]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Limit the amount of dnode metadata in the ARC
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
36da08ef 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
bc77ba73 24 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
36da08ef 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
3bec585e 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 62 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 66 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
d3cc8b15 81 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
5c839890
BC
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
bd089c54 108 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
109 * and arc_do_user_evicts().
110 *
ab26409d
BB
111 * It as also possible to register a callback which is run when the
112 * arc_meta_limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed and the arc_meta_limit honored. For example,
115 * when using the ZPL each dentry holds a references on a znode. These
116 * dentries must be pruned before the arc buffer holding the znode can
117 * be safely evicted.
118 *
34dc7c2f
BB
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
b9541d6b 122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131#include <sys/spa.h>
132#include <sys/zio.h>
3a17a7a9 133#include <sys/zio_compress.h>
34dc7c2f
BB
134#include <sys/zfs_context.h>
135#include <sys/arc.h>
36da08ef 136#include <sys/refcount.h>
b128c09f 137#include <sys/vdev.h>
9babb374 138#include <sys/vdev_impl.h>
e8b96c60 139#include <sys/dsl_pool.h>
ca0bf58d 140#include <sys/multilist.h>
34dc7c2f
BB
141#ifdef _KERNEL
142#include <sys/vmsystm.h>
143#include <vm/anon.h>
144#include <sys/fs/swapnode.h>
ab26409d 145#include <sys/zpl.h>
aaed7c40 146#include <linux/mm_compat.h>
34dc7c2f
BB
147#endif
148#include <sys/callb.h>
149#include <sys/kstat.h>
570827e1 150#include <sys/dmu_tx.h>
428870ff 151#include <zfs_fletcher.h>
59ec819a 152#include <sys/arc_impl.h>
49ee64e5 153#include <sys/trace_arc.h>
34dc7c2f 154
498877ba
MA
155#ifndef _KERNEL
156/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
157boolean_t arc_watch = B_FALSE;
158#endif
159
ca0bf58d
PS
160static kmutex_t arc_reclaim_lock;
161static kcondvar_t arc_reclaim_thread_cv;
162static boolean_t arc_reclaim_thread_exit;
163static kcondvar_t arc_reclaim_waiters_cv;
164
165static kmutex_t arc_user_evicts_lock;
166static kcondvar_t arc_user_evicts_cv;
167static boolean_t arc_user_evicts_thread_exit;
34dc7c2f 168
e8b96c60 169/*
ca0bf58d
PS
170 * The number of headers to evict in arc_evict_state_impl() before
171 * dropping the sublist lock and evicting from another sublist. A lower
172 * value means we're more likely to evict the "correct" header (i.e. the
173 * oldest header in the arc state), but comes with higher overhead
174 * (i.e. more invocations of arc_evict_state_impl()).
175 */
176int zfs_arc_evict_batch_limit = 10;
177
178/*
179 * The number of sublists used for each of the arc state lists. If this
180 * is not set to a suitable value by the user, it will be configured to
181 * the number of CPUs on the system in arc_init().
e8b96c60 182 */
ca0bf58d 183int zfs_arc_num_sublists_per_state = 0;
e8b96c60 184
34dc7c2f 185/* number of seconds before growing cache again */
ca67b33a 186static int arc_grow_retry = 5;
34dc7c2f 187
ca0bf58d 188/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
ca67b33a 189int zfs_arc_overflow_shift = 8;
62422785 190
728d6ae9
BB
191/* shift of arc_c for calculating both min and max arc_p */
192static int arc_p_min_shift = 4;
193
d164b209 194/* log2(fraction of arc to reclaim) */
ca67b33a 195static int arc_shrink_shift = 7;
d164b209 196
34dc7c2f 197/*
ca67b33a
MA
198 * log2(fraction of ARC which must be free to allow growing).
199 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
200 * when reading a new block into the ARC, we will evict an equal-sized block
201 * from the ARC.
202 *
203 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
204 * we will still not allow it to grow.
34dc7c2f 205 */
ca67b33a 206int arc_no_grow_shift = 5;
bce45ec9 207
49ddb315 208
ca0bf58d
PS
209/*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
ca67b33a 213static int arc_min_prefetch_lifespan;
ca0bf58d 214
e8b96c60
MA
215/*
216 * If this percent of memory is free, don't throttle.
217 */
218int arc_lotsfree_percent = 10;
219
34dc7c2f
BB
220static int arc_dead;
221
b128c09f
BB
222/*
223 * The arc has filled available memory and has now warmed up.
224 */
225static boolean_t arc_warm;
226
34dc7c2f
BB
227/*
228 * These tunables are for performance analysis.
229 */
c28b2279
BB
230unsigned long zfs_arc_max = 0;
231unsigned long zfs_arc_min = 0;
232unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 233unsigned long zfs_arc_meta_min = 0;
25458cbe
TC
234unsigned long zfs_arc_dnode_limit = 0;
235unsigned long zfs_arc_dnode_reduce_percent = 10;
ca67b33a
MA
236int zfs_arc_grow_retry = 0;
237int zfs_arc_shrink_shift = 0;
728d6ae9 238int zfs_arc_p_min_shift = 0;
ca67b33a
MA
239int zfs_disable_dup_eviction = 0;
240int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 241
bc888666 242/*
ca67b33a 243 * These tunables are Linux specific
bc888666 244 */
11f552fa 245unsigned long zfs_arc_sys_free = 0;
ca67b33a
MA
246int zfs_arc_min_prefetch_lifespan = 0;
247int zfs_arc_p_aggressive_disable = 1;
248int zfs_arc_p_dampener_disable = 1;
249int zfs_arc_meta_prune = 10000;
250int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
251int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 252int zfs_arc_lotsfree_percent = 10;
bc888666 253
34dc7c2f
BB
254/* The 6 states: */
255static arc_state_t ARC_anon;
256static arc_state_t ARC_mru;
257static arc_state_t ARC_mru_ghost;
258static arc_state_t ARC_mfu;
259static arc_state_t ARC_mfu_ghost;
260static arc_state_t ARC_l2c_only;
261
262typedef struct arc_stats {
263 kstat_named_t arcstat_hits;
264 kstat_named_t arcstat_misses;
265 kstat_named_t arcstat_demand_data_hits;
266 kstat_named_t arcstat_demand_data_misses;
267 kstat_named_t arcstat_demand_metadata_hits;
268 kstat_named_t arcstat_demand_metadata_misses;
269 kstat_named_t arcstat_prefetch_data_hits;
270 kstat_named_t arcstat_prefetch_data_misses;
271 kstat_named_t arcstat_prefetch_metadata_hits;
272 kstat_named_t arcstat_prefetch_metadata_misses;
273 kstat_named_t arcstat_mru_hits;
274 kstat_named_t arcstat_mru_ghost_hits;
275 kstat_named_t arcstat_mfu_hits;
276 kstat_named_t arcstat_mfu_ghost_hits;
277 kstat_named_t arcstat_deleted;
e49f1e20
WA
278 /*
279 * Number of buffers that could not be evicted because the hash lock
280 * was held by another thread. The lock may not necessarily be held
281 * by something using the same buffer, since hash locks are shared
282 * by multiple buffers.
283 */
34dc7c2f 284 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
285 /*
286 * Number of buffers skipped because they have I/O in progress, are
287 * indrect prefetch buffers that have not lived long enough, or are
288 * not from the spa we're trying to evict from.
289 */
34dc7c2f 290 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
291 /*
292 * Number of times arc_evict_state() was unable to evict enough
293 * buffers to reach its target amount.
294 */
295 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
296 kstat_named_t arcstat_evict_l2_cached;
297 kstat_named_t arcstat_evict_l2_eligible;
298 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 299 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
300 kstat_named_t arcstat_hash_elements;
301 kstat_named_t arcstat_hash_elements_max;
302 kstat_named_t arcstat_hash_collisions;
303 kstat_named_t arcstat_hash_chains;
304 kstat_named_t arcstat_hash_chain_max;
305 kstat_named_t arcstat_p;
306 kstat_named_t arcstat_c;
307 kstat_named_t arcstat_c_min;
308 kstat_named_t arcstat_c_max;
309 kstat_named_t arcstat_size;
500445c0
PS
310 /*
311 * Number of bytes consumed by internal ARC structures necessary
312 * for tracking purposes; these structures are not actually
313 * backed by ARC buffers. This includes arc_buf_hdr_t structures
314 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
315 * caches), and arc_buf_t structures (allocated via arc_buf_t
316 * cache).
317 */
34dc7c2f 318 kstat_named_t arcstat_hdr_size;
500445c0
PS
319 /*
320 * Number of bytes consumed by ARC buffers of type equal to
321 * ARC_BUFC_DATA. This is generally consumed by buffers backing
322 * on disk user data (e.g. plain file contents).
323 */
d164b209 324 kstat_named_t arcstat_data_size;
500445c0
PS
325 /*
326 * Number of bytes consumed by ARC buffers of type equal to
327 * ARC_BUFC_METADATA. This is generally consumed by buffers
328 * backing on disk data that is used for internal ZFS
329 * structures (e.g. ZAP, dnode, indirect blocks, etc).
330 */
331 kstat_named_t arcstat_metadata_size;
332 /*
25458cbe 333 * Number of bytes consumed by dmu_buf_impl_t objects.
500445c0 334 */
25458cbe
TC
335 kstat_named_t arcstat_dbuf_size;
336 /*
337 * Number of bytes consumed by dnode_t objects.
338 */
339 kstat_named_t arcstat_dnode_size;
340 /*
341 * Number of bytes consumed by bonus buffers.
342 */
343 kstat_named_t arcstat_bonus_size;
500445c0
PS
344 /*
345 * Total number of bytes consumed by ARC buffers residing in the
346 * arc_anon state. This includes *all* buffers in the arc_anon
347 * state; e.g. data, metadata, evictable, and unevictable buffers
348 * are all included in this value.
349 */
13be560d 350 kstat_named_t arcstat_anon_size;
500445c0
PS
351 /*
352 * Number of bytes consumed by ARC buffers that meet the
353 * following criteria: backing buffers of type ARC_BUFC_DATA,
354 * residing in the arc_anon state, and are eligible for eviction
355 * (e.g. have no outstanding holds on the buffer).
356 */
357 kstat_named_t arcstat_anon_evictable_data;
358 /*
359 * Number of bytes consumed by ARC buffers that meet the
360 * following criteria: backing buffers of type ARC_BUFC_METADATA,
361 * residing in the arc_anon state, and are eligible for eviction
362 * (e.g. have no outstanding holds on the buffer).
363 */
364 kstat_named_t arcstat_anon_evictable_metadata;
365 /*
366 * Total number of bytes consumed by ARC buffers residing in the
367 * arc_mru state. This includes *all* buffers in the arc_mru
368 * state; e.g. data, metadata, evictable, and unevictable buffers
369 * are all included in this value.
370 */
13be560d 371 kstat_named_t arcstat_mru_size;
500445c0
PS
372 /*
373 * Number of bytes consumed by ARC buffers that meet the
374 * following criteria: backing buffers of type ARC_BUFC_DATA,
375 * residing in the arc_mru state, and are eligible for eviction
376 * (e.g. have no outstanding holds on the buffer).
377 */
378 kstat_named_t arcstat_mru_evictable_data;
379 /*
380 * Number of bytes consumed by ARC buffers that meet the
381 * following criteria: backing buffers of type ARC_BUFC_METADATA,
382 * residing in the arc_mru state, and are eligible for eviction
383 * (e.g. have no outstanding holds on the buffer).
384 */
385 kstat_named_t arcstat_mru_evictable_metadata;
386 /*
387 * Total number of bytes that *would have been* consumed by ARC
388 * buffers in the arc_mru_ghost state. The key thing to note
389 * here, is the fact that this size doesn't actually indicate
390 * RAM consumption. The ghost lists only consist of headers and
391 * don't actually have ARC buffers linked off of these headers.
392 * Thus, *if* the headers had associated ARC buffers, these
393 * buffers *would have* consumed this number of bytes.
394 */
13be560d 395 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
396 /*
397 * Number of bytes that *would have been* consumed by ARC
398 * buffers that are eligible for eviction, of type
399 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
400 */
401 kstat_named_t arcstat_mru_ghost_evictable_data;
402 /*
403 * Number of bytes that *would have been* consumed by ARC
404 * buffers that are eligible for eviction, of type
405 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
406 */
407 kstat_named_t arcstat_mru_ghost_evictable_metadata;
408 /*
409 * Total number of bytes consumed by ARC buffers residing in the
410 * arc_mfu state. This includes *all* buffers in the arc_mfu
411 * state; e.g. data, metadata, evictable, and unevictable buffers
412 * are all included in this value.
413 */
13be560d 414 kstat_named_t arcstat_mfu_size;
500445c0
PS
415 /*
416 * Number of bytes consumed by ARC buffers that are eligible for
417 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
418 * state.
419 */
420 kstat_named_t arcstat_mfu_evictable_data;
421 /*
422 * Number of bytes consumed by ARC buffers that are eligible for
423 * eviction, of type ARC_BUFC_METADATA, and reside in the
424 * arc_mfu state.
425 */
426 kstat_named_t arcstat_mfu_evictable_metadata;
427 /*
428 * Total number of bytes that *would have been* consumed by ARC
429 * buffers in the arc_mfu_ghost state. See the comment above
430 * arcstat_mru_ghost_size for more details.
431 */
13be560d 432 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
433 /*
434 * Number of bytes that *would have been* consumed by ARC
435 * buffers that are eligible for eviction, of type
436 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
437 */
438 kstat_named_t arcstat_mfu_ghost_evictable_data;
439 /*
440 * Number of bytes that *would have been* consumed by ARC
441 * buffers that are eligible for eviction, of type
442 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
443 */
444 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
445 kstat_named_t arcstat_l2_hits;
446 kstat_named_t arcstat_l2_misses;
447 kstat_named_t arcstat_l2_feeds;
448 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
449 kstat_named_t arcstat_l2_read_bytes;
450 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
451 kstat_named_t arcstat_l2_writes_sent;
452 kstat_named_t arcstat_l2_writes_done;
453 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 454 kstat_named_t arcstat_l2_writes_lock_retry;
8a09d5fd 455 kstat_named_t arcstat_l2_writes_skip_toobig;
34dc7c2f
BB
456 kstat_named_t arcstat_l2_evict_lock_retry;
457 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 458 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f 459 kstat_named_t arcstat_l2_free_on_write;
ca0bf58d 460 kstat_named_t arcstat_l2_cdata_free_on_write;
34dc7c2f
BB
461 kstat_named_t arcstat_l2_abort_lowmem;
462 kstat_named_t arcstat_l2_cksum_bad;
463 kstat_named_t arcstat_l2_io_error;
464 kstat_named_t arcstat_l2_size;
3a17a7a9 465 kstat_named_t arcstat_l2_asize;
34dc7c2f 466 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
467 kstat_named_t arcstat_l2_compress_successes;
468 kstat_named_t arcstat_l2_compress_zeros;
469 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 470 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
471 kstat_named_t arcstat_duplicate_buffers;
472 kstat_named_t arcstat_duplicate_buffers_size;
473 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
474 kstat_named_t arcstat_memory_direct_count;
475 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
476 kstat_named_t arcstat_no_grow;
477 kstat_named_t arcstat_tempreserve;
478 kstat_named_t arcstat_loaned_bytes;
ab26409d 479 kstat_named_t arcstat_prune;
1834f2d8
BB
480 kstat_named_t arcstat_meta_used;
481 kstat_named_t arcstat_meta_limit;
25458cbe 482 kstat_named_t arcstat_dnode_limit;
1834f2d8 483 kstat_named_t arcstat_meta_max;
ca0bf58d 484 kstat_named_t arcstat_meta_min;
7f60329a
MA
485 kstat_named_t arcstat_sync_wait_for_async;
486 kstat_named_t arcstat_demand_hit_predictive_prefetch;
11f552fa
BB
487 kstat_named_t arcstat_need_free;
488 kstat_named_t arcstat_sys_free;
34dc7c2f
BB
489} arc_stats_t;
490
491static arc_stats_t arc_stats = {
492 { "hits", KSTAT_DATA_UINT64 },
493 { "misses", KSTAT_DATA_UINT64 },
494 { "demand_data_hits", KSTAT_DATA_UINT64 },
495 { "demand_data_misses", KSTAT_DATA_UINT64 },
496 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
497 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
498 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
499 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
500 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
501 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
502 { "mru_hits", KSTAT_DATA_UINT64 },
503 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
504 { "mfu_hits", KSTAT_DATA_UINT64 },
505 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
506 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
507 { "mutex_miss", KSTAT_DATA_UINT64 },
508 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 509 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
510 { "evict_l2_cached", KSTAT_DATA_UINT64 },
511 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
512 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 513 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
514 { "hash_elements", KSTAT_DATA_UINT64 },
515 { "hash_elements_max", KSTAT_DATA_UINT64 },
516 { "hash_collisions", KSTAT_DATA_UINT64 },
517 { "hash_chains", KSTAT_DATA_UINT64 },
518 { "hash_chain_max", KSTAT_DATA_UINT64 },
519 { "p", KSTAT_DATA_UINT64 },
520 { "c", KSTAT_DATA_UINT64 },
521 { "c_min", KSTAT_DATA_UINT64 },
522 { "c_max", KSTAT_DATA_UINT64 },
523 { "size", KSTAT_DATA_UINT64 },
524 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 525 { "data_size", KSTAT_DATA_UINT64 },
500445c0 526 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
527 { "dbuf_size", KSTAT_DATA_UINT64 },
528 { "dnode_size", KSTAT_DATA_UINT64 },
529 { "bonus_size", KSTAT_DATA_UINT64 },
13be560d 530 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
531 { "anon_evictable_data", KSTAT_DATA_UINT64 },
532 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 533 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
534 { "mru_evictable_data", KSTAT_DATA_UINT64 },
535 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 536 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
537 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
538 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 539 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
540 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
541 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 542 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
543 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
544 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
545 { "l2_hits", KSTAT_DATA_UINT64 },
546 { "l2_misses", KSTAT_DATA_UINT64 },
547 { "l2_feeds", KSTAT_DATA_UINT64 },
548 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
549 { "l2_read_bytes", KSTAT_DATA_UINT64 },
550 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
551 { "l2_writes_sent", KSTAT_DATA_UINT64 },
552 { "l2_writes_done", KSTAT_DATA_UINT64 },
553 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 554 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
8a09d5fd 555 { "l2_writes_skip_toobig", KSTAT_DATA_UINT64 },
34dc7c2f
BB
556 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
557 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 558 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f 559 { "l2_free_on_write", KSTAT_DATA_UINT64 },
ca0bf58d 560 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
34dc7c2f
BB
561 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
562 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
563 { "l2_io_error", KSTAT_DATA_UINT64 },
564 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 565 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 566 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
567 { "l2_compress_successes", KSTAT_DATA_UINT64 },
568 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
569 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 570 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
571 { "duplicate_buffers", KSTAT_DATA_UINT64 },
572 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
573 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
574 { "memory_direct_count", KSTAT_DATA_UINT64 },
575 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
576 { "arc_no_grow", KSTAT_DATA_UINT64 },
577 { "arc_tempreserve", KSTAT_DATA_UINT64 },
578 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 579 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
580 { "arc_meta_used", KSTAT_DATA_UINT64 },
581 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 582 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 583 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 584 { "arc_meta_min", KSTAT_DATA_UINT64 },
7f60329a
MA
585 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
586 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
11f552fa
BB
587 { "arc_need_free", KSTAT_DATA_UINT64 },
588 { "arc_sys_free", KSTAT_DATA_UINT64 }
34dc7c2f
BB
589};
590
591#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
592
593#define ARCSTAT_INCR(stat, val) \
d3cc8b15 594 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 595
428870ff 596#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
597#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
598
599#define ARCSTAT_MAX(stat, val) { \
600 uint64_t m; \
601 while ((val) > (m = arc_stats.stat.value.ui64) && \
602 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
603 continue; \
604}
605
606#define ARCSTAT_MAXSTAT(stat) \
607 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
608
609/*
610 * We define a macro to allow ARC hits/misses to be easily broken down by
611 * two separate conditions, giving a total of four different subtypes for
612 * each of hits and misses (so eight statistics total).
613 */
614#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
615 if (cond1) { \
616 if (cond2) { \
617 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
618 } else { \
619 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
620 } \
621 } else { \
622 if (cond2) { \
623 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
624 } else { \
625 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
626 } \
627 }
628
629kstat_t *arc_ksp;
428870ff 630static arc_state_t *arc_anon;
34dc7c2f
BB
631static arc_state_t *arc_mru;
632static arc_state_t *arc_mru_ghost;
633static arc_state_t *arc_mfu;
634static arc_state_t *arc_mfu_ghost;
635static arc_state_t *arc_l2c_only;
636
637/*
638 * There are several ARC variables that are critical to export as kstats --
639 * but we don't want to have to grovel around in the kstat whenever we wish to
640 * manipulate them. For these variables, we therefore define them to be in
641 * terms of the statistic variable. This assures that we are not introducing
642 * the possibility of inconsistency by having shadow copies of the variables,
643 * while still allowing the code to be readable.
644 */
645#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
646#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
647#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
648#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
649#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
650#define arc_no_grow ARCSTAT(arcstat_no_grow)
651#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
652#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 653#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
25458cbe 654#define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
ca0bf58d 655#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
656#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
657#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
25458cbe
TC
658#define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
659#define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
660#define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
11f552fa
BB
661#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
662#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
34dc7c2f 663
3a17a7a9
SK
664#define L2ARC_IS_VALID_COMPRESS(_c_) \
665 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
666
ab26409d
BB
667static list_t arc_prune_list;
668static kmutex_t arc_prune_mtx;
f6046738 669static taskq_t *arc_prune_taskq;
34dc7c2f 670static arc_buf_t *arc_eviction_list;
34dc7c2f 671static arc_buf_hdr_t arc_eviction_hdr;
428870ff 672
34dc7c2f
BB
673#define GHOST_STATE(state) \
674 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
675 (state) == arc_l2c_only)
676
2a432414
GW
677#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
678#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
679#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
680#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
681#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
682#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
b9541d6b 683
2a432414 684#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
b9541d6b 685#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
2a432414 686#define HDR_L2_READING(hdr) \
b9541d6b
CW
687 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
688 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
689#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
690#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
691#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
34dc7c2f 692
b9541d6b
CW
693#define HDR_ISTYPE_METADATA(hdr) \
694 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
695#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
696
697#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
698#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
699
34dc7c2f
BB
700/*
701 * Other sizes
702 */
703
b9541d6b
CW
704#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
705#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
706
707/*
708 * Hash table routines
709 */
710
00b46022
BB
711#define HT_LOCK_ALIGN 64
712#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
713
714struct ht_lock {
715 kmutex_t ht_lock;
716#ifdef _KERNEL
00b46022 717 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
718#endif
719};
720
b31d8ea7 721#define BUF_LOCKS 8192
34dc7c2f
BB
722typedef struct buf_hash_table {
723 uint64_t ht_mask;
724 arc_buf_hdr_t **ht_table;
725 struct ht_lock ht_locks[BUF_LOCKS];
726} buf_hash_table_t;
727
728static buf_hash_table_t buf_hash_table;
729
730#define BUF_HASH_INDEX(spa, dva, birth) \
731 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
732#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
733#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
734#define HDR_LOCK(hdr) \
735 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
736
737uint64_t zfs_crc64_table[256];
738
739/*
740 * Level 2 ARC
741 */
742
743#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 744#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd
BB
745#define L2ARC_MAX_BLOCK_SIZE (16 * 1024 * 1024) /* max compress size */
746
3a17a7a9
SK
747/*
748 * If we discover during ARC scan any buffers to be compressed, we boost
749 * our headroom for the next scanning cycle by this percentage multiple.
750 */
751#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
752#define L2ARC_FEED_SECS 1 /* caching interval secs */
753#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 754
8a09d5fd 755
d962d5da
PS
756/*
757 * Used to distinguish headers that are being process by
758 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
759 * address. This can happen when the header is added to the l2arc's list
760 * of buffers to write in the first stage of l2arc_write_buffers(), but
761 * has not yet been written out which happens in the second stage of
762 * l2arc_write_buffers().
763 */
764#define L2ARC_ADDR_UNSET ((uint64_t)(-1))
765
34dc7c2f
BB
766#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
767#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
768
d3cc8b15 769/* L2ARC Performance Tunables */
abd8610c
BB
770unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
771unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
772unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 773unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
8a09d5fd 774unsigned long l2arc_max_block_size = L2ARC_MAX_BLOCK_SIZE;
abd8610c
BB
775unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
776unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
777int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 778int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 779int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 780int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
781
782/*
783 * L2ARC Internals
784 */
34dc7c2f
BB
785static list_t L2ARC_dev_list; /* device list */
786static list_t *l2arc_dev_list; /* device list pointer */
787static kmutex_t l2arc_dev_mtx; /* device list mutex */
788static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
789static list_t L2ARC_free_on_write; /* free after write buf list */
790static list_t *l2arc_free_on_write; /* free after write list ptr */
791static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
792static uint64_t l2arc_ndev; /* number of devices */
793
794typedef struct l2arc_read_callback {
3a17a7a9
SK
795 arc_buf_t *l2rcb_buf; /* read buffer */
796 spa_t *l2rcb_spa; /* spa */
797 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 798 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
799 int l2rcb_flags; /* original flags */
800 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
801} l2arc_read_callback_t;
802
34dc7c2f
BB
803typedef struct l2arc_data_free {
804 /* protected by l2arc_free_on_write_mtx */
805 void *l2df_data;
806 size_t l2df_size;
807 void (*l2df_func)(void *, size_t);
808 list_node_t l2df_list_node;
809} l2arc_data_free_t;
810
811static kmutex_t l2arc_feed_thr_lock;
812static kcondvar_t l2arc_feed_thr_cv;
813static uint8_t l2arc_thread_exit;
814
2a432414
GW
815static void arc_get_data_buf(arc_buf_t *);
816static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 817static boolean_t arc_is_overflowing(void);
2a432414 818static void arc_buf_watch(arc_buf_t *);
ca67b33a 819static void arc_tuning_update(void);
25458cbe 820static void arc_prune_async(int64_t);
2a432414 821
b9541d6b
CW
822static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
823static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
824
2a432414
GW
825static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
826static void l2arc_read_done(zio_t *);
34dc7c2f 827
b9541d6b 828static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
2a432414
GW
829static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
830static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
3a17a7a9 831
34dc7c2f 832static uint64_t
d164b209 833buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 834{
34dc7c2f
BB
835 uint8_t *vdva = (uint8_t *)dva;
836 uint64_t crc = -1ULL;
837 int i;
838
839 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
840
841 for (i = 0; i < sizeof (dva_t); i++)
842 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
843
d164b209 844 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
845
846 return (crc);
847}
848
849#define BUF_EMPTY(buf) \
850 ((buf)->b_dva.dva_word[0] == 0 && \
b9541d6b 851 (buf)->b_dva.dva_word[1] == 0)
34dc7c2f
BB
852
853#define BUF_EQUAL(spa, dva, birth, buf) \
854 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
855 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
856 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
857
428870ff
BB
858static void
859buf_discard_identity(arc_buf_hdr_t *hdr)
860{
861 hdr->b_dva.dva_word[0] = 0;
862 hdr->b_dva.dva_word[1] = 0;
863 hdr->b_birth = 0;
428870ff
BB
864}
865
34dc7c2f 866static arc_buf_hdr_t *
9b67f605 867buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 868{
9b67f605
MA
869 const dva_t *dva = BP_IDENTITY(bp);
870 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
871 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
872 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 873 arc_buf_hdr_t *hdr;
34dc7c2f
BB
874
875 mutex_enter(hash_lock);
2a432414
GW
876 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
877 hdr = hdr->b_hash_next) {
878 if (BUF_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 879 *lockp = hash_lock;
2a432414 880 return (hdr);
34dc7c2f
BB
881 }
882 }
883 mutex_exit(hash_lock);
884 *lockp = NULL;
885 return (NULL);
886}
887
888/*
889 * Insert an entry into the hash table. If there is already an element
890 * equal to elem in the hash table, then the already existing element
891 * will be returned and the new element will not be inserted.
892 * Otherwise returns NULL.
b9541d6b 893 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
894 */
895static arc_buf_hdr_t *
2a432414 896buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 897{
2a432414 898 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 899 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 900 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
901 uint32_t i;
902
2a432414
GW
903 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
904 ASSERT(hdr->b_birth != 0);
905 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
906
907 if (lockp != NULL) {
908 *lockp = hash_lock;
909 mutex_enter(hash_lock);
910 } else {
911 ASSERT(MUTEX_HELD(hash_lock));
912 }
913
2a432414
GW
914 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
915 fhdr = fhdr->b_hash_next, i++) {
916 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
917 return (fhdr);
34dc7c2f
BB
918 }
919
2a432414
GW
920 hdr->b_hash_next = buf_hash_table.ht_table[idx];
921 buf_hash_table.ht_table[idx] = hdr;
922 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
923
924 /* collect some hash table performance data */
925 if (i > 0) {
926 ARCSTAT_BUMP(arcstat_hash_collisions);
927 if (i == 1)
928 ARCSTAT_BUMP(arcstat_hash_chains);
929
930 ARCSTAT_MAX(arcstat_hash_chain_max, i);
931 }
932
933 ARCSTAT_BUMP(arcstat_hash_elements);
934 ARCSTAT_MAXSTAT(arcstat_hash_elements);
935
936 return (NULL);
937}
938
939static void
2a432414 940buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 941{
2a432414
GW
942 arc_buf_hdr_t *fhdr, **hdrp;
943 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
944
945 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 946 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 947
2a432414
GW
948 hdrp = &buf_hash_table.ht_table[idx];
949 while ((fhdr = *hdrp) != hdr) {
950 ASSERT(fhdr != NULL);
951 hdrp = &fhdr->b_hash_next;
34dc7c2f 952 }
2a432414
GW
953 *hdrp = hdr->b_hash_next;
954 hdr->b_hash_next = NULL;
955 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
956
957 /* collect some hash table performance data */
958 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
959
960 if (buf_hash_table.ht_table[idx] &&
961 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
962 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
963}
964
965/*
966 * Global data structures and functions for the buf kmem cache.
967 */
b9541d6b
CW
968static kmem_cache_t *hdr_full_cache;
969static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
970static kmem_cache_t *buf_cache;
971
972static void
973buf_fini(void)
974{
975 int i;
976
00b46022 977#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
978 /*
979 * Large allocations which do not require contiguous pages
980 * should be using vmem_free() in the linux kernel\
981 */
00b46022
BB
982 vmem_free(buf_hash_table.ht_table,
983 (buf_hash_table.ht_mask + 1) * sizeof (void *));
984#else
34dc7c2f
BB
985 kmem_free(buf_hash_table.ht_table,
986 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 987#endif
34dc7c2f
BB
988 for (i = 0; i < BUF_LOCKS; i++)
989 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b
CW
990 kmem_cache_destroy(hdr_full_cache);
991 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
992 kmem_cache_destroy(buf_cache);
993}
994
995/*
996 * Constructor callback - called when the cache is empty
997 * and a new buf is requested.
998 */
999/* ARGSUSED */
1000static int
b9541d6b
CW
1001hdr_full_cons(void *vbuf, void *unused, int kmflag)
1002{
1003 arc_buf_hdr_t *hdr = vbuf;
1004
1005 bzero(hdr, HDR_FULL_SIZE);
1006 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1007 refcount_create(&hdr->b_l1hdr.b_refcnt);
1008 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1009 list_link_init(&hdr->b_l1hdr.b_arc_node);
1010 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1011 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1012 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1013
1014 return (0);
1015}
1016
1017/* ARGSUSED */
1018static int
1019hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1020{
2a432414
GW
1021 arc_buf_hdr_t *hdr = vbuf;
1022
b9541d6b
CW
1023 bzero(hdr, HDR_L2ONLY_SIZE);
1024 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1025
34dc7c2f
BB
1026 return (0);
1027}
1028
b128c09f
BB
1029/* ARGSUSED */
1030static int
1031buf_cons(void *vbuf, void *unused, int kmflag)
1032{
1033 arc_buf_t *buf = vbuf;
1034
1035 bzero(buf, sizeof (arc_buf_t));
428870ff 1036 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1037 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1038
b128c09f
BB
1039 return (0);
1040}
1041
34dc7c2f
BB
1042/*
1043 * Destructor callback - called when a cached buf is
1044 * no longer required.
1045 */
1046/* ARGSUSED */
1047static void
b9541d6b 1048hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1049{
2a432414 1050 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1051
2a432414 1052 ASSERT(BUF_EMPTY(hdr));
b9541d6b
CW
1053 cv_destroy(&hdr->b_l1hdr.b_cv);
1054 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1055 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1056 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1057 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1058}
1059
1060/* ARGSUSED */
1061static void
1062hdr_l2only_dest(void *vbuf, void *unused)
1063{
1064 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1065
1066 ASSERT(BUF_EMPTY(hdr));
1067 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1068}
1069
b128c09f
BB
1070/* ARGSUSED */
1071static void
1072buf_dest(void *vbuf, void *unused)
1073{
1074 arc_buf_t *buf = vbuf;
1075
428870ff 1076 mutex_destroy(&buf->b_evict_lock);
d164b209 1077 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1078}
1079
8c8af9d8
BB
1080/*
1081 * Reclaim callback -- invoked when memory is low.
1082 */
1083/* ARGSUSED */
1084static void
1085hdr_recl(void *unused)
1086{
1087 dprintf("hdr_recl called\n");
1088 /*
1089 * umem calls the reclaim func when we destroy the buf cache,
1090 * which is after we do arc_fini().
1091 */
1092 if (!arc_dead)
1093 cv_signal(&arc_reclaim_thread_cv);
1094}
1095
34dc7c2f
BB
1096static void
1097buf_init(void)
1098{
1099 uint64_t *ct;
1100 uint64_t hsize = 1ULL << 12;
1101 int i, j;
1102
1103 /*
1104 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1105 * with an average block size of zfs_arc_average_blocksize (default 8K).
1106 * By default, the table will take up
1107 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1108 */
49ddb315 1109 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
1110 hsize <<= 1;
1111retry:
1112 buf_hash_table.ht_mask = hsize - 1;
00b46022 1113#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1114 /*
1115 * Large allocations which do not require contiguous pages
1116 * should be using vmem_alloc() in the linux kernel
1117 */
00b46022
BB
1118 buf_hash_table.ht_table =
1119 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1120#else
34dc7c2f
BB
1121 buf_hash_table.ht_table =
1122 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1123#endif
34dc7c2f
BB
1124 if (buf_hash_table.ht_table == NULL) {
1125 ASSERT(hsize > (1ULL << 8));
1126 hsize >>= 1;
1127 goto retry;
1128 }
1129
b9541d6b 1130 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
8c8af9d8 1131 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
b9541d6b 1132 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
8c8af9d8 1133 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
b9541d6b 1134 NULL, NULL, 0);
34dc7c2f 1135 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1136 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1137
1138 for (i = 0; i < 256; i++)
1139 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1140 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1141
1142 for (i = 0; i < BUF_LOCKS; i++) {
1143 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1144 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1145 }
1146}
1147
b9541d6b
CW
1148/*
1149 * Transition between the two allocation states for the arc_buf_hdr struct.
1150 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1151 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1152 * version is used when a cache buffer is only in the L2ARC in order to reduce
1153 * memory usage.
1154 */
1155static arc_buf_hdr_t *
1156arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1157{
1158 arc_buf_hdr_t *nhdr;
1159 l2arc_dev_t *dev;
1160
1161 ASSERT(HDR_HAS_L2HDR(hdr));
1162 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1163 (old == hdr_l2only_cache && new == hdr_full_cache));
1164
1165 dev = hdr->b_l2hdr.b_dev;
1166 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1167
1168 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1169 buf_hash_remove(hdr);
1170
1171 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
d962d5da 1172
b9541d6b
CW
1173 if (new == hdr_full_cache) {
1174 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1175 /*
1176 * arc_access and arc_change_state need to be aware that a
1177 * header has just come out of L2ARC, so we set its state to
1178 * l2c_only even though it's about to change.
1179 */
1180 nhdr->b_l1hdr.b_state = arc_l2c_only;
ca0bf58d
PS
1181
1182 /* Verify previous threads set to NULL before freeing */
1183 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
b9541d6b
CW
1184 } else {
1185 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1186 ASSERT0(hdr->b_l1hdr.b_datacnt);
ca0bf58d
PS
1187
1188 /*
1189 * If we've reached here, We must have been called from
1190 * arc_evict_hdr(), as such we should have already been
1191 * removed from any ghost list we were previously on
1192 * (which protects us from racing with arc_evict_state),
1193 * thus no locking is needed during this check.
1194 */
1195 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1196
b9541d6b 1197 /*
ca0bf58d
PS
1198 * A buffer must not be moved into the arc_l2c_only
1199 * state if it's not finished being written out to the
1200 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1201 * might try to be accessed, even though it was removed.
b9541d6b 1202 */
ca0bf58d
PS
1203 VERIFY(!HDR_L2_WRITING(hdr));
1204 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1205
b9541d6b
CW
1206 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1207 }
1208 /*
1209 * The header has been reallocated so we need to re-insert it into any
1210 * lists it was on.
1211 */
1212 (void) buf_hash_insert(nhdr, NULL);
1213
1214 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1215
1216 mutex_enter(&dev->l2ad_mtx);
1217
1218 /*
1219 * We must place the realloc'ed header back into the list at
1220 * the same spot. Otherwise, if it's placed earlier in the list,
1221 * l2arc_write_buffers() could find it during the function's
1222 * write phase, and try to write it out to the l2arc.
1223 */
1224 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1225 list_remove(&dev->l2ad_buflist, hdr);
1226
1227 mutex_exit(&dev->l2ad_mtx);
1228
d962d5da
PS
1229 /*
1230 * Since we're using the pointer address as the tag when
1231 * incrementing and decrementing the l2ad_alloc refcount, we
1232 * must remove the old pointer (that we're about to destroy) and
1233 * add the new pointer to the refcount. Otherwise we'd remove
1234 * the wrong pointer address when calling arc_hdr_destroy() later.
1235 */
1236
1237 (void) refcount_remove_many(&dev->l2ad_alloc,
1238 hdr->b_l2hdr.b_asize, hdr);
1239
1240 (void) refcount_add_many(&dev->l2ad_alloc,
1241 nhdr->b_l2hdr.b_asize, nhdr);
1242
b9541d6b
CW
1243 buf_discard_identity(hdr);
1244 hdr->b_freeze_cksum = NULL;
1245 kmem_cache_free(old, hdr);
1246
1247 return (nhdr);
1248}
1249
1250
34dc7c2f
BB
1251#define ARC_MINTIME (hz>>4) /* 62 ms */
1252
1253static void
1254arc_cksum_verify(arc_buf_t *buf)
1255{
1256 zio_cksum_t zc;
1257
1258 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1259 return;
1260
b9541d6b
CW
1261 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1262 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1263 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1264 return;
1265 }
1266 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1267 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1268 panic("buffer modified while frozen!");
b9541d6b 1269 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1270}
1271
1272static int
1273arc_cksum_equal(arc_buf_t *buf)
1274{
1275 zio_cksum_t zc;
1276 int equal;
1277
b9541d6b 1278 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1279 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1280 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
b9541d6b 1281 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1282
1283 return (equal);
1284}
1285
1286static void
1287arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1288{
1289 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1290 return;
1291
b9541d6b 1292 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f 1293 if (buf->b_hdr->b_freeze_cksum != NULL) {
b9541d6b 1294 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1295 return;
1296 }
96c080cb 1297 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
34dc7c2f
BB
1298 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1299 buf->b_hdr->b_freeze_cksum);
b9541d6b 1300 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1301 arc_buf_watch(buf);
1302}
1303
1304#ifndef _KERNEL
1305void
1306arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1307{
1308 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1309}
1310#endif
1311
1312/* ARGSUSED */
1313static void
1314arc_buf_unwatch(arc_buf_t *buf)
1315{
1316#ifndef _KERNEL
1317 if (arc_watch) {
1318 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1319 PROT_READ | PROT_WRITE));
1320 }
1321#endif
1322}
1323
1324/* ARGSUSED */
1325static void
1326arc_buf_watch(arc_buf_t *buf)
1327{
1328#ifndef _KERNEL
1329 if (arc_watch)
1330 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1331#endif
34dc7c2f
BB
1332}
1333
b9541d6b
CW
1334static arc_buf_contents_t
1335arc_buf_type(arc_buf_hdr_t *hdr)
1336{
1337 if (HDR_ISTYPE_METADATA(hdr)) {
1338 return (ARC_BUFC_METADATA);
1339 } else {
1340 return (ARC_BUFC_DATA);
1341 }
1342}
1343
1344static uint32_t
1345arc_bufc_to_flags(arc_buf_contents_t type)
1346{
1347 switch (type) {
1348 case ARC_BUFC_DATA:
1349 /* metadata field is 0 if buffer contains normal data */
1350 return (0);
1351 case ARC_BUFC_METADATA:
1352 return (ARC_FLAG_BUFC_METADATA);
1353 default:
1354 break;
1355 }
1356 panic("undefined ARC buffer type!");
1357 return ((uint32_t)-1);
1358}
1359
34dc7c2f
BB
1360void
1361arc_buf_thaw(arc_buf_t *buf)
1362{
1363 if (zfs_flags & ZFS_DEBUG_MODIFY) {
b9541d6b 1364 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f 1365 panic("modifying non-anon buffer!");
b9541d6b 1366 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
34dc7c2f
BB
1367 panic("modifying buffer while i/o in progress!");
1368 arc_cksum_verify(buf);
1369 }
1370
b9541d6b 1371 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1372 if (buf->b_hdr->b_freeze_cksum != NULL) {
1373 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1374 buf->b_hdr->b_freeze_cksum = NULL;
1375 }
428870ff 1376
b9541d6b 1377 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1378
1379 arc_buf_unwatch(buf);
34dc7c2f
BB
1380}
1381
1382void
1383arc_buf_freeze(arc_buf_t *buf)
1384{
428870ff
BB
1385 kmutex_t *hash_lock;
1386
34dc7c2f
BB
1387 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1388 return;
1389
428870ff
BB
1390 hash_lock = HDR_LOCK(buf->b_hdr);
1391 mutex_enter(hash_lock);
1392
34dc7c2f 1393 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
b9541d6b 1394 buf->b_hdr->b_l1hdr.b_state == arc_anon);
34dc7c2f 1395 arc_cksum_compute(buf, B_FALSE);
428870ff 1396 mutex_exit(hash_lock);
498877ba 1397
34dc7c2f
BB
1398}
1399
1400static void
2a432414 1401add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f 1402{
b9541d6b
CW
1403 arc_state_t *state;
1404
1405 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1406 ASSERT(MUTEX_HELD(hash_lock));
1407
b9541d6b
CW
1408 state = hdr->b_l1hdr.b_state;
1409
1410 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1411 (state != arc_anon)) {
1412 /* We don't use the L2-only state list. */
1413 if (state != arc_l2c_only) {
ca0bf58d 1414 arc_buf_contents_t type = arc_buf_type(hdr);
b9541d6b 1415 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
ca0bf58d
PS
1416 multilist_t *list = &state->arcs_list[type];
1417 uint64_t *size = &state->arcs_lsize[type];
1418
1419 multilist_remove(list, hdr);
b9541d6b 1420
b9541d6b
CW
1421 if (GHOST_STATE(state)) {
1422 ASSERT0(hdr->b_l1hdr.b_datacnt);
1423 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1424 delta = hdr->b_size;
1425 }
1426 ASSERT(delta > 0);
1427 ASSERT3U(*size, >=, delta);
1428 atomic_add_64(size, -delta);
34dc7c2f 1429 }
b128c09f 1430 /* remove the prefetch flag if we get a reference */
b9541d6b 1431 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
34dc7c2f
BB
1432 }
1433}
1434
1435static int
2a432414 1436remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
1437{
1438 int cnt;
b9541d6b 1439 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 1440
b9541d6b 1441 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1442 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1443 ASSERT(!GHOST_STATE(state));
1444
b9541d6b
CW
1445 /*
1446 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1447 * check to prevent usage of the arc_l2c_only list.
1448 */
1449 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 1450 (state != arc_anon)) {
ca0bf58d
PS
1451 arc_buf_contents_t type = arc_buf_type(hdr);
1452 multilist_t *list = &state->arcs_list[type];
1453 uint64_t *size = &state->arcs_lsize[type];
1454
1455 multilist_insert(list, hdr);
34dc7c2f 1456
b9541d6b
CW
1457 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1458 atomic_add_64(size, hdr->b_size *
1459 hdr->b_l1hdr.b_datacnt);
34dc7c2f
BB
1460 }
1461 return (cnt);
1462}
1463
e0b0ca98
BB
1464/*
1465 * Returns detailed information about a specific arc buffer. When the
1466 * state_index argument is set the function will calculate the arc header
1467 * list position for its arc state. Since this requires a linear traversal
1468 * callers are strongly encourage not to do this. However, it can be helpful
1469 * for targeted analysis so the functionality is provided.
1470 */
1471void
1472arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1473{
1474 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
1475 l1arc_buf_hdr_t *l1hdr = NULL;
1476 l2arc_buf_hdr_t *l2hdr = NULL;
1477 arc_state_t *state = NULL;
1478
8887c7d7
TC
1479 memset(abi, 0, sizeof (arc_buf_info_t));
1480
1481 if (hdr == NULL)
1482 return;
1483
1484 abi->abi_flags = hdr->b_flags;
1485
b9541d6b
CW
1486 if (HDR_HAS_L1HDR(hdr)) {
1487 l1hdr = &hdr->b_l1hdr;
1488 state = l1hdr->b_state;
1489 }
1490 if (HDR_HAS_L2HDR(hdr))
1491 l2hdr = &hdr->b_l2hdr;
e0b0ca98 1492
b9541d6b
CW
1493 if (l1hdr) {
1494 abi->abi_datacnt = l1hdr->b_datacnt;
1495 abi->abi_access = l1hdr->b_arc_access;
1496 abi->abi_mru_hits = l1hdr->b_mru_hits;
1497 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1498 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1499 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1500 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1501 }
1502
1503 if (l2hdr) {
1504 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1505 abi->abi_l2arc_asize = l2hdr->b_asize;
4e0f33ff 1506 abi->abi_l2arc_compress = l2hdr->b_compress;
b9541d6b
CW
1507 abi->abi_l2arc_hits = l2hdr->b_hits;
1508 }
1509
e0b0ca98 1510 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 1511 abi->abi_state_contents = arc_buf_type(hdr);
e0b0ca98 1512 abi->abi_size = hdr->b_size;
e0b0ca98
BB
1513}
1514
34dc7c2f 1515/*
ca0bf58d 1516 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
1517 * for the buffer must be held by the caller.
1518 */
1519static void
2a432414
GW
1520arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1521 kmutex_t *hash_lock)
34dc7c2f 1522{
b9541d6b
CW
1523 arc_state_t *old_state;
1524 int64_t refcnt;
1525 uint32_t datacnt;
34dc7c2f 1526 uint64_t from_delta, to_delta;
b9541d6b
CW
1527 arc_buf_contents_t buftype = arc_buf_type(hdr);
1528
1529 /*
1530 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1531 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1532 * L1 hdr doesn't always exist when we change state to arc_anon before
1533 * destroying a header, in which case reallocating to add the L1 hdr is
1534 * pointless.
1535 */
1536 if (HDR_HAS_L1HDR(hdr)) {
1537 old_state = hdr->b_l1hdr.b_state;
1538 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1539 datacnt = hdr->b_l1hdr.b_datacnt;
1540 } else {
1541 old_state = arc_l2c_only;
1542 refcnt = 0;
1543 datacnt = 0;
1544 }
34dc7c2f
BB
1545
1546 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1547 ASSERT3P(new_state, !=, old_state);
b9541d6b
CW
1548 ASSERT(refcnt == 0 || datacnt > 0);
1549 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1550 ASSERT(old_state != arc_anon || datacnt <= 1);
34dc7c2f 1551
b9541d6b 1552 from_delta = to_delta = datacnt * hdr->b_size;
34dc7c2f
BB
1553
1554 /*
1555 * If this buffer is evictable, transfer it from the
1556 * old state list to the new state list.
1557 */
1558 if (refcnt == 0) {
b9541d6b 1559 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 1560 uint64_t *size = &old_state->arcs_lsize[buftype];
34dc7c2f 1561
b9541d6b 1562 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1563 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1564
1565 /*
1566 * If prefetching out of the ghost cache,
428870ff 1567 * we will have a non-zero datacnt.
34dc7c2f 1568 */
b9541d6b 1569 if (GHOST_STATE(old_state) && datacnt == 0) {
34dc7c2f 1570 /* ghost elements have a ghost size */
b9541d6b 1571 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1572 from_delta = hdr->b_size;
34dc7c2f
BB
1573 }
1574 ASSERT3U(*size, >=, from_delta);
1575 atomic_add_64(size, -from_delta);
34dc7c2f 1576 }
b9541d6b 1577 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b 1578 uint64_t *size = &new_state->arcs_lsize[buftype];
34dc7c2f 1579
b9541d6b
CW
1580 /*
1581 * An L1 header always exists here, since if we're
1582 * moving to some L1-cached state (i.e. not l2c_only or
1583 * anonymous), we realloc the header to add an L1hdr
1584 * beforehand.
1585 */
1586 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1587 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1588
1589 /* ghost elements have a ghost size */
1590 if (GHOST_STATE(new_state)) {
b9541d6b
CW
1591 ASSERT0(datacnt);
1592 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1593 to_delta = hdr->b_size;
34dc7c2f
BB
1594 }
1595 atomic_add_64(size, to_delta);
34dc7c2f
BB
1596 }
1597 }
1598
2a432414
GW
1599 ASSERT(!BUF_EMPTY(hdr));
1600 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1601 buf_hash_remove(hdr);
34dc7c2f 1602
b9541d6b 1603 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef
PS
1604
1605 if (to_delta && new_state != arc_l2c_only) {
1606 ASSERT(HDR_HAS_L1HDR(hdr));
1607 if (GHOST_STATE(new_state)) {
1608 ASSERT0(datacnt);
1609
1610 /*
1611 * We moving a header to a ghost state, we first
1612 * remove all arc buffers. Thus, we'll have a
1613 * datacnt of zero, and no arc buffer to use for
1614 * the reference. As a result, we use the arc
1615 * header pointer for the reference.
1616 */
1617 (void) refcount_add_many(&new_state->arcs_size,
1618 hdr->b_size, hdr);
1619 } else {
1620 arc_buf_t *buf;
1621 ASSERT3U(datacnt, !=, 0);
1622
1623 /*
1624 * Each individual buffer holds a unique reference,
1625 * thus we must remove each of these references one
1626 * at a time.
1627 */
1628 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1629 buf = buf->b_next) {
1630 (void) refcount_add_many(&new_state->arcs_size,
1631 hdr->b_size, buf);
1632 }
1633 }
1634 }
1635
b9541d6b 1636 if (from_delta && old_state != arc_l2c_only) {
36da08ef
PS
1637 ASSERT(HDR_HAS_L1HDR(hdr));
1638 if (GHOST_STATE(old_state)) {
1639 /*
1640 * When moving a header off of a ghost state,
1641 * there's the possibility for datacnt to be
1642 * non-zero. This is because we first add the
1643 * arc buffer to the header prior to changing
1644 * the header's state. Since we used the header
1645 * for the reference when putting the header on
1646 * the ghost state, we must balance that and use
1647 * the header when removing off the ghost state
1648 * (even though datacnt is non zero).
1649 */
1650
1651 IMPLY(datacnt == 0, new_state == arc_anon ||
1652 new_state == arc_l2c_only);
1653
1654 (void) refcount_remove_many(&old_state->arcs_size,
1655 hdr->b_size, hdr);
1656 } else {
1657 arc_buf_t *buf;
1658 ASSERT3U(datacnt, !=, 0);
1659
1660 /*
1661 * Each individual buffer holds a unique reference,
1662 * thus we must remove each of these references one
1663 * at a time.
1664 */
1665 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1666 buf = buf->b_next) {
1667 (void) refcount_remove_many(
1668 &old_state->arcs_size, hdr->b_size, buf);
1669 }
1670 }
34dc7c2f 1671 }
36da08ef 1672
b9541d6b
CW
1673 if (HDR_HAS_L1HDR(hdr))
1674 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 1675
b9541d6b
CW
1676 /*
1677 * L2 headers should never be on the L2 state list since they don't
1678 * have L1 headers allocated.
1679 */
ca0bf58d
PS
1680 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1681 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
1682}
1683
1684void
d164b209 1685arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1686{
d164b209
BB
1687 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1688
1689 switch (type) {
e75c13c3
BB
1690 default:
1691 break;
d164b209
BB
1692 case ARC_SPACE_DATA:
1693 ARCSTAT_INCR(arcstat_data_size, space);
1694 break;
cc7f677c 1695 case ARC_SPACE_META:
500445c0 1696 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 1697 break;
25458cbe
TC
1698 case ARC_SPACE_BONUS:
1699 ARCSTAT_INCR(arcstat_bonus_size, space);
1700 break;
1701 case ARC_SPACE_DNODE:
1702 ARCSTAT_INCR(arcstat_dnode_size, space);
1703 break;
1704 case ARC_SPACE_DBUF:
1705 ARCSTAT_INCR(arcstat_dbuf_size, space);
d164b209
BB
1706 break;
1707 case ARC_SPACE_HDRS:
1708 ARCSTAT_INCR(arcstat_hdr_size, space);
1709 break;
1710 case ARC_SPACE_L2HDRS:
1711 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1712 break;
1713 }
1714
500445c0 1715 if (type != ARC_SPACE_DATA)
cc7f677c
PS
1716 ARCSTAT_INCR(arcstat_meta_used, space);
1717
34dc7c2f
BB
1718 atomic_add_64(&arc_size, space);
1719}
1720
1721void
d164b209 1722arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1723{
d164b209
BB
1724 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1725
1726 switch (type) {
e75c13c3
BB
1727 default:
1728 break;
d164b209
BB
1729 case ARC_SPACE_DATA:
1730 ARCSTAT_INCR(arcstat_data_size, -space);
1731 break;
cc7f677c 1732 case ARC_SPACE_META:
500445c0 1733 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 1734 break;
25458cbe
TC
1735 case ARC_SPACE_BONUS:
1736 ARCSTAT_INCR(arcstat_bonus_size, -space);
1737 break;
1738 case ARC_SPACE_DNODE:
1739 ARCSTAT_INCR(arcstat_dnode_size, -space);
1740 break;
1741 case ARC_SPACE_DBUF:
1742 ARCSTAT_INCR(arcstat_dbuf_size, -space);
d164b209
BB
1743 break;
1744 case ARC_SPACE_HDRS:
1745 ARCSTAT_INCR(arcstat_hdr_size, -space);
1746 break;
1747 case ARC_SPACE_L2HDRS:
1748 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1749 break;
1750 }
1751
cc7f677c
PS
1752 if (type != ARC_SPACE_DATA) {
1753 ASSERT(arc_meta_used >= space);
500445c0
PS
1754 if (arc_meta_max < arc_meta_used)
1755 arc_meta_max = arc_meta_used;
cc7f677c
PS
1756 ARCSTAT_INCR(arcstat_meta_used, -space);
1757 }
1758
34dc7c2f
BB
1759 ASSERT(arc_size >= space);
1760 atomic_add_64(&arc_size, -space);
1761}
1762
34dc7c2f 1763arc_buf_t *
5f6d0b6f 1764arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1765{
1766 arc_buf_hdr_t *hdr;
1767 arc_buf_t *buf;
1768
f1512ee6 1769 VERIFY3U(size, <=, spa_maxblocksize(spa));
b9541d6b 1770 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f 1771 ASSERT(BUF_EMPTY(hdr));
b9541d6b 1772 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
34dc7c2f 1773 hdr->b_size = size;
3541dc6d 1774 hdr->b_spa = spa_load_guid(spa);
b9541d6b
CW
1775 hdr->b_l1hdr.b_mru_hits = 0;
1776 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1777 hdr->b_l1hdr.b_mfu_hits = 0;
1778 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1779 hdr->b_l1hdr.b_l2_hits = 0;
1780
34dc7c2f
BB
1781 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1782 buf->b_hdr = hdr;
1783 buf->b_data = NULL;
1784 buf->b_efunc = NULL;
1785 buf->b_private = NULL;
1786 buf->b_next = NULL;
b9541d6b
CW
1787
1788 hdr->b_flags = arc_bufc_to_flags(type);
1789 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1790
1791 hdr->b_l1hdr.b_buf = buf;
1792 hdr->b_l1hdr.b_state = arc_anon;
1793 hdr->b_l1hdr.b_arc_access = 0;
1794 hdr->b_l1hdr.b_datacnt = 1;
ca0bf58d 1795 hdr->b_l1hdr.b_tmp_cdata = NULL;
b9541d6b 1796
34dc7c2f 1797 arc_get_data_buf(buf);
b9541d6b
CW
1798 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1799 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
34dc7c2f
BB
1800
1801 return (buf);
1802}
1803
9babb374
BB
1804static char *arc_onloan_tag = "onloan";
1805
1806/*
1807 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1808 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1809 * buffers must be returned to the arc before they can be used by the DMU or
1810 * freed.
1811 */
1812arc_buf_t *
5f6d0b6f 1813arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1814{
1815 arc_buf_t *buf;
1816
1817 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1818
1819 atomic_add_64(&arc_loaned_bytes, size);
1820 return (buf);
1821}
1822
1823/*
1824 * Return a loaned arc buffer to the arc.
1825 */
1826void
1827arc_return_buf(arc_buf_t *buf, void *tag)
1828{
1829 arc_buf_hdr_t *hdr = buf->b_hdr;
1830
9babb374 1831 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1832 ASSERT(HDR_HAS_L1HDR(hdr));
1833 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1834 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374
BB
1835
1836 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1837}
1838
428870ff
BB
1839/* Detach an arc_buf from a dbuf (tag) */
1840void
1841arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1842{
b9541d6b 1843 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1844
1845 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1846 ASSERT(HDR_HAS_L1HDR(hdr));
1847 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1848 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff
BB
1849 buf->b_efunc = NULL;
1850 buf->b_private = NULL;
1851
1852 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1853}
1854
34dc7c2f
BB
1855static arc_buf_t *
1856arc_buf_clone(arc_buf_t *from)
1857{
1858 arc_buf_t *buf;
1859 arc_buf_hdr_t *hdr = from->b_hdr;
1860 uint64_t size = hdr->b_size;
1861
b9541d6b
CW
1862 ASSERT(HDR_HAS_L1HDR(hdr));
1863 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
428870ff 1864
34dc7c2f
BB
1865 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1866 buf->b_hdr = hdr;
1867 buf->b_data = NULL;
1868 buf->b_efunc = NULL;
1869 buf->b_private = NULL;
b9541d6b
CW
1870 buf->b_next = hdr->b_l1hdr.b_buf;
1871 hdr->b_l1hdr.b_buf = buf;
34dc7c2f
BB
1872 arc_get_data_buf(buf);
1873 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1874
1875 /*
1876 * This buffer already exists in the arc so create a duplicate
1877 * copy for the caller. If the buffer is associated with user data
1878 * then track the size and number of duplicates. These stats will be
1879 * updated as duplicate buffers are created and destroyed.
1880 */
b9541d6b 1881 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
1882 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1883 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1884 }
b9541d6b 1885 hdr->b_l1hdr.b_datacnt += 1;
34dc7c2f
BB
1886 return (buf);
1887}
1888
1889void
1890arc_buf_add_ref(arc_buf_t *buf, void* tag)
1891{
1892 arc_buf_hdr_t *hdr;
1893 kmutex_t *hash_lock;
1894
1895 /*
b128c09f
BB
1896 * Check to see if this buffer is evicted. Callers
1897 * must verify b_data != NULL to know if the add_ref
1898 * was successful.
34dc7c2f 1899 */
428870ff 1900 mutex_enter(&buf->b_evict_lock);
b128c09f 1901 if (buf->b_data == NULL) {
428870ff 1902 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1903 return;
1904 }
428870ff 1905 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1906 mutex_enter(hash_lock);
428870ff 1907 hdr = buf->b_hdr;
b9541d6b 1908 ASSERT(HDR_HAS_L1HDR(hdr));
428870ff
BB
1909 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1910 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1911
b9541d6b
CW
1912 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1913 hdr->b_l1hdr.b_state == arc_mfu);
1914
34dc7c2f 1915 add_reference(hdr, hash_lock, tag);
d164b209 1916 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1917 arc_access(hdr, hash_lock);
1918 mutex_exit(hash_lock);
1919 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
1920 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1921 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
1922 data, metadata, hits);
1923}
1924
ca0bf58d
PS
1925static void
1926arc_buf_free_on_write(void *data, size_t size,
1927 void (*free_func)(void *, size_t))
1928{
1929 l2arc_data_free_t *df;
1930
1931 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1932 df->l2df_data = data;
1933 df->l2df_size = size;
1934 df->l2df_func = free_func;
1935 mutex_enter(&l2arc_free_on_write_mtx);
1936 list_insert_head(l2arc_free_on_write, df);
1937 mutex_exit(&l2arc_free_on_write_mtx);
1938}
1939
34dc7c2f
BB
1940/*
1941 * Free the arc data buffer. If it is an l2arc write in progress,
1942 * the buffer is placed on l2arc_free_on_write to be freed later.
1943 */
1944static void
498877ba 1945arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1946{
498877ba
MA
1947 arc_buf_hdr_t *hdr = buf->b_hdr;
1948
34dc7c2f 1949 if (HDR_L2_WRITING(hdr)) {
ca0bf58d 1950 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
34dc7c2f
BB
1951 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1952 } else {
498877ba 1953 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1954 }
1955}
1956
ca0bf58d
PS
1957static void
1958arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1959{
1960 ASSERT(HDR_HAS_L2HDR(hdr));
1961 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1962
1963 /*
1964 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1965 * that doesn't exist, the header is in the arc_l2c_only state,
1966 * and there isn't anything to free (it's already been freed).
1967 */
1968 if (!HDR_HAS_L1HDR(hdr))
1969 return;
1970
1971 /*
1972 * The header isn't being written to the l2arc device, thus it
1973 * shouldn't have a b_tmp_cdata to free.
1974 */
1975 if (!HDR_L2_WRITING(hdr)) {
1976 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1977 return;
1978 }
1979
1980 /*
1981 * The header does not have compression enabled. This can be due
1982 * to the buffer not being compressible, or because we're
1983 * freeing the buffer before the second phase of
1984 * l2arc_write_buffer() has started (which does the compression
1985 * step). In either case, b_tmp_cdata does not point to a
1986 * separately compressed buffer, so there's nothing to free (it
1987 * points to the same buffer as the arc_buf_t's b_data field).
1988 */
4e0f33ff 1989 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_OFF) {
ca0bf58d
PS
1990 hdr->b_l1hdr.b_tmp_cdata = NULL;
1991 return;
1992 }
1993
1994 /*
1995 * There's nothing to free since the buffer was all zero's and
1996 * compressed to a zero length buffer.
1997 */
4e0f33ff 1998 if (hdr->b_l2hdr.b_compress == ZIO_COMPRESS_EMPTY) {
ca0bf58d
PS
1999 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
2000 return;
2001 }
2002
4e0f33ff 2003 ASSERT(L2ARC_IS_VALID_COMPRESS(hdr->b_l2hdr.b_compress));
ca0bf58d
PS
2004
2005 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
2006 hdr->b_size, zio_data_buf_free);
2007
2008 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
2009 hdr->b_l1hdr.b_tmp_cdata = NULL;
2010}
2011
bd089c54
MA
2012/*
2013 * Free up buf->b_data and if 'remove' is set, then pull the
2014 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
2015 */
34dc7c2f 2016static void
ca0bf58d 2017arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
34dc7c2f
BB
2018{
2019 arc_buf_t **bufp;
2020
2021 /* free up data associated with the buf */
b9541d6b
CW
2022 if (buf->b_data != NULL) {
2023 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 2024 uint64_t size = buf->b_hdr->b_size;
b9541d6b 2025 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
2026
2027 arc_cksum_verify(buf);
498877ba 2028 arc_buf_unwatch(buf);
428870ff 2029
ca0bf58d
PS
2030 if (type == ARC_BUFC_METADATA) {
2031 arc_buf_data_free(buf, zio_buf_free);
2032 arc_space_return(size, ARC_SPACE_META);
2033 } else {
2034 ASSERT(type == ARC_BUFC_DATA);
2035 arc_buf_data_free(buf, zio_data_buf_free);
2036 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f 2037 }
ca0bf58d
PS
2038
2039 /* protected by hash lock, if in the hash table */
2040 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
34dc7c2f
BB
2041 uint64_t *cnt = &state->arcs_lsize[type];
2042
b9541d6b
CW
2043 ASSERT(refcount_is_zero(
2044 &buf->b_hdr->b_l1hdr.b_refcnt));
2045 ASSERT(state != arc_anon && state != arc_l2c_only);
34dc7c2f
BB
2046
2047 ASSERT3U(*cnt, >=, size);
2048 atomic_add_64(cnt, -size);
2049 }
36da08ef
PS
2050
2051 (void) refcount_remove_many(&state->arcs_size, size, buf);
34dc7c2f 2052 buf->b_data = NULL;
1eb5bfa3
GW
2053
2054 /*
2055 * If we're destroying a duplicate buffer make sure
2056 * that the appropriate statistics are updated.
2057 */
b9541d6b
CW
2058 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2059 HDR_ISTYPE_DATA(buf->b_hdr)) {
1eb5bfa3
GW
2060 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2061 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2062 }
b9541d6b
CW
2063 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2064 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f
BB
2065 }
2066
2067 /* only remove the buf if requested */
bd089c54 2068 if (!remove)
34dc7c2f
BB
2069 return;
2070
2071 /* remove the buf from the hdr list */
b9541d6b
CW
2072 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2073 bufp = &(*bufp)->b_next)
34dc7c2f
BB
2074 continue;
2075 *bufp = buf->b_next;
428870ff 2076 buf->b_next = NULL;
34dc7c2f
BB
2077
2078 ASSERT(buf->b_efunc == NULL);
2079
2080 /* clean up the buf */
2081 buf->b_hdr = NULL;
2082 kmem_cache_free(buf_cache, buf);
2083}
2084
d962d5da
PS
2085static void
2086arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2087{
2088 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2089 l2arc_dev_t *dev = l2hdr->b_dev;
2090
2091 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2092 ASSERT(HDR_HAS_L2HDR(hdr));
2093
2094 list_remove(&dev->l2ad_buflist, hdr);
2095
d962d5da
PS
2096 /*
2097 * We don't want to leak the b_tmp_cdata buffer that was
2098 * allocated in l2arc_write_buffers()
2099 */
2100 arc_buf_l2_cdata_free(hdr);
2101
2102 /*
2103 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2104 * this header is being processed by l2arc_write_buffers() (i.e.
2105 * it's in the first stage of l2arc_write_buffers()).
2106 * Re-affirming that truth here, just to serve as a reminder. If
2107 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2108 * may not have its HDR_L2_WRITING flag set. (the write may have
2109 * completed, in which case HDR_L2_WRITING will be false and the
2110 * b_daddr field will point to the address of the buffer on disk).
2111 */
2112 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2113
2114 /*
2115 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2116 * l2arc_write_buffers(). Since we've just removed this header
2117 * from the l2arc buffer list, this header will never reach the
2118 * second stage of l2arc_write_buffers(), which increments the
2119 * accounting stats for this header. Thus, we must be careful
2120 * not to decrement them for this header either.
2121 */
2122 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2123 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2124 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2125
2126 vdev_space_update(dev->l2ad_vdev,
2127 -l2hdr->b_asize, 0, 0);
2128
2129 (void) refcount_remove_many(&dev->l2ad_alloc,
2130 l2hdr->b_asize, hdr);
2131 }
2132
2133 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2134}
2135
34dc7c2f
BB
2136static void
2137arc_hdr_destroy(arc_buf_hdr_t *hdr)
2138{
b9541d6b
CW
2139 if (HDR_HAS_L1HDR(hdr)) {
2140 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2141 hdr->b_l1hdr.b_datacnt > 0);
2142 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2143 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2144 }
34dc7c2f 2145 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
2146 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2147
2148 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
2149 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2150 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 2151
d962d5da
PS
2152 if (!buflist_held)
2153 mutex_enter(&dev->l2ad_mtx);
b9541d6b 2154
ca0bf58d 2155 /*
d962d5da
PS
2156 * Even though we checked this conditional above, we
2157 * need to check this again now that we have the
2158 * l2ad_mtx. This is because we could be racing with
2159 * another thread calling l2arc_evict() which might have
2160 * destroyed this header's L2 portion as we were waiting
2161 * to acquire the l2ad_mtx. If that happens, we don't
2162 * want to re-destroy the header's L2 portion.
ca0bf58d 2163 */
d962d5da
PS
2164 if (HDR_HAS_L2HDR(hdr))
2165 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
2166
2167 if (!buflist_held)
d962d5da 2168 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
2169 }
2170
b9541d6b 2171 if (!BUF_EMPTY(hdr))
428870ff 2172 buf_discard_identity(hdr);
b9541d6b 2173
34dc7c2f
BB
2174 if (hdr->b_freeze_cksum != NULL) {
2175 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2176 hdr->b_freeze_cksum = NULL;
2177 }
2178
b9541d6b
CW
2179 if (HDR_HAS_L1HDR(hdr)) {
2180 while (hdr->b_l1hdr.b_buf) {
2181 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2182
2183 if (buf->b_efunc != NULL) {
ca0bf58d 2184 mutex_enter(&arc_user_evicts_lock);
b9541d6b
CW
2185 mutex_enter(&buf->b_evict_lock);
2186 ASSERT(buf->b_hdr != NULL);
ca0bf58d 2187 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
b9541d6b
CW
2188 hdr->b_l1hdr.b_buf = buf->b_next;
2189 buf->b_hdr = &arc_eviction_hdr;
2190 buf->b_next = arc_eviction_list;
2191 arc_eviction_list = buf;
2192 mutex_exit(&buf->b_evict_lock);
ca0bf58d
PS
2193 cv_signal(&arc_user_evicts_cv);
2194 mutex_exit(&arc_user_evicts_lock);
b9541d6b 2195 } else {
ca0bf58d 2196 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
b9541d6b
CW
2197 }
2198 }
2199 }
2200
34dc7c2f 2201 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 2202 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 2203 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
2204 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2205 kmem_cache_free(hdr_full_cache, hdr);
2206 } else {
2207 kmem_cache_free(hdr_l2only_cache, hdr);
2208 }
34dc7c2f
BB
2209}
2210
2211void
2212arc_buf_free(arc_buf_t *buf, void *tag)
2213{
2214 arc_buf_hdr_t *hdr = buf->b_hdr;
b9541d6b 2215 int hashed = hdr->b_l1hdr.b_state != arc_anon;
34dc7c2f
BB
2216
2217 ASSERT(buf->b_efunc == NULL);
2218 ASSERT(buf->b_data != NULL);
2219
2220 if (hashed) {
2221 kmutex_t *hash_lock = HDR_LOCK(hdr);
2222
2223 mutex_enter(hash_lock);
428870ff
BB
2224 hdr = buf->b_hdr;
2225 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2226
34dc7c2f 2227 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2228 if (hdr->b_l1hdr.b_datacnt > 1) {
ca0bf58d 2229 arc_buf_destroy(buf, TRUE);
428870ff 2230 } else {
b9541d6b 2231 ASSERT(buf == hdr->b_l1hdr.b_buf);
428870ff 2232 ASSERT(buf->b_efunc == NULL);
2a432414 2233 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 2234 }
34dc7c2f
BB
2235 mutex_exit(hash_lock);
2236 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2237 int destroy_hdr;
2238 /*
2239 * We are in the middle of an async write. Don't destroy
2240 * this buffer unless the write completes before we finish
2241 * decrementing the reference count.
2242 */
ca0bf58d 2243 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 2244 (void) remove_reference(hdr, NULL, tag);
b9541d6b 2245 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f 2246 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
ca0bf58d 2247 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2248 if (destroy_hdr)
2249 arc_hdr_destroy(hdr);
2250 } else {
428870ff 2251 if (remove_reference(hdr, NULL, tag) > 0)
ca0bf58d 2252 arc_buf_destroy(buf, TRUE);
428870ff 2253 else
34dc7c2f 2254 arc_hdr_destroy(hdr);
34dc7c2f
BB
2255 }
2256}
2257
13fe0198 2258boolean_t
34dc7c2f
BB
2259arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2260{
2261 arc_buf_hdr_t *hdr = buf->b_hdr;
96c080cb 2262 kmutex_t *hash_lock = HDR_LOCK(hdr);
13fe0198 2263 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f 2264
b9541d6b
CW
2265 if (hdr->b_l1hdr.b_state == arc_anon) {
2266 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
34dc7c2f
BB
2267 arc_buf_free(buf, tag);
2268 return (no_callback);
2269 }
2270
2271 mutex_enter(hash_lock);
428870ff 2272 hdr = buf->b_hdr;
b9541d6b 2273 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
428870ff 2274 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
b9541d6b 2275 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
34dc7c2f
BB
2276 ASSERT(buf->b_data != NULL);
2277
2278 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2279 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f 2280 if (no_callback)
ca0bf58d 2281 arc_buf_destroy(buf, TRUE);
34dc7c2f 2282 } else if (no_callback) {
b9541d6b 2283 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
428870ff 2284 ASSERT(buf->b_efunc == NULL);
2a432414 2285 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
34dc7c2f 2286 }
b9541d6b
CW
2287 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2288 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
2289 mutex_exit(hash_lock);
2290 return (no_callback);
2291}
2292
5f6d0b6f 2293uint64_t
34dc7c2f
BB
2294arc_buf_size(arc_buf_t *buf)
2295{
2296 return (buf->b_hdr->b_size);
2297}
2298
1eb5bfa3
GW
2299/*
2300 * Called from the DMU to determine if the current buffer should be
2301 * evicted. In order to ensure proper locking, the eviction must be initiated
2302 * from the DMU. Return true if the buffer is associated with user data and
2303 * duplicate buffers still exist.
2304 */
2305boolean_t
2306arc_buf_eviction_needed(arc_buf_t *buf)
2307{
2308 arc_buf_hdr_t *hdr;
2309 boolean_t evict_needed = B_FALSE;
2310
2311 if (zfs_disable_dup_eviction)
2312 return (B_FALSE);
2313
2314 mutex_enter(&buf->b_evict_lock);
2315 hdr = buf->b_hdr;
2316 if (hdr == NULL) {
2317 /*
2318 * We are in arc_do_user_evicts(); let that function
2319 * perform the eviction.
2320 */
2321 ASSERT(buf->b_data == NULL);
2322 mutex_exit(&buf->b_evict_lock);
2323 return (B_FALSE);
2324 } else if (buf->b_data == NULL) {
2325 /*
2326 * We have already been added to the arc eviction list;
2327 * recommend eviction.
2328 */
2329 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2330 mutex_exit(&buf->b_evict_lock);
2331 return (B_TRUE);
2332 }
2333
b9541d6b 2334 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
1eb5bfa3
GW
2335 evict_needed = B_TRUE;
2336
2337 mutex_exit(&buf->b_evict_lock);
2338 return (evict_needed);
2339}
2340
34dc7c2f 2341/*
ca0bf58d
PS
2342 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2343 * state of the header is dependent on its state prior to entering this
2344 * function. The following transitions are possible:
34dc7c2f 2345 *
ca0bf58d
PS
2346 * - arc_mru -> arc_mru_ghost
2347 * - arc_mfu -> arc_mfu_ghost
2348 * - arc_mru_ghost -> arc_l2c_only
2349 * - arc_mru_ghost -> deleted
2350 * - arc_mfu_ghost -> arc_l2c_only
2351 * - arc_mfu_ghost -> deleted
34dc7c2f 2352 */
ca0bf58d
PS
2353static int64_t
2354arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 2355{
ca0bf58d
PS
2356 arc_state_t *evicted_state, *state;
2357 int64_t bytes_evicted = 0;
34dc7c2f 2358
ca0bf58d
PS
2359 ASSERT(MUTEX_HELD(hash_lock));
2360 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 2361
ca0bf58d
PS
2362 state = hdr->b_l1hdr.b_state;
2363 if (GHOST_STATE(state)) {
2364 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2365 ASSERT(hdr->b_l1hdr.b_buf == NULL);
e8b96c60
MA
2366
2367 /*
ca0bf58d
PS
2368 * l2arc_write_buffers() relies on a header's L1 portion
2369 * (i.e. its b_tmp_cdata field) during its write phase.
2370 * Thus, we cannot push a header onto the arc_l2c_only
2371 * state (removing its L1 piece) until the header is
2372 * done being written to the l2arc.
e8b96c60 2373 */
ca0bf58d
PS
2374 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2375 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2376 return (bytes_evicted);
e8b96c60
MA
2377 }
2378
ca0bf58d
PS
2379 ARCSTAT_BUMP(arcstat_deleted);
2380 bytes_evicted += hdr->b_size;
428870ff 2381
ca0bf58d 2382 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 2383
ca0bf58d
PS
2384 if (HDR_HAS_L2HDR(hdr)) {
2385 /*
2386 * This buffer is cached on the 2nd Level ARC;
2387 * don't destroy the header.
2388 */
2389 arc_change_state(arc_l2c_only, hdr, hash_lock);
2390 /*
2391 * dropping from L1+L2 cached to L2-only,
2392 * realloc to remove the L1 header.
2393 */
2394 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2395 hdr_l2only_cache);
34dc7c2f 2396 } else {
ca0bf58d
PS
2397 arc_change_state(arc_anon, hdr, hash_lock);
2398 arc_hdr_destroy(hdr);
34dc7c2f 2399 }
ca0bf58d 2400 return (bytes_evicted);
34dc7c2f
BB
2401 }
2402
ca0bf58d
PS
2403 ASSERT(state == arc_mru || state == arc_mfu);
2404 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 2405
ca0bf58d
PS
2406 /* prefetch buffers have a minimum lifespan */
2407 if (HDR_IO_IN_PROGRESS(hdr) ||
2408 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2409 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2410 arc_min_prefetch_lifespan)) {
2411 ARCSTAT_BUMP(arcstat_evict_skip);
2412 return (bytes_evicted);
da8ccd0e
PS
2413 }
2414
ca0bf58d
PS
2415 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2416 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2417 while (hdr->b_l1hdr.b_buf) {
2418 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2419 if (!mutex_tryenter(&buf->b_evict_lock)) {
2420 ARCSTAT_BUMP(arcstat_mutex_miss);
2421 break;
2422 }
2423 if (buf->b_data != NULL)
2424 bytes_evicted += hdr->b_size;
2425 if (buf->b_efunc != NULL) {
2426 mutex_enter(&arc_user_evicts_lock);
2427 arc_buf_destroy(buf, FALSE);
2428 hdr->b_l1hdr.b_buf = buf->b_next;
2429 buf->b_hdr = &arc_eviction_hdr;
2430 buf->b_next = arc_eviction_list;
2431 arc_eviction_list = buf;
2432 cv_signal(&arc_user_evicts_cv);
2433 mutex_exit(&arc_user_evicts_lock);
2434 mutex_exit(&buf->b_evict_lock);
2435 } else {
2436 mutex_exit(&buf->b_evict_lock);
2437 arc_buf_destroy(buf, TRUE);
2438 }
2439 }
34dc7c2f 2440
ca0bf58d
PS
2441 if (HDR_HAS_L2HDR(hdr)) {
2442 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2443 } else {
2444 if (l2arc_write_eligible(hdr->b_spa, hdr))
2445 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2446 else
2447 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2448 }
34dc7c2f 2449
ca0bf58d
PS
2450 if (hdr->b_l1hdr.b_datacnt == 0) {
2451 arc_change_state(evicted_state, hdr, hash_lock);
2452 ASSERT(HDR_IN_HASH_TABLE(hdr));
2453 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2454 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2455 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2456 }
34dc7c2f 2457
ca0bf58d 2458 return (bytes_evicted);
34dc7c2f
BB
2459}
2460
ca0bf58d
PS
2461static uint64_t
2462arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2463 uint64_t spa, int64_t bytes)
34dc7c2f 2464{
ca0bf58d
PS
2465 multilist_sublist_t *mls;
2466 uint64_t bytes_evicted = 0;
2467 arc_buf_hdr_t *hdr;
34dc7c2f 2468 kmutex_t *hash_lock;
ca0bf58d 2469 int evict_count = 0;
34dc7c2f 2470
ca0bf58d 2471 ASSERT3P(marker, !=, NULL);
96c080cb 2472 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
2473
2474 mls = multilist_sublist_lock(ml, idx);
572e2857 2475
ca0bf58d
PS
2476 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2477 hdr = multilist_sublist_prev(mls, marker)) {
2478 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2479 (evict_count >= zfs_arc_evict_batch_limit))
2480 break;
2481
2482 /*
2483 * To keep our iteration location, move the marker
2484 * forward. Since we're not holding hdr's hash lock, we
2485 * must be very careful and not remove 'hdr' from the
2486 * sublist. Otherwise, other consumers might mistake the
2487 * 'hdr' as not being on a sublist when they call the
2488 * multilist_link_active() function (they all rely on
2489 * the hash lock protecting concurrent insertions and
2490 * removals). multilist_sublist_move_forward() was
2491 * specifically implemented to ensure this is the case
2492 * (only 'marker' will be removed and re-inserted).
2493 */
2494 multilist_sublist_move_forward(mls, marker);
2495
2496 /*
2497 * The only case where the b_spa field should ever be
2498 * zero, is the marker headers inserted by
2499 * arc_evict_state(). It's possible for multiple threads
2500 * to be calling arc_evict_state() concurrently (e.g.
2501 * dsl_pool_close() and zio_inject_fault()), so we must
2502 * skip any markers we see from these other threads.
2503 */
2a432414 2504 if (hdr->b_spa == 0)
572e2857
BB
2505 continue;
2506
ca0bf58d
PS
2507 /* we're only interested in evicting buffers of a certain spa */
2508 if (spa != 0 && hdr->b_spa != spa) {
2509 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 2510 continue;
ca0bf58d
PS
2511 }
2512
2513 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
2514
2515 /*
ca0bf58d
PS
2516 * We aren't calling this function from any code path
2517 * that would already be holding a hash lock, so we're
2518 * asserting on this assumption to be defensive in case
2519 * this ever changes. Without this check, it would be
2520 * possible to incorrectly increment arcstat_mutex_miss
2521 * below (e.g. if the code changed such that we called
2522 * this function with a hash lock held).
e8b96c60 2523 */
ca0bf58d
PS
2524 ASSERT(!MUTEX_HELD(hash_lock));
2525
34dc7c2f 2526 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
2527 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2528 mutex_exit(hash_lock);
34dc7c2f 2529
ca0bf58d 2530 bytes_evicted += evicted;
34dc7c2f 2531
572e2857 2532 /*
ca0bf58d
PS
2533 * If evicted is zero, arc_evict_hdr() must have
2534 * decided to skip this header, don't increment
2535 * evict_count in this case.
572e2857 2536 */
ca0bf58d
PS
2537 if (evicted != 0)
2538 evict_count++;
2539
2540 /*
2541 * If arc_size isn't overflowing, signal any
2542 * threads that might happen to be waiting.
2543 *
2544 * For each header evicted, we wake up a single
2545 * thread. If we used cv_broadcast, we could
2546 * wake up "too many" threads causing arc_size
2547 * to significantly overflow arc_c; since
2548 * arc_get_data_buf() doesn't check for overflow
2549 * when it's woken up (it doesn't because it's
2550 * possible for the ARC to be overflowing while
2551 * full of un-evictable buffers, and the
2552 * function should proceed in this case).
2553 *
2554 * If threads are left sleeping, due to not
2555 * using cv_broadcast, they will be woken up
2556 * just before arc_reclaim_thread() sleeps.
2557 */
2558 mutex_enter(&arc_reclaim_lock);
2559 if (!arc_is_overflowing())
2560 cv_signal(&arc_reclaim_waiters_cv);
2561 mutex_exit(&arc_reclaim_lock);
e8b96c60 2562 } else {
ca0bf58d 2563 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 2564 }
34dc7c2f 2565 }
34dc7c2f 2566
ca0bf58d 2567 multilist_sublist_unlock(mls);
34dc7c2f 2568
ca0bf58d 2569 return (bytes_evicted);
34dc7c2f
BB
2570}
2571
ca0bf58d
PS
2572/*
2573 * Evict buffers from the given arc state, until we've removed the
2574 * specified number of bytes. Move the removed buffers to the
2575 * appropriate evict state.
2576 *
2577 * This function makes a "best effort". It skips over any buffers
2578 * it can't get a hash_lock on, and so, may not catch all candidates.
2579 * It may also return without evicting as much space as requested.
2580 *
2581 * If bytes is specified using the special value ARC_EVICT_ALL, this
2582 * will evict all available (i.e. unlocked and evictable) buffers from
2583 * the given arc state; which is used by arc_flush().
2584 */
2585static uint64_t
2586arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2587 arc_buf_contents_t type)
34dc7c2f 2588{
ca0bf58d
PS
2589 uint64_t total_evicted = 0;
2590 multilist_t *ml = &state->arcs_list[type];
2591 int num_sublists;
2592 arc_buf_hdr_t **markers;
2593 int i;
2594
96c080cb 2595 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
2596
2597 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
2598
2599 /*
ca0bf58d
PS
2600 * If we've tried to evict from each sublist, made some
2601 * progress, but still have not hit the target number of bytes
2602 * to evict, we want to keep trying. The markers allow us to
2603 * pick up where we left off for each individual sublist, rather
2604 * than starting from the tail each time.
d164b209 2605 */
ca0bf58d
PS
2606 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2607 for (i = 0; i < num_sublists; i++) {
2608 multilist_sublist_t *mls;
34dc7c2f 2609
ca0bf58d
PS
2610 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2611
2612 /*
2613 * A b_spa of 0 is used to indicate that this header is
2614 * a marker. This fact is used in arc_adjust_type() and
2615 * arc_evict_state_impl().
2616 */
2617 markers[i]->b_spa = 0;
34dc7c2f 2618
ca0bf58d
PS
2619 mls = multilist_sublist_lock(ml, i);
2620 multilist_sublist_insert_tail(mls, markers[i]);
2621 multilist_sublist_unlock(mls);
34dc7c2f
BB
2622 }
2623
d164b209 2624 /*
ca0bf58d
PS
2625 * While we haven't hit our target number of bytes to evict, or
2626 * we're evicting all available buffers.
d164b209 2627 */
ca0bf58d 2628 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
25458cbe
TC
2629 int sublist_idx = multilist_get_random_index(ml);
2630 uint64_t scan_evicted = 0;
2631
2632 /*
2633 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
2634 * Request that 10% of the LRUs be scanned by the superblock
2635 * shrinker.
2636 */
2637 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
2638 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
2639 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
2640
ca0bf58d
PS
2641 /*
2642 * Start eviction using a randomly selected sublist,
2643 * this is to try and evenly balance eviction across all
2644 * sublists. Always starting at the same sublist
2645 * (e.g. index 0) would cause evictions to favor certain
2646 * sublists over others.
2647 */
ca0bf58d
PS
2648 for (i = 0; i < num_sublists; i++) {
2649 uint64_t bytes_remaining;
2650 uint64_t bytes_evicted;
d164b209 2651
ca0bf58d
PS
2652 if (bytes == ARC_EVICT_ALL)
2653 bytes_remaining = ARC_EVICT_ALL;
2654 else if (total_evicted < bytes)
2655 bytes_remaining = bytes - total_evicted;
2656 else
2657 break;
34dc7c2f 2658
ca0bf58d
PS
2659 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2660 markers[sublist_idx], spa, bytes_remaining);
2661
2662 scan_evicted += bytes_evicted;
2663 total_evicted += bytes_evicted;
2664
2665 /* we've reached the end, wrap to the beginning */
2666 if (++sublist_idx >= num_sublists)
2667 sublist_idx = 0;
2668 }
2669
2670 /*
2671 * If we didn't evict anything during this scan, we have
2672 * no reason to believe we'll evict more during another
2673 * scan, so break the loop.
2674 */
2675 if (scan_evicted == 0) {
2676 /* This isn't possible, let's make that obvious */
2677 ASSERT3S(bytes, !=, 0);
34dc7c2f 2678
ca0bf58d
PS
2679 /*
2680 * When bytes is ARC_EVICT_ALL, the only way to
2681 * break the loop is when scan_evicted is zero.
2682 * In that case, we actually have evicted enough,
2683 * so we don't want to increment the kstat.
2684 */
2685 if (bytes != ARC_EVICT_ALL) {
2686 ASSERT3S(total_evicted, <, bytes);
2687 ARCSTAT_BUMP(arcstat_evict_not_enough);
2688 }
d164b209 2689
ca0bf58d
PS
2690 break;
2691 }
d164b209 2692 }
34dc7c2f 2693
ca0bf58d
PS
2694 for (i = 0; i < num_sublists; i++) {
2695 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2696 multilist_sublist_remove(mls, markers[i]);
2697 multilist_sublist_unlock(mls);
34dc7c2f 2698
ca0bf58d 2699 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 2700 }
ca0bf58d
PS
2701 kmem_free(markers, sizeof (*markers) * num_sublists);
2702
2703 return (total_evicted);
2704}
2705
2706/*
2707 * Flush all "evictable" data of the given type from the arc state
2708 * specified. This will not evict any "active" buffers (i.e. referenced).
2709 *
2710 * When 'retry' is set to FALSE, the function will make a single pass
2711 * over the state and evict any buffers that it can. Since it doesn't
2712 * continually retry the eviction, it might end up leaving some buffers
2713 * in the ARC due to lock misses.
2714 *
2715 * When 'retry' is set to TRUE, the function will continually retry the
2716 * eviction until *all* evictable buffers have been removed from the
2717 * state. As a result, if concurrent insertions into the state are
2718 * allowed (e.g. if the ARC isn't shutting down), this function might
2719 * wind up in an infinite loop, continually trying to evict buffers.
2720 */
2721static uint64_t
2722arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2723 boolean_t retry)
2724{
2725 uint64_t evicted = 0;
2726
2727 while (state->arcs_lsize[type] != 0) {
2728 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2729
2730 if (!retry)
2731 break;
2732 }
2733
2734 return (evicted);
34dc7c2f
BB
2735}
2736
ab26409d 2737/*
ef5b2e10
BB
2738 * Helper function for arc_prune_async() it is responsible for safely
2739 * handling the execution of a registered arc_prune_func_t.
ab26409d
BB
2740 */
2741static void
f6046738 2742arc_prune_task(void *ptr)
ab26409d 2743{
f6046738
BB
2744 arc_prune_t *ap = (arc_prune_t *)ptr;
2745 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 2746
f6046738
BB
2747 if (func != NULL)
2748 func(ap->p_adjust, ap->p_private);
ab26409d 2749
4442f60d 2750 refcount_remove(&ap->p_refcnt, func);
f6046738 2751}
ab26409d 2752
f6046738
BB
2753/*
2754 * Notify registered consumers they must drop holds on a portion of the ARC
2755 * buffered they reference. This provides a mechanism to ensure the ARC can
2756 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2757 * is analogous to dnlc_reduce_cache() but more generic.
2758 *
ef5b2e10 2759 * This operation is performed asynchronously so it may be safely called
ca67b33a 2760 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
2761 * for each registered arc_prune_t and the arc_prune_task() is responsible
2762 * for releasing it once the registered arc_prune_func_t has completed.
2763 */
2764static void
2765arc_prune_async(int64_t adjust)
2766{
2767 arc_prune_t *ap;
ab26409d 2768
f6046738
BB
2769 mutex_enter(&arc_prune_mtx);
2770 for (ap = list_head(&arc_prune_list); ap != NULL;
2771 ap = list_next(&arc_prune_list, ap)) {
ab26409d 2772
f6046738
BB
2773 if (refcount_count(&ap->p_refcnt) >= 2)
2774 continue;
ab26409d 2775
f6046738
BB
2776 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2777 ap->p_adjust = adjust;
2778 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2779 ARCSTAT_BUMP(arcstat_prune);
ab26409d 2780 }
ab26409d
BB
2781 mutex_exit(&arc_prune_mtx);
2782}
2783
ca0bf58d
PS
2784/*
2785 * Evict the specified number of bytes from the state specified,
2786 * restricting eviction to the spa and type given. This function
2787 * prevents us from trying to evict more from a state's list than
2788 * is "evictable", and to skip evicting altogether when passed a
2789 * negative value for "bytes". In contrast, arc_evict_state() will
2790 * evict everything it can, when passed a negative value for "bytes".
2791 */
2792static uint64_t
2793arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2794 arc_buf_contents_t type)
2795{
2796 int64_t delta;
2797
2798 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2799 delta = MIN(state->arcs_lsize[type], bytes);
2800 return (arc_evict_state(state, spa, delta, type));
2801 }
2802
2803 return (0);
2804}
2805
2806/*
2807 * The goal of this function is to evict enough meta data buffers from the
2808 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2809 * more complicated than it appears because it is common for data buffers
2810 * to have holds on meta data buffers. In addition, dnode meta data buffers
2811 * will be held by the dnodes in the block preventing them from being freed.
2812 * This means we can't simply traverse the ARC and expect to always find
2813 * enough unheld meta data buffer to release.
2814 *
2815 * Therefore, this function has been updated to make alternating passes
2816 * over the ARC releasing data buffers and then newly unheld meta data
2817 * buffers. This ensures forward progress is maintained and arc_meta_used
2818 * will decrease. Normally this is sufficient, but if required the ARC
2819 * will call the registered prune callbacks causing dentry and inodes to
2820 * be dropped from the VFS cache. This will make dnode meta data buffers
2821 * available for reclaim.
2822 */
2823static uint64_t
f6046738 2824arc_adjust_meta_balanced(void)
ca0bf58d
PS
2825{
2826 int64_t adjustmnt, delta, prune = 0;
2827 uint64_t total_evicted = 0;
2828 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 2829 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
2830
2831restart:
2832 /*
2833 * This slightly differs than the way we evict from the mru in
2834 * arc_adjust because we don't have a "target" value (i.e. no
2835 * "meta" arc_p). As a result, I think we can completely
2836 * cannibalize the metadata in the MRU before we evict the
2837 * metadata from the MFU. I think we probably need to implement a
2838 * "metadata arc_p" value to do this properly.
2839 */
2840 adjustmnt = arc_meta_used - arc_meta_limit;
2841
2842 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2843 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2844 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2845 adjustmnt -= delta;
2846 }
2847
2848 /*
2849 * We can't afford to recalculate adjustmnt here. If we do,
2850 * new metadata buffers can sneak into the MRU or ANON lists,
2851 * thus penalize the MFU metadata. Although the fudge factor is
2852 * small, it has been empirically shown to be significant for
2853 * certain workloads (e.g. creating many empty directories). As
2854 * such, we use the original calculation for adjustmnt, and
2855 * simply decrement the amount of data evicted from the MRU.
2856 */
2857
2858 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2859 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2860 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2861 }
2862
2863 adjustmnt = arc_meta_used - arc_meta_limit;
2864
2865 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2866 delta = MIN(adjustmnt,
2867 arc_mru_ghost->arcs_lsize[type]);
2868 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2869 adjustmnt -= delta;
2870 }
2871
2872 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2873 delta = MIN(adjustmnt,
2874 arc_mfu_ghost->arcs_lsize[type]);
2875 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2876 }
2877
2878 /*
2879 * If after attempting to make the requested adjustment to the ARC
2880 * the meta limit is still being exceeded then request that the
2881 * higher layers drop some cached objects which have holds on ARC
2882 * meta buffers. Requests to the upper layers will be made with
2883 * increasingly large scan sizes until the ARC is below the limit.
2884 */
2885 if (arc_meta_used > arc_meta_limit) {
2886 if (type == ARC_BUFC_DATA) {
2887 type = ARC_BUFC_METADATA;
2888 } else {
2889 type = ARC_BUFC_DATA;
2890
2891 if (zfs_arc_meta_prune) {
2892 prune += zfs_arc_meta_prune;
f6046738 2893 arc_prune_async(prune);
ca0bf58d
PS
2894 }
2895 }
2896
2897 if (restarts > 0) {
2898 restarts--;
2899 goto restart;
2900 }
2901 }
2902 return (total_evicted);
2903}
2904
f6046738
BB
2905/*
2906 * Evict metadata buffers from the cache, such that arc_meta_used is
2907 * capped by the arc_meta_limit tunable.
2908 */
2909static uint64_t
2910arc_adjust_meta_only(void)
2911{
2912 uint64_t total_evicted = 0;
2913 int64_t target;
2914
2915 /*
2916 * If we're over the meta limit, we want to evict enough
2917 * metadata to get back under the meta limit. We don't want to
2918 * evict so much that we drop the MRU below arc_p, though. If
2919 * we're over the meta limit more than we're over arc_p, we
2920 * evict some from the MRU here, and some from the MFU below.
2921 */
2922 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef
PS
2923 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2924 refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738
BB
2925
2926 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2927
2928 /*
2929 * Similar to the above, we want to evict enough bytes to get us
2930 * below the meta limit, but not so much as to drop us below the
2931 * space alloted to the MFU (which is defined as arc_c - arc_p).
2932 */
2933 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef 2934 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
f6046738
BB
2935
2936 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2937
2938 return (total_evicted);
2939}
2940
2941static uint64_t
2942arc_adjust_meta(void)
2943{
2944 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2945 return (arc_adjust_meta_only());
2946 else
2947 return (arc_adjust_meta_balanced());
2948}
2949
ca0bf58d
PS
2950/*
2951 * Return the type of the oldest buffer in the given arc state
2952 *
2953 * This function will select a random sublist of type ARC_BUFC_DATA and
2954 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2955 * is compared, and the type which contains the "older" buffer will be
2956 * returned.
2957 */
2958static arc_buf_contents_t
2959arc_adjust_type(arc_state_t *state)
2960{
2961 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2962 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2963 int data_idx = multilist_get_random_index(data_ml);
2964 int meta_idx = multilist_get_random_index(meta_ml);
2965 multilist_sublist_t *data_mls;
2966 multilist_sublist_t *meta_mls;
2967 arc_buf_contents_t type;
2968 arc_buf_hdr_t *data_hdr;
2969 arc_buf_hdr_t *meta_hdr;
2970
2971 /*
2972 * We keep the sublist lock until we're finished, to prevent
2973 * the headers from being destroyed via arc_evict_state().
2974 */
2975 data_mls = multilist_sublist_lock(data_ml, data_idx);
2976 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2977
2978 /*
2979 * These two loops are to ensure we skip any markers that
2980 * might be at the tail of the lists due to arc_evict_state().
2981 */
2982
2983 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2984 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2985 if (data_hdr->b_spa != 0)
2986 break;
2987 }
2988
2989 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2990 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2991 if (meta_hdr->b_spa != 0)
2992 break;
2993 }
2994
2995 if (data_hdr == NULL && meta_hdr == NULL) {
2996 type = ARC_BUFC_DATA;
2997 } else if (data_hdr == NULL) {
2998 ASSERT3P(meta_hdr, !=, NULL);
2999 type = ARC_BUFC_METADATA;
3000 } else if (meta_hdr == NULL) {
3001 ASSERT3P(data_hdr, !=, NULL);
3002 type = ARC_BUFC_DATA;
3003 } else {
3004 ASSERT3P(data_hdr, !=, NULL);
3005 ASSERT3P(meta_hdr, !=, NULL);
3006
3007 /* The headers can't be on the sublist without an L1 header */
3008 ASSERT(HDR_HAS_L1HDR(data_hdr));
3009 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3010
3011 if (data_hdr->b_l1hdr.b_arc_access <
3012 meta_hdr->b_l1hdr.b_arc_access) {
3013 type = ARC_BUFC_DATA;
3014 } else {
3015 type = ARC_BUFC_METADATA;
3016 }
3017 }
3018
3019 multilist_sublist_unlock(meta_mls);
3020 multilist_sublist_unlock(data_mls);
3021
3022 return (type);
3023}
3024
3025/*
3026 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3027 */
3028static uint64_t
3029arc_adjust(void)
3030{
3031 uint64_t total_evicted = 0;
3032 uint64_t bytes;
3033 int64_t target;
3034
3035 /*
3036 * If we're over arc_meta_limit, we want to correct that before
3037 * potentially evicting data buffers below.
3038 */
3039 total_evicted += arc_adjust_meta();
3040
3041 /*
3042 * Adjust MRU size
3043 *
3044 * If we're over the target cache size, we want to evict enough
3045 * from the list to get back to our target size. We don't want
3046 * to evict too much from the MRU, such that it drops below
3047 * arc_p. So, if we're over our target cache size more than
3048 * the MRU is over arc_p, we'll evict enough to get back to
3049 * arc_p here, and then evict more from the MFU below.
3050 */
3051 target = MIN((int64_t)(arc_size - arc_c),
36da08ef
PS
3052 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3053 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
ca0bf58d
PS
3054
3055 /*
3056 * If we're below arc_meta_min, always prefer to evict data.
3057 * Otherwise, try to satisfy the requested number of bytes to
3058 * evict from the type which contains older buffers; in an
3059 * effort to keep newer buffers in the cache regardless of their
3060 * type. If we cannot satisfy the number of bytes from this
3061 * type, spill over into the next type.
3062 */
3063 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3064 arc_meta_used > arc_meta_min) {
3065 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3066 total_evicted += bytes;
3067
3068 /*
3069 * If we couldn't evict our target number of bytes from
3070 * metadata, we try to get the rest from data.
3071 */
3072 target -= bytes;
3073
3074 total_evicted +=
3075 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3076 } else {
3077 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3078 total_evicted += bytes;
3079
3080 /*
3081 * If we couldn't evict our target number of bytes from
3082 * data, we try to get the rest from metadata.
3083 */
3084 target -= bytes;
3085
3086 total_evicted +=
3087 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3088 }
3089
3090 /*
3091 * Adjust MFU size
3092 *
3093 * Now that we've tried to evict enough from the MRU to get its
3094 * size back to arc_p, if we're still above the target cache
3095 * size, we evict the rest from the MFU.
3096 */
3097 target = arc_size - arc_c;
3098
a7b10a93 3099 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
ca0bf58d
PS
3100 arc_meta_used > arc_meta_min) {
3101 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3102 total_evicted += bytes;
3103
3104 /*
3105 * If we couldn't evict our target number of bytes from
3106 * metadata, we try to get the rest from data.
3107 */
3108 target -= bytes;
3109
3110 total_evicted +=
3111 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3112 } else {
3113 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3114 total_evicted += bytes;
3115
3116 /*
3117 * If we couldn't evict our target number of bytes from
3118 * data, we try to get the rest from data.
3119 */
3120 target -= bytes;
3121
3122 total_evicted +=
3123 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3124 }
3125
3126 /*
3127 * Adjust ghost lists
3128 *
3129 * In addition to the above, the ARC also defines target values
3130 * for the ghost lists. The sum of the mru list and mru ghost
3131 * list should never exceed the target size of the cache, and
3132 * the sum of the mru list, mfu list, mru ghost list, and mfu
3133 * ghost list should never exceed twice the target size of the
3134 * cache. The following logic enforces these limits on the ghost
3135 * caches, and evicts from them as needed.
3136 */
36da08ef
PS
3137 target = refcount_count(&arc_mru->arcs_size) +
3138 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d
PS
3139
3140 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3141 total_evicted += bytes;
3142
3143 target -= bytes;
3144
3145 total_evicted +=
3146 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3147
3148 /*
3149 * We assume the sum of the mru list and mfu list is less than
3150 * or equal to arc_c (we enforced this above), which means we
3151 * can use the simpler of the two equations below:
3152 *
3153 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3154 * mru ghost + mfu ghost <= arc_c
3155 */
36da08ef
PS
3156 target = refcount_count(&arc_mru_ghost->arcs_size) +
3157 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d
PS
3158
3159 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3160 total_evicted += bytes;
3161
3162 target -= bytes;
3163
3164 total_evicted +=
3165 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3166
3167 return (total_evicted);
3168}
3169
34dc7c2f
BB
3170static void
3171arc_do_user_evicts(void)
3172{
ca0bf58d 3173 mutex_enter(&arc_user_evicts_lock);
34dc7c2f
BB
3174 while (arc_eviction_list != NULL) {
3175 arc_buf_t *buf = arc_eviction_list;
3176 arc_eviction_list = buf->b_next;
428870ff 3177 mutex_enter(&buf->b_evict_lock);
34dc7c2f 3178 buf->b_hdr = NULL;
428870ff 3179 mutex_exit(&buf->b_evict_lock);
ca0bf58d 3180 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
3181
3182 if (buf->b_efunc != NULL)
bd089c54 3183 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
3184
3185 buf->b_efunc = NULL;
3186 buf->b_private = NULL;
3187 kmem_cache_free(buf_cache, buf);
ca0bf58d 3188 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 3189 }
ca0bf58d 3190 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
3191}
3192
ca0bf58d
PS
3193void
3194arc_flush(spa_t *spa, boolean_t retry)
ab26409d 3195{
ca0bf58d 3196 uint64_t guid = 0;
94520ca4 3197
bc888666 3198 /*
ca0bf58d
PS
3199 * If retry is TRUE, a spa must not be specified since we have
3200 * no good way to determine if all of a spa's buffers have been
3201 * evicted from an arc state.
bc888666 3202 */
ca0bf58d 3203 ASSERT(!retry || spa == 0);
d164b209 3204
b9541d6b 3205 if (spa != NULL)
3541dc6d 3206 guid = spa_load_guid(spa);
d164b209 3207
ca0bf58d
PS
3208 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3209 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3210
3211 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3212 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3213
3214 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3215 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3216
ca0bf58d
PS
3217 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3218 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3219
34dc7c2f 3220 arc_do_user_evicts();
34dc7c2f
BB
3221 ASSERT(spa || arc_eviction_list == NULL);
3222}
3223
34dc7c2f 3224void
ca67b33a 3225arc_shrink(int64_t to_free)
34dc7c2f 3226{
1b8951b3 3227 uint64_t c = arc_c;
34dc7c2f 3228
1b8951b3
TC
3229 if (c > to_free && c - to_free > arc_c_min) {
3230 arc_c = c - to_free;
ca67b33a 3231 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
3232 if (arc_c > arc_size)
3233 arc_c = MAX(arc_size, arc_c_min);
3234 if (arc_p > arc_c)
3235 arc_p = (arc_c >> 1);
3236 ASSERT(arc_c >= arc_c_min);
3237 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
3238 } else {
3239 arc_c = arc_c_min;
34dc7c2f
BB
3240 }
3241
3242 if (arc_size > arc_c)
ca0bf58d 3243 (void) arc_adjust();
34dc7c2f
BB
3244}
3245
ca67b33a
MA
3246typedef enum free_memory_reason_t {
3247 FMR_UNKNOWN,
3248 FMR_NEEDFREE,
3249 FMR_LOTSFREE,
3250 FMR_SWAPFS_MINFREE,
3251 FMR_PAGES_PP_MAXIMUM,
3252 FMR_HEAP_ARENA,
3253 FMR_ZIO_ARENA,
3254} free_memory_reason_t;
3255
3256int64_t last_free_memory;
3257free_memory_reason_t last_free_reason;
3258
3259#ifdef _KERNEL
ca67b33a
MA
3260/*
3261 * Additional reserve of pages for pp_reserve.
3262 */
3263int64_t arc_pages_pp_reserve = 64;
3264
3265/*
3266 * Additional reserve of pages for swapfs.
3267 */
3268int64_t arc_swapfs_reserve = 64;
ca67b33a
MA
3269#endif /* _KERNEL */
3270
3271/*
3272 * Return the amount of memory that can be consumed before reclaim will be
3273 * needed. Positive if there is sufficient free memory, negative indicates
3274 * the amount of memory that needs to be freed up.
3275 */
3276static int64_t
3277arc_available_memory(void)
3278{
3279 int64_t lowest = INT64_MAX;
3280 free_memory_reason_t r = FMR_UNKNOWN;
ca67b33a 3281#ifdef _KERNEL
ca67b33a 3282 int64_t n;
11f552fa
BB
3283#ifdef __linux__
3284 pgcnt_t needfree = btop(arc_need_free);
3285 pgcnt_t lotsfree = btop(arc_sys_free);
3286 pgcnt_t desfree = 0;
3287#endif
ca67b33a 3288
ca67b33a
MA
3289 if (needfree > 0) {
3290 n = PAGESIZE * (-needfree);
3291 if (n < lowest) {
3292 lowest = n;
3293 r = FMR_NEEDFREE;
3294 }
3295 }
3296
3297 /*
3298 * check that we're out of range of the pageout scanner. It starts to
3299 * schedule paging if freemem is less than lotsfree and needfree.
3300 * lotsfree is the high-water mark for pageout, and needfree is the
3301 * number of needed free pages. We add extra pages here to make sure
3302 * the scanner doesn't start up while we're freeing memory.
3303 */
3304 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3305 if (n < lowest) {
3306 lowest = n;
3307 r = FMR_LOTSFREE;
3308 }
3309
11f552fa 3310#ifndef __linux__
ca67b33a
MA
3311 /*
3312 * check to make sure that swapfs has enough space so that anon
3313 * reservations can still succeed. anon_resvmem() checks that the
3314 * availrmem is greater than swapfs_minfree, and the number of reserved
3315 * swap pages. We also add a bit of extra here just to prevent
3316 * circumstances from getting really dire.
3317 */
3318 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3319 desfree - arc_swapfs_reserve);
3320 if (n < lowest) {
3321 lowest = n;
3322 r = FMR_SWAPFS_MINFREE;
3323 }
3324
3325
3326 /*
3327 * Check that we have enough availrmem that memory locking (e.g., via
3328 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3329 * stores the number of pages that cannot be locked; when availrmem
3330 * drops below pages_pp_maximum, page locking mechanisms such as
3331 * page_pp_lock() will fail.)
3332 */
3333 n = PAGESIZE * (availrmem - pages_pp_maximum -
3334 arc_pages_pp_reserve);
3335 if (n < lowest) {
3336 lowest = n;
3337 r = FMR_PAGES_PP_MAXIMUM;
3338 }
11f552fa 3339#endif
ca67b33a
MA
3340
3341#if defined(__i386)
3342 /*
3343 * If we're on an i386 platform, it's possible that we'll exhaust the
3344 * kernel heap space before we ever run out of available physical
3345 * memory. Most checks of the size of the heap_area compare against
3346 * tune.t_minarmem, which is the minimum available real memory that we
3347 * can have in the system. However, this is generally fixed at 25 pages
3348 * which is so low that it's useless. In this comparison, we seek to
3349 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3350 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3351 * free)
3352 */
3353 n = vmem_size(heap_arena, VMEM_FREE) -
3354 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3355 if (n < lowest) {
3356 lowest = n;
3357 r = FMR_HEAP_ARENA;
3358 }
3359#endif
3360
3361 /*
3362 * If zio data pages are being allocated out of a separate heap segment,
3363 * then enforce that the size of available vmem for this arena remains
3364 * above about 1/16th free.
3365 *
3366 * Note: The 1/16th arena free requirement was put in place
3367 * to aggressively evict memory from the arc in order to avoid
3368 * memory fragmentation issues.
3369 */
3370 if (zio_arena != NULL) {
3371 n = vmem_size(zio_arena, VMEM_FREE) -
3372 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3373 if (n < lowest) {
3374 lowest = n;
3375 r = FMR_ZIO_ARENA;
3376 }
3377 }
11f552fa 3378#else /* _KERNEL */
ca67b33a
MA
3379 /* Every 100 calls, free a small amount */
3380 if (spa_get_random(100) == 0)
3381 lowest = -1024;
11f552fa 3382#endif /* _KERNEL */
ca67b33a
MA
3383
3384 last_free_memory = lowest;
3385 last_free_reason = r;
3386
3387 return (lowest);
3388}
3389
3390/*
3391 * Determine if the system is under memory pressure and is asking
3392 * to reclaim memory. A return value of TRUE indicates that the system
3393 * is under memory pressure and that the arc should adjust accordingly.
3394 */
3395static boolean_t
3396arc_reclaim_needed(void)
3397{
3398 return (arc_available_memory() < 0);
3399}
3400
34dc7c2f 3401static void
ca67b33a 3402arc_kmem_reap_now(void)
34dc7c2f
BB
3403{
3404 size_t i;
3405 kmem_cache_t *prev_cache = NULL;
3406 kmem_cache_t *prev_data_cache = NULL;
3407 extern kmem_cache_t *zio_buf_cache[];
3408 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 3409 extern kmem_cache_t *range_seg_cache;
34dc7c2f 3410
f6046738
BB
3411 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
3412 /*
3413 * We are exceeding our meta-data cache limit.
3414 * Prune some entries to release holds on meta-data.
3415 */
ef5b2e10 3416 arc_prune_async(zfs_arc_meta_prune);
f6046738
BB
3417 }
3418
34dc7c2f 3419 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
d0c614ec 3420#ifdef _ILP32
3421 /* reach upper limit of cache size on 32-bit */
3422 if (zio_buf_cache[i] == NULL)
3423 break;
3424#endif
34dc7c2f
BB
3425 if (zio_buf_cache[i] != prev_cache) {
3426 prev_cache = zio_buf_cache[i];
3427 kmem_cache_reap_now(zio_buf_cache[i]);
3428 }
3429 if (zio_data_buf_cache[i] != prev_data_cache) {
3430 prev_data_cache = zio_data_buf_cache[i];
3431 kmem_cache_reap_now(zio_data_buf_cache[i]);
3432 }
3433 }
ca0bf58d 3434 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
3435 kmem_cache_reap_now(hdr_full_cache);
3436 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 3437 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
3438
3439 if (zio_arena != NULL) {
3440 /*
3441 * Ask the vmem arena to reclaim unused memory from its
3442 * quantum caches.
3443 */
3444 vmem_qcache_reap(zio_arena);
3445 }
34dc7c2f
BB
3446}
3447
302f753f 3448/*
ca0bf58d
PS
3449 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3450 * enough data and signal them to proceed. When this happens, the threads in
3451 * arc_get_data_buf() are sleeping while holding the hash lock for their
3452 * particular arc header. Thus, we must be careful to never sleep on a
3453 * hash lock in this thread. This is to prevent the following deadlock:
3454 *
3455 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3456 * waiting for the reclaim thread to signal it.
3457 *
3458 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3459 * fails, and goes to sleep forever.
3460 *
3461 * This possible deadlock is avoided by always acquiring a hash lock
3462 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 3463 */
34dc7c2f 3464static void
ca67b33a 3465arc_reclaim_thread(void)
34dc7c2f 3466{
ca67b33a 3467 fstrans_cookie_t cookie = spl_fstrans_mark();
ae6d0c60 3468 hrtime_t growtime = 0;
34dc7c2f
BB
3469 callb_cpr_t cpr;
3470
ca0bf58d 3471 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 3472
ca0bf58d 3473 mutex_enter(&arc_reclaim_lock);
ca67b33a
MA
3474 while (!arc_reclaim_thread_exit) {
3475 int64_t to_free;
3476 int64_t free_memory = arc_available_memory();
3477 uint64_t evicted = 0;
302f753f 3478
ca67b33a 3479 arc_tuning_update();
34dc7c2f 3480
ca67b33a 3481 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3482
ca67b33a 3483 if (free_memory < 0) {
34dc7c2f 3484
ca67b33a 3485 arc_no_grow = B_TRUE;
b128c09f 3486 arc_warm = B_TRUE;
34dc7c2f 3487
ca67b33a
MA
3488 /*
3489 * Wait at least zfs_grow_retry (default 5) seconds
3490 * before considering growing.
3491 */
ae6d0c60 3492 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
6a8f9b6b 3493
ca67b33a 3494 arc_kmem_reap_now();
34dc7c2f 3495
ca67b33a
MA
3496 /*
3497 * If we are still low on memory, shrink the ARC
3498 * so that we have arc_shrink_min free space.
3499 */
3500 free_memory = arc_available_memory();
34dc7c2f 3501
ca67b33a
MA
3502 to_free = (arc_c >> arc_shrink_shift) - free_memory;
3503 if (to_free > 0) {
3504#ifdef _KERNEL
11f552fa 3505 to_free = MAX(to_free, arc_need_free);
ca67b33a
MA
3506#endif
3507 arc_shrink(to_free);
3508 }
3509 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3510 arc_no_grow = B_TRUE;
ae6d0c60 3511 } else if (gethrtime() >= growtime) {
ca67b33a
MA
3512 arc_no_grow = B_FALSE;
3513 }
bce45ec9 3514
ca67b33a 3515 evicted = arc_adjust();
bce45ec9 3516
ca67b33a 3517 mutex_enter(&arc_reclaim_lock);
bce45ec9 3518
ca67b33a
MA
3519 /*
3520 * If evicted is zero, we couldn't evict anything via
3521 * arc_adjust(). This could be due to hash lock
3522 * collisions, but more likely due to the majority of
3523 * arc buffers being unevictable. Therefore, even if
3524 * arc_size is above arc_c, another pass is unlikely to
3525 * be helpful and could potentially cause us to enter an
3526 * infinite loop.
3527 */
3528 if (arc_size <= arc_c || evicted == 0) {
3529 /*
3530 * We're either no longer overflowing, or we
3531 * can't evict anything more, so we should wake
11f552fa
BB
3532 * up any threads before we go to sleep and clear
3533 * arc_need_free since nothing more can be done.
ca67b33a
MA
3534 */
3535 cv_broadcast(&arc_reclaim_waiters_cv);
11f552fa 3536 arc_need_free = 0;
bce45ec9 3537
ca67b33a
MA
3538 /*
3539 * Block until signaled, or after one second (we
3540 * might need to perform arc_kmem_reap_now()
3541 * even if we aren't being signalled)
3542 */
3543 CALLB_CPR_SAFE_BEGIN(&cpr);
a9bb2b68 3544 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
ae6d0c60 3545 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
ca67b33a
MA
3546 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3547 }
ca0bf58d 3548 }
bce45ec9 3549
ca67b33a 3550 arc_reclaim_thread_exit = FALSE;
ca0bf58d
PS
3551 cv_broadcast(&arc_reclaim_thread_cv);
3552 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3553 spl_fstrans_unmark(cookie);
3554 thread_exit();
3555}
3556
3557static void
3558arc_user_evicts_thread(void)
3559{
ca67b33a 3560 fstrans_cookie_t cookie = spl_fstrans_mark();
ca0bf58d 3561 callb_cpr_t cpr;
bce45ec9 3562
ca0bf58d 3563 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
bce45ec9 3564
ca0bf58d
PS
3565 mutex_enter(&arc_user_evicts_lock);
3566 while (!arc_user_evicts_thread_exit) {
3567 mutex_exit(&arc_user_evicts_lock);
3568
3569 arc_do_user_evicts();
3570
3571 /*
3572 * This is necessary in order for the mdb ::arc dcmd to
3573 * show up to date information. Since the ::arc command
3574 * does not call the kstat's update function, without
3575 * this call, the command may show stale stats for the
3576 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3577 * with this change, the data might be up to 1 second
3578 * out of date; but that should suffice. The arc_state_t
3579 * structures can be queried directly if more accurate
3580 * information is needed.
3581 */
3582 if (arc_ksp != NULL)
3583 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3584
3585 mutex_enter(&arc_user_evicts_lock);
3586
3587 /*
3588 * Block until signaled, or after one second (we need to
3589 * call the arc's kstat update function regularly).
3590 */
3591 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 3592 (void) cv_timedwait_sig(&arc_user_evicts_cv,
ca0bf58d
PS
3593 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3594 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
34dc7c2f
BB
3595 }
3596
ca0bf58d
PS
3597 arc_user_evicts_thread_exit = FALSE;
3598 cv_broadcast(&arc_user_evicts_cv);
3599 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
40d06e3c 3600 spl_fstrans_unmark(cookie);
34dc7c2f
BB
3601 thread_exit();
3602}
3603
7cb67b45
BB
3604#ifdef _KERNEL
3605/*
302f753f
BB
3606 * Determine the amount of memory eligible for eviction contained in the
3607 * ARC. All clean data reported by the ghost lists can always be safely
3608 * evicted. Due to arc_c_min, the same does not hold for all clean data
3609 * contained by the regular mru and mfu lists.
3610 *
3611 * In the case of the regular mru and mfu lists, we need to report as
3612 * much clean data as possible, such that evicting that same reported
3613 * data will not bring arc_size below arc_c_min. Thus, in certain
3614 * circumstances, the total amount of clean data in the mru and mfu
3615 * lists might not actually be evictable.
3616 *
3617 * The following two distinct cases are accounted for:
3618 *
3619 * 1. The sum of the amount of dirty data contained by both the mru and
3620 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3621 * is greater than or equal to arc_c_min.
3622 * (i.e. amount of dirty data >= arc_c_min)
3623 *
3624 * This is the easy case; all clean data contained by the mru and mfu
3625 * lists is evictable. Evicting all clean data can only drop arc_size
3626 * to the amount of dirty data, which is greater than arc_c_min.
3627 *
3628 * 2. The sum of the amount of dirty data contained by both the mru and
3629 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3630 * is less than arc_c_min.
3631 * (i.e. arc_c_min > amount of dirty data)
3632 *
3633 * 2.1. arc_size is greater than or equal arc_c_min.
3634 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3635 *
3636 * In this case, not all clean data from the regular mru and mfu
3637 * lists is actually evictable; we must leave enough clean data
3638 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3639 * evictable data from the two lists combined, is exactly the
3640 * difference between arc_size and arc_c_min.
3641 *
3642 * 2.2. arc_size is less than arc_c_min
3643 * (i.e. arc_c_min > arc_size > amount of dirty data)
3644 *
3645 * In this case, none of the data contained in the mru and mfu
3646 * lists is evictable, even if it's clean. Since arc_size is
3647 * already below arc_c_min, evicting any more would only
3648 * increase this negative difference.
7cb67b45 3649 */
302f753f
BB
3650static uint64_t
3651arc_evictable_memory(void) {
3652 uint64_t arc_clean =
3653 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3654 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3655 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3656 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3657 uint64_t ghost_clean =
3658 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3659 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3660 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3661 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3662 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3663
3664 if (arc_dirty >= arc_c_min)
3665 return (ghost_clean + arc_clean);
3666
3667 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3668}
3669
ed6e9cc2
TC
3670/*
3671 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3672 * number of objects which can potentially be freed. If it is nonzero,
3673 * the request is to free that many objects.
3674 *
3675 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3676 * in struct shrinker and also require the shrinker to return the number
3677 * of objects freed.
3678 *
3679 * Older kernels require the shrinker to return the number of freeable
3680 * objects following the freeing of nr_to_free.
3681 */
3682static spl_shrinker_t
7e7baeca 3683__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 3684{
ed6e9cc2 3685 int64_t pages;
7cb67b45 3686
302f753f
BB
3687 /* The arc is considered warm once reclaim has occurred */
3688 if (unlikely(arc_warm == B_FALSE))
3689 arc_warm = B_TRUE;
7cb67b45 3690
302f753f 3691 /* Return the potential number of reclaimable pages */
ed6e9cc2 3692 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
3693 if (sc->nr_to_scan == 0)
3694 return (pages);
3fd70ee6
BB
3695
3696 /* Not allowed to perform filesystem reclaim */
7e7baeca 3697 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 3698 return (SHRINK_STOP);
3fd70ee6 3699
7cb67b45 3700 /* Reclaim in progress */
ca0bf58d 3701 if (mutex_tryenter(&arc_reclaim_lock) == 0)
ed6e9cc2 3702 return (SHRINK_STOP);
7cb67b45 3703
ca0bf58d
PS
3704 mutex_exit(&arc_reclaim_lock);
3705
302f753f
BB
3706 /*
3707 * Evict the requested number of pages by shrinking arc_c the
3708 * requested amount. If there is nothing left to evict just
3709 * reap whatever we can from the various arc slabs.
3710 */
3711 if (pages > 0) {
ca67b33a
MA
3712 arc_shrink(ptob(sc->nr_to_scan));
3713 arc_kmem_reap_now();
ed6e9cc2
TC
3714#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3715 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3716#else
1e3cb67b 3717 pages = btop(arc_evictable_memory());
ed6e9cc2 3718#endif
302f753f 3719 } else {
ca67b33a 3720 arc_kmem_reap_now();
ed6e9cc2 3721 pages = SHRINK_STOP;
302f753f
BB
3722 }
3723
ca0bf58d
PS
3724 /*
3725 * We've reaped what we can, wake up threads.
3726 */
3727 cv_broadcast(&arc_reclaim_waiters_cv);
3728
302f753f
BB
3729 /*
3730 * When direct reclaim is observed it usually indicates a rapid
3731 * increase in memory pressure. This occurs because the kswapd
3732 * threads were unable to asynchronously keep enough free memory
3733 * available. In this case set arc_no_grow to briefly pause arc
3734 * growth to avoid compounding the memory pressure.
3735 */
7cb67b45 3736 if (current_is_kswapd()) {
302f753f 3737 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 3738 } else {
302f753f 3739 arc_no_grow = B_TRUE;
11f552fa 3740 arc_need_free = ptob(sc->nr_to_scan);
302f753f 3741 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
3742 }
3743
1e3cb67b 3744 return (pages);
7cb67b45 3745}
7e7baeca 3746SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
3747
3748SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3749#endif /* _KERNEL */
3750
34dc7c2f
BB
3751/*
3752 * Adapt arc info given the number of bytes we are trying to add and
3753 * the state that we are comming from. This function is only called
3754 * when we are adding new content to the cache.
3755 */
3756static void
3757arc_adapt(int bytes, arc_state_t *state)
3758{
3759 int mult;
728d6ae9 3760 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
36da08ef
PS
3761 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3762 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f
BB
3763
3764 if (state == arc_l2c_only)
3765 return;
3766
3767 ASSERT(bytes > 0);
3768 /*
3769 * Adapt the target size of the MRU list:
3770 * - if we just hit in the MRU ghost list, then increase
3771 * the target size of the MRU list.
3772 * - if we just hit in the MFU ghost list, then increase
3773 * the target size of the MFU list by decreasing the
3774 * target size of the MRU list.
3775 */
3776 if (state == arc_mru_ghost) {
36da08ef 3777 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
3778 if (!zfs_arc_p_dampener_disable)
3779 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 3780
728d6ae9 3781 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 3782 } else if (state == arc_mfu_ghost) {
d164b209
BB
3783 uint64_t delta;
3784
36da08ef 3785 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
3786 if (!zfs_arc_p_dampener_disable)
3787 mult = MIN(mult, 10);
34dc7c2f 3788
d164b209 3789 delta = MIN(bytes * mult, arc_p);
728d6ae9 3790 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
3791 }
3792 ASSERT((int64_t)arc_p >= 0);
3793
ca67b33a
MA
3794 if (arc_reclaim_needed()) {
3795 cv_signal(&arc_reclaim_thread_cv);
3796 return;
3797 }
3798
34dc7c2f
BB
3799 if (arc_no_grow)
3800 return;
3801
3802 if (arc_c >= arc_c_max)
3803 return;
3804
3805 /*
3806 * If we're within (2 * maxblocksize) bytes of the target
3807 * cache size, increment the target cache size
3808 */
935434ef 3809 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
121b3cae 3810 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
3811 atomic_add_64(&arc_c, (int64_t)bytes);
3812 if (arc_c > arc_c_max)
3813 arc_c = arc_c_max;
3814 else if (state == arc_anon)
3815 atomic_add_64(&arc_p, (int64_t)bytes);
3816 if (arc_p > arc_c)
3817 arc_p = arc_c;
3818 }
3819 ASSERT((int64_t)arc_p >= 0);
3820}
3821
3822/*
ca0bf58d
PS
3823 * Check if arc_size has grown past our upper threshold, determined by
3824 * zfs_arc_overflow_shift.
34dc7c2f 3825 */
ca0bf58d
PS
3826static boolean_t
3827arc_is_overflowing(void)
34dc7c2f 3828{
ca0bf58d
PS
3829 /* Always allow at least one block of overflow */
3830 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3831 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 3832
ca0bf58d 3833 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
3834}
3835
3836/*
ca0bf58d
PS
3837 * The buffer, supplied as the first argument, needs a data block. If we
3838 * are hitting the hard limit for the cache size, we must sleep, waiting
3839 * for the eviction thread to catch up. If we're past the target size
3840 * but below the hard limit, we'll only signal the reclaim thread and
3841 * continue on.
34dc7c2f
BB
3842 */
3843static void
3844arc_get_data_buf(arc_buf_t *buf)
3845{
b9541d6b 3846 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 3847 uint64_t size = buf->b_hdr->b_size;
b9541d6b 3848 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
3849
3850 arc_adapt(size, state);
3851
3852 /*
ca0bf58d
PS
3853 * If arc_size is currently overflowing, and has grown past our
3854 * upper limit, we must be adding data faster than the evict
3855 * thread can evict. Thus, to ensure we don't compound the
3856 * problem by adding more data and forcing arc_size to grow even
3857 * further past it's target size, we halt and wait for the
3858 * eviction thread to catch up.
3859 *
3860 * It's also possible that the reclaim thread is unable to evict
3861 * enough buffers to get arc_size below the overflow limit (e.g.
3862 * due to buffers being un-evictable, or hash lock collisions).
3863 * In this case, we want to proceed regardless if we're
3864 * overflowing; thus we don't use a while loop here.
34dc7c2f 3865 */
ca0bf58d
PS
3866 if (arc_is_overflowing()) {
3867 mutex_enter(&arc_reclaim_lock);
3868
3869 /*
3870 * Now that we've acquired the lock, we may no longer be
3871 * over the overflow limit, lets check.
3872 *
3873 * We're ignoring the case of spurious wake ups. If that
3874 * were to happen, it'd let this thread consume an ARC
3875 * buffer before it should have (i.e. before we're under
3876 * the overflow limit and were signalled by the reclaim
3877 * thread). As long as that is a rare occurrence, it
3878 * shouldn't cause any harm.
3879 */
3880 if (arc_is_overflowing()) {
3881 cv_signal(&arc_reclaim_thread_cv);
3882 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 3883 }
34dc7c2f 3884
ca0bf58d 3885 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3886 }
ab26409d 3887
da8ccd0e 3888 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
3889 buf->b_data = zio_buf_alloc(size);
3890 arc_space_consume(size, ARC_SPACE_META);
3891 } else {
3892 ASSERT(type == ARC_BUFC_DATA);
3893 buf->b_data = zio_data_buf_alloc(size);
3894 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
3895 }
3896
34dc7c2f
BB
3897 /*
3898 * Update the state size. Note that ghost states have a
3899 * "ghost size" and so don't need to be updated.
3900 */
b9541d6b 3901 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
34dc7c2f 3902 arc_buf_hdr_t *hdr = buf->b_hdr;
36da08ef 3903 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 3904
36da08ef 3905 (void) refcount_add_many(&state->arcs_size, size, buf);
ca0bf58d
PS
3906
3907 /*
3908 * If this is reached via arc_read, the link is
3909 * protected by the hash lock. If reached via
3910 * arc_buf_alloc, the header should not be accessed by
3911 * any other thread. And, if reached via arc_read_done,
3912 * the hash lock will protect it if it's found in the
3913 * hash table; otherwise no other thread should be
3914 * trying to [add|remove]_reference it.
3915 */
3916 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b
CW
3917 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3918 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3919 size);
34dc7c2f
BB
3920 }
3921 /*
3922 * If we are growing the cache, and we are adding anonymous
3923 * data, and we have outgrown arc_p, update arc_p
3924 */
ca0bf58d 3925 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
36da08ef
PS
3926 (refcount_count(&arc_anon->arcs_size) +
3927 refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
3928 arc_p = MIN(arc_c, arc_p + size);
3929 }
3930}
3931
3932/*
3933 * This routine is called whenever a buffer is accessed.
3934 * NOTE: the hash lock is dropped in this function.
3935 */
3936static void
2a432414 3937arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3938{
428870ff
BB
3939 clock_t now;
3940
34dc7c2f 3941 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 3942 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 3943
b9541d6b 3944 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
3945 /*
3946 * This buffer is not in the cache, and does not
3947 * appear in our "ghost" list. Add the new buffer
3948 * to the MRU state.
3949 */
3950
b9541d6b
CW
3951 ASSERT0(hdr->b_l1hdr.b_arc_access);
3952 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3953 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3954 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 3955
b9541d6b 3956 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
3957 now = ddi_get_lbolt();
3958
34dc7c2f
BB
3959 /*
3960 * If this buffer is here because of a prefetch, then either:
3961 * - clear the flag if this is a "referencing" read
3962 * (any subsequent access will bump this into the MFU state).
3963 * or
3964 * - move the buffer to the head of the list if this is
3965 * another prefetch (to make it less likely to be evicted).
3966 */
b9541d6b
CW
3967 if (HDR_PREFETCH(hdr)) {
3968 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
3969 /* link protected by hash lock */
3970 ASSERT(multilist_link_active(
b9541d6b 3971 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 3972 } else {
2a432414 3973 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
b9541d6b 3974 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
3975 ARCSTAT_BUMP(arcstat_mru_hits);
3976 }
b9541d6b 3977 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
3978 return;
3979 }
3980
3981 /*
3982 * This buffer has been "accessed" only once so far,
3983 * but it is still in the cache. Move it to the MFU
3984 * state.
3985 */
b9541d6b
CW
3986 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3987 ARC_MINTIME)) {
34dc7c2f
BB
3988 /*
3989 * More than 125ms have passed since we
3990 * instantiated this buffer. Move it to the
3991 * most frequently used state.
3992 */
b9541d6b 3993 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
3994 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3995 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3996 }
b9541d6b 3997 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 3998 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 3999 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
4000 arc_state_t *new_state;
4001 /*
4002 * This buffer has been "accessed" recently, but
4003 * was evicted from the cache. Move it to the
4004 * MFU state.
4005 */
4006
b9541d6b 4007 if (HDR_PREFETCH(hdr)) {
34dc7c2f 4008 new_state = arc_mru;
b9541d6b 4009 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
2a432414
GW
4010 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
4011 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
4012 } else {
4013 new_state = arc_mfu;
2a432414 4014 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
4015 }
4016
b9541d6b 4017 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 4018 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 4019
b9541d6b 4020 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 4021 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 4022 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
4023 /*
4024 * This buffer has been accessed more than once and is
4025 * still in the cache. Keep it in the MFU state.
4026 *
4027 * NOTE: an add_reference() that occurred when we did
4028 * the arc_read() will have kicked this off the list.
4029 * If it was a prefetch, we will explicitly move it to
4030 * the head of the list now.
4031 */
b9541d6b
CW
4032 if ((HDR_PREFETCH(hdr)) != 0) {
4033 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
4034 /* link protected by hash_lock */
4035 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4036 }
b9541d6b 4037 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 4038 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
4039 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4040 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
4041 arc_state_t *new_state = arc_mfu;
4042 /*
4043 * This buffer has been accessed more than once but has
4044 * been evicted from the cache. Move it back to the
4045 * MFU state.
4046 */
4047
b9541d6b 4048 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
4049 /*
4050 * This is a prefetch access...
4051 * move this block back to the MRU state.
4052 */
b9541d6b 4053 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
4054 new_state = arc_mru;
4055 }
4056
b9541d6b 4057 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4058 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4059 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 4060
b9541d6b 4061 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 4062 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 4063 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
4064 /*
4065 * This buffer is on the 2nd Level ARC.
4066 */
4067
b9541d6b 4068 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4069 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4070 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 4071 } else {
b9541d6b
CW
4072 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4073 hdr->b_l1hdr.b_state);
34dc7c2f
BB
4074 }
4075}
4076
4077/* a generic arc_done_func_t which you can use */
4078/* ARGSUSED */
4079void
4080arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4081{
428870ff
BB
4082 if (zio == NULL || zio->io_error == 0)
4083 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 4084 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
4085}
4086
4087/* a generic arc_done_func_t */
4088void
4089arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4090{
4091 arc_buf_t **bufp = arg;
4092 if (zio && zio->io_error) {
13fe0198 4093 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
4094 *bufp = NULL;
4095 } else {
4096 *bufp = buf;
428870ff 4097 ASSERT(buf->b_data);
34dc7c2f
BB
4098 }
4099}
4100
4101static void
4102arc_read_done(zio_t *zio)
4103{
9b67f605 4104 arc_buf_hdr_t *hdr;
34dc7c2f
BB
4105 arc_buf_t *buf;
4106 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 4107 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
4108 arc_callback_t *callback_list, *acb;
4109 int freeable = FALSE;
4110
4111 buf = zio->io_private;
4112 hdr = buf->b_hdr;
4113
4114 /*
4115 * The hdr was inserted into hash-table and removed from lists
4116 * prior to starting I/O. We should find this header, since
4117 * it's in the hash table, and it should be legit since it's
4118 * not possible to evict it during the I/O. The only possible
4119 * reason for it not to be found is if we were freed during the
4120 * read.
4121 */
9b67f605
MA
4122 if (HDR_IN_HASH_TABLE(hdr)) {
4123 arc_buf_hdr_t *found;
4124
4125 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4126 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4127 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4128 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4129 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4130
4131 found = buf_hash_find(hdr->b_spa, zio->io_bp,
4132 &hash_lock);
4133
4134 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4135 hash_lock == NULL) ||
4136 (found == hdr &&
4137 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4138 (found == hdr && HDR_L2_READING(hdr)));
4139 }
34dc7c2f 4140
2a432414 4141 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
b9541d6b 4142 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
2a432414 4143 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
34dc7c2f
BB
4144
4145 /* byteswap if necessary */
b9541d6b 4146 callback_list = hdr->b_l1hdr.b_acb;
34dc7c2f 4147 ASSERT(callback_list != NULL);
428870ff 4148 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
4149 dmu_object_byteswap_t bswap =
4150 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
4151 if (BP_GET_LEVEL(zio->io_bp) > 0)
4152 byteswap_uint64_array(buf->b_data, hdr->b_size);
4153 else
4154 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 4155 }
34dc7c2f
BB
4156
4157 arc_cksum_compute(buf, B_FALSE);
498877ba 4158 arc_buf_watch(buf);
34dc7c2f 4159
b9541d6b
CW
4160 if (hash_lock && zio->io_error == 0 &&
4161 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
4162 /*
4163 * Only call arc_access on anonymous buffers. This is because
4164 * if we've issued an I/O for an evicted buffer, we've already
4165 * called arc_access (to prevent any simultaneous readers from
4166 * getting confused).
4167 */
4168 arc_access(hdr, hash_lock);
4169 }
4170
34dc7c2f
BB
4171 /* create copies of the data buffer for the callers */
4172 abuf = buf;
4173 for (acb = callback_list; acb; acb = acb->acb_next) {
4174 if (acb->acb_done) {
1eb5bfa3
GW
4175 if (abuf == NULL) {
4176 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 4177 abuf = arc_buf_clone(buf);
1eb5bfa3 4178 }
34dc7c2f
BB
4179 acb->acb_buf = abuf;
4180 abuf = NULL;
4181 }
4182 }
b9541d6b 4183 hdr->b_l1hdr.b_acb = NULL;
2a432414 4184 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4185 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
4186 if (abuf == buf) {
4187 ASSERT(buf->b_efunc == NULL);
b9541d6b 4188 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2a432414 4189 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 4190 }
34dc7c2f 4191
b9541d6b
CW
4192 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4193 callback_list != NULL);
34dc7c2f
BB
4194
4195 if (zio->io_error != 0) {
2a432414 4196 hdr->b_flags |= ARC_FLAG_IO_ERROR;
b9541d6b 4197 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
4198 arc_change_state(arc_anon, hdr, hash_lock);
4199 if (HDR_IN_HASH_TABLE(hdr))
4200 buf_hash_remove(hdr);
b9541d6b 4201 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
4202 }
4203
4204 /*
4205 * Broadcast before we drop the hash_lock to avoid the possibility
4206 * that the hdr (and hence the cv) might be freed before we get to
4207 * the cv_broadcast().
4208 */
b9541d6b 4209 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 4210
b9541d6b 4211 if (hash_lock != NULL) {
34dc7c2f
BB
4212 mutex_exit(hash_lock);
4213 } else {
4214 /*
4215 * This block was freed while we waited for the read to
4216 * complete. It has been removed from the hash table and
4217 * moved to the anonymous state (so that it won't show up
4218 * in the cache).
4219 */
b9541d6b
CW
4220 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4221 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
4222 }
4223
4224 /* execute each callback and free its structure */
4225 while ((acb = callback_list) != NULL) {
4226 if (acb->acb_done)
4227 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4228
4229 if (acb->acb_zio_dummy != NULL) {
4230 acb->acb_zio_dummy->io_error = zio->io_error;
4231 zio_nowait(acb->acb_zio_dummy);
4232 }
4233
4234 callback_list = acb->acb_next;
4235 kmem_free(acb, sizeof (arc_callback_t));
4236 }
4237
4238 if (freeable)
4239 arc_hdr_destroy(hdr);
4240}
4241
4242/*
5c839890 4243 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
4244 * cache. If the block is found in the cache, invoke the provided
4245 * callback immediately and return. Note that the `zio' parameter
4246 * in the callback will be NULL in this case, since no IO was
4247 * required. If the block is not in the cache pass the read request
4248 * on to the spa with a substitute callback function, so that the
4249 * requested block will be added to the cache.
4250 *
4251 * If a read request arrives for a block that has a read in-progress,
4252 * either wait for the in-progress read to complete (and return the
4253 * results); or, if this is a read with a "done" func, add a record
4254 * to the read to invoke the "done" func when the read completes,
4255 * and return; or just return.
4256 *
4257 * arc_read_done() will invoke all the requested "done" functions
4258 * for readers of this block.
4259 */
4260int
294f6806 4261arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2a432414
GW
4262 void *private, zio_priority_t priority, int zio_flags,
4263 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 4264{
9b67f605 4265 arc_buf_hdr_t *hdr = NULL;
d4ed6673 4266 arc_buf_t *buf = NULL;
9b67f605 4267 kmutex_t *hash_lock = NULL;
34dc7c2f 4268 zio_t *rzio;
3541dc6d 4269 uint64_t guid = spa_load_guid(spa);
1421c891 4270 int rc = 0;
34dc7c2f 4271
9b67f605
MA
4272 ASSERT(!BP_IS_EMBEDDED(bp) ||
4273 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4274
34dc7c2f 4275top:
9b67f605
MA
4276 if (!BP_IS_EMBEDDED(bp)) {
4277 /*
4278 * Embedded BP's have no DVA and require no I/O to "read".
4279 * Create an anonymous arc buf to back it.
4280 */
4281 hdr = buf_hash_find(guid, bp, &hash_lock);
4282 }
4283
b9541d6b 4284 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
34dc7c2f 4285
2a432414 4286 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
4287
4288 if (HDR_IO_IN_PROGRESS(hdr)) {
4289
7f60329a
MA
4290 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
4291 priority == ZIO_PRIORITY_SYNC_READ) {
4292 /*
4293 * This sync read must wait for an
4294 * in-progress async read (e.g. a predictive
4295 * prefetch). Async reads are queued
4296 * separately at the vdev_queue layer, so
4297 * this is a form of priority inversion.
4298 * Ideally, we would "inherit" the demand
4299 * i/o's priority by moving the i/o from
4300 * the async queue to the synchronous queue,
4301 * but there is currently no mechanism to do
4302 * so. Track this so that we can evaluate
4303 * the magnitude of this potential performance
4304 * problem.
4305 *
4306 * Note that if the prefetch i/o is already
4307 * active (has been issued to the device),
4308 * the prefetch improved performance, because
4309 * we issued it sooner than we would have
4310 * without the prefetch.
4311 */
4312 DTRACE_PROBE1(arc__sync__wait__for__async,
4313 arc_buf_hdr_t *, hdr);
4314 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
4315 }
4316 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4317 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4318 }
4319
2a432414 4320 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 4321 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
4322 mutex_exit(hash_lock);
4323 goto top;
4324 }
2a432414 4325 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4326
4327 if (done) {
7f60329a 4328 arc_callback_t *acb = NULL;
34dc7c2f
BB
4329
4330 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 4331 KM_SLEEP);
34dc7c2f
BB
4332 acb->acb_done = done;
4333 acb->acb_private = private;
34dc7c2f
BB
4334 if (pio != NULL)
4335 acb->acb_zio_dummy = zio_null(pio,
d164b209 4336 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
4337
4338 ASSERT(acb->acb_done != NULL);
b9541d6b
CW
4339 acb->acb_next = hdr->b_l1hdr.b_acb;
4340 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
4341 add_reference(hdr, hash_lock, private);
4342 mutex_exit(hash_lock);
1421c891 4343 goto out;
34dc7c2f
BB
4344 }
4345 mutex_exit(hash_lock);
1421c891 4346 goto out;
34dc7c2f
BB
4347 }
4348
b9541d6b
CW
4349 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4350 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
4351
4352 if (done) {
7f60329a
MA
4353 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
4354 /*
4355 * This is a demand read which does not have to
4356 * wait for i/o because we did a predictive
4357 * prefetch i/o for it, which has completed.
4358 */
4359 DTRACE_PROBE1(
4360 arc__demand__hit__predictive__prefetch,
4361 arc_buf_hdr_t *, hdr);
4362 ARCSTAT_BUMP(
4363 arcstat_demand_hit_predictive_prefetch);
4364 hdr->b_flags &= ~ARC_FLAG_PREDICTIVE_PREFETCH;
4365 }
34dc7c2f
BB
4366 add_reference(hdr, hash_lock, private);
4367 /*
4368 * If this block is already in use, create a new
4369 * copy of the data so that we will be guaranteed
4370 * that arc_release() will always succeed.
4371 */
b9541d6b 4372 buf = hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4373 ASSERT(buf);
4374 ASSERT(buf->b_data);
4375 if (HDR_BUF_AVAILABLE(hdr)) {
4376 ASSERT(buf->b_efunc == NULL);
2a432414 4377 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
34dc7c2f
BB
4378 } else {
4379 buf = arc_buf_clone(buf);
4380 }
428870ff 4381
2a432414 4382 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 4383 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
2a432414 4384 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
4385 }
4386 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4387 arc_access(hdr, hash_lock);
2a432414
GW
4388 if (*arc_flags & ARC_FLAG_L2CACHE)
4389 hdr->b_flags |= ARC_FLAG_L2CACHE;
4390 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4391 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4392 mutex_exit(hash_lock);
4393 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
4394 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4395 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4396 data, metadata, hits);
4397
4398 if (done)
4399 done(NULL, buf, private);
4400 } else {
4401 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 4402 arc_callback_t *acb;
b128c09f 4403 vdev_t *vd = NULL;
a117a6d6 4404 uint64_t addr = 0;
d164b209 4405 boolean_t devw = B_FALSE;
0ed212dc 4406 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
b9541d6b 4407 int32_t b_asize = 0;
34dc7c2f 4408
5f6d0b6f
BB
4409 /*
4410 * Gracefully handle a damaged logical block size as a
1cdb86cb 4411 * checksum error.
5f6d0b6f 4412 */
f1512ee6 4413 if (size > spa_maxblocksize(spa)) {
1cdb86cb
BB
4414 ASSERT3P(buf, ==, NULL);
4415 rc = SET_ERROR(ECKSUM);
5f6d0b6f
BB
4416 goto out;
4417 }
4418
34dc7c2f
BB
4419 if (hdr == NULL) {
4420 /* this block is not in the cache */
9b67f605 4421 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
4422 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4423 buf = arc_buf_alloc(spa, size, private, type);
4424 hdr = buf->b_hdr;
9b67f605
MA
4425 if (!BP_IS_EMBEDDED(bp)) {
4426 hdr->b_dva = *BP_IDENTITY(bp);
4427 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
4428 exists = buf_hash_insert(hdr, &hash_lock);
4429 }
4430 if (exists != NULL) {
34dc7c2f
BB
4431 /* somebody beat us to the hash insert */
4432 mutex_exit(hash_lock);
428870ff 4433 buf_discard_identity(hdr);
34dc7c2f
BB
4434 (void) arc_buf_remove_ref(buf, private);
4435 goto top; /* restart the IO request */
4436 }
2a432414 4437
7f60329a
MA
4438 /*
4439 * If there is a callback, we pass our reference to
4440 * it; otherwise we remove our reference.
4441 */
4442 if (done == NULL) {
34dc7c2f
BB
4443 (void) remove_reference(hdr, hash_lock,
4444 private);
34dc7c2f 4445 }
7f60329a
MA
4446 if (*arc_flags & ARC_FLAG_PREFETCH)
4447 hdr->b_flags |= ARC_FLAG_PREFETCH;
2a432414
GW
4448 if (*arc_flags & ARC_FLAG_L2CACHE)
4449 hdr->b_flags |= ARC_FLAG_L2CACHE;
4450 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4451 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f 4452 if (BP_GET_LEVEL(bp) > 0)
2a432414 4453 hdr->b_flags |= ARC_FLAG_INDIRECT;
34dc7c2f 4454 } else {
b9541d6b
CW
4455 /*
4456 * This block is in the ghost cache. If it was L2-only
4457 * (and thus didn't have an L1 hdr), we realloc the
4458 * header to add an L1 hdr.
4459 */
4460 if (!HDR_HAS_L1HDR(hdr)) {
4461 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4462 hdr_full_cache);
4463 }
4464
4465 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
34dc7c2f 4466 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b 4467 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 4468 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
34dc7c2f 4469
7f60329a
MA
4470 /*
4471 * If there is a callback, we pass a reference to it.
4472 */
4473 if (done != NULL)
4474 add_reference(hdr, hash_lock, private);
2a432414
GW
4475 if (*arc_flags & ARC_FLAG_PREFETCH)
4476 hdr->b_flags |= ARC_FLAG_PREFETCH;
2a432414
GW
4477 if (*arc_flags & ARC_FLAG_L2CACHE)
4478 hdr->b_flags |= ARC_FLAG_L2CACHE;
4479 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4480 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4481 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4482 buf->b_hdr = hdr;
4483 buf->b_data = NULL;
4484 buf->b_efunc = NULL;
4485 buf->b_private = NULL;
4486 buf->b_next = NULL;
b9541d6b
CW
4487 hdr->b_l1hdr.b_buf = buf;
4488 ASSERT0(hdr->b_l1hdr.b_datacnt);
4489 hdr->b_l1hdr.b_datacnt = 1;
428870ff
BB
4490 arc_get_data_buf(buf);
4491 arc_access(hdr, hash_lock);
34dc7c2f
BB
4492 }
4493
7f60329a
MA
4494 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
4495 hdr->b_flags |= ARC_FLAG_PREDICTIVE_PREFETCH;
b9541d6b 4496 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 4497
79c76d5b 4498 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
4499 acb->acb_done = done;
4500 acb->acb_private = private;
34dc7c2f 4501
b9541d6b
CW
4502 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4503 hdr->b_l1hdr.b_acb = acb;
2a432414 4504 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4505
b9541d6b
CW
4506 if (HDR_HAS_L2HDR(hdr) &&
4507 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4508 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4509 addr = hdr->b_l2hdr.b_daddr;
4e0f33ff 4510 b_compress = hdr->b_l2hdr.b_compress;
b9541d6b 4511 b_asize = hdr->b_l2hdr.b_asize;
b128c09f
BB
4512 /*
4513 * Lock out device removal.
4514 */
4515 if (vdev_is_dead(vd) ||
4516 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4517 vd = NULL;
4518 }
4519
9b67f605
MA
4520 if (hash_lock != NULL)
4521 mutex_exit(hash_lock);
b128c09f 4522
e49f1e20
WA
4523 /*
4524 * At this point, we have a level 1 cache miss. Try again in
4525 * L2ARC if possible.
4526 */
34dc7c2f 4527 ASSERT3U(hdr->b_size, ==, size);
428870ff 4528 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 4529 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f 4530 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
4531 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4532 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4533 data, metadata, misses);
4534
7f60329a
MA
4535 if (priority == ZIO_PRIORITY_ASYNC_READ)
4536 hdr->b_flags |= ARC_FLAG_PRIO_ASYNC_READ;
4537 else
4538 hdr->b_flags &= ~ARC_FLAG_PRIO_ASYNC_READ;
4539
d164b209 4540 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
4541 /*
4542 * Read from the L2ARC if the following are true:
b128c09f
BB
4543 * 1. The L2ARC vdev was previously cached.
4544 * 2. This buffer still has L2ARC metadata.
4545 * 3. This buffer isn't currently writing to the L2ARC.
4546 * 4. The L2ARC entry wasn't evicted, which may
4547 * also have invalidated the vdev.
d164b209 4548 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 4549 */
b9541d6b 4550 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
4551 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4552 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
4553 l2arc_read_callback_t *cb;
4554
4555 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4556 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 4557 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 4558
34dc7c2f 4559 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 4560 KM_SLEEP);
34dc7c2f
BB
4561 cb->l2rcb_buf = buf;
4562 cb->l2rcb_spa = spa;
4563 cb->l2rcb_bp = *bp;
4564 cb->l2rcb_zb = *zb;
b128c09f 4565 cb->l2rcb_flags = zio_flags;
0ed212dc 4566 cb->l2rcb_compress = b_compress;
34dc7c2f 4567
a117a6d6
GW
4568 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4569 addr + size < vd->vdev_psize -
4570 VDEV_LABEL_END_SIZE);
4571
34dc7c2f 4572 /*
b128c09f
BB
4573 * l2arc read. The SCL_L2ARC lock will be
4574 * released by l2arc_read_done().
3a17a7a9
SK
4575 * Issue a null zio if the underlying buffer
4576 * was squashed to zero size by compression.
34dc7c2f 4577 */
0ed212dc 4578 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
4579 rzio = zio_null(pio, spa, vd,
4580 l2arc_read_done, cb,
4581 zio_flags | ZIO_FLAG_DONT_CACHE |
4582 ZIO_FLAG_CANFAIL |
4583 ZIO_FLAG_DONT_PROPAGATE |
4584 ZIO_FLAG_DONT_RETRY);
4585 } else {
4586 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
4587 b_asize, buf->b_data,
4588 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
4589 l2arc_read_done, cb, priority,
4590 zio_flags | ZIO_FLAG_DONT_CACHE |
4591 ZIO_FLAG_CANFAIL |
4592 ZIO_FLAG_DONT_PROPAGATE |
4593 ZIO_FLAG_DONT_RETRY, B_FALSE);
4594 }
34dc7c2f
BB
4595 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4596 zio_t *, rzio);
0ed212dc 4597 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 4598
2a432414 4599 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 4600 zio_nowait(rzio);
1421c891 4601 goto out;
b128c09f 4602 }
34dc7c2f 4603
2a432414 4604 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 4605 if (zio_wait(rzio) == 0)
1421c891 4606 goto out;
b128c09f
BB
4607
4608 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
4609 } else {
4610 DTRACE_PROBE1(l2arc__miss,
4611 arc_buf_hdr_t *, hdr);
4612 ARCSTAT_BUMP(arcstat_l2_misses);
4613 if (HDR_L2_WRITING(hdr))
4614 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 4615 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 4616 }
d164b209
BB
4617 } else {
4618 if (vd != NULL)
4619 spa_config_exit(spa, SCL_L2ARC, vd);
4620 if (l2arc_ndev != 0) {
4621 DTRACE_PROBE1(l2arc__miss,
4622 arc_buf_hdr_t *, hdr);
4623 ARCSTAT_BUMP(arcstat_l2_misses);
4624 }
34dc7c2f 4625 }
34dc7c2f
BB
4626
4627 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 4628 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 4629
2a432414 4630 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
4631 rc = zio_wait(rzio);
4632 goto out;
4633 }
34dc7c2f 4634
2a432414 4635 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4636 zio_nowait(rzio);
4637 }
1421c891
PS
4638
4639out:
4640 spa_read_history_add(spa, zb, *arc_flags);
4641 return (rc);
34dc7c2f
BB
4642}
4643
ab26409d
BB
4644arc_prune_t *
4645arc_add_prune_callback(arc_prune_func_t *func, void *private)
4646{
4647 arc_prune_t *p;
4648
d1d7e268 4649 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
4650 p->p_pfunc = func;
4651 p->p_private = private;
4652 list_link_init(&p->p_node);
4653 refcount_create(&p->p_refcnt);
4654
4655 mutex_enter(&arc_prune_mtx);
4656 refcount_add(&p->p_refcnt, &arc_prune_list);
4657 list_insert_head(&arc_prune_list, p);
4658 mutex_exit(&arc_prune_mtx);
4659
4660 return (p);
4661}
4662
4663void
4664arc_remove_prune_callback(arc_prune_t *p)
4665{
4442f60d 4666 boolean_t wait = B_FALSE;
ab26409d
BB
4667 mutex_enter(&arc_prune_mtx);
4668 list_remove(&arc_prune_list, p);
4442f60d
CC
4669 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
4670 wait = B_TRUE;
ab26409d 4671 mutex_exit(&arc_prune_mtx);
4442f60d
CC
4672
4673 /* wait for arc_prune_task to finish */
4674 if (wait)
4675 taskq_wait_outstanding(arc_prune_taskq, 0);
4676 ASSERT0(refcount_count(&p->p_refcnt));
4677 refcount_destroy(&p->p_refcnt);
4678 kmem_free(p, sizeof (*p));
ab26409d
BB
4679}
4680
34dc7c2f
BB
4681void
4682arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4683{
4684 ASSERT(buf->b_hdr != NULL);
b9541d6b
CW
4685 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4686 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4687 func == NULL);
428870ff
BB
4688 ASSERT(buf->b_efunc == NULL);
4689 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4690
34dc7c2f
BB
4691 buf->b_efunc = func;
4692 buf->b_private = private;
4693}
4694
df4474f9
MA
4695/*
4696 * Notify the arc that a block was freed, and thus will never be used again.
4697 */
4698void
4699arc_freed(spa_t *spa, const blkptr_t *bp)
4700{
4701 arc_buf_hdr_t *hdr;
4702 kmutex_t *hash_lock;
4703 uint64_t guid = spa_load_guid(spa);
4704
9b67f605
MA
4705 ASSERT(!BP_IS_EMBEDDED(bp));
4706
4707 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
4708 if (hdr == NULL)
4709 return;
4710 if (HDR_BUF_AVAILABLE(hdr)) {
b9541d6b 4711 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
df4474f9 4712 add_reference(hdr, hash_lock, FTAG);
2a432414 4713 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
df4474f9
MA
4714 mutex_exit(hash_lock);
4715
4716 arc_release(buf, FTAG);
4717 (void) arc_buf_remove_ref(buf, FTAG);
4718 } else {
4719 mutex_exit(hash_lock);
4720 }
4721
4722}
4723
34dc7c2f 4724/*
bd089c54
MA
4725 * Clear the user eviction callback set by arc_set_callback(), first calling
4726 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4727 * clearing the callback may result in the arc_buf being destroyed. However,
4728 * it will not result in the *last* arc_buf being destroyed, hence the data
4729 * will remain cached in the ARC. We make a copy of the arc buffer here so
4730 * that we can process the callback without holding any locks.
4731 *
4732 * It's possible that the callback is already in the process of being cleared
4733 * by another thread. In this case we can not clear the callback.
4734 *
4735 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 4736 */
bd089c54
MA
4737boolean_t
4738arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
4739{
4740 arc_buf_hdr_t *hdr;
4741 kmutex_t *hash_lock;
bd089c54
MA
4742 arc_evict_func_t *efunc = buf->b_efunc;
4743 void *private = buf->b_private;
34dc7c2f 4744
428870ff 4745 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
4746 hdr = buf->b_hdr;
4747 if (hdr == NULL) {
4748 /*
4749 * We are in arc_do_user_evicts().
4750 */
4751 ASSERT(buf->b_data == NULL);
428870ff 4752 mutex_exit(&buf->b_evict_lock);
bd089c54 4753 return (B_FALSE);
b128c09f 4754 } else if (buf->b_data == NULL) {
34dc7c2f 4755 /*
b128c09f
BB
4756 * We are on the eviction list; process this buffer now
4757 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 4758 */
b128c09f 4759 buf->b_efunc = NULL;
428870ff 4760 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
4761 VERIFY0(efunc(private));
4762 return (B_TRUE);
34dc7c2f 4763 }
b128c09f
BB
4764 hash_lock = HDR_LOCK(hdr);
4765 mutex_enter(hash_lock);
428870ff
BB
4766 hdr = buf->b_hdr;
4767 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4768
b9541d6b
CW
4769 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4770 hdr->b_l1hdr.b_datacnt);
4771 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4772 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 4773
bd089c54
MA
4774 buf->b_efunc = NULL;
4775 buf->b_private = NULL;
34dc7c2f 4776
b9541d6b 4777 if (hdr->b_l1hdr.b_datacnt > 1) {
bd089c54 4778 mutex_exit(&buf->b_evict_lock);
ca0bf58d 4779 arc_buf_destroy(buf, TRUE);
bd089c54 4780 } else {
b9541d6b 4781 ASSERT(buf == hdr->b_l1hdr.b_buf);
2a432414 4782 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
bd089c54 4783 mutex_exit(&buf->b_evict_lock);
34dc7c2f 4784 }
34dc7c2f 4785
bd089c54
MA
4786 mutex_exit(hash_lock);
4787 VERIFY0(efunc(private));
4788 return (B_TRUE);
34dc7c2f
BB
4789}
4790
4791/*
e49f1e20
WA
4792 * Release this buffer from the cache, making it an anonymous buffer. This
4793 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 4794 * If the buffer has more than one reference, we must make
b128c09f 4795 * a new hdr for the buffer.
34dc7c2f
BB
4796 */
4797void
4798arc_release(arc_buf_t *buf, void *tag)
4799{
b9541d6b
CW
4800 kmutex_t *hash_lock;
4801 arc_state_t *state;
4802 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 4803
428870ff 4804 /*
ca0bf58d 4805 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
4806 * 0 || it's the dnode file), then it must be syncing context.
4807 * But we don't know that information at this level.
4808 */
4809
4810 mutex_enter(&buf->b_evict_lock);
b128c09f 4811
ca0bf58d
PS
4812 ASSERT(HDR_HAS_L1HDR(hdr));
4813
b9541d6b
CW
4814 /*
4815 * We don't grab the hash lock prior to this check, because if
4816 * the buffer's header is in the arc_anon state, it won't be
4817 * linked into the hash table.
4818 */
4819 if (hdr->b_l1hdr.b_state == arc_anon) {
4820 mutex_exit(&buf->b_evict_lock);
4821 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4822 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4823 ASSERT(!HDR_HAS_L2HDR(hdr));
4824 ASSERT(BUF_EMPTY(hdr));
34dc7c2f 4825
b9541d6b
CW
4826 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4827 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4828 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4829
4830 ASSERT3P(buf->b_efunc, ==, NULL);
4831 ASSERT3P(buf->b_private, ==, NULL);
4832
4833 hdr->b_l1hdr.b_arc_access = 0;
4834 arc_buf_thaw(buf);
4835
4836 return;
34dc7c2f
BB
4837 }
4838
b9541d6b
CW
4839 hash_lock = HDR_LOCK(hdr);
4840 mutex_enter(hash_lock);
4841
4842 /*
4843 * This assignment is only valid as long as the hash_lock is
4844 * held, we must be careful not to reference state or the
4845 * b_state field after dropping the lock.
4846 */
4847 state = hdr->b_l1hdr.b_state;
4848 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4849 ASSERT3P(state, !=, arc_anon);
4850
4851 /* this buffer is not on any list */
4852 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4853
4854 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 4855 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
4856
4857 /*
d962d5da
PS
4858 * We have to recheck this conditional again now that
4859 * we're holding the l2ad_mtx to prevent a race with
4860 * another thread which might be concurrently calling
4861 * l2arc_evict(). In that case, l2arc_evict() might have
4862 * destroyed the header's L2 portion as we were waiting
4863 * to acquire the l2ad_mtx.
ca0bf58d 4864 */
d962d5da
PS
4865 if (HDR_HAS_L2HDR(hdr))
4866 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 4867
b9541d6b 4868 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
4869 }
4870
34dc7c2f
BB
4871 /*
4872 * Do we have more than one buf?
4873 */
b9541d6b 4874 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f
BB
4875 arc_buf_hdr_t *nhdr;
4876 arc_buf_t **bufp;
4877 uint64_t blksz = hdr->b_size;
d164b209 4878 uint64_t spa = hdr->b_spa;
b9541d6b 4879 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
4880 uint32_t flags = hdr->b_flags;
4881
b9541d6b 4882 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
34dc7c2f 4883 /*
428870ff
BB
4884 * Pull the data off of this hdr and attach it to
4885 * a new anonymous hdr.
34dc7c2f
BB
4886 */
4887 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 4888 bufp = &hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4889 while (*bufp != buf)
4890 bufp = &(*bufp)->b_next;
428870ff 4891 *bufp = buf->b_next;
34dc7c2f
BB
4892 buf->b_next = NULL;
4893
b9541d6b 4894 ASSERT3P(state, !=, arc_l2c_only);
36da08ef
PS
4895
4896 (void) refcount_remove_many(
4897 &state->arcs_size, hdr->b_size, buf);
4898
b9541d6b
CW
4899 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4900 uint64_t *size;
4901
4902 ASSERT3P(state, !=, arc_l2c_only);
4903 size = &state->arcs_lsize[type];
34dc7c2f
BB
4904 ASSERT3U(*size, >=, hdr->b_size);
4905 atomic_add_64(size, -hdr->b_size);
4906 }
1eb5bfa3
GW
4907
4908 /*
4909 * We're releasing a duplicate user data buffer, update
4910 * our statistics accordingly.
4911 */
b9541d6b 4912 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
4913 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4914 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4915 -hdr->b_size);
4916 }
b9541d6b 4917 hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f 4918 arc_cksum_verify(buf);
498877ba 4919 arc_buf_unwatch(buf);
34dc7c2f
BB
4920
4921 mutex_exit(hash_lock);
4922
b9541d6b 4923 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f
BB
4924 nhdr->b_size = blksz;
4925 nhdr->b_spa = spa;
b9541d6b
CW
4926
4927 nhdr->b_l1hdr.b_mru_hits = 0;
4928 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4929 nhdr->b_l1hdr.b_mfu_hits = 0;
4930 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4931 nhdr->b_l1hdr.b_l2_hits = 0;
2a432414 4932 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
b9541d6b
CW
4933 nhdr->b_flags |= arc_bufc_to_flags(type);
4934 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4935
4936 nhdr->b_l1hdr.b_buf = buf;
4937 nhdr->b_l1hdr.b_datacnt = 1;
4938 nhdr->b_l1hdr.b_state = arc_anon;
4939 nhdr->b_l1hdr.b_arc_access = 0;
ca0bf58d 4940 nhdr->b_l1hdr.b_tmp_cdata = NULL;
34dc7c2f 4941 nhdr->b_freeze_cksum = NULL;
b9541d6b
CW
4942
4943 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 4944 buf->b_hdr = nhdr;
428870ff 4945 mutex_exit(&buf->b_evict_lock);
36da08ef 4946 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
34dc7c2f 4947 } else {
428870ff 4948 mutex_exit(&buf->b_evict_lock);
b9541d6b 4949 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
4950 /* protected by hash lock, or hdr is on arc_anon */
4951 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4952 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
4953 hdr->b_l1hdr.b_mru_hits = 0;
4954 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4955 hdr->b_l1hdr.b_mfu_hits = 0;
4956 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4957 hdr->b_l1hdr.b_l2_hits = 0;
4958 arc_change_state(arc_anon, hdr, hash_lock);
4959 hdr->b_l1hdr.b_arc_access = 0;
4960 mutex_exit(hash_lock);
34dc7c2f 4961
428870ff 4962 buf_discard_identity(hdr);
34dc7c2f
BB
4963 arc_buf_thaw(buf);
4964 }
4965 buf->b_efunc = NULL;
4966 buf->b_private = NULL;
34dc7c2f
BB
4967}
4968
4969int
4970arc_released(arc_buf_t *buf)
4971{
b128c09f
BB
4972 int released;
4973
428870ff 4974 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
4975 released = (buf->b_data != NULL &&
4976 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 4977 mutex_exit(&buf->b_evict_lock);
b128c09f 4978 return (released);
34dc7c2f
BB
4979}
4980
34dc7c2f
BB
4981#ifdef ZFS_DEBUG
4982int
4983arc_referenced(arc_buf_t *buf)
4984{
b128c09f
BB
4985 int referenced;
4986
428870ff 4987 mutex_enter(&buf->b_evict_lock);
b9541d6b 4988 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 4989 mutex_exit(&buf->b_evict_lock);
b128c09f 4990 return (referenced);
34dc7c2f
BB
4991}
4992#endif
4993
4994static void
4995arc_write_ready(zio_t *zio)
4996{
4997 arc_write_callback_t *callback = zio->io_private;
4998 arc_buf_t *buf = callback->awcb_buf;
4999 arc_buf_hdr_t *hdr = buf->b_hdr;
5000
b9541d6b
CW
5001 ASSERT(HDR_HAS_L1HDR(hdr));
5002 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5003 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f
BB
5004 callback->awcb_ready(zio, buf, callback->awcb_private);
5005
34dc7c2f
BB
5006 /*
5007 * If the IO is already in progress, then this is a re-write
b128c09f
BB
5008 * attempt, so we need to thaw and re-compute the cksum.
5009 * It is the responsibility of the callback to handle the
5010 * accounting for any re-write attempt.
34dc7c2f
BB
5011 */
5012 if (HDR_IO_IN_PROGRESS(hdr)) {
b9541d6b 5013 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
5014 if (hdr->b_freeze_cksum != NULL) {
5015 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
5016 hdr->b_freeze_cksum = NULL;
5017 }
b9541d6b 5018 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
5019 }
5020 arc_cksum_compute(buf, B_FALSE);
2a432414 5021 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
5022}
5023
bc77ba73
PD
5024static void
5025arc_write_children_ready(zio_t *zio)
5026{
5027 arc_write_callback_t *callback = zio->io_private;
5028 arc_buf_t *buf = callback->awcb_buf;
5029
5030 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5031}
5032
e8b96c60
MA
5033/*
5034 * The SPA calls this callback for each physical write that happens on behalf
5035 * of a logical write. See the comment in dbuf_write_physdone() for details.
5036 */
5037static void
5038arc_write_physdone(zio_t *zio)
5039{
5040 arc_write_callback_t *cb = zio->io_private;
5041 if (cb->awcb_physdone != NULL)
5042 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5043}
5044
34dc7c2f
BB
5045static void
5046arc_write_done(zio_t *zio)
5047{
5048 arc_write_callback_t *callback = zio->io_private;
5049 arc_buf_t *buf = callback->awcb_buf;
5050 arc_buf_hdr_t *hdr = buf->b_hdr;
5051
b9541d6b 5052 ASSERT(hdr->b_l1hdr.b_acb == NULL);
428870ff
BB
5053
5054 if (zio->io_error == 0) {
9b67f605 5055 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
5056 buf_discard_identity(hdr);
5057 } else {
5058 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5059 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 5060 }
428870ff
BB
5061 } else {
5062 ASSERT(BUF_EMPTY(hdr));
5063 }
34dc7c2f 5064
34dc7c2f 5065 /*
9b67f605
MA
5066 * If the block to be written was all-zero or compressed enough to be
5067 * embedded in the BP, no write was performed so there will be no
5068 * dva/birth/checksum. The buffer must therefore remain anonymous
5069 * (and uncached).
34dc7c2f
BB
5070 */
5071 if (!BUF_EMPTY(hdr)) {
5072 arc_buf_hdr_t *exists;
5073 kmutex_t *hash_lock;
5074
428870ff
BB
5075 ASSERT(zio->io_error == 0);
5076
34dc7c2f
BB
5077 arc_cksum_verify(buf);
5078
5079 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 5080 if (exists != NULL) {
34dc7c2f
BB
5081 /*
5082 * This can only happen if we overwrite for
5083 * sync-to-convergence, because we remove
5084 * buffers from the hash table when we arc_free().
5085 */
428870ff
BB
5086 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5087 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5088 panic("bad overwrite, hdr=%p exists=%p",
5089 (void *)hdr, (void *)exists);
b9541d6b
CW
5090 ASSERT(refcount_is_zero(
5091 &exists->b_l1hdr.b_refcnt));
428870ff
BB
5092 arc_change_state(arc_anon, exists, hash_lock);
5093 mutex_exit(hash_lock);
5094 arc_hdr_destroy(exists);
5095 exists = buf_hash_insert(hdr, &hash_lock);
5096 ASSERT3P(exists, ==, NULL);
03c6040b
GW
5097 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5098 /* nopwrite */
5099 ASSERT(zio->io_prop.zp_nopwrite);
5100 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5101 panic("bad nopwrite, hdr=%p exists=%p",
5102 (void *)hdr, (void *)exists);
428870ff
BB
5103 } else {
5104 /* Dedup */
b9541d6b
CW
5105 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5106 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
5107 ASSERT(BP_GET_DEDUP(zio->io_bp));
5108 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5109 }
34dc7c2f 5110 }
2a432414 5111 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
b128c09f 5112 /* if it's not anon, we are doing a scrub */
b9541d6b 5113 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 5114 arc_access(hdr, hash_lock);
34dc7c2f 5115 mutex_exit(hash_lock);
34dc7c2f 5116 } else {
2a432414 5117 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
5118 }
5119
b9541d6b 5120 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 5121 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
5122
5123 kmem_free(callback, sizeof (arc_write_callback_t));
5124}
5125
5126zio_t *
428870ff 5127arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 5128 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
bc77ba73
PD
5129 const zio_prop_t *zp, arc_done_func_t *ready,
5130 arc_done_func_t *children_ready, arc_done_func_t *physdone,
e8b96c60 5131 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 5132 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
5133{
5134 arc_buf_hdr_t *hdr = buf->b_hdr;
5135 arc_write_callback_t *callback;
b128c09f 5136 zio_t *zio;
34dc7c2f 5137
b128c09f 5138 ASSERT(ready != NULL);
428870ff 5139 ASSERT(done != NULL);
34dc7c2f 5140 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b
CW
5141 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5142 ASSERT(hdr->b_l1hdr.b_acb == NULL);
5143 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f 5144 if (l2arc)
2a432414 5145 hdr->b_flags |= ARC_FLAG_L2CACHE;
3a17a7a9 5146 if (l2arc_compress)
2a432414 5147 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
79c76d5b 5148 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 5149 callback->awcb_ready = ready;
bc77ba73 5150 callback->awcb_children_ready = children_ready;
e8b96c60 5151 callback->awcb_physdone = physdone;
34dc7c2f
BB
5152 callback->awcb_done = done;
5153 callback->awcb_private = private;
5154 callback->awcb_buf = buf;
b128c09f 5155
428870ff 5156 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
bc77ba73
PD
5157 arc_write_ready,
5158 (children_ready != NULL) ? arc_write_children_ready : NULL,
5159 arc_write_physdone, arc_write_done, callback,
e8b96c60 5160 priority, zio_flags, zb);
34dc7c2f
BB
5161
5162 return (zio);
5163}
5164
34dc7c2f 5165static int
e8b96c60 5166arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
5167{
5168#ifdef _KERNEL
7e8bddd0
BB
5169 uint64_t available_memory = ptob(freemem);
5170 static uint64_t page_load = 0;
5171 static uint64_t last_txg = 0;
5172#ifdef __linux__
5173 pgcnt_t minfree = btop(arc_sys_free / 4);
5174#endif
0c5493d4 5175
ca67b33a
MA
5176 if (freemem > physmem * arc_lotsfree_percent / 100)
5177 return (0);
5178
7e8bddd0
BB
5179 if (txg > last_txg) {
5180 last_txg = txg;
5181 page_load = 0;
5182 }
5183
5184 /*
5185 * If we are in pageout, we know that memory is already tight,
5186 * the arc is already going to be evicting, so we just want to
5187 * continue to let page writes occur as quickly as possible.
5188 */
5189 if (current_is_kswapd()) {
5190 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
5191 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5192 return (SET_ERROR(ERESTART));
5193 }
5194 /* Note: reserve is inflated, so we deflate */
5195 page_load += reserve / 8;
5196 return (0);
5197 } else if (page_load > 0 && arc_reclaim_needed()) {
ca67b33a 5198 /* memory is low, delay before restarting */
34dc7c2f 5199 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 5200 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 5201 return (SET_ERROR(EAGAIN));
34dc7c2f 5202 }
7e8bddd0 5203 page_load = 0;
34dc7c2f
BB
5204#endif
5205 return (0);
5206}
5207
5208void
5209arc_tempreserve_clear(uint64_t reserve)
5210{
5211 atomic_add_64(&arc_tempreserve, -reserve);
5212 ASSERT((int64_t)arc_tempreserve >= 0);
5213}
5214
5215int
5216arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5217{
5218 int error;
9babb374 5219 uint64_t anon_size;
34dc7c2f 5220
1b8951b3
TC
5221 if (!arc_no_grow &&
5222 reserve > arc_c/4 &&
5223 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 5224 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
5225
5226 /*
5227 * Throttle when the calculated memory footprint for the TXG
5228 * exceeds the target ARC size.
5229 */
570827e1
BB
5230 if (reserve > arc_c) {
5231 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 5232 return (SET_ERROR(ERESTART));
570827e1 5233 }
34dc7c2f 5234
9babb374
BB
5235 /*
5236 * Don't count loaned bufs as in flight dirty data to prevent long
5237 * network delays from blocking transactions that are ready to be
5238 * assigned to a txg.
5239 */
36da08ef
PS
5240 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5241 arc_loaned_bytes), 0);
9babb374 5242
34dc7c2f
BB
5243 /*
5244 * Writes will, almost always, require additional memory allocations
d3cc8b15 5245 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
5246 * make sure that there is sufficient available memory for this.
5247 */
e8b96c60
MA
5248 error = arc_memory_throttle(reserve, txg);
5249 if (error != 0)
34dc7c2f
BB
5250 return (error);
5251
5252 /*
5253 * Throttle writes when the amount of dirty data in the cache
5254 * gets too large. We try to keep the cache less than half full
5255 * of dirty blocks so that our sync times don't grow too large.
5256 * Note: if two requests come in concurrently, we might let them
5257 * both succeed, when one of them should fail. Not a huge deal.
5258 */
9babb374
BB
5259
5260 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5261 anon_size > arc_c / 4) {
34dc7c2f
BB
5262 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5263 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5264 arc_tempreserve>>10,
5265 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5266 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5267 reserve>>10, arc_c>>10);
570827e1 5268 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 5269 return (SET_ERROR(ERESTART));
34dc7c2f
BB
5270 }
5271 atomic_add_64(&arc_tempreserve, reserve);
5272 return (0);
5273}
5274
13be560d
BB
5275static void
5276arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5277 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5278{
36da08ef 5279 size->value.ui64 = refcount_count(&state->arcs_size);
13be560d
BB
5280 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5281 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5282}
5283
5284static int
5285arc_kstat_update(kstat_t *ksp, int rw)
5286{
5287 arc_stats_t *as = ksp->ks_data;
5288
5289 if (rw == KSTAT_WRITE) {
500445c0 5290 return (EACCES);
13be560d
BB
5291 } else {
5292 arc_kstat_update_state(arc_anon,
5293 &as->arcstat_anon_size,
500445c0
PS
5294 &as->arcstat_anon_evictable_data,
5295 &as->arcstat_anon_evictable_metadata);
13be560d
BB
5296 arc_kstat_update_state(arc_mru,
5297 &as->arcstat_mru_size,
500445c0
PS
5298 &as->arcstat_mru_evictable_data,
5299 &as->arcstat_mru_evictable_metadata);
13be560d
BB
5300 arc_kstat_update_state(arc_mru_ghost,
5301 &as->arcstat_mru_ghost_size,
500445c0
PS
5302 &as->arcstat_mru_ghost_evictable_data,
5303 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
5304 arc_kstat_update_state(arc_mfu,
5305 &as->arcstat_mfu_size,
500445c0
PS
5306 &as->arcstat_mfu_evictable_data,
5307 &as->arcstat_mfu_evictable_metadata);
fc41c640 5308 arc_kstat_update_state(arc_mfu_ghost,
13be560d 5309 &as->arcstat_mfu_ghost_size,
500445c0
PS
5310 &as->arcstat_mfu_ghost_evictable_data,
5311 &as->arcstat_mfu_ghost_evictable_metadata);
13be560d
BB
5312 }
5313
5314 return (0);
5315}
5316
ca0bf58d
PS
5317/*
5318 * This function *must* return indices evenly distributed between all
5319 * sublists of the multilist. This is needed due to how the ARC eviction
5320 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5321 * distributed between all sublists and uses this assumption when
5322 * deciding which sublist to evict from and how much to evict from it.
5323 */
5324unsigned int
5325arc_state_multilist_index_func(multilist_t *ml, void *obj)
5326{
5327 arc_buf_hdr_t *hdr = obj;
5328
5329 /*
5330 * We rely on b_dva to generate evenly distributed index
5331 * numbers using buf_hash below. So, as an added precaution,
5332 * let's make sure we never add empty buffers to the arc lists.
5333 */
5334 ASSERT(!BUF_EMPTY(hdr));
5335
5336 /*
5337 * The assumption here, is the hash value for a given
5338 * arc_buf_hdr_t will remain constant throughout its lifetime
5339 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
5340 * Thus, we don't need to store the header's sublist index
5341 * on insertion, as this index can be recalculated on removal.
5342 *
5343 * Also, the low order bits of the hash value are thought to be
5344 * distributed evenly. Otherwise, in the case that the multilist
5345 * has a power of two number of sublists, each sublists' usage
5346 * would not be evenly distributed.
5347 */
5348 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5349 multilist_get_num_sublists(ml));
5350}
5351
ca67b33a
MA
5352/*
5353 * Called during module initialization and periodically thereafter to
5354 * apply reasonable changes to the exposed performance tunings. Non-zero
5355 * zfs_* values which differ from the currently set values will be applied.
5356 */
5357static void
5358arc_tuning_update(void)
5359{
5360 /* Valid range: 64M - <all physical memory> */
5361 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
5362 (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
5363 (zfs_arc_max > arc_c_min)) {
5364 arc_c_max = zfs_arc_max;
5365 arc_c = arc_c_max;
5366 arc_p = (arc_c >> 1);
256fa983 5367 arc_meta_limit = MIN(arc_meta_limit, (3 * arc_c_max) / 4);
25458cbe 5368 arc_dnode_limit = arc_meta_limit / 10;
ca67b33a
MA
5369 }
5370
5371 /* Valid range: 32M - <arc_c_max> */
5372 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
5373 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
5374 (zfs_arc_min <= arc_c_max)) {
5375 arc_c_min = zfs_arc_min;
5376 arc_c = MAX(arc_c, arc_c_min);
5377 }
5378
5379 /* Valid range: 16M - <arc_c_max> */
5380 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
5381 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
5382 (zfs_arc_meta_min <= arc_c_max)) {
5383 arc_meta_min = zfs_arc_meta_min;
5384 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
25458cbe 5385 arc_dnode_limit = arc_meta_limit / 10;
ca67b33a
MA
5386 }
5387
5388 /* Valid range: <arc_meta_min> - <arc_c_max> */
5389 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
5390 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
5391 (zfs_arc_meta_limit <= arc_c_max))
5392 arc_meta_limit = zfs_arc_meta_limit;
5393
25458cbe
TC
5394 /* Valid range: <arc_meta_min> - <arc_c_max> */
5395 if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
5396 (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
5397 (zfs_arc_dnode_limit <= arc_c_max))
5398 arc_dnode_limit = zfs_arc_dnode_limit;
5399
ca67b33a
MA
5400 /* Valid range: 1 - N */
5401 if (zfs_arc_grow_retry)
5402 arc_grow_retry = zfs_arc_grow_retry;
5403
5404 /* Valid range: 1 - N */
5405 if (zfs_arc_shrink_shift) {
5406 arc_shrink_shift = zfs_arc_shrink_shift;
5407 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
5408 }
5409
728d6ae9
BB
5410 /* Valid range: 1 - N */
5411 if (zfs_arc_p_min_shift)
5412 arc_p_min_shift = zfs_arc_p_min_shift;
5413
ca67b33a
MA
5414 /* Valid range: 1 - N ticks */
5415 if (zfs_arc_min_prefetch_lifespan)
5416 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
11f552fa 5417
7e8bddd0
BB
5418 /* Valid range: 0 - 100 */
5419 if ((zfs_arc_lotsfree_percent >= 0) &&
5420 (zfs_arc_lotsfree_percent <= 100))
5421 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
5422
11f552fa
BB
5423 /* Valid range: 0 - <all physical memory> */
5424 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
5425 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), ptob(physmem));
7e8bddd0 5426
ca67b33a
MA
5427}
5428
34dc7c2f
BB
5429void
5430arc_init(void)
5431{
ca67b33a
MA
5432 /*
5433 * allmem is "all memory that we could possibly use".
5434 */
5435#ifdef _KERNEL
5436 uint64_t allmem = ptob(physmem);
5437#else
5438 uint64_t allmem = (physmem * PAGESIZE) / 2;
5439#endif
5440
ca0bf58d
PS
5441 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5442 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5443 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5444
5445 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5446 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f
BB
5447
5448 /* Convert seconds to clock ticks */
ca67b33a 5449 arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
5450
5451 /* Start out with 1/8 of all memory */
ca67b33a 5452 arc_c = allmem / 8;
34dc7c2f
BB
5453
5454#ifdef _KERNEL
5455 /*
5456 * On architectures where the physical memory can be larger
5457 * than the addressable space (intel in 32-bit mode), we may
5458 * need to limit the cache to 1/8 of VM size.
5459 */
5460 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
ca67b33a 5461
7cb67b45
BB
5462 /*
5463 * Register a shrinker to support synchronous (direct) memory
5464 * reclaim from the arc. This is done to prevent kswapd from
5465 * swapping out pages when it is preferable to shrink the arc.
5466 */
5467 spl_register_shrinker(&arc_shrinker);
11f552fa
BB
5468
5469 /* Set to 1/64 of all memory or a minimum of 512K */
5470 arc_sys_free = MAX(ptob(physmem / 64), (512 * 1024));
5471 arc_need_free = 0;
34dc7c2f
BB
5472#endif
5473
0a1f8cd9
TC
5474 /* Set max to 1/2 of all memory */
5475 arc_c_max = allmem / 2;
5476
ab5cbbd1
BB
5477 /*
5478 * In userland, there's only the memory pressure that we artificially
5479 * create (see arc_available_memory()). Don't let arc_c get too
5480 * small, because it can cause transactions to be larger than
5481 * arc_c, causing arc_tempreserve_space() to fail.
5482 */
5483#ifndef _KERNEL
0a1f8cd9 5484 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1 5485#else
121b3cae 5486 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
ab5cbbd1
BB
5487#endif
5488
34dc7c2f
BB
5489 arc_c = arc_c_max;
5490 arc_p = (arc_c >> 1);
5491
ca67b33a
MA
5492 /* Set min to 1/2 of arc_c_min */
5493 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
5494 /* Initialize maximum observed usage to zero */
1834f2d8 5495 arc_meta_max = 0;
ca67b33a
MA
5496 /* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
5497 arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
25458cbe
TC
5498 /* Default dnode limit is 10% of overall meta limit */
5499 arc_dnode_limit = arc_meta_limit / 10;
34dc7c2f 5500
ca67b33a
MA
5501 /* Apply user specified tunings */
5502 arc_tuning_update();
c52fca13 5503
ca0bf58d 5504 if (zfs_arc_num_sublists_per_state < 1)
ca67b33a 5505 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
ca0bf58d 5506
34dc7c2f
BB
5507 /* if kmem_flags are set, lets try to use less memory */
5508 if (kmem_debugging())
5509 arc_c = arc_c / 2;
5510 if (arc_c < arc_c_min)
5511 arc_c = arc_c_min;
5512
5513 arc_anon = &ARC_anon;
5514 arc_mru = &ARC_mru;
5515 arc_mru_ghost = &ARC_mru_ghost;
5516 arc_mfu = &ARC_mfu;
5517 arc_mfu_ghost = &ARC_mfu_ghost;
5518 arc_l2c_only = &ARC_l2c_only;
5519 arc_size = 0;
5520
ca0bf58d 5521 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5522 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5523 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5524 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5525 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
b9541d6b 5526 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5527 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5528 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5529 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5530 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5531 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5532 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5533 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 5534 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5535 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5536 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5537 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5538 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5539 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5540 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5541 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
b9541d6b 5542 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5543 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5544 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5545 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5546 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5547 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5548 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5549 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 5550 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5551 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5552 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5553 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5554 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5555 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5556 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5557 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
b9541d6b 5558 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5559 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5560 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
34dc7c2f 5561
e0b0ca98
BB
5562 arc_anon->arcs_state = ARC_STATE_ANON;
5563 arc_mru->arcs_state = ARC_STATE_MRU;
5564 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
5565 arc_mfu->arcs_state = ARC_STATE_MFU;
5566 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
5567 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
5568
36da08ef
PS
5569 refcount_create(&arc_anon->arcs_size);
5570 refcount_create(&arc_mru->arcs_size);
5571 refcount_create(&arc_mru_ghost->arcs_size);
5572 refcount_create(&arc_mfu->arcs_size);
5573 refcount_create(&arc_mfu_ghost->arcs_size);
5574 refcount_create(&arc_l2c_only->arcs_size);
5575
34dc7c2f
BB
5576 buf_init();
5577
ca0bf58d
PS
5578 arc_reclaim_thread_exit = FALSE;
5579 arc_user_evicts_thread_exit = FALSE;
ab26409d
BB
5580 list_create(&arc_prune_list, sizeof (arc_prune_t),
5581 offsetof(arc_prune_t, p_node));
34dc7c2f 5582 arc_eviction_list = NULL;
ab26409d 5583 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
5584 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5585
1229323d 5586 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
aa9af22c 5587 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 5588
34dc7c2f
BB
5589 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5590 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5591
5592 if (arc_ksp != NULL) {
5593 arc_ksp->ks_data = &arc_stats;
13be560d 5594 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
5595 kstat_install(arc_ksp);
5596 }
5597
ca67b33a 5598 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
1229323d 5599 TS_RUN, defclsyspri);
34dc7c2f 5600
ca0bf58d 5601 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
1229323d 5602 TS_RUN, defclsyspri);
ca0bf58d 5603
34dc7c2f 5604 arc_dead = FALSE;
b128c09f 5605 arc_warm = B_FALSE;
34dc7c2f 5606
e8b96c60
MA
5607 /*
5608 * Calculate maximum amount of dirty data per pool.
5609 *
5610 * If it has been set by a module parameter, take that.
5611 * Otherwise, use a percentage of physical memory defined by
5612 * zfs_dirty_data_max_percent (default 10%) with a cap at
5613 * zfs_dirty_data_max_max (default 25% of physical memory).
5614 */
5615 if (zfs_dirty_data_max_max == 0)
43518d92 5616 zfs_dirty_data_max_max = (uint64_t)physmem * PAGESIZE *
e8b96c60
MA
5617 zfs_dirty_data_max_max_percent / 100;
5618
5619 if (zfs_dirty_data_max == 0) {
43518d92 5620 zfs_dirty_data_max = (uint64_t)physmem * PAGESIZE *
e8b96c60
MA
5621 zfs_dirty_data_max_percent / 100;
5622 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5623 zfs_dirty_data_max_max);
5624 }
34dc7c2f
BB
5625}
5626
5627void
5628arc_fini(void)
5629{
ab26409d
BB
5630 arc_prune_t *p;
5631
7cb67b45
BB
5632#ifdef _KERNEL
5633 spl_unregister_shrinker(&arc_shrinker);
5634#endif /* _KERNEL */
5635
ca0bf58d
PS
5636 mutex_enter(&arc_reclaim_lock);
5637 arc_reclaim_thread_exit = TRUE;
5638 /*
5639 * The reclaim thread will set arc_reclaim_thread_exit back to
5640 * FALSE when it is finished exiting; we're waiting for that.
5641 */
5642 while (arc_reclaim_thread_exit) {
5643 cv_signal(&arc_reclaim_thread_cv);
5644 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5645 }
5646 mutex_exit(&arc_reclaim_lock);
5647
5648 mutex_enter(&arc_user_evicts_lock);
5649 arc_user_evicts_thread_exit = TRUE;
5650 /*
5651 * The user evicts thread will set arc_user_evicts_thread_exit
5652 * to FALSE when it is finished exiting; we're waiting for that.
5653 */
5654 while (arc_user_evicts_thread_exit) {
5655 cv_signal(&arc_user_evicts_cv);
5656 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5657 }
5658 mutex_exit(&arc_user_evicts_lock);
34dc7c2f 5659
ca0bf58d
PS
5660 /* Use TRUE to ensure *all* buffers are evicted */
5661 arc_flush(NULL, TRUE);
34dc7c2f
BB
5662
5663 arc_dead = TRUE;
5664
5665 if (arc_ksp != NULL) {
5666 kstat_delete(arc_ksp);
5667 arc_ksp = NULL;
5668 }
5669
f6046738
BB
5670 taskq_wait(arc_prune_taskq);
5671 taskq_destroy(arc_prune_taskq);
5672
ab26409d
BB
5673 mutex_enter(&arc_prune_mtx);
5674 while ((p = list_head(&arc_prune_list)) != NULL) {
5675 list_remove(&arc_prune_list, p);
5676 refcount_remove(&p->p_refcnt, &arc_prune_list);
5677 refcount_destroy(&p->p_refcnt);
5678 kmem_free(p, sizeof (*p));
5679 }
5680 mutex_exit(&arc_prune_mtx);
5681
5682 list_destroy(&arc_prune_list);
5683 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
5684 mutex_destroy(&arc_reclaim_lock);
5685 cv_destroy(&arc_reclaim_thread_cv);
5686 cv_destroy(&arc_reclaim_waiters_cv);
5687
5688 mutex_destroy(&arc_user_evicts_lock);
5689 cv_destroy(&arc_user_evicts_cv);
5690
36da08ef
PS
5691 refcount_destroy(&arc_anon->arcs_size);
5692 refcount_destroy(&arc_mru->arcs_size);
5693 refcount_destroy(&arc_mru_ghost->arcs_size);
5694 refcount_destroy(&arc_mfu->arcs_size);
5695 refcount_destroy(&arc_mfu_ghost->arcs_size);
5696 refcount_destroy(&arc_l2c_only->arcs_size);
5697
ca0bf58d
PS
5698 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5699 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5700 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5701 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5702 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5703 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5704 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5705 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5706 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5707 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
34dc7c2f
BB
5708
5709 buf_fini();
9babb374 5710
b9541d6b 5711 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
5712}
5713
5714/*
5715 * Level 2 ARC
5716 *
5717 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5718 * It uses dedicated storage devices to hold cached data, which are populated
5719 * using large infrequent writes. The main role of this cache is to boost
5720 * the performance of random read workloads. The intended L2ARC devices
5721 * include short-stroked disks, solid state disks, and other media with
5722 * substantially faster read latency than disk.
5723 *
5724 * +-----------------------+
5725 * | ARC |
5726 * +-----------------------+
5727 * | ^ ^
5728 * | | |
5729 * l2arc_feed_thread() arc_read()
5730 * | | |
5731 * | l2arc read |
5732 * V | |
5733 * +---------------+ |
5734 * | L2ARC | |
5735 * +---------------+ |
5736 * | ^ |
5737 * l2arc_write() | |
5738 * | | |
5739 * V | |
5740 * +-------+ +-------+
5741 * | vdev | | vdev |
5742 * | cache | | cache |
5743 * +-------+ +-------+
5744 * +=========+ .-----.
5745 * : L2ARC : |-_____-|
5746 * : devices : | Disks |
5747 * +=========+ `-_____-'
5748 *
5749 * Read requests are satisfied from the following sources, in order:
5750 *
5751 * 1) ARC
5752 * 2) vdev cache of L2ARC devices
5753 * 3) L2ARC devices
5754 * 4) vdev cache of disks
5755 * 5) disks
5756 *
5757 * Some L2ARC device types exhibit extremely slow write performance.
5758 * To accommodate for this there are some significant differences between
5759 * the L2ARC and traditional cache design:
5760 *
5761 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5762 * the ARC behave as usual, freeing buffers and placing headers on ghost
5763 * lists. The ARC does not send buffers to the L2ARC during eviction as
5764 * this would add inflated write latencies for all ARC memory pressure.
5765 *
5766 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5767 * It does this by periodically scanning buffers from the eviction-end of
5768 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
5769 * not already there. It scans until a headroom of buffers is satisfied,
5770 * which itself is a buffer for ARC eviction. If a compressible buffer is
5771 * found during scanning and selected for writing to an L2ARC device, we
5772 * temporarily boost scanning headroom during the next scan cycle to make
5773 * sure we adapt to compression effects (which might significantly reduce
5774 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
5775 * l2arc_feed_thread(), illustrated below; example sizes are included to
5776 * provide a better sense of ratio than this diagram:
5777 *
5778 * head --> tail
5779 * +---------------------+----------+
5780 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5781 * +---------------------+----------+ | o L2ARC eligible
5782 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5783 * +---------------------+----------+ |
5784 * 15.9 Gbytes ^ 32 Mbytes |
5785 * headroom |
5786 * l2arc_feed_thread()
5787 * |
5788 * l2arc write hand <--[oooo]--'
5789 * | 8 Mbyte
5790 * | write max
5791 * V
5792 * +==============================+
5793 * L2ARC dev |####|#|###|###| |####| ... |
5794 * +==============================+
5795 * 32 Gbytes
5796 *
5797 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5798 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5799 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5800 * safe to say that this is an uncommon case, since buffers at the end of
5801 * the ARC lists have moved there due to inactivity.
5802 *
5803 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5804 * then the L2ARC simply misses copying some buffers. This serves as a
5805 * pressure valve to prevent heavy read workloads from both stalling the ARC
5806 * with waits and clogging the L2ARC with writes. This also helps prevent
5807 * the potential for the L2ARC to churn if it attempts to cache content too
5808 * quickly, such as during backups of the entire pool.
5809 *
b128c09f
BB
5810 * 5. After system boot and before the ARC has filled main memory, there are
5811 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5812 * lists can remain mostly static. Instead of searching from tail of these
5813 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5814 * for eligible buffers, greatly increasing its chance of finding them.
5815 *
5816 * The L2ARC device write speed is also boosted during this time so that
5817 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5818 * there are no L2ARC reads, and no fear of degrading read performance
5819 * through increased writes.
5820 *
5821 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
5822 * the vdev queue can aggregate them into larger and fewer writes. Each
5823 * device is written to in a rotor fashion, sweeping writes through
5824 * available space then repeating.
5825 *
b128c09f 5826 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
5827 * write buffers back to disk based storage.
5828 *
b128c09f 5829 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
5830 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5831 *
5832 * The performance of the L2ARC can be tweaked by a number of tunables, which
5833 * may be necessary for different workloads:
5834 *
5835 * l2arc_write_max max write bytes per interval
b128c09f 5836 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 5837 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 5838 * l2arc_nocompress skip compressing buffers
34dc7c2f 5839 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
5840 * l2arc_headroom_boost when we find compressed buffers during ARC
5841 * scanning, we multiply headroom by this
5842 * percentage factor for the next scan cycle,
5843 * since more compressed buffers are likely to
5844 * be present
34dc7c2f
BB
5845 * l2arc_feed_secs seconds between L2ARC writing
5846 *
5847 * Tunables may be removed or added as future performance improvements are
5848 * integrated, and also may become zpool properties.
d164b209
BB
5849 *
5850 * There are three key functions that control how the L2ARC warms up:
5851 *
5852 * l2arc_write_eligible() check if a buffer is eligible to cache
5853 * l2arc_write_size() calculate how much to write
5854 * l2arc_write_interval() calculate sleep delay between writes
5855 *
5856 * These three functions determine what to write, how much, and how quickly
5857 * to send writes.
34dc7c2f
BB
5858 */
5859
d164b209 5860static boolean_t
2a432414 5861l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
5862{
5863 /*
5864 * A buffer is *not* eligible for the L2ARC if it:
5865 * 1. belongs to a different spa.
428870ff
BB
5866 * 2. is already cached on the L2ARC.
5867 * 3. has an I/O in progress (it may be an incomplete read).
5868 * 4. is flagged not eligible (zfs property).
d164b209 5869 */
b9541d6b 5870 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 5871 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
5872 return (B_FALSE);
5873
5874 return (B_TRUE);
5875}
5876
5877static uint64_t
3a17a7a9 5878l2arc_write_size(void)
d164b209
BB
5879{
5880 uint64_t size;
5881
3a17a7a9
SK
5882 /*
5883 * Make sure our globals have meaningful values in case the user
5884 * altered them.
5885 */
5886 size = l2arc_write_max;
5887 if (size == 0) {
5888 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5889 "be greater than zero, resetting it to the default (%d)",
5890 L2ARC_WRITE_SIZE);
5891 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5892 }
d164b209
BB
5893
5894 if (arc_warm == B_FALSE)
3a17a7a9 5895 size += l2arc_write_boost;
d164b209
BB
5896
5897 return (size);
5898
5899}
5900
5901static clock_t
5902l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5903{
428870ff 5904 clock_t interval, next, now;
d164b209
BB
5905
5906 /*
5907 * If the ARC lists are busy, increase our write rate; if the
5908 * lists are stale, idle back. This is achieved by checking
5909 * how much we previously wrote - if it was more than half of
5910 * what we wanted, schedule the next write much sooner.
5911 */
5912 if (l2arc_feed_again && wrote > (wanted / 2))
5913 interval = (hz * l2arc_feed_min_ms) / 1000;
5914 else
5915 interval = hz * l2arc_feed_secs;
5916
428870ff
BB
5917 now = ddi_get_lbolt();
5918 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
5919
5920 return (next);
5921}
5922
34dc7c2f
BB
5923/*
5924 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 5925 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
5926 */
5927static l2arc_dev_t *
5928l2arc_dev_get_next(void)
5929{
b128c09f 5930 l2arc_dev_t *first, *next = NULL;
34dc7c2f 5931
b128c09f
BB
5932 /*
5933 * Lock out the removal of spas (spa_namespace_lock), then removal
5934 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5935 * both locks will be dropped and a spa config lock held instead.
5936 */
5937 mutex_enter(&spa_namespace_lock);
5938 mutex_enter(&l2arc_dev_mtx);
5939
5940 /* if there are no vdevs, there is nothing to do */
5941 if (l2arc_ndev == 0)
5942 goto out;
5943
5944 first = NULL;
5945 next = l2arc_dev_last;
5946 do {
5947 /* loop around the list looking for a non-faulted vdev */
5948 if (next == NULL) {
34dc7c2f 5949 next = list_head(l2arc_dev_list);
b128c09f
BB
5950 } else {
5951 next = list_next(l2arc_dev_list, next);
5952 if (next == NULL)
5953 next = list_head(l2arc_dev_list);
5954 }
5955
5956 /* if we have come back to the start, bail out */
5957 if (first == NULL)
5958 first = next;
5959 else if (next == first)
5960 break;
5961
5962 } while (vdev_is_dead(next->l2ad_vdev));
5963
5964 /* if we were unable to find any usable vdevs, return NULL */
5965 if (vdev_is_dead(next->l2ad_vdev))
5966 next = NULL;
34dc7c2f
BB
5967
5968 l2arc_dev_last = next;
5969
b128c09f
BB
5970out:
5971 mutex_exit(&l2arc_dev_mtx);
5972
5973 /*
5974 * Grab the config lock to prevent the 'next' device from being
5975 * removed while we are writing to it.
5976 */
5977 if (next != NULL)
5978 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5979 mutex_exit(&spa_namespace_lock);
5980
34dc7c2f
BB
5981 return (next);
5982}
5983
b128c09f
BB
5984/*
5985 * Free buffers that were tagged for destruction.
5986 */
5987static void
0bc8fd78 5988l2arc_do_free_on_write(void)
b128c09f
BB
5989{
5990 list_t *buflist;
5991 l2arc_data_free_t *df, *df_prev;
5992
5993 mutex_enter(&l2arc_free_on_write_mtx);
5994 buflist = l2arc_free_on_write;
5995
5996 for (df = list_tail(buflist); df; df = df_prev) {
5997 df_prev = list_prev(buflist, df);
5998 ASSERT(df->l2df_data != NULL);
5999 ASSERT(df->l2df_func != NULL);
6000 df->l2df_func(df->l2df_data, df->l2df_size);
6001 list_remove(buflist, df);
6002 kmem_free(df, sizeof (l2arc_data_free_t));
6003 }
6004
6005 mutex_exit(&l2arc_free_on_write_mtx);
6006}
6007
34dc7c2f
BB
6008/*
6009 * A write to a cache device has completed. Update all headers to allow
6010 * reads from these buffers to begin.
6011 */
6012static void
6013l2arc_write_done(zio_t *zio)
6014{
6015 l2arc_write_callback_t *cb;
6016 l2arc_dev_t *dev;
6017 list_t *buflist;
2a432414 6018 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 6019 kmutex_t *hash_lock;
3bec585e 6020 int64_t bytes_dropped = 0;
34dc7c2f
BB
6021
6022 cb = zio->io_private;
6023 ASSERT(cb != NULL);
6024 dev = cb->l2wcb_dev;
6025 ASSERT(dev != NULL);
6026 head = cb->l2wcb_head;
6027 ASSERT(head != NULL);
b9541d6b 6028 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
6029 ASSERT(buflist != NULL);
6030 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6031 l2arc_write_callback_t *, cb);
6032
6033 if (zio->io_error != 0)
6034 ARCSTAT_BUMP(arcstat_l2_writes_error);
6035
34dc7c2f
BB
6036 /*
6037 * All writes completed, or an error was hit.
6038 */
ca0bf58d
PS
6039top:
6040 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
6041 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6042 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 6043
2a432414 6044 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
6045
6046 /*
6047 * We cannot use mutex_enter or else we can deadlock
6048 * with l2arc_write_buffers (due to swapping the order
6049 * the hash lock and l2ad_mtx are taken).
6050 */
34dc7c2f
BB
6051 if (!mutex_tryenter(hash_lock)) {
6052 /*
ca0bf58d
PS
6053 * Missed the hash lock. We must retry so we
6054 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 6055 */
ca0bf58d
PS
6056 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6057
6058 /*
6059 * We don't want to rescan the headers we've
6060 * already marked as having been written out, so
6061 * we reinsert the head node so we can pick up
6062 * where we left off.
6063 */
6064 list_remove(buflist, head);
6065 list_insert_after(buflist, hdr, head);
6066
6067 mutex_exit(&dev->l2ad_mtx);
6068
6069 /*
6070 * We wait for the hash lock to become available
6071 * to try and prevent busy waiting, and increase
6072 * the chance we'll be able to acquire the lock
6073 * the next time around.
6074 */
6075 mutex_enter(hash_lock);
6076 mutex_exit(hash_lock);
6077 goto top;
34dc7c2f
BB
6078 }
6079
b9541d6b 6080 /*
ca0bf58d
PS
6081 * We could not have been moved into the arc_l2c_only
6082 * state while in-flight due to our ARC_FLAG_L2_WRITING
6083 * bit being set. Let's just ensure that's being enforced.
6084 */
6085 ASSERT(HDR_HAS_L1HDR(hdr));
6086
6087 /*
6088 * We may have allocated a buffer for L2ARC compression,
6089 * we must release it to avoid leaking this data.
b9541d6b 6090 */
ca0bf58d 6091 l2arc_release_cdata_buf(hdr);
b9541d6b 6092
8a09d5fd
BB
6093 /*
6094 * Skipped - drop L2ARC entry and mark the header as no
6095 * longer L2 eligibile.
6096 */
6097 if (hdr->b_l2hdr.b_daddr == L2ARC_ADDR_UNSET) {
6098 list_remove(buflist, hdr);
6099 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6100 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
6101
6102 ARCSTAT_BUMP(arcstat_l2_writes_skip_toobig);
6103
6104 (void) refcount_remove_many(&dev->l2ad_alloc,
6105 hdr->b_l2hdr.b_asize, hdr);
6106 } else if (zio->io_error != 0) {
34dc7c2f 6107 /*
b128c09f 6108 * Error - drop L2ARC entry.
34dc7c2f 6109 */
2a432414 6110 list_remove(buflist, hdr);
b9541d6b
CW
6111 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
6112
6113 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
2a432414 6114 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
d962d5da
PS
6115
6116 bytes_dropped += hdr->b_l2hdr.b_asize;
6117 (void) refcount_remove_many(&dev->l2ad_alloc,
6118 hdr->b_l2hdr.b_asize, hdr);
34dc7c2f
BB
6119 }
6120
6121 /*
ca0bf58d
PS
6122 * Allow ARC to begin reads and ghost list evictions to
6123 * this L2ARC entry.
34dc7c2f 6124 */
2a432414 6125 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
34dc7c2f
BB
6126
6127 mutex_exit(hash_lock);
6128 }
6129
6130 atomic_inc_64(&l2arc_writes_done);
6131 list_remove(buflist, head);
b9541d6b
CW
6132 ASSERT(!HDR_HAS_L1HDR(head));
6133 kmem_cache_free(hdr_l2only_cache, head);
6134 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6135
3bec585e
SK
6136 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6137
b128c09f 6138 l2arc_do_free_on_write();
34dc7c2f
BB
6139
6140 kmem_free(cb, sizeof (l2arc_write_callback_t));
6141}
6142
6143/*
6144 * A read to a cache device completed. Validate buffer contents before
6145 * handing over to the regular ARC routines.
6146 */
6147static void
6148l2arc_read_done(zio_t *zio)
6149{
6150 l2arc_read_callback_t *cb;
6151 arc_buf_hdr_t *hdr;
6152 arc_buf_t *buf;
34dc7c2f 6153 kmutex_t *hash_lock;
b128c09f
BB
6154 int equal;
6155
6156 ASSERT(zio->io_vd != NULL);
6157 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6158
6159 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
6160
6161 cb = zio->io_private;
6162 ASSERT(cb != NULL);
6163 buf = cb->l2rcb_buf;
6164 ASSERT(buf != NULL);
34dc7c2f 6165
428870ff 6166 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 6167 mutex_enter(hash_lock);
428870ff
BB
6168 hdr = buf->b_hdr;
6169 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 6170
3a17a7a9
SK
6171 /*
6172 * If the buffer was compressed, decompress it first.
6173 */
6174 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6175 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6176 ASSERT(zio->io_data != NULL);
4e0f33ff
AJ
6177 ASSERT3U(zio->io_size, ==, hdr->b_size);
6178 ASSERT3U(BP_GET_LSIZE(&cb->l2rcb_bp), ==, hdr->b_size);
3a17a7a9 6179
34dc7c2f
BB
6180 /*
6181 * Check this survived the L2ARC journey.
6182 */
6183 equal = arc_cksum_equal(buf);
6184 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6185 mutex_exit(hash_lock);
6186 zio->io_private = buf;
b128c09f
BB
6187 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6188 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
6189 arc_read_done(zio);
6190 } else {
6191 mutex_exit(hash_lock);
6192 /*
6193 * Buffer didn't survive caching. Increment stats and
6194 * reissue to the original storage device.
6195 */
b128c09f 6196 if (zio->io_error != 0) {
34dc7c2f 6197 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 6198 } else {
2e528b49 6199 zio->io_error = SET_ERROR(EIO);
b128c09f 6200 }
34dc7c2f
BB
6201 if (!equal)
6202 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6203
34dc7c2f 6204 /*
b128c09f
BB
6205 * If there's no waiter, issue an async i/o to the primary
6206 * storage now. If there *is* a waiter, the caller must
6207 * issue the i/o in a context where it's OK to block.
34dc7c2f 6208 */
d164b209
BB
6209 if (zio->io_waiter == NULL) {
6210 zio_t *pio = zio_unique_parent(zio);
6211
6212 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6213
6214 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
4e0f33ff 6215 buf->b_data, hdr->b_size, arc_read_done, buf,
b128c09f 6216 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 6217 }
34dc7c2f
BB
6218 }
6219
6220 kmem_free(cb, sizeof (l2arc_read_callback_t));
6221}
6222
6223/*
6224 * This is the list priority from which the L2ARC will search for pages to
6225 * cache. This is used within loops (0..3) to cycle through lists in the
6226 * desired order. This order can have a significant effect on cache
6227 * performance.
6228 *
6229 * Currently the metadata lists are hit first, MFU then MRU, followed by
6230 * the data lists. This function returns a locked list, and also returns
6231 * the lock pointer.
6232 */
ca0bf58d
PS
6233static multilist_sublist_t *
6234l2arc_sublist_lock(int list_num)
34dc7c2f 6235{
ca0bf58d
PS
6236 multilist_t *ml = NULL;
6237 unsigned int idx;
34dc7c2f
BB
6238
6239 ASSERT(list_num >= 0 && list_num <= 3);
6240
6241 switch (list_num) {
6242 case 0:
ca0bf58d 6243 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
6244 break;
6245 case 1:
ca0bf58d 6246 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
6247 break;
6248 case 2:
ca0bf58d 6249 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
6250 break;
6251 case 3:
ca0bf58d 6252 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
6253 break;
6254 }
6255
ca0bf58d
PS
6256 /*
6257 * Return a randomly-selected sublist. This is acceptable
6258 * because the caller feeds only a little bit of data for each
6259 * call (8MB). Subsequent calls will result in different
6260 * sublists being selected.
6261 */
6262 idx = multilist_get_random_index(ml);
6263 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
6264}
6265
6266/*
6267 * Evict buffers from the device write hand to the distance specified in
6268 * bytes. This distance may span populated buffers, it may span nothing.
6269 * This is clearing a region on the L2ARC device ready for writing.
6270 * If the 'all' boolean is set, every buffer is evicted.
6271 */
6272static void
6273l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6274{
6275 list_t *buflist;
2a432414 6276 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
6277 kmutex_t *hash_lock;
6278 uint64_t taddr;
6279
b9541d6b 6280 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
6281
6282 if (!all && dev->l2ad_first) {
6283 /*
6284 * This is the first sweep through the device. There is
6285 * nothing to evict.
6286 */
6287 return;
6288 }
6289
b128c09f 6290 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
6291 /*
6292 * When nearing the end of the device, evict to the end
6293 * before the device write hand jumps to the start.
6294 */
6295 taddr = dev->l2ad_end;
6296 } else {
6297 taddr = dev->l2ad_hand + distance;
6298 }
6299 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6300 uint64_t, taddr, boolean_t, all);
6301
6302top:
b9541d6b 6303 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
6304 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6305 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 6306
2a432414 6307 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
6308
6309 /*
6310 * We cannot use mutex_enter or else we can deadlock
6311 * with l2arc_write_buffers (due to swapping the order
6312 * the hash lock and l2ad_mtx are taken).
6313 */
34dc7c2f
BB
6314 if (!mutex_tryenter(hash_lock)) {
6315 /*
6316 * Missed the hash lock. Retry.
6317 */
6318 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 6319 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6320 mutex_enter(hash_lock);
6321 mutex_exit(hash_lock);
6322 goto top;
6323 }
6324
2a432414 6325 if (HDR_L2_WRITE_HEAD(hdr)) {
34dc7c2f
BB
6326 /*
6327 * We hit a write head node. Leave it for
6328 * l2arc_write_done().
6329 */
2a432414 6330 list_remove(buflist, hdr);
34dc7c2f
BB
6331 mutex_exit(hash_lock);
6332 continue;
6333 }
6334
b9541d6b
CW
6335 if (!all && HDR_HAS_L2HDR(hdr) &&
6336 (hdr->b_l2hdr.b_daddr > taddr ||
6337 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
6338 /*
6339 * We've evicted to the target address,
6340 * or the end of the device.
6341 */
6342 mutex_exit(hash_lock);
6343 break;
6344 }
6345
b9541d6b
CW
6346 ASSERT(HDR_HAS_L2HDR(hdr));
6347 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 6348 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
6349 /*
6350 * This doesn't exist in the ARC. Destroy.
6351 * arc_hdr_destroy() will call list_remove()
6352 * and decrement arcstat_l2_size.
6353 */
2a432414
GW
6354 arc_change_state(arc_anon, hdr, hash_lock);
6355 arc_hdr_destroy(hdr);
34dc7c2f 6356 } else {
b9541d6b
CW
6357 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6358 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
6359 /*
6360 * Invalidate issued or about to be issued
6361 * reads, since we may be about to write
6362 * over this location.
6363 */
2a432414 6364 if (HDR_L2_READING(hdr)) {
b128c09f 6365 ARCSTAT_BUMP(arcstat_l2_evict_reading);
2a432414 6366 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
b128c09f
BB
6367 }
6368
ca0bf58d
PS
6369 /* Ensure this header has finished being written */
6370 ASSERT(!HDR_L2_WRITING(hdr));
6371 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
d962d5da
PS
6372
6373 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
6374 }
6375 mutex_exit(hash_lock);
6376 }
b9541d6b 6377 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6378}
6379
6380/*
6381 * Find and write ARC buffers to the L2ARC device.
6382 *
2a432414 6383 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 6384 * for reading until they have completed writing.
3a17a7a9
SK
6385 * The headroom_boost is an in-out parameter used to maintain headroom boost
6386 * state between calls to this function.
6387 *
6388 * Returns the number of bytes actually written (which may be smaller than
6389 * the delta by which the device hand has changed due to alignment).
34dc7c2f 6390 */
d164b209 6391static uint64_t
3a17a7a9
SK
6392l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6393 boolean_t *headroom_boost)
34dc7c2f 6394{
2a432414 6395 arc_buf_hdr_t *hdr, *hdr_prev, *head;
ef56b078
AG
6396 uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
6397 stats_size;
34dc7c2f 6398 void *buf_data;
3a17a7a9 6399 boolean_t full;
34dc7c2f
BB
6400 l2arc_write_callback_t *cb;
6401 zio_t *pio, *wzio;
3541dc6d 6402 uint64_t guid = spa_load_guid(spa);
d6320ddb 6403 int try;
3a17a7a9 6404 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 6405
34dc7c2f
BB
6406 ASSERT(dev->l2ad_vdev != NULL);
6407
3a17a7a9
SK
6408 /* Lower the flag now, we might want to raise it again later. */
6409 *headroom_boost = B_FALSE;
6410
34dc7c2f 6411 pio = NULL;
ef56b078 6412 write_sz = write_asize = 0;
34dc7c2f 6413 full = B_FALSE;
b9541d6b 6414 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
2a432414 6415 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
b9541d6b 6416 head->b_flags |= ARC_FLAG_HAS_L2HDR;
34dc7c2f 6417
3a17a7a9
SK
6418 /*
6419 * We will want to try to compress buffers that are at least 2x the
6420 * device sector size.
6421 */
6422 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6423
34dc7c2f
BB
6424 /*
6425 * Copy buffers for L2ARC writing.
6426 */
d6320ddb 6427 for (try = 0; try <= 3; try++) {
ca0bf58d 6428 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
6429 uint64_t passed_sz = 0;
6430
b128c09f
BB
6431 /*
6432 * L2ARC fast warmup.
6433 *
6434 * Until the ARC is warm and starts to evict, read from the
6435 * head of the ARC lists rather than the tail.
6436 */
b128c09f 6437 if (arc_warm == B_FALSE)
ca0bf58d 6438 hdr = multilist_sublist_head(mls);
b128c09f 6439 else
ca0bf58d 6440 hdr = multilist_sublist_tail(mls);
b128c09f 6441
3a17a7a9
SK
6442 headroom = target_sz * l2arc_headroom;
6443 if (do_headroom_boost)
6444 headroom = (headroom * l2arc_headroom_boost) / 100;
6445
2a432414 6446 for (; hdr; hdr = hdr_prev) {
3a17a7a9
SK
6447 kmutex_t *hash_lock;
6448 uint64_t buf_sz;
ef56b078 6449 uint64_t buf_a_sz;
3a17a7a9 6450
b128c09f 6451 if (arc_warm == B_FALSE)
ca0bf58d 6452 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 6453 else
ca0bf58d 6454 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 6455
2a432414 6456 hash_lock = HDR_LOCK(hdr);
3a17a7a9 6457 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
6458 /*
6459 * Skip this buffer rather than waiting.
6460 */
6461 continue;
6462 }
6463
2a432414 6464 passed_sz += hdr->b_size;
34dc7c2f
BB
6465 if (passed_sz > headroom) {
6466 /*
6467 * Searched too far.
6468 */
6469 mutex_exit(hash_lock);
6470 break;
6471 }
6472
2a432414 6473 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
6474 mutex_exit(hash_lock);
6475 continue;
6476 }
6477
ef56b078
AG
6478 /*
6479 * Assume that the buffer is not going to be compressed
6480 * and could take more space on disk because of a larger
6481 * disk block size.
6482 */
6483 buf_sz = hdr->b_size;
6484 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6485
6486 if ((write_asize + buf_a_sz) > target_sz) {
34dc7c2f
BB
6487 full = B_TRUE;
6488 mutex_exit(hash_lock);
6489 break;
6490 }
6491
34dc7c2f
BB
6492 if (pio == NULL) {
6493 /*
6494 * Insert a dummy header on the buflist so
6495 * l2arc_write_done() can find where the
6496 * write buffers begin without searching.
6497 */
ca0bf58d 6498 mutex_enter(&dev->l2ad_mtx);
b9541d6b 6499 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 6500 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6501
96c080cb
BB
6502 cb = kmem_alloc(
6503 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
6504 cb->l2wcb_dev = dev;
6505 cb->l2wcb_head = head;
6506 pio = zio_root(spa, l2arc_write_done, cb,
6507 ZIO_FLAG_CANFAIL);
6508 }
6509
6510 /*
6511 * Create and add a new L2ARC header.
6512 */
b9541d6b 6513 hdr->b_l2hdr.b_dev = dev;
2a432414 6514 hdr->b_flags |= ARC_FLAG_L2_WRITING;
3a17a7a9
SK
6515 /*
6516 * Temporarily stash the data buffer in b_tmp_cdata.
6517 * The subsequent write step will pick it up from
b9541d6b 6518 * there. This is because can't access b_l1hdr.b_buf
3a17a7a9
SK
6519 * without holding the hash_lock, which we in turn
6520 * can't access without holding the ARC list locks
6521 * (which we want to avoid during compression/writing)
6522 */
4e0f33ff 6523 hdr->b_l2hdr.b_compress = ZIO_COMPRESS_OFF;
b9541d6b
CW
6524 hdr->b_l2hdr.b_asize = hdr->b_size;
6525 hdr->b_l2hdr.b_hits = 0;
6526 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9 6527
d962d5da
PS
6528 /*
6529 * Explicitly set the b_daddr field to a known
6530 * value which means "invalid address". This
6531 * enables us to differentiate which stage of
6532 * l2arc_write_buffers() the particular header
6533 * is in (e.g. this loop, or the one below).
6534 * ARC_FLAG_L2_WRITING is not enough to make
6535 * this distinction, and we need to know in
6536 * order to do proper l2arc vdev accounting in
6537 * arc_release() and arc_hdr_destroy().
6538 *
6539 * Note, we can't use a new flag to distinguish
6540 * the two stages because we don't hold the
6541 * header's hash_lock below, in the second stage
6542 * of this function. Thus, we can't simply
6543 * change the b_flags field to denote that the
6544 * IO has been sent. We can change the b_daddr
6545 * field of the L2 portion, though, since we'll
6546 * be holding the l2ad_mtx; which is why we're
6547 * using it to denote the header's state change.
6548 */
6549 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
b9541d6b 6550 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
3a17a7a9 6551
ca0bf58d 6552 mutex_enter(&dev->l2ad_mtx);
b9541d6b 6553 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 6554 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6555
6556 /*
6557 * Compute and store the buffer cksum before
6558 * writing. On debug the cksum is verified first.
6559 */
b9541d6b
CW
6560 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6561 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
34dc7c2f
BB
6562
6563 mutex_exit(hash_lock);
6564
3a17a7a9 6565 write_sz += buf_sz;
ef56b078 6566 write_asize += buf_a_sz;
3a17a7a9
SK
6567 }
6568
ca0bf58d 6569 multilist_sublist_unlock(mls);
3a17a7a9
SK
6570
6571 if (full == B_TRUE)
6572 break;
6573 }
6574
6575 /* No buffers selected for writing? */
6576 if (pio == NULL) {
6577 ASSERT0(write_sz);
b9541d6b
CW
6578 ASSERT(!HDR_HAS_L1HDR(head));
6579 kmem_cache_free(hdr_l2only_cache, head);
3a17a7a9
SK
6580 return (0);
6581 }
6582
ca0bf58d
PS
6583 mutex_enter(&dev->l2ad_mtx);
6584
ef56b078
AG
6585 /*
6586 * Note that elsewhere in this file arcstat_l2_asize
6587 * and the used space on l2ad_vdev are updated using b_asize,
6588 * which is not necessarily rounded up to the device block size.
6589 * Too keep accounting consistent we do the same here as well:
6590 * stats_size accumulates the sum of b_asize of the written buffers,
6591 * while write_asize accumulates the sum of b_asize rounded up
6592 * to the device block size.
6593 * The latter sum is used only to validate the corectness of the code.
6594 */
6595 stats_size = 0;
6596 write_asize = 0;
6597
3a17a7a9
SK
6598 /*
6599 * Now start writing the buffers. We're starting at the write head
6600 * and work backwards, retracing the course of the buffer selector
6601 * loop above.
6602 */
b9541d6b
CW
6603 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6604 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
3a17a7a9
SK
6605 uint64_t buf_sz;
6606
ca0bf58d
PS
6607 /*
6608 * We rely on the L1 portion of the header below, so
6609 * it's invalid for this header to have been evicted out
6610 * of the ghost cache, prior to being written out. The
6611 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6612 */
6613 ASSERT(HDR_HAS_L1HDR(hdr));
6614
3a17a7a9
SK
6615 /*
6616 * We shouldn't need to lock the buffer here, since we flagged
2a432414
GW
6617 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6618 * take care to only access its L2 cache parameters. In
b9541d6b 6619 * particular, hdr->l1hdr.b_buf may be invalid by now due to
2a432414 6620 * ARC eviction.
3a17a7a9 6621 */
b9541d6b 6622 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
3a17a7a9 6623
b9541d6b
CW
6624 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
6625 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6626 if (l2arc_compress_buf(hdr)) {
3a17a7a9
SK
6627 /*
6628 * If compression succeeded, enable headroom
6629 * boost on the next scan cycle.
6630 */
6631 *headroom_boost = B_TRUE;
6632 }
6633 }
6634
6635 /*
6636 * Pick up the buffer data we had previously stashed away
6637 * (and now potentially also compressed).
6638 */
b9541d6b
CW
6639 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6640 buf_sz = hdr->b_l2hdr.b_asize;
3a17a7a9 6641
d962d5da
PS
6642 /*
6643 * We need to do this regardless if buf_sz is zero or
6644 * not, otherwise, when this l2hdr is evicted we'll
6645 * remove a reference that was never added.
6646 */
6647 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6648
3a17a7a9
SK
6649 /* Compression may have squashed the buffer to zero length. */
6650 if (buf_sz != 0) {
ef56b078 6651 uint64_t buf_a_sz;
3a17a7a9 6652
8a09d5fd
BB
6653 /*
6654 * Buffers which are larger than l2arc_max_block_size
6655 * after compression are skipped and removed from L2
6656 * eligibility.
6657 */
6658 if (buf_sz > l2arc_max_block_size) {
6659 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
6660 continue;
6661 }
6662
34dc7c2f
BB
6663 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6664 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6665 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6666 ZIO_FLAG_CANFAIL, B_FALSE);
6667
6668 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6669 zio_t *, wzio);
6670 (void) zio_nowait(wzio);
6671
ef56b078 6672 stats_size += buf_sz;
d962d5da 6673
b128c09f
BB
6674 /*
6675 * Keep the clock hand suitably device-aligned.
6676 */
ef56b078
AG
6677 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6678 write_asize += buf_a_sz;
6679 dev->l2ad_hand += buf_a_sz;
34dc7c2f 6680 }
34dc7c2f 6681 }
34dc7c2f 6682
b9541d6b 6683 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6684
3a17a7a9 6685 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 6686 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 6687 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 6688 ARCSTAT_INCR(arcstat_l2_size, write_sz);
ef56b078
AG
6689 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6690 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
34dc7c2f
BB
6691
6692 /*
6693 * Bump device hand to the device start if it is approaching the end.
6694 * l2arc_evict() will already have evicted ahead for this case.
6695 */
b128c09f 6696 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 6697 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
6698 dev->l2ad_first = B_FALSE;
6699 }
6700
d164b209 6701 dev->l2ad_writing = B_TRUE;
34dc7c2f 6702 (void) zio_wait(pio);
d164b209
BB
6703 dev->l2ad_writing = B_FALSE;
6704
3a17a7a9
SK
6705 return (write_asize);
6706}
6707
6708/*
6709 * Compresses an L2ARC buffer.
b9541d6b 6710 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
3a17a7a9
SK
6711 * size in l2hdr->b_asize. This routine tries to compress the data and
6712 * depending on the compression result there are three possible outcomes:
6713 * *) The buffer was incompressible. The original l2hdr contents were left
6714 * untouched and are ready for writing to an L2 device.
6715 * *) The buffer was all-zeros, so there is no need to write it to an L2
6716 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6717 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6718 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6719 * data buffer which holds the compressed data to be written, and b_asize
6720 * tells us how much data there is. b_compress is set to the appropriate
6721 * compression algorithm. Once writing is done, invoke
6722 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6723 *
6724 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6725 * buffer was incompressible).
6726 */
6727static boolean_t
b9541d6b 6728l2arc_compress_buf(arc_buf_hdr_t *hdr)
3a17a7a9
SK
6729{
6730 void *cdata;
9b67f605 6731 size_t csize, len, rounded;
b9541d6b 6732 l2arc_buf_hdr_t *l2hdr;
3a17a7a9 6733
b9541d6b
CW
6734 ASSERT(HDR_HAS_L2HDR(hdr));
6735
6736 l2hdr = &hdr->b_l2hdr;
6737
6738 ASSERT(HDR_HAS_L1HDR(hdr));
4e0f33ff 6739 ASSERT3U(l2hdr->b_compress, ==, ZIO_COMPRESS_OFF);
b9541d6b 6740 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
3a17a7a9
SK
6741
6742 len = l2hdr->b_asize;
6743 cdata = zio_data_buf_alloc(len);
b9541d6b
CW
6744 ASSERT3P(cdata, !=, NULL);
6745 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
3a17a7a9
SK
6746 cdata, l2hdr->b_asize);
6747
9b67f605
MA
6748 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6749 if (rounded > csize) {
6750 bzero((char *)cdata + csize, rounded - csize);
6751 csize = rounded;
6752 }
6753
3a17a7a9
SK
6754 if (csize == 0) {
6755 /* zero block, indicate that there's nothing to write */
6756 zio_data_buf_free(cdata, len);
4e0f33ff 6757 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
3a17a7a9 6758 l2hdr->b_asize = 0;
b9541d6b 6759 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9
SK
6760 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6761 return (B_TRUE);
6762 } else if (csize > 0 && csize < len) {
6763 /*
6764 * Compression succeeded, we'll keep the cdata around for
6765 * writing and release it afterwards.
6766 */
4e0f33ff 6767 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
3a17a7a9 6768 l2hdr->b_asize = csize;
b9541d6b 6769 hdr->b_l1hdr.b_tmp_cdata = cdata;
3a17a7a9
SK
6770 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6771 return (B_TRUE);
6772 } else {
6773 /*
6774 * Compression failed, release the compressed buffer.
6775 * l2hdr will be left unmodified.
6776 */
6777 zio_data_buf_free(cdata, len);
6778 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6779 return (B_FALSE);
6780 }
6781}
6782
6783/*
6784 * Decompresses a zio read back from an l2arc device. On success, the
6785 * underlying zio's io_data buffer is overwritten by the uncompressed
6786 * version. On decompression error (corrupt compressed stream), the
6787 * zio->io_error value is set to signal an I/O error.
6788 *
6789 * Please note that the compressed data stream is not checksummed, so
6790 * if the underlying device is experiencing data corruption, we may feed
6791 * corrupt data to the decompressor, so the decompressor needs to be
6792 * able to handle this situation (LZ4 does).
6793 */
6794static void
6795l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6796{
6797 uint64_t csize;
6798 void *cdata;
6799
6800 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6801
6802 if (zio->io_error != 0) {
6803 /*
6804 * An io error has occured, just restore the original io
6805 * size in preparation for a main pool read.
6806 */
6807 zio->io_orig_size = zio->io_size = hdr->b_size;
6808 return;
6809 }
6810
6811 if (c == ZIO_COMPRESS_EMPTY) {
6812 /*
6813 * An empty buffer results in a null zio, which means we
6814 * need to fill its io_data after we're done restoring the
6815 * buffer's contents.
6816 */
b9541d6b
CW
6817 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6818 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6819 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9
SK
6820 } else {
6821 ASSERT(zio->io_data != NULL);
6822 /*
6823 * We copy the compressed data from the start of the arc buffer
6824 * (the zio_read will have pulled in only what we need, the
6825 * rest is garbage which we will overwrite at decompression)
6826 * and then decompress back to the ARC data buffer. This way we
6827 * can minimize copying by simply decompressing back over the
6828 * original compressed data (rather than decompressing to an
6829 * aux buffer and then copying back the uncompressed buffer,
6830 * which is likely to be much larger).
6831 */
6832 csize = zio->io_size;
6833 cdata = zio_data_buf_alloc(csize);
6834 bcopy(zio->io_data, cdata, csize);
6835 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6836 hdr->b_size) != 0)
96c080cb 6837 zio->io_error = EIO;
3a17a7a9
SK
6838 zio_data_buf_free(cdata, csize);
6839 }
6840
6841 /* Restore the expected uncompressed IO size. */
6842 zio->io_orig_size = zio->io_size = hdr->b_size;
6843}
6844
6845/*
6846 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6847 * This buffer serves as a temporary holder of compressed data while
6848 * the buffer entry is being written to an l2arc device. Once that is
6849 * done, we can dispose of it.
6850 */
6851static void
2a432414 6852l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
3a17a7a9 6853{
4e0f33ff 6854 enum zio_compress comp;
ca0bf58d 6855
b9541d6b 6856 ASSERT(HDR_HAS_L1HDR(hdr));
4e0f33ff
AJ
6857 ASSERT(HDR_HAS_L2HDR(hdr));
6858 comp = hdr->b_l2hdr.b_compress;
ca0bf58d
PS
6859 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6860
6861 if (comp == ZIO_COMPRESS_OFF) {
6862 /*
6863 * In this case, b_tmp_cdata points to the same buffer
6864 * as the arc_buf_t's b_data field. We don't want to
6865 * free it, since the arc_buf_t will handle that.
6866 */
6867 hdr->b_l1hdr.b_tmp_cdata = NULL;
6868 } else if (comp == ZIO_COMPRESS_EMPTY) {
6869 /*
6870 * In this case, b_tmp_cdata was compressed to an empty
6871 * buffer, thus there's nothing to free and b_tmp_cdata
6872 * should have been set to NULL in l2arc_write_buffers().
6873 */
6874 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6875 } else {
3a17a7a9
SK
6876 /*
6877 * If the data was compressed, then we've allocated a
6878 * temporary buffer for it, so now we need to release it.
6879 */
b9541d6b
CW
6880 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6881 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6882 hdr->b_size);
ca0bf58d 6883 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9 6884 }
ca0bf58d 6885
34dc7c2f
BB
6886}
6887
6888/*
6889 * This thread feeds the L2ARC at regular intervals. This is the beating
6890 * heart of the L2ARC.
6891 */
6892static void
6893l2arc_feed_thread(void)
6894{
6895 callb_cpr_t cpr;
6896 l2arc_dev_t *dev;
6897 spa_t *spa;
d164b209 6898 uint64_t size, wrote;
428870ff 6899 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 6900 boolean_t headroom_boost = B_FALSE;
40d06e3c 6901 fstrans_cookie_t cookie;
34dc7c2f
BB
6902
6903 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6904
6905 mutex_enter(&l2arc_feed_thr_lock);
6906
40d06e3c 6907 cookie = spl_fstrans_mark();
34dc7c2f 6908 while (l2arc_thread_exit == 0) {
34dc7c2f 6909 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 6910 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 6911 &l2arc_feed_thr_lock, next);
34dc7c2f 6912 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 6913 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
6914
6915 /*
b128c09f 6916 * Quick check for L2ARC devices.
34dc7c2f
BB
6917 */
6918 mutex_enter(&l2arc_dev_mtx);
6919 if (l2arc_ndev == 0) {
6920 mutex_exit(&l2arc_dev_mtx);
6921 continue;
6922 }
b128c09f 6923 mutex_exit(&l2arc_dev_mtx);
428870ff 6924 begin = ddi_get_lbolt();
34dc7c2f
BB
6925
6926 /*
b128c09f
BB
6927 * This selects the next l2arc device to write to, and in
6928 * doing so the next spa to feed from: dev->l2ad_spa. This
6929 * will return NULL if there are now no l2arc devices or if
6930 * they are all faulted.
6931 *
6932 * If a device is returned, its spa's config lock is also
6933 * held to prevent device removal. l2arc_dev_get_next()
6934 * will grab and release l2arc_dev_mtx.
34dc7c2f 6935 */
b128c09f 6936 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 6937 continue;
b128c09f
BB
6938
6939 spa = dev->l2ad_spa;
6940 ASSERT(spa != NULL);
34dc7c2f 6941
572e2857
BB
6942 /*
6943 * If the pool is read-only then force the feed thread to
6944 * sleep a little longer.
6945 */
6946 if (!spa_writeable(spa)) {
6947 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6948 spa_config_exit(spa, SCL_L2ARC, dev);
6949 continue;
6950 }
6951
34dc7c2f 6952 /*
b128c09f 6953 * Avoid contributing to memory pressure.
34dc7c2f 6954 */
ca67b33a 6955 if (arc_reclaim_needed()) {
b128c09f
BB
6956 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6957 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
6958 continue;
6959 }
b128c09f 6960
34dc7c2f
BB
6961 ARCSTAT_BUMP(arcstat_l2_feeds);
6962
3a17a7a9 6963 size = l2arc_write_size();
b128c09f 6964
34dc7c2f
BB
6965 /*
6966 * Evict L2ARC buffers that will be overwritten.
6967 */
b128c09f 6968 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
6969
6970 /*
6971 * Write ARC buffers.
6972 */
3a17a7a9 6973 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
6974
6975 /*
6976 * Calculate interval between writes.
6977 */
6978 next = l2arc_write_interval(begin, size, wrote);
b128c09f 6979 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 6980 }
40d06e3c 6981 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6982
6983 l2arc_thread_exit = 0;
6984 cv_broadcast(&l2arc_feed_thr_cv);
6985 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6986 thread_exit();
6987}
6988
b128c09f
BB
6989boolean_t
6990l2arc_vdev_present(vdev_t *vd)
6991{
6992 l2arc_dev_t *dev;
6993
6994 mutex_enter(&l2arc_dev_mtx);
6995 for (dev = list_head(l2arc_dev_list); dev != NULL;
6996 dev = list_next(l2arc_dev_list, dev)) {
6997 if (dev->l2ad_vdev == vd)
6998 break;
6999 }
7000 mutex_exit(&l2arc_dev_mtx);
7001
7002 return (dev != NULL);
7003}
7004
34dc7c2f
BB
7005/*
7006 * Add a vdev for use by the L2ARC. By this point the spa has already
7007 * validated the vdev and opened it.
7008 */
7009void
9babb374 7010l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
7011{
7012 l2arc_dev_t *adddev;
7013
b128c09f
BB
7014 ASSERT(!l2arc_vdev_present(vd));
7015
34dc7c2f
BB
7016 /*
7017 * Create a new l2arc device entry.
7018 */
7019 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7020 adddev->l2ad_spa = spa;
7021 adddev->l2ad_vdev = vd;
9babb374
BB
7022 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7023 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 7024 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 7025 adddev->l2ad_first = B_TRUE;
d164b209 7026 adddev->l2ad_writing = B_FALSE;
98f72a53 7027 list_link_init(&adddev->l2ad_node);
34dc7c2f 7028
b9541d6b 7029 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
7030 /*
7031 * This is a list of all ARC buffers that are still valid on the
7032 * device.
7033 */
b9541d6b
CW
7034 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7035 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 7036
428870ff 7037 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
d962d5da 7038 refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
7039
7040 /*
7041 * Add device to global list
7042 */
7043 mutex_enter(&l2arc_dev_mtx);
7044 list_insert_head(l2arc_dev_list, adddev);
7045 atomic_inc_64(&l2arc_ndev);
7046 mutex_exit(&l2arc_dev_mtx);
7047}
7048
7049/*
7050 * Remove a vdev from the L2ARC.
7051 */
7052void
7053l2arc_remove_vdev(vdev_t *vd)
7054{
7055 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7056
34dc7c2f
BB
7057 /*
7058 * Find the device by vdev
7059 */
7060 mutex_enter(&l2arc_dev_mtx);
7061 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7062 nextdev = list_next(l2arc_dev_list, dev);
7063 if (vd == dev->l2ad_vdev) {
7064 remdev = dev;
7065 break;
7066 }
7067 }
7068 ASSERT(remdev != NULL);
7069
7070 /*
7071 * Remove device from global list
7072 */
7073 list_remove(l2arc_dev_list, remdev);
7074 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
7075 atomic_dec_64(&l2arc_ndev);
7076 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
7077
7078 /*
7079 * Clear all buflists and ARC references. L2ARC device flush.
7080 */
7081 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
7082 list_destroy(&remdev->l2ad_buflist);
7083 mutex_destroy(&remdev->l2ad_mtx);
d962d5da 7084 refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 7085 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
7086}
7087
7088void
b128c09f 7089l2arc_init(void)
34dc7c2f
BB
7090{
7091 l2arc_thread_exit = 0;
7092 l2arc_ndev = 0;
7093 l2arc_writes_sent = 0;
7094 l2arc_writes_done = 0;
7095
7096 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7097 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7098 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
7099 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7100
7101 l2arc_dev_list = &L2ARC_dev_list;
7102 l2arc_free_on_write = &L2ARC_free_on_write;
7103 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7104 offsetof(l2arc_dev_t, l2ad_node));
7105 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7106 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
7107}
7108
7109void
b128c09f 7110l2arc_fini(void)
34dc7c2f 7111{
b128c09f
BB
7112 /*
7113 * This is called from dmu_fini(), which is called from spa_fini();
7114 * Because of this, we can assume that all l2arc devices have
7115 * already been removed when the pools themselves were removed.
7116 */
7117
7118 l2arc_do_free_on_write();
34dc7c2f
BB
7119
7120 mutex_destroy(&l2arc_feed_thr_lock);
7121 cv_destroy(&l2arc_feed_thr_cv);
7122 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
7123 mutex_destroy(&l2arc_free_on_write_mtx);
7124
7125 list_destroy(l2arc_dev_list);
7126 list_destroy(l2arc_free_on_write);
7127}
b128c09f
BB
7128
7129void
7130l2arc_start(void)
7131{
fb5f0bc8 7132 if (!(spa_mode_global & FWRITE))
b128c09f
BB
7133 return;
7134
7135 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 7136 TS_RUN, defclsyspri);
b128c09f
BB
7137}
7138
7139void
7140l2arc_stop(void)
7141{
fb5f0bc8 7142 if (!(spa_mode_global & FWRITE))
b128c09f
BB
7143 return;
7144
7145 mutex_enter(&l2arc_feed_thr_lock);
7146 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7147 l2arc_thread_exit = 1;
7148 while (l2arc_thread_exit != 0)
7149 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7150 mutex_exit(&l2arc_feed_thr_lock);
7151}
c28b2279
BB
7152
7153#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
7154EXPORT_SYMBOL(arc_buf_size);
7155EXPORT_SYMBOL(arc_write);
c28b2279
BB
7156EXPORT_SYMBOL(arc_read);
7157EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 7158EXPORT_SYMBOL(arc_buf_info);
c28b2279 7159EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
7160EXPORT_SYMBOL(arc_add_prune_callback);
7161EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 7162
bce45ec9 7163module_param(zfs_arc_min, ulong, 0644);
c409e464 7164MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 7165
bce45ec9 7166module_param(zfs_arc_max, ulong, 0644);
c409e464 7167MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 7168
bce45ec9 7169module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 7170MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 7171
ca0bf58d
PS
7172module_param(zfs_arc_meta_min, ulong, 0644);
7173MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7174
bce45ec9 7175module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 7176MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 7177
ca67b33a 7178module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
7179MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7180 "Limit number of restarts in arc_adjust_meta");
7181
f6046738
BB
7182module_param(zfs_arc_meta_strategy, int, 0644);
7183MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7184
bce45ec9 7185module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
7186MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7187
89c8cac4
PS
7188module_param(zfs_arc_p_aggressive_disable, int, 0644);
7189MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7190
62422785
PS
7191module_param(zfs_arc_p_dampener_disable, int, 0644);
7192MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7193
bce45ec9 7194module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
7195MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7196
728d6ae9
BB
7197module_param(zfs_arc_p_min_shift, int, 0644);
7198MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7199
1f7c30df
BB
7200module_param(zfs_disable_dup_eviction, int, 0644);
7201MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
7202
49ddb315
MA
7203module_param(zfs_arc_average_blocksize, int, 0444);
7204MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7205
bce45ec9
BB
7206module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7207MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7208
ca0bf58d
PS
7209module_param(zfs_arc_num_sublists_per_state, int, 0644);
7210MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
7211 "Number of sublists used in each of the ARC state lists");
7212
bce45ec9 7213module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
7214MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7215
bce45ec9 7216module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
7217MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7218
bce45ec9 7219module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
7220MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7221
3a17a7a9
SK
7222module_param(l2arc_headroom_boost, ulong, 0644);
7223MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7224
8a09d5fd
BB
7225module_param(l2arc_max_block_size, ulong, 0644);
7226MODULE_PARM_DESC(l2arc_max_block_size, "Skip L2ARC buffers larger than N");
7227
bce45ec9 7228module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
7229MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7230
bce45ec9 7231module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
7232MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7233
bce45ec9 7234module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
7235MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7236
3a17a7a9
SK
7237module_param(l2arc_nocompress, int, 0644);
7238MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
7239
bce45ec9 7240module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
7241MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7242
bce45ec9 7243module_param(l2arc_norw, int, 0644);
abd8610c
BB
7244MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7245
7e8bddd0
BB
7246module_param(zfs_arc_lotsfree_percent, int, 0644);
7247MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7248 "System free memory I/O throttle in bytes");
7249
11f552fa
BB
7250module_param(zfs_arc_sys_free, ulong, 0644);
7251MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7252
25458cbe
TC
7253module_param(zfs_arc_dnode_limit, ulong, 0644);
7254MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7255
7256module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7257MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7258 "Percentage of excess dnodes to try to unpin");
7259
c28b2279 7260#endif