]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Don't run the reaper if we didn't shrink the cache
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
36da08ef 23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
c30e58c4 24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
36da08ef 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
d3c2ae1c 26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 62 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 66 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
2aa34383 80 * uses method 1, while the internal ARC algorithms for
d3cc8b15 81 * adjusting the cache use method 2. We therefore provide two
34dc7c2f 82 * types of locks: 1) the hash table lock array, and 2) the
2aa34383 83 * ARC list locks.
34dc7c2f 84 *
5c839890
BC
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
2aa34383 96 * Each ARC state also has a mutex which is used to protect the
34dc7c2f 97 * buffer list associated with the state. When attempting to
2aa34383 98 * obtain a hash table lock while holding an ARC list lock you
34dc7c2f
BB
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
ab26409d
BB
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
34dc7c2f
BB
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
b9541d6b 113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
d3c2ae1c
GW
122/*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
2aa34383 138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
a6255b7f 139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
2aa34383
DK
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
a6255b7f
DQ
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
2aa34383
DK
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
a6255b7f 146 * compressed ARC functionality is disabled, the b_pabd will point to an
2aa34383
DK
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
d3c2ae1c
GW
156 * "overhead_size" kstat.
157 *
2aa34383
DK
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
d3c2ae1c 165 *
2aa34383
DK
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
d3c2ae1c 171 *
2aa34383
DK
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
a6255b7f 185 * | b_pabd +-+ |b_next +---->+-----------+
2aa34383
DK
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
d3c2ae1c
GW
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
2aa34383
DK
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
a6255b7f
DQ
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
2aa34383
DK
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
d3c2ae1c
GW
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
2aa34383
DK
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
d3c2ae1c
GW
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
a6255b7f 227 * | b_pabd +-+ |---------| |b_next +-->NULL
d3c2ae1c
GW
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
a6255b7f 241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
d3c2ae1c 242 * since the physical block is about to be rewritten. The new data contents
2aa34383
DK
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
a6255b7f 246 * a newly allocated b_pabd. Writes are always done into buffers which have
2aa34383
DK
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
d3c2ae1c 251 *
a6255b7f
DQ
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
2aa34383 254 * that when compressed ARC is enabled that the L2ARC blocks are identical
d3c2ae1c
GW
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
2aa34383 258 * ARC is disabled, then the L2ARC's block must be transformed to look
d3c2ae1c
GW
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
34dc7c2f
BB
263#include <sys/spa.h>
264#include <sys/zio.h>
d3c2ae1c 265#include <sys/spa_impl.h>
3a17a7a9 266#include <sys/zio_compress.h>
d3c2ae1c 267#include <sys/zio_checksum.h>
34dc7c2f
BB
268#include <sys/zfs_context.h>
269#include <sys/arc.h>
36da08ef 270#include <sys/refcount.h>
b128c09f 271#include <sys/vdev.h>
9babb374 272#include <sys/vdev_impl.h>
e8b96c60 273#include <sys/dsl_pool.h>
a6255b7f 274#include <sys/zio_checksum.h>
ca0bf58d 275#include <sys/multilist.h>
a6255b7f 276#include <sys/abd.h>
34dc7c2f
BB
277#ifdef _KERNEL
278#include <sys/vmsystm.h>
279#include <vm/anon.h>
280#include <sys/fs/swapnode.h>
ab26409d 281#include <sys/zpl.h>
aaed7c40 282#include <linux/mm_compat.h>
34dc7c2f
BB
283#endif
284#include <sys/callb.h>
285#include <sys/kstat.h>
570827e1 286#include <sys/dmu_tx.h>
428870ff 287#include <zfs_fletcher.h>
59ec819a 288#include <sys/arc_impl.h>
49ee64e5 289#include <sys/trace_arc.h>
34dc7c2f 290
498877ba
MA
291#ifndef _KERNEL
292/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
293boolean_t arc_watch = B_FALSE;
294#endif
295
ca0bf58d
PS
296static kmutex_t arc_reclaim_lock;
297static kcondvar_t arc_reclaim_thread_cv;
298static boolean_t arc_reclaim_thread_exit;
299static kcondvar_t arc_reclaim_waiters_cv;
300
e8b96c60 301/*
ca0bf58d
PS
302 * The number of headers to evict in arc_evict_state_impl() before
303 * dropping the sublist lock and evicting from another sublist. A lower
304 * value means we're more likely to evict the "correct" header (i.e. the
305 * oldest header in the arc state), but comes with higher overhead
306 * (i.e. more invocations of arc_evict_state_impl()).
307 */
308int zfs_arc_evict_batch_limit = 10;
309
34dc7c2f 310/* number of seconds before growing cache again */
ca67b33a 311static int arc_grow_retry = 5;
34dc7c2f 312
a6255b7f 313/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
ca67b33a 314int zfs_arc_overflow_shift = 8;
62422785 315
728d6ae9
BB
316/* shift of arc_c for calculating both min and max arc_p */
317static int arc_p_min_shift = 4;
318
d164b209 319/* log2(fraction of arc to reclaim) */
ca67b33a 320static int arc_shrink_shift = 7;
d164b209 321
34dc7c2f 322/*
ca67b33a
MA
323 * log2(fraction of ARC which must be free to allow growing).
324 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
325 * when reading a new block into the ARC, we will evict an equal-sized block
326 * from the ARC.
327 *
328 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
329 * we will still not allow it to grow.
34dc7c2f 330 */
ca67b33a 331int arc_no_grow_shift = 5;
bce45ec9 332
49ddb315 333
ca0bf58d
PS
334/*
335 * minimum lifespan of a prefetch block in clock ticks
336 * (initialized in arc_init())
337 */
ca67b33a 338static int arc_min_prefetch_lifespan;
ca0bf58d 339
e8b96c60
MA
340/*
341 * If this percent of memory is free, don't throttle.
342 */
343int arc_lotsfree_percent = 10;
344
34dc7c2f
BB
345static int arc_dead;
346
b128c09f
BB
347/*
348 * The arc has filled available memory and has now warmed up.
349 */
350static boolean_t arc_warm;
351
d3c2ae1c
GW
352/*
353 * log2 fraction of the zio arena to keep free.
354 */
355int arc_zio_arena_free_shift = 2;
356
34dc7c2f
BB
357/*
358 * These tunables are for performance analysis.
359 */
c28b2279
BB
360unsigned long zfs_arc_max = 0;
361unsigned long zfs_arc_min = 0;
362unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 363unsigned long zfs_arc_meta_min = 0;
25458cbe
TC
364unsigned long zfs_arc_dnode_limit = 0;
365unsigned long zfs_arc_dnode_reduce_percent = 10;
ca67b33a
MA
366int zfs_arc_grow_retry = 0;
367int zfs_arc_shrink_shift = 0;
728d6ae9 368int zfs_arc_p_min_shift = 0;
ca67b33a 369int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 370
d3c2ae1c
GW
371int zfs_compressed_arc_enabled = B_TRUE;
372
9907cc1c
G
373/*
374 * ARC will evict meta buffers that exceed arc_meta_limit. This
375 * tunable make arc_meta_limit adjustable for different workloads.
376 */
377unsigned long zfs_arc_meta_limit_percent = 75;
378
379/*
380 * Percentage that can be consumed by dnodes of ARC meta buffers.
381 */
382unsigned long zfs_arc_dnode_limit_percent = 10;
383
bc888666 384/*
ca67b33a 385 * These tunables are Linux specific
bc888666 386 */
11f552fa 387unsigned long zfs_arc_sys_free = 0;
ca67b33a
MA
388int zfs_arc_min_prefetch_lifespan = 0;
389int zfs_arc_p_aggressive_disable = 1;
390int zfs_arc_p_dampener_disable = 1;
391int zfs_arc_meta_prune = 10000;
392int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
393int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 394int zfs_arc_lotsfree_percent = 10;
bc888666 395
34dc7c2f
BB
396/* The 6 states: */
397static arc_state_t ARC_anon;
398static arc_state_t ARC_mru;
399static arc_state_t ARC_mru_ghost;
400static arc_state_t ARC_mfu;
401static arc_state_t ARC_mfu_ghost;
402static arc_state_t ARC_l2c_only;
403
404typedef struct arc_stats {
405 kstat_named_t arcstat_hits;
406 kstat_named_t arcstat_misses;
407 kstat_named_t arcstat_demand_data_hits;
408 kstat_named_t arcstat_demand_data_misses;
409 kstat_named_t arcstat_demand_metadata_hits;
410 kstat_named_t arcstat_demand_metadata_misses;
411 kstat_named_t arcstat_prefetch_data_hits;
412 kstat_named_t arcstat_prefetch_data_misses;
413 kstat_named_t arcstat_prefetch_metadata_hits;
414 kstat_named_t arcstat_prefetch_metadata_misses;
415 kstat_named_t arcstat_mru_hits;
416 kstat_named_t arcstat_mru_ghost_hits;
417 kstat_named_t arcstat_mfu_hits;
418 kstat_named_t arcstat_mfu_ghost_hits;
419 kstat_named_t arcstat_deleted;
e49f1e20
WA
420 /*
421 * Number of buffers that could not be evicted because the hash lock
422 * was held by another thread. The lock may not necessarily be held
423 * by something using the same buffer, since hash locks are shared
424 * by multiple buffers.
425 */
34dc7c2f 426 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
427 /*
428 * Number of buffers skipped because they have I/O in progress, are
429 * indrect prefetch buffers that have not lived long enough, or are
430 * not from the spa we're trying to evict from.
431 */
34dc7c2f 432 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
433 /*
434 * Number of times arc_evict_state() was unable to evict enough
435 * buffers to reach its target amount.
436 */
437 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
438 kstat_named_t arcstat_evict_l2_cached;
439 kstat_named_t arcstat_evict_l2_eligible;
440 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 441 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
442 kstat_named_t arcstat_hash_elements;
443 kstat_named_t arcstat_hash_elements_max;
444 kstat_named_t arcstat_hash_collisions;
445 kstat_named_t arcstat_hash_chains;
446 kstat_named_t arcstat_hash_chain_max;
447 kstat_named_t arcstat_p;
448 kstat_named_t arcstat_c;
449 kstat_named_t arcstat_c_min;
450 kstat_named_t arcstat_c_max;
451 kstat_named_t arcstat_size;
d3c2ae1c 452 /*
a6255b7f 453 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
d3c2ae1c
GW
454 * Note that the compressed bytes may match the uncompressed bytes
455 * if the block is either not compressed or compressed arc is disabled.
456 */
457 kstat_named_t arcstat_compressed_size;
458 /*
a6255b7f 459 * Uncompressed size of the data stored in b_pabd. If compressed
d3c2ae1c
GW
460 * arc is disabled then this value will be identical to the stat
461 * above.
462 */
463 kstat_named_t arcstat_uncompressed_size;
464 /*
465 * Number of bytes stored in all the arc_buf_t's. This is classified
466 * as "overhead" since this data is typically short-lived and will
467 * be evicted from the arc when it becomes unreferenced unless the
468 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
469 * values have been set (see comment in dbuf.c for more information).
470 */
471 kstat_named_t arcstat_overhead_size;
500445c0
PS
472 /*
473 * Number of bytes consumed by internal ARC structures necessary
474 * for tracking purposes; these structures are not actually
475 * backed by ARC buffers. This includes arc_buf_hdr_t structures
476 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
477 * caches), and arc_buf_t structures (allocated via arc_buf_t
478 * cache).
479 */
34dc7c2f 480 kstat_named_t arcstat_hdr_size;
500445c0
PS
481 /*
482 * Number of bytes consumed by ARC buffers of type equal to
483 * ARC_BUFC_DATA. This is generally consumed by buffers backing
484 * on disk user data (e.g. plain file contents).
485 */
d164b209 486 kstat_named_t arcstat_data_size;
500445c0
PS
487 /*
488 * Number of bytes consumed by ARC buffers of type equal to
489 * ARC_BUFC_METADATA. This is generally consumed by buffers
490 * backing on disk data that is used for internal ZFS
491 * structures (e.g. ZAP, dnode, indirect blocks, etc).
492 */
493 kstat_named_t arcstat_metadata_size;
494 /*
25458cbe 495 * Number of bytes consumed by dmu_buf_impl_t objects.
500445c0 496 */
25458cbe
TC
497 kstat_named_t arcstat_dbuf_size;
498 /*
499 * Number of bytes consumed by dnode_t objects.
500 */
501 kstat_named_t arcstat_dnode_size;
502 /*
503 * Number of bytes consumed by bonus buffers.
504 */
505 kstat_named_t arcstat_bonus_size;
500445c0
PS
506 /*
507 * Total number of bytes consumed by ARC buffers residing in the
508 * arc_anon state. This includes *all* buffers in the arc_anon
509 * state; e.g. data, metadata, evictable, and unevictable buffers
510 * are all included in this value.
511 */
13be560d 512 kstat_named_t arcstat_anon_size;
500445c0
PS
513 /*
514 * Number of bytes consumed by ARC buffers that meet the
515 * following criteria: backing buffers of type ARC_BUFC_DATA,
516 * residing in the arc_anon state, and are eligible for eviction
517 * (e.g. have no outstanding holds on the buffer).
518 */
519 kstat_named_t arcstat_anon_evictable_data;
520 /*
521 * Number of bytes consumed by ARC buffers that meet the
522 * following criteria: backing buffers of type ARC_BUFC_METADATA,
523 * residing in the arc_anon state, and are eligible for eviction
524 * (e.g. have no outstanding holds on the buffer).
525 */
526 kstat_named_t arcstat_anon_evictable_metadata;
527 /*
528 * Total number of bytes consumed by ARC buffers residing in the
529 * arc_mru state. This includes *all* buffers in the arc_mru
530 * state; e.g. data, metadata, evictable, and unevictable buffers
531 * are all included in this value.
532 */
13be560d 533 kstat_named_t arcstat_mru_size;
500445c0
PS
534 /*
535 * Number of bytes consumed by ARC buffers that meet the
536 * following criteria: backing buffers of type ARC_BUFC_DATA,
537 * residing in the arc_mru state, and are eligible for eviction
538 * (e.g. have no outstanding holds on the buffer).
539 */
540 kstat_named_t arcstat_mru_evictable_data;
541 /*
542 * Number of bytes consumed by ARC buffers that meet the
543 * following criteria: backing buffers of type ARC_BUFC_METADATA,
544 * residing in the arc_mru state, and are eligible for eviction
545 * (e.g. have no outstanding holds on the buffer).
546 */
547 kstat_named_t arcstat_mru_evictable_metadata;
548 /*
549 * Total number of bytes that *would have been* consumed by ARC
550 * buffers in the arc_mru_ghost state. The key thing to note
551 * here, is the fact that this size doesn't actually indicate
552 * RAM consumption. The ghost lists only consist of headers and
553 * don't actually have ARC buffers linked off of these headers.
554 * Thus, *if* the headers had associated ARC buffers, these
555 * buffers *would have* consumed this number of bytes.
556 */
13be560d 557 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
558 /*
559 * Number of bytes that *would have been* consumed by ARC
560 * buffers that are eligible for eviction, of type
561 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
562 */
563 kstat_named_t arcstat_mru_ghost_evictable_data;
564 /*
565 * Number of bytes that *would have been* consumed by ARC
566 * buffers that are eligible for eviction, of type
567 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
568 */
569 kstat_named_t arcstat_mru_ghost_evictable_metadata;
570 /*
571 * Total number of bytes consumed by ARC buffers residing in the
572 * arc_mfu state. This includes *all* buffers in the arc_mfu
573 * state; e.g. data, metadata, evictable, and unevictable buffers
574 * are all included in this value.
575 */
13be560d 576 kstat_named_t arcstat_mfu_size;
500445c0
PS
577 /*
578 * Number of bytes consumed by ARC buffers that are eligible for
579 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
580 * state.
581 */
582 kstat_named_t arcstat_mfu_evictable_data;
583 /*
584 * Number of bytes consumed by ARC buffers that are eligible for
585 * eviction, of type ARC_BUFC_METADATA, and reside in the
586 * arc_mfu state.
587 */
588 kstat_named_t arcstat_mfu_evictable_metadata;
589 /*
590 * Total number of bytes that *would have been* consumed by ARC
591 * buffers in the arc_mfu_ghost state. See the comment above
592 * arcstat_mru_ghost_size for more details.
593 */
13be560d 594 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
595 /*
596 * Number of bytes that *would have been* consumed by ARC
597 * buffers that are eligible for eviction, of type
598 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
599 */
600 kstat_named_t arcstat_mfu_ghost_evictable_data;
601 /*
602 * Number of bytes that *would have been* consumed by ARC
603 * buffers that are eligible for eviction, of type
604 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
605 */
606 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
607 kstat_named_t arcstat_l2_hits;
608 kstat_named_t arcstat_l2_misses;
609 kstat_named_t arcstat_l2_feeds;
610 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
611 kstat_named_t arcstat_l2_read_bytes;
612 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
613 kstat_named_t arcstat_l2_writes_sent;
614 kstat_named_t arcstat_l2_writes_done;
615 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 616 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
617 kstat_named_t arcstat_l2_evict_lock_retry;
618 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 619 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f
BB
620 kstat_named_t arcstat_l2_free_on_write;
621 kstat_named_t arcstat_l2_abort_lowmem;
622 kstat_named_t arcstat_l2_cksum_bad;
623 kstat_named_t arcstat_l2_io_error;
624 kstat_named_t arcstat_l2_size;
3a17a7a9 625 kstat_named_t arcstat_l2_asize;
34dc7c2f
BB
626 kstat_named_t arcstat_l2_hdr_size;
627 kstat_named_t arcstat_memory_throttle_count;
7cb67b45
BB
628 kstat_named_t arcstat_memory_direct_count;
629 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
630 kstat_named_t arcstat_no_grow;
631 kstat_named_t arcstat_tempreserve;
632 kstat_named_t arcstat_loaned_bytes;
ab26409d 633 kstat_named_t arcstat_prune;
1834f2d8
BB
634 kstat_named_t arcstat_meta_used;
635 kstat_named_t arcstat_meta_limit;
25458cbe 636 kstat_named_t arcstat_dnode_limit;
1834f2d8 637 kstat_named_t arcstat_meta_max;
ca0bf58d 638 kstat_named_t arcstat_meta_min;
7f60329a
MA
639 kstat_named_t arcstat_sync_wait_for_async;
640 kstat_named_t arcstat_demand_hit_predictive_prefetch;
11f552fa
BB
641 kstat_named_t arcstat_need_free;
642 kstat_named_t arcstat_sys_free;
34dc7c2f
BB
643} arc_stats_t;
644
645static arc_stats_t arc_stats = {
646 { "hits", KSTAT_DATA_UINT64 },
647 { "misses", KSTAT_DATA_UINT64 },
648 { "demand_data_hits", KSTAT_DATA_UINT64 },
649 { "demand_data_misses", KSTAT_DATA_UINT64 },
650 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
651 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
652 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
653 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
654 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
655 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
656 { "mru_hits", KSTAT_DATA_UINT64 },
657 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
658 { "mfu_hits", KSTAT_DATA_UINT64 },
659 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
660 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
661 { "mutex_miss", KSTAT_DATA_UINT64 },
662 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 663 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
664 { "evict_l2_cached", KSTAT_DATA_UINT64 },
665 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
666 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 667 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
668 { "hash_elements", KSTAT_DATA_UINT64 },
669 { "hash_elements_max", KSTAT_DATA_UINT64 },
670 { "hash_collisions", KSTAT_DATA_UINT64 },
671 { "hash_chains", KSTAT_DATA_UINT64 },
672 { "hash_chain_max", KSTAT_DATA_UINT64 },
673 { "p", KSTAT_DATA_UINT64 },
674 { "c", KSTAT_DATA_UINT64 },
675 { "c_min", KSTAT_DATA_UINT64 },
676 { "c_max", KSTAT_DATA_UINT64 },
677 { "size", KSTAT_DATA_UINT64 },
d3c2ae1c
GW
678 { "compressed_size", KSTAT_DATA_UINT64 },
679 { "uncompressed_size", KSTAT_DATA_UINT64 },
680 { "overhead_size", KSTAT_DATA_UINT64 },
34dc7c2f 681 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 682 { "data_size", KSTAT_DATA_UINT64 },
500445c0 683 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
684 { "dbuf_size", KSTAT_DATA_UINT64 },
685 { "dnode_size", KSTAT_DATA_UINT64 },
686 { "bonus_size", KSTAT_DATA_UINT64 },
13be560d 687 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
688 { "anon_evictable_data", KSTAT_DATA_UINT64 },
689 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 690 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
691 { "mru_evictable_data", KSTAT_DATA_UINT64 },
692 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 693 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
694 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
695 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 696 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
697 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
698 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 699 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
700 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
701 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
702 { "l2_hits", KSTAT_DATA_UINT64 },
703 { "l2_misses", KSTAT_DATA_UINT64 },
704 { "l2_feeds", KSTAT_DATA_UINT64 },
705 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
706 { "l2_read_bytes", KSTAT_DATA_UINT64 },
707 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
708 { "l2_writes_sent", KSTAT_DATA_UINT64 },
709 { "l2_writes_done", KSTAT_DATA_UINT64 },
710 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 711 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
712 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
713 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 714 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f
BB
715 { "l2_free_on_write", KSTAT_DATA_UINT64 },
716 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
717 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
718 { "l2_io_error", KSTAT_DATA_UINT64 },
719 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 720 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 721 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 722 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
723 { "memory_direct_count", KSTAT_DATA_UINT64 },
724 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
725 { "arc_no_grow", KSTAT_DATA_UINT64 },
726 { "arc_tempreserve", KSTAT_DATA_UINT64 },
727 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 728 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
729 { "arc_meta_used", KSTAT_DATA_UINT64 },
730 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 731 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 732 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 733 { "arc_meta_min", KSTAT_DATA_UINT64 },
7f60329a
MA
734 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
735 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
11f552fa
BB
736 { "arc_need_free", KSTAT_DATA_UINT64 },
737 { "arc_sys_free", KSTAT_DATA_UINT64 }
34dc7c2f
BB
738};
739
740#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
741
742#define ARCSTAT_INCR(stat, val) \
d3cc8b15 743 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 744
428870ff 745#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
746#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
747
748#define ARCSTAT_MAX(stat, val) { \
749 uint64_t m; \
750 while ((val) > (m = arc_stats.stat.value.ui64) && \
751 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
752 continue; \
753}
754
755#define ARCSTAT_MAXSTAT(stat) \
756 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
757
758/*
759 * We define a macro to allow ARC hits/misses to be easily broken down by
760 * two separate conditions, giving a total of four different subtypes for
761 * each of hits and misses (so eight statistics total).
762 */
763#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
764 if (cond1) { \
765 if (cond2) { \
766 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
767 } else { \
768 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
769 } \
770 } else { \
771 if (cond2) { \
772 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
773 } else { \
774 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
775 } \
776 }
777
778kstat_t *arc_ksp;
428870ff 779static arc_state_t *arc_anon;
34dc7c2f
BB
780static arc_state_t *arc_mru;
781static arc_state_t *arc_mru_ghost;
782static arc_state_t *arc_mfu;
783static arc_state_t *arc_mfu_ghost;
784static arc_state_t *arc_l2c_only;
785
786/*
787 * There are several ARC variables that are critical to export as kstats --
788 * but we don't want to have to grovel around in the kstat whenever we wish to
789 * manipulate them. For these variables, we therefore define them to be in
790 * terms of the statistic variable. This assures that we are not introducing
791 * the possibility of inconsistency by having shadow copies of the variables,
792 * while still allowing the code to be readable.
793 */
794#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
795#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
796#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
797#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
798#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
d3c2ae1c 799#define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
1834f2d8
BB
800#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
801#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 802#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
25458cbe 803#define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
ca0bf58d 804#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
805#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
806#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
25458cbe
TC
807#define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
808#define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
809#define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
11f552fa
BB
810#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
811#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
34dc7c2f 812
d3c2ae1c
GW
813/* compressed size of entire arc */
814#define arc_compressed_size ARCSTAT(arcstat_compressed_size)
815/* uncompressed size of entire arc */
816#define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
817/* number of bytes in the arc from arc_buf_t's */
818#define arc_overhead_size ARCSTAT(arcstat_overhead_size)
3a17a7a9 819
ab26409d
BB
820static list_t arc_prune_list;
821static kmutex_t arc_prune_mtx;
f6046738 822static taskq_t *arc_prune_taskq;
428870ff 823
34dc7c2f
BB
824#define GHOST_STATE(state) \
825 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
826 (state) == arc_l2c_only)
827
2a432414
GW
828#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
829#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
830#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
831#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
d3c2ae1c
GW
832#define HDR_COMPRESSION_ENABLED(hdr) \
833 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
b9541d6b 834
2a432414
GW
835#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
836#define HDR_L2_READING(hdr) \
d3c2ae1c
GW
837 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
838 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
839#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
840#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
841#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
d3c2ae1c 842#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
34dc7c2f 843
b9541d6b 844#define HDR_ISTYPE_METADATA(hdr) \
d3c2ae1c 845 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
b9541d6b
CW
846#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
847
848#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
849#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
850
d3c2ae1c
GW
851/* For storing compression mode in b_flags */
852#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
853
854#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
855 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
856#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
857 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
858
859#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
524b4217
DK
860#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
861#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
d3c2ae1c 862
34dc7c2f
BB
863/*
864 * Other sizes
865 */
866
b9541d6b
CW
867#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
868#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
869
870/*
871 * Hash table routines
872 */
873
00b46022
BB
874#define HT_LOCK_ALIGN 64
875#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
876
877struct ht_lock {
878 kmutex_t ht_lock;
879#ifdef _KERNEL
00b46022 880 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
881#endif
882};
883
b31d8ea7 884#define BUF_LOCKS 8192
34dc7c2f
BB
885typedef struct buf_hash_table {
886 uint64_t ht_mask;
887 arc_buf_hdr_t **ht_table;
888 struct ht_lock ht_locks[BUF_LOCKS];
889} buf_hash_table_t;
890
891static buf_hash_table_t buf_hash_table;
892
893#define BUF_HASH_INDEX(spa, dva, birth) \
894 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
895#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
896#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
897#define HDR_LOCK(hdr) \
898 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
899
900uint64_t zfs_crc64_table[256];
901
902/*
903 * Level 2 ARC
904 */
905
906#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 907#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd 908
3a17a7a9
SK
909/*
910 * If we discover during ARC scan any buffers to be compressed, we boost
911 * our headroom for the next scanning cycle by this percentage multiple.
912 */
913#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
914#define L2ARC_FEED_SECS 1 /* caching interval secs */
915#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 916
4aafab91
G
917/*
918 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
919 * and each of the state has two types: data and metadata.
920 */
921#define L2ARC_FEED_TYPES 4
922
34dc7c2f
BB
923#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
924#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
925
d3cc8b15 926/* L2ARC Performance Tunables */
abd8610c
BB
927unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
928unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
929unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 930unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
931unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
932unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
933int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
934int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 935int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
936
937/*
938 * L2ARC Internals
939 */
34dc7c2f
BB
940static list_t L2ARC_dev_list; /* device list */
941static list_t *l2arc_dev_list; /* device list pointer */
942static kmutex_t l2arc_dev_mtx; /* device list mutex */
943static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
944static list_t L2ARC_free_on_write; /* free after write buf list */
945static list_t *l2arc_free_on_write; /* free after write list ptr */
946static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
947static uint64_t l2arc_ndev; /* number of devices */
948
949typedef struct l2arc_read_callback {
2aa34383 950 arc_buf_hdr_t *l2rcb_hdr; /* read header */
3a17a7a9 951 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 952 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9 953 int l2rcb_flags; /* original flags */
34dc7c2f
BB
954} l2arc_read_callback_t;
955
34dc7c2f
BB
956typedef struct l2arc_data_free {
957 /* protected by l2arc_free_on_write_mtx */
a6255b7f 958 abd_t *l2df_abd;
34dc7c2f 959 size_t l2df_size;
d3c2ae1c 960 arc_buf_contents_t l2df_type;
34dc7c2f
BB
961 list_node_t l2df_list_node;
962} l2arc_data_free_t;
963
964static kmutex_t l2arc_feed_thr_lock;
965static kcondvar_t l2arc_feed_thr_cv;
966static uint8_t l2arc_thread_exit;
967
a6255b7f 968static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
d3c2ae1c 969static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
a6255b7f
DQ
970static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
971static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
d3c2ae1c 972static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
a6255b7f
DQ
973static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
974static void arc_hdr_free_pabd(arc_buf_hdr_t *);
975static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
2a432414 976static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 977static boolean_t arc_is_overflowing(void);
2a432414 978static void arc_buf_watch(arc_buf_t *);
ca67b33a 979static void arc_tuning_update(void);
25458cbe 980static void arc_prune_async(int64_t);
9edb3695 981static uint64_t arc_all_memory(void);
2a432414 982
b9541d6b
CW
983static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
984static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
d3c2ae1c
GW
985static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
986static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
b9541d6b 987
2a432414
GW
988static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
989static void l2arc_read_done(zio_t *);
34dc7c2f
BB
990
991static uint64_t
d164b209 992buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 993{
34dc7c2f
BB
994 uint8_t *vdva = (uint8_t *)dva;
995 uint64_t crc = -1ULL;
996 int i;
997
998 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
999
1000 for (i = 0; i < sizeof (dva_t); i++)
1001 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1002
d164b209 1003 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
1004
1005 return (crc);
1006}
1007
d3c2ae1c
GW
1008#define HDR_EMPTY(hdr) \
1009 ((hdr)->b_dva.dva_word[0] == 0 && \
1010 (hdr)->b_dva.dva_word[1] == 0)
34dc7c2f 1011
d3c2ae1c
GW
1012#define HDR_EQUAL(spa, dva, birth, hdr) \
1013 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1014 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1015 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
34dc7c2f 1016
428870ff
BB
1017static void
1018buf_discard_identity(arc_buf_hdr_t *hdr)
1019{
1020 hdr->b_dva.dva_word[0] = 0;
1021 hdr->b_dva.dva_word[1] = 0;
1022 hdr->b_birth = 0;
428870ff
BB
1023}
1024
34dc7c2f 1025static arc_buf_hdr_t *
9b67f605 1026buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 1027{
9b67f605
MA
1028 const dva_t *dva = BP_IDENTITY(bp);
1029 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
1030 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1031 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1032 arc_buf_hdr_t *hdr;
34dc7c2f
BB
1033
1034 mutex_enter(hash_lock);
2a432414
GW
1035 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1036 hdr = hdr->b_hash_next) {
d3c2ae1c 1037 if (HDR_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 1038 *lockp = hash_lock;
2a432414 1039 return (hdr);
34dc7c2f
BB
1040 }
1041 }
1042 mutex_exit(hash_lock);
1043 *lockp = NULL;
1044 return (NULL);
1045}
1046
1047/*
1048 * Insert an entry into the hash table. If there is already an element
1049 * equal to elem in the hash table, then the already existing element
1050 * will be returned and the new element will not be inserted.
1051 * Otherwise returns NULL.
b9541d6b 1052 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
1053 */
1054static arc_buf_hdr_t *
2a432414 1055buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 1056{
2a432414 1057 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 1058 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1059 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
1060 uint32_t i;
1061
2a432414
GW
1062 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1063 ASSERT(hdr->b_birth != 0);
1064 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
1065
1066 if (lockp != NULL) {
1067 *lockp = hash_lock;
1068 mutex_enter(hash_lock);
1069 } else {
1070 ASSERT(MUTEX_HELD(hash_lock));
1071 }
1072
2a432414
GW
1073 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1074 fhdr = fhdr->b_hash_next, i++) {
d3c2ae1c 1075 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
2a432414 1076 return (fhdr);
34dc7c2f
BB
1077 }
1078
2a432414
GW
1079 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1080 buf_hash_table.ht_table[idx] = hdr;
d3c2ae1c 1081 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1082
1083 /* collect some hash table performance data */
1084 if (i > 0) {
1085 ARCSTAT_BUMP(arcstat_hash_collisions);
1086 if (i == 1)
1087 ARCSTAT_BUMP(arcstat_hash_chains);
1088
1089 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1090 }
1091
1092 ARCSTAT_BUMP(arcstat_hash_elements);
1093 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1094
1095 return (NULL);
1096}
1097
1098static void
2a432414 1099buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 1100{
2a432414
GW
1101 arc_buf_hdr_t *fhdr, **hdrp;
1102 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
1103
1104 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 1105 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 1106
2a432414
GW
1107 hdrp = &buf_hash_table.ht_table[idx];
1108 while ((fhdr = *hdrp) != hdr) {
d3c2ae1c 1109 ASSERT3P(fhdr, !=, NULL);
2a432414 1110 hdrp = &fhdr->b_hash_next;
34dc7c2f 1111 }
2a432414
GW
1112 *hdrp = hdr->b_hash_next;
1113 hdr->b_hash_next = NULL;
d3c2ae1c 1114 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1115
1116 /* collect some hash table performance data */
1117 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1118
1119 if (buf_hash_table.ht_table[idx] &&
1120 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1121 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1122}
1123
1124/*
1125 * Global data structures and functions for the buf kmem cache.
1126 */
b9541d6b
CW
1127static kmem_cache_t *hdr_full_cache;
1128static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
1129static kmem_cache_t *buf_cache;
1130
1131static void
1132buf_fini(void)
1133{
1134 int i;
1135
00b46022 1136#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1137 /*
1138 * Large allocations which do not require contiguous pages
1139 * should be using vmem_free() in the linux kernel\
1140 */
00b46022
BB
1141 vmem_free(buf_hash_table.ht_table,
1142 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1143#else
34dc7c2f
BB
1144 kmem_free(buf_hash_table.ht_table,
1145 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 1146#endif
34dc7c2f
BB
1147 for (i = 0; i < BUF_LOCKS; i++)
1148 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b
CW
1149 kmem_cache_destroy(hdr_full_cache);
1150 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
1151 kmem_cache_destroy(buf_cache);
1152}
1153
1154/*
1155 * Constructor callback - called when the cache is empty
1156 * and a new buf is requested.
1157 */
1158/* ARGSUSED */
1159static int
b9541d6b
CW
1160hdr_full_cons(void *vbuf, void *unused, int kmflag)
1161{
1162 arc_buf_hdr_t *hdr = vbuf;
1163
1164 bzero(hdr, HDR_FULL_SIZE);
1165 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1166 refcount_create(&hdr->b_l1hdr.b_refcnt);
1167 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1168 list_link_init(&hdr->b_l1hdr.b_arc_node);
1169 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1170 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1171 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1172
1173 return (0);
1174}
1175
1176/* ARGSUSED */
1177static int
1178hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1179{
2a432414
GW
1180 arc_buf_hdr_t *hdr = vbuf;
1181
b9541d6b
CW
1182 bzero(hdr, HDR_L2ONLY_SIZE);
1183 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1184
34dc7c2f
BB
1185 return (0);
1186}
1187
b128c09f
BB
1188/* ARGSUSED */
1189static int
1190buf_cons(void *vbuf, void *unused, int kmflag)
1191{
1192 arc_buf_t *buf = vbuf;
1193
1194 bzero(buf, sizeof (arc_buf_t));
428870ff 1195 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1196 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1197
b128c09f
BB
1198 return (0);
1199}
1200
34dc7c2f
BB
1201/*
1202 * Destructor callback - called when a cached buf is
1203 * no longer required.
1204 */
1205/* ARGSUSED */
1206static void
b9541d6b 1207hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1208{
2a432414 1209 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1210
d3c2ae1c 1211 ASSERT(HDR_EMPTY(hdr));
b9541d6b
CW
1212 cv_destroy(&hdr->b_l1hdr.b_cv);
1213 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1214 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1215 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1216 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1217}
1218
1219/* ARGSUSED */
1220static void
1221hdr_l2only_dest(void *vbuf, void *unused)
1222{
1223 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1224
d3c2ae1c 1225 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1226 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1227}
1228
b128c09f
BB
1229/* ARGSUSED */
1230static void
1231buf_dest(void *vbuf, void *unused)
1232{
1233 arc_buf_t *buf = vbuf;
1234
428870ff 1235 mutex_destroy(&buf->b_evict_lock);
d164b209 1236 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1237}
1238
8c8af9d8
BB
1239/*
1240 * Reclaim callback -- invoked when memory is low.
1241 */
1242/* ARGSUSED */
1243static void
1244hdr_recl(void *unused)
1245{
1246 dprintf("hdr_recl called\n");
1247 /*
1248 * umem calls the reclaim func when we destroy the buf cache,
1249 * which is after we do arc_fini().
1250 */
1251 if (!arc_dead)
1252 cv_signal(&arc_reclaim_thread_cv);
1253}
1254
34dc7c2f
BB
1255static void
1256buf_init(void)
1257{
2db28197 1258 uint64_t *ct = NULL;
34dc7c2f
BB
1259 uint64_t hsize = 1ULL << 12;
1260 int i, j;
1261
1262 /*
1263 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1264 * with an average block size of zfs_arc_average_blocksize (default 8K).
1265 * By default, the table will take up
1266 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1267 */
9edb3695 1268 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
34dc7c2f
BB
1269 hsize <<= 1;
1270retry:
1271 buf_hash_table.ht_mask = hsize - 1;
00b46022 1272#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1273 /*
1274 * Large allocations which do not require contiguous pages
1275 * should be using vmem_alloc() in the linux kernel
1276 */
00b46022
BB
1277 buf_hash_table.ht_table =
1278 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1279#else
34dc7c2f
BB
1280 buf_hash_table.ht_table =
1281 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1282#endif
34dc7c2f
BB
1283 if (buf_hash_table.ht_table == NULL) {
1284 ASSERT(hsize > (1ULL << 8));
1285 hsize >>= 1;
1286 goto retry;
1287 }
1288
b9541d6b 1289 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
8c8af9d8 1290 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
b9541d6b 1291 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
8c8af9d8 1292 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
b9541d6b 1293 NULL, NULL, 0);
34dc7c2f 1294 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1295 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1296
1297 for (i = 0; i < 256; i++)
1298 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1299 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1300
1301 for (i = 0; i < BUF_LOCKS; i++) {
1302 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1303 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1304 }
1305}
1306
d3c2ae1c 1307#define ARC_MINTIME (hz>>4) /* 62 ms */
ca0bf58d 1308
2aa34383
DK
1309/*
1310 * This is the size that the buf occupies in memory. If the buf is compressed,
1311 * it will correspond to the compressed size. You should use this method of
1312 * getting the buf size unless you explicitly need the logical size.
1313 */
1314uint64_t
1315arc_buf_size(arc_buf_t *buf)
1316{
1317 return (ARC_BUF_COMPRESSED(buf) ?
1318 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1319}
1320
1321uint64_t
1322arc_buf_lsize(arc_buf_t *buf)
1323{
1324 return (HDR_GET_LSIZE(buf->b_hdr));
1325}
1326
1327enum zio_compress
1328arc_get_compression(arc_buf_t *buf)
1329{
1330 return (ARC_BUF_COMPRESSED(buf) ?
1331 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1332}
1333
d3c2ae1c
GW
1334static inline boolean_t
1335arc_buf_is_shared(arc_buf_t *buf)
1336{
1337 boolean_t shared = (buf->b_data != NULL &&
a6255b7f
DQ
1338 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1339 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1340 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
d3c2ae1c 1341 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
2aa34383
DK
1342 IMPLY(shared, ARC_BUF_SHARED(buf));
1343 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
524b4217
DK
1344
1345 /*
1346 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1347 * already being shared" requirement prevents us from doing that.
1348 */
1349
d3c2ae1c
GW
1350 return (shared);
1351}
ca0bf58d 1352
a7004725
DK
1353/*
1354 * Free the checksum associated with this header. If there is no checksum, this
1355 * is a no-op.
1356 */
d3c2ae1c
GW
1357static inline void
1358arc_cksum_free(arc_buf_hdr_t *hdr)
1359{
1360 ASSERT(HDR_HAS_L1HDR(hdr));
1361 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1362 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1363 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1364 hdr->b_l1hdr.b_freeze_cksum = NULL;
b9541d6b 1365 }
d3c2ae1c 1366 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
b9541d6b
CW
1367}
1368
a7004725
DK
1369/*
1370 * Return true iff at least one of the bufs on hdr is not compressed.
1371 */
1372static boolean_t
1373arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1374{
1375 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1376 if (!ARC_BUF_COMPRESSED(b)) {
1377 return (B_TRUE);
1378 }
1379 }
1380 return (B_FALSE);
1381}
1382
1383
524b4217
DK
1384/*
1385 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1386 * matches the checksum that is stored in the hdr. If there is no checksum,
1387 * or if the buf is compressed, this is a no-op.
1388 */
34dc7c2f
BB
1389static void
1390arc_cksum_verify(arc_buf_t *buf)
1391{
d3c2ae1c 1392 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f
BB
1393 zio_cksum_t zc;
1394
1395 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1396 return;
1397
524b4217 1398 if (ARC_BUF_COMPRESSED(buf)) {
a7004725
DK
1399 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1400 arc_hdr_has_uncompressed_buf(hdr));
524b4217
DK
1401 return;
1402 }
1403
d3c2ae1c
GW
1404 ASSERT(HDR_HAS_L1HDR(hdr));
1405
1406 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1407 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1408 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1409 return;
1410 }
2aa34383 1411
3c67d83a 1412 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
d3c2ae1c 1413 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
34dc7c2f 1414 panic("buffer modified while frozen!");
d3c2ae1c 1415 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1416}
1417
d3c2ae1c
GW
1418static boolean_t
1419arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
34dc7c2f 1420{
d3c2ae1c
GW
1421 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1422 boolean_t valid_cksum;
34dc7c2f 1423
d3c2ae1c
GW
1424 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1425 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
34dc7c2f 1426
d3c2ae1c
GW
1427 /*
1428 * We rely on the blkptr's checksum to determine if the block
1429 * is valid or not. When compressed arc is enabled, the l2arc
1430 * writes the block to the l2arc just as it appears in the pool.
1431 * This allows us to use the blkptr's checksum to validate the
1432 * data that we just read off of the l2arc without having to store
1433 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1434 * arc is disabled, then the data written to the l2arc is always
1435 * uncompressed and won't match the block as it exists in the main
1436 * pool. When this is the case, we must first compress it if it is
1437 * compressed on the main pool before we can validate the checksum.
1438 */
1439 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1440 uint64_t lsize;
1441 uint64_t csize;
1442 void *cbuf;
1443 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1444
1445 cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1446 lsize = HDR_GET_LSIZE(hdr);
a6255b7f
DQ
1447 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1448
d3c2ae1c
GW
1449 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1450 if (csize < HDR_GET_PSIZE(hdr)) {
1451 /*
1452 * Compressed blocks are always a multiple of the
1453 * smallest ashift in the pool. Ideally, we would
1454 * like to round up the csize to the next
1455 * spa_min_ashift but that value may have changed
1456 * since the block was last written. Instead,
1457 * we rely on the fact that the hdr's psize
1458 * was set to the psize of the block when it was
1459 * last written. We set the csize to that value
1460 * and zero out any part that should not contain
1461 * data.
1462 */
1463 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1464 csize = HDR_GET_PSIZE(hdr);
1465 }
1466 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1467 }
1468
1469 /*
1470 * Block pointers always store the checksum for the logical data.
1471 * If the block pointer has the gang bit set, then the checksum
1472 * it represents is for the reconstituted data and not for an
1473 * individual gang member. The zio pipeline, however, must be able to
1474 * determine the checksum of each of the gang constituents so it
1475 * treats the checksum comparison differently than what we need
1476 * for l2arc blocks. This prevents us from using the
1477 * zio_checksum_error() interface directly. Instead we must call the
1478 * zio_checksum_error_impl() so that we can ensure the checksum is
1479 * generated using the correct checksum algorithm and accounts for the
1480 * logical I/O size and not just a gang fragment.
1481 */
1482 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
a6255b7f 1483 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
d3c2ae1c
GW
1484 zio->io_offset, NULL) == 0);
1485 zio_pop_transforms(zio);
1486 return (valid_cksum);
34dc7c2f
BB
1487}
1488
524b4217
DK
1489/*
1490 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1491 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1492 * isn't modified later on. If buf is compressed or there is already a checksum
1493 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1494 */
34dc7c2f 1495static void
d3c2ae1c 1496arc_cksum_compute(arc_buf_t *buf)
34dc7c2f 1497{
d3c2ae1c
GW
1498 arc_buf_hdr_t *hdr = buf->b_hdr;
1499
1500 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
34dc7c2f
BB
1501 return;
1502
d3c2ae1c 1503 ASSERT(HDR_HAS_L1HDR(hdr));
2aa34383 1504
b9541d6b 1505 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
d3c2ae1c 1506 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
a7004725 1507 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
2aa34383
DK
1508 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1509 return;
1510 } else if (ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 1511 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1512 return;
1513 }
2aa34383
DK
1514
1515 ASSERT(!ARC_BUF_COMPRESSED(buf));
d3c2ae1c
GW
1516 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1517 KM_SLEEP);
3c67d83a 1518 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
d3c2ae1c
GW
1519 hdr->b_l1hdr.b_freeze_cksum);
1520 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1521 arc_buf_watch(buf);
1522}
1523
1524#ifndef _KERNEL
1525void
1526arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1527{
02730c33 1528 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
498877ba
MA
1529}
1530#endif
1531
1532/* ARGSUSED */
1533static void
1534arc_buf_unwatch(arc_buf_t *buf)
1535{
1536#ifndef _KERNEL
1537 if (arc_watch) {
a7004725 1538 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
498877ba
MA
1539 PROT_READ | PROT_WRITE));
1540 }
1541#endif
1542}
1543
1544/* ARGSUSED */
1545static void
1546arc_buf_watch(arc_buf_t *buf)
1547{
1548#ifndef _KERNEL
1549 if (arc_watch)
2aa34383 1550 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
d3c2ae1c 1551 PROT_READ));
498877ba 1552#endif
34dc7c2f
BB
1553}
1554
b9541d6b
CW
1555static arc_buf_contents_t
1556arc_buf_type(arc_buf_hdr_t *hdr)
1557{
d3c2ae1c 1558 arc_buf_contents_t type;
b9541d6b 1559 if (HDR_ISTYPE_METADATA(hdr)) {
d3c2ae1c 1560 type = ARC_BUFC_METADATA;
b9541d6b 1561 } else {
d3c2ae1c 1562 type = ARC_BUFC_DATA;
b9541d6b 1563 }
d3c2ae1c
GW
1564 VERIFY3U(hdr->b_type, ==, type);
1565 return (type);
b9541d6b
CW
1566}
1567
2aa34383
DK
1568boolean_t
1569arc_is_metadata(arc_buf_t *buf)
1570{
1571 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1572}
1573
b9541d6b
CW
1574static uint32_t
1575arc_bufc_to_flags(arc_buf_contents_t type)
1576{
1577 switch (type) {
1578 case ARC_BUFC_DATA:
1579 /* metadata field is 0 if buffer contains normal data */
1580 return (0);
1581 case ARC_BUFC_METADATA:
1582 return (ARC_FLAG_BUFC_METADATA);
1583 default:
1584 break;
1585 }
1586 panic("undefined ARC buffer type!");
1587 return ((uint32_t)-1);
1588}
1589
34dc7c2f
BB
1590void
1591arc_buf_thaw(arc_buf_t *buf)
1592{
d3c2ae1c
GW
1593 arc_buf_hdr_t *hdr = buf->b_hdr;
1594
2aa34383
DK
1595 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1596 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1597
524b4217 1598 arc_cksum_verify(buf);
34dc7c2f 1599
2aa34383
DK
1600 /*
1601 * Compressed buffers do not manipulate the b_freeze_cksum or
1602 * allocate b_thawed.
1603 */
1604 if (ARC_BUF_COMPRESSED(buf)) {
a7004725
DK
1605 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1606 arc_hdr_has_uncompressed_buf(hdr));
2aa34383
DK
1607 return;
1608 }
1609
d3c2ae1c
GW
1610 ASSERT(HDR_HAS_L1HDR(hdr));
1611 arc_cksum_free(hdr);
498877ba 1612 arc_buf_unwatch(buf);
34dc7c2f
BB
1613}
1614
1615void
1616arc_buf_freeze(arc_buf_t *buf)
1617{
d3c2ae1c 1618 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1619 kmutex_t *hash_lock;
1620
34dc7c2f
BB
1621 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1622 return;
1623
2aa34383 1624 if (ARC_BUF_COMPRESSED(buf)) {
a7004725
DK
1625 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1626 arc_hdr_has_uncompressed_buf(hdr));
2aa34383
DK
1627 return;
1628 }
1629
d3c2ae1c 1630 hash_lock = HDR_LOCK(hdr);
428870ff
BB
1631 mutex_enter(hash_lock);
1632
d3c2ae1c
GW
1633 ASSERT(HDR_HAS_L1HDR(hdr));
1634 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1635 hdr->b_l1hdr.b_state == arc_anon);
1636 arc_cksum_compute(buf);
428870ff 1637 mutex_exit(hash_lock);
34dc7c2f
BB
1638}
1639
d3c2ae1c
GW
1640/*
1641 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1642 * the following functions should be used to ensure that the flags are
1643 * updated in a thread-safe way. When manipulating the flags either
1644 * the hash_lock must be held or the hdr must be undiscoverable. This
1645 * ensures that we're not racing with any other threads when updating
1646 * the flags.
1647 */
1648static inline void
1649arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1650{
1651 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1652 hdr->b_flags |= flags;
1653}
1654
1655static inline void
1656arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1657{
1658 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1659 hdr->b_flags &= ~flags;
1660}
1661
1662/*
1663 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1664 * done in a special way since we have to clear and set bits
1665 * at the same time. Consumers that wish to set the compression bits
1666 * must use this function to ensure that the flags are updated in
1667 * thread-safe manner.
1668 */
1669static void
1670arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1671{
1672 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1673
1674 /*
1675 * Holes and embedded blocks will always have a psize = 0 so
1676 * we ignore the compression of the blkptr and set the
d3c2ae1c
GW
1677 * want to uncompress them. Mark them as uncompressed.
1678 */
1679 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1680 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1681 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1682 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1683 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1684 } else {
1685 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1686 HDR_SET_COMPRESS(hdr, cmp);
1687 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1688 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1689 }
1690}
1691
524b4217
DK
1692/*
1693 * Looks for another buf on the same hdr which has the data decompressed, copies
1694 * from it, and returns true. If no such buf exists, returns false.
1695 */
1696static boolean_t
1697arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1698{
1699 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217
DK
1700 boolean_t copied = B_FALSE;
1701
1702 ASSERT(HDR_HAS_L1HDR(hdr));
1703 ASSERT3P(buf->b_data, !=, NULL);
1704 ASSERT(!ARC_BUF_COMPRESSED(buf));
1705
a7004725 1706 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
524b4217
DK
1707 from = from->b_next) {
1708 /* can't use our own data buffer */
1709 if (from == buf) {
1710 continue;
1711 }
1712
1713 if (!ARC_BUF_COMPRESSED(from)) {
1714 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1715 copied = B_TRUE;
1716 break;
1717 }
1718 }
1719
1720 /*
1721 * There were no decompressed bufs, so there should not be a
1722 * checksum on the hdr either.
1723 */
1724 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1725
1726 return (copied);
1727}
1728
1729/*
1730 * Given a buf that has a data buffer attached to it, this function will
1731 * efficiently fill the buf with data of the specified compression setting from
1732 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1733 * are already sharing a data buf, no copy is performed.
1734 *
1735 * If the buf is marked as compressed but uncompressed data was requested, this
1736 * will allocate a new data buffer for the buf, remove that flag, and fill the
1737 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1738 * uncompressed data, and (since we haven't added support for it yet) if you
1739 * want compressed data your buf must already be marked as compressed and have
1740 * the correct-sized data buffer.
1741 */
1742static int
1743arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
d3c2ae1c
GW
1744{
1745 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217 1746 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
d3c2ae1c 1747 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
d3c2ae1c 1748
524b4217
DK
1749 ASSERT3P(buf->b_data, !=, NULL);
1750 IMPLY(compressed, hdr_compressed);
1751 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1752
1753 if (hdr_compressed == compressed) {
2aa34383 1754 if (!arc_buf_is_shared(buf)) {
a6255b7f 1755 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
524b4217 1756 arc_buf_size(buf));
2aa34383 1757 }
d3c2ae1c 1758 } else {
524b4217
DK
1759 ASSERT(hdr_compressed);
1760 ASSERT(!compressed);
d3c2ae1c 1761 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2aa34383
DK
1762
1763 /*
524b4217
DK
1764 * If the buf is sharing its data with the hdr, unlink it and
1765 * allocate a new data buffer for the buf.
2aa34383 1766 */
524b4217
DK
1767 if (arc_buf_is_shared(buf)) {
1768 ASSERT(ARC_BUF_COMPRESSED(buf));
1769
1770 /* We need to give the buf it's own b_data */
1771 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2aa34383
DK
1772 buf->b_data =
1773 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1774 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1775
524b4217 1776 /* Previously overhead was 0; just add new overhead */
2aa34383 1777 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
524b4217
DK
1778 } else if (ARC_BUF_COMPRESSED(buf)) {
1779 /* We need to reallocate the buf's b_data */
1780 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1781 buf);
1782 buf->b_data =
1783 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1784
1785 /* We increased the size of b_data; update overhead */
1786 ARCSTAT_INCR(arcstat_overhead_size,
1787 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2aa34383
DK
1788 }
1789
524b4217
DK
1790 /*
1791 * Regardless of the buf's previous compression settings, it
1792 * should not be compressed at the end of this function.
1793 */
1794 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1795
1796 /*
1797 * Try copying the data from another buf which already has a
1798 * decompressed version. If that's not possible, it's time to
1799 * bite the bullet and decompress the data from the hdr.
1800 */
1801 if (arc_buf_try_copy_decompressed_data(buf)) {
1802 /* Skip byteswapping and checksumming (already done) */
1803 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1804 return (0);
1805 } else {
1806 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
a6255b7f 1807 hdr->b_l1hdr.b_pabd, buf->b_data,
524b4217
DK
1808 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1809
1810 /*
1811 * Absent hardware errors or software bugs, this should
1812 * be impossible, but log it anyway so we can debug it.
1813 */
1814 if (error != 0) {
1815 zfs_dbgmsg(
1816 "hdr %p, compress %d, psize %d, lsize %d",
1817 hdr, HDR_GET_COMPRESS(hdr),
1818 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1819 return (SET_ERROR(EIO));
1820 }
d3c2ae1c
GW
1821 }
1822 }
524b4217
DK
1823
1824 /* Byteswap the buf's data if necessary */
d3c2ae1c
GW
1825 if (bswap != DMU_BSWAP_NUMFUNCS) {
1826 ASSERT(!HDR_SHARED_DATA(hdr));
1827 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1828 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1829 }
524b4217
DK
1830
1831 /* Compute the hdr's checksum if necessary */
d3c2ae1c 1832 arc_cksum_compute(buf);
524b4217 1833
d3c2ae1c
GW
1834 return (0);
1835}
1836
524b4217
DK
1837int
1838arc_decompress(arc_buf_t *buf)
1839{
1840 return (arc_buf_fill(buf, B_FALSE));
1841}
1842
d3c2ae1c 1843/*
a6255b7f 1844 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
d3c2ae1c
GW
1845 */
1846static uint64_t
1847arc_hdr_size(arc_buf_hdr_t *hdr)
1848{
1849 uint64_t size;
1850
1851 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1852 HDR_GET_PSIZE(hdr) > 0) {
1853 size = HDR_GET_PSIZE(hdr);
1854 } else {
1855 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1856 size = HDR_GET_LSIZE(hdr);
1857 }
1858 return (size);
1859}
1860
1861/*
1862 * Increment the amount of evictable space in the arc_state_t's refcount.
1863 * We account for the space used by the hdr and the arc buf individually
1864 * so that we can add and remove them from the refcount individually.
1865 */
34dc7c2f 1866static void
d3c2ae1c
GW
1867arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1868{
1869 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
1870 arc_buf_t *buf;
1871
1872 ASSERT(HDR_HAS_L1HDR(hdr));
1873
1874 if (GHOST_STATE(state)) {
1875 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1876 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 1877 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2aa34383
DK
1878 (void) refcount_add_many(&state->arcs_esize[type],
1879 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
1880 return;
1881 }
1882
1883 ASSERT(!GHOST_STATE(state));
a6255b7f 1884 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
1885 (void) refcount_add_many(&state->arcs_esize[type],
1886 arc_hdr_size(hdr), hdr);
1887 }
1888 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
2aa34383 1889 if (arc_buf_is_shared(buf))
d3c2ae1c 1890 continue;
2aa34383
DK
1891 (void) refcount_add_many(&state->arcs_esize[type],
1892 arc_buf_size(buf), buf);
d3c2ae1c
GW
1893 }
1894}
1895
1896/*
1897 * Decrement the amount of evictable space in the arc_state_t's refcount.
1898 * We account for the space used by the hdr and the arc buf individually
1899 * so that we can add and remove them from the refcount individually.
1900 */
1901static void
2aa34383 1902arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
d3c2ae1c
GW
1903{
1904 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
1905 arc_buf_t *buf;
1906
1907 ASSERT(HDR_HAS_L1HDR(hdr));
1908
1909 if (GHOST_STATE(state)) {
1910 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1911 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 1912 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 1913 (void) refcount_remove_many(&state->arcs_esize[type],
2aa34383 1914 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
1915 return;
1916 }
1917
1918 ASSERT(!GHOST_STATE(state));
a6255b7f 1919 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
1920 (void) refcount_remove_many(&state->arcs_esize[type],
1921 arc_hdr_size(hdr), hdr);
1922 }
1923 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
2aa34383 1924 if (arc_buf_is_shared(buf))
d3c2ae1c 1925 continue;
d3c2ae1c 1926 (void) refcount_remove_many(&state->arcs_esize[type],
2aa34383 1927 arc_buf_size(buf), buf);
d3c2ae1c
GW
1928 }
1929}
1930
1931/*
1932 * Add a reference to this hdr indicating that someone is actively
1933 * referencing that memory. When the refcount transitions from 0 to 1,
1934 * we remove it from the respective arc_state_t list to indicate that
1935 * it is not evictable.
1936 */
1937static void
1938add_reference(arc_buf_hdr_t *hdr, void *tag)
34dc7c2f 1939{
b9541d6b
CW
1940 arc_state_t *state;
1941
1942 ASSERT(HDR_HAS_L1HDR(hdr));
d3c2ae1c
GW
1943 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
1944 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
1945 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1946 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1947 }
34dc7c2f 1948
b9541d6b
CW
1949 state = hdr->b_l1hdr.b_state;
1950
1951 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1952 (state != arc_anon)) {
1953 /* We don't use the L2-only state list. */
1954 if (state != arc_l2c_only) {
64fc7762 1955 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
d3c2ae1c 1956 hdr);
2aa34383 1957 arc_evictable_space_decrement(hdr, state);
34dc7c2f 1958 }
b128c09f 1959 /* remove the prefetch flag if we get a reference */
d3c2ae1c 1960 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
1961 }
1962}
1963
d3c2ae1c
GW
1964/*
1965 * Remove a reference from this hdr. When the reference transitions from
1966 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
1967 * list making it eligible for eviction.
1968 */
34dc7c2f 1969static int
2a432414 1970remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
1971{
1972 int cnt;
b9541d6b 1973 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 1974
b9541d6b 1975 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1976 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1977 ASSERT(!GHOST_STATE(state));
1978
b9541d6b
CW
1979 /*
1980 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1981 * check to prevent usage of the arc_l2c_only list.
1982 */
1983 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 1984 (state != arc_anon)) {
64fc7762 1985 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
d3c2ae1c
GW
1986 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
1987 arc_evictable_space_increment(hdr, state);
34dc7c2f
BB
1988 }
1989 return (cnt);
1990}
1991
e0b0ca98
BB
1992/*
1993 * Returns detailed information about a specific arc buffer. When the
1994 * state_index argument is set the function will calculate the arc header
1995 * list position for its arc state. Since this requires a linear traversal
1996 * callers are strongly encourage not to do this. However, it can be helpful
1997 * for targeted analysis so the functionality is provided.
1998 */
1999void
2000arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2001{
2002 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
2003 l1arc_buf_hdr_t *l1hdr = NULL;
2004 l2arc_buf_hdr_t *l2hdr = NULL;
2005 arc_state_t *state = NULL;
2006
8887c7d7
TC
2007 memset(abi, 0, sizeof (arc_buf_info_t));
2008
2009 if (hdr == NULL)
2010 return;
2011
2012 abi->abi_flags = hdr->b_flags;
2013
b9541d6b
CW
2014 if (HDR_HAS_L1HDR(hdr)) {
2015 l1hdr = &hdr->b_l1hdr;
2016 state = l1hdr->b_state;
2017 }
2018 if (HDR_HAS_L2HDR(hdr))
2019 l2hdr = &hdr->b_l2hdr;
e0b0ca98 2020
b9541d6b 2021 if (l1hdr) {
d3c2ae1c 2022 abi->abi_bufcnt = l1hdr->b_bufcnt;
b9541d6b
CW
2023 abi->abi_access = l1hdr->b_arc_access;
2024 abi->abi_mru_hits = l1hdr->b_mru_hits;
2025 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2026 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2027 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2028 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2029 }
2030
2031 if (l2hdr) {
2032 abi->abi_l2arc_dattr = l2hdr->b_daddr;
b9541d6b
CW
2033 abi->abi_l2arc_hits = l2hdr->b_hits;
2034 }
2035
e0b0ca98 2036 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 2037 abi->abi_state_contents = arc_buf_type(hdr);
d3c2ae1c 2038 abi->abi_size = arc_hdr_size(hdr);
e0b0ca98
BB
2039}
2040
34dc7c2f 2041/*
ca0bf58d 2042 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
2043 * for the buffer must be held by the caller.
2044 */
2045static void
2a432414
GW
2046arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2047 kmutex_t *hash_lock)
34dc7c2f 2048{
b9541d6b
CW
2049 arc_state_t *old_state;
2050 int64_t refcnt;
d3c2ae1c
GW
2051 uint32_t bufcnt;
2052 boolean_t update_old, update_new;
b9541d6b
CW
2053 arc_buf_contents_t buftype = arc_buf_type(hdr);
2054
2055 /*
2056 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2057 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2058 * L1 hdr doesn't always exist when we change state to arc_anon before
2059 * destroying a header, in which case reallocating to add the L1 hdr is
2060 * pointless.
2061 */
2062 if (HDR_HAS_L1HDR(hdr)) {
2063 old_state = hdr->b_l1hdr.b_state;
2064 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
d3c2ae1c 2065 bufcnt = hdr->b_l1hdr.b_bufcnt;
a6255b7f 2066 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
b9541d6b
CW
2067 } else {
2068 old_state = arc_l2c_only;
2069 refcnt = 0;
d3c2ae1c
GW
2070 bufcnt = 0;
2071 update_old = B_FALSE;
b9541d6b 2072 }
d3c2ae1c 2073 update_new = update_old;
34dc7c2f
BB
2074
2075 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 2076 ASSERT3P(new_state, !=, old_state);
d3c2ae1c
GW
2077 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2078 ASSERT(old_state != arc_anon || bufcnt <= 1);
34dc7c2f
BB
2079
2080 /*
2081 * If this buffer is evictable, transfer it from the
2082 * old state list to the new state list.
2083 */
2084 if (refcnt == 0) {
b9541d6b 2085 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 2086 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2087 multilist_remove(old_state->arcs_list[buftype], hdr);
34dc7c2f 2088
d3c2ae1c
GW
2089 if (GHOST_STATE(old_state)) {
2090 ASSERT0(bufcnt);
2091 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2092 update_old = B_TRUE;
34dc7c2f 2093 }
2aa34383 2094 arc_evictable_space_decrement(hdr, old_state);
34dc7c2f 2095 }
b9541d6b 2096 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b
CW
2097 /*
2098 * An L1 header always exists here, since if we're
2099 * moving to some L1-cached state (i.e. not l2c_only or
2100 * anonymous), we realloc the header to add an L1hdr
2101 * beforehand.
2102 */
2103 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2104 multilist_insert(new_state->arcs_list[buftype], hdr);
34dc7c2f 2105
34dc7c2f 2106 if (GHOST_STATE(new_state)) {
d3c2ae1c
GW
2107 ASSERT0(bufcnt);
2108 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2109 update_new = B_TRUE;
34dc7c2f 2110 }
d3c2ae1c 2111 arc_evictable_space_increment(hdr, new_state);
34dc7c2f
BB
2112 }
2113 }
2114
d3c2ae1c 2115 ASSERT(!HDR_EMPTY(hdr));
2a432414
GW
2116 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2117 buf_hash_remove(hdr);
34dc7c2f 2118
b9541d6b 2119 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef 2120
d3c2ae1c 2121 if (update_new && new_state != arc_l2c_only) {
36da08ef
PS
2122 ASSERT(HDR_HAS_L1HDR(hdr));
2123 if (GHOST_STATE(new_state)) {
d3c2ae1c 2124 ASSERT0(bufcnt);
36da08ef
PS
2125
2126 /*
d3c2ae1c 2127 * When moving a header to a ghost state, we first
36da08ef 2128 * remove all arc buffers. Thus, we'll have a
d3c2ae1c 2129 * bufcnt of zero, and no arc buffer to use for
36da08ef
PS
2130 * the reference. As a result, we use the arc
2131 * header pointer for the reference.
2132 */
2133 (void) refcount_add_many(&new_state->arcs_size,
d3c2ae1c 2134 HDR_GET_LSIZE(hdr), hdr);
a6255b7f 2135 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
36da08ef
PS
2136 } else {
2137 arc_buf_t *buf;
d3c2ae1c 2138 uint32_t buffers = 0;
36da08ef
PS
2139
2140 /*
2141 * Each individual buffer holds a unique reference,
2142 * thus we must remove each of these references one
2143 * at a time.
2144 */
2145 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2146 buf = buf->b_next) {
d3c2ae1c
GW
2147 ASSERT3U(bufcnt, !=, 0);
2148 buffers++;
2149
2150 /*
2151 * When the arc_buf_t is sharing the data
2152 * block with the hdr, the owner of the
2153 * reference belongs to the hdr. Only
2154 * add to the refcount if the arc_buf_t is
2155 * not shared.
2156 */
2aa34383 2157 if (arc_buf_is_shared(buf))
d3c2ae1c 2158 continue;
d3c2ae1c 2159
36da08ef 2160 (void) refcount_add_many(&new_state->arcs_size,
2aa34383 2161 arc_buf_size(buf), buf);
d3c2ae1c
GW
2162 }
2163 ASSERT3U(bufcnt, ==, buffers);
2164
a6255b7f 2165 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
2166 (void) refcount_add_many(&new_state->arcs_size,
2167 arc_hdr_size(hdr), hdr);
2168 } else {
2169 ASSERT(GHOST_STATE(old_state));
36da08ef
PS
2170 }
2171 }
2172 }
2173
d3c2ae1c 2174 if (update_old && old_state != arc_l2c_only) {
36da08ef
PS
2175 ASSERT(HDR_HAS_L1HDR(hdr));
2176 if (GHOST_STATE(old_state)) {
d3c2ae1c 2177 ASSERT0(bufcnt);
a6255b7f 2178 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 2179
36da08ef
PS
2180 /*
2181 * When moving a header off of a ghost state,
d3c2ae1c
GW
2182 * the header will not contain any arc buffers.
2183 * We use the arc header pointer for the reference
2184 * which is exactly what we did when we put the
2185 * header on the ghost state.
36da08ef
PS
2186 */
2187
36da08ef 2188 (void) refcount_remove_many(&old_state->arcs_size,
d3c2ae1c 2189 HDR_GET_LSIZE(hdr), hdr);
36da08ef
PS
2190 } else {
2191 arc_buf_t *buf;
d3c2ae1c 2192 uint32_t buffers = 0;
36da08ef
PS
2193
2194 /*
2195 * Each individual buffer holds a unique reference,
2196 * thus we must remove each of these references one
2197 * at a time.
2198 */
2199 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2200 buf = buf->b_next) {
d3c2ae1c
GW
2201 ASSERT3U(bufcnt, !=, 0);
2202 buffers++;
2203
2204 /*
2205 * When the arc_buf_t is sharing the data
2206 * block with the hdr, the owner of the
2207 * reference belongs to the hdr. Only
2208 * add to the refcount if the arc_buf_t is
2209 * not shared.
2210 */
2aa34383 2211 if (arc_buf_is_shared(buf))
d3c2ae1c 2212 continue;
d3c2ae1c 2213
36da08ef 2214 (void) refcount_remove_many(
2aa34383 2215 &old_state->arcs_size, arc_buf_size(buf),
d3c2ae1c 2216 buf);
36da08ef 2217 }
d3c2ae1c 2218 ASSERT3U(bufcnt, ==, buffers);
a6255b7f 2219 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c
GW
2220 (void) refcount_remove_many(
2221 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
36da08ef 2222 }
34dc7c2f 2223 }
36da08ef 2224
b9541d6b
CW
2225 if (HDR_HAS_L1HDR(hdr))
2226 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 2227
b9541d6b
CW
2228 /*
2229 * L2 headers should never be on the L2 state list since they don't
2230 * have L1 headers allocated.
2231 */
64fc7762
MA
2232 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2233 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
2234}
2235
2236void
d164b209 2237arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 2238{
d164b209
BB
2239 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2240
2241 switch (type) {
e75c13c3
BB
2242 default:
2243 break;
d164b209
BB
2244 case ARC_SPACE_DATA:
2245 ARCSTAT_INCR(arcstat_data_size, space);
2246 break;
cc7f677c 2247 case ARC_SPACE_META:
500445c0 2248 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 2249 break;
25458cbe
TC
2250 case ARC_SPACE_BONUS:
2251 ARCSTAT_INCR(arcstat_bonus_size, space);
2252 break;
2253 case ARC_SPACE_DNODE:
2254 ARCSTAT_INCR(arcstat_dnode_size, space);
2255 break;
2256 case ARC_SPACE_DBUF:
2257 ARCSTAT_INCR(arcstat_dbuf_size, space);
d164b209
BB
2258 break;
2259 case ARC_SPACE_HDRS:
2260 ARCSTAT_INCR(arcstat_hdr_size, space);
2261 break;
2262 case ARC_SPACE_L2HDRS:
2263 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2264 break;
2265 }
2266
500445c0 2267 if (type != ARC_SPACE_DATA)
cc7f677c
PS
2268 ARCSTAT_INCR(arcstat_meta_used, space);
2269
34dc7c2f
BB
2270 atomic_add_64(&arc_size, space);
2271}
2272
2273void
d164b209 2274arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 2275{
d164b209
BB
2276 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2277
2278 switch (type) {
e75c13c3
BB
2279 default:
2280 break;
d164b209
BB
2281 case ARC_SPACE_DATA:
2282 ARCSTAT_INCR(arcstat_data_size, -space);
2283 break;
cc7f677c 2284 case ARC_SPACE_META:
500445c0 2285 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 2286 break;
25458cbe
TC
2287 case ARC_SPACE_BONUS:
2288 ARCSTAT_INCR(arcstat_bonus_size, -space);
2289 break;
2290 case ARC_SPACE_DNODE:
2291 ARCSTAT_INCR(arcstat_dnode_size, -space);
2292 break;
2293 case ARC_SPACE_DBUF:
2294 ARCSTAT_INCR(arcstat_dbuf_size, -space);
d164b209
BB
2295 break;
2296 case ARC_SPACE_HDRS:
2297 ARCSTAT_INCR(arcstat_hdr_size, -space);
2298 break;
2299 case ARC_SPACE_L2HDRS:
2300 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2301 break;
2302 }
2303
cc7f677c
PS
2304 if (type != ARC_SPACE_DATA) {
2305 ASSERT(arc_meta_used >= space);
500445c0
PS
2306 if (arc_meta_max < arc_meta_used)
2307 arc_meta_max = arc_meta_used;
cc7f677c
PS
2308 ARCSTAT_INCR(arcstat_meta_used, -space);
2309 }
2310
34dc7c2f
BB
2311 ASSERT(arc_size >= space);
2312 atomic_add_64(&arc_size, -space);
2313}
2314
d3c2ae1c 2315/*
524b4217 2316 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
a6255b7f 2317 * with the hdr's b_pabd.
d3c2ae1c 2318 */
524b4217
DK
2319static boolean_t
2320arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2321{
524b4217
DK
2322 /*
2323 * The criteria for sharing a hdr's data are:
2324 * 1. the hdr's compression matches the buf's compression
2325 * 2. the hdr doesn't need to be byteswapped
2326 * 3. the hdr isn't already being shared
2327 * 4. the buf is either compressed or it is the last buf in the hdr list
2328 *
2329 * Criterion #4 maintains the invariant that shared uncompressed
2330 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2331 * might ask, "if a compressed buf is allocated first, won't that be the
2332 * last thing in the list?", but in that case it's impossible to create
2333 * a shared uncompressed buf anyway (because the hdr must be compressed
2334 * to have the compressed buf). You might also think that #3 is
2335 * sufficient to make this guarantee, however it's possible
2336 * (specifically in the rare L2ARC write race mentioned in
2337 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2338 * is sharable, but wasn't at the time of its allocation. Rather than
2339 * allow a new shared uncompressed buf to be created and then shuffle
2340 * the list around to make it the last element, this simply disallows
2341 * sharing if the new buf isn't the first to be added.
2342 */
2343 ASSERT3P(buf->b_hdr, ==, hdr);
a7004725
DK
2344 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2345 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
524b4217
DK
2346 return (buf_compressed == hdr_compressed &&
2347 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2348 !HDR_SHARED_DATA(hdr) &&
2349 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2350}
2351
2352/*
2353 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2354 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2355 * copy was made successfully, or an error code otherwise.
2356 */
2357static int
2358arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2359 boolean_t fill, arc_buf_t **ret)
34dc7c2f 2360{
34dc7c2f
BB
2361 arc_buf_t *buf;
2362
d3c2ae1c
GW
2363 ASSERT(HDR_HAS_L1HDR(hdr));
2364 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2365 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2366 hdr->b_type == ARC_BUFC_METADATA);
524b4217
DK
2367 ASSERT3P(ret, !=, NULL);
2368 ASSERT3P(*ret, ==, NULL);
d3c2ae1c 2369
b9541d6b
CW
2370 hdr->b_l1hdr.b_mru_hits = 0;
2371 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2372 hdr->b_l1hdr.b_mfu_hits = 0;
2373 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2374 hdr->b_l1hdr.b_l2_hits = 0;
2375
524b4217 2376 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
34dc7c2f
BB
2377 buf->b_hdr = hdr;
2378 buf->b_data = NULL;
2aa34383 2379 buf->b_next = hdr->b_l1hdr.b_buf;
524b4217 2380 buf->b_flags = 0;
b9541d6b 2381
d3c2ae1c
GW
2382 add_reference(hdr, tag);
2383
2384 /*
2385 * We're about to change the hdr's b_flags. We must either
2386 * hold the hash_lock or be undiscoverable.
2387 */
2388 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2389
2390 /*
524b4217
DK
2391 * Only honor requests for compressed bufs if the hdr is actually
2392 * compressed.
2393 */
2394 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2395 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2396
524b4217
DK
2397 /*
2398 * If the hdr's data can be shared then we share the data buffer and
2399 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2aa34383 2400 * allocate a new buffer to store the buf's data.
524b4217 2401 *
a6255b7f
DQ
2402 * There are two additional restrictions here because we're sharing
2403 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2404 * actively involved in an L2ARC write, because if this buf is used by
2405 * an arc_write() then the hdr's data buffer will be released when the
524b4217 2406 * write completes, even though the L2ARC write might still be using it.
a6255b7f
DQ
2407 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2408 * need to be ABD-aware.
d3c2ae1c 2409 */
a7004725 2410 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
a6255b7f 2411 abd_is_linear(hdr->b_l1hdr.b_pabd);
524b4217
DK
2412
2413 /* Set up b_data and sharing */
2414 if (can_share) {
a6255b7f 2415 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
524b4217 2416 buf->b_flags |= ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2417 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2418 } else {
524b4217
DK
2419 buf->b_data =
2420 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2421 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
d3c2ae1c
GW
2422 }
2423 VERIFY3P(buf->b_data, !=, NULL);
b9541d6b
CW
2424
2425 hdr->b_l1hdr.b_buf = buf;
d3c2ae1c 2426 hdr->b_l1hdr.b_bufcnt += 1;
b9541d6b 2427
524b4217
DK
2428 /*
2429 * If the user wants the data from the hdr, we need to either copy or
2430 * decompress the data.
2431 */
2432 if (fill) {
2433 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2434 }
d3c2ae1c 2435
524b4217 2436 return (0);
34dc7c2f
BB
2437}
2438
9babb374
BB
2439static char *arc_onloan_tag = "onloan";
2440
a7004725
DK
2441static inline void
2442arc_loaned_bytes_update(int64_t delta)
2443{
2444 atomic_add_64(&arc_loaned_bytes, delta);
2445
2446 /* assert that it did not wrap around */
2447 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2448}
2449
9babb374
BB
2450/*
2451 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2452 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2453 * buffers must be returned to the arc before they can be used by the DMU or
2454 * freed.
2455 */
2456arc_buf_t *
2aa34383 2457arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
9babb374 2458{
2aa34383
DK
2459 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2460 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
9babb374 2461
a7004725
DK
2462 arc_loaned_bytes_update(size);
2463
9babb374
BB
2464 return (buf);
2465}
2466
2aa34383
DK
2467arc_buf_t *
2468arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2469 enum zio_compress compression_type)
2470{
2471 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2472 psize, lsize, compression_type);
2473
a7004725
DK
2474 arc_loaned_bytes_update(psize);
2475
2aa34383
DK
2476 return (buf);
2477}
2478
2479
9babb374
BB
2480/*
2481 * Return a loaned arc buffer to the arc.
2482 */
2483void
2484arc_return_buf(arc_buf_t *buf, void *tag)
2485{
2486 arc_buf_hdr_t *hdr = buf->b_hdr;
2487
d3c2ae1c 2488 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b
CW
2489 ASSERT(HDR_HAS_L1HDR(hdr));
2490 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2491 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374 2492
a7004725 2493 arc_loaned_bytes_update(-arc_buf_size(buf));
9babb374
BB
2494}
2495
428870ff
BB
2496/* Detach an arc_buf from a dbuf (tag) */
2497void
2498arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2499{
b9541d6b 2500 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff 2501
d3c2ae1c 2502 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b
CW
2503 ASSERT(HDR_HAS_L1HDR(hdr));
2504 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2505 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff 2506
a7004725 2507 arc_loaned_bytes_update(arc_buf_size(buf));
428870ff
BB
2508}
2509
d3c2ae1c 2510static void
a6255b7f 2511l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
34dc7c2f 2512{
d3c2ae1c 2513 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
34dc7c2f 2514
a6255b7f 2515 df->l2df_abd = abd;
d3c2ae1c
GW
2516 df->l2df_size = size;
2517 df->l2df_type = type;
2518 mutex_enter(&l2arc_free_on_write_mtx);
2519 list_insert_head(l2arc_free_on_write, df);
2520 mutex_exit(&l2arc_free_on_write_mtx);
2521}
428870ff 2522
d3c2ae1c
GW
2523static void
2524arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2525{
2526 arc_state_t *state = hdr->b_l1hdr.b_state;
2527 arc_buf_contents_t type = arc_buf_type(hdr);
2528 uint64_t size = arc_hdr_size(hdr);
1eb5bfa3 2529
d3c2ae1c
GW
2530 /* protected by hash lock, if in the hash table */
2531 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2532 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2533 ASSERT(state != arc_anon && state != arc_l2c_only);
2534
2535 (void) refcount_remove_many(&state->arcs_esize[type],
2536 size, hdr);
1eb5bfa3 2537 }
d3c2ae1c 2538 (void) refcount_remove_many(&state->arcs_size, size, hdr);
423e7b62
AG
2539 if (type == ARC_BUFC_METADATA) {
2540 arc_space_return(size, ARC_SPACE_META);
2541 } else {
2542 ASSERT(type == ARC_BUFC_DATA);
2543 arc_space_return(size, ARC_SPACE_DATA);
2544 }
d3c2ae1c 2545
a6255b7f 2546 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
34dc7c2f
BB
2547}
2548
d3c2ae1c
GW
2549/*
2550 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2551 * data buffer, we transfer the refcount ownership to the hdr and update
2552 * the appropriate kstats.
2553 */
2554static void
2555arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
34dc7c2f 2556{
524b4217 2557 ASSERT(arc_can_share(hdr, buf));
a6255b7f 2558 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 2559 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
34dc7c2f
BB
2560
2561 /*
d3c2ae1c
GW
2562 * Start sharing the data buffer. We transfer the
2563 * refcount ownership to the hdr since it always owns
2564 * the refcount whenever an arc_buf_t is shared.
34dc7c2f 2565 */
d3c2ae1c 2566 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
a6255b7f
DQ
2567 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2568 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2569 HDR_ISTYPE_METADATA(hdr));
d3c2ae1c 2570 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
524b4217 2571 buf->b_flags |= ARC_BUF_FLAG_SHARED;
34dc7c2f 2572
d3c2ae1c
GW
2573 /*
2574 * Since we've transferred ownership to the hdr we need
2575 * to increment its compressed and uncompressed kstats and
2576 * decrement the overhead size.
2577 */
2578 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2579 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2aa34383 2580 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
34dc7c2f
BB
2581}
2582
ca0bf58d 2583static void
d3c2ae1c 2584arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
ca0bf58d 2585{
d3c2ae1c 2586 ASSERT(arc_buf_is_shared(buf));
a6255b7f 2587 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c 2588 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
ca0bf58d 2589
d3c2ae1c
GW
2590 /*
2591 * We are no longer sharing this buffer so we need
2592 * to transfer its ownership to the rightful owner.
2593 */
2594 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
2595 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
a6255b7f
DQ
2596 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2597 abd_put(hdr->b_l1hdr.b_pabd);
2598 hdr->b_l1hdr.b_pabd = NULL;
524b4217 2599 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2600
2601 /*
2602 * Since the buffer is no longer shared between
2603 * the arc buf and the hdr, count it as overhead.
2604 */
2605 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2606 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2aa34383 2607 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
ca0bf58d
PS
2608}
2609
34dc7c2f 2610/*
2aa34383
DK
2611 * Remove an arc_buf_t from the hdr's buf list and return the last
2612 * arc_buf_t on the list. If no buffers remain on the list then return
2613 * NULL.
2614 */
2615static arc_buf_t *
2616arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2617{
2aa34383
DK
2618 ASSERT(HDR_HAS_L1HDR(hdr));
2619 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2620
a7004725
DK
2621 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2622 arc_buf_t *lastbuf = NULL;
2623
2aa34383
DK
2624 /*
2625 * Remove the buf from the hdr list and locate the last
2626 * remaining buffer on the list.
2627 */
2628 while (*bufp != NULL) {
2629 if (*bufp == buf)
2630 *bufp = buf->b_next;
2631
2632 /*
2633 * If we've removed a buffer in the middle of
2634 * the list then update the lastbuf and update
2635 * bufp.
2636 */
2637 if (*bufp != NULL) {
2638 lastbuf = *bufp;
2639 bufp = &(*bufp)->b_next;
2640 }
2641 }
2642 buf->b_next = NULL;
2643 ASSERT3P(lastbuf, !=, buf);
2644 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2645 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2646 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2647
2648 return (lastbuf);
2649}
2650
2651/*
2652 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2653 * list and free it.
34dc7c2f
BB
2654 */
2655static void
2aa34383 2656arc_buf_destroy_impl(arc_buf_t *buf)
34dc7c2f 2657{
498877ba 2658 arc_buf_hdr_t *hdr = buf->b_hdr;
ca0bf58d
PS
2659
2660 /*
524b4217
DK
2661 * Free up the data associated with the buf but only if we're not
2662 * sharing this with the hdr. If we are sharing it with the hdr, the
2663 * hdr is responsible for doing the free.
ca0bf58d 2664 */
d3c2ae1c
GW
2665 if (buf->b_data != NULL) {
2666 /*
2667 * We're about to change the hdr's b_flags. We must either
2668 * hold the hash_lock or be undiscoverable.
2669 */
2670 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2671
524b4217 2672 arc_cksum_verify(buf);
d3c2ae1c
GW
2673 arc_buf_unwatch(buf);
2674
2aa34383 2675 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
2676 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2677 } else {
2aa34383 2678 uint64_t size = arc_buf_size(buf);
d3c2ae1c
GW
2679 arc_free_data_buf(hdr, buf->b_data, size, buf);
2680 ARCSTAT_INCR(arcstat_overhead_size, -size);
2681 }
2682 buf->b_data = NULL;
2683
2684 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2685 hdr->b_l1hdr.b_bufcnt -= 1;
2686 }
2687
a7004725 2688 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 2689
524b4217 2690 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2aa34383 2691 /*
524b4217 2692 * If the current arc_buf_t is sharing its data buffer with the
a6255b7f 2693 * hdr, then reassign the hdr's b_pabd to share it with the new
524b4217
DK
2694 * buffer at the end of the list. The shared buffer is always
2695 * the last one on the hdr's buffer list.
2696 *
2697 * There is an equivalent case for compressed bufs, but since
2698 * they aren't guaranteed to be the last buf in the list and
2699 * that is an exceedingly rare case, we just allow that space be
2700 * wasted temporarily.
2aa34383
DK
2701 */
2702 if (lastbuf != NULL) {
524b4217 2703 /* Only one buf can be shared at once */
2aa34383 2704 VERIFY(!arc_buf_is_shared(lastbuf));
524b4217
DK
2705 /* hdr is uncompressed so can't have compressed buf */
2706 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
d3c2ae1c 2707
a6255b7f
DQ
2708 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2709 arc_hdr_free_pabd(hdr);
d3c2ae1c 2710
2aa34383
DK
2711 /*
2712 * We must setup a new shared block between the
2713 * last buffer and the hdr. The data would have
2714 * been allocated by the arc buf so we need to transfer
2715 * ownership to the hdr since it's now being shared.
2716 */
2717 arc_share_buf(hdr, lastbuf);
2718 }
2719 } else if (HDR_SHARED_DATA(hdr)) {
d3c2ae1c 2720 /*
2aa34383
DK
2721 * Uncompressed shared buffers are always at the end
2722 * of the list. Compressed buffers don't have the
2723 * same requirements. This makes it hard to
2724 * simply assert that the lastbuf is shared so
2725 * we rely on the hdr's compression flags to determine
2726 * if we have a compressed, shared buffer.
d3c2ae1c 2727 */
2aa34383
DK
2728 ASSERT3P(lastbuf, !=, NULL);
2729 ASSERT(arc_buf_is_shared(lastbuf) ||
2730 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
ca0bf58d
PS
2731 }
2732
a7004725
DK
2733 /*
2734 * Free the checksum if we're removing the last uncompressed buf from
2735 * this hdr.
2736 */
2737 if (!arc_hdr_has_uncompressed_buf(hdr)) {
d3c2ae1c 2738 arc_cksum_free(hdr);
a7004725 2739 }
d3c2ae1c
GW
2740
2741 /* clean up the buf */
2742 buf->b_hdr = NULL;
2743 kmem_cache_free(buf_cache, buf);
2744}
2745
2746static void
a6255b7f 2747arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
d3c2ae1c
GW
2748{
2749 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2750 ASSERT(HDR_HAS_L1HDR(hdr));
2751 ASSERT(!HDR_SHARED_DATA(hdr));
2752
a6255b7f
DQ
2753 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2754 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
d3c2ae1c 2755 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
a6255b7f 2756 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c
GW
2757
2758 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2759 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2760}
2761
2762static void
a6255b7f 2763arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
d3c2ae1c
GW
2764{
2765 ASSERT(HDR_HAS_L1HDR(hdr));
a6255b7f 2766 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c 2767
ca0bf58d 2768 /*
d3c2ae1c
GW
2769 * If the hdr is currently being written to the l2arc then
2770 * we defer freeing the data by adding it to the l2arc_free_on_write
2771 * list. The l2arc will free the data once it's finished
2772 * writing it to the l2arc device.
ca0bf58d 2773 */
d3c2ae1c
GW
2774 if (HDR_L2_WRITING(hdr)) {
2775 arc_hdr_free_on_write(hdr);
2776 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2777 } else {
a6255b7f 2778 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
d3c2ae1c 2779 arc_hdr_size(hdr), hdr);
ca0bf58d 2780 }
a6255b7f 2781 hdr->b_l1hdr.b_pabd = NULL;
d3c2ae1c 2782 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
ca0bf58d 2783
d3c2ae1c
GW
2784 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2785 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2786}
2787
2788static arc_buf_hdr_t *
2789arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2aa34383 2790 enum zio_compress compression_type, arc_buf_contents_t type)
d3c2ae1c
GW
2791{
2792 arc_buf_hdr_t *hdr;
2793
d3c2ae1c
GW
2794 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2795
2796 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2797 ASSERT(HDR_EMPTY(hdr));
2798 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2799 HDR_SET_PSIZE(hdr, psize);
2800 HDR_SET_LSIZE(hdr, lsize);
2801 hdr->b_spa = spa;
2802 hdr->b_type = type;
2803 hdr->b_flags = 0;
2804 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2aa34383 2805 arc_hdr_set_compress(hdr, compression_type);
ca0bf58d 2806
d3c2ae1c
GW
2807 hdr->b_l1hdr.b_state = arc_anon;
2808 hdr->b_l1hdr.b_arc_access = 0;
2809 hdr->b_l1hdr.b_bufcnt = 0;
2810 hdr->b_l1hdr.b_buf = NULL;
ca0bf58d 2811
d3c2ae1c
GW
2812 /*
2813 * Allocate the hdr's buffer. This will contain either
2814 * the compressed or uncompressed data depending on the block
2815 * it references and compressed arc enablement.
2816 */
a6255b7f 2817 arc_hdr_alloc_pabd(hdr);
d3c2ae1c 2818 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 2819
d3c2ae1c 2820 return (hdr);
ca0bf58d
PS
2821}
2822
bd089c54 2823/*
d3c2ae1c
GW
2824 * Transition between the two allocation states for the arc_buf_hdr struct.
2825 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2826 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2827 * version is used when a cache buffer is only in the L2ARC in order to reduce
2828 * memory usage.
bd089c54 2829 */
d3c2ae1c
GW
2830static arc_buf_hdr_t *
2831arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
34dc7c2f 2832{
d3c2ae1c
GW
2833 arc_buf_hdr_t *nhdr;
2834 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
34dc7c2f 2835
d3c2ae1c
GW
2836 ASSERT(HDR_HAS_L2HDR(hdr));
2837 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2838 (old == hdr_l2only_cache && new == hdr_full_cache));
34dc7c2f 2839
d3c2ae1c 2840 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
428870ff 2841
d3c2ae1c
GW
2842 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2843 buf_hash_remove(hdr);
ca0bf58d 2844
d3c2ae1c 2845 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
34dc7c2f 2846
d3c2ae1c
GW
2847 if (new == hdr_full_cache) {
2848 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2849 /*
2850 * arc_access and arc_change_state need to be aware that a
2851 * header has just come out of L2ARC, so we set its state to
2852 * l2c_only even though it's about to change.
2853 */
2854 nhdr->b_l1hdr.b_state = arc_l2c_only;
34dc7c2f 2855
d3c2ae1c 2856 /* Verify previous threads set to NULL before freeing */
a6255b7f 2857 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c
GW
2858 } else {
2859 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2860 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2861 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
36da08ef 2862
d3c2ae1c
GW
2863 /*
2864 * If we've reached here, We must have been called from
2865 * arc_evict_hdr(), as such we should have already been
2866 * removed from any ghost list we were previously on
2867 * (which protects us from racing with arc_evict_state),
2868 * thus no locking is needed during this check.
2869 */
2870 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1eb5bfa3
GW
2871
2872 /*
d3c2ae1c
GW
2873 * A buffer must not be moved into the arc_l2c_only
2874 * state if it's not finished being written out to the
a6255b7f 2875 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
d3c2ae1c 2876 * might try to be accessed, even though it was removed.
1eb5bfa3 2877 */
d3c2ae1c 2878 VERIFY(!HDR_L2_WRITING(hdr));
a6255b7f 2879 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c
GW
2880
2881 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
34dc7c2f 2882 }
d3c2ae1c
GW
2883 /*
2884 * The header has been reallocated so we need to re-insert it into any
2885 * lists it was on.
2886 */
2887 (void) buf_hash_insert(nhdr, NULL);
34dc7c2f 2888
d3c2ae1c 2889 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
34dc7c2f 2890
d3c2ae1c
GW
2891 mutex_enter(&dev->l2ad_mtx);
2892
2893 /*
2894 * We must place the realloc'ed header back into the list at
2895 * the same spot. Otherwise, if it's placed earlier in the list,
2896 * l2arc_write_buffers() could find it during the function's
2897 * write phase, and try to write it out to the l2arc.
2898 */
2899 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2900 list_remove(&dev->l2ad_buflist, hdr);
34dc7c2f 2901
d3c2ae1c 2902 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 2903
d3c2ae1c
GW
2904 /*
2905 * Since we're using the pointer address as the tag when
2906 * incrementing and decrementing the l2ad_alloc refcount, we
2907 * must remove the old pointer (that we're about to destroy) and
2908 * add the new pointer to the refcount. Otherwise we'd remove
2909 * the wrong pointer address when calling arc_hdr_destroy() later.
2910 */
2911
2912 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2913 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2914
2915 buf_discard_identity(hdr);
2916 kmem_cache_free(old, hdr);
2917
2918 return (nhdr);
2919}
2920
2921/*
2922 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2923 * The buf is returned thawed since we expect the consumer to modify it.
2924 */
2925arc_buf_t *
2aa34383 2926arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
d3c2ae1c 2927{
d3c2ae1c
GW
2928 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2929 ZIO_COMPRESS_OFF, type);
2930 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2aa34383 2931
a7004725 2932 arc_buf_t *buf = NULL;
524b4217 2933 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
d3c2ae1c 2934 arc_buf_thaw(buf);
2aa34383
DK
2935
2936 return (buf);
2937}
2938
2939/*
2940 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
2941 * for bufs containing metadata.
2942 */
2943arc_buf_t *
2944arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
2945 enum zio_compress compression_type)
2946{
2aa34383
DK
2947 ASSERT3U(lsize, >, 0);
2948 ASSERT3U(lsize, >=, psize);
2949 ASSERT(compression_type > ZIO_COMPRESS_OFF);
2950 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
2951
a7004725 2952 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
2aa34383
DK
2953 compression_type, ARC_BUFC_DATA);
2954 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2955
a7004725 2956 arc_buf_t *buf = NULL;
524b4217 2957 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
2aa34383
DK
2958 arc_buf_thaw(buf);
2959 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2960
a6255b7f
DQ
2961 if (!arc_buf_is_shared(buf)) {
2962 /*
2963 * To ensure that the hdr has the correct data in it if we call
2964 * arc_decompress() on this buf before it's been written to
2965 * disk, it's easiest if we just set up sharing between the
2966 * buf and the hdr.
2967 */
2968 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
2969 arc_hdr_free_pabd(hdr);
2970 arc_share_buf(hdr, buf);
2971 }
2972
d3c2ae1c 2973 return (buf);
34dc7c2f
BB
2974}
2975
d962d5da
PS
2976static void
2977arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2978{
2979 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2980 l2arc_dev_t *dev = l2hdr->b_dev;
d3c2ae1c 2981 uint64_t asize = arc_hdr_size(hdr);
d962d5da
PS
2982
2983 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2984 ASSERT(HDR_HAS_L2HDR(hdr));
2985
2986 list_remove(&dev->l2ad_buflist, hdr);
2987
d3c2ae1c
GW
2988 ARCSTAT_INCR(arcstat_l2_asize, -asize);
2989 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
d962d5da 2990
d3c2ae1c 2991 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
d962d5da 2992
d3c2ae1c
GW
2993 (void) refcount_remove_many(&dev->l2ad_alloc, asize, hdr);
2994 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
d962d5da
PS
2995}
2996
34dc7c2f
BB
2997static void
2998arc_hdr_destroy(arc_buf_hdr_t *hdr)
2999{
b9541d6b
CW
3000 if (HDR_HAS_L1HDR(hdr)) {
3001 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
d3c2ae1c 3002 hdr->b_l1hdr.b_bufcnt > 0);
b9541d6b
CW
3003 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3004 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3005 }
34dc7c2f 3006 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
3007 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3008
d3c2ae1c
GW
3009 if (!HDR_EMPTY(hdr))
3010 buf_discard_identity(hdr);
3011
b9541d6b 3012 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
3013 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3014 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 3015
d962d5da
PS
3016 if (!buflist_held)
3017 mutex_enter(&dev->l2ad_mtx);
b9541d6b 3018
ca0bf58d 3019 /*
d962d5da
PS
3020 * Even though we checked this conditional above, we
3021 * need to check this again now that we have the
3022 * l2ad_mtx. This is because we could be racing with
3023 * another thread calling l2arc_evict() which might have
3024 * destroyed this header's L2 portion as we were waiting
3025 * to acquire the l2ad_mtx. If that happens, we don't
3026 * want to re-destroy the header's L2 portion.
ca0bf58d 3027 */
d962d5da
PS
3028 if (HDR_HAS_L2HDR(hdr))
3029 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
3030
3031 if (!buflist_held)
d962d5da 3032 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
3033 }
3034
d3c2ae1c
GW
3035 if (HDR_HAS_L1HDR(hdr)) {
3036 arc_cksum_free(hdr);
b9541d6b 3037
d3c2ae1c 3038 while (hdr->b_l1hdr.b_buf != NULL)
2aa34383 3039 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
34dc7c2f 3040
a6255b7f
DQ
3041 if (hdr->b_l1hdr.b_pabd != NULL)
3042 arc_hdr_free_pabd(hdr);
b9541d6b
CW
3043 }
3044
34dc7c2f 3045 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 3046 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 3047 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
3048 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3049 kmem_cache_free(hdr_full_cache, hdr);
3050 } else {
3051 kmem_cache_free(hdr_l2only_cache, hdr);
3052 }
34dc7c2f
BB
3053}
3054
3055void
d3c2ae1c 3056arc_buf_destroy(arc_buf_t *buf, void* tag)
34dc7c2f
BB
3057{
3058 arc_buf_hdr_t *hdr = buf->b_hdr;
96c080cb 3059 kmutex_t *hash_lock = HDR_LOCK(hdr);
34dc7c2f 3060
b9541d6b 3061 if (hdr->b_l1hdr.b_state == arc_anon) {
d3c2ae1c
GW
3062 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3063 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3064 VERIFY0(remove_reference(hdr, NULL, tag));
3065 arc_hdr_destroy(hdr);
3066 return;
34dc7c2f
BB
3067 }
3068
3069 mutex_enter(hash_lock);
d3c2ae1c
GW
3070 ASSERT3P(hdr, ==, buf->b_hdr);
3071 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
428870ff 3072 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
d3c2ae1c
GW
3073 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3074 ASSERT3P(buf->b_data, !=, NULL);
34dc7c2f
BB
3075
3076 (void) remove_reference(hdr, hash_lock, tag);
2aa34383 3077 arc_buf_destroy_impl(buf);
34dc7c2f 3078 mutex_exit(hash_lock);
34dc7c2f
BB
3079}
3080
34dc7c2f 3081/*
ca0bf58d
PS
3082 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3083 * state of the header is dependent on its state prior to entering this
3084 * function. The following transitions are possible:
34dc7c2f 3085 *
ca0bf58d
PS
3086 * - arc_mru -> arc_mru_ghost
3087 * - arc_mfu -> arc_mfu_ghost
3088 * - arc_mru_ghost -> arc_l2c_only
3089 * - arc_mru_ghost -> deleted
3090 * - arc_mfu_ghost -> arc_l2c_only
3091 * - arc_mfu_ghost -> deleted
34dc7c2f 3092 */
ca0bf58d
PS
3093static int64_t
3094arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3095{
ca0bf58d
PS
3096 arc_state_t *evicted_state, *state;
3097 int64_t bytes_evicted = 0;
34dc7c2f 3098
ca0bf58d
PS
3099 ASSERT(MUTEX_HELD(hash_lock));
3100 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 3101
ca0bf58d
PS
3102 state = hdr->b_l1hdr.b_state;
3103 if (GHOST_STATE(state)) {
3104 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c 3105 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
e8b96c60
MA
3106
3107 /*
ca0bf58d 3108 * l2arc_write_buffers() relies on a header's L1 portion
a6255b7f 3109 * (i.e. its b_pabd field) during it's write phase.
ca0bf58d
PS
3110 * Thus, we cannot push a header onto the arc_l2c_only
3111 * state (removing its L1 piece) until the header is
3112 * done being written to the l2arc.
e8b96c60 3113 */
ca0bf58d
PS
3114 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3115 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3116 return (bytes_evicted);
e8b96c60
MA
3117 }
3118
ca0bf58d 3119 ARCSTAT_BUMP(arcstat_deleted);
d3c2ae1c 3120 bytes_evicted += HDR_GET_LSIZE(hdr);
428870ff 3121
ca0bf58d 3122 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 3123
ca0bf58d 3124 if (HDR_HAS_L2HDR(hdr)) {
a6255b7f 3125 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
ca0bf58d
PS
3126 /*
3127 * This buffer is cached on the 2nd Level ARC;
3128 * don't destroy the header.
3129 */
3130 arc_change_state(arc_l2c_only, hdr, hash_lock);
3131 /*
3132 * dropping from L1+L2 cached to L2-only,
3133 * realloc to remove the L1 header.
3134 */
3135 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3136 hdr_l2only_cache);
34dc7c2f 3137 } else {
ca0bf58d
PS
3138 arc_change_state(arc_anon, hdr, hash_lock);
3139 arc_hdr_destroy(hdr);
34dc7c2f 3140 }
ca0bf58d 3141 return (bytes_evicted);
34dc7c2f
BB
3142 }
3143
ca0bf58d
PS
3144 ASSERT(state == arc_mru || state == arc_mfu);
3145 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 3146
ca0bf58d
PS
3147 /* prefetch buffers have a minimum lifespan */
3148 if (HDR_IO_IN_PROGRESS(hdr) ||
3149 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3150 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3151 arc_min_prefetch_lifespan)) {
3152 ARCSTAT_BUMP(arcstat_evict_skip);
3153 return (bytes_evicted);
da8ccd0e
PS
3154 }
3155
ca0bf58d 3156 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3157 while (hdr->b_l1hdr.b_buf) {
3158 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3159 if (!mutex_tryenter(&buf->b_evict_lock)) {
3160 ARCSTAT_BUMP(arcstat_mutex_miss);
3161 break;
3162 }
3163 if (buf->b_data != NULL)
d3c2ae1c
GW
3164 bytes_evicted += HDR_GET_LSIZE(hdr);
3165 mutex_exit(&buf->b_evict_lock);
2aa34383 3166 arc_buf_destroy_impl(buf);
ca0bf58d 3167 }
34dc7c2f 3168
ca0bf58d 3169 if (HDR_HAS_L2HDR(hdr)) {
d3c2ae1c 3170 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
ca0bf58d 3171 } else {
d3c2ae1c
GW
3172 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3173 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3174 HDR_GET_LSIZE(hdr));
3175 } else {
3176 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3177 HDR_GET_LSIZE(hdr));
3178 }
ca0bf58d 3179 }
34dc7c2f 3180
d3c2ae1c
GW
3181 if (hdr->b_l1hdr.b_bufcnt == 0) {
3182 arc_cksum_free(hdr);
3183
3184 bytes_evicted += arc_hdr_size(hdr);
3185
3186 /*
3187 * If this hdr is being evicted and has a compressed
3188 * buffer then we discard it here before we change states.
3189 * This ensures that the accounting is updated correctly
a6255b7f 3190 * in arc_free_data_impl().
d3c2ae1c 3191 */
a6255b7f 3192 arc_hdr_free_pabd(hdr);
d3c2ae1c 3193
ca0bf58d
PS
3194 arc_change_state(evicted_state, hdr, hash_lock);
3195 ASSERT(HDR_IN_HASH_TABLE(hdr));
d3c2ae1c 3196 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
ca0bf58d
PS
3197 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3198 }
34dc7c2f 3199
ca0bf58d 3200 return (bytes_evicted);
34dc7c2f
BB
3201}
3202
ca0bf58d
PS
3203static uint64_t
3204arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3205 uint64_t spa, int64_t bytes)
34dc7c2f 3206{
ca0bf58d
PS
3207 multilist_sublist_t *mls;
3208 uint64_t bytes_evicted = 0;
3209 arc_buf_hdr_t *hdr;
34dc7c2f 3210 kmutex_t *hash_lock;
ca0bf58d 3211 int evict_count = 0;
34dc7c2f 3212
ca0bf58d 3213 ASSERT3P(marker, !=, NULL);
96c080cb 3214 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
3215
3216 mls = multilist_sublist_lock(ml, idx);
572e2857 3217
ca0bf58d
PS
3218 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3219 hdr = multilist_sublist_prev(mls, marker)) {
3220 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3221 (evict_count >= zfs_arc_evict_batch_limit))
3222 break;
3223
3224 /*
3225 * To keep our iteration location, move the marker
3226 * forward. Since we're not holding hdr's hash lock, we
3227 * must be very careful and not remove 'hdr' from the
3228 * sublist. Otherwise, other consumers might mistake the
3229 * 'hdr' as not being on a sublist when they call the
3230 * multilist_link_active() function (they all rely on
3231 * the hash lock protecting concurrent insertions and
3232 * removals). multilist_sublist_move_forward() was
3233 * specifically implemented to ensure this is the case
3234 * (only 'marker' will be removed and re-inserted).
3235 */
3236 multilist_sublist_move_forward(mls, marker);
3237
3238 /*
3239 * The only case where the b_spa field should ever be
3240 * zero, is the marker headers inserted by
3241 * arc_evict_state(). It's possible for multiple threads
3242 * to be calling arc_evict_state() concurrently (e.g.
3243 * dsl_pool_close() and zio_inject_fault()), so we must
3244 * skip any markers we see from these other threads.
3245 */
2a432414 3246 if (hdr->b_spa == 0)
572e2857
BB
3247 continue;
3248
ca0bf58d
PS
3249 /* we're only interested in evicting buffers of a certain spa */
3250 if (spa != 0 && hdr->b_spa != spa) {
3251 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 3252 continue;
ca0bf58d
PS
3253 }
3254
3255 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
3256
3257 /*
ca0bf58d
PS
3258 * We aren't calling this function from any code path
3259 * that would already be holding a hash lock, so we're
3260 * asserting on this assumption to be defensive in case
3261 * this ever changes. Without this check, it would be
3262 * possible to incorrectly increment arcstat_mutex_miss
3263 * below (e.g. if the code changed such that we called
3264 * this function with a hash lock held).
e8b96c60 3265 */
ca0bf58d
PS
3266 ASSERT(!MUTEX_HELD(hash_lock));
3267
34dc7c2f 3268 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
3269 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3270 mutex_exit(hash_lock);
34dc7c2f 3271
ca0bf58d 3272 bytes_evicted += evicted;
34dc7c2f 3273
572e2857 3274 /*
ca0bf58d
PS
3275 * If evicted is zero, arc_evict_hdr() must have
3276 * decided to skip this header, don't increment
3277 * evict_count in this case.
572e2857 3278 */
ca0bf58d
PS
3279 if (evicted != 0)
3280 evict_count++;
3281
3282 /*
3283 * If arc_size isn't overflowing, signal any
3284 * threads that might happen to be waiting.
3285 *
3286 * For each header evicted, we wake up a single
3287 * thread. If we used cv_broadcast, we could
3288 * wake up "too many" threads causing arc_size
3289 * to significantly overflow arc_c; since
a6255b7f 3290 * arc_get_data_impl() doesn't check for overflow
ca0bf58d
PS
3291 * when it's woken up (it doesn't because it's
3292 * possible for the ARC to be overflowing while
3293 * full of un-evictable buffers, and the
3294 * function should proceed in this case).
3295 *
3296 * If threads are left sleeping, due to not
3297 * using cv_broadcast, they will be woken up
3298 * just before arc_reclaim_thread() sleeps.
3299 */
3300 mutex_enter(&arc_reclaim_lock);
3301 if (!arc_is_overflowing())
3302 cv_signal(&arc_reclaim_waiters_cv);
3303 mutex_exit(&arc_reclaim_lock);
e8b96c60 3304 } else {
ca0bf58d 3305 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 3306 }
34dc7c2f 3307 }
34dc7c2f 3308
ca0bf58d 3309 multilist_sublist_unlock(mls);
34dc7c2f 3310
ca0bf58d 3311 return (bytes_evicted);
34dc7c2f
BB
3312}
3313
ca0bf58d
PS
3314/*
3315 * Evict buffers from the given arc state, until we've removed the
3316 * specified number of bytes. Move the removed buffers to the
3317 * appropriate evict state.
3318 *
3319 * This function makes a "best effort". It skips over any buffers
3320 * it can't get a hash_lock on, and so, may not catch all candidates.
3321 * It may also return without evicting as much space as requested.
3322 *
3323 * If bytes is specified using the special value ARC_EVICT_ALL, this
3324 * will evict all available (i.e. unlocked and evictable) buffers from
3325 * the given arc state; which is used by arc_flush().
3326 */
3327static uint64_t
3328arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3329 arc_buf_contents_t type)
34dc7c2f 3330{
ca0bf58d 3331 uint64_t total_evicted = 0;
64fc7762 3332 multilist_t *ml = state->arcs_list[type];
ca0bf58d
PS
3333 int num_sublists;
3334 arc_buf_hdr_t **markers;
3335 int i;
3336
96c080cb 3337 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
3338
3339 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
3340
3341 /*
ca0bf58d
PS
3342 * If we've tried to evict from each sublist, made some
3343 * progress, but still have not hit the target number of bytes
3344 * to evict, we want to keep trying. The markers allow us to
3345 * pick up where we left off for each individual sublist, rather
3346 * than starting from the tail each time.
d164b209 3347 */
ca0bf58d
PS
3348 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3349 for (i = 0; i < num_sublists; i++) {
3350 multilist_sublist_t *mls;
34dc7c2f 3351
ca0bf58d
PS
3352 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3353
3354 /*
3355 * A b_spa of 0 is used to indicate that this header is
3356 * a marker. This fact is used in arc_adjust_type() and
3357 * arc_evict_state_impl().
3358 */
3359 markers[i]->b_spa = 0;
34dc7c2f 3360
ca0bf58d
PS
3361 mls = multilist_sublist_lock(ml, i);
3362 multilist_sublist_insert_tail(mls, markers[i]);
3363 multilist_sublist_unlock(mls);
34dc7c2f
BB
3364 }
3365
d164b209 3366 /*
ca0bf58d
PS
3367 * While we haven't hit our target number of bytes to evict, or
3368 * we're evicting all available buffers.
d164b209 3369 */
ca0bf58d 3370 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
25458cbe
TC
3371 int sublist_idx = multilist_get_random_index(ml);
3372 uint64_t scan_evicted = 0;
3373
3374 /*
3375 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
3376 * Request that 10% of the LRUs be scanned by the superblock
3377 * shrinker.
3378 */
3379 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
3380 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
3381 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
3382
ca0bf58d
PS
3383 /*
3384 * Start eviction using a randomly selected sublist,
3385 * this is to try and evenly balance eviction across all
3386 * sublists. Always starting at the same sublist
3387 * (e.g. index 0) would cause evictions to favor certain
3388 * sublists over others.
3389 */
ca0bf58d
PS
3390 for (i = 0; i < num_sublists; i++) {
3391 uint64_t bytes_remaining;
3392 uint64_t bytes_evicted;
d164b209 3393
ca0bf58d
PS
3394 if (bytes == ARC_EVICT_ALL)
3395 bytes_remaining = ARC_EVICT_ALL;
3396 else if (total_evicted < bytes)
3397 bytes_remaining = bytes - total_evicted;
3398 else
3399 break;
34dc7c2f 3400
ca0bf58d
PS
3401 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3402 markers[sublist_idx], spa, bytes_remaining);
3403
3404 scan_evicted += bytes_evicted;
3405 total_evicted += bytes_evicted;
3406
3407 /* we've reached the end, wrap to the beginning */
3408 if (++sublist_idx >= num_sublists)
3409 sublist_idx = 0;
3410 }
3411
3412 /*
3413 * If we didn't evict anything during this scan, we have
3414 * no reason to believe we'll evict more during another
3415 * scan, so break the loop.
3416 */
3417 if (scan_evicted == 0) {
3418 /* This isn't possible, let's make that obvious */
3419 ASSERT3S(bytes, !=, 0);
34dc7c2f 3420
ca0bf58d
PS
3421 /*
3422 * When bytes is ARC_EVICT_ALL, the only way to
3423 * break the loop is when scan_evicted is zero.
3424 * In that case, we actually have evicted enough,
3425 * so we don't want to increment the kstat.
3426 */
3427 if (bytes != ARC_EVICT_ALL) {
3428 ASSERT3S(total_evicted, <, bytes);
3429 ARCSTAT_BUMP(arcstat_evict_not_enough);
3430 }
d164b209 3431
ca0bf58d
PS
3432 break;
3433 }
d164b209 3434 }
34dc7c2f 3435
ca0bf58d
PS
3436 for (i = 0; i < num_sublists; i++) {
3437 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3438 multilist_sublist_remove(mls, markers[i]);
3439 multilist_sublist_unlock(mls);
34dc7c2f 3440
ca0bf58d 3441 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 3442 }
ca0bf58d
PS
3443 kmem_free(markers, sizeof (*markers) * num_sublists);
3444
3445 return (total_evicted);
3446}
3447
3448/*
3449 * Flush all "evictable" data of the given type from the arc state
3450 * specified. This will not evict any "active" buffers (i.e. referenced).
3451 *
d3c2ae1c 3452 * When 'retry' is set to B_FALSE, the function will make a single pass
ca0bf58d
PS
3453 * over the state and evict any buffers that it can. Since it doesn't
3454 * continually retry the eviction, it might end up leaving some buffers
3455 * in the ARC due to lock misses.
3456 *
d3c2ae1c 3457 * When 'retry' is set to B_TRUE, the function will continually retry the
ca0bf58d
PS
3458 * eviction until *all* evictable buffers have been removed from the
3459 * state. As a result, if concurrent insertions into the state are
3460 * allowed (e.g. if the ARC isn't shutting down), this function might
3461 * wind up in an infinite loop, continually trying to evict buffers.
3462 */
3463static uint64_t
3464arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3465 boolean_t retry)
3466{
3467 uint64_t evicted = 0;
3468
d3c2ae1c 3469 while (refcount_count(&state->arcs_esize[type]) != 0) {
ca0bf58d
PS
3470 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3471
3472 if (!retry)
3473 break;
3474 }
3475
3476 return (evicted);
34dc7c2f
BB
3477}
3478
ab26409d 3479/*
ef5b2e10
BB
3480 * Helper function for arc_prune_async() it is responsible for safely
3481 * handling the execution of a registered arc_prune_func_t.
ab26409d
BB
3482 */
3483static void
f6046738 3484arc_prune_task(void *ptr)
ab26409d 3485{
f6046738
BB
3486 arc_prune_t *ap = (arc_prune_t *)ptr;
3487 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 3488
f6046738
BB
3489 if (func != NULL)
3490 func(ap->p_adjust, ap->p_private);
ab26409d 3491
4442f60d 3492 refcount_remove(&ap->p_refcnt, func);
f6046738 3493}
ab26409d 3494
f6046738
BB
3495/*
3496 * Notify registered consumers they must drop holds on a portion of the ARC
3497 * buffered they reference. This provides a mechanism to ensure the ARC can
3498 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
3499 * is analogous to dnlc_reduce_cache() but more generic.
3500 *
ef5b2e10 3501 * This operation is performed asynchronously so it may be safely called
ca67b33a 3502 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
3503 * for each registered arc_prune_t and the arc_prune_task() is responsible
3504 * for releasing it once the registered arc_prune_func_t has completed.
3505 */
3506static void
3507arc_prune_async(int64_t adjust)
3508{
3509 arc_prune_t *ap;
ab26409d 3510
f6046738
BB
3511 mutex_enter(&arc_prune_mtx);
3512 for (ap = list_head(&arc_prune_list); ap != NULL;
3513 ap = list_next(&arc_prune_list, ap)) {
ab26409d 3514
f6046738
BB
3515 if (refcount_count(&ap->p_refcnt) >= 2)
3516 continue;
ab26409d 3517
f6046738
BB
3518 refcount_add(&ap->p_refcnt, ap->p_pfunc);
3519 ap->p_adjust = adjust;
b60eac3d 3520 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
48d3eb40 3521 ap, TQ_SLEEP) == TASKQID_INVALID) {
b60eac3d 3522 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
3523 continue;
3524 }
f6046738 3525 ARCSTAT_BUMP(arcstat_prune);
ab26409d 3526 }
ab26409d
BB
3527 mutex_exit(&arc_prune_mtx);
3528}
3529
ca0bf58d
PS
3530/*
3531 * Evict the specified number of bytes from the state specified,
3532 * restricting eviction to the spa and type given. This function
3533 * prevents us from trying to evict more from a state's list than
3534 * is "evictable", and to skip evicting altogether when passed a
3535 * negative value for "bytes". In contrast, arc_evict_state() will
3536 * evict everything it can, when passed a negative value for "bytes".
3537 */
3538static uint64_t
3539arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3540 arc_buf_contents_t type)
3541{
3542 int64_t delta;
3543
d3c2ae1c
GW
3544 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3545 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
ca0bf58d
PS
3546 return (arc_evict_state(state, spa, delta, type));
3547 }
3548
3549 return (0);
3550}
3551
3552/*
3553 * The goal of this function is to evict enough meta data buffers from the
3554 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
3555 * more complicated than it appears because it is common for data buffers
3556 * to have holds on meta data buffers. In addition, dnode meta data buffers
3557 * will be held by the dnodes in the block preventing them from being freed.
3558 * This means we can't simply traverse the ARC and expect to always find
3559 * enough unheld meta data buffer to release.
3560 *
3561 * Therefore, this function has been updated to make alternating passes
3562 * over the ARC releasing data buffers and then newly unheld meta data
3563 * buffers. This ensures forward progress is maintained and arc_meta_used
3564 * will decrease. Normally this is sufficient, but if required the ARC
3565 * will call the registered prune callbacks causing dentry and inodes to
3566 * be dropped from the VFS cache. This will make dnode meta data buffers
3567 * available for reclaim.
3568 */
3569static uint64_t
f6046738 3570arc_adjust_meta_balanced(void)
ca0bf58d 3571{
25e2ab16
TC
3572 int64_t delta, prune = 0, adjustmnt;
3573 uint64_t total_evicted = 0;
ca0bf58d 3574 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 3575 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
3576
3577restart:
3578 /*
3579 * This slightly differs than the way we evict from the mru in
3580 * arc_adjust because we don't have a "target" value (i.e. no
3581 * "meta" arc_p). As a result, I think we can completely
3582 * cannibalize the metadata in the MRU before we evict the
3583 * metadata from the MFU. I think we probably need to implement a
3584 * "metadata arc_p" value to do this properly.
3585 */
3586 adjustmnt = arc_meta_used - arc_meta_limit;
3587
d3c2ae1c
GW
3588 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
3589 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
3590 adjustmnt);
ca0bf58d
PS
3591 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
3592 adjustmnt -= delta;
3593 }
3594
3595 /*
3596 * We can't afford to recalculate adjustmnt here. If we do,
3597 * new metadata buffers can sneak into the MRU or ANON lists,
3598 * thus penalize the MFU metadata. Although the fudge factor is
3599 * small, it has been empirically shown to be significant for
3600 * certain workloads (e.g. creating many empty directories). As
3601 * such, we use the original calculation for adjustmnt, and
3602 * simply decrement the amount of data evicted from the MRU.
3603 */
3604
d3c2ae1c
GW
3605 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
3606 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
3607 adjustmnt);
ca0bf58d
PS
3608 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
3609 }
3610
3611 adjustmnt = arc_meta_used - arc_meta_limit;
3612
d3c2ae1c
GW
3613 if (adjustmnt > 0 &&
3614 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
ca0bf58d 3615 delta = MIN(adjustmnt,
d3c2ae1c 3616 refcount_count(&arc_mru_ghost->arcs_esize[type]));
ca0bf58d
PS
3617 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
3618 adjustmnt -= delta;
3619 }
3620
d3c2ae1c
GW
3621 if (adjustmnt > 0 &&
3622 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
ca0bf58d 3623 delta = MIN(adjustmnt,
d3c2ae1c 3624 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
ca0bf58d
PS
3625 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
3626 }
3627
3628 /*
3629 * If after attempting to make the requested adjustment to the ARC
3630 * the meta limit is still being exceeded then request that the
3631 * higher layers drop some cached objects which have holds on ARC
3632 * meta buffers. Requests to the upper layers will be made with
3633 * increasingly large scan sizes until the ARC is below the limit.
3634 */
3635 if (arc_meta_used > arc_meta_limit) {
3636 if (type == ARC_BUFC_DATA) {
3637 type = ARC_BUFC_METADATA;
3638 } else {
3639 type = ARC_BUFC_DATA;
3640
3641 if (zfs_arc_meta_prune) {
3642 prune += zfs_arc_meta_prune;
f6046738 3643 arc_prune_async(prune);
ca0bf58d
PS
3644 }
3645 }
3646
3647 if (restarts > 0) {
3648 restarts--;
3649 goto restart;
3650 }
3651 }
3652 return (total_evicted);
3653}
3654
f6046738
BB
3655/*
3656 * Evict metadata buffers from the cache, such that arc_meta_used is
3657 * capped by the arc_meta_limit tunable.
3658 */
3659static uint64_t
3660arc_adjust_meta_only(void)
3661{
3662 uint64_t total_evicted = 0;
3663 int64_t target;
3664
3665 /*
3666 * If we're over the meta limit, we want to evict enough
3667 * metadata to get back under the meta limit. We don't want to
3668 * evict so much that we drop the MRU below arc_p, though. If
3669 * we're over the meta limit more than we're over arc_p, we
3670 * evict some from the MRU here, and some from the MFU below.
3671 */
3672 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef
PS
3673 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3674 refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738
BB
3675
3676 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3677
3678 /*
3679 * Similar to the above, we want to evict enough bytes to get us
3680 * below the meta limit, but not so much as to drop us below the
2aa34383 3681 * space allotted to the MFU (which is defined as arc_c - arc_p).
f6046738
BB
3682 */
3683 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef 3684 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
f6046738
BB
3685
3686 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3687
3688 return (total_evicted);
3689}
3690
3691static uint64_t
3692arc_adjust_meta(void)
3693{
3694 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
3695 return (arc_adjust_meta_only());
3696 else
3697 return (arc_adjust_meta_balanced());
3698}
3699
ca0bf58d
PS
3700/*
3701 * Return the type of the oldest buffer in the given arc state
3702 *
3703 * This function will select a random sublist of type ARC_BUFC_DATA and
3704 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3705 * is compared, and the type which contains the "older" buffer will be
3706 * returned.
3707 */
3708static arc_buf_contents_t
3709arc_adjust_type(arc_state_t *state)
3710{
64fc7762
MA
3711 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3712 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
ca0bf58d
PS
3713 int data_idx = multilist_get_random_index(data_ml);
3714 int meta_idx = multilist_get_random_index(meta_ml);
3715 multilist_sublist_t *data_mls;
3716 multilist_sublist_t *meta_mls;
3717 arc_buf_contents_t type;
3718 arc_buf_hdr_t *data_hdr;
3719 arc_buf_hdr_t *meta_hdr;
3720
3721 /*
3722 * We keep the sublist lock until we're finished, to prevent
3723 * the headers from being destroyed via arc_evict_state().
3724 */
3725 data_mls = multilist_sublist_lock(data_ml, data_idx);
3726 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3727
3728 /*
3729 * These two loops are to ensure we skip any markers that
3730 * might be at the tail of the lists due to arc_evict_state().
3731 */
3732
3733 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3734 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3735 if (data_hdr->b_spa != 0)
3736 break;
3737 }
3738
3739 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3740 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3741 if (meta_hdr->b_spa != 0)
3742 break;
3743 }
3744
3745 if (data_hdr == NULL && meta_hdr == NULL) {
3746 type = ARC_BUFC_DATA;
3747 } else if (data_hdr == NULL) {
3748 ASSERT3P(meta_hdr, !=, NULL);
3749 type = ARC_BUFC_METADATA;
3750 } else if (meta_hdr == NULL) {
3751 ASSERT3P(data_hdr, !=, NULL);
3752 type = ARC_BUFC_DATA;
3753 } else {
3754 ASSERT3P(data_hdr, !=, NULL);
3755 ASSERT3P(meta_hdr, !=, NULL);
3756
3757 /* The headers can't be on the sublist without an L1 header */
3758 ASSERT(HDR_HAS_L1HDR(data_hdr));
3759 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3760
3761 if (data_hdr->b_l1hdr.b_arc_access <
3762 meta_hdr->b_l1hdr.b_arc_access) {
3763 type = ARC_BUFC_DATA;
3764 } else {
3765 type = ARC_BUFC_METADATA;
3766 }
3767 }
3768
3769 multilist_sublist_unlock(meta_mls);
3770 multilist_sublist_unlock(data_mls);
3771
3772 return (type);
3773}
3774
3775/*
3776 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3777 */
3778static uint64_t
3779arc_adjust(void)
3780{
3781 uint64_t total_evicted = 0;
3782 uint64_t bytes;
3783 int64_t target;
3784
3785 /*
3786 * If we're over arc_meta_limit, we want to correct that before
3787 * potentially evicting data buffers below.
3788 */
3789 total_evicted += arc_adjust_meta();
3790
3791 /*
3792 * Adjust MRU size
3793 *
3794 * If we're over the target cache size, we want to evict enough
3795 * from the list to get back to our target size. We don't want
3796 * to evict too much from the MRU, such that it drops below
3797 * arc_p. So, if we're over our target cache size more than
3798 * the MRU is over arc_p, we'll evict enough to get back to
3799 * arc_p here, and then evict more from the MFU below.
3800 */
3801 target = MIN((int64_t)(arc_size - arc_c),
36da08ef
PS
3802 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3803 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
ca0bf58d
PS
3804
3805 /*
3806 * If we're below arc_meta_min, always prefer to evict data.
3807 * Otherwise, try to satisfy the requested number of bytes to
3808 * evict from the type which contains older buffers; in an
3809 * effort to keep newer buffers in the cache regardless of their
3810 * type. If we cannot satisfy the number of bytes from this
3811 * type, spill over into the next type.
3812 */
3813 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3814 arc_meta_used > arc_meta_min) {
3815 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3816 total_evicted += bytes;
3817
3818 /*
3819 * If we couldn't evict our target number of bytes from
3820 * metadata, we try to get the rest from data.
3821 */
3822 target -= bytes;
3823
3824 total_evicted +=
3825 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3826 } else {
3827 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3828 total_evicted += bytes;
3829
3830 /*
3831 * If we couldn't evict our target number of bytes from
3832 * data, we try to get the rest from metadata.
3833 */
3834 target -= bytes;
3835
3836 total_evicted +=
3837 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3838 }
3839
3840 /*
3841 * Adjust MFU size
3842 *
3843 * Now that we've tried to evict enough from the MRU to get its
3844 * size back to arc_p, if we're still above the target cache
3845 * size, we evict the rest from the MFU.
3846 */
3847 target = arc_size - arc_c;
3848
a7b10a93 3849 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
ca0bf58d
PS
3850 arc_meta_used > arc_meta_min) {
3851 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3852 total_evicted += bytes;
3853
3854 /*
3855 * If we couldn't evict our target number of bytes from
3856 * metadata, we try to get the rest from data.
3857 */
3858 target -= bytes;
3859
3860 total_evicted +=
3861 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3862 } else {
3863 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3864 total_evicted += bytes;
3865
3866 /*
3867 * If we couldn't evict our target number of bytes from
3868 * data, we try to get the rest from data.
3869 */
3870 target -= bytes;
3871
3872 total_evicted +=
3873 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3874 }
3875
3876 /*
3877 * Adjust ghost lists
3878 *
3879 * In addition to the above, the ARC also defines target values
3880 * for the ghost lists. The sum of the mru list and mru ghost
3881 * list should never exceed the target size of the cache, and
3882 * the sum of the mru list, mfu list, mru ghost list, and mfu
3883 * ghost list should never exceed twice the target size of the
3884 * cache. The following logic enforces these limits on the ghost
3885 * caches, and evicts from them as needed.
3886 */
36da08ef
PS
3887 target = refcount_count(&arc_mru->arcs_size) +
3888 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d
PS
3889
3890 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3891 total_evicted += bytes;
3892
3893 target -= bytes;
3894
3895 total_evicted +=
3896 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3897
3898 /*
3899 * We assume the sum of the mru list and mfu list is less than
3900 * or equal to arc_c (we enforced this above), which means we
3901 * can use the simpler of the two equations below:
3902 *
3903 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3904 * mru ghost + mfu ghost <= arc_c
3905 */
36da08ef
PS
3906 target = refcount_count(&arc_mru_ghost->arcs_size) +
3907 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d
PS
3908
3909 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3910 total_evicted += bytes;
3911
3912 target -= bytes;
3913
3914 total_evicted +=
3915 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3916
3917 return (total_evicted);
3918}
3919
ca0bf58d
PS
3920void
3921arc_flush(spa_t *spa, boolean_t retry)
ab26409d 3922{
ca0bf58d 3923 uint64_t guid = 0;
94520ca4 3924
bc888666 3925 /*
d3c2ae1c 3926 * If retry is B_TRUE, a spa must not be specified since we have
ca0bf58d
PS
3927 * no good way to determine if all of a spa's buffers have been
3928 * evicted from an arc state.
bc888666 3929 */
ca0bf58d 3930 ASSERT(!retry || spa == 0);
d164b209 3931
b9541d6b 3932 if (spa != NULL)
3541dc6d 3933 guid = spa_load_guid(spa);
d164b209 3934
ca0bf58d
PS
3935 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3936 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3937
3938 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3939 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3940
3941 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3942 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3943
ca0bf58d
PS
3944 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3945 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f
BB
3946}
3947
34dc7c2f 3948void
ca67b33a 3949arc_shrink(int64_t to_free)
34dc7c2f 3950{
1b8951b3 3951 uint64_t c = arc_c;
34dc7c2f 3952
1b8951b3
TC
3953 if (c > to_free && c - to_free > arc_c_min) {
3954 arc_c = c - to_free;
ca67b33a 3955 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
3956 if (arc_c > arc_size)
3957 arc_c = MAX(arc_size, arc_c_min);
3958 if (arc_p > arc_c)
3959 arc_p = (arc_c >> 1);
3960 ASSERT(arc_c >= arc_c_min);
3961 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
3962 } else {
3963 arc_c = arc_c_min;
34dc7c2f
BB
3964 }
3965
3966 if (arc_size > arc_c)
ca0bf58d 3967 (void) arc_adjust();
34dc7c2f
BB
3968}
3969
9edb3695
BB
3970/*
3971 * Return maximum amount of memory that we could possibly use. Reduced
3972 * to half of all memory in user space which is primarily used for testing.
3973 */
3974static uint64_t
3975arc_all_memory(void)
3976{
3977#ifdef _KERNEL
3978 return (MIN(ptob(physmem),
3979 vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC)));
3980#else
3981 return (ptob(physmem) / 2);
3982#endif
3983}
3984
ca67b33a
MA
3985typedef enum free_memory_reason_t {
3986 FMR_UNKNOWN,
3987 FMR_NEEDFREE,
3988 FMR_LOTSFREE,
3989 FMR_SWAPFS_MINFREE,
3990 FMR_PAGES_PP_MAXIMUM,
3991 FMR_HEAP_ARENA,
3992 FMR_ZIO_ARENA,
3993} free_memory_reason_t;
3994
3995int64_t last_free_memory;
3996free_memory_reason_t last_free_reason;
3997
3998#ifdef _KERNEL
ca67b33a
MA
3999/*
4000 * Additional reserve of pages for pp_reserve.
4001 */
4002int64_t arc_pages_pp_reserve = 64;
4003
4004/*
4005 * Additional reserve of pages for swapfs.
4006 */
4007int64_t arc_swapfs_reserve = 64;
ca67b33a
MA
4008#endif /* _KERNEL */
4009
4010/*
4011 * Return the amount of memory that can be consumed before reclaim will be
4012 * needed. Positive if there is sufficient free memory, negative indicates
4013 * the amount of memory that needs to be freed up.
4014 */
4015static int64_t
4016arc_available_memory(void)
4017{
4018 int64_t lowest = INT64_MAX;
4019 free_memory_reason_t r = FMR_UNKNOWN;
ca67b33a 4020#ifdef _KERNEL
9edb3695 4021 uint64_t available_memory = ptob(freemem);
ca67b33a 4022 int64_t n;
11f552fa
BB
4023#ifdef __linux__
4024 pgcnt_t needfree = btop(arc_need_free);
4025 pgcnt_t lotsfree = btop(arc_sys_free);
4026 pgcnt_t desfree = 0;
4027#endif
ca67b33a 4028
9edb3695
BB
4029#if defined(__i386)
4030 available_memory =
4031 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
4032#endif
4033
ca67b33a
MA
4034 if (needfree > 0) {
4035 n = PAGESIZE * (-needfree);
4036 if (n < lowest) {
4037 lowest = n;
4038 r = FMR_NEEDFREE;
4039 }
4040 }
4041
4042 /*
4043 * check that we're out of range of the pageout scanner. It starts to
4044 * schedule paging if freemem is less than lotsfree and needfree.
4045 * lotsfree is the high-water mark for pageout, and needfree is the
4046 * number of needed free pages. We add extra pages here to make sure
4047 * the scanner doesn't start up while we're freeing memory.
4048 */
9edb3695 4049 n = PAGESIZE * (btop(available_memory) - lotsfree - needfree - desfree);
ca67b33a
MA
4050 if (n < lowest) {
4051 lowest = n;
4052 r = FMR_LOTSFREE;
4053 }
4054
11f552fa 4055#ifndef __linux__
ca67b33a
MA
4056 /*
4057 * check to make sure that swapfs has enough space so that anon
4058 * reservations can still succeed. anon_resvmem() checks that the
4059 * availrmem is greater than swapfs_minfree, and the number of reserved
4060 * swap pages. We also add a bit of extra here just to prevent
4061 * circumstances from getting really dire.
4062 */
4063 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4064 desfree - arc_swapfs_reserve);
4065 if (n < lowest) {
4066 lowest = n;
4067 r = FMR_SWAPFS_MINFREE;
4068 }
4069
4070
4071 /*
4072 * Check that we have enough availrmem that memory locking (e.g., via
4073 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4074 * stores the number of pages that cannot be locked; when availrmem
4075 * drops below pages_pp_maximum, page locking mechanisms such as
4076 * page_pp_lock() will fail.)
4077 */
4078 n = PAGESIZE * (availrmem - pages_pp_maximum -
4079 arc_pages_pp_reserve);
4080 if (n < lowest) {
4081 lowest = n;
4082 r = FMR_PAGES_PP_MAXIMUM;
4083 }
11f552fa 4084#endif
ca67b33a
MA
4085
4086#if defined(__i386)
4087 /*
4088 * If we're on an i386 platform, it's possible that we'll exhaust the
4089 * kernel heap space before we ever run out of available physical
4090 * memory. Most checks of the size of the heap_area compare against
4091 * tune.t_minarmem, which is the minimum available real memory that we
4092 * can have in the system. However, this is generally fixed at 25 pages
4093 * which is so low that it's useless. In this comparison, we seek to
4094 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4095 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4096 * free)
4097 */
4098 n = vmem_size(heap_arena, VMEM_FREE) -
4099 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4100 if (n < lowest) {
4101 lowest = n;
4102 r = FMR_HEAP_ARENA;
4103 }
4104#endif
4105
4106 /*
4107 * If zio data pages are being allocated out of a separate heap segment,
4108 * then enforce that the size of available vmem for this arena remains
d3c2ae1c 4109 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
ca67b33a 4110 *
d3c2ae1c
GW
4111 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4112 * memory (in the zio_arena) free, which can avoid memory
4113 * fragmentation issues.
ca67b33a
MA
4114 */
4115 if (zio_arena != NULL) {
9edb3695
BB
4116 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4117 (vmem_size(zio_arena, VMEM_ALLOC) >>
4118 arc_zio_arena_free_shift);
ca67b33a
MA
4119 if (n < lowest) {
4120 lowest = n;
4121 r = FMR_ZIO_ARENA;
4122 }
4123 }
11f552fa 4124#else /* _KERNEL */
ca67b33a
MA
4125 /* Every 100 calls, free a small amount */
4126 if (spa_get_random(100) == 0)
4127 lowest = -1024;
11f552fa 4128#endif /* _KERNEL */
ca67b33a
MA
4129
4130 last_free_memory = lowest;
4131 last_free_reason = r;
4132
4133 return (lowest);
4134}
4135
4136/*
4137 * Determine if the system is under memory pressure and is asking
d3c2ae1c 4138 * to reclaim memory. A return value of B_TRUE indicates that the system
ca67b33a
MA
4139 * is under memory pressure and that the arc should adjust accordingly.
4140 */
4141static boolean_t
4142arc_reclaim_needed(void)
4143{
4144 return (arc_available_memory() < 0);
4145}
4146
34dc7c2f 4147static void
ca67b33a 4148arc_kmem_reap_now(void)
34dc7c2f
BB
4149{
4150 size_t i;
4151 kmem_cache_t *prev_cache = NULL;
4152 kmem_cache_t *prev_data_cache = NULL;
4153 extern kmem_cache_t *zio_buf_cache[];
4154 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 4155 extern kmem_cache_t *range_seg_cache;
34dc7c2f 4156
f6046738
BB
4157 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4158 /*
4159 * We are exceeding our meta-data cache limit.
4160 * Prune some entries to release holds on meta-data.
4161 */
ef5b2e10 4162 arc_prune_async(zfs_arc_meta_prune);
f6046738
BB
4163 }
4164
34dc7c2f 4165 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
d0c614ec 4166#ifdef _ILP32
4167 /* reach upper limit of cache size on 32-bit */
4168 if (zio_buf_cache[i] == NULL)
4169 break;
4170#endif
34dc7c2f
BB
4171 if (zio_buf_cache[i] != prev_cache) {
4172 prev_cache = zio_buf_cache[i];
4173 kmem_cache_reap_now(zio_buf_cache[i]);
4174 }
4175 if (zio_data_buf_cache[i] != prev_data_cache) {
4176 prev_data_cache = zio_data_buf_cache[i];
4177 kmem_cache_reap_now(zio_data_buf_cache[i]);
4178 }
4179 }
ca0bf58d 4180 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
4181 kmem_cache_reap_now(hdr_full_cache);
4182 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 4183 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
4184
4185 if (zio_arena != NULL) {
4186 /*
4187 * Ask the vmem arena to reclaim unused memory from its
4188 * quantum caches.
4189 */
4190 vmem_qcache_reap(zio_arena);
4191 }
34dc7c2f
BB
4192}
4193
302f753f 4194/*
a6255b7f 4195 * Threads can block in arc_get_data_impl() waiting for this thread to evict
ca0bf58d 4196 * enough data and signal them to proceed. When this happens, the threads in
a6255b7f 4197 * arc_get_data_impl() are sleeping while holding the hash lock for their
ca0bf58d
PS
4198 * particular arc header. Thus, we must be careful to never sleep on a
4199 * hash lock in this thread. This is to prevent the following deadlock:
4200 *
a6255b7f 4201 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
ca0bf58d
PS
4202 * waiting for the reclaim thread to signal it.
4203 *
4204 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4205 * fails, and goes to sleep forever.
4206 *
4207 * This possible deadlock is avoided by always acquiring a hash lock
4208 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 4209 */
34dc7c2f 4210static void
ca67b33a 4211arc_reclaim_thread(void)
34dc7c2f 4212{
ca67b33a 4213 fstrans_cookie_t cookie = spl_fstrans_mark();
ae6d0c60 4214 hrtime_t growtime = 0;
34dc7c2f
BB
4215 callb_cpr_t cpr;
4216
ca0bf58d 4217 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 4218
ca0bf58d 4219 mutex_enter(&arc_reclaim_lock);
ca67b33a
MA
4220 while (!arc_reclaim_thread_exit) {
4221 int64_t to_free;
ca67b33a 4222 uint64_t evicted = 0;
30fffb90 4223 uint64_t need_free = arc_need_free;
ca67b33a 4224 arc_tuning_update();
34dc7c2f 4225
d3c2ae1c
GW
4226 /*
4227 * This is necessary in order for the mdb ::arc dcmd to
4228 * show up to date information. Since the ::arc command
4229 * does not call the kstat's update function, without
4230 * this call, the command may show stale stats for the
4231 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4232 * with this change, the data might be up to 1 second
4233 * out of date; but that should suffice. The arc_state_t
4234 * structures can be queried directly if more accurate
4235 * information is needed.
4236 */
4237#ifndef __linux__
4238 if (arc_ksp != NULL)
4239 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4240#endif
ca67b33a 4241 mutex_exit(&arc_reclaim_lock);
34dc7c2f 4242
0a252dae
GM
4243 /*
4244 * We call arc_adjust() before (possibly) calling
4245 * arc_kmem_reap_now(), so that we can wake up
4246 * arc_get_data_buf() sooner.
4247 */
4248 evicted = arc_adjust();
4249
4250 int64_t free_memory = arc_available_memory();
ca67b33a 4251 if (free_memory < 0) {
34dc7c2f 4252
ca67b33a 4253 arc_no_grow = B_TRUE;
b128c09f 4254 arc_warm = B_TRUE;
34dc7c2f 4255
ca67b33a
MA
4256 /*
4257 * Wait at least zfs_grow_retry (default 5) seconds
4258 * before considering growing.
4259 */
ae6d0c60 4260 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
6a8f9b6b 4261
ca67b33a 4262 arc_kmem_reap_now();
34dc7c2f 4263
ca67b33a
MA
4264 /*
4265 * If we are still low on memory, shrink the ARC
4266 * so that we have arc_shrink_min free space.
4267 */
4268 free_memory = arc_available_memory();
34dc7c2f 4269
ca67b33a
MA
4270 to_free = (arc_c >> arc_shrink_shift) - free_memory;
4271 if (to_free > 0) {
4272#ifdef _KERNEL
30fffb90 4273 to_free = MAX(to_free, need_free);
ca67b33a
MA
4274#endif
4275 arc_shrink(to_free);
4276 }
4277 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4278 arc_no_grow = B_TRUE;
ae6d0c60 4279 } else if (gethrtime() >= growtime) {
ca67b33a
MA
4280 arc_no_grow = B_FALSE;
4281 }
bce45ec9 4282
ca67b33a 4283 mutex_enter(&arc_reclaim_lock);
bce45ec9 4284
ca67b33a
MA
4285 /*
4286 * If evicted is zero, we couldn't evict anything via
4287 * arc_adjust(). This could be due to hash lock
4288 * collisions, but more likely due to the majority of
4289 * arc buffers being unevictable. Therefore, even if
4290 * arc_size is above arc_c, another pass is unlikely to
4291 * be helpful and could potentially cause us to enter an
4292 * infinite loop.
4293 */
4294 if (arc_size <= arc_c || evicted == 0) {
4295 /*
4296 * We're either no longer overflowing, or we
4297 * can't evict anything more, so we should wake
30fffb90
DB
4298 * up any threads before we go to sleep and remove
4299 * the bytes we were working on from arc_need_free
4300 * since nothing more will be done here.
ca67b33a
MA
4301 */
4302 cv_broadcast(&arc_reclaim_waiters_cv);
30fffb90 4303 ARCSTAT_INCR(arcstat_need_free, -need_free);
bce45ec9 4304
ca67b33a
MA
4305 /*
4306 * Block until signaled, or after one second (we
4307 * might need to perform arc_kmem_reap_now()
4308 * even if we aren't being signalled)
4309 */
4310 CALLB_CPR_SAFE_BEGIN(&cpr);
a9bb2b68 4311 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
ae6d0c60 4312 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
ca67b33a
MA
4313 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4314 }
ca0bf58d 4315 }
bce45ec9 4316
d3c2ae1c 4317 arc_reclaim_thread_exit = B_FALSE;
ca0bf58d
PS
4318 cv_broadcast(&arc_reclaim_thread_cv);
4319 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4320 spl_fstrans_unmark(cookie);
4321 thread_exit();
4322}
4323
7cb67b45
BB
4324#ifdef _KERNEL
4325/*
302f753f
BB
4326 * Determine the amount of memory eligible for eviction contained in the
4327 * ARC. All clean data reported by the ghost lists can always be safely
4328 * evicted. Due to arc_c_min, the same does not hold for all clean data
4329 * contained by the regular mru and mfu lists.
4330 *
4331 * In the case of the regular mru and mfu lists, we need to report as
4332 * much clean data as possible, such that evicting that same reported
4333 * data will not bring arc_size below arc_c_min. Thus, in certain
4334 * circumstances, the total amount of clean data in the mru and mfu
4335 * lists might not actually be evictable.
4336 *
4337 * The following two distinct cases are accounted for:
4338 *
4339 * 1. The sum of the amount of dirty data contained by both the mru and
4340 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4341 * is greater than or equal to arc_c_min.
4342 * (i.e. amount of dirty data >= arc_c_min)
4343 *
4344 * This is the easy case; all clean data contained by the mru and mfu
4345 * lists is evictable. Evicting all clean data can only drop arc_size
4346 * to the amount of dirty data, which is greater than arc_c_min.
4347 *
4348 * 2. The sum of the amount of dirty data contained by both the mru and
4349 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4350 * is less than arc_c_min.
4351 * (i.e. arc_c_min > amount of dirty data)
4352 *
4353 * 2.1. arc_size is greater than or equal arc_c_min.
4354 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4355 *
4356 * In this case, not all clean data from the regular mru and mfu
4357 * lists is actually evictable; we must leave enough clean data
4358 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4359 * evictable data from the two lists combined, is exactly the
4360 * difference between arc_size and arc_c_min.
4361 *
4362 * 2.2. arc_size is less than arc_c_min
4363 * (i.e. arc_c_min > arc_size > amount of dirty data)
4364 *
4365 * In this case, none of the data contained in the mru and mfu
4366 * lists is evictable, even if it's clean. Since arc_size is
4367 * already below arc_c_min, evicting any more would only
4368 * increase this negative difference.
7cb67b45 4369 */
302f753f 4370static uint64_t
4ea3f864
GM
4371arc_evictable_memory(void)
4372{
302f753f 4373 uint64_t arc_clean =
d3c2ae1c
GW
4374 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
4375 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
4376 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
4377 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
302f753f
BB
4378 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
4379
4380 if (arc_dirty >= arc_c_min)
9b50146d 4381 return (arc_clean);
302f753f 4382
9b50146d 4383 return (MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
302f753f
BB
4384}
4385
ed6e9cc2
TC
4386/*
4387 * If sc->nr_to_scan is zero, the caller is requesting a query of the
4388 * number of objects which can potentially be freed. If it is nonzero,
4389 * the request is to free that many objects.
4390 *
4391 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
4392 * in struct shrinker and also require the shrinker to return the number
4393 * of objects freed.
4394 *
4395 * Older kernels require the shrinker to return the number of freeable
4396 * objects following the freeing of nr_to_free.
4397 */
4398static spl_shrinker_t
7e7baeca 4399__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 4400{
ed6e9cc2 4401 int64_t pages;
7cb67b45 4402
302f753f
BB
4403 /* The arc is considered warm once reclaim has occurred */
4404 if (unlikely(arc_warm == B_FALSE))
4405 arc_warm = B_TRUE;
7cb67b45 4406
302f753f 4407 /* Return the potential number of reclaimable pages */
ed6e9cc2 4408 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
4409 if (sc->nr_to_scan == 0)
4410 return (pages);
3fd70ee6
BB
4411
4412 /* Not allowed to perform filesystem reclaim */
7e7baeca 4413 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 4414 return (SHRINK_STOP);
3fd70ee6 4415
7cb67b45 4416 /* Reclaim in progress */
b855550c
DB
4417 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
4418 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
2e91c2fb 4419 return (0);
b855550c 4420 }
7cb67b45 4421
ca0bf58d
PS
4422 mutex_exit(&arc_reclaim_lock);
4423
302f753f
BB
4424 /*
4425 * Evict the requested number of pages by shrinking arc_c the
44813aef 4426 * requested amount.
302f753f
BB
4427 */
4428 if (pages > 0) {
ca67b33a 4429 arc_shrink(ptob(sc->nr_to_scan));
44813aef
DB
4430 if (current_is_kswapd())
4431 arc_kmem_reap_now();
ed6e9cc2
TC
4432#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4433 pages = MAX(pages - btop(arc_evictable_memory()), 0);
4434#else
1e3cb67b 4435 pages = btop(arc_evictable_memory());
ed6e9cc2 4436#endif
1a31dcf5
DB
4437 /*
4438 * We've shrunk what we can, wake up threads.
4439 */
4440 cv_broadcast(&arc_reclaim_waiters_cv);
4441
44813aef 4442 } else
ed6e9cc2 4443 pages = SHRINK_STOP;
302f753f
BB
4444
4445 /*
4446 * When direct reclaim is observed it usually indicates a rapid
4447 * increase in memory pressure. This occurs because the kswapd
4448 * threads were unable to asynchronously keep enough free memory
4449 * available. In this case set arc_no_grow to briefly pause arc
4450 * growth to avoid compounding the memory pressure.
4451 */
7cb67b45 4452 if (current_is_kswapd()) {
302f753f 4453 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 4454 } else {
302f753f 4455 arc_no_grow = B_TRUE;
44813aef 4456 arc_kmem_reap_now();
302f753f 4457 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
4458 }
4459
1e3cb67b 4460 return (pages);
7cb67b45 4461}
7e7baeca 4462SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
4463
4464SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
4465#endif /* _KERNEL */
4466
34dc7c2f
BB
4467/*
4468 * Adapt arc info given the number of bytes we are trying to add and
4e33ba4c 4469 * the state that we are coming from. This function is only called
34dc7c2f
BB
4470 * when we are adding new content to the cache.
4471 */
4472static void
4473arc_adapt(int bytes, arc_state_t *state)
4474{
4475 int mult;
728d6ae9 4476 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
36da08ef
PS
4477 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4478 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f
BB
4479
4480 if (state == arc_l2c_only)
4481 return;
4482
4483 ASSERT(bytes > 0);
4484 /*
4485 * Adapt the target size of the MRU list:
4486 * - if we just hit in the MRU ghost list, then increase
4487 * the target size of the MRU list.
4488 * - if we just hit in the MFU ghost list, then increase
4489 * the target size of the MFU list by decreasing the
4490 * target size of the MRU list.
4491 */
4492 if (state == arc_mru_ghost) {
36da08ef 4493 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
4494 if (!zfs_arc_p_dampener_disable)
4495 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 4496
728d6ae9 4497 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 4498 } else if (state == arc_mfu_ghost) {
d164b209
BB
4499 uint64_t delta;
4500
36da08ef 4501 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
4502 if (!zfs_arc_p_dampener_disable)
4503 mult = MIN(mult, 10);
34dc7c2f 4504
d164b209 4505 delta = MIN(bytes * mult, arc_p);
728d6ae9 4506 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
4507 }
4508 ASSERT((int64_t)arc_p >= 0);
4509
ca67b33a
MA
4510 if (arc_reclaim_needed()) {
4511 cv_signal(&arc_reclaim_thread_cv);
4512 return;
4513 }
4514
34dc7c2f
BB
4515 if (arc_no_grow)
4516 return;
4517
4518 if (arc_c >= arc_c_max)
4519 return;
4520
4521 /*
4522 * If we're within (2 * maxblocksize) bytes of the target
4523 * cache size, increment the target cache size
4524 */
935434ef 4525 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
121b3cae 4526 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
4527 atomic_add_64(&arc_c, (int64_t)bytes);
4528 if (arc_c > arc_c_max)
4529 arc_c = arc_c_max;
4530 else if (state == arc_anon)
4531 atomic_add_64(&arc_p, (int64_t)bytes);
4532 if (arc_p > arc_c)
4533 arc_p = arc_c;
4534 }
4535 ASSERT((int64_t)arc_p >= 0);
4536}
4537
4538/*
ca0bf58d
PS
4539 * Check if arc_size has grown past our upper threshold, determined by
4540 * zfs_arc_overflow_shift.
34dc7c2f 4541 */
ca0bf58d
PS
4542static boolean_t
4543arc_is_overflowing(void)
34dc7c2f 4544{
ca0bf58d
PS
4545 /* Always allow at least one block of overflow */
4546 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4547 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 4548
ca0bf58d 4549 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
4550}
4551
a6255b7f
DQ
4552static abd_t *
4553arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4554{
4555 arc_buf_contents_t type = arc_buf_type(hdr);
4556
4557 arc_get_data_impl(hdr, size, tag);
4558 if (type == ARC_BUFC_METADATA) {
4559 return (abd_alloc(size, B_TRUE));
4560 } else {
4561 ASSERT(type == ARC_BUFC_DATA);
4562 return (abd_alloc(size, B_FALSE));
4563 }
4564}
4565
4566static void *
4567arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4568{
4569 arc_buf_contents_t type = arc_buf_type(hdr);
4570
4571 arc_get_data_impl(hdr, size, tag);
4572 if (type == ARC_BUFC_METADATA) {
4573 return (zio_buf_alloc(size));
4574 } else {
4575 ASSERT(type == ARC_BUFC_DATA);
4576 return (zio_data_buf_alloc(size));
4577 }
4578}
4579
34dc7c2f 4580/*
d3c2ae1c
GW
4581 * Allocate a block and return it to the caller. If we are hitting the
4582 * hard limit for the cache size, we must sleep, waiting for the eviction
4583 * thread to catch up. If we're past the target size but below the hard
4584 * limit, we'll only signal the reclaim thread and continue on.
34dc7c2f 4585 */
a6255b7f
DQ
4586static void
4587arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
34dc7c2f 4588{
a6255b7f
DQ
4589 arc_state_t *state = hdr->b_l1hdr.b_state;
4590 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
4591
4592 arc_adapt(size, state);
4593
4594 /*
ca0bf58d
PS
4595 * If arc_size is currently overflowing, and has grown past our
4596 * upper limit, we must be adding data faster than the evict
4597 * thread can evict. Thus, to ensure we don't compound the
4598 * problem by adding more data and forcing arc_size to grow even
4599 * further past it's target size, we halt and wait for the
4600 * eviction thread to catch up.
4601 *
4602 * It's also possible that the reclaim thread is unable to evict
4603 * enough buffers to get arc_size below the overflow limit (e.g.
4604 * due to buffers being un-evictable, or hash lock collisions).
4605 * In this case, we want to proceed regardless if we're
4606 * overflowing; thus we don't use a while loop here.
34dc7c2f 4607 */
ca0bf58d
PS
4608 if (arc_is_overflowing()) {
4609 mutex_enter(&arc_reclaim_lock);
4610
4611 /*
4612 * Now that we've acquired the lock, we may no longer be
4613 * over the overflow limit, lets check.
4614 *
4615 * We're ignoring the case of spurious wake ups. If that
4616 * were to happen, it'd let this thread consume an ARC
4617 * buffer before it should have (i.e. before we're under
4618 * the overflow limit and were signalled by the reclaim
4619 * thread). As long as that is a rare occurrence, it
4620 * shouldn't cause any harm.
4621 */
4622 if (arc_is_overflowing()) {
4623 cv_signal(&arc_reclaim_thread_cv);
4624 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 4625 }
34dc7c2f 4626
ca0bf58d 4627 mutex_exit(&arc_reclaim_lock);
34dc7c2f 4628 }
ab26409d 4629
d3c2ae1c 4630 VERIFY3U(hdr->b_type, ==, type);
da8ccd0e 4631 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
4632 arc_space_consume(size, ARC_SPACE_META);
4633 } else {
ca0bf58d 4634 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
4635 }
4636
34dc7c2f
BB
4637 /*
4638 * Update the state size. Note that ghost states have a
4639 * "ghost size" and so don't need to be updated.
4640 */
d3c2ae1c 4641 if (!GHOST_STATE(state)) {
34dc7c2f 4642
d3c2ae1c 4643 (void) refcount_add_many(&state->arcs_size, size, tag);
ca0bf58d
PS
4644
4645 /*
4646 * If this is reached via arc_read, the link is
4647 * protected by the hash lock. If reached via
4648 * arc_buf_alloc, the header should not be accessed by
4649 * any other thread. And, if reached via arc_read_done,
4650 * the hash lock will protect it if it's found in the
4651 * hash table; otherwise no other thread should be
4652 * trying to [add|remove]_reference it.
4653 */
4654 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b 4655 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
4656 (void) refcount_add_many(&state->arcs_esize[type],
4657 size, tag);
34dc7c2f 4658 }
d3c2ae1c 4659
34dc7c2f
BB
4660 /*
4661 * If we are growing the cache, and we are adding anonymous
4662 * data, and we have outgrown arc_p, update arc_p
4663 */
ca0bf58d 4664 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
36da08ef
PS
4665 (refcount_count(&arc_anon->arcs_size) +
4666 refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
4667 arc_p = MIN(arc_c, arc_p + size);
4668 }
a6255b7f
DQ
4669}
4670
4671static void
4672arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4673{
4674 arc_free_data_impl(hdr, size, tag);
4675 abd_free(abd);
4676}
4677
4678static void
4679arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4680{
4681 arc_buf_contents_t type = arc_buf_type(hdr);
4682
4683 arc_free_data_impl(hdr, size, tag);
4684 if (type == ARC_BUFC_METADATA) {
4685 zio_buf_free(buf, size);
4686 } else {
4687 ASSERT(type == ARC_BUFC_DATA);
4688 zio_data_buf_free(buf, size);
4689 }
d3c2ae1c
GW
4690}
4691
4692/*
4693 * Free the arc data buffer.
4694 */
4695static void
a6255b7f 4696arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
d3c2ae1c
GW
4697{
4698 arc_state_t *state = hdr->b_l1hdr.b_state;
4699 arc_buf_contents_t type = arc_buf_type(hdr);
4700
4701 /* protected by hash lock, if in the hash table */
4702 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4703 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4704 ASSERT(state != arc_anon && state != arc_l2c_only);
4705
4706 (void) refcount_remove_many(&state->arcs_esize[type],
4707 size, tag);
4708 }
4709 (void) refcount_remove_many(&state->arcs_size, size, tag);
4710
4711 VERIFY3U(hdr->b_type, ==, type);
4712 if (type == ARC_BUFC_METADATA) {
d3c2ae1c
GW
4713 arc_space_return(size, ARC_SPACE_META);
4714 } else {
4715 ASSERT(type == ARC_BUFC_DATA);
d3c2ae1c
GW
4716 arc_space_return(size, ARC_SPACE_DATA);
4717 }
34dc7c2f
BB
4718}
4719
4720/*
4721 * This routine is called whenever a buffer is accessed.
4722 * NOTE: the hash lock is dropped in this function.
4723 */
4724static void
2a432414 4725arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 4726{
428870ff
BB
4727 clock_t now;
4728
34dc7c2f 4729 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 4730 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 4731
b9541d6b 4732 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
4733 /*
4734 * This buffer is not in the cache, and does not
4735 * appear in our "ghost" list. Add the new buffer
4736 * to the MRU state.
4737 */
4738
b9541d6b
CW
4739 ASSERT0(hdr->b_l1hdr.b_arc_access);
4740 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4741 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4742 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 4743
b9541d6b 4744 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
4745 now = ddi_get_lbolt();
4746
34dc7c2f
BB
4747 /*
4748 * If this buffer is here because of a prefetch, then either:
4749 * - clear the flag if this is a "referencing" read
4750 * (any subsequent access will bump this into the MFU state).
4751 * or
4752 * - move the buffer to the head of the list if this is
4753 * another prefetch (to make it less likely to be evicted).
4754 */
b9541d6b
CW
4755 if (HDR_PREFETCH(hdr)) {
4756 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
4757 /* link protected by hash lock */
4758 ASSERT(multilist_link_active(
b9541d6b 4759 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 4760 } else {
d3c2ae1c 4761 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
b9541d6b 4762 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
4763 ARCSTAT_BUMP(arcstat_mru_hits);
4764 }
b9541d6b 4765 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
4766 return;
4767 }
4768
4769 /*
4770 * This buffer has been "accessed" only once so far,
4771 * but it is still in the cache. Move it to the MFU
4772 * state.
4773 */
b9541d6b
CW
4774 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
4775 ARC_MINTIME)) {
34dc7c2f
BB
4776 /*
4777 * More than 125ms have passed since we
4778 * instantiated this buffer. Move it to the
4779 * most frequently used state.
4780 */
b9541d6b 4781 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
4782 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4783 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 4784 }
b9541d6b 4785 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 4786 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 4787 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
4788 arc_state_t *new_state;
4789 /*
4790 * This buffer has been "accessed" recently, but
4791 * was evicted from the cache. Move it to the
4792 * MFU state.
4793 */
4794
b9541d6b 4795 if (HDR_PREFETCH(hdr)) {
34dc7c2f 4796 new_state = arc_mru;
b9541d6b 4797 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
d3c2ae1c 4798 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
2a432414 4799 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
4800 } else {
4801 new_state = arc_mfu;
2a432414 4802 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
4803 }
4804
b9541d6b 4805 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 4806 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 4807
b9541d6b 4808 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 4809 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 4810 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
4811 /*
4812 * This buffer has been accessed more than once and is
4813 * still in the cache. Keep it in the MFU state.
4814 *
4815 * NOTE: an add_reference() that occurred when we did
4816 * the arc_read() will have kicked this off the list.
4817 * If it was a prefetch, we will explicitly move it to
4818 * the head of the list now.
4819 */
b9541d6b
CW
4820 if ((HDR_PREFETCH(hdr)) != 0) {
4821 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
4822 /* link protected by hash_lock */
4823 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4824 }
b9541d6b 4825 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 4826 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
4827 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4828 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
4829 arc_state_t *new_state = arc_mfu;
4830 /*
4831 * This buffer has been accessed more than once but has
4832 * been evicted from the cache. Move it back to the
4833 * MFU state.
4834 */
4835
b9541d6b 4836 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
4837 /*
4838 * This is a prefetch access...
4839 * move this block back to the MRU state.
4840 */
b9541d6b 4841 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
4842 new_state = arc_mru;
4843 }
4844
b9541d6b 4845 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4846 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4847 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 4848
b9541d6b 4849 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 4850 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 4851 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
4852 /*
4853 * This buffer is on the 2nd Level ARC.
4854 */
4855
b9541d6b 4856 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4857 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4858 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 4859 } else {
b9541d6b
CW
4860 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4861 hdr->b_l1hdr.b_state);
34dc7c2f
BB
4862 }
4863}
4864
4865/* a generic arc_done_func_t which you can use */
4866/* ARGSUSED */
4867void
4868arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4869{
428870ff 4870 if (zio == NULL || zio->io_error == 0)
2aa34383 4871 bcopy(buf->b_data, arg, arc_buf_size(buf));
d3c2ae1c 4872 arc_buf_destroy(buf, arg);
34dc7c2f
BB
4873}
4874
4875/* a generic arc_done_func_t */
4876void
4877arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4878{
4879 arc_buf_t **bufp = arg;
4880 if (zio && zio->io_error) {
d3c2ae1c 4881 arc_buf_destroy(buf, arg);
34dc7c2f
BB
4882 *bufp = NULL;
4883 } else {
4884 *bufp = buf;
428870ff 4885 ASSERT(buf->b_data);
34dc7c2f
BB
4886 }
4887}
4888
d3c2ae1c
GW
4889static void
4890arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
4891{
4892 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
4893 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
4894 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
4895 } else {
4896 if (HDR_COMPRESSION_ENABLED(hdr)) {
4897 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
4898 BP_GET_COMPRESS(bp));
4899 }
4900 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
4901 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
4902 }
4903}
4904
34dc7c2f
BB
4905static void
4906arc_read_done(zio_t *zio)
4907{
d3c2ae1c 4908 arc_buf_hdr_t *hdr = zio->io_private;
9b67f605 4909 kmutex_t *hash_lock = NULL;
524b4217
DK
4910 arc_callback_t *callback_list;
4911 arc_callback_t *acb;
2aa34383 4912 boolean_t freeable = B_FALSE;
524b4217 4913 boolean_t no_zio_error = (zio->io_error == 0);
a7004725 4914
34dc7c2f
BB
4915 /*
4916 * The hdr was inserted into hash-table and removed from lists
4917 * prior to starting I/O. We should find this header, since
4918 * it's in the hash table, and it should be legit since it's
4919 * not possible to evict it during the I/O. The only possible
4920 * reason for it not to be found is if we were freed during the
4921 * read.
4922 */
9b67f605
MA
4923 if (HDR_IN_HASH_TABLE(hdr)) {
4924 arc_buf_hdr_t *found;
4925
4926 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4927 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4928 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4929 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4930 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4931
d3c2ae1c 4932 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
9b67f605 4933
d3c2ae1c 4934 ASSERT((found == hdr &&
9b67f605
MA
4935 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4936 (found == hdr && HDR_L2_READING(hdr)));
d3c2ae1c
GW
4937 ASSERT3P(hash_lock, !=, NULL);
4938 }
4939
524b4217 4940 if (no_zio_error) {
d3c2ae1c
GW
4941 /* byteswap if necessary */
4942 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
4943 if (BP_GET_LEVEL(zio->io_bp) > 0) {
4944 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
4945 } else {
4946 hdr->b_l1hdr.b_byteswap =
4947 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
4948 }
4949 } else {
4950 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
4951 }
9b67f605 4952 }
34dc7c2f 4953
d3c2ae1c 4954 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
b9541d6b 4955 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
d3c2ae1c 4956 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f 4957
b9541d6b 4958 callback_list = hdr->b_l1hdr.b_acb;
d3c2ae1c 4959 ASSERT3P(callback_list, !=, NULL);
34dc7c2f 4960
524b4217 4961 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
4962 /*
4963 * Only call arc_access on anonymous buffers. This is because
4964 * if we've issued an I/O for an evicted buffer, we've already
4965 * called arc_access (to prevent any simultaneous readers from
4966 * getting confused).
4967 */
4968 arc_access(hdr, hash_lock);
4969 }
4970
524b4217
DK
4971 /*
4972 * If a read request has a callback (i.e. acb_done is not NULL), then we
4973 * make a buf containing the data according to the parameters which were
4974 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
4975 * aren't needlessly decompressing the data multiple times.
4976 */
a7004725 4977 int callback_cnt = 0;
2aa34383
DK
4978 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
4979 if (!acb->acb_done)
4980 continue;
4981
524b4217 4982 /* This is a demand read since prefetches don't use callbacks */
2aa34383 4983 callback_cnt++;
524b4217 4984
a7004725 4985 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
524b4217
DK
4986 acb->acb_compressed, no_zio_error, &acb->acb_buf);
4987 if (no_zio_error) {
4988 zio->io_error = error;
34dc7c2f
BB
4989 }
4990 }
b9541d6b 4991 hdr->b_l1hdr.b_acb = NULL;
d3c2ae1c 4992 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
2aa34383 4993 if (callback_cnt == 0) {
d3c2ae1c
GW
4994 ASSERT(HDR_PREFETCH(hdr));
4995 ASSERT0(hdr->b_l1hdr.b_bufcnt);
a6255b7f 4996 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
428870ff 4997 }
34dc7c2f 4998
b9541d6b
CW
4999 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5000 callback_list != NULL);
34dc7c2f 5001
524b4217 5002 if (no_zio_error) {
d3c2ae1c
GW
5003 arc_hdr_verify(hdr, zio->io_bp);
5004 } else {
5005 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
b9541d6b 5006 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
5007 arc_change_state(arc_anon, hdr, hash_lock);
5008 if (HDR_IN_HASH_TABLE(hdr))
5009 buf_hash_remove(hdr);
b9541d6b 5010 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5011 }
5012
5013 /*
5014 * Broadcast before we drop the hash_lock to avoid the possibility
5015 * that the hdr (and hence the cv) might be freed before we get to
5016 * the cv_broadcast().
5017 */
b9541d6b 5018 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 5019
b9541d6b 5020 if (hash_lock != NULL) {
34dc7c2f
BB
5021 mutex_exit(hash_lock);
5022 } else {
5023 /*
5024 * This block was freed while we waited for the read to
5025 * complete. It has been removed from the hash table and
5026 * moved to the anonymous state (so that it won't show up
5027 * in the cache).
5028 */
b9541d6b
CW
5029 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5030 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
5031 }
5032
5033 /* execute each callback and free its structure */
5034 while ((acb = callback_list) != NULL) {
5035 if (acb->acb_done)
5036 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5037
5038 if (acb->acb_zio_dummy != NULL) {
5039 acb->acb_zio_dummy->io_error = zio->io_error;
5040 zio_nowait(acb->acb_zio_dummy);
5041 }
5042
5043 callback_list = acb->acb_next;
5044 kmem_free(acb, sizeof (arc_callback_t));
5045 }
5046
5047 if (freeable)
5048 arc_hdr_destroy(hdr);
5049}
5050
5051/*
5c839890 5052 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
5053 * cache. If the block is found in the cache, invoke the provided
5054 * callback immediately and return. Note that the `zio' parameter
5055 * in the callback will be NULL in this case, since no IO was
5056 * required. If the block is not in the cache pass the read request
5057 * on to the spa with a substitute callback function, so that the
5058 * requested block will be added to the cache.
5059 *
5060 * If a read request arrives for a block that has a read in-progress,
5061 * either wait for the in-progress read to complete (and return the
5062 * results); or, if this is a read with a "done" func, add a record
5063 * to the read to invoke the "done" func when the read completes,
5064 * and return; or just return.
5065 *
5066 * arc_read_done() will invoke all the requested "done" functions
5067 * for readers of this block.
5068 */
5069int
294f6806 5070arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2a432414
GW
5071 void *private, zio_priority_t priority, int zio_flags,
5072 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 5073{
9b67f605 5074 arc_buf_hdr_t *hdr = NULL;
9b67f605 5075 kmutex_t *hash_lock = NULL;
34dc7c2f 5076 zio_t *rzio;
3541dc6d 5077 uint64_t guid = spa_load_guid(spa);
2aa34383 5078 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
1421c891 5079 int rc = 0;
34dc7c2f 5080
9b67f605
MA
5081 ASSERT(!BP_IS_EMBEDDED(bp) ||
5082 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5083
34dc7c2f 5084top:
9b67f605
MA
5085 if (!BP_IS_EMBEDDED(bp)) {
5086 /*
5087 * Embedded BP's have no DVA and require no I/O to "read".
5088 * Create an anonymous arc buf to back it.
5089 */
5090 hdr = buf_hash_find(guid, bp, &hash_lock);
5091 }
5092
a6255b7f 5093 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 5094 arc_buf_t *buf = NULL;
2a432414 5095 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
5096
5097 if (HDR_IO_IN_PROGRESS(hdr)) {
5098
7f60329a
MA
5099 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5100 priority == ZIO_PRIORITY_SYNC_READ) {
5101 /*
5102 * This sync read must wait for an
5103 * in-progress async read (e.g. a predictive
5104 * prefetch). Async reads are queued
5105 * separately at the vdev_queue layer, so
5106 * this is a form of priority inversion.
5107 * Ideally, we would "inherit" the demand
5108 * i/o's priority by moving the i/o from
5109 * the async queue to the synchronous queue,
5110 * but there is currently no mechanism to do
5111 * so. Track this so that we can evaluate
5112 * the magnitude of this potential performance
5113 * problem.
5114 *
5115 * Note that if the prefetch i/o is already
5116 * active (has been issued to the device),
5117 * the prefetch improved performance, because
5118 * we issued it sooner than we would have
5119 * without the prefetch.
5120 */
5121 DTRACE_PROBE1(arc__sync__wait__for__async,
5122 arc_buf_hdr_t *, hdr);
5123 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5124 }
5125 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
d3c2ae1c
GW
5126 arc_hdr_clear_flags(hdr,
5127 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a
MA
5128 }
5129
2a432414 5130 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 5131 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
5132 mutex_exit(hash_lock);
5133 goto top;
5134 }
2a432414 5135 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
5136
5137 if (done) {
7f60329a 5138 arc_callback_t *acb = NULL;
34dc7c2f
BB
5139
5140 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 5141 KM_SLEEP);
34dc7c2f
BB
5142 acb->acb_done = done;
5143 acb->acb_private = private;
a7004725 5144 acb->acb_compressed = compressed_read;
34dc7c2f
BB
5145 if (pio != NULL)
5146 acb->acb_zio_dummy = zio_null(pio,
d164b209 5147 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f 5148
d3c2ae1c 5149 ASSERT3P(acb->acb_done, !=, NULL);
b9541d6b
CW
5150 acb->acb_next = hdr->b_l1hdr.b_acb;
5151 hdr->b_l1hdr.b_acb = acb;
34dc7c2f 5152 mutex_exit(hash_lock);
1421c891 5153 goto out;
34dc7c2f
BB
5154 }
5155 mutex_exit(hash_lock);
1421c891 5156 goto out;
34dc7c2f
BB
5157 }
5158
b9541d6b
CW
5159 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5160 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
5161
5162 if (done) {
7f60329a
MA
5163 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5164 /*
5165 * This is a demand read which does not have to
5166 * wait for i/o because we did a predictive
5167 * prefetch i/o for it, which has completed.
5168 */
5169 DTRACE_PROBE1(
5170 arc__demand__hit__predictive__prefetch,
5171 arc_buf_hdr_t *, hdr);
5172 ARCSTAT_BUMP(
5173 arcstat_demand_hit_predictive_prefetch);
d3c2ae1c
GW
5174 arc_hdr_clear_flags(hdr,
5175 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a 5176 }
d3c2ae1c
GW
5177 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5178
524b4217
DK
5179 /* Get a buf with the desired data in it. */
5180 VERIFY0(arc_buf_alloc_impl(hdr, private,
5181 compressed_read, B_TRUE, &buf));
2a432414 5182 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 5183 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
d3c2ae1c 5184 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
5185 }
5186 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5187 arc_access(hdr, hash_lock);
2a432414 5188 if (*arc_flags & ARC_FLAG_L2CACHE)
d3c2ae1c 5189 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f
BB
5190 mutex_exit(hash_lock);
5191 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
5192 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5193 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
5194 data, metadata, hits);
5195
5196 if (done)
5197 done(NULL, buf, private);
5198 } else {
d3c2ae1c
GW
5199 uint64_t lsize = BP_GET_LSIZE(bp);
5200 uint64_t psize = BP_GET_PSIZE(bp);
9b67f605 5201 arc_callback_t *acb;
b128c09f 5202 vdev_t *vd = NULL;
a117a6d6 5203 uint64_t addr = 0;
d164b209 5204 boolean_t devw = B_FALSE;
d3c2ae1c 5205 uint64_t size;
34dc7c2f 5206
5f6d0b6f
BB
5207 /*
5208 * Gracefully handle a damaged logical block size as a
1cdb86cb 5209 * checksum error.
5f6d0b6f 5210 */
d3c2ae1c 5211 if (lsize > spa_maxblocksize(spa)) {
1cdb86cb 5212 rc = SET_ERROR(ECKSUM);
5f6d0b6f
BB
5213 goto out;
5214 }
5215
34dc7c2f
BB
5216 if (hdr == NULL) {
5217 /* this block is not in the cache */
9b67f605 5218 arc_buf_hdr_t *exists = NULL;
34dc7c2f 5219 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
d3c2ae1c
GW
5220 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5221 BP_GET_COMPRESS(bp), type);
5222
9b67f605
MA
5223 if (!BP_IS_EMBEDDED(bp)) {
5224 hdr->b_dva = *BP_IDENTITY(bp);
5225 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
5226 exists = buf_hash_insert(hdr, &hash_lock);
5227 }
5228 if (exists != NULL) {
34dc7c2f
BB
5229 /* somebody beat us to the hash insert */
5230 mutex_exit(hash_lock);
428870ff 5231 buf_discard_identity(hdr);
d3c2ae1c 5232 arc_hdr_destroy(hdr);
34dc7c2f
BB
5233 goto top; /* restart the IO request */
5234 }
34dc7c2f 5235 } else {
b9541d6b
CW
5236 /*
5237 * This block is in the ghost cache. If it was L2-only
5238 * (and thus didn't have an L1 hdr), we realloc the
5239 * header to add an L1 hdr.
5240 */
5241 if (!HDR_HAS_L1HDR(hdr)) {
5242 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5243 hdr_full_cache);
5244 }
5245
a6255b7f 5246 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b9541d6b 5247 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
34dc7c2f 5248 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b 5249 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 5250 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2aa34383 5251 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
34dc7c2f 5252
7f60329a 5253 /*
d3c2ae1c
GW
5254 * This is a delicate dance that we play here.
5255 * This hdr is in the ghost list so we access it
5256 * to move it out of the ghost list before we
5257 * initiate the read. If it's a prefetch then
5258 * it won't have a callback so we'll remove the
5259 * reference that arc_buf_alloc_impl() created. We
5260 * do this after we've called arc_access() to
5261 * avoid hitting an assert in remove_reference().
7f60329a 5262 */
428870ff 5263 arc_access(hdr, hash_lock);
a6255b7f 5264 arc_hdr_alloc_pabd(hdr);
d3c2ae1c 5265 }
a6255b7f 5266 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c
GW
5267 size = arc_hdr_size(hdr);
5268
5269 /*
5270 * If compression is enabled on the hdr, then will do
5271 * RAW I/O and will store the compressed data in the hdr's
5272 * data block. Otherwise, the hdr's data block will contain
5273 * the uncompressed data.
5274 */
5275 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5276 zio_flags |= ZIO_FLAG_RAW;
34dc7c2f
BB
5277 }
5278
d3c2ae1c
GW
5279 if (*arc_flags & ARC_FLAG_PREFETCH)
5280 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5281 if (*arc_flags & ARC_FLAG_L2CACHE)
5282 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5283 if (BP_GET_LEVEL(bp) > 0)
5284 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
7f60329a 5285 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
d3c2ae1c 5286 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
b9541d6b 5287 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 5288
79c76d5b 5289 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
5290 acb->acb_done = done;
5291 acb->acb_private = private;
2aa34383 5292 acb->acb_compressed = compressed_read;
34dc7c2f 5293
d3c2ae1c 5294 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b9541d6b 5295 hdr->b_l1hdr.b_acb = acb;
d3c2ae1c 5296 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f 5297
b9541d6b
CW
5298 if (HDR_HAS_L2HDR(hdr) &&
5299 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5300 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5301 addr = hdr->b_l2hdr.b_daddr;
b128c09f
BB
5302 /*
5303 * Lock out device removal.
5304 */
5305 if (vdev_is_dead(vd) ||
5306 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5307 vd = NULL;
5308 }
5309
d3c2ae1c
GW
5310 if (priority == ZIO_PRIORITY_ASYNC_READ)
5311 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5312 else
5313 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5314
9b67f605
MA
5315 if (hash_lock != NULL)
5316 mutex_exit(hash_lock);
b128c09f 5317
e49f1e20
WA
5318 /*
5319 * At this point, we have a level 1 cache miss. Try again in
5320 * L2ARC if possible.
5321 */
d3c2ae1c
GW
5322 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5323
428870ff 5324 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
d3c2ae1c 5325 uint64_t, lsize, zbookmark_phys_t *, zb);
34dc7c2f 5326 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
5327 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5328 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
5329 data, metadata, misses);
5330
d164b209 5331 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
5332 /*
5333 * Read from the L2ARC if the following are true:
b128c09f
BB
5334 * 1. The L2ARC vdev was previously cached.
5335 * 2. This buffer still has L2ARC metadata.
5336 * 3. This buffer isn't currently writing to the L2ARC.
5337 * 4. The L2ARC entry wasn't evicted, which may
5338 * also have invalidated the vdev.
d164b209 5339 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 5340 */
b9541d6b 5341 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
5342 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5343 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
5344 l2arc_read_callback_t *cb;
5345
5346 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5347 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 5348 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 5349
34dc7c2f 5350 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 5351 KM_SLEEP);
d3c2ae1c 5352 cb->l2rcb_hdr = hdr;
34dc7c2f
BB
5353 cb->l2rcb_bp = *bp;
5354 cb->l2rcb_zb = *zb;
b128c09f 5355 cb->l2rcb_flags = zio_flags;
34dc7c2f 5356
a117a6d6 5357 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
d3c2ae1c 5358 addr + lsize < vd->vdev_psize -
a117a6d6
GW
5359 VDEV_LABEL_END_SIZE);
5360
34dc7c2f 5361 /*
b128c09f
BB
5362 * l2arc read. The SCL_L2ARC lock will be
5363 * released by l2arc_read_done().
3a17a7a9
SK
5364 * Issue a null zio if the underlying buffer
5365 * was squashed to zero size by compression.
34dc7c2f 5366 */
d3c2ae1c
GW
5367 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5368 ZIO_COMPRESS_EMPTY);
5369 rzio = zio_read_phys(pio, vd, addr,
a6255b7f 5370 size, hdr->b_l1hdr.b_pabd,
d3c2ae1c
GW
5371 ZIO_CHECKSUM_OFF,
5372 l2arc_read_done, cb, priority,
5373 zio_flags | ZIO_FLAG_DONT_CACHE |
5374 ZIO_FLAG_CANFAIL |
5375 ZIO_FLAG_DONT_PROPAGATE |
5376 ZIO_FLAG_DONT_RETRY, B_FALSE);
5377
34dc7c2f
BB
5378 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5379 zio_t *, rzio);
d3c2ae1c 5380 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
34dc7c2f 5381
2a432414 5382 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 5383 zio_nowait(rzio);
1421c891 5384 goto out;
b128c09f 5385 }
34dc7c2f 5386
2a432414 5387 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 5388 if (zio_wait(rzio) == 0)
1421c891 5389 goto out;
b128c09f
BB
5390
5391 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
5392 } else {
5393 DTRACE_PROBE1(l2arc__miss,
5394 arc_buf_hdr_t *, hdr);
5395 ARCSTAT_BUMP(arcstat_l2_misses);
5396 if (HDR_L2_WRITING(hdr))
5397 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 5398 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 5399 }
d164b209
BB
5400 } else {
5401 if (vd != NULL)
5402 spa_config_exit(spa, SCL_L2ARC, vd);
5403 if (l2arc_ndev != 0) {
5404 DTRACE_PROBE1(l2arc__miss,
5405 arc_buf_hdr_t *, hdr);
5406 ARCSTAT_BUMP(arcstat_l2_misses);
5407 }
34dc7c2f 5408 }
34dc7c2f 5409
a6255b7f 5410 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
d3c2ae1c 5411 arc_read_done, hdr, priority, zio_flags, zb);
34dc7c2f 5412
2a432414 5413 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
5414 rc = zio_wait(rzio);
5415 goto out;
5416 }
34dc7c2f 5417
2a432414 5418 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
5419 zio_nowait(rzio);
5420 }
1421c891
PS
5421
5422out:
5423 spa_read_history_add(spa, zb, *arc_flags);
5424 return (rc);
34dc7c2f
BB
5425}
5426
ab26409d
BB
5427arc_prune_t *
5428arc_add_prune_callback(arc_prune_func_t *func, void *private)
5429{
5430 arc_prune_t *p;
5431
d1d7e268 5432 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
5433 p->p_pfunc = func;
5434 p->p_private = private;
5435 list_link_init(&p->p_node);
5436 refcount_create(&p->p_refcnt);
5437
5438 mutex_enter(&arc_prune_mtx);
5439 refcount_add(&p->p_refcnt, &arc_prune_list);
5440 list_insert_head(&arc_prune_list, p);
5441 mutex_exit(&arc_prune_mtx);
5442
5443 return (p);
5444}
5445
5446void
5447arc_remove_prune_callback(arc_prune_t *p)
5448{
4442f60d 5449 boolean_t wait = B_FALSE;
ab26409d
BB
5450 mutex_enter(&arc_prune_mtx);
5451 list_remove(&arc_prune_list, p);
4442f60d
CC
5452 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
5453 wait = B_TRUE;
ab26409d 5454 mutex_exit(&arc_prune_mtx);
4442f60d
CC
5455
5456 /* wait for arc_prune_task to finish */
5457 if (wait)
5458 taskq_wait_outstanding(arc_prune_taskq, 0);
5459 ASSERT0(refcount_count(&p->p_refcnt));
5460 refcount_destroy(&p->p_refcnt);
5461 kmem_free(p, sizeof (*p));
ab26409d
BB
5462}
5463
df4474f9
MA
5464/*
5465 * Notify the arc that a block was freed, and thus will never be used again.
5466 */
5467void
5468arc_freed(spa_t *spa, const blkptr_t *bp)
5469{
5470 arc_buf_hdr_t *hdr;
5471 kmutex_t *hash_lock;
5472 uint64_t guid = spa_load_guid(spa);
5473
9b67f605
MA
5474 ASSERT(!BP_IS_EMBEDDED(bp));
5475
5476 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
5477 if (hdr == NULL)
5478 return;
df4474f9 5479
d3c2ae1c
GW
5480 /*
5481 * We might be trying to free a block that is still doing I/O
5482 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5483 * dmu_sync-ed block). If this block is being prefetched, then it
5484 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5485 * until the I/O completes. A block may also have a reference if it is
5486 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5487 * have written the new block to its final resting place on disk but
5488 * without the dedup flag set. This would have left the hdr in the MRU
5489 * state and discoverable. When the txg finally syncs it detects that
5490 * the block was overridden in open context and issues an override I/O.
5491 * Since this is a dedup block, the override I/O will determine if the
5492 * block is already in the DDT. If so, then it will replace the io_bp
5493 * with the bp from the DDT and allow the I/O to finish. When the I/O
5494 * reaches the done callback, dbuf_write_override_done, it will
5495 * check to see if the io_bp and io_bp_override are identical.
5496 * If they are not, then it indicates that the bp was replaced with
5497 * the bp in the DDT and the override bp is freed. This allows
5498 * us to arrive here with a reference on a block that is being
5499 * freed. So if we have an I/O in progress, or a reference to
5500 * this hdr, then we don't destroy the hdr.
5501 */
5502 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5503 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5504 arc_change_state(arc_anon, hdr, hash_lock);
5505 arc_hdr_destroy(hdr);
df4474f9 5506 mutex_exit(hash_lock);
bd089c54 5507 } else {
d3c2ae1c 5508 mutex_exit(hash_lock);
34dc7c2f 5509 }
34dc7c2f 5510
34dc7c2f
BB
5511}
5512
5513/*
e49f1e20
WA
5514 * Release this buffer from the cache, making it an anonymous buffer. This
5515 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 5516 * If the buffer has more than one reference, we must make
b128c09f 5517 * a new hdr for the buffer.
34dc7c2f
BB
5518 */
5519void
5520arc_release(arc_buf_t *buf, void *tag)
5521{
b9541d6b
CW
5522 kmutex_t *hash_lock;
5523 arc_state_t *state;
5524 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 5525
428870ff 5526 /*
ca0bf58d 5527 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
5528 * 0 || it's the dnode file), then it must be syncing context.
5529 * But we don't know that information at this level.
5530 */
5531
5532 mutex_enter(&buf->b_evict_lock);
b128c09f 5533
ca0bf58d
PS
5534 ASSERT(HDR_HAS_L1HDR(hdr));
5535
b9541d6b
CW
5536 /*
5537 * We don't grab the hash lock prior to this check, because if
5538 * the buffer's header is in the arc_anon state, it won't be
5539 * linked into the hash table.
5540 */
5541 if (hdr->b_l1hdr.b_state == arc_anon) {
5542 mutex_exit(&buf->b_evict_lock);
5543 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5544 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5545 ASSERT(!HDR_HAS_L2HDR(hdr));
d3c2ae1c 5546 ASSERT(HDR_EMPTY(hdr));
34dc7c2f 5547
d3c2ae1c 5548 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
b9541d6b
CW
5549 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5550 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5551
b9541d6b 5552 hdr->b_l1hdr.b_arc_access = 0;
d3c2ae1c
GW
5553
5554 /*
5555 * If the buf is being overridden then it may already
5556 * have a hdr that is not empty.
5557 */
5558 buf_discard_identity(hdr);
b9541d6b
CW
5559 arc_buf_thaw(buf);
5560
5561 return;
34dc7c2f
BB
5562 }
5563
b9541d6b
CW
5564 hash_lock = HDR_LOCK(hdr);
5565 mutex_enter(hash_lock);
5566
5567 /*
5568 * This assignment is only valid as long as the hash_lock is
5569 * held, we must be careful not to reference state or the
5570 * b_state field after dropping the lock.
5571 */
5572 state = hdr->b_l1hdr.b_state;
5573 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5574 ASSERT3P(state, !=, arc_anon);
5575
5576 /* this buffer is not on any list */
2aa34383 5577 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
b9541d6b
CW
5578
5579 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 5580 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
5581
5582 /*
d962d5da
PS
5583 * We have to recheck this conditional again now that
5584 * we're holding the l2ad_mtx to prevent a race with
5585 * another thread which might be concurrently calling
5586 * l2arc_evict(). In that case, l2arc_evict() might have
5587 * destroyed the header's L2 portion as we were waiting
5588 * to acquire the l2ad_mtx.
ca0bf58d 5589 */
d962d5da
PS
5590 if (HDR_HAS_L2HDR(hdr))
5591 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 5592
b9541d6b 5593 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
5594 }
5595
34dc7c2f
BB
5596 /*
5597 * Do we have more than one buf?
5598 */
d3c2ae1c 5599 if (hdr->b_l1hdr.b_bufcnt > 1) {
34dc7c2f 5600 arc_buf_hdr_t *nhdr;
d164b209 5601 uint64_t spa = hdr->b_spa;
d3c2ae1c
GW
5602 uint64_t psize = HDR_GET_PSIZE(hdr);
5603 uint64_t lsize = HDR_GET_LSIZE(hdr);
5604 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
b9541d6b 5605 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c 5606 VERIFY3U(hdr->b_type, ==, type);
34dc7c2f 5607
b9541d6b 5608 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
d3c2ae1c
GW
5609 (void) remove_reference(hdr, hash_lock, tag);
5610
524b4217 5611 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 5612 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
524b4217
DK
5613 ASSERT(ARC_BUF_LAST(buf));
5614 }
d3c2ae1c 5615
34dc7c2f 5616 /*
428870ff 5617 * Pull the data off of this hdr and attach it to
d3c2ae1c
GW
5618 * a new anonymous hdr. Also find the last buffer
5619 * in the hdr's buffer list.
34dc7c2f 5620 */
a7004725 5621 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 5622 ASSERT3P(lastbuf, !=, NULL);
34dc7c2f 5623
d3c2ae1c
GW
5624 /*
5625 * If the current arc_buf_t and the hdr are sharing their data
524b4217 5626 * buffer, then we must stop sharing that block.
d3c2ae1c
GW
5627 */
5628 if (arc_buf_is_shared(buf)) {
5629 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
d3c2ae1c
GW
5630 VERIFY(!arc_buf_is_shared(lastbuf));
5631
5632 /*
5633 * First, sever the block sharing relationship between
a7004725 5634 * buf and the arc_buf_hdr_t.
d3c2ae1c
GW
5635 */
5636 arc_unshare_buf(hdr, buf);
2aa34383
DK
5637
5638 /*
a6255b7f 5639 * Now we need to recreate the hdr's b_pabd. Since we
524b4217 5640 * have lastbuf handy, we try to share with it, but if
a6255b7f 5641 * we can't then we allocate a new b_pabd and copy the
524b4217 5642 * data from buf into it.
2aa34383 5643 */
524b4217
DK
5644 if (arc_can_share(hdr, lastbuf)) {
5645 arc_share_buf(hdr, lastbuf);
5646 } else {
a6255b7f
DQ
5647 arc_hdr_alloc_pabd(hdr);
5648 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5649 buf->b_data, psize);
2aa34383 5650 }
d3c2ae1c
GW
5651 VERIFY3P(lastbuf->b_data, !=, NULL);
5652 } else if (HDR_SHARED_DATA(hdr)) {
2aa34383
DK
5653 /*
5654 * Uncompressed shared buffers are always at the end
5655 * of the list. Compressed buffers don't have the
5656 * same requirements. This makes it hard to
5657 * simply assert that the lastbuf is shared so
5658 * we rely on the hdr's compression flags to determine
5659 * if we have a compressed, shared buffer.
5660 */
5661 ASSERT(arc_buf_is_shared(lastbuf) ||
5662 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5663 ASSERT(!ARC_BUF_SHARED(buf));
d3c2ae1c 5664 }
a6255b7f 5665 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b9541d6b 5666 ASSERT3P(state, !=, arc_l2c_only);
36da08ef 5667
d3c2ae1c 5668 (void) refcount_remove_many(&state->arcs_size,
2aa34383 5669 arc_buf_size(buf), buf);
36da08ef 5670
b9541d6b 5671 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
b9541d6b 5672 ASSERT3P(state, !=, arc_l2c_only);
d3c2ae1c 5673 (void) refcount_remove_many(&state->arcs_esize[type],
2aa34383 5674 arc_buf_size(buf), buf);
34dc7c2f 5675 }
1eb5bfa3 5676
d3c2ae1c 5677 hdr->b_l1hdr.b_bufcnt -= 1;
34dc7c2f 5678 arc_cksum_verify(buf);
498877ba 5679 arc_buf_unwatch(buf);
34dc7c2f
BB
5680
5681 mutex_exit(hash_lock);
5682
d3c2ae1c 5683 /*
a6255b7f 5684 * Allocate a new hdr. The new hdr will contain a b_pabd
d3c2ae1c
GW
5685 * buffer which will be freed in arc_write().
5686 */
5687 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5688 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5689 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5690 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5691 VERIFY3U(nhdr->b_type, ==, type);
5692 ASSERT(!HDR_SHARED_DATA(nhdr));
b9541d6b 5693
d3c2ae1c
GW
5694 nhdr->b_l1hdr.b_buf = buf;
5695 nhdr->b_l1hdr.b_bufcnt = 1;
b9541d6b
CW
5696 nhdr->b_l1hdr.b_mru_hits = 0;
5697 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
5698 nhdr->b_l1hdr.b_mfu_hits = 0;
5699 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
5700 nhdr->b_l1hdr.b_l2_hits = 0;
b9541d6b 5701 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 5702 buf->b_hdr = nhdr;
d3c2ae1c 5703
428870ff 5704 mutex_exit(&buf->b_evict_lock);
d3c2ae1c
GW
5705 (void) refcount_add_many(&arc_anon->arcs_size,
5706 HDR_GET_LSIZE(nhdr), buf);
34dc7c2f 5707 } else {
428870ff 5708 mutex_exit(&buf->b_evict_lock);
b9541d6b 5709 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
5710 /* protected by hash lock, or hdr is on arc_anon */
5711 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 5712 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
5713 hdr->b_l1hdr.b_mru_hits = 0;
5714 hdr->b_l1hdr.b_mru_ghost_hits = 0;
5715 hdr->b_l1hdr.b_mfu_hits = 0;
5716 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
5717 hdr->b_l1hdr.b_l2_hits = 0;
5718 arc_change_state(arc_anon, hdr, hash_lock);
5719 hdr->b_l1hdr.b_arc_access = 0;
5720 mutex_exit(hash_lock);
34dc7c2f 5721
428870ff 5722 buf_discard_identity(hdr);
34dc7c2f
BB
5723 arc_buf_thaw(buf);
5724 }
34dc7c2f
BB
5725}
5726
5727int
5728arc_released(arc_buf_t *buf)
5729{
b128c09f
BB
5730 int released;
5731
428870ff 5732 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
5733 released = (buf->b_data != NULL &&
5734 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 5735 mutex_exit(&buf->b_evict_lock);
b128c09f 5736 return (released);
34dc7c2f
BB
5737}
5738
34dc7c2f
BB
5739#ifdef ZFS_DEBUG
5740int
5741arc_referenced(arc_buf_t *buf)
5742{
b128c09f
BB
5743 int referenced;
5744
428870ff 5745 mutex_enter(&buf->b_evict_lock);
b9541d6b 5746 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 5747 mutex_exit(&buf->b_evict_lock);
b128c09f 5748 return (referenced);
34dc7c2f
BB
5749}
5750#endif
5751
5752static void
5753arc_write_ready(zio_t *zio)
5754{
5755 arc_write_callback_t *callback = zio->io_private;
5756 arc_buf_t *buf = callback->awcb_buf;
5757 arc_buf_hdr_t *hdr = buf->b_hdr;
d3c2ae1c
GW
5758 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5759 enum zio_compress compress;
a6255b7f 5760 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5761
b9541d6b
CW
5762 ASSERT(HDR_HAS_L1HDR(hdr));
5763 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
d3c2ae1c 5764 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
b128c09f 5765
34dc7c2f 5766 /*
d3c2ae1c
GW
5767 * If we're reexecuting this zio because the pool suspended, then
5768 * cleanup any state that was previously set the first time the
2aa34383 5769 * callback was invoked.
34dc7c2f 5770 */
d3c2ae1c
GW
5771 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5772 arc_cksum_free(hdr);
5773 arc_buf_unwatch(buf);
a6255b7f 5774 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 5775 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
5776 arc_unshare_buf(hdr, buf);
5777 } else {
a6255b7f 5778 arc_hdr_free_pabd(hdr);
d3c2ae1c 5779 }
34dc7c2f 5780 }
34dc7c2f 5781 }
a6255b7f 5782 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c
GW
5783 ASSERT(!HDR_SHARED_DATA(hdr));
5784 ASSERT(!arc_buf_is_shared(buf));
5785
5786 callback->awcb_ready(zio, buf, callback->awcb_private);
5787
5788 if (HDR_IO_IN_PROGRESS(hdr))
5789 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5790
5791 arc_cksum_compute(buf);
5792 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5793
5794 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5795 compress = ZIO_COMPRESS_OFF;
5796 } else {
5797 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5798 compress = BP_GET_COMPRESS(zio->io_bp);
5799 }
5800 HDR_SET_PSIZE(hdr, psize);
5801 arc_hdr_set_compress(hdr, compress);
5802
5803 /*
a6255b7f
DQ
5804 * Fill the hdr with data. If the hdr is compressed, the data we want
5805 * is available from the zio, otherwise we can take it from the buf.
5806 *
5807 * We might be able to share the buf's data with the hdr here. However,
5808 * doing so would cause the ARC to be full of linear ABDs if we write a
5809 * lot of shareable data. As a compromise, we check whether scattered
5810 * ABDs are allowed, and assume that if they are then the user wants
5811 * the ARC to be primarily filled with them regardless of the data being
5812 * written. Therefore, if they're allowed then we allocate one and copy
5813 * the data into it; otherwise, we share the data directly if we can.
d3c2ae1c 5814 */
a6255b7f
DQ
5815 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5816 arc_hdr_alloc_pabd(hdr);
5817
5818 /*
5819 * Ideally, we would always copy the io_abd into b_pabd, but the
5820 * user may have disabled compressed ARC, thus we must check the
5821 * hdr's compression setting rather than the io_bp's.
5822 */
5823 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5824 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5825 ZIO_COMPRESS_OFF);
5826 ASSERT3U(psize, >, 0);
5827
5828 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5829 } else {
5830 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5831
5832 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5833 arc_buf_size(buf));
5834 }
d3c2ae1c 5835 } else {
a6255b7f 5836 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
2aa34383 5837 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
d3c2ae1c 5838 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
d3c2ae1c 5839
d3c2ae1c 5840 arc_share_buf(hdr, buf);
d3c2ae1c 5841 }
a6255b7f 5842
d3c2ae1c 5843 arc_hdr_verify(hdr, zio->io_bp);
a6255b7f 5844 spl_fstrans_unmark(cookie);
34dc7c2f
BB
5845}
5846
bc77ba73
PD
5847static void
5848arc_write_children_ready(zio_t *zio)
5849{
5850 arc_write_callback_t *callback = zio->io_private;
5851 arc_buf_t *buf = callback->awcb_buf;
5852
5853 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5854}
5855
e8b96c60
MA
5856/*
5857 * The SPA calls this callback for each physical write that happens on behalf
5858 * of a logical write. See the comment in dbuf_write_physdone() for details.
5859 */
5860static void
5861arc_write_physdone(zio_t *zio)
5862{
5863 arc_write_callback_t *cb = zio->io_private;
5864 if (cb->awcb_physdone != NULL)
5865 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5866}
5867
34dc7c2f
BB
5868static void
5869arc_write_done(zio_t *zio)
5870{
5871 arc_write_callback_t *callback = zio->io_private;
5872 arc_buf_t *buf = callback->awcb_buf;
5873 arc_buf_hdr_t *hdr = buf->b_hdr;
5874
d3c2ae1c 5875 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
428870ff
BB
5876
5877 if (zio->io_error == 0) {
d3c2ae1c
GW
5878 arc_hdr_verify(hdr, zio->io_bp);
5879
9b67f605 5880 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
5881 buf_discard_identity(hdr);
5882 } else {
5883 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
5884 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 5885 }
428870ff 5886 } else {
d3c2ae1c 5887 ASSERT(HDR_EMPTY(hdr));
428870ff 5888 }
34dc7c2f 5889
34dc7c2f 5890 /*
9b67f605
MA
5891 * If the block to be written was all-zero or compressed enough to be
5892 * embedded in the BP, no write was performed so there will be no
5893 * dva/birth/checksum. The buffer must therefore remain anonymous
5894 * (and uncached).
34dc7c2f 5895 */
d3c2ae1c 5896 if (!HDR_EMPTY(hdr)) {
34dc7c2f
BB
5897 arc_buf_hdr_t *exists;
5898 kmutex_t *hash_lock;
5899
524b4217 5900 ASSERT3U(zio->io_error, ==, 0);
428870ff 5901
34dc7c2f
BB
5902 arc_cksum_verify(buf);
5903
5904 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 5905 if (exists != NULL) {
34dc7c2f
BB
5906 /*
5907 * This can only happen if we overwrite for
5908 * sync-to-convergence, because we remove
5909 * buffers from the hash table when we arc_free().
5910 */
428870ff
BB
5911 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
5912 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5913 panic("bad overwrite, hdr=%p exists=%p",
5914 (void *)hdr, (void *)exists);
b9541d6b
CW
5915 ASSERT(refcount_is_zero(
5916 &exists->b_l1hdr.b_refcnt));
428870ff
BB
5917 arc_change_state(arc_anon, exists, hash_lock);
5918 mutex_exit(hash_lock);
5919 arc_hdr_destroy(exists);
5920 exists = buf_hash_insert(hdr, &hash_lock);
5921 ASSERT3P(exists, ==, NULL);
03c6040b
GW
5922 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5923 /* nopwrite */
5924 ASSERT(zio->io_prop.zp_nopwrite);
5925 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5926 panic("bad nopwrite, hdr=%p exists=%p",
5927 (void *)hdr, (void *)exists);
428870ff
BB
5928 } else {
5929 /* Dedup */
d3c2ae1c 5930 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
b9541d6b 5931 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
5932 ASSERT(BP_GET_DEDUP(zio->io_bp));
5933 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5934 }
34dc7c2f 5935 }
d3c2ae1c 5936 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
b128c09f 5937 /* if it's not anon, we are doing a scrub */
b9541d6b 5938 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 5939 arc_access(hdr, hash_lock);
34dc7c2f 5940 mutex_exit(hash_lock);
34dc7c2f 5941 } else {
d3c2ae1c 5942 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f
BB
5943 }
5944
b9541d6b 5945 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 5946 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f 5947
a6255b7f 5948 abd_put(zio->io_abd);
34dc7c2f
BB
5949 kmem_free(callback, sizeof (arc_write_callback_t));
5950}
5951
5952zio_t *
428870ff 5953arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
d3c2ae1c 5954 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
bc77ba73
PD
5955 const zio_prop_t *zp, arc_done_func_t *ready,
5956 arc_done_func_t *children_ready, arc_done_func_t *physdone,
e8b96c60 5957 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 5958 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
5959{
5960 arc_buf_hdr_t *hdr = buf->b_hdr;
5961 arc_write_callback_t *callback;
b128c09f 5962 zio_t *zio;
34dc7c2f 5963
d3c2ae1c
GW
5964 ASSERT3P(ready, !=, NULL);
5965 ASSERT3P(done, !=, NULL);
34dc7c2f 5966 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b 5967 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c
GW
5968 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5969 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
b128c09f 5970 if (l2arc)
d3c2ae1c 5971 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
2aa34383
DK
5972 if (ARC_BUF_COMPRESSED(buf)) {
5973 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_OFF);
a7004725 5974 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
2aa34383
DK
5975 zio_flags |= ZIO_FLAG_RAW;
5976 }
79c76d5b 5977 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 5978 callback->awcb_ready = ready;
bc77ba73 5979 callback->awcb_children_ready = children_ready;
e8b96c60 5980 callback->awcb_physdone = physdone;
34dc7c2f
BB
5981 callback->awcb_done = done;
5982 callback->awcb_private = private;
5983 callback->awcb_buf = buf;
b128c09f 5984
d3c2ae1c 5985 /*
a6255b7f 5986 * The hdr's b_pabd is now stale, free it now. A new data block
d3c2ae1c
GW
5987 * will be allocated when the zio pipeline calls arc_write_ready().
5988 */
a6255b7f 5989 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
5990 /*
5991 * If the buf is currently sharing the data block with
5992 * the hdr then we need to break that relationship here.
5993 * The hdr will remain with a NULL data pointer and the
5994 * buf will take sole ownership of the block.
5995 */
5996 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
5997 arc_unshare_buf(hdr, buf);
5998 } else {
a6255b7f 5999 arc_hdr_free_pabd(hdr);
d3c2ae1c
GW
6000 }
6001 VERIFY3P(buf->b_data, !=, NULL);
6002 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6003 }
6004 ASSERT(!arc_buf_is_shared(buf));
a6255b7f 6005 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 6006
a6255b7f
DQ
6007 zio = zio_write(pio, spa, txg, bp,
6008 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
2aa34383 6009 HDR_GET_LSIZE(hdr), arc_buf_size(buf), zp,
bc77ba73
PD
6010 arc_write_ready,
6011 (children_ready != NULL) ? arc_write_children_ready : NULL,
6012 arc_write_physdone, arc_write_done, callback,
e8b96c60 6013 priority, zio_flags, zb);
34dc7c2f
BB
6014
6015 return (zio);
6016}
6017
34dc7c2f 6018static int
e8b96c60 6019arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
6020{
6021#ifdef _KERNEL
7e8bddd0
BB
6022 uint64_t available_memory = ptob(freemem);
6023 static uint64_t page_load = 0;
6024 static uint64_t last_txg = 0;
6025#ifdef __linux__
6026 pgcnt_t minfree = btop(arc_sys_free / 4);
6027#endif
0c5493d4 6028
9edb3695
BB
6029#if defined(__i386)
6030 available_memory =
6031 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6032#endif
6033
6034 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
ca67b33a
MA
6035 return (0);
6036
7e8bddd0
BB
6037 if (txg > last_txg) {
6038 last_txg = txg;
6039 page_load = 0;
6040 }
7e8bddd0
BB
6041 /*
6042 * If we are in pageout, we know that memory is already tight,
6043 * the arc is already going to be evicting, so we just want to
6044 * continue to let page writes occur as quickly as possible.
6045 */
6046 if (current_is_kswapd()) {
6047 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
6048 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6049 return (SET_ERROR(ERESTART));
6050 }
6051 /* Note: reserve is inflated, so we deflate */
6052 page_load += reserve / 8;
6053 return (0);
6054 } else if (page_load > 0 && arc_reclaim_needed()) {
ca67b33a 6055 /* memory is low, delay before restarting */
34dc7c2f 6056 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 6057 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 6058 return (SET_ERROR(EAGAIN));
34dc7c2f 6059 }
7e8bddd0 6060 page_load = 0;
34dc7c2f
BB
6061#endif
6062 return (0);
6063}
6064
6065void
6066arc_tempreserve_clear(uint64_t reserve)
6067{
6068 atomic_add_64(&arc_tempreserve, -reserve);
6069 ASSERT((int64_t)arc_tempreserve >= 0);
6070}
6071
6072int
6073arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6074{
6075 int error;
9babb374 6076 uint64_t anon_size;
34dc7c2f 6077
1b8951b3
TC
6078 if (!arc_no_grow &&
6079 reserve > arc_c/4 &&
6080 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 6081 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
6082
6083 /*
6084 * Throttle when the calculated memory footprint for the TXG
6085 * exceeds the target ARC size.
6086 */
570827e1
BB
6087 if (reserve > arc_c) {
6088 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 6089 return (SET_ERROR(ERESTART));
570827e1 6090 }
34dc7c2f 6091
9babb374
BB
6092 /*
6093 * Don't count loaned bufs as in flight dirty data to prevent long
6094 * network delays from blocking transactions that are ready to be
6095 * assigned to a txg.
6096 */
a7004725
DK
6097
6098 /* assert that it has not wrapped around */
6099 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6100
36da08ef
PS
6101 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6102 arc_loaned_bytes), 0);
9babb374 6103
34dc7c2f
BB
6104 /*
6105 * Writes will, almost always, require additional memory allocations
d3cc8b15 6106 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
6107 * make sure that there is sufficient available memory for this.
6108 */
e8b96c60
MA
6109 error = arc_memory_throttle(reserve, txg);
6110 if (error != 0)
34dc7c2f
BB
6111 return (error);
6112
6113 /*
6114 * Throttle writes when the amount of dirty data in the cache
6115 * gets too large. We try to keep the cache less than half full
6116 * of dirty blocks so that our sync times don't grow too large.
6117 * Note: if two requests come in concurrently, we might let them
6118 * both succeed, when one of them should fail. Not a huge deal.
6119 */
9babb374
BB
6120
6121 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6122 anon_size > arc_c / 4) {
d3c2ae1c
GW
6123 uint64_t meta_esize =
6124 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6125 uint64_t data_esize =
6126 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
34dc7c2f
BB
6127 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6128 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
d3c2ae1c
GW
6129 arc_tempreserve >> 10, meta_esize >> 10,
6130 data_esize >> 10, reserve >> 10, arc_c >> 10);
570827e1 6131 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 6132 return (SET_ERROR(ERESTART));
34dc7c2f
BB
6133 }
6134 atomic_add_64(&arc_tempreserve, reserve);
6135 return (0);
6136}
6137
13be560d
BB
6138static void
6139arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6140 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6141{
36da08ef 6142 size->value.ui64 = refcount_count(&state->arcs_size);
d3c2ae1c
GW
6143 evict_data->value.ui64 =
6144 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6145 evict_metadata->value.ui64 =
6146 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
13be560d
BB
6147}
6148
6149static int
6150arc_kstat_update(kstat_t *ksp, int rw)
6151{
6152 arc_stats_t *as = ksp->ks_data;
6153
6154 if (rw == KSTAT_WRITE) {
500445c0 6155 return (EACCES);
13be560d
BB
6156 } else {
6157 arc_kstat_update_state(arc_anon,
6158 &as->arcstat_anon_size,
500445c0
PS
6159 &as->arcstat_anon_evictable_data,
6160 &as->arcstat_anon_evictable_metadata);
13be560d
BB
6161 arc_kstat_update_state(arc_mru,
6162 &as->arcstat_mru_size,
500445c0
PS
6163 &as->arcstat_mru_evictable_data,
6164 &as->arcstat_mru_evictable_metadata);
13be560d
BB
6165 arc_kstat_update_state(arc_mru_ghost,
6166 &as->arcstat_mru_ghost_size,
500445c0
PS
6167 &as->arcstat_mru_ghost_evictable_data,
6168 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
6169 arc_kstat_update_state(arc_mfu,
6170 &as->arcstat_mfu_size,
500445c0
PS
6171 &as->arcstat_mfu_evictable_data,
6172 &as->arcstat_mfu_evictable_metadata);
fc41c640 6173 arc_kstat_update_state(arc_mfu_ghost,
13be560d 6174 &as->arcstat_mfu_ghost_size,
500445c0
PS
6175 &as->arcstat_mfu_ghost_evictable_data,
6176 &as->arcstat_mfu_ghost_evictable_metadata);
13be560d
BB
6177 }
6178
6179 return (0);
6180}
6181
ca0bf58d
PS
6182/*
6183 * This function *must* return indices evenly distributed between all
6184 * sublists of the multilist. This is needed due to how the ARC eviction
6185 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6186 * distributed between all sublists and uses this assumption when
6187 * deciding which sublist to evict from and how much to evict from it.
6188 */
6189unsigned int
6190arc_state_multilist_index_func(multilist_t *ml, void *obj)
6191{
6192 arc_buf_hdr_t *hdr = obj;
6193
6194 /*
6195 * We rely on b_dva to generate evenly distributed index
6196 * numbers using buf_hash below. So, as an added precaution,
6197 * let's make sure we never add empty buffers to the arc lists.
6198 */
d3c2ae1c 6199 ASSERT(!HDR_EMPTY(hdr));
ca0bf58d
PS
6200
6201 /*
6202 * The assumption here, is the hash value for a given
6203 * arc_buf_hdr_t will remain constant throughout its lifetime
6204 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6205 * Thus, we don't need to store the header's sublist index
6206 * on insertion, as this index can be recalculated on removal.
6207 *
6208 * Also, the low order bits of the hash value are thought to be
6209 * distributed evenly. Otherwise, in the case that the multilist
6210 * has a power of two number of sublists, each sublists' usage
6211 * would not be evenly distributed.
6212 */
6213 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6214 multilist_get_num_sublists(ml));
6215}
6216
ca67b33a
MA
6217/*
6218 * Called during module initialization and periodically thereafter to
6219 * apply reasonable changes to the exposed performance tunings. Non-zero
6220 * zfs_* values which differ from the currently set values will be applied.
6221 */
6222static void
6223arc_tuning_update(void)
6224{
9edb3695
BB
6225 uint64_t percent, allmem = arc_all_memory();
6226
ca67b33a
MA
6227 /* Valid range: 64M - <all physical memory> */
6228 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
9edb3695 6229 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
ca67b33a
MA
6230 (zfs_arc_max > arc_c_min)) {
6231 arc_c_max = zfs_arc_max;
6232 arc_c = arc_c_max;
6233 arc_p = (arc_c >> 1);
9907cc1c
G
6234 /* Valid range of arc_meta_limit: arc_meta_min - arc_c_max */
6235 percent = MIN(zfs_arc_meta_limit_percent, 100);
6236 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6237 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6238 arc_dnode_limit = (percent * arc_meta_limit) / 100;
ca67b33a
MA
6239 }
6240
6241 /* Valid range: 32M - <arc_c_max> */
6242 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
6243 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
6244 (zfs_arc_min <= arc_c_max)) {
6245 arc_c_min = zfs_arc_min;
6246 arc_c = MAX(arc_c, arc_c_min);
6247 }
6248
6249 /* Valid range: 16M - <arc_c_max> */
6250 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
6251 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
6252 (zfs_arc_meta_min <= arc_c_max)) {
6253 arc_meta_min = zfs_arc_meta_min;
6254 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
25458cbe 6255 arc_dnode_limit = arc_meta_limit / 10;
ca67b33a
MA
6256 }
6257
6258 /* Valid range: <arc_meta_min> - <arc_c_max> */
6259 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
6260 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
6261 (zfs_arc_meta_limit <= arc_c_max))
6262 arc_meta_limit = zfs_arc_meta_limit;
6263
25458cbe
TC
6264 /* Valid range: <arc_meta_min> - <arc_c_max> */
6265 if ((zfs_arc_dnode_limit) && (zfs_arc_dnode_limit != arc_dnode_limit) &&
6266 (zfs_arc_dnode_limit >= zfs_arc_meta_min) &&
6267 (zfs_arc_dnode_limit <= arc_c_max))
6268 arc_dnode_limit = zfs_arc_dnode_limit;
6269
ca67b33a
MA
6270 /* Valid range: 1 - N */
6271 if (zfs_arc_grow_retry)
6272 arc_grow_retry = zfs_arc_grow_retry;
6273
6274 /* Valid range: 1 - N */
6275 if (zfs_arc_shrink_shift) {
6276 arc_shrink_shift = zfs_arc_shrink_shift;
6277 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
6278 }
6279
728d6ae9
BB
6280 /* Valid range: 1 - N */
6281 if (zfs_arc_p_min_shift)
6282 arc_p_min_shift = zfs_arc_p_min_shift;
6283
ca67b33a
MA
6284 /* Valid range: 1 - N ticks */
6285 if (zfs_arc_min_prefetch_lifespan)
6286 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
11f552fa 6287
7e8bddd0
BB
6288 /* Valid range: 0 - 100 */
6289 if ((zfs_arc_lotsfree_percent >= 0) &&
6290 (zfs_arc_lotsfree_percent <= 100))
6291 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
6292
11f552fa
BB
6293 /* Valid range: 0 - <all physical memory> */
6294 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
9edb3695 6295 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7e8bddd0 6296
ca67b33a
MA
6297}
6298
d3c2ae1c
GW
6299static void
6300arc_state_init(void)
6301{
6302 arc_anon = &ARC_anon;
6303 arc_mru = &ARC_mru;
6304 arc_mru_ghost = &ARC_mru_ghost;
6305 arc_mfu = &ARC_mfu;
6306 arc_mfu_ghost = &ARC_mfu_ghost;
6307 arc_l2c_only = &ARC_l2c_only;
6308
64fc7762
MA
6309 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6310 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6311 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6312 arc_state_multilist_index_func);
64fc7762
MA
6313 arc_mru->arcs_list[ARC_BUFC_DATA] =
6314 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6315 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6316 arc_state_multilist_index_func);
64fc7762
MA
6317 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6318 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6319 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6320 arc_state_multilist_index_func);
64fc7762
MA
6321 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6322 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6323 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6324 arc_state_multilist_index_func);
64fc7762
MA
6325 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6326 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6327 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6328 arc_state_multilist_index_func);
64fc7762
MA
6329 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6330 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6331 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6332 arc_state_multilist_index_func);
64fc7762
MA
6333 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6334 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6335 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6336 arc_state_multilist_index_func);
64fc7762
MA
6337 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6338 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6339 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6340 arc_state_multilist_index_func);
64fc7762
MA
6341 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6342 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6343 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6344 arc_state_multilist_index_func);
64fc7762
MA
6345 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6346 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 6347 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 6348 arc_state_multilist_index_func);
d3c2ae1c
GW
6349
6350 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6351 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6352 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6353 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6354 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6355 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6356 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6357 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6358 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6359 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6360 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6361 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6362
6363 refcount_create(&arc_anon->arcs_size);
6364 refcount_create(&arc_mru->arcs_size);
6365 refcount_create(&arc_mru_ghost->arcs_size);
6366 refcount_create(&arc_mfu->arcs_size);
6367 refcount_create(&arc_mfu_ghost->arcs_size);
6368 refcount_create(&arc_l2c_only->arcs_size);
6369
6370 arc_anon->arcs_state = ARC_STATE_ANON;
6371 arc_mru->arcs_state = ARC_STATE_MRU;
6372 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
6373 arc_mfu->arcs_state = ARC_STATE_MFU;
6374 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
6375 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
6376}
6377
6378static void
6379arc_state_fini(void)
6380{
6381 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6382 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6383 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6384 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6385 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6386 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6387 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6388 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6389 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6390 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6391 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6392 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6393
6394 refcount_destroy(&arc_anon->arcs_size);
6395 refcount_destroy(&arc_mru->arcs_size);
6396 refcount_destroy(&arc_mru_ghost->arcs_size);
6397 refcount_destroy(&arc_mfu->arcs_size);
6398 refcount_destroy(&arc_mfu_ghost->arcs_size);
6399 refcount_destroy(&arc_l2c_only->arcs_size);
6400
64fc7762
MA
6401 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6402 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6403 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6404 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6405 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6406 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6407 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6408 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6409 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6410 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
d3c2ae1c
GW
6411}
6412
6413uint64_t
6414arc_max_bytes(void)
6415{
6416 return (arc_c_max);
6417}
6418
34dc7c2f
BB
6419void
6420arc_init(void)
6421{
9edb3695 6422 uint64_t percent, allmem = arc_all_memory();
ca67b33a 6423
ca0bf58d
PS
6424 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6425 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6426 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6427
34dc7c2f 6428 /* Convert seconds to clock ticks */
ca67b33a 6429 arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f 6430
34dc7c2f 6431#ifdef _KERNEL
7cb67b45
BB
6432 /*
6433 * Register a shrinker to support synchronous (direct) memory
6434 * reclaim from the arc. This is done to prevent kswapd from
6435 * swapping out pages when it is preferable to shrink the arc.
6436 */
6437 spl_register_shrinker(&arc_shrinker);
11f552fa
BB
6438
6439 /* Set to 1/64 of all memory or a minimum of 512K */
9edb3695 6440 arc_sys_free = MAX(allmem / 64, (512 * 1024));
11f552fa 6441 arc_need_free = 0;
34dc7c2f
BB
6442#endif
6443
0a1f8cd9
TC
6444 /* Set max to 1/2 of all memory */
6445 arc_c_max = allmem / 2;
6446
ab5cbbd1
BB
6447 /*
6448 * In userland, there's only the memory pressure that we artificially
6449 * create (see arc_available_memory()). Don't let arc_c get too
6450 * small, because it can cause transactions to be larger than
6451 * arc_c, causing arc_tempreserve_space() to fail.
6452 */
6453#ifndef _KERNEL
0a1f8cd9 6454 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1 6455#else
121b3cae 6456 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
ab5cbbd1
BB
6457#endif
6458
34dc7c2f
BB
6459 arc_c = arc_c_max;
6460 arc_p = (arc_c >> 1);
d3c2ae1c 6461 arc_size = 0;
34dc7c2f 6462
ca67b33a
MA
6463 /* Set min to 1/2 of arc_c_min */
6464 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
6465 /* Initialize maximum observed usage to zero */
1834f2d8 6466 arc_meta_max = 0;
9907cc1c
G
6467 /*
6468 * Set arc_meta_limit to a percent of arc_c_max with a floor of
6469 * arc_meta_min, and a ceiling of arc_c_max.
6470 */
6471 percent = MIN(zfs_arc_meta_limit_percent, 100);
6472 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6473 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6474 arc_dnode_limit = (percent * arc_meta_limit) / 100;
34dc7c2f 6475
ca67b33a
MA
6476 /* Apply user specified tunings */
6477 arc_tuning_update();
c52fca13 6478
34dc7c2f
BB
6479 /* if kmem_flags are set, lets try to use less memory */
6480 if (kmem_debugging())
6481 arc_c = arc_c / 2;
6482 if (arc_c < arc_c_min)
6483 arc_c = arc_c_min;
6484
d3c2ae1c 6485 arc_state_init();
34dc7c2f
BB
6486 buf_init();
6487
ab26409d
BB
6488 list_create(&arc_prune_list, sizeof (arc_prune_t),
6489 offsetof(arc_prune_t, p_node));
ab26409d 6490 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 6491
1229323d 6492 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
aa9af22c 6493 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 6494
d3c2ae1c
GW
6495 arc_reclaim_thread_exit = B_FALSE;
6496
34dc7c2f
BB
6497 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6498 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6499
6500 if (arc_ksp != NULL) {
6501 arc_ksp->ks_data = &arc_stats;
13be560d 6502 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
6503 kstat_install(arc_ksp);
6504 }
6505
ca67b33a 6506 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
1229323d 6507 TS_RUN, defclsyspri);
34dc7c2f 6508
d3c2ae1c 6509 arc_dead = B_FALSE;
b128c09f 6510 arc_warm = B_FALSE;
34dc7c2f 6511
e8b96c60
MA
6512 /*
6513 * Calculate maximum amount of dirty data per pool.
6514 *
6515 * If it has been set by a module parameter, take that.
6516 * Otherwise, use a percentage of physical memory defined by
6517 * zfs_dirty_data_max_percent (default 10%) with a cap at
e99932f7 6518 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
e8b96c60
MA
6519 */
6520 if (zfs_dirty_data_max_max == 0)
e99932f7
BB
6521 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
6522 allmem * zfs_dirty_data_max_max_percent / 100);
e8b96c60
MA
6523
6524 if (zfs_dirty_data_max == 0) {
9edb3695 6525 zfs_dirty_data_max = allmem *
e8b96c60
MA
6526 zfs_dirty_data_max_percent / 100;
6527 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6528 zfs_dirty_data_max_max);
6529 }
34dc7c2f
BB
6530}
6531
6532void
6533arc_fini(void)
6534{
ab26409d
BB
6535 arc_prune_t *p;
6536
7cb67b45
BB
6537#ifdef _KERNEL
6538 spl_unregister_shrinker(&arc_shrinker);
6539#endif /* _KERNEL */
6540
ca0bf58d 6541 mutex_enter(&arc_reclaim_lock);
d3c2ae1c 6542 arc_reclaim_thread_exit = B_TRUE;
ca0bf58d
PS
6543 /*
6544 * The reclaim thread will set arc_reclaim_thread_exit back to
d3c2ae1c 6545 * B_FALSE when it is finished exiting; we're waiting for that.
ca0bf58d
PS
6546 */
6547 while (arc_reclaim_thread_exit) {
6548 cv_signal(&arc_reclaim_thread_cv);
6549 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6550 }
6551 mutex_exit(&arc_reclaim_lock);
6552
d3c2ae1c
GW
6553 /* Use B_TRUE to ensure *all* buffers are evicted */
6554 arc_flush(NULL, B_TRUE);
34dc7c2f 6555
d3c2ae1c 6556 arc_dead = B_TRUE;
34dc7c2f
BB
6557
6558 if (arc_ksp != NULL) {
6559 kstat_delete(arc_ksp);
6560 arc_ksp = NULL;
6561 }
6562
f6046738
BB
6563 taskq_wait(arc_prune_taskq);
6564 taskq_destroy(arc_prune_taskq);
6565
ab26409d
BB
6566 mutex_enter(&arc_prune_mtx);
6567 while ((p = list_head(&arc_prune_list)) != NULL) {
6568 list_remove(&arc_prune_list, p);
6569 refcount_remove(&p->p_refcnt, &arc_prune_list);
6570 refcount_destroy(&p->p_refcnt);
6571 kmem_free(p, sizeof (*p));
6572 }
6573 mutex_exit(&arc_prune_mtx);
6574
6575 list_destroy(&arc_prune_list);
6576 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
6577 mutex_destroy(&arc_reclaim_lock);
6578 cv_destroy(&arc_reclaim_thread_cv);
6579 cv_destroy(&arc_reclaim_waiters_cv);
6580
d3c2ae1c 6581 arc_state_fini();
34dc7c2f 6582 buf_fini();
9babb374 6583
b9541d6b 6584 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
6585}
6586
6587/*
6588 * Level 2 ARC
6589 *
6590 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6591 * It uses dedicated storage devices to hold cached data, which are populated
6592 * using large infrequent writes. The main role of this cache is to boost
6593 * the performance of random read workloads. The intended L2ARC devices
6594 * include short-stroked disks, solid state disks, and other media with
6595 * substantially faster read latency than disk.
6596 *
6597 * +-----------------------+
6598 * | ARC |
6599 * +-----------------------+
6600 * | ^ ^
6601 * | | |
6602 * l2arc_feed_thread() arc_read()
6603 * | | |
6604 * | l2arc read |
6605 * V | |
6606 * +---------------+ |
6607 * | L2ARC | |
6608 * +---------------+ |
6609 * | ^ |
6610 * l2arc_write() | |
6611 * | | |
6612 * V | |
6613 * +-------+ +-------+
6614 * | vdev | | vdev |
6615 * | cache | | cache |
6616 * +-------+ +-------+
6617 * +=========+ .-----.
6618 * : L2ARC : |-_____-|
6619 * : devices : | Disks |
6620 * +=========+ `-_____-'
6621 *
6622 * Read requests are satisfied from the following sources, in order:
6623 *
6624 * 1) ARC
6625 * 2) vdev cache of L2ARC devices
6626 * 3) L2ARC devices
6627 * 4) vdev cache of disks
6628 * 5) disks
6629 *
6630 * Some L2ARC device types exhibit extremely slow write performance.
6631 * To accommodate for this there are some significant differences between
6632 * the L2ARC and traditional cache design:
6633 *
6634 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6635 * the ARC behave as usual, freeing buffers and placing headers on ghost
6636 * lists. The ARC does not send buffers to the L2ARC during eviction as
6637 * this would add inflated write latencies for all ARC memory pressure.
6638 *
6639 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6640 * It does this by periodically scanning buffers from the eviction-end of
6641 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
6642 * not already there. It scans until a headroom of buffers is satisfied,
6643 * which itself is a buffer for ARC eviction. If a compressible buffer is
6644 * found during scanning and selected for writing to an L2ARC device, we
6645 * temporarily boost scanning headroom during the next scan cycle to make
6646 * sure we adapt to compression effects (which might significantly reduce
6647 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
6648 * l2arc_feed_thread(), illustrated below; example sizes are included to
6649 * provide a better sense of ratio than this diagram:
6650 *
6651 * head --> tail
6652 * +---------------------+----------+
6653 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6654 * +---------------------+----------+ | o L2ARC eligible
6655 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6656 * +---------------------+----------+ |
6657 * 15.9 Gbytes ^ 32 Mbytes |
6658 * headroom |
6659 * l2arc_feed_thread()
6660 * |
6661 * l2arc write hand <--[oooo]--'
6662 * | 8 Mbyte
6663 * | write max
6664 * V
6665 * +==============================+
6666 * L2ARC dev |####|#|###|###| |####| ... |
6667 * +==============================+
6668 * 32 Gbytes
6669 *
6670 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6671 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6672 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6673 * safe to say that this is an uncommon case, since buffers at the end of
6674 * the ARC lists have moved there due to inactivity.
6675 *
6676 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6677 * then the L2ARC simply misses copying some buffers. This serves as a
6678 * pressure valve to prevent heavy read workloads from both stalling the ARC
6679 * with waits and clogging the L2ARC with writes. This also helps prevent
6680 * the potential for the L2ARC to churn if it attempts to cache content too
6681 * quickly, such as during backups of the entire pool.
6682 *
b128c09f
BB
6683 * 5. After system boot and before the ARC has filled main memory, there are
6684 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6685 * lists can remain mostly static. Instead of searching from tail of these
6686 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6687 * for eligible buffers, greatly increasing its chance of finding them.
6688 *
6689 * The L2ARC device write speed is also boosted during this time so that
6690 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6691 * there are no L2ARC reads, and no fear of degrading read performance
6692 * through increased writes.
6693 *
6694 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
6695 * the vdev queue can aggregate them into larger and fewer writes. Each
6696 * device is written to in a rotor fashion, sweeping writes through
6697 * available space then repeating.
6698 *
b128c09f 6699 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
6700 * write buffers back to disk based storage.
6701 *
b128c09f 6702 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
6703 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6704 *
6705 * The performance of the L2ARC can be tweaked by a number of tunables, which
6706 * may be necessary for different workloads:
6707 *
6708 * l2arc_write_max max write bytes per interval
b128c09f 6709 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
6710 * l2arc_noprefetch skip caching prefetched buffers
6711 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
6712 * l2arc_headroom_boost when we find compressed buffers during ARC
6713 * scanning, we multiply headroom by this
6714 * percentage factor for the next scan cycle,
6715 * since more compressed buffers are likely to
6716 * be present
34dc7c2f
BB
6717 * l2arc_feed_secs seconds between L2ARC writing
6718 *
6719 * Tunables may be removed or added as future performance improvements are
6720 * integrated, and also may become zpool properties.
d164b209
BB
6721 *
6722 * There are three key functions that control how the L2ARC warms up:
6723 *
6724 * l2arc_write_eligible() check if a buffer is eligible to cache
6725 * l2arc_write_size() calculate how much to write
6726 * l2arc_write_interval() calculate sleep delay between writes
6727 *
6728 * These three functions determine what to write, how much, and how quickly
6729 * to send writes.
34dc7c2f
BB
6730 */
6731
d164b209 6732static boolean_t
2a432414 6733l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
6734{
6735 /*
6736 * A buffer is *not* eligible for the L2ARC if it:
6737 * 1. belongs to a different spa.
428870ff
BB
6738 * 2. is already cached on the L2ARC.
6739 * 3. has an I/O in progress (it may be an incomplete read).
6740 * 4. is flagged not eligible (zfs property).
d164b209 6741 */
b9541d6b 6742 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 6743 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
6744 return (B_FALSE);
6745
6746 return (B_TRUE);
6747}
6748
6749static uint64_t
3a17a7a9 6750l2arc_write_size(void)
d164b209
BB
6751{
6752 uint64_t size;
6753
3a17a7a9
SK
6754 /*
6755 * Make sure our globals have meaningful values in case the user
6756 * altered them.
6757 */
6758 size = l2arc_write_max;
6759 if (size == 0) {
6760 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6761 "be greater than zero, resetting it to the default (%d)",
6762 L2ARC_WRITE_SIZE);
6763 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6764 }
d164b209
BB
6765
6766 if (arc_warm == B_FALSE)
3a17a7a9 6767 size += l2arc_write_boost;
d164b209
BB
6768
6769 return (size);
6770
6771}
6772
6773static clock_t
6774l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6775{
428870ff 6776 clock_t interval, next, now;
d164b209
BB
6777
6778 /*
6779 * If the ARC lists are busy, increase our write rate; if the
6780 * lists are stale, idle back. This is achieved by checking
6781 * how much we previously wrote - if it was more than half of
6782 * what we wanted, schedule the next write much sooner.
6783 */
6784 if (l2arc_feed_again && wrote > (wanted / 2))
6785 interval = (hz * l2arc_feed_min_ms) / 1000;
6786 else
6787 interval = hz * l2arc_feed_secs;
6788
428870ff
BB
6789 now = ddi_get_lbolt();
6790 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
6791
6792 return (next);
6793}
6794
34dc7c2f
BB
6795/*
6796 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 6797 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
6798 */
6799static l2arc_dev_t *
6800l2arc_dev_get_next(void)
6801{
b128c09f 6802 l2arc_dev_t *first, *next = NULL;
34dc7c2f 6803
b128c09f
BB
6804 /*
6805 * Lock out the removal of spas (spa_namespace_lock), then removal
6806 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6807 * both locks will be dropped and a spa config lock held instead.
6808 */
6809 mutex_enter(&spa_namespace_lock);
6810 mutex_enter(&l2arc_dev_mtx);
6811
6812 /* if there are no vdevs, there is nothing to do */
6813 if (l2arc_ndev == 0)
6814 goto out;
6815
6816 first = NULL;
6817 next = l2arc_dev_last;
6818 do {
6819 /* loop around the list looking for a non-faulted vdev */
6820 if (next == NULL) {
34dc7c2f 6821 next = list_head(l2arc_dev_list);
b128c09f
BB
6822 } else {
6823 next = list_next(l2arc_dev_list, next);
6824 if (next == NULL)
6825 next = list_head(l2arc_dev_list);
6826 }
6827
6828 /* if we have come back to the start, bail out */
6829 if (first == NULL)
6830 first = next;
6831 else if (next == first)
6832 break;
6833
6834 } while (vdev_is_dead(next->l2ad_vdev));
6835
6836 /* if we were unable to find any usable vdevs, return NULL */
6837 if (vdev_is_dead(next->l2ad_vdev))
6838 next = NULL;
34dc7c2f
BB
6839
6840 l2arc_dev_last = next;
6841
b128c09f
BB
6842out:
6843 mutex_exit(&l2arc_dev_mtx);
6844
6845 /*
6846 * Grab the config lock to prevent the 'next' device from being
6847 * removed while we are writing to it.
6848 */
6849 if (next != NULL)
6850 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
6851 mutex_exit(&spa_namespace_lock);
6852
34dc7c2f
BB
6853 return (next);
6854}
6855
b128c09f
BB
6856/*
6857 * Free buffers that were tagged for destruction.
6858 */
6859static void
0bc8fd78 6860l2arc_do_free_on_write(void)
b128c09f
BB
6861{
6862 list_t *buflist;
6863 l2arc_data_free_t *df, *df_prev;
6864
6865 mutex_enter(&l2arc_free_on_write_mtx);
6866 buflist = l2arc_free_on_write;
6867
6868 for (df = list_tail(buflist); df; df = df_prev) {
6869 df_prev = list_prev(buflist, df);
a6255b7f
DQ
6870 ASSERT3P(df->l2df_abd, !=, NULL);
6871 abd_free(df->l2df_abd);
b128c09f
BB
6872 list_remove(buflist, df);
6873 kmem_free(df, sizeof (l2arc_data_free_t));
6874 }
6875
6876 mutex_exit(&l2arc_free_on_write_mtx);
6877}
6878
34dc7c2f
BB
6879/*
6880 * A write to a cache device has completed. Update all headers to allow
6881 * reads from these buffers to begin.
6882 */
6883static void
6884l2arc_write_done(zio_t *zio)
6885{
6886 l2arc_write_callback_t *cb;
6887 l2arc_dev_t *dev;
6888 list_t *buflist;
2a432414 6889 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 6890 kmutex_t *hash_lock;
3bec585e 6891 int64_t bytes_dropped = 0;
34dc7c2f
BB
6892
6893 cb = zio->io_private;
d3c2ae1c 6894 ASSERT3P(cb, !=, NULL);
34dc7c2f 6895 dev = cb->l2wcb_dev;
d3c2ae1c 6896 ASSERT3P(dev, !=, NULL);
34dc7c2f 6897 head = cb->l2wcb_head;
d3c2ae1c 6898 ASSERT3P(head, !=, NULL);
b9541d6b 6899 buflist = &dev->l2ad_buflist;
d3c2ae1c 6900 ASSERT3P(buflist, !=, NULL);
34dc7c2f
BB
6901 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
6902 l2arc_write_callback_t *, cb);
6903
6904 if (zio->io_error != 0)
6905 ARCSTAT_BUMP(arcstat_l2_writes_error);
6906
34dc7c2f
BB
6907 /*
6908 * All writes completed, or an error was hit.
6909 */
ca0bf58d
PS
6910top:
6911 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
6912 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
6913 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 6914
2a432414 6915 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
6916
6917 /*
6918 * We cannot use mutex_enter or else we can deadlock
6919 * with l2arc_write_buffers (due to swapping the order
6920 * the hash lock and l2ad_mtx are taken).
6921 */
34dc7c2f
BB
6922 if (!mutex_tryenter(hash_lock)) {
6923 /*
ca0bf58d
PS
6924 * Missed the hash lock. We must retry so we
6925 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 6926 */
ca0bf58d
PS
6927 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
6928
6929 /*
6930 * We don't want to rescan the headers we've
6931 * already marked as having been written out, so
6932 * we reinsert the head node so we can pick up
6933 * where we left off.
6934 */
6935 list_remove(buflist, head);
6936 list_insert_after(buflist, hdr, head);
6937
6938 mutex_exit(&dev->l2ad_mtx);
6939
6940 /*
6941 * We wait for the hash lock to become available
6942 * to try and prevent busy waiting, and increase
6943 * the chance we'll be able to acquire the lock
6944 * the next time around.
6945 */
6946 mutex_enter(hash_lock);
6947 mutex_exit(hash_lock);
6948 goto top;
34dc7c2f
BB
6949 }
6950
b9541d6b 6951 /*
ca0bf58d
PS
6952 * We could not have been moved into the arc_l2c_only
6953 * state while in-flight due to our ARC_FLAG_L2_WRITING
6954 * bit being set. Let's just ensure that's being enforced.
6955 */
6956 ASSERT(HDR_HAS_L1HDR(hdr));
6957
8a09d5fd
BB
6958 /*
6959 * Skipped - drop L2ARC entry and mark the header as no
6960 * longer L2 eligibile.
6961 */
d3c2ae1c 6962 if (zio->io_error != 0) {
34dc7c2f 6963 /*
b128c09f 6964 * Error - drop L2ARC entry.
34dc7c2f 6965 */
2a432414 6966 list_remove(buflist, hdr);
d3c2ae1c 6967 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
b9541d6b 6968
d3c2ae1c
GW
6969 ARCSTAT_INCR(arcstat_l2_asize, -arc_hdr_size(hdr));
6970 ARCSTAT_INCR(arcstat_l2_size, -HDR_GET_LSIZE(hdr));
d962d5da 6971
d3c2ae1c 6972 bytes_dropped += arc_hdr_size(hdr);
d962d5da 6973 (void) refcount_remove_many(&dev->l2ad_alloc,
d3c2ae1c 6974 arc_hdr_size(hdr), hdr);
34dc7c2f
BB
6975 }
6976
6977 /*
ca0bf58d
PS
6978 * Allow ARC to begin reads and ghost list evictions to
6979 * this L2ARC entry.
34dc7c2f 6980 */
d3c2ae1c 6981 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
34dc7c2f
BB
6982
6983 mutex_exit(hash_lock);
6984 }
6985
6986 atomic_inc_64(&l2arc_writes_done);
6987 list_remove(buflist, head);
b9541d6b
CW
6988 ASSERT(!HDR_HAS_L1HDR(head));
6989 kmem_cache_free(hdr_l2only_cache, head);
6990 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6991
3bec585e
SK
6992 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6993
b128c09f 6994 l2arc_do_free_on_write();
34dc7c2f
BB
6995
6996 kmem_free(cb, sizeof (l2arc_write_callback_t));
6997}
6998
6999/*
7000 * A read to a cache device completed. Validate buffer contents before
7001 * handing over to the regular ARC routines.
7002 */
7003static void
7004l2arc_read_done(zio_t *zio)
7005{
7006 l2arc_read_callback_t *cb;
7007 arc_buf_hdr_t *hdr;
34dc7c2f 7008 kmutex_t *hash_lock;
d3c2ae1c 7009 boolean_t valid_cksum;
b128c09f 7010
d3c2ae1c 7011 ASSERT3P(zio->io_vd, !=, NULL);
b128c09f
BB
7012 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7013
7014 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
7015
7016 cb = zio->io_private;
d3c2ae1c
GW
7017 ASSERT3P(cb, !=, NULL);
7018 hdr = cb->l2rcb_hdr;
7019 ASSERT3P(hdr, !=, NULL);
34dc7c2f 7020
d3c2ae1c 7021 hash_lock = HDR_LOCK(hdr);
34dc7c2f 7022 mutex_enter(hash_lock);
428870ff 7023 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 7024
a6255b7f 7025 ASSERT3P(zio->io_abd, !=, NULL);
3a17a7a9 7026
34dc7c2f
BB
7027 /*
7028 * Check this survived the L2ARC journey.
7029 */
a6255b7f 7030 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
d3c2ae1c
GW
7031 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
7032 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
7033
7034 valid_cksum = arc_cksum_is_equal(hdr, zio);
7035 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
34dc7c2f 7036 mutex_exit(hash_lock);
d3c2ae1c 7037 zio->io_private = hdr;
34dc7c2f
BB
7038 arc_read_done(zio);
7039 } else {
7040 mutex_exit(hash_lock);
7041 /*
7042 * Buffer didn't survive caching. Increment stats and
7043 * reissue to the original storage device.
7044 */
b128c09f 7045 if (zio->io_error != 0) {
34dc7c2f 7046 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 7047 } else {
2e528b49 7048 zio->io_error = SET_ERROR(EIO);
b128c09f 7049 }
d3c2ae1c 7050 if (!valid_cksum)
34dc7c2f
BB
7051 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7052
34dc7c2f 7053 /*
b128c09f
BB
7054 * If there's no waiter, issue an async i/o to the primary
7055 * storage now. If there *is* a waiter, the caller must
7056 * issue the i/o in a context where it's OK to block.
34dc7c2f 7057 */
d164b209
BB
7058 if (zio->io_waiter == NULL) {
7059 zio_t *pio = zio_unique_parent(zio);
7060
7061 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7062
d3c2ae1c 7063 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
a6255b7f 7064 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
d3c2ae1c
GW
7065 hdr, zio->io_priority, cb->l2rcb_flags,
7066 &cb->l2rcb_zb));
d164b209 7067 }
34dc7c2f
BB
7068 }
7069
7070 kmem_free(cb, sizeof (l2arc_read_callback_t));
7071}
7072
7073/*
7074 * This is the list priority from which the L2ARC will search for pages to
7075 * cache. This is used within loops (0..3) to cycle through lists in the
7076 * desired order. This order can have a significant effect on cache
7077 * performance.
7078 *
7079 * Currently the metadata lists are hit first, MFU then MRU, followed by
7080 * the data lists. This function returns a locked list, and also returns
7081 * the lock pointer.
7082 */
ca0bf58d
PS
7083static multilist_sublist_t *
7084l2arc_sublist_lock(int list_num)
34dc7c2f 7085{
ca0bf58d
PS
7086 multilist_t *ml = NULL;
7087 unsigned int idx;
34dc7c2f 7088
4aafab91 7089 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
34dc7c2f
BB
7090
7091 switch (list_num) {
7092 case 0:
64fc7762 7093 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
7094 break;
7095 case 1:
64fc7762 7096 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
7097 break;
7098 case 2:
64fc7762 7099 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
7100 break;
7101 case 3:
64fc7762 7102 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f 7103 break;
4aafab91
G
7104 default:
7105 return (NULL);
34dc7c2f
BB
7106 }
7107
ca0bf58d
PS
7108 /*
7109 * Return a randomly-selected sublist. This is acceptable
7110 * because the caller feeds only a little bit of data for each
7111 * call (8MB). Subsequent calls will result in different
7112 * sublists being selected.
7113 */
7114 idx = multilist_get_random_index(ml);
7115 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
7116}
7117
7118/*
7119 * Evict buffers from the device write hand to the distance specified in
7120 * bytes. This distance may span populated buffers, it may span nothing.
7121 * This is clearing a region on the L2ARC device ready for writing.
7122 * If the 'all' boolean is set, every buffer is evicted.
7123 */
7124static void
7125l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7126{
7127 list_t *buflist;
2a432414 7128 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
7129 kmutex_t *hash_lock;
7130 uint64_t taddr;
7131
b9541d6b 7132 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
7133
7134 if (!all && dev->l2ad_first) {
7135 /*
7136 * This is the first sweep through the device. There is
7137 * nothing to evict.
7138 */
7139 return;
7140 }
7141
b128c09f 7142 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
7143 /*
7144 * When nearing the end of the device, evict to the end
7145 * before the device write hand jumps to the start.
7146 */
7147 taddr = dev->l2ad_end;
7148 } else {
7149 taddr = dev->l2ad_hand + distance;
7150 }
7151 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7152 uint64_t, taddr, boolean_t, all);
7153
7154top:
b9541d6b 7155 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
7156 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7157 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 7158
2a432414 7159 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
7160
7161 /*
7162 * We cannot use mutex_enter or else we can deadlock
7163 * with l2arc_write_buffers (due to swapping the order
7164 * the hash lock and l2ad_mtx are taken).
7165 */
34dc7c2f
BB
7166 if (!mutex_tryenter(hash_lock)) {
7167 /*
7168 * Missed the hash lock. Retry.
7169 */
7170 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 7171 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
7172 mutex_enter(hash_lock);
7173 mutex_exit(hash_lock);
7174 goto top;
7175 }
7176
2a432414 7177 if (HDR_L2_WRITE_HEAD(hdr)) {
34dc7c2f
BB
7178 /*
7179 * We hit a write head node. Leave it for
7180 * l2arc_write_done().
7181 */
2a432414 7182 list_remove(buflist, hdr);
34dc7c2f
BB
7183 mutex_exit(hash_lock);
7184 continue;
7185 }
7186
b9541d6b
CW
7187 if (!all && HDR_HAS_L2HDR(hdr) &&
7188 (hdr->b_l2hdr.b_daddr > taddr ||
7189 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
7190 /*
7191 * We've evicted to the target address,
7192 * or the end of the device.
7193 */
7194 mutex_exit(hash_lock);
7195 break;
7196 }
7197
b9541d6b
CW
7198 ASSERT(HDR_HAS_L2HDR(hdr));
7199 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 7200 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
7201 /*
7202 * This doesn't exist in the ARC. Destroy.
7203 * arc_hdr_destroy() will call list_remove()
7204 * and decrement arcstat_l2_size.
7205 */
2a432414
GW
7206 arc_change_state(arc_anon, hdr, hash_lock);
7207 arc_hdr_destroy(hdr);
34dc7c2f 7208 } else {
b9541d6b
CW
7209 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7210 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
7211 /*
7212 * Invalidate issued or about to be issued
7213 * reads, since we may be about to write
7214 * over this location.
7215 */
2a432414 7216 if (HDR_L2_READING(hdr)) {
b128c09f 7217 ARCSTAT_BUMP(arcstat_l2_evict_reading);
d3c2ae1c 7218 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
b128c09f
BB
7219 }
7220
ca0bf58d
PS
7221 /* Ensure this header has finished being written */
7222 ASSERT(!HDR_L2_WRITING(hdr));
d962d5da
PS
7223
7224 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
7225 }
7226 mutex_exit(hash_lock);
7227 }
b9541d6b 7228 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
7229}
7230
7231/*
7232 * Find and write ARC buffers to the L2ARC device.
7233 *
2a432414 7234 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 7235 * for reading until they have completed writing.
3a17a7a9
SK
7236 * The headroom_boost is an in-out parameter used to maintain headroom boost
7237 * state between calls to this function.
7238 *
7239 * Returns the number of bytes actually written (which may be smaller than
7240 * the delta by which the device hand has changed due to alignment).
34dc7c2f 7241 */
d164b209 7242static uint64_t
d3c2ae1c 7243l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f 7244{
2a432414 7245 arc_buf_hdr_t *hdr, *hdr_prev, *head;
d3c2ae1c 7246 uint64_t write_asize, write_psize, write_sz, headroom;
3a17a7a9 7247 boolean_t full;
34dc7c2f
BB
7248 l2arc_write_callback_t *cb;
7249 zio_t *pio, *wzio;
3541dc6d 7250 uint64_t guid = spa_load_guid(spa);
d6320ddb 7251 int try;
34dc7c2f 7252
d3c2ae1c 7253 ASSERT3P(dev->l2ad_vdev, !=, NULL);
3a17a7a9 7254
34dc7c2f 7255 pio = NULL;
d3c2ae1c 7256 write_sz = write_asize = write_psize = 0;
34dc7c2f 7257 full = B_FALSE;
b9541d6b 7258 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
d3c2ae1c 7259 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
3a17a7a9 7260
34dc7c2f
BB
7261 /*
7262 * Copy buffers for L2ARC writing.
7263 */
4aafab91 7264 for (try = 0; try < L2ARC_FEED_TYPES; try++) {
ca0bf58d 7265 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
7266 uint64_t passed_sz = 0;
7267
4aafab91
G
7268 VERIFY3P(mls, !=, NULL);
7269
b128c09f
BB
7270 /*
7271 * L2ARC fast warmup.
7272 *
7273 * Until the ARC is warm and starts to evict, read from the
7274 * head of the ARC lists rather than the tail.
7275 */
b128c09f 7276 if (arc_warm == B_FALSE)
ca0bf58d 7277 hdr = multilist_sublist_head(mls);
b128c09f 7278 else
ca0bf58d 7279 hdr = multilist_sublist_tail(mls);
b128c09f 7280
3a17a7a9 7281 headroom = target_sz * l2arc_headroom;
d3c2ae1c 7282 if (zfs_compressed_arc_enabled)
3a17a7a9
SK
7283 headroom = (headroom * l2arc_headroom_boost) / 100;
7284
2a432414 7285 for (; hdr; hdr = hdr_prev) {
3a17a7a9 7286 kmutex_t *hash_lock;
d3c2ae1c 7287 uint64_t asize, size;
a6255b7f 7288 abd_t *to_write;
3a17a7a9 7289
b128c09f 7290 if (arc_warm == B_FALSE)
ca0bf58d 7291 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 7292 else
ca0bf58d 7293 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 7294
2a432414 7295 hash_lock = HDR_LOCK(hdr);
3a17a7a9 7296 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
7297 /*
7298 * Skip this buffer rather than waiting.
7299 */
7300 continue;
7301 }
7302
d3c2ae1c 7303 passed_sz += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
7304 if (passed_sz > headroom) {
7305 /*
7306 * Searched too far.
7307 */
7308 mutex_exit(hash_lock);
7309 break;
7310 }
7311
2a432414 7312 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
7313 mutex_exit(hash_lock);
7314 continue;
7315 }
7316
d3c2ae1c 7317 if ((write_asize + HDR_GET_LSIZE(hdr)) > target_sz) {
34dc7c2f
BB
7318 full = B_TRUE;
7319 mutex_exit(hash_lock);
7320 break;
7321 }
7322
34dc7c2f
BB
7323 if (pio == NULL) {
7324 /*
7325 * Insert a dummy header on the buflist so
7326 * l2arc_write_done() can find where the
7327 * write buffers begin without searching.
7328 */
ca0bf58d 7329 mutex_enter(&dev->l2ad_mtx);
b9541d6b 7330 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 7331 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 7332
96c080cb
BB
7333 cb = kmem_alloc(
7334 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
7335 cb->l2wcb_dev = dev;
7336 cb->l2wcb_head = head;
7337 pio = zio_root(spa, l2arc_write_done, cb,
7338 ZIO_FLAG_CANFAIL);
7339 }
7340
b9541d6b 7341 hdr->b_l2hdr.b_dev = dev;
b9541d6b 7342 hdr->b_l2hdr.b_hits = 0;
3a17a7a9 7343
d3c2ae1c
GW
7344 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7345 arc_hdr_set_flags(hdr,
7346 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
3a17a7a9 7347
ca0bf58d 7348 mutex_enter(&dev->l2ad_mtx);
b9541d6b 7349 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 7350 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
7351
7352 /*
d3c2ae1c
GW
7353 * We rely on the L1 portion of the header below, so
7354 * it's invalid for this header to have been evicted out
7355 * of the ghost cache, prior to being written out. The
7356 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
34dc7c2f 7357 */
d3c2ae1c 7358 ASSERT(HDR_HAS_L1HDR(hdr));
3a17a7a9 7359
d3c2ae1c 7360 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
a6255b7f 7361 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c
GW
7362 ASSERT3U(arc_hdr_size(hdr), >, 0);
7363 size = arc_hdr_size(hdr);
d962d5da 7364
d3c2ae1c 7365 (void) refcount_add_many(&dev->l2ad_alloc, size, hdr);
3a17a7a9 7366
8a09d5fd 7367 /*
d3c2ae1c
GW
7368 * Normally the L2ARC can use the hdr's data, but if
7369 * we're sharing data between the hdr and one of its
7370 * bufs, L2ARC needs its own copy of the data so that
7371 * the ZIO below can't race with the buf consumer. To
7372 * ensure that this copy will be available for the
7373 * lifetime of the ZIO and be cleaned up afterwards, we
7374 * add it to the l2arc_free_on_write queue.
8a09d5fd 7375 */
d3c2ae1c 7376 if (!HDR_SHARED_DATA(hdr)) {
a6255b7f 7377 to_write = hdr->b_l1hdr.b_pabd;
d3c2ae1c 7378 } else {
a6255b7f
DQ
7379 to_write = abd_alloc_for_io(size,
7380 HDR_ISTYPE_METADATA(hdr));
7381 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
7382 l2arc_free_abd_on_write(to_write, size,
7383 arc_buf_type(hdr));
d3c2ae1c 7384 }
34dc7c2f 7385 wzio = zio_write_phys(pio, dev->l2ad_vdev,
d3c2ae1c
GW
7386 hdr->b_l2hdr.b_daddr, size, to_write,
7387 ZIO_CHECKSUM_OFF, NULL, hdr,
7388 ZIO_PRIORITY_ASYNC_WRITE,
34dc7c2f
BB
7389 ZIO_FLAG_CANFAIL, B_FALSE);
7390
d3c2ae1c 7391 write_sz += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
7392 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7393 zio_t *, wzio);
d962d5da 7394
d3c2ae1c 7395 write_asize += size;
b128c09f
BB
7396 /*
7397 * Keep the clock hand suitably device-aligned.
7398 */
d3c2ae1c
GW
7399 asize = vdev_psize_to_asize(dev->l2ad_vdev, size);
7400 write_psize += asize;
7401 dev->l2ad_hand += asize;
7402
7403 mutex_exit(hash_lock);
7404
7405 (void) zio_nowait(wzio);
34dc7c2f 7406 }
d3c2ae1c
GW
7407
7408 multilist_sublist_unlock(mls);
7409
7410 if (full == B_TRUE)
7411 break;
34dc7c2f 7412 }
34dc7c2f 7413
d3c2ae1c
GW
7414 /* No buffers selected for writing? */
7415 if (pio == NULL) {
7416 ASSERT0(write_sz);
7417 ASSERT(!HDR_HAS_L1HDR(head));
7418 kmem_cache_free(hdr_l2only_cache, head);
7419 return (0);
7420 }
34dc7c2f 7421
3a17a7a9 7422 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 7423 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 7424 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 7425 ARCSTAT_INCR(arcstat_l2_size, write_sz);
d3c2ae1c
GW
7426 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
7427 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
34dc7c2f
BB
7428
7429 /*
7430 * Bump device hand to the device start if it is approaching the end.
7431 * l2arc_evict() will already have evicted ahead for this case.
7432 */
b128c09f 7433 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 7434 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
7435 dev->l2ad_first = B_FALSE;
7436 }
7437
d164b209 7438 dev->l2ad_writing = B_TRUE;
34dc7c2f 7439 (void) zio_wait(pio);
d164b209
BB
7440 dev->l2ad_writing = B_FALSE;
7441
3a17a7a9
SK
7442 return (write_asize);
7443}
7444
34dc7c2f
BB
7445/*
7446 * This thread feeds the L2ARC at regular intervals. This is the beating
7447 * heart of the L2ARC.
7448 */
7449static void
7450l2arc_feed_thread(void)
7451{
7452 callb_cpr_t cpr;
7453 l2arc_dev_t *dev;
7454 spa_t *spa;
d164b209 7455 uint64_t size, wrote;
428870ff 7456 clock_t begin, next = ddi_get_lbolt();
40d06e3c 7457 fstrans_cookie_t cookie;
34dc7c2f
BB
7458
7459 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7460
7461 mutex_enter(&l2arc_feed_thr_lock);
7462
40d06e3c 7463 cookie = spl_fstrans_mark();
34dc7c2f 7464 while (l2arc_thread_exit == 0) {
34dc7c2f 7465 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 7466 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 7467 &l2arc_feed_thr_lock, next);
34dc7c2f 7468 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 7469 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
7470
7471 /*
b128c09f 7472 * Quick check for L2ARC devices.
34dc7c2f
BB
7473 */
7474 mutex_enter(&l2arc_dev_mtx);
7475 if (l2arc_ndev == 0) {
7476 mutex_exit(&l2arc_dev_mtx);
7477 continue;
7478 }
b128c09f 7479 mutex_exit(&l2arc_dev_mtx);
428870ff 7480 begin = ddi_get_lbolt();
34dc7c2f
BB
7481
7482 /*
b128c09f
BB
7483 * This selects the next l2arc device to write to, and in
7484 * doing so the next spa to feed from: dev->l2ad_spa. This
7485 * will return NULL if there are now no l2arc devices or if
7486 * they are all faulted.
7487 *
7488 * If a device is returned, its spa's config lock is also
7489 * held to prevent device removal. l2arc_dev_get_next()
7490 * will grab and release l2arc_dev_mtx.
34dc7c2f 7491 */
b128c09f 7492 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 7493 continue;
b128c09f
BB
7494
7495 spa = dev->l2ad_spa;
d3c2ae1c 7496 ASSERT3P(spa, !=, NULL);
34dc7c2f 7497
572e2857
BB
7498 /*
7499 * If the pool is read-only then force the feed thread to
7500 * sleep a little longer.
7501 */
7502 if (!spa_writeable(spa)) {
7503 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7504 spa_config_exit(spa, SCL_L2ARC, dev);
7505 continue;
7506 }
7507
34dc7c2f 7508 /*
b128c09f 7509 * Avoid contributing to memory pressure.
34dc7c2f 7510 */
ca67b33a 7511 if (arc_reclaim_needed()) {
b128c09f
BB
7512 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7513 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
7514 continue;
7515 }
b128c09f 7516
34dc7c2f
BB
7517 ARCSTAT_BUMP(arcstat_l2_feeds);
7518
3a17a7a9 7519 size = l2arc_write_size();
b128c09f 7520
34dc7c2f
BB
7521 /*
7522 * Evict L2ARC buffers that will be overwritten.
7523 */
b128c09f 7524 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
7525
7526 /*
7527 * Write ARC buffers.
7528 */
d3c2ae1c 7529 wrote = l2arc_write_buffers(spa, dev, size);
d164b209
BB
7530
7531 /*
7532 * Calculate interval between writes.
7533 */
7534 next = l2arc_write_interval(begin, size, wrote);
b128c09f 7535 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 7536 }
40d06e3c 7537 spl_fstrans_unmark(cookie);
34dc7c2f
BB
7538
7539 l2arc_thread_exit = 0;
7540 cv_broadcast(&l2arc_feed_thr_cv);
7541 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7542 thread_exit();
7543}
7544
b128c09f
BB
7545boolean_t
7546l2arc_vdev_present(vdev_t *vd)
7547{
7548 l2arc_dev_t *dev;
7549
7550 mutex_enter(&l2arc_dev_mtx);
7551 for (dev = list_head(l2arc_dev_list); dev != NULL;
7552 dev = list_next(l2arc_dev_list, dev)) {
7553 if (dev->l2ad_vdev == vd)
7554 break;
7555 }
7556 mutex_exit(&l2arc_dev_mtx);
7557
7558 return (dev != NULL);
7559}
7560
34dc7c2f
BB
7561/*
7562 * Add a vdev for use by the L2ARC. By this point the spa has already
7563 * validated the vdev and opened it.
7564 */
7565void
9babb374 7566l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
7567{
7568 l2arc_dev_t *adddev;
7569
b128c09f
BB
7570 ASSERT(!l2arc_vdev_present(vd));
7571
34dc7c2f
BB
7572 /*
7573 * Create a new l2arc device entry.
7574 */
7575 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7576 adddev->l2ad_spa = spa;
7577 adddev->l2ad_vdev = vd;
9babb374
BB
7578 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7579 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 7580 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 7581 adddev->l2ad_first = B_TRUE;
d164b209 7582 adddev->l2ad_writing = B_FALSE;
98f72a53 7583 list_link_init(&adddev->l2ad_node);
34dc7c2f 7584
b9541d6b 7585 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
7586 /*
7587 * This is a list of all ARC buffers that are still valid on the
7588 * device.
7589 */
b9541d6b
CW
7590 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7591 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 7592
428870ff 7593 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
d962d5da 7594 refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
7595
7596 /*
7597 * Add device to global list
7598 */
7599 mutex_enter(&l2arc_dev_mtx);
7600 list_insert_head(l2arc_dev_list, adddev);
7601 atomic_inc_64(&l2arc_ndev);
7602 mutex_exit(&l2arc_dev_mtx);
7603}
7604
7605/*
7606 * Remove a vdev from the L2ARC.
7607 */
7608void
7609l2arc_remove_vdev(vdev_t *vd)
7610{
7611 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7612
34dc7c2f
BB
7613 /*
7614 * Find the device by vdev
7615 */
7616 mutex_enter(&l2arc_dev_mtx);
7617 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7618 nextdev = list_next(l2arc_dev_list, dev);
7619 if (vd == dev->l2ad_vdev) {
7620 remdev = dev;
7621 break;
7622 }
7623 }
d3c2ae1c 7624 ASSERT3P(remdev, !=, NULL);
34dc7c2f
BB
7625
7626 /*
7627 * Remove device from global list
7628 */
7629 list_remove(l2arc_dev_list, remdev);
7630 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
7631 atomic_dec_64(&l2arc_ndev);
7632 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
7633
7634 /*
7635 * Clear all buflists and ARC references. L2ARC device flush.
7636 */
7637 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
7638 list_destroy(&remdev->l2ad_buflist);
7639 mutex_destroy(&remdev->l2ad_mtx);
d962d5da 7640 refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 7641 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
7642}
7643
7644void
b128c09f 7645l2arc_init(void)
34dc7c2f
BB
7646{
7647 l2arc_thread_exit = 0;
7648 l2arc_ndev = 0;
7649 l2arc_writes_sent = 0;
7650 l2arc_writes_done = 0;
7651
7652 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7653 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7654 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
7655 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7656
7657 l2arc_dev_list = &L2ARC_dev_list;
7658 l2arc_free_on_write = &L2ARC_free_on_write;
7659 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7660 offsetof(l2arc_dev_t, l2ad_node));
7661 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7662 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
7663}
7664
7665void
b128c09f 7666l2arc_fini(void)
34dc7c2f 7667{
b128c09f
BB
7668 /*
7669 * This is called from dmu_fini(), which is called from spa_fini();
7670 * Because of this, we can assume that all l2arc devices have
7671 * already been removed when the pools themselves were removed.
7672 */
7673
7674 l2arc_do_free_on_write();
34dc7c2f
BB
7675
7676 mutex_destroy(&l2arc_feed_thr_lock);
7677 cv_destroy(&l2arc_feed_thr_cv);
7678 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
7679 mutex_destroy(&l2arc_free_on_write_mtx);
7680
7681 list_destroy(l2arc_dev_list);
7682 list_destroy(l2arc_free_on_write);
7683}
b128c09f
BB
7684
7685void
7686l2arc_start(void)
7687{
fb5f0bc8 7688 if (!(spa_mode_global & FWRITE))
b128c09f
BB
7689 return;
7690
7691 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 7692 TS_RUN, defclsyspri);
b128c09f
BB
7693}
7694
7695void
7696l2arc_stop(void)
7697{
fb5f0bc8 7698 if (!(spa_mode_global & FWRITE))
b128c09f
BB
7699 return;
7700
7701 mutex_enter(&l2arc_feed_thr_lock);
7702 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7703 l2arc_thread_exit = 1;
7704 while (l2arc_thread_exit != 0)
7705 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7706 mutex_exit(&l2arc_feed_thr_lock);
7707}
c28b2279
BB
7708
7709#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
7710EXPORT_SYMBOL(arc_buf_size);
7711EXPORT_SYMBOL(arc_write);
c28b2279 7712EXPORT_SYMBOL(arc_read);
e0b0ca98 7713EXPORT_SYMBOL(arc_buf_info);
c28b2279 7714EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
7715EXPORT_SYMBOL(arc_add_prune_callback);
7716EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 7717
02730c33 7718/* BEGIN CSTYLED */
bce45ec9 7719module_param(zfs_arc_min, ulong, 0644);
c409e464 7720MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 7721
bce45ec9 7722module_param(zfs_arc_max, ulong, 0644);
c409e464 7723MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 7724
bce45ec9 7725module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 7726MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 7727
9907cc1c
G
7728module_param(zfs_arc_meta_limit_percent, ulong, 0644);
7729MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
7730 "Percent of arc size for arc meta limit");
7731
ca0bf58d
PS
7732module_param(zfs_arc_meta_min, ulong, 0644);
7733MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7734
bce45ec9 7735module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 7736MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 7737
ca67b33a 7738module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
7739MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7740 "Limit number of restarts in arc_adjust_meta");
7741
f6046738
BB
7742module_param(zfs_arc_meta_strategy, int, 0644);
7743MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7744
bce45ec9 7745module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
7746MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7747
89c8cac4
PS
7748module_param(zfs_arc_p_aggressive_disable, int, 0644);
7749MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7750
62422785
PS
7751module_param(zfs_arc_p_dampener_disable, int, 0644);
7752MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7753
bce45ec9 7754module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
7755MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7756
728d6ae9
BB
7757module_param(zfs_arc_p_min_shift, int, 0644);
7758MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7759
49ddb315
MA
7760module_param(zfs_arc_average_blocksize, int, 0444);
7761MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7762
d3c2ae1c 7763module_param(zfs_compressed_arc_enabled, int, 0644);
544596c5 7764MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
d3c2ae1c 7765
bce45ec9
BB
7766module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7767MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7768
7769module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
7770MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7771
bce45ec9 7772module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
7773MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7774
bce45ec9 7775module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
7776MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7777
3a17a7a9
SK
7778module_param(l2arc_headroom_boost, ulong, 0644);
7779MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7780
bce45ec9 7781module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
7782MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7783
bce45ec9 7784module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
7785MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7786
bce45ec9 7787module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
7788MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7789
bce45ec9 7790module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
7791MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7792
bce45ec9 7793module_param(l2arc_norw, int, 0644);
abd8610c
BB
7794MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7795
7e8bddd0
BB
7796module_param(zfs_arc_lotsfree_percent, int, 0644);
7797MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7798 "System free memory I/O throttle in bytes");
7799
11f552fa
BB
7800module_param(zfs_arc_sys_free, ulong, 0644);
7801MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7802
25458cbe
TC
7803module_param(zfs_arc_dnode_limit, ulong, 0644);
7804MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7805
9907cc1c
G
7806module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
7807MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
7808 "Percent of ARC meta buffers for dnodes");
7809
25458cbe
TC
7810module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7811MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7812 "Percentage of excess dnodes to try to unpin");
02730c33 7813/* END CSTYLED */
c28b2279 7814#endif