(&buf->b_evict_lock);
3476 buf->b_hdr = nhdr;
3477 mutex_exit(&buf->b_evict_lock);
3478 }
3479
424fd7c3
TS
3480 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3481 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3482 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
b5256303
TC
3483
3484 if (need_crypt) {
3485 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3486 } else {
3487 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3488 }
3489
b7ddeaef
TC
3490 /* unset all members of the original hdr */
3491 bzero(&hdr->b_dva, sizeof (dva_t));
3492 hdr->b_birth = 0;
3493 hdr->b_type = ARC_BUFC_INVALID;
3494 hdr->b_flags = 0;
3495 hdr->b_psize = 0;
3496 hdr->b_lsize = 0;
3497 hdr->b_spa = 0;
3498 hdr->b_l1hdr.b_freeze_cksum = NULL;
3499 hdr->b_l1hdr.b_buf = NULL;
3500 hdr->b_l1hdr.b_bufcnt = 0;
3501 hdr->b_l1hdr.b_byteswap = 0;
3502 hdr->b_l1hdr.b_state = NULL;
3503 hdr->b_l1hdr.b_arc_access = 0;
3504 hdr->b_l1hdr.b_mru_hits = 0;
3505 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3506 hdr->b_l1hdr.b_mfu_hits = 0;
3507 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3508 hdr->b_l1hdr.b_l2_hits = 0;
3509 hdr->b_l1hdr.b_acb = NULL;
3510 hdr->b_l1hdr.b_pabd = NULL;
3511
3512 if (ocache == hdr_full_crypt_cache) {
3513 ASSERT(!HDR_HAS_RABD(hdr));
3514 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3515 hdr->b_crypt_hdr.b_ebufcnt = 0;
3516 hdr->b_crypt_hdr.b_dsobj = 0;
3517 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3518 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3519 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3520 }
3521
b5256303
TC
3522 buf_discard_identity(hdr);
3523 kmem_cache_free(ocache, hdr);
3524
3525 return (nhdr);
3526}
3527
3528/*
3529 * This function is used by the send / receive code to convert a newly
3530 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
e1cfd73f 3531 * is also used to allow the root objset block to be updated without altering
b5256303
TC
3532 * its embedded MACs. Both block types will always be uncompressed so we do not
3533 * have to worry about compression type or psize.
3534 */
3535void
3536arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3537 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3538 const uint8_t *mac)
3539{
3540 arc_buf_hdr_t *hdr = buf->b_hdr;
3541
3542 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3543 ASSERT(HDR_HAS_L1HDR(hdr));
3544 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3545
3546 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3547 if (!HDR_PROTECTED(hdr))
3548 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3549 hdr->b_crypt_hdr.b_dsobj = dsobj;
3550 hdr->b_crypt_hdr.b_ot = ot;
3551 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3552 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3553 if (!arc_hdr_has_uncompressed_buf(hdr))
3554 arc_cksum_free(hdr);
3555
3556 if (salt != NULL)
3557 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3558 if (iv != NULL)
3559 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3560 if (mac != NULL)
3561 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3562}
3563
d3c2ae1c
GW
3564/*
3565 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3566 * The buf is returned thawed since we expect the consumer to modify it.
3567 */
3568arc_buf_t *
2aa34383 3569arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
d3c2ae1c 3570{
d3c2ae1c 3571 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
10b3c7f5 3572 B_FALSE, ZIO_COMPRESS_OFF, 0, type, B_FALSE);
2aa34383 3573
a7004725 3574 arc_buf_t *buf = NULL;
be9a5c35 3575 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
b5256303 3576 B_FALSE, B_FALSE, &buf));
d3c2ae1c 3577 arc_buf_thaw(buf);
2aa34383
DK
3578
3579 return (buf);
3580}
3581
3582/*
3583 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3584 * for bufs containing metadata.
3585 */
3586arc_buf_t *
3587arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
10b3c7f5 3588 enum zio_compress compression_type, uint8_t complevel)
2aa34383 3589{
2aa34383
DK
3590 ASSERT3U(lsize, >, 0);
3591 ASSERT3U(lsize, >=, psize);
b5256303
TC
3592 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3593 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
2aa34383 3594
a7004725 3595 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
10b3c7f5 3596 B_FALSE, compression_type, complevel, ARC_BUFC_DATA, B_FALSE);
2aa34383 3597
a7004725 3598 arc_buf_t *buf = NULL;
be9a5c35 3599 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
b5256303 3600 B_TRUE, B_FALSE, B_FALSE, &buf));
2aa34383
DK
3601 arc_buf_thaw(buf);
3602 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3603
a6255b7f
DQ
3604 if (!arc_buf_is_shared(buf)) {
3605 /*
3606 * To ensure that the hdr has the correct data in it if we call
b5256303 3607 * arc_untransform() on this buf before it's been written to
a6255b7f
DQ
3608 * disk, it's easiest if we just set up sharing between the
3609 * buf and the hdr.
3610 */
b5256303 3611 arc_hdr_free_abd(hdr, B_FALSE);
a6255b7f
DQ
3612 arc_share_buf(hdr, buf);
3613 }
3614
d3c2ae1c 3615 return (buf);
34dc7c2f
BB
3616}
3617
b5256303
TC
3618arc_buf_t *
3619arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3620 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3621 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
10b3c7f5 3622 enum zio_compress compression_type, uint8_t complevel)
b5256303
TC
3623{
3624 arc_buf_hdr_t *hdr;
3625 arc_buf_t *buf;
3626 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3627 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3628
3629 ASSERT3U(lsize, >, 0);
3630 ASSERT3U(lsize, >=, psize);
3631 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3632 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3633
3634 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
10b3c7f5 3635 compression_type, complevel, type, B_TRUE);
b5256303
TC
3636
3637 hdr->b_crypt_hdr.b_dsobj = dsobj;
3638 hdr->b_crypt_hdr.b_ot = ot;
3639 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3640 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3641 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3642 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3643 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3644
3645 /*
3646 * This buffer will be considered encrypted even if the ot is not an
3647 * encrypted type. It will become authenticated instead in
3648 * arc_write_ready().
3649 */
3650 buf = NULL;
be9a5c35 3651 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
b5256303
TC
3652 B_FALSE, B_FALSE, &buf));
3653 arc_buf_thaw(buf);
3654 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3655
3656 return (buf);
3657}
3658
08532162
GA
3659static void
3660l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3661 boolean_t state_only)
3662{
3663 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3664 l2arc_dev_t *dev = l2hdr->b_dev;
3665 uint64_t lsize = HDR_GET_LSIZE(hdr);
3666 uint64_t psize = HDR_GET_PSIZE(hdr);
3667 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3668 arc_buf_contents_t type = hdr->b_type;
3669 int64_t lsize_s;
3670 int64_t psize_s;
3671 int64_t asize_s;
3672
3673 if (incr) {
3674 lsize_s = lsize;
3675 psize_s = psize;
3676 asize_s = asize;
3677 } else {
3678 lsize_s = -lsize;
3679 psize_s = -psize;
3680 asize_s = -asize;
3681 }
3682
3683 /* If the buffer is a prefetch, count it as such. */
3684 if (HDR_PREFETCH(hdr)) {
3685 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3686 } else {
3687 /*
3688 * We use the value stored in the L2 header upon initial
3689 * caching in L2ARC. This value will be updated in case
3690 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3691 * metadata (log entry) cannot currently be updated. Having
3692 * the ARC state in the L2 header solves the problem of a
3693 * possibly absent L1 header (apparent in buffers restored
3694 * from persistent L2ARC).
3695 */
3696 switch (hdr->b_l2hdr.b_arcs_state) {
3697 case ARC_STATE_MRU_GHOST:
3698 case ARC_STATE_MRU:
3699 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3700 break;
3701 case ARC_STATE_MFU_GHOST:
3702 case ARC_STATE_MFU:
3703 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3704 break;
3705 default:
3706 break;
3707 }
3708 }
3709
3710 if (state_only)
3711 return;
3712
3713 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3714 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3715
3716 switch (type) {
3717 case ARC_BUFC_DATA:
3718 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3719 break;
3720 case ARC_BUFC_METADATA:
3721 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3722 break;
3723 default:
3724 break;
3725 }
3726}
3727
3728
d962d5da
PS
3729static void
3730arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3731{
3732 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3733 l2arc_dev_t *dev = l2hdr->b_dev;
7558997d
SD
3734 uint64_t psize = HDR_GET_PSIZE(hdr);
3735 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
d962d5da
PS
3736
3737 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3738 ASSERT(HDR_HAS_L2HDR(hdr));
3739
3740 list_remove(&dev->l2ad_buflist, hdr);
3741
08532162 3742 l2arc_hdr_arcstats_decrement(hdr);
7558997d 3743 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
d962d5da 3744
7558997d
SD
3745 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3746 hdr);
d3c2ae1c 3747 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
d962d5da
PS
3748}
3749
34dc7c2f
BB
3750static void
3751arc_hdr_destroy(arc_buf_hdr_t *hdr)
3752{
b9541d6b
CW
3753 if (HDR_HAS_L1HDR(hdr)) {
3754 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
d3c2ae1c 3755 hdr->b_l1hdr.b_bufcnt > 0);
424fd7c3 3756 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
b9541d6b
CW
3757 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3758 }
34dc7c2f 3759 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
3760 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3761
3762 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
3763 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3764 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 3765
d962d5da
PS
3766 if (!buflist_held)
3767 mutex_enter(&dev->l2ad_mtx);
b9541d6b 3768
ca0bf58d 3769 /*
d962d5da
PS
3770 * Even though we checked this conditional above, we
3771 * need to check this again now that we have the
3772 * l2ad_mtx. This is because we could be racing with
3773 * another thread calling l2arc_evict() which might have
3774 * destroyed this header's L2 portion as we were waiting
3775 * to acquire the l2ad_mtx. If that happens, we don't
3776 * want to re-destroy the header's L2 portion.
ca0bf58d 3777 */
d962d5da
PS
3778 if (HDR_HAS_L2HDR(hdr))
3779 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
3780
3781 if (!buflist_held)
d962d5da 3782 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
3783 }
3784
ca6c7a94
BB
3785 /*
3786 * The header's identify can only be safely discarded once it is no
3787 * longer discoverable. This requires removing it from the hash table
3788 * and the l2arc header list. After this point the hash lock can not
3789 * be used to protect the header.
3790 */
3791 if (!HDR_EMPTY(hdr))
3792 buf_discard_identity(hdr);
3793
d3c2ae1c
GW
3794 if (HDR_HAS_L1HDR(hdr)) {
3795 arc_cksum_free(hdr);
b9541d6b 3796
d3c2ae1c 3797 while (hdr->b_l1hdr.b_buf != NULL)
2aa34383 3798 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
34dc7c2f 3799
ca6c7a94 3800 if (hdr->b_l1hdr.b_pabd != NULL)
b5256303 3801 arc_hdr_free_abd(hdr, B_FALSE);
b5256303 3802
440a3eb9 3803 if (HDR_HAS_RABD(hdr))
b5256303 3804 arc_hdr_free_abd(hdr, B_TRUE);
b9541d6b
CW
3805 }
3806
34dc7c2f 3807 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 3808 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 3809 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b 3810 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b5256303
TC
3811
3812 if (!HDR_PROTECTED(hdr)) {
3813 kmem_cache_free(hdr_full_cache, hdr);
3814 } else {
3815 kmem_cache_free(hdr_full_crypt_cache, hdr);
3816 }
b9541d6b
CW
3817 } else {
3818 kmem_cache_free(hdr_l2only_cache, hdr);
3819 }
34dc7c2f
BB
3820}
3821
3822void
d3c2ae1c 3823arc_buf_destroy(arc_buf_t *buf, void* tag)
34dc7c2f
BB
3824{
3825 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 3826
b9541d6b 3827 if (hdr->b_l1hdr.b_state == arc_anon) {
d3c2ae1c
GW
3828 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3829 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3830 VERIFY0(remove_reference(hdr, NULL, tag));
3831 arc_hdr_destroy(hdr);
3832 return;
34dc7c2f
BB
3833 }
3834
ca6c7a94 3835 kmutex_t *hash_lock = HDR_LOCK(hdr);
34dc7c2f 3836 mutex_enter(hash_lock);
ca6c7a94 3837
d3c2ae1c
GW
3838 ASSERT3P(hdr, ==, buf->b_hdr);
3839 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
428870ff 3840 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
d3c2ae1c
GW
3841 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3842 ASSERT3P(buf->b_data, !=, NULL);
34dc7c2f
BB
3843
3844 (void) remove_reference(hdr, hash_lock, tag);
2aa34383 3845 arc_buf_destroy_impl(buf);
34dc7c2f 3846 mutex_exit(hash_lock);
34dc7c2f
BB
3847}
3848
34dc7c2f 3849/*
ca0bf58d
PS
3850 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3851 * state of the header is dependent on its state prior to entering this
3852 * function. The following transitions are possible:
34dc7c2f 3853 *
ca0bf58d
PS
3854 * - arc_mru -> arc_mru_ghost
3855 * - arc_mfu -> arc_mfu_ghost
3856 * - arc_mru_ghost -> arc_l2c_only
3857 * - arc_mru_ghost -> deleted
3858 * - arc_mfu_ghost -> arc_l2c_only
3859 * - arc_mfu_ghost -> deleted
f7de776d
AM
3860 *
3861 * Return total size of evicted data buffers for eviction progress tracking.
3862 * When evicting from ghost states return logical buffer size to make eviction
3863 * progress at the same (or at least comparable) rate as from non-ghost states.
3864 *
3865 * Return *real_evicted for actual ARC size reduction to wake up threads
3866 * waiting for it. For non-ghost states it includes size of evicted data
3867 * buffers (the headers are not freed there). For ghost states it includes
3868 * only the evicted headers size.
34dc7c2f 3869 */
ca0bf58d 3870static int64_t
f7de776d 3871arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted)
34dc7c2f 3872{
ca0bf58d
PS
3873 arc_state_t *evicted_state, *state;
3874 int64_t bytes_evicted = 0;
d4a72f23
TC
3875 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3876 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
34dc7c2f 3877
ca0bf58d
PS
3878 ASSERT(MUTEX_HELD(hash_lock));
3879 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 3880
f7de776d 3881 *real_evicted = 0;
ca0bf58d
PS
3882 state = hdr->b_l1hdr.b_state;
3883 if (GHOST_STATE(state)) {
3884 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c 3885 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
e8b96c60
MA
3886
3887 /*
ca0bf58d 3888 * l2arc_write_buffers() relies on a header's L1 portion
a6255b7f 3889 * (i.e. its b_pabd field) during it's write phase.
ca0bf58d
PS
3890 * Thus, we cannot push a header onto the arc_l2c_only
3891 * state (removing its L1 piece) until the header is
3892 * done being written to the l2arc.
e8b96c60 3893 */
ca0bf58d
PS
3894 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3895 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3896 return (bytes_evicted);
e8b96c60
MA
3897 }
3898
ca0bf58d 3899 ARCSTAT_BUMP(arcstat_deleted);
d3c2ae1c 3900 bytes_evicted += HDR_GET_LSIZE(hdr);
428870ff 3901
ca0bf58d 3902 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 3903
ca0bf58d 3904 if (HDR_HAS_L2HDR(hdr)) {
a6255b7f 3905 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
b5256303 3906 ASSERT(!HDR_HAS_RABD(hdr));
ca0bf58d
PS
3907 /*
3908 * This buffer is cached on the 2nd Level ARC;
3909 * don't destroy the header.
3910 */
3911 arc_change_state(arc_l2c_only, hdr, hash_lock);
3912 /*
3913 * dropping from L1+L2 cached to L2-only,
3914 * realloc to remove the L1 header.
3915 */
3916 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3917 hdr_l2only_cache);
f7de776d 3918 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
34dc7c2f 3919 } else {
ca0bf58d
PS
3920 arc_change_state(arc_anon, hdr, hash_lock);
3921 arc_hdr_destroy(hdr);
f7de776d 3922 *real_evicted += HDR_FULL_SIZE;
34dc7c2f 3923 }
ca0bf58d 3924 return (bytes_evicted);
34dc7c2f
BB
3925 }
3926
ca0bf58d
PS
3927 ASSERT(state == arc_mru || state == arc_mfu);
3928 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 3929
ca0bf58d
PS
3930 /* prefetch buffers have a minimum lifespan */
3931 if (HDR_IO_IN_PROGRESS(hdr) ||
3932 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2b84817f
TC
3933 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3934 MSEC_TO_TICK(min_lifetime))) {
ca0bf58d
PS
3935 ARCSTAT_BUMP(arcstat_evict_skip);
3936 return (bytes_evicted);
da8ccd0e
PS
3937 }
3938
424fd7c3 3939 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3940 while (hdr->b_l1hdr.b_buf) {
3941 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3942 if (!mutex_tryenter(&buf->b_evict_lock)) {
3943 ARCSTAT_BUMP(arcstat_mutex_miss);
3944 break;
3945 }
f7de776d 3946 if (buf->b_data != NULL) {
d3c2ae1c 3947 bytes_evicted += HDR_GET_LSIZE(hdr);
f7de776d
AM
3948 *real_evicted += HDR_GET_LSIZE(hdr);
3949 }
d3c2ae1c 3950 mutex_exit(&buf->b_evict_lock);
2aa34383 3951 arc_buf_destroy_impl(buf);
ca0bf58d 3952 }
34dc7c2f 3953
ca0bf58d 3954 if (HDR_HAS_L2HDR(hdr)) {
d3c2ae1c 3955 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
ca0bf58d 3956 } else {
d3c2ae1c
GW
3957 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3958 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3959 HDR_GET_LSIZE(hdr));
08532162
GA
3960
3961 switch (state->arcs_state) {
3962 case ARC_STATE_MRU:
3963 ARCSTAT_INCR(
3964 arcstat_evict_l2_eligible_mru,
3965 HDR_GET_LSIZE(hdr));
3966 break;
3967 case ARC_STATE_MFU:
3968 ARCSTAT_INCR(
3969 arcstat_evict_l2_eligible_mfu,
3970 HDR_GET_LSIZE(hdr));
3971 break;
3972 default:
3973 break;
3974 }
d3c2ae1c
GW
3975 } else {
3976 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3977 HDR_GET_LSIZE(hdr));
3978 }
ca0bf58d 3979 }
34dc7c2f 3980
d3c2ae1c
GW
3981 if (hdr->b_l1hdr.b_bufcnt == 0) {
3982 arc_cksum_free(hdr);
3983
3984 bytes_evicted += arc_hdr_size(hdr);
f7de776d 3985 *real_evicted += arc_hdr_size(hdr);
d3c2ae1c
GW
3986
3987 /*
3988 * If this hdr is being evicted and has a compressed
3989 * buffer then we discard it here before we change states.
3990 * This ensures that the accounting is updated correctly
a6255b7f 3991 * in arc_free_data_impl().
d3c2ae1c 3992 */
b5256303
TC
3993 if (hdr->b_l1hdr.b_pabd != NULL)
3994 arc_hdr_free_abd(hdr, B_FALSE);
3995
3996 if (HDR_HAS_RABD(hdr))
3997 arc_hdr_free_abd(hdr, B_TRUE);
d3c2ae1c 3998
ca0bf58d
PS
3999 arc_change_state(evicted_state, hdr, hash_lock);
4000 ASSERT(HDR_IN_HASH_TABLE(hdr));
d3c2ae1c 4001 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
ca0bf58d
PS
4002 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4003 }
34dc7c2f 4004
ca0bf58d 4005 return (bytes_evicted);
34dc7c2f
BB
4006}
4007
3442c2a0
MA
4008static void
4009arc_set_need_free(void)
4010{
4011 ASSERT(MUTEX_HELD(&arc_evict_lock));
4012 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
4013 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
4014 if (aw == NULL) {
4015 arc_need_free = MAX(-remaining, 0);
4016 } else {
4017 arc_need_free =
4018 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
4019 }
4020}
4021
ca0bf58d
PS
4022static uint64_t
4023arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
8172df64 4024 uint64_t spa, uint64_t bytes)
34dc7c2f 4025{
ca0bf58d 4026 multilist_sublist_t *mls;
f7de776d 4027 uint64_t bytes_evicted = 0, real_evicted = 0;
ca0bf58d 4028 arc_buf_hdr_t *hdr;
34dc7c2f 4029 kmutex_t *hash_lock;
8172df64 4030 int evict_count = zfs_arc_evict_batch_limit;
34dc7c2f 4031
ca0bf58d 4032 ASSERT3P(marker, !=, NULL);
ca0bf58d
PS
4033
4034 mls = multilist_sublist_lock(ml, idx);
572e2857 4035
8172df64 4036 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
ca0bf58d 4037 hdr = multilist_sublist_prev(mls, marker)) {
8172df64 4038 if ((evict_count <= 0) || (bytes_evicted >= bytes))
ca0bf58d
PS
4039 break;
4040
4041 /*
4042 * To keep our iteration location, move the marker
4043 * forward. Since we're not holding hdr's hash lock, we
4044 * must be very careful and not remove 'hdr' from the
4045 * sublist. Otherwise, other consumers might mistake the
4046 * 'hdr' as not being on a sublist when they call the
4047 * multilist_link_active() function (they all rely on
4048 * the hash lock protecting concurrent insertions and
4049 * removals). multilist_sublist_move_forward() was
4050 * specifically implemented to ensure this is the case
4051 * (only 'marker' will be removed and re-inserted).
4052 */
4053 multilist_sublist_move_forward(mls, marker);
4054
4055 /*
4056 * The only case where the b_spa field should ever be
4057 * zero, is the marker headers inserted by
4058 * arc_evict_state(). It's possible for multiple threads
4059 * to be calling arc_evict_state() concurrently (e.g.
4060 * dsl_pool_close() and zio_inject_fault()), so we must
4061 * skip any markers we see from these other threads.
4062 */
2a432414 4063 if (hdr->b_spa == 0)
572e2857
BB
4064 continue;
4065
ca0bf58d
PS
4066 /* we're only interested in evicting buffers of a certain spa */
4067 if (spa != 0 && hdr->b_spa != spa) {
4068 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 4069 continue;
ca0bf58d
PS
4070 }
4071
4072 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
4073
4074 /*
ca0bf58d
PS
4075 * We aren't calling this function from any code path
4076 * that would already be holding a hash lock, so we're
4077 * asserting on this assumption to be defensive in case
4078 * this ever changes. Without this check, it would be
4079 * possible to incorrectly increment arcstat_mutex_miss
4080 * below (e.g. if the code changed such that we called
4081 * this function with a hash lock held).
e8b96c60 4082 */
ca0bf58d
PS
4083 ASSERT(!MUTEX_HELD(hash_lock));
4084
34dc7c2f 4085 if (mutex_tryenter(hash_lock)) {
f7de776d
AM
4086 uint64_t revicted;
4087 uint64_t evicted = arc_evict_hdr(hdr, hash_lock,
4088 &revicted);
ca0bf58d 4089 mutex_exit(hash_lock);
34dc7c2f 4090
ca0bf58d 4091 bytes_evicted += evicted;
f7de776d 4092 real_evicted += revicted;
34dc7c2f 4093
572e2857 4094 /*
ca0bf58d
PS
4095 * If evicted is zero, arc_evict_hdr() must have
4096 * decided to skip this header, don't increment
4097 * evict_count in this case.
572e2857 4098 */
ca0bf58d 4099 if (evicted != 0)
8172df64 4100 evict_count--;
ca0bf58d 4101
e8b96c60 4102 } else {
ca0bf58d 4103 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 4104 }
34dc7c2f 4105 }
34dc7c2f 4106
ca0bf58d 4107 multilist_sublist_unlock(mls);
34dc7c2f 4108
3442c2a0
MA
4109 /*
4110 * Increment the count of evicted bytes, and wake up any threads that
4111 * are waiting for the count to reach this value. Since the list is
4112 * ordered by ascending aew_count, we pop off the beginning of the
4113 * list until we reach the end, or a waiter that's past the current
4114 * "count". Doing this outside the loop reduces the number of times
4115 * we need to acquire the global arc_evict_lock.
4116 *
4117 * Only wake when there's sufficient free memory in the system
4118 * (specifically, arc_sys_free/2, which by default is a bit more than
4119 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4120 */
4121 mutex_enter(&arc_evict_lock);
f7de776d 4122 arc_evict_count += real_evicted;
3442c2a0 4123
dc303dcf 4124 if (arc_free_memory() > arc_sys_free / 2) {
3442c2a0
MA
4125 arc_evict_waiter_t *aw;
4126 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4127 aw->aew_count <= arc_evict_count) {
4128 list_remove(&arc_evict_waiters, aw);
4129 cv_broadcast(&aw->aew_cv);
4130 }
4131 }
4132 arc_set_need_free();
4133 mutex_exit(&arc_evict_lock);
4134
67c0f0de
MA
4135 /*
4136 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4137 * if the average cached block is small), eviction can be on-CPU for
4138 * many seconds. To ensure that other threads that may be bound to
4139 * this CPU are able to make progress, make a voluntary preemption
4140 * call here.
4141 */
4142 cond_resched();
4143
ca0bf58d 4144 return (bytes_evicted);
34dc7c2f
BB
4145}
4146
ca0bf58d
PS
4147/*
4148 * Evict buffers from the given arc state, until we've removed the
4149 * specified number of bytes. Move the removed buffers to the
4150 * appropriate evict state.
4151 *
4152 * This function makes a "best effort". It skips over any buffers
4153 * it can't get a hash_lock on, and so, may not catch all candidates.
4154 * It may also return without evicting as much space as requested.
4155 *
4156 * If bytes is specified using the special value ARC_EVICT_ALL, this
4157 * will evict all available (i.e. unlocked and evictable) buffers from
4158 * the given arc state; which is used by arc_flush().
4159 */
4160static uint64_t
8172df64 4161arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes,
ca0bf58d 4162 arc_buf_contents_t type)
34dc7c2f 4163{
ca0bf58d 4164 uint64_t total_evicted = 0;
ffdf019c 4165 multilist_t *ml = &state->arcs_list[type];
ca0bf58d
PS
4166 int num_sublists;
4167 arc_buf_hdr_t **markers;
ca0bf58d 4168
ca0bf58d 4169 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
4170
4171 /*
ca0bf58d
PS
4172 * If we've tried to evict from each sublist, made some
4173 * progress, but still have not hit the target number of bytes
4174 * to evict, we want to keep trying. The markers allow us to
4175 * pick up where we left off for each individual sublist, rather
4176 * than starting from the tail each time.
d164b209 4177 */
ca0bf58d 4178 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
1c27024e 4179 for (int i = 0; i < num_sublists; i++) {
ca0bf58d 4180 multilist_sublist_t *mls;
34dc7c2f 4181
ca0bf58d
PS
4182 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4183
4184 /*
4185 * A b_spa of 0 is used to indicate that this header is
5dd92909 4186 * a marker. This fact is used in arc_evict_type() and
ca0bf58d
PS
4187 * arc_evict_state_impl().
4188 */
4189 markers[i]->b_spa = 0;
34dc7c2f 4190
ca0bf58d
PS
4191 mls = multilist_sublist_lock(ml, i);
4192 multilist_sublist_insert_tail(mls, markers[i]);
4193 multilist_sublist_unlock(mls);
34dc7c2f
BB
4194 }
4195
d164b209 4196 /*
ca0bf58d
PS
4197 * While we haven't hit our target number of bytes to evict, or
4198 * we're evicting all available buffers.
d164b209 4199 */
8172df64 4200 while (total_evicted < bytes) {
25458cbe
TC
4201 int sublist_idx = multilist_get_random_index(ml);
4202 uint64_t scan_evicted = 0;
4203
4204 /*
4205 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4206 * Request that 10% of the LRUs be scanned by the superblock
4207 * shrinker.
4208 */
c4c162c1
AM
4209 if (type == ARC_BUFC_DATA && aggsum_compare(
4210 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) {
4211 arc_prune_async((aggsum_upper_bound(
4212 &arc_sums.arcstat_dnode_size) -
03fdcb9a 4213 arc_dnode_size_limit) / sizeof (dnode_t) /
37fb3e43
PD
4214 zfs_arc_dnode_reduce_percent);
4215 }
25458cbe 4216
ca0bf58d
PS
4217 /*
4218 * Start eviction using a randomly selected sublist,
4219 * this is to try and evenly balance eviction across all
4220 * sublists. Always starting at the same sublist
4221 * (e.g. index 0) would cause evictions to favor certain
4222 * sublists over others.
4223 */
1c27024e 4224 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4225 uint64_t bytes_remaining;
4226 uint64_t bytes_evicted;
d164b209 4227
8172df64 4228 if (total_evicted < bytes)
ca0bf58d
PS
4229 bytes_remaining = bytes - total_evicted;
4230 else
4231 break;
34dc7c2f 4232
ca0bf58d
PS
4233 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4234 markers[sublist_idx], spa, bytes_remaining);
4235
4236 scan_evicted += bytes_evicted;
4237 total_evicted += bytes_evicted;
4238
4239 /* we've reached the end, wrap to the beginning */
4240 if (++sublist_idx >= num_sublists)
4241 sublist_idx = 0;
4242 }
4243
4244 /*
4245 * If we didn't evict anything during this scan, we have
4246 * no reason to believe we'll evict more during another
4247 * scan, so break the loop.
4248 */
4249 if (scan_evicted == 0) {
4250 /* This isn't possible, let's make that obvious */
4251 ASSERT3S(bytes, !=, 0);
34dc7c2f 4252
ca0bf58d
PS
4253 /*
4254 * When bytes is ARC_EVICT_ALL, the only way to
4255 * break the loop is when scan_evicted is zero.
4256 * In that case, we actually have evicted enough,
4257 * so we don't want to increment the kstat.
4258 */
4259 if (bytes != ARC_EVICT_ALL) {
4260 ASSERT3S(total_evicted, <, bytes);
4261 ARCSTAT_BUMP(arcstat_evict_not_enough);
4262 }
d164b209 4263
ca0bf58d
PS
4264 break;
4265 }
d164b209 4266 }
34dc7c2f 4267
1c27024e 4268 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4269 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4270 multilist_sublist_remove(mls, markers[i]);
4271 multilist_sublist_unlock(mls);
34dc7c2f 4272
ca0bf58d 4273 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 4274 }
ca0bf58d
PS
4275 kmem_free(markers, sizeof (*markers) * num_sublists);
4276
4277 return (total_evicted);
4278}
4279
4280/*
4281 * Flush all "evictable" data of the given type from the arc state
4282 * specified. This will not evict any "active" buffers (i.e. referenced).
4283 *
d3c2ae1c 4284 * When 'retry' is set to B_FALSE, the function will make a single pass
ca0bf58d
PS
4285 * over the state and evict any buffers that it can. Since it doesn't
4286 * continually retry the eviction, it might end up leaving some buffers
4287 * in the ARC due to lock misses.
4288 *
d3c2ae1c 4289 * When 'retry' is set to B_TRUE, the function will continually retry the
ca0bf58d
PS
4290 * eviction until *all* evictable buffers have been removed from the
4291 * state. As a result, if concurrent insertions into the state are
4292 * allowed (e.g. if the ARC isn't shutting down), this function might
4293 * wind up in an infinite loop, continually trying to evict buffers.
4294 */
4295static uint64_t
4296arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4297 boolean_t retry)
4298{
4299 uint64_t evicted = 0;
4300
424fd7c3 4301 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
ca0bf58d
PS
4302 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4303
4304 if (!retry)
4305 break;
4306 }
4307
4308 return (evicted);
34dc7c2f
BB
4309}
4310
ca0bf58d
PS
4311/*
4312 * Evict the specified number of bytes from the state specified,
4313 * restricting eviction to the spa and type given. This function
4314 * prevents us from trying to evict more from a state's list than
4315 * is "evictable", and to skip evicting altogether when passed a
4316 * negative value for "bytes". In contrast, arc_evict_state() will
4317 * evict everything it can, when passed a negative value for "bytes".
4318 */
4319static uint64_t
5dd92909 4320arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
ca0bf58d
PS
4321 arc_buf_contents_t type)
4322{
8172df64 4323 uint64_t delta;
ca0bf58d 4324
424fd7c3
TS
4325 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4326 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4327 bytes);
ca0bf58d
PS
4328 return (arc_evict_state(state, spa, delta, type));
4329 }
4330
4331 return (0);
4332}
4333
4334/*
4335 * The goal of this function is to evict enough meta data buffers from the
4336 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4337 * more complicated than it appears because it is common for data buffers
4338 * to have holds on meta data buffers. In addition, dnode meta data buffers
4339 * will be held by the dnodes in the block preventing them from being freed.
4340 * This means we can't simply traverse the ARC and expect to always find
4341 * enough unheld meta data buffer to release.
4342 *
4343 * Therefore, this function has been updated to make alternating passes
4344 * over the ARC releasing data buffers and then newly unheld meta data
37fb3e43 4345 * buffers. This ensures forward progress is maintained and meta_used
ca0bf58d
PS
4346 * will decrease. Normally this is sufficient, but if required the ARC
4347 * will call the registered prune callbacks causing dentry and inodes to
4348 * be dropped from the VFS cache. This will make dnode meta data buffers
4349 * available for reclaim.
4350 */
4351static uint64_t
5dd92909 4352arc_evict_meta_balanced(uint64_t meta_used)
ca0bf58d 4353{
25e2ab16
TC
4354 int64_t delta, prune = 0, adjustmnt;
4355 uint64_t total_evicted = 0;
ca0bf58d 4356 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 4357 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
4358
4359restart:
4360 /*
4361 * This slightly differs than the way we evict from the mru in
5dd92909 4362 * arc_evict because we don't have a "target" value (i.e. no
ca0bf58d
PS
4363 * "meta" arc_p). As a result, I think we can completely
4364 * cannibalize the metadata in the MRU before we evict the
4365 * metadata from the MFU. I think we probably need to implement a
4366 * "metadata arc_p" value to do this properly.
4367 */
37fb3e43 4368 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4369
424fd7c3
TS
4370 if (adjustmnt > 0 &&
4371 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4372 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
d3c2ae1c 4373 adjustmnt);
5dd92909 4374 total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
ca0bf58d
PS
4375 adjustmnt -= delta;
4376 }
4377
4378 /*
4379 * We can't afford to recalculate adjustmnt here. If we do,
4380 * new metadata buffers can sneak into the MRU or ANON lists,
4381 * thus penalize the MFU metadata. Although the fudge factor is
4382 * small, it has been empirically shown to be significant for
4383 * certain workloads (e.g. creating many empty directories). As
4384 * such, we use the original calculation for adjustmnt, and
4385 * simply decrement the amount of data evicted from the MRU.
4386 */
4387
424fd7c3
TS
4388 if (adjustmnt > 0 &&
4389 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4390 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
d3c2ae1c 4391 adjustmnt);
5dd92909 4392 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
ca0bf58d
PS
4393 }
4394
37fb3e43 4395 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4396
d3c2ae1c 4397 if (adjustmnt > 0 &&
424fd7c3 4398 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4399 delta = MIN(adjustmnt,
424fd7c3 4400 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
5dd92909 4401 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
ca0bf58d
PS
4402 adjustmnt -= delta;
4403 }
4404
d3c2ae1c 4405 if (adjustmnt > 0 &&
424fd7c3 4406 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4407 delta = MIN(adjustmnt,
424fd7c3 4408 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
5dd92909 4409 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
ca0bf58d
PS
4410 }
4411
4412 /*
4413 * If after attempting to make the requested adjustment to the ARC
4414 * the meta limit is still being exceeded then request that the
4415 * higher layers drop some cached objects which have holds on ARC
4416 * meta buffers. Requests to the upper layers will be made with
4417 * increasingly large scan sizes until the ARC is below the limit.
4418 */
37fb3e43 4419 if (meta_used > arc_meta_limit) {
ca0bf58d
PS
4420 if (type == ARC_BUFC_DATA) {
4421 type = ARC_BUFC_METADATA;
4422 } else {
4423 type = ARC_BUFC_DATA;
4424
4425 if (zfs_arc_meta_prune) {
4426 prune += zfs_arc_meta_prune;
f6046738 4427 arc_prune_async(prune);
ca0bf58d
PS
4428 }
4429 }
4430
4431 if (restarts > 0) {
4432 restarts--;
4433 goto restart;
4434 }
4435 }
4436 return (total_evicted);
4437}
4438
f6046738 4439/*
c4c162c1 4440 * Evict metadata buffers from the cache, such that arcstat_meta_used is
f6046738
BB
4441 * capped by the arc_meta_limit tunable.
4442 */
4443static uint64_t
5dd92909 4444arc_evict_meta_only(uint64_t meta_used)
f6046738
BB
4445{
4446 uint64_t total_evicted = 0;
4447 int64_t target;
4448
4449 /*
4450 * If we're over the meta limit, we want to evict enough
4451 * metadata to get back under the meta limit. We don't want to
4452 * evict so much that we drop the MRU below arc_p, though. If
4453 * we're over the meta limit more than we're over arc_p, we
4454 * evict some from the MRU here, and some from the MFU below.
4455 */
37fb3e43 4456 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3
TS
4457 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4458 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738 4459
5dd92909 4460 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
f6046738
BB
4461
4462 /*
4463 * Similar to the above, we want to evict enough bytes to get us
4464 * below the meta limit, but not so much as to drop us below the
2aa34383 4465 * space allotted to the MFU (which is defined as arc_c - arc_p).
f6046738 4466 */
37fb3e43 4467 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3 4468 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
37fb3e43 4469 (arc_c - arc_p)));
f6046738 4470
5dd92909 4471 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
f6046738
BB
4472
4473 return (total_evicted);
4474}
4475
4476static uint64_t
5dd92909 4477arc_evict_meta(uint64_t meta_used)
f6046738
BB
4478{
4479 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
5dd92909 4480 return (arc_evict_meta_only(meta_used));
f6046738 4481 else
5dd92909 4482 return (arc_evict_meta_balanced(meta_used));
f6046738
BB
4483}
4484
ca0bf58d
PS
4485/*
4486 * Return the type of the oldest buffer in the given arc state
4487 *
4488 * This function will select a random sublist of type ARC_BUFC_DATA and
4489 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4490 * is compared, and the type which contains the "older" buffer will be
4491 * returned.
4492 */
4493static arc_buf_contents_t
5dd92909 4494arc_evict_type(arc_state_t *state)
ca0bf58d 4495{
ffdf019c
AM
4496 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
4497 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
ca0bf58d
PS
4498 int data_idx = multilist_get_random_index(data_ml);
4499 int meta_idx = multilist_get_random_index(meta_ml);
4500 multilist_sublist_t *data_mls;
4501 multilist_sublist_t *meta_mls;
4502 arc_buf_contents_t type;
4503 arc_buf_hdr_t *data_hdr;
4504 arc_buf_hdr_t *meta_hdr;
4505
4506 /*
4507 * We keep the sublist lock until we're finished, to prevent
4508 * the headers from being destroyed via arc_evict_state().
4509 */
4510 data_mls = multilist_sublist_lock(data_ml, data_idx);
4511 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4512
4513 /*
4514 * These two loops are to ensure we skip any markers that
4515 * might be at the tail of the lists due to arc_evict_state().
4516 */
4517
4518 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4519 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4520 if (data_hdr->b_spa != 0)
4521 break;
4522 }
4523
4524 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4525 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4526 if (meta_hdr->b_spa != 0)
4527 break;
4528 }
4529
4530 if (data_hdr == NULL && meta_hdr == NULL) {
4531 type = ARC_BUFC_DATA;
4532 } else if (data_hdr == NULL) {
4533 ASSERT3P(meta_hdr, !=, NULL);
4534 type = ARC_BUFC_METADATA;
4535 } else if (meta_hdr == NULL) {
4536 ASSERT3P(data_hdr, !=, NULL);
4537 type = ARC_BUFC_DATA;
4538 } else {
4539 ASSERT3P(data_hdr, !=, NULL);
4540 ASSERT3P(meta_hdr, !=, NULL);
4541
4542 /* The headers can't be on the sublist without an L1 header */
4543 ASSERT(HDR_HAS_L1HDR(data_hdr));
4544 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4545
4546 if (data_hdr->b_l1hdr.b_arc_access <
4547 meta_hdr->b_l1hdr.b_arc_access) {
4548 type = ARC_BUFC_DATA;
4549 } else {
4550 type = ARC_BUFC_METADATA;
4551 }
4552 }
4553
4554 multilist_sublist_unlock(meta_mls);
4555 multilist_sublist_unlock(data_mls);
4556
4557 return (type);
4558}
4559
4560/*
c4c162c1 4561 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
ca0bf58d
PS
4562 */
4563static uint64_t
5dd92909 4564arc_evict(void)
ca0bf58d
PS
4565{
4566 uint64_t total_evicted = 0;
4567 uint64_t bytes;
4568 int64_t target;
c4c162c1
AM
4569 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4570 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used);
ca0bf58d
PS
4571
4572 /*
4573 * If we're over arc_meta_limit, we want to correct that before
4574 * potentially evicting data buffers below.
4575 */
5dd92909 4576 total_evicted += arc_evict_meta(ameta);
ca0bf58d
PS
4577
4578 /*
4579 * Adjust MRU size
4580 *
4581 * If we're over the target cache size, we want to evict enough
4582 * from the list to get back to our target size. We don't want
4583 * to evict too much from the MRU, such that it drops below
4584 * arc_p. So, if we're over our target cache size more than
4585 * the MRU is over arc_p, we'll evict enough to get back to
4586 * arc_p here, and then evict more from the MFU below.
4587 */
37fb3e43 4588 target = MIN((int64_t)(asize - arc_c),
424fd7c3
TS
4589 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4590 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
ca0bf58d
PS
4591
4592 /*
4593 * If we're below arc_meta_min, always prefer to evict data.
4594 * Otherwise, try to satisfy the requested number of bytes to
4595 * evict from the type which contains older buffers; in an
4596 * effort to keep newer buffers in the cache regardless of their
4597 * type. If we cannot satisfy the number of bytes from this
4598 * type, spill over into the next type.
4599 */
5dd92909 4600 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
37fb3e43 4601 ameta > arc_meta_min) {
5dd92909 4602 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4603 total_evicted += bytes;
4604
4605 /*
4606 * If we couldn't evict our target number of bytes from
4607 * metadata, we try to get the rest from data.
4608 */
4609 target -= bytes;
4610
4611 total_evicted +=
5dd92909 4612 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
ca0bf58d 4613 } else {
5dd92909 4614 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4615 total_evicted += bytes;
4616
4617 /*
4618 * If we couldn't evict our target number of bytes from
4619 * data, we try to get the rest from metadata.
4620 */
4621 target -= bytes;
4622
4623 total_evicted +=
5dd92909 4624 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4625 }
4626
0405eeea
RE
4627 /*
4628 * Re-sum ARC stats after the first round of evictions.
4629 */
c4c162c1
AM
4630 asize = aggsum_value(&arc_sums.arcstat_size);
4631 ameta = aggsum_value(&arc_sums.arcstat_meta_used);
0405eeea
RE
4632
4633
ca0bf58d
PS
4634 /*
4635 * Adjust MFU size
4636 *
4637 * Now that we've tried to evict enough from the MRU to get its
4638 * size back to arc_p, if we're still above the target cache
4639 * size, we evict the rest from the MFU.
4640 */
37fb3e43 4641 target = asize - arc_c;
ca0bf58d 4642
5dd92909 4643 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
37fb3e43 4644 ameta > arc_meta_min) {
5dd92909 4645 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4646 total_evicted += bytes;
4647
4648 /*
4649 * If we couldn't evict our target number of bytes from
4650 * metadata, we try to get the rest from data.
4651 */
4652 target -= bytes;
4653
4654 total_evicted +=
5dd92909 4655 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
ca0bf58d 4656 } else {
5dd92909 4657 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4658 total_evicted += bytes;
4659
4660 /*
4661 * If we couldn't evict our target number of bytes from
4662 * data, we try to get the rest from data.
4663 */
4664 target -= bytes;
4665
4666 total_evicted +=
5dd92909 4667 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4668 }
4669
4670 /*
4671 * Adjust ghost lists
4672 *
4673 * In addition to the above, the ARC also defines target values
4674 * for the ghost lists. The sum of the mru list and mru ghost
4675 * list should never exceed the target size of the cache, and
4676 * the sum of the mru list, mfu list, mru ghost list, and mfu
4677 * ghost list should never exceed twice the target size of the
4678 * cache. The following logic enforces these limits on the ghost
4679 * caches, and evicts from them as needed.
4680 */
424fd7c3
TS
4681 target = zfs_refcount_count(&arc_mru->arcs_size) +
4682 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d 4683
5dd92909 4684 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4685 total_evicted += bytes;
4686
4687 target -= bytes;
4688
4689 total_evicted +=
5dd92909 4690 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4691
4692 /*
4693 * We assume the sum of the mru list and mfu list is less than
4694 * or equal to arc_c (we enforced this above), which means we
4695 * can use the simpler of the two equations below:
4696 *
4697 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4698 * mru ghost + mfu ghost <= arc_c
4699 */
424fd7c3
TS
4700 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4701 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d 4702
5dd92909 4703 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4704 total_evicted += bytes;
4705
4706 target -= bytes;
4707
4708 total_evicted +=
5dd92909 4709 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4710
4711 return (total_evicted);
4712}
4713
ca0bf58d
PS
4714void
4715arc_flush(spa_t *spa, boolean_t retry)
ab26409d 4716{
ca0bf58d 4717 uint64_t guid = 0;
94520ca4 4718
bc888666 4719 /*
d3c2ae1c 4720 * If retry is B_TRUE, a spa must not be specified since we have
ca0bf58d
PS
4721 * no good way to determine if all of a spa's buffers have been
4722 * evicted from an arc state.
bc888666 4723 */
ca0bf58d 4724 ASSERT(!retry || spa == 0);
d164b209 4725
b9541d6b 4726 if (spa != NULL)
3541dc6d 4727 guid = spa_load_guid(spa);
d164b209 4728
ca0bf58d
PS
4729 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4730 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4731
4732 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4733 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4734
4735 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4736 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 4737
ca0bf58d
PS
4738 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4739 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f
BB
4740}
4741
c9c9c1e2 4742void
3ec34e55 4743arc_reduce_target_size(int64_t to_free)
34dc7c2f 4744{
c4c162c1 4745 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
3442c2a0
MA
4746
4747 /*
4748 * All callers want the ARC to actually evict (at least) this much
4749 * memory. Therefore we reduce from the lower of the current size and
4750 * the target size. This way, even if arc_c is much higher than
4751 * arc_size (as can be the case after many calls to arc_freed(), we will
4752 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4753 * will evict.
4754 */
4755 uint64_t c = MIN(arc_c, asize);
34dc7c2f 4756
1b8951b3
TC
4757 if (c > to_free && c - to_free > arc_c_min) {
4758 arc_c = c - to_free;
ca67b33a 4759 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
4760 if (arc_p > arc_c)
4761 arc_p = (arc_c >> 1);
4762 ASSERT(arc_c >= arc_c_min);
4763 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
4764 } else {
4765 arc_c = arc_c_min;
34dc7c2f
BB
4766 }
4767
3ec34e55 4768 if (asize > arc_c) {
5dd92909
MA
4769 /* See comment in arc_evict_cb_check() on why lock+flag */
4770 mutex_enter(&arc_evict_lock);
4771 arc_evict_needed = B_TRUE;
4772 mutex_exit(&arc_evict_lock);
4773 zthr_wakeup(arc_evict_zthr);
3ec34e55 4774 }
34dc7c2f 4775}
ca67b33a
MA
4776
4777/*
4778 * Determine if the system is under memory pressure and is asking
d3c2ae1c 4779 * to reclaim memory. A return value of B_TRUE indicates that the system
ca67b33a
MA
4780 * is under memory pressure and that the arc should adjust accordingly.
4781 */
c9c9c1e2 4782boolean_t
ca67b33a
MA
4783arc_reclaim_needed(void)
4784{
4785 return (arc_available_memory() < 0);
4786}
4787
c9c9c1e2 4788void
3ec34e55 4789arc_kmem_reap_soon(void)
34dc7c2f
BB
4790{
4791 size_t i;
4792 kmem_cache_t *prev_cache = NULL;
4793 kmem_cache_t *prev_data_cache = NULL;
4794 extern kmem_cache_t *zio_buf_cache[];
4795 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f 4796
70f02287 4797#ifdef _KERNEL
c4c162c1
AM
4798 if ((aggsum_compare(&arc_sums.arcstat_meta_used,
4799 arc_meta_limit) >= 0) && zfs_arc_meta_prune) {
f6046738
BB
4800 /*
4801 * We are exceeding our meta-data cache limit.
4802 * Prune some entries to release holds on meta-data.
4803 */
ef5b2e10 4804 arc_prune_async(zfs_arc_meta_prune);
f6046738 4805 }
70f02287
BB
4806#if defined(_ILP32)
4807 /*
4808 * Reclaim unused memory from all kmem caches.
4809 */
4810 kmem_reap();
4811#endif
4812#endif
f6046738 4813
34dc7c2f 4814 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
70f02287 4815#if defined(_ILP32)
d0c614ec 4816 /* reach upper limit of cache size on 32-bit */
4817 if (zio_buf_cache[i] == NULL)
4818 break;
4819#endif
34dc7c2f
BB
4820 if (zio_buf_cache[i] != prev_cache) {
4821 prev_cache = zio_buf_cache[i];
4822 kmem_cache_reap_now(zio_buf_cache[i]);
4823 }
4824 if (zio_data_buf_cache[i] != prev_data_cache) {
4825 prev_data_cache = zio_data_buf_cache[i];
4826 kmem_cache_reap_now(zio_data_buf_cache[i]);
4827 }
4828 }
ca0bf58d 4829 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
4830 kmem_cache_reap_now(hdr_full_cache);
4831 kmem_cache_reap_now(hdr_l2only_cache);
ca577779 4832 kmem_cache_reap_now(zfs_btree_leaf_cache);
7564073e 4833 abd_cache_reap_now();
34dc7c2f
BB
4834}
4835
3ec34e55
BL
4836/* ARGSUSED */
4837static boolean_t
5dd92909 4838arc_evict_cb_check(void *arg, zthr_t *zthr)
3ec34e55 4839{
1531506d 4840#ifdef ZFS_DEBUG
3ec34e55
BL
4841 /*
4842 * This is necessary in order to keep the kstat information
4843 * up to date for tools that display kstat data such as the
4844 * mdb ::arc dcmd and the Linux crash utility. These tools
4845 * typically do not call kstat's update function, but simply
4846 * dump out stats from the most recent update. Without
4847 * this call, these commands may show stale stats for the
1531506d
RM
4848 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4849 * with this call, the data might be out of date if the
4850 * evict thread hasn't been woken recently; but that should
4851 * suffice. The arc_state_t structures can be queried
4852 * directly if more accurate information is needed.
3ec34e55
BL
4853 */
4854 if (arc_ksp != NULL)
4855 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
1531506d 4856#endif
3ec34e55
BL
4857
4858 /*
3442c2a0
MA
4859 * We have to rely on arc_wait_for_eviction() to tell us when to
4860 * evict, rather than checking if we are overflowing here, so that we
4861 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4862 * If we have become "not overflowing" since arc_wait_for_eviction()
4863 * checked, we need to wake it up. We could broadcast the CV here,
4864 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4865 * would need to use a mutex to ensure that this function doesn't
4866 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4867 * the arc_evict_lock). However, the lock ordering of such a lock
4868 * would necessarily be incorrect with respect to the zthr_lock,
4869 * which is held before this function is called, and is held by
4870 * arc_wait_for_eviction() when it calls zthr_wakeup().
3ec34e55 4871 */
5dd92909 4872 return (arc_evict_needed);
3ec34e55
BL
4873}
4874
302f753f 4875/*
5dd92909 4876 * Keep arc_size under arc_c by running arc_evict which evicts data
3ec34e55 4877 * from the ARC.
302f753f 4878 */
867959b5 4879/* ARGSUSED */
61c3391a 4880static void
5dd92909 4881arc_evict_cb(void *arg, zthr_t *zthr)
34dc7c2f 4882{
3ec34e55
BL
4883 uint64_t evicted = 0;
4884 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 4885
3ec34e55 4886 /* Evict from cache */
5dd92909 4887 evicted = arc_evict();
34dc7c2f 4888
3ec34e55
BL
4889 /*
4890 * If evicted is zero, we couldn't evict anything
5dd92909 4891 * via arc_evict(). This could be due to hash lock
3ec34e55
BL
4892 * collisions, but more likely due to the majority of
4893 * arc buffers being unevictable. Therefore, even if
4894 * arc_size is above arc_c, another pass is unlikely to
4895 * be helpful and could potentially cause us to enter an
4896 * infinite loop. Additionally, zthr_iscancelled() is
4897 * checked here so that if the arc is shutting down, the
5dd92909 4898 * broadcast will wake any remaining arc evict waiters.
3ec34e55 4899 */
5dd92909
MA
4900 mutex_enter(&arc_evict_lock);
4901 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
c4c162c1 4902 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
5dd92909 4903 if (!arc_evict_needed) {
d3c2ae1c 4904 /*
3ec34e55
BL
4905 * We're either no longer overflowing, or we
4906 * can't evict anything more, so we should wake
4907 * arc_get_data_impl() sooner.
d3c2ae1c 4908 */
3442c2a0
MA
4909 arc_evict_waiter_t *aw;
4910 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4911 cv_broadcast(&aw->aew_cv);
4912 }
4913 arc_set_need_free();
3ec34e55 4914 }
5dd92909 4915 mutex_exit(&arc_evict_lock);
3ec34e55 4916 spl_fstrans_unmark(cookie);
3ec34e55
BL
4917}
4918
4919/* ARGSUSED */
4920static boolean_t
4921arc_reap_cb_check(void *arg, zthr_t *zthr)
4922{
4923 int64_t free_memory = arc_available_memory();
8a171ccd 4924 static int reap_cb_check_counter = 0;
3ec34e55
BL
4925
4926 /*
4927 * If a kmem reap is already active, don't schedule more. We must
4928 * check for this because kmem_cache_reap_soon() won't actually
4929 * block on the cache being reaped (this is to prevent callers from
4930 * becoming implicitly blocked by a system-wide kmem reap -- which,
4931 * on a system with many, many full magazines, can take minutes).
4932 */
4933 if (!kmem_cache_reap_active() && free_memory < 0) {
34dc7c2f 4934
3ec34e55
BL
4935 arc_no_grow = B_TRUE;
4936 arc_warm = B_TRUE;
0a252dae 4937 /*
3ec34e55
BL
4938 * Wait at least zfs_grow_retry (default 5) seconds
4939 * before considering growing.
0a252dae 4940 */
3ec34e55
BL
4941 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4942 return (B_TRUE);
4943 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4944 arc_no_grow = B_TRUE;
4945 } else if (gethrtime() >= arc_growtime) {
4946 arc_no_grow = B_FALSE;
4947 }
0a252dae 4948
8a171ccd
SG
4949 /*
4950 * Called unconditionally every 60 seconds to reclaim unused
4951 * zstd compression and decompression context. This is done
4952 * here to avoid the need for an independent thread.
4953 */
4954 if (!((reap_cb_check_counter++) % 60))
4955 zfs_zstd_cache_reap_now();
4956
3ec34e55
BL
4957 return (B_FALSE);
4958}
34dc7c2f 4959
3ec34e55
BL
4960/*
4961 * Keep enough free memory in the system by reaping the ARC's kmem
4962 * caches. To cause more slabs to be reapable, we may reduce the
5dd92909 4963 * target size of the cache (arc_c), causing the arc_evict_cb()
3ec34e55
BL
4964 * to free more buffers.
4965 */
4966/* ARGSUSED */
61c3391a 4967static void
3ec34e55
BL
4968arc_reap_cb(void *arg, zthr_t *zthr)
4969{
4970 int64_t free_memory;
4971 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 4972
3ec34e55
BL
4973 /*
4974 * Kick off asynchronous kmem_reap()'s of all our caches.
4975 */
4976 arc_kmem_reap_soon();
6a8f9b6b 4977
3ec34e55
BL
4978 /*
4979 * Wait at least arc_kmem_cache_reap_retry_ms between
4980 * arc_kmem_reap_soon() calls. Without this check it is possible to
4981 * end up in a situation where we spend lots of time reaping
4982 * caches, while we're near arc_c_min. Waiting here also gives the
4983 * subsequent free memory check a chance of finding that the
4984 * asynchronous reap has already freed enough memory, and we don't
4985 * need to call arc_reduce_target_size().
4986 */
4987 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
34dc7c2f 4988
3ec34e55
BL
4989 /*
4990 * Reduce the target size as needed to maintain the amount of free
4991 * memory in the system at a fraction of the arc_size (1/128th by
4992 * default). If oversubscribed (free_memory < 0) then reduce the
4993 * target arc_size by the deficit amount plus the fractional
bf169e9f 4994 * amount. If free memory is positive but less than the fractional
3ec34e55
BL
4995 * amount, reduce by what is needed to hit the fractional amount.
4996 */
4997 free_memory = arc_available_memory();
34dc7c2f 4998
3ec34e55
BL
4999 int64_t to_free =
5000 (arc_c >> arc_shrink_shift) - free_memory;
5001 if (to_free > 0) {
3ec34e55 5002 arc_reduce_target_size(to_free);
ca0bf58d 5003 }
ca0bf58d 5004 spl_fstrans_unmark(cookie);
ca0bf58d
PS
5005}
5006
7cb67b45
BB
5007#ifdef _KERNEL
5008/*
302f753f
BB
5009 * Determine the amount of memory eligible for eviction contained in the
5010 * ARC. All clean data reported by the ghost lists can always be safely
5011 * evicted. Due to arc_c_min, the same does not hold for all clean data
5012 * contained by the regular mru and mfu lists.
5013 *
5014 * In the case of the regular mru and mfu lists, we need to report as
5015 * much clean data as possible, such that evicting that same reported
5016 * data will not bring arc_size below arc_c_min. Thus, in certain
5017 * circumstances, the total amount of clean data in the mru and mfu
5018 * lists might not actually be evictable.
5019 *
5020 * The following two distinct cases are accounted for:
5021 *
5022 * 1. The sum of the amount of dirty data contained by both the mru and
5023 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5024 * is greater than or equal to arc_c_min.
5025 * (i.e. amount of dirty data >= arc_c_min)
5026 *
5027 * This is the easy case; all clean data contained by the mru and mfu
5028 * lists is evictable. Evicting all clean data can only drop arc_size
5029 * to the amount of dirty data, which is greater than arc_c_min.
5030 *
5031 * 2. The sum of the amount of dirty data contained by both the mru and
5032 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5033 * is less than arc_c_min.
5034 * (i.e. arc_c_min > amount of dirty data)
5035 *
5036 * 2.1. arc_size is greater than or equal arc_c_min.
5037 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5038 *
5039 * In this case, not all clean data from the regular mru and mfu
5040 * lists is actually evictable; we must leave enough clean data
5041 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5042 * evictable data from the two lists combined, is exactly the
5043 * difference between arc_size and arc_c_min.
5044 *
5045 * 2.2. arc_size is less than arc_c_min
5046 * (i.e. arc_c_min > arc_size > amount of dirty data)
5047 *
5048 * In this case, none of the data contained in the mru and mfu
5049 * lists is evictable, even if it's clean. Since arc_size is
5050 * already below arc_c_min, evicting any more would only
5051 * increase this negative difference.
7cb67b45 5052 */
7cb67b45 5053
7cb67b45
BB
5054#endif /* _KERNEL */
5055
34dc7c2f
BB
5056/*
5057 * Adapt arc info given the number of bytes we are trying to add and
4e33ba4c 5058 * the state that we are coming from. This function is only called
34dc7c2f
BB
5059 * when we are adding new content to the cache.
5060 */
5061static void
5062arc_adapt(int bytes, arc_state_t *state)
5063{
5064 int mult;
728d6ae9 5065 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
424fd7c3
TS
5066 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5067 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f 5068
34dc7c2f
BB
5069 ASSERT(bytes > 0);
5070 /*
5071 * Adapt the target size of the MRU list:
5072 * - if we just hit in the MRU ghost list, then increase
5073 * the target size of the MRU list.
5074 * - if we just hit in the MFU ghost list, then increase
5075 * the target size of the MFU list by decreasing the
5076 * target size of the MRU list.
5077 */
5078 if (state == arc_mru_ghost) {
36da08ef 5079 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
5080 if (!zfs_arc_p_dampener_disable)
5081 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 5082
728d6ae9 5083 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 5084 } else if (state == arc_mfu_ghost) {
d164b209
BB
5085 uint64_t delta;
5086
36da08ef 5087 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
5088 if (!zfs_arc_p_dampener_disable)
5089 mult = MIN(mult, 10);
34dc7c2f 5090
d164b209 5091 delta = MIN(bytes * mult, arc_p);
728d6ae9 5092 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
5093 }
5094 ASSERT((int64_t)arc_p >= 0);
5095
3ec34e55
BL
5096 /*
5097 * Wake reap thread if we do not have any available memory
5098 */
ca67b33a 5099 if (arc_reclaim_needed()) {
3ec34e55 5100 zthr_wakeup(arc_reap_zthr);
ca67b33a
MA
5101 return;
5102 }
5103
34dc7c2f
BB
5104 if (arc_no_grow)
5105 return;
5106
5107 if (arc_c >= arc_c_max)
5108 return;
5109
5110 /*
5111 * If we're within (2 * maxblocksize) bytes of the target
5112 * cache size, increment the target cache size
5113 */
935434ef 5114 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
c4c162c1 5115 if (aggsum_upper_bound(&arc_sums.arcstat_size) >=
17ca3018 5116 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
5117 atomic_add_64(&arc_c, (int64_t)bytes);
5118 if (arc_c > arc_c_max)
5119 arc_c = arc_c_max;
5120 else if (state == arc_anon)
5121 atomic_add_64(&arc_p, (int64_t)bytes);
5122 if (arc_p > arc_c)
5123 arc_p = arc_c;
5124 }
5125 ASSERT((int64_t)arc_p >= 0);
5126}
5127
5128/*
ca0bf58d
PS
5129 * Check if arc_size has grown past our upper threshold, determined by
5130 * zfs_arc_overflow_shift.
34dc7c2f 5131 */
f7de776d 5132static arc_ovf_level_t
ca0bf58d 5133arc_is_overflowing(void)
34dc7c2f 5134{
ca0bf58d 5135 /* Always allow at least one block of overflow */
5a902f5a 5136 int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
ca0bf58d 5137 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 5138
37fb3e43
PD
5139 /*
5140 * We just compare the lower bound here for performance reasons. Our
5141 * primary goals are to make sure that the arc never grows without
5142 * bound, and that it can reach its maximum size. This check
5143 * accomplishes both goals. The maximum amount we could run over by is
5144 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5145 * in the ARC. In practice, that's in the tens of MB, which is low
5146 * enough to be safe.
5147 */
f7de776d
AM
5148 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
5149 arc_c - overflow / 2;
5150 return (over < 0 ? ARC_OVF_NONE :
5151 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
34dc7c2f
BB
5152}
5153
a6255b7f 5154static abd_t *
e111c802
MM
5155arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5156 boolean_t do_adapt)
a6255b7f
DQ
5157{
5158 arc_buf_contents_t type = arc_buf_type(hdr);
5159
e111c802 5160 arc_get_data_impl(hdr, size, tag, do_adapt);
a6255b7f
DQ
5161 if (type == ARC_BUFC_METADATA) {
5162 return (abd_alloc(size, B_TRUE));
5163 } else {
5164 ASSERT(type == ARC_BUFC_DATA);
5165 return (abd_alloc(size, B_FALSE));
5166 }
5167}
5168
5169static void *
5170arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5171{
5172 arc_buf_contents_t type = arc_buf_type(hdr);
5173
e111c802 5174 arc_get_data_impl(hdr, size, tag, B_TRUE);
a6255b7f
DQ
5175 if (type == ARC_BUFC_METADATA) {
5176 return (zio_buf_alloc(size));
5177 } else {
5178 ASSERT(type == ARC_BUFC_DATA);
5179 return (zio_data_buf_alloc(size));
5180 }
5181}
5182
3442c2a0
MA
5183/*
5184 * Wait for the specified amount of data (in bytes) to be evicted from the
5185 * ARC, and for there to be sufficient free memory in the system. Waiting for
5186 * eviction ensures that the memory used by the ARC decreases. Waiting for
5187 * free memory ensures that the system won't run out of free pages, regardless
5188 * of ARC behavior and settings. See arc_lowmem_init().
5189 */
5190void
5191arc_wait_for_eviction(uint64_t amount)
5192{
f7de776d
AM
5193 switch (arc_is_overflowing()) {
5194 case ARC_OVF_NONE:
5195 return;
5196 case ARC_OVF_SOME:
5197 /*
5198 * This is a bit racy without taking arc_evict_lock, but the
5199 * worst that can happen is we either call zthr_wakeup() extra
5200 * time due to race with other thread here, or the set flag
5201 * get cleared by arc_evict_cb(), which is unlikely due to
5202 * big hysteresis, but also not important since at this level
5203 * of overflow the eviction is purely advisory. Same time
5204 * taking the global lock here every time without waiting for
5205 * the actual eviction creates a significant lock contention.
5206 */
5207 if (!arc_evict_needed) {
5208 arc_evict_needed = B_TRUE;
5209 zthr_wakeup(arc_evict_zthr);
5210 }
5211 return;
5212 case ARC_OVF_SEVERE:
5213 default:
5214 {
5215 arc_evict_waiter_t aw;
5216 list_link_init(&aw.aew_node);
5217 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
3442c2a0 5218
f7de776d
AM
5219 uint64_t last_count = 0;
5220 mutex_enter(&arc_evict_lock);
5221 if (!list_is_empty(&arc_evict_waiters)) {
5222 arc_evict_waiter_t *last =
5223 list_tail(&arc_evict_waiters);
5224 last_count = last->aew_count;
5225 } else if (!arc_evict_needed) {
5226 arc_evict_needed = B_TRUE;
5227 zthr_wakeup(arc_evict_zthr);
5228 }
5229 /*
5230 * Note, the last waiter's count may be less than
5231 * arc_evict_count if we are low on memory in which
5232 * case arc_evict_state_impl() may have deferred
5233 * wakeups (but still incremented arc_evict_count).
5234 */
5235 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
3442c2a0 5236
f7de776d 5237 list_insert_tail(&arc_evict_waiters, &aw);
3442c2a0 5238
f7de776d 5239 arc_set_need_free();
3442c2a0 5240
f7de776d
AM
5241 DTRACE_PROBE3(arc__wait__for__eviction,
5242 uint64_t, amount,
5243 uint64_t, arc_evict_count,
5244 uint64_t, aw.aew_count);
3442c2a0 5245
f7de776d
AM
5246 /*
5247 * We will be woken up either when arc_evict_count reaches
5248 * aew_count, or when the ARC is no longer overflowing and
5249 * eviction completes.
5250 * In case of "false" wakeup, we will still be on the list.
5251 */
5252 do {
3442c2a0 5253 cv_wait(&aw.aew_cv, &arc_evict_lock);
f7de776d
AM
5254 } while (list_link_active(&aw.aew_node));
5255 mutex_exit(&arc_evict_lock);
3442c2a0 5256
f7de776d
AM
5257 cv_destroy(&aw.aew_cv);
5258 }
3442c2a0 5259 }
3442c2a0
MA
5260}
5261
34dc7c2f 5262/*
d3c2ae1c
GW
5263 * Allocate a block and return it to the caller. If we are hitting the
5264 * hard limit for the cache size, we must sleep, waiting for the eviction
5265 * thread to catch up. If we're past the target size but below the hard
5266 * limit, we'll only signal the reclaim thread and continue on.
34dc7c2f 5267 */
a6255b7f 5268static void
e111c802
MM
5269arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
5270 boolean_t do_adapt)
34dc7c2f 5271{
a6255b7f
DQ
5272 arc_state_t *state = hdr->b_l1hdr.b_state;
5273 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f 5274
e111c802
MM
5275 if (do_adapt)
5276 arc_adapt(size, state);
34dc7c2f
BB
5277
5278 /*
3442c2a0
MA
5279 * If arc_size is currently overflowing, we must be adding data
5280 * faster than we are evicting. To ensure we don't compound the
ca0bf58d 5281 * problem by adding more data and forcing arc_size to grow even
3442c2a0
MA
5282 * further past it's target size, we wait for the eviction thread to
5283 * make some progress. We also wait for there to be sufficient free
5284 * memory in the system, as measured by arc_free_memory().
5285 *
5286 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5287 * requested size to be evicted. This should be more than 100%, to
5288 * ensure that that progress is also made towards getting arc_size
5289 * under arc_c. See the comment above zfs_arc_eviction_pct.
34dc7c2f 5290 */
f7de776d 5291 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100);
ab26409d 5292
d3c2ae1c 5293 VERIFY3U(hdr->b_type, ==, type);
da8ccd0e 5294 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
5295 arc_space_consume(size, ARC_SPACE_META);
5296 } else {
ca0bf58d 5297 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
5298 }
5299
34dc7c2f
BB
5300 /*
5301 * Update the state size. Note that ghost states have a
5302 * "ghost size" and so don't need to be updated.
5303 */
d3c2ae1c 5304 if (!GHOST_STATE(state)) {
34dc7c2f 5305
424fd7c3 5306 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
ca0bf58d
PS
5307
5308 /*
5309 * If this is reached via arc_read, the link is
5310 * protected by the hash lock. If reached via
5311 * arc_buf_alloc, the header should not be accessed by
5312 * any other thread. And, if reached via arc_read_done,
5313 * the hash lock will protect it if it's found in the
5314 * hash table; otherwise no other thread should be
5315 * trying to [add|remove]_reference it.
5316 */
5317 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3
TS
5318 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5319 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c 5320 size, tag);
34dc7c2f 5321 }
d3c2ae1c 5322
34dc7c2f
BB
5323 /*
5324 * If we are growing the cache, and we are adding anonymous
5325 * data, and we have outgrown arc_p, update arc_p
5326 */
c4c162c1 5327 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c &&
37fb3e43 5328 hdr->b_l1hdr.b_state == arc_anon &&
424fd7c3
TS
5329 (zfs_refcount_count(&arc_anon->arcs_size) +
5330 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
5331 arc_p = MIN(arc_c, arc_p + size);
5332 }
a6255b7f
DQ
5333}
5334
5335static void
5336arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5337{
5338 arc_free_data_impl(hdr, size, tag);
5339 abd_free(abd);
5340}
5341
5342static void
5343arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5344{
5345 arc_buf_contents_t type = arc_buf_type(hdr);
5346
5347 arc_free_data_impl(hdr, size, tag);
5348 if (type == ARC_BUFC_METADATA) {
5349 zio_buf_free(buf, size);
5350 } else {
5351 ASSERT(type == ARC_BUFC_DATA);
5352 zio_data_buf_free(buf, size);
5353 }
d3c2ae1c
GW
5354}
5355
5356/*
5357 * Free the arc data buffer.
5358 */
5359static void
a6255b7f 5360arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
d3c2ae1c
GW
5361{
5362 arc_state_t *state = hdr->b_l1hdr.b_state;
5363 arc_buf_contents_t type = arc_buf_type(hdr);
5364
5365 /* protected by hash lock, if in the hash table */
5366 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 5367 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
5368 ASSERT(state != arc_anon && state != arc_l2c_only);
5369
424fd7c3 5370 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
5371 size, tag);
5372 }
424fd7c3 5373 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
d3c2ae1c
GW
5374
5375 VERIFY3U(hdr->b_type, ==, type);
5376 if (type == ARC_BUFC_METADATA) {
d3c2ae1c
GW
5377 arc_space_return(size, ARC_SPACE_META);
5378 } else {
5379 ASSERT(type == ARC_BUFC_DATA);
d3c2ae1c
GW
5380 arc_space_return(size, ARC_SPACE_DATA);
5381 }
34dc7c2f
BB
5382}
5383
5384/*
5385 * This routine is called whenever a buffer is accessed.
5386 * NOTE: the hash lock is dropped in this function.
5387 */
5388static void
2a432414 5389arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 5390{
428870ff
BB
5391 clock_t now;
5392
34dc7c2f 5393 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 5394 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 5395
b9541d6b 5396 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
5397 /*
5398 * This buffer is not in the cache, and does not
5399 * appear in our "ghost" list. Add the new buffer
5400 * to the MRU state.
5401 */
5402
b9541d6b
CW
5403 ASSERT0(hdr->b_l1hdr.b_arc_access);
5404 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5405 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5406 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 5407
b9541d6b 5408 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
5409 now = ddi_get_lbolt();
5410
34dc7c2f
BB
5411 /*
5412 * If this buffer is here because of a prefetch, then either:
5413 * - clear the flag if this is a "referencing" read
5414 * (any subsequent access will bump this into the MFU state).
5415 * or
5416 * - move the buffer to the head of the list if this is
5417 * another prefetch (to make it less likely to be evicted).
5418 */
d4a72f23 5419 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
424fd7c3 5420 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
5421 /* link protected by hash lock */
5422 ASSERT(multilist_link_active(
b9541d6b 5423 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 5424 } else {
08532162
GA
5425 if (HDR_HAS_L2HDR(hdr))
5426 l2arc_hdr_arcstats_decrement_state(hdr);
d4a72f23
TC
5427 arc_hdr_clear_flags(hdr,
5428 ARC_FLAG_PREFETCH |
5429 ARC_FLAG_PRESCIENT_PREFETCH);
b9541d6b 5430 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 5431 ARCSTAT_BUMP(arcstat_mru_hits);
08532162
GA
5432 if (HDR_HAS_L2HDR(hdr))
5433 l2arc_hdr_arcstats_increment_state(hdr);
34dc7c2f 5434 }
b9541d6b 5435 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
5436 return;
5437 }
5438
5439 /*
5440 * This buffer has been "accessed" only once so far,
5441 * but it is still in the cache. Move it to the MFU
5442 * state.
5443 */
b9541d6b
CW
5444 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5445 ARC_MINTIME)) {
34dc7c2f
BB
5446 /*
5447 * More than 125ms have passed since we
5448 * instantiated this buffer. Move it to the
5449 * most frequently used state.
5450 */
b9541d6b 5451 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
5452 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5453 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5454 }
b9541d6b 5455 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 5456 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 5457 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
5458 arc_state_t *new_state;
5459 /*
5460 * This buffer has been "accessed" recently, but
5461 * was evicted from the cache. Move it to the
5462 * MFU state.
5463 */
d4a72f23 5464 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f 5465 new_state = arc_mru;
424fd7c3 5466 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
08532162
GA
5467 if (HDR_HAS_L2HDR(hdr))
5468 l2arc_hdr_arcstats_decrement_state(hdr);
d4a72f23
TC
5469 arc_hdr_clear_flags(hdr,
5470 ARC_FLAG_PREFETCH |
5471 ARC_FLAG_PRESCIENT_PREFETCH);
08532162
GA
5472 if (HDR_HAS_L2HDR(hdr))
5473 l2arc_hdr_arcstats_increment_state(hdr);
d4a72f23 5474 }
2a432414 5475 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5476 } else {
5477 new_state = arc_mfu;
2a432414 5478 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5479 }
5480
b9541d6b 5481 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 5482 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5483
b9541d6b 5484 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 5485 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 5486 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
5487 /*
5488 * This buffer has been accessed more than once and is
5489 * still in the cache. Keep it in the MFU state.
5490 *
5491 * NOTE: an add_reference() that occurred when we did
5492 * the arc_read() will have kicked this off the list.
5493 * If it was a prefetch, we will explicitly move it to
5494 * the head of the list now.
5495 */
d4a72f23 5496
b9541d6b 5497 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 5498 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
5499 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5500 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
5501 arc_state_t *new_state = arc_mfu;
5502 /*
5503 * This buffer has been accessed more than once but has
5504 * been evicted from the cache. Move it back to the
5505 * MFU state.
5506 */
5507
d4a72f23 5508 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f
BB
5509 /*
5510 * This is a prefetch access...
5511 * move this block back to the MRU state.
5512 */
34dc7c2f
BB
5513 new_state = arc_mru;
5514 }
5515
b9541d6b 5516 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5517 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5518 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5519
b9541d6b 5520 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 5521 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 5522 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
5523 /*
5524 * This buffer is on the 2nd Level ARC.
5525 */
5526
b9541d6b 5527 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5528 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5529 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5530 } else {
b9541d6b
CW
5531 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5532 hdr->b_l1hdr.b_state);
34dc7c2f
BB
5533 }
5534}
5535
0873bb63
BB
5536/*
5537 * This routine is called by dbuf_hold() to update the arc_access() state
5538 * which otherwise would be skipped for entries in the dbuf cache.
5539 */
5540void
5541arc_buf_access(arc_buf_t *buf)
5542{
5543 mutex_enter(&buf->b_evict_lock);
5544 arc_buf_hdr_t *hdr = buf->b_hdr;
5545
5546 /*
5547 * Avoid taking the hash_lock when possible as an optimization.
5548 * The header must be checked again under the hash_lock in order
5549 * to handle the case where it is concurrently being released.
5550 */
5551 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5552 mutex_exit(&buf->b_evict_lock);
5553 return;
5554 }
5555
5556 kmutex_t *hash_lock = HDR_LOCK(hdr);
5557 mutex_enter(hash_lock);
5558
5559 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5560 mutex_exit(hash_lock);
5561 mutex_exit(&buf->b_evict_lock);
5562 ARCSTAT_BUMP(arcstat_access_skip);
5563 return;
5564 }
5565
5566 mutex_exit(&buf->b_evict_lock);
5567
5568 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5569 hdr->b_l1hdr.b_state == arc_mfu);
5570
5571 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5572 arc_access(hdr, hash_lock);
5573 mutex_exit(hash_lock);
5574
5575 ARCSTAT_BUMP(arcstat_hits);
5576 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5577 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5578}
5579
b5256303 5580/* a generic arc_read_done_func_t which you can use */
34dc7c2f
BB
5581/* ARGSUSED */
5582void
d4a72f23
TC
5583arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5584 arc_buf_t *buf, void *arg)
34dc7c2f 5585{
d4a72f23
TC
5586 if (buf == NULL)
5587 return;
5588
5589 bcopy(buf->b_data, arg, arc_buf_size(buf));
d3c2ae1c 5590 arc_buf_destroy(buf, arg);
34dc7c2f
BB
5591}
5592
b5256303 5593/* a generic arc_read_done_func_t */
d4a72f23 5594/* ARGSUSED */
34dc7c2f 5595void
d4a72f23
TC
5596arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5597 arc_buf_t *buf, void *arg)
34dc7c2f
BB
5598{
5599 arc_buf_t **bufp = arg;
d4a72f23
TC
5600
5601 if (buf == NULL) {
c3bd3fb4 5602 ASSERT(zio == NULL || zio->io_error != 0);
34dc7c2f
BB
5603 *bufp = NULL;
5604 } else {
c3bd3fb4 5605 ASSERT(zio == NULL || zio->io_error == 0);
34dc7c2f 5606 *bufp = buf;
c3bd3fb4 5607 ASSERT(buf->b_data != NULL);
34dc7c2f
BB
5608 }
5609}
5610
d3c2ae1c
GW
5611static void
5612arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5613{
5614 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5615 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
b5256303 5616 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
d3c2ae1c
GW
5617 } else {
5618 if (HDR_COMPRESSION_ENABLED(hdr)) {
b5256303 5619 ASSERT3U(arc_hdr_get_compress(hdr), ==,
d3c2ae1c
GW
5620 BP_GET_COMPRESS(bp));
5621 }
5622 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5623 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
b5256303 5624 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
d3c2ae1c
GW
5625 }
5626}
5627
34dc7c2f
BB
5628static void
5629arc_read_done(zio_t *zio)
5630{
b5256303 5631 blkptr_t *bp = zio->io_bp;
d3c2ae1c 5632 arc_buf_hdr_t *hdr = zio->io_private;
9b67f605 5633 kmutex_t *hash_lock = NULL;
524b4217
DK
5634 arc_callback_t *callback_list;
5635 arc_callback_t *acb;
2aa34383 5636 boolean_t freeable = B_FALSE;
a7004725 5637
34dc7c2f
BB
5638 /*
5639 * The hdr was inserted into hash-table and removed from lists
5640 * prior to starting I/O. We should find this header, since
5641 * it's in the hash table, and it should be legit since it's
5642 * not possible to evict it during the I/O. The only possible
5643 * reason for it not to be found is if we were freed during the
5644 * read.
5645 */
9b67f605 5646 if (HDR_IN_HASH_TABLE(hdr)) {
31df97cd
DB
5647 arc_buf_hdr_t *found;
5648
9b67f605
MA
5649 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5650 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5651 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5652 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5653 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5654
31df97cd 5655 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
9b67f605 5656
d3c2ae1c 5657 ASSERT((found == hdr &&
9b67f605
MA
5658 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5659 (found == hdr && HDR_L2_READING(hdr)));
d3c2ae1c
GW
5660 ASSERT3P(hash_lock, !=, NULL);
5661 }
5662
b5256303
TC
5663 if (BP_IS_PROTECTED(bp)) {
5664 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5665 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5666 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5667 hdr->b_crypt_hdr.b_iv);
5668
5669 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5670 void *tmpbuf;
5671
5672 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5673 sizeof (zil_chain_t));
5674 zio_crypt_decode_mac_zil(tmpbuf,
5675 hdr->b_crypt_hdr.b_mac);
5676 abd_return_buf(zio->io_abd, tmpbuf,
5677 sizeof (zil_chain_t));
5678 } else {
5679 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5680 }
5681 }
5682
d4a72f23 5683 if (zio->io_error == 0) {
d3c2ae1c
GW
5684 /* byteswap if necessary */
5685 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5686 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5687 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5688 } else {
5689 hdr->b_l1hdr.b_byteswap =
5690 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5691 }
5692 } else {
5693 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5694 }
10b3c7f5
MN
5695 if (!HDR_L2_READING(hdr)) {
5696 hdr->b_complevel = zio->io_prop.zp_complevel;
5697 }
9b67f605 5698 }
34dc7c2f 5699
d3c2ae1c 5700 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
c6f5e9d9
GA
5701 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5702 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f 5703
b9541d6b 5704 callback_list = hdr->b_l1hdr.b_acb;
d3c2ae1c 5705 ASSERT3P(callback_list, !=, NULL);
34dc7c2f 5706
d4a72f23
TC
5707 if (hash_lock && zio->io_error == 0 &&
5708 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
5709 /*
5710 * Only call arc_access on anonymous buffers. This is because
5711 * if we've issued an I/O for an evicted buffer, we've already
5712 * called arc_access (to prevent any simultaneous readers from
5713 * getting confused).
5714 */
5715 arc_access(hdr, hash_lock);
5716 }
5717
524b4217
DK
5718 /*
5719 * If a read request has a callback (i.e. acb_done is not NULL), then we
5720 * make a buf containing the data according to the parameters which were
5721 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5722 * aren't needlessly decompressing the data multiple times.
5723 */
a7004725 5724 int callback_cnt = 0;
2aa34383 5725 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
923d7303 5726 if (!acb->acb_done || acb->acb_nobuf)
2aa34383
DK
5727 continue;
5728
2aa34383 5729 callback_cnt++;
524b4217 5730
d4a72f23
TC
5731 if (zio->io_error != 0)
5732 continue;
5733
b5256303 5734 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
be9a5c35 5735 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
d4a72f23 5736 acb->acb_compressed, acb->acb_noauth, B_TRUE,
440a3eb9 5737 &acb->acb_buf);
b5256303
TC
5738
5739 /*
440a3eb9 5740 * Assert non-speculative zios didn't fail because an
b5256303
TC
5741 * encryption key wasn't loaded
5742 */
a2c2ed1b 5743 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 5744 error != EACCES);
b5256303
TC
5745
5746 /*
5747 * If we failed to decrypt, report an error now (as the zio
5748 * layer would have done if it had done the transforms).
5749 */
5750 if (error == ECKSUM) {
5751 ASSERT(BP_IS_PROTECTED(bp));
5752 error = SET_ERROR(EIO);
b5256303 5753 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
be9a5c35 5754 spa_log_error(zio->io_spa, &acb->acb_zb);
1144586b
TS
5755 (void) zfs_ereport_post(
5756 FM_EREPORT_ZFS_AUTHENTICATION,
4f072827 5757 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
b5256303
TC
5758 }
5759 }
5760
c3bd3fb4
TC
5761 if (error != 0) {
5762 /*
5763 * Decompression or decryption failed. Set
5764 * io_error so that when we call acb_done
5765 * (below), we will indicate that the read
5766 * failed. Note that in the unusual case
5767 * where one callback is compressed and another
5768 * uncompressed, we will mark all of them
5769 * as failed, even though the uncompressed
5770 * one can't actually fail. In this case,
5771 * the hdr will not be anonymous, because
5772 * if there are multiple callbacks, it's
5773 * because multiple threads found the same
5774 * arc buf in the hash table.
5775 */
524b4217 5776 zio->io_error = error;
c3bd3fb4 5777 }
34dc7c2f 5778 }
c3bd3fb4
TC
5779
5780 /*
5781 * If there are multiple callbacks, we must have the hash lock,
5782 * because the only way for multiple threads to find this hdr is
5783 * in the hash table. This ensures that if there are multiple
5784 * callbacks, the hdr is not anonymous. If it were anonymous,
5785 * we couldn't use arc_buf_destroy() in the error case below.
5786 */
5787 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5788
b9541d6b 5789 hdr->b_l1hdr.b_acb = NULL;
d3c2ae1c 5790 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
440a3eb9 5791 if (callback_cnt == 0)
b5256303 5792 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
34dc7c2f 5793
424fd7c3 5794 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
b9541d6b 5795 callback_list != NULL);
34dc7c2f 5796
d4a72f23 5797 if (zio->io_error == 0) {
d3c2ae1c
GW
5798 arc_hdr_verify(hdr, zio->io_bp);
5799 } else {
5800 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
b9541d6b 5801 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
5802 arc_change_state(arc_anon, hdr, hash_lock);
5803 if (HDR_IN_HASH_TABLE(hdr))
5804 buf_hash_remove(hdr);
424fd7c3 5805 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5806 }
5807
5808 /*
5809 * Broadcast before we drop the hash_lock to avoid the possibility
5810 * that the hdr (and hence the cv) might be freed before we get to
5811 * the cv_broadcast().
5812 */
b9541d6b 5813 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 5814
b9541d6b 5815 if (hash_lock != NULL) {
34dc7c2f
BB
5816 mutex_exit(hash_lock);
5817 } else {
5818 /*
5819 * This block was freed while we waited for the read to
5820 * complete. It has been removed from the hash table and
5821 * moved to the anonymous state (so that it won't show up
5822 * in the cache).
5823 */
b9541d6b 5824 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
424fd7c3 5825 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5826 }
5827
5828 /* execute each callback and free its structure */
5829 while ((acb = callback_list) != NULL) {
c3bd3fb4
TC
5830 if (acb->acb_done != NULL) {
5831 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5832 /*
5833 * If arc_buf_alloc_impl() fails during
5834 * decompression, the buf will still be
5835 * allocated, and needs to be freed here.
5836 */
5837 arc_buf_destroy(acb->acb_buf,
5838 acb->acb_private);
5839 acb->acb_buf = NULL;
5840 }
d4a72f23
TC
5841 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5842 acb->acb_buf, acb->acb_private);
b5256303 5843 }
34dc7c2f
BB
5844
5845 if (acb->acb_zio_dummy != NULL) {
5846 acb->acb_zio_dummy->io_error = zio->io_error;
5847 zio_nowait(acb->acb_zio_dummy);
5848 }
5849
5850 callback_list = acb->acb_next;
5851 kmem_free(acb, sizeof (arc_callback_t));
5852 }
5853
5854 if (freeable)
5855 arc_hdr_destroy(hdr);
5856}
5857
5858/*
5c839890 5859 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
5860 * cache. If the block is found in the cache, invoke the provided
5861 * callback immediately and return. Note that the `zio' parameter
5862 * in the callback will be NULL in this case, since no IO was
5863 * required. If the block is not in the cache pass the read request
5864 * on to the spa with a substitute callback function, so that the
5865 * requested block will be added to the cache.
5866 *
5867 * If a read request arrives for a block that has a read in-progress,
5868 * either wait for the in-progress read to complete (and return the
5869 * results); or, if this is a read with a "done" func, add a record
5870 * to the read to invoke the "done" func when the read completes,
5871 * and return; or just return.
5872 *
5873 * arc_read_done() will invoke all the requested "done" functions
5874 * for readers of this block.
5875 */
5876int
b5256303
TC
5877arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5878 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5879 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 5880{
9b67f605 5881 arc_buf_hdr_t *hdr = NULL;
9b67f605 5882 kmutex_t *hash_lock = NULL;
34dc7c2f 5883 zio_t *rzio;
3541dc6d 5884 uint64_t guid = spa_load_guid(spa);
b5256303
TC
5885 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5886 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5887 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5888 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5889 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
0902c457 5890 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
1e4732cb 5891 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
1421c891 5892 int rc = 0;
34dc7c2f 5893
0902c457 5894 ASSERT(!embedded_bp ||
9b67f605 5895 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
30af21b0
PD
5896 ASSERT(!BP_IS_HOLE(bp));
5897 ASSERT(!BP_IS_REDACTED(bp));
9b67f605 5898
1e9231ad
MR
5899 /*
5900 * Normally SPL_FSTRANS will already be set since kernel threads which
5901 * expect to call the DMU interfaces will set it when created. System
5902 * calls are similarly handled by setting/cleaning the bit in the
5903 * registered callback (module/os/.../zfs/zpl_*).
5904 *
5905 * External consumers such as Lustre which call the exported DMU
5906 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5907 * on the hash_lock always set and clear the bit.
5908 */
5909 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5910top:
0902c457 5911 if (!embedded_bp) {
9b67f605
MA
5912 /*
5913 * Embedded BP's have no DVA and require no I/O to "read".
5914 * Create an anonymous arc buf to back it.
5915 */
9ffcaa37
GA
5916 if (!zfs_blkptr_verify(spa, bp, zio_flags &
5917 ZIO_FLAG_CONFIG_WRITER, BLK_VERIFY_LOG)) {
5918 rc = SET_ERROR(ECKSUM);
5919 goto out;
5920 }
5921
9b67f605
MA
5922 hdr = buf_hash_find(guid, bp, &hash_lock);
5923 }
5924
b5256303
TC
5925 /*
5926 * Determine if we have an L1 cache hit or a cache miss. For simplicity
e1cfd73f 5927 * we maintain encrypted data separately from compressed / uncompressed
b5256303
TC
5928 * data. If the user is requesting raw encrypted data and we don't have
5929 * that in the header we will read from disk to guarantee that we can
5930 * get it even if the encryption keys aren't loaded.
5931 */
5932 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5933 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
d3c2ae1c 5934 arc_buf_t *buf = NULL;
2a432414 5935 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
5936
5937 if (HDR_IO_IN_PROGRESS(hdr)) {
a8b2e306 5938 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
34dc7c2f 5939
1dc32a67
MA
5940 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5941 mutex_exit(hash_lock);
5942 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5943 rc = SET_ERROR(ENOENT);
5944 goto out;
5945 }
5946
a8b2e306 5947 ASSERT3P(head_zio, !=, NULL);
7f60329a
MA
5948 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5949 priority == ZIO_PRIORITY_SYNC_READ) {
5950 /*
a8b2e306
TC
5951 * This is a sync read that needs to wait for
5952 * an in-flight async read. Request that the
5953 * zio have its priority upgraded.
7f60329a 5954 */
a8b2e306
TC
5955 zio_change_priority(head_zio, priority);
5956 DTRACE_PROBE1(arc__async__upgrade__sync,
7f60329a 5957 arc_buf_hdr_t *, hdr);
a8b2e306 5958 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
7f60329a
MA
5959 }
5960 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
d3c2ae1c
GW
5961 arc_hdr_clear_flags(hdr,
5962 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a
MA
5963 }
5964
2a432414 5965 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 5966 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
5967 mutex_exit(hash_lock);
5968 goto top;
5969 }
2a432414 5970 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f 5971
923d7303 5972 if (done) {
7f60329a 5973 arc_callback_t *acb = NULL;
34dc7c2f
BB
5974
5975 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 5976 KM_SLEEP);
34dc7c2f
BB
5977 acb->acb_done = done;
5978 acb->acb_private = private;
a7004725 5979 acb->acb_compressed = compressed_read;
440a3eb9
TC
5980 acb->acb_encrypted = encrypted_read;
5981 acb->acb_noauth = noauth_read;
923d7303 5982 acb->acb_nobuf = no_buf;
be9a5c35 5983 acb->acb_zb = *zb;
34dc7c2f
BB
5984 if (pio != NULL)
5985 acb->acb_zio_dummy = zio_null(pio,
d164b209 5986 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f 5987
d3c2ae1c 5988 ASSERT3P(acb->acb_done, !=, NULL);
a8b2e306 5989 acb->acb_zio_head = head_zio;
b9541d6b
CW
5990 acb->acb_next = hdr->b_l1hdr.b_acb;
5991 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
5992 }
5993 mutex_exit(hash_lock);
1421c891 5994 goto out;
34dc7c2f
BB
5995 }
5996
b9541d6b
CW
5997 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5998 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 5999
1e4732cb 6000 if (done && !no_buf) {
7f60329a
MA
6001 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6002 /*
6003 * This is a demand read which does not have to
6004 * wait for i/o because we did a predictive
6005 * prefetch i/o for it, which has completed.
6006 */
6007 DTRACE_PROBE1(
6008 arc__demand__hit__predictive__prefetch,
6009 arc_buf_hdr_t *, hdr);
6010 ARCSTAT_BUMP(
6011 arcstat_demand_hit_predictive_prefetch);
d3c2ae1c
GW
6012 arc_hdr_clear_flags(hdr,
6013 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a 6014 }
d4a72f23
TC
6015
6016 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6017 ARCSTAT_BUMP(
6018 arcstat_demand_hit_prescient_prefetch);
6019 arc_hdr_clear_flags(hdr,
6020 ARC_FLAG_PRESCIENT_PREFETCH);
6021 }
6022
0902c457 6023 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
d3c2ae1c 6024
524b4217 6025 /* Get a buf with the desired data in it. */
be9a5c35
TC
6026 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6027 encrypted_read, compressed_read, noauth_read,
6028 B_TRUE, &buf);
a2c2ed1b
TC
6029 if (rc == ECKSUM) {
6030 /*
6031 * Convert authentication and decryption errors
be9a5c35
TC
6032 * to EIO (and generate an ereport if needed)
6033 * before leaving the ARC.
a2c2ed1b
TC
6034 */
6035 rc = SET_ERROR(EIO);
be9a5c35
TC
6036 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6037 spa_log_error(spa, zb);
1144586b 6038 (void) zfs_ereport_post(
be9a5c35 6039 FM_EREPORT_ZFS_AUTHENTICATION,
4f072827 6040 spa, NULL, zb, NULL, 0);
be9a5c35 6041 }
a2c2ed1b 6042 }
d4a72f23 6043 if (rc != 0) {
2c24b5b1
TC
6044 (void) remove_reference(hdr, hash_lock,
6045 private);
6046 arc_buf_destroy_impl(buf);
d4a72f23
TC
6047 buf = NULL;
6048 }
6049
a2c2ed1b
TC
6050 /* assert any errors weren't due to unloaded keys */
6051 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 6052 rc != EACCES);
2a432414 6053 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
08532162
GA
6054 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6055 if (HDR_HAS_L2HDR(hdr))
6056 l2arc_hdr_arcstats_decrement_state(hdr);
d3c2ae1c 6057 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
08532162
GA
6058 if (HDR_HAS_L2HDR(hdr))
6059 l2arc_hdr_arcstats_increment_state(hdr);
34dc7c2f
BB
6060 }
6061 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6062 arc_access(hdr, hash_lock);
d4a72f23
TC
6063 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6064 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
2a432414 6065 if (*arc_flags & ARC_FLAG_L2CACHE)
d3c2ae1c 6066 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f
BB
6067 mutex_exit(hash_lock);
6068 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
6069 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6070 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
6071 data, metadata, hits);
6072
6073 if (done)
d4a72f23 6074 done(NULL, zb, bp, buf, private);
34dc7c2f 6075 } else {
d3c2ae1c
GW
6076 uint64_t lsize = BP_GET_LSIZE(bp);
6077 uint64_t psize = BP_GET_PSIZE(bp);
9b67f605 6078 arc_callback_t *acb;
b128c09f 6079 vdev_t *vd = NULL;
a117a6d6 6080 uint64_t addr = 0;
d164b209 6081 boolean_t devw = B_FALSE;
d3c2ae1c 6082 uint64_t size;
440a3eb9 6083 abd_t *hdr_abd;
e111c802 6084 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
34dc7c2f 6085
1dc32a67
MA
6086 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6087 rc = SET_ERROR(ENOENT);
6088 if (hash_lock != NULL)
6089 mutex_exit(hash_lock);
6090 goto out;
6091 }
6092
34dc7c2f 6093 if (hdr == NULL) {
0902c457
TC
6094 /*
6095 * This block is not in the cache or it has
6096 * embedded data.
6097 */
9b67f605 6098 arc_buf_hdr_t *exists = NULL;
34dc7c2f 6099 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
d3c2ae1c 6100 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
10b3c7f5 6101 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type,
b5256303 6102 encrypted_read);
d3c2ae1c 6103
0902c457 6104 if (!embedded_bp) {
9b67f605
MA
6105 hdr->b_dva = *BP_IDENTITY(bp);
6106 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
6107 exists = buf_hash_insert(hdr, &hash_lock);
6108 }
6109 if (exists != NULL) {
34dc7c2f
BB
6110 /* somebody beat us to the hash insert */
6111 mutex_exit(hash_lock);
428870ff 6112 buf_discard_identity(hdr);
d3c2ae1c 6113 arc_hdr_destroy(hdr);
34dc7c2f
BB
6114 goto top; /* restart the IO request */
6115 }
34dc7c2f 6116 } else {
b9541d6b 6117 /*
b5256303
TC
6118 * This block is in the ghost cache or encrypted data
6119 * was requested and we didn't have it. If it was
6120 * L2-only (and thus didn't have an L1 hdr),
6121 * we realloc the header to add an L1 hdr.
b9541d6b
CW
6122 */
6123 if (!HDR_HAS_L1HDR(hdr)) {
6124 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6125 hdr_full_cache);
6126 }
6127
b5256303
TC
6128 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6129 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6130 ASSERT(!HDR_HAS_RABD(hdr));
6131 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
424fd7c3
TS
6132 ASSERT0(zfs_refcount_count(
6133 &hdr->b_l1hdr.b_refcnt));
b5256303
TC
6134 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6135 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6136 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6137 /*
6138 * If this header already had an IO in progress
6139 * and we are performing another IO to fetch
6140 * encrypted data we must wait until the first
6141 * IO completes so as not to confuse
6142 * arc_read_done(). This should be very rare
6143 * and so the performance impact shouldn't
6144 * matter.
6145 */
6146 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6147 mutex_exit(hash_lock);
6148 goto top;
6149 }
34dc7c2f 6150
7f60329a 6151 /*
d3c2ae1c 6152 * This is a delicate dance that we play here.
b5256303
TC
6153 * This hdr might be in the ghost list so we access
6154 * it to move it out of the ghost list before we
d3c2ae1c
GW
6155 * initiate the read. If it's a prefetch then
6156 * it won't have a callback so we'll remove the
6157 * reference that arc_buf_alloc_impl() created. We
6158 * do this after we've called arc_access() to
6159 * avoid hitting an assert in remove_reference().
7f60329a 6160 */
e111c802 6161 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
428870ff 6162 arc_access(hdr, hash_lock);
e111c802 6163 arc_hdr_alloc_abd(hdr, alloc_flags);
d3c2ae1c 6164 }
d3c2ae1c 6165
b5256303
TC
6166 if (encrypted_read) {
6167 ASSERT(HDR_HAS_RABD(hdr));
6168 size = HDR_GET_PSIZE(hdr);
6169 hdr_abd = hdr->b_crypt_hdr.b_rabd;
d3c2ae1c 6170 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
6171 } else {
6172 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6173 size = arc_hdr_size(hdr);
6174 hdr_abd = hdr->b_l1hdr.b_pabd;
6175
6176 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6177 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6178 }
6179
6180 /*
6181 * For authenticated bp's, we do not ask the ZIO layer
6182 * to authenticate them since this will cause the entire
6183 * IO to fail if the key isn't loaded. Instead, we
6184 * defer authentication until arc_buf_fill(), which will
6185 * verify the data when the key is available.
6186 */
6187 if (BP_IS_AUTHENTICATED(bp))
6188 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
34dc7c2f
BB
6189 }
6190
b5256303 6191 if (*arc_flags & ARC_FLAG_PREFETCH &&
08532162
GA
6192 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6193 if (HDR_HAS_L2HDR(hdr))
6194 l2arc_hdr_arcstats_decrement_state(hdr);
d3c2ae1c 6195 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
08532162
GA
6196 if (HDR_HAS_L2HDR(hdr))
6197 l2arc_hdr_arcstats_increment_state(hdr);
6198 }
d4a72f23
TC
6199 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6200 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
d3c2ae1c
GW
6201 if (*arc_flags & ARC_FLAG_L2CACHE)
6202 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
b5256303
TC
6203 if (BP_IS_AUTHENTICATED(bp))
6204 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
d3c2ae1c
GW
6205 if (BP_GET_LEVEL(bp) > 0)
6206 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
7f60329a 6207 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
d3c2ae1c 6208 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
b9541d6b 6209 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 6210
79c76d5b 6211 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
6212 acb->acb_done = done;
6213 acb->acb_private = private;
2aa34383 6214 acb->acb_compressed = compressed_read;
b5256303
TC
6215 acb->acb_encrypted = encrypted_read;
6216 acb->acb_noauth = noauth_read;
be9a5c35 6217 acb->acb_zb = *zb;
34dc7c2f 6218
d3c2ae1c 6219 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b9541d6b 6220 hdr->b_l1hdr.b_acb = acb;
d3c2ae1c 6221 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f 6222
b9541d6b
CW
6223 if (HDR_HAS_L2HDR(hdr) &&
6224 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6225 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6226 addr = hdr->b_l2hdr.b_daddr;
b128c09f 6227 /*
a1d477c2 6228 * Lock out L2ARC device removal.
b128c09f
BB
6229 */
6230 if (vdev_is_dead(vd) ||
6231 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6232 vd = NULL;
6233 }
6234
a8b2e306
TC
6235 /*
6236 * We count both async reads and scrub IOs as asynchronous so
6237 * that both can be upgraded in the event of a cache hit while
6238 * the read IO is still in-flight.
6239 */
6240 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6241 priority == ZIO_PRIORITY_SCRUB)
d3c2ae1c
GW
6242 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6243 else
6244 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6245
e49f1e20 6246 /*
0902c457
TC
6247 * At this point, we have a level 1 cache miss or a blkptr
6248 * with embedded data. Try again in L2ARC if possible.
e49f1e20 6249 */
d3c2ae1c
GW
6250 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6251
0902c457
TC
6252 /*
6253 * Skip ARC stat bump for block pointers with embedded
6254 * data. The data are read from the blkptr itself via
6255 * decode_embedded_bp_compressed().
6256 */
6257 if (!embedded_bp) {
6258 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6259 blkptr_t *, bp, uint64_t, lsize,
6260 zbookmark_phys_t *, zb);
6261 ARCSTAT_BUMP(arcstat_misses);
6262 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6263 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6264 metadata, misses);
64e0fe14 6265 zfs_racct_read(size, 1);
0902c457 6266 }
34dc7c2f 6267
666aa69f
AM
6268 /* Check if the spa even has l2 configured */
6269 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6270 spa->spa_l2cache.sav_count > 0;
6271
6272 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
34dc7c2f
BB
6273 /*
6274 * Read from the L2ARC if the following are true:
b128c09f
BB
6275 * 1. The L2ARC vdev was previously cached.
6276 * 2. This buffer still has L2ARC metadata.
6277 * 3. This buffer isn't currently writing to the L2ARC.
6278 * 4. The L2ARC entry wasn't evicted, which may
6279 * also have invalidated the vdev.
08532162 6280 * 5. This isn't prefetch or l2arc_noprefetch is 0.
34dc7c2f 6281 */
b9541d6b 6282 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
6283 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6284 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f 6285 l2arc_read_callback_t *cb;
82710e99
GDN
6286 abd_t *abd;
6287 uint64_t asize;
34dc7c2f
BB
6288
6289 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6290 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 6291 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 6292
34dc7c2f 6293 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 6294 KM_SLEEP);
d3c2ae1c 6295 cb->l2rcb_hdr = hdr;
34dc7c2f
BB
6296 cb->l2rcb_bp = *bp;
6297 cb->l2rcb_zb = *zb;
b128c09f 6298 cb->l2rcb_flags = zio_flags;
34dc7c2f 6299
fc34dfba
AJ
6300 /*
6301 * When Compressed ARC is disabled, but the
6302 * L2ARC block is compressed, arc_hdr_size()
6303 * will have returned LSIZE rather than PSIZE.
6304 */
6305 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6306 !HDR_COMPRESSION_ENABLED(hdr) &&
6307 HDR_GET_PSIZE(hdr) != 0) {
6308 size = HDR_GET_PSIZE(hdr);
6309 }
6310
82710e99
GDN
6311 asize = vdev_psize_to_asize(vd, size);
6312 if (asize != size) {
6313 abd = abd_alloc_for_io(asize,
6314 HDR_ISTYPE_METADATA(hdr));
6315 cb->l2rcb_abd = abd;
6316 } else {
b5256303 6317 abd = hdr_abd;
82710e99
GDN
6318 }
6319
a117a6d6 6320 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
82710e99 6321 addr + asize <= vd->vdev_psize -
a117a6d6
GW
6322 VDEV_LABEL_END_SIZE);
6323
34dc7c2f 6324 /*
b128c09f
BB
6325 * l2arc read. The SCL_L2ARC lock will be
6326 * released by l2arc_read_done().
3a17a7a9
SK
6327 * Issue a null zio if the underlying buffer
6328 * was squashed to zero size by compression.
34dc7c2f 6329 */
b5256303 6330 ASSERT3U(arc_hdr_get_compress(hdr), !=,
d3c2ae1c
GW
6331 ZIO_COMPRESS_EMPTY);
6332 rzio = zio_read_phys(pio, vd, addr,
82710e99 6333 asize, abd,
d3c2ae1c
GW
6334 ZIO_CHECKSUM_OFF,
6335 l2arc_read_done, cb, priority,
6336 zio_flags | ZIO_FLAG_DONT_CACHE |
6337 ZIO_FLAG_CANFAIL |
6338 ZIO_FLAG_DONT_PROPAGATE |
6339 ZIO_FLAG_DONT_RETRY, B_FALSE);
a8b2e306
TC
6340 acb->acb_zio_head = rzio;
6341
6342 if (hash_lock != NULL)
6343 mutex_exit(hash_lock);
d3c2ae1c 6344
34dc7c2f
BB
6345 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6346 zio_t *, rzio);
b5256303
TC
6347 ARCSTAT_INCR(arcstat_l2_read_bytes,
6348 HDR_GET_PSIZE(hdr));
34dc7c2f 6349
2a432414 6350 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 6351 zio_nowait(rzio);
1421c891 6352 goto out;
b128c09f 6353 }
34dc7c2f 6354
2a432414 6355 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 6356 if (zio_wait(rzio) == 0)
1421c891 6357 goto out;
b128c09f
BB
6358
6359 /* l2arc read error; goto zio_read() */
a8b2e306
TC
6360 if (hash_lock != NULL)
6361 mutex_enter(hash_lock);
34dc7c2f
BB
6362 } else {
6363 DTRACE_PROBE1(l2arc__miss,
6364 arc_buf_hdr_t *, hdr);
6365 ARCSTAT_BUMP(arcstat_l2_misses);
6366 if (HDR_L2_WRITING(hdr))
6367 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 6368 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 6369 }
d164b209
BB
6370 } else {
6371 if (vd != NULL)
6372 spa_config_exit(spa, SCL_L2ARC, vd);
666aa69f 6373
0902c457 6374 /*
666aa69f
AM
6375 * Only a spa with l2 should contribute to l2
6376 * miss stats. (Including the case of having a
6377 * faulted cache device - that's also a miss.)
0902c457 6378 */
666aa69f
AM
6379 if (spa_has_l2) {
6380 /*
6381 * Skip ARC stat bump for block pointers with
6382 * embedded data. The data are read from the
6383 * blkptr itself via
6384 * decode_embedded_bp_compressed().
6385 */
6386 if (!embedded_bp) {
6387 DTRACE_PROBE1(l2arc__miss,
6388 arc_buf_hdr_t *, hdr);
6389 ARCSTAT_BUMP(arcstat_l2_misses);
6390 }
d164b209 6391 }
34dc7c2f 6392 }
34dc7c2f 6393
b5256303 6394 rzio = zio_read(pio, spa, bp, hdr_abd, size,
d3c2ae1c 6395 arc_read_done, hdr, priority, zio_flags, zb);
a8b2e306
TC
6396 acb->acb_zio_head = rzio;
6397
6398 if (hash_lock != NULL)
6399 mutex_exit(hash_lock);
34dc7c2f 6400
2a432414 6401 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
6402 rc = zio_wait(rzio);
6403 goto out;
6404 }
34dc7c2f 6405
2a432414 6406 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6407 zio_nowait(rzio);
6408 }
1421c891
PS
6409
6410out:
157ef7f6 6411 /* embedded bps don't actually go to disk */
0902c457 6412 if (!embedded_bp)
157ef7f6 6413 spa_read_history_add(spa, zb, *arc_flags);
1e9231ad 6414 spl_fstrans_unmark(cookie);
1421c891 6415 return (rc);
34dc7c2f
BB
6416}
6417
ab26409d
BB
6418arc_prune_t *
6419arc_add_prune_callback(arc_prune_func_t *func, void *private)
6420{
6421 arc_prune_t *p;
6422
d1d7e268 6423 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
6424 p->p_pfunc = func;
6425 p->p_private = private;
6426 list_link_init(&p->p_node);
424fd7c3 6427 zfs_refcount_create(&p->p_refcnt);
ab26409d
BB
6428
6429 mutex_enter(&arc_prune_mtx);
c13060e4 6430 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
ab26409d
BB
6431 list_insert_head(&arc_prune_list, p);
6432 mutex_exit(&arc_prune_mtx);
6433
6434 return (p);
6435}
6436
6437void
6438arc_remove_prune_callback(arc_prune_t *p)
6439{
4442f60d 6440 boolean_t wait = B_FALSE;
ab26409d
BB
6441 mutex_enter(&arc_prune_mtx);
6442 list_remove(&arc_prune_list, p);
424fd7c3 6443 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
4442f60d 6444 wait = B_TRUE;
ab26409d 6445 mutex_exit(&arc_prune_mtx);
4442f60d
CC
6446
6447 /* wait for arc_prune_task to finish */
6448 if (wait)
6449 taskq_wait_outstanding(arc_prune_taskq, 0);
424fd7c3
TS
6450 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6451 zfs_refcount_destroy(&p->p_refcnt);
4442f60d 6452 kmem_free(p, sizeof (*p));
ab26409d
BB
6453}
6454
df4474f9
MA
6455/*
6456 * Notify the arc that a block was freed, and thus will never be used again.
6457 */
6458void
6459arc_freed(spa_t *spa, const blkptr_t *bp)
6460{
6461 arc_buf_hdr_t *hdr;
6462 kmutex_t *hash_lock;
6463 uint64_t guid = spa_load_guid(spa);
6464
9b67f605
MA
6465 ASSERT(!BP_IS_EMBEDDED(bp));
6466
6467 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
6468 if (hdr == NULL)
6469 return;
df4474f9 6470
d3c2ae1c
GW
6471 /*
6472 * We might be trying to free a block that is still doing I/O
6473 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6474 * dmu_sync-ed block). If this block is being prefetched, then it
6475 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6476 * until the I/O completes. A block may also have a reference if it is
6477 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6478 * have written the new block to its final resting place on disk but
6479 * without the dedup flag set. This would have left the hdr in the MRU
6480 * state and discoverable. When the txg finally syncs it detects that
6481 * the block was overridden in open context and issues an override I/O.
6482 * Since this is a dedup block, the override I/O will determine if the
6483 * block is already in the DDT. If so, then it will replace the io_bp
6484 * with the bp from the DDT and allow the I/O to finish. When the I/O
6485 * reaches the done callback, dbuf_write_override_done, it will
6486 * check to see if the io_bp and io_bp_override are identical.
6487 * If they are not, then it indicates that the bp was replaced with
6488 * the bp in the DDT and the override bp is freed. This allows
6489 * us to arrive here with a reference on a block that is being
6490 * freed. So if we have an I/O in progress, or a reference to
6491 * this hdr, then we don't destroy the hdr.
6492 */
6493 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
424fd7c3 6494 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
d3c2ae1c
GW
6495 arc_change_state(arc_anon, hdr, hash_lock);
6496 arc_hdr_destroy(hdr);
df4474f9 6497 mutex_exit(hash_lock);
bd089c54 6498 } else {
d3c2ae1c 6499 mutex_exit(hash_lock);
34dc7c2f 6500 }
34dc7c2f 6501
34dc7c2f
BB
6502}
6503
6504/*
e49f1e20
WA
6505 * Release this buffer from the cache, making it an anonymous buffer. This
6506 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 6507 * If the buffer has more than one reference, we must make
b128c09f 6508 * a new hdr for the buffer.
34dc7c2f
BB
6509 */
6510void
6511arc_release(arc_buf_t *buf, void *tag)
6512{
b9541d6b 6513 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 6514
428870ff 6515 /*
ca0bf58d 6516 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
6517 * 0 || it's the dnode file), then it must be syncing context.
6518 * But we don't know that information at this level.
6519 */
6520
6521 mutex_enter(&buf->b_evict_lock);
b128c09f 6522
ca0bf58d
PS
6523 ASSERT(HDR_HAS_L1HDR(hdr));
6524
b9541d6b
CW
6525 /*
6526 * We don't grab the hash lock prior to this check, because if
6527 * the buffer's header is in the arc_anon state, it won't be
6528 * linked into the hash table.
6529 */
6530 if (hdr->b_l1hdr.b_state == arc_anon) {
6531 mutex_exit(&buf->b_evict_lock);
6532 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6533 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6534 ASSERT(!HDR_HAS_L2HDR(hdr));
d3c2ae1c 6535 ASSERT(HDR_EMPTY(hdr));
34dc7c2f 6536
d3c2ae1c 6537 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
424fd7c3 6538 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
b9541d6b
CW
6539 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6540
b9541d6b 6541 hdr->b_l1hdr.b_arc_access = 0;
d3c2ae1c
GW
6542
6543 /*
6544 * If the buf is being overridden then it may already
6545 * have a hdr that is not empty.
6546 */
6547 buf_discard_identity(hdr);
b9541d6b
CW
6548 arc_buf_thaw(buf);
6549
6550 return;
34dc7c2f
BB
6551 }
6552
1c27024e 6553 kmutex_t *hash_lock = HDR_LOCK(hdr);
b9541d6b
CW
6554 mutex_enter(hash_lock);
6555
6556 /*
6557 * This assignment is only valid as long as the hash_lock is
6558 * held, we must be careful not to reference state or the
6559 * b_state field after dropping the lock.
6560 */
1c27024e 6561 arc_state_t *state = hdr->b_l1hdr.b_state;
b9541d6b
CW
6562 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6563 ASSERT3P(state, !=, arc_anon);
6564
6565 /* this buffer is not on any list */
424fd7c3 6566 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
b9541d6b
CW
6567
6568 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 6569 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
6570
6571 /*
d962d5da
PS
6572 * We have to recheck this conditional again now that
6573 * we're holding the l2ad_mtx to prevent a race with
6574 * another thread which might be concurrently calling
6575 * l2arc_evict(). In that case, l2arc_evict() might have
6576 * destroyed the header's L2 portion as we were waiting
6577 * to acquire the l2ad_mtx.
ca0bf58d 6578 */
d962d5da
PS
6579 if (HDR_HAS_L2HDR(hdr))
6580 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 6581
b9541d6b 6582 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
6583 }
6584
34dc7c2f
BB
6585 /*
6586 * Do we have more than one buf?
6587 */
d3c2ae1c 6588 if (hdr->b_l1hdr.b_bufcnt > 1) {
34dc7c2f 6589 arc_buf_hdr_t *nhdr;
d164b209 6590 uint64_t spa = hdr->b_spa;
d3c2ae1c
GW
6591 uint64_t psize = HDR_GET_PSIZE(hdr);
6592 uint64_t lsize = HDR_GET_LSIZE(hdr);
b5256303
TC
6593 boolean_t protected = HDR_PROTECTED(hdr);
6594 enum zio_compress compress = arc_hdr_get_compress(hdr);
b9541d6b 6595 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c 6596 VERIFY3U(hdr->b_type, ==, type);
34dc7c2f 6597
b9541d6b 6598 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
d3c2ae1c
GW
6599 (void) remove_reference(hdr, hash_lock, tag);
6600
524b4217 6601 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 6602 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
524b4217
DK
6603 ASSERT(ARC_BUF_LAST(buf));
6604 }
d3c2ae1c 6605
34dc7c2f 6606 /*
428870ff 6607 * Pull the data off of this hdr and attach it to
d3c2ae1c
GW
6608 * a new anonymous hdr. Also find the last buffer
6609 * in the hdr's buffer list.
34dc7c2f 6610 */
a7004725 6611 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 6612 ASSERT3P(lastbuf, !=, NULL);
34dc7c2f 6613
d3c2ae1c
GW
6614 /*
6615 * If the current arc_buf_t and the hdr are sharing their data
524b4217 6616 * buffer, then we must stop sharing that block.
d3c2ae1c
GW
6617 */
6618 if (arc_buf_is_shared(buf)) {
6619 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
d3c2ae1c
GW
6620 VERIFY(!arc_buf_is_shared(lastbuf));
6621
6622 /*
6623 * First, sever the block sharing relationship between
a7004725 6624 * buf and the arc_buf_hdr_t.
d3c2ae1c
GW
6625 */
6626 arc_unshare_buf(hdr, buf);
2aa34383
DK
6627
6628 /*
a6255b7f 6629 * Now we need to recreate the hdr's b_pabd. Since we
524b4217 6630 * have lastbuf handy, we try to share with it, but if
a6255b7f 6631 * we can't then we allocate a new b_pabd and copy the
524b4217 6632 * data from buf into it.
2aa34383 6633 */
524b4217
DK
6634 if (arc_can_share(hdr, lastbuf)) {
6635 arc_share_buf(hdr, lastbuf);
6636 } else {
e111c802 6637 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
a6255b7f
DQ
6638 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6639 buf->b_data, psize);
2aa34383 6640 }
d3c2ae1c
GW
6641 VERIFY3P(lastbuf->b_data, !=, NULL);
6642 } else if (HDR_SHARED_DATA(hdr)) {
2aa34383
DK
6643 /*
6644 * Uncompressed shared buffers are always at the end
6645 * of the list. Compressed buffers don't have the
6646 * same requirements. This makes it hard to
6647 * simply assert that the lastbuf is shared so
6648 * we rely on the hdr's compression flags to determine
6649 * if we have a compressed, shared buffer.
6650 */
6651 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 6652 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2aa34383 6653 ASSERT(!ARC_BUF_SHARED(buf));
d3c2ae1c 6654 }
b5256303
TC
6655
6656 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
b9541d6b 6657 ASSERT3P(state, !=, arc_l2c_only);
36da08ef 6658
424fd7c3 6659 (void) zfs_refcount_remove_many(&state->arcs_size,
2aa34383 6660 arc_buf_size(buf), buf);
36da08ef 6661
424fd7c3 6662 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
b9541d6b 6663 ASSERT3P(state, !=, arc_l2c_only);
424fd7c3
TS
6664 (void) zfs_refcount_remove_many(
6665 &state->arcs_esize[type],
2aa34383 6666 arc_buf_size(buf), buf);
34dc7c2f 6667 }
1eb5bfa3 6668
d3c2ae1c 6669 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303
TC
6670 if (ARC_BUF_ENCRYPTED(buf))
6671 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6672
34dc7c2f 6673 arc_cksum_verify(buf);
498877ba 6674 arc_buf_unwatch(buf);
34dc7c2f 6675
f486f584
TC
6676 /* if this is the last uncompressed buf free the checksum */
6677 if (!arc_hdr_has_uncompressed_buf(hdr))
6678 arc_cksum_free(hdr);
6679
34dc7c2f
BB
6680 mutex_exit(hash_lock);
6681
d3c2ae1c 6682 /*
a6255b7f 6683 * Allocate a new hdr. The new hdr will contain a b_pabd
d3c2ae1c
GW
6684 * buffer which will be freed in arc_write().
6685 */
b5256303 6686 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
10b3c7f5 6687 compress, hdr->b_complevel, type, HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6688 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6689 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
424fd7c3 6690 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
6691 VERIFY3U(nhdr->b_type, ==, type);
6692 ASSERT(!HDR_SHARED_DATA(nhdr));
b9541d6b 6693
d3c2ae1c
GW
6694 nhdr->b_l1hdr.b_buf = buf;
6695 nhdr->b_l1hdr.b_bufcnt = 1;
b5256303
TC
6696 if (ARC_BUF_ENCRYPTED(buf))
6697 nhdr->b_crypt_hdr.b_ebufcnt = 1;
b9541d6b
CW
6698 nhdr->b_l1hdr.b_mru_hits = 0;
6699 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6700 nhdr->b_l1hdr.b_mfu_hits = 0;
6701 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6702 nhdr->b_l1hdr.b_l2_hits = 0;
c13060e4 6703 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 6704 buf->b_hdr = nhdr;
d3c2ae1c 6705
428870ff 6706 mutex_exit(&buf->b_evict_lock);
424fd7c3 6707 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
5e8ff256 6708 arc_buf_size(buf), buf);
34dc7c2f 6709 } else {
428870ff 6710 mutex_exit(&buf->b_evict_lock);
424fd7c3 6711 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
6712 /* protected by hash lock, or hdr is on arc_anon */
6713 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 6714 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
6715 hdr->b_l1hdr.b_mru_hits = 0;
6716 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6717 hdr->b_l1hdr.b_mfu_hits = 0;
6718 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6719 hdr->b_l1hdr.b_l2_hits = 0;
6720 arc_change_state(arc_anon, hdr, hash_lock);
6721 hdr->b_l1hdr.b_arc_access = 0;
34dc7c2f 6722
b5256303 6723 mutex_exit(hash_lock);
428870ff 6724 buf_discard_identity(hdr);
34dc7c2f
BB
6725 arc_buf_thaw(buf);
6726 }
34dc7c2f
BB
6727}
6728
6729int
6730arc_released(arc_buf_t *buf)
6731{
b128c09f
BB
6732 int released;
6733
428870ff 6734 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
6735 released = (buf->b_data != NULL &&
6736 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 6737 mutex_exit(&buf->b_evict_lock);
b128c09f 6738 return (released);
34dc7c2f
BB
6739}
6740
34dc7c2f
BB
6741#ifdef ZFS_DEBUG
6742int
6743arc_referenced(arc_buf_t *buf)
6744{
b128c09f
BB
6745 int referenced;
6746
428870ff 6747 mutex_enter(&buf->b_evict_lock);
424fd7c3 6748 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 6749 mutex_exit(&buf->b_evict_lock);
b128c09f 6750 return (referenced);
34dc7c2f
BB
6751}
6752#endif
6753
6754static void
6755arc_write_ready(zio_t *zio)
6756{
6757 arc_write_callback_t *callback = zio->io_private;
6758 arc_buf_t *buf = callback->awcb_buf;
6759 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
6760 blkptr_t *bp = zio->io_bp;
6761 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
a6255b7f 6762 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 6763
b9541d6b 6764 ASSERT(HDR_HAS_L1HDR(hdr));
424fd7c3 6765 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
d3c2ae1c 6766 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
b128c09f 6767
34dc7c2f 6768 /*
d3c2ae1c
GW
6769 * If we're reexecuting this zio because the pool suspended, then
6770 * cleanup any state that was previously set the first time the
2aa34383 6771 * callback was invoked.
34dc7c2f 6772 */
d3c2ae1c
GW
6773 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6774 arc_cksum_free(hdr);
6775 arc_buf_unwatch(buf);
a6255b7f 6776 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 6777 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
6778 arc_unshare_buf(hdr, buf);
6779 } else {
b5256303 6780 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 6781 }
34dc7c2f 6782 }
b5256303
TC
6783
6784 if (HDR_HAS_RABD(hdr))
6785 arc_hdr_free_abd(hdr, B_TRUE);
34dc7c2f 6786 }
a6255b7f 6787 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 6788 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6789 ASSERT(!HDR_SHARED_DATA(hdr));
6790 ASSERT(!arc_buf_is_shared(buf));
6791
6792 callback->awcb_ready(zio, buf, callback->awcb_private);
6793
6794 if (HDR_IO_IN_PROGRESS(hdr))
6795 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6796
d3c2ae1c
GW
6797 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6798
b5256303
TC
6799 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6800 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6801
6802 if (BP_IS_PROTECTED(bp)) {
6803 /* ZIL blocks are written through zio_rewrite */
6804 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6805 ASSERT(HDR_PROTECTED(hdr));
6806
ae76f45c
TC
6807 if (BP_SHOULD_BYTESWAP(bp)) {
6808 if (BP_GET_LEVEL(bp) > 0) {
6809 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6810 } else {
6811 hdr->b_l1hdr.b_byteswap =
6812 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6813 }
6814 } else {
6815 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6816 }
6817
b5256303
TC
6818 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6819 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6820 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6821 hdr->b_crypt_hdr.b_iv);
6822 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6823 }
6824
6825 /*
6826 * If this block was written for raw encryption but the zio layer
6827 * ended up only authenticating it, adjust the buffer flags now.
6828 */
6829 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6830 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6831 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6832 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6833 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b1d21733
TC
6834 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6835 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6836 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
6837 }
6838
6839 /* this must be done after the buffer flags are adjusted */
6840 arc_cksum_compute(buf);
6841
1c27024e 6842 enum zio_compress compress;
b5256303 6843 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
d3c2ae1c
GW
6844 compress = ZIO_COMPRESS_OFF;
6845 } else {
b5256303
TC
6846 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6847 compress = BP_GET_COMPRESS(bp);
d3c2ae1c
GW
6848 }
6849 HDR_SET_PSIZE(hdr, psize);
6850 arc_hdr_set_compress(hdr, compress);
10b3c7f5 6851 hdr->b_complevel = zio->io_prop.zp_complevel;
d3c2ae1c 6852
4807c0ba
TC
6853 if (zio->io_error != 0 || psize == 0)
6854 goto out;
6855
d3c2ae1c 6856 /*
b5256303
TC
6857 * Fill the hdr with data. If the buffer is encrypted we have no choice
6858 * but to copy the data into b_radb. If the hdr is compressed, the data
6859 * we want is available from the zio, otherwise we can take it from
6860 * the buf.
a6255b7f
DQ
6861 *
6862 * We might be able to share the buf's data with the hdr here. However,
6863 * doing so would cause the ARC to be full of linear ABDs if we write a
6864 * lot of shareable data. As a compromise, we check whether scattered
6865 * ABDs are allowed, and assume that if they are then the user wants
6866 * the ARC to be primarily filled with them regardless of the data being
6867 * written. Therefore, if they're allowed then we allocate one and copy
6868 * the data into it; otherwise, we share the data directly if we can.
d3c2ae1c 6869 */
b5256303 6870 if (ARC_BUF_ENCRYPTED(buf)) {
4807c0ba 6871 ASSERT3U(psize, >, 0);
b5256303 6872 ASSERT(ARC_BUF_COMPRESSED(buf));
e111c802 6873 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
b5256303
TC
6874 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6875 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
a6255b7f
DQ
6876 /*
6877 * Ideally, we would always copy the io_abd into b_pabd, but the
6878 * user may have disabled compressed ARC, thus we must check the
6879 * hdr's compression setting rather than the io_bp's.
6880 */
b5256303 6881 if (BP_IS_ENCRYPTED(bp)) {
a6255b7f 6882 ASSERT3U(psize, >, 0);
e111c802
MM
6883 arc_hdr_alloc_abd(hdr,
6884 ARC_HDR_DO_ADAPT|ARC_HDR_ALLOC_RDATA);
b5256303
TC
6885 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6886 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6887 !ARC_BUF_COMPRESSED(buf)) {
6888 ASSERT3U(psize, >, 0);
e111c802 6889 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
a6255b7f
DQ
6890 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6891 } else {
6892 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
e111c802 6893 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
a6255b7f
DQ
6894 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6895 arc_buf_size(buf));
6896 }
d3c2ae1c 6897 } else {
a6255b7f 6898 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
2aa34383 6899 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
d3c2ae1c 6900 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
d3c2ae1c 6901
d3c2ae1c 6902 arc_share_buf(hdr, buf);
d3c2ae1c 6903 }
a6255b7f 6904
4807c0ba 6905out:
b5256303 6906 arc_hdr_verify(hdr, bp);
a6255b7f 6907 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6908}
6909
bc77ba73
PD
6910static void
6911arc_write_children_ready(zio_t *zio)
6912{
6913 arc_write_callback_t *callback = zio->io_private;
6914 arc_buf_t *buf = callback->awcb_buf;
6915
6916 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6917}
6918
e8b96c60
MA
6919/*
6920 * The SPA calls this callback for each physical write that happens on behalf
6921 * of a logical write. See the comment in dbuf_write_physdone() for details.
6922 */
6923static void
6924arc_write_physdone(zio_t *zio)
6925{
6926 arc_write_callback_t *cb = zio->io_private;
6927 if (cb->awcb_physdone != NULL)
6928 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6929}
6930
34dc7c2f
BB
6931static void
6932arc_write_done(zio_t *zio)
6933{
6934 arc_write_callback_t *callback = zio->io_private;
6935 arc_buf_t *buf = callback->awcb_buf;
6936 arc_buf_hdr_t *hdr = buf->b_hdr;
6937
d3c2ae1c 6938 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
428870ff
BB
6939
6940 if (zio->io_error == 0) {
d3c2ae1c
GW
6941 arc_hdr_verify(hdr, zio->io_bp);
6942
9b67f605 6943 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
6944 buf_discard_identity(hdr);
6945 } else {
6946 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6947 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 6948 }
428870ff 6949 } else {
d3c2ae1c 6950 ASSERT(HDR_EMPTY(hdr));
428870ff 6951 }
34dc7c2f 6952
34dc7c2f 6953 /*
9b67f605
MA
6954 * If the block to be written was all-zero or compressed enough to be
6955 * embedded in the BP, no write was performed so there will be no
6956 * dva/birth/checksum. The buffer must therefore remain anonymous
6957 * (and uncached).
34dc7c2f 6958 */
d3c2ae1c 6959 if (!HDR_EMPTY(hdr)) {
34dc7c2f
BB
6960 arc_buf_hdr_t *exists;
6961 kmutex_t *hash_lock;
6962
524b4217 6963 ASSERT3U(zio->io_error, ==, 0);
428870ff 6964
34dc7c2f
BB
6965 arc_cksum_verify(buf);
6966
6967 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 6968 if (exists != NULL) {
34dc7c2f
BB
6969 /*
6970 * This can only happen if we overwrite for
6971 * sync-to-convergence, because we remove
6972 * buffers from the hash table when we arc_free().
6973 */
428870ff
BB
6974 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6975 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6976 panic("bad overwrite, hdr=%p exists=%p",
6977 (void *)hdr, (void *)exists);
424fd7c3 6978 ASSERT(zfs_refcount_is_zero(
b9541d6b 6979 &exists->b_l1hdr.b_refcnt));
428870ff 6980 arc_change_state(arc_anon, exists, hash_lock);
428870ff 6981 arc_hdr_destroy(exists);
ca6c7a94 6982 mutex_exit(hash_lock);
428870ff
BB
6983 exists = buf_hash_insert(hdr, &hash_lock);
6984 ASSERT3P(exists, ==, NULL);
03c6040b
GW
6985 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6986 /* nopwrite */
6987 ASSERT(zio->io_prop.zp_nopwrite);
6988 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6989 panic("bad nopwrite, hdr=%p exists=%p",
6990 (void *)hdr, (void *)exists);
428870ff
BB
6991 } else {
6992 /* Dedup */
d3c2ae1c 6993 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
b9541d6b 6994 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
6995 ASSERT(BP_GET_DEDUP(zio->io_bp));
6996 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6997 }
34dc7c2f 6998 }
d3c2ae1c 6999 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
b128c09f 7000 /* if it's not anon, we are doing a scrub */
b9541d6b 7001 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 7002 arc_access(hdr, hash_lock);
34dc7c2f 7003 mutex_exit(hash_lock);
34dc7c2f 7004 } else {
d3c2ae1c 7005 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f
BB
7006 }
7007
424fd7c3 7008 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 7009 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f 7010
e2af2acc 7011 abd_free(zio->io_abd);
34dc7c2f
BB
7012 kmem_free(callback, sizeof (arc_write_callback_t));
7013}
7014
7015zio_t *
428870ff 7016arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
d3c2ae1c 7017 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
b5256303
TC
7018 const zio_prop_t *zp, arc_write_done_func_t *ready,
7019 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7020 arc_write_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 7021 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
7022{
7023 arc_buf_hdr_t *hdr = buf->b_hdr;
7024 arc_write_callback_t *callback;
b128c09f 7025 zio_t *zio;
82644107 7026 zio_prop_t localprop = *zp;
34dc7c2f 7027
d3c2ae1c
GW
7028 ASSERT3P(ready, !=, NULL);
7029 ASSERT3P(done, !=, NULL);
34dc7c2f 7030 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b 7031 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c
GW
7032 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7033 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
b128c09f 7034 if (l2arc)
d3c2ae1c 7035 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
82644107 7036
b5256303
TC
7037 if (ARC_BUF_ENCRYPTED(buf)) {
7038 ASSERT(ARC_BUF_COMPRESSED(buf));
7039 localprop.zp_encrypt = B_TRUE;
7040 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
10b3c7f5 7041 localprop.zp_complevel = hdr->b_complevel;
b5256303
TC
7042 localprop.zp_byteorder =
7043 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7044 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7045 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7046 ZIO_DATA_SALT_LEN);
7047 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7048 ZIO_DATA_IV_LEN);
7049 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7050 ZIO_DATA_MAC_LEN);
7051 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7052 localprop.zp_nopwrite = B_FALSE;
7053 localprop.zp_copies =
7054 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7055 }
2aa34383 7056 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
7057 } else if (ARC_BUF_COMPRESSED(buf)) {
7058 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7059 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
10b3c7f5 7060 localprop.zp_complevel = hdr->b_complevel;
b5256303 7061 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2aa34383 7062 }
79c76d5b 7063 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 7064 callback->awcb_ready = ready;
bc77ba73 7065 callback->awcb_children_ready = children_ready;
e8b96c60 7066 callback->awcb_physdone = physdone;
34dc7c2f
BB
7067 callback->awcb_done = done;
7068 callback->awcb_private = private;
7069 callback->awcb_buf = buf;
b128c09f 7070
d3c2ae1c 7071 /*
a6255b7f 7072 * The hdr's b_pabd is now stale, free it now. A new data block
d3c2ae1c
GW
7073 * will be allocated when the zio pipeline calls arc_write_ready().
7074 */
a6255b7f 7075 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
7076 /*
7077 * If the buf is currently sharing the data block with
7078 * the hdr then we need to break that relationship here.
7079 * The hdr will remain with a NULL data pointer and the
7080 * buf will take sole ownership of the block.
7081 */
7082 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
7083 arc_unshare_buf(hdr, buf);
7084 } else {
b5256303 7085 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c
GW
7086 }
7087 VERIFY3P(buf->b_data, !=, NULL);
d3c2ae1c 7088 }
b5256303
TC
7089
7090 if (HDR_HAS_RABD(hdr))
7091 arc_hdr_free_abd(hdr, B_TRUE);
7092
71a24c3c
TC
7093 if (!(zio_flags & ZIO_FLAG_RAW))
7094 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
b5256303 7095
d3c2ae1c 7096 ASSERT(!arc_buf_is_shared(buf));
a6255b7f 7097 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 7098
a6255b7f
DQ
7099 zio = zio_write(pio, spa, txg, bp,
7100 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
82644107 7101 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
bc77ba73
PD
7102 (children_ready != NULL) ? arc_write_children_ready : NULL,
7103 arc_write_physdone, arc_write_done, callback,
e8b96c60 7104 priority, zio_flags, zb);
34dc7c2f
BB
7105
7106 return (zio);
7107}
7108
34dc7c2f
BB
7109void
7110arc_tempreserve_clear(uint64_t reserve)
7111{
7112 atomic_add_64(&arc_tempreserve, -reserve);
7113 ASSERT((int64_t)arc_tempreserve >= 0);
7114}
7115
7116int
dae3e9ea 7117arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
34dc7c2f
BB
7118{
7119 int error;
9babb374 7120 uint64_t anon_size;
34dc7c2f 7121
1b8951b3
TC
7122 if (!arc_no_grow &&
7123 reserve > arc_c/4 &&
7124 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 7125 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
7126
7127 /*
7128 * Throttle when the calculated memory footprint for the TXG
7129 * exceeds the target ARC size.
7130 */
570827e1
BB
7131 if (reserve > arc_c) {
7132 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 7133 return (SET_ERROR(ERESTART));
570827e1 7134 }
34dc7c2f 7135
9babb374
BB
7136 /*
7137 * Don't count loaned bufs as in flight dirty data to prevent long
7138 * network delays from blocking transactions that are ready to be
7139 * assigned to a txg.
7140 */
a7004725
DK
7141
7142 /* assert that it has not wrapped around */
7143 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7144
424fd7c3 7145 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
36da08ef 7146 arc_loaned_bytes), 0);
9babb374 7147
34dc7c2f
BB
7148 /*
7149 * Writes will, almost always, require additional memory allocations
d3cc8b15 7150 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
7151 * make sure that there is sufficient available memory for this.
7152 */
dae3e9ea 7153 error = arc_memory_throttle(spa, reserve, txg);
e8b96c60 7154 if (error != 0)
34dc7c2f
BB
7155 return (error);
7156
7157 /*
7158 * Throttle writes when the amount of dirty data in the cache
7159 * gets too large. We try to keep the cache less than half full
7160 * of dirty blocks so that our sync times don't grow too large.
dae3e9ea
DB
7161 *
7162 * In the case of one pool being built on another pool, we want
7163 * to make sure we don't end up throttling the lower (backing)
7164 * pool when the upper pool is the majority contributor to dirty
7165 * data. To insure we make forward progress during throttling, we
7166 * also check the current pool's net dirty data and only throttle
7167 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7168 * data in the cache.
7169 *
34dc7c2f
BB
7170 * Note: if two requests come in concurrently, we might let them
7171 * both succeed, when one of them should fail. Not a huge deal.
7172 */
dae3e9ea
DB
7173 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7174 uint64_t spa_dirty_anon = spa_dirty_data(spa);
daabddaa
AM
7175 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7176 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7177 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
dae3e9ea 7178 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
2fd92c3d 7179#ifdef ZFS_DEBUG
424fd7c3
TS
7180 uint64_t meta_esize = zfs_refcount_count(
7181 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
d3c2ae1c 7182 uint64_t data_esize =
424fd7c3 7183 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
34dc7c2f 7184 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
daabddaa 7185 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
8e739b2c
RE
7186 (u_longlong_t)arc_tempreserve >> 10,
7187 (u_longlong_t)meta_esize >> 10,
7188 (u_longlong_t)data_esize >> 10,
7189 (u_longlong_t)reserve >> 10,
7190 (u_longlong_t)rarc_c >> 10);
2fd92c3d 7191#endif
570827e1 7192 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 7193 return (SET_ERROR(ERESTART));
34dc7c2f
BB
7194 }
7195 atomic_add_64(&arc_tempreserve, reserve);
7196 return (0);
7197}
7198
13be560d
BB
7199static void
7200arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7201 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7202{
424fd7c3 7203 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
d3c2ae1c 7204 evict_data->value.ui64 =
424fd7c3 7205 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
d3c2ae1c 7206 evict_metadata->value.ui64 =
424fd7c3 7207 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
13be560d
BB
7208}
7209
7210static int
7211arc_kstat_update(kstat_t *ksp, int rw)
7212{
7213 arc_stats_t *as = ksp->ks_data;
7214
c4c162c1 7215 if (rw == KSTAT_WRITE)
ecb2b7dc 7216 return (SET_ERROR(EACCES));
c4c162c1
AM
7217
7218 as->arcstat_hits.value.ui64 =
7219 wmsum_value(&arc_sums.arcstat_hits);
7220 as->arcstat_misses.value.ui64 =
7221 wmsum_value(&arc_sums.arcstat_misses);
7222 as->arcstat_demand_data_hits.value.ui64 =
7223 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7224 as->arcstat_demand_data_misses.value.ui64 =
7225 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7226 as->arcstat_demand_metadata_hits.value.ui64 =
7227 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7228 as->arcstat_demand_metadata_misses.value.ui64 =
7229 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7230 as->arcstat_prefetch_data_hits.value.ui64 =
7231 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7232 as->arcstat_prefetch_data_misses.value.ui64 =
7233 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7234 as->arcstat_prefetch_metadata_hits.value.ui64 =
7235 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7236 as->arcstat_prefetch_metadata_misses.value.ui64 =
7237 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7238 as->arcstat_mru_hits.value.ui64 =
7239 wmsum_value(&arc_sums.arcstat_mru_hits);
7240 as->arcstat_mru_ghost_hits.value.ui64 =
7241 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7242 as->arcstat_mfu_hits.value.ui64 =
7243 wmsum_value(&arc_sums.arcstat_mfu_hits);
7244 as->arcstat_mfu_ghost_hits.value.ui64 =
7245 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7246 as->arcstat_deleted.value.ui64 =
7247 wmsum_value(&arc_sums.arcstat_deleted);
7248 as->arcstat_mutex_miss.value.ui64 =
7249 wmsum_value(&arc_sums.arcstat_mutex_miss);
7250 as->arcstat_access_skip.value.ui64 =
7251 wmsum_value(&arc_sums.arcstat_access_skip);
7252 as->arcstat_evict_skip.value.ui64 =
7253 wmsum_value(&arc_sums.arcstat_evict_skip);
7254 as->arcstat_evict_not_enough.value.ui64 =
7255 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7256 as->arcstat_evict_l2_cached.value.ui64 =
7257 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7258 as->arcstat_evict_l2_eligible.value.ui64 =
7259 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7260 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7261 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7262 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7263 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7264 as->arcstat_evict_l2_ineligible.value.ui64 =
7265 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7266 as->arcstat_evict_l2_skip.value.ui64 =
7267 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7268 as->arcstat_hash_collisions.value.ui64 =
7269 wmsum_value(&arc_sums.arcstat_hash_collisions);
7270 as->arcstat_hash_chains.value.ui64 =
7271 wmsum_value(&arc_sums.arcstat_hash_chains);
7272 as->arcstat_size.value.ui64 =
7273 aggsum_value(&arc_sums.arcstat_size);
7274 as->arcstat_compressed_size.value.ui64 =
7275 wmsum_value(&arc_sums.arcstat_compressed_size);
7276 as->arcstat_uncompressed_size.value.ui64 =
7277 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7278 as->arcstat_overhead_size.value.ui64 =
7279 wmsum_value(&arc_sums.arcstat_overhead_size);
7280 as->arcstat_hdr_size.value.ui64 =
7281 wmsum_value(&arc_sums.arcstat_hdr_size);
7282 as->arcstat_data_size.value.ui64 =
7283 wmsum_value(&arc_sums.arcstat_data_size);
7284 as->arcstat_metadata_size.value.ui64 =
7285 wmsum_value(&arc_sums.arcstat_metadata_size);
7286 as->arcstat_dbuf_size.value.ui64 =
7287 wmsum_value(&arc_sums.arcstat_dbuf_size);
1c2725a1 7288#if defined(COMPAT_FREEBSD11)
c4c162c1
AM
7289 as->arcstat_other_size.value.ui64 =
7290 wmsum_value(&arc_sums.arcstat_bonus_size) +
7291 aggsum_value(&arc_sums.arcstat_dnode_size) +
7292 wmsum_value(&arc_sums.arcstat_dbuf_size);
1c2725a1 7293#endif
37fb3e43 7294
c4c162c1
AM
7295 arc_kstat_update_state(arc_anon,
7296 &as->arcstat_anon_size,
7297 &as->arcstat_anon_evictable_data,
7298 &as->arcstat_anon_evictable_metadata);
7299 arc_kstat_update_state(arc_mru,
7300 &as->arcstat_mru_size,
7301 &as->arcstat_mru_evictable_data,
7302 &as->arcstat_mru_evictable_metadata);
7303 arc_kstat_update_state(arc_mru_ghost,
7304 &as->arcstat_mru_ghost_size,
7305 &as->arcstat_mru_ghost_evictable_data,
7306 &as->arcstat_mru_ghost_evictable_metadata);
7307 arc_kstat_update_state(arc_mfu,
7308 &as->arcstat_mfu_size,
7309 &as->arcstat_mfu_evictable_data,
7310 &as->arcstat_mfu_evictable_metadata);
7311 arc_kstat_update_state(arc_mfu_ghost,
7312 &as->arcstat_mfu_ghost_size,
7313 &as->arcstat_mfu_ghost_evictable_data,
7314 &as->arcstat_mfu_ghost_evictable_metadata);
7315
7316 as->arcstat_dnode_size.value.ui64 =
7317 aggsum_value(&arc_sums.arcstat_dnode_size);
7318 as->arcstat_bonus_size.value.ui64 =
7319 wmsum_value(&arc_sums.arcstat_bonus_size);
7320 as->arcstat_l2_hits.value.ui64 =
7321 wmsum_value(&arc_sums.arcstat_l2_hits);
7322 as->arcstat_l2_misses.value.ui64 =
7323 wmsum_value(&arc_sums.arcstat_l2_misses);
7324 as->arcstat_l2_prefetch_asize.value.ui64 =
7325 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7326 as->arcstat_l2_mru_asize.value.ui64 =
7327 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7328 as->arcstat_l2_mfu_asize.value.ui64 =
7329 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7330 as->arcstat_l2_bufc_data_asize.value.ui64 =
7331 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7332 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7333 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7334 as->arcstat_l2_feeds.value.ui64 =
7335 wmsum_value(&arc_sums.arcstat_l2_feeds);
7336 as->arcstat_l2_rw_clash.value.ui64 =
7337 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7338 as->arcstat_l2_read_bytes.value.ui64 =
7339 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7340 as->arcstat_l2_write_bytes.value.ui64 =
7341 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7342 as->arcstat_l2_writes_sent.value.ui64 =
7343 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7344 as->arcstat_l2_writes_done.value.ui64 =
7345 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7346 as->arcstat_l2_writes_error.value.ui64 =
7347 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7348 as->arcstat_l2_writes_lock_retry.value.ui64 =
7349 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7350 as->arcstat_l2_evict_lock_retry.value.ui64 =
7351 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7352 as->arcstat_l2_evict_reading.value.ui64 =
7353 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7354 as->arcstat_l2_evict_l1cached.value.ui64 =
7355 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7356 as->arcstat_l2_free_on_write.value.ui64 =
7357 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7358 as->arcstat_l2_abort_lowmem.value.ui64 =
7359 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7360 as->arcstat_l2_cksum_bad.value.ui64 =
7361 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7362 as->arcstat_l2_io_error.value.ui64 =
7363 wmsum_value(&arc_sums.arcstat_l2_io_error);
7364 as->arcstat_l2_lsize.value.ui64 =
7365 wmsum_value(&arc_sums.arcstat_l2_lsize);
7366 as->arcstat_l2_psize.value.ui64 =
7367 wmsum_value(&arc_sums.arcstat_l2_psize);
7368 as->arcstat_l2_hdr_size.value.ui64 =
7369 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7370 as->arcstat_l2_log_blk_writes.value.ui64 =
7371 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7372 as->arcstat_l2_log_blk_asize.value.ui64 =
7373 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7374 as->arcstat_l2_log_blk_count.value.ui64 =
7375 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7376 as->arcstat_l2_rebuild_success.value.ui64 =
7377 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7378 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7379 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7380 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7381 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7382 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7383 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7384 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7385 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7386 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7387 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7388 as->arcstat_l2_rebuild_size.value.ui64 =
7389 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7390 as->arcstat_l2_rebuild_asize.value.ui64 =
7391 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7392 as->arcstat_l2_rebuild_bufs.value.ui64 =
7393 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7394 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7395 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7396 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7397 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7398 as->arcstat_memory_throttle_count.value.ui64 =
7399 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7400 as->arcstat_memory_direct_count.value.ui64 =
7401 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7402 as->arcstat_memory_indirect_count.value.ui64 =
7403 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7404
7405 as->arcstat_memory_all_bytes.value.ui64 =
7406 arc_all_memory();
7407 as->arcstat_memory_free_bytes.value.ui64 =
7408 arc_free_memory();
7409 as->arcstat_memory_available_bytes.value.i64 =
7410 arc_available_memory();
7411
7412 as->arcstat_prune.value.ui64 =
7413 wmsum_value(&arc_sums.arcstat_prune);
7414 as->arcstat_meta_used.value.ui64 =
7415 aggsum_value(&arc_sums.arcstat_meta_used);
7416 as->arcstat_async_upgrade_sync.value.ui64 =
7417 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7418 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7419 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7420 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7421 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7422 as->arcstat_raw_size.value.ui64 =
7423 wmsum_value(&arc_sums.arcstat_raw_size);
7424 as->arcstat_cached_only_in_progress.value.ui64 =
7425 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7426 as->arcstat_abd_chunk_waste_size.value.ui64 =
7427 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
13be560d
BB
7428
7429 return (0);
7430}
7431
ca0bf58d
PS
7432/*
7433 * This function *must* return indices evenly distributed between all
7434 * sublists of the multilist. This is needed due to how the ARC eviction
7435 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7436 * distributed between all sublists and uses this assumption when
7437 * deciding which sublist to evict from and how much to evict from it.
7438 */
65c7cc49 7439static unsigned int
ca0bf58d
PS
7440arc_state_multilist_index_func(multilist_t *ml, void *obj)
7441{
7442 arc_buf_hdr_t *hdr = obj;
7443
7444 /*
7445 * We rely on b_dva to generate evenly distributed index
7446 * numbers using buf_hash below. So, as an added precaution,
7447 * let's make sure we never add empty buffers to the arc lists.
7448 */
d3c2ae1c 7449 ASSERT(!HDR_EMPTY(hdr));
ca0bf58d
PS
7450
7451 /*
7452 * The assumption here, is the hash value for a given
7453 * arc_buf_hdr_t will remain constant throughout its lifetime
7454 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7455 * Thus, we don't need to store the header's sublist index
7456 * on insertion, as this index can be recalculated on removal.
7457 *
7458 * Also, the low order bits of the hash value are thought to be
7459 * distributed evenly. Otherwise, in the case that the multilist
7460 * has a power of two number of sublists, each sublists' usage
5b7053a9
AM
7461 * would not be evenly distributed. In this context full 64bit
7462 * division would be a waste of time, so limit it to 32 bits.
ca0bf58d 7463 */
5b7053a9 7464 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
ca0bf58d
PS
7465 multilist_get_num_sublists(ml));
7466}
7467
36a6e233
RM
7468#define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7469 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7470 cmn_err(CE_WARN, \
7471 "ignoring tunable %s (using %llu instead)", \
5dbf6c5a 7472 (#tuning), (u_longlong_t)(value)); \
36a6e233
RM
7473 } \
7474} while (0)
7475
ca67b33a
MA
7476/*
7477 * Called during module initialization and periodically thereafter to
e3570464 7478 * apply reasonable changes to the exposed performance tunings. Can also be
7479 * called explicitly by param_set_arc_*() functions when ARC tunables are
7480 * updated manually. Non-zero zfs_* values which differ from the currently set
7481 * values will be applied.
ca67b33a 7482 */
e3570464 7483void
36a6e233 7484arc_tuning_update(boolean_t verbose)
ca67b33a 7485{
b8a97fb1 7486 uint64_t allmem = arc_all_memory();
7487 unsigned long limit;
9edb3695 7488
36a6e233
RM
7489 /* Valid range: 32M - <arc_c_max> */
7490 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7491 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7492 (zfs_arc_min <= arc_c_max)) {
7493 arc_c_min = zfs_arc_min;
7494 arc_c = MAX(arc_c, arc_c_min);
7495 }
7496 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7497
ca67b33a
MA
7498 /* Valid range: 64M - <all physical memory> */
7499 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7403d074 7500 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) &&
ca67b33a
MA
7501 (zfs_arc_max > arc_c_min)) {
7502 arc_c_max = zfs_arc_max;
17ca3018 7503 arc_c = MIN(arc_c, arc_c_max);
ca67b33a 7504 arc_p = (arc_c >> 1);
b8a97fb1 7505 if (arc_meta_limit > arc_c_max)
7506 arc_meta_limit = arc_c_max;
03fdcb9a
MM
7507 if (arc_dnode_size_limit > arc_meta_limit)
7508 arc_dnode_size_limit = arc_meta_limit;
ca67b33a 7509 }
36a6e233 7510 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
ca67b33a
MA
7511
7512 /* Valid range: 16M - <arc_c_max> */
7513 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7514 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7515 (zfs_arc_meta_min <= arc_c_max)) {
7516 arc_meta_min = zfs_arc_meta_min;
b8a97fb1 7517 if (arc_meta_limit < arc_meta_min)
7518 arc_meta_limit = arc_meta_min;
03fdcb9a
MM
7519 if (arc_dnode_size_limit < arc_meta_min)
7520 arc_dnode_size_limit = arc_meta_min;
ca67b33a 7521 }
36a6e233 7522 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
ca67b33a
MA
7523
7524 /* Valid range: <arc_meta_min> - <arc_c_max> */
b8a97fb1 7525 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7526 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7527 if ((limit != arc_meta_limit) &&
7528 (limit >= arc_meta_min) &&
7529 (limit <= arc_c_max))
7530 arc_meta_limit = limit;
36a6e233 7531 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
b8a97fb1 7532
7533 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7534 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7535 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
03fdcb9a 7536 if ((limit != arc_dnode_size_limit) &&
b8a97fb1 7537 (limit >= arc_meta_min) &&
7538 (limit <= arc_meta_limit))
03fdcb9a 7539 arc_dnode_size_limit = limit;
36a6e233
RM
7540 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7541 verbose);
25458cbe 7542
ca67b33a
MA
7543 /* Valid range: 1 - N */
7544 if (zfs_arc_grow_retry)
7545 arc_grow_retry = zfs_arc_grow_retry;
7546
7547 /* Valid range: 1 - N */
7548 if (zfs_arc_shrink_shift) {
7549 arc_shrink_shift = zfs_arc_shrink_shift;
7550 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7551 }
7552
728d6ae9
BB
7553 /* Valid range: 1 - N */
7554 if (zfs_arc_p_min_shift)
7555 arc_p_min_shift = zfs_arc_p_min_shift;
7556
d4a72f23
TC
7557 /* Valid range: 1 - N ms */
7558 if (zfs_arc_min_prefetch_ms)
7559 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7560
7561 /* Valid range: 1 - N ms */
7562 if (zfs_arc_min_prescient_prefetch_ms) {
7563 arc_min_prescient_prefetch_ms =
7564 zfs_arc_min_prescient_prefetch_ms;
7565 }
11f552fa 7566
7e8bddd0
BB
7567 /* Valid range: 0 - 100 */
7568 if ((zfs_arc_lotsfree_percent >= 0) &&
7569 (zfs_arc_lotsfree_percent <= 100))
7570 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
36a6e233
RM
7571 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7572 verbose);
7e8bddd0 7573
11f552fa
BB
7574 /* Valid range: 0 - <all physical memory> */
7575 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
9edb3695 7576 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
36a6e233 7577 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
ca67b33a
MA
7578}
7579
d3c2ae1c
GW
7580static void
7581arc_state_init(void)
7582{
ffdf019c
AM
7583 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7584 sizeof (arc_buf_hdr_t),
d3c2ae1c 7585 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7586 arc_state_multilist_index_func);
ffdf019c
AM
7587 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
7588 sizeof (arc_buf_hdr_t),
d3c2ae1c 7589 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7590 arc_state_multilist_index_func);
ffdf019c
AM
7591 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7592 sizeof (arc_buf_hdr_t),
d3c2ae1c 7593 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7594 arc_state_multilist_index_func);
ffdf019c
AM
7595 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7596 sizeof (arc_buf_hdr_t),
d3c2ae1c 7597 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7598 arc_state_multilist_index_func);
ffdf019c
AM
7599 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7600 sizeof (arc_buf_hdr_t),
d3c2ae1c 7601 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7602 arc_state_multilist_index_func);
ffdf019c
AM
7603 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7604 sizeof (arc_buf_hdr_t),
d3c2ae1c 7605 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7606 arc_state_multilist_index_func);
ffdf019c
AM
7607 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7608 sizeof (arc_buf_hdr_t),
d3c2ae1c 7609 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7610 arc_state_multilist_index_func);
ffdf019c
AM
7611 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7612 sizeof (arc_buf_hdr_t),
d3c2ae1c 7613 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7614 arc_state_multilist_index_func);
ffdf019c
AM
7615 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7616 sizeof (arc_buf_hdr_t),
d3c2ae1c 7617 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7618 arc_state_multilist_index_func);
ffdf019c
AM
7619 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7620 sizeof (arc_buf_hdr_t),
d3c2ae1c 7621 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7622 arc_state_multilist_index_func);
d3c2ae1c 7623
424fd7c3
TS
7624 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7625 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7626 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7627 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7628 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7629 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7630 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7631 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7632 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7633 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7634 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7635 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7636
7637 zfs_refcount_create(&arc_anon->arcs_size);
7638 zfs_refcount_create(&arc_mru->arcs_size);
7639 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7640 zfs_refcount_create(&arc_mfu->arcs_size);
7641 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7642 zfs_refcount_create(&arc_l2c_only->arcs_size);
d3c2ae1c 7643
c4c162c1
AM
7644 wmsum_init(&arc_sums.arcstat_hits, 0);
7645 wmsum_init(&arc_sums.arcstat_misses, 0);
7646 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7647 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7648 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7649 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7650 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7651 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7652 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7653 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7654 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7655 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7656 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7657 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7658 wmsum_init(&arc_sums.arcstat_deleted, 0);
7659 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7660 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7661 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7662 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7663 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7664 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7665 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7666 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7667 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7668 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7669 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7670 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7671 aggsum_init(&arc_sums.arcstat_size, 0);
7672 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7673 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7674 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7675 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7676 wmsum_init(&arc_sums.arcstat_data_size, 0);
7677 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7678 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7679 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7680 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7681 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7682 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7683 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7684 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7685 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7686 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7687 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7688 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7689 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7690 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7691 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7692 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7693 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7694 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7695 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7696 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7697 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7698 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7699 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7700 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7701 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7702 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7703 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7704 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7705 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7706 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7707 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7708 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7709 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7710 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7711 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7712 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7713 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7714 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7715 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7716 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7717 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7718 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7719 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7720 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7721 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7722 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7723 wmsum_init(&arc_sums.arcstat_prune, 0);
7724 aggsum_init(&arc_sums.arcstat_meta_used, 0);
7725 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7726 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7727 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7728 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7729 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7730 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
37fb3e43 7731
d3c2ae1c
GW
7732 arc_anon->arcs_state = ARC_STATE_ANON;
7733 arc_mru->arcs_state = ARC_STATE_MRU;
7734 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7735 arc_mfu->arcs_state = ARC_STATE_MFU;
7736 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7737 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7738}
7739
7740static void
7741arc_state_fini(void)
7742{
424fd7c3
TS
7743 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7744 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7745 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7746 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7747 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7748 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7749 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7750 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7751 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7752 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7753 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7754 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7755
7756 zfs_refcount_destroy(&arc_anon->arcs_size);
7757 zfs_refcount_destroy(&arc_mru->arcs_size);
7758 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7759 zfs_refcount_destroy(&arc_mfu->arcs_size);
7760 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7761 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
d3c2ae1c 7762
ffdf019c
AM
7763 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7764 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7765 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7766 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7767 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7768 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7769 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7770 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7771 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7772 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
37fb3e43 7773
c4c162c1
AM
7774 wmsum_fini(&arc_sums.arcstat_hits);
7775 wmsum_fini(&arc_sums.arcstat_misses);
7776 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7777 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7778 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7779 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7780 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7781 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7782 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7783 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7784 wmsum_fini(&arc_sums.arcstat_mru_hits);
7785 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7786 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7787 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7788 wmsum_fini(&arc_sums.arcstat_deleted);
7789 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7790 wmsum_fini(&arc_sums.arcstat_access_skip);
7791 wmsum_fini(&arc_sums.arcstat_evict_skip);
7792 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7793 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7794 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7795 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7796 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7797 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7798 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7799 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7800 wmsum_fini(&arc_sums.arcstat_hash_chains);
7801 aggsum_fini(&arc_sums.arcstat_size);
7802 wmsum_fini(&arc_sums.arcstat_compressed_size);
7803 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7804 wmsum_fini(&arc_sums.arcstat_overhead_size);
7805 wmsum_fini(&arc_sums.arcstat_hdr_size);
7806 wmsum_fini(&arc_sums.arcstat_data_size);
7807 wmsum_fini(&arc_sums.arcstat_metadata_size);
7808 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7809 aggsum_fini(&arc_sums.arcstat_dnode_size);
7810 wmsum_fini(&arc_sums.arcstat_bonus_size);
7811 wmsum_fini(&arc_sums.arcstat_l2_hits);
7812 wmsum_fini(&arc_sums.arcstat_l2_misses);
7813 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7814 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7815 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7816 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7817 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7818 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7819 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7820 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7821 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7822 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7823 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7824 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7825 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7826 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7827 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7828 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7829 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7830 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7831 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7832 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7833 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7834 wmsum_fini(&arc_sums.arcstat_l2_psize);
7835 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7836 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7837 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7838 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7839 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7840 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7841 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7842 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7843 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7844 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7845 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7846 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7847 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7848 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7849 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7850 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7851 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7852 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7853 wmsum_fini(&arc_sums.arcstat_prune);
7854 aggsum_fini(&arc_sums.arcstat_meta_used);
7855 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7856 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7857 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7858 wmsum_fini(&arc_sums.arcstat_raw_size);
7859 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7860 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
d3c2ae1c
GW
7861}
7862
7863uint64_t
e71cade6 7864arc_target_bytes(void)
d3c2ae1c 7865{
e71cade6 7866 return (arc_c);
d3c2ae1c
GW
7867}
7868
60a4c7d2
PD
7869void
7870arc_set_limits(uint64_t allmem)
7871{
7872 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7873 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7874
7875 /* How to set default max varies by platform. */
7876 arc_c_max = arc_default_max(arc_c_min, allmem);
7877}
34dc7c2f
BB
7878void
7879arc_init(void)
7880{
9edb3695 7881 uint64_t percent, allmem = arc_all_memory();
5dd92909 7882 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
3442c2a0
MA
7883 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7884 offsetof(arc_evict_waiter_t, aew_node));
ca0bf58d 7885
2b84817f
TC
7886 arc_min_prefetch_ms = 1000;
7887 arc_min_prescient_prefetch_ms = 6000;
34dc7c2f 7888
c9c9c1e2
MM
7889#if defined(_KERNEL)
7890 arc_lowmem_init();
34dc7c2f
BB
7891#endif
7892
60a4c7d2 7893 arc_set_limits(allmem);
9a51738b
RM
7894
7895#ifndef _KERNEL
ab5cbbd1
BB
7896 /*
7897 * In userland, there's only the memory pressure that we artificially
7898 * create (see arc_available_memory()). Don't let arc_c get too
7899 * small, because it can cause transactions to be larger than
7900 * arc_c, causing arc_tempreserve_space() to fail.
7901 */
0a1f8cd9 7902 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1
BB
7903#endif
7904
17ca3018 7905 arc_c = arc_c_min;
34dc7c2f
BB
7906 arc_p = (arc_c >> 1);
7907
ca67b33a
MA
7908 /* Set min to 1/2 of arc_c_min */
7909 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
9907cc1c
G
7910 /*
7911 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7912 * arc_meta_min, and a ceiling of arc_c_max.
7913 */
7914 percent = MIN(zfs_arc_meta_limit_percent, 100);
7915 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7916 percent = MIN(zfs_arc_dnode_limit_percent, 100);
03fdcb9a 7917 arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
34dc7c2f 7918
ca67b33a 7919 /* Apply user specified tunings */
36a6e233 7920 arc_tuning_update(B_TRUE);
c52fca13 7921
34dc7c2f
BB
7922 /* if kmem_flags are set, lets try to use less memory */
7923 if (kmem_debugging())
7924 arc_c = arc_c / 2;
7925 if (arc_c < arc_c_min)
7926 arc_c = arc_c_min;
7927
60a4c7d2
PD
7928 arc_register_hotplug();
7929
d3c2ae1c 7930 arc_state_init();
3ec34e55 7931
34dc7c2f
BB
7932 buf_init();
7933
ab26409d
BB
7934 list_create(&arc_prune_list, sizeof (arc_prune_t),
7935 offsetof(arc_prune_t, p_node));
ab26409d 7936 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 7937
60a4c7d2
PD
7938 arc_prune_taskq = taskq_create("arc_prune", 100, defclsyspri,
7939 boot_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC |
7940 TASKQ_THREADS_CPU_PCT);
f6046738 7941
34dc7c2f
BB
7942 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7943 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7944
7945 if (arc_ksp != NULL) {
7946 arc_ksp->ks_data = &arc_stats;
13be560d 7947 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
7948 kstat_install(arc_ksp);
7949 }
7950
1531506d
RM
7951 arc_evict_zthr = zthr_create("arc_evict",
7952 arc_evict_cb_check, arc_evict_cb, NULL);
843e9ca2
SD
7953 arc_reap_zthr = zthr_create_timer("arc_reap",
7954 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1));
34dc7c2f 7955
b128c09f 7956 arc_warm = B_FALSE;
34dc7c2f 7957
e8b96c60
MA
7958 /*
7959 * Calculate maximum amount of dirty data per pool.
7960 *
7961 * If it has been set by a module parameter, take that.
7962 * Otherwise, use a percentage of physical memory defined by
7963 * zfs_dirty_data_max_percent (default 10%) with a cap at
e99932f7 7964 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
e8b96c60 7965 */
47ed79ff 7966#ifdef __LP64__
e8b96c60 7967 if (zfs_dirty_data_max_max == 0)
e99932f7
BB
7968 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7969 allmem * zfs_dirty_data_max_max_percent / 100);
47ed79ff
MM
7970#else
7971 if (zfs_dirty_data_max_max == 0)
7972 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
7973 allmem * zfs_dirty_data_max_max_percent / 100);
7974#endif
e8b96c60
MA
7975
7976 if (zfs_dirty_data_max == 0) {
9edb3695 7977 zfs_dirty_data_max = allmem *
e8b96c60
MA
7978 zfs_dirty_data_max_percent / 100;
7979 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7980 zfs_dirty_data_max_max);
7981 }
a7bd20e3
KJ
7982
7983 if (zfs_wrlog_data_max == 0) {
7984
7985 /*
7986 * dp_wrlog_total is reduced for each txg at the end of
7987 * spa_sync(). However, dp_dirty_total is reduced every time
7988 * a block is written out. Thus under normal operation,
7989 * dp_wrlog_total could grow 2 times as big as
7990 * zfs_dirty_data_max.
7991 */
7992 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
7993 }
34dc7c2f
BB
7994}
7995
7996void
7997arc_fini(void)
7998{
ab26409d
BB
7999 arc_prune_t *p;
8000
7cb67b45 8001#ifdef _KERNEL
c9c9c1e2 8002 arc_lowmem_fini();
7cb67b45
BB
8003#endif /* _KERNEL */
8004
d3c2ae1c
GW
8005 /* Use B_TRUE to ensure *all* buffers are evicted */
8006 arc_flush(NULL, B_TRUE);
34dc7c2f 8007
34dc7c2f
BB
8008 if (arc_ksp != NULL) {
8009 kstat_delete(arc_ksp);
8010 arc_ksp = NULL;
8011 }
8012
f6046738
BB
8013 taskq_wait(arc_prune_taskq);
8014 taskq_destroy(arc_prune_taskq);
8015
ab26409d
BB
8016 mutex_enter(&arc_prune_mtx);
8017 while ((p = list_head(&arc_prune_list)) != NULL) {
8018 list_remove(&arc_prune_list, p);
424fd7c3
TS
8019 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8020 zfs_refcount_destroy(&p->p_refcnt);
ab26409d
BB
8021 kmem_free(p, sizeof (*p));
8022 }
8023 mutex_exit(&arc_prune_mtx);
8024
8025 list_destroy(&arc_prune_list);
8026 mutex_destroy(&arc_prune_mtx);
3ec34e55 8027
5dd92909 8028 (void) zthr_cancel(arc_evict_zthr);
3ec34e55 8029 (void) zthr_cancel(arc_reap_zthr);
3ec34e55 8030
5dd92909 8031 mutex_destroy(&arc_evict_lock);
3442c2a0 8032 list_destroy(&arc_evict_waiters);
ca0bf58d 8033
cfd59f90
BB
8034 /*
8035 * Free any buffers that were tagged for destruction. This needs
8036 * to occur before arc_state_fini() runs and destroys the aggsum
8037 * values which are updated when freeing scatter ABDs.
8038 */
8039 l2arc_do_free_on_write();
8040
ae3d8491
PD
8041 /*
8042 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8043 * trigger the release of kmem magazines, which can callback to
8044 * arc_space_return() which accesses aggsums freed in act_state_fini().
8045 */
34dc7c2f 8046 buf_fini();
ae3d8491 8047 arc_state_fini();
9babb374 8048
60a4c7d2
PD
8049 arc_unregister_hotplug();
8050
1c44a5c9
SD
8051 /*
8052 * We destroy the zthrs after all the ARC state has been
8053 * torn down to avoid the case of them receiving any
8054 * wakeup() signals after they are destroyed.
8055 */
5dd92909 8056 zthr_destroy(arc_evict_zthr);
1c44a5c9
SD
8057 zthr_destroy(arc_reap_zthr);
8058
b9541d6b 8059 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
8060}
8061
8062/*
8063 * Level 2 ARC
8064 *
8065 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8066 * It uses dedicated storage devices to hold cached data, which are populated
8067 * using large infrequent writes. The main role of this cache is to boost
8068 * the performance of random read workloads. The intended L2ARC devices
8069 * include short-stroked disks, solid state disks, and other media with
8070 * substantially faster read latency than disk.
8071 *
8072 * +-----------------------+
8073 * | ARC |
8074 * +-----------------------+
8075 * | ^ ^
8076 * | | |
8077 * l2arc_feed_thread() arc_read()
8078 * | | |
8079 * | l2arc read |
8080 * V | |
8081 * +---------------+ |
8082 * | L2ARC | |
8083 * +---------------+ |
8084 * | ^ |
8085 * l2arc_write() | |
8086 * | | |
8087 * V | |
8088 * +-------+ +-------+
8089 * | vdev | | vdev |
8090 * | cache | | cache |
8091 * +-------+ +-------+
8092 * +=========+ .-----.
8093 * : L2ARC : |-_____-|
8094 * : devices : | Disks |
8095 * +=========+ `-_____-'
8096 *
8097 * Read requests are satisfied from the following sources, in order:
8098 *
8099 * 1) ARC
8100 * 2) vdev cache of L2ARC devices
8101 * 3) L2ARC devices
8102 * 4) vdev cache of disks
8103 * 5) disks
8104 *
8105 * Some L2ARC device types exhibit extremely slow write performance.
8106 * To accommodate for this there are some significant differences between
8107 * the L2ARC and traditional cache design:
8108 *
8109 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8110 * the ARC behave as usual, freeing buffers and placing headers on ghost
8111 * lists. The ARC does not send buffers to the L2ARC during eviction as
8112 * this would add inflated write latencies for all ARC memory pressure.
8113 *
8114 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8115 * It does this by periodically scanning buffers from the eviction-end of
8116 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
8117 * not already there. It scans until a headroom of buffers is satisfied,
8118 * which itself is a buffer for ARC eviction. If a compressible buffer is
8119 * found during scanning and selected for writing to an L2ARC device, we
8120 * temporarily boost scanning headroom during the next scan cycle to make
8121 * sure we adapt to compression effects (which might significantly reduce
8122 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
8123 * l2arc_feed_thread(), illustrated below; example sizes are included to
8124 * provide a better sense of ratio than this diagram:
8125 *
8126 * head --> tail
8127 * +---------------------+----------+
8128 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8129 * +---------------------+----------+ | o L2ARC eligible
8130 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8131 * +---------------------+----------+ |
8132 * 15.9 Gbytes ^ 32 Mbytes |
8133 * headroom |
8134 * l2arc_feed_thread()
8135 * |
8136 * l2arc write hand <--[oooo]--'
8137 * | 8 Mbyte
8138 * | write max
8139 * V
8140 * +==============================+
8141 * L2ARC dev |####|#|###|###| |####| ... |
8142 * +==============================+
8143 * 32 Gbytes
8144 *
8145 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8146 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8147 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8148 * safe to say that this is an uncommon case, since buffers at the end of
8149 * the ARC lists have moved there due to inactivity.
8150 *
8151 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8152 * then the L2ARC simply misses copying some buffers. This serves as a
8153 * pressure valve to prevent heavy read workloads from both stalling the ARC
8154 * with waits and clogging the L2ARC with writes. This also helps prevent
8155 * the potential for the L2ARC to churn if it attempts to cache content too
8156 * quickly, such as during backups of the entire pool.
8157 *
b128c09f
BB
8158 * 5. After system boot and before the ARC has filled main memory, there are
8159 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8160 * lists can remain mostly static. Instead of searching from tail of these
8161 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8162 * for eligible buffers, greatly increasing its chance of finding them.
8163 *
8164 * The L2ARC device write speed is also boosted during this time so that
8165 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8166 * there are no L2ARC reads, and no fear of degrading read performance
8167 * through increased writes.
8168 *
8169 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
8170 * the vdev queue can aggregate them into larger and fewer writes. Each
8171 * device is written to in a rotor fashion, sweeping writes through
8172 * available space then repeating.
8173 *
b128c09f 8174 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
8175 * write buffers back to disk based storage.
8176 *
b128c09f 8177 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
8178 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8179 *
8180 * The performance of the L2ARC can be tweaked by a number of tunables, which
8181 * may be necessary for different workloads:
8182 *
8183 * l2arc_write_max max write bytes per interval
b128c09f 8184 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
8185 * l2arc_noprefetch skip caching prefetched buffers
8186 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
8187 * l2arc_headroom_boost when we find compressed buffers during ARC
8188 * scanning, we multiply headroom by this
8189 * percentage factor for the next scan cycle,
8190 * since more compressed buffers are likely to
8191 * be present
34dc7c2f
BB
8192 * l2arc_feed_secs seconds between L2ARC writing
8193 *
8194 * Tunables may be removed or added as future performance improvements are
8195 * integrated, and also may become zpool properties.
d164b209
BB
8196 *
8197 * There are three key functions that control how the L2ARC warms up:
8198 *
8199 * l2arc_write_eligible() check if a buffer is eligible to cache
8200 * l2arc_write_size() calculate how much to write
8201 * l2arc_write_interval() calculate sleep delay between writes
8202 *
8203 * These three functions determine what to write, how much, and how quickly
8204 * to send writes.
77f6826b
GA
8205 *
8206 * L2ARC persistence:
8207 *
8208 * When writing buffers to L2ARC, we periodically add some metadata to
8209 * make sure we can pick them up after reboot, thus dramatically reducing
8210 * the impact that any downtime has on the performance of storage systems
8211 * with large caches.
8212 *
8213 * The implementation works fairly simply by integrating the following two
8214 * modifications:
8215 *
8216 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8217 * which is an additional piece of metadata which describes what's been
8218 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8219 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8220 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8221 * time-wise and offset-wise interleaved, but that is an optimization rather
8222 * than for correctness. The log block also includes a pointer to the
8223 * previous block in its chain.
8224 *
8225 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8226 * for our header bookkeeping purposes. This contains a device header,
8227 * which contains our top-level reference structures. We update it each
8228 * time we write a new log block, so that we're able to locate it in the
8229 * L2ARC device. If this write results in an inconsistent device header
8230 * (e.g. due to power failure), we detect this by verifying the header's
8231 * checksum and simply fail to reconstruct the L2ARC after reboot.
8232 *
8233 * Implementation diagram:
8234 *
8235 * +=== L2ARC device (not to scale) ======================================+
8236 * | ___two newest log block pointers__.__________ |
8237 * | / \dh_start_lbps[1] |
8238 * | / \ \dh_start_lbps[0]|
8239 * |.___/__. V V |
8240 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8241 * || hdr| ^ /^ /^ / / |
8242 * |+------+ ...--\-------/ \-----/--\------/ / |
8243 * | \--------------/ \--------------/ |
8244 * +======================================================================+
8245 *
8246 * As can be seen on the diagram, rather than using a simple linked list,
8247 * we use a pair of linked lists with alternating elements. This is a
8248 * performance enhancement due to the fact that we only find out the
8249 * address of the next log block access once the current block has been
8250 * completely read in. Obviously, this hurts performance, because we'd be
8251 * keeping the device's I/O queue at only a 1 operation deep, thus
8252 * incurring a large amount of I/O round-trip latency. Having two lists
8253 * allows us to fetch two log blocks ahead of where we are currently
8254 * rebuilding L2ARC buffers.
8255 *
8256 * On-device data structures:
8257 *
8258 * L2ARC device header: l2arc_dev_hdr_phys_t
8259 * L2ARC log block: l2arc_log_blk_phys_t
8260 *
8261 * L2ARC reconstruction:
8262 *
8263 * When writing data, we simply write in the standard rotary fashion,
8264 * evicting buffers as we go and simply writing new data over them (writing
8265 * a new log block every now and then). This obviously means that once we
8266 * loop around the end of the device, we will start cutting into an already
8267 * committed log block (and its referenced data buffers), like so:
8268 *
8269 * current write head__ __old tail
8270 * \ /
8271 * V V
8272 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8273 * ^ ^^^^^^^^^___________________________________
8274 * | \
8275 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8276 *
8277 * When importing the pool, we detect this situation and use it to stop
8278 * our scanning process (see l2arc_rebuild).
8279 *
8280 * There is one significant caveat to consider when rebuilding ARC contents
8281 * from an L2ARC device: what about invalidated buffers? Given the above
8282 * construction, we cannot update blocks which we've already written to amend
8283 * them to remove buffers which were invalidated. Thus, during reconstruction,
8284 * we might be populating the cache with buffers for data that's not on the
8285 * main pool anymore, or may have been overwritten!
8286 *
8287 * As it turns out, this isn't a problem. Every arc_read request includes
8288 * both the DVA and, crucially, the birth TXG of the BP the caller is
8289 * looking for. So even if the cache were populated by completely rotten
8290 * blocks for data that had been long deleted and/or overwritten, we'll
8291 * never actually return bad data from the cache, since the DVA with the
8292 * birth TXG uniquely identify a block in space and time - once created,
8293 * a block is immutable on disk. The worst thing we have done is wasted
8294 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8295 * entries that will get dropped from the l2arc as it is being updated
8296 * with new blocks.
8297 *
8298 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8299 * hand are not restored. This is done by saving the offset (in bytes)
8300 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8301 * into account when restoring buffers.
34dc7c2f
BB
8302 */
8303
d164b209 8304static boolean_t
2a432414 8305l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
8306{
8307 /*
8308 * A buffer is *not* eligible for the L2ARC if it:
8309 * 1. belongs to a different spa.
428870ff
BB
8310 * 2. is already cached on the L2ARC.
8311 * 3. has an I/O in progress (it may be an incomplete read).
8312 * 4. is flagged not eligible (zfs property).
d164b209 8313 */
b9541d6b 8314 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
c6f5e9d9 8315 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
8316 return (B_FALSE);
8317
8318 return (B_TRUE);
8319}
8320
8321static uint64_t
37c22948 8322l2arc_write_size(l2arc_dev_t *dev)
d164b209 8323{
b7654bd7 8324 uint64_t size, dev_size, tsize;
d164b209 8325
3a17a7a9
SK
8326 /*
8327 * Make sure our globals have meaningful values in case the user
8328 * altered them.
8329 */
8330 size = l2arc_write_max;
8331 if (size == 0) {
8332 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8333 "be greater than zero, resetting it to the default (%d)",
8334 L2ARC_WRITE_SIZE);
8335 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8336 }
d164b209
BB
8337
8338 if (arc_warm == B_FALSE)
3a17a7a9 8339 size += l2arc_write_boost;
d164b209 8340
37c22948
GA
8341 /*
8342 * Make sure the write size does not exceed the size of the cache
8343 * device. This is important in l2arc_evict(), otherwise infinite
8344 * iteration can occur.
8345 */
8346 dev_size = dev->l2ad_end - dev->l2ad_start;
b7654bd7
GA
8347 tsize = size + l2arc_log_blk_overhead(size, dev);
8348 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
8349 tsize += MAX(64 * 1024 * 1024,
8350 (tsize * l2arc_trim_ahead) / 100);
8351
8352 if (tsize >= dev_size) {
37c22948 8353 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
77f6826b
GA
8354 "plus the overhead of log blocks (persistent L2ARC, "
8355 "%llu bytes) exceeds the size of the cache device "
8356 "(guid %llu), resetting them to the default (%d)",
8357 l2arc_log_blk_overhead(size, dev),
37c22948
GA
8358 dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
8359 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
8360
8361 if (arc_warm == B_FALSE)
8362 size += l2arc_write_boost;
8363 }
8364
d164b209
BB
8365 return (size);
8366
8367}
8368
8369static clock_t
8370l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8371{
428870ff 8372 clock_t interval, next, now;
d164b209
BB
8373
8374 /*
8375 * If the ARC lists are busy, increase our write rate; if the
8376 * lists are stale, idle back. This is achieved by checking
8377 * how much we previously wrote - if it was more than half of
8378 * what we wanted, schedule the next write much sooner.
8379 */
8380 if (l2arc_feed_again && wrote > (wanted / 2))
8381 interval = (hz * l2arc_feed_min_ms) / 1000;
8382 else
8383 interval = hz * l2arc_feed_secs;
8384
428870ff
BB
8385 now = ddi_get_lbolt();
8386 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
8387
8388 return (next);
8389}
8390
34dc7c2f
BB
8391/*
8392 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 8393 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
8394 */
8395static l2arc_dev_t *
8396l2arc_dev_get_next(void)
8397{
b128c09f 8398 l2arc_dev_t *first, *next = NULL;
34dc7c2f 8399
b128c09f
BB
8400 /*
8401 * Lock out the removal of spas (spa_namespace_lock), then removal
8402 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8403 * both locks will be dropped and a spa config lock held instead.
8404 */
8405 mutex_enter(&spa_namespace_lock);
8406 mutex_enter(&l2arc_dev_mtx);
8407
8408 /* if there are no vdevs, there is nothing to do */
8409 if (l2arc_ndev == 0)
8410 goto out;
8411
8412 first = NULL;
8413 next = l2arc_dev_last;
8414 do {
8415 /* loop around the list looking for a non-faulted vdev */
8416 if (next == NULL) {
34dc7c2f 8417 next = list_head(l2arc_dev_list);
b128c09f
BB
8418 } else {
8419 next = list_next(l2arc_dev_list, next);
8420 if (next == NULL)
8421 next = list_head(l2arc_dev_list);
8422 }
8423
8424 /* if we have come back to the start, bail out */
8425 if (first == NULL)
8426 first = next;
8427 else if (next == first)
8428 break;
8429
b7654bd7
GA
8430 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8431 next->l2ad_trim_all);
b128c09f
BB
8432
8433 /* if we were unable to find any usable vdevs, return NULL */
b7654bd7
GA
8434 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8435 next->l2ad_trim_all)
b128c09f 8436 next = NULL;
34dc7c2f
BB
8437
8438 l2arc_dev_last = next;
8439
b128c09f
BB
8440out:
8441 mutex_exit(&l2arc_dev_mtx);
8442
8443 /*
8444 * Grab the config lock to prevent the 'next' device from being
8445 * removed while we are writing to it.
8446 */
8447 if (next != NULL)
8448 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8449 mutex_exit(&spa_namespace_lock);
8450
34dc7c2f
BB
8451 return (next);
8452}
8453
b128c09f
BB
8454/*
8455 * Free buffers that were tagged for destruction.
8456 */
8457static void
0bc8fd78 8458l2arc_do_free_on_write(void)
b128c09f
BB
8459{
8460 list_t *buflist;
8461 l2arc_data_free_t *df, *df_prev;
8462
8463 mutex_enter(&l2arc_free_on_write_mtx);
8464 buflist = l2arc_free_on_write;
8465
8466 for (df = list_tail(buflist); df; df = df_prev) {
8467 df_prev = list_prev(buflist, df);
a6255b7f
DQ
8468 ASSERT3P(df->l2df_abd, !=, NULL);
8469 abd_free(df->l2df_abd);
b128c09f
BB
8470 list_remove(buflist, df);
8471 kmem_free(df, sizeof (l2arc_data_free_t));
8472 }
8473
8474 mutex_exit(&l2arc_free_on_write_mtx);
8475}
8476
34dc7c2f
BB
8477/*
8478 * A write to a cache device has completed. Update all headers to allow
8479 * reads from these buffers to begin.
8480 */
8481static void
8482l2arc_write_done(zio_t *zio)
8483{
77f6826b
GA
8484 l2arc_write_callback_t *cb;
8485 l2arc_lb_abd_buf_t *abd_buf;
8486 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8487 l2arc_dev_t *dev;
657fd33b 8488 l2arc_dev_hdr_phys_t *l2dhdr;
77f6826b
GA
8489 list_t *buflist;
8490 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8491 kmutex_t *hash_lock;
8492 int64_t bytes_dropped = 0;
34dc7c2f
BB
8493
8494 cb = zio->io_private;
d3c2ae1c 8495 ASSERT3P(cb, !=, NULL);
34dc7c2f 8496 dev = cb->l2wcb_dev;
657fd33b 8497 l2dhdr = dev->l2ad_dev_hdr;
d3c2ae1c 8498 ASSERT3P(dev, !=, NULL);
34dc7c2f 8499 head = cb->l2wcb_head;
d3c2ae1c 8500 ASSERT3P(head, !=, NULL);
b9541d6b 8501 buflist = &dev->l2ad_buflist;
d3c2ae1c 8502 ASSERT3P(buflist, !=, NULL);
34dc7c2f
BB
8503 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8504 l2arc_write_callback_t *, cb);
8505
34dc7c2f
BB
8506 /*
8507 * All writes completed, or an error was hit.
8508 */
ca0bf58d
PS
8509top:
8510 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8511 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8512 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8513
2a432414 8514 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8515
8516 /*
8517 * We cannot use mutex_enter or else we can deadlock
8518 * with l2arc_write_buffers (due to swapping the order
8519 * the hash lock and l2ad_mtx are taken).
8520 */
34dc7c2f
BB
8521 if (!mutex_tryenter(hash_lock)) {
8522 /*
ca0bf58d
PS
8523 * Missed the hash lock. We must retry so we
8524 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 8525 */
ca0bf58d
PS
8526 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8527
8528 /*
8529 * We don't want to rescan the headers we've
8530 * already marked as having been written out, so
8531 * we reinsert the head node so we can pick up
8532 * where we left off.
8533 */
8534 list_remove(buflist, head);
8535 list_insert_after(buflist, hdr, head);
8536
8537 mutex_exit(&dev->l2ad_mtx);
8538
8539 /*
8540 * We wait for the hash lock to become available
8541 * to try and prevent busy waiting, and increase
8542 * the chance we'll be able to acquire the lock
8543 * the next time around.
8544 */
8545 mutex_enter(hash_lock);
8546 mutex_exit(hash_lock);
8547 goto top;
34dc7c2f
BB
8548 }
8549
b9541d6b 8550 /*
ca0bf58d
PS
8551 * We could not have been moved into the arc_l2c_only
8552 * state while in-flight due to our ARC_FLAG_L2_WRITING
8553 * bit being set. Let's just ensure that's being enforced.
8554 */
8555 ASSERT(HDR_HAS_L1HDR(hdr));
8556
8a09d5fd
BB
8557 /*
8558 * Skipped - drop L2ARC entry and mark the header as no
8559 * longer L2 eligibile.
8560 */
d3c2ae1c 8561 if (zio->io_error != 0) {
34dc7c2f 8562 /*
b128c09f 8563 * Error - drop L2ARC entry.
34dc7c2f 8564 */
2a432414 8565 list_remove(buflist, hdr);
d3c2ae1c 8566 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
b9541d6b 8567
7558997d 8568 uint64_t psize = HDR_GET_PSIZE(hdr);
08532162 8569 l2arc_hdr_arcstats_decrement(hdr);
d962d5da 8570
7558997d
SD
8571 bytes_dropped +=
8572 vdev_psize_to_asize(dev->l2ad_vdev, psize);
424fd7c3 8573 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
d3c2ae1c 8574 arc_hdr_size(hdr), hdr);
34dc7c2f
BB
8575 }
8576
8577 /*
ca0bf58d
PS
8578 * Allow ARC to begin reads and ghost list evictions to
8579 * this L2ARC entry.
34dc7c2f 8580 */
d3c2ae1c 8581 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
34dc7c2f
BB
8582
8583 mutex_exit(hash_lock);
8584 }
8585
77f6826b
GA
8586 /*
8587 * Free the allocated abd buffers for writing the log blocks.
8588 * If the zio failed reclaim the allocated space and remove the
8589 * pointers to these log blocks from the log block pointer list
8590 * of the L2ARC device.
8591 */
8592 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8593 abd_free(abd_buf->abd);
8594 zio_buf_free(abd_buf, sizeof (*abd_buf));
8595 if (zio->io_error != 0) {
8596 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
657fd33b
GA
8597 /*
8598 * L2BLK_GET_PSIZE returns aligned size for log
8599 * blocks.
8600 */
8601 uint64_t asize =
77f6826b 8602 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
657fd33b
GA
8603 bytes_dropped += asize;
8604 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8605 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8606 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8607 lb_ptr_buf);
8608 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b
GA
8609 kmem_free(lb_ptr_buf->lb_ptr,
8610 sizeof (l2arc_log_blkptr_t));
8611 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8612 }
8613 }
8614 list_destroy(&cb->l2wcb_abd_list);
8615
657fd33b 8616 if (zio->io_error != 0) {
08532162
GA
8617 ARCSTAT_BUMP(arcstat_l2_writes_error);
8618
2054f35e
GA
8619 /*
8620 * Restore the lbps array in the header to its previous state.
8621 * If the list of log block pointers is empty, zero out the
8622 * log block pointers in the device header.
8623 */
657fd33b
GA
8624 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8625 for (int i = 0; i < 2; i++) {
2054f35e
GA
8626 if (lb_ptr_buf == NULL) {
8627 /*
8628 * If the list is empty zero out the device
8629 * header. Otherwise zero out the second log
8630 * block pointer in the header.
8631 */
8632 if (i == 0) {
8633 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
8634 } else {
8635 bzero(&l2dhdr->dh_start_lbps[i],
8636 sizeof (l2arc_log_blkptr_t));
8637 }
8638 break;
8639 }
657fd33b
GA
8640 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
8641 sizeof (l2arc_log_blkptr_t));
8642 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8643 lb_ptr_buf);
8644 }
8645 }
8646
c4c162c1 8647 ARCSTAT_BUMP(arcstat_l2_writes_done);
34dc7c2f 8648 list_remove(buflist, head);
b9541d6b
CW
8649 ASSERT(!HDR_HAS_L1HDR(head));
8650 kmem_cache_free(hdr_l2only_cache, head);
8651 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 8652
77f6826b 8653 ASSERT(dev->l2ad_vdev != NULL);
3bec585e
SK
8654 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8655
b128c09f 8656 l2arc_do_free_on_write();
34dc7c2f
BB
8657
8658 kmem_free(cb, sizeof (l2arc_write_callback_t));
8659}
8660
b5256303
TC
8661static int
8662l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8663{
8664 int ret;
8665 spa_t *spa = zio->io_spa;
8666 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8667 blkptr_t *bp = zio->io_bp;
b5256303
TC
8668 uint8_t salt[ZIO_DATA_SALT_LEN];
8669 uint8_t iv[ZIO_DATA_IV_LEN];
8670 uint8_t mac[ZIO_DATA_MAC_LEN];
8671 boolean_t no_crypt = B_FALSE;
8672
8673 /*
8674 * ZIL data is never be written to the L2ARC, so we don't need
8675 * special handling for its unique MAC storage.
8676 */
8677 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8678 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
440a3eb9 8679 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 8680
440a3eb9
TC
8681 /*
8682 * If the data was encrypted, decrypt it now. Note that
8683 * we must check the bp here and not the hdr, since the
8684 * hdr does not have its encryption parameters updated
8685 * until arc_read_done().
8686 */
8687 if (BP_IS_ENCRYPTED(bp)) {
e111c802
MM
8688 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8689 B_TRUE);
b5256303
TC
8690
8691 zio_crypt_decode_params_bp(bp, salt, iv);
8692 zio_crypt_decode_mac_bp(bp, mac);
8693
be9a5c35
TC
8694 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8695 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8696 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8697 hdr->b_l1hdr.b_pabd, &no_crypt);
b5256303
TC
8698 if (ret != 0) {
8699 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
b5256303
TC
8700 goto error;
8701 }
8702
b5256303
TC
8703 /*
8704 * If we actually performed decryption, replace b_pabd
8705 * with the decrypted data. Otherwise we can just throw
8706 * our decryption buffer away.
8707 */
8708 if (!no_crypt) {
8709 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8710 arc_hdr_size(hdr), hdr);
8711 hdr->b_l1hdr.b_pabd = eabd;
8712 zio->io_abd = eabd;
8713 } else {
8714 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8715 }
8716 }
8717
8718 /*
8719 * If the L2ARC block was compressed, but ARC compression
8720 * is disabled we decompress the data into a new buffer and
8721 * replace the existing data.
8722 */
8723 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8724 !HDR_COMPRESSION_ENABLED(hdr)) {
e111c802
MM
8725 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8726 B_TRUE);
b5256303
TC
8727 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8728
8729 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8730 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
10b3c7f5 8731 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
b5256303
TC
8732 if (ret != 0) {
8733 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8734 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8735 goto error;
8736 }
8737
8738 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8739 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8740 arc_hdr_size(hdr), hdr);
8741 hdr->b_l1hdr.b_pabd = cabd;
8742 zio->io_abd = cabd;
8743 zio->io_size = HDR_GET_LSIZE(hdr);
8744 }
8745
8746 return (0);
8747
8748error:
8749 return (ret);
8750}
8751
8752
34dc7c2f
BB
8753/*
8754 * A read to a cache device completed. Validate buffer contents before
8755 * handing over to the regular ARC routines.
8756 */
8757static void
8758l2arc_read_done(zio_t *zio)
8759{
b5256303 8760 int tfm_error = 0;
b405837a 8761 l2arc_read_callback_t *cb = zio->io_private;
34dc7c2f 8762 arc_buf_hdr_t *hdr;
34dc7c2f 8763 kmutex_t *hash_lock;
b405837a
TC
8764 boolean_t valid_cksum;
8765 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8766 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
b128c09f 8767
d3c2ae1c 8768 ASSERT3P(zio->io_vd, !=, NULL);
b128c09f
BB
8769 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8770
8771 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f 8772
d3c2ae1c
GW
8773 ASSERT3P(cb, !=, NULL);
8774 hdr = cb->l2rcb_hdr;
8775 ASSERT3P(hdr, !=, NULL);
34dc7c2f 8776
d3c2ae1c 8777 hash_lock = HDR_LOCK(hdr);
34dc7c2f 8778 mutex_enter(hash_lock);
428870ff 8779 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 8780
82710e99
GDN
8781 /*
8782 * If the data was read into a temporary buffer,
8783 * move it and free the buffer.
8784 */
8785 if (cb->l2rcb_abd != NULL) {
8786 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8787 if (zio->io_error == 0) {
b405837a
TC
8788 if (using_rdata) {
8789 abd_copy(hdr->b_crypt_hdr.b_rabd,
8790 cb->l2rcb_abd, arc_hdr_size(hdr));
8791 } else {
8792 abd_copy(hdr->b_l1hdr.b_pabd,
8793 cb->l2rcb_abd, arc_hdr_size(hdr));
8794 }
82710e99
GDN
8795 }
8796
8797 /*
8798 * The following must be done regardless of whether
8799 * there was an error:
8800 * - free the temporary buffer
8801 * - point zio to the real ARC buffer
8802 * - set zio size accordingly
8803 * These are required because zio is either re-used for
8804 * an I/O of the block in the case of the error
8805 * or the zio is passed to arc_read_done() and it
8806 * needs real data.
8807 */
8808 abd_free(cb->l2rcb_abd);
8809 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
440a3eb9 8810
b405837a 8811 if (using_rdata) {
440a3eb9
TC
8812 ASSERT(HDR_HAS_RABD(hdr));
8813 zio->io_abd = zio->io_orig_abd =
8814 hdr->b_crypt_hdr.b_rabd;
8815 } else {
8816 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8817 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8818 }
82710e99
GDN
8819 }
8820
a6255b7f 8821 ASSERT3P(zio->io_abd, !=, NULL);
3a17a7a9 8822
34dc7c2f
BB
8823 /*
8824 * Check this survived the L2ARC journey.
8825 */
b5256303
TC
8826 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8827 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
d3c2ae1c
GW
8828 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8829 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
10b3c7f5 8830 zio->io_prop.zp_complevel = hdr->b_complevel;
d3c2ae1c
GW
8831
8832 valid_cksum = arc_cksum_is_equal(hdr, zio);
b5256303
TC
8833
8834 /*
8835 * b_rabd will always match the data as it exists on disk if it is
8836 * being used. Therefore if we are reading into b_rabd we do not
8837 * attempt to untransform the data.
8838 */
8839 if (valid_cksum && !using_rdata)
8840 tfm_error = l2arc_untransform(zio, cb);
8841
8842 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8843 !HDR_L2_EVICTED(hdr)) {
34dc7c2f 8844 mutex_exit(hash_lock);
d3c2ae1c 8845 zio->io_private = hdr;
34dc7c2f
BB
8846 arc_read_done(zio);
8847 } else {
34dc7c2f
BB
8848 /*
8849 * Buffer didn't survive caching. Increment stats and
8850 * reissue to the original storage device.
8851 */
b128c09f 8852 if (zio->io_error != 0) {
34dc7c2f 8853 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 8854 } else {
2e528b49 8855 zio->io_error = SET_ERROR(EIO);
b128c09f 8856 }
b5256303 8857 if (!valid_cksum || tfm_error != 0)
34dc7c2f
BB
8858 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8859
34dc7c2f 8860 /*
b128c09f
BB
8861 * If there's no waiter, issue an async i/o to the primary
8862 * storage now. If there *is* a waiter, the caller must
8863 * issue the i/o in a context where it's OK to block.
34dc7c2f 8864 */
d164b209
BB
8865 if (zio->io_waiter == NULL) {
8866 zio_t *pio = zio_unique_parent(zio);
b5256303
TC
8867 void *abd = (using_rdata) ?
8868 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
d164b209
BB
8869
8870 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8871
5ff2249f 8872 zio = zio_read(pio, zio->io_spa, zio->io_bp,
b5256303 8873 abd, zio->io_size, arc_read_done,
d3c2ae1c 8874 hdr, zio->io_priority, cb->l2rcb_flags,
5ff2249f
AM
8875 &cb->l2rcb_zb);
8876
8877 /*
8878 * Original ZIO will be freed, so we need to update
8879 * ARC header with the new ZIO pointer to be used
8880 * by zio_change_priority() in arc_read().
8881 */
8882 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8883 acb != NULL; acb = acb->acb_next)
8884 acb->acb_zio_head = zio;
8885
8886 mutex_exit(hash_lock);
8887 zio_nowait(zio);
8888 } else {
8889 mutex_exit(hash_lock);
d164b209 8890 }
34dc7c2f
BB
8891 }
8892
8893 kmem_free(cb, sizeof (l2arc_read_callback_t));
8894}
8895
8896/*
8897 * This is the list priority from which the L2ARC will search for pages to
8898 * cache. This is used within loops (0..3) to cycle through lists in the
8899 * desired order. This order can have a significant effect on cache
8900 * performance.
8901 *
8902 * Currently the metadata lists are hit first, MFU then MRU, followed by
8903 * the data lists. This function returns a locked list, and also returns
8904 * the lock pointer.
8905 */
ca0bf58d
PS
8906static multilist_sublist_t *
8907l2arc_sublist_lock(int list_num)
34dc7c2f 8908{
ca0bf58d
PS
8909 multilist_t *ml = NULL;
8910 unsigned int idx;
34dc7c2f 8911
4aafab91 8912 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
34dc7c2f
BB
8913
8914 switch (list_num) {
8915 case 0:
ffdf019c 8916 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8917 break;
8918 case 1:
ffdf019c 8919 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8920 break;
8921 case 2:
ffdf019c 8922 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
8923 break;
8924 case 3:
ffdf019c 8925 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f 8926 break;
4aafab91
G
8927 default:
8928 return (NULL);
34dc7c2f
BB
8929 }
8930
ca0bf58d
PS
8931 /*
8932 * Return a randomly-selected sublist. This is acceptable
8933 * because the caller feeds only a little bit of data for each
8934 * call (8MB). Subsequent calls will result in different
8935 * sublists being selected.
8936 */
8937 idx = multilist_get_random_index(ml);
8938 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
8939}
8940
77f6826b
GA
8941/*
8942 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
657fd33b 8943 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
77f6826b
GA
8944 * overhead in processing to make sure there is enough headroom available
8945 * when writing buffers.
8946 */
8947static inline uint64_t
8948l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
8949{
657fd33b 8950 if (dev->l2ad_log_entries == 0) {
77f6826b
GA
8951 return (0);
8952 } else {
8953 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
8954
8955 uint64_t log_blocks = (log_entries +
657fd33b
GA
8956 dev->l2ad_log_entries - 1) /
8957 dev->l2ad_log_entries;
77f6826b
GA
8958
8959 return (vdev_psize_to_asize(dev->l2ad_vdev,
8960 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
8961 }
8962}
8963
34dc7c2f
BB
8964/*
8965 * Evict buffers from the device write hand to the distance specified in
77f6826b 8966 * bytes. This distance may span populated buffers, it may span nothing.
34dc7c2f
BB
8967 * This is clearing a region on the L2ARC device ready for writing.
8968 * If the 'all' boolean is set, every buffer is evicted.
8969 */
8970static void
8971l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8972{
8973 list_t *buflist;
2a432414 8974 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
8975 kmutex_t *hash_lock;
8976 uint64_t taddr;
77f6826b 8977 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
b7654bd7
GA
8978 vdev_t *vd = dev->l2ad_vdev;
8979 boolean_t rerun;
34dc7c2f 8980
b9541d6b 8981 buflist = &dev->l2ad_buflist;
34dc7c2f 8982
77f6826b
GA
8983 /*
8984 * We need to add in the worst case scenario of log block overhead.
8985 */
8986 distance += l2arc_log_blk_overhead(distance, dev);
b7654bd7
GA
8987 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
8988 /*
8989 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8990 * times the write size, whichever is greater.
8991 */
8992 distance += MAX(64 * 1024 * 1024,
8993 (distance * l2arc_trim_ahead) / 100);
8994 }
77f6826b 8995
37c22948
GA
8996top:
8997 rerun = B_FALSE;
8998 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
34dc7c2f 8999 /*
dd4bc569 9000 * When there is no space to accommodate upcoming writes,
77f6826b
GA
9001 * evict to the end. Then bump the write and evict hands
9002 * to the start and iterate. This iteration does not
9003 * happen indefinitely as we make sure in
9004 * l2arc_write_size() that when the write hand is reset,
9005 * the write size does not exceed the end of the device.
34dc7c2f 9006 */
37c22948 9007 rerun = B_TRUE;
34dc7c2f
BB
9008 taddr = dev->l2ad_end;
9009 } else {
9010 taddr = dev->l2ad_hand + distance;
9011 }
9012 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9013 uint64_t, taddr, boolean_t, all);
9014
b7654bd7 9015 if (!all) {
37c22948 9016 /*
b7654bd7
GA
9017 * This check has to be placed after deciding whether to
9018 * iterate (rerun).
37c22948 9019 */
b7654bd7
GA
9020 if (dev->l2ad_first) {
9021 /*
9022 * This is the first sweep through the device. There is
9023 * nothing to evict. We have already trimmmed the
9024 * whole device.
9025 */
9026 goto out;
9027 } else {
9028 /*
9029 * Trim the space to be evicted.
9030 */
9031 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9032 l2arc_trim_ahead > 0) {
9033 /*
9034 * We have to drop the spa_config lock because
9035 * vdev_trim_range() will acquire it.
9036 * l2ad_evict already accounts for the label
9037 * size. To prevent vdev_trim_ranges() from
9038 * adding it again, we subtract it from
9039 * l2ad_evict.
9040 */
9041 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9042 vdev_trim_simple(vd,
9043 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9044 taddr - dev->l2ad_evict);
9045 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9046 RW_READER);
9047 }
37c22948 9048
b7654bd7
GA
9049 /*
9050 * When rebuilding L2ARC we retrieve the evict hand
9051 * from the header of the device. Of note, l2arc_evict()
9052 * does not actually delete buffers from the cache
9053 * device, but trimming may do so depending on the
9054 * hardware implementation. Thus keeping track of the
9055 * evict hand is useful.
9056 */
9057 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9058 }
9059 }
77f6826b 9060
37c22948 9061retry:
b9541d6b 9062 mutex_enter(&dev->l2ad_mtx);
77f6826b
GA
9063 /*
9064 * We have to account for evicted log blocks. Run vdev_space_update()
9065 * on log blocks whose offset (in bytes) is before the evicted offset
9066 * (in bytes) by searching in the list of pointers to log blocks
9067 * present in the L2ARC device.
9068 */
9069 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9070 lb_ptr_buf = lb_ptr_buf_prev) {
9071
9072 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9073
657fd33b
GA
9074 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9075 uint64_t asize = L2BLK_GET_PSIZE(
9076 (lb_ptr_buf->lb_ptr)->lbp_prop);
9077
77f6826b
GA
9078 /*
9079 * We don't worry about log blocks left behind (ie
657fd33b 9080 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
77f6826b
GA
9081 * will never write more than l2arc_evict() evicts.
9082 */
9083 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9084 break;
9085 } else {
b7654bd7 9086 vdev_space_update(vd, -asize, 0, 0);
657fd33b
GA
9087 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9088 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9089 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9090 lb_ptr_buf);
9091 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b
GA
9092 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9093 kmem_free(lb_ptr_buf->lb_ptr,
9094 sizeof (l2arc_log_blkptr_t));
9095 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9096 }
9097 }
9098
2a432414
GW
9099 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9100 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 9101
ca6c7a94 9102 ASSERT(!HDR_EMPTY(hdr));
2a432414 9103 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
9104
9105 /*
9106 * We cannot use mutex_enter or else we can deadlock
9107 * with l2arc_write_buffers (due to swapping the order
9108 * the hash lock and l2ad_mtx are taken).
9109 */
34dc7c2f
BB
9110 if (!mutex_tryenter(hash_lock)) {
9111 /*
9112 * Missed the hash lock. Retry.
9113 */
9114 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 9115 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
9116 mutex_enter(hash_lock);
9117 mutex_exit(hash_lock);
37c22948 9118 goto retry;
34dc7c2f
BB
9119 }
9120
f06f53fa
AG
9121 /*
9122 * A header can't be on this list if it doesn't have L2 header.
9123 */
9124 ASSERT(HDR_HAS_L2HDR(hdr));
34dc7c2f 9125
f06f53fa
AG
9126 /* Ensure this header has finished being written. */
9127 ASSERT(!HDR_L2_WRITING(hdr));
9128 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9129
77f6826b 9130 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
b9541d6b 9131 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
9132 /*
9133 * We've evicted to the target address,
9134 * or the end of the device.
9135 */
9136 mutex_exit(hash_lock);
9137 break;
9138 }
9139
b9541d6b 9140 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 9141 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
9142 /*
9143 * This doesn't exist in the ARC. Destroy.
9144 * arc_hdr_destroy() will call list_remove()
01850391 9145 * and decrement arcstat_l2_lsize.
34dc7c2f 9146 */
2a432414
GW
9147 arc_change_state(arc_anon, hdr, hash_lock);
9148 arc_hdr_destroy(hdr);
34dc7c2f 9149 } else {
b9541d6b
CW
9150 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9151 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
9152 /*
9153 * Invalidate issued or about to be issued
9154 * reads, since we may be about to write
9155 * over this location.
9156 */
2a432414 9157 if (HDR_L2_READING(hdr)) {
b128c09f 9158 ARCSTAT_BUMP(arcstat_l2_evict_reading);
d3c2ae1c 9159 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
b128c09f
BB
9160 }
9161
d962d5da 9162 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
9163 }
9164 mutex_exit(hash_lock);
9165 }
b9541d6b 9166 mutex_exit(&dev->l2ad_mtx);
37c22948
GA
9167
9168out:
77f6826b
GA
9169 /*
9170 * We need to check if we evict all buffers, otherwise we may iterate
9171 * unnecessarily.
9172 */
9173 if (!all && rerun) {
37c22948
GA
9174 /*
9175 * Bump device hand to the device start if it is approaching the
9176 * end. l2arc_evict() has already evicted ahead for this case.
9177 */
9178 dev->l2ad_hand = dev->l2ad_start;
77f6826b 9179 dev->l2ad_evict = dev->l2ad_start;
37c22948
GA
9180 dev->l2ad_first = B_FALSE;
9181 goto top;
9182 }
657fd33b 9183
2c210f68
GA
9184 if (!all) {
9185 /*
9186 * In case of cache device removal (all) the following
9187 * assertions may be violated without functional consequences
9188 * as the device is about to be removed.
9189 */
9190 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
9191 if (!dev->l2ad_first)
9192 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
9193 }
34dc7c2f
BB
9194}
9195
b5256303
TC
9196/*
9197 * Handle any abd transforms that might be required for writing to the L2ARC.
9198 * If successful, this function will always return an abd with the data
9199 * transformed as it is on disk in a new abd of asize bytes.
9200 */
9201static int
9202l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9203 abd_t **abd_out)
9204{
9205 int ret;
9206 void *tmp = NULL;
9207 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9208 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9209 uint64_t psize = HDR_GET_PSIZE(hdr);
9210 uint64_t size = arc_hdr_size(hdr);
9211 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9212 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9213 dsl_crypto_key_t *dck = NULL;
9214 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
4807c0ba 9215 boolean_t no_crypt = B_FALSE;
b5256303
TC
9216
9217 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9218 !HDR_COMPRESSION_ENABLED(hdr)) ||
9219 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9220 ASSERT3U(psize, <=, asize);
9221
9222 /*
9223 * If this data simply needs its own buffer, we simply allocate it
b7109a41 9224 * and copy the data. This may be done to eliminate a dependency on a
b5256303
TC
9225 * shared buffer or to reallocate the buffer to match asize.
9226 */
4807c0ba 9227 if (HDR_HAS_RABD(hdr) && asize != psize) {
10adee27 9228 ASSERT3U(asize, >=, psize);
4807c0ba 9229 to_write = abd_alloc_for_io(asize, ismd);
10adee27
TC
9230 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9231 if (psize != asize)
9232 abd_zero_off(to_write, psize, asize - psize);
4807c0ba
TC
9233 goto out;
9234 }
9235
b5256303
TC
9236 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9237 !HDR_ENCRYPTED(hdr)) {
9238 ASSERT3U(size, ==, psize);
9239 to_write = abd_alloc_for_io(asize, ismd);
9240 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9241 if (size != asize)
9242 abd_zero_off(to_write, size, asize - size);
9243 goto out;
9244 }
9245
9246 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9247 cabd = abd_alloc_for_io(asize, ismd);
9248 tmp = abd_borrow_buf(cabd, asize);
9249
10b3c7f5
MN
9250 psize = zio_compress_data(compress, to_write, tmp, size,
9251 hdr->b_complevel);
9252
9253 if (psize >= size) {
9254 abd_return_buf(cabd, tmp, asize);
9255 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
9256 to_write = cabd;
9257 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9258 if (size != asize)
9259 abd_zero_off(to_write, size, asize - size);
9260 goto encrypt;
9261 }
b5256303
TC
9262 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
9263 if (psize < asize)
9264 bzero((char *)tmp + psize, asize - psize);
9265 psize = HDR_GET_PSIZE(hdr);
9266 abd_return_buf_copy(cabd, tmp, asize);
9267 to_write = cabd;
9268 }
9269
10b3c7f5 9270encrypt:
b5256303
TC
9271 if (HDR_ENCRYPTED(hdr)) {
9272 eabd = abd_alloc_for_io(asize, ismd);
9273
9274 /*
9275 * If the dataset was disowned before the buffer
9276 * made it to this point, the key to re-encrypt
9277 * it won't be available. In this case we simply
9278 * won't write the buffer to the L2ARC.
9279 */
9280 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9281 FTAG, &dck);
9282 if (ret != 0)
9283 goto error;
9284
10fa2545 9285 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
be9a5c35
TC
9286 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9287 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9288 &no_crypt);
b5256303
TC
9289 if (ret != 0)
9290 goto error;
9291
4807c0ba
TC
9292 if (no_crypt)
9293 abd_copy(eabd, to_write, psize);
b5256303
TC
9294
9295 if (psize != asize)
9296 abd_zero_off(eabd, psize, asize - psize);
9297
9298 /* assert that the MAC we got here matches the one we saved */
9299 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9300 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9301
9302 if (to_write == cabd)
9303 abd_free(cabd);
9304
9305 to_write = eabd;
9306 }
9307
9308out:
9309 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9310 *abd_out = to_write;
9311 return (0);
9312
9313error:
9314 if (dck != NULL)
9315 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9316 if (cabd != NULL)
9317 abd_free(cabd);
9318 if (eabd != NULL)
9319 abd_free(eabd);
9320
9321 *abd_out = NULL;
9322 return (ret);
9323}
9324
77f6826b
GA
9325static void
9326l2arc_blk_fetch_done(zio_t *zio)
9327{
9328 l2arc_read_callback_t *cb;
9329
9330 cb = zio->io_private;
9331 if (cb->l2rcb_abd != NULL)
e2af2acc 9332 abd_free(cb->l2rcb_abd);
77f6826b
GA
9333 kmem_free(cb, sizeof (l2arc_read_callback_t));
9334}
9335
34dc7c2f
BB
9336/*
9337 * Find and write ARC buffers to the L2ARC device.
9338 *
2a432414 9339 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 9340 * for reading until they have completed writing.
3a17a7a9
SK
9341 * The headroom_boost is an in-out parameter used to maintain headroom boost
9342 * state between calls to this function.
9343 *
9344 * Returns the number of bytes actually written (which may be smaller than
77f6826b
GA
9345 * the delta by which the device hand has changed due to alignment and the
9346 * writing of log blocks).
34dc7c2f 9347 */
d164b209 9348static uint64_t
d3c2ae1c 9349l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f 9350{
77f6826b
GA
9351 arc_buf_hdr_t *hdr, *hdr_prev, *head;
9352 uint64_t write_asize, write_psize, write_lsize, headroom;
9353 boolean_t full;
9354 l2arc_write_callback_t *cb = NULL;
9355 zio_t *pio, *wzio;
9356 uint64_t guid = spa_load_guid(spa);
0ae184a6 9357 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
34dc7c2f 9358
d3c2ae1c 9359 ASSERT3P(dev->l2ad_vdev, !=, NULL);
3a17a7a9 9360
34dc7c2f 9361 pio = NULL;
01850391 9362 write_lsize = write_asize = write_psize = 0;
34dc7c2f 9363 full = B_FALSE;
b9541d6b 9364 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
d3c2ae1c 9365 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
3a17a7a9 9366
34dc7c2f
BB
9367 /*
9368 * Copy buffers for L2ARC writing.
9369 */
4a90d4d6 9370 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
feb3a7ee 9371 /*
4a90d4d6 9372 * If pass == 1 or 3, we cache MRU metadata and data
feb3a7ee
GA
9373 * respectively.
9374 */
9375 if (l2arc_mfuonly) {
4a90d4d6 9376 if (pass == 1 || pass == 3)
feb3a7ee
GA
9377 continue;
9378 }
9379
4a90d4d6 9380 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
3a17a7a9
SK
9381 uint64_t passed_sz = 0;
9382
4aafab91
G
9383 VERIFY3P(mls, !=, NULL);
9384
b128c09f
BB
9385 /*
9386 * L2ARC fast warmup.
9387 *
9388 * Until the ARC is warm and starts to evict, read from the
9389 * head of the ARC lists rather than the tail.
9390 */
b128c09f 9391 if (arc_warm == B_FALSE)
ca0bf58d 9392 hdr = multilist_sublist_head(mls);
b128c09f 9393 else
ca0bf58d 9394 hdr = multilist_sublist_tail(mls);
b128c09f 9395
3a17a7a9 9396 headroom = target_sz * l2arc_headroom;
d3c2ae1c 9397 if (zfs_compressed_arc_enabled)
3a17a7a9
SK
9398 headroom = (headroom * l2arc_headroom_boost) / 100;
9399
2a432414 9400 for (; hdr; hdr = hdr_prev) {
3a17a7a9 9401 kmutex_t *hash_lock;
b5256303 9402 abd_t *to_write = NULL;
3a17a7a9 9403
b128c09f 9404 if (arc_warm == B_FALSE)
ca0bf58d 9405 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 9406 else
ca0bf58d 9407 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 9408
2a432414 9409 hash_lock = HDR_LOCK(hdr);
3a17a7a9 9410 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
9411 /*
9412 * Skip this buffer rather than waiting.
9413 */
9414 continue;
9415 }
9416
d3c2ae1c 9417 passed_sz += HDR_GET_LSIZE(hdr);
77f6826b 9418 if (l2arc_headroom != 0 && passed_sz > headroom) {
34dc7c2f
BB
9419 /*
9420 * Searched too far.
9421 */
9422 mutex_exit(hash_lock);
9423 break;
9424 }
9425
2a432414 9426 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
9427 mutex_exit(hash_lock);
9428 continue;
9429 }
9430
01850391
AG
9431 /*
9432 * We rely on the L1 portion of the header below, so
9433 * it's invalid for this header to have been evicted out
9434 * of the ghost cache, prior to being written out. The
9435 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9436 */
9437 ASSERT(HDR_HAS_L1HDR(hdr));
9438
9439 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
01850391 9440 ASSERT3U(arc_hdr_size(hdr), >, 0);
b5256303
TC
9441 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9442 HDR_HAS_RABD(hdr));
9443 uint64_t psize = HDR_GET_PSIZE(hdr);
01850391
AG
9444 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9445 psize);
9446
9447 if ((write_asize + asize) > target_sz) {
34dc7c2f
BB
9448 full = B_TRUE;
9449 mutex_exit(hash_lock);
9450 break;
9451 }
9452
b5256303
TC
9453 /*
9454 * We rely on the L1 portion of the header below, so
9455 * it's invalid for this header to have been evicted out
9456 * of the ghost cache, prior to being written out. The
9457 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9458 */
9459 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
9460 ASSERT(HDR_HAS_L1HDR(hdr));
9461
9462 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9463 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9464 HDR_HAS_RABD(hdr));
9465 ASSERT3U(arc_hdr_size(hdr), >, 0);
9466
9467 /*
9468 * If this header has b_rabd, we can use this since it
9469 * must always match the data exactly as it exists on
9777044f 9470 * disk. Otherwise, the L2ARC can normally use the
b5256303
TC
9471 * hdr's data, but if we're sharing data between the
9472 * hdr and one of its bufs, L2ARC needs its own copy of
9473 * the data so that the ZIO below can't race with the
9474 * buf consumer. To ensure that this copy will be
9475 * available for the lifetime of the ZIO and be cleaned
9476 * up afterwards, we add it to the l2arc_free_on_write
9477 * queue. If we need to apply any transforms to the
9478 * data (compression, encryption) we will also need the
9479 * extra buffer.
9480 */
9481 if (HDR_HAS_RABD(hdr) && psize == asize) {
9482 to_write = hdr->b_crypt_hdr.b_rabd;
9483 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9484 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9485 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9486 psize == asize) {
9487 to_write = hdr->b_l1hdr.b_pabd;
9488 } else {
9489 int ret;
9490 arc_buf_contents_t type = arc_buf_type(hdr);
9491
9492 ret = l2arc_apply_transforms(spa, hdr, asize,
9493 &to_write);
9494 if (ret != 0) {
9495 arc_hdr_clear_flags(hdr,
9496 ARC_FLAG_L2_WRITING);
9497 mutex_exit(hash_lock);
9498 continue;
9499 }
9500
9501 l2arc_free_abd_on_write(to_write, asize, type);
9502 }
9503
34dc7c2f
BB
9504 if (pio == NULL) {
9505 /*
9506 * Insert a dummy header on the buflist so
9507 * l2arc_write_done() can find where the
9508 * write buffers begin without searching.
9509 */
ca0bf58d 9510 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9511 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 9512 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9513
96c080cb
BB
9514 cb = kmem_alloc(
9515 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
9516 cb->l2wcb_dev = dev;
9517 cb->l2wcb_head = head;
657fd33b
GA
9518 /*
9519 * Create a list to save allocated abd buffers
9520 * for l2arc_log_blk_commit().
9521 */
77f6826b
GA
9522 list_create(&cb->l2wcb_abd_list,
9523 sizeof (l2arc_lb_abd_buf_t),
9524 offsetof(l2arc_lb_abd_buf_t, node));
34dc7c2f
BB
9525 pio = zio_root(spa, l2arc_write_done, cb,
9526 ZIO_FLAG_CANFAIL);
9527 }
9528
b9541d6b 9529 hdr->b_l2hdr.b_dev = dev;
b9541d6b 9530 hdr->b_l2hdr.b_hits = 0;
3a17a7a9 9531
d3c2ae1c 9532 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
08532162
GA
9533 hdr->b_l2hdr.b_arcs_state =
9534 hdr->b_l1hdr.b_state->arcs_state;
b5256303 9535 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
3a17a7a9 9536
ca0bf58d 9537 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9538 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 9539 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9540
424fd7c3 9541 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
b5256303 9542 arc_hdr_size(hdr), hdr);
3a17a7a9 9543
34dc7c2f 9544 wzio = zio_write_phys(pio, dev->l2ad_vdev,
82710e99 9545 hdr->b_l2hdr.b_daddr, asize, to_write,
d3c2ae1c
GW
9546 ZIO_CHECKSUM_OFF, NULL, hdr,
9547 ZIO_PRIORITY_ASYNC_WRITE,
34dc7c2f
BB
9548 ZIO_FLAG_CANFAIL, B_FALSE);
9549
01850391 9550 write_lsize += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
9551 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9552 zio_t *, wzio);
d962d5da 9553
01850391
AG
9554 write_psize += psize;
9555 write_asize += asize;
d3c2ae1c 9556 dev->l2ad_hand += asize;
08532162 9557 l2arc_hdr_arcstats_increment(hdr);
7558997d 9558 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
d3c2ae1c
GW
9559
9560 mutex_exit(hash_lock);
9561
77f6826b
GA
9562 /*
9563 * Append buf info to current log and commit if full.
9564 * arcstat_l2_{size,asize} kstats are updated
9565 * internally.
9566 */
9567 if (l2arc_log_blk_insert(dev, hdr))
9568 l2arc_log_blk_commit(dev, pio, cb);
9569
9cdf7b1f 9570 zio_nowait(wzio);
34dc7c2f 9571 }
d3c2ae1c
GW
9572
9573 multilist_sublist_unlock(mls);
9574
9575 if (full == B_TRUE)
9576 break;
34dc7c2f 9577 }
34dc7c2f 9578
d3c2ae1c
GW
9579 /* No buffers selected for writing? */
9580 if (pio == NULL) {
01850391 9581 ASSERT0(write_lsize);
d3c2ae1c
GW
9582 ASSERT(!HDR_HAS_L1HDR(head));
9583 kmem_cache_free(hdr_l2only_cache, head);
77f6826b
GA
9584
9585 /*
9586 * Although we did not write any buffers l2ad_evict may
9587 * have advanced.
9588 */
0ae184a6
GA
9589 if (dev->l2ad_evict != l2dhdr->dh_evict)
9590 l2arc_dev_hdr_update(dev);
77f6826b 9591
d3c2ae1c
GW
9592 return (0);
9593 }
34dc7c2f 9594
657fd33b
GA
9595 if (!dev->l2ad_first)
9596 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9597
3a17a7a9 9598 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 9599 ARCSTAT_BUMP(arcstat_l2_writes_sent);
01850391 9600 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
34dc7c2f 9601
d164b209 9602 dev->l2ad_writing = B_TRUE;
34dc7c2f 9603 (void) zio_wait(pio);
d164b209
BB
9604 dev->l2ad_writing = B_FALSE;
9605
2054f35e
GA
9606 /*
9607 * Update the device header after the zio completes as
9608 * l2arc_write_done() may have updated the memory holding the log block
9609 * pointers in the device header.
9610 */
9611 l2arc_dev_hdr_update(dev);
9612
3a17a7a9
SK
9613 return (write_asize);
9614}
9615
523e1295
AM
9616static boolean_t
9617l2arc_hdr_limit_reached(void)
9618{
c4c162c1 9619 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
523e1295
AM
9620
9621 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
9622 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9623}
9624
34dc7c2f
BB
9625/*
9626 * This thread feeds the L2ARC at regular intervals. This is the beating
9627 * heart of the L2ARC.
9628 */
867959b5 9629/* ARGSUSED */
34dc7c2f 9630static void
c25b8f99 9631l2arc_feed_thread(void *unused)
34dc7c2f
BB
9632{
9633 callb_cpr_t cpr;
9634 l2arc_dev_t *dev;
9635 spa_t *spa;
d164b209 9636 uint64_t size, wrote;
428870ff 9637 clock_t begin, next = ddi_get_lbolt();
40d06e3c 9638 fstrans_cookie_t cookie;
34dc7c2f
BB
9639
9640 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9641
9642 mutex_enter(&l2arc_feed_thr_lock);
9643
40d06e3c 9644 cookie = spl_fstrans_mark();
34dc7c2f 9645 while (l2arc_thread_exit == 0) {
34dc7c2f 9646 CALLB_CPR_SAFE_BEGIN(&cpr);
ac6e5fb2 9647 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
5b63b3eb 9648 &l2arc_feed_thr_lock, next);
34dc7c2f 9649 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 9650 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
9651
9652 /*
b128c09f 9653 * Quick check for L2ARC devices.
34dc7c2f
BB
9654 */
9655 mutex_enter(&l2arc_dev_mtx);
9656 if (l2arc_ndev == 0) {
9657 mutex_exit(&l2arc_dev_mtx);
9658 continue;
9659 }
b128c09f 9660 mutex_exit(&l2arc_dev_mtx);
428870ff 9661 begin = ddi_get_lbolt();
34dc7c2f
BB
9662
9663 /*
b128c09f
BB
9664 * This selects the next l2arc device to write to, and in
9665 * doing so the next spa to feed from: dev->l2ad_spa. This
9666 * will return NULL if there are now no l2arc devices or if
9667 * they are all faulted.
9668 *
9669 * If a device is returned, its spa's config lock is also
9670 * held to prevent device removal. l2arc_dev_get_next()
9671 * will grab and release l2arc_dev_mtx.
34dc7c2f 9672 */
b128c09f 9673 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 9674 continue;
b128c09f
BB
9675
9676 spa = dev->l2ad_spa;
d3c2ae1c 9677 ASSERT3P(spa, !=, NULL);
34dc7c2f 9678
572e2857
BB
9679 /*
9680 * If the pool is read-only then force the feed thread to
9681 * sleep a little longer.
9682 */
9683 if (!spa_writeable(spa)) {
9684 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9685 spa_config_exit(spa, SCL_L2ARC, dev);
9686 continue;
9687 }
9688
34dc7c2f 9689 /*
b128c09f 9690 * Avoid contributing to memory pressure.
34dc7c2f 9691 */
523e1295 9692 if (l2arc_hdr_limit_reached()) {
b128c09f
BB
9693 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9694 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
9695 continue;
9696 }
b128c09f 9697
34dc7c2f
BB
9698 ARCSTAT_BUMP(arcstat_l2_feeds);
9699
37c22948 9700 size = l2arc_write_size(dev);
b128c09f 9701
34dc7c2f
BB
9702 /*
9703 * Evict L2ARC buffers that will be overwritten.
9704 */
b128c09f 9705 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
9706
9707 /*
9708 * Write ARC buffers.
9709 */
d3c2ae1c 9710 wrote = l2arc_write_buffers(spa, dev, size);
d164b209
BB
9711
9712 /*
9713 * Calculate interval between writes.
9714 */
9715 next = l2arc_write_interval(begin, size, wrote);
b128c09f 9716 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 9717 }
40d06e3c 9718 spl_fstrans_unmark(cookie);
34dc7c2f
BB
9719
9720 l2arc_thread_exit = 0;
9721 cv_broadcast(&l2arc_feed_thr_cv);
9722 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9723 thread_exit();
9724}
9725
b128c09f
BB
9726boolean_t
9727l2arc_vdev_present(vdev_t *vd)
9728{
77f6826b
GA
9729 return (l2arc_vdev_get(vd) != NULL);
9730}
9731
9732/*
9733 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9734 * the vdev_t isn't an L2ARC device.
9735 */
b7654bd7 9736l2arc_dev_t *
77f6826b
GA
9737l2arc_vdev_get(vdev_t *vd)
9738{
9739 l2arc_dev_t *dev;
b128c09f
BB
9740
9741 mutex_enter(&l2arc_dev_mtx);
9742 for (dev = list_head(l2arc_dev_list); dev != NULL;
9743 dev = list_next(l2arc_dev_list, dev)) {
9744 if (dev->l2ad_vdev == vd)
9745 break;
9746 }
9747 mutex_exit(&l2arc_dev_mtx);
9748
77f6826b 9749 return (dev);
b128c09f
BB
9750}
9751
34dc7c2f
BB
9752/*
9753 * Add a vdev for use by the L2ARC. By this point the spa has already
9754 * validated the vdev and opened it.
9755 */
9756void
9babb374 9757l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f 9758{
77f6826b
GA
9759 l2arc_dev_t *adddev;
9760 uint64_t l2dhdr_asize;
34dc7c2f 9761
b128c09f
BB
9762 ASSERT(!l2arc_vdev_present(vd));
9763
34dc7c2f
BB
9764 /*
9765 * Create a new l2arc device entry.
9766 */
77f6826b 9767 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
34dc7c2f
BB
9768 adddev->l2ad_spa = spa;
9769 adddev->l2ad_vdev = vd;
77f6826b
GA
9770 /* leave extra size for an l2arc device header */
9771 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9772 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9773 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9babb374 9774 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
77f6826b 9775 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
34dc7c2f 9776 adddev->l2ad_hand = adddev->l2ad_start;
77f6826b 9777 adddev->l2ad_evict = adddev->l2ad_start;
34dc7c2f 9778 adddev->l2ad_first = B_TRUE;
d164b209 9779 adddev->l2ad_writing = B_FALSE;
b7654bd7 9780 adddev->l2ad_trim_all = B_FALSE;
98f72a53 9781 list_link_init(&adddev->l2ad_node);
77f6826b 9782 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
34dc7c2f 9783
b9541d6b 9784 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9785 /*
9786 * This is a list of all ARC buffers that are still valid on the
9787 * device.
9788 */
b9541d6b
CW
9789 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9790 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 9791
77f6826b
GA
9792 /*
9793 * This is a list of pointers to log blocks that are still present
9794 * on the device.
9795 */
9796 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9797 offsetof(l2arc_lb_ptr_buf_t, node));
9798
428870ff 9799 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
424fd7c3 9800 zfs_refcount_create(&adddev->l2ad_alloc);
657fd33b
GA
9801 zfs_refcount_create(&adddev->l2ad_lb_asize);
9802 zfs_refcount_create(&adddev->l2ad_lb_count);
34dc7c2f
BB
9803
9804 /*
9805 * Add device to global list
9806 */
9807 mutex_enter(&l2arc_dev_mtx);
9808 list_insert_head(l2arc_dev_list, adddev);
9809 atomic_inc_64(&l2arc_ndev);
9810 mutex_exit(&l2arc_dev_mtx);
77f6826b
GA
9811
9812 /*
9813 * Decide if vdev is eligible for L2ARC rebuild
9814 */
9815 l2arc_rebuild_vdev(adddev->l2ad_vdev, B_FALSE);
9816}
9817
9818void
9819l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9820{
9821 l2arc_dev_t *dev = NULL;
9822 l2arc_dev_hdr_phys_t *l2dhdr;
9823 uint64_t l2dhdr_asize;
9824 spa_t *spa;
77f6826b
GA
9825
9826 dev = l2arc_vdev_get(vd);
9827 ASSERT3P(dev, !=, NULL);
9828 spa = dev->l2ad_spa;
9829 l2dhdr = dev->l2ad_dev_hdr;
9830 l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9831
9832 /*
9833 * The L2ARC has to hold at least the payload of one log block for
9834 * them to be restored (persistent L2ARC). The payload of a log block
9835 * depends on the amount of its log entries. We always write log blocks
9836 * with 1022 entries. How many of them are committed or restored depends
9837 * on the size of the L2ARC device. Thus the maximum payload of
9838 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9839 * is less than that, we reduce the amount of committed and restored
9840 * log entries per block so as to enable persistence.
9841 */
9842 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9843 dev->l2ad_log_entries = 0;
9844 } else {
9845 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9846 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9847 L2ARC_LOG_BLK_MAX_ENTRIES);
9848 }
9849
9850 /*
9851 * Read the device header, if an error is returned do not rebuild L2ARC.
9852 */
a76e4e67 9853 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
77f6826b
GA
9854 /*
9855 * If we are onlining a cache device (vdev_reopen) that was
9856 * still present (l2arc_vdev_present()) and rebuild is enabled,
9857 * we should evict all ARC buffers and pointers to log blocks
9858 * and reclaim their space before restoring its contents to
9859 * L2ARC.
9860 */
9861 if (reopen) {
9862 if (!l2arc_rebuild_enabled) {
9863 return;
9864 } else {
9865 l2arc_evict(dev, 0, B_TRUE);
9866 /* start a new log block */
9867 dev->l2ad_log_ent_idx = 0;
9868 dev->l2ad_log_blk_payload_asize = 0;
9869 dev->l2ad_log_blk_payload_start = 0;
9870 }
9871 }
9872 /*
9873 * Just mark the device as pending for a rebuild. We won't
9874 * be starting a rebuild in line here as it would block pool
9875 * import. Instead spa_load_impl will hand that off to an
9876 * async task which will call l2arc_spa_rebuild_start.
9877 */
9878 dev->l2ad_rebuild = B_TRUE;
657fd33b 9879 } else if (spa_writeable(spa)) {
77f6826b 9880 /*
b7654bd7
GA
9881 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9882 * otherwise create a new header. We zero out the memory holding
9883 * the header to reset dh_start_lbps. If we TRIM the whole
9884 * device the new header will be written by
9885 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9886 * trim_state in the header too. When reading the header, if
9887 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9888 * we opt to TRIM the whole device again.
77f6826b 9889 */
b7654bd7
GA
9890 if (l2arc_trim_ahead > 0) {
9891 dev->l2ad_trim_all = B_TRUE;
9892 } else {
9893 bzero(l2dhdr, l2dhdr_asize);
9894 l2arc_dev_hdr_update(dev);
9895 }
77f6826b 9896 }
34dc7c2f
BB
9897}
9898
9899/*
9900 * Remove a vdev from the L2ARC.
9901 */
9902void
9903l2arc_remove_vdev(vdev_t *vd)
9904{
77f6826b 9905 l2arc_dev_t *remdev = NULL;
34dc7c2f 9906
34dc7c2f
BB
9907 /*
9908 * Find the device by vdev
9909 */
77f6826b 9910 remdev = l2arc_vdev_get(vd);
d3c2ae1c 9911 ASSERT3P(remdev, !=, NULL);
34dc7c2f 9912
77f6826b
GA
9913 /*
9914 * Cancel any ongoing or scheduled rebuild.
9915 */
9916 mutex_enter(&l2arc_rebuild_thr_lock);
9917 if (remdev->l2ad_rebuild_began == B_TRUE) {
9918 remdev->l2ad_rebuild_cancel = B_TRUE;
9919 while (remdev->l2ad_rebuild == B_TRUE)
9920 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9921 }
9922 mutex_exit(&l2arc_rebuild_thr_lock);
9923
34dc7c2f
BB
9924 /*
9925 * Remove device from global list
9926 */
77f6826b 9927 mutex_enter(&l2arc_dev_mtx);
34dc7c2f
BB
9928 list_remove(l2arc_dev_list, remdev);
9929 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
9930 atomic_dec_64(&l2arc_ndev);
9931 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
9932
9933 /*
9934 * Clear all buflists and ARC references. L2ARC device flush.
9935 */
9936 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b 9937 list_destroy(&remdev->l2ad_buflist);
77f6826b
GA
9938 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
9939 list_destroy(&remdev->l2ad_lbptr_list);
b9541d6b 9940 mutex_destroy(&remdev->l2ad_mtx);
424fd7c3 9941 zfs_refcount_destroy(&remdev->l2ad_alloc);
657fd33b
GA
9942 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
9943 zfs_refcount_destroy(&remdev->l2ad_lb_count);
77f6826b
GA
9944 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
9945 vmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
9946}
9947
9948void
b128c09f 9949l2arc_init(void)
34dc7c2f
BB
9950{
9951 l2arc_thread_exit = 0;
9952 l2arc_ndev = 0;
34dc7c2f
BB
9953
9954 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9955 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
77f6826b
GA
9956 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9957 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 9958 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9959 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9960
9961 l2arc_dev_list = &L2ARC_dev_list;
9962 l2arc_free_on_write = &L2ARC_free_on_write;
9963 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9964 offsetof(l2arc_dev_t, l2ad_node));
9965 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9966 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
9967}
9968
9969void
b128c09f 9970l2arc_fini(void)
34dc7c2f 9971{
34dc7c2f
BB
9972 mutex_destroy(&l2arc_feed_thr_lock);
9973 cv_destroy(&l2arc_feed_thr_cv);
77f6826b
GA
9974 mutex_destroy(&l2arc_rebuild_thr_lock);
9975 cv_destroy(&l2arc_rebuild_thr_cv);
34dc7c2f 9976 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
9977 mutex_destroy(&l2arc_free_on_write_mtx);
9978
9979 list_destroy(l2arc_dev_list);
9980 list_destroy(l2arc_free_on_write);
9981}
b128c09f
BB
9982
9983void
9984l2arc_start(void)
9985{
da92d5cb 9986 if (!(spa_mode_global & SPA_MODE_WRITE))
b128c09f
BB
9987 return;
9988
9989 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 9990 TS_RUN, defclsyspri);
b128c09f
BB
9991}
9992
9993void
9994l2arc_stop(void)
9995{
da92d5cb 9996 if (!(spa_mode_global & SPA_MODE_WRITE))
b128c09f
BB
9997 return;
9998
9999 mutex_enter(&l2arc_feed_thr_lock);
10000 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10001 l2arc_thread_exit = 1;
10002 while (l2arc_thread_exit != 0)
10003 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10004 mutex_exit(&l2arc_feed_thr_lock);
10005}
c28b2279 10006
77f6826b
GA
10007/*
10008 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10009 * be called after pool import from the spa async thread, since starting
10010 * these threads directly from spa_import() will make them part of the
10011 * "zpool import" context and delay process exit (and thus pool import).
10012 */
10013void
10014l2arc_spa_rebuild_start(spa_t *spa)
10015{
10016 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10017
10018 /*
10019 * Locate the spa's l2arc devices and kick off rebuild threads.
10020 */
10021 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10022 l2arc_dev_t *dev =
10023 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10024 if (dev == NULL) {
10025 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10026 continue;
10027 }
10028 mutex_enter(&l2arc_rebuild_thr_lock);
10029 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10030 dev->l2ad_rebuild_began = B_TRUE;
3eaf76a8 10031 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
77f6826b
GA
10032 dev, 0, &p0, TS_RUN, minclsyspri);
10033 }
10034 mutex_exit(&l2arc_rebuild_thr_lock);
10035 }
10036}
10037
10038/*
10039 * Main entry point for L2ARC rebuilding.
10040 */
10041static void
3eaf76a8 10042l2arc_dev_rebuild_thread(void *arg)
77f6826b 10043{
3eaf76a8
RM
10044 l2arc_dev_t *dev = arg;
10045
77f6826b
GA
10046 VERIFY(!dev->l2ad_rebuild_cancel);
10047 VERIFY(dev->l2ad_rebuild);
10048 (void) l2arc_rebuild(dev);
10049 mutex_enter(&l2arc_rebuild_thr_lock);
10050 dev->l2ad_rebuild_began = B_FALSE;
10051 dev->l2ad_rebuild = B_FALSE;
10052 mutex_exit(&l2arc_rebuild_thr_lock);
10053
10054 thread_exit();
10055}
10056
10057/*
10058 * This function implements the actual L2ARC metadata rebuild. It:
10059 * starts reading the log block chain and restores each block's contents
10060 * to memory (reconstructing arc_buf_hdr_t's).
10061 *
10062 * Operation stops under any of the following conditions:
10063 *
10064 * 1) We reach the end of the log block chain.
10065 * 2) We encounter *any* error condition (cksum errors, io errors)
10066 */
10067static int
10068l2arc_rebuild(l2arc_dev_t *dev)
10069{
10070 vdev_t *vd = dev->l2ad_vdev;
10071 spa_t *spa = vd->vdev_spa;
657fd33b 10072 int err = 0;
77f6826b
GA
10073 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10074 l2arc_log_blk_phys_t *this_lb, *next_lb;
10075 zio_t *this_io = NULL, *next_io = NULL;
10076 l2arc_log_blkptr_t lbps[2];
10077 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10078 boolean_t lock_held;
10079
10080 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10081 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10082
10083 /*
10084 * We prevent device removal while issuing reads to the device,
10085 * then during the rebuilding phases we drop this lock again so
10086 * that a spa_unload or device remove can be initiated - this is
10087 * safe, because the spa will signal us to stop before removing
10088 * our device and wait for us to stop.
10089 */
10090 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10091 lock_held = B_TRUE;
10092
10093 /*
10094 * Retrieve the persistent L2ARC device state.
657fd33b 10095 * L2BLK_GET_PSIZE returns aligned size for log blocks.
77f6826b
GA
10096 */
10097 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10098 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10099 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10100 dev->l2ad_start);
10101 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10102
b7654bd7
GA
10103 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10104 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10105
77f6826b
GA
10106 /*
10107 * In case the zfs module parameter l2arc_rebuild_enabled is false
10108 * we do not start the rebuild process.
10109 */
10110 if (!l2arc_rebuild_enabled)
10111 goto out;
10112
10113 /* Prepare the rebuild process */
10114 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
10115
10116 /* Start the rebuild process */
10117 for (;;) {
10118 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10119 break;
10120
10121 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10122 this_lb, next_lb, this_io, &next_io)) != 0)
10123 goto out;
10124
10125 /*
10126 * Our memory pressure valve. If the system is running low
10127 * on memory, rather than swamping memory with new ARC buf
10128 * hdrs, we opt not to rebuild the L2ARC. At this point,
10129 * however, we have already set up our L2ARC dev to chain in
10130 * new metadata log blocks, so the user may choose to offline/
10131 * online the L2ARC dev at a later time (or re-import the pool)
10132 * to reconstruct it (when there's less memory pressure).
10133 */
523e1295 10134 if (l2arc_hdr_limit_reached()) {
77f6826b
GA
10135 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10136 cmn_err(CE_NOTE, "System running low on memory, "
10137 "aborting L2ARC rebuild.");
10138 err = SET_ERROR(ENOMEM);
10139 goto out;
10140 }
10141
10142 spa_config_exit(spa, SCL_L2ARC, vd);
10143 lock_held = B_FALSE;
10144
10145 /*
10146 * Now that we know that the next_lb checks out alright, we
10147 * can start reconstruction from this log block.
657fd33b 10148 * L2BLK_GET_PSIZE returns aligned size for log blocks.
77f6826b 10149 */
657fd33b 10150 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
a76e4e67 10151 l2arc_log_blk_restore(dev, this_lb, asize);
77f6826b
GA
10152
10153 /*
10154 * log block restored, include its pointer in the list of
10155 * pointers to log blocks present in the L2ARC device.
10156 */
10157 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10158 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10159 KM_SLEEP);
10160 bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
10161 sizeof (l2arc_log_blkptr_t));
10162 mutex_enter(&dev->l2ad_mtx);
10163 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
657fd33b
GA
10164 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10165 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10166 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10167 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b 10168 mutex_exit(&dev->l2ad_mtx);
657fd33b 10169 vdev_space_update(vd, asize, 0, 0);
77f6826b
GA
10170
10171 /*
10172 * Protection against loops of log blocks:
10173 *
10174 * l2ad_hand l2ad_evict
10175 * V V
10176 * l2ad_start |=======================================| l2ad_end
10177 * -----|||----|||---|||----|||
10178 * (3) (2) (1) (0)
10179 * ---|||---|||----|||---|||
10180 * (7) (6) (5) (4)
10181 *
10182 * In this situation the pointer of log block (4) passes
10183 * l2arc_log_blkptr_valid() but the log block should not be
10184 * restored as it is overwritten by the payload of log block
10185 * (0). Only log blocks (0)-(3) should be restored. We check
657fd33b
GA
10186 * whether l2ad_evict lies in between the payload starting
10187 * offset of the next log block (lbps[1].lbp_payload_start)
10188 * and the payload starting offset of the present log block
10189 * (lbps[0].lbp_payload_start). If true and this isn't the
10190 * first pass, we are looping from the beginning and we should
10191 * stop.
77f6826b 10192 */
657fd33b
GA
10193 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10194 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10195 !dev->l2ad_first)
77f6826b
GA
10196 goto out;
10197
1199c3e8 10198 cond_resched();
77f6826b
GA
10199 for (;;) {
10200 mutex_enter(&l2arc_rebuild_thr_lock);
10201 if (dev->l2ad_rebuild_cancel) {
10202 dev->l2ad_rebuild = B_FALSE;
10203 cv_signal(&l2arc_rebuild_thr_cv);
10204 mutex_exit(&l2arc_rebuild_thr_lock);
10205 err = SET_ERROR(ECANCELED);
10206 goto out;
10207 }
10208 mutex_exit(&l2arc_rebuild_thr_lock);
10209 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10210 RW_READER)) {
10211 lock_held = B_TRUE;
10212 break;
10213 }
10214 /*
10215 * L2ARC config lock held by somebody in writer,
10216 * possibly due to them trying to remove us. They'll
10217 * likely to want us to shut down, so after a little
10218 * delay, we check l2ad_rebuild_cancel and retry
10219 * the lock again.
10220 */
10221 delay(1);
10222 }
10223
10224 /*
10225 * Continue with the next log block.
10226 */
10227 lbps[0] = lbps[1];
10228 lbps[1] = this_lb->lb_prev_lbp;
10229 PTR_SWAP(this_lb, next_lb);
10230 this_io = next_io;
10231 next_io = NULL;
a76e4e67 10232 }
77f6826b
GA
10233
10234 if (this_io != NULL)
10235 l2arc_log_blk_fetch_abort(this_io);
10236out:
10237 if (next_io != NULL)
10238 l2arc_log_blk_fetch_abort(next_io);
10239 vmem_free(this_lb, sizeof (*this_lb));
10240 vmem_free(next_lb, sizeof (*next_lb));
10241
10242 if (!l2arc_rebuild_enabled) {
657fd33b
GA
10243 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10244 "disabled");
10245 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
77f6826b 10246 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
657fd33b
GA
10247 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10248 "successful, restored %llu blocks",
10249 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10250 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10251 /*
10252 * No error but also nothing restored, meaning the lbps array
10253 * in the device header points to invalid/non-present log
10254 * blocks. Reset the header.
10255 */
10256 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10257 "no valid log blocks");
10258 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
10259 l2arc_dev_hdr_update(dev);
da60484d
GA
10260 } else if (err == ECANCELED) {
10261 /*
10262 * In case the rebuild was canceled do not log to spa history
10263 * log as the pool may be in the process of being removed.
10264 */
10265 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
8e739b2c 10266 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
77f6826b 10267 } else if (err != 0) {
657fd33b
GA
10268 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10269 "aborted, restored %llu blocks",
10270 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
77f6826b
GA
10271 }
10272
10273 if (lock_held)
10274 spa_config_exit(spa, SCL_L2ARC, vd);
10275
10276 return (err);
10277}
10278
10279/*
10280 * Attempts to read the device header on the provided L2ARC device and writes
10281 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10282 * error code is returned.
10283 */
10284static int
10285l2arc_dev_hdr_read(l2arc_dev_t *dev)
10286{
10287 int err;
10288 uint64_t guid;
10289 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10290 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10291 abd_t *abd;
10292
10293 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10294
10295 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10296
10297 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10298 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
a76e4e67 10299 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
77f6826b
GA
10300 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10301 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10302 ZIO_FLAG_SPECULATIVE, B_FALSE));
10303
e2af2acc 10304 abd_free(abd);
77f6826b
GA
10305
10306 if (err != 0) {
10307 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10308 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
8e739b2c
RE
10309 "vdev guid: %llu", err,
10310 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
77f6826b
GA
10311 return (err);
10312 }
10313
10314 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10315 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10316
10317 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10318 l2dhdr->dh_spa_guid != guid ||
10319 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10320 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
657fd33b 10321 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
77f6826b
GA
10322 l2dhdr->dh_end != dev->l2ad_end ||
10323 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
b7654bd7
GA
10324 l2dhdr->dh_evict) ||
10325 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10326 l2arc_trim_ahead > 0)) {
77f6826b
GA
10327 /*
10328 * Attempt to rebuild a device containing no actual dev hdr
10329 * or containing a header from some other pool or from another
10330 * version of persistent L2ARC.
10331 */
10332 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10333 return (SET_ERROR(ENOTSUP));
10334 }
10335
10336 return (0);
10337}
10338
10339/*
10340 * Reads L2ARC log blocks from storage and validates their contents.
10341 *
10342 * This function implements a simple fetcher to make sure that while
10343 * we're processing one buffer the L2ARC is already fetching the next
10344 * one in the chain.
10345 *
10346 * The arguments this_lp and next_lp point to the current and next log block
10347 * address in the block chain. Similarly, this_lb and next_lb hold the
10348 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10349 *
10350 * The `this_io' and `next_io' arguments are used for block fetching.
10351 * When issuing the first blk IO during rebuild, you should pass NULL for
10352 * `this_io'. This function will then issue a sync IO to read the block and
10353 * also issue an async IO to fetch the next block in the block chain. The
10354 * fetched IO is returned in `next_io'. On subsequent calls to this
10355 * function, pass the value returned in `next_io' from the previous call
10356 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10357 * Prior to the call, you should initialize your `next_io' pointer to be
10358 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10359 *
10360 * On success, this function returns 0, otherwise it returns an appropriate
10361 * error code. On error the fetching IO is aborted and cleared before
10362 * returning from this function. Therefore, if we return `success', the
10363 * caller can assume that we have taken care of cleanup of fetch IOs.
10364 */
10365static int
10366l2arc_log_blk_read(l2arc_dev_t *dev,
10367 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10368 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10369 zio_t *this_io, zio_t **next_io)
10370{
10371 int err = 0;
10372 zio_cksum_t cksum;
10373 abd_t *abd = NULL;
657fd33b 10374 uint64_t asize;
77f6826b
GA
10375
10376 ASSERT(this_lbp != NULL && next_lbp != NULL);
10377 ASSERT(this_lb != NULL && next_lb != NULL);
10378 ASSERT(next_io != NULL && *next_io == NULL);
10379 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10380
10381 /*
10382 * Check to see if we have issued the IO for this log block in a
10383 * previous run. If not, this is the first call, so issue it now.
10384 */
10385 if (this_io == NULL) {
10386 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10387 this_lb);
10388 }
10389
10390 /*
10391 * Peek to see if we can start issuing the next IO immediately.
10392 */
10393 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10394 /*
10395 * Start issuing IO for the next log block early - this
10396 * should help keep the L2ARC device busy while we
10397 * decompress and restore this log block.
10398 */
10399 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10400 next_lb);
10401 }
10402
10403 /* Wait for the IO to read this log block to complete */
10404 if ((err = zio_wait(this_io)) != 0) {
10405 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10406 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
8e739b2c
RE
10407 "offset: %llu, vdev guid: %llu", err,
10408 (u_longlong_t)this_lbp->lbp_daddr,
10409 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
77f6826b
GA
10410 goto cleanup;
10411 }
10412
657fd33b
GA
10413 /*
10414 * Make sure the buffer checks out.
10415 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10416 */
10417 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10418 fletcher_4_native(this_lb, asize, NULL, &cksum);
77f6826b
GA
10419 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10420 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10421 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10422 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
8e739b2c
RE
10423 (u_longlong_t)this_lbp->lbp_daddr,
10424 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10425 (u_longlong_t)dev->l2ad_hand,
10426 (u_longlong_t)dev->l2ad_evict);
77f6826b
GA
10427 err = SET_ERROR(ECKSUM);
10428 goto cleanup;
10429 }
10430
10431 /* Now we can take our time decoding this buffer */
10432 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10433 case ZIO_COMPRESS_OFF:
10434 break;
10435 case ZIO_COMPRESS_LZ4:
657fd33b
GA
10436 abd = abd_alloc_for_io(asize, B_TRUE);
10437 abd_copy_from_buf_off(abd, this_lb, 0, asize);
77f6826b
GA
10438 if ((err = zio_decompress_data(
10439 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10b3c7f5 10440 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
77f6826b
GA
10441 err = SET_ERROR(EINVAL);
10442 goto cleanup;
10443 }
10444 break;
10445 default:
10446 err = SET_ERROR(EINVAL);
10447 goto cleanup;
10448 }
10449 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10450 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10451 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10452 err = SET_ERROR(EINVAL);
10453 goto cleanup;
10454 }
10455cleanup:
10456 /* Abort an in-flight fetch I/O in case of error */
10457 if (err != 0 && *next_io != NULL) {
10458 l2arc_log_blk_fetch_abort(*next_io);
10459 *next_io = NULL;
10460 }
10461 if (abd != NULL)
10462 abd_free(abd);
10463 return (err);
10464}
10465
10466/*
10467 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10468 * entries which only contain an l2arc hdr, essentially restoring the
10469 * buffers to their L2ARC evicted state. This function also updates space
10470 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10471 */
10472static void
10473l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
a76e4e67 10474 uint64_t lb_asize)
77f6826b 10475{
657fd33b
GA
10476 uint64_t size = 0, asize = 0;
10477 uint64_t log_entries = dev->l2ad_log_entries;
77f6826b 10478
523e1295
AM
10479 /*
10480 * Usually arc_adapt() is called only for data, not headers, but
10481 * since we may allocate significant amount of memory here, let ARC
10482 * grow its arc_c.
10483 */
10484 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
10485
77f6826b
GA
10486 for (int i = log_entries - 1; i >= 0; i--) {
10487 /*
10488 * Restore goes in the reverse temporal direction to preserve
10489 * correct temporal ordering of buffers in the l2ad_buflist.
10490 * l2arc_hdr_restore also does a list_insert_tail instead of
10491 * list_insert_head on the l2ad_buflist:
10492 *
10493 * LIST l2ad_buflist LIST
10494 * HEAD <------ (time) ------ TAIL
10495 * direction +-----+-----+-----+-----+-----+ direction
10496 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10497 * fill +-----+-----+-----+-----+-----+
10498 * ^ ^
10499 * | |
10500 * | |
657fd33b
GA
10501 * l2arc_feed_thread l2arc_rebuild
10502 * will place new bufs here restores bufs here
77f6826b 10503 *
657fd33b
GA
10504 * During l2arc_rebuild() the device is not used by
10505 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
77f6826b
GA
10506 */
10507 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
657fd33b
GA
10508 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10509 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
77f6826b
GA
10510 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10511 }
10512
10513 /*
10514 * Record rebuild stats:
10515 * size Logical size of restored buffers in the L2ARC
657fd33b 10516 * asize Aligned size of restored buffers in the L2ARC
77f6826b
GA
10517 */
10518 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
657fd33b 10519 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
77f6826b 10520 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
657fd33b
GA
10521 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10522 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
77f6826b
GA
10523 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10524}
10525
10526/*
10527 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10528 * into a state indicating that it has been evicted to L2ARC.
10529 */
10530static void
10531l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10532{
10533 arc_buf_hdr_t *hdr, *exists;
10534 kmutex_t *hash_lock;
10535 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10536 uint64_t asize;
10537
10538 /*
10539 * Do all the allocation before grabbing any locks, this lets us
10540 * sleep if memory is full and we don't have to deal with failed
10541 * allocations.
10542 */
10543 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10544 dev, le->le_dva, le->le_daddr,
10545 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10b3c7f5 10546 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
77f6826b 10547 L2BLK_GET_PROTECTED((le)->le_prop),
08532162
GA
10548 L2BLK_GET_PREFETCH((le)->le_prop),
10549 L2BLK_GET_STATE((le)->le_prop));
77f6826b
GA
10550 asize = vdev_psize_to_asize(dev->l2ad_vdev,
10551 L2BLK_GET_PSIZE((le)->le_prop));
10552
10553 /*
10554 * vdev_space_update() has to be called before arc_hdr_destroy() to
08532162 10555 * avoid underflow since the latter also calls vdev_space_update().
77f6826b 10556 */
08532162 10557 l2arc_hdr_arcstats_increment(hdr);
77f6826b
GA
10558 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10559
77f6826b
GA
10560 mutex_enter(&dev->l2ad_mtx);
10561 list_insert_tail(&dev->l2ad_buflist, hdr);
10562 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10563 mutex_exit(&dev->l2ad_mtx);
10564
10565 exists = buf_hash_insert(hdr, &hash_lock);
10566 if (exists) {
10567 /* Buffer was already cached, no need to restore it. */
10568 arc_hdr_destroy(hdr);
10569 /*
10570 * If the buffer is already cached, check whether it has
10571 * L2ARC metadata. If not, enter them and update the flag.
10572 * This is important is case of onlining a cache device, since
10573 * we previously evicted all L2ARC metadata from ARC.
10574 */
10575 if (!HDR_HAS_L2HDR(exists)) {
10576 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10577 exists->b_l2hdr.b_dev = dev;
10578 exists->b_l2hdr.b_daddr = le->le_daddr;
08532162
GA
10579 exists->b_l2hdr.b_arcs_state =
10580 L2BLK_GET_STATE((le)->le_prop);
77f6826b
GA
10581 mutex_enter(&dev->l2ad_mtx);
10582 list_insert_tail(&dev->l2ad_buflist, exists);
10583 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10584 arc_hdr_size(exists), exists);
10585 mutex_exit(&dev->l2ad_mtx);
08532162 10586 l2arc_hdr_arcstats_increment(exists);
77f6826b 10587 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
77f6826b
GA
10588 }
10589 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10590 }
10591
10592 mutex_exit(hash_lock);
10593}
10594
10595/*
10596 * Starts an asynchronous read IO to read a log block. This is used in log
10597 * block reconstruction to start reading the next block before we are done
10598 * decoding and reconstructing the current block, to keep the l2arc device
10599 * nice and hot with read IO to process.
10600 * The returned zio will contain a newly allocated memory buffers for the IO
10601 * data which should then be freed by the caller once the zio is no longer
10602 * needed (i.e. due to it having completed). If you wish to abort this
10603 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10604 * care of disposing of the allocated buffers correctly.
10605 */
10606static zio_t *
10607l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10608 l2arc_log_blk_phys_t *lb)
10609{
657fd33b 10610 uint32_t asize;
77f6826b
GA
10611 zio_t *pio;
10612 l2arc_read_callback_t *cb;
10613
657fd33b
GA
10614 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10615 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10616 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10617
77f6826b 10618 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
657fd33b 10619 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
77f6826b
GA
10620 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10621 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10622 ZIO_FLAG_DONT_RETRY);
657fd33b 10623 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
77f6826b
GA
10624 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10625 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10626 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10627
10628 return (pio);
10629}
10630
10631/*
10632 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10633 * buffers allocated for it.
10634 */
10635static void
10636l2arc_log_blk_fetch_abort(zio_t *zio)
10637{
10638 (void) zio_wait(zio);
10639}
10640
10641/*
2054f35e 10642 * Creates a zio to update the device header on an l2arc device.
77f6826b 10643 */
b7654bd7 10644void
77f6826b
GA
10645l2arc_dev_hdr_update(l2arc_dev_t *dev)
10646{
10647 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10648 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10649 abd_t *abd;
10650 int err;
10651
657fd33b
GA
10652 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10653
77f6826b
GA
10654 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10655 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10656 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10657 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
657fd33b 10658 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
77f6826b
GA
10659 l2dhdr->dh_evict = dev->l2ad_evict;
10660 l2dhdr->dh_start = dev->l2ad_start;
10661 l2dhdr->dh_end = dev->l2ad_end;
657fd33b
GA
10662 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10663 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
77f6826b 10664 l2dhdr->dh_flags = 0;
b7654bd7
GA
10665 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10666 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
77f6826b
GA
10667 if (dev->l2ad_first)
10668 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10669
10670 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10671
10672 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10673 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10674 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10675
e2af2acc 10676 abd_free(abd);
77f6826b
GA
10677
10678 if (err != 0) {
10679 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
8e739b2c
RE
10680 "vdev guid: %llu", err,
10681 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
77f6826b
GA
10682 }
10683}
10684
10685/*
10686 * Commits a log block to the L2ARC device. This routine is invoked from
10687 * l2arc_write_buffers when the log block fills up.
10688 * This function allocates some memory to temporarily hold the serialized
10689 * buffer to be written. This is then released in l2arc_write_done.
10690 */
10691static void
10692l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10693{
10694 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10695 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10696 uint64_t psize, asize;
10697 zio_t *wzio;
10698 l2arc_lb_abd_buf_t *abd_buf;
10699 uint8_t *tmpbuf;
10700 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10701
657fd33b 10702 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
77f6826b
GA
10703
10704 tmpbuf = zio_buf_alloc(sizeof (*lb));
10705 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10706 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10707 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10708 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10709
10710 /* link the buffer into the block chain */
10711 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10712 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10713
657fd33b
GA
10714 /*
10715 * l2arc_log_blk_commit() may be called multiple times during a single
10716 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10717 * so we can free them in l2arc_write_done() later on.
10718 */
77f6826b 10719 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
657fd33b
GA
10720
10721 /* try to compress the buffer */
77f6826b 10722 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10b3c7f5 10723 abd_buf->abd, tmpbuf, sizeof (*lb), 0);
77f6826b
GA
10724
10725 /* a log block is never entirely zero */
10726 ASSERT(psize != 0);
10727 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10728 ASSERT(asize <= sizeof (*lb));
10729
10730 /*
10731 * Update the start log block pointer in the device header to point
10732 * to the log block we're about to write.
10733 */
10734 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10735 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10736 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10737 dev->l2ad_log_blk_payload_asize;
10738 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10739 dev->l2ad_log_blk_payload_start;
77f6826b
GA
10740 L2BLK_SET_LSIZE(
10741 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10742 L2BLK_SET_PSIZE(
10743 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10744 L2BLK_SET_CHECKSUM(
10745 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10746 ZIO_CHECKSUM_FLETCHER_4);
10747 if (asize < sizeof (*lb)) {
10748 /* compression succeeded */
10749 bzero(tmpbuf + psize, asize - psize);
10750 L2BLK_SET_COMPRESS(
10751 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10752 ZIO_COMPRESS_LZ4);
10753 } else {
10754 /* compression failed */
10755 bcopy(lb, tmpbuf, sizeof (*lb));
10756 L2BLK_SET_COMPRESS(
10757 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10758 ZIO_COMPRESS_OFF);
10759 }
10760
10761 /* checksum what we're about to write */
10762 fletcher_4_native(tmpbuf, asize, NULL,
10763 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10764
e2af2acc 10765 abd_free(abd_buf->abd);
77f6826b
GA
10766
10767 /* perform the write itself */
10768 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10769 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10770 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10771 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10772 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10773 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10774 (void) zio_nowait(wzio);
10775
10776 dev->l2ad_hand += asize;
10777 /*
10778 * Include the committed log block's pointer in the list of pointers
10779 * to log blocks present in the L2ARC device.
10780 */
10781 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10782 sizeof (l2arc_log_blkptr_t));
10783 mutex_enter(&dev->l2ad_mtx);
10784 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
657fd33b
GA
10785 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10786 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10787 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10788 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b
GA
10789 mutex_exit(&dev->l2ad_mtx);
10790 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10791
10792 /* bump the kstats */
10793 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10794 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
657fd33b 10795 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
77f6826b
GA
10796 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10797 dev->l2ad_log_blk_payload_asize / asize);
10798
10799 /* start a new log block */
10800 dev->l2ad_log_ent_idx = 0;
10801 dev->l2ad_log_blk_payload_asize = 0;
10802 dev->l2ad_log_blk_payload_start = 0;
10803}
10804
10805/*
10806 * Validates an L2ARC log block address to make sure that it can be read
10807 * from the provided L2ARC device.
10808 */
10809boolean_t
10810l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10811{
657fd33b
GA
10812 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10813 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10814 uint64_t end = lbp->lbp_daddr + asize - 1;
77f6826b
GA
10815 uint64_t start = lbp->lbp_payload_start;
10816 boolean_t evicted = B_FALSE;
10817
10818 /*
10819 * A log block is valid if all of the following conditions are true:
10820 * - it fits entirely (including its payload) between l2ad_start and
10821 * l2ad_end
10822 * - it has a valid size
10823 * - neither the log block itself nor part of its payload was evicted
10824 * by l2arc_evict():
10825 *
10826 * l2ad_hand l2ad_evict
10827 * | | lbp_daddr
10828 * | start | | end
10829 * | | | | |
10830 * V V V V V
10831 * l2ad_start ============================================ l2ad_end
10832 * --------------------------||||
10833 * ^ ^
10834 * | log block
10835 * payload
10836 */
10837
10838 evicted =
10839 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10840 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10841 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10842 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10843
10844 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
657fd33b 10845 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
77f6826b
GA
10846 (!evicted || dev->l2ad_first));
10847}
10848
10849/*
10850 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10851 * the device. The buffer being inserted must be present in L2ARC.
10852 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10853 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10854 */
10855static boolean_t
10856l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10857{
10858 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10859 l2arc_log_ent_phys_t *le;
77f6826b 10860
657fd33b 10861 if (dev->l2ad_log_entries == 0)
77f6826b
GA
10862 return (B_FALSE);
10863
10864 int index = dev->l2ad_log_ent_idx++;
10865
657fd33b 10866 ASSERT3S(index, <, dev->l2ad_log_entries);
77f6826b
GA
10867 ASSERT(HDR_HAS_L2HDR(hdr));
10868
10869 le = &lb->lb_entries[index];
10870 bzero(le, sizeof (*le));
10871 le->le_dva = hdr->b_dva;
10872 le->le_birth = hdr->b_birth;
10873 le->le_daddr = hdr->b_l2hdr.b_daddr;
10874 if (index == 0)
10875 dev->l2ad_log_blk_payload_start = le->le_daddr;
10876 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10877 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10878 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10b3c7f5 10879 le->le_complevel = hdr->b_complevel;
77f6826b
GA
10880 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10881 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10882 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
08532162 10883 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
77f6826b
GA
10884
10885 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10886 HDR_GET_PSIZE(hdr));
10887
657fd33b 10888 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
77f6826b
GA
10889}
10890
10891/*
10892 * Checks whether a given L2ARC device address sits in a time-sequential
10893 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10894 * just do a range comparison, we need to handle the situation in which the
10895 * range wraps around the end of the L2ARC device. Arguments:
10896 * bottom -- Lower end of the range to check (written to earlier).
10897 * top -- Upper end of the range to check (written to later).
10898 * check -- The address for which we want to determine if it sits in
10899 * between the top and bottom.
10900 *
10901 * The 3-way conditional below represents the following cases:
10902 *
10903 * bottom < top : Sequentially ordered case:
10904 * <check>--------+-------------------+
10905 * | (overlap here?) |
10906 * L2ARC dev V V
10907 * |---------------<bottom>============<top>--------------|
10908 *
10909 * bottom > top: Looped-around case:
10910 * <check>--------+------------------+
10911 * | (overlap here?) |
10912 * L2ARC dev V V
10913 * |===============<top>---------------<bottom>===========|
10914 * ^ ^
10915 * | (or here?) |
10916 * +---------------+---------<check>
10917 *
10918 * top == bottom : Just a single address comparison.
10919 */
10920boolean_t
10921l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10922{
10923 if (bottom < top)
10924 return (bottom <= check && check <= top);
10925 else if (bottom > top)
10926 return (check <= top || bottom <= check);
10927 else
10928 return (check == top);
10929}
10930
0f699108
AZ
10931EXPORT_SYMBOL(arc_buf_size);
10932EXPORT_SYMBOL(arc_write);
c28b2279 10933EXPORT_SYMBOL(arc_read);
e0b0ca98 10934EXPORT_SYMBOL(arc_buf_info);
c28b2279 10935EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
10936EXPORT_SYMBOL(arc_add_prune_callback);
10937EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 10938
02730c33 10939/* BEGIN CSTYLED */
e3570464 10940ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_long,
10941 param_get_long, ZMOD_RW, "Min arc size");
c28b2279 10942
e3570464 10943ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_long,
10944 param_get_long, ZMOD_RW, "Max arc size");
c28b2279 10945
e3570464 10946ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long,
10947 param_get_long, ZMOD_RW, "Metadata limit for arc size");
6a8f9b6b 10948
e3570464 10949ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
10950 param_set_arc_long, param_get_long, ZMOD_RW,
9907cc1c
G
10951 "Percent of arc size for arc meta limit");
10952
e3570464 10953ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long,
10954 param_get_long, ZMOD_RW, "Min arc metadata");
ca0bf58d 10955
03fdcb9a
MM
10956ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
10957 "Meta objects to scan for prune");
c409e464 10958
03fdcb9a 10959ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW,
5dd92909 10960 "Limit number of restarts in arc_evict_meta");
bc888666 10961
03fdcb9a
MM
10962ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW,
10963 "Meta reclaim strategy");
f6046738 10964
e3570464 10965ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
10966 param_get_int, ZMOD_RW, "Seconds before growing arc size");
c409e464 10967
03fdcb9a
MM
10968ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
10969 "Disable arc_p adapt dampener");
62422785 10970
e3570464 10971ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
10972 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)");
c409e464 10973
03fdcb9a 10974ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
03b60eee
DB
10975 "Percent of pagecache to reclaim arc to");
10976
e3570464 10977ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
10978 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p");
728d6ae9 10979
03fdcb9a
MM
10980ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD,
10981 "Target average block size");
49ddb315 10982
03fdcb9a
MM
10983ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
10984 "Disable compressed arc buffers");
d3c2ae1c 10985
e3570464 10986ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
10987 param_get_int, ZMOD_RW, "Min life of prefetch block in ms");
d4a72f23 10988
e3570464 10989ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
10990 param_set_arc_int, param_get_int, ZMOD_RW,
d4a72f23 10991 "Min life of prescient prefetched block in ms");
bce45ec9 10992
03fdcb9a
MM
10993ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW,
10994 "Max write bytes per interval");
abd8610c 10995
03fdcb9a
MM
10996ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW,
10997 "Extra write bytes during device warmup");
abd8610c 10998
03fdcb9a
MM
10999ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW,
11000 "Number of max device writes to precache");
abd8610c 11001
03fdcb9a
MM
11002ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW,
11003 "Compressed l2arc_headroom multiplier");
3a17a7a9 11004
b7654bd7
GA
11005ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW,
11006 "TRIM ahead L2ARC write size multiplier");
11007
03fdcb9a
MM
11008ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW,
11009 "Seconds between L2ARC writing");
abd8610c 11010
03fdcb9a
MM
11011ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW,
11012 "Min feed interval in milliseconds");
abd8610c 11013
03fdcb9a
MM
11014ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11015 "Skip caching prefetched buffers");
abd8610c 11016
03fdcb9a
MM
11017ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11018 "Turbo L2ARC warmup");
abd8610c 11019
03fdcb9a
MM
11020ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11021 "No reads during writes");
abd8610c 11022
523e1295
AM
11023ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW,
11024 "Percent of ARC size allowed for L2ARC-only headers");
11025
77f6826b
GA
11026ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11027 "Rebuild the L2ARC when importing a pool");
11028
11029ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW,
11030 "Min size in bytes to write rebuild log blocks in L2ARC");
11031
feb3a7ee
GA
11032ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11033 "Cache only MFU data from ARC into L2ARC");
11034
e3570464 11035ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11036 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes");
7e8bddd0 11037
e3570464 11038ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long,
11039 param_get_long, ZMOD_RW, "System free memory target size in bytes");
11f552fa 11040
e3570464 11041ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long,
11042 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc");
25458cbe 11043
e3570464 11044ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11045 param_set_arc_long, param_get_long, ZMOD_RW,
9907cc1c
G
11046 "Percent of ARC meta buffers for dnodes");
11047
03fdcb9a 11048ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW,
25458cbe 11049 "Percentage of excess dnodes to try to unpin");
3442c2a0
MA
11050
11051ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW,
eb02a4c6
RM
11052 "When full, ARC allocation waits for eviction of this % of alloc size");
11053
11054ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW,
11055 "The number of headers to evict per sublist before moving to the next");
02730c33 11056/* END CSTYLED */