]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
module/*.ko: prune .data, global .rodata
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3ec34e55 23 * Copyright (c) 2018, Joyent, Inc.
4f072827 24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
77f6826b
GA
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
e3570464 27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
77f6826b 28 * Copyright (c) 2020, George Amanakis. All rights reserved.
10b3c7f5
MN
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
fc34dfba
AJ
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 *
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
34dc7c2f
BB
35 */
36
34dc7c2f
BB
37/*
38 * DVA-based Adjustable Replacement Cache
39 *
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
44 *
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
55 *
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
61 *
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
68 *
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 70 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
e1cfd73f 73 * have variable sized cache blocks (ranging from 512 bytes to
d3cc8b15 74 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
77 *
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
80 */
81
82/*
83 * The locking model:
84 *
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
2aa34383 88 * uses method 1, while the internal ARC algorithms for
d3cc8b15 89 * adjusting the cache use method 2. We therefore provide two
34dc7c2f 90 * types of locks: 1) the hash table lock array, and 2) the
2aa34383 91 * ARC list locks.
34dc7c2f 92 *
5c839890
BC
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
96 *
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
100 *
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
103 *
2aa34383 104 * Each ARC state also has a mutex which is used to protect the
34dc7c2f 105 * buffer list associated with the state. When attempting to
2aa34383 106 * obtain a hash table lock while holding an ARC list lock you
34dc7c2f
BB
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
b9541d6b 121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
d3c2ae1c
GW
130/*
131 * ARC operation:
132 *
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
141 *
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
2aa34383 146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
a6255b7f 147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
2aa34383
DK
148 *
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
a6255b7f
DQ
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
2aa34383
DK
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
a6255b7f 154 * compressed ARC functionality is disabled, the b_pabd will point to an
2aa34383
DK
155 * uncompressed version of the on-disk data.
156 *
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
d3c2ae1c
GW
164 * "overhead_size" kstat.
165 *
2aa34383
DK
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
d3c2ae1c 173 *
2aa34383
DK
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
178 * buffer).
d3c2ae1c 179 *
2aa34383
DK
180 * arc_buf_hdr_t
181 * +-----------+
182 * | fields |
183 * | common to |
184 * | L1- and |
185 * | L2ARC |
186 * +-----------+
187 * | l2arc_buf_hdr_t
188 * | |
189 * +-----------+
190 * | l1arc_buf_hdr_t
191 * | | arc_buf_t
192 * | b_buf +------------>+-----------+ arc_buf_t
a6255b7f 193 * | b_pabd +-+ |b_next +---->+-----------+
2aa34383
DK
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
199 * compressed | | | |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
203 * data | |
204 * | |
205 * +------+
d3c2ae1c
GW
206 *
207 * When a consumer reads a block, the ARC must first look to see if the
2aa34383
DK
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
a6255b7f
DQ
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
2aa34383
DK
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
d3c2ae1c
GW
217 *
218 * The diagram below shows an example of an uncompressed ARC hdr that is
2aa34383
DK
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
d3c2ae1c
GW
221 *
222 * arc_buf_hdr_t
223 * +-----------+
224 * | |
225 * | |
226 * | |
227 * +-----------+
228 * l2arc_buf_hdr_t| |
229 * | |
230 * +-----------+
231 * l1arc_buf_hdr_t| |
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
a6255b7f 235 * | b_pabd +-+ |---------| |b_next +-->NULL
d3c2ae1c
GW
236 * +-----------+ | | | +---------+
237 * | |b_data +-+ | |
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
240 * | | | |
241 * uncompressed | | | |
242 * data +------+ | |
243 * ^ +->+------+ |
244 * | uncompressed | | |
245 * | data | | |
246 * | +------+ |
247 * +---------------------------------+
248 *
a6255b7f 249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
d3c2ae1c 250 * since the physical block is about to be rewritten. The new data contents
2aa34383
DK
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will bcopy the transformed on-disk block into
a6255b7f 254 * a newly allocated b_pabd. Writes are always done into buffers which have
2aa34383
DK
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
d3c2ae1c 259 *
a6255b7f
DQ
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
2aa34383 262 * that when compressed ARC is enabled that the L2ARC blocks are identical
d3c2ae1c
GW
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
2aa34383 266 * ARC is disabled, then the L2ARC's block must be transformed to look
d3c2ae1c
GW
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
b5256303
TC
269 *
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
e1cfd73f 273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
b5256303
TC
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
283 * cannot be shared.
d3c2ae1c
GW
284 */
285
34dc7c2f
BB
286#include <sys/spa.h>
287#include <sys/zio.h>
d3c2ae1c 288#include <sys/spa_impl.h>
3a17a7a9 289#include <sys/zio_compress.h>
d3c2ae1c 290#include <sys/zio_checksum.h>
34dc7c2f
BB
291#include <sys/zfs_context.h>
292#include <sys/arc.h>
27d96d22 293#include <sys/zfs_refcount.h>
b128c09f 294#include <sys/vdev.h>
9babb374 295#include <sys/vdev_impl.h>
e8b96c60 296#include <sys/dsl_pool.h>
ca0bf58d 297#include <sys/multilist.h>
a6255b7f 298#include <sys/abd.h>
b5256303
TC
299#include <sys/zil.h>
300#include <sys/fm/fs/zfs.h>
34dc7c2f
BB
301#include <sys/callb.h>
302#include <sys/kstat.h>
3ec34e55 303#include <sys/zthr.h>
428870ff 304#include <zfs_fletcher.h>
59ec819a 305#include <sys/arc_impl.h>
e5d1c27e 306#include <sys/trace_zfs.h>
37fb3e43 307#include <sys/aggsum.h>
86706441 308#include <sys/wmsum.h>
3f387973 309#include <cityhash.h>
b7654bd7 310#include <sys/vdev_trim.h>
64e0fe14 311#include <sys/zfs_racct.h>
8a171ccd 312#include <sys/zstd/zstd.h>
34dc7c2f 313
498877ba
MA
314#ifndef _KERNEL
315/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316boolean_t arc_watch = B_FALSE;
317#endif
318
3ec34e55
BL
319/*
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
323 */
3442c2a0 324static zthr_t *arc_reap_zthr;
3ec34e55
BL
325
326/*
327 * This thread's job is to keep arc_size under arc_c, by calling
5dd92909 328 * arc_evict(), which improves arc_is_overflowing().
3ec34e55 329 */
3442c2a0 330static zthr_t *arc_evict_zthr;
3ec34e55 331
3442c2a0
MA
332static kmutex_t arc_evict_lock;
333static boolean_t arc_evict_needed = B_FALSE;
334
335/*
336 * Count of bytes evicted since boot.
337 */
338static uint64_t arc_evict_count;
339
340/*
341 * List of arc_evict_waiter_t's, representing threads waiting for the
342 * arc_evict_count to reach specific values.
343 */
344static list_t arc_evict_waiters;
345
346/*
347 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
348 * the requested amount of data to be evicted. For example, by default for
349 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
350 * Since this is above 100%, it ensures that progress is made towards getting
351 * arc_size under arc_c. Since this is finite, it ensures that allocations
352 * can still happen, even during the potentially long time that arc_size is
353 * more than arc_c.
354 */
18168da7 355static int zfs_arc_eviction_pct = 200;
ca0bf58d 356
e8b96c60 357/*
ca0bf58d
PS
358 * The number of headers to evict in arc_evict_state_impl() before
359 * dropping the sublist lock and evicting from another sublist. A lower
360 * value means we're more likely to evict the "correct" header (i.e. the
361 * oldest header in the arc state), but comes with higher overhead
362 * (i.e. more invocations of arc_evict_state_impl()).
363 */
18168da7 364static int zfs_arc_evict_batch_limit = 10;
ca0bf58d 365
34dc7c2f 366/* number of seconds before growing cache again */
c9c9c1e2 367int arc_grow_retry = 5;
3ec34e55
BL
368
369/*
370 * Minimum time between calls to arc_kmem_reap_soon().
371 */
18168da7 372static const int arc_kmem_cache_reap_retry_ms = 1000;
34dc7c2f 373
a6255b7f 374/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
18168da7 375static int zfs_arc_overflow_shift = 8;
62422785 376
728d6ae9 377/* shift of arc_c for calculating both min and max arc_p */
18168da7 378static int arc_p_min_shift = 4;
728d6ae9 379
d164b209 380/* log2(fraction of arc to reclaim) */
c9c9c1e2 381int arc_shrink_shift = 7;
d164b209 382
03b60eee
DB
383/* percent of pagecache to reclaim arc to */
384#ifdef _KERNEL
c9c9c1e2 385uint_t zfs_arc_pc_percent = 0;
03b60eee
DB
386#endif
387
34dc7c2f 388/*
ca67b33a
MA
389 * log2(fraction of ARC which must be free to allow growing).
390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391 * when reading a new block into the ARC, we will evict an equal-sized block
392 * from the ARC.
393 *
394 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395 * we will still not allow it to grow.
34dc7c2f 396 */
ca67b33a 397int arc_no_grow_shift = 5;
bce45ec9 398
49ddb315 399
ca0bf58d
PS
400/*
401 * minimum lifespan of a prefetch block in clock ticks
402 * (initialized in arc_init())
403 */
d4a72f23
TC
404static int arc_min_prefetch_ms;
405static int arc_min_prescient_prefetch_ms;
ca0bf58d 406
e8b96c60
MA
407/*
408 * If this percent of memory is free, don't throttle.
409 */
410int arc_lotsfree_percent = 10;
411
b128c09f
BB
412/*
413 * The arc has filled available memory and has now warmed up.
414 */
c9c9c1e2 415boolean_t arc_warm;
b128c09f 416
34dc7c2f
BB
417/*
418 * These tunables are for performance analysis.
419 */
c28b2279
BB
420unsigned long zfs_arc_max = 0;
421unsigned long zfs_arc_min = 0;
422unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 423unsigned long zfs_arc_meta_min = 0;
18168da7
AZ
424static unsigned long zfs_arc_dnode_limit = 0;
425static unsigned long zfs_arc_dnode_reduce_percent = 10;
426static int zfs_arc_grow_retry = 0;
427static int zfs_arc_shrink_shift = 0;
428static int zfs_arc_p_min_shift = 0;
ca67b33a 429int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 430
dae3e9ea 431/*
18168da7
AZ
432 * ARC dirty data constraints for arc_tempreserve_space() throttle:
433 * * total dirty data limit
434 * * anon block dirty limit
435 * * each pool's anon allowance
dae3e9ea 436 */
18168da7
AZ
437static const unsigned long zfs_arc_dirty_limit_percent = 50;
438static const unsigned long zfs_arc_anon_limit_percent = 25;
439static const unsigned long zfs_arc_pool_dirty_percent = 20;
dae3e9ea
DB
440
441/*
442 * Enable or disable compressed arc buffers.
443 */
d3c2ae1c
GW
444int zfs_compressed_arc_enabled = B_TRUE;
445
9907cc1c
G
446/*
447 * ARC will evict meta buffers that exceed arc_meta_limit. This
448 * tunable make arc_meta_limit adjustable for different workloads.
449 */
18168da7 450static unsigned long zfs_arc_meta_limit_percent = 75;
9907cc1c
G
451
452/*
453 * Percentage that can be consumed by dnodes of ARC meta buffers.
454 */
18168da7 455static unsigned long zfs_arc_dnode_limit_percent = 10;
9907cc1c 456
bc888666 457/*
18168da7 458 * These tunables are Linux-specific
bc888666 459 */
18168da7
AZ
460static unsigned long zfs_arc_sys_free = 0;
461static int zfs_arc_min_prefetch_ms = 0;
462static int zfs_arc_min_prescient_prefetch_ms = 0;
463static int zfs_arc_p_dampener_disable = 1;
464static int zfs_arc_meta_prune = 10000;
465static int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
466static int zfs_arc_meta_adjust_restarts = 4096;
467static int zfs_arc_lotsfree_percent = 10;
bc888666 468
462217d1
AM
469/*
470 * Number of arc_prune threads
471 */
472static int zfs_arc_prune_task_threads = 1;
473
34dc7c2f 474/* The 6 states: */
13a4027a
MM
475arc_state_t ARC_anon;
476arc_state_t ARC_mru;
477arc_state_t ARC_mru_ghost;
478arc_state_t ARC_mfu;
479arc_state_t ARC_mfu_ghost;
480arc_state_t ARC_l2c_only;
34dc7c2f 481
c9c9c1e2 482arc_stats_t arc_stats = {
34dc7c2f
BB
483 { "hits", KSTAT_DATA_UINT64 },
484 { "misses", KSTAT_DATA_UINT64 },
485 { "demand_data_hits", KSTAT_DATA_UINT64 },
486 { "demand_data_misses", KSTAT_DATA_UINT64 },
487 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
488 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
489 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
490 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
491 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
492 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
493 { "mru_hits", KSTAT_DATA_UINT64 },
494 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
495 { "mfu_hits", KSTAT_DATA_UINT64 },
496 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
497 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f 498 { "mutex_miss", KSTAT_DATA_UINT64 },
0873bb63 499 { "access_skip", KSTAT_DATA_UINT64 },
34dc7c2f 500 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 501 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
502 { "evict_l2_cached", KSTAT_DATA_UINT64 },
503 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
08532162
GA
504 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
505 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
428870ff 506 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 507 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
508 { "hash_elements", KSTAT_DATA_UINT64 },
509 { "hash_elements_max", KSTAT_DATA_UINT64 },
510 { "hash_collisions", KSTAT_DATA_UINT64 },
511 { "hash_chains", KSTAT_DATA_UINT64 },
512 { "hash_chain_max", KSTAT_DATA_UINT64 },
513 { "p", KSTAT_DATA_UINT64 },
514 { "c", KSTAT_DATA_UINT64 },
515 { "c_min", KSTAT_DATA_UINT64 },
516 { "c_max", KSTAT_DATA_UINT64 },
517 { "size", KSTAT_DATA_UINT64 },
d3c2ae1c
GW
518 { "compressed_size", KSTAT_DATA_UINT64 },
519 { "uncompressed_size", KSTAT_DATA_UINT64 },
520 { "overhead_size", KSTAT_DATA_UINT64 },
34dc7c2f 521 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 522 { "data_size", KSTAT_DATA_UINT64 },
500445c0 523 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
524 { "dbuf_size", KSTAT_DATA_UINT64 },
525 { "dnode_size", KSTAT_DATA_UINT64 },
526 { "bonus_size", KSTAT_DATA_UINT64 },
1c2725a1
MM
527#if defined(COMPAT_FREEBSD11)
528 { "other_size", KSTAT_DATA_UINT64 },
529#endif
13be560d 530 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
531 { "anon_evictable_data", KSTAT_DATA_UINT64 },
532 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 533 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
534 { "mru_evictable_data", KSTAT_DATA_UINT64 },
535 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 536 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
537 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
538 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 539 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
540 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
541 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 542 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
543 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
544 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
545 { "l2_hits", KSTAT_DATA_UINT64 },
546 { "l2_misses", KSTAT_DATA_UINT64 },
08532162
GA
547 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
548 { "l2_mru_asize", KSTAT_DATA_UINT64 },
549 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
550 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
551 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
34dc7c2f
BB
552 { "l2_feeds", KSTAT_DATA_UINT64 },
553 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
554 { "l2_read_bytes", KSTAT_DATA_UINT64 },
555 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
556 { "l2_writes_sent", KSTAT_DATA_UINT64 },
557 { "l2_writes_done", KSTAT_DATA_UINT64 },
558 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 559 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
560 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
561 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 562 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f
BB
563 { "l2_free_on_write", KSTAT_DATA_UINT64 },
564 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
565 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
566 { "l2_io_error", KSTAT_DATA_UINT64 },
567 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 568 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 569 { "l2_hdr_size", KSTAT_DATA_UINT64 },
77f6826b 570 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
657fd33b
GA
571 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
572 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
573 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
77f6826b
GA
574 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
575 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
576 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
577 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
578 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
579 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
580 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
581 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
657fd33b 582 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
77f6826b
GA
583 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
584 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
77f6826b 585 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
1834f2d8 586 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
587 { "memory_direct_count", KSTAT_DATA_UINT64 },
588 { "memory_indirect_count", KSTAT_DATA_UINT64 },
70f02287
BB
589 { "memory_all_bytes", KSTAT_DATA_UINT64 },
590 { "memory_free_bytes", KSTAT_DATA_UINT64 },
591 { "memory_available_bytes", KSTAT_DATA_INT64 },
1834f2d8
BB
592 { "arc_no_grow", KSTAT_DATA_UINT64 },
593 { "arc_tempreserve", KSTAT_DATA_UINT64 },
594 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 595 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
596 { "arc_meta_used", KSTAT_DATA_UINT64 },
597 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 598 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 599 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 600 { "arc_meta_min", KSTAT_DATA_UINT64 },
a8b2e306 601 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
7f60329a 602 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
d4a72f23 603 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
11f552fa 604 { "arc_need_free", KSTAT_DATA_UINT64 },
b5256303 605 { "arc_sys_free", KSTAT_DATA_UINT64 },
1dc32a67
MA
606 { "arc_raw_size", KSTAT_DATA_UINT64 },
607 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
85ec5cba 608 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
34dc7c2f
BB
609};
610
c4c162c1
AM
611arc_sums_t arc_sums;
612
34dc7c2f
BB
613#define ARCSTAT_MAX(stat, val) { \
614 uint64_t m; \
615 while ((val) > (m = arc_stats.stat.value.ui64) && \
616 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
617 continue; \
618}
619
34dc7c2f
BB
620/*
621 * We define a macro to allow ARC hits/misses to be easily broken down by
622 * two separate conditions, giving a total of four different subtypes for
623 * each of hits and misses (so eight statistics total).
624 */
625#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
626 if (cond1) { \
627 if (cond2) { \
628 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
629 } else { \
630 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
631 } \
632 } else { \
633 if (cond2) { \
634 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
635 } else { \
636 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
637 } \
638 }
639
77f6826b
GA
640/*
641 * This macro allows us to use kstats as floating averages. Each time we
642 * update this kstat, we first factor it and the update value by
643 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
644 * average. This macro assumes that integer loads and stores are atomic, but
645 * is not safe for multiple writers updating the kstat in parallel (only the
646 * last writer's update will remain).
647 */
648#define ARCSTAT_F_AVG_FACTOR 3
649#define ARCSTAT_F_AVG(stat, value) \
650 do { \
651 uint64_t x = ARCSTAT(stat); \
652 x = x - x / ARCSTAT_F_AVG_FACTOR + \
653 (value) / ARCSTAT_F_AVG_FACTOR; \
654 ARCSTAT(stat) = x; \
77f6826b
GA
655 } while (0)
656
18168da7 657static kstat_t *arc_ksp;
c9c9c1e2 658
34dc7c2f
BB
659/*
660 * There are several ARC variables that are critical to export as kstats --
661 * but we don't want to have to grovel around in the kstat whenever we wish to
662 * manipulate them. For these variables, we therefore define them to be in
663 * terms of the statistic variable. This assures that we are not introducing
664 * the possibility of inconsistency by having shadow copies of the variables,
665 * while still allowing the code to be readable.
666 */
1834f2d8
BB
667#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
668#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 669#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
03fdcb9a
MM
670/* max size for dnodes */
671#define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
ca0bf58d 672#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
3442c2a0 673#define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
34dc7c2f 674
c9c9c1e2
MM
675hrtime_t arc_growtime;
676list_t arc_prune_list;
677kmutex_t arc_prune_mtx;
678taskq_t *arc_prune_taskq;
428870ff 679
34dc7c2f
BB
680#define GHOST_STATE(state) \
681 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
682 (state) == arc_l2c_only)
683
2a432414
GW
684#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
685#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
686#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
687#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
d4a72f23
TC
688#define HDR_PRESCIENT_PREFETCH(hdr) \
689 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
d3c2ae1c
GW
690#define HDR_COMPRESSION_ENABLED(hdr) \
691 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
b9541d6b 692
2a432414
GW
693#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
694#define HDR_L2_READING(hdr) \
d3c2ae1c
GW
695 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
696 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
697#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
698#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
699#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
b5256303
TC
700#define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
701#define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
d3c2ae1c 702#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
34dc7c2f 703
b9541d6b 704#define HDR_ISTYPE_METADATA(hdr) \
d3c2ae1c 705 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
b9541d6b
CW
706#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
707
708#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
709#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
b5256303
TC
710#define HDR_HAS_RABD(hdr) \
711 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
712 (hdr)->b_crypt_hdr.b_rabd != NULL)
713#define HDR_ENCRYPTED(hdr) \
714 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
715#define HDR_AUTHENTICATED(hdr) \
716 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
b9541d6b 717
d3c2ae1c
GW
718/* For storing compression mode in b_flags */
719#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
720
721#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
722 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
723#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
725
726#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
524b4217
DK
727#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
728#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
b5256303 729#define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
d3c2ae1c 730
34dc7c2f
BB
731/*
732 * Other sizes
733 */
734
b5256303
TC
735#define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
736#define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
b9541d6b 737#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
738
739/*
740 * Hash table routines
741 */
742
490c845e 743#define BUF_LOCKS 2048
34dc7c2f
BB
744typedef struct buf_hash_table {
745 uint64_t ht_mask;
746 arc_buf_hdr_t **ht_table;
490c845e 747 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
34dc7c2f
BB
748} buf_hash_table_t;
749
750static buf_hash_table_t buf_hash_table;
751
752#define BUF_HASH_INDEX(spa, dva, birth) \
753 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
490c845e 754#define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
428870ff
BB
755#define HDR_LOCK(hdr) \
756 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
757
758uint64_t zfs_crc64_table[256];
759
760/*
761 * Level 2 ARC
762 */
763
764#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 765#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd 766
3a17a7a9
SK
767/*
768 * If we discover during ARC scan any buffers to be compressed, we boost
769 * our headroom for the next scanning cycle by this percentage multiple.
770 */
771#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
772#define L2ARC_FEED_SECS 1 /* caching interval secs */
773#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 774
4aafab91
G
775/*
776 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
777 * and each of the state has two types: data and metadata.
778 */
779#define L2ARC_FEED_TYPES 4
780
d3cc8b15 781/* L2ARC Performance Tunables */
abd8610c
BB
782unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
783unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
784unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 785unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
786unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
787unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
788int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
789int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 790int l2arc_norw = B_FALSE; /* no reads during writes */
18168da7 791static int l2arc_meta_percent = 33; /* limit on headers size */
34dc7c2f
BB
792
793/*
794 * L2ARC Internals
795 */
34dc7c2f
BB
796static list_t L2ARC_dev_list; /* device list */
797static list_t *l2arc_dev_list; /* device list pointer */
798static kmutex_t l2arc_dev_mtx; /* device list mutex */
799static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
800static list_t L2ARC_free_on_write; /* free after write buf list */
801static list_t *l2arc_free_on_write; /* free after write list ptr */
802static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
803static uint64_t l2arc_ndev; /* number of devices */
804
805typedef struct l2arc_read_callback {
2aa34383 806 arc_buf_hdr_t *l2rcb_hdr; /* read header */
3a17a7a9 807 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 808 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9 809 int l2rcb_flags; /* original flags */
82710e99 810 abd_t *l2rcb_abd; /* temporary buffer */
34dc7c2f
BB
811} l2arc_read_callback_t;
812
34dc7c2f
BB
813typedef struct l2arc_data_free {
814 /* protected by l2arc_free_on_write_mtx */
a6255b7f 815 abd_t *l2df_abd;
34dc7c2f 816 size_t l2df_size;
d3c2ae1c 817 arc_buf_contents_t l2df_type;
34dc7c2f
BB
818 list_node_t l2df_list_node;
819} l2arc_data_free_t;
820
b5256303
TC
821typedef enum arc_fill_flags {
822 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
823 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
824 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
825 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
826 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
827} arc_fill_flags_t;
828
f7de776d
AM
829typedef enum arc_ovf_level {
830 ARC_OVF_NONE, /* ARC within target size. */
831 ARC_OVF_SOME, /* ARC is slightly overflowed. */
832 ARC_OVF_SEVERE /* ARC is severely overflowed. */
833} arc_ovf_level_t;
834
34dc7c2f
BB
835static kmutex_t l2arc_feed_thr_lock;
836static kcondvar_t l2arc_feed_thr_cv;
837static uint8_t l2arc_thread_exit;
838
77f6826b
GA
839static kmutex_t l2arc_rebuild_thr_lock;
840static kcondvar_t l2arc_rebuild_thr_cv;
841
e111c802
MM
842enum arc_hdr_alloc_flags {
843 ARC_HDR_ALLOC_RDATA = 0x1,
844 ARC_HDR_DO_ADAPT = 0x2,
6b88b4b5 845 ARC_HDR_USE_RESERVE = 0x4,
e111c802
MM
846};
847
848
6b88b4b5 849static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *, int);
d3c2ae1c 850static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
6b88b4b5 851static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *, int);
a6255b7f 852static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
d3c2ae1c 853static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
a6255b7f 854static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
b5256303 855static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
e111c802 856static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
2a432414 857static void arc_access(arc_buf_hdr_t *, kmutex_t *);
2a432414
GW
858static void arc_buf_watch(arc_buf_t *);
859
b9541d6b
CW
860static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
861static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
d3c2ae1c
GW
862static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
863static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
b9541d6b 864
2a432414
GW
865static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
866static void l2arc_read_done(zio_t *);
cfd59f90 867static void l2arc_do_free_on_write(void);
08532162
GA
868static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
869 boolean_t state_only);
870
871#define l2arc_hdr_arcstats_increment(hdr) \
872 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
873#define l2arc_hdr_arcstats_decrement(hdr) \
874 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
875#define l2arc_hdr_arcstats_increment_state(hdr) \
876 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
877#define l2arc_hdr_arcstats_decrement_state(hdr) \
878 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
34dc7c2f 879
c9d62d13
GA
880/*
881 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
882 * present on special vdevs are eligibile for caching in L2ARC. If
883 * set to 1, exclude dbufs on special vdevs from being cached to
884 * L2ARC.
885 */
886int l2arc_exclude_special = 0;
887
feb3a7ee
GA
888/*
889 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
890 * metadata and data are cached from ARC into L2ARC.
891 */
18168da7 892static int l2arc_mfuonly = 0;
feb3a7ee 893
b7654bd7
GA
894/*
895 * L2ARC TRIM
896 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
897 * the current write size (l2arc_write_max) we should TRIM if we
898 * have filled the device. It is defined as a percentage of the
899 * write size. If set to 100 we trim twice the space required to
900 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
901 * It also enables TRIM of the whole L2ARC device upon creation or
902 * addition to an existing pool or if the header of the device is
903 * invalid upon importing a pool or onlining a cache device. The
904 * default is 0, which disables TRIM on L2ARC altogether as it can
905 * put significant stress on the underlying storage devices. This
906 * will vary depending of how well the specific device handles
907 * these commands.
908 */
18168da7 909static unsigned long l2arc_trim_ahead = 0;
b7654bd7 910
77f6826b
GA
911/*
912 * Performance tuning of L2ARC persistence:
913 *
914 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
915 * an L2ARC device (either at pool import or later) will attempt
916 * to rebuild L2ARC buffer contents.
917 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
918 * whether log blocks are written to the L2ARC device. If the L2ARC
919 * device is less than 1GB, the amount of data l2arc_evict()
920 * evicts is significant compared to the amount of restored L2ARC
921 * data. In this case do not write log blocks in L2ARC in order
922 * not to waste space.
923 */
18168da7
AZ
924static int l2arc_rebuild_enabled = B_TRUE;
925static unsigned long l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
77f6826b
GA
926
927/* L2ARC persistence rebuild control routines. */
928void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
3eaf76a8 929static void l2arc_dev_rebuild_thread(void *arg);
77f6826b
GA
930static int l2arc_rebuild(l2arc_dev_t *dev);
931
932/* L2ARC persistence read I/O routines. */
933static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
934static int l2arc_log_blk_read(l2arc_dev_t *dev,
935 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
936 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
937 zio_t *this_io, zio_t **next_io);
938static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
939 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
940static void l2arc_log_blk_fetch_abort(zio_t *zio);
941
942/* L2ARC persistence block restoration routines. */
943static void l2arc_log_blk_restore(l2arc_dev_t *dev,
a76e4e67 944 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
77f6826b
GA
945static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
946 l2arc_dev_t *dev);
947
948/* L2ARC persistence write I/O routines. */
77f6826b
GA
949static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
950 l2arc_write_callback_t *cb);
951
dd4bc569 952/* L2ARC persistence auxiliary routines. */
77f6826b
GA
953boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
954 const l2arc_log_blkptr_t *lbp);
955static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
956 const arc_buf_hdr_t *ab);
957boolean_t l2arc_range_check_overlap(uint64_t bottom,
958 uint64_t top, uint64_t check);
959static void l2arc_blk_fetch_done(zio_t *zio);
960static inline uint64_t
961 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
37fb3e43
PD
962
963/*
964 * We use Cityhash for this. It's fast, and has good hash properties without
965 * requiring any large static buffers.
966 */
34dc7c2f 967static uint64_t
d164b209 968buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 969{
37fb3e43 970 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
34dc7c2f
BB
971}
972
d3c2ae1c
GW
973#define HDR_EMPTY(hdr) \
974 ((hdr)->b_dva.dva_word[0] == 0 && \
975 (hdr)->b_dva.dva_word[1] == 0)
34dc7c2f 976
ca6c7a94
BB
977#define HDR_EMPTY_OR_LOCKED(hdr) \
978 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
979
d3c2ae1c
GW
980#define HDR_EQUAL(spa, dva, birth, hdr) \
981 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
982 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
983 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
34dc7c2f 984
428870ff
BB
985static void
986buf_discard_identity(arc_buf_hdr_t *hdr)
987{
988 hdr->b_dva.dva_word[0] = 0;
989 hdr->b_dva.dva_word[1] = 0;
990 hdr->b_birth = 0;
428870ff
BB
991}
992
34dc7c2f 993static arc_buf_hdr_t *
9b67f605 994buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 995{
9b67f605
MA
996 const dva_t *dva = BP_IDENTITY(bp);
997 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
998 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
999 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1000 arc_buf_hdr_t *hdr;
34dc7c2f
BB
1001
1002 mutex_enter(hash_lock);
2a432414
GW
1003 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1004 hdr = hdr->b_hash_next) {
d3c2ae1c 1005 if (HDR_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 1006 *lockp = hash_lock;
2a432414 1007 return (hdr);
34dc7c2f
BB
1008 }
1009 }
1010 mutex_exit(hash_lock);
1011 *lockp = NULL;
1012 return (NULL);
1013}
1014
1015/*
1016 * Insert an entry into the hash table. If there is already an element
1017 * equal to elem in the hash table, then the already existing element
1018 * will be returned and the new element will not be inserted.
1019 * Otherwise returns NULL.
b9541d6b 1020 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
1021 */
1022static arc_buf_hdr_t *
2a432414 1023buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 1024{
2a432414 1025 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 1026 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1027 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
1028 uint32_t i;
1029
2a432414
GW
1030 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1031 ASSERT(hdr->b_birth != 0);
1032 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
1033
1034 if (lockp != NULL) {
1035 *lockp = hash_lock;
1036 mutex_enter(hash_lock);
1037 } else {
1038 ASSERT(MUTEX_HELD(hash_lock));
1039 }
1040
2a432414
GW
1041 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1042 fhdr = fhdr->b_hash_next, i++) {
d3c2ae1c 1043 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
2a432414 1044 return (fhdr);
34dc7c2f
BB
1045 }
1046
2a432414
GW
1047 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1048 buf_hash_table.ht_table[idx] = hdr;
d3c2ae1c 1049 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1050
1051 /* collect some hash table performance data */
1052 if (i > 0) {
1053 ARCSTAT_BUMP(arcstat_hash_collisions);
1054 if (i == 1)
1055 ARCSTAT_BUMP(arcstat_hash_chains);
1056
1057 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1058 }
c4c162c1
AM
1059 uint64_t he = atomic_inc_64_nv(
1060 &arc_stats.arcstat_hash_elements.value.ui64);
1061 ARCSTAT_MAX(arcstat_hash_elements_max, he);
34dc7c2f
BB
1062
1063 return (NULL);
1064}
1065
1066static void
2a432414 1067buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 1068{
2a432414
GW
1069 arc_buf_hdr_t *fhdr, **hdrp;
1070 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
1071
1072 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 1073 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 1074
2a432414
GW
1075 hdrp = &buf_hash_table.ht_table[idx];
1076 while ((fhdr = *hdrp) != hdr) {
d3c2ae1c 1077 ASSERT3P(fhdr, !=, NULL);
2a432414 1078 hdrp = &fhdr->b_hash_next;
34dc7c2f 1079 }
2a432414
GW
1080 *hdrp = hdr->b_hash_next;
1081 hdr->b_hash_next = NULL;
d3c2ae1c 1082 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1083
1084 /* collect some hash table performance data */
c4c162c1 1085 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
34dc7c2f
BB
1086
1087 if (buf_hash_table.ht_table[idx] &&
1088 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1089 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1090}
1091
1092/*
1093 * Global data structures and functions for the buf kmem cache.
1094 */
b5256303 1095
b9541d6b 1096static kmem_cache_t *hdr_full_cache;
b5256303 1097static kmem_cache_t *hdr_full_crypt_cache;
b9541d6b 1098static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
1099static kmem_cache_t *buf_cache;
1100
1101static void
1102buf_fini(void)
1103{
93ce2b4c 1104#if defined(_KERNEL)
d1d7e268
MK
1105 /*
1106 * Large allocations which do not require contiguous pages
1107 * should be using vmem_free() in the linux kernel\
1108 */
00b46022
BB
1109 vmem_free(buf_hash_table.ht_table,
1110 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1111#else
34dc7c2f
BB
1112 kmem_free(buf_hash_table.ht_table,
1113 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 1114#endif
14e4e3cb 1115 for (int i = 0; i < BUF_LOCKS; i++)
490c845e 1116 mutex_destroy(BUF_HASH_LOCK(i));
b9541d6b 1117 kmem_cache_destroy(hdr_full_cache);
b5256303 1118 kmem_cache_destroy(hdr_full_crypt_cache);
b9541d6b 1119 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
1120 kmem_cache_destroy(buf_cache);
1121}
1122
1123/*
1124 * Constructor callback - called when the cache is empty
1125 * and a new buf is requested.
1126 */
34dc7c2f 1127static int
b9541d6b
CW
1128hdr_full_cons(void *vbuf, void *unused, int kmflag)
1129{
14e4e3cb 1130 (void) unused, (void) kmflag;
b9541d6b
CW
1131 arc_buf_hdr_t *hdr = vbuf;
1132
1133 bzero(hdr, HDR_FULL_SIZE);
ae76f45c 1134 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
b9541d6b 1135 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
424fd7c3 1136 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
b9541d6b
CW
1137 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1138 list_link_init(&hdr->b_l1hdr.b_arc_node);
1139 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1140 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1141 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1142
1143 return (0);
1144}
1145
b5256303
TC
1146static int
1147hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1148{
14e4e3cb 1149 (void) unused;
b5256303
TC
1150 arc_buf_hdr_t *hdr = vbuf;
1151
1152 hdr_full_cons(vbuf, unused, kmflag);
1153 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1154 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1155
1156 return (0);
1157}
1158
b9541d6b
CW
1159static int
1160hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1161{
14e4e3cb 1162 (void) unused, (void) kmflag;
2a432414
GW
1163 arc_buf_hdr_t *hdr = vbuf;
1164
b9541d6b
CW
1165 bzero(hdr, HDR_L2ONLY_SIZE);
1166 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1167
34dc7c2f
BB
1168 return (0);
1169}
1170
b128c09f
BB
1171static int
1172buf_cons(void *vbuf, void *unused, int kmflag)
1173{
14e4e3cb 1174 (void) unused, (void) kmflag;
b128c09f
BB
1175 arc_buf_t *buf = vbuf;
1176
1177 bzero(buf, sizeof (arc_buf_t));
428870ff 1178 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1179 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1180
b128c09f
BB
1181 return (0);
1182}
1183
34dc7c2f
BB
1184/*
1185 * Destructor callback - called when a cached buf is
1186 * no longer required.
1187 */
34dc7c2f 1188static void
b9541d6b 1189hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1190{
14e4e3cb 1191 (void) unused;
2a432414 1192 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1193
d3c2ae1c 1194 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1195 cv_destroy(&hdr->b_l1hdr.b_cv);
424fd7c3 1196 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
b9541d6b 1197 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1198 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1199 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1200}
1201
b5256303
TC
1202static void
1203hdr_full_crypt_dest(void *vbuf, void *unused)
1204{
14e4e3cb 1205 (void) unused;
b5256303
TC
1206 arc_buf_hdr_t *hdr = vbuf;
1207
1208 hdr_full_dest(vbuf, unused);
1209 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1210}
1211
b9541d6b
CW
1212static void
1213hdr_l2only_dest(void *vbuf, void *unused)
1214{
14e4e3cb
AZ
1215 (void) unused;
1216 arc_buf_hdr_t *hdr = vbuf;
b9541d6b 1217
d3c2ae1c 1218 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1219 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1220}
1221
b128c09f
BB
1222static void
1223buf_dest(void *vbuf, void *unused)
1224{
14e4e3cb 1225 (void) unused;
b128c09f
BB
1226 arc_buf_t *buf = vbuf;
1227
428870ff 1228 mutex_destroy(&buf->b_evict_lock);
d164b209 1229 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1230}
1231
34dc7c2f
BB
1232static void
1233buf_init(void)
1234{
2db28197 1235 uint64_t *ct = NULL;
34dc7c2f
BB
1236 uint64_t hsize = 1ULL << 12;
1237 int i, j;
1238
1239 /*
1240 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1241 * with an average block size of zfs_arc_average_blocksize (default 8K).
1242 * By default, the table will take up
1243 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1244 */
9edb3695 1245 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
34dc7c2f
BB
1246 hsize <<= 1;
1247retry:
1248 buf_hash_table.ht_mask = hsize - 1;
93ce2b4c 1249#if defined(_KERNEL)
d1d7e268
MK
1250 /*
1251 * Large allocations which do not require contiguous pages
1252 * should be using vmem_alloc() in the linux kernel
1253 */
00b46022
BB
1254 buf_hash_table.ht_table =
1255 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1256#else
34dc7c2f
BB
1257 buf_hash_table.ht_table =
1258 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1259#endif
34dc7c2f
BB
1260 if (buf_hash_table.ht_table == NULL) {
1261 ASSERT(hsize > (1ULL << 8));
1262 hsize >>= 1;
1263 goto retry;
1264 }
1265
b9541d6b 1266 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
026e529c 1267 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
b5256303
TC
1268 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1269 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
026e529c 1270 NULL, NULL, NULL, 0);
b9541d6b 1271 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
026e529c 1272 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
b9541d6b 1273 NULL, NULL, 0);
34dc7c2f 1274 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1275 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1276
1277 for (i = 0; i < 256; i++)
1278 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1279 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1280
490c845e
AM
1281 for (i = 0; i < BUF_LOCKS; i++)
1282 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1283}
1284
d3c2ae1c 1285#define ARC_MINTIME (hz>>4) /* 62 ms */
ca0bf58d 1286
2aa34383
DK
1287/*
1288 * This is the size that the buf occupies in memory. If the buf is compressed,
1289 * it will correspond to the compressed size. You should use this method of
1290 * getting the buf size unless you explicitly need the logical size.
1291 */
1292uint64_t
1293arc_buf_size(arc_buf_t *buf)
1294{
1295 return (ARC_BUF_COMPRESSED(buf) ?
1296 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1297}
1298
1299uint64_t
1300arc_buf_lsize(arc_buf_t *buf)
1301{
1302 return (HDR_GET_LSIZE(buf->b_hdr));
1303}
1304
b5256303
TC
1305/*
1306 * This function will return B_TRUE if the buffer is encrypted in memory.
1307 * This buffer can be decrypted by calling arc_untransform().
1308 */
1309boolean_t
1310arc_is_encrypted(arc_buf_t *buf)
1311{
1312 return (ARC_BUF_ENCRYPTED(buf) != 0);
1313}
1314
1315/*
1316 * Returns B_TRUE if the buffer represents data that has not had its MAC
1317 * verified yet.
1318 */
1319boolean_t
1320arc_is_unauthenticated(arc_buf_t *buf)
1321{
1322 return (HDR_NOAUTH(buf->b_hdr) != 0);
1323}
1324
1325void
1326arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1327 uint8_t *iv, uint8_t *mac)
1328{
1329 arc_buf_hdr_t *hdr = buf->b_hdr;
1330
1331 ASSERT(HDR_PROTECTED(hdr));
1332
1333 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1334 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1335 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1336 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1337 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1338}
1339
1340/*
1341 * Indicates how this buffer is compressed in memory. If it is not compressed
1342 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1343 * arc_untransform() as long as it is also unencrypted.
1344 */
2aa34383
DK
1345enum zio_compress
1346arc_get_compression(arc_buf_t *buf)
1347{
1348 return (ARC_BUF_COMPRESSED(buf) ?
1349 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1350}
1351
b5256303
TC
1352/*
1353 * Return the compression algorithm used to store this data in the ARC. If ARC
1354 * compression is enabled or this is an encrypted block, this will be the same
1355 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1356 */
1357static inline enum zio_compress
1358arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1359{
1360 return (HDR_COMPRESSION_ENABLED(hdr) ?
1361 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1362}
1363
10b3c7f5
MN
1364uint8_t
1365arc_get_complevel(arc_buf_t *buf)
1366{
1367 return (buf->b_hdr->b_complevel);
1368}
1369
d3c2ae1c
GW
1370static inline boolean_t
1371arc_buf_is_shared(arc_buf_t *buf)
1372{
1373 boolean_t shared = (buf->b_data != NULL &&
a6255b7f
DQ
1374 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1375 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1376 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
d3c2ae1c 1377 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
2aa34383
DK
1378 IMPLY(shared, ARC_BUF_SHARED(buf));
1379 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
524b4217
DK
1380
1381 /*
1382 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1383 * already being shared" requirement prevents us from doing that.
1384 */
1385
d3c2ae1c
GW
1386 return (shared);
1387}
ca0bf58d 1388
a7004725
DK
1389/*
1390 * Free the checksum associated with this header. If there is no checksum, this
1391 * is a no-op.
1392 */
d3c2ae1c
GW
1393static inline void
1394arc_cksum_free(arc_buf_hdr_t *hdr)
1395{
1396 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303 1397
d3c2ae1c
GW
1398 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1399 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1400 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1401 hdr->b_l1hdr.b_freeze_cksum = NULL;
b9541d6b 1402 }
d3c2ae1c 1403 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
b9541d6b
CW
1404}
1405
a7004725
DK
1406/*
1407 * Return true iff at least one of the bufs on hdr is not compressed.
b5256303 1408 * Encrypted buffers count as compressed.
a7004725
DK
1409 */
1410static boolean_t
1411arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1412{
ca6c7a94 1413 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
149ce888 1414
a7004725
DK
1415 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1416 if (!ARC_BUF_COMPRESSED(b)) {
1417 return (B_TRUE);
1418 }
1419 }
1420 return (B_FALSE);
1421}
1422
1423
524b4217
DK
1424/*
1425 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1426 * matches the checksum that is stored in the hdr. If there is no checksum,
1427 * or if the buf is compressed, this is a no-op.
1428 */
34dc7c2f
BB
1429static void
1430arc_cksum_verify(arc_buf_t *buf)
1431{
d3c2ae1c 1432 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f
BB
1433 zio_cksum_t zc;
1434
1435 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1436 return;
1437
149ce888 1438 if (ARC_BUF_COMPRESSED(buf))
524b4217 1439 return;
524b4217 1440
d3c2ae1c
GW
1441 ASSERT(HDR_HAS_L1HDR(hdr));
1442
1443 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
149ce888 1444
d3c2ae1c
GW
1445 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1446 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1447 return;
1448 }
2aa34383 1449
3c67d83a 1450 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
d3c2ae1c 1451 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
34dc7c2f 1452 panic("buffer modified while frozen!");
d3c2ae1c 1453 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1454}
1455
b5256303
TC
1456/*
1457 * This function makes the assumption that data stored in the L2ARC
1458 * will be transformed exactly as it is in the main pool. Because of
1459 * this we can verify the checksum against the reading process's bp.
1460 */
d3c2ae1c
GW
1461static boolean_t
1462arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
34dc7c2f 1463{
d3c2ae1c
GW
1464 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1465 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
34dc7c2f 1466
d3c2ae1c
GW
1467 /*
1468 * Block pointers always store the checksum for the logical data.
1469 * If the block pointer has the gang bit set, then the checksum
1470 * it represents is for the reconstituted data and not for an
1471 * individual gang member. The zio pipeline, however, must be able to
1472 * determine the checksum of each of the gang constituents so it
1473 * treats the checksum comparison differently than what we need
1474 * for l2arc blocks. This prevents us from using the
1475 * zio_checksum_error() interface directly. Instead we must call the
1476 * zio_checksum_error_impl() so that we can ensure the checksum is
1477 * generated using the correct checksum algorithm and accounts for the
1478 * logical I/O size and not just a gang fragment.
1479 */
b5256303 1480 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
a6255b7f 1481 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
d3c2ae1c 1482 zio->io_offset, NULL) == 0);
34dc7c2f
BB
1483}
1484
524b4217
DK
1485/*
1486 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1487 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1488 * isn't modified later on. If buf is compressed or there is already a checksum
1489 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1490 */
34dc7c2f 1491static void
d3c2ae1c 1492arc_cksum_compute(arc_buf_t *buf)
34dc7c2f 1493{
d3c2ae1c
GW
1494 arc_buf_hdr_t *hdr = buf->b_hdr;
1495
1496 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
34dc7c2f
BB
1497 return;
1498
d3c2ae1c 1499 ASSERT(HDR_HAS_L1HDR(hdr));
2aa34383 1500
b9541d6b 1501 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
149ce888 1502 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 1503 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1504 return;
1505 }
2aa34383 1506
b5256303 1507 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2aa34383 1508 ASSERT(!ARC_BUF_COMPRESSED(buf));
d3c2ae1c
GW
1509 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1510 KM_SLEEP);
3c67d83a 1511 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
d3c2ae1c
GW
1512 hdr->b_l1hdr.b_freeze_cksum);
1513 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1514 arc_buf_watch(buf);
1515}
1516
1517#ifndef _KERNEL
1518void
1519arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1520{
14e4e3cb 1521 (void) sig, (void) unused;
02730c33 1522 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
498877ba
MA
1523}
1524#endif
1525
498877ba
MA
1526static void
1527arc_buf_unwatch(arc_buf_t *buf)
1528{
1529#ifndef _KERNEL
1530 if (arc_watch) {
a7004725 1531 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
498877ba
MA
1532 PROT_READ | PROT_WRITE));
1533 }
14e4e3cb
AZ
1534#else
1535 (void) buf;
498877ba
MA
1536#endif
1537}
1538
498877ba
MA
1539static void
1540arc_buf_watch(arc_buf_t *buf)
1541{
1542#ifndef _KERNEL
1543 if (arc_watch)
2aa34383 1544 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
d3c2ae1c 1545 PROT_READ));
14e4e3cb
AZ
1546#else
1547 (void) buf;
498877ba 1548#endif
34dc7c2f
BB
1549}
1550
b9541d6b
CW
1551static arc_buf_contents_t
1552arc_buf_type(arc_buf_hdr_t *hdr)
1553{
d3c2ae1c 1554 arc_buf_contents_t type;
b9541d6b 1555 if (HDR_ISTYPE_METADATA(hdr)) {
d3c2ae1c 1556 type = ARC_BUFC_METADATA;
b9541d6b 1557 } else {
d3c2ae1c 1558 type = ARC_BUFC_DATA;
b9541d6b 1559 }
d3c2ae1c
GW
1560 VERIFY3U(hdr->b_type, ==, type);
1561 return (type);
b9541d6b
CW
1562}
1563
2aa34383
DK
1564boolean_t
1565arc_is_metadata(arc_buf_t *buf)
1566{
1567 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1568}
1569
b9541d6b
CW
1570static uint32_t
1571arc_bufc_to_flags(arc_buf_contents_t type)
1572{
1573 switch (type) {
1574 case ARC_BUFC_DATA:
1575 /* metadata field is 0 if buffer contains normal data */
1576 return (0);
1577 case ARC_BUFC_METADATA:
1578 return (ARC_FLAG_BUFC_METADATA);
1579 default:
1580 break;
1581 }
1582 panic("undefined ARC buffer type!");
1583 return ((uint32_t)-1);
1584}
1585
34dc7c2f
BB
1586void
1587arc_buf_thaw(arc_buf_t *buf)
1588{
d3c2ae1c
GW
1589 arc_buf_hdr_t *hdr = buf->b_hdr;
1590
2aa34383
DK
1591 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1592 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1593
524b4217 1594 arc_cksum_verify(buf);
34dc7c2f 1595
2aa34383 1596 /*
149ce888 1597 * Compressed buffers do not manipulate the b_freeze_cksum.
2aa34383 1598 */
149ce888 1599 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1600 return;
2aa34383 1601
d3c2ae1c
GW
1602 ASSERT(HDR_HAS_L1HDR(hdr));
1603 arc_cksum_free(hdr);
498877ba 1604 arc_buf_unwatch(buf);
34dc7c2f
BB
1605}
1606
1607void
1608arc_buf_freeze(arc_buf_t *buf)
1609{
1610 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1611 return;
1612
149ce888 1613 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1614 return;
428870ff 1615
149ce888 1616 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
d3c2ae1c 1617 arc_cksum_compute(buf);
34dc7c2f
BB
1618}
1619
d3c2ae1c
GW
1620/*
1621 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1622 * the following functions should be used to ensure that the flags are
1623 * updated in a thread-safe way. When manipulating the flags either
1624 * the hash_lock must be held or the hdr must be undiscoverable. This
1625 * ensures that we're not racing with any other threads when updating
1626 * the flags.
1627 */
1628static inline void
1629arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1630{
ca6c7a94 1631 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1632 hdr->b_flags |= flags;
1633}
1634
1635static inline void
1636arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1637{
ca6c7a94 1638 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1639 hdr->b_flags &= ~flags;
1640}
1641
1642/*
1643 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1644 * done in a special way since we have to clear and set bits
1645 * at the same time. Consumers that wish to set the compression bits
1646 * must use this function to ensure that the flags are updated in
1647 * thread-safe manner.
1648 */
1649static void
1650arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1651{
ca6c7a94 1652 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
1653
1654 /*
1655 * Holes and embedded blocks will always have a psize = 0 so
1656 * we ignore the compression of the blkptr and set the
d3c2ae1c
GW
1657 * want to uncompress them. Mark them as uncompressed.
1658 */
1659 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1660 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c 1661 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
d3c2ae1c
GW
1662 } else {
1663 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c
GW
1664 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1665 }
b5256303
TC
1666
1667 HDR_SET_COMPRESS(hdr, cmp);
1668 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
d3c2ae1c
GW
1669}
1670
524b4217
DK
1671/*
1672 * Looks for another buf on the same hdr which has the data decompressed, copies
1673 * from it, and returns true. If no such buf exists, returns false.
1674 */
1675static boolean_t
1676arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1677{
1678 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217
DK
1679 boolean_t copied = B_FALSE;
1680
1681 ASSERT(HDR_HAS_L1HDR(hdr));
1682 ASSERT3P(buf->b_data, !=, NULL);
1683 ASSERT(!ARC_BUF_COMPRESSED(buf));
1684
a7004725 1685 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
524b4217
DK
1686 from = from->b_next) {
1687 /* can't use our own data buffer */
1688 if (from == buf) {
1689 continue;
1690 }
1691
1692 if (!ARC_BUF_COMPRESSED(from)) {
1693 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1694 copied = B_TRUE;
1695 break;
1696 }
1697 }
1698
1699 /*
1700 * There were no decompressed bufs, so there should not be a
1701 * checksum on the hdr either.
1702 */
46db9d61
BB
1703 if (zfs_flags & ZFS_DEBUG_MODIFY)
1704 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
524b4217
DK
1705
1706 return (copied);
1707}
1708
77f6826b
GA
1709/*
1710 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1711 * This is used during l2arc reconstruction to make empty ARC buffers
1712 * which circumvent the regular disk->arc->l2arc path and instead come
1713 * into being in the reverse order, i.e. l2arc->arc.
1714 */
65c7cc49 1715static arc_buf_hdr_t *
77f6826b
GA
1716arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1717 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
10b3c7f5 1718 enum zio_compress compress, uint8_t complevel, boolean_t protected,
08532162 1719 boolean_t prefetch, arc_state_type_t arcs_state)
77f6826b
GA
1720{
1721 arc_buf_hdr_t *hdr;
1722
1723 ASSERT(size != 0);
1724 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1725 hdr->b_birth = birth;
1726 hdr->b_type = type;
1727 hdr->b_flags = 0;
1728 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1729 HDR_SET_LSIZE(hdr, size);
1730 HDR_SET_PSIZE(hdr, psize);
1731 arc_hdr_set_compress(hdr, compress);
10b3c7f5 1732 hdr->b_complevel = complevel;
77f6826b
GA
1733 if (protected)
1734 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1735 if (prefetch)
1736 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1737 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1738
1739 hdr->b_dva = dva;
1740
1741 hdr->b_l2hdr.b_dev = dev;
1742 hdr->b_l2hdr.b_daddr = daddr;
08532162 1743 hdr->b_l2hdr.b_arcs_state = arcs_state;
77f6826b
GA
1744
1745 return (hdr);
1746}
1747
b5256303
TC
1748/*
1749 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1750 */
1751static uint64_t
1752arc_hdr_size(arc_buf_hdr_t *hdr)
1753{
1754 uint64_t size;
1755
1756 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1757 HDR_GET_PSIZE(hdr) > 0) {
1758 size = HDR_GET_PSIZE(hdr);
1759 } else {
1760 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1761 size = HDR_GET_LSIZE(hdr);
1762 }
1763 return (size);
1764}
1765
1766static int
1767arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1768{
1769 int ret;
1770 uint64_t csize;
1771 uint64_t lsize = HDR_GET_LSIZE(hdr);
1772 uint64_t psize = HDR_GET_PSIZE(hdr);
1773 void *tmpbuf = NULL;
1774 abd_t *abd = hdr->b_l1hdr.b_pabd;
1775
ca6c7a94 1776 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1777 ASSERT(HDR_AUTHENTICATED(hdr));
1778 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1779
1780 /*
1781 * The MAC is calculated on the compressed data that is stored on disk.
1782 * However, if compressed arc is disabled we will only have the
1783 * decompressed data available to us now. Compress it into a temporary
1784 * abd so we can verify the MAC. The performance overhead of this will
1785 * be relatively low, since most objects in an encrypted objset will
1786 * be encrypted (instead of authenticated) anyway.
1787 */
1788 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1789 !HDR_COMPRESSION_ENABLED(hdr)) {
1790 tmpbuf = zio_buf_alloc(lsize);
1791 abd = abd_get_from_buf(tmpbuf, lsize);
1792 abd_take_ownership_of_buf(abd, B_TRUE);
b5256303 1793 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
10b3c7f5 1794 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
b5256303
TC
1795 ASSERT3U(csize, <=, psize);
1796 abd_zero_off(abd, csize, psize - csize);
1797 }
1798
1799 /*
1800 * Authentication is best effort. We authenticate whenever the key is
1801 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1802 */
1803 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1804 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1805 ASSERT3U(lsize, ==, psize);
1806 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1807 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1808 } else {
1809 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1810 hdr->b_crypt_hdr.b_mac);
1811 }
1812
1813 if (ret == 0)
1814 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1815 else if (ret != ENOENT)
1816 goto error;
1817
1818 if (tmpbuf != NULL)
1819 abd_free(abd);
1820
1821 return (0);
1822
1823error:
1824 if (tmpbuf != NULL)
1825 abd_free(abd);
1826
1827 return (ret);
1828}
1829
1830/*
1831 * This function will take a header that only has raw encrypted data in
1832 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1833 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1834 * also decompress the data.
1835 */
1836static int
be9a5c35 1837arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
b5256303
TC
1838{
1839 int ret;
b5256303
TC
1840 abd_t *cabd = NULL;
1841 void *tmp = NULL;
1842 boolean_t no_crypt = B_FALSE;
1843 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1844
ca6c7a94 1845 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1846 ASSERT(HDR_ENCRYPTED(hdr));
1847
e111c802 1848 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
b5256303 1849
be9a5c35
TC
1850 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1851 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1852 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
b5256303
TC
1853 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1854 if (ret != 0)
1855 goto error;
1856
1857 if (no_crypt) {
1858 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1859 HDR_GET_PSIZE(hdr));
1860 }
1861
1862 /*
1863 * If this header has disabled arc compression but the b_pabd is
1864 * compressed after decrypting it, we need to decompress the newly
1865 * decrypted data.
1866 */
1867 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1868 !HDR_COMPRESSION_ENABLED(hdr)) {
1869 /*
1870 * We want to make sure that we are correctly honoring the
1871 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1872 * and then loan a buffer from it, rather than allocating a
1873 * linear buffer and wrapping it in an abd later.
1874 */
6b88b4b5
AM
1875 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
1876 ARC_HDR_DO_ADAPT);
b5256303
TC
1877 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1878
1879 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1880 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
10b3c7f5 1881 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
b5256303
TC
1882 if (ret != 0) {
1883 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1884 goto error;
1885 }
1886
1887 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1888 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1889 arc_hdr_size(hdr), hdr);
1890 hdr->b_l1hdr.b_pabd = cabd;
1891 }
1892
b5256303
TC
1893 return (0);
1894
1895error:
1896 arc_hdr_free_abd(hdr, B_FALSE);
b5256303
TC
1897 if (cabd != NULL)
1898 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1899
1900 return (ret);
1901}
1902
1903/*
1904 * This function is called during arc_buf_fill() to prepare the header's
1905 * abd plaintext pointer for use. This involves authenticated protected
1906 * data and decrypting encrypted data into the plaintext abd.
1907 */
1908static int
1909arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
be9a5c35 1910 const zbookmark_phys_t *zb, boolean_t noauth)
b5256303
TC
1911{
1912 int ret;
1913
1914 ASSERT(HDR_PROTECTED(hdr));
1915
1916 if (hash_lock != NULL)
1917 mutex_enter(hash_lock);
1918
1919 if (HDR_NOAUTH(hdr) && !noauth) {
1920 /*
1921 * The caller requested authenticated data but our data has
1922 * not been authenticated yet. Verify the MAC now if we can.
1923 */
be9a5c35 1924 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
b5256303
TC
1925 if (ret != 0)
1926 goto error;
1927 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1928 /*
1929 * If we only have the encrypted version of the data, but the
1930 * unencrypted version was requested we take this opportunity
1931 * to store the decrypted version in the header for future use.
1932 */
be9a5c35 1933 ret = arc_hdr_decrypt(hdr, spa, zb);
b5256303
TC
1934 if (ret != 0)
1935 goto error;
1936 }
1937
1938 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1939
1940 if (hash_lock != NULL)
1941 mutex_exit(hash_lock);
1942
1943 return (0);
1944
1945error:
1946 if (hash_lock != NULL)
1947 mutex_exit(hash_lock);
1948
1949 return (ret);
1950}
1951
1952/*
1953 * This function is used by the dbuf code to decrypt bonus buffers in place.
1954 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1955 * block, so we use the hash lock here to protect against concurrent calls to
1956 * arc_buf_fill().
1957 */
1958static void
14e4e3cb 1959arc_buf_untransform_in_place(arc_buf_t *buf)
b5256303
TC
1960{
1961 arc_buf_hdr_t *hdr = buf->b_hdr;
1962
1963 ASSERT(HDR_ENCRYPTED(hdr));
1964 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
ca6c7a94 1965 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
b5256303
TC
1966 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1967
1968 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1969 arc_buf_size(buf));
1970 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
1971 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1972 hdr->b_crypt_hdr.b_ebufcnt -= 1;
1973}
1974
524b4217
DK
1975/*
1976 * Given a buf that has a data buffer attached to it, this function will
1977 * efficiently fill the buf with data of the specified compression setting from
1978 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1979 * are already sharing a data buf, no copy is performed.
1980 *
1981 * If the buf is marked as compressed but uncompressed data was requested, this
1982 * will allocate a new data buffer for the buf, remove that flag, and fill the
1983 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1984 * uncompressed data, and (since we haven't added support for it yet) if you
1985 * want compressed data your buf must already be marked as compressed and have
1986 * the correct-sized data buffer.
1987 */
1988static int
be9a5c35
TC
1989arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
1990 arc_fill_flags_t flags)
d3c2ae1c 1991{
b5256303 1992 int error = 0;
d3c2ae1c 1993 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
1994 boolean_t hdr_compressed =
1995 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
1996 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
1997 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
d3c2ae1c 1998 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
b5256303 1999 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
d3c2ae1c 2000
524b4217 2001 ASSERT3P(buf->b_data, !=, NULL);
b5256303 2002 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
524b4217 2003 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
b5256303
TC
2004 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2005 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2006 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2007 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2008
2009 /*
2010 * If the caller wanted encrypted data we just need to copy it from
2011 * b_rabd and potentially byteswap it. We won't be able to do any
2012 * further transforms on it.
2013 */
2014 if (encrypted) {
2015 ASSERT(HDR_HAS_RABD(hdr));
2016 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2017 HDR_GET_PSIZE(hdr));
2018 goto byteswap;
2019 }
2020
2021 /*
e1cfd73f 2022 * Adjust encrypted and authenticated headers to accommodate
69830602
TC
2023 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2024 * allowed to fail decryption due to keys not being loaded
2025 * without being marked as an IO error.
b5256303
TC
2026 */
2027 if (HDR_PROTECTED(hdr)) {
2028 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
be9a5c35 2029 zb, !!(flags & ARC_FILL_NOAUTH));
69830602
TC
2030 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2031 return (error);
2032 } else if (error != 0) {
e7504d7a
TC
2033 if (hash_lock != NULL)
2034 mutex_enter(hash_lock);
2c24b5b1 2035 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2036 if (hash_lock != NULL)
2037 mutex_exit(hash_lock);
b5256303 2038 return (error);
2c24b5b1 2039 }
b5256303
TC
2040 }
2041
2042 /*
2043 * There is a special case here for dnode blocks which are
2044 * decrypting their bonus buffers. These blocks may request to
2045 * be decrypted in-place. This is necessary because there may
2046 * be many dnodes pointing into this buffer and there is
2047 * currently no method to synchronize replacing the backing
2048 * b_data buffer and updating all of the pointers. Here we use
2049 * the hash lock to ensure there are no races. If the need
2050 * arises for other types to be decrypted in-place, they must
2051 * add handling here as well.
2052 */
2053 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2054 ASSERT(!hdr_compressed);
2055 ASSERT(!compressed);
2056 ASSERT(!encrypted);
2057
2058 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2059 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2060
2061 if (hash_lock != NULL)
2062 mutex_enter(hash_lock);
14e4e3cb 2063 arc_buf_untransform_in_place(buf);
b5256303
TC
2064 if (hash_lock != NULL)
2065 mutex_exit(hash_lock);
2066
2067 /* Compute the hdr's checksum if necessary */
2068 arc_cksum_compute(buf);
2069 }
2070
2071 return (0);
2072 }
524b4217
DK
2073
2074 if (hdr_compressed == compressed) {
2aa34383 2075 if (!arc_buf_is_shared(buf)) {
a6255b7f 2076 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
524b4217 2077 arc_buf_size(buf));
2aa34383 2078 }
d3c2ae1c 2079 } else {
524b4217
DK
2080 ASSERT(hdr_compressed);
2081 ASSERT(!compressed);
2aa34383
DK
2082
2083 /*
524b4217
DK
2084 * If the buf is sharing its data with the hdr, unlink it and
2085 * allocate a new data buffer for the buf.
2aa34383 2086 */
524b4217
DK
2087 if (arc_buf_is_shared(buf)) {
2088 ASSERT(ARC_BUF_COMPRESSED(buf));
2089
e1cfd73f 2090 /* We need to give the buf its own b_data */
524b4217 2091 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2aa34383
DK
2092 buf->b_data =
2093 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2094 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2095
524b4217 2096 /* Previously overhead was 0; just add new overhead */
2aa34383 2097 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
524b4217
DK
2098 } else if (ARC_BUF_COMPRESSED(buf)) {
2099 /* We need to reallocate the buf's b_data */
2100 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2101 buf);
2102 buf->b_data =
2103 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2104
2105 /* We increased the size of b_data; update overhead */
2106 ARCSTAT_INCR(arcstat_overhead_size,
2107 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2aa34383
DK
2108 }
2109
524b4217
DK
2110 /*
2111 * Regardless of the buf's previous compression settings, it
2112 * should not be compressed at the end of this function.
2113 */
2114 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2115
2116 /*
2117 * Try copying the data from another buf which already has a
2118 * decompressed version. If that's not possible, it's time to
2119 * bite the bullet and decompress the data from the hdr.
2120 */
2121 if (arc_buf_try_copy_decompressed_data(buf)) {
2122 /* Skip byteswapping and checksumming (already done) */
524b4217
DK
2123 return (0);
2124 } else {
b5256303 2125 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
a6255b7f 2126 hdr->b_l1hdr.b_pabd, buf->b_data,
10b3c7f5
MN
2127 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2128 &hdr->b_complevel);
524b4217
DK
2129
2130 /*
2131 * Absent hardware errors or software bugs, this should
2132 * be impossible, but log it anyway so we can debug it.
2133 */
2134 if (error != 0) {
2135 zfs_dbgmsg(
a887d653 2136 "hdr %px, compress %d, psize %d, lsize %d",
b5256303 2137 hdr, arc_hdr_get_compress(hdr),
524b4217 2138 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
e7504d7a
TC
2139 if (hash_lock != NULL)
2140 mutex_enter(hash_lock);
2c24b5b1 2141 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2142 if (hash_lock != NULL)
2143 mutex_exit(hash_lock);
524b4217
DK
2144 return (SET_ERROR(EIO));
2145 }
d3c2ae1c
GW
2146 }
2147 }
524b4217 2148
b5256303 2149byteswap:
524b4217 2150 /* Byteswap the buf's data if necessary */
d3c2ae1c
GW
2151 if (bswap != DMU_BSWAP_NUMFUNCS) {
2152 ASSERT(!HDR_SHARED_DATA(hdr));
2153 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2154 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2155 }
524b4217
DK
2156
2157 /* Compute the hdr's checksum if necessary */
d3c2ae1c 2158 arc_cksum_compute(buf);
524b4217 2159
d3c2ae1c
GW
2160 return (0);
2161}
2162
2163/*
b5256303
TC
2164 * If this function is being called to decrypt an encrypted buffer or verify an
2165 * authenticated one, the key must be loaded and a mapping must be made
2166 * available in the keystore via spa_keystore_create_mapping() or one of its
2167 * callers.
d3c2ae1c 2168 */
b5256303 2169int
a2c2ed1b
TC
2170arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2171 boolean_t in_place)
d3c2ae1c 2172{
a2c2ed1b 2173 int ret;
b5256303 2174 arc_fill_flags_t flags = 0;
d3c2ae1c 2175
b5256303
TC
2176 if (in_place)
2177 flags |= ARC_FILL_IN_PLACE;
2178
be9a5c35 2179 ret = arc_buf_fill(buf, spa, zb, flags);
a2c2ed1b
TC
2180 if (ret == ECKSUM) {
2181 /*
2182 * Convert authentication and decryption errors to EIO
2183 * (and generate an ereport) before leaving the ARC.
2184 */
2185 ret = SET_ERROR(EIO);
be9a5c35 2186 spa_log_error(spa, zb);
1144586b 2187 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
4f072827 2188 spa, NULL, zb, NULL, 0);
a2c2ed1b
TC
2189 }
2190
2191 return (ret);
d3c2ae1c
GW
2192}
2193
2194/*
2195 * Increment the amount of evictable space in the arc_state_t's refcount.
2196 * We account for the space used by the hdr and the arc buf individually
2197 * so that we can add and remove them from the refcount individually.
2198 */
34dc7c2f 2199static void
d3c2ae1c
GW
2200arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2201{
2202 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2203
2204 ASSERT(HDR_HAS_L1HDR(hdr));
2205
2206 if (GHOST_STATE(state)) {
2207 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2208 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2209 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2210 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2211 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2212 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2213 return;
2214 }
2215
a6255b7f 2216 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2217 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c
GW
2218 arc_hdr_size(hdr), hdr);
2219 }
b5256303 2220 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2221 (void) zfs_refcount_add_many(&state->arcs_esize[type],
b5256303
TC
2222 HDR_GET_PSIZE(hdr), hdr);
2223 }
2224
1c27024e
DB
2225 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2226 buf = buf->b_next) {
2aa34383 2227 if (arc_buf_is_shared(buf))
d3c2ae1c 2228 continue;
424fd7c3 2229 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2230 arc_buf_size(buf), buf);
d3c2ae1c
GW
2231 }
2232}
2233
2234/*
2235 * Decrement the amount of evictable space in the arc_state_t's refcount.
2236 * We account for the space used by the hdr and the arc buf individually
2237 * so that we can add and remove them from the refcount individually.
2238 */
2239static void
2aa34383 2240arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
d3c2ae1c
GW
2241{
2242 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2243
2244 ASSERT(HDR_HAS_L1HDR(hdr));
2245
2246 if (GHOST_STATE(state)) {
2247 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2248 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2249 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2250 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2251 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2252 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2253 return;
2254 }
2255
a6255b7f 2256 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2257 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
2258 arc_hdr_size(hdr), hdr);
2259 }
b5256303 2260 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2261 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
b5256303
TC
2262 HDR_GET_PSIZE(hdr), hdr);
2263 }
2264
1c27024e
DB
2265 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2266 buf = buf->b_next) {
2aa34383 2267 if (arc_buf_is_shared(buf))
d3c2ae1c 2268 continue;
424fd7c3 2269 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2270 arc_buf_size(buf), buf);
d3c2ae1c
GW
2271 }
2272}
2273
2274/*
2275 * Add a reference to this hdr indicating that someone is actively
2276 * referencing that memory. When the refcount transitions from 0 to 1,
2277 * we remove it from the respective arc_state_t list to indicate that
2278 * it is not evictable.
2279 */
2280static void
2281add_reference(arc_buf_hdr_t *hdr, void *tag)
34dc7c2f 2282{
b9541d6b
CW
2283 arc_state_t *state;
2284
2285 ASSERT(HDR_HAS_L1HDR(hdr));
ca6c7a94 2286 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
d3c2ae1c 2287 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
424fd7c3 2288 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
2289 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2290 }
34dc7c2f 2291
b9541d6b
CW
2292 state = hdr->b_l1hdr.b_state;
2293
c13060e4 2294 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
b9541d6b
CW
2295 (state != arc_anon)) {
2296 /* We don't use the L2-only state list. */
2297 if (state != arc_l2c_only) {
ffdf019c 2298 multilist_remove(&state->arcs_list[arc_buf_type(hdr)],
d3c2ae1c 2299 hdr);
2aa34383 2300 arc_evictable_space_decrement(hdr, state);
34dc7c2f 2301 }
b128c09f 2302 /* remove the prefetch flag if we get a reference */
08532162
GA
2303 if (HDR_HAS_L2HDR(hdr))
2304 l2arc_hdr_arcstats_decrement_state(hdr);
d3c2ae1c 2305 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
08532162
GA
2306 if (HDR_HAS_L2HDR(hdr))
2307 l2arc_hdr_arcstats_increment_state(hdr);
34dc7c2f
BB
2308 }
2309}
2310
d3c2ae1c
GW
2311/*
2312 * Remove a reference from this hdr. When the reference transitions from
2313 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2314 * list making it eligible for eviction.
2315 */
34dc7c2f 2316static int
2a432414 2317remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
2318{
2319 int cnt;
b9541d6b 2320 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 2321
b9541d6b 2322 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
2323 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2324 ASSERT(!GHOST_STATE(state));
2325
b9541d6b
CW
2326 /*
2327 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2328 * check to prevent usage of the arc_l2c_only list.
2329 */
424fd7c3 2330 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 2331 (state != arc_anon)) {
ffdf019c 2332 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
d3c2ae1c
GW
2333 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2334 arc_evictable_space_increment(hdr, state);
34dc7c2f
BB
2335 }
2336 return (cnt);
2337}
2338
e0b0ca98
BB
2339/*
2340 * Returns detailed information about a specific arc buffer. When the
2341 * state_index argument is set the function will calculate the arc header
2342 * list position for its arc state. Since this requires a linear traversal
2343 * callers are strongly encourage not to do this. However, it can be helpful
2344 * for targeted analysis so the functionality is provided.
2345 */
2346void
2347arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2348{
14e4e3cb 2349 (void) state_index;
e0b0ca98 2350 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
2351 l1arc_buf_hdr_t *l1hdr = NULL;
2352 l2arc_buf_hdr_t *l2hdr = NULL;
2353 arc_state_t *state = NULL;
2354
8887c7d7
TC
2355 memset(abi, 0, sizeof (arc_buf_info_t));
2356
2357 if (hdr == NULL)
2358 return;
2359
2360 abi->abi_flags = hdr->b_flags;
2361
b9541d6b
CW
2362 if (HDR_HAS_L1HDR(hdr)) {
2363 l1hdr = &hdr->b_l1hdr;
2364 state = l1hdr->b_state;
2365 }
2366 if (HDR_HAS_L2HDR(hdr))
2367 l2hdr = &hdr->b_l2hdr;
e0b0ca98 2368
b9541d6b 2369 if (l1hdr) {
d3c2ae1c 2370 abi->abi_bufcnt = l1hdr->b_bufcnt;
b9541d6b
CW
2371 abi->abi_access = l1hdr->b_arc_access;
2372 abi->abi_mru_hits = l1hdr->b_mru_hits;
2373 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2374 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2375 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
424fd7c3 2376 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
b9541d6b
CW
2377 }
2378
2379 if (l2hdr) {
2380 abi->abi_l2arc_dattr = l2hdr->b_daddr;
b9541d6b
CW
2381 abi->abi_l2arc_hits = l2hdr->b_hits;
2382 }
2383
e0b0ca98 2384 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 2385 abi->abi_state_contents = arc_buf_type(hdr);
d3c2ae1c 2386 abi->abi_size = arc_hdr_size(hdr);
e0b0ca98
BB
2387}
2388
34dc7c2f 2389/*
ca0bf58d 2390 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
2391 * for the buffer must be held by the caller.
2392 */
2393static void
2a432414
GW
2394arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2395 kmutex_t *hash_lock)
34dc7c2f 2396{
b9541d6b
CW
2397 arc_state_t *old_state;
2398 int64_t refcnt;
d3c2ae1c
GW
2399 uint32_t bufcnt;
2400 boolean_t update_old, update_new;
b9541d6b
CW
2401 arc_buf_contents_t buftype = arc_buf_type(hdr);
2402
2403 /*
2404 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2405 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2406 * L1 hdr doesn't always exist when we change state to arc_anon before
2407 * destroying a header, in which case reallocating to add the L1 hdr is
2408 * pointless.
2409 */
2410 if (HDR_HAS_L1HDR(hdr)) {
2411 old_state = hdr->b_l1hdr.b_state;
424fd7c3 2412 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
d3c2ae1c 2413 bufcnt = hdr->b_l1hdr.b_bufcnt;
b5256303
TC
2414 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2415 HDR_HAS_RABD(hdr));
b9541d6b
CW
2416 } else {
2417 old_state = arc_l2c_only;
2418 refcnt = 0;
d3c2ae1c
GW
2419 bufcnt = 0;
2420 update_old = B_FALSE;
b9541d6b 2421 }
d3c2ae1c 2422 update_new = update_old;
34dc7c2f
BB
2423
2424 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 2425 ASSERT3P(new_state, !=, old_state);
d3c2ae1c
GW
2426 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2427 ASSERT(old_state != arc_anon || bufcnt <= 1);
34dc7c2f
BB
2428
2429 /*
2430 * If this buffer is evictable, transfer it from the
2431 * old state list to the new state list.
2432 */
2433 if (refcnt == 0) {
b9541d6b 2434 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 2435 ASSERT(HDR_HAS_L1HDR(hdr));
ffdf019c 2436 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f 2437
d3c2ae1c
GW
2438 if (GHOST_STATE(old_state)) {
2439 ASSERT0(bufcnt);
2440 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2441 update_old = B_TRUE;
34dc7c2f 2442 }
2aa34383 2443 arc_evictable_space_decrement(hdr, old_state);
34dc7c2f 2444 }
b9541d6b 2445 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b
CW
2446 /*
2447 * An L1 header always exists here, since if we're
2448 * moving to some L1-cached state (i.e. not l2c_only or
2449 * anonymous), we realloc the header to add an L1hdr
2450 * beforehand.
2451 */
2452 ASSERT(HDR_HAS_L1HDR(hdr));
ffdf019c 2453 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f 2454
34dc7c2f 2455 if (GHOST_STATE(new_state)) {
d3c2ae1c
GW
2456 ASSERT0(bufcnt);
2457 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2458 update_new = B_TRUE;
34dc7c2f 2459 }
d3c2ae1c 2460 arc_evictable_space_increment(hdr, new_state);
34dc7c2f
BB
2461 }
2462 }
2463
d3c2ae1c 2464 ASSERT(!HDR_EMPTY(hdr));
2a432414
GW
2465 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2466 buf_hash_remove(hdr);
34dc7c2f 2467
b9541d6b 2468 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef 2469
d3c2ae1c 2470 if (update_new && new_state != arc_l2c_only) {
36da08ef
PS
2471 ASSERT(HDR_HAS_L1HDR(hdr));
2472 if (GHOST_STATE(new_state)) {
d3c2ae1c 2473 ASSERT0(bufcnt);
36da08ef
PS
2474
2475 /*
d3c2ae1c 2476 * When moving a header to a ghost state, we first
36da08ef 2477 * remove all arc buffers. Thus, we'll have a
d3c2ae1c 2478 * bufcnt of zero, and no arc buffer to use for
36da08ef
PS
2479 * the reference. As a result, we use the arc
2480 * header pointer for the reference.
2481 */
424fd7c3 2482 (void) zfs_refcount_add_many(&new_state->arcs_size,
d3c2ae1c 2483 HDR_GET_LSIZE(hdr), hdr);
a6255b7f 2484 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2485 ASSERT(!HDR_HAS_RABD(hdr));
36da08ef 2486 } else {
d3c2ae1c 2487 uint32_t buffers = 0;
36da08ef
PS
2488
2489 /*
2490 * Each individual buffer holds a unique reference,
2491 * thus we must remove each of these references one
2492 * at a time.
2493 */
1c27024e 2494 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2495 buf = buf->b_next) {
d3c2ae1c
GW
2496 ASSERT3U(bufcnt, !=, 0);
2497 buffers++;
2498
2499 /*
2500 * When the arc_buf_t is sharing the data
2501 * block with the hdr, the owner of the
2502 * reference belongs to the hdr. Only
2503 * add to the refcount if the arc_buf_t is
2504 * not shared.
2505 */
2aa34383 2506 if (arc_buf_is_shared(buf))
d3c2ae1c 2507 continue;
d3c2ae1c 2508
424fd7c3
TS
2509 (void) zfs_refcount_add_many(
2510 &new_state->arcs_size,
2aa34383 2511 arc_buf_size(buf), buf);
d3c2ae1c
GW
2512 }
2513 ASSERT3U(bufcnt, ==, buffers);
2514
a6255b7f 2515 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3
TS
2516 (void) zfs_refcount_add_many(
2517 &new_state->arcs_size,
d3c2ae1c 2518 arc_hdr_size(hdr), hdr);
b5256303
TC
2519 }
2520
2521 if (HDR_HAS_RABD(hdr)) {
424fd7c3
TS
2522 (void) zfs_refcount_add_many(
2523 &new_state->arcs_size,
b5256303 2524 HDR_GET_PSIZE(hdr), hdr);
36da08ef
PS
2525 }
2526 }
2527 }
2528
d3c2ae1c 2529 if (update_old && old_state != arc_l2c_only) {
36da08ef
PS
2530 ASSERT(HDR_HAS_L1HDR(hdr));
2531 if (GHOST_STATE(old_state)) {
d3c2ae1c 2532 ASSERT0(bufcnt);
a6255b7f 2533 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2534 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c 2535
36da08ef
PS
2536 /*
2537 * When moving a header off of a ghost state,
d3c2ae1c
GW
2538 * the header will not contain any arc buffers.
2539 * We use the arc header pointer for the reference
2540 * which is exactly what we did when we put the
2541 * header on the ghost state.
36da08ef
PS
2542 */
2543
424fd7c3 2544 (void) zfs_refcount_remove_many(&old_state->arcs_size,
d3c2ae1c 2545 HDR_GET_LSIZE(hdr), hdr);
36da08ef 2546 } else {
d3c2ae1c 2547 uint32_t buffers = 0;
36da08ef
PS
2548
2549 /*
2550 * Each individual buffer holds a unique reference,
2551 * thus we must remove each of these references one
2552 * at a time.
2553 */
1c27024e 2554 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2555 buf = buf->b_next) {
d3c2ae1c
GW
2556 ASSERT3U(bufcnt, !=, 0);
2557 buffers++;
2558
2559 /*
2560 * When the arc_buf_t is sharing the data
2561 * block with the hdr, the owner of the
2562 * reference belongs to the hdr. Only
2563 * add to the refcount if the arc_buf_t is
2564 * not shared.
2565 */
2aa34383 2566 if (arc_buf_is_shared(buf))
d3c2ae1c 2567 continue;
d3c2ae1c 2568
424fd7c3 2569 (void) zfs_refcount_remove_many(
2aa34383 2570 &old_state->arcs_size, arc_buf_size(buf),
d3c2ae1c 2571 buf);
36da08ef 2572 }
d3c2ae1c 2573 ASSERT3U(bufcnt, ==, buffers);
b5256303
TC
2574 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2575 HDR_HAS_RABD(hdr));
2576
2577 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2578 (void) zfs_refcount_remove_many(
b5256303
TC
2579 &old_state->arcs_size, arc_hdr_size(hdr),
2580 hdr);
2581 }
2582
2583 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2584 (void) zfs_refcount_remove_many(
b5256303
TC
2585 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2586 hdr);
2587 }
36da08ef 2588 }
34dc7c2f 2589 }
36da08ef 2590
08532162 2591 if (HDR_HAS_L1HDR(hdr)) {
b9541d6b 2592 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 2593
08532162
GA
2594 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2595 l2arc_hdr_arcstats_decrement_state(hdr);
2596 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2597 l2arc_hdr_arcstats_increment_state(hdr);
2598 }
2599 }
34dc7c2f
BB
2600}
2601
2602void
d164b209 2603arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 2604{
d164b209
BB
2605 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2606
2607 switch (type) {
e75c13c3
BB
2608 default:
2609 break;
d164b209 2610 case ARC_SPACE_DATA:
c4c162c1 2611 ARCSTAT_INCR(arcstat_data_size, space);
d164b209 2612 break;
cc7f677c 2613 case ARC_SPACE_META:
c4c162c1 2614 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 2615 break;
25458cbe 2616 case ARC_SPACE_BONUS:
c4c162c1 2617 ARCSTAT_INCR(arcstat_bonus_size, space);
25458cbe
TC
2618 break;
2619 case ARC_SPACE_DNODE:
c4c162c1 2620 aggsum_add(&arc_sums.arcstat_dnode_size, space);
25458cbe
TC
2621 break;
2622 case ARC_SPACE_DBUF:
c4c162c1 2623 ARCSTAT_INCR(arcstat_dbuf_size, space);
d164b209
BB
2624 break;
2625 case ARC_SPACE_HDRS:
c4c162c1 2626 ARCSTAT_INCR(arcstat_hdr_size, space);
d164b209
BB
2627 break;
2628 case ARC_SPACE_L2HDRS:
c4c162c1 2629 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
d164b209 2630 break;
85ec5cba
MA
2631 case ARC_SPACE_ABD_CHUNK_WASTE:
2632 /*
2633 * Note: this includes space wasted by all scatter ABD's, not
2634 * just those allocated by the ARC. But the vast majority of
2635 * scatter ABD's come from the ARC, because other users are
2636 * very short-lived.
2637 */
c4c162c1 2638 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
85ec5cba 2639 break;
d164b209
BB
2640 }
2641
85ec5cba 2642 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
c4c162c1 2643 aggsum_add(&arc_sums.arcstat_meta_used, space);
cc7f677c 2644
c4c162c1 2645 aggsum_add(&arc_sums.arcstat_size, space);
34dc7c2f
BB
2646}
2647
2648void
d164b209 2649arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 2650{
d164b209
BB
2651 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2652
2653 switch (type) {
e75c13c3
BB
2654 default:
2655 break;
d164b209 2656 case ARC_SPACE_DATA:
c4c162c1 2657 ARCSTAT_INCR(arcstat_data_size, -space);
d164b209 2658 break;
cc7f677c 2659 case ARC_SPACE_META:
c4c162c1 2660 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 2661 break;
25458cbe 2662 case ARC_SPACE_BONUS:
c4c162c1 2663 ARCSTAT_INCR(arcstat_bonus_size, -space);
25458cbe
TC
2664 break;
2665 case ARC_SPACE_DNODE:
c4c162c1 2666 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
25458cbe
TC
2667 break;
2668 case ARC_SPACE_DBUF:
c4c162c1 2669 ARCSTAT_INCR(arcstat_dbuf_size, -space);
d164b209
BB
2670 break;
2671 case ARC_SPACE_HDRS:
c4c162c1 2672 ARCSTAT_INCR(arcstat_hdr_size, -space);
d164b209
BB
2673 break;
2674 case ARC_SPACE_L2HDRS:
c4c162c1 2675 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
d164b209 2676 break;
85ec5cba 2677 case ARC_SPACE_ABD_CHUNK_WASTE:
c4c162c1 2678 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
85ec5cba 2679 break;
d164b209
BB
2680 }
2681
85ec5cba 2682 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
c4c162c1
AM
2683 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used,
2684 space) >= 0);
2685 ARCSTAT_MAX(arcstat_meta_max,
2686 aggsum_upper_bound(&arc_sums.arcstat_meta_used));
2687 aggsum_add(&arc_sums.arcstat_meta_used, -space);
cc7f677c
PS
2688 }
2689
c4c162c1
AM
2690 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2691 aggsum_add(&arc_sums.arcstat_size, -space);
34dc7c2f
BB
2692}
2693
d3c2ae1c 2694/*
524b4217 2695 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
a6255b7f 2696 * with the hdr's b_pabd.
d3c2ae1c 2697 */
524b4217
DK
2698static boolean_t
2699arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2700{
524b4217
DK
2701 /*
2702 * The criteria for sharing a hdr's data are:
b5256303
TC
2703 * 1. the buffer is not encrypted
2704 * 2. the hdr's compression matches the buf's compression
2705 * 3. the hdr doesn't need to be byteswapped
2706 * 4. the hdr isn't already being shared
2707 * 5. the buf is either compressed or it is the last buf in the hdr list
524b4217 2708 *
b5256303 2709 * Criterion #5 maintains the invariant that shared uncompressed
524b4217
DK
2710 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2711 * might ask, "if a compressed buf is allocated first, won't that be the
2712 * last thing in the list?", but in that case it's impossible to create
2713 * a shared uncompressed buf anyway (because the hdr must be compressed
2714 * to have the compressed buf). You might also think that #3 is
2715 * sufficient to make this guarantee, however it's possible
2716 * (specifically in the rare L2ARC write race mentioned in
2717 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
e1cfd73f 2718 * is shareable, but wasn't at the time of its allocation. Rather than
524b4217
DK
2719 * allow a new shared uncompressed buf to be created and then shuffle
2720 * the list around to make it the last element, this simply disallows
2721 * sharing if the new buf isn't the first to be added.
2722 */
2723 ASSERT3P(buf->b_hdr, ==, hdr);
b5256303
TC
2724 boolean_t hdr_compressed =
2725 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
a7004725 2726 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
b5256303
TC
2727 return (!ARC_BUF_ENCRYPTED(buf) &&
2728 buf_compressed == hdr_compressed &&
524b4217
DK
2729 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2730 !HDR_SHARED_DATA(hdr) &&
2731 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2732}
2733
2734/*
2735 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2736 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2737 * copy was made successfully, or an error code otherwise.
2738 */
2739static int
be9a5c35
TC
2740arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2741 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
524b4217 2742 boolean_t fill, arc_buf_t **ret)
34dc7c2f 2743{
34dc7c2f 2744 arc_buf_t *buf;
b5256303 2745 arc_fill_flags_t flags = ARC_FILL_LOCKED;
34dc7c2f 2746
d3c2ae1c
GW
2747 ASSERT(HDR_HAS_L1HDR(hdr));
2748 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2749 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2750 hdr->b_type == ARC_BUFC_METADATA);
524b4217
DK
2751 ASSERT3P(ret, !=, NULL);
2752 ASSERT3P(*ret, ==, NULL);
b5256303 2753 IMPLY(encrypted, compressed);
d3c2ae1c 2754
524b4217 2755 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
34dc7c2f
BB
2756 buf->b_hdr = hdr;
2757 buf->b_data = NULL;
2aa34383 2758 buf->b_next = hdr->b_l1hdr.b_buf;
524b4217 2759 buf->b_flags = 0;
b9541d6b 2760
d3c2ae1c
GW
2761 add_reference(hdr, tag);
2762
2763 /*
2764 * We're about to change the hdr's b_flags. We must either
2765 * hold the hash_lock or be undiscoverable.
2766 */
ca6c7a94 2767 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c
GW
2768
2769 /*
524b4217 2770 * Only honor requests for compressed bufs if the hdr is actually
e1cfd73f 2771 * compressed. This must be overridden if the buffer is encrypted since
b5256303 2772 * encrypted buffers cannot be decompressed.
524b4217 2773 */
b5256303
TC
2774 if (encrypted) {
2775 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2776 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2777 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2778 } else if (compressed &&
2779 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
524b4217 2780 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
2781 flags |= ARC_FILL_COMPRESSED;
2782 }
2783
2784 if (noauth) {
2785 ASSERT0(encrypted);
2786 flags |= ARC_FILL_NOAUTH;
2787 }
524b4217 2788
524b4217
DK
2789 /*
2790 * If the hdr's data can be shared then we share the data buffer and
2791 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
5662fd57
MA
2792 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2793 * buffer to store the buf's data.
524b4217 2794 *
a6255b7f
DQ
2795 * There are two additional restrictions here because we're sharing
2796 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2797 * actively involved in an L2ARC write, because if this buf is used by
2798 * an arc_write() then the hdr's data buffer will be released when the
524b4217 2799 * write completes, even though the L2ARC write might still be using it.
a6255b7f 2800 * Second, the hdr's ABD must be linear so that the buf's user doesn't
5662fd57
MA
2801 * need to be ABD-aware. It must be allocated via
2802 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2803 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2804 * page" buffers because the ABD code needs to handle freeing them
2805 * specially.
2806 */
2807 boolean_t can_share = arc_can_share(hdr, buf) &&
2808 !HDR_L2_WRITING(hdr) &&
2809 hdr->b_l1hdr.b_pabd != NULL &&
2810 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2811 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
524b4217
DK
2812
2813 /* Set up b_data and sharing */
2814 if (can_share) {
a6255b7f 2815 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
524b4217 2816 buf->b_flags |= ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2817 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2818 } else {
524b4217
DK
2819 buf->b_data =
2820 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2821 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
d3c2ae1c
GW
2822 }
2823 VERIFY3P(buf->b_data, !=, NULL);
b9541d6b
CW
2824
2825 hdr->b_l1hdr.b_buf = buf;
d3c2ae1c 2826 hdr->b_l1hdr.b_bufcnt += 1;
b5256303
TC
2827 if (encrypted)
2828 hdr->b_crypt_hdr.b_ebufcnt += 1;
b9541d6b 2829
524b4217
DK
2830 /*
2831 * If the user wants the data from the hdr, we need to either copy or
2832 * decompress the data.
2833 */
2834 if (fill) {
be9a5c35
TC
2835 ASSERT3P(zb, !=, NULL);
2836 return (arc_buf_fill(buf, spa, zb, flags));
524b4217 2837 }
d3c2ae1c 2838
524b4217 2839 return (0);
34dc7c2f
BB
2840}
2841
9babb374
BB
2842static char *arc_onloan_tag = "onloan";
2843
a7004725
DK
2844static inline void
2845arc_loaned_bytes_update(int64_t delta)
2846{
2847 atomic_add_64(&arc_loaned_bytes, delta);
2848
2849 /* assert that it did not wrap around */
2850 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2851}
2852
9babb374
BB
2853/*
2854 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2855 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2856 * buffers must be returned to the arc before they can be used by the DMU or
2857 * freed.
2858 */
2859arc_buf_t *
2aa34383 2860arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
9babb374 2861{
2aa34383
DK
2862 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2863 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
9babb374 2864
5152a740 2865 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2866
9babb374
BB
2867 return (buf);
2868}
2869
2aa34383
DK
2870arc_buf_t *
2871arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
10b3c7f5 2872 enum zio_compress compression_type, uint8_t complevel)
2aa34383
DK
2873{
2874 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
10b3c7f5 2875 psize, lsize, compression_type, complevel);
2aa34383 2876
5152a740 2877 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2878
2aa34383
DK
2879 return (buf);
2880}
2881
b5256303
TC
2882arc_buf_t *
2883arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2884 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2885 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
10b3c7f5 2886 enum zio_compress compression_type, uint8_t complevel)
b5256303
TC
2887{
2888 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
10b3c7f5
MN
2889 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2890 complevel);
b5256303
TC
2891
2892 atomic_add_64(&arc_loaned_bytes, psize);
2893 return (buf);
2894}
2895
2aa34383 2896
9babb374
BB
2897/*
2898 * Return a loaned arc buffer to the arc.
2899 */
2900void
2901arc_return_buf(arc_buf_t *buf, void *tag)
2902{
2903 arc_buf_hdr_t *hdr = buf->b_hdr;
2904
d3c2ae1c 2905 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 2906 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 2907 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
424fd7c3 2908 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374 2909
a7004725 2910 arc_loaned_bytes_update(-arc_buf_size(buf));
9babb374
BB
2911}
2912
428870ff
BB
2913/* Detach an arc_buf from a dbuf (tag) */
2914void
2915arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2916{
b9541d6b 2917 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff 2918
d3c2ae1c 2919 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 2920 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 2921 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
424fd7c3 2922 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff 2923
a7004725 2924 arc_loaned_bytes_update(arc_buf_size(buf));
428870ff
BB
2925}
2926
d3c2ae1c 2927static void
a6255b7f 2928l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
34dc7c2f 2929{
d3c2ae1c 2930 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
34dc7c2f 2931
a6255b7f 2932 df->l2df_abd = abd;
d3c2ae1c
GW
2933 df->l2df_size = size;
2934 df->l2df_type = type;
2935 mutex_enter(&l2arc_free_on_write_mtx);
2936 list_insert_head(l2arc_free_on_write, df);
2937 mutex_exit(&l2arc_free_on_write_mtx);
2938}
428870ff 2939
d3c2ae1c 2940static void
b5256303 2941arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c
GW
2942{
2943 arc_state_t *state = hdr->b_l1hdr.b_state;
2944 arc_buf_contents_t type = arc_buf_type(hdr);
b5256303 2945 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
1eb5bfa3 2946
d3c2ae1c
GW
2947 /* protected by hash lock, if in the hash table */
2948 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 2949 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
2950 ASSERT(state != arc_anon && state != arc_l2c_only);
2951
424fd7c3 2952 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c 2953 size, hdr);
1eb5bfa3 2954 }
424fd7c3 2955 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
423e7b62
AG
2956 if (type == ARC_BUFC_METADATA) {
2957 arc_space_return(size, ARC_SPACE_META);
2958 } else {
2959 ASSERT(type == ARC_BUFC_DATA);
2960 arc_space_return(size, ARC_SPACE_DATA);
2961 }
d3c2ae1c 2962
b5256303
TC
2963 if (free_rdata) {
2964 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2965 } else {
2966 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2967 }
34dc7c2f
BB
2968}
2969
d3c2ae1c
GW
2970/*
2971 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2972 * data buffer, we transfer the refcount ownership to the hdr and update
2973 * the appropriate kstats.
2974 */
2975static void
2976arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
34dc7c2f 2977{
524b4217 2978 ASSERT(arc_can_share(hdr, buf));
a6255b7f 2979 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2980 ASSERT(!ARC_BUF_ENCRYPTED(buf));
ca6c7a94 2981 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
34dc7c2f
BB
2982
2983 /*
d3c2ae1c
GW
2984 * Start sharing the data buffer. We transfer the
2985 * refcount ownership to the hdr since it always owns
2986 * the refcount whenever an arc_buf_t is shared.
34dc7c2f 2987 */
d7e4b30a
BB
2988 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
2989 arc_hdr_size(hdr), buf, hdr);
a6255b7f
DQ
2990 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2991 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2992 HDR_ISTYPE_METADATA(hdr));
d3c2ae1c 2993 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
524b4217 2994 buf->b_flags |= ARC_BUF_FLAG_SHARED;
34dc7c2f 2995
d3c2ae1c
GW
2996 /*
2997 * Since we've transferred ownership to the hdr we need
2998 * to increment its compressed and uncompressed kstats and
2999 * decrement the overhead size.
3000 */
3001 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3002 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2aa34383 3003 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
34dc7c2f
BB
3004}
3005
ca0bf58d 3006static void
d3c2ae1c 3007arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
ca0bf58d 3008{
d3c2ae1c 3009 ASSERT(arc_buf_is_shared(buf));
a6255b7f 3010 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
ca6c7a94 3011 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
ca0bf58d 3012
d3c2ae1c
GW
3013 /*
3014 * We are no longer sharing this buffer so we need
3015 * to transfer its ownership to the rightful owner.
3016 */
d7e4b30a
BB
3017 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3018 arc_hdr_size(hdr), hdr, buf);
d3c2ae1c 3019 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
a6255b7f 3020 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
e2af2acc 3021 abd_free(hdr->b_l1hdr.b_pabd);
a6255b7f 3022 hdr->b_l1hdr.b_pabd = NULL;
524b4217 3023 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
3024
3025 /*
3026 * Since the buffer is no longer shared between
3027 * the arc buf and the hdr, count it as overhead.
3028 */
3029 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3030 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2aa34383 3031 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
ca0bf58d
PS
3032}
3033
34dc7c2f 3034/*
2aa34383
DK
3035 * Remove an arc_buf_t from the hdr's buf list and return the last
3036 * arc_buf_t on the list. If no buffers remain on the list then return
3037 * NULL.
3038 */
3039static arc_buf_t *
3040arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3041{
2aa34383 3042 ASSERT(HDR_HAS_L1HDR(hdr));
ca6c7a94 3043 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2aa34383 3044
a7004725
DK
3045 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3046 arc_buf_t *lastbuf = NULL;
3047
2aa34383
DK
3048 /*
3049 * Remove the buf from the hdr list and locate the last
3050 * remaining buffer on the list.
3051 */
3052 while (*bufp != NULL) {
3053 if (*bufp == buf)
3054 *bufp = buf->b_next;
3055
3056 /*
3057 * If we've removed a buffer in the middle of
3058 * the list then update the lastbuf and update
3059 * bufp.
3060 */
3061 if (*bufp != NULL) {
3062 lastbuf = *bufp;
3063 bufp = &(*bufp)->b_next;
3064 }
3065 }
3066 buf->b_next = NULL;
3067 ASSERT3P(lastbuf, !=, buf);
3068 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3069 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3070 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3071
3072 return (lastbuf);
3073}
3074
3075/*
e1cfd73f 3076 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
2aa34383 3077 * list and free it.
34dc7c2f
BB
3078 */
3079static void
2aa34383 3080arc_buf_destroy_impl(arc_buf_t *buf)
34dc7c2f 3081{
498877ba 3082 arc_buf_hdr_t *hdr = buf->b_hdr;
ca0bf58d
PS
3083
3084 /*
524b4217
DK
3085 * Free up the data associated with the buf but only if we're not
3086 * sharing this with the hdr. If we are sharing it with the hdr, the
3087 * hdr is responsible for doing the free.
ca0bf58d 3088 */
d3c2ae1c
GW
3089 if (buf->b_data != NULL) {
3090 /*
3091 * We're about to change the hdr's b_flags. We must either
3092 * hold the hash_lock or be undiscoverable.
3093 */
ca6c7a94 3094 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
d3c2ae1c 3095
524b4217 3096 arc_cksum_verify(buf);
d3c2ae1c
GW
3097 arc_buf_unwatch(buf);
3098
2aa34383 3099 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
3100 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3101 } else {
2aa34383 3102 uint64_t size = arc_buf_size(buf);
d3c2ae1c
GW
3103 arc_free_data_buf(hdr, buf->b_data, size, buf);
3104 ARCSTAT_INCR(arcstat_overhead_size, -size);
3105 }
3106 buf->b_data = NULL;
3107
3108 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3109 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303 3110
da5d4697 3111 if (ARC_BUF_ENCRYPTED(buf)) {
b5256303
TC
3112 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3113
da5d4697
D
3114 /*
3115 * If we have no more encrypted buffers and we've
3116 * already gotten a copy of the decrypted data we can
3117 * free b_rabd to save some space.
3118 */
3119 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3120 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3121 !HDR_IO_IN_PROGRESS(hdr)) {
3122 arc_hdr_free_abd(hdr, B_TRUE);
3123 }
440a3eb9 3124 }
d3c2ae1c
GW
3125 }
3126
a7004725 3127 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 3128
524b4217 3129 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2aa34383 3130 /*
524b4217 3131 * If the current arc_buf_t is sharing its data buffer with the
a6255b7f 3132 * hdr, then reassign the hdr's b_pabd to share it with the new
524b4217
DK
3133 * buffer at the end of the list. The shared buffer is always
3134 * the last one on the hdr's buffer list.
3135 *
3136 * There is an equivalent case for compressed bufs, but since
3137 * they aren't guaranteed to be the last buf in the list and
3138 * that is an exceedingly rare case, we just allow that space be
b5256303
TC
3139 * wasted temporarily. We must also be careful not to share
3140 * encrypted buffers, since they cannot be shared.
2aa34383 3141 */
b5256303 3142 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
524b4217 3143 /* Only one buf can be shared at once */
2aa34383 3144 VERIFY(!arc_buf_is_shared(lastbuf));
524b4217
DK
3145 /* hdr is uncompressed so can't have compressed buf */
3146 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
d3c2ae1c 3147
a6255b7f 3148 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 3149 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 3150
2aa34383
DK
3151 /*
3152 * We must setup a new shared block between the
3153 * last buffer and the hdr. The data would have
3154 * been allocated by the arc buf so we need to transfer
3155 * ownership to the hdr since it's now being shared.
3156 */
3157 arc_share_buf(hdr, lastbuf);
3158 }
3159 } else if (HDR_SHARED_DATA(hdr)) {
d3c2ae1c 3160 /*
2aa34383
DK
3161 * Uncompressed shared buffers are always at the end
3162 * of the list. Compressed buffers don't have the
3163 * same requirements. This makes it hard to
3164 * simply assert that the lastbuf is shared so
3165 * we rely on the hdr's compression flags to determine
3166 * if we have a compressed, shared buffer.
d3c2ae1c 3167 */
2aa34383
DK
3168 ASSERT3P(lastbuf, !=, NULL);
3169 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 3170 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
ca0bf58d
PS
3171 }
3172
a7004725
DK
3173 /*
3174 * Free the checksum if we're removing the last uncompressed buf from
3175 * this hdr.
3176 */
3177 if (!arc_hdr_has_uncompressed_buf(hdr)) {
d3c2ae1c 3178 arc_cksum_free(hdr);
a7004725 3179 }
d3c2ae1c
GW
3180
3181 /* clean up the buf */
3182 buf->b_hdr = NULL;
3183 kmem_cache_free(buf_cache, buf);
3184}
3185
3186static void
e111c802 3187arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
d3c2ae1c 3188{
b5256303 3189 uint64_t size;
e111c802 3190 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
b5256303 3191
d3c2ae1c
GW
3192 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3193 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3194 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3195 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
d3c2ae1c 3196
b5256303
TC
3197 if (alloc_rdata) {
3198 size = HDR_GET_PSIZE(hdr);
3199 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
e111c802 3200 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
6b88b4b5 3201 alloc_flags);
b5256303
TC
3202 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3203 ARCSTAT_INCR(arcstat_raw_size, size);
3204 } else {
3205 size = arc_hdr_size(hdr);
3206 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
e111c802 3207 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
6b88b4b5 3208 alloc_flags);
b5256303
TC
3209 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3210 }
3211
3212 ARCSTAT_INCR(arcstat_compressed_size, size);
d3c2ae1c
GW
3213 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3214}
3215
3216static void
b5256303 3217arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c 3218{
b5256303
TC
3219 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3220
d3c2ae1c 3221 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3222 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3223 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
d3c2ae1c 3224
ca0bf58d 3225 /*
d3c2ae1c
GW
3226 * If the hdr is currently being written to the l2arc then
3227 * we defer freeing the data by adding it to the l2arc_free_on_write
3228 * list. The l2arc will free the data once it's finished
3229 * writing it to the l2arc device.
ca0bf58d 3230 */
d3c2ae1c 3231 if (HDR_L2_WRITING(hdr)) {
b5256303 3232 arc_hdr_free_on_write(hdr, free_rdata);
d3c2ae1c 3233 ARCSTAT_BUMP(arcstat_l2_free_on_write);
b5256303
TC
3234 } else if (free_rdata) {
3235 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
d3c2ae1c 3236 } else {
b5256303 3237 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
ca0bf58d
PS
3238 }
3239
b5256303
TC
3240 if (free_rdata) {
3241 hdr->b_crypt_hdr.b_rabd = NULL;
3242 ARCSTAT_INCR(arcstat_raw_size, -size);
3243 } else {
3244 hdr->b_l1hdr.b_pabd = NULL;
3245 }
3246
3247 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3248 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3249
3250 ARCSTAT_INCR(arcstat_compressed_size, -size);
d3c2ae1c
GW
3251 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3252}
3253
6b88b4b5
AM
3254/*
3255 * Allocate empty anonymous ARC header. The header will get its identity
3256 * assigned and buffers attached later as part of read or write operations.
3257 *
3258 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3259 * inserts it into ARC hash to become globally visible and allocates physical
3260 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3261 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3262 * sharing one of them with the physical ABD buffer.
3263 *
3264 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3265 * data. Then after compression and/or encryption arc_write_ready() allocates
3266 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3267 * buffer. On disk write completion arc_write_done() assigns the header its
3268 * new identity (b_dva + b_birth) and inserts into ARC hash.
3269 *
3270 * In case of partial overwrite the old data is read first as described. Then
3271 * arc_release() either allocates new anonymous ARC header and moves the ARC
3272 * buffer to it, or reuses the old ARC header by discarding its identity and
3273 * removing it from ARC hash. After buffer modification normal write process
3274 * follows as described.
3275 */
d3c2ae1c
GW
3276static arc_buf_hdr_t *
3277arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
10b3c7f5 3278 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
6b88b4b5 3279 arc_buf_contents_t type)
d3c2ae1c
GW
3280{
3281 arc_buf_hdr_t *hdr;
3282
d3c2ae1c 3283 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
b5256303
TC
3284 if (protected) {
3285 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3286 } else {
3287 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3288 }
d3c2ae1c 3289
d3c2ae1c
GW
3290 ASSERT(HDR_EMPTY(hdr));
3291 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3292 HDR_SET_PSIZE(hdr, psize);
3293 HDR_SET_LSIZE(hdr, lsize);
3294 hdr->b_spa = spa;
3295 hdr->b_type = type;
3296 hdr->b_flags = 0;
3297 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2aa34383 3298 arc_hdr_set_compress(hdr, compression_type);
10b3c7f5 3299 hdr->b_complevel = complevel;
b5256303
TC
3300 if (protected)
3301 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
ca0bf58d 3302
d3c2ae1c
GW
3303 hdr->b_l1hdr.b_state = arc_anon;
3304 hdr->b_l1hdr.b_arc_access = 0;
cfe8e960
AM
3305 hdr->b_l1hdr.b_mru_hits = 0;
3306 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3307 hdr->b_l1hdr.b_mfu_hits = 0;
3308 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
d3c2ae1c
GW
3309 hdr->b_l1hdr.b_bufcnt = 0;
3310 hdr->b_l1hdr.b_buf = NULL;
ca0bf58d 3311
424fd7c3 3312 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 3313
d3c2ae1c 3314 return (hdr);
ca0bf58d
PS
3315}
3316
bd089c54 3317/*
d3c2ae1c
GW
3318 * Transition between the two allocation states for the arc_buf_hdr struct.
3319 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3320 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3321 * version is used when a cache buffer is only in the L2ARC in order to reduce
3322 * memory usage.
bd089c54 3323 */
d3c2ae1c
GW
3324static arc_buf_hdr_t *
3325arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
34dc7c2f 3326{
1c27024e
DB
3327 ASSERT(HDR_HAS_L2HDR(hdr));
3328
d3c2ae1c
GW
3329 arc_buf_hdr_t *nhdr;
3330 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
34dc7c2f 3331
d3c2ae1c
GW
3332 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3333 (old == hdr_l2only_cache && new == hdr_full_cache));
34dc7c2f 3334
b5256303
TC
3335 /*
3336 * if the caller wanted a new full header and the header is to be
3337 * encrypted we will actually allocate the header from the full crypt
3338 * cache instead. The same applies to freeing from the old cache.
3339 */
3340 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3341 new = hdr_full_crypt_cache;
3342 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3343 old = hdr_full_crypt_cache;
3344
d3c2ae1c 3345 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
428870ff 3346
d3c2ae1c
GW
3347 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3348 buf_hash_remove(hdr);
ca0bf58d 3349
d3c2ae1c 3350 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
34dc7c2f 3351
b5256303 3352 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
d3c2ae1c
GW
3353 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3354 /*
3355 * arc_access and arc_change_state need to be aware that a
3356 * header has just come out of L2ARC, so we set its state to
3357 * l2c_only even though it's about to change.
3358 */
3359 nhdr->b_l1hdr.b_state = arc_l2c_only;
34dc7c2f 3360
d3c2ae1c 3361 /* Verify previous threads set to NULL before freeing */
a6255b7f 3362 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3363 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3364 } else {
3365 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3366 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3367 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
36da08ef 3368
d3c2ae1c
GW
3369 /*
3370 * If we've reached here, We must have been called from
3371 * arc_evict_hdr(), as such we should have already been
3372 * removed from any ghost list we were previously on
3373 * (which protects us from racing with arc_evict_state),
3374 * thus no locking is needed during this check.
3375 */
3376 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1eb5bfa3
GW
3377
3378 /*
d3c2ae1c
GW
3379 * A buffer must not be moved into the arc_l2c_only
3380 * state if it's not finished being written out to the
a6255b7f 3381 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
d3c2ae1c 3382 * might try to be accessed, even though it was removed.
1eb5bfa3 3383 */
d3c2ae1c 3384 VERIFY(!HDR_L2_WRITING(hdr));
a6255b7f 3385 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3386 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3387
3388 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
34dc7c2f 3389 }
d3c2ae1c
GW
3390 /*
3391 * The header has been reallocated so we need to re-insert it into any
3392 * lists it was on.
3393 */
3394 (void) buf_hash_insert(nhdr, NULL);
34dc7c2f 3395
d3c2ae1c 3396 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
34dc7c2f 3397
d3c2ae1c
GW
3398 mutex_enter(&dev->l2ad_mtx);
3399
3400 /*
3401 * We must place the realloc'ed header back into the list at
3402 * the same spot. Otherwise, if it's placed earlier in the list,
3403 * l2arc_write_buffers() could find it during the function's
3404 * write phase, and try to write it out to the l2arc.
3405 */
3406 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3407 list_remove(&dev->l2ad_buflist, hdr);
34dc7c2f 3408
d3c2ae1c 3409 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 3410
d3c2ae1c
GW
3411 /*
3412 * Since we're using the pointer address as the tag when
3413 * incrementing and decrementing the l2ad_alloc refcount, we
3414 * must remove the old pointer (that we're about to destroy) and
3415 * add the new pointer to the refcount. Otherwise we'd remove
3416 * the wrong pointer address when calling arc_hdr_destroy() later.
3417 */
3418
424fd7c3
TS
3419 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3420 arc_hdr_size(hdr), hdr);
3421 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3422 arc_hdr_size(nhdr), nhdr);
d3c2ae1c
GW
3423
3424 buf_discard_identity(hdr);
3425 kmem_cache_free(old, hdr);
3426
3427 return (nhdr);
3428}
3429
b5256303
TC
3430/*
3431 * This function allows an L1 header to be reallocated as a crypt
3432 * header and vice versa. If we are going to a crypt header, the
3433 * new fields will be zeroed out.
3434 */
3435static arc_buf_hdr_t *
3436arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3437{
3438 arc_buf_hdr_t *nhdr;
3439 arc_buf_t *buf;
3440 kmem_cache_t *ncache, *ocache;
3441
b7ddeaef
TC
3442 /*
3443 * This function requires that hdr is in the arc_anon state.
3444 * Therefore it won't have any L2ARC data for us to worry
3445 * about copying.
3446 */
b5256303 3447 ASSERT(HDR_HAS_L1HDR(hdr));
b7ddeaef 3448 ASSERT(!HDR_HAS_L2HDR(hdr));
b5256303
TC
3449 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3450 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3451 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b7ddeaef
TC
3452 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3453 ASSERT3P(hdr->b_hash_next, ==, NULL);
b5256303
TC
3454
3455 if (need_crypt) {
3456 ncache = hdr_full_crypt_cache;
3457 ocache = hdr_full_cache;
3458 } else {
3459 ncache = hdr_full_cache;
3460 ocache = hdr_full_crypt_cache;
3461 }
3462
3463 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
b7ddeaef
TC
3464
3465 /*
3466 * Copy all members that aren't locks or condvars to the new header.
3467 * No lists are pointing to us (as we asserted above), so we don't
3468 * need to worry about the list nodes.
3469 */
3470 nhdr->b_dva = hdr->b_dva;
3471 nhdr->b_birth = hdr->b_birth;
3472 nhdr->b_type = hdr->b_type;
3473 nhdr->b_flags = hdr->b_flags;
3474 nhdr->b_psize = hdr->b_psize;
3475 nhdr->b_lsize = hdr->b_lsize;
3476 nhdr->b_spa = hdr->b_spa;
b5256303
TC
3477 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3478 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3479 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3480 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3481 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3482 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3483 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3484 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3485 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
b5256303
TC
3486 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3487 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
b5256303
TC
3488
3489 /*
c13060e4 3490 * This zfs_refcount_add() exists only to ensure that the individual
b5256303
TC
3491 * arc buffers always point to a header that is referenced, avoiding
3492 * a small race condition that could trigger ASSERTs.
3493 */
c13060e4 3494 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
b7ddeaef 3495 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
b5256303
TC
3496 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3497 mutex_enter(&buf->b_evict_lock);
3498 buf->b_hdr = nhdr;
3499 mutex_exit(&buf->b_evict_lock);
3500 }
3501
424fd7c3
TS
3502 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3503 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3504 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
b5256303
TC
3505
3506 if (need_crypt) {
3507 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3508 } else {
3509 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3510 }
3511
b7ddeaef
TC
3512 /* unset all members of the original hdr */
3513 bzero(&hdr->b_dva, sizeof (dva_t));
3514 hdr->b_birth = 0;
3515 hdr->b_type = ARC_BUFC_INVALID;
3516 hdr->b_flags = 0;
3517 hdr->b_psize = 0;
3518 hdr->b_lsize = 0;
3519 hdr->b_spa = 0;
3520 hdr->b_l1hdr.b_freeze_cksum = NULL;
3521 hdr->b_l1hdr.b_buf = NULL;
3522 hdr->b_l1hdr.b_bufcnt = 0;
3523 hdr->b_l1hdr.b_byteswap = 0;
3524 hdr->b_l1hdr.b_state = NULL;
3525 hdr->b_l1hdr.b_arc_access = 0;
3526 hdr->b_l1hdr.b_mru_hits = 0;
3527 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3528 hdr->b_l1hdr.b_mfu_hits = 0;
3529 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
b7ddeaef
TC
3530 hdr->b_l1hdr.b_acb = NULL;
3531 hdr->b_l1hdr.b_pabd = NULL;
3532
3533 if (ocache == hdr_full_crypt_cache) {
3534 ASSERT(!HDR_HAS_RABD(hdr));
3535 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3536 hdr->b_crypt_hdr.b_ebufcnt = 0;
3537 hdr->b_crypt_hdr.b_dsobj = 0;
3538 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3539 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3540 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3541 }
3542
b5256303
TC
3543 buf_discard_identity(hdr);
3544 kmem_cache_free(ocache, hdr);
3545
3546 return (nhdr);
3547}
3548
3549/*
3550 * This function is used by the send / receive code to convert a newly
3551 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
e1cfd73f 3552 * is also used to allow the root objset block to be updated without altering
b5256303
TC
3553 * its embedded MACs. Both block types will always be uncompressed so we do not
3554 * have to worry about compression type or psize.
3555 */
3556void
3557arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3558 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3559 const uint8_t *mac)
3560{
3561 arc_buf_hdr_t *hdr = buf->b_hdr;
3562
3563 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3564 ASSERT(HDR_HAS_L1HDR(hdr));
3565 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3566
3567 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3568 if (!HDR_PROTECTED(hdr))
3569 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3570 hdr->b_crypt_hdr.b_dsobj = dsobj;
3571 hdr->b_crypt_hdr.b_ot = ot;
3572 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3573 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3574 if (!arc_hdr_has_uncompressed_buf(hdr))
3575 arc_cksum_free(hdr);
3576
3577 if (salt != NULL)
3578 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3579 if (iv != NULL)
3580 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3581 if (mac != NULL)
3582 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3583}
3584
d3c2ae1c
GW
3585/*
3586 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3587 * The buf is returned thawed since we expect the consumer to modify it.
3588 */
3589arc_buf_t *
2aa34383 3590arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
d3c2ae1c 3591{
d3c2ae1c 3592 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
6b88b4b5 3593 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
2aa34383 3594
a7004725 3595 arc_buf_t *buf = NULL;
be9a5c35 3596 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
b5256303 3597 B_FALSE, B_FALSE, &buf));
d3c2ae1c 3598 arc_buf_thaw(buf);
2aa34383
DK
3599
3600 return (buf);
3601}
3602
3603/*
3604 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3605 * for bufs containing metadata.
3606 */
3607arc_buf_t *
3608arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
10b3c7f5 3609 enum zio_compress compression_type, uint8_t complevel)
2aa34383 3610{
2aa34383
DK
3611 ASSERT3U(lsize, >, 0);
3612 ASSERT3U(lsize, >=, psize);
b5256303
TC
3613 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3614 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
2aa34383 3615
a7004725 3616 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6b88b4b5 3617 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
2aa34383 3618
a7004725 3619 arc_buf_t *buf = NULL;
be9a5c35 3620 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
b5256303 3621 B_TRUE, B_FALSE, B_FALSE, &buf));
2aa34383
DK
3622 arc_buf_thaw(buf);
3623 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3624
6b88b4b5
AM
3625 /*
3626 * To ensure that the hdr has the correct data in it if we call
3627 * arc_untransform() on this buf before it's been written to disk,
3628 * it's easiest if we just set up sharing between the buf and the hdr.
3629 */
3630 arc_share_buf(hdr, buf);
a6255b7f 3631
d3c2ae1c 3632 return (buf);
34dc7c2f
BB
3633}
3634
b5256303
TC
3635arc_buf_t *
3636arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3637 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3638 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
10b3c7f5 3639 enum zio_compress compression_type, uint8_t complevel)
b5256303
TC
3640{
3641 arc_buf_hdr_t *hdr;
3642 arc_buf_t *buf;
3643 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3644 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3645
3646 ASSERT3U(lsize, >, 0);
3647 ASSERT3U(lsize, >=, psize);
3648 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3649 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3650
3651 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
6b88b4b5 3652 compression_type, complevel, type);
b5256303
TC
3653
3654 hdr->b_crypt_hdr.b_dsobj = dsobj;
3655 hdr->b_crypt_hdr.b_ot = ot;
3656 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3657 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3658 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3659 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3660 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3661
3662 /*
3663 * This buffer will be considered encrypted even if the ot is not an
3664 * encrypted type. It will become authenticated instead in
3665 * arc_write_ready().
3666 */
3667 buf = NULL;
be9a5c35 3668 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
b5256303
TC
3669 B_FALSE, B_FALSE, &buf));
3670 arc_buf_thaw(buf);
3671 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3672
3673 return (buf);
3674}
3675
08532162
GA
3676static void
3677l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3678 boolean_t state_only)
3679{
3680 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3681 l2arc_dev_t *dev = l2hdr->b_dev;
3682 uint64_t lsize = HDR_GET_LSIZE(hdr);
3683 uint64_t psize = HDR_GET_PSIZE(hdr);
3684 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3685 arc_buf_contents_t type = hdr->b_type;
3686 int64_t lsize_s;
3687 int64_t psize_s;
3688 int64_t asize_s;
3689
3690 if (incr) {
3691 lsize_s = lsize;
3692 psize_s = psize;
3693 asize_s = asize;
3694 } else {
3695 lsize_s = -lsize;
3696 psize_s = -psize;
3697 asize_s = -asize;
3698 }
3699
3700 /* If the buffer is a prefetch, count it as such. */
3701 if (HDR_PREFETCH(hdr)) {
3702 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3703 } else {
3704 /*
3705 * We use the value stored in the L2 header upon initial
3706 * caching in L2ARC. This value will be updated in case
3707 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3708 * metadata (log entry) cannot currently be updated. Having
3709 * the ARC state in the L2 header solves the problem of a
3710 * possibly absent L1 header (apparent in buffers restored
3711 * from persistent L2ARC).
3712 */
3713 switch (hdr->b_l2hdr.b_arcs_state) {
3714 case ARC_STATE_MRU_GHOST:
3715 case ARC_STATE_MRU:
3716 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3717 break;
3718 case ARC_STATE_MFU_GHOST:
3719 case ARC_STATE_MFU:
3720 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3721 break;
3722 default:
3723 break;
3724 }
3725 }
3726
3727 if (state_only)
3728 return;
3729
3730 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3731 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3732
3733 switch (type) {
3734 case ARC_BUFC_DATA:
3735 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3736 break;
3737 case ARC_BUFC_METADATA:
3738 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3739 break;
3740 default:
3741 break;
3742 }
3743}
3744
3745
d962d5da
PS
3746static void
3747arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3748{
3749 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3750 l2arc_dev_t *dev = l2hdr->b_dev;
7558997d
SD
3751 uint64_t psize = HDR_GET_PSIZE(hdr);
3752 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
d962d5da
PS
3753
3754 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3755 ASSERT(HDR_HAS_L2HDR(hdr));
3756
3757 list_remove(&dev->l2ad_buflist, hdr);
3758
08532162 3759 l2arc_hdr_arcstats_decrement(hdr);
7558997d 3760 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
d962d5da 3761
7558997d
SD
3762 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3763 hdr);
d3c2ae1c 3764 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
d962d5da
PS
3765}
3766
34dc7c2f
BB
3767static void
3768arc_hdr_destroy(arc_buf_hdr_t *hdr)
3769{
b9541d6b
CW
3770 if (HDR_HAS_L1HDR(hdr)) {
3771 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
d3c2ae1c 3772 hdr->b_l1hdr.b_bufcnt > 0);
424fd7c3 3773 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
b9541d6b
CW
3774 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3775 }
34dc7c2f 3776 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
3777 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3778
3779 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
3780 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3781 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 3782
d962d5da
PS
3783 if (!buflist_held)
3784 mutex_enter(&dev->l2ad_mtx);
b9541d6b 3785
ca0bf58d 3786 /*
d962d5da
PS
3787 * Even though we checked this conditional above, we
3788 * need to check this again now that we have the
3789 * l2ad_mtx. This is because we could be racing with
3790 * another thread calling l2arc_evict() which might have
3791 * destroyed this header's L2 portion as we were waiting
3792 * to acquire the l2ad_mtx. If that happens, we don't
3793 * want to re-destroy the header's L2 portion.
ca0bf58d 3794 */
2a49ebbb
GA
3795 if (HDR_HAS_L2HDR(hdr)) {
3796
3797 if (!HDR_EMPTY(hdr))
3798 buf_discard_identity(hdr);
3799
d962d5da 3800 arc_hdr_l2hdr_destroy(hdr);
2a49ebbb 3801 }
428870ff
BB
3802
3803 if (!buflist_held)
d962d5da 3804 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
3805 }
3806
ca6c7a94
BB
3807 /*
3808 * The header's identify can only be safely discarded once it is no
3809 * longer discoverable. This requires removing it from the hash table
3810 * and the l2arc header list. After this point the hash lock can not
3811 * be used to protect the header.
3812 */
3813 if (!HDR_EMPTY(hdr))
3814 buf_discard_identity(hdr);
3815
d3c2ae1c
GW
3816 if (HDR_HAS_L1HDR(hdr)) {
3817 arc_cksum_free(hdr);
b9541d6b 3818
d3c2ae1c 3819 while (hdr->b_l1hdr.b_buf != NULL)
2aa34383 3820 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
34dc7c2f 3821
ca6c7a94 3822 if (hdr->b_l1hdr.b_pabd != NULL)
b5256303 3823 arc_hdr_free_abd(hdr, B_FALSE);
b5256303 3824
440a3eb9 3825 if (HDR_HAS_RABD(hdr))
b5256303 3826 arc_hdr_free_abd(hdr, B_TRUE);
b9541d6b
CW
3827 }
3828
34dc7c2f 3829 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 3830 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 3831 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b 3832 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b5256303
TC
3833
3834 if (!HDR_PROTECTED(hdr)) {
3835 kmem_cache_free(hdr_full_cache, hdr);
3836 } else {
3837 kmem_cache_free(hdr_full_crypt_cache, hdr);
3838 }
b9541d6b
CW
3839 } else {
3840 kmem_cache_free(hdr_l2only_cache, hdr);
3841 }
34dc7c2f
BB
3842}
3843
3844void
d3c2ae1c 3845arc_buf_destroy(arc_buf_t *buf, void* tag)
34dc7c2f
BB
3846{
3847 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 3848
b9541d6b 3849 if (hdr->b_l1hdr.b_state == arc_anon) {
d3c2ae1c
GW
3850 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3851 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3852 VERIFY0(remove_reference(hdr, NULL, tag));
3853 arc_hdr_destroy(hdr);
3854 return;
34dc7c2f
BB
3855 }
3856
ca6c7a94 3857 kmutex_t *hash_lock = HDR_LOCK(hdr);
34dc7c2f 3858 mutex_enter(hash_lock);
ca6c7a94 3859
d3c2ae1c
GW
3860 ASSERT3P(hdr, ==, buf->b_hdr);
3861 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
428870ff 3862 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
d3c2ae1c
GW
3863 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3864 ASSERT3P(buf->b_data, !=, NULL);
34dc7c2f
BB
3865
3866 (void) remove_reference(hdr, hash_lock, tag);
2aa34383 3867 arc_buf_destroy_impl(buf);
34dc7c2f 3868 mutex_exit(hash_lock);
34dc7c2f
BB
3869}
3870
34dc7c2f 3871/*
ca0bf58d
PS
3872 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3873 * state of the header is dependent on its state prior to entering this
3874 * function. The following transitions are possible:
34dc7c2f 3875 *
ca0bf58d
PS
3876 * - arc_mru -> arc_mru_ghost
3877 * - arc_mfu -> arc_mfu_ghost
3878 * - arc_mru_ghost -> arc_l2c_only
3879 * - arc_mru_ghost -> deleted
3880 * - arc_mfu_ghost -> arc_l2c_only
3881 * - arc_mfu_ghost -> deleted
f7de776d
AM
3882 *
3883 * Return total size of evicted data buffers for eviction progress tracking.
3884 * When evicting from ghost states return logical buffer size to make eviction
3885 * progress at the same (or at least comparable) rate as from non-ghost states.
3886 *
3887 * Return *real_evicted for actual ARC size reduction to wake up threads
3888 * waiting for it. For non-ghost states it includes size of evicted data
3889 * buffers (the headers are not freed there). For ghost states it includes
3890 * only the evicted headers size.
34dc7c2f 3891 */
ca0bf58d 3892static int64_t
f7de776d 3893arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, uint64_t *real_evicted)
34dc7c2f 3894{
ca0bf58d
PS
3895 arc_state_t *evicted_state, *state;
3896 int64_t bytes_evicted = 0;
d4a72f23
TC
3897 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3898 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
34dc7c2f 3899
ca0bf58d
PS
3900 ASSERT(MUTEX_HELD(hash_lock));
3901 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 3902
f7de776d 3903 *real_evicted = 0;
ca0bf58d
PS
3904 state = hdr->b_l1hdr.b_state;
3905 if (GHOST_STATE(state)) {
3906 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c 3907 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
e8b96c60
MA
3908
3909 /*
ca0bf58d 3910 * l2arc_write_buffers() relies on a header's L1 portion
a6255b7f 3911 * (i.e. its b_pabd field) during it's write phase.
ca0bf58d
PS
3912 * Thus, we cannot push a header onto the arc_l2c_only
3913 * state (removing its L1 piece) until the header is
3914 * done being written to the l2arc.
e8b96c60 3915 */
ca0bf58d
PS
3916 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3917 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3918 return (bytes_evicted);
e8b96c60
MA
3919 }
3920
ca0bf58d 3921 ARCSTAT_BUMP(arcstat_deleted);
d3c2ae1c 3922 bytes_evicted += HDR_GET_LSIZE(hdr);
428870ff 3923
ca0bf58d 3924 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 3925
ca0bf58d 3926 if (HDR_HAS_L2HDR(hdr)) {
a6255b7f 3927 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
b5256303 3928 ASSERT(!HDR_HAS_RABD(hdr));
ca0bf58d
PS
3929 /*
3930 * This buffer is cached on the 2nd Level ARC;
3931 * don't destroy the header.
3932 */
3933 arc_change_state(arc_l2c_only, hdr, hash_lock);
3934 /*
3935 * dropping from L1+L2 cached to L2-only,
3936 * realloc to remove the L1 header.
3937 */
3938 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3939 hdr_l2only_cache);
f7de776d 3940 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
34dc7c2f 3941 } else {
ca0bf58d
PS
3942 arc_change_state(arc_anon, hdr, hash_lock);
3943 arc_hdr_destroy(hdr);
f7de776d 3944 *real_evicted += HDR_FULL_SIZE;
34dc7c2f 3945 }
ca0bf58d 3946 return (bytes_evicted);
34dc7c2f
BB
3947 }
3948
ca0bf58d
PS
3949 ASSERT(state == arc_mru || state == arc_mfu);
3950 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 3951
ca0bf58d
PS
3952 /* prefetch buffers have a minimum lifespan */
3953 if (HDR_IO_IN_PROGRESS(hdr) ||
3954 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2b84817f
TC
3955 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3956 MSEC_TO_TICK(min_lifetime))) {
ca0bf58d
PS
3957 ARCSTAT_BUMP(arcstat_evict_skip);
3958 return (bytes_evicted);
da8ccd0e
PS
3959 }
3960
424fd7c3 3961 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3962 while (hdr->b_l1hdr.b_buf) {
3963 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3964 if (!mutex_tryenter(&buf->b_evict_lock)) {
3965 ARCSTAT_BUMP(arcstat_mutex_miss);
3966 break;
3967 }
f7de776d 3968 if (buf->b_data != NULL) {
d3c2ae1c 3969 bytes_evicted += HDR_GET_LSIZE(hdr);
f7de776d
AM
3970 *real_evicted += HDR_GET_LSIZE(hdr);
3971 }
d3c2ae1c 3972 mutex_exit(&buf->b_evict_lock);
2aa34383 3973 arc_buf_destroy_impl(buf);
ca0bf58d 3974 }
34dc7c2f 3975
ca0bf58d 3976 if (HDR_HAS_L2HDR(hdr)) {
d3c2ae1c 3977 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
ca0bf58d 3978 } else {
d3c2ae1c
GW
3979 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3980 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3981 HDR_GET_LSIZE(hdr));
08532162
GA
3982
3983 switch (state->arcs_state) {
3984 case ARC_STATE_MRU:
3985 ARCSTAT_INCR(
3986 arcstat_evict_l2_eligible_mru,
3987 HDR_GET_LSIZE(hdr));
3988 break;
3989 case ARC_STATE_MFU:
3990 ARCSTAT_INCR(
3991 arcstat_evict_l2_eligible_mfu,
3992 HDR_GET_LSIZE(hdr));
3993 break;
3994 default:
3995 break;
3996 }
d3c2ae1c
GW
3997 } else {
3998 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3999 HDR_GET_LSIZE(hdr));
4000 }
ca0bf58d 4001 }
34dc7c2f 4002
d3c2ae1c
GW
4003 if (hdr->b_l1hdr.b_bufcnt == 0) {
4004 arc_cksum_free(hdr);
4005
4006 bytes_evicted += arc_hdr_size(hdr);
f7de776d 4007 *real_evicted += arc_hdr_size(hdr);
d3c2ae1c
GW
4008
4009 /*
4010 * If this hdr is being evicted and has a compressed
4011 * buffer then we discard it here before we change states.
4012 * This ensures that the accounting is updated correctly
a6255b7f 4013 * in arc_free_data_impl().
d3c2ae1c 4014 */
b5256303
TC
4015 if (hdr->b_l1hdr.b_pabd != NULL)
4016 arc_hdr_free_abd(hdr, B_FALSE);
4017
4018 if (HDR_HAS_RABD(hdr))
4019 arc_hdr_free_abd(hdr, B_TRUE);
d3c2ae1c 4020
ca0bf58d
PS
4021 arc_change_state(evicted_state, hdr, hash_lock);
4022 ASSERT(HDR_IN_HASH_TABLE(hdr));
d3c2ae1c 4023 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
ca0bf58d
PS
4024 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4025 }
34dc7c2f 4026
ca0bf58d 4027 return (bytes_evicted);
34dc7c2f
BB
4028}
4029
3442c2a0
MA
4030static void
4031arc_set_need_free(void)
4032{
4033 ASSERT(MUTEX_HELD(&arc_evict_lock));
4034 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
4035 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
4036 if (aw == NULL) {
4037 arc_need_free = MAX(-remaining, 0);
4038 } else {
4039 arc_need_free =
4040 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
4041 }
4042}
4043
ca0bf58d
PS
4044static uint64_t
4045arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
8172df64 4046 uint64_t spa, uint64_t bytes)
34dc7c2f 4047{
ca0bf58d 4048 multilist_sublist_t *mls;
f7de776d 4049 uint64_t bytes_evicted = 0, real_evicted = 0;
ca0bf58d 4050 arc_buf_hdr_t *hdr;
34dc7c2f 4051 kmutex_t *hash_lock;
8172df64 4052 int evict_count = zfs_arc_evict_batch_limit;
34dc7c2f 4053
ca0bf58d 4054 ASSERT3P(marker, !=, NULL);
ca0bf58d
PS
4055
4056 mls = multilist_sublist_lock(ml, idx);
572e2857 4057
8172df64 4058 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
ca0bf58d 4059 hdr = multilist_sublist_prev(mls, marker)) {
8172df64 4060 if ((evict_count <= 0) || (bytes_evicted >= bytes))
ca0bf58d
PS
4061 break;
4062
4063 /*
4064 * To keep our iteration location, move the marker
4065 * forward. Since we're not holding hdr's hash lock, we
4066 * must be very careful and not remove 'hdr' from the
4067 * sublist. Otherwise, other consumers might mistake the
4068 * 'hdr' as not being on a sublist when they call the
4069 * multilist_link_active() function (they all rely on
4070 * the hash lock protecting concurrent insertions and
4071 * removals). multilist_sublist_move_forward() was
4072 * specifically implemented to ensure this is the case
4073 * (only 'marker' will be removed and re-inserted).
4074 */
4075 multilist_sublist_move_forward(mls, marker);
4076
4077 /*
4078 * The only case where the b_spa field should ever be
4079 * zero, is the marker headers inserted by
4080 * arc_evict_state(). It's possible for multiple threads
4081 * to be calling arc_evict_state() concurrently (e.g.
4082 * dsl_pool_close() and zio_inject_fault()), so we must
4083 * skip any markers we see from these other threads.
4084 */
2a432414 4085 if (hdr->b_spa == 0)
572e2857
BB
4086 continue;
4087
ca0bf58d
PS
4088 /* we're only interested in evicting buffers of a certain spa */
4089 if (spa != 0 && hdr->b_spa != spa) {
4090 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 4091 continue;
ca0bf58d
PS
4092 }
4093
4094 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
4095
4096 /*
ca0bf58d
PS
4097 * We aren't calling this function from any code path
4098 * that would already be holding a hash lock, so we're
4099 * asserting on this assumption to be defensive in case
4100 * this ever changes. Without this check, it would be
4101 * possible to incorrectly increment arcstat_mutex_miss
4102 * below (e.g. if the code changed such that we called
4103 * this function with a hash lock held).
e8b96c60 4104 */
ca0bf58d
PS
4105 ASSERT(!MUTEX_HELD(hash_lock));
4106
34dc7c2f 4107 if (mutex_tryenter(hash_lock)) {
f7de776d
AM
4108 uint64_t revicted;
4109 uint64_t evicted = arc_evict_hdr(hdr, hash_lock,
4110 &revicted);
ca0bf58d 4111 mutex_exit(hash_lock);
34dc7c2f 4112
ca0bf58d 4113 bytes_evicted += evicted;
f7de776d 4114 real_evicted += revicted;
34dc7c2f 4115
572e2857 4116 /*
ca0bf58d
PS
4117 * If evicted is zero, arc_evict_hdr() must have
4118 * decided to skip this header, don't increment
4119 * evict_count in this case.
572e2857 4120 */
ca0bf58d 4121 if (evicted != 0)
8172df64 4122 evict_count--;
ca0bf58d 4123
e8b96c60 4124 } else {
ca0bf58d 4125 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 4126 }
34dc7c2f 4127 }
34dc7c2f 4128
ca0bf58d 4129 multilist_sublist_unlock(mls);
34dc7c2f 4130
3442c2a0
MA
4131 /*
4132 * Increment the count of evicted bytes, and wake up any threads that
4133 * are waiting for the count to reach this value. Since the list is
4134 * ordered by ascending aew_count, we pop off the beginning of the
4135 * list until we reach the end, or a waiter that's past the current
4136 * "count". Doing this outside the loop reduces the number of times
4137 * we need to acquire the global arc_evict_lock.
4138 *
4139 * Only wake when there's sufficient free memory in the system
4140 * (specifically, arc_sys_free/2, which by default is a bit more than
4141 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4142 */
4143 mutex_enter(&arc_evict_lock);
f7de776d 4144 arc_evict_count += real_evicted;
3442c2a0 4145
dc303dcf 4146 if (arc_free_memory() > arc_sys_free / 2) {
3442c2a0
MA
4147 arc_evict_waiter_t *aw;
4148 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4149 aw->aew_count <= arc_evict_count) {
4150 list_remove(&arc_evict_waiters, aw);
4151 cv_broadcast(&aw->aew_cv);
4152 }
4153 }
4154 arc_set_need_free();
4155 mutex_exit(&arc_evict_lock);
4156
67c0f0de
MA
4157 /*
4158 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4159 * if the average cached block is small), eviction can be on-CPU for
4160 * many seconds. To ensure that other threads that may be bound to
4161 * this CPU are able to make progress, make a voluntary preemption
4162 * call here.
4163 */
4164 cond_resched();
4165
ca0bf58d 4166 return (bytes_evicted);
34dc7c2f
BB
4167}
4168
ca0bf58d
PS
4169/*
4170 * Evict buffers from the given arc state, until we've removed the
4171 * specified number of bytes. Move the removed buffers to the
4172 * appropriate evict state.
4173 *
4174 * This function makes a "best effort". It skips over any buffers
4175 * it can't get a hash_lock on, and so, may not catch all candidates.
4176 * It may also return without evicting as much space as requested.
4177 *
4178 * If bytes is specified using the special value ARC_EVICT_ALL, this
4179 * will evict all available (i.e. unlocked and evictable) buffers from
4180 * the given arc state; which is used by arc_flush().
4181 */
4182static uint64_t
8172df64 4183arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes,
ca0bf58d 4184 arc_buf_contents_t type)
34dc7c2f 4185{
ca0bf58d 4186 uint64_t total_evicted = 0;
ffdf019c 4187 multilist_t *ml = &state->arcs_list[type];
ca0bf58d
PS
4188 int num_sublists;
4189 arc_buf_hdr_t **markers;
ca0bf58d 4190
ca0bf58d 4191 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
4192
4193 /*
ca0bf58d
PS
4194 * If we've tried to evict from each sublist, made some
4195 * progress, but still have not hit the target number of bytes
4196 * to evict, we want to keep trying. The markers allow us to
4197 * pick up where we left off for each individual sublist, rather
4198 * than starting from the tail each time.
d164b209 4199 */
ca0bf58d 4200 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
1c27024e 4201 for (int i = 0; i < num_sublists; i++) {
ca0bf58d 4202 multilist_sublist_t *mls;
34dc7c2f 4203
ca0bf58d
PS
4204 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4205
4206 /*
4207 * A b_spa of 0 is used to indicate that this header is
5dd92909 4208 * a marker. This fact is used in arc_evict_type() and
ca0bf58d
PS
4209 * arc_evict_state_impl().
4210 */
4211 markers[i]->b_spa = 0;
34dc7c2f 4212
ca0bf58d
PS
4213 mls = multilist_sublist_lock(ml, i);
4214 multilist_sublist_insert_tail(mls, markers[i]);
4215 multilist_sublist_unlock(mls);
34dc7c2f
BB
4216 }
4217
d164b209 4218 /*
ca0bf58d
PS
4219 * While we haven't hit our target number of bytes to evict, or
4220 * we're evicting all available buffers.
d164b209 4221 */
8172df64 4222 while (total_evicted < bytes) {
25458cbe
TC
4223 int sublist_idx = multilist_get_random_index(ml);
4224 uint64_t scan_evicted = 0;
4225
4226 /*
4227 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4228 * Request that 10% of the LRUs be scanned by the superblock
4229 * shrinker.
4230 */
c4c162c1
AM
4231 if (type == ARC_BUFC_DATA && aggsum_compare(
4232 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) {
4233 arc_prune_async((aggsum_upper_bound(
4234 &arc_sums.arcstat_dnode_size) -
03fdcb9a 4235 arc_dnode_size_limit) / sizeof (dnode_t) /
37fb3e43
PD
4236 zfs_arc_dnode_reduce_percent);
4237 }
25458cbe 4238
ca0bf58d
PS
4239 /*
4240 * Start eviction using a randomly selected sublist,
4241 * this is to try and evenly balance eviction across all
4242 * sublists. Always starting at the same sublist
4243 * (e.g. index 0) would cause evictions to favor certain
4244 * sublists over others.
4245 */
1c27024e 4246 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4247 uint64_t bytes_remaining;
4248 uint64_t bytes_evicted;
d164b209 4249
8172df64 4250 if (total_evicted < bytes)
ca0bf58d
PS
4251 bytes_remaining = bytes - total_evicted;
4252 else
4253 break;
34dc7c2f 4254
ca0bf58d
PS
4255 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4256 markers[sublist_idx], spa, bytes_remaining);
4257
4258 scan_evicted += bytes_evicted;
4259 total_evicted += bytes_evicted;
4260
4261 /* we've reached the end, wrap to the beginning */
4262 if (++sublist_idx >= num_sublists)
4263 sublist_idx = 0;
4264 }
4265
4266 /*
4267 * If we didn't evict anything during this scan, we have
4268 * no reason to believe we'll evict more during another
4269 * scan, so break the loop.
4270 */
4271 if (scan_evicted == 0) {
4272 /* This isn't possible, let's make that obvious */
4273 ASSERT3S(bytes, !=, 0);
34dc7c2f 4274
ca0bf58d
PS
4275 /*
4276 * When bytes is ARC_EVICT_ALL, the only way to
4277 * break the loop is when scan_evicted is zero.
4278 * In that case, we actually have evicted enough,
4279 * so we don't want to increment the kstat.
4280 */
4281 if (bytes != ARC_EVICT_ALL) {
4282 ASSERT3S(total_evicted, <, bytes);
4283 ARCSTAT_BUMP(arcstat_evict_not_enough);
4284 }
d164b209 4285
ca0bf58d
PS
4286 break;
4287 }
d164b209 4288 }
34dc7c2f 4289
1c27024e 4290 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4291 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4292 multilist_sublist_remove(mls, markers[i]);
4293 multilist_sublist_unlock(mls);
34dc7c2f 4294
ca0bf58d 4295 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 4296 }
ca0bf58d
PS
4297 kmem_free(markers, sizeof (*markers) * num_sublists);
4298
4299 return (total_evicted);
4300}
4301
4302/*
4303 * Flush all "evictable" data of the given type from the arc state
4304 * specified. This will not evict any "active" buffers (i.e. referenced).
4305 *
d3c2ae1c 4306 * When 'retry' is set to B_FALSE, the function will make a single pass
ca0bf58d
PS
4307 * over the state and evict any buffers that it can. Since it doesn't
4308 * continually retry the eviction, it might end up leaving some buffers
4309 * in the ARC due to lock misses.
4310 *
d3c2ae1c 4311 * When 'retry' is set to B_TRUE, the function will continually retry the
ca0bf58d
PS
4312 * eviction until *all* evictable buffers have been removed from the
4313 * state. As a result, if concurrent insertions into the state are
4314 * allowed (e.g. if the ARC isn't shutting down), this function might
4315 * wind up in an infinite loop, continually trying to evict buffers.
4316 */
4317static uint64_t
4318arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4319 boolean_t retry)
4320{
4321 uint64_t evicted = 0;
4322
424fd7c3 4323 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
ca0bf58d
PS
4324 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4325
4326 if (!retry)
4327 break;
4328 }
4329
4330 return (evicted);
34dc7c2f
BB
4331}
4332
ca0bf58d
PS
4333/*
4334 * Evict the specified number of bytes from the state specified,
4335 * restricting eviction to the spa and type given. This function
4336 * prevents us from trying to evict more from a state's list than
4337 * is "evictable", and to skip evicting altogether when passed a
4338 * negative value for "bytes". In contrast, arc_evict_state() will
4339 * evict everything it can, when passed a negative value for "bytes".
4340 */
4341static uint64_t
5dd92909 4342arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
ca0bf58d
PS
4343 arc_buf_contents_t type)
4344{
8172df64 4345 uint64_t delta;
ca0bf58d 4346
424fd7c3
TS
4347 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4348 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4349 bytes);
ca0bf58d
PS
4350 return (arc_evict_state(state, spa, delta, type));
4351 }
4352
4353 return (0);
4354}
4355
4356/*
4357 * The goal of this function is to evict enough meta data buffers from the
4358 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4359 * more complicated than it appears because it is common for data buffers
4360 * to have holds on meta data buffers. In addition, dnode meta data buffers
4361 * will be held by the dnodes in the block preventing them from being freed.
4362 * This means we can't simply traverse the ARC and expect to always find
4363 * enough unheld meta data buffer to release.
4364 *
4365 * Therefore, this function has been updated to make alternating passes
4366 * over the ARC releasing data buffers and then newly unheld meta data
37fb3e43 4367 * buffers. This ensures forward progress is maintained and meta_used
ca0bf58d
PS
4368 * will decrease. Normally this is sufficient, but if required the ARC
4369 * will call the registered prune callbacks causing dentry and inodes to
4370 * be dropped from the VFS cache. This will make dnode meta data buffers
4371 * available for reclaim.
4372 */
4373static uint64_t
5dd92909 4374arc_evict_meta_balanced(uint64_t meta_used)
ca0bf58d 4375{
25e2ab16
TC
4376 int64_t delta, prune = 0, adjustmnt;
4377 uint64_t total_evicted = 0;
ca0bf58d 4378 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 4379 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
4380
4381restart:
4382 /*
4383 * This slightly differs than the way we evict from the mru in
5dd92909 4384 * arc_evict because we don't have a "target" value (i.e. no
ca0bf58d
PS
4385 * "meta" arc_p). As a result, I think we can completely
4386 * cannibalize the metadata in the MRU before we evict the
4387 * metadata from the MFU. I think we probably need to implement a
4388 * "metadata arc_p" value to do this properly.
4389 */
37fb3e43 4390 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4391
424fd7c3
TS
4392 if (adjustmnt > 0 &&
4393 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4394 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
d3c2ae1c 4395 adjustmnt);
5dd92909 4396 total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
ca0bf58d
PS
4397 adjustmnt -= delta;
4398 }
4399
4400 /*
4401 * We can't afford to recalculate adjustmnt here. If we do,
4402 * new metadata buffers can sneak into the MRU or ANON lists,
4403 * thus penalize the MFU metadata. Although the fudge factor is
4404 * small, it has been empirically shown to be significant for
4405 * certain workloads (e.g. creating many empty directories). As
4406 * such, we use the original calculation for adjustmnt, and
4407 * simply decrement the amount of data evicted from the MRU.
4408 */
4409
424fd7c3
TS
4410 if (adjustmnt > 0 &&
4411 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4412 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
d3c2ae1c 4413 adjustmnt);
5dd92909 4414 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
ca0bf58d
PS
4415 }
4416
37fb3e43 4417 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4418
d3c2ae1c 4419 if (adjustmnt > 0 &&
424fd7c3 4420 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4421 delta = MIN(adjustmnt,
424fd7c3 4422 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
5dd92909 4423 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
ca0bf58d
PS
4424 adjustmnt -= delta;
4425 }
4426
d3c2ae1c 4427 if (adjustmnt > 0 &&
424fd7c3 4428 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4429 delta = MIN(adjustmnt,
424fd7c3 4430 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
5dd92909 4431 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
ca0bf58d
PS
4432 }
4433
4434 /*
4435 * If after attempting to make the requested adjustment to the ARC
4436 * the meta limit is still being exceeded then request that the
4437 * higher layers drop some cached objects which have holds on ARC
4438 * meta buffers. Requests to the upper layers will be made with
4439 * increasingly large scan sizes until the ARC is below the limit.
4440 */
37fb3e43 4441 if (meta_used > arc_meta_limit) {
ca0bf58d
PS
4442 if (type == ARC_BUFC_DATA) {
4443 type = ARC_BUFC_METADATA;
4444 } else {
4445 type = ARC_BUFC_DATA;
4446
4447 if (zfs_arc_meta_prune) {
4448 prune += zfs_arc_meta_prune;
f6046738 4449 arc_prune_async(prune);
ca0bf58d
PS
4450 }
4451 }
4452
4453 if (restarts > 0) {
4454 restarts--;
4455 goto restart;
4456 }
4457 }
4458 return (total_evicted);
4459}
4460
f6046738 4461/*
c4c162c1 4462 * Evict metadata buffers from the cache, such that arcstat_meta_used is
f6046738
BB
4463 * capped by the arc_meta_limit tunable.
4464 */
4465static uint64_t
5dd92909 4466arc_evict_meta_only(uint64_t meta_used)
f6046738
BB
4467{
4468 uint64_t total_evicted = 0;
4469 int64_t target;
4470
4471 /*
4472 * If we're over the meta limit, we want to evict enough
4473 * metadata to get back under the meta limit. We don't want to
4474 * evict so much that we drop the MRU below arc_p, though. If
4475 * we're over the meta limit more than we're over arc_p, we
4476 * evict some from the MRU here, and some from the MFU below.
4477 */
37fb3e43 4478 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3
TS
4479 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4480 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738 4481
5dd92909 4482 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
f6046738
BB
4483
4484 /*
4485 * Similar to the above, we want to evict enough bytes to get us
4486 * below the meta limit, but not so much as to drop us below the
2aa34383 4487 * space allotted to the MFU (which is defined as arc_c - arc_p).
f6046738 4488 */
37fb3e43 4489 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3 4490 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
37fb3e43 4491 (arc_c - arc_p)));
f6046738 4492
5dd92909 4493 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
f6046738
BB
4494
4495 return (total_evicted);
4496}
4497
4498static uint64_t
5dd92909 4499arc_evict_meta(uint64_t meta_used)
f6046738
BB
4500{
4501 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
5dd92909 4502 return (arc_evict_meta_only(meta_used));
f6046738 4503 else
5dd92909 4504 return (arc_evict_meta_balanced(meta_used));
f6046738
BB
4505}
4506
ca0bf58d
PS
4507/*
4508 * Return the type of the oldest buffer in the given arc state
4509 *
4510 * This function will select a random sublist of type ARC_BUFC_DATA and
4511 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4512 * is compared, and the type which contains the "older" buffer will be
4513 * returned.
4514 */
4515static arc_buf_contents_t
5dd92909 4516arc_evict_type(arc_state_t *state)
ca0bf58d 4517{
ffdf019c
AM
4518 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
4519 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
ca0bf58d
PS
4520 int data_idx = multilist_get_random_index(data_ml);
4521 int meta_idx = multilist_get_random_index(meta_ml);
4522 multilist_sublist_t *data_mls;
4523 multilist_sublist_t *meta_mls;
4524 arc_buf_contents_t type;
4525 arc_buf_hdr_t *data_hdr;
4526 arc_buf_hdr_t *meta_hdr;
4527
4528 /*
4529 * We keep the sublist lock until we're finished, to prevent
4530 * the headers from being destroyed via arc_evict_state().
4531 */
4532 data_mls = multilist_sublist_lock(data_ml, data_idx);
4533 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4534
4535 /*
4536 * These two loops are to ensure we skip any markers that
4537 * might be at the tail of the lists due to arc_evict_state().
4538 */
4539
4540 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4541 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4542 if (data_hdr->b_spa != 0)
4543 break;
4544 }
4545
4546 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4547 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4548 if (meta_hdr->b_spa != 0)
4549 break;
4550 }
4551
4552 if (data_hdr == NULL && meta_hdr == NULL) {
4553 type = ARC_BUFC_DATA;
4554 } else if (data_hdr == NULL) {
4555 ASSERT3P(meta_hdr, !=, NULL);
4556 type = ARC_BUFC_METADATA;
4557 } else if (meta_hdr == NULL) {
4558 ASSERT3P(data_hdr, !=, NULL);
4559 type = ARC_BUFC_DATA;
4560 } else {
4561 ASSERT3P(data_hdr, !=, NULL);
4562 ASSERT3P(meta_hdr, !=, NULL);
4563
4564 /* The headers can't be on the sublist without an L1 header */
4565 ASSERT(HDR_HAS_L1HDR(data_hdr));
4566 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4567
4568 if (data_hdr->b_l1hdr.b_arc_access <
4569 meta_hdr->b_l1hdr.b_arc_access) {
4570 type = ARC_BUFC_DATA;
4571 } else {
4572 type = ARC_BUFC_METADATA;
4573 }
4574 }
4575
4576 multilist_sublist_unlock(meta_mls);
4577 multilist_sublist_unlock(data_mls);
4578
4579 return (type);
4580}
4581
4582/*
c4c162c1 4583 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
ca0bf58d
PS
4584 */
4585static uint64_t
5dd92909 4586arc_evict(void)
ca0bf58d
PS
4587{
4588 uint64_t total_evicted = 0;
4589 uint64_t bytes;
4590 int64_t target;
c4c162c1
AM
4591 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4592 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used);
ca0bf58d
PS
4593
4594 /*
4595 * If we're over arc_meta_limit, we want to correct that before
4596 * potentially evicting data buffers below.
4597 */
5dd92909 4598 total_evicted += arc_evict_meta(ameta);
ca0bf58d
PS
4599
4600 /*
4601 * Adjust MRU size
4602 *
4603 * If we're over the target cache size, we want to evict enough
4604 * from the list to get back to our target size. We don't want
4605 * to evict too much from the MRU, such that it drops below
4606 * arc_p. So, if we're over our target cache size more than
4607 * the MRU is over arc_p, we'll evict enough to get back to
4608 * arc_p here, and then evict more from the MFU below.
4609 */
37fb3e43 4610 target = MIN((int64_t)(asize - arc_c),
424fd7c3
TS
4611 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4612 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
ca0bf58d
PS
4613
4614 /*
4615 * If we're below arc_meta_min, always prefer to evict data.
4616 * Otherwise, try to satisfy the requested number of bytes to
4617 * evict from the type which contains older buffers; in an
4618 * effort to keep newer buffers in the cache regardless of their
4619 * type. If we cannot satisfy the number of bytes from this
4620 * type, spill over into the next type.
4621 */
5dd92909 4622 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
37fb3e43 4623 ameta > arc_meta_min) {
5dd92909 4624 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4625 total_evicted += bytes;
4626
4627 /*
4628 * If we couldn't evict our target number of bytes from
4629 * metadata, we try to get the rest from data.
4630 */
4631 target -= bytes;
4632
4633 total_evicted +=
5dd92909 4634 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
ca0bf58d 4635 } else {
5dd92909 4636 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4637 total_evicted += bytes;
4638
4639 /*
4640 * If we couldn't evict our target number of bytes from
4641 * data, we try to get the rest from metadata.
4642 */
4643 target -= bytes;
4644
4645 total_evicted +=
5dd92909 4646 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4647 }
4648
0405eeea
RE
4649 /*
4650 * Re-sum ARC stats after the first round of evictions.
4651 */
c4c162c1
AM
4652 asize = aggsum_value(&arc_sums.arcstat_size);
4653 ameta = aggsum_value(&arc_sums.arcstat_meta_used);
0405eeea
RE
4654
4655
ca0bf58d
PS
4656 /*
4657 * Adjust MFU size
4658 *
4659 * Now that we've tried to evict enough from the MRU to get its
4660 * size back to arc_p, if we're still above the target cache
4661 * size, we evict the rest from the MFU.
4662 */
37fb3e43 4663 target = asize - arc_c;
ca0bf58d 4664
5dd92909 4665 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
37fb3e43 4666 ameta > arc_meta_min) {
5dd92909 4667 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4668 total_evicted += bytes;
4669
4670 /*
4671 * If we couldn't evict our target number of bytes from
4672 * metadata, we try to get the rest from data.
4673 */
4674 target -= bytes;
4675
4676 total_evicted +=
5dd92909 4677 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
ca0bf58d 4678 } else {
5dd92909 4679 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4680 total_evicted += bytes;
4681
4682 /*
4683 * If we couldn't evict our target number of bytes from
4684 * data, we try to get the rest from data.
4685 */
4686 target -= bytes;
4687
4688 total_evicted +=
5dd92909 4689 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4690 }
4691
4692 /*
4693 * Adjust ghost lists
4694 *
4695 * In addition to the above, the ARC also defines target values
4696 * for the ghost lists. The sum of the mru list and mru ghost
4697 * list should never exceed the target size of the cache, and
4698 * the sum of the mru list, mfu list, mru ghost list, and mfu
4699 * ghost list should never exceed twice the target size of the
4700 * cache. The following logic enforces these limits on the ghost
4701 * caches, and evicts from them as needed.
4702 */
424fd7c3
TS
4703 target = zfs_refcount_count(&arc_mru->arcs_size) +
4704 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d 4705
5dd92909 4706 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4707 total_evicted += bytes;
4708
4709 target -= bytes;
4710
4711 total_evicted +=
5dd92909 4712 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4713
4714 /*
4715 * We assume the sum of the mru list and mfu list is less than
4716 * or equal to arc_c (we enforced this above), which means we
4717 * can use the simpler of the two equations below:
4718 *
4719 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4720 * mru ghost + mfu ghost <= arc_c
4721 */
424fd7c3
TS
4722 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4723 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d 4724
5dd92909 4725 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
ca0bf58d
PS
4726 total_evicted += bytes;
4727
4728 target -= bytes;
4729
4730 total_evicted +=
5dd92909 4731 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
ca0bf58d
PS
4732
4733 return (total_evicted);
4734}
4735
ca0bf58d
PS
4736void
4737arc_flush(spa_t *spa, boolean_t retry)
ab26409d 4738{
ca0bf58d 4739 uint64_t guid = 0;
94520ca4 4740
bc888666 4741 /*
d3c2ae1c 4742 * If retry is B_TRUE, a spa must not be specified since we have
ca0bf58d
PS
4743 * no good way to determine if all of a spa's buffers have been
4744 * evicted from an arc state.
bc888666 4745 */
ca0bf58d 4746 ASSERT(!retry || spa == 0);
d164b209 4747
b9541d6b 4748 if (spa != NULL)
3541dc6d 4749 guid = spa_load_guid(spa);
d164b209 4750
ca0bf58d
PS
4751 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4752 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4753
4754 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4755 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4756
4757 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4758 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 4759
ca0bf58d
PS
4760 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4761 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f
BB
4762}
4763
c9c9c1e2 4764void
3ec34e55 4765arc_reduce_target_size(int64_t to_free)
34dc7c2f 4766{
c4c162c1 4767 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
3442c2a0
MA
4768
4769 /*
4770 * All callers want the ARC to actually evict (at least) this much
4771 * memory. Therefore we reduce from the lower of the current size and
4772 * the target size. This way, even if arc_c is much higher than
4773 * arc_size (as can be the case after many calls to arc_freed(), we will
4774 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4775 * will evict.
4776 */
4777 uint64_t c = MIN(arc_c, asize);
34dc7c2f 4778
1b8951b3
TC
4779 if (c > to_free && c - to_free > arc_c_min) {
4780 arc_c = c - to_free;
ca67b33a 4781 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
4782 if (arc_p > arc_c)
4783 arc_p = (arc_c >> 1);
4784 ASSERT(arc_c >= arc_c_min);
4785 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
4786 } else {
4787 arc_c = arc_c_min;
34dc7c2f
BB
4788 }
4789
3ec34e55 4790 if (asize > arc_c) {
5dd92909
MA
4791 /* See comment in arc_evict_cb_check() on why lock+flag */
4792 mutex_enter(&arc_evict_lock);
4793 arc_evict_needed = B_TRUE;
4794 mutex_exit(&arc_evict_lock);
4795 zthr_wakeup(arc_evict_zthr);
3ec34e55 4796 }
34dc7c2f 4797}
ca67b33a
MA
4798
4799/*
4800 * Determine if the system is under memory pressure and is asking
d3c2ae1c 4801 * to reclaim memory. A return value of B_TRUE indicates that the system
ca67b33a
MA
4802 * is under memory pressure and that the arc should adjust accordingly.
4803 */
c9c9c1e2 4804boolean_t
ca67b33a
MA
4805arc_reclaim_needed(void)
4806{
4807 return (arc_available_memory() < 0);
4808}
4809
c9c9c1e2 4810void
3ec34e55 4811arc_kmem_reap_soon(void)
34dc7c2f
BB
4812{
4813 size_t i;
4814 kmem_cache_t *prev_cache = NULL;
4815 kmem_cache_t *prev_data_cache = NULL;
34dc7c2f 4816
70f02287 4817#ifdef _KERNEL
c4c162c1
AM
4818 if ((aggsum_compare(&arc_sums.arcstat_meta_used,
4819 arc_meta_limit) >= 0) && zfs_arc_meta_prune) {
f6046738
BB
4820 /*
4821 * We are exceeding our meta-data cache limit.
4822 * Prune some entries to release holds on meta-data.
4823 */
ef5b2e10 4824 arc_prune_async(zfs_arc_meta_prune);
f6046738 4825 }
70f02287
BB
4826#if defined(_ILP32)
4827 /*
4828 * Reclaim unused memory from all kmem caches.
4829 */
4830 kmem_reap();
4831#endif
4832#endif
f6046738 4833
34dc7c2f 4834 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
70f02287 4835#if defined(_ILP32)
d0c614ec 4836 /* reach upper limit of cache size on 32-bit */
4837 if (zio_buf_cache[i] == NULL)
4838 break;
4839#endif
34dc7c2f
BB
4840 if (zio_buf_cache[i] != prev_cache) {
4841 prev_cache = zio_buf_cache[i];
4842 kmem_cache_reap_now(zio_buf_cache[i]);
4843 }
4844 if (zio_data_buf_cache[i] != prev_data_cache) {
4845 prev_data_cache = zio_data_buf_cache[i];
4846 kmem_cache_reap_now(zio_data_buf_cache[i]);
4847 }
4848 }
ca0bf58d 4849 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
4850 kmem_cache_reap_now(hdr_full_cache);
4851 kmem_cache_reap_now(hdr_l2only_cache);
ca577779 4852 kmem_cache_reap_now(zfs_btree_leaf_cache);
7564073e 4853 abd_cache_reap_now();
34dc7c2f
BB
4854}
4855
3ec34e55 4856static boolean_t
5dd92909 4857arc_evict_cb_check(void *arg, zthr_t *zthr)
3ec34e55 4858{
14e4e3cb
AZ
4859 (void) arg, (void) zthr;
4860
1531506d 4861#ifdef ZFS_DEBUG
3ec34e55
BL
4862 /*
4863 * This is necessary in order to keep the kstat information
4864 * up to date for tools that display kstat data such as the
4865 * mdb ::arc dcmd and the Linux crash utility. These tools
4866 * typically do not call kstat's update function, but simply
4867 * dump out stats from the most recent update. Without
4868 * this call, these commands may show stale stats for the
1531506d
RM
4869 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4870 * with this call, the data might be out of date if the
4871 * evict thread hasn't been woken recently; but that should
4872 * suffice. The arc_state_t structures can be queried
4873 * directly if more accurate information is needed.
3ec34e55
BL
4874 */
4875 if (arc_ksp != NULL)
4876 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
1531506d 4877#endif
3ec34e55
BL
4878
4879 /*
3442c2a0
MA
4880 * We have to rely on arc_wait_for_eviction() to tell us when to
4881 * evict, rather than checking if we are overflowing here, so that we
4882 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4883 * If we have become "not overflowing" since arc_wait_for_eviction()
4884 * checked, we need to wake it up. We could broadcast the CV here,
4885 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4886 * would need to use a mutex to ensure that this function doesn't
4887 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4888 * the arc_evict_lock). However, the lock ordering of such a lock
4889 * would necessarily be incorrect with respect to the zthr_lock,
4890 * which is held before this function is called, and is held by
4891 * arc_wait_for_eviction() when it calls zthr_wakeup().
3ec34e55 4892 */
5dd92909 4893 return (arc_evict_needed);
3ec34e55
BL
4894}
4895
302f753f 4896/*
5dd92909 4897 * Keep arc_size under arc_c by running arc_evict which evicts data
3ec34e55 4898 * from the ARC.
302f753f 4899 */
61c3391a 4900static void
5dd92909 4901arc_evict_cb(void *arg, zthr_t *zthr)
34dc7c2f 4902{
14e4e3cb
AZ
4903 (void) arg, (void) zthr;
4904
3ec34e55
BL
4905 uint64_t evicted = 0;
4906 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 4907
3ec34e55 4908 /* Evict from cache */
5dd92909 4909 evicted = arc_evict();
34dc7c2f 4910
3ec34e55
BL
4911 /*
4912 * If evicted is zero, we couldn't evict anything
5dd92909 4913 * via arc_evict(). This could be due to hash lock
3ec34e55
BL
4914 * collisions, but more likely due to the majority of
4915 * arc buffers being unevictable. Therefore, even if
4916 * arc_size is above arc_c, another pass is unlikely to
4917 * be helpful and could potentially cause us to enter an
4918 * infinite loop. Additionally, zthr_iscancelled() is
4919 * checked here so that if the arc is shutting down, the
5dd92909 4920 * broadcast will wake any remaining arc evict waiters.
3ec34e55 4921 */
5dd92909
MA
4922 mutex_enter(&arc_evict_lock);
4923 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
c4c162c1 4924 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
5dd92909 4925 if (!arc_evict_needed) {
d3c2ae1c 4926 /*
3ec34e55
BL
4927 * We're either no longer overflowing, or we
4928 * can't evict anything more, so we should wake
4929 * arc_get_data_impl() sooner.
d3c2ae1c 4930 */
3442c2a0
MA
4931 arc_evict_waiter_t *aw;
4932 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4933 cv_broadcast(&aw->aew_cv);
4934 }
4935 arc_set_need_free();
3ec34e55 4936 }
5dd92909 4937 mutex_exit(&arc_evict_lock);
3ec34e55 4938 spl_fstrans_unmark(cookie);
3ec34e55
BL
4939}
4940
3ec34e55
BL
4941static boolean_t
4942arc_reap_cb_check(void *arg, zthr_t *zthr)
4943{
14e4e3cb
AZ
4944 (void) arg, (void) zthr;
4945
3ec34e55 4946 int64_t free_memory = arc_available_memory();
8a171ccd 4947 static int reap_cb_check_counter = 0;
3ec34e55
BL
4948
4949 /*
4950 * If a kmem reap is already active, don't schedule more. We must
4951 * check for this because kmem_cache_reap_soon() won't actually
4952 * block on the cache being reaped (this is to prevent callers from
4953 * becoming implicitly blocked by a system-wide kmem reap -- which,
4954 * on a system with many, many full magazines, can take minutes).
4955 */
4956 if (!kmem_cache_reap_active() && free_memory < 0) {
34dc7c2f 4957
3ec34e55
BL
4958 arc_no_grow = B_TRUE;
4959 arc_warm = B_TRUE;
0a252dae 4960 /*
3ec34e55
BL
4961 * Wait at least zfs_grow_retry (default 5) seconds
4962 * before considering growing.
0a252dae 4963 */
3ec34e55
BL
4964 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4965 return (B_TRUE);
4966 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4967 arc_no_grow = B_TRUE;
4968 } else if (gethrtime() >= arc_growtime) {
4969 arc_no_grow = B_FALSE;
4970 }
0a252dae 4971
8a171ccd
SG
4972 /*
4973 * Called unconditionally every 60 seconds to reclaim unused
4974 * zstd compression and decompression context. This is done
4975 * here to avoid the need for an independent thread.
4976 */
4977 if (!((reap_cb_check_counter++) % 60))
4978 zfs_zstd_cache_reap_now();
4979
3ec34e55
BL
4980 return (B_FALSE);
4981}
34dc7c2f 4982
3ec34e55
BL
4983/*
4984 * Keep enough free memory in the system by reaping the ARC's kmem
4985 * caches. To cause more slabs to be reapable, we may reduce the
5dd92909 4986 * target size of the cache (arc_c), causing the arc_evict_cb()
3ec34e55
BL
4987 * to free more buffers.
4988 */
61c3391a 4989static void
3ec34e55
BL
4990arc_reap_cb(void *arg, zthr_t *zthr)
4991{
14e4e3cb
AZ
4992 (void) arg, (void) zthr;
4993
3ec34e55
BL
4994 int64_t free_memory;
4995 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 4996
3ec34e55
BL
4997 /*
4998 * Kick off asynchronous kmem_reap()'s of all our caches.
4999 */
5000 arc_kmem_reap_soon();
6a8f9b6b 5001
3ec34e55
BL
5002 /*
5003 * Wait at least arc_kmem_cache_reap_retry_ms between
5004 * arc_kmem_reap_soon() calls. Without this check it is possible to
5005 * end up in a situation where we spend lots of time reaping
5006 * caches, while we're near arc_c_min. Waiting here also gives the
5007 * subsequent free memory check a chance of finding that the
5008 * asynchronous reap has already freed enough memory, and we don't
5009 * need to call arc_reduce_target_size().
5010 */
5011 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
34dc7c2f 5012
3ec34e55
BL
5013 /*
5014 * Reduce the target size as needed to maintain the amount of free
5015 * memory in the system at a fraction of the arc_size (1/128th by
5016 * default). If oversubscribed (free_memory < 0) then reduce the
5017 * target arc_size by the deficit amount plus the fractional
bf169e9f 5018 * amount. If free memory is positive but less than the fractional
3ec34e55
BL
5019 * amount, reduce by what is needed to hit the fractional amount.
5020 */
5021 free_memory = arc_available_memory();
34dc7c2f 5022
3ec34e55
BL
5023 int64_t to_free =
5024 (arc_c >> arc_shrink_shift) - free_memory;
5025 if (to_free > 0) {
3ec34e55 5026 arc_reduce_target_size(to_free);
ca0bf58d 5027 }
ca0bf58d 5028 spl_fstrans_unmark(cookie);
ca0bf58d
PS
5029}
5030
7cb67b45
BB
5031#ifdef _KERNEL
5032/*
302f753f
BB
5033 * Determine the amount of memory eligible for eviction contained in the
5034 * ARC. All clean data reported by the ghost lists can always be safely
5035 * evicted. Due to arc_c_min, the same does not hold for all clean data
5036 * contained by the regular mru and mfu lists.
5037 *
5038 * In the case of the regular mru and mfu lists, we need to report as
5039 * much clean data as possible, such that evicting that same reported
5040 * data will not bring arc_size below arc_c_min. Thus, in certain
5041 * circumstances, the total amount of clean data in the mru and mfu
5042 * lists might not actually be evictable.
5043 *
5044 * The following two distinct cases are accounted for:
5045 *
5046 * 1. The sum of the amount of dirty data contained by both the mru and
5047 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5048 * is greater than or equal to arc_c_min.
5049 * (i.e. amount of dirty data >= arc_c_min)
5050 *
5051 * This is the easy case; all clean data contained by the mru and mfu
5052 * lists is evictable. Evicting all clean data can only drop arc_size
5053 * to the amount of dirty data, which is greater than arc_c_min.
5054 *
5055 * 2. The sum of the amount of dirty data contained by both the mru and
5056 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5057 * is less than arc_c_min.
5058 * (i.e. arc_c_min > amount of dirty data)
5059 *
5060 * 2.1. arc_size is greater than or equal arc_c_min.
5061 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5062 *
5063 * In this case, not all clean data from the regular mru and mfu
5064 * lists is actually evictable; we must leave enough clean data
5065 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5066 * evictable data from the two lists combined, is exactly the
5067 * difference between arc_size and arc_c_min.
5068 *
5069 * 2.2. arc_size is less than arc_c_min
5070 * (i.e. arc_c_min > arc_size > amount of dirty data)
5071 *
5072 * In this case, none of the data contained in the mru and mfu
5073 * lists is evictable, even if it's clean. Since arc_size is
5074 * already below arc_c_min, evicting any more would only
5075 * increase this negative difference.
7cb67b45 5076 */
7cb67b45 5077
7cb67b45
BB
5078#endif /* _KERNEL */
5079
34dc7c2f
BB
5080/*
5081 * Adapt arc info given the number of bytes we are trying to add and
4e33ba4c 5082 * the state that we are coming from. This function is only called
34dc7c2f
BB
5083 * when we are adding new content to the cache.
5084 */
5085static void
5086arc_adapt(int bytes, arc_state_t *state)
5087{
5088 int mult;
728d6ae9 5089 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
424fd7c3
TS
5090 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5091 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f 5092
34dc7c2f
BB
5093 ASSERT(bytes > 0);
5094 /*
5095 * Adapt the target size of the MRU list:
5096 * - if we just hit in the MRU ghost list, then increase
5097 * the target size of the MRU list.
5098 * - if we just hit in the MFU ghost list, then increase
5099 * the target size of the MFU list by decreasing the
5100 * target size of the MRU list.
5101 */
5102 if (state == arc_mru_ghost) {
36da08ef 5103 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
5104 if (!zfs_arc_p_dampener_disable)
5105 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 5106
728d6ae9 5107 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 5108 } else if (state == arc_mfu_ghost) {
d164b209
BB
5109 uint64_t delta;
5110
36da08ef 5111 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
5112 if (!zfs_arc_p_dampener_disable)
5113 mult = MIN(mult, 10);
34dc7c2f 5114
d164b209 5115 delta = MIN(bytes * mult, arc_p);
728d6ae9 5116 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
5117 }
5118 ASSERT((int64_t)arc_p >= 0);
5119
3ec34e55
BL
5120 /*
5121 * Wake reap thread if we do not have any available memory
5122 */
ca67b33a 5123 if (arc_reclaim_needed()) {
3ec34e55 5124 zthr_wakeup(arc_reap_zthr);
ca67b33a
MA
5125 return;
5126 }
5127
34dc7c2f
BB
5128 if (arc_no_grow)
5129 return;
5130
5131 if (arc_c >= arc_c_max)
5132 return;
5133
5134 /*
5135 * If we're within (2 * maxblocksize) bytes of the target
5136 * cache size, increment the target cache size
5137 */
935434ef 5138 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
c4c162c1 5139 if (aggsum_upper_bound(&arc_sums.arcstat_size) >=
17ca3018 5140 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
5141 atomic_add_64(&arc_c, (int64_t)bytes);
5142 if (arc_c > arc_c_max)
5143 arc_c = arc_c_max;
5144 else if (state == arc_anon)
5145 atomic_add_64(&arc_p, (int64_t)bytes);
5146 if (arc_p > arc_c)
5147 arc_p = arc_c;
5148 }
5149 ASSERT((int64_t)arc_p >= 0);
5150}
5151
5152/*
ca0bf58d
PS
5153 * Check if arc_size has grown past our upper threshold, determined by
5154 * zfs_arc_overflow_shift.
34dc7c2f 5155 */
f7de776d 5156static arc_ovf_level_t
6b88b4b5 5157arc_is_overflowing(boolean_t use_reserve)
34dc7c2f 5158{
ca0bf58d 5159 /* Always allow at least one block of overflow */
5a902f5a 5160 int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
ca0bf58d 5161 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 5162
37fb3e43
PD
5163 /*
5164 * We just compare the lower bound here for performance reasons. Our
5165 * primary goals are to make sure that the arc never grows without
5166 * bound, and that it can reach its maximum size. This check
5167 * accomplishes both goals. The maximum amount we could run over by is
5168 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5169 * in the ARC. In practice, that's in the tens of MB, which is low
5170 * enough to be safe.
5171 */
f7de776d
AM
5172 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
5173 arc_c - overflow / 2;
6b88b4b5
AM
5174 if (!use_reserve)
5175 overflow /= 2;
f7de776d
AM
5176 return (over < 0 ? ARC_OVF_NONE :
5177 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
34dc7c2f
BB
5178}
5179
a6255b7f 5180static abd_t *
e111c802 5181arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
6b88b4b5 5182 int alloc_flags)
a6255b7f
DQ
5183{
5184 arc_buf_contents_t type = arc_buf_type(hdr);
5185
6b88b4b5 5186 arc_get_data_impl(hdr, size, tag, alloc_flags);
a6255b7f
DQ
5187 if (type == ARC_BUFC_METADATA) {
5188 return (abd_alloc(size, B_TRUE));
5189 } else {
5190 ASSERT(type == ARC_BUFC_DATA);
5191 return (abd_alloc(size, B_FALSE));
5192 }
5193}
5194
5195static void *
5196arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5197{
5198 arc_buf_contents_t type = arc_buf_type(hdr);
5199
6b88b4b5 5200 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT);
a6255b7f
DQ
5201 if (type == ARC_BUFC_METADATA) {
5202 return (zio_buf_alloc(size));
5203 } else {
5204 ASSERT(type == ARC_BUFC_DATA);
5205 return (zio_data_buf_alloc(size));
5206 }
5207}
5208
3442c2a0
MA
5209/*
5210 * Wait for the specified amount of data (in bytes) to be evicted from the
5211 * ARC, and for there to be sufficient free memory in the system. Waiting for
5212 * eviction ensures that the memory used by the ARC decreases. Waiting for
5213 * free memory ensures that the system won't run out of free pages, regardless
5214 * of ARC behavior and settings. See arc_lowmem_init().
5215 */
5216void
6b88b4b5 5217arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
3442c2a0 5218{
6b88b4b5 5219 switch (arc_is_overflowing(use_reserve)) {
f7de776d
AM
5220 case ARC_OVF_NONE:
5221 return;
5222 case ARC_OVF_SOME:
5223 /*
5224 * This is a bit racy without taking arc_evict_lock, but the
5225 * worst that can happen is we either call zthr_wakeup() extra
5226 * time due to race with other thread here, or the set flag
5227 * get cleared by arc_evict_cb(), which is unlikely due to
5228 * big hysteresis, but also not important since at this level
5229 * of overflow the eviction is purely advisory. Same time
5230 * taking the global lock here every time without waiting for
5231 * the actual eviction creates a significant lock contention.
5232 */
5233 if (!arc_evict_needed) {
5234 arc_evict_needed = B_TRUE;
5235 zthr_wakeup(arc_evict_zthr);
5236 }
5237 return;
5238 case ARC_OVF_SEVERE:
5239 default:
5240 {
5241 arc_evict_waiter_t aw;
5242 list_link_init(&aw.aew_node);
5243 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
3442c2a0 5244
f7de776d
AM
5245 uint64_t last_count = 0;
5246 mutex_enter(&arc_evict_lock);
5247 if (!list_is_empty(&arc_evict_waiters)) {
5248 arc_evict_waiter_t *last =
5249 list_tail(&arc_evict_waiters);
5250 last_count = last->aew_count;
5251 } else if (!arc_evict_needed) {
5252 arc_evict_needed = B_TRUE;
5253 zthr_wakeup(arc_evict_zthr);
5254 }
5255 /*
5256 * Note, the last waiter's count may be less than
5257 * arc_evict_count if we are low on memory in which
5258 * case arc_evict_state_impl() may have deferred
5259 * wakeups (but still incremented arc_evict_count).
5260 */
5261 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
3442c2a0 5262
f7de776d 5263 list_insert_tail(&arc_evict_waiters, &aw);
3442c2a0 5264
f7de776d 5265 arc_set_need_free();
3442c2a0 5266
f7de776d
AM
5267 DTRACE_PROBE3(arc__wait__for__eviction,
5268 uint64_t, amount,
5269 uint64_t, arc_evict_count,
5270 uint64_t, aw.aew_count);
3442c2a0 5271
f7de776d
AM
5272 /*
5273 * We will be woken up either when arc_evict_count reaches
5274 * aew_count, or when the ARC is no longer overflowing and
5275 * eviction completes.
5276 * In case of "false" wakeup, we will still be on the list.
5277 */
5278 do {
3442c2a0 5279 cv_wait(&aw.aew_cv, &arc_evict_lock);
f7de776d
AM
5280 } while (list_link_active(&aw.aew_node));
5281 mutex_exit(&arc_evict_lock);
3442c2a0 5282
f7de776d
AM
5283 cv_destroy(&aw.aew_cv);
5284 }
3442c2a0 5285 }
3442c2a0
MA
5286}
5287
34dc7c2f 5288/*
d3c2ae1c
GW
5289 * Allocate a block and return it to the caller. If we are hitting the
5290 * hard limit for the cache size, we must sleep, waiting for the eviction
5291 * thread to catch up. If we're past the target size but below the hard
5292 * limit, we'll only signal the reclaim thread and continue on.
34dc7c2f 5293 */
a6255b7f 5294static void
e111c802 5295arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag,
6b88b4b5 5296 int alloc_flags)
34dc7c2f 5297{
a6255b7f
DQ
5298 arc_state_t *state = hdr->b_l1hdr.b_state;
5299 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f 5300
6b88b4b5 5301 if (alloc_flags & ARC_HDR_DO_ADAPT)
e111c802 5302 arc_adapt(size, state);
34dc7c2f
BB
5303
5304 /*
3442c2a0
MA
5305 * If arc_size is currently overflowing, we must be adding data
5306 * faster than we are evicting. To ensure we don't compound the
ca0bf58d 5307 * problem by adding more data and forcing arc_size to grow even
3442c2a0
MA
5308 * further past it's target size, we wait for the eviction thread to
5309 * make some progress. We also wait for there to be sufficient free
5310 * memory in the system, as measured by arc_free_memory().
5311 *
5312 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5313 * requested size to be evicted. This should be more than 100%, to
5314 * ensure that that progress is also made towards getting arc_size
5315 * under arc_c. See the comment above zfs_arc_eviction_pct.
34dc7c2f 5316 */
6b88b4b5
AM
5317 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5318 alloc_flags & ARC_HDR_USE_RESERVE);
ab26409d 5319
d3c2ae1c 5320 VERIFY3U(hdr->b_type, ==, type);
da8ccd0e 5321 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
5322 arc_space_consume(size, ARC_SPACE_META);
5323 } else {
ca0bf58d 5324 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
5325 }
5326
34dc7c2f
BB
5327 /*
5328 * Update the state size. Note that ghost states have a
5329 * "ghost size" and so don't need to be updated.
5330 */
d3c2ae1c 5331 if (!GHOST_STATE(state)) {
34dc7c2f 5332
424fd7c3 5333 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
ca0bf58d
PS
5334
5335 /*
5336 * If this is reached via arc_read, the link is
5337 * protected by the hash lock. If reached via
5338 * arc_buf_alloc, the header should not be accessed by
5339 * any other thread. And, if reached via arc_read_done,
5340 * the hash lock will protect it if it's found in the
5341 * hash table; otherwise no other thread should be
5342 * trying to [add|remove]_reference it.
5343 */
5344 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3
TS
5345 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5346 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c 5347 size, tag);
34dc7c2f 5348 }
d3c2ae1c 5349
34dc7c2f
BB
5350 /*
5351 * If we are growing the cache, and we are adding anonymous
5352 * data, and we have outgrown arc_p, update arc_p
5353 */
c4c162c1 5354 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c &&
37fb3e43 5355 hdr->b_l1hdr.b_state == arc_anon &&
424fd7c3
TS
5356 (zfs_refcount_count(&arc_anon->arcs_size) +
5357 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
5358 arc_p = MIN(arc_c, arc_p + size);
5359 }
a6255b7f
DQ
5360}
5361
5362static void
5363arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5364{
5365 arc_free_data_impl(hdr, size, tag);
5366 abd_free(abd);
5367}
5368
5369static void
5370arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5371{
5372 arc_buf_contents_t type = arc_buf_type(hdr);
5373
5374 arc_free_data_impl(hdr, size, tag);
5375 if (type == ARC_BUFC_METADATA) {
5376 zio_buf_free(buf, size);
5377 } else {
5378 ASSERT(type == ARC_BUFC_DATA);
5379 zio_data_buf_free(buf, size);
5380 }
d3c2ae1c
GW
5381}
5382
5383/*
5384 * Free the arc data buffer.
5385 */
5386static void
a6255b7f 5387arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
d3c2ae1c
GW
5388{
5389 arc_state_t *state = hdr->b_l1hdr.b_state;
5390 arc_buf_contents_t type = arc_buf_type(hdr);
5391
5392 /* protected by hash lock, if in the hash table */
5393 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 5394 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
5395 ASSERT(state != arc_anon && state != arc_l2c_only);
5396
424fd7c3 5397 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
5398 size, tag);
5399 }
424fd7c3 5400 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
d3c2ae1c
GW
5401
5402 VERIFY3U(hdr->b_type, ==, type);
5403 if (type == ARC_BUFC_METADATA) {
d3c2ae1c
GW
5404 arc_space_return(size, ARC_SPACE_META);
5405 } else {
5406 ASSERT(type == ARC_BUFC_DATA);
d3c2ae1c
GW
5407 arc_space_return(size, ARC_SPACE_DATA);
5408 }
34dc7c2f
BB
5409}
5410
5411/*
5412 * This routine is called whenever a buffer is accessed.
5413 * NOTE: the hash lock is dropped in this function.
5414 */
5415static void
2a432414 5416arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 5417{
428870ff
BB
5418 clock_t now;
5419
34dc7c2f 5420 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 5421 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 5422
b9541d6b 5423 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
5424 /*
5425 * This buffer is not in the cache, and does not
5426 * appear in our "ghost" list. Add the new buffer
5427 * to the MRU state.
5428 */
5429
b9541d6b
CW
5430 ASSERT0(hdr->b_l1hdr.b_arc_access);
5431 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5432 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5433 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 5434
b9541d6b 5435 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
5436 now = ddi_get_lbolt();
5437
34dc7c2f
BB
5438 /*
5439 * If this buffer is here because of a prefetch, then either:
5440 * - clear the flag if this is a "referencing" read
5441 * (any subsequent access will bump this into the MFU state).
5442 * or
5443 * - move the buffer to the head of the list if this is
5444 * another prefetch (to make it less likely to be evicted).
5445 */
d4a72f23 5446 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
424fd7c3 5447 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
5448 /* link protected by hash lock */
5449 ASSERT(multilist_link_active(
b9541d6b 5450 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 5451 } else {
08532162
GA
5452 if (HDR_HAS_L2HDR(hdr))
5453 l2arc_hdr_arcstats_decrement_state(hdr);
d4a72f23
TC
5454 arc_hdr_clear_flags(hdr,
5455 ARC_FLAG_PREFETCH |
5456 ARC_FLAG_PRESCIENT_PREFETCH);
cfe8e960 5457 hdr->b_l1hdr.b_mru_hits++;
34dc7c2f 5458 ARCSTAT_BUMP(arcstat_mru_hits);
08532162
GA
5459 if (HDR_HAS_L2HDR(hdr))
5460 l2arc_hdr_arcstats_increment_state(hdr);
34dc7c2f 5461 }
b9541d6b 5462 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
5463 return;
5464 }
5465
5466 /*
5467 * This buffer has been "accessed" only once so far,
5468 * but it is still in the cache. Move it to the MFU
5469 * state.
5470 */
b9541d6b
CW
5471 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5472 ARC_MINTIME)) {
34dc7c2f
BB
5473 /*
5474 * More than 125ms have passed since we
5475 * instantiated this buffer. Move it to the
5476 * most frequently used state.
5477 */
b9541d6b 5478 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
5479 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5480 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5481 }
cfe8e960 5482 hdr->b_l1hdr.b_mru_hits++;
34dc7c2f 5483 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 5484 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
5485 arc_state_t *new_state;
5486 /*
5487 * This buffer has been "accessed" recently, but
5488 * was evicted from the cache. Move it to the
5489 * MFU state.
5490 */
d4a72f23 5491 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f 5492 new_state = arc_mru;
424fd7c3 5493 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
08532162
GA
5494 if (HDR_HAS_L2HDR(hdr))
5495 l2arc_hdr_arcstats_decrement_state(hdr);
d4a72f23
TC
5496 arc_hdr_clear_flags(hdr,
5497 ARC_FLAG_PREFETCH |
5498 ARC_FLAG_PRESCIENT_PREFETCH);
08532162
GA
5499 if (HDR_HAS_L2HDR(hdr))
5500 l2arc_hdr_arcstats_increment_state(hdr);
d4a72f23 5501 }
2a432414 5502 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5503 } else {
5504 new_state = arc_mfu;
2a432414 5505 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5506 }
5507
b9541d6b 5508 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 5509 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5510
cfe8e960 5511 hdr->b_l1hdr.b_mru_ghost_hits++;
34dc7c2f 5512 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 5513 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
5514 /*
5515 * This buffer has been accessed more than once and is
5516 * still in the cache. Keep it in the MFU state.
5517 *
5518 * NOTE: an add_reference() that occurred when we did
5519 * the arc_read() will have kicked this off the list.
5520 * If it was a prefetch, we will explicitly move it to
5521 * the head of the list now.
5522 */
d4a72f23 5523
cfe8e960 5524 hdr->b_l1hdr.b_mfu_hits++;
34dc7c2f 5525 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
5526 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5527 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
5528 arc_state_t *new_state = arc_mfu;
5529 /*
5530 * This buffer has been accessed more than once but has
5531 * been evicted from the cache. Move it back to the
5532 * MFU state.
5533 */
5534
d4a72f23 5535 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f
BB
5536 /*
5537 * This is a prefetch access...
5538 * move this block back to the MRU state.
5539 */
34dc7c2f
BB
5540 new_state = arc_mru;
5541 }
5542
b9541d6b 5543 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5544 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5545 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5546
cfe8e960 5547 hdr->b_l1hdr.b_mfu_ghost_hits++;
34dc7c2f 5548 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 5549 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
5550 /*
5551 * This buffer is on the 2nd Level ARC.
5552 */
5553
b9541d6b 5554 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5555 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5556 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5557 } else {
b9541d6b
CW
5558 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5559 hdr->b_l1hdr.b_state);
34dc7c2f
BB
5560 }
5561}
5562
0873bb63
BB
5563/*
5564 * This routine is called by dbuf_hold() to update the arc_access() state
5565 * which otherwise would be skipped for entries in the dbuf cache.
5566 */
5567void
5568arc_buf_access(arc_buf_t *buf)
5569{
5570 mutex_enter(&buf->b_evict_lock);
5571 arc_buf_hdr_t *hdr = buf->b_hdr;
5572
5573 /*
5574 * Avoid taking the hash_lock when possible as an optimization.
5575 * The header must be checked again under the hash_lock in order
5576 * to handle the case where it is concurrently being released.
5577 */
5578 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5579 mutex_exit(&buf->b_evict_lock);
5580 return;
5581 }
5582
5583 kmutex_t *hash_lock = HDR_LOCK(hdr);
5584 mutex_enter(hash_lock);
5585
5586 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5587 mutex_exit(hash_lock);
5588 mutex_exit(&buf->b_evict_lock);
5589 ARCSTAT_BUMP(arcstat_access_skip);
5590 return;
5591 }
5592
5593 mutex_exit(&buf->b_evict_lock);
5594
5595 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5596 hdr->b_l1hdr.b_state == arc_mfu);
5597
5598 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5599 arc_access(hdr, hash_lock);
5600 mutex_exit(hash_lock);
5601
5602 ARCSTAT_BUMP(arcstat_hits);
5603 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5604 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5605}
5606
b5256303 5607/* a generic arc_read_done_func_t which you can use */
34dc7c2f 5608void
d4a72f23
TC
5609arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5610 arc_buf_t *buf, void *arg)
34dc7c2f 5611{
14e4e3cb
AZ
5612 (void) zio, (void) zb, (void) bp;
5613
d4a72f23
TC
5614 if (buf == NULL)
5615 return;
5616
5617 bcopy(buf->b_data, arg, arc_buf_size(buf));
d3c2ae1c 5618 arc_buf_destroy(buf, arg);
34dc7c2f
BB
5619}
5620
b5256303 5621/* a generic arc_read_done_func_t */
34dc7c2f 5622void
d4a72f23
TC
5623arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5624 arc_buf_t *buf, void *arg)
34dc7c2f 5625{
14e4e3cb 5626 (void) zb, (void) bp;
34dc7c2f 5627 arc_buf_t **bufp = arg;
d4a72f23
TC
5628
5629 if (buf == NULL) {
c3bd3fb4 5630 ASSERT(zio == NULL || zio->io_error != 0);
34dc7c2f
BB
5631 *bufp = NULL;
5632 } else {
c3bd3fb4 5633 ASSERT(zio == NULL || zio->io_error == 0);
34dc7c2f 5634 *bufp = buf;
c3bd3fb4 5635 ASSERT(buf->b_data != NULL);
34dc7c2f
BB
5636 }
5637}
5638
d3c2ae1c
GW
5639static void
5640arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5641{
5642 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5643 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
b5256303 5644 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
d3c2ae1c
GW
5645 } else {
5646 if (HDR_COMPRESSION_ENABLED(hdr)) {
b5256303 5647 ASSERT3U(arc_hdr_get_compress(hdr), ==,
d3c2ae1c
GW
5648 BP_GET_COMPRESS(bp));
5649 }
5650 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5651 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
b5256303 5652 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
d3c2ae1c
GW
5653 }
5654}
5655
34dc7c2f
BB
5656static void
5657arc_read_done(zio_t *zio)
5658{
b5256303 5659 blkptr_t *bp = zio->io_bp;
d3c2ae1c 5660 arc_buf_hdr_t *hdr = zio->io_private;
9b67f605 5661 kmutex_t *hash_lock = NULL;
524b4217
DK
5662 arc_callback_t *callback_list;
5663 arc_callback_t *acb;
2aa34383 5664 boolean_t freeable = B_FALSE;
a7004725 5665
34dc7c2f
BB
5666 /*
5667 * The hdr was inserted into hash-table and removed from lists
5668 * prior to starting I/O. We should find this header, since
5669 * it's in the hash table, and it should be legit since it's
5670 * not possible to evict it during the I/O. The only possible
5671 * reason for it not to be found is if we were freed during the
5672 * read.
5673 */
9b67f605 5674 if (HDR_IN_HASH_TABLE(hdr)) {
31df97cd
DB
5675 arc_buf_hdr_t *found;
5676
9b67f605
MA
5677 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5678 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5679 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5680 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5681 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5682
31df97cd 5683 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
9b67f605 5684
d3c2ae1c 5685 ASSERT((found == hdr &&
9b67f605
MA
5686 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5687 (found == hdr && HDR_L2_READING(hdr)));
d3c2ae1c
GW
5688 ASSERT3P(hash_lock, !=, NULL);
5689 }
5690
b5256303
TC
5691 if (BP_IS_PROTECTED(bp)) {
5692 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5693 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5694 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5695 hdr->b_crypt_hdr.b_iv);
5696
df42e20a
RE
5697 if (zio->io_error == 0) {
5698 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5699 void *tmpbuf;
5700
5701 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5702 sizeof (zil_chain_t));
5703 zio_crypt_decode_mac_zil(tmpbuf,
5704 hdr->b_crypt_hdr.b_mac);
5705 abd_return_buf(zio->io_abd, tmpbuf,
5706 sizeof (zil_chain_t));
5707 } else {
5708 zio_crypt_decode_mac_bp(bp,
5709 hdr->b_crypt_hdr.b_mac);
5710 }
b5256303
TC
5711 }
5712 }
5713
d4a72f23 5714 if (zio->io_error == 0) {
d3c2ae1c
GW
5715 /* byteswap if necessary */
5716 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5717 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5718 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5719 } else {
5720 hdr->b_l1hdr.b_byteswap =
5721 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5722 }
5723 } else {
5724 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5725 }
10b3c7f5
MN
5726 if (!HDR_L2_READING(hdr)) {
5727 hdr->b_complevel = zio->io_prop.zp_complevel;
5728 }
9b67f605 5729 }
34dc7c2f 5730
d3c2ae1c 5731 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
c6f5e9d9
GA
5732 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5733 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f 5734
b9541d6b 5735 callback_list = hdr->b_l1hdr.b_acb;
d3c2ae1c 5736 ASSERT3P(callback_list, !=, NULL);
34dc7c2f 5737
d4a72f23
TC
5738 if (hash_lock && zio->io_error == 0 &&
5739 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
5740 /*
5741 * Only call arc_access on anonymous buffers. This is because
5742 * if we've issued an I/O for an evicted buffer, we've already
5743 * called arc_access (to prevent any simultaneous readers from
5744 * getting confused).
5745 */
5746 arc_access(hdr, hash_lock);
5747 }
5748
524b4217
DK
5749 /*
5750 * If a read request has a callback (i.e. acb_done is not NULL), then we
5751 * make a buf containing the data according to the parameters which were
5752 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5753 * aren't needlessly decompressing the data multiple times.
5754 */
a7004725 5755 int callback_cnt = 0;
2aa34383 5756 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
923d7303 5757 if (!acb->acb_done || acb->acb_nobuf)
2aa34383
DK
5758 continue;
5759
2aa34383 5760 callback_cnt++;
524b4217 5761
d4a72f23
TC
5762 if (zio->io_error != 0)
5763 continue;
5764
b5256303 5765 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
be9a5c35 5766 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
d4a72f23 5767 acb->acb_compressed, acb->acb_noauth, B_TRUE,
440a3eb9 5768 &acb->acb_buf);
b5256303
TC
5769
5770 /*
440a3eb9 5771 * Assert non-speculative zios didn't fail because an
b5256303
TC
5772 * encryption key wasn't loaded
5773 */
a2c2ed1b 5774 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 5775 error != EACCES);
b5256303
TC
5776
5777 /*
5778 * If we failed to decrypt, report an error now (as the zio
5779 * layer would have done if it had done the transforms).
5780 */
5781 if (error == ECKSUM) {
5782 ASSERT(BP_IS_PROTECTED(bp));
5783 error = SET_ERROR(EIO);
b5256303 5784 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
be9a5c35 5785 spa_log_error(zio->io_spa, &acb->acb_zb);
1144586b
TS
5786 (void) zfs_ereport_post(
5787 FM_EREPORT_ZFS_AUTHENTICATION,
4f072827 5788 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
b5256303
TC
5789 }
5790 }
5791
c3bd3fb4
TC
5792 if (error != 0) {
5793 /*
5794 * Decompression or decryption failed. Set
5795 * io_error so that when we call acb_done
5796 * (below), we will indicate that the read
5797 * failed. Note that in the unusual case
5798 * where one callback is compressed and another
5799 * uncompressed, we will mark all of them
5800 * as failed, even though the uncompressed
5801 * one can't actually fail. In this case,
5802 * the hdr will not be anonymous, because
5803 * if there are multiple callbacks, it's
5804 * because multiple threads found the same
5805 * arc buf in the hash table.
5806 */
524b4217 5807 zio->io_error = error;
c3bd3fb4 5808 }
34dc7c2f 5809 }
c3bd3fb4
TC
5810
5811 /*
5812 * If there are multiple callbacks, we must have the hash lock,
5813 * because the only way for multiple threads to find this hdr is
5814 * in the hash table. This ensures that if there are multiple
5815 * callbacks, the hdr is not anonymous. If it were anonymous,
5816 * we couldn't use arc_buf_destroy() in the error case below.
5817 */
5818 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5819
b9541d6b 5820 hdr->b_l1hdr.b_acb = NULL;
d3c2ae1c 5821 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
440a3eb9 5822 if (callback_cnt == 0)
b5256303 5823 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
34dc7c2f 5824
424fd7c3 5825 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
b9541d6b 5826 callback_list != NULL);
34dc7c2f 5827
d4a72f23 5828 if (zio->io_error == 0) {
d3c2ae1c
GW
5829 arc_hdr_verify(hdr, zio->io_bp);
5830 } else {
5831 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
b9541d6b 5832 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
5833 arc_change_state(arc_anon, hdr, hash_lock);
5834 if (HDR_IN_HASH_TABLE(hdr))
5835 buf_hash_remove(hdr);
424fd7c3 5836 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5837 }
5838
5839 /*
5840 * Broadcast before we drop the hash_lock to avoid the possibility
5841 * that the hdr (and hence the cv) might be freed before we get to
5842 * the cv_broadcast().
5843 */
b9541d6b 5844 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 5845
b9541d6b 5846 if (hash_lock != NULL) {
34dc7c2f
BB
5847 mutex_exit(hash_lock);
5848 } else {
5849 /*
5850 * This block was freed while we waited for the read to
5851 * complete. It has been removed from the hash table and
5852 * moved to the anonymous state (so that it won't show up
5853 * in the cache).
5854 */
b9541d6b 5855 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
424fd7c3 5856 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5857 }
5858
5859 /* execute each callback and free its structure */
5860 while ((acb = callback_list) != NULL) {
c3bd3fb4
TC
5861 if (acb->acb_done != NULL) {
5862 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5863 /*
5864 * If arc_buf_alloc_impl() fails during
5865 * decompression, the buf will still be
5866 * allocated, and needs to be freed here.
5867 */
5868 arc_buf_destroy(acb->acb_buf,
5869 acb->acb_private);
5870 acb->acb_buf = NULL;
5871 }
d4a72f23
TC
5872 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5873 acb->acb_buf, acb->acb_private);
b5256303 5874 }
34dc7c2f
BB
5875
5876 if (acb->acb_zio_dummy != NULL) {
5877 acb->acb_zio_dummy->io_error = zio->io_error;
5878 zio_nowait(acb->acb_zio_dummy);
5879 }
5880
5881 callback_list = acb->acb_next;
5882 kmem_free(acb, sizeof (arc_callback_t));
5883 }
5884
5885 if (freeable)
5886 arc_hdr_destroy(hdr);
5887}
5888
5889/*
5c839890 5890 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
5891 * cache. If the block is found in the cache, invoke the provided
5892 * callback immediately and return. Note that the `zio' parameter
5893 * in the callback will be NULL in this case, since no IO was
5894 * required. If the block is not in the cache pass the read request
5895 * on to the spa with a substitute callback function, so that the
5896 * requested block will be added to the cache.
5897 *
5898 * If a read request arrives for a block that has a read in-progress,
5899 * either wait for the in-progress read to complete (and return the
5900 * results); or, if this is a read with a "done" func, add a record
5901 * to the read to invoke the "done" func when the read completes,
5902 * and return; or just return.
5903 *
5904 * arc_read_done() will invoke all the requested "done" functions
5905 * for readers of this block.
5906 */
5907int
b5256303
TC
5908arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5909 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5910 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 5911{
9b67f605 5912 arc_buf_hdr_t *hdr = NULL;
9b67f605 5913 kmutex_t *hash_lock = NULL;
34dc7c2f 5914 zio_t *rzio;
3541dc6d 5915 uint64_t guid = spa_load_guid(spa);
b5256303
TC
5916 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5917 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5918 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5919 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5920 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
0902c457 5921 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
1e4732cb 5922 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
1421c891 5923 int rc = 0;
34dc7c2f 5924
0902c457 5925 ASSERT(!embedded_bp ||
9b67f605 5926 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
30af21b0
PD
5927 ASSERT(!BP_IS_HOLE(bp));
5928 ASSERT(!BP_IS_REDACTED(bp));
9b67f605 5929
1e9231ad
MR
5930 /*
5931 * Normally SPL_FSTRANS will already be set since kernel threads which
5932 * expect to call the DMU interfaces will set it when created. System
5933 * calls are similarly handled by setting/cleaning the bit in the
5934 * registered callback (module/os/.../zfs/zpl_*).
5935 *
5936 * External consumers such as Lustre which call the exported DMU
5937 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5938 * on the hash_lock always set and clear the bit.
5939 */
5940 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5941top:
b9ec4a15
BB
5942 /*
5943 * Verify the block pointer contents are reasonable. This should
5944 * always be the case since the blkptr is protected by a checksum.
5945 * However, if there is damage it's desirable to detect this early
5946 * and treat it as a checksum error. This allows an alternate blkptr
5947 * to be tried when one is available (e.g. ditto blocks).
5948 */
5949 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER,
5950 BLK_VERIFY_LOG)) {
5951 rc = SET_ERROR(ECKSUM);
5952 goto out;
5953 }
5954
0902c457 5955 if (!embedded_bp) {
9b67f605
MA
5956 /*
5957 * Embedded BP's have no DVA and require no I/O to "read".
5958 * Create an anonymous arc buf to back it.
5959 */
5960 hdr = buf_hash_find(guid, bp, &hash_lock);
5961 }
5962
b5256303
TC
5963 /*
5964 * Determine if we have an L1 cache hit or a cache miss. For simplicity
e1cfd73f 5965 * we maintain encrypted data separately from compressed / uncompressed
b5256303
TC
5966 * data. If the user is requesting raw encrypted data and we don't have
5967 * that in the header we will read from disk to guarantee that we can
5968 * get it even if the encryption keys aren't loaded.
5969 */
5970 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
5971 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
d3c2ae1c 5972 arc_buf_t *buf = NULL;
2a432414 5973 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
5974
5975 if (HDR_IO_IN_PROGRESS(hdr)) {
a8b2e306 5976 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
34dc7c2f 5977
1dc32a67
MA
5978 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
5979 mutex_exit(hash_lock);
5980 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
5981 rc = SET_ERROR(ENOENT);
5982 goto out;
5983 }
5984
a8b2e306 5985 ASSERT3P(head_zio, !=, NULL);
7f60329a
MA
5986 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5987 priority == ZIO_PRIORITY_SYNC_READ) {
5988 /*
a8b2e306
TC
5989 * This is a sync read that needs to wait for
5990 * an in-flight async read. Request that the
5991 * zio have its priority upgraded.
7f60329a 5992 */
a8b2e306
TC
5993 zio_change_priority(head_zio, priority);
5994 DTRACE_PROBE1(arc__async__upgrade__sync,
7f60329a 5995 arc_buf_hdr_t *, hdr);
a8b2e306 5996 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
7f60329a
MA
5997 }
5998 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
d3c2ae1c
GW
5999 arc_hdr_clear_flags(hdr,
6000 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a
MA
6001 }
6002
2a432414 6003 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 6004 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
6005 mutex_exit(hash_lock);
6006 goto top;
6007 }
2a432414 6008 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f 6009
923d7303 6010 if (done) {
7f60329a 6011 arc_callback_t *acb = NULL;
34dc7c2f
BB
6012
6013 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 6014 KM_SLEEP);
34dc7c2f
BB
6015 acb->acb_done = done;
6016 acb->acb_private = private;
a7004725 6017 acb->acb_compressed = compressed_read;
440a3eb9
TC
6018 acb->acb_encrypted = encrypted_read;
6019 acb->acb_noauth = noauth_read;
923d7303 6020 acb->acb_nobuf = no_buf;
be9a5c35 6021 acb->acb_zb = *zb;
34dc7c2f
BB
6022 if (pio != NULL)
6023 acb->acb_zio_dummy = zio_null(pio,
d164b209 6024 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f 6025
d3c2ae1c 6026 ASSERT3P(acb->acb_done, !=, NULL);
a8b2e306 6027 acb->acb_zio_head = head_zio;
b9541d6b
CW
6028 acb->acb_next = hdr->b_l1hdr.b_acb;
6029 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
6030 }
6031 mutex_exit(hash_lock);
1421c891 6032 goto out;
34dc7c2f
BB
6033 }
6034
b9541d6b
CW
6035 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6036 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 6037
1e4732cb 6038 if (done && !no_buf) {
7f60329a
MA
6039 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6040 /*
6041 * This is a demand read which does not have to
6042 * wait for i/o because we did a predictive
6043 * prefetch i/o for it, which has completed.
6044 */
6045 DTRACE_PROBE1(
6046 arc__demand__hit__predictive__prefetch,
6047 arc_buf_hdr_t *, hdr);
6048 ARCSTAT_BUMP(
6049 arcstat_demand_hit_predictive_prefetch);
d3c2ae1c
GW
6050 arc_hdr_clear_flags(hdr,
6051 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a 6052 }
d4a72f23
TC
6053
6054 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6055 ARCSTAT_BUMP(
6056 arcstat_demand_hit_prescient_prefetch);
6057 arc_hdr_clear_flags(hdr,
6058 ARC_FLAG_PRESCIENT_PREFETCH);
6059 }
6060
0902c457 6061 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
d3c2ae1c 6062
524b4217 6063 /* Get a buf with the desired data in it. */
be9a5c35
TC
6064 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6065 encrypted_read, compressed_read, noauth_read,
6066 B_TRUE, &buf);
a2c2ed1b
TC
6067 if (rc == ECKSUM) {
6068 /*
6069 * Convert authentication and decryption errors
be9a5c35
TC
6070 * to EIO (and generate an ereport if needed)
6071 * before leaving the ARC.
a2c2ed1b
TC
6072 */
6073 rc = SET_ERROR(EIO);
be9a5c35
TC
6074 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6075 spa_log_error(spa, zb);
1144586b 6076 (void) zfs_ereport_post(
be9a5c35 6077 FM_EREPORT_ZFS_AUTHENTICATION,
4f072827 6078 spa, NULL, zb, NULL, 0);
be9a5c35 6079 }
a2c2ed1b 6080 }
d4a72f23 6081 if (rc != 0) {
2c24b5b1
TC
6082 (void) remove_reference(hdr, hash_lock,
6083 private);
6084 arc_buf_destroy_impl(buf);
d4a72f23
TC
6085 buf = NULL;
6086 }
6087
a2c2ed1b
TC
6088 /* assert any errors weren't due to unloaded keys */
6089 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 6090 rc != EACCES);
2a432414 6091 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
08532162
GA
6092 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6093 if (HDR_HAS_L2HDR(hdr))
6094 l2arc_hdr_arcstats_decrement_state(hdr);
d3c2ae1c 6095 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
08532162
GA
6096 if (HDR_HAS_L2HDR(hdr))
6097 l2arc_hdr_arcstats_increment_state(hdr);
34dc7c2f
BB
6098 }
6099 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6100 arc_access(hdr, hash_lock);
d4a72f23
TC
6101 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6102 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
2a432414 6103 if (*arc_flags & ARC_FLAG_L2CACHE)
d3c2ae1c 6104 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f
BB
6105 mutex_exit(hash_lock);
6106 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
6107 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6108 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
6109 data, metadata, hits);
6110
6111 if (done)
d4a72f23 6112 done(NULL, zb, bp, buf, private);
34dc7c2f 6113 } else {
d3c2ae1c
GW
6114 uint64_t lsize = BP_GET_LSIZE(bp);
6115 uint64_t psize = BP_GET_PSIZE(bp);
9b67f605 6116 arc_callback_t *acb;
b128c09f 6117 vdev_t *vd = NULL;
a117a6d6 6118 uint64_t addr = 0;
d164b209 6119 boolean_t devw = B_FALSE;
d3c2ae1c 6120 uint64_t size;
440a3eb9 6121 abd_t *hdr_abd;
e111c802 6122 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
34dc7c2f 6123
1dc32a67
MA
6124 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6125 rc = SET_ERROR(ENOENT);
6126 if (hash_lock != NULL)
6127 mutex_exit(hash_lock);
6128 goto out;
6129 }
6130
34dc7c2f 6131 if (hdr == NULL) {
0902c457
TC
6132 /*
6133 * This block is not in the cache or it has
6134 * embedded data.
6135 */
9b67f605 6136 arc_buf_hdr_t *exists = NULL;
34dc7c2f 6137 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
d3c2ae1c 6138 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6b88b4b5 6139 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
d3c2ae1c 6140
0902c457 6141 if (!embedded_bp) {
9b67f605
MA
6142 hdr->b_dva = *BP_IDENTITY(bp);
6143 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
6144 exists = buf_hash_insert(hdr, &hash_lock);
6145 }
6146 if (exists != NULL) {
34dc7c2f
BB
6147 /* somebody beat us to the hash insert */
6148 mutex_exit(hash_lock);
428870ff 6149 buf_discard_identity(hdr);
d3c2ae1c 6150 arc_hdr_destroy(hdr);
34dc7c2f
BB
6151 goto top; /* restart the IO request */
6152 }
6b88b4b5 6153 alloc_flags |= ARC_HDR_DO_ADAPT;
34dc7c2f 6154 } else {
b9541d6b 6155 /*
b5256303
TC
6156 * This block is in the ghost cache or encrypted data
6157 * was requested and we didn't have it. If it was
6158 * L2-only (and thus didn't have an L1 hdr),
6159 * we realloc the header to add an L1 hdr.
b9541d6b
CW
6160 */
6161 if (!HDR_HAS_L1HDR(hdr)) {
6162 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6163 hdr_full_cache);
6164 }
6165
b5256303
TC
6166 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6167 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6168 ASSERT(!HDR_HAS_RABD(hdr));
6169 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
424fd7c3
TS
6170 ASSERT0(zfs_refcount_count(
6171 &hdr->b_l1hdr.b_refcnt));
b5256303
TC
6172 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6173 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6174 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6175 /*
6176 * If this header already had an IO in progress
6177 * and we are performing another IO to fetch
6178 * encrypted data we must wait until the first
6179 * IO completes so as not to confuse
6180 * arc_read_done(). This should be very rare
6181 * and so the performance impact shouldn't
6182 * matter.
6183 */
6184 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6185 mutex_exit(hash_lock);
6186 goto top;
6187 }
34dc7c2f 6188
7f60329a 6189 /*
d3c2ae1c 6190 * This is a delicate dance that we play here.
b5256303
TC
6191 * This hdr might be in the ghost list so we access
6192 * it to move it out of the ghost list before we
d3c2ae1c
GW
6193 * initiate the read. If it's a prefetch then
6194 * it won't have a callback so we'll remove the
6195 * reference that arc_buf_alloc_impl() created. We
6196 * do this after we've called arc_access() to
6197 * avoid hitting an assert in remove_reference().
7f60329a 6198 */
e111c802 6199 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
428870ff 6200 arc_access(hdr, hash_lock);
d3c2ae1c 6201 }
d3c2ae1c 6202
6b88b4b5 6203 arc_hdr_alloc_abd(hdr, alloc_flags);
b5256303
TC
6204 if (encrypted_read) {
6205 ASSERT(HDR_HAS_RABD(hdr));
6206 size = HDR_GET_PSIZE(hdr);
6207 hdr_abd = hdr->b_crypt_hdr.b_rabd;
d3c2ae1c 6208 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
6209 } else {
6210 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6211 size = arc_hdr_size(hdr);
6212 hdr_abd = hdr->b_l1hdr.b_pabd;
6213
6214 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6215 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6216 }
6217
6218 /*
6219 * For authenticated bp's, we do not ask the ZIO layer
6220 * to authenticate them since this will cause the entire
6221 * IO to fail if the key isn't loaded. Instead, we
6222 * defer authentication until arc_buf_fill(), which will
6223 * verify the data when the key is available.
6224 */
6225 if (BP_IS_AUTHENTICATED(bp))
6226 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
34dc7c2f
BB
6227 }
6228
b5256303 6229 if (*arc_flags & ARC_FLAG_PREFETCH &&
08532162
GA
6230 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6231 if (HDR_HAS_L2HDR(hdr))
6232 l2arc_hdr_arcstats_decrement_state(hdr);
d3c2ae1c 6233 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
08532162
GA
6234 if (HDR_HAS_L2HDR(hdr))
6235 l2arc_hdr_arcstats_increment_state(hdr);
6236 }
d4a72f23
TC
6237 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6238 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
d3c2ae1c
GW
6239 if (*arc_flags & ARC_FLAG_L2CACHE)
6240 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
b5256303
TC
6241 if (BP_IS_AUTHENTICATED(bp))
6242 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
d3c2ae1c
GW
6243 if (BP_GET_LEVEL(bp) > 0)
6244 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
7f60329a 6245 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
d3c2ae1c 6246 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
b9541d6b 6247 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 6248
79c76d5b 6249 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
6250 acb->acb_done = done;
6251 acb->acb_private = private;
2aa34383 6252 acb->acb_compressed = compressed_read;
b5256303
TC
6253 acb->acb_encrypted = encrypted_read;
6254 acb->acb_noauth = noauth_read;
be9a5c35 6255 acb->acb_zb = *zb;
34dc7c2f 6256
d3c2ae1c 6257 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b9541d6b 6258 hdr->b_l1hdr.b_acb = acb;
d3c2ae1c 6259 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f 6260
b9541d6b
CW
6261 if (HDR_HAS_L2HDR(hdr) &&
6262 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6263 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6264 addr = hdr->b_l2hdr.b_daddr;
b128c09f 6265 /*
a1d477c2 6266 * Lock out L2ARC device removal.
b128c09f
BB
6267 */
6268 if (vdev_is_dead(vd) ||
6269 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6270 vd = NULL;
6271 }
6272
a8b2e306
TC
6273 /*
6274 * We count both async reads and scrub IOs as asynchronous so
6275 * that both can be upgraded in the event of a cache hit while
6276 * the read IO is still in-flight.
6277 */
6278 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6279 priority == ZIO_PRIORITY_SCRUB)
d3c2ae1c
GW
6280 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6281 else
6282 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6283
e49f1e20 6284 /*
0902c457
TC
6285 * At this point, we have a level 1 cache miss or a blkptr
6286 * with embedded data. Try again in L2ARC if possible.
e49f1e20 6287 */
d3c2ae1c
GW
6288 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6289
0902c457
TC
6290 /*
6291 * Skip ARC stat bump for block pointers with embedded
6292 * data. The data are read from the blkptr itself via
6293 * decode_embedded_bp_compressed().
6294 */
6295 if (!embedded_bp) {
6296 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6297 blkptr_t *, bp, uint64_t, lsize,
6298 zbookmark_phys_t *, zb);
6299 ARCSTAT_BUMP(arcstat_misses);
6300 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6301 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6302 metadata, misses);
64e0fe14 6303 zfs_racct_read(size, 1);
0902c457 6304 }
34dc7c2f 6305
666aa69f
AM
6306 /* Check if the spa even has l2 configured */
6307 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6308 spa->spa_l2cache.sav_count > 0;
6309
6310 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
34dc7c2f
BB
6311 /*
6312 * Read from the L2ARC if the following are true:
b128c09f
BB
6313 * 1. The L2ARC vdev was previously cached.
6314 * 2. This buffer still has L2ARC metadata.
6315 * 3. This buffer isn't currently writing to the L2ARC.
6316 * 4. The L2ARC entry wasn't evicted, which may
6317 * also have invalidated the vdev.
08532162 6318 * 5. This isn't prefetch or l2arc_noprefetch is 0.
34dc7c2f 6319 */
b9541d6b 6320 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
6321 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6322 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f 6323 l2arc_read_callback_t *cb;
82710e99
GDN
6324 abd_t *abd;
6325 uint64_t asize;
34dc7c2f
BB
6326
6327 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6328 ARCSTAT_BUMP(arcstat_l2_hits);
cfe8e960 6329 hdr->b_l2hdr.b_hits++;
34dc7c2f 6330
34dc7c2f 6331 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 6332 KM_SLEEP);
d3c2ae1c 6333 cb->l2rcb_hdr = hdr;
34dc7c2f
BB
6334 cb->l2rcb_bp = *bp;
6335 cb->l2rcb_zb = *zb;
b128c09f 6336 cb->l2rcb_flags = zio_flags;
34dc7c2f 6337
fc34dfba
AJ
6338 /*
6339 * When Compressed ARC is disabled, but the
6340 * L2ARC block is compressed, arc_hdr_size()
6341 * will have returned LSIZE rather than PSIZE.
6342 */
6343 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6344 !HDR_COMPRESSION_ENABLED(hdr) &&
6345 HDR_GET_PSIZE(hdr) != 0) {
6346 size = HDR_GET_PSIZE(hdr);
6347 }
6348
82710e99
GDN
6349 asize = vdev_psize_to_asize(vd, size);
6350 if (asize != size) {
6351 abd = abd_alloc_for_io(asize,
6352 HDR_ISTYPE_METADATA(hdr));
6353 cb->l2rcb_abd = abd;
6354 } else {
b5256303 6355 abd = hdr_abd;
82710e99
GDN
6356 }
6357
a117a6d6 6358 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
82710e99 6359 addr + asize <= vd->vdev_psize -
a117a6d6
GW
6360 VDEV_LABEL_END_SIZE);
6361
34dc7c2f 6362 /*
b128c09f
BB
6363 * l2arc read. The SCL_L2ARC lock will be
6364 * released by l2arc_read_done().
3a17a7a9
SK
6365 * Issue a null zio if the underlying buffer
6366 * was squashed to zero size by compression.
34dc7c2f 6367 */
b5256303 6368 ASSERT3U(arc_hdr_get_compress(hdr), !=,
d3c2ae1c
GW
6369 ZIO_COMPRESS_EMPTY);
6370 rzio = zio_read_phys(pio, vd, addr,
82710e99 6371 asize, abd,
d3c2ae1c
GW
6372 ZIO_CHECKSUM_OFF,
6373 l2arc_read_done, cb, priority,
6374 zio_flags | ZIO_FLAG_DONT_CACHE |
6375 ZIO_FLAG_CANFAIL |
6376 ZIO_FLAG_DONT_PROPAGATE |
6377 ZIO_FLAG_DONT_RETRY, B_FALSE);
a8b2e306
TC
6378 acb->acb_zio_head = rzio;
6379
6380 if (hash_lock != NULL)
6381 mutex_exit(hash_lock);
d3c2ae1c 6382
34dc7c2f
BB
6383 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6384 zio_t *, rzio);
b5256303
TC
6385 ARCSTAT_INCR(arcstat_l2_read_bytes,
6386 HDR_GET_PSIZE(hdr));
34dc7c2f 6387
2a432414 6388 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 6389 zio_nowait(rzio);
1421c891 6390 goto out;
b128c09f 6391 }
34dc7c2f 6392
2a432414 6393 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 6394 if (zio_wait(rzio) == 0)
1421c891 6395 goto out;
b128c09f
BB
6396
6397 /* l2arc read error; goto zio_read() */
a8b2e306
TC
6398 if (hash_lock != NULL)
6399 mutex_enter(hash_lock);
34dc7c2f
BB
6400 } else {
6401 DTRACE_PROBE1(l2arc__miss,
6402 arc_buf_hdr_t *, hdr);
6403 ARCSTAT_BUMP(arcstat_l2_misses);
6404 if (HDR_L2_WRITING(hdr))
6405 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 6406 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 6407 }
d164b209
BB
6408 } else {
6409 if (vd != NULL)
6410 spa_config_exit(spa, SCL_L2ARC, vd);
666aa69f 6411
0902c457 6412 /*
666aa69f
AM
6413 * Only a spa with l2 should contribute to l2
6414 * miss stats. (Including the case of having a
6415 * faulted cache device - that's also a miss.)
0902c457 6416 */
666aa69f
AM
6417 if (spa_has_l2) {
6418 /*
6419 * Skip ARC stat bump for block pointers with
6420 * embedded data. The data are read from the
6421 * blkptr itself via
6422 * decode_embedded_bp_compressed().
6423 */
6424 if (!embedded_bp) {
6425 DTRACE_PROBE1(l2arc__miss,
6426 arc_buf_hdr_t *, hdr);
6427 ARCSTAT_BUMP(arcstat_l2_misses);
6428 }
d164b209 6429 }
34dc7c2f 6430 }
34dc7c2f 6431
b5256303 6432 rzio = zio_read(pio, spa, bp, hdr_abd, size,
d3c2ae1c 6433 arc_read_done, hdr, priority, zio_flags, zb);
a8b2e306
TC
6434 acb->acb_zio_head = rzio;
6435
6436 if (hash_lock != NULL)
6437 mutex_exit(hash_lock);
34dc7c2f 6438
2a432414 6439 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
6440 rc = zio_wait(rzio);
6441 goto out;
6442 }
34dc7c2f 6443
2a432414 6444 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6445 zio_nowait(rzio);
6446 }
1421c891
PS
6447
6448out:
157ef7f6 6449 /* embedded bps don't actually go to disk */
0902c457 6450 if (!embedded_bp)
157ef7f6 6451 spa_read_history_add(spa, zb, *arc_flags);
1e9231ad 6452 spl_fstrans_unmark(cookie);
1421c891 6453 return (rc);
34dc7c2f
BB
6454}
6455
ab26409d
BB
6456arc_prune_t *
6457arc_add_prune_callback(arc_prune_func_t *func, void *private)
6458{
6459 arc_prune_t *p;
6460
d1d7e268 6461 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
6462 p->p_pfunc = func;
6463 p->p_private = private;
6464 list_link_init(&p->p_node);
424fd7c3 6465 zfs_refcount_create(&p->p_refcnt);
ab26409d
BB
6466
6467 mutex_enter(&arc_prune_mtx);
c13060e4 6468 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
ab26409d
BB
6469 list_insert_head(&arc_prune_list, p);
6470 mutex_exit(&arc_prune_mtx);
6471
6472 return (p);
6473}
6474
6475void
6476arc_remove_prune_callback(arc_prune_t *p)
6477{
4442f60d 6478 boolean_t wait = B_FALSE;
ab26409d
BB
6479 mutex_enter(&arc_prune_mtx);
6480 list_remove(&arc_prune_list, p);
424fd7c3 6481 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
4442f60d 6482 wait = B_TRUE;
ab26409d 6483 mutex_exit(&arc_prune_mtx);
4442f60d
CC
6484
6485 /* wait for arc_prune_task to finish */
6486 if (wait)
6487 taskq_wait_outstanding(arc_prune_taskq, 0);
424fd7c3
TS
6488 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6489 zfs_refcount_destroy(&p->p_refcnt);
4442f60d 6490 kmem_free(p, sizeof (*p));
ab26409d
BB
6491}
6492
df4474f9
MA
6493/*
6494 * Notify the arc that a block was freed, and thus will never be used again.
6495 */
6496void
6497arc_freed(spa_t *spa, const blkptr_t *bp)
6498{
6499 arc_buf_hdr_t *hdr;
6500 kmutex_t *hash_lock;
6501 uint64_t guid = spa_load_guid(spa);
6502
9b67f605
MA
6503 ASSERT(!BP_IS_EMBEDDED(bp));
6504
6505 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
6506 if (hdr == NULL)
6507 return;
df4474f9 6508
d3c2ae1c
GW
6509 /*
6510 * We might be trying to free a block that is still doing I/O
6511 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6512 * dmu_sync-ed block). If this block is being prefetched, then it
6513 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6514 * until the I/O completes. A block may also have a reference if it is
6515 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6516 * have written the new block to its final resting place on disk but
6517 * without the dedup flag set. This would have left the hdr in the MRU
6518 * state and discoverable. When the txg finally syncs it detects that
6519 * the block was overridden in open context and issues an override I/O.
6520 * Since this is a dedup block, the override I/O will determine if the
6521 * block is already in the DDT. If so, then it will replace the io_bp
6522 * with the bp from the DDT and allow the I/O to finish. When the I/O
6523 * reaches the done callback, dbuf_write_override_done, it will
6524 * check to see if the io_bp and io_bp_override are identical.
6525 * If they are not, then it indicates that the bp was replaced with
6526 * the bp in the DDT and the override bp is freed. This allows
6527 * us to arrive here with a reference on a block that is being
6528 * freed. So if we have an I/O in progress, or a reference to
6529 * this hdr, then we don't destroy the hdr.
6530 */
6531 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
424fd7c3 6532 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
d3c2ae1c
GW
6533 arc_change_state(arc_anon, hdr, hash_lock);
6534 arc_hdr_destroy(hdr);
df4474f9 6535 mutex_exit(hash_lock);
bd089c54 6536 } else {
d3c2ae1c 6537 mutex_exit(hash_lock);
34dc7c2f 6538 }
34dc7c2f 6539
34dc7c2f
BB
6540}
6541
6542/*
e49f1e20
WA
6543 * Release this buffer from the cache, making it an anonymous buffer. This
6544 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 6545 * If the buffer has more than one reference, we must make
b128c09f 6546 * a new hdr for the buffer.
34dc7c2f
BB
6547 */
6548void
6549arc_release(arc_buf_t *buf, void *tag)
6550{
b9541d6b 6551 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 6552
428870ff 6553 /*
ca0bf58d 6554 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
6555 * 0 || it's the dnode file), then it must be syncing context.
6556 * But we don't know that information at this level.
6557 */
6558
6559 mutex_enter(&buf->b_evict_lock);
b128c09f 6560
ca0bf58d
PS
6561 ASSERT(HDR_HAS_L1HDR(hdr));
6562
b9541d6b
CW
6563 /*
6564 * We don't grab the hash lock prior to this check, because if
6565 * the buffer's header is in the arc_anon state, it won't be
6566 * linked into the hash table.
6567 */
6568 if (hdr->b_l1hdr.b_state == arc_anon) {
6569 mutex_exit(&buf->b_evict_lock);
6570 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6571 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6572 ASSERT(!HDR_HAS_L2HDR(hdr));
34dc7c2f 6573
d3c2ae1c 6574 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
424fd7c3 6575 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
b9541d6b
CW
6576 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6577
b9541d6b 6578 hdr->b_l1hdr.b_arc_access = 0;
d3c2ae1c
GW
6579
6580 /*
6581 * If the buf is being overridden then it may already
6582 * have a hdr that is not empty.
6583 */
6584 buf_discard_identity(hdr);
b9541d6b
CW
6585 arc_buf_thaw(buf);
6586
6587 return;
34dc7c2f
BB
6588 }
6589
1c27024e 6590 kmutex_t *hash_lock = HDR_LOCK(hdr);
b9541d6b
CW
6591 mutex_enter(hash_lock);
6592
6593 /*
6594 * This assignment is only valid as long as the hash_lock is
6595 * held, we must be careful not to reference state or the
6596 * b_state field after dropping the lock.
6597 */
1c27024e 6598 arc_state_t *state = hdr->b_l1hdr.b_state;
b9541d6b
CW
6599 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6600 ASSERT3P(state, !=, arc_anon);
6601
6602 /* this buffer is not on any list */
424fd7c3 6603 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
b9541d6b
CW
6604
6605 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 6606 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
6607
6608 /*
d962d5da
PS
6609 * We have to recheck this conditional again now that
6610 * we're holding the l2ad_mtx to prevent a race with
6611 * another thread which might be concurrently calling
6612 * l2arc_evict(). In that case, l2arc_evict() might have
6613 * destroyed the header's L2 portion as we were waiting
6614 * to acquire the l2ad_mtx.
ca0bf58d 6615 */
d962d5da
PS
6616 if (HDR_HAS_L2HDR(hdr))
6617 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 6618
b9541d6b 6619 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
6620 }
6621
34dc7c2f
BB
6622 /*
6623 * Do we have more than one buf?
6624 */
d3c2ae1c 6625 if (hdr->b_l1hdr.b_bufcnt > 1) {
34dc7c2f 6626 arc_buf_hdr_t *nhdr;
d164b209 6627 uint64_t spa = hdr->b_spa;
d3c2ae1c
GW
6628 uint64_t psize = HDR_GET_PSIZE(hdr);
6629 uint64_t lsize = HDR_GET_LSIZE(hdr);
b5256303
TC
6630 boolean_t protected = HDR_PROTECTED(hdr);
6631 enum zio_compress compress = arc_hdr_get_compress(hdr);
b9541d6b 6632 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c 6633 VERIFY3U(hdr->b_type, ==, type);
34dc7c2f 6634
b9541d6b 6635 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
d3c2ae1c
GW
6636 (void) remove_reference(hdr, hash_lock, tag);
6637
524b4217 6638 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 6639 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
524b4217
DK
6640 ASSERT(ARC_BUF_LAST(buf));
6641 }
d3c2ae1c 6642
34dc7c2f 6643 /*
428870ff 6644 * Pull the data off of this hdr and attach it to
d3c2ae1c
GW
6645 * a new anonymous hdr. Also find the last buffer
6646 * in the hdr's buffer list.
34dc7c2f 6647 */
a7004725 6648 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 6649 ASSERT3P(lastbuf, !=, NULL);
34dc7c2f 6650
d3c2ae1c
GW
6651 /*
6652 * If the current arc_buf_t and the hdr are sharing their data
524b4217 6653 * buffer, then we must stop sharing that block.
d3c2ae1c
GW
6654 */
6655 if (arc_buf_is_shared(buf)) {
6656 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
d3c2ae1c
GW
6657 VERIFY(!arc_buf_is_shared(lastbuf));
6658
6659 /*
6660 * First, sever the block sharing relationship between
a7004725 6661 * buf and the arc_buf_hdr_t.
d3c2ae1c
GW
6662 */
6663 arc_unshare_buf(hdr, buf);
2aa34383
DK
6664
6665 /*
a6255b7f 6666 * Now we need to recreate the hdr's b_pabd. Since we
524b4217 6667 * have lastbuf handy, we try to share with it, but if
a6255b7f 6668 * we can't then we allocate a new b_pabd and copy the
524b4217 6669 * data from buf into it.
2aa34383 6670 */
524b4217
DK
6671 if (arc_can_share(hdr, lastbuf)) {
6672 arc_share_buf(hdr, lastbuf);
6673 } else {
e111c802 6674 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
a6255b7f
DQ
6675 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6676 buf->b_data, psize);
2aa34383 6677 }
d3c2ae1c
GW
6678 VERIFY3P(lastbuf->b_data, !=, NULL);
6679 } else if (HDR_SHARED_DATA(hdr)) {
2aa34383
DK
6680 /*
6681 * Uncompressed shared buffers are always at the end
6682 * of the list. Compressed buffers don't have the
6683 * same requirements. This makes it hard to
6684 * simply assert that the lastbuf is shared so
6685 * we rely on the hdr's compression flags to determine
6686 * if we have a compressed, shared buffer.
6687 */
6688 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 6689 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2aa34383 6690 ASSERT(!ARC_BUF_SHARED(buf));
d3c2ae1c 6691 }
b5256303
TC
6692
6693 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
b9541d6b 6694 ASSERT3P(state, !=, arc_l2c_only);
36da08ef 6695
424fd7c3 6696 (void) zfs_refcount_remove_many(&state->arcs_size,
2aa34383 6697 arc_buf_size(buf), buf);
36da08ef 6698
424fd7c3 6699 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
b9541d6b 6700 ASSERT3P(state, !=, arc_l2c_only);
424fd7c3
TS
6701 (void) zfs_refcount_remove_many(
6702 &state->arcs_esize[type],
2aa34383 6703 arc_buf_size(buf), buf);
34dc7c2f 6704 }
1eb5bfa3 6705
d3c2ae1c 6706 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303
TC
6707 if (ARC_BUF_ENCRYPTED(buf))
6708 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6709
34dc7c2f 6710 arc_cksum_verify(buf);
498877ba 6711 arc_buf_unwatch(buf);
34dc7c2f 6712
f486f584
TC
6713 /* if this is the last uncompressed buf free the checksum */
6714 if (!arc_hdr_has_uncompressed_buf(hdr))
6715 arc_cksum_free(hdr);
6716
34dc7c2f
BB
6717 mutex_exit(hash_lock);
6718
d3c2ae1c 6719 /*
a6255b7f 6720 * Allocate a new hdr. The new hdr will contain a b_pabd
d3c2ae1c
GW
6721 * buffer which will be freed in arc_write().
6722 */
b5256303 6723 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6b88b4b5 6724 compress, hdr->b_complevel, type);
d3c2ae1c
GW
6725 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6726 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
424fd7c3 6727 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
6728 VERIFY3U(nhdr->b_type, ==, type);
6729 ASSERT(!HDR_SHARED_DATA(nhdr));
b9541d6b 6730
d3c2ae1c
GW
6731 nhdr->b_l1hdr.b_buf = buf;
6732 nhdr->b_l1hdr.b_bufcnt = 1;
b5256303
TC
6733 if (ARC_BUF_ENCRYPTED(buf))
6734 nhdr->b_crypt_hdr.b_ebufcnt = 1;
c13060e4 6735 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 6736 buf->b_hdr = nhdr;
d3c2ae1c 6737
428870ff 6738 mutex_exit(&buf->b_evict_lock);
424fd7c3 6739 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
5e8ff256 6740 arc_buf_size(buf), buf);
34dc7c2f 6741 } else {
428870ff 6742 mutex_exit(&buf->b_evict_lock);
424fd7c3 6743 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
6744 /* protected by hash lock, or hdr is on arc_anon */
6745 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 6746 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
6747 hdr->b_l1hdr.b_mru_hits = 0;
6748 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6749 hdr->b_l1hdr.b_mfu_hits = 0;
6750 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
b9541d6b
CW
6751 arc_change_state(arc_anon, hdr, hash_lock);
6752 hdr->b_l1hdr.b_arc_access = 0;
34dc7c2f 6753
b5256303 6754 mutex_exit(hash_lock);
428870ff 6755 buf_discard_identity(hdr);
34dc7c2f
BB
6756 arc_buf_thaw(buf);
6757 }
34dc7c2f
BB
6758}
6759
6760int
6761arc_released(arc_buf_t *buf)
6762{
b128c09f
BB
6763 int released;
6764
428870ff 6765 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
6766 released = (buf->b_data != NULL &&
6767 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 6768 mutex_exit(&buf->b_evict_lock);
b128c09f 6769 return (released);
34dc7c2f
BB
6770}
6771
34dc7c2f
BB
6772#ifdef ZFS_DEBUG
6773int
6774arc_referenced(arc_buf_t *buf)
6775{
b128c09f
BB
6776 int referenced;
6777
428870ff 6778 mutex_enter(&buf->b_evict_lock);
424fd7c3 6779 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 6780 mutex_exit(&buf->b_evict_lock);
b128c09f 6781 return (referenced);
34dc7c2f
BB
6782}
6783#endif
6784
6785static void
6786arc_write_ready(zio_t *zio)
6787{
6788 arc_write_callback_t *callback = zio->io_private;
6789 arc_buf_t *buf = callback->awcb_buf;
6790 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
6791 blkptr_t *bp = zio->io_bp;
6792 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
a6255b7f 6793 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 6794
b9541d6b 6795 ASSERT(HDR_HAS_L1HDR(hdr));
424fd7c3 6796 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
d3c2ae1c 6797 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
b128c09f 6798
34dc7c2f 6799 /*
d3c2ae1c
GW
6800 * If we're reexecuting this zio because the pool suspended, then
6801 * cleanup any state that was previously set the first time the
2aa34383 6802 * callback was invoked.
34dc7c2f 6803 */
d3c2ae1c
GW
6804 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6805 arc_cksum_free(hdr);
6806 arc_buf_unwatch(buf);
a6255b7f 6807 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 6808 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
6809 arc_unshare_buf(hdr, buf);
6810 } else {
b5256303 6811 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 6812 }
34dc7c2f 6813 }
b5256303
TC
6814
6815 if (HDR_HAS_RABD(hdr))
6816 arc_hdr_free_abd(hdr, B_TRUE);
34dc7c2f 6817 }
a6255b7f 6818 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 6819 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6820 ASSERT(!HDR_SHARED_DATA(hdr));
6821 ASSERT(!arc_buf_is_shared(buf));
6822
6823 callback->awcb_ready(zio, buf, callback->awcb_private);
6824
6825 if (HDR_IO_IN_PROGRESS(hdr))
6826 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6827
d3c2ae1c
GW
6828 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6829
b5256303
TC
6830 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6831 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6832
6833 if (BP_IS_PROTECTED(bp)) {
6834 /* ZIL blocks are written through zio_rewrite */
6835 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6836 ASSERT(HDR_PROTECTED(hdr));
6837
ae76f45c
TC
6838 if (BP_SHOULD_BYTESWAP(bp)) {
6839 if (BP_GET_LEVEL(bp) > 0) {
6840 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6841 } else {
6842 hdr->b_l1hdr.b_byteswap =
6843 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6844 }
6845 } else {
6846 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6847 }
6848
b5256303
TC
6849 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6850 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6851 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6852 hdr->b_crypt_hdr.b_iv);
6853 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6854 }
6855
6856 /*
6857 * If this block was written for raw encryption but the zio layer
6858 * ended up only authenticating it, adjust the buffer flags now.
6859 */
6860 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6861 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6862 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6863 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6864 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b1d21733
TC
6865 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6866 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6867 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
6868 }
6869
6870 /* this must be done after the buffer flags are adjusted */
6871 arc_cksum_compute(buf);
6872
1c27024e 6873 enum zio_compress compress;
b5256303 6874 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
d3c2ae1c
GW
6875 compress = ZIO_COMPRESS_OFF;
6876 } else {
b5256303
TC
6877 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6878 compress = BP_GET_COMPRESS(bp);
d3c2ae1c
GW
6879 }
6880 HDR_SET_PSIZE(hdr, psize);
6881 arc_hdr_set_compress(hdr, compress);
10b3c7f5 6882 hdr->b_complevel = zio->io_prop.zp_complevel;
d3c2ae1c 6883
4807c0ba
TC
6884 if (zio->io_error != 0 || psize == 0)
6885 goto out;
6886
d3c2ae1c 6887 /*
b5256303
TC
6888 * Fill the hdr with data. If the buffer is encrypted we have no choice
6889 * but to copy the data into b_radb. If the hdr is compressed, the data
6890 * we want is available from the zio, otherwise we can take it from
6891 * the buf.
a6255b7f
DQ
6892 *
6893 * We might be able to share the buf's data with the hdr here. However,
6894 * doing so would cause the ARC to be full of linear ABDs if we write a
6895 * lot of shareable data. As a compromise, we check whether scattered
6896 * ABDs are allowed, and assume that if they are then the user wants
6897 * the ARC to be primarily filled with them regardless of the data being
6898 * written. Therefore, if they're allowed then we allocate one and copy
6899 * the data into it; otherwise, we share the data directly if we can.
d3c2ae1c 6900 */
b5256303 6901 if (ARC_BUF_ENCRYPTED(buf)) {
4807c0ba 6902 ASSERT3U(psize, >, 0);
b5256303 6903 ASSERT(ARC_BUF_COMPRESSED(buf));
6b88b4b5
AM
6904 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA |
6905 ARC_HDR_USE_RESERVE);
b5256303 6906 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
7eebcd2b
AM
6907 } else if (!abd_size_alloc_linear(arc_buf_size(buf)) ||
6908 !arc_can_share(hdr, buf)) {
a6255b7f
DQ
6909 /*
6910 * Ideally, we would always copy the io_abd into b_pabd, but the
6911 * user may have disabled compressed ARC, thus we must check the
6912 * hdr's compression setting rather than the io_bp's.
6913 */
b5256303 6914 if (BP_IS_ENCRYPTED(bp)) {
a6255b7f 6915 ASSERT3U(psize, >, 0);
6b88b4b5
AM
6916 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6917 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE);
b5256303
TC
6918 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6919 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6920 !ARC_BUF_COMPRESSED(buf)) {
6921 ASSERT3U(psize, >, 0);
6b88b4b5
AM
6922 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6923 ARC_HDR_USE_RESERVE);
a6255b7f
DQ
6924 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6925 } else {
6926 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6b88b4b5
AM
6927 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6928 ARC_HDR_USE_RESERVE);
a6255b7f
DQ
6929 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6930 arc_buf_size(buf));
6931 }
d3c2ae1c 6932 } else {
a6255b7f 6933 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
2aa34383 6934 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
d3c2ae1c 6935 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
d3c2ae1c 6936
d3c2ae1c 6937 arc_share_buf(hdr, buf);
d3c2ae1c 6938 }
a6255b7f 6939
4807c0ba 6940out:
b5256303 6941 arc_hdr_verify(hdr, bp);
a6255b7f 6942 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6943}
6944
bc77ba73
PD
6945static void
6946arc_write_children_ready(zio_t *zio)
6947{
6948 arc_write_callback_t *callback = zio->io_private;
6949 arc_buf_t *buf = callback->awcb_buf;
6950
6951 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6952}
6953
e8b96c60
MA
6954/*
6955 * The SPA calls this callback for each physical write that happens on behalf
6956 * of a logical write. See the comment in dbuf_write_physdone() for details.
6957 */
6958static void
6959arc_write_physdone(zio_t *zio)
6960{
6961 arc_write_callback_t *cb = zio->io_private;
6962 if (cb->awcb_physdone != NULL)
6963 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6964}
6965
34dc7c2f
BB
6966static void
6967arc_write_done(zio_t *zio)
6968{
6969 arc_write_callback_t *callback = zio->io_private;
6970 arc_buf_t *buf = callback->awcb_buf;
6971 arc_buf_hdr_t *hdr = buf->b_hdr;
6972
d3c2ae1c 6973 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
428870ff
BB
6974
6975 if (zio->io_error == 0) {
d3c2ae1c
GW
6976 arc_hdr_verify(hdr, zio->io_bp);
6977
9b67f605 6978 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
6979 buf_discard_identity(hdr);
6980 } else {
6981 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6982 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 6983 }
428870ff 6984 } else {
d3c2ae1c 6985 ASSERT(HDR_EMPTY(hdr));
428870ff 6986 }
34dc7c2f 6987
34dc7c2f 6988 /*
9b67f605
MA
6989 * If the block to be written was all-zero or compressed enough to be
6990 * embedded in the BP, no write was performed so there will be no
6991 * dva/birth/checksum. The buffer must therefore remain anonymous
6992 * (and uncached).
34dc7c2f 6993 */
d3c2ae1c 6994 if (!HDR_EMPTY(hdr)) {
34dc7c2f
BB
6995 arc_buf_hdr_t *exists;
6996 kmutex_t *hash_lock;
6997
524b4217 6998 ASSERT3U(zio->io_error, ==, 0);
428870ff 6999
34dc7c2f
BB
7000 arc_cksum_verify(buf);
7001
7002 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 7003 if (exists != NULL) {
34dc7c2f
BB
7004 /*
7005 * This can only happen if we overwrite for
7006 * sync-to-convergence, because we remove
7007 * buffers from the hash table when we arc_free().
7008 */
428870ff
BB
7009 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
7010 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7011 panic("bad overwrite, hdr=%p exists=%p",
7012 (void *)hdr, (void *)exists);
424fd7c3 7013 ASSERT(zfs_refcount_is_zero(
b9541d6b 7014 &exists->b_l1hdr.b_refcnt));
428870ff 7015 arc_change_state(arc_anon, exists, hash_lock);
428870ff 7016 arc_hdr_destroy(exists);
ca6c7a94 7017 mutex_exit(hash_lock);
428870ff
BB
7018 exists = buf_hash_insert(hdr, &hash_lock);
7019 ASSERT3P(exists, ==, NULL);
03c6040b
GW
7020 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7021 /* nopwrite */
7022 ASSERT(zio->io_prop.zp_nopwrite);
7023 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7024 panic("bad nopwrite, hdr=%p exists=%p",
7025 (void *)hdr, (void *)exists);
428870ff
BB
7026 } else {
7027 /* Dedup */
d3c2ae1c 7028 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
b9541d6b 7029 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
7030 ASSERT(BP_GET_DEDUP(zio->io_bp));
7031 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
7032 }
34dc7c2f 7033 }
d3c2ae1c 7034 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
b128c09f 7035 /* if it's not anon, we are doing a scrub */
b9541d6b 7036 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 7037 arc_access(hdr, hash_lock);
34dc7c2f 7038 mutex_exit(hash_lock);
34dc7c2f 7039 } else {
d3c2ae1c 7040 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f
BB
7041 }
7042
424fd7c3 7043 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 7044 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f 7045
e2af2acc 7046 abd_free(zio->io_abd);
34dc7c2f
BB
7047 kmem_free(callback, sizeof (arc_write_callback_t));
7048}
7049
7050zio_t *
428870ff 7051arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
d3c2ae1c 7052 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
b5256303
TC
7053 const zio_prop_t *zp, arc_write_done_func_t *ready,
7054 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7055 arc_write_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 7056 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
7057{
7058 arc_buf_hdr_t *hdr = buf->b_hdr;
7059 arc_write_callback_t *callback;
b128c09f 7060 zio_t *zio;
82644107 7061 zio_prop_t localprop = *zp;
34dc7c2f 7062
d3c2ae1c
GW
7063 ASSERT3P(ready, !=, NULL);
7064 ASSERT3P(done, !=, NULL);
34dc7c2f 7065 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b 7066 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c
GW
7067 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7068 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
b128c09f 7069 if (l2arc)
d3c2ae1c 7070 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
82644107 7071
b5256303
TC
7072 if (ARC_BUF_ENCRYPTED(buf)) {
7073 ASSERT(ARC_BUF_COMPRESSED(buf));
7074 localprop.zp_encrypt = B_TRUE;
7075 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
10b3c7f5 7076 localprop.zp_complevel = hdr->b_complevel;
b5256303
TC
7077 localprop.zp_byteorder =
7078 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7079 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7080 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7081 ZIO_DATA_SALT_LEN);
7082 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7083 ZIO_DATA_IV_LEN);
7084 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7085 ZIO_DATA_MAC_LEN);
7086 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7087 localprop.zp_nopwrite = B_FALSE;
7088 localprop.zp_copies =
7089 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7090 }
2aa34383 7091 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
7092 } else if (ARC_BUF_COMPRESSED(buf)) {
7093 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7094 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
10b3c7f5 7095 localprop.zp_complevel = hdr->b_complevel;
b5256303 7096 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2aa34383 7097 }
79c76d5b 7098 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 7099 callback->awcb_ready = ready;
bc77ba73 7100 callback->awcb_children_ready = children_ready;
e8b96c60 7101 callback->awcb_physdone = physdone;
34dc7c2f
BB
7102 callback->awcb_done = done;
7103 callback->awcb_private = private;
7104 callback->awcb_buf = buf;
b128c09f 7105
d3c2ae1c 7106 /*
a6255b7f 7107 * The hdr's b_pabd is now stale, free it now. A new data block
d3c2ae1c
GW
7108 * will be allocated when the zio pipeline calls arc_write_ready().
7109 */
a6255b7f 7110 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
7111 /*
7112 * If the buf is currently sharing the data block with
7113 * the hdr then we need to break that relationship here.
7114 * The hdr will remain with a NULL data pointer and the
7115 * buf will take sole ownership of the block.
7116 */
7117 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
7118 arc_unshare_buf(hdr, buf);
7119 } else {
b5256303 7120 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c
GW
7121 }
7122 VERIFY3P(buf->b_data, !=, NULL);
d3c2ae1c 7123 }
b5256303
TC
7124
7125 if (HDR_HAS_RABD(hdr))
7126 arc_hdr_free_abd(hdr, B_TRUE);
7127
71a24c3c
TC
7128 if (!(zio_flags & ZIO_FLAG_RAW))
7129 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
b5256303 7130
d3c2ae1c 7131 ASSERT(!arc_buf_is_shared(buf));
a6255b7f 7132 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 7133
a6255b7f
DQ
7134 zio = zio_write(pio, spa, txg, bp,
7135 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
82644107 7136 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
bc77ba73
PD
7137 (children_ready != NULL) ? arc_write_children_ready : NULL,
7138 arc_write_physdone, arc_write_done, callback,
e8b96c60 7139 priority, zio_flags, zb);
34dc7c2f
BB
7140
7141 return (zio);
7142}
7143
34dc7c2f
BB
7144void
7145arc_tempreserve_clear(uint64_t reserve)
7146{
7147 atomic_add_64(&arc_tempreserve, -reserve);
7148 ASSERT((int64_t)arc_tempreserve >= 0);
7149}
7150
7151int
dae3e9ea 7152arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
34dc7c2f
BB
7153{
7154 int error;
9babb374 7155 uint64_t anon_size;
34dc7c2f 7156
1b8951b3
TC
7157 if (!arc_no_grow &&
7158 reserve > arc_c/4 &&
7159 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 7160 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
7161
7162 /*
7163 * Throttle when the calculated memory footprint for the TXG
7164 * exceeds the target ARC size.
7165 */
570827e1
BB
7166 if (reserve > arc_c) {
7167 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 7168 return (SET_ERROR(ERESTART));
570827e1 7169 }
34dc7c2f 7170
9babb374
BB
7171 /*
7172 * Don't count loaned bufs as in flight dirty data to prevent long
7173 * network delays from blocking transactions that are ready to be
7174 * assigned to a txg.
7175 */
a7004725
DK
7176
7177 /* assert that it has not wrapped around */
7178 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7179
424fd7c3 7180 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
36da08ef 7181 arc_loaned_bytes), 0);
9babb374 7182
34dc7c2f
BB
7183 /*
7184 * Writes will, almost always, require additional memory allocations
d3cc8b15 7185 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
7186 * make sure that there is sufficient available memory for this.
7187 */
dae3e9ea 7188 error = arc_memory_throttle(spa, reserve, txg);
e8b96c60 7189 if (error != 0)
34dc7c2f
BB
7190 return (error);
7191
7192 /*
7193 * Throttle writes when the amount of dirty data in the cache
7194 * gets too large. We try to keep the cache less than half full
7195 * of dirty blocks so that our sync times don't grow too large.
dae3e9ea
DB
7196 *
7197 * In the case of one pool being built on another pool, we want
7198 * to make sure we don't end up throttling the lower (backing)
7199 * pool when the upper pool is the majority contributor to dirty
7200 * data. To insure we make forward progress during throttling, we
7201 * also check the current pool's net dirty data and only throttle
7202 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7203 * data in the cache.
7204 *
34dc7c2f
BB
7205 * Note: if two requests come in concurrently, we might let them
7206 * both succeed, when one of them should fail. Not a huge deal.
7207 */
dae3e9ea
DB
7208 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7209 uint64_t spa_dirty_anon = spa_dirty_data(spa);
daabddaa
AM
7210 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7211 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7212 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
dae3e9ea 7213 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
2fd92c3d 7214#ifdef ZFS_DEBUG
424fd7c3
TS
7215 uint64_t meta_esize = zfs_refcount_count(
7216 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
d3c2ae1c 7217 uint64_t data_esize =
424fd7c3 7218 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
34dc7c2f 7219 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
daabddaa 7220 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
8e739b2c
RE
7221 (u_longlong_t)arc_tempreserve >> 10,
7222 (u_longlong_t)meta_esize >> 10,
7223 (u_longlong_t)data_esize >> 10,
7224 (u_longlong_t)reserve >> 10,
7225 (u_longlong_t)rarc_c >> 10);
2fd92c3d 7226#endif
570827e1 7227 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 7228 return (SET_ERROR(ERESTART));
34dc7c2f
BB
7229 }
7230 atomic_add_64(&arc_tempreserve, reserve);
7231 return (0);
7232}
7233
13be560d
BB
7234static void
7235arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7236 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7237{
424fd7c3 7238 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
d3c2ae1c 7239 evict_data->value.ui64 =
424fd7c3 7240 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
d3c2ae1c 7241 evict_metadata->value.ui64 =
424fd7c3 7242 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
13be560d
BB
7243}
7244
7245static int
7246arc_kstat_update(kstat_t *ksp, int rw)
7247{
7248 arc_stats_t *as = ksp->ks_data;
7249
c4c162c1 7250 if (rw == KSTAT_WRITE)
ecb2b7dc 7251 return (SET_ERROR(EACCES));
c4c162c1
AM
7252
7253 as->arcstat_hits.value.ui64 =
7254 wmsum_value(&arc_sums.arcstat_hits);
7255 as->arcstat_misses.value.ui64 =
7256 wmsum_value(&arc_sums.arcstat_misses);
7257 as->arcstat_demand_data_hits.value.ui64 =
7258 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7259 as->arcstat_demand_data_misses.value.ui64 =
7260 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7261 as->arcstat_demand_metadata_hits.value.ui64 =
7262 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7263 as->arcstat_demand_metadata_misses.value.ui64 =
7264 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7265 as->arcstat_prefetch_data_hits.value.ui64 =
7266 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7267 as->arcstat_prefetch_data_misses.value.ui64 =
7268 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7269 as->arcstat_prefetch_metadata_hits.value.ui64 =
7270 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7271 as->arcstat_prefetch_metadata_misses.value.ui64 =
7272 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7273 as->arcstat_mru_hits.value.ui64 =
7274 wmsum_value(&arc_sums.arcstat_mru_hits);
7275 as->arcstat_mru_ghost_hits.value.ui64 =
7276 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7277 as->arcstat_mfu_hits.value.ui64 =
7278 wmsum_value(&arc_sums.arcstat_mfu_hits);
7279 as->arcstat_mfu_ghost_hits.value.ui64 =
7280 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7281 as->arcstat_deleted.value.ui64 =
7282 wmsum_value(&arc_sums.arcstat_deleted);
7283 as->arcstat_mutex_miss.value.ui64 =
7284 wmsum_value(&arc_sums.arcstat_mutex_miss);
7285 as->arcstat_access_skip.value.ui64 =
7286 wmsum_value(&arc_sums.arcstat_access_skip);
7287 as->arcstat_evict_skip.value.ui64 =
7288 wmsum_value(&arc_sums.arcstat_evict_skip);
7289 as->arcstat_evict_not_enough.value.ui64 =
7290 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7291 as->arcstat_evict_l2_cached.value.ui64 =
7292 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7293 as->arcstat_evict_l2_eligible.value.ui64 =
7294 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7295 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7296 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7297 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7298 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7299 as->arcstat_evict_l2_ineligible.value.ui64 =
7300 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7301 as->arcstat_evict_l2_skip.value.ui64 =
7302 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7303 as->arcstat_hash_collisions.value.ui64 =
7304 wmsum_value(&arc_sums.arcstat_hash_collisions);
7305 as->arcstat_hash_chains.value.ui64 =
7306 wmsum_value(&arc_sums.arcstat_hash_chains);
7307 as->arcstat_size.value.ui64 =
7308 aggsum_value(&arc_sums.arcstat_size);
7309 as->arcstat_compressed_size.value.ui64 =
7310 wmsum_value(&arc_sums.arcstat_compressed_size);
7311 as->arcstat_uncompressed_size.value.ui64 =
7312 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7313 as->arcstat_overhead_size.value.ui64 =
7314 wmsum_value(&arc_sums.arcstat_overhead_size);
7315 as->arcstat_hdr_size.value.ui64 =
7316 wmsum_value(&arc_sums.arcstat_hdr_size);
7317 as->arcstat_data_size.value.ui64 =
7318 wmsum_value(&arc_sums.arcstat_data_size);
7319 as->arcstat_metadata_size.value.ui64 =
7320 wmsum_value(&arc_sums.arcstat_metadata_size);
7321 as->arcstat_dbuf_size.value.ui64 =
7322 wmsum_value(&arc_sums.arcstat_dbuf_size);
1c2725a1 7323#if defined(COMPAT_FREEBSD11)
c4c162c1
AM
7324 as->arcstat_other_size.value.ui64 =
7325 wmsum_value(&arc_sums.arcstat_bonus_size) +
7326 aggsum_value(&arc_sums.arcstat_dnode_size) +
7327 wmsum_value(&arc_sums.arcstat_dbuf_size);
1c2725a1 7328#endif
37fb3e43 7329
c4c162c1
AM
7330 arc_kstat_update_state(arc_anon,
7331 &as->arcstat_anon_size,
7332 &as->arcstat_anon_evictable_data,
7333 &as->arcstat_anon_evictable_metadata);
7334 arc_kstat_update_state(arc_mru,
7335 &as->arcstat_mru_size,
7336 &as->arcstat_mru_evictable_data,
7337 &as->arcstat_mru_evictable_metadata);
7338 arc_kstat_update_state(arc_mru_ghost,
7339 &as->arcstat_mru_ghost_size,
7340 &as->arcstat_mru_ghost_evictable_data,
7341 &as->arcstat_mru_ghost_evictable_metadata);
7342 arc_kstat_update_state(arc_mfu,
7343 &as->arcstat_mfu_size,
7344 &as->arcstat_mfu_evictable_data,
7345 &as->arcstat_mfu_evictable_metadata);
7346 arc_kstat_update_state(arc_mfu_ghost,
7347 &as->arcstat_mfu_ghost_size,
7348 &as->arcstat_mfu_ghost_evictable_data,
7349 &as->arcstat_mfu_ghost_evictable_metadata);
7350
7351 as->arcstat_dnode_size.value.ui64 =
7352 aggsum_value(&arc_sums.arcstat_dnode_size);
7353 as->arcstat_bonus_size.value.ui64 =
7354 wmsum_value(&arc_sums.arcstat_bonus_size);
7355 as->arcstat_l2_hits.value.ui64 =
7356 wmsum_value(&arc_sums.arcstat_l2_hits);
7357 as->arcstat_l2_misses.value.ui64 =
7358 wmsum_value(&arc_sums.arcstat_l2_misses);
7359 as->arcstat_l2_prefetch_asize.value.ui64 =
7360 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7361 as->arcstat_l2_mru_asize.value.ui64 =
7362 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7363 as->arcstat_l2_mfu_asize.value.ui64 =
7364 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7365 as->arcstat_l2_bufc_data_asize.value.ui64 =
7366 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7367 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7368 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7369 as->arcstat_l2_feeds.value.ui64 =
7370 wmsum_value(&arc_sums.arcstat_l2_feeds);
7371 as->arcstat_l2_rw_clash.value.ui64 =
7372 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7373 as->arcstat_l2_read_bytes.value.ui64 =
7374 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7375 as->arcstat_l2_write_bytes.value.ui64 =
7376 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7377 as->arcstat_l2_writes_sent.value.ui64 =
7378 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7379 as->arcstat_l2_writes_done.value.ui64 =
7380 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7381 as->arcstat_l2_writes_error.value.ui64 =
7382 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7383 as->arcstat_l2_writes_lock_retry.value.ui64 =
7384 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7385 as->arcstat_l2_evict_lock_retry.value.ui64 =
7386 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7387 as->arcstat_l2_evict_reading.value.ui64 =
7388 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7389 as->arcstat_l2_evict_l1cached.value.ui64 =
7390 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7391 as->arcstat_l2_free_on_write.value.ui64 =
7392 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7393 as->arcstat_l2_abort_lowmem.value.ui64 =
7394 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7395 as->arcstat_l2_cksum_bad.value.ui64 =
7396 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7397 as->arcstat_l2_io_error.value.ui64 =
7398 wmsum_value(&arc_sums.arcstat_l2_io_error);
7399 as->arcstat_l2_lsize.value.ui64 =
7400 wmsum_value(&arc_sums.arcstat_l2_lsize);
7401 as->arcstat_l2_psize.value.ui64 =
7402 wmsum_value(&arc_sums.arcstat_l2_psize);
7403 as->arcstat_l2_hdr_size.value.ui64 =
7404 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7405 as->arcstat_l2_log_blk_writes.value.ui64 =
7406 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7407 as->arcstat_l2_log_blk_asize.value.ui64 =
7408 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7409 as->arcstat_l2_log_blk_count.value.ui64 =
7410 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7411 as->arcstat_l2_rebuild_success.value.ui64 =
7412 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7413 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7414 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7415 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7416 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7417 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7418 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7419 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7420 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7421 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7422 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7423 as->arcstat_l2_rebuild_size.value.ui64 =
7424 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7425 as->arcstat_l2_rebuild_asize.value.ui64 =
7426 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7427 as->arcstat_l2_rebuild_bufs.value.ui64 =
7428 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7429 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7430 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7431 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7432 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7433 as->arcstat_memory_throttle_count.value.ui64 =
7434 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7435 as->arcstat_memory_direct_count.value.ui64 =
7436 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7437 as->arcstat_memory_indirect_count.value.ui64 =
7438 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7439
7440 as->arcstat_memory_all_bytes.value.ui64 =
7441 arc_all_memory();
7442 as->arcstat_memory_free_bytes.value.ui64 =
7443 arc_free_memory();
7444 as->arcstat_memory_available_bytes.value.i64 =
7445 arc_available_memory();
7446
7447 as->arcstat_prune.value.ui64 =
7448 wmsum_value(&arc_sums.arcstat_prune);
7449 as->arcstat_meta_used.value.ui64 =
7450 aggsum_value(&arc_sums.arcstat_meta_used);
7451 as->arcstat_async_upgrade_sync.value.ui64 =
7452 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7453 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7454 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7455 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7456 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7457 as->arcstat_raw_size.value.ui64 =
7458 wmsum_value(&arc_sums.arcstat_raw_size);
7459 as->arcstat_cached_only_in_progress.value.ui64 =
7460 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7461 as->arcstat_abd_chunk_waste_size.value.ui64 =
7462 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
13be560d
BB
7463
7464 return (0);
7465}
7466
ca0bf58d
PS
7467/*
7468 * This function *must* return indices evenly distributed between all
7469 * sublists of the multilist. This is needed due to how the ARC eviction
7470 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7471 * distributed between all sublists and uses this assumption when
7472 * deciding which sublist to evict from and how much to evict from it.
7473 */
65c7cc49 7474static unsigned int
ca0bf58d
PS
7475arc_state_multilist_index_func(multilist_t *ml, void *obj)
7476{
7477 arc_buf_hdr_t *hdr = obj;
7478
7479 /*
7480 * We rely on b_dva to generate evenly distributed index
7481 * numbers using buf_hash below. So, as an added precaution,
7482 * let's make sure we never add empty buffers to the arc lists.
7483 */
d3c2ae1c 7484 ASSERT(!HDR_EMPTY(hdr));
ca0bf58d
PS
7485
7486 /*
7487 * The assumption here, is the hash value for a given
7488 * arc_buf_hdr_t will remain constant throughout its lifetime
7489 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7490 * Thus, we don't need to store the header's sublist index
7491 * on insertion, as this index can be recalculated on removal.
7492 *
7493 * Also, the low order bits of the hash value are thought to be
7494 * distributed evenly. Otherwise, in the case that the multilist
7495 * has a power of two number of sublists, each sublists' usage
5b7053a9
AM
7496 * would not be evenly distributed. In this context full 64bit
7497 * division would be a waste of time, so limit it to 32 bits.
ca0bf58d 7498 */
5b7053a9 7499 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
ca0bf58d
PS
7500 multilist_get_num_sublists(ml));
7501}
7502
bb7ad5d3
AM
7503static unsigned int
7504arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7505{
7506 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7507}
7508
36a6e233
RM
7509#define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7510 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7511 cmn_err(CE_WARN, \
7512 "ignoring tunable %s (using %llu instead)", \
5dbf6c5a 7513 (#tuning), (u_longlong_t)(value)); \
36a6e233
RM
7514 } \
7515} while (0)
7516
ca67b33a
MA
7517/*
7518 * Called during module initialization and periodically thereafter to
e3570464 7519 * apply reasonable changes to the exposed performance tunings. Can also be
7520 * called explicitly by param_set_arc_*() functions when ARC tunables are
7521 * updated manually. Non-zero zfs_* values which differ from the currently set
7522 * values will be applied.
ca67b33a 7523 */
e3570464 7524void
36a6e233 7525arc_tuning_update(boolean_t verbose)
ca67b33a 7526{
b8a97fb1 7527 uint64_t allmem = arc_all_memory();
7528 unsigned long limit;
9edb3695 7529
36a6e233
RM
7530 /* Valid range: 32M - <arc_c_max> */
7531 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7532 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7533 (zfs_arc_min <= arc_c_max)) {
7534 arc_c_min = zfs_arc_min;
7535 arc_c = MAX(arc_c, arc_c_min);
7536 }
7537 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7538
ca67b33a
MA
7539 /* Valid range: 64M - <all physical memory> */
7540 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
e945e8d7 7541 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
ca67b33a
MA
7542 (zfs_arc_max > arc_c_min)) {
7543 arc_c_max = zfs_arc_max;
17ca3018 7544 arc_c = MIN(arc_c, arc_c_max);
ca67b33a 7545 arc_p = (arc_c >> 1);
b8a97fb1 7546 if (arc_meta_limit > arc_c_max)
7547 arc_meta_limit = arc_c_max;
03fdcb9a
MM
7548 if (arc_dnode_size_limit > arc_meta_limit)
7549 arc_dnode_size_limit = arc_meta_limit;
ca67b33a 7550 }
36a6e233 7551 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
ca67b33a
MA
7552
7553 /* Valid range: 16M - <arc_c_max> */
7554 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7555 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7556 (zfs_arc_meta_min <= arc_c_max)) {
7557 arc_meta_min = zfs_arc_meta_min;
b8a97fb1 7558 if (arc_meta_limit < arc_meta_min)
7559 arc_meta_limit = arc_meta_min;
03fdcb9a
MM
7560 if (arc_dnode_size_limit < arc_meta_min)
7561 arc_dnode_size_limit = arc_meta_min;
ca67b33a 7562 }
36a6e233 7563 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
ca67b33a
MA
7564
7565 /* Valid range: <arc_meta_min> - <arc_c_max> */
b8a97fb1 7566 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7567 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7568 if ((limit != arc_meta_limit) &&
7569 (limit >= arc_meta_min) &&
7570 (limit <= arc_c_max))
7571 arc_meta_limit = limit;
36a6e233 7572 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
b8a97fb1 7573
7574 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7575 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7576 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
03fdcb9a 7577 if ((limit != arc_dnode_size_limit) &&
b8a97fb1 7578 (limit >= arc_meta_min) &&
7579 (limit <= arc_meta_limit))
03fdcb9a 7580 arc_dnode_size_limit = limit;
36a6e233
RM
7581 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7582 verbose);
25458cbe 7583
ca67b33a
MA
7584 /* Valid range: 1 - N */
7585 if (zfs_arc_grow_retry)
7586 arc_grow_retry = zfs_arc_grow_retry;
7587
7588 /* Valid range: 1 - N */
7589 if (zfs_arc_shrink_shift) {
7590 arc_shrink_shift = zfs_arc_shrink_shift;
7591 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7592 }
7593
728d6ae9
BB
7594 /* Valid range: 1 - N */
7595 if (zfs_arc_p_min_shift)
7596 arc_p_min_shift = zfs_arc_p_min_shift;
7597
d4a72f23
TC
7598 /* Valid range: 1 - N ms */
7599 if (zfs_arc_min_prefetch_ms)
7600 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7601
7602 /* Valid range: 1 - N ms */
7603 if (zfs_arc_min_prescient_prefetch_ms) {
7604 arc_min_prescient_prefetch_ms =
7605 zfs_arc_min_prescient_prefetch_ms;
7606 }
11f552fa 7607
7e8bddd0
BB
7608 /* Valid range: 0 - 100 */
7609 if ((zfs_arc_lotsfree_percent >= 0) &&
7610 (zfs_arc_lotsfree_percent <= 100))
7611 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
36a6e233
RM
7612 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7613 verbose);
7e8bddd0 7614
11f552fa
BB
7615 /* Valid range: 0 - <all physical memory> */
7616 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
9edb3695 7617 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
36a6e233 7618 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
ca67b33a
MA
7619}
7620
d3c2ae1c
GW
7621static void
7622arc_state_init(void)
7623{
ffdf019c
AM
7624 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7625 sizeof (arc_buf_hdr_t),
d3c2ae1c 7626 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7627 arc_state_multilist_index_func);
ffdf019c
AM
7628 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
7629 sizeof (arc_buf_hdr_t),
d3c2ae1c 7630 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7631 arc_state_multilist_index_func);
ffdf019c
AM
7632 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7633 sizeof (arc_buf_hdr_t),
d3c2ae1c 7634 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7635 arc_state_multilist_index_func);
ffdf019c
AM
7636 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7637 sizeof (arc_buf_hdr_t),
d3c2ae1c 7638 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7639 arc_state_multilist_index_func);
ffdf019c
AM
7640 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7641 sizeof (arc_buf_hdr_t),
d3c2ae1c 7642 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7643 arc_state_multilist_index_func);
ffdf019c
AM
7644 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7645 sizeof (arc_buf_hdr_t),
d3c2ae1c 7646 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7647 arc_state_multilist_index_func);
ffdf019c
AM
7648 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7649 sizeof (arc_buf_hdr_t),
d3c2ae1c 7650 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7651 arc_state_multilist_index_func);
ffdf019c
AM
7652 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7653 sizeof (arc_buf_hdr_t),
d3c2ae1c 7654 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7655 arc_state_multilist_index_func);
bb7ad5d3
AM
7656 /*
7657 * L2 headers should never be on the L2 state list since they don't
7658 * have L1 headers allocated. Special index function asserts that.
7659 */
ffdf019c
AM
7660 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7661 sizeof (arc_buf_hdr_t),
d3c2ae1c 7662 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
bb7ad5d3 7663 arc_state_l2c_multilist_index_func);
ffdf019c
AM
7664 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7665 sizeof (arc_buf_hdr_t),
d3c2ae1c 7666 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
bb7ad5d3 7667 arc_state_l2c_multilist_index_func);
d3c2ae1c 7668
424fd7c3
TS
7669 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7670 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7671 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7672 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7673 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7674 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7675 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7676 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7677 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7678 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7679 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7680 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7681
7682 zfs_refcount_create(&arc_anon->arcs_size);
7683 zfs_refcount_create(&arc_mru->arcs_size);
7684 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7685 zfs_refcount_create(&arc_mfu->arcs_size);
7686 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7687 zfs_refcount_create(&arc_l2c_only->arcs_size);
d3c2ae1c 7688
c4c162c1
AM
7689 wmsum_init(&arc_sums.arcstat_hits, 0);
7690 wmsum_init(&arc_sums.arcstat_misses, 0);
7691 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7692 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7693 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7694 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7695 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7696 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7697 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7698 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7699 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7700 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7701 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7702 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7703 wmsum_init(&arc_sums.arcstat_deleted, 0);
7704 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7705 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7706 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7707 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7708 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7709 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7710 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7711 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7712 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7713 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7714 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7715 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7716 aggsum_init(&arc_sums.arcstat_size, 0);
7717 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7718 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7719 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7720 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7721 wmsum_init(&arc_sums.arcstat_data_size, 0);
7722 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7723 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7724 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7725 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7726 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7727 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7728 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7729 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7730 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7731 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7732 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7733 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7734 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7735 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7736 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7737 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7738 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7739 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7740 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7741 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7742 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7743 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7744 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7745 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7746 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7747 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7748 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7749 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7750 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7751 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7752 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7753 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7754 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7755 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7756 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7757 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7758 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7759 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7760 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7761 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7762 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7763 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7764 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7765 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7766 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7767 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7768 wmsum_init(&arc_sums.arcstat_prune, 0);
7769 aggsum_init(&arc_sums.arcstat_meta_used, 0);
7770 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7771 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7772 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7773 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7774 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7775 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
37fb3e43 7776
d3c2ae1c
GW
7777 arc_anon->arcs_state = ARC_STATE_ANON;
7778 arc_mru->arcs_state = ARC_STATE_MRU;
7779 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7780 arc_mfu->arcs_state = ARC_STATE_MFU;
7781 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7782 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7783}
7784
7785static void
7786arc_state_fini(void)
7787{
424fd7c3
TS
7788 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7789 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7790 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7791 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7792 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7793 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7794 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7795 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7796 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7797 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7798 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7799 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7800
7801 zfs_refcount_destroy(&arc_anon->arcs_size);
7802 zfs_refcount_destroy(&arc_mru->arcs_size);
7803 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7804 zfs_refcount_destroy(&arc_mfu->arcs_size);
7805 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7806 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
d3c2ae1c 7807
ffdf019c
AM
7808 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7809 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7810 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7811 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7812 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7813 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7814 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7815 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7816 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7817 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
37fb3e43 7818
c4c162c1
AM
7819 wmsum_fini(&arc_sums.arcstat_hits);
7820 wmsum_fini(&arc_sums.arcstat_misses);
7821 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7822 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7823 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7824 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7825 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7826 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7827 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7828 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7829 wmsum_fini(&arc_sums.arcstat_mru_hits);
7830 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7831 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7832 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7833 wmsum_fini(&arc_sums.arcstat_deleted);
7834 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7835 wmsum_fini(&arc_sums.arcstat_access_skip);
7836 wmsum_fini(&arc_sums.arcstat_evict_skip);
7837 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7838 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7839 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7840 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7841 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7842 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7843 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7844 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7845 wmsum_fini(&arc_sums.arcstat_hash_chains);
7846 aggsum_fini(&arc_sums.arcstat_size);
7847 wmsum_fini(&arc_sums.arcstat_compressed_size);
7848 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7849 wmsum_fini(&arc_sums.arcstat_overhead_size);
7850 wmsum_fini(&arc_sums.arcstat_hdr_size);
7851 wmsum_fini(&arc_sums.arcstat_data_size);
7852 wmsum_fini(&arc_sums.arcstat_metadata_size);
7853 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7854 aggsum_fini(&arc_sums.arcstat_dnode_size);
7855 wmsum_fini(&arc_sums.arcstat_bonus_size);
7856 wmsum_fini(&arc_sums.arcstat_l2_hits);
7857 wmsum_fini(&arc_sums.arcstat_l2_misses);
7858 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7859 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7860 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7861 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7862 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7863 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7864 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7865 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7866 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7867 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7868 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7869 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7870 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7871 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7872 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7873 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7874 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7875 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7876 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7877 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7878 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7879 wmsum_fini(&arc_sums.arcstat_l2_psize);
7880 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7881 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7882 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7883 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7884 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7885 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7886 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7887 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7888 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7889 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7890 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7891 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7892 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7893 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7894 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7895 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7896 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7897 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7898 wmsum_fini(&arc_sums.arcstat_prune);
7899 aggsum_fini(&arc_sums.arcstat_meta_used);
7900 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7901 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7902 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7903 wmsum_fini(&arc_sums.arcstat_raw_size);
7904 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7905 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
d3c2ae1c
GW
7906}
7907
7908uint64_t
e71cade6 7909arc_target_bytes(void)
d3c2ae1c 7910{
e71cade6 7911 return (arc_c);
d3c2ae1c
GW
7912}
7913
60a4c7d2
PD
7914void
7915arc_set_limits(uint64_t allmem)
7916{
7917 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7918 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7919
7920 /* How to set default max varies by platform. */
7921 arc_c_max = arc_default_max(arc_c_min, allmem);
7922}
34dc7c2f
BB
7923void
7924arc_init(void)
7925{
9edb3695 7926 uint64_t percent, allmem = arc_all_memory();
5dd92909 7927 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
3442c2a0
MA
7928 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
7929 offsetof(arc_evict_waiter_t, aew_node));
ca0bf58d 7930
2b84817f
TC
7931 arc_min_prefetch_ms = 1000;
7932 arc_min_prescient_prefetch_ms = 6000;
34dc7c2f 7933
c9c9c1e2
MM
7934#if defined(_KERNEL)
7935 arc_lowmem_init();
34dc7c2f
BB
7936#endif
7937
60a4c7d2 7938 arc_set_limits(allmem);
9a51738b 7939
e945e8d7
AJ
7940#ifdef _KERNEL
7941 /*
7942 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7943 * environment before the module was loaded, don't block setting the
7944 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7945 * to a lower value.
7946 * zfs_arc_min will be handled by arc_tuning_update().
7947 */
7948 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
7949 zfs_arc_max < allmem) {
7950 arc_c_max = zfs_arc_max;
7951 if (arc_c_min >= arc_c_max) {
7952 arc_c_min = MAX(zfs_arc_max / 2,
7953 2ULL << SPA_MAXBLOCKSHIFT);
7954 }
7955 }
7956#else
ab5cbbd1
BB
7957 /*
7958 * In userland, there's only the memory pressure that we artificially
7959 * create (see arc_available_memory()). Don't let arc_c get too
7960 * small, because it can cause transactions to be larger than
7961 * arc_c, causing arc_tempreserve_space() to fail.
7962 */
0a1f8cd9 7963 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1
BB
7964#endif
7965
17ca3018 7966 arc_c = arc_c_min;
34dc7c2f
BB
7967 arc_p = (arc_c >> 1);
7968
ca67b33a
MA
7969 /* Set min to 1/2 of arc_c_min */
7970 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
9907cc1c
G
7971 /*
7972 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7973 * arc_meta_min, and a ceiling of arc_c_max.
7974 */
7975 percent = MIN(zfs_arc_meta_limit_percent, 100);
7976 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7977 percent = MIN(zfs_arc_dnode_limit_percent, 100);
03fdcb9a 7978 arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
34dc7c2f 7979
ca67b33a 7980 /* Apply user specified tunings */
36a6e233 7981 arc_tuning_update(B_TRUE);
c52fca13 7982
34dc7c2f
BB
7983 /* if kmem_flags are set, lets try to use less memory */
7984 if (kmem_debugging())
7985 arc_c = arc_c / 2;
7986 if (arc_c < arc_c_min)
7987 arc_c = arc_c_min;
7988
60a4c7d2
PD
7989 arc_register_hotplug();
7990
d3c2ae1c 7991 arc_state_init();
3ec34e55 7992
34dc7c2f
BB
7993 buf_init();
7994
ab26409d
BB
7995 list_create(&arc_prune_list, sizeof (arc_prune_t),
7996 offsetof(arc_prune_t, p_node));
ab26409d 7997 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 7998
462217d1
AM
7999 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8000 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 8001
34dc7c2f
BB
8002 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8003 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8004
8005 if (arc_ksp != NULL) {
8006 arc_ksp->ks_data = &arc_stats;
13be560d 8007 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
8008 kstat_install(arc_ksp);
8009 }
8010
1531506d 8011 arc_evict_zthr = zthr_create("arc_evict",
6bc61d22 8012 arc_evict_cb_check, arc_evict_cb, NULL, defclsyspri);
843e9ca2 8013 arc_reap_zthr = zthr_create_timer("arc_reap",
6bc61d22 8014 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
34dc7c2f 8015
b128c09f 8016 arc_warm = B_FALSE;
34dc7c2f 8017
e8b96c60
MA
8018 /*
8019 * Calculate maximum amount of dirty data per pool.
8020 *
8021 * If it has been set by a module parameter, take that.
8022 * Otherwise, use a percentage of physical memory defined by
8023 * zfs_dirty_data_max_percent (default 10%) with a cap at
e99932f7 8024 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
e8b96c60 8025 */
47ed79ff 8026#ifdef __LP64__
e8b96c60 8027 if (zfs_dirty_data_max_max == 0)
e99932f7
BB
8028 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8029 allmem * zfs_dirty_data_max_max_percent / 100);
47ed79ff
MM
8030#else
8031 if (zfs_dirty_data_max_max == 0)
8032 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8033 allmem * zfs_dirty_data_max_max_percent / 100);
8034#endif
e8b96c60
MA
8035
8036 if (zfs_dirty_data_max == 0) {
9edb3695 8037 zfs_dirty_data_max = allmem *
e8b96c60
MA
8038 zfs_dirty_data_max_percent / 100;
8039 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8040 zfs_dirty_data_max_max);
8041 }
a7bd20e3
KJ
8042
8043 if (zfs_wrlog_data_max == 0) {
8044
8045 /*
8046 * dp_wrlog_total is reduced for each txg at the end of
8047 * spa_sync(). However, dp_dirty_total is reduced every time
8048 * a block is written out. Thus under normal operation,
8049 * dp_wrlog_total could grow 2 times as big as
8050 * zfs_dirty_data_max.
8051 */
8052 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8053 }
34dc7c2f
BB
8054}
8055
8056void
8057arc_fini(void)
8058{
ab26409d
BB
8059 arc_prune_t *p;
8060
7cb67b45 8061#ifdef _KERNEL
c9c9c1e2 8062 arc_lowmem_fini();
7cb67b45
BB
8063#endif /* _KERNEL */
8064
d3c2ae1c
GW
8065 /* Use B_TRUE to ensure *all* buffers are evicted */
8066 arc_flush(NULL, B_TRUE);
34dc7c2f 8067
34dc7c2f
BB
8068 if (arc_ksp != NULL) {
8069 kstat_delete(arc_ksp);
8070 arc_ksp = NULL;
8071 }
8072
f6046738
BB
8073 taskq_wait(arc_prune_taskq);
8074 taskq_destroy(arc_prune_taskq);
8075
ab26409d
BB
8076 mutex_enter(&arc_prune_mtx);
8077 while ((p = list_head(&arc_prune_list)) != NULL) {
8078 list_remove(&arc_prune_list, p);
424fd7c3
TS
8079 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8080 zfs_refcount_destroy(&p->p_refcnt);
ab26409d
BB
8081 kmem_free(p, sizeof (*p));
8082 }
8083 mutex_exit(&arc_prune_mtx);
8084
8085 list_destroy(&arc_prune_list);
8086 mutex_destroy(&arc_prune_mtx);
3ec34e55 8087
5dd92909 8088 (void) zthr_cancel(arc_evict_zthr);
3ec34e55 8089 (void) zthr_cancel(arc_reap_zthr);
3ec34e55 8090
5dd92909 8091 mutex_destroy(&arc_evict_lock);
3442c2a0 8092 list_destroy(&arc_evict_waiters);
ca0bf58d 8093
cfd59f90
BB
8094 /*
8095 * Free any buffers that were tagged for destruction. This needs
8096 * to occur before arc_state_fini() runs and destroys the aggsum
8097 * values which are updated when freeing scatter ABDs.
8098 */
8099 l2arc_do_free_on_write();
8100
ae3d8491
PD
8101 /*
8102 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8103 * trigger the release of kmem magazines, which can callback to
8104 * arc_space_return() which accesses aggsums freed in act_state_fini().
8105 */
34dc7c2f 8106 buf_fini();
ae3d8491 8107 arc_state_fini();
9babb374 8108
60a4c7d2
PD
8109 arc_unregister_hotplug();
8110
1c44a5c9
SD
8111 /*
8112 * We destroy the zthrs after all the ARC state has been
8113 * torn down to avoid the case of them receiving any
8114 * wakeup() signals after they are destroyed.
8115 */
5dd92909 8116 zthr_destroy(arc_evict_zthr);
1c44a5c9
SD
8117 zthr_destroy(arc_reap_zthr);
8118
b9541d6b 8119 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
8120}
8121
8122/*
8123 * Level 2 ARC
8124 *
8125 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8126 * It uses dedicated storage devices to hold cached data, which are populated
8127 * using large infrequent writes. The main role of this cache is to boost
8128 * the performance of random read workloads. The intended L2ARC devices
8129 * include short-stroked disks, solid state disks, and other media with
8130 * substantially faster read latency than disk.
8131 *
8132 * +-----------------------+
8133 * | ARC |
8134 * +-----------------------+
8135 * | ^ ^
8136 * | | |
8137 * l2arc_feed_thread() arc_read()
8138 * | | |
8139 * | l2arc read |
8140 * V | |
8141 * +---------------+ |
8142 * | L2ARC | |
8143 * +---------------+ |
8144 * | ^ |
8145 * l2arc_write() | |
8146 * | | |
8147 * V | |
8148 * +-------+ +-------+
8149 * | vdev | | vdev |
8150 * | cache | | cache |
8151 * +-------+ +-------+
8152 * +=========+ .-----.
8153 * : L2ARC : |-_____-|
8154 * : devices : | Disks |
8155 * +=========+ `-_____-'
8156 *
8157 * Read requests are satisfied from the following sources, in order:
8158 *
8159 * 1) ARC
8160 * 2) vdev cache of L2ARC devices
8161 * 3) L2ARC devices
8162 * 4) vdev cache of disks
8163 * 5) disks
8164 *
8165 * Some L2ARC device types exhibit extremely slow write performance.
8166 * To accommodate for this there are some significant differences between
8167 * the L2ARC and traditional cache design:
8168 *
8169 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8170 * the ARC behave as usual, freeing buffers and placing headers on ghost
8171 * lists. The ARC does not send buffers to the L2ARC during eviction as
8172 * this would add inflated write latencies for all ARC memory pressure.
8173 *
8174 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8175 * It does this by periodically scanning buffers from the eviction-end of
8176 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
8177 * not already there. It scans until a headroom of buffers is satisfied,
8178 * which itself is a buffer for ARC eviction. If a compressible buffer is
8179 * found during scanning and selected for writing to an L2ARC device, we
8180 * temporarily boost scanning headroom during the next scan cycle to make
8181 * sure we adapt to compression effects (which might significantly reduce
8182 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
8183 * l2arc_feed_thread(), illustrated below; example sizes are included to
8184 * provide a better sense of ratio than this diagram:
8185 *
8186 * head --> tail
8187 * +---------------------+----------+
8188 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8189 * +---------------------+----------+ | o L2ARC eligible
8190 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8191 * +---------------------+----------+ |
8192 * 15.9 Gbytes ^ 32 Mbytes |
8193 * headroom |
8194 * l2arc_feed_thread()
8195 * |
8196 * l2arc write hand <--[oooo]--'
8197 * | 8 Mbyte
8198 * | write max
8199 * V
8200 * +==============================+
8201 * L2ARC dev |####|#|###|###| |####| ... |
8202 * +==============================+
8203 * 32 Gbytes
8204 *
8205 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8206 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8207 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8208 * safe to say that this is an uncommon case, since buffers at the end of
8209 * the ARC lists have moved there due to inactivity.
8210 *
8211 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8212 * then the L2ARC simply misses copying some buffers. This serves as a
8213 * pressure valve to prevent heavy read workloads from both stalling the ARC
8214 * with waits and clogging the L2ARC with writes. This also helps prevent
8215 * the potential for the L2ARC to churn if it attempts to cache content too
8216 * quickly, such as during backups of the entire pool.
8217 *
b128c09f
BB
8218 * 5. After system boot and before the ARC has filled main memory, there are
8219 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8220 * lists can remain mostly static. Instead of searching from tail of these
8221 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8222 * for eligible buffers, greatly increasing its chance of finding them.
8223 *
8224 * The L2ARC device write speed is also boosted during this time so that
8225 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8226 * there are no L2ARC reads, and no fear of degrading read performance
8227 * through increased writes.
8228 *
8229 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
8230 * the vdev queue can aggregate them into larger and fewer writes. Each
8231 * device is written to in a rotor fashion, sweeping writes through
8232 * available space then repeating.
8233 *
b128c09f 8234 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
8235 * write buffers back to disk based storage.
8236 *
b128c09f 8237 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
8238 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8239 *
8240 * The performance of the L2ARC can be tweaked by a number of tunables, which
8241 * may be necessary for different workloads:
8242 *
8243 * l2arc_write_max max write bytes per interval
b128c09f 8244 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
8245 * l2arc_noprefetch skip caching prefetched buffers
8246 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
8247 * l2arc_headroom_boost when we find compressed buffers during ARC
8248 * scanning, we multiply headroom by this
8249 * percentage factor for the next scan cycle,
8250 * since more compressed buffers are likely to
8251 * be present
34dc7c2f
BB
8252 * l2arc_feed_secs seconds between L2ARC writing
8253 *
8254 * Tunables may be removed or added as future performance improvements are
8255 * integrated, and also may become zpool properties.
d164b209
BB
8256 *
8257 * There are three key functions that control how the L2ARC warms up:
8258 *
8259 * l2arc_write_eligible() check if a buffer is eligible to cache
8260 * l2arc_write_size() calculate how much to write
8261 * l2arc_write_interval() calculate sleep delay between writes
8262 *
8263 * These three functions determine what to write, how much, and how quickly
8264 * to send writes.
77f6826b
GA
8265 *
8266 * L2ARC persistence:
8267 *
8268 * When writing buffers to L2ARC, we periodically add some metadata to
8269 * make sure we can pick them up after reboot, thus dramatically reducing
8270 * the impact that any downtime has on the performance of storage systems
8271 * with large caches.
8272 *
8273 * The implementation works fairly simply by integrating the following two
8274 * modifications:
8275 *
8276 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8277 * which is an additional piece of metadata which describes what's been
8278 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8279 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8280 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8281 * time-wise and offset-wise interleaved, but that is an optimization rather
8282 * than for correctness. The log block also includes a pointer to the
8283 * previous block in its chain.
8284 *
8285 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8286 * for our header bookkeeping purposes. This contains a device header,
8287 * which contains our top-level reference structures. We update it each
8288 * time we write a new log block, so that we're able to locate it in the
8289 * L2ARC device. If this write results in an inconsistent device header
8290 * (e.g. due to power failure), we detect this by verifying the header's
8291 * checksum and simply fail to reconstruct the L2ARC after reboot.
8292 *
8293 * Implementation diagram:
8294 *
8295 * +=== L2ARC device (not to scale) ======================================+
8296 * | ___two newest log block pointers__.__________ |
8297 * | / \dh_start_lbps[1] |
8298 * | / \ \dh_start_lbps[0]|
8299 * |.___/__. V V |
8300 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8301 * || hdr| ^ /^ /^ / / |
8302 * |+------+ ...--\-------/ \-----/--\------/ / |
8303 * | \--------------/ \--------------/ |
8304 * +======================================================================+
8305 *
8306 * As can be seen on the diagram, rather than using a simple linked list,
8307 * we use a pair of linked lists with alternating elements. This is a
8308 * performance enhancement due to the fact that we only find out the
8309 * address of the next log block access once the current block has been
8310 * completely read in. Obviously, this hurts performance, because we'd be
8311 * keeping the device's I/O queue at only a 1 operation deep, thus
8312 * incurring a large amount of I/O round-trip latency. Having two lists
8313 * allows us to fetch two log blocks ahead of where we are currently
8314 * rebuilding L2ARC buffers.
8315 *
8316 * On-device data structures:
8317 *
8318 * L2ARC device header: l2arc_dev_hdr_phys_t
8319 * L2ARC log block: l2arc_log_blk_phys_t
8320 *
8321 * L2ARC reconstruction:
8322 *
8323 * When writing data, we simply write in the standard rotary fashion,
8324 * evicting buffers as we go and simply writing new data over them (writing
8325 * a new log block every now and then). This obviously means that once we
8326 * loop around the end of the device, we will start cutting into an already
8327 * committed log block (and its referenced data buffers), like so:
8328 *
8329 * current write head__ __old tail
8330 * \ /
8331 * V V
8332 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8333 * ^ ^^^^^^^^^___________________________________
8334 * | \
8335 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8336 *
8337 * When importing the pool, we detect this situation and use it to stop
8338 * our scanning process (see l2arc_rebuild).
8339 *
8340 * There is one significant caveat to consider when rebuilding ARC contents
8341 * from an L2ARC device: what about invalidated buffers? Given the above
8342 * construction, we cannot update blocks which we've already written to amend
8343 * them to remove buffers which were invalidated. Thus, during reconstruction,
8344 * we might be populating the cache with buffers for data that's not on the
8345 * main pool anymore, or may have been overwritten!
8346 *
8347 * As it turns out, this isn't a problem. Every arc_read request includes
8348 * both the DVA and, crucially, the birth TXG of the BP the caller is
8349 * looking for. So even if the cache were populated by completely rotten
8350 * blocks for data that had been long deleted and/or overwritten, we'll
8351 * never actually return bad data from the cache, since the DVA with the
8352 * birth TXG uniquely identify a block in space and time - once created,
8353 * a block is immutable on disk. The worst thing we have done is wasted
8354 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8355 * entries that will get dropped from the l2arc as it is being updated
8356 * with new blocks.
8357 *
8358 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8359 * hand are not restored. This is done by saving the offset (in bytes)
8360 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8361 * into account when restoring buffers.
34dc7c2f
BB
8362 */
8363
d164b209 8364static boolean_t
2a432414 8365l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
8366{
8367 /*
8368 * A buffer is *not* eligible for the L2ARC if it:
8369 * 1. belongs to a different spa.
428870ff
BB
8370 * 2. is already cached on the L2ARC.
8371 * 3. has an I/O in progress (it may be an incomplete read).
8372 * 4. is flagged not eligible (zfs property).
d164b209 8373 */
b9541d6b 8374 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
c6f5e9d9 8375 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
8376 return (B_FALSE);
8377
8378 return (B_TRUE);
8379}
8380
8381static uint64_t
37c22948 8382l2arc_write_size(l2arc_dev_t *dev)
d164b209 8383{
b7654bd7 8384 uint64_t size, dev_size, tsize;
d164b209 8385
3a17a7a9
SK
8386 /*
8387 * Make sure our globals have meaningful values in case the user
8388 * altered them.
8389 */
8390 size = l2arc_write_max;
8391 if (size == 0) {
8392 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8393 "be greater than zero, resetting it to the default (%d)",
8394 L2ARC_WRITE_SIZE);
8395 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8396 }
d164b209
BB
8397
8398 if (arc_warm == B_FALSE)
3a17a7a9 8399 size += l2arc_write_boost;
d164b209 8400
37c22948
GA
8401 /*
8402 * Make sure the write size does not exceed the size of the cache
8403 * device. This is important in l2arc_evict(), otherwise infinite
8404 * iteration can occur.
8405 */
8406 dev_size = dev->l2ad_end - dev->l2ad_start;
b7654bd7
GA
8407 tsize = size + l2arc_log_blk_overhead(size, dev);
8408 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
8409 tsize += MAX(64 * 1024 * 1024,
8410 (tsize * l2arc_trim_ahead) / 100);
8411
8412 if (tsize >= dev_size) {
37c22948 8413 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
77f6826b
GA
8414 "plus the overhead of log blocks (persistent L2ARC, "
8415 "%llu bytes) exceeds the size of the cache device "
8416 "(guid %llu), resetting them to the default (%d)",
b72611f0
BB
8417 (u_longlong_t)l2arc_log_blk_overhead(size, dev),
8418 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
37c22948
GA
8419 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
8420
8421 if (arc_warm == B_FALSE)
8422 size += l2arc_write_boost;
8423 }
8424
d164b209
BB
8425 return (size);
8426
8427}
8428
8429static clock_t
8430l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8431{
428870ff 8432 clock_t interval, next, now;
d164b209
BB
8433
8434 /*
8435 * If the ARC lists are busy, increase our write rate; if the
8436 * lists are stale, idle back. This is achieved by checking
8437 * how much we previously wrote - if it was more than half of
8438 * what we wanted, schedule the next write much sooner.
8439 */
8440 if (l2arc_feed_again && wrote > (wanted / 2))
8441 interval = (hz * l2arc_feed_min_ms) / 1000;
8442 else
8443 interval = hz * l2arc_feed_secs;
8444
428870ff
BB
8445 now = ddi_get_lbolt();
8446 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
8447
8448 return (next);
8449}
8450
34dc7c2f
BB
8451/*
8452 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 8453 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
8454 */
8455static l2arc_dev_t *
8456l2arc_dev_get_next(void)
8457{
b128c09f 8458 l2arc_dev_t *first, *next = NULL;
34dc7c2f 8459
b128c09f
BB
8460 /*
8461 * Lock out the removal of spas (spa_namespace_lock), then removal
8462 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8463 * both locks will be dropped and a spa config lock held instead.
8464 */
8465 mutex_enter(&spa_namespace_lock);
8466 mutex_enter(&l2arc_dev_mtx);
8467
8468 /* if there are no vdevs, there is nothing to do */
8469 if (l2arc_ndev == 0)
8470 goto out;
8471
8472 first = NULL;
8473 next = l2arc_dev_last;
8474 do {
8475 /* loop around the list looking for a non-faulted vdev */
8476 if (next == NULL) {
34dc7c2f 8477 next = list_head(l2arc_dev_list);
b128c09f
BB
8478 } else {
8479 next = list_next(l2arc_dev_list, next);
8480 if (next == NULL)
8481 next = list_head(l2arc_dev_list);
8482 }
8483
8484 /* if we have come back to the start, bail out */
8485 if (first == NULL)
8486 first = next;
8487 else if (next == first)
8488 break;
8489
b7654bd7
GA
8490 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8491 next->l2ad_trim_all);
b128c09f
BB
8492
8493 /* if we were unable to find any usable vdevs, return NULL */
b7654bd7
GA
8494 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8495 next->l2ad_trim_all)
b128c09f 8496 next = NULL;
34dc7c2f
BB
8497
8498 l2arc_dev_last = next;
8499
b128c09f
BB
8500out:
8501 mutex_exit(&l2arc_dev_mtx);
8502
8503 /*
8504 * Grab the config lock to prevent the 'next' device from being
8505 * removed while we are writing to it.
8506 */
8507 if (next != NULL)
8508 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8509 mutex_exit(&spa_namespace_lock);
8510
34dc7c2f
BB
8511 return (next);
8512}
8513
b128c09f
BB
8514/*
8515 * Free buffers that were tagged for destruction.
8516 */
8517static void
0bc8fd78 8518l2arc_do_free_on_write(void)
b128c09f
BB
8519{
8520 list_t *buflist;
8521 l2arc_data_free_t *df, *df_prev;
8522
8523 mutex_enter(&l2arc_free_on_write_mtx);
8524 buflist = l2arc_free_on_write;
8525
8526 for (df = list_tail(buflist); df; df = df_prev) {
8527 df_prev = list_prev(buflist, df);
a6255b7f
DQ
8528 ASSERT3P(df->l2df_abd, !=, NULL);
8529 abd_free(df->l2df_abd);
b128c09f
BB
8530 list_remove(buflist, df);
8531 kmem_free(df, sizeof (l2arc_data_free_t));
8532 }
8533
8534 mutex_exit(&l2arc_free_on_write_mtx);
8535}
8536
34dc7c2f
BB
8537/*
8538 * A write to a cache device has completed. Update all headers to allow
8539 * reads from these buffers to begin.
8540 */
8541static void
8542l2arc_write_done(zio_t *zio)
8543{
77f6826b
GA
8544 l2arc_write_callback_t *cb;
8545 l2arc_lb_abd_buf_t *abd_buf;
8546 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8547 l2arc_dev_t *dev;
657fd33b 8548 l2arc_dev_hdr_phys_t *l2dhdr;
77f6826b
GA
8549 list_t *buflist;
8550 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8551 kmutex_t *hash_lock;
8552 int64_t bytes_dropped = 0;
34dc7c2f
BB
8553
8554 cb = zio->io_private;
d3c2ae1c 8555 ASSERT3P(cb, !=, NULL);
34dc7c2f 8556 dev = cb->l2wcb_dev;
657fd33b 8557 l2dhdr = dev->l2ad_dev_hdr;
d3c2ae1c 8558 ASSERT3P(dev, !=, NULL);
34dc7c2f 8559 head = cb->l2wcb_head;
d3c2ae1c 8560 ASSERT3P(head, !=, NULL);
b9541d6b 8561 buflist = &dev->l2ad_buflist;
d3c2ae1c 8562 ASSERT3P(buflist, !=, NULL);
34dc7c2f
BB
8563 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8564 l2arc_write_callback_t *, cb);
8565
34dc7c2f
BB
8566 /*
8567 * All writes completed, or an error was hit.
8568 */
ca0bf58d
PS
8569top:
8570 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8571 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8572 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8573
2a432414 8574 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8575
8576 /*
8577 * We cannot use mutex_enter or else we can deadlock
8578 * with l2arc_write_buffers (due to swapping the order
8579 * the hash lock and l2ad_mtx are taken).
8580 */
34dc7c2f
BB
8581 if (!mutex_tryenter(hash_lock)) {
8582 /*
ca0bf58d
PS
8583 * Missed the hash lock. We must retry so we
8584 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 8585 */
ca0bf58d
PS
8586 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8587
8588 /*
8589 * We don't want to rescan the headers we've
8590 * already marked as having been written out, so
8591 * we reinsert the head node so we can pick up
8592 * where we left off.
8593 */
8594 list_remove(buflist, head);
8595 list_insert_after(buflist, hdr, head);
8596
8597 mutex_exit(&dev->l2ad_mtx);
8598
8599 /*
8600 * We wait for the hash lock to become available
8601 * to try and prevent busy waiting, and increase
8602 * the chance we'll be able to acquire the lock
8603 * the next time around.
8604 */
8605 mutex_enter(hash_lock);
8606 mutex_exit(hash_lock);
8607 goto top;
34dc7c2f
BB
8608 }
8609
b9541d6b 8610 /*
ca0bf58d
PS
8611 * We could not have been moved into the arc_l2c_only
8612 * state while in-flight due to our ARC_FLAG_L2_WRITING
8613 * bit being set. Let's just ensure that's being enforced.
8614 */
8615 ASSERT(HDR_HAS_L1HDR(hdr));
8616
8a09d5fd
BB
8617 /*
8618 * Skipped - drop L2ARC entry and mark the header as no
8619 * longer L2 eligibile.
8620 */
d3c2ae1c 8621 if (zio->io_error != 0) {
34dc7c2f 8622 /*
b128c09f 8623 * Error - drop L2ARC entry.
34dc7c2f 8624 */
2a432414 8625 list_remove(buflist, hdr);
d3c2ae1c 8626 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
b9541d6b 8627
7558997d 8628 uint64_t psize = HDR_GET_PSIZE(hdr);
08532162 8629 l2arc_hdr_arcstats_decrement(hdr);
d962d5da 8630
7558997d
SD
8631 bytes_dropped +=
8632 vdev_psize_to_asize(dev->l2ad_vdev, psize);
424fd7c3 8633 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
d3c2ae1c 8634 arc_hdr_size(hdr), hdr);
34dc7c2f
BB
8635 }
8636
8637 /*
ca0bf58d
PS
8638 * Allow ARC to begin reads and ghost list evictions to
8639 * this L2ARC entry.
34dc7c2f 8640 */
d3c2ae1c 8641 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
34dc7c2f
BB
8642
8643 mutex_exit(hash_lock);
8644 }
8645
77f6826b
GA
8646 /*
8647 * Free the allocated abd buffers for writing the log blocks.
8648 * If the zio failed reclaim the allocated space and remove the
8649 * pointers to these log blocks from the log block pointer list
8650 * of the L2ARC device.
8651 */
8652 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8653 abd_free(abd_buf->abd);
8654 zio_buf_free(abd_buf, sizeof (*abd_buf));
8655 if (zio->io_error != 0) {
8656 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
657fd33b
GA
8657 /*
8658 * L2BLK_GET_PSIZE returns aligned size for log
8659 * blocks.
8660 */
8661 uint64_t asize =
77f6826b 8662 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
657fd33b
GA
8663 bytes_dropped += asize;
8664 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8665 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8666 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8667 lb_ptr_buf);
8668 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b
GA
8669 kmem_free(lb_ptr_buf->lb_ptr,
8670 sizeof (l2arc_log_blkptr_t));
8671 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8672 }
8673 }
8674 list_destroy(&cb->l2wcb_abd_list);
8675
657fd33b 8676 if (zio->io_error != 0) {
08532162
GA
8677 ARCSTAT_BUMP(arcstat_l2_writes_error);
8678
2054f35e
GA
8679 /*
8680 * Restore the lbps array in the header to its previous state.
8681 * If the list of log block pointers is empty, zero out the
8682 * log block pointers in the device header.
8683 */
657fd33b
GA
8684 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8685 for (int i = 0; i < 2; i++) {
2054f35e
GA
8686 if (lb_ptr_buf == NULL) {
8687 /*
8688 * If the list is empty zero out the device
8689 * header. Otherwise zero out the second log
8690 * block pointer in the header.
8691 */
8692 if (i == 0) {
8693 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
8694 } else {
8695 bzero(&l2dhdr->dh_start_lbps[i],
8696 sizeof (l2arc_log_blkptr_t));
8697 }
8698 break;
8699 }
657fd33b
GA
8700 bcopy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[i],
8701 sizeof (l2arc_log_blkptr_t));
8702 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8703 lb_ptr_buf);
8704 }
8705 }
8706
c4c162c1 8707 ARCSTAT_BUMP(arcstat_l2_writes_done);
34dc7c2f 8708 list_remove(buflist, head);
b9541d6b
CW
8709 ASSERT(!HDR_HAS_L1HDR(head));
8710 kmem_cache_free(hdr_l2only_cache, head);
8711 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 8712
77f6826b 8713 ASSERT(dev->l2ad_vdev != NULL);
3bec585e
SK
8714 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8715
b128c09f 8716 l2arc_do_free_on_write();
34dc7c2f
BB
8717
8718 kmem_free(cb, sizeof (l2arc_write_callback_t));
8719}
8720
b5256303
TC
8721static int
8722l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8723{
8724 int ret;
8725 spa_t *spa = zio->io_spa;
8726 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8727 blkptr_t *bp = zio->io_bp;
b5256303
TC
8728 uint8_t salt[ZIO_DATA_SALT_LEN];
8729 uint8_t iv[ZIO_DATA_IV_LEN];
8730 uint8_t mac[ZIO_DATA_MAC_LEN];
8731 boolean_t no_crypt = B_FALSE;
8732
8733 /*
8734 * ZIL data is never be written to the L2ARC, so we don't need
8735 * special handling for its unique MAC storage.
8736 */
8737 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8738 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
440a3eb9 8739 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 8740
440a3eb9
TC
8741 /*
8742 * If the data was encrypted, decrypt it now. Note that
8743 * we must check the bp here and not the hdr, since the
8744 * hdr does not have its encryption parameters updated
8745 * until arc_read_done().
8746 */
8747 if (BP_IS_ENCRYPTED(bp)) {
e111c802 8748 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
6b88b4b5 8749 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
b5256303
TC
8750
8751 zio_crypt_decode_params_bp(bp, salt, iv);
8752 zio_crypt_decode_mac_bp(bp, mac);
8753
be9a5c35
TC
8754 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8755 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8756 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8757 hdr->b_l1hdr.b_pabd, &no_crypt);
b5256303
TC
8758 if (ret != 0) {
8759 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
b5256303
TC
8760 goto error;
8761 }
8762
b5256303
TC
8763 /*
8764 * If we actually performed decryption, replace b_pabd
8765 * with the decrypted data. Otherwise we can just throw
8766 * our decryption buffer away.
8767 */
8768 if (!no_crypt) {
8769 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8770 arc_hdr_size(hdr), hdr);
8771 hdr->b_l1hdr.b_pabd = eabd;
8772 zio->io_abd = eabd;
8773 } else {
8774 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8775 }
8776 }
8777
8778 /*
8779 * If the L2ARC block was compressed, but ARC compression
8780 * is disabled we decompress the data into a new buffer and
8781 * replace the existing data.
8782 */
8783 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8784 !HDR_COMPRESSION_ENABLED(hdr)) {
e111c802 8785 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
6b88b4b5 8786 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
b5256303
TC
8787 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8788
8789 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8790 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
10b3c7f5 8791 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
b5256303
TC
8792 if (ret != 0) {
8793 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8794 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8795 goto error;
8796 }
8797
8798 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8799 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8800 arc_hdr_size(hdr), hdr);
8801 hdr->b_l1hdr.b_pabd = cabd;
8802 zio->io_abd = cabd;
8803 zio->io_size = HDR_GET_LSIZE(hdr);
8804 }
8805
8806 return (0);
8807
8808error:
8809 return (ret);
8810}
8811
8812
34dc7c2f
BB
8813/*
8814 * A read to a cache device completed. Validate buffer contents before
8815 * handing over to the regular ARC routines.
8816 */
8817static void
8818l2arc_read_done(zio_t *zio)
8819{
b5256303 8820 int tfm_error = 0;
b405837a 8821 l2arc_read_callback_t *cb = zio->io_private;
34dc7c2f 8822 arc_buf_hdr_t *hdr;
34dc7c2f 8823 kmutex_t *hash_lock;
b405837a
TC
8824 boolean_t valid_cksum;
8825 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8826 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
b128c09f 8827
d3c2ae1c 8828 ASSERT3P(zio->io_vd, !=, NULL);
b128c09f
BB
8829 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8830
8831 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f 8832
d3c2ae1c
GW
8833 ASSERT3P(cb, !=, NULL);
8834 hdr = cb->l2rcb_hdr;
8835 ASSERT3P(hdr, !=, NULL);
34dc7c2f 8836
d3c2ae1c 8837 hash_lock = HDR_LOCK(hdr);
34dc7c2f 8838 mutex_enter(hash_lock);
428870ff 8839 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 8840
82710e99
GDN
8841 /*
8842 * If the data was read into a temporary buffer,
8843 * move it and free the buffer.
8844 */
8845 if (cb->l2rcb_abd != NULL) {
8846 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8847 if (zio->io_error == 0) {
b405837a
TC
8848 if (using_rdata) {
8849 abd_copy(hdr->b_crypt_hdr.b_rabd,
8850 cb->l2rcb_abd, arc_hdr_size(hdr));
8851 } else {
8852 abd_copy(hdr->b_l1hdr.b_pabd,
8853 cb->l2rcb_abd, arc_hdr_size(hdr));
8854 }
82710e99
GDN
8855 }
8856
8857 /*
8858 * The following must be done regardless of whether
8859 * there was an error:
8860 * - free the temporary buffer
8861 * - point zio to the real ARC buffer
8862 * - set zio size accordingly
8863 * These are required because zio is either re-used for
8864 * an I/O of the block in the case of the error
8865 * or the zio is passed to arc_read_done() and it
8866 * needs real data.
8867 */
8868 abd_free(cb->l2rcb_abd);
8869 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
440a3eb9 8870
b405837a 8871 if (using_rdata) {
440a3eb9
TC
8872 ASSERT(HDR_HAS_RABD(hdr));
8873 zio->io_abd = zio->io_orig_abd =
8874 hdr->b_crypt_hdr.b_rabd;
8875 } else {
8876 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8877 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8878 }
82710e99
GDN
8879 }
8880
a6255b7f 8881 ASSERT3P(zio->io_abd, !=, NULL);
3a17a7a9 8882
34dc7c2f
BB
8883 /*
8884 * Check this survived the L2ARC journey.
8885 */
b5256303
TC
8886 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8887 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
d3c2ae1c
GW
8888 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8889 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
10b3c7f5 8890 zio->io_prop.zp_complevel = hdr->b_complevel;
d3c2ae1c
GW
8891
8892 valid_cksum = arc_cksum_is_equal(hdr, zio);
b5256303
TC
8893
8894 /*
8895 * b_rabd will always match the data as it exists on disk if it is
8896 * being used. Therefore if we are reading into b_rabd we do not
8897 * attempt to untransform the data.
8898 */
8899 if (valid_cksum && !using_rdata)
8900 tfm_error = l2arc_untransform(zio, cb);
8901
8902 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8903 !HDR_L2_EVICTED(hdr)) {
34dc7c2f 8904 mutex_exit(hash_lock);
d3c2ae1c 8905 zio->io_private = hdr;
34dc7c2f
BB
8906 arc_read_done(zio);
8907 } else {
34dc7c2f
BB
8908 /*
8909 * Buffer didn't survive caching. Increment stats and
8910 * reissue to the original storage device.
8911 */
b128c09f 8912 if (zio->io_error != 0) {
34dc7c2f 8913 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 8914 } else {
2e528b49 8915 zio->io_error = SET_ERROR(EIO);
b128c09f 8916 }
b5256303 8917 if (!valid_cksum || tfm_error != 0)
34dc7c2f
BB
8918 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8919
34dc7c2f 8920 /*
b128c09f
BB
8921 * If there's no waiter, issue an async i/o to the primary
8922 * storage now. If there *is* a waiter, the caller must
8923 * issue the i/o in a context where it's OK to block.
34dc7c2f 8924 */
d164b209
BB
8925 if (zio->io_waiter == NULL) {
8926 zio_t *pio = zio_unique_parent(zio);
b5256303
TC
8927 void *abd = (using_rdata) ?
8928 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
d164b209
BB
8929
8930 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8931
5ff2249f 8932 zio = zio_read(pio, zio->io_spa, zio->io_bp,
b5256303 8933 abd, zio->io_size, arc_read_done,
d3c2ae1c 8934 hdr, zio->io_priority, cb->l2rcb_flags,
5ff2249f
AM
8935 &cb->l2rcb_zb);
8936
8937 /*
8938 * Original ZIO will be freed, so we need to update
8939 * ARC header with the new ZIO pointer to be used
8940 * by zio_change_priority() in arc_read().
8941 */
8942 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
8943 acb != NULL; acb = acb->acb_next)
8944 acb->acb_zio_head = zio;
8945
8946 mutex_exit(hash_lock);
8947 zio_nowait(zio);
8948 } else {
8949 mutex_exit(hash_lock);
d164b209 8950 }
34dc7c2f
BB
8951 }
8952
8953 kmem_free(cb, sizeof (l2arc_read_callback_t));
8954}
8955
8956/*
8957 * This is the list priority from which the L2ARC will search for pages to
8958 * cache. This is used within loops (0..3) to cycle through lists in the
8959 * desired order. This order can have a significant effect on cache
8960 * performance.
8961 *
8962 * Currently the metadata lists are hit first, MFU then MRU, followed by
8963 * the data lists. This function returns a locked list, and also returns
8964 * the lock pointer.
8965 */
ca0bf58d
PS
8966static multilist_sublist_t *
8967l2arc_sublist_lock(int list_num)
34dc7c2f 8968{
ca0bf58d
PS
8969 multilist_t *ml = NULL;
8970 unsigned int idx;
34dc7c2f 8971
4aafab91 8972 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
34dc7c2f
BB
8973
8974 switch (list_num) {
8975 case 0:
ffdf019c 8976 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8977 break;
8978 case 1:
ffdf019c 8979 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8980 break;
8981 case 2:
ffdf019c 8982 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
8983 break;
8984 case 3:
ffdf019c 8985 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f 8986 break;
4aafab91
G
8987 default:
8988 return (NULL);
34dc7c2f
BB
8989 }
8990
ca0bf58d
PS
8991 /*
8992 * Return a randomly-selected sublist. This is acceptable
8993 * because the caller feeds only a little bit of data for each
8994 * call (8MB). Subsequent calls will result in different
8995 * sublists being selected.
8996 */
8997 idx = multilist_get_random_index(ml);
8998 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
8999}
9000
77f6826b
GA
9001/*
9002 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
657fd33b 9003 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
77f6826b
GA
9004 * overhead in processing to make sure there is enough headroom available
9005 * when writing buffers.
9006 */
9007static inline uint64_t
9008l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9009{
657fd33b 9010 if (dev->l2ad_log_entries == 0) {
77f6826b
GA
9011 return (0);
9012 } else {
9013 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9014
9015 uint64_t log_blocks = (log_entries +
657fd33b
GA
9016 dev->l2ad_log_entries - 1) /
9017 dev->l2ad_log_entries;
77f6826b
GA
9018
9019 return (vdev_psize_to_asize(dev->l2ad_vdev,
9020 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9021 }
9022}
9023
34dc7c2f
BB
9024/*
9025 * Evict buffers from the device write hand to the distance specified in
77f6826b 9026 * bytes. This distance may span populated buffers, it may span nothing.
34dc7c2f
BB
9027 * This is clearing a region on the L2ARC device ready for writing.
9028 * If the 'all' boolean is set, every buffer is evicted.
9029 */
9030static void
9031l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9032{
9033 list_t *buflist;
2a432414 9034 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
9035 kmutex_t *hash_lock;
9036 uint64_t taddr;
77f6826b 9037 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
b7654bd7
GA
9038 vdev_t *vd = dev->l2ad_vdev;
9039 boolean_t rerun;
34dc7c2f 9040
b9541d6b 9041 buflist = &dev->l2ad_buflist;
34dc7c2f 9042
77f6826b
GA
9043 /*
9044 * We need to add in the worst case scenario of log block overhead.
9045 */
9046 distance += l2arc_log_blk_overhead(distance, dev);
b7654bd7
GA
9047 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
9048 /*
9049 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9050 * times the write size, whichever is greater.
9051 */
9052 distance += MAX(64 * 1024 * 1024,
9053 (distance * l2arc_trim_ahead) / 100);
9054 }
77f6826b 9055
37c22948
GA
9056top:
9057 rerun = B_FALSE;
9058 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
34dc7c2f 9059 /*
dd4bc569 9060 * When there is no space to accommodate upcoming writes,
77f6826b
GA
9061 * evict to the end. Then bump the write and evict hands
9062 * to the start and iterate. This iteration does not
9063 * happen indefinitely as we make sure in
9064 * l2arc_write_size() that when the write hand is reset,
9065 * the write size does not exceed the end of the device.
34dc7c2f 9066 */
37c22948 9067 rerun = B_TRUE;
34dc7c2f
BB
9068 taddr = dev->l2ad_end;
9069 } else {
9070 taddr = dev->l2ad_hand + distance;
9071 }
9072 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9073 uint64_t, taddr, boolean_t, all);
9074
b7654bd7 9075 if (!all) {
37c22948 9076 /*
b7654bd7
GA
9077 * This check has to be placed after deciding whether to
9078 * iterate (rerun).
37c22948 9079 */
b7654bd7
GA
9080 if (dev->l2ad_first) {
9081 /*
9082 * This is the first sweep through the device. There is
9083 * nothing to evict. We have already trimmmed the
9084 * whole device.
9085 */
9086 goto out;
9087 } else {
9088 /*
9089 * Trim the space to be evicted.
9090 */
9091 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9092 l2arc_trim_ahead > 0) {
9093 /*
9094 * We have to drop the spa_config lock because
9095 * vdev_trim_range() will acquire it.
9096 * l2ad_evict already accounts for the label
9097 * size. To prevent vdev_trim_ranges() from
9098 * adding it again, we subtract it from
9099 * l2ad_evict.
9100 */
9101 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9102 vdev_trim_simple(vd,
9103 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9104 taddr - dev->l2ad_evict);
9105 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9106 RW_READER);
9107 }
37c22948 9108
b7654bd7
GA
9109 /*
9110 * When rebuilding L2ARC we retrieve the evict hand
9111 * from the header of the device. Of note, l2arc_evict()
9112 * does not actually delete buffers from the cache
9113 * device, but trimming may do so depending on the
9114 * hardware implementation. Thus keeping track of the
9115 * evict hand is useful.
9116 */
9117 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9118 }
9119 }
77f6826b 9120
37c22948 9121retry:
b9541d6b 9122 mutex_enter(&dev->l2ad_mtx);
77f6826b
GA
9123 /*
9124 * We have to account for evicted log blocks. Run vdev_space_update()
9125 * on log blocks whose offset (in bytes) is before the evicted offset
9126 * (in bytes) by searching in the list of pointers to log blocks
9127 * present in the L2ARC device.
9128 */
9129 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9130 lb_ptr_buf = lb_ptr_buf_prev) {
9131
9132 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9133
657fd33b
GA
9134 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9135 uint64_t asize = L2BLK_GET_PSIZE(
9136 (lb_ptr_buf->lb_ptr)->lbp_prop);
9137
77f6826b
GA
9138 /*
9139 * We don't worry about log blocks left behind (ie
657fd33b 9140 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
77f6826b
GA
9141 * will never write more than l2arc_evict() evicts.
9142 */
9143 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9144 break;
9145 } else {
b7654bd7 9146 vdev_space_update(vd, -asize, 0, 0);
657fd33b
GA
9147 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9148 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9149 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9150 lb_ptr_buf);
9151 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b
GA
9152 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9153 kmem_free(lb_ptr_buf->lb_ptr,
9154 sizeof (l2arc_log_blkptr_t));
9155 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9156 }
9157 }
9158
2a432414
GW
9159 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9160 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 9161
ca6c7a94 9162 ASSERT(!HDR_EMPTY(hdr));
2a432414 9163 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
9164
9165 /*
9166 * We cannot use mutex_enter or else we can deadlock
9167 * with l2arc_write_buffers (due to swapping the order
9168 * the hash lock and l2ad_mtx are taken).
9169 */
34dc7c2f
BB
9170 if (!mutex_tryenter(hash_lock)) {
9171 /*
9172 * Missed the hash lock. Retry.
9173 */
9174 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 9175 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
9176 mutex_enter(hash_lock);
9177 mutex_exit(hash_lock);
37c22948 9178 goto retry;
34dc7c2f
BB
9179 }
9180
f06f53fa
AG
9181 /*
9182 * A header can't be on this list if it doesn't have L2 header.
9183 */
9184 ASSERT(HDR_HAS_L2HDR(hdr));
34dc7c2f 9185
f06f53fa
AG
9186 /* Ensure this header has finished being written. */
9187 ASSERT(!HDR_L2_WRITING(hdr));
9188 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9189
77f6826b 9190 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
b9541d6b 9191 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
9192 /*
9193 * We've evicted to the target address,
9194 * or the end of the device.
9195 */
9196 mutex_exit(hash_lock);
9197 break;
9198 }
9199
b9541d6b 9200 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 9201 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
9202 /*
9203 * This doesn't exist in the ARC. Destroy.
9204 * arc_hdr_destroy() will call list_remove()
01850391 9205 * and decrement arcstat_l2_lsize.
34dc7c2f 9206 */
2a432414
GW
9207 arc_change_state(arc_anon, hdr, hash_lock);
9208 arc_hdr_destroy(hdr);
34dc7c2f 9209 } else {
b9541d6b
CW
9210 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9211 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
9212 /*
9213 * Invalidate issued or about to be issued
9214 * reads, since we may be about to write
9215 * over this location.
9216 */
2a432414 9217 if (HDR_L2_READING(hdr)) {
b128c09f 9218 ARCSTAT_BUMP(arcstat_l2_evict_reading);
d3c2ae1c 9219 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
b128c09f
BB
9220 }
9221
d962d5da 9222 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
9223 }
9224 mutex_exit(hash_lock);
9225 }
b9541d6b 9226 mutex_exit(&dev->l2ad_mtx);
37c22948
GA
9227
9228out:
77f6826b
GA
9229 /*
9230 * We need to check if we evict all buffers, otherwise we may iterate
9231 * unnecessarily.
9232 */
9233 if (!all && rerun) {
37c22948
GA
9234 /*
9235 * Bump device hand to the device start if it is approaching the
9236 * end. l2arc_evict() has already evicted ahead for this case.
9237 */
9238 dev->l2ad_hand = dev->l2ad_start;
77f6826b 9239 dev->l2ad_evict = dev->l2ad_start;
37c22948
GA
9240 dev->l2ad_first = B_FALSE;
9241 goto top;
9242 }
657fd33b 9243
2c210f68
GA
9244 if (!all) {
9245 /*
9246 * In case of cache device removal (all) the following
9247 * assertions may be violated without functional consequences
9248 * as the device is about to be removed.
9249 */
9250 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
9251 if (!dev->l2ad_first)
9252 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
9253 }
34dc7c2f
BB
9254}
9255
b5256303
TC
9256/*
9257 * Handle any abd transforms that might be required for writing to the L2ARC.
9258 * If successful, this function will always return an abd with the data
9259 * transformed as it is on disk in a new abd of asize bytes.
9260 */
9261static int
9262l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9263 abd_t **abd_out)
9264{
9265 int ret;
9266 void *tmp = NULL;
9267 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9268 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9269 uint64_t psize = HDR_GET_PSIZE(hdr);
9270 uint64_t size = arc_hdr_size(hdr);
9271 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9272 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9273 dsl_crypto_key_t *dck = NULL;
9274 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
4807c0ba 9275 boolean_t no_crypt = B_FALSE;
b5256303
TC
9276
9277 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9278 !HDR_COMPRESSION_ENABLED(hdr)) ||
9279 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9280 ASSERT3U(psize, <=, asize);
9281
9282 /*
9283 * If this data simply needs its own buffer, we simply allocate it
b7109a41 9284 * and copy the data. This may be done to eliminate a dependency on a
b5256303
TC
9285 * shared buffer or to reallocate the buffer to match asize.
9286 */
4807c0ba 9287 if (HDR_HAS_RABD(hdr) && asize != psize) {
10adee27 9288 ASSERT3U(asize, >=, psize);
4807c0ba 9289 to_write = abd_alloc_for_io(asize, ismd);
10adee27
TC
9290 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9291 if (psize != asize)
9292 abd_zero_off(to_write, psize, asize - psize);
4807c0ba
TC
9293 goto out;
9294 }
9295
b5256303
TC
9296 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9297 !HDR_ENCRYPTED(hdr)) {
9298 ASSERT3U(size, ==, psize);
9299 to_write = abd_alloc_for_io(asize, ismd);
9300 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9301 if (size != asize)
9302 abd_zero_off(to_write, size, asize - size);
9303 goto out;
9304 }
9305
9306 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9307 cabd = abd_alloc_for_io(asize, ismd);
9308 tmp = abd_borrow_buf(cabd, asize);
9309
10b3c7f5
MN
9310 psize = zio_compress_data(compress, to_write, tmp, size,
9311 hdr->b_complevel);
9312
9313 if (psize >= size) {
9314 abd_return_buf(cabd, tmp, asize);
9315 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
9316 to_write = cabd;
9317 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9318 if (size != asize)
9319 abd_zero_off(to_write, size, asize - size);
9320 goto encrypt;
9321 }
b5256303
TC
9322 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
9323 if (psize < asize)
9324 bzero((char *)tmp + psize, asize - psize);
9325 psize = HDR_GET_PSIZE(hdr);
9326 abd_return_buf_copy(cabd, tmp, asize);
9327 to_write = cabd;
9328 }
9329
10b3c7f5 9330encrypt:
b5256303
TC
9331 if (HDR_ENCRYPTED(hdr)) {
9332 eabd = abd_alloc_for_io(asize, ismd);
9333
9334 /*
9335 * If the dataset was disowned before the buffer
9336 * made it to this point, the key to re-encrypt
9337 * it won't be available. In this case we simply
9338 * won't write the buffer to the L2ARC.
9339 */
9340 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9341 FTAG, &dck);
9342 if (ret != 0)
9343 goto error;
9344
10fa2545 9345 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
be9a5c35
TC
9346 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9347 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9348 &no_crypt);
b5256303
TC
9349 if (ret != 0)
9350 goto error;
9351
4807c0ba
TC
9352 if (no_crypt)
9353 abd_copy(eabd, to_write, psize);
b5256303
TC
9354
9355 if (psize != asize)
9356 abd_zero_off(eabd, psize, asize - psize);
9357
9358 /* assert that the MAC we got here matches the one we saved */
9359 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9360 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9361
9362 if (to_write == cabd)
9363 abd_free(cabd);
9364
9365 to_write = eabd;
9366 }
9367
9368out:
9369 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9370 *abd_out = to_write;
9371 return (0);
9372
9373error:
9374 if (dck != NULL)
9375 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9376 if (cabd != NULL)
9377 abd_free(cabd);
9378 if (eabd != NULL)
9379 abd_free(eabd);
9380
9381 *abd_out = NULL;
9382 return (ret);
9383}
9384
77f6826b
GA
9385static void
9386l2arc_blk_fetch_done(zio_t *zio)
9387{
9388 l2arc_read_callback_t *cb;
9389
9390 cb = zio->io_private;
9391 if (cb->l2rcb_abd != NULL)
e2af2acc 9392 abd_free(cb->l2rcb_abd);
77f6826b
GA
9393 kmem_free(cb, sizeof (l2arc_read_callback_t));
9394}
9395
34dc7c2f
BB
9396/*
9397 * Find and write ARC buffers to the L2ARC device.
9398 *
2a432414 9399 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 9400 * for reading until they have completed writing.
3a17a7a9
SK
9401 * The headroom_boost is an in-out parameter used to maintain headroom boost
9402 * state between calls to this function.
9403 *
9404 * Returns the number of bytes actually written (which may be smaller than
77f6826b
GA
9405 * the delta by which the device hand has changed due to alignment and the
9406 * writing of log blocks).
34dc7c2f 9407 */
d164b209 9408static uint64_t
d3c2ae1c 9409l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f 9410{
77f6826b
GA
9411 arc_buf_hdr_t *hdr, *hdr_prev, *head;
9412 uint64_t write_asize, write_psize, write_lsize, headroom;
9413 boolean_t full;
9414 l2arc_write_callback_t *cb = NULL;
9415 zio_t *pio, *wzio;
9416 uint64_t guid = spa_load_guid(spa);
0ae184a6 9417 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
34dc7c2f 9418
d3c2ae1c 9419 ASSERT3P(dev->l2ad_vdev, !=, NULL);
3a17a7a9 9420
34dc7c2f 9421 pio = NULL;
01850391 9422 write_lsize = write_asize = write_psize = 0;
34dc7c2f 9423 full = B_FALSE;
b9541d6b 9424 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
d3c2ae1c 9425 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
3a17a7a9 9426
34dc7c2f
BB
9427 /*
9428 * Copy buffers for L2ARC writing.
9429 */
4a90d4d6 9430 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
feb3a7ee 9431 /*
4a90d4d6 9432 * If pass == 1 or 3, we cache MRU metadata and data
feb3a7ee
GA
9433 * respectively.
9434 */
9435 if (l2arc_mfuonly) {
4a90d4d6 9436 if (pass == 1 || pass == 3)
feb3a7ee
GA
9437 continue;
9438 }
9439
4a90d4d6 9440 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
3a17a7a9
SK
9441 uint64_t passed_sz = 0;
9442
4aafab91
G
9443 VERIFY3P(mls, !=, NULL);
9444
b128c09f
BB
9445 /*
9446 * L2ARC fast warmup.
9447 *
9448 * Until the ARC is warm and starts to evict, read from the
9449 * head of the ARC lists rather than the tail.
9450 */
b128c09f 9451 if (arc_warm == B_FALSE)
ca0bf58d 9452 hdr = multilist_sublist_head(mls);
b128c09f 9453 else
ca0bf58d 9454 hdr = multilist_sublist_tail(mls);
b128c09f 9455
3a17a7a9 9456 headroom = target_sz * l2arc_headroom;
d3c2ae1c 9457 if (zfs_compressed_arc_enabled)
3a17a7a9
SK
9458 headroom = (headroom * l2arc_headroom_boost) / 100;
9459
2a432414 9460 for (; hdr; hdr = hdr_prev) {
3a17a7a9 9461 kmutex_t *hash_lock;
b5256303 9462 abd_t *to_write = NULL;
3a17a7a9 9463
b128c09f 9464 if (arc_warm == B_FALSE)
ca0bf58d 9465 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 9466 else
ca0bf58d 9467 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 9468
2a432414 9469 hash_lock = HDR_LOCK(hdr);
3a17a7a9 9470 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
9471 /*
9472 * Skip this buffer rather than waiting.
9473 */
9474 continue;
9475 }
9476
d3c2ae1c 9477 passed_sz += HDR_GET_LSIZE(hdr);
77f6826b 9478 if (l2arc_headroom != 0 && passed_sz > headroom) {
34dc7c2f
BB
9479 /*
9480 * Searched too far.
9481 */
9482 mutex_exit(hash_lock);
9483 break;
9484 }
9485
2a432414 9486 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
9487 mutex_exit(hash_lock);
9488 continue;
9489 }
9490
01850391
AG
9491 ASSERT(HDR_HAS_L1HDR(hdr));
9492
9493 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
01850391 9494 ASSERT3U(arc_hdr_size(hdr), >, 0);
b5256303
TC
9495 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9496 HDR_HAS_RABD(hdr));
9497 uint64_t psize = HDR_GET_PSIZE(hdr);
01850391
AG
9498 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9499 psize);
9500
9501 if ((write_asize + asize) > target_sz) {
34dc7c2f
BB
9502 full = B_TRUE;
9503 mutex_exit(hash_lock);
9504 break;
9505 }
9506
b5256303
TC
9507 /*
9508 * We rely on the L1 portion of the header below, so
9509 * it's invalid for this header to have been evicted out
9510 * of the ghost cache, prior to being written out. The
9511 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9512 */
9513 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
b5256303
TC
9514
9515 /*
9516 * If this header has b_rabd, we can use this since it
9517 * must always match the data exactly as it exists on
9777044f 9518 * disk. Otherwise, the L2ARC can normally use the
b5256303
TC
9519 * hdr's data, but if we're sharing data between the
9520 * hdr and one of its bufs, L2ARC needs its own copy of
9521 * the data so that the ZIO below can't race with the
9522 * buf consumer. To ensure that this copy will be
9523 * available for the lifetime of the ZIO and be cleaned
9524 * up afterwards, we add it to the l2arc_free_on_write
9525 * queue. If we need to apply any transforms to the
9526 * data (compression, encryption) we will also need the
9527 * extra buffer.
9528 */
9529 if (HDR_HAS_RABD(hdr) && psize == asize) {
9530 to_write = hdr->b_crypt_hdr.b_rabd;
9531 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9532 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9533 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9534 psize == asize) {
9535 to_write = hdr->b_l1hdr.b_pabd;
9536 } else {
9537 int ret;
9538 arc_buf_contents_t type = arc_buf_type(hdr);
9539
9540 ret = l2arc_apply_transforms(spa, hdr, asize,
9541 &to_write);
9542 if (ret != 0) {
9543 arc_hdr_clear_flags(hdr,
9544 ARC_FLAG_L2_WRITING);
9545 mutex_exit(hash_lock);
9546 continue;
9547 }
9548
9549 l2arc_free_abd_on_write(to_write, asize, type);
9550 }
9551
34dc7c2f
BB
9552 if (pio == NULL) {
9553 /*
9554 * Insert a dummy header on the buflist so
9555 * l2arc_write_done() can find where the
9556 * write buffers begin without searching.
9557 */
ca0bf58d 9558 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9559 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 9560 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9561
96c080cb
BB
9562 cb = kmem_alloc(
9563 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
9564 cb->l2wcb_dev = dev;
9565 cb->l2wcb_head = head;
657fd33b
GA
9566 /*
9567 * Create a list to save allocated abd buffers
9568 * for l2arc_log_blk_commit().
9569 */
77f6826b
GA
9570 list_create(&cb->l2wcb_abd_list,
9571 sizeof (l2arc_lb_abd_buf_t),
9572 offsetof(l2arc_lb_abd_buf_t, node));
34dc7c2f
BB
9573 pio = zio_root(spa, l2arc_write_done, cb,
9574 ZIO_FLAG_CANFAIL);
9575 }
9576
b9541d6b 9577 hdr->b_l2hdr.b_dev = dev;
b9541d6b 9578 hdr->b_l2hdr.b_hits = 0;
3a17a7a9 9579
d3c2ae1c 9580 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
08532162
GA
9581 hdr->b_l2hdr.b_arcs_state =
9582 hdr->b_l1hdr.b_state->arcs_state;
b5256303 9583 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
3a17a7a9 9584
ca0bf58d 9585 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9586 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 9587 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9588
424fd7c3 9589 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
b5256303 9590 arc_hdr_size(hdr), hdr);
3a17a7a9 9591
34dc7c2f 9592 wzio = zio_write_phys(pio, dev->l2ad_vdev,
82710e99 9593 hdr->b_l2hdr.b_daddr, asize, to_write,
d3c2ae1c
GW
9594 ZIO_CHECKSUM_OFF, NULL, hdr,
9595 ZIO_PRIORITY_ASYNC_WRITE,
34dc7c2f
BB
9596 ZIO_FLAG_CANFAIL, B_FALSE);
9597
01850391 9598 write_lsize += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
9599 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9600 zio_t *, wzio);
d962d5da 9601
01850391
AG
9602 write_psize += psize;
9603 write_asize += asize;
d3c2ae1c 9604 dev->l2ad_hand += asize;
08532162 9605 l2arc_hdr_arcstats_increment(hdr);
7558997d 9606 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
d3c2ae1c
GW
9607
9608 mutex_exit(hash_lock);
9609
77f6826b
GA
9610 /*
9611 * Append buf info to current log and commit if full.
9612 * arcstat_l2_{size,asize} kstats are updated
9613 * internally.
9614 */
9615 if (l2arc_log_blk_insert(dev, hdr))
9616 l2arc_log_blk_commit(dev, pio, cb);
9617
9cdf7b1f 9618 zio_nowait(wzio);
34dc7c2f 9619 }
d3c2ae1c
GW
9620
9621 multilist_sublist_unlock(mls);
9622
9623 if (full == B_TRUE)
9624 break;
34dc7c2f 9625 }
34dc7c2f 9626
d3c2ae1c
GW
9627 /* No buffers selected for writing? */
9628 if (pio == NULL) {
01850391 9629 ASSERT0(write_lsize);
d3c2ae1c
GW
9630 ASSERT(!HDR_HAS_L1HDR(head));
9631 kmem_cache_free(hdr_l2only_cache, head);
77f6826b
GA
9632
9633 /*
9634 * Although we did not write any buffers l2ad_evict may
9635 * have advanced.
9636 */
0ae184a6
GA
9637 if (dev->l2ad_evict != l2dhdr->dh_evict)
9638 l2arc_dev_hdr_update(dev);
77f6826b 9639
d3c2ae1c
GW
9640 return (0);
9641 }
34dc7c2f 9642
657fd33b
GA
9643 if (!dev->l2ad_first)
9644 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9645
3a17a7a9 9646 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 9647 ARCSTAT_BUMP(arcstat_l2_writes_sent);
01850391 9648 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
34dc7c2f 9649
d164b209 9650 dev->l2ad_writing = B_TRUE;
34dc7c2f 9651 (void) zio_wait(pio);
d164b209
BB
9652 dev->l2ad_writing = B_FALSE;
9653
2054f35e
GA
9654 /*
9655 * Update the device header after the zio completes as
9656 * l2arc_write_done() may have updated the memory holding the log block
9657 * pointers in the device header.
9658 */
9659 l2arc_dev_hdr_update(dev);
9660
3a17a7a9
SK
9661 return (write_asize);
9662}
9663
523e1295
AM
9664static boolean_t
9665l2arc_hdr_limit_reached(void)
9666{
c4c162c1 9667 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
523e1295
AM
9668
9669 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
9670 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9671}
9672
34dc7c2f
BB
9673/*
9674 * This thread feeds the L2ARC at regular intervals. This is the beating
9675 * heart of the L2ARC.
9676 */
9677static void
c25b8f99 9678l2arc_feed_thread(void *unused)
34dc7c2f 9679{
14e4e3cb 9680 (void) unused;
34dc7c2f
BB
9681 callb_cpr_t cpr;
9682 l2arc_dev_t *dev;
9683 spa_t *spa;
d164b209 9684 uint64_t size, wrote;
428870ff 9685 clock_t begin, next = ddi_get_lbolt();
40d06e3c 9686 fstrans_cookie_t cookie;
34dc7c2f
BB
9687
9688 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9689
9690 mutex_enter(&l2arc_feed_thr_lock);
9691
40d06e3c 9692 cookie = spl_fstrans_mark();
34dc7c2f 9693 while (l2arc_thread_exit == 0) {
34dc7c2f 9694 CALLB_CPR_SAFE_BEGIN(&cpr);
ac6e5fb2 9695 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
5b63b3eb 9696 &l2arc_feed_thr_lock, next);
34dc7c2f 9697 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 9698 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
9699
9700 /*
b128c09f 9701 * Quick check for L2ARC devices.
34dc7c2f
BB
9702 */
9703 mutex_enter(&l2arc_dev_mtx);
9704 if (l2arc_ndev == 0) {
9705 mutex_exit(&l2arc_dev_mtx);
9706 continue;
9707 }
b128c09f 9708 mutex_exit(&l2arc_dev_mtx);
428870ff 9709 begin = ddi_get_lbolt();
34dc7c2f
BB
9710
9711 /*
b128c09f
BB
9712 * This selects the next l2arc device to write to, and in
9713 * doing so the next spa to feed from: dev->l2ad_spa. This
9714 * will return NULL if there are now no l2arc devices or if
9715 * they are all faulted.
9716 *
9717 * If a device is returned, its spa's config lock is also
9718 * held to prevent device removal. l2arc_dev_get_next()
9719 * will grab and release l2arc_dev_mtx.
34dc7c2f 9720 */
b128c09f 9721 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 9722 continue;
b128c09f
BB
9723
9724 spa = dev->l2ad_spa;
d3c2ae1c 9725 ASSERT3P(spa, !=, NULL);
34dc7c2f 9726
572e2857
BB
9727 /*
9728 * If the pool is read-only then force the feed thread to
9729 * sleep a little longer.
9730 */
9731 if (!spa_writeable(spa)) {
9732 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9733 spa_config_exit(spa, SCL_L2ARC, dev);
9734 continue;
9735 }
9736
34dc7c2f 9737 /*
b128c09f 9738 * Avoid contributing to memory pressure.
34dc7c2f 9739 */
523e1295 9740 if (l2arc_hdr_limit_reached()) {
b128c09f
BB
9741 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9742 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
9743 continue;
9744 }
b128c09f 9745
34dc7c2f
BB
9746 ARCSTAT_BUMP(arcstat_l2_feeds);
9747
37c22948 9748 size = l2arc_write_size(dev);
b128c09f 9749
34dc7c2f
BB
9750 /*
9751 * Evict L2ARC buffers that will be overwritten.
9752 */
b128c09f 9753 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
9754
9755 /*
9756 * Write ARC buffers.
9757 */
d3c2ae1c 9758 wrote = l2arc_write_buffers(spa, dev, size);
d164b209
BB
9759
9760 /*
9761 * Calculate interval between writes.
9762 */
9763 next = l2arc_write_interval(begin, size, wrote);
b128c09f 9764 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 9765 }
40d06e3c 9766 spl_fstrans_unmark(cookie);
34dc7c2f
BB
9767
9768 l2arc_thread_exit = 0;
9769 cv_broadcast(&l2arc_feed_thr_cv);
9770 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9771 thread_exit();
9772}
9773
b128c09f
BB
9774boolean_t
9775l2arc_vdev_present(vdev_t *vd)
9776{
77f6826b
GA
9777 return (l2arc_vdev_get(vd) != NULL);
9778}
9779
9780/*
9781 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9782 * the vdev_t isn't an L2ARC device.
9783 */
b7654bd7 9784l2arc_dev_t *
77f6826b
GA
9785l2arc_vdev_get(vdev_t *vd)
9786{
9787 l2arc_dev_t *dev;
b128c09f
BB
9788
9789 mutex_enter(&l2arc_dev_mtx);
9790 for (dev = list_head(l2arc_dev_list); dev != NULL;
9791 dev = list_next(l2arc_dev_list, dev)) {
9792 if (dev->l2ad_vdev == vd)
9793 break;
9794 }
9795 mutex_exit(&l2arc_dev_mtx);
9796
77f6826b 9797 return (dev);
b128c09f
BB
9798}
9799
ab8a8f07
GA
9800static void
9801l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9802{
9803 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9804 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9805 spa_t *spa = dev->l2ad_spa;
9806
9807 /*
9808 * The L2ARC has to hold at least the payload of one log block for
9809 * them to be restored (persistent L2ARC). The payload of a log block
9810 * depends on the amount of its log entries. We always write log blocks
9811 * with 1022 entries. How many of them are committed or restored depends
9812 * on the size of the L2ARC device. Thus the maximum payload of
9813 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9814 * is less than that, we reduce the amount of committed and restored
9815 * log entries per block so as to enable persistence.
9816 */
9817 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9818 dev->l2ad_log_entries = 0;
9819 } else {
9820 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9821 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9822 L2ARC_LOG_BLK_MAX_ENTRIES);
9823 }
9824
9825 /*
9826 * Read the device header, if an error is returned do not rebuild L2ARC.
9827 */
9828 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9829 /*
9830 * If we are onlining a cache device (vdev_reopen) that was
9831 * still present (l2arc_vdev_present()) and rebuild is enabled,
9832 * we should evict all ARC buffers and pointers to log blocks
9833 * and reclaim their space before restoring its contents to
9834 * L2ARC.
9835 */
9836 if (reopen) {
9837 if (!l2arc_rebuild_enabled) {
9838 return;
9839 } else {
9840 l2arc_evict(dev, 0, B_TRUE);
9841 /* start a new log block */
9842 dev->l2ad_log_ent_idx = 0;
9843 dev->l2ad_log_blk_payload_asize = 0;
9844 dev->l2ad_log_blk_payload_start = 0;
9845 }
9846 }
9847 /*
9848 * Just mark the device as pending for a rebuild. We won't
9849 * be starting a rebuild in line here as it would block pool
9850 * import. Instead spa_load_impl will hand that off to an
9851 * async task which will call l2arc_spa_rebuild_start.
9852 */
9853 dev->l2ad_rebuild = B_TRUE;
9854 } else if (spa_writeable(spa)) {
9855 /*
9856 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9857 * otherwise create a new header. We zero out the memory holding
9858 * the header to reset dh_start_lbps. If we TRIM the whole
9859 * device the new header will be written by
9860 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9861 * trim_state in the header too. When reading the header, if
9862 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9863 * we opt to TRIM the whole device again.
9864 */
9865 if (l2arc_trim_ahead > 0) {
9866 dev->l2ad_trim_all = B_TRUE;
9867 } else {
9868 bzero(l2dhdr, l2dhdr_asize);
9869 l2arc_dev_hdr_update(dev);
9870 }
9871 }
9872}
9873
34dc7c2f
BB
9874/*
9875 * Add a vdev for use by the L2ARC. By this point the spa has already
9876 * validated the vdev and opened it.
9877 */
9878void
9babb374 9879l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f 9880{
77f6826b
GA
9881 l2arc_dev_t *adddev;
9882 uint64_t l2dhdr_asize;
34dc7c2f 9883
b128c09f
BB
9884 ASSERT(!l2arc_vdev_present(vd));
9885
34dc7c2f
BB
9886 /*
9887 * Create a new l2arc device entry.
9888 */
77f6826b 9889 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
34dc7c2f
BB
9890 adddev->l2ad_spa = spa;
9891 adddev->l2ad_vdev = vd;
77f6826b
GA
9892 /* leave extra size for an l2arc device header */
9893 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9894 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9895 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9babb374 9896 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
77f6826b 9897 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
34dc7c2f 9898 adddev->l2ad_hand = adddev->l2ad_start;
77f6826b 9899 adddev->l2ad_evict = adddev->l2ad_start;
34dc7c2f 9900 adddev->l2ad_first = B_TRUE;
d164b209 9901 adddev->l2ad_writing = B_FALSE;
b7654bd7 9902 adddev->l2ad_trim_all = B_FALSE;
98f72a53 9903 list_link_init(&adddev->l2ad_node);
77f6826b 9904 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
34dc7c2f 9905
b9541d6b 9906 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9907 /*
9908 * This is a list of all ARC buffers that are still valid on the
9909 * device.
9910 */
b9541d6b
CW
9911 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9912 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 9913
77f6826b
GA
9914 /*
9915 * This is a list of pointers to log blocks that are still present
9916 * on the device.
9917 */
9918 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
9919 offsetof(l2arc_lb_ptr_buf_t, node));
9920
428870ff 9921 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
424fd7c3 9922 zfs_refcount_create(&adddev->l2ad_alloc);
657fd33b
GA
9923 zfs_refcount_create(&adddev->l2ad_lb_asize);
9924 zfs_refcount_create(&adddev->l2ad_lb_count);
34dc7c2f 9925
ab8a8f07
GA
9926 /*
9927 * Decide if dev is eligible for L2ARC rebuild or whole device
9928 * trimming. This has to happen before the device is added in the
9929 * cache device list and l2arc_dev_mtx is released. Otherwise
9930 * l2arc_feed_thread() might already start writing on the
9931 * device.
9932 */
9933 l2arc_rebuild_dev(adddev, B_FALSE);
9934
34dc7c2f
BB
9935 /*
9936 * Add device to global list
9937 */
9938 mutex_enter(&l2arc_dev_mtx);
9939 list_insert_head(l2arc_dev_list, adddev);
9940 atomic_inc_64(&l2arc_ndev);
9941 mutex_exit(&l2arc_dev_mtx);
77f6826b
GA
9942}
9943
ab8a8f07
GA
9944/*
9945 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9946 * in case of onlining a cache device.
9947 */
77f6826b
GA
9948void
9949l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
9950{
9951 l2arc_dev_t *dev = NULL;
77f6826b
GA
9952
9953 dev = l2arc_vdev_get(vd);
9954 ASSERT3P(dev, !=, NULL);
77f6826b
GA
9955
9956 /*
ab8a8f07
GA
9957 * In contrast to l2arc_add_vdev() we do not have to worry about
9958 * l2arc_feed_thread() invalidating previous content when onlining a
9959 * cache device. The device parameters (l2ad*) are not cleared when
9960 * offlining the device and writing new buffers will not invalidate
9961 * all previous content. In worst case only buffers that have not had
9962 * their log block written to the device will be lost.
9963 * When onlining the cache device (ie offline->online without exporting
9964 * the pool in between) this happens:
9965 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9966 * | |
9967 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9968 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9969 * is set to B_TRUE we might write additional buffers to the device.
9970 */
9971 l2arc_rebuild_dev(dev, reopen);
34dc7c2f
BB
9972}
9973
9974/*
9975 * Remove a vdev from the L2ARC.
9976 */
9977void
9978l2arc_remove_vdev(vdev_t *vd)
9979{
77f6826b 9980 l2arc_dev_t *remdev = NULL;
34dc7c2f 9981
34dc7c2f
BB
9982 /*
9983 * Find the device by vdev
9984 */
77f6826b 9985 remdev = l2arc_vdev_get(vd);
d3c2ae1c 9986 ASSERT3P(remdev, !=, NULL);
34dc7c2f 9987
77f6826b
GA
9988 /*
9989 * Cancel any ongoing or scheduled rebuild.
9990 */
9991 mutex_enter(&l2arc_rebuild_thr_lock);
9992 if (remdev->l2ad_rebuild_began == B_TRUE) {
9993 remdev->l2ad_rebuild_cancel = B_TRUE;
9994 while (remdev->l2ad_rebuild == B_TRUE)
9995 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
9996 }
9997 mutex_exit(&l2arc_rebuild_thr_lock);
9998
34dc7c2f
BB
9999 /*
10000 * Remove device from global list
10001 */
77f6826b 10002 mutex_enter(&l2arc_dev_mtx);
34dc7c2f
BB
10003 list_remove(l2arc_dev_list, remdev);
10004 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
10005 atomic_dec_64(&l2arc_ndev);
10006 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
10007
10008 /*
10009 * Clear all buflists and ARC references. L2ARC device flush.
10010 */
10011 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b 10012 list_destroy(&remdev->l2ad_buflist);
77f6826b
GA
10013 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10014 list_destroy(&remdev->l2ad_lbptr_list);
b9541d6b 10015 mutex_destroy(&remdev->l2ad_mtx);
424fd7c3 10016 zfs_refcount_destroy(&remdev->l2ad_alloc);
657fd33b
GA
10017 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10018 zfs_refcount_destroy(&remdev->l2ad_lb_count);
77f6826b
GA
10019 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10020 vmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
10021}
10022
10023void
b128c09f 10024l2arc_init(void)
34dc7c2f
BB
10025{
10026 l2arc_thread_exit = 0;
10027 l2arc_ndev = 0;
34dc7c2f
BB
10028
10029 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10030 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
77f6826b
GA
10031 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10032 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 10033 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
10034 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10035
10036 l2arc_dev_list = &L2ARC_dev_list;
10037 l2arc_free_on_write = &L2ARC_free_on_write;
10038 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10039 offsetof(l2arc_dev_t, l2ad_node));
10040 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10041 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
10042}
10043
10044void
b128c09f 10045l2arc_fini(void)
34dc7c2f 10046{
34dc7c2f
BB
10047 mutex_destroy(&l2arc_feed_thr_lock);
10048 cv_destroy(&l2arc_feed_thr_cv);
77f6826b
GA
10049 mutex_destroy(&l2arc_rebuild_thr_lock);
10050 cv_destroy(&l2arc_rebuild_thr_cv);
34dc7c2f 10051 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
10052 mutex_destroy(&l2arc_free_on_write_mtx);
10053
10054 list_destroy(l2arc_dev_list);
10055 list_destroy(l2arc_free_on_write);
10056}
b128c09f
BB
10057
10058void
10059l2arc_start(void)
10060{
da92d5cb 10061 if (!(spa_mode_global & SPA_MODE_WRITE))
b128c09f
BB
10062 return;
10063
10064 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 10065 TS_RUN, defclsyspri);
b128c09f
BB
10066}
10067
10068void
10069l2arc_stop(void)
10070{
da92d5cb 10071 if (!(spa_mode_global & SPA_MODE_WRITE))
b128c09f
BB
10072 return;
10073
10074 mutex_enter(&l2arc_feed_thr_lock);
10075 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10076 l2arc_thread_exit = 1;
10077 while (l2arc_thread_exit != 0)
10078 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10079 mutex_exit(&l2arc_feed_thr_lock);
10080}
c28b2279 10081
77f6826b
GA
10082/*
10083 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10084 * be called after pool import from the spa async thread, since starting
10085 * these threads directly from spa_import() will make them part of the
10086 * "zpool import" context and delay process exit (and thus pool import).
10087 */
10088void
10089l2arc_spa_rebuild_start(spa_t *spa)
10090{
10091 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10092
10093 /*
10094 * Locate the spa's l2arc devices and kick off rebuild threads.
10095 */
10096 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10097 l2arc_dev_t *dev =
10098 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10099 if (dev == NULL) {
10100 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10101 continue;
10102 }
10103 mutex_enter(&l2arc_rebuild_thr_lock);
10104 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10105 dev->l2ad_rebuild_began = B_TRUE;
3eaf76a8 10106 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
77f6826b
GA
10107 dev, 0, &p0, TS_RUN, minclsyspri);
10108 }
10109 mutex_exit(&l2arc_rebuild_thr_lock);
10110 }
10111}
10112
10113/*
10114 * Main entry point for L2ARC rebuilding.
10115 */
10116static void
3eaf76a8 10117l2arc_dev_rebuild_thread(void *arg)
77f6826b 10118{
3eaf76a8
RM
10119 l2arc_dev_t *dev = arg;
10120
77f6826b
GA
10121 VERIFY(!dev->l2ad_rebuild_cancel);
10122 VERIFY(dev->l2ad_rebuild);
10123 (void) l2arc_rebuild(dev);
10124 mutex_enter(&l2arc_rebuild_thr_lock);
10125 dev->l2ad_rebuild_began = B_FALSE;
10126 dev->l2ad_rebuild = B_FALSE;
10127 mutex_exit(&l2arc_rebuild_thr_lock);
10128
10129 thread_exit();
10130}
10131
10132/*
10133 * This function implements the actual L2ARC metadata rebuild. It:
10134 * starts reading the log block chain and restores each block's contents
10135 * to memory (reconstructing arc_buf_hdr_t's).
10136 *
10137 * Operation stops under any of the following conditions:
10138 *
10139 * 1) We reach the end of the log block chain.
10140 * 2) We encounter *any* error condition (cksum errors, io errors)
10141 */
10142static int
10143l2arc_rebuild(l2arc_dev_t *dev)
10144{
10145 vdev_t *vd = dev->l2ad_vdev;
10146 spa_t *spa = vd->vdev_spa;
657fd33b 10147 int err = 0;
77f6826b
GA
10148 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10149 l2arc_log_blk_phys_t *this_lb, *next_lb;
10150 zio_t *this_io = NULL, *next_io = NULL;
10151 l2arc_log_blkptr_t lbps[2];
10152 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10153 boolean_t lock_held;
10154
10155 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10156 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10157
10158 /*
10159 * We prevent device removal while issuing reads to the device,
10160 * then during the rebuilding phases we drop this lock again so
10161 * that a spa_unload or device remove can be initiated - this is
10162 * safe, because the spa will signal us to stop before removing
10163 * our device and wait for us to stop.
10164 */
10165 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10166 lock_held = B_TRUE;
10167
10168 /*
10169 * Retrieve the persistent L2ARC device state.
657fd33b 10170 * L2BLK_GET_PSIZE returns aligned size for log blocks.
77f6826b
GA
10171 */
10172 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10173 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10174 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10175 dev->l2ad_start);
10176 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10177
b7654bd7
GA
10178 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10179 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10180
77f6826b
GA
10181 /*
10182 * In case the zfs module parameter l2arc_rebuild_enabled is false
10183 * we do not start the rebuild process.
10184 */
10185 if (!l2arc_rebuild_enabled)
10186 goto out;
10187
10188 /* Prepare the rebuild process */
10189 bcopy(l2dhdr->dh_start_lbps, lbps, sizeof (lbps));
10190
10191 /* Start the rebuild process */
10192 for (;;) {
10193 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10194 break;
10195
10196 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10197 this_lb, next_lb, this_io, &next_io)) != 0)
10198 goto out;
10199
10200 /*
10201 * Our memory pressure valve. If the system is running low
10202 * on memory, rather than swamping memory with new ARC buf
10203 * hdrs, we opt not to rebuild the L2ARC. At this point,
10204 * however, we have already set up our L2ARC dev to chain in
10205 * new metadata log blocks, so the user may choose to offline/
10206 * online the L2ARC dev at a later time (or re-import the pool)
10207 * to reconstruct it (when there's less memory pressure).
10208 */
523e1295 10209 if (l2arc_hdr_limit_reached()) {
77f6826b
GA
10210 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10211 cmn_err(CE_NOTE, "System running low on memory, "
10212 "aborting L2ARC rebuild.");
10213 err = SET_ERROR(ENOMEM);
10214 goto out;
10215 }
10216
10217 spa_config_exit(spa, SCL_L2ARC, vd);
10218 lock_held = B_FALSE;
10219
10220 /*
10221 * Now that we know that the next_lb checks out alright, we
10222 * can start reconstruction from this log block.
657fd33b 10223 * L2BLK_GET_PSIZE returns aligned size for log blocks.
77f6826b 10224 */
657fd33b 10225 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
a76e4e67 10226 l2arc_log_blk_restore(dev, this_lb, asize);
77f6826b
GA
10227
10228 /*
10229 * log block restored, include its pointer in the list of
10230 * pointers to log blocks present in the L2ARC device.
10231 */
10232 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10233 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10234 KM_SLEEP);
10235 bcopy(&lbps[0], lb_ptr_buf->lb_ptr,
10236 sizeof (l2arc_log_blkptr_t));
10237 mutex_enter(&dev->l2ad_mtx);
10238 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
657fd33b
GA
10239 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10240 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10241 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10242 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b 10243 mutex_exit(&dev->l2ad_mtx);
657fd33b 10244 vdev_space_update(vd, asize, 0, 0);
77f6826b
GA
10245
10246 /*
10247 * Protection against loops of log blocks:
10248 *
10249 * l2ad_hand l2ad_evict
10250 * V V
10251 * l2ad_start |=======================================| l2ad_end
10252 * -----|||----|||---|||----|||
10253 * (3) (2) (1) (0)
10254 * ---|||---|||----|||---|||
10255 * (7) (6) (5) (4)
10256 *
10257 * In this situation the pointer of log block (4) passes
10258 * l2arc_log_blkptr_valid() but the log block should not be
10259 * restored as it is overwritten by the payload of log block
10260 * (0). Only log blocks (0)-(3) should be restored. We check
657fd33b
GA
10261 * whether l2ad_evict lies in between the payload starting
10262 * offset of the next log block (lbps[1].lbp_payload_start)
10263 * and the payload starting offset of the present log block
10264 * (lbps[0].lbp_payload_start). If true and this isn't the
10265 * first pass, we are looping from the beginning and we should
10266 * stop.
77f6826b 10267 */
657fd33b
GA
10268 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10269 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10270 !dev->l2ad_first)
77f6826b
GA
10271 goto out;
10272
1199c3e8 10273 cond_resched();
77f6826b
GA
10274 for (;;) {
10275 mutex_enter(&l2arc_rebuild_thr_lock);
10276 if (dev->l2ad_rebuild_cancel) {
10277 dev->l2ad_rebuild = B_FALSE;
10278 cv_signal(&l2arc_rebuild_thr_cv);
10279 mutex_exit(&l2arc_rebuild_thr_lock);
10280 err = SET_ERROR(ECANCELED);
10281 goto out;
10282 }
10283 mutex_exit(&l2arc_rebuild_thr_lock);
10284 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10285 RW_READER)) {
10286 lock_held = B_TRUE;
10287 break;
10288 }
10289 /*
10290 * L2ARC config lock held by somebody in writer,
10291 * possibly due to them trying to remove us. They'll
10292 * likely to want us to shut down, so after a little
10293 * delay, we check l2ad_rebuild_cancel and retry
10294 * the lock again.
10295 */
10296 delay(1);
10297 }
10298
10299 /*
10300 * Continue with the next log block.
10301 */
10302 lbps[0] = lbps[1];
10303 lbps[1] = this_lb->lb_prev_lbp;
10304 PTR_SWAP(this_lb, next_lb);
10305 this_io = next_io;
10306 next_io = NULL;
a76e4e67 10307 }
77f6826b
GA
10308
10309 if (this_io != NULL)
10310 l2arc_log_blk_fetch_abort(this_io);
10311out:
10312 if (next_io != NULL)
10313 l2arc_log_blk_fetch_abort(next_io);
10314 vmem_free(this_lb, sizeof (*this_lb));
10315 vmem_free(next_lb, sizeof (*next_lb));
10316
10317 if (!l2arc_rebuild_enabled) {
657fd33b
GA
10318 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10319 "disabled");
10320 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
77f6826b 10321 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
657fd33b
GA
10322 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10323 "successful, restored %llu blocks",
10324 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10325 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10326 /*
10327 * No error but also nothing restored, meaning the lbps array
10328 * in the device header points to invalid/non-present log
10329 * blocks. Reset the header.
10330 */
10331 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10332 "no valid log blocks");
10333 bzero(l2dhdr, dev->l2ad_dev_hdr_asize);
10334 l2arc_dev_hdr_update(dev);
da60484d
GA
10335 } else if (err == ECANCELED) {
10336 /*
10337 * In case the rebuild was canceled do not log to spa history
10338 * log as the pool may be in the process of being removed.
10339 */
10340 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
8e739b2c 10341 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
77f6826b 10342 } else if (err != 0) {
657fd33b
GA
10343 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10344 "aborted, restored %llu blocks",
10345 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
77f6826b
GA
10346 }
10347
10348 if (lock_held)
10349 spa_config_exit(spa, SCL_L2ARC, vd);
10350
10351 return (err);
10352}
10353
10354/*
10355 * Attempts to read the device header on the provided L2ARC device and writes
10356 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10357 * error code is returned.
10358 */
10359static int
10360l2arc_dev_hdr_read(l2arc_dev_t *dev)
10361{
10362 int err;
10363 uint64_t guid;
10364 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10365 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10366 abd_t *abd;
10367
10368 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10369
10370 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10371
10372 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10373 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
a76e4e67 10374 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
77f6826b
GA
10375 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10376 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10377 ZIO_FLAG_SPECULATIVE, B_FALSE));
10378
e2af2acc 10379 abd_free(abd);
77f6826b
GA
10380
10381 if (err != 0) {
10382 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10383 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
8e739b2c
RE
10384 "vdev guid: %llu", err,
10385 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
77f6826b
GA
10386 return (err);
10387 }
10388
10389 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10390 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10391
10392 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10393 l2dhdr->dh_spa_guid != guid ||
10394 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10395 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
657fd33b 10396 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
77f6826b
GA
10397 l2dhdr->dh_end != dev->l2ad_end ||
10398 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
b7654bd7
GA
10399 l2dhdr->dh_evict) ||
10400 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10401 l2arc_trim_ahead > 0)) {
77f6826b
GA
10402 /*
10403 * Attempt to rebuild a device containing no actual dev hdr
10404 * or containing a header from some other pool or from another
10405 * version of persistent L2ARC.
10406 */
10407 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10408 return (SET_ERROR(ENOTSUP));
10409 }
10410
10411 return (0);
10412}
10413
10414/*
10415 * Reads L2ARC log blocks from storage and validates their contents.
10416 *
10417 * This function implements a simple fetcher to make sure that while
10418 * we're processing one buffer the L2ARC is already fetching the next
10419 * one in the chain.
10420 *
10421 * The arguments this_lp and next_lp point to the current and next log block
10422 * address in the block chain. Similarly, this_lb and next_lb hold the
10423 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10424 *
10425 * The `this_io' and `next_io' arguments are used for block fetching.
10426 * When issuing the first blk IO during rebuild, you should pass NULL for
10427 * `this_io'. This function will then issue a sync IO to read the block and
10428 * also issue an async IO to fetch the next block in the block chain. The
10429 * fetched IO is returned in `next_io'. On subsequent calls to this
10430 * function, pass the value returned in `next_io' from the previous call
10431 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10432 * Prior to the call, you should initialize your `next_io' pointer to be
10433 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10434 *
10435 * On success, this function returns 0, otherwise it returns an appropriate
10436 * error code. On error the fetching IO is aborted and cleared before
10437 * returning from this function. Therefore, if we return `success', the
10438 * caller can assume that we have taken care of cleanup of fetch IOs.
10439 */
10440static int
10441l2arc_log_blk_read(l2arc_dev_t *dev,
10442 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10443 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10444 zio_t *this_io, zio_t **next_io)
10445{
10446 int err = 0;
10447 zio_cksum_t cksum;
10448 abd_t *abd = NULL;
657fd33b 10449 uint64_t asize;
77f6826b
GA
10450
10451 ASSERT(this_lbp != NULL && next_lbp != NULL);
10452 ASSERT(this_lb != NULL && next_lb != NULL);
10453 ASSERT(next_io != NULL && *next_io == NULL);
10454 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10455
10456 /*
10457 * Check to see if we have issued the IO for this log block in a
10458 * previous run. If not, this is the first call, so issue it now.
10459 */
10460 if (this_io == NULL) {
10461 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10462 this_lb);
10463 }
10464
10465 /*
10466 * Peek to see if we can start issuing the next IO immediately.
10467 */
10468 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10469 /*
10470 * Start issuing IO for the next log block early - this
10471 * should help keep the L2ARC device busy while we
10472 * decompress and restore this log block.
10473 */
10474 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10475 next_lb);
10476 }
10477
10478 /* Wait for the IO to read this log block to complete */
10479 if ((err = zio_wait(this_io)) != 0) {
10480 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10481 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
8e739b2c
RE
10482 "offset: %llu, vdev guid: %llu", err,
10483 (u_longlong_t)this_lbp->lbp_daddr,
10484 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
77f6826b
GA
10485 goto cleanup;
10486 }
10487
657fd33b
GA
10488 /*
10489 * Make sure the buffer checks out.
10490 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10491 */
10492 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10493 fletcher_4_native(this_lb, asize, NULL, &cksum);
77f6826b
GA
10494 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10495 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10496 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10497 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
8e739b2c
RE
10498 (u_longlong_t)this_lbp->lbp_daddr,
10499 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10500 (u_longlong_t)dev->l2ad_hand,
10501 (u_longlong_t)dev->l2ad_evict);
77f6826b
GA
10502 err = SET_ERROR(ECKSUM);
10503 goto cleanup;
10504 }
10505
10506 /* Now we can take our time decoding this buffer */
10507 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10508 case ZIO_COMPRESS_OFF:
10509 break;
10510 case ZIO_COMPRESS_LZ4:
657fd33b
GA
10511 abd = abd_alloc_for_io(asize, B_TRUE);
10512 abd_copy_from_buf_off(abd, this_lb, 0, asize);
77f6826b
GA
10513 if ((err = zio_decompress_data(
10514 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10b3c7f5 10515 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
77f6826b
GA
10516 err = SET_ERROR(EINVAL);
10517 goto cleanup;
10518 }
10519 break;
10520 default:
10521 err = SET_ERROR(EINVAL);
10522 goto cleanup;
10523 }
10524 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10525 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10526 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10527 err = SET_ERROR(EINVAL);
10528 goto cleanup;
10529 }
10530cleanup:
10531 /* Abort an in-flight fetch I/O in case of error */
10532 if (err != 0 && *next_io != NULL) {
10533 l2arc_log_blk_fetch_abort(*next_io);
10534 *next_io = NULL;
10535 }
10536 if (abd != NULL)
10537 abd_free(abd);
10538 return (err);
10539}
10540
10541/*
10542 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10543 * entries which only contain an l2arc hdr, essentially restoring the
10544 * buffers to their L2ARC evicted state. This function also updates space
10545 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10546 */
10547static void
10548l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
a76e4e67 10549 uint64_t lb_asize)
77f6826b 10550{
657fd33b
GA
10551 uint64_t size = 0, asize = 0;
10552 uint64_t log_entries = dev->l2ad_log_entries;
77f6826b 10553
523e1295
AM
10554 /*
10555 * Usually arc_adapt() is called only for data, not headers, but
10556 * since we may allocate significant amount of memory here, let ARC
10557 * grow its arc_c.
10558 */
10559 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
10560
77f6826b
GA
10561 for (int i = log_entries - 1; i >= 0; i--) {
10562 /*
10563 * Restore goes in the reverse temporal direction to preserve
10564 * correct temporal ordering of buffers in the l2ad_buflist.
10565 * l2arc_hdr_restore also does a list_insert_tail instead of
10566 * list_insert_head on the l2ad_buflist:
10567 *
10568 * LIST l2ad_buflist LIST
10569 * HEAD <------ (time) ------ TAIL
10570 * direction +-----+-----+-----+-----+-----+ direction
10571 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10572 * fill +-----+-----+-----+-----+-----+
10573 * ^ ^
10574 * | |
10575 * | |
657fd33b
GA
10576 * l2arc_feed_thread l2arc_rebuild
10577 * will place new bufs here restores bufs here
77f6826b 10578 *
657fd33b
GA
10579 * During l2arc_rebuild() the device is not used by
10580 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
77f6826b
GA
10581 */
10582 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
657fd33b
GA
10583 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10584 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
77f6826b
GA
10585 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10586 }
10587
10588 /*
10589 * Record rebuild stats:
10590 * size Logical size of restored buffers in the L2ARC
657fd33b 10591 * asize Aligned size of restored buffers in the L2ARC
77f6826b
GA
10592 */
10593 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
657fd33b 10594 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
77f6826b 10595 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
657fd33b
GA
10596 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10597 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
77f6826b
GA
10598 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10599}
10600
10601/*
10602 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10603 * into a state indicating that it has been evicted to L2ARC.
10604 */
10605static void
10606l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10607{
10608 arc_buf_hdr_t *hdr, *exists;
10609 kmutex_t *hash_lock;
10610 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10611 uint64_t asize;
10612
10613 /*
10614 * Do all the allocation before grabbing any locks, this lets us
10615 * sleep if memory is full and we don't have to deal with failed
10616 * allocations.
10617 */
10618 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10619 dev, le->le_dva, le->le_daddr,
10620 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10b3c7f5 10621 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
77f6826b 10622 L2BLK_GET_PROTECTED((le)->le_prop),
08532162
GA
10623 L2BLK_GET_PREFETCH((le)->le_prop),
10624 L2BLK_GET_STATE((le)->le_prop));
77f6826b
GA
10625 asize = vdev_psize_to_asize(dev->l2ad_vdev,
10626 L2BLK_GET_PSIZE((le)->le_prop));
10627
10628 /*
10629 * vdev_space_update() has to be called before arc_hdr_destroy() to
08532162 10630 * avoid underflow since the latter also calls vdev_space_update().
77f6826b 10631 */
08532162 10632 l2arc_hdr_arcstats_increment(hdr);
77f6826b
GA
10633 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10634
77f6826b
GA
10635 mutex_enter(&dev->l2ad_mtx);
10636 list_insert_tail(&dev->l2ad_buflist, hdr);
10637 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10638 mutex_exit(&dev->l2ad_mtx);
10639
10640 exists = buf_hash_insert(hdr, &hash_lock);
10641 if (exists) {
10642 /* Buffer was already cached, no need to restore it. */
10643 arc_hdr_destroy(hdr);
10644 /*
10645 * If the buffer is already cached, check whether it has
10646 * L2ARC metadata. If not, enter them and update the flag.
10647 * This is important is case of onlining a cache device, since
10648 * we previously evicted all L2ARC metadata from ARC.
10649 */
10650 if (!HDR_HAS_L2HDR(exists)) {
10651 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10652 exists->b_l2hdr.b_dev = dev;
10653 exists->b_l2hdr.b_daddr = le->le_daddr;
08532162
GA
10654 exists->b_l2hdr.b_arcs_state =
10655 L2BLK_GET_STATE((le)->le_prop);
77f6826b
GA
10656 mutex_enter(&dev->l2ad_mtx);
10657 list_insert_tail(&dev->l2ad_buflist, exists);
10658 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10659 arc_hdr_size(exists), exists);
10660 mutex_exit(&dev->l2ad_mtx);
08532162 10661 l2arc_hdr_arcstats_increment(exists);
77f6826b 10662 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
77f6826b
GA
10663 }
10664 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10665 }
10666
10667 mutex_exit(hash_lock);
10668}
10669
10670/*
10671 * Starts an asynchronous read IO to read a log block. This is used in log
10672 * block reconstruction to start reading the next block before we are done
10673 * decoding and reconstructing the current block, to keep the l2arc device
10674 * nice and hot with read IO to process.
10675 * The returned zio will contain a newly allocated memory buffers for the IO
10676 * data which should then be freed by the caller once the zio is no longer
10677 * needed (i.e. due to it having completed). If you wish to abort this
10678 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10679 * care of disposing of the allocated buffers correctly.
10680 */
10681static zio_t *
10682l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10683 l2arc_log_blk_phys_t *lb)
10684{
657fd33b 10685 uint32_t asize;
77f6826b
GA
10686 zio_t *pio;
10687 l2arc_read_callback_t *cb;
10688
657fd33b
GA
10689 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10690 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10691 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10692
77f6826b 10693 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
657fd33b 10694 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
77f6826b
GA
10695 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10696 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10697 ZIO_FLAG_DONT_RETRY);
657fd33b 10698 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
77f6826b
GA
10699 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10700 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10701 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10702
10703 return (pio);
10704}
10705
10706/*
10707 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10708 * buffers allocated for it.
10709 */
10710static void
10711l2arc_log_blk_fetch_abort(zio_t *zio)
10712{
10713 (void) zio_wait(zio);
10714}
10715
10716/*
2054f35e 10717 * Creates a zio to update the device header on an l2arc device.
77f6826b 10718 */
b7654bd7 10719void
77f6826b
GA
10720l2arc_dev_hdr_update(l2arc_dev_t *dev)
10721{
10722 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10723 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10724 abd_t *abd;
10725 int err;
10726
657fd33b
GA
10727 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10728
77f6826b
GA
10729 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10730 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10731 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10732 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
657fd33b 10733 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
77f6826b
GA
10734 l2dhdr->dh_evict = dev->l2ad_evict;
10735 l2dhdr->dh_start = dev->l2ad_start;
10736 l2dhdr->dh_end = dev->l2ad_end;
657fd33b
GA
10737 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10738 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
77f6826b 10739 l2dhdr->dh_flags = 0;
b7654bd7
GA
10740 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10741 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
77f6826b
GA
10742 if (dev->l2ad_first)
10743 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10744
10745 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10746
10747 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10748 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10749 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10750
e2af2acc 10751 abd_free(abd);
77f6826b
GA
10752
10753 if (err != 0) {
10754 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
8e739b2c
RE
10755 "vdev guid: %llu", err,
10756 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
77f6826b
GA
10757 }
10758}
10759
10760/*
10761 * Commits a log block to the L2ARC device. This routine is invoked from
10762 * l2arc_write_buffers when the log block fills up.
10763 * This function allocates some memory to temporarily hold the serialized
10764 * buffer to be written. This is then released in l2arc_write_done.
10765 */
10766static void
10767l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10768{
10769 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10770 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10771 uint64_t psize, asize;
10772 zio_t *wzio;
10773 l2arc_lb_abd_buf_t *abd_buf;
10774 uint8_t *tmpbuf;
10775 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10776
657fd33b 10777 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
77f6826b
GA
10778
10779 tmpbuf = zio_buf_alloc(sizeof (*lb));
10780 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10781 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10782 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10783 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10784
10785 /* link the buffer into the block chain */
10786 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10787 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10788
657fd33b
GA
10789 /*
10790 * l2arc_log_blk_commit() may be called multiple times during a single
10791 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10792 * so we can free them in l2arc_write_done() later on.
10793 */
77f6826b 10794 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
657fd33b
GA
10795
10796 /* try to compress the buffer */
77f6826b 10797 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10b3c7f5 10798 abd_buf->abd, tmpbuf, sizeof (*lb), 0);
77f6826b
GA
10799
10800 /* a log block is never entirely zero */
10801 ASSERT(psize != 0);
10802 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10803 ASSERT(asize <= sizeof (*lb));
10804
10805 /*
10806 * Update the start log block pointer in the device header to point
10807 * to the log block we're about to write.
10808 */
10809 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10810 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10811 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10812 dev->l2ad_log_blk_payload_asize;
10813 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10814 dev->l2ad_log_blk_payload_start;
77f6826b
GA
10815 L2BLK_SET_LSIZE(
10816 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10817 L2BLK_SET_PSIZE(
10818 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10819 L2BLK_SET_CHECKSUM(
10820 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10821 ZIO_CHECKSUM_FLETCHER_4);
10822 if (asize < sizeof (*lb)) {
10823 /* compression succeeded */
10824 bzero(tmpbuf + psize, asize - psize);
10825 L2BLK_SET_COMPRESS(
10826 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10827 ZIO_COMPRESS_LZ4);
10828 } else {
10829 /* compression failed */
10830 bcopy(lb, tmpbuf, sizeof (*lb));
10831 L2BLK_SET_COMPRESS(
10832 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10833 ZIO_COMPRESS_OFF);
10834 }
10835
10836 /* checksum what we're about to write */
10837 fletcher_4_native(tmpbuf, asize, NULL,
10838 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10839
e2af2acc 10840 abd_free(abd_buf->abd);
77f6826b
GA
10841
10842 /* perform the write itself */
10843 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10844 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10845 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10846 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10847 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10848 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10849 (void) zio_nowait(wzio);
10850
10851 dev->l2ad_hand += asize;
10852 /*
10853 * Include the committed log block's pointer in the list of pointers
10854 * to log blocks present in the L2ARC device.
10855 */
10856 bcopy(&l2dhdr->dh_start_lbps[0], lb_ptr_buf->lb_ptr,
10857 sizeof (l2arc_log_blkptr_t));
10858 mutex_enter(&dev->l2ad_mtx);
10859 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
657fd33b
GA
10860 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10861 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10862 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10863 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
77f6826b
GA
10864 mutex_exit(&dev->l2ad_mtx);
10865 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10866
10867 /* bump the kstats */
10868 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10869 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
657fd33b 10870 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
77f6826b
GA
10871 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10872 dev->l2ad_log_blk_payload_asize / asize);
10873
10874 /* start a new log block */
10875 dev->l2ad_log_ent_idx = 0;
10876 dev->l2ad_log_blk_payload_asize = 0;
10877 dev->l2ad_log_blk_payload_start = 0;
10878}
10879
10880/*
10881 * Validates an L2ARC log block address to make sure that it can be read
10882 * from the provided L2ARC device.
10883 */
10884boolean_t
10885l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10886{
657fd33b
GA
10887 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10888 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10889 uint64_t end = lbp->lbp_daddr + asize - 1;
77f6826b
GA
10890 uint64_t start = lbp->lbp_payload_start;
10891 boolean_t evicted = B_FALSE;
10892
10893 /*
10894 * A log block is valid if all of the following conditions are true:
10895 * - it fits entirely (including its payload) between l2ad_start and
10896 * l2ad_end
10897 * - it has a valid size
10898 * - neither the log block itself nor part of its payload was evicted
10899 * by l2arc_evict():
10900 *
10901 * l2ad_hand l2ad_evict
10902 * | | lbp_daddr
10903 * | start | | end
10904 * | | | | |
10905 * V V V V V
10906 * l2ad_start ============================================ l2ad_end
10907 * --------------------------||||
10908 * ^ ^
10909 * | log block
10910 * payload
10911 */
10912
10913 evicted =
10914 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
10915 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
10916 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
10917 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
10918
10919 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
657fd33b 10920 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
77f6826b
GA
10921 (!evicted || dev->l2ad_first));
10922}
10923
10924/*
10925 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10926 * the device. The buffer being inserted must be present in L2ARC.
10927 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10928 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10929 */
10930static boolean_t
10931l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
10932{
10933 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10934 l2arc_log_ent_phys_t *le;
77f6826b 10935
657fd33b 10936 if (dev->l2ad_log_entries == 0)
77f6826b
GA
10937 return (B_FALSE);
10938
10939 int index = dev->l2ad_log_ent_idx++;
10940
657fd33b 10941 ASSERT3S(index, <, dev->l2ad_log_entries);
77f6826b
GA
10942 ASSERT(HDR_HAS_L2HDR(hdr));
10943
10944 le = &lb->lb_entries[index];
10945 bzero(le, sizeof (*le));
10946 le->le_dva = hdr->b_dva;
10947 le->le_birth = hdr->b_birth;
10948 le->le_daddr = hdr->b_l2hdr.b_daddr;
10949 if (index == 0)
10950 dev->l2ad_log_blk_payload_start = le->le_daddr;
10951 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
10952 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
10953 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
10b3c7f5 10954 le->le_complevel = hdr->b_complevel;
77f6826b
GA
10955 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
10956 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
10957 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
08532162 10958 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
77f6826b
GA
10959
10960 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
10961 HDR_GET_PSIZE(hdr));
10962
657fd33b 10963 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
77f6826b
GA
10964}
10965
10966/*
10967 * Checks whether a given L2ARC device address sits in a time-sequential
10968 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10969 * just do a range comparison, we need to handle the situation in which the
10970 * range wraps around the end of the L2ARC device. Arguments:
10971 * bottom -- Lower end of the range to check (written to earlier).
10972 * top -- Upper end of the range to check (written to later).
10973 * check -- The address for which we want to determine if it sits in
10974 * between the top and bottom.
10975 *
10976 * The 3-way conditional below represents the following cases:
10977 *
10978 * bottom < top : Sequentially ordered case:
10979 * <check>--------+-------------------+
10980 * | (overlap here?) |
10981 * L2ARC dev V V
10982 * |---------------<bottom>============<top>--------------|
10983 *
10984 * bottom > top: Looped-around case:
10985 * <check>--------+------------------+
10986 * | (overlap here?) |
10987 * L2ARC dev V V
10988 * |===============<top>---------------<bottom>===========|
10989 * ^ ^
10990 * | (or here?) |
10991 * +---------------+---------<check>
10992 *
10993 * top == bottom : Just a single address comparison.
10994 */
10995boolean_t
10996l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
10997{
10998 if (bottom < top)
10999 return (bottom <= check && check <= top);
11000 else if (bottom > top)
11001 return (check <= top || bottom <= check);
11002 else
11003 return (check == top);
11004}
11005
0f699108
AZ
11006EXPORT_SYMBOL(arc_buf_size);
11007EXPORT_SYMBOL(arc_write);
c28b2279 11008EXPORT_SYMBOL(arc_read);
e0b0ca98 11009EXPORT_SYMBOL(arc_buf_info);
c28b2279 11010EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
11011EXPORT_SYMBOL(arc_add_prune_callback);
11012EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 11013
02730c33 11014/* BEGIN CSTYLED */
e945e8d7 11015ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
e3570464 11016 param_get_long, ZMOD_RW, "Min arc size");
c28b2279 11017
e945e8d7 11018ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
e3570464 11019 param_get_long, ZMOD_RW, "Max arc size");
c28b2279 11020
e3570464 11021ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_long,
11022 param_get_long, ZMOD_RW, "Metadata limit for arc size");
6a8f9b6b 11023
e3570464 11024ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
11025 param_set_arc_long, param_get_long, ZMOD_RW,
9907cc1c
G
11026 "Percent of arc size for arc meta limit");
11027
e3570464 11028ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_long,
11029 param_get_long, ZMOD_RW, "Min arc metadata");
ca0bf58d 11030
03fdcb9a
MM
11031ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
11032 "Meta objects to scan for prune");
c409e464 11033
03fdcb9a 11034ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, INT, ZMOD_RW,
5dd92909 11035 "Limit number of restarts in arc_evict_meta");
bc888666 11036
03fdcb9a
MM
11037ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, INT, ZMOD_RW,
11038 "Meta reclaim strategy");
f6046738 11039
e3570464 11040ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11041 param_get_int, ZMOD_RW, "Seconds before growing arc size");
c409e464 11042
03fdcb9a
MM
11043ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
11044 "Disable arc_p adapt dampener");
62422785 11045
e3570464 11046ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11047 param_get_int, ZMOD_RW, "log2(fraction of arc to reclaim)");
c409e464 11048
03fdcb9a 11049ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
03b60eee
DB
11050 "Percent of pagecache to reclaim arc to");
11051
e3570464 11052ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
11053 param_get_int, ZMOD_RW, "arc_c shift to calc min/max arc_p");
728d6ae9 11054
03fdcb9a
MM
11055ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, INT, ZMOD_RD,
11056 "Target average block size");
49ddb315 11057
03fdcb9a
MM
11058ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11059 "Disable compressed arc buffers");
d3c2ae1c 11060
e3570464 11061ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11062 param_get_int, ZMOD_RW, "Min life of prefetch block in ms");
d4a72f23 11063
e3570464 11064ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11065 param_set_arc_int, param_get_int, ZMOD_RW,
d4a72f23 11066 "Min life of prescient prefetched block in ms");
bce45ec9 11067
03fdcb9a
MM
11068ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, ULONG, ZMOD_RW,
11069 "Max write bytes per interval");
abd8610c 11070
03fdcb9a
MM
11071ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, ULONG, ZMOD_RW,
11072 "Extra write bytes during device warmup");
abd8610c 11073
03fdcb9a
MM
11074ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, ULONG, ZMOD_RW,
11075 "Number of max device writes to precache");
abd8610c 11076
03fdcb9a
MM
11077ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, ULONG, ZMOD_RW,
11078 "Compressed l2arc_headroom multiplier");
3a17a7a9 11079
b7654bd7
GA
11080ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, ULONG, ZMOD_RW,
11081 "TRIM ahead L2ARC write size multiplier");
11082
03fdcb9a
MM
11083ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, ULONG, ZMOD_RW,
11084 "Seconds between L2ARC writing");
abd8610c 11085
03fdcb9a
MM
11086ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, ULONG, ZMOD_RW,
11087 "Min feed interval in milliseconds");
abd8610c 11088
03fdcb9a
MM
11089ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11090 "Skip caching prefetched buffers");
abd8610c 11091
03fdcb9a
MM
11092ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11093 "Turbo L2ARC warmup");
abd8610c 11094
03fdcb9a
MM
11095ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11096 "No reads during writes");
abd8610c 11097
523e1295
AM
11098ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, INT, ZMOD_RW,
11099 "Percent of ARC size allowed for L2ARC-only headers");
11100
77f6826b
GA
11101ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11102 "Rebuild the L2ARC when importing a pool");
11103
11104ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, ULONG, ZMOD_RW,
11105 "Min size in bytes to write rebuild log blocks in L2ARC");
11106
feb3a7ee
GA
11107ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11108 "Cache only MFU data from ARC into L2ARC");
11109
c9d62d13
GA
11110ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11111 "If set to 1 exclude dbufs on special vdevs from being cached to "
11112 "L2ARC.");
11113
e3570464 11114ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11115 param_get_int, ZMOD_RW, "System free memory I/O throttle in bytes");
7e8bddd0 11116
e3570464 11117ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_long,
11118 param_get_long, ZMOD_RW, "System free memory target size in bytes");
11f552fa 11119
e3570464 11120ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_long,
11121 param_get_long, ZMOD_RW, "Minimum bytes of dnodes in arc");
25458cbe 11122
e3570464 11123ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11124 param_set_arc_long, param_get_long, ZMOD_RW,
9907cc1c
G
11125 "Percent of ARC meta buffers for dnodes");
11126
03fdcb9a 11127ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, ULONG, ZMOD_RW,
25458cbe 11128 "Percentage of excess dnodes to try to unpin");
3442c2a0
MA
11129
11130ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, INT, ZMOD_RW,
eb02a4c6
RM
11131 "When full, ARC allocation waits for eviction of this % of alloc size");
11132
11133ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, INT, ZMOD_RW,
11134 "The number of headers to evict per sublist before moving to the next");
462217d1
AM
11135
11136ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11137 "Number of arc_prune threads");
02730c33 11138/* END CSTYLED */