]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Update arc_memory_throttle() to check pageout
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
36da08ef
PS
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
3bec585e 26 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 62 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 66 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal arc algorithms for
d3cc8b15 81 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
82 * types of locks: 1) the hash table lock array, and 2) the
83 * arc list locks.
84 *
5c839890
BC
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each arc state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an arc list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * Arc buffers may have an associated eviction callback function.
103 * This function will be invoked prior to removing the buffer (e.g.
104 * in arc_do_user_evicts()). Note however that the data associated
105 * with the buffer may be evicted prior to the callback. The callback
106 * must be made with *no locks held* (to prevent deadlock). Additionally,
107 * the users of callbacks must ensure that their private data is
bd089c54 108 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
109 * and arc_do_user_evicts().
110 *
ab26409d
BB
111 * It as also possible to register a callback which is run when the
112 * arc_meta_limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed and the arc_meta_limit honored. For example,
115 * when using the ZPL each dentry holds a references on a znode. These
116 * dentries must be pruned before the arc buffer holding the znode can
117 * be safely evicted.
118 *
34dc7c2f
BB
119 * Note that the majority of the performance stats are manipulated
120 * with atomic operations.
121 *
b9541d6b 122 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
123 *
124 * - L2ARC buflist creation
125 * - L2ARC buflist eviction
126 * - L2ARC write completion, which walks L2ARC buflists
127 * - ARC header destruction, as it removes from L2ARC buflists
128 * - ARC header release, as it removes from L2ARC buflists
129 */
130
131#include <sys/spa.h>
132#include <sys/zio.h>
3a17a7a9 133#include <sys/zio_compress.h>
34dc7c2f
BB
134#include <sys/zfs_context.h>
135#include <sys/arc.h>
36da08ef 136#include <sys/refcount.h>
b128c09f 137#include <sys/vdev.h>
9babb374 138#include <sys/vdev_impl.h>
e8b96c60 139#include <sys/dsl_pool.h>
ca0bf58d 140#include <sys/multilist.h>
34dc7c2f
BB
141#ifdef _KERNEL
142#include <sys/vmsystm.h>
143#include <vm/anon.h>
144#include <sys/fs/swapnode.h>
ab26409d 145#include <sys/zpl.h>
aaed7c40 146#include <linux/mm_compat.h>
34dc7c2f
BB
147#endif
148#include <sys/callb.h>
149#include <sys/kstat.h>
570827e1 150#include <sys/dmu_tx.h>
428870ff 151#include <zfs_fletcher.h>
59ec819a 152#include <sys/arc_impl.h>
49ee64e5 153#include <sys/trace_arc.h>
34dc7c2f 154
498877ba
MA
155#ifndef _KERNEL
156/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
157boolean_t arc_watch = B_FALSE;
158#endif
159
ca0bf58d
PS
160static kmutex_t arc_reclaim_lock;
161static kcondvar_t arc_reclaim_thread_cv;
162static boolean_t arc_reclaim_thread_exit;
163static kcondvar_t arc_reclaim_waiters_cv;
164
165static kmutex_t arc_user_evicts_lock;
166static kcondvar_t arc_user_evicts_cv;
167static boolean_t arc_user_evicts_thread_exit;
34dc7c2f 168
e8b96c60 169/*
ca0bf58d
PS
170 * The number of headers to evict in arc_evict_state_impl() before
171 * dropping the sublist lock and evicting from another sublist. A lower
172 * value means we're more likely to evict the "correct" header (i.e. the
173 * oldest header in the arc state), but comes with higher overhead
174 * (i.e. more invocations of arc_evict_state_impl()).
175 */
176int zfs_arc_evict_batch_limit = 10;
177
178/*
179 * The number of sublists used for each of the arc state lists. If this
180 * is not set to a suitable value by the user, it will be configured to
181 * the number of CPUs on the system in arc_init().
e8b96c60 182 */
ca0bf58d 183int zfs_arc_num_sublists_per_state = 0;
e8b96c60 184
34dc7c2f 185/* number of seconds before growing cache again */
ca67b33a 186static int arc_grow_retry = 5;
34dc7c2f 187
ca0bf58d 188/* shift of arc_c for calculating overflow limit in arc_get_data_buf */
ca67b33a 189int zfs_arc_overflow_shift = 8;
62422785 190
728d6ae9
BB
191/* shift of arc_c for calculating both min and max arc_p */
192static int arc_p_min_shift = 4;
193
d164b209 194/* log2(fraction of arc to reclaim) */
ca67b33a 195static int arc_shrink_shift = 7;
d164b209 196
34dc7c2f 197/*
ca67b33a
MA
198 * log2(fraction of ARC which must be free to allow growing).
199 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
200 * when reading a new block into the ARC, we will evict an equal-sized block
201 * from the ARC.
202 *
203 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
204 * we will still not allow it to grow.
34dc7c2f 205 */
ca67b33a 206int arc_no_grow_shift = 5;
bce45ec9 207
49ddb315 208
ca0bf58d
PS
209/*
210 * minimum lifespan of a prefetch block in clock ticks
211 * (initialized in arc_init())
212 */
ca67b33a 213static int arc_min_prefetch_lifespan;
ca0bf58d 214
e8b96c60
MA
215/*
216 * If this percent of memory is free, don't throttle.
217 */
218int arc_lotsfree_percent = 10;
219
34dc7c2f
BB
220static int arc_dead;
221
b128c09f
BB
222/*
223 * The arc has filled available memory and has now warmed up.
224 */
225static boolean_t arc_warm;
226
34dc7c2f
BB
227/*
228 * These tunables are for performance analysis.
229 */
c28b2279
BB
230unsigned long zfs_arc_max = 0;
231unsigned long zfs_arc_min = 0;
232unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 233unsigned long zfs_arc_meta_min = 0;
ca67b33a
MA
234int zfs_arc_grow_retry = 0;
235int zfs_arc_shrink_shift = 0;
728d6ae9 236int zfs_arc_p_min_shift = 0;
ca67b33a
MA
237int zfs_disable_dup_eviction = 0;
238int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 239
bc888666 240/*
ca67b33a 241 * These tunables are Linux specific
bc888666 242 */
11f552fa 243unsigned long zfs_arc_sys_free = 0;
ca67b33a
MA
244int zfs_arc_min_prefetch_lifespan = 0;
245int zfs_arc_p_aggressive_disable = 1;
246int zfs_arc_p_dampener_disable = 1;
247int zfs_arc_meta_prune = 10000;
248int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
249int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 250int zfs_arc_lotsfree_percent = 10;
bc888666 251
34dc7c2f
BB
252/* The 6 states: */
253static arc_state_t ARC_anon;
254static arc_state_t ARC_mru;
255static arc_state_t ARC_mru_ghost;
256static arc_state_t ARC_mfu;
257static arc_state_t ARC_mfu_ghost;
258static arc_state_t ARC_l2c_only;
259
260typedef struct arc_stats {
261 kstat_named_t arcstat_hits;
262 kstat_named_t arcstat_misses;
263 kstat_named_t arcstat_demand_data_hits;
264 kstat_named_t arcstat_demand_data_misses;
265 kstat_named_t arcstat_demand_metadata_hits;
266 kstat_named_t arcstat_demand_metadata_misses;
267 kstat_named_t arcstat_prefetch_data_hits;
268 kstat_named_t arcstat_prefetch_data_misses;
269 kstat_named_t arcstat_prefetch_metadata_hits;
270 kstat_named_t arcstat_prefetch_metadata_misses;
271 kstat_named_t arcstat_mru_hits;
272 kstat_named_t arcstat_mru_ghost_hits;
273 kstat_named_t arcstat_mfu_hits;
274 kstat_named_t arcstat_mfu_ghost_hits;
275 kstat_named_t arcstat_deleted;
e49f1e20
WA
276 /*
277 * Number of buffers that could not be evicted because the hash lock
278 * was held by another thread. The lock may not necessarily be held
279 * by something using the same buffer, since hash locks are shared
280 * by multiple buffers.
281 */
34dc7c2f 282 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
283 /*
284 * Number of buffers skipped because they have I/O in progress, are
285 * indrect prefetch buffers that have not lived long enough, or are
286 * not from the spa we're trying to evict from.
287 */
34dc7c2f 288 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
289 /*
290 * Number of times arc_evict_state() was unable to evict enough
291 * buffers to reach its target amount.
292 */
293 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
294 kstat_named_t arcstat_evict_l2_cached;
295 kstat_named_t arcstat_evict_l2_eligible;
296 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 297 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
298 kstat_named_t arcstat_hash_elements;
299 kstat_named_t arcstat_hash_elements_max;
300 kstat_named_t arcstat_hash_collisions;
301 kstat_named_t arcstat_hash_chains;
302 kstat_named_t arcstat_hash_chain_max;
303 kstat_named_t arcstat_p;
304 kstat_named_t arcstat_c;
305 kstat_named_t arcstat_c_min;
306 kstat_named_t arcstat_c_max;
307 kstat_named_t arcstat_size;
500445c0
PS
308 /*
309 * Number of bytes consumed by internal ARC structures necessary
310 * for tracking purposes; these structures are not actually
311 * backed by ARC buffers. This includes arc_buf_hdr_t structures
312 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
313 * caches), and arc_buf_t structures (allocated via arc_buf_t
314 * cache).
315 */
34dc7c2f 316 kstat_named_t arcstat_hdr_size;
500445c0
PS
317 /*
318 * Number of bytes consumed by ARC buffers of type equal to
319 * ARC_BUFC_DATA. This is generally consumed by buffers backing
320 * on disk user data (e.g. plain file contents).
321 */
d164b209 322 kstat_named_t arcstat_data_size;
500445c0
PS
323 /*
324 * Number of bytes consumed by ARC buffers of type equal to
325 * ARC_BUFC_METADATA. This is generally consumed by buffers
326 * backing on disk data that is used for internal ZFS
327 * structures (e.g. ZAP, dnode, indirect blocks, etc).
328 */
329 kstat_named_t arcstat_metadata_size;
330 /*
331 * Number of bytes consumed by various buffers and structures
332 * not actually backed with ARC buffers. This includes bonus
333 * buffers (allocated directly via zio_buf_* functions),
334 * dmu_buf_impl_t structures (allocated via dmu_buf_impl_t
335 * cache), and dnode_t structures (allocated via dnode_t cache).
336 */
d164b209 337 kstat_named_t arcstat_other_size;
500445c0
PS
338 /*
339 * Total number of bytes consumed by ARC buffers residing in the
340 * arc_anon state. This includes *all* buffers in the arc_anon
341 * state; e.g. data, metadata, evictable, and unevictable buffers
342 * are all included in this value.
343 */
13be560d 344 kstat_named_t arcstat_anon_size;
500445c0
PS
345 /*
346 * Number of bytes consumed by ARC buffers that meet the
347 * following criteria: backing buffers of type ARC_BUFC_DATA,
348 * residing in the arc_anon state, and are eligible for eviction
349 * (e.g. have no outstanding holds on the buffer).
350 */
351 kstat_named_t arcstat_anon_evictable_data;
352 /*
353 * Number of bytes consumed by ARC buffers that meet the
354 * following criteria: backing buffers of type ARC_BUFC_METADATA,
355 * residing in the arc_anon state, and are eligible for eviction
356 * (e.g. have no outstanding holds on the buffer).
357 */
358 kstat_named_t arcstat_anon_evictable_metadata;
359 /*
360 * Total number of bytes consumed by ARC buffers residing in the
361 * arc_mru state. This includes *all* buffers in the arc_mru
362 * state; e.g. data, metadata, evictable, and unevictable buffers
363 * are all included in this value.
364 */
13be560d 365 kstat_named_t arcstat_mru_size;
500445c0
PS
366 /*
367 * Number of bytes consumed by ARC buffers that meet the
368 * following criteria: backing buffers of type ARC_BUFC_DATA,
369 * residing in the arc_mru state, and are eligible for eviction
370 * (e.g. have no outstanding holds on the buffer).
371 */
372 kstat_named_t arcstat_mru_evictable_data;
373 /*
374 * Number of bytes consumed by ARC buffers that meet the
375 * following criteria: backing buffers of type ARC_BUFC_METADATA,
376 * residing in the arc_mru state, and are eligible for eviction
377 * (e.g. have no outstanding holds on the buffer).
378 */
379 kstat_named_t arcstat_mru_evictable_metadata;
380 /*
381 * Total number of bytes that *would have been* consumed by ARC
382 * buffers in the arc_mru_ghost state. The key thing to note
383 * here, is the fact that this size doesn't actually indicate
384 * RAM consumption. The ghost lists only consist of headers and
385 * don't actually have ARC buffers linked off of these headers.
386 * Thus, *if* the headers had associated ARC buffers, these
387 * buffers *would have* consumed this number of bytes.
388 */
13be560d 389 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
390 /*
391 * Number of bytes that *would have been* consumed by ARC
392 * buffers that are eligible for eviction, of type
393 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
394 */
395 kstat_named_t arcstat_mru_ghost_evictable_data;
396 /*
397 * Number of bytes that *would have been* consumed by ARC
398 * buffers that are eligible for eviction, of type
399 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
400 */
401 kstat_named_t arcstat_mru_ghost_evictable_metadata;
402 /*
403 * Total number of bytes consumed by ARC buffers residing in the
404 * arc_mfu state. This includes *all* buffers in the arc_mfu
405 * state; e.g. data, metadata, evictable, and unevictable buffers
406 * are all included in this value.
407 */
13be560d 408 kstat_named_t arcstat_mfu_size;
500445c0
PS
409 /*
410 * Number of bytes consumed by ARC buffers that are eligible for
411 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
412 * state.
413 */
414 kstat_named_t arcstat_mfu_evictable_data;
415 /*
416 * Number of bytes consumed by ARC buffers that are eligible for
417 * eviction, of type ARC_BUFC_METADATA, and reside in the
418 * arc_mfu state.
419 */
420 kstat_named_t arcstat_mfu_evictable_metadata;
421 /*
422 * Total number of bytes that *would have been* consumed by ARC
423 * buffers in the arc_mfu_ghost state. See the comment above
424 * arcstat_mru_ghost_size for more details.
425 */
13be560d 426 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
427 /*
428 * Number of bytes that *would have been* consumed by ARC
429 * buffers that are eligible for eviction, of type
430 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
431 */
432 kstat_named_t arcstat_mfu_ghost_evictable_data;
433 /*
434 * Number of bytes that *would have been* consumed by ARC
435 * buffers that are eligible for eviction, of type
436 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
437 */
438 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
439 kstat_named_t arcstat_l2_hits;
440 kstat_named_t arcstat_l2_misses;
441 kstat_named_t arcstat_l2_feeds;
442 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
443 kstat_named_t arcstat_l2_read_bytes;
444 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
445 kstat_named_t arcstat_l2_writes_sent;
446 kstat_named_t arcstat_l2_writes_done;
447 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 448 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
449 kstat_named_t arcstat_l2_evict_lock_retry;
450 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 451 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f 452 kstat_named_t arcstat_l2_free_on_write;
ca0bf58d 453 kstat_named_t arcstat_l2_cdata_free_on_write;
34dc7c2f
BB
454 kstat_named_t arcstat_l2_abort_lowmem;
455 kstat_named_t arcstat_l2_cksum_bad;
456 kstat_named_t arcstat_l2_io_error;
457 kstat_named_t arcstat_l2_size;
3a17a7a9 458 kstat_named_t arcstat_l2_asize;
34dc7c2f 459 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
460 kstat_named_t arcstat_l2_compress_successes;
461 kstat_named_t arcstat_l2_compress_zeros;
462 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 463 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
464 kstat_named_t arcstat_duplicate_buffers;
465 kstat_named_t arcstat_duplicate_buffers_size;
466 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
467 kstat_named_t arcstat_memory_direct_count;
468 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
469 kstat_named_t arcstat_no_grow;
470 kstat_named_t arcstat_tempreserve;
471 kstat_named_t arcstat_loaned_bytes;
ab26409d 472 kstat_named_t arcstat_prune;
1834f2d8
BB
473 kstat_named_t arcstat_meta_used;
474 kstat_named_t arcstat_meta_limit;
475 kstat_named_t arcstat_meta_max;
ca0bf58d 476 kstat_named_t arcstat_meta_min;
11f552fa
BB
477 kstat_named_t arcstat_need_free;
478 kstat_named_t arcstat_sys_free;
34dc7c2f
BB
479} arc_stats_t;
480
481static arc_stats_t arc_stats = {
482 { "hits", KSTAT_DATA_UINT64 },
483 { "misses", KSTAT_DATA_UINT64 },
484 { "demand_data_hits", KSTAT_DATA_UINT64 },
485 { "demand_data_misses", KSTAT_DATA_UINT64 },
486 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
487 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
488 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
489 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
490 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
491 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
492 { "mru_hits", KSTAT_DATA_UINT64 },
493 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
494 { "mfu_hits", KSTAT_DATA_UINT64 },
495 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
496 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f
BB
497 { "mutex_miss", KSTAT_DATA_UINT64 },
498 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 499 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
500 { "evict_l2_cached", KSTAT_DATA_UINT64 },
501 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
502 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 503 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
504 { "hash_elements", KSTAT_DATA_UINT64 },
505 { "hash_elements_max", KSTAT_DATA_UINT64 },
506 { "hash_collisions", KSTAT_DATA_UINT64 },
507 { "hash_chains", KSTAT_DATA_UINT64 },
508 { "hash_chain_max", KSTAT_DATA_UINT64 },
509 { "p", KSTAT_DATA_UINT64 },
510 { "c", KSTAT_DATA_UINT64 },
511 { "c_min", KSTAT_DATA_UINT64 },
512 { "c_max", KSTAT_DATA_UINT64 },
513 { "size", KSTAT_DATA_UINT64 },
514 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 515 { "data_size", KSTAT_DATA_UINT64 },
500445c0 516 { "metadata_size", KSTAT_DATA_UINT64 },
d164b209 517 { "other_size", KSTAT_DATA_UINT64 },
13be560d 518 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
519 { "anon_evictable_data", KSTAT_DATA_UINT64 },
520 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 521 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
522 { "mru_evictable_data", KSTAT_DATA_UINT64 },
523 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 524 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
525 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
526 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 527 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
528 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
529 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 530 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
531 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
532 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
533 { "l2_hits", KSTAT_DATA_UINT64 },
534 { "l2_misses", KSTAT_DATA_UINT64 },
535 { "l2_feeds", KSTAT_DATA_UINT64 },
536 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
537 { "l2_read_bytes", KSTAT_DATA_UINT64 },
538 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
539 { "l2_writes_sent", KSTAT_DATA_UINT64 },
540 { "l2_writes_done", KSTAT_DATA_UINT64 },
541 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 542 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
543 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
544 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 545 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f 546 { "l2_free_on_write", KSTAT_DATA_UINT64 },
ca0bf58d 547 { "l2_cdata_free_on_write", KSTAT_DATA_UINT64 },
34dc7c2f
BB
548 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
549 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
550 { "l2_io_error", KSTAT_DATA_UINT64 },
551 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 552 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 553 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
554 { "l2_compress_successes", KSTAT_DATA_UINT64 },
555 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
556 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 557 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
558 { "duplicate_buffers", KSTAT_DATA_UINT64 },
559 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
560 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
561 { "memory_direct_count", KSTAT_DATA_UINT64 },
562 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
563 { "arc_no_grow", KSTAT_DATA_UINT64 },
564 { "arc_tempreserve", KSTAT_DATA_UINT64 },
565 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 566 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
567 { "arc_meta_used", KSTAT_DATA_UINT64 },
568 { "arc_meta_limit", KSTAT_DATA_UINT64 },
569 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa
BB
570 { "arc_meta_min", KSTAT_DATA_UINT64 },
571 { "arc_need_free", KSTAT_DATA_UINT64 },
572 { "arc_sys_free", KSTAT_DATA_UINT64 }
34dc7c2f
BB
573};
574
575#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
576
577#define ARCSTAT_INCR(stat, val) \
d3cc8b15 578 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 579
428870ff 580#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
581#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
582
583#define ARCSTAT_MAX(stat, val) { \
584 uint64_t m; \
585 while ((val) > (m = arc_stats.stat.value.ui64) && \
586 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
587 continue; \
588}
589
590#define ARCSTAT_MAXSTAT(stat) \
591 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
592
593/*
594 * We define a macro to allow ARC hits/misses to be easily broken down by
595 * two separate conditions, giving a total of four different subtypes for
596 * each of hits and misses (so eight statistics total).
597 */
598#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
599 if (cond1) { \
600 if (cond2) { \
601 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
602 } else { \
603 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
604 } \
605 } else { \
606 if (cond2) { \
607 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
608 } else { \
609 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
610 } \
611 }
612
613kstat_t *arc_ksp;
428870ff 614static arc_state_t *arc_anon;
34dc7c2f
BB
615static arc_state_t *arc_mru;
616static arc_state_t *arc_mru_ghost;
617static arc_state_t *arc_mfu;
618static arc_state_t *arc_mfu_ghost;
619static arc_state_t *arc_l2c_only;
620
621/*
622 * There are several ARC variables that are critical to export as kstats --
623 * but we don't want to have to grovel around in the kstat whenever we wish to
624 * manipulate them. For these variables, we therefore define them to be in
625 * terms of the statistic variable. This assures that we are not introducing
626 * the possibility of inconsistency by having shadow copies of the variables,
627 * while still allowing the code to be readable.
628 */
629#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
630#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
631#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
632#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
633#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
634#define arc_no_grow ARCSTAT(arcstat_no_grow)
635#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
636#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 637#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
ca0bf58d 638#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133
GW
639#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
640#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
11f552fa
BB
641#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
642#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
34dc7c2f 643
3a17a7a9
SK
644#define L2ARC_IS_VALID_COMPRESS(_c_) \
645 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
646
ab26409d
BB
647static list_t arc_prune_list;
648static kmutex_t arc_prune_mtx;
f6046738 649static taskq_t *arc_prune_taskq;
34dc7c2f 650static arc_buf_t *arc_eviction_list;
34dc7c2f 651static arc_buf_hdr_t arc_eviction_hdr;
428870ff 652
34dc7c2f
BB
653#define GHOST_STATE(state) \
654 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
655 (state) == arc_l2c_only)
656
2a432414
GW
657#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
658#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
659#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
660#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
661#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FLAG_FREED_IN_READ)
662#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_FLAG_BUF_AVAILABLE)
b9541d6b 663
2a432414 664#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
b9541d6b 665#define HDR_L2COMPRESS(hdr) ((hdr)->b_flags & ARC_FLAG_L2COMPRESS)
2a432414 666#define HDR_L2_READING(hdr) \
b9541d6b
CW
667 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
668 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
669#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
670#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
671#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
34dc7c2f 672
b9541d6b
CW
673#define HDR_ISTYPE_METADATA(hdr) \
674 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
675#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
676
677#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
678#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
679
680/* For storing compression mode in b_flags */
681#define HDR_COMPRESS_OFFSET 24
682#define HDR_COMPRESS_NBITS 7
683
684#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET(hdr->b_flags, \
685 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS))
686#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET(hdr->b_flags, \
687 HDR_COMPRESS_OFFSET, HDR_COMPRESS_NBITS, (cmp))
688
34dc7c2f
BB
689/*
690 * Other sizes
691 */
692
b9541d6b
CW
693#define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
694#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
695
696/*
697 * Hash table routines
698 */
699
00b46022
BB
700#define HT_LOCK_ALIGN 64
701#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
702
703struct ht_lock {
704 kmutex_t ht_lock;
705#ifdef _KERNEL
00b46022 706 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
707#endif
708};
709
b31d8ea7 710#define BUF_LOCKS 8192
34dc7c2f
BB
711typedef struct buf_hash_table {
712 uint64_t ht_mask;
713 arc_buf_hdr_t **ht_table;
714 struct ht_lock ht_locks[BUF_LOCKS];
715} buf_hash_table_t;
716
717static buf_hash_table_t buf_hash_table;
718
719#define BUF_HASH_INDEX(spa, dva, birth) \
720 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
721#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
722#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
723#define HDR_LOCK(hdr) \
724 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
725
726uint64_t zfs_crc64_table[256];
727
728/*
729 * Level 2 ARC
730 */
731
732#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
733#define L2ARC_HEADROOM 2 /* num of writes */
734/*
735 * If we discover during ARC scan any buffers to be compressed, we boost
736 * our headroom for the next scanning cycle by this percentage multiple.
737 */
738#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
739#define L2ARC_FEED_SECS 1 /* caching interval secs */
740#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 741
d962d5da
PS
742/*
743 * Used to distinguish headers that are being process by
744 * l2arc_write_buffers(), but have yet to be assigned to a l2arc disk
745 * address. This can happen when the header is added to the l2arc's list
746 * of buffers to write in the first stage of l2arc_write_buffers(), but
747 * has not yet been written out which happens in the second stage of
748 * l2arc_write_buffers().
749 */
750#define L2ARC_ADDR_UNSET ((uint64_t)(-1))
751
34dc7c2f
BB
752#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
753#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
754
d3cc8b15 755/* L2ARC Performance Tunables */
abd8610c
BB
756unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
757unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
758unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 759unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
760unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
761unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
762int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 763int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 764int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 765int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
766
767/*
768 * L2ARC Internals
769 */
34dc7c2f
BB
770static list_t L2ARC_dev_list; /* device list */
771static list_t *l2arc_dev_list; /* device list pointer */
772static kmutex_t l2arc_dev_mtx; /* device list mutex */
773static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
774static list_t L2ARC_free_on_write; /* free after write buf list */
775static list_t *l2arc_free_on_write; /* free after write list ptr */
776static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
777static uint64_t l2arc_ndev; /* number of devices */
778
779typedef struct l2arc_read_callback {
3a17a7a9
SK
780 arc_buf_t *l2rcb_buf; /* read buffer */
781 spa_t *l2rcb_spa; /* spa */
782 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 783 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
784 int l2rcb_flags; /* original flags */
785 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
786} l2arc_read_callback_t;
787
34dc7c2f
BB
788typedef struct l2arc_data_free {
789 /* protected by l2arc_free_on_write_mtx */
790 void *l2df_data;
791 size_t l2df_size;
792 void (*l2df_func)(void *, size_t);
793 list_node_t l2df_list_node;
794} l2arc_data_free_t;
795
796static kmutex_t l2arc_feed_thr_lock;
797static kcondvar_t l2arc_feed_thr_cv;
798static uint8_t l2arc_thread_exit;
799
2a432414
GW
800static void arc_get_data_buf(arc_buf_t *);
801static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 802static boolean_t arc_is_overflowing(void);
2a432414 803static void arc_buf_watch(arc_buf_t *);
ca67b33a 804static void arc_tuning_update(void);
2a432414 805
b9541d6b
CW
806static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
807static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
808
2a432414
GW
809static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
810static void l2arc_read_done(zio_t *);
34dc7c2f 811
b9541d6b 812static boolean_t l2arc_compress_buf(arc_buf_hdr_t *);
2a432414
GW
813static void l2arc_decompress_zio(zio_t *, arc_buf_hdr_t *, enum zio_compress);
814static void l2arc_release_cdata_buf(arc_buf_hdr_t *);
3a17a7a9 815
34dc7c2f 816static uint64_t
d164b209 817buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 818{
34dc7c2f
BB
819 uint8_t *vdva = (uint8_t *)dva;
820 uint64_t crc = -1ULL;
821 int i;
822
823 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
824
825 for (i = 0; i < sizeof (dva_t); i++)
826 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
827
d164b209 828 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
829
830 return (crc);
831}
832
833#define BUF_EMPTY(buf) \
834 ((buf)->b_dva.dva_word[0] == 0 && \
b9541d6b 835 (buf)->b_dva.dva_word[1] == 0)
34dc7c2f
BB
836
837#define BUF_EQUAL(spa, dva, birth, buf) \
838 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
839 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
840 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
841
428870ff
BB
842static void
843buf_discard_identity(arc_buf_hdr_t *hdr)
844{
845 hdr->b_dva.dva_word[0] = 0;
846 hdr->b_dva.dva_word[1] = 0;
847 hdr->b_birth = 0;
428870ff
BB
848}
849
34dc7c2f 850static arc_buf_hdr_t *
9b67f605 851buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 852{
9b67f605
MA
853 const dva_t *dva = BP_IDENTITY(bp);
854 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
855 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
856 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 857 arc_buf_hdr_t *hdr;
34dc7c2f
BB
858
859 mutex_enter(hash_lock);
2a432414
GW
860 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
861 hdr = hdr->b_hash_next) {
862 if (BUF_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 863 *lockp = hash_lock;
2a432414 864 return (hdr);
34dc7c2f
BB
865 }
866 }
867 mutex_exit(hash_lock);
868 *lockp = NULL;
869 return (NULL);
870}
871
872/*
873 * Insert an entry into the hash table. If there is already an element
874 * equal to elem in the hash table, then the already existing element
875 * will be returned and the new element will not be inserted.
876 * Otherwise returns NULL.
b9541d6b 877 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
878 */
879static arc_buf_hdr_t *
2a432414 880buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 881{
2a432414 882 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 883 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 884 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
885 uint32_t i;
886
2a432414
GW
887 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
888 ASSERT(hdr->b_birth != 0);
889 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
890
891 if (lockp != NULL) {
892 *lockp = hash_lock;
893 mutex_enter(hash_lock);
894 } else {
895 ASSERT(MUTEX_HELD(hash_lock));
896 }
897
2a432414
GW
898 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
899 fhdr = fhdr->b_hash_next, i++) {
900 if (BUF_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
901 return (fhdr);
34dc7c2f
BB
902 }
903
2a432414
GW
904 hdr->b_hash_next = buf_hash_table.ht_table[idx];
905 buf_hash_table.ht_table[idx] = hdr;
906 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
907
908 /* collect some hash table performance data */
909 if (i > 0) {
910 ARCSTAT_BUMP(arcstat_hash_collisions);
911 if (i == 1)
912 ARCSTAT_BUMP(arcstat_hash_chains);
913
914 ARCSTAT_MAX(arcstat_hash_chain_max, i);
915 }
916
917 ARCSTAT_BUMP(arcstat_hash_elements);
918 ARCSTAT_MAXSTAT(arcstat_hash_elements);
919
920 return (NULL);
921}
922
923static void
2a432414 924buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 925{
2a432414
GW
926 arc_buf_hdr_t *fhdr, **hdrp;
927 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
928
929 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 930 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 931
2a432414
GW
932 hdrp = &buf_hash_table.ht_table[idx];
933 while ((fhdr = *hdrp) != hdr) {
934 ASSERT(fhdr != NULL);
935 hdrp = &fhdr->b_hash_next;
34dc7c2f 936 }
2a432414
GW
937 *hdrp = hdr->b_hash_next;
938 hdr->b_hash_next = NULL;
939 hdr->b_flags &= ~ARC_FLAG_IN_HASH_TABLE;
34dc7c2f
BB
940
941 /* collect some hash table performance data */
942 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
943
944 if (buf_hash_table.ht_table[idx] &&
945 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
946 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
947}
948
949/*
950 * Global data structures and functions for the buf kmem cache.
951 */
b9541d6b
CW
952static kmem_cache_t *hdr_full_cache;
953static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
954static kmem_cache_t *buf_cache;
955
956static void
957buf_fini(void)
958{
959 int i;
960
00b46022 961#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
962 /*
963 * Large allocations which do not require contiguous pages
964 * should be using vmem_free() in the linux kernel\
965 */
00b46022
BB
966 vmem_free(buf_hash_table.ht_table,
967 (buf_hash_table.ht_mask + 1) * sizeof (void *));
968#else
34dc7c2f
BB
969 kmem_free(buf_hash_table.ht_table,
970 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 971#endif
34dc7c2f
BB
972 for (i = 0; i < BUF_LOCKS; i++)
973 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b
CW
974 kmem_cache_destroy(hdr_full_cache);
975 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
976 kmem_cache_destroy(buf_cache);
977}
978
979/*
980 * Constructor callback - called when the cache is empty
981 * and a new buf is requested.
982 */
983/* ARGSUSED */
984static int
b9541d6b
CW
985hdr_full_cons(void *vbuf, void *unused, int kmflag)
986{
987 arc_buf_hdr_t *hdr = vbuf;
988
989 bzero(hdr, HDR_FULL_SIZE);
990 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
991 refcount_create(&hdr->b_l1hdr.b_refcnt);
992 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
993 list_link_init(&hdr->b_l1hdr.b_arc_node);
994 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 995 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
996 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
997
998 return (0);
999}
1000
1001/* ARGSUSED */
1002static int
1003hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1004{
2a432414
GW
1005 arc_buf_hdr_t *hdr = vbuf;
1006
b9541d6b
CW
1007 bzero(hdr, HDR_L2ONLY_SIZE);
1008 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1009
34dc7c2f
BB
1010 return (0);
1011}
1012
b128c09f
BB
1013/* ARGSUSED */
1014static int
1015buf_cons(void *vbuf, void *unused, int kmflag)
1016{
1017 arc_buf_t *buf = vbuf;
1018
1019 bzero(buf, sizeof (arc_buf_t));
428870ff 1020 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1021 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1022
b128c09f
BB
1023 return (0);
1024}
1025
34dc7c2f
BB
1026/*
1027 * Destructor callback - called when a cached buf is
1028 * no longer required.
1029 */
1030/* ARGSUSED */
1031static void
b9541d6b 1032hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1033{
2a432414 1034 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1035
2a432414 1036 ASSERT(BUF_EMPTY(hdr));
b9541d6b
CW
1037 cv_destroy(&hdr->b_l1hdr.b_cv);
1038 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1039 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1040 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1041 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1042}
1043
1044/* ARGSUSED */
1045static void
1046hdr_l2only_dest(void *vbuf, void *unused)
1047{
1048 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1049
1050 ASSERT(BUF_EMPTY(hdr));
1051 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1052}
1053
b128c09f
BB
1054/* ARGSUSED */
1055static void
1056buf_dest(void *vbuf, void *unused)
1057{
1058 arc_buf_t *buf = vbuf;
1059
428870ff 1060 mutex_destroy(&buf->b_evict_lock);
d164b209 1061 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1062}
1063
8c8af9d8
BB
1064/*
1065 * Reclaim callback -- invoked when memory is low.
1066 */
1067/* ARGSUSED */
1068static void
1069hdr_recl(void *unused)
1070{
1071 dprintf("hdr_recl called\n");
1072 /*
1073 * umem calls the reclaim func when we destroy the buf cache,
1074 * which is after we do arc_fini().
1075 */
1076 if (!arc_dead)
1077 cv_signal(&arc_reclaim_thread_cv);
1078}
1079
34dc7c2f
BB
1080static void
1081buf_init(void)
1082{
1083 uint64_t *ct;
1084 uint64_t hsize = 1ULL << 12;
1085 int i, j;
1086
1087 /*
1088 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1089 * with an average block size of zfs_arc_average_blocksize (default 8K).
1090 * By default, the table will take up
1091 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1092 */
49ddb315 1093 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
1094 hsize <<= 1;
1095retry:
1096 buf_hash_table.ht_mask = hsize - 1;
00b46022 1097#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
1098 /*
1099 * Large allocations which do not require contiguous pages
1100 * should be using vmem_alloc() in the linux kernel
1101 */
00b46022
BB
1102 buf_hash_table.ht_table =
1103 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1104#else
34dc7c2f
BB
1105 buf_hash_table.ht_table =
1106 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1107#endif
34dc7c2f
BB
1108 if (buf_hash_table.ht_table == NULL) {
1109 ASSERT(hsize > (1ULL << 8));
1110 hsize >>= 1;
1111 goto retry;
1112 }
1113
b9541d6b 1114 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
8c8af9d8 1115 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
b9541d6b 1116 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
8c8af9d8 1117 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
b9541d6b 1118 NULL, NULL, 0);
34dc7c2f 1119 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1120 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1121
1122 for (i = 0; i < 256; i++)
1123 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1124 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1125
1126 for (i = 0; i < BUF_LOCKS; i++) {
1127 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1128 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1129 }
1130}
1131
b9541d6b
CW
1132/*
1133 * Transition between the two allocation states for the arc_buf_hdr struct.
1134 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
1135 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
1136 * version is used when a cache buffer is only in the L2ARC in order to reduce
1137 * memory usage.
1138 */
1139static arc_buf_hdr_t *
1140arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
1141{
1142 arc_buf_hdr_t *nhdr;
1143 l2arc_dev_t *dev;
1144
1145 ASSERT(HDR_HAS_L2HDR(hdr));
1146 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
1147 (old == hdr_l2only_cache && new == hdr_full_cache));
1148
1149 dev = hdr->b_l2hdr.b_dev;
1150 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
1151
1152 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
1153 buf_hash_remove(hdr);
1154
1155 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
d962d5da 1156
b9541d6b
CW
1157 if (new == hdr_full_cache) {
1158 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1159 /*
1160 * arc_access and arc_change_state need to be aware that a
1161 * header has just come out of L2ARC, so we set its state to
1162 * l2c_only even though it's about to change.
1163 */
1164 nhdr->b_l1hdr.b_state = arc_l2c_only;
ca0bf58d
PS
1165
1166 /* Verify previous threads set to NULL before freeing */
1167 ASSERT3P(nhdr->b_l1hdr.b_tmp_cdata, ==, NULL);
b9541d6b
CW
1168 } else {
1169 ASSERT(hdr->b_l1hdr.b_buf == NULL);
1170 ASSERT0(hdr->b_l1hdr.b_datacnt);
ca0bf58d
PS
1171
1172 /*
1173 * If we've reached here, We must have been called from
1174 * arc_evict_hdr(), as such we should have already been
1175 * removed from any ghost list we were previously on
1176 * (which protects us from racing with arc_evict_state),
1177 * thus no locking is needed during this check.
1178 */
1179 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1180
b9541d6b 1181 /*
ca0bf58d
PS
1182 * A buffer must not be moved into the arc_l2c_only
1183 * state if it's not finished being written out to the
1184 * l2arc device. Otherwise, the b_l1hdr.b_tmp_cdata field
1185 * might try to be accessed, even though it was removed.
b9541d6b 1186 */
ca0bf58d
PS
1187 VERIFY(!HDR_L2_WRITING(hdr));
1188 VERIFY3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1189
b9541d6b
CW
1190 nhdr->b_flags &= ~ARC_FLAG_HAS_L1HDR;
1191 }
1192 /*
1193 * The header has been reallocated so we need to re-insert it into any
1194 * lists it was on.
1195 */
1196 (void) buf_hash_insert(nhdr, NULL);
1197
1198 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
1199
1200 mutex_enter(&dev->l2ad_mtx);
1201
1202 /*
1203 * We must place the realloc'ed header back into the list at
1204 * the same spot. Otherwise, if it's placed earlier in the list,
1205 * l2arc_write_buffers() could find it during the function's
1206 * write phase, and try to write it out to the l2arc.
1207 */
1208 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
1209 list_remove(&dev->l2ad_buflist, hdr);
1210
1211 mutex_exit(&dev->l2ad_mtx);
1212
d962d5da
PS
1213 /*
1214 * Since we're using the pointer address as the tag when
1215 * incrementing and decrementing the l2ad_alloc refcount, we
1216 * must remove the old pointer (that we're about to destroy) and
1217 * add the new pointer to the refcount. Otherwise we'd remove
1218 * the wrong pointer address when calling arc_hdr_destroy() later.
1219 */
1220
1221 (void) refcount_remove_many(&dev->l2ad_alloc,
1222 hdr->b_l2hdr.b_asize, hdr);
1223
1224 (void) refcount_add_many(&dev->l2ad_alloc,
1225 nhdr->b_l2hdr.b_asize, nhdr);
1226
b9541d6b
CW
1227 buf_discard_identity(hdr);
1228 hdr->b_freeze_cksum = NULL;
1229 kmem_cache_free(old, hdr);
1230
1231 return (nhdr);
1232}
1233
1234
34dc7c2f
BB
1235#define ARC_MINTIME (hz>>4) /* 62 ms */
1236
1237static void
1238arc_cksum_verify(arc_buf_t *buf)
1239{
1240 zio_cksum_t zc;
1241
1242 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1243 return;
1244
b9541d6b
CW
1245 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1246 if (buf->b_hdr->b_freeze_cksum == NULL || HDR_IO_ERROR(buf->b_hdr)) {
1247 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1248 return;
1249 }
1250 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1251 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
1252 panic("buffer modified while frozen!");
b9541d6b 1253 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1254}
1255
1256static int
1257arc_cksum_equal(arc_buf_t *buf)
1258{
1259 zio_cksum_t zc;
1260 int equal;
1261
b9541d6b 1262 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1263 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
1264 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
b9541d6b 1265 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1266
1267 return (equal);
1268}
1269
1270static void
1271arc_cksum_compute(arc_buf_t *buf, boolean_t force)
1272{
1273 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
1274 return;
1275
b9541d6b 1276 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f 1277 if (buf->b_hdr->b_freeze_cksum != NULL) {
b9541d6b 1278 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1279 return;
1280 }
96c080cb 1281 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t), KM_SLEEP);
34dc7c2f
BB
1282 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
1283 buf->b_hdr->b_freeze_cksum);
b9541d6b 1284 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1285 arc_buf_watch(buf);
1286}
1287
1288#ifndef _KERNEL
1289void
1290arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1291{
1292 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
1293}
1294#endif
1295
1296/* ARGSUSED */
1297static void
1298arc_buf_unwatch(arc_buf_t *buf)
1299{
1300#ifndef _KERNEL
1301 if (arc_watch) {
1302 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1303 PROT_READ | PROT_WRITE));
1304 }
1305#endif
1306}
1307
1308/* ARGSUSED */
1309static void
1310arc_buf_watch(arc_buf_t *buf)
1311{
1312#ifndef _KERNEL
1313 if (arc_watch)
1314 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1315#endif
34dc7c2f
BB
1316}
1317
b9541d6b
CW
1318static arc_buf_contents_t
1319arc_buf_type(arc_buf_hdr_t *hdr)
1320{
1321 if (HDR_ISTYPE_METADATA(hdr)) {
1322 return (ARC_BUFC_METADATA);
1323 } else {
1324 return (ARC_BUFC_DATA);
1325 }
1326}
1327
1328static uint32_t
1329arc_bufc_to_flags(arc_buf_contents_t type)
1330{
1331 switch (type) {
1332 case ARC_BUFC_DATA:
1333 /* metadata field is 0 if buffer contains normal data */
1334 return (0);
1335 case ARC_BUFC_METADATA:
1336 return (ARC_FLAG_BUFC_METADATA);
1337 default:
1338 break;
1339 }
1340 panic("undefined ARC buffer type!");
1341 return ((uint32_t)-1);
1342}
1343
34dc7c2f
BB
1344void
1345arc_buf_thaw(arc_buf_t *buf)
1346{
1347 if (zfs_flags & ZFS_DEBUG_MODIFY) {
b9541d6b 1348 if (buf->b_hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f 1349 panic("modifying non-anon buffer!");
b9541d6b 1350 if (HDR_IO_IN_PROGRESS(buf->b_hdr))
34dc7c2f
BB
1351 panic("modifying buffer while i/o in progress!");
1352 arc_cksum_verify(buf);
1353 }
1354
b9541d6b 1355 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1356 if (buf->b_hdr->b_freeze_cksum != NULL) {
1357 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1358 buf->b_hdr->b_freeze_cksum = NULL;
1359 }
428870ff 1360
b9541d6b 1361 mutex_exit(&buf->b_hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1362
1363 arc_buf_unwatch(buf);
34dc7c2f
BB
1364}
1365
1366void
1367arc_buf_freeze(arc_buf_t *buf)
1368{
428870ff
BB
1369 kmutex_t *hash_lock;
1370
34dc7c2f
BB
1371 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1372 return;
1373
428870ff
BB
1374 hash_lock = HDR_LOCK(buf->b_hdr);
1375 mutex_enter(hash_lock);
1376
34dc7c2f 1377 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
b9541d6b 1378 buf->b_hdr->b_l1hdr.b_state == arc_anon);
34dc7c2f 1379 arc_cksum_compute(buf, B_FALSE);
428870ff 1380 mutex_exit(hash_lock);
498877ba 1381
34dc7c2f
BB
1382}
1383
1384static void
2a432414 1385add_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f 1386{
b9541d6b
CW
1387 arc_state_t *state;
1388
1389 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1390 ASSERT(MUTEX_HELD(hash_lock));
1391
b9541d6b
CW
1392 state = hdr->b_l1hdr.b_state;
1393
1394 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1395 (state != arc_anon)) {
1396 /* We don't use the L2-only state list. */
1397 if (state != arc_l2c_only) {
ca0bf58d 1398 arc_buf_contents_t type = arc_buf_type(hdr);
b9541d6b 1399 uint64_t delta = hdr->b_size * hdr->b_l1hdr.b_datacnt;
ca0bf58d
PS
1400 multilist_t *list = &state->arcs_list[type];
1401 uint64_t *size = &state->arcs_lsize[type];
1402
1403 multilist_remove(list, hdr);
b9541d6b 1404
b9541d6b
CW
1405 if (GHOST_STATE(state)) {
1406 ASSERT0(hdr->b_l1hdr.b_datacnt);
1407 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1408 delta = hdr->b_size;
1409 }
1410 ASSERT(delta > 0);
1411 ASSERT3U(*size, >=, delta);
1412 atomic_add_64(size, -delta);
34dc7c2f 1413 }
b128c09f 1414 /* remove the prefetch flag if we get a reference */
b9541d6b 1415 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
34dc7c2f
BB
1416 }
1417}
1418
1419static int
2a432414 1420remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
1421{
1422 int cnt;
b9541d6b 1423 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 1424
b9541d6b 1425 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
1426 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1427 ASSERT(!GHOST_STATE(state));
1428
b9541d6b
CW
1429 /*
1430 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1431 * check to prevent usage of the arc_l2c_only list.
1432 */
1433 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 1434 (state != arc_anon)) {
ca0bf58d
PS
1435 arc_buf_contents_t type = arc_buf_type(hdr);
1436 multilist_t *list = &state->arcs_list[type];
1437 uint64_t *size = &state->arcs_lsize[type];
1438
1439 multilist_insert(list, hdr);
34dc7c2f 1440
b9541d6b
CW
1441 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
1442 atomic_add_64(size, hdr->b_size *
1443 hdr->b_l1hdr.b_datacnt);
34dc7c2f
BB
1444 }
1445 return (cnt);
1446}
1447
e0b0ca98
BB
1448/*
1449 * Returns detailed information about a specific arc buffer. When the
1450 * state_index argument is set the function will calculate the arc header
1451 * list position for its arc state. Since this requires a linear traversal
1452 * callers are strongly encourage not to do this. However, it can be helpful
1453 * for targeted analysis so the functionality is provided.
1454 */
1455void
1456arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1457{
1458 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
1459 l1arc_buf_hdr_t *l1hdr = NULL;
1460 l2arc_buf_hdr_t *l2hdr = NULL;
1461 arc_state_t *state = NULL;
1462
1463 if (HDR_HAS_L1HDR(hdr)) {
1464 l1hdr = &hdr->b_l1hdr;
1465 state = l1hdr->b_state;
1466 }
1467 if (HDR_HAS_L2HDR(hdr))
1468 l2hdr = &hdr->b_l2hdr;
e0b0ca98 1469
d1d7e268 1470 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98 1471 abi->abi_flags = hdr->b_flags;
b9541d6b
CW
1472
1473 if (l1hdr) {
1474 abi->abi_datacnt = l1hdr->b_datacnt;
1475 abi->abi_access = l1hdr->b_arc_access;
1476 abi->abi_mru_hits = l1hdr->b_mru_hits;
1477 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
1478 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
1479 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
1480 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
1481 }
1482
1483 if (l2hdr) {
1484 abi->abi_l2arc_dattr = l2hdr->b_daddr;
1485 abi->abi_l2arc_asize = l2hdr->b_asize;
1486 abi->abi_l2arc_compress = HDR_GET_COMPRESS(hdr);
1487 abi->abi_l2arc_hits = l2hdr->b_hits;
1488 }
1489
e0b0ca98 1490 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 1491 abi->abi_state_contents = arc_buf_type(hdr);
e0b0ca98 1492 abi->abi_size = hdr->b_size;
e0b0ca98
BB
1493}
1494
34dc7c2f 1495/*
ca0bf58d 1496 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
1497 * for the buffer must be held by the caller.
1498 */
1499static void
2a432414
GW
1500arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
1501 kmutex_t *hash_lock)
34dc7c2f 1502{
b9541d6b
CW
1503 arc_state_t *old_state;
1504 int64_t refcnt;
1505 uint32_t datacnt;
34dc7c2f 1506 uint64_t from_delta, to_delta;
b9541d6b
CW
1507 arc_buf_contents_t buftype = arc_buf_type(hdr);
1508
1509 /*
1510 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
1511 * in arc_read() when bringing a buffer out of the L2ARC. However, the
1512 * L1 hdr doesn't always exist when we change state to arc_anon before
1513 * destroying a header, in which case reallocating to add the L1 hdr is
1514 * pointless.
1515 */
1516 if (HDR_HAS_L1HDR(hdr)) {
1517 old_state = hdr->b_l1hdr.b_state;
1518 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
1519 datacnt = hdr->b_l1hdr.b_datacnt;
1520 } else {
1521 old_state = arc_l2c_only;
1522 refcnt = 0;
1523 datacnt = 0;
1524 }
34dc7c2f
BB
1525
1526 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1527 ASSERT3P(new_state, !=, old_state);
b9541d6b
CW
1528 ASSERT(refcnt == 0 || datacnt > 0);
1529 ASSERT(!GHOST_STATE(new_state) || datacnt == 0);
1530 ASSERT(old_state != arc_anon || datacnt <= 1);
34dc7c2f 1531
b9541d6b 1532 from_delta = to_delta = datacnt * hdr->b_size;
34dc7c2f
BB
1533
1534 /*
1535 * If this buffer is evictable, transfer it from the
1536 * old state list to the new state list.
1537 */
1538 if (refcnt == 0) {
b9541d6b 1539 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 1540 uint64_t *size = &old_state->arcs_lsize[buftype];
34dc7c2f 1541
b9541d6b 1542 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1543 multilist_remove(&old_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1544
1545 /*
1546 * If prefetching out of the ghost cache,
428870ff 1547 * we will have a non-zero datacnt.
34dc7c2f 1548 */
b9541d6b 1549 if (GHOST_STATE(old_state) && datacnt == 0) {
34dc7c2f 1550 /* ghost elements have a ghost size */
b9541d6b 1551 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1552 from_delta = hdr->b_size;
34dc7c2f
BB
1553 }
1554 ASSERT3U(*size, >=, from_delta);
1555 atomic_add_64(size, -from_delta);
34dc7c2f 1556 }
b9541d6b 1557 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b 1558 uint64_t *size = &new_state->arcs_lsize[buftype];
34dc7c2f 1559
b9541d6b
CW
1560 /*
1561 * An L1 header always exists here, since if we're
1562 * moving to some L1-cached state (i.e. not l2c_only or
1563 * anonymous), we realloc the header to add an L1hdr
1564 * beforehand.
1565 */
1566 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d 1567 multilist_insert(&new_state->arcs_list[buftype], hdr);
34dc7c2f
BB
1568
1569 /* ghost elements have a ghost size */
1570 if (GHOST_STATE(new_state)) {
b9541d6b
CW
1571 ASSERT0(datacnt);
1572 ASSERT(hdr->b_l1hdr.b_buf == NULL);
2a432414 1573 to_delta = hdr->b_size;
34dc7c2f
BB
1574 }
1575 atomic_add_64(size, to_delta);
34dc7c2f
BB
1576 }
1577 }
1578
2a432414
GW
1579 ASSERT(!BUF_EMPTY(hdr));
1580 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
1581 buf_hash_remove(hdr);
34dc7c2f 1582
b9541d6b 1583 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef
PS
1584
1585 if (to_delta && new_state != arc_l2c_only) {
1586 ASSERT(HDR_HAS_L1HDR(hdr));
1587 if (GHOST_STATE(new_state)) {
1588 ASSERT0(datacnt);
1589
1590 /*
1591 * We moving a header to a ghost state, we first
1592 * remove all arc buffers. Thus, we'll have a
1593 * datacnt of zero, and no arc buffer to use for
1594 * the reference. As a result, we use the arc
1595 * header pointer for the reference.
1596 */
1597 (void) refcount_add_many(&new_state->arcs_size,
1598 hdr->b_size, hdr);
1599 } else {
1600 arc_buf_t *buf;
1601 ASSERT3U(datacnt, !=, 0);
1602
1603 /*
1604 * Each individual buffer holds a unique reference,
1605 * thus we must remove each of these references one
1606 * at a time.
1607 */
1608 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1609 buf = buf->b_next) {
1610 (void) refcount_add_many(&new_state->arcs_size,
1611 hdr->b_size, buf);
1612 }
1613 }
1614 }
1615
b9541d6b 1616 if (from_delta && old_state != arc_l2c_only) {
36da08ef
PS
1617 ASSERT(HDR_HAS_L1HDR(hdr));
1618 if (GHOST_STATE(old_state)) {
1619 /*
1620 * When moving a header off of a ghost state,
1621 * there's the possibility for datacnt to be
1622 * non-zero. This is because we first add the
1623 * arc buffer to the header prior to changing
1624 * the header's state. Since we used the header
1625 * for the reference when putting the header on
1626 * the ghost state, we must balance that and use
1627 * the header when removing off the ghost state
1628 * (even though datacnt is non zero).
1629 */
1630
1631 IMPLY(datacnt == 0, new_state == arc_anon ||
1632 new_state == arc_l2c_only);
1633
1634 (void) refcount_remove_many(&old_state->arcs_size,
1635 hdr->b_size, hdr);
1636 } else {
1637 arc_buf_t *buf;
1638 ASSERT3U(datacnt, !=, 0);
1639
1640 /*
1641 * Each individual buffer holds a unique reference,
1642 * thus we must remove each of these references one
1643 * at a time.
1644 */
1645 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
1646 buf = buf->b_next) {
1647 (void) refcount_remove_many(
1648 &old_state->arcs_size, hdr->b_size, buf);
1649 }
1650 }
34dc7c2f 1651 }
36da08ef 1652
b9541d6b
CW
1653 if (HDR_HAS_L1HDR(hdr))
1654 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 1655
b9541d6b
CW
1656 /*
1657 * L2 headers should never be on the L2 state list since they don't
1658 * have L1 headers allocated.
1659 */
ca0bf58d
PS
1660 ASSERT(multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
1661 multilist_is_empty(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
1662}
1663
1664void
d164b209 1665arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1666{
d164b209
BB
1667 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1668
1669 switch (type) {
e75c13c3
BB
1670 default:
1671 break;
d164b209
BB
1672 case ARC_SPACE_DATA:
1673 ARCSTAT_INCR(arcstat_data_size, space);
1674 break;
cc7f677c 1675 case ARC_SPACE_META:
500445c0 1676 ARCSTAT_INCR(arcstat_metadata_size, space);
cc7f677c 1677 break;
d164b209
BB
1678 case ARC_SPACE_OTHER:
1679 ARCSTAT_INCR(arcstat_other_size, space);
1680 break;
1681 case ARC_SPACE_HDRS:
1682 ARCSTAT_INCR(arcstat_hdr_size, space);
1683 break;
1684 case ARC_SPACE_L2HDRS:
1685 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1686 break;
1687 }
1688
500445c0 1689 if (type != ARC_SPACE_DATA)
cc7f677c
PS
1690 ARCSTAT_INCR(arcstat_meta_used, space);
1691
34dc7c2f
BB
1692 atomic_add_64(&arc_size, space);
1693}
1694
1695void
d164b209 1696arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1697{
d164b209
BB
1698 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1699
1700 switch (type) {
e75c13c3
BB
1701 default:
1702 break;
d164b209
BB
1703 case ARC_SPACE_DATA:
1704 ARCSTAT_INCR(arcstat_data_size, -space);
1705 break;
cc7f677c 1706 case ARC_SPACE_META:
500445c0 1707 ARCSTAT_INCR(arcstat_metadata_size, -space);
cc7f677c 1708 break;
d164b209
BB
1709 case ARC_SPACE_OTHER:
1710 ARCSTAT_INCR(arcstat_other_size, -space);
1711 break;
1712 case ARC_SPACE_HDRS:
1713 ARCSTAT_INCR(arcstat_hdr_size, -space);
1714 break;
1715 case ARC_SPACE_L2HDRS:
1716 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1717 break;
1718 }
1719
cc7f677c
PS
1720 if (type != ARC_SPACE_DATA) {
1721 ASSERT(arc_meta_used >= space);
500445c0
PS
1722 if (arc_meta_max < arc_meta_used)
1723 arc_meta_max = arc_meta_used;
cc7f677c
PS
1724 ARCSTAT_INCR(arcstat_meta_used, -space);
1725 }
1726
34dc7c2f
BB
1727 ASSERT(arc_size >= space);
1728 atomic_add_64(&arc_size, -space);
1729}
1730
34dc7c2f 1731arc_buf_t *
5f6d0b6f 1732arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1733{
1734 arc_buf_hdr_t *hdr;
1735 arc_buf_t *buf;
1736
f1512ee6 1737 VERIFY3U(size, <=, spa_maxblocksize(spa));
b9541d6b 1738 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f 1739 ASSERT(BUF_EMPTY(hdr));
b9541d6b 1740 ASSERT3P(hdr->b_freeze_cksum, ==, NULL);
34dc7c2f 1741 hdr->b_size = size;
3541dc6d 1742 hdr->b_spa = spa_load_guid(spa);
b9541d6b
CW
1743 hdr->b_l1hdr.b_mru_hits = 0;
1744 hdr->b_l1hdr.b_mru_ghost_hits = 0;
1745 hdr->b_l1hdr.b_mfu_hits = 0;
1746 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
1747 hdr->b_l1hdr.b_l2_hits = 0;
1748
34dc7c2f
BB
1749 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1750 buf->b_hdr = hdr;
1751 buf->b_data = NULL;
1752 buf->b_efunc = NULL;
1753 buf->b_private = NULL;
1754 buf->b_next = NULL;
b9541d6b
CW
1755
1756 hdr->b_flags = arc_bufc_to_flags(type);
1757 hdr->b_flags |= ARC_FLAG_HAS_L1HDR;
1758
1759 hdr->b_l1hdr.b_buf = buf;
1760 hdr->b_l1hdr.b_state = arc_anon;
1761 hdr->b_l1hdr.b_arc_access = 0;
1762 hdr->b_l1hdr.b_datacnt = 1;
ca0bf58d 1763 hdr->b_l1hdr.b_tmp_cdata = NULL;
b9541d6b 1764
34dc7c2f 1765 arc_get_data_buf(buf);
b9541d6b
CW
1766 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1767 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
34dc7c2f
BB
1768
1769 return (buf);
1770}
1771
9babb374
BB
1772static char *arc_onloan_tag = "onloan";
1773
1774/*
1775 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1776 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1777 * buffers must be returned to the arc before they can be used by the DMU or
1778 * freed.
1779 */
1780arc_buf_t *
5f6d0b6f 1781arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1782{
1783 arc_buf_t *buf;
1784
1785 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1786
1787 atomic_add_64(&arc_loaned_bytes, size);
1788 return (buf);
1789}
1790
1791/*
1792 * Return a loaned arc buffer to the arc.
1793 */
1794void
1795arc_return_buf(arc_buf_t *buf, void *tag)
1796{
1797 arc_buf_hdr_t *hdr = buf->b_hdr;
1798
9babb374 1799 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1800 ASSERT(HDR_HAS_L1HDR(hdr));
1801 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
1802 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374
BB
1803
1804 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1805}
1806
428870ff
BB
1807/* Detach an arc_buf from a dbuf (tag) */
1808void
1809arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1810{
b9541d6b 1811 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff
BB
1812
1813 ASSERT(buf->b_data != NULL);
b9541d6b
CW
1814 ASSERT(HDR_HAS_L1HDR(hdr));
1815 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
1816 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff
BB
1817 buf->b_efunc = NULL;
1818 buf->b_private = NULL;
1819
1820 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1821}
1822
34dc7c2f
BB
1823static arc_buf_t *
1824arc_buf_clone(arc_buf_t *from)
1825{
1826 arc_buf_t *buf;
1827 arc_buf_hdr_t *hdr = from->b_hdr;
1828 uint64_t size = hdr->b_size;
1829
b9541d6b
CW
1830 ASSERT(HDR_HAS_L1HDR(hdr));
1831 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
428870ff 1832
34dc7c2f
BB
1833 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1834 buf->b_hdr = hdr;
1835 buf->b_data = NULL;
1836 buf->b_efunc = NULL;
1837 buf->b_private = NULL;
b9541d6b
CW
1838 buf->b_next = hdr->b_l1hdr.b_buf;
1839 hdr->b_l1hdr.b_buf = buf;
34dc7c2f
BB
1840 arc_get_data_buf(buf);
1841 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1842
1843 /*
1844 * This buffer already exists in the arc so create a duplicate
1845 * copy for the caller. If the buffer is associated with user data
1846 * then track the size and number of duplicates. These stats will be
1847 * updated as duplicate buffers are created and destroyed.
1848 */
b9541d6b 1849 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
1850 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1851 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1852 }
b9541d6b 1853 hdr->b_l1hdr.b_datacnt += 1;
34dc7c2f
BB
1854 return (buf);
1855}
1856
1857void
1858arc_buf_add_ref(arc_buf_t *buf, void* tag)
1859{
1860 arc_buf_hdr_t *hdr;
1861 kmutex_t *hash_lock;
1862
1863 /*
b128c09f
BB
1864 * Check to see if this buffer is evicted. Callers
1865 * must verify b_data != NULL to know if the add_ref
1866 * was successful.
34dc7c2f 1867 */
428870ff 1868 mutex_enter(&buf->b_evict_lock);
b128c09f 1869 if (buf->b_data == NULL) {
428870ff 1870 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1871 return;
1872 }
428870ff 1873 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1874 mutex_enter(hash_lock);
428870ff 1875 hdr = buf->b_hdr;
b9541d6b 1876 ASSERT(HDR_HAS_L1HDR(hdr));
428870ff
BB
1877 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1878 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1879
b9541d6b
CW
1880 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
1881 hdr->b_l1hdr.b_state == arc_mfu);
1882
34dc7c2f 1883 add_reference(hdr, hash_lock, tag);
d164b209 1884 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1885 arc_access(hdr, hash_lock);
1886 mutex_exit(hash_lock);
1887 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
1888 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
1889 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
1890 data, metadata, hits);
1891}
1892
ca0bf58d
PS
1893static void
1894arc_buf_free_on_write(void *data, size_t size,
1895 void (*free_func)(void *, size_t))
1896{
1897 l2arc_data_free_t *df;
1898
1899 df = kmem_alloc(sizeof (*df), KM_SLEEP);
1900 df->l2df_data = data;
1901 df->l2df_size = size;
1902 df->l2df_func = free_func;
1903 mutex_enter(&l2arc_free_on_write_mtx);
1904 list_insert_head(l2arc_free_on_write, df);
1905 mutex_exit(&l2arc_free_on_write_mtx);
1906}
1907
34dc7c2f
BB
1908/*
1909 * Free the arc data buffer. If it is an l2arc write in progress,
1910 * the buffer is placed on l2arc_free_on_write to be freed later.
1911 */
1912static void
498877ba 1913arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1914{
498877ba
MA
1915 arc_buf_hdr_t *hdr = buf->b_hdr;
1916
34dc7c2f 1917 if (HDR_L2_WRITING(hdr)) {
ca0bf58d 1918 arc_buf_free_on_write(buf->b_data, hdr->b_size, free_func);
34dc7c2f
BB
1919 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1920 } else {
498877ba 1921 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1922 }
1923}
1924
ca0bf58d
PS
1925static void
1926arc_buf_l2_cdata_free(arc_buf_hdr_t *hdr)
1927{
1928 ASSERT(HDR_HAS_L2HDR(hdr));
1929 ASSERT(MUTEX_HELD(&hdr->b_l2hdr.b_dev->l2ad_mtx));
1930
1931 /*
1932 * The b_tmp_cdata field is linked off of the b_l1hdr, so if
1933 * that doesn't exist, the header is in the arc_l2c_only state,
1934 * and there isn't anything to free (it's already been freed).
1935 */
1936 if (!HDR_HAS_L1HDR(hdr))
1937 return;
1938
1939 /*
1940 * The header isn't being written to the l2arc device, thus it
1941 * shouldn't have a b_tmp_cdata to free.
1942 */
1943 if (!HDR_L2_WRITING(hdr)) {
1944 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1945 return;
1946 }
1947
1948 /*
1949 * The header does not have compression enabled. This can be due
1950 * to the buffer not being compressible, or because we're
1951 * freeing the buffer before the second phase of
1952 * l2arc_write_buffer() has started (which does the compression
1953 * step). In either case, b_tmp_cdata does not point to a
1954 * separately compressed buffer, so there's nothing to free (it
1955 * points to the same buffer as the arc_buf_t's b_data field).
1956 */
1957 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) {
1958 hdr->b_l1hdr.b_tmp_cdata = NULL;
1959 return;
1960 }
1961
1962 /*
1963 * There's nothing to free since the buffer was all zero's and
1964 * compressed to a zero length buffer.
1965 */
1966 if (HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_EMPTY) {
1967 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
1968 return;
1969 }
1970
1971 ASSERT(L2ARC_IS_VALID_COMPRESS(HDR_GET_COMPRESS(hdr)));
1972
1973 arc_buf_free_on_write(hdr->b_l1hdr.b_tmp_cdata,
1974 hdr->b_size, zio_data_buf_free);
1975
1976 ARCSTAT_BUMP(arcstat_l2_cdata_free_on_write);
1977 hdr->b_l1hdr.b_tmp_cdata = NULL;
1978}
1979
bd089c54
MA
1980/*
1981 * Free up buf->b_data and if 'remove' is set, then pull the
1982 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1983 */
34dc7c2f 1984static void
ca0bf58d 1985arc_buf_destroy(arc_buf_t *buf, boolean_t remove)
34dc7c2f
BB
1986{
1987 arc_buf_t **bufp;
1988
1989 /* free up data associated with the buf */
b9541d6b
CW
1990 if (buf->b_data != NULL) {
1991 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 1992 uint64_t size = buf->b_hdr->b_size;
b9541d6b 1993 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
1994
1995 arc_cksum_verify(buf);
498877ba 1996 arc_buf_unwatch(buf);
428870ff 1997
ca0bf58d
PS
1998 if (type == ARC_BUFC_METADATA) {
1999 arc_buf_data_free(buf, zio_buf_free);
2000 arc_space_return(size, ARC_SPACE_META);
2001 } else {
2002 ASSERT(type == ARC_BUFC_DATA);
2003 arc_buf_data_free(buf, zio_data_buf_free);
2004 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f 2005 }
ca0bf58d
PS
2006
2007 /* protected by hash lock, if in the hash table */
2008 if (multilist_link_active(&buf->b_hdr->b_l1hdr.b_arc_node)) {
34dc7c2f
BB
2009 uint64_t *cnt = &state->arcs_lsize[type];
2010
b9541d6b
CW
2011 ASSERT(refcount_is_zero(
2012 &buf->b_hdr->b_l1hdr.b_refcnt));
2013 ASSERT(state != arc_anon && state != arc_l2c_only);
34dc7c2f
BB
2014
2015 ASSERT3U(*cnt, >=, size);
2016 atomic_add_64(cnt, -size);
2017 }
36da08ef
PS
2018
2019 (void) refcount_remove_many(&state->arcs_size, size, buf);
34dc7c2f 2020 buf->b_data = NULL;
1eb5bfa3
GW
2021
2022 /*
2023 * If we're destroying a duplicate buffer make sure
2024 * that the appropriate statistics are updated.
2025 */
b9541d6b
CW
2026 if (buf->b_hdr->b_l1hdr.b_datacnt > 1 &&
2027 HDR_ISTYPE_DATA(buf->b_hdr)) {
1eb5bfa3
GW
2028 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
2029 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
2030 }
b9541d6b
CW
2031 ASSERT(buf->b_hdr->b_l1hdr.b_datacnt > 0);
2032 buf->b_hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f
BB
2033 }
2034
2035 /* only remove the buf if requested */
bd089c54 2036 if (!remove)
34dc7c2f
BB
2037 return;
2038
2039 /* remove the buf from the hdr list */
b9541d6b
CW
2040 for (bufp = &buf->b_hdr->b_l1hdr.b_buf; *bufp != buf;
2041 bufp = &(*bufp)->b_next)
34dc7c2f
BB
2042 continue;
2043 *bufp = buf->b_next;
428870ff 2044 buf->b_next = NULL;
34dc7c2f
BB
2045
2046 ASSERT(buf->b_efunc == NULL);
2047
2048 /* clean up the buf */
2049 buf->b_hdr = NULL;
2050 kmem_cache_free(buf_cache, buf);
2051}
2052
d962d5da
PS
2053static void
2054arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2055{
2056 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2057 l2arc_dev_t *dev = l2hdr->b_dev;
2058
2059 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
2060 ASSERT(HDR_HAS_L2HDR(hdr));
2061
2062 list_remove(&dev->l2ad_buflist, hdr);
2063
d962d5da
PS
2064 /*
2065 * We don't want to leak the b_tmp_cdata buffer that was
2066 * allocated in l2arc_write_buffers()
2067 */
2068 arc_buf_l2_cdata_free(hdr);
2069
2070 /*
2071 * If the l2hdr's b_daddr is equal to L2ARC_ADDR_UNSET, then
2072 * this header is being processed by l2arc_write_buffers() (i.e.
2073 * it's in the first stage of l2arc_write_buffers()).
2074 * Re-affirming that truth here, just to serve as a reminder. If
2075 * b_daddr does not equal L2ARC_ADDR_UNSET, then the header may or
2076 * may not have its HDR_L2_WRITING flag set. (the write may have
2077 * completed, in which case HDR_L2_WRITING will be false and the
2078 * b_daddr field will point to the address of the buffer on disk).
2079 */
2080 IMPLY(l2hdr->b_daddr == L2ARC_ADDR_UNSET, HDR_L2_WRITING(hdr));
2081
2082 /*
2083 * If b_daddr is equal to L2ARC_ADDR_UNSET, we're racing with
2084 * l2arc_write_buffers(). Since we've just removed this header
2085 * from the l2arc buffer list, this header will never reach the
2086 * second stage of l2arc_write_buffers(), which increments the
2087 * accounting stats for this header. Thus, we must be careful
2088 * not to decrement them for this header either.
2089 */
2090 if (l2hdr->b_daddr != L2ARC_ADDR_UNSET) {
2091 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
2092 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
2093
2094 vdev_space_update(dev->l2ad_vdev,
2095 -l2hdr->b_asize, 0, 0);
2096
2097 (void) refcount_remove_many(&dev->l2ad_alloc,
2098 l2hdr->b_asize, hdr);
2099 }
2100
2101 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
2102}
2103
34dc7c2f
BB
2104static void
2105arc_hdr_destroy(arc_buf_hdr_t *hdr)
2106{
b9541d6b
CW
2107 if (HDR_HAS_L1HDR(hdr)) {
2108 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
2109 hdr->b_l1hdr.b_datacnt > 0);
2110 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2111 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
2112 }
34dc7c2f 2113 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
2114 ASSERT(!HDR_IN_HASH_TABLE(hdr));
2115
2116 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
2117 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2118 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 2119
d962d5da
PS
2120 if (!buflist_held)
2121 mutex_enter(&dev->l2ad_mtx);
b9541d6b 2122
ca0bf58d 2123 /*
d962d5da
PS
2124 * Even though we checked this conditional above, we
2125 * need to check this again now that we have the
2126 * l2ad_mtx. This is because we could be racing with
2127 * another thread calling l2arc_evict() which might have
2128 * destroyed this header's L2 portion as we were waiting
2129 * to acquire the l2ad_mtx. If that happens, we don't
2130 * want to re-destroy the header's L2 portion.
ca0bf58d 2131 */
d962d5da
PS
2132 if (HDR_HAS_L2HDR(hdr))
2133 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
2134
2135 if (!buflist_held)
d962d5da 2136 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
2137 }
2138
b9541d6b 2139 if (!BUF_EMPTY(hdr))
428870ff 2140 buf_discard_identity(hdr);
b9541d6b 2141
34dc7c2f
BB
2142 if (hdr->b_freeze_cksum != NULL) {
2143 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
2144 hdr->b_freeze_cksum = NULL;
2145 }
2146
b9541d6b
CW
2147 if (HDR_HAS_L1HDR(hdr)) {
2148 while (hdr->b_l1hdr.b_buf) {
2149 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2150
2151 if (buf->b_efunc != NULL) {
ca0bf58d 2152 mutex_enter(&arc_user_evicts_lock);
b9541d6b
CW
2153 mutex_enter(&buf->b_evict_lock);
2154 ASSERT(buf->b_hdr != NULL);
ca0bf58d 2155 arc_buf_destroy(hdr->b_l1hdr.b_buf, FALSE);
b9541d6b
CW
2156 hdr->b_l1hdr.b_buf = buf->b_next;
2157 buf->b_hdr = &arc_eviction_hdr;
2158 buf->b_next = arc_eviction_list;
2159 arc_eviction_list = buf;
2160 mutex_exit(&buf->b_evict_lock);
ca0bf58d
PS
2161 cv_signal(&arc_user_evicts_cv);
2162 mutex_exit(&arc_user_evicts_lock);
b9541d6b 2163 } else {
ca0bf58d 2164 arc_buf_destroy(hdr->b_l1hdr.b_buf, TRUE);
b9541d6b
CW
2165 }
2166 }
2167 }
2168
34dc7c2f 2169 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 2170 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 2171 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
2172 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
2173 kmem_cache_free(hdr_full_cache, hdr);
2174 } else {
2175 kmem_cache_free(hdr_l2only_cache, hdr);
2176 }
34dc7c2f
BB
2177}
2178
2179void
2180arc_buf_free(arc_buf_t *buf, void *tag)
2181{
2182 arc_buf_hdr_t *hdr = buf->b_hdr;
b9541d6b 2183 int hashed = hdr->b_l1hdr.b_state != arc_anon;
34dc7c2f
BB
2184
2185 ASSERT(buf->b_efunc == NULL);
2186 ASSERT(buf->b_data != NULL);
2187
2188 if (hashed) {
2189 kmutex_t *hash_lock = HDR_LOCK(hdr);
2190
2191 mutex_enter(hash_lock);
428870ff
BB
2192 hdr = buf->b_hdr;
2193 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
2194
34dc7c2f 2195 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2196 if (hdr->b_l1hdr.b_datacnt > 1) {
ca0bf58d 2197 arc_buf_destroy(buf, TRUE);
428870ff 2198 } else {
b9541d6b 2199 ASSERT(buf == hdr->b_l1hdr.b_buf);
428870ff 2200 ASSERT(buf->b_efunc == NULL);
2a432414 2201 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 2202 }
34dc7c2f
BB
2203 mutex_exit(hash_lock);
2204 } else if (HDR_IO_IN_PROGRESS(hdr)) {
2205 int destroy_hdr;
2206 /*
2207 * We are in the middle of an async write. Don't destroy
2208 * this buffer unless the write completes before we finish
2209 * decrementing the reference count.
2210 */
ca0bf58d 2211 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 2212 (void) remove_reference(hdr, NULL, tag);
b9541d6b 2213 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f 2214 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
ca0bf58d 2215 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
2216 if (destroy_hdr)
2217 arc_hdr_destroy(hdr);
2218 } else {
428870ff 2219 if (remove_reference(hdr, NULL, tag) > 0)
ca0bf58d 2220 arc_buf_destroy(buf, TRUE);
428870ff 2221 else
34dc7c2f 2222 arc_hdr_destroy(hdr);
34dc7c2f
BB
2223 }
2224}
2225
13fe0198 2226boolean_t
34dc7c2f
BB
2227arc_buf_remove_ref(arc_buf_t *buf, void* tag)
2228{
2229 arc_buf_hdr_t *hdr = buf->b_hdr;
96c080cb 2230 kmutex_t *hash_lock = HDR_LOCK(hdr);
13fe0198 2231 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f 2232
b9541d6b
CW
2233 if (hdr->b_l1hdr.b_state == arc_anon) {
2234 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
34dc7c2f
BB
2235 arc_buf_free(buf, tag);
2236 return (no_callback);
2237 }
2238
2239 mutex_enter(hash_lock);
428870ff 2240 hdr = buf->b_hdr;
b9541d6b 2241 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
428870ff 2242 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
b9541d6b 2243 ASSERT(hdr->b_l1hdr.b_state != arc_anon);
34dc7c2f
BB
2244 ASSERT(buf->b_data != NULL);
2245
2246 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 2247 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f 2248 if (no_callback)
ca0bf58d 2249 arc_buf_destroy(buf, TRUE);
34dc7c2f 2250 } else if (no_callback) {
b9541d6b 2251 ASSERT(hdr->b_l1hdr.b_buf == buf && buf->b_next == NULL);
428870ff 2252 ASSERT(buf->b_efunc == NULL);
2a432414 2253 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
34dc7c2f 2254 }
b9541d6b
CW
2255 ASSERT(no_callback || hdr->b_l1hdr.b_datacnt > 1 ||
2256 refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
2257 mutex_exit(hash_lock);
2258 return (no_callback);
2259}
2260
5f6d0b6f 2261uint64_t
34dc7c2f
BB
2262arc_buf_size(arc_buf_t *buf)
2263{
2264 return (buf->b_hdr->b_size);
2265}
2266
1eb5bfa3
GW
2267/*
2268 * Called from the DMU to determine if the current buffer should be
2269 * evicted. In order to ensure proper locking, the eviction must be initiated
2270 * from the DMU. Return true if the buffer is associated with user data and
2271 * duplicate buffers still exist.
2272 */
2273boolean_t
2274arc_buf_eviction_needed(arc_buf_t *buf)
2275{
2276 arc_buf_hdr_t *hdr;
2277 boolean_t evict_needed = B_FALSE;
2278
2279 if (zfs_disable_dup_eviction)
2280 return (B_FALSE);
2281
2282 mutex_enter(&buf->b_evict_lock);
2283 hdr = buf->b_hdr;
2284 if (hdr == NULL) {
2285 /*
2286 * We are in arc_do_user_evicts(); let that function
2287 * perform the eviction.
2288 */
2289 ASSERT(buf->b_data == NULL);
2290 mutex_exit(&buf->b_evict_lock);
2291 return (B_FALSE);
2292 } else if (buf->b_data == NULL) {
2293 /*
2294 * We have already been added to the arc eviction list;
2295 * recommend eviction.
2296 */
2297 ASSERT3P(hdr, ==, &arc_eviction_hdr);
2298 mutex_exit(&buf->b_evict_lock);
2299 return (B_TRUE);
2300 }
2301
b9541d6b 2302 if (hdr->b_l1hdr.b_datacnt > 1 && HDR_ISTYPE_DATA(hdr))
1eb5bfa3
GW
2303 evict_needed = B_TRUE;
2304
2305 mutex_exit(&buf->b_evict_lock);
2306 return (evict_needed);
2307}
2308
34dc7c2f 2309/*
ca0bf58d
PS
2310 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
2311 * state of the header is dependent on its state prior to entering this
2312 * function. The following transitions are possible:
34dc7c2f 2313 *
ca0bf58d
PS
2314 * - arc_mru -> arc_mru_ghost
2315 * - arc_mfu -> arc_mfu_ghost
2316 * - arc_mru_ghost -> arc_l2c_only
2317 * - arc_mru_ghost -> deleted
2318 * - arc_mfu_ghost -> arc_l2c_only
2319 * - arc_mfu_ghost -> deleted
34dc7c2f 2320 */
ca0bf58d
PS
2321static int64_t
2322arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 2323{
ca0bf58d
PS
2324 arc_state_t *evicted_state, *state;
2325 int64_t bytes_evicted = 0;
34dc7c2f 2326
ca0bf58d
PS
2327 ASSERT(MUTEX_HELD(hash_lock));
2328 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 2329
ca0bf58d
PS
2330 state = hdr->b_l1hdr.b_state;
2331 if (GHOST_STATE(state)) {
2332 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
2333 ASSERT(hdr->b_l1hdr.b_buf == NULL);
e8b96c60
MA
2334
2335 /*
ca0bf58d
PS
2336 * l2arc_write_buffers() relies on a header's L1 portion
2337 * (i.e. its b_tmp_cdata field) during its write phase.
2338 * Thus, we cannot push a header onto the arc_l2c_only
2339 * state (removing its L1 piece) until the header is
2340 * done being written to the l2arc.
e8b96c60 2341 */
ca0bf58d
PS
2342 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
2343 ARCSTAT_BUMP(arcstat_evict_l2_skip);
2344 return (bytes_evicted);
e8b96c60
MA
2345 }
2346
ca0bf58d
PS
2347 ARCSTAT_BUMP(arcstat_deleted);
2348 bytes_evicted += hdr->b_size;
428870ff 2349
ca0bf58d 2350 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 2351
ca0bf58d
PS
2352 if (HDR_HAS_L2HDR(hdr)) {
2353 /*
2354 * This buffer is cached on the 2nd Level ARC;
2355 * don't destroy the header.
2356 */
2357 arc_change_state(arc_l2c_only, hdr, hash_lock);
2358 /*
2359 * dropping from L1+L2 cached to L2-only,
2360 * realloc to remove the L1 header.
2361 */
2362 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
2363 hdr_l2only_cache);
34dc7c2f 2364 } else {
ca0bf58d
PS
2365 arc_change_state(arc_anon, hdr, hash_lock);
2366 arc_hdr_destroy(hdr);
34dc7c2f 2367 }
ca0bf58d 2368 return (bytes_evicted);
34dc7c2f
BB
2369 }
2370
ca0bf58d
PS
2371 ASSERT(state == arc_mru || state == arc_mfu);
2372 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 2373
ca0bf58d
PS
2374 /* prefetch buffers have a minimum lifespan */
2375 if (HDR_IO_IN_PROGRESS(hdr) ||
2376 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2377 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
2378 arc_min_prefetch_lifespan)) {
2379 ARCSTAT_BUMP(arcstat_evict_skip);
2380 return (bytes_evicted);
da8ccd0e
PS
2381 }
2382
ca0bf58d
PS
2383 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
2384 ASSERT3U(hdr->b_l1hdr.b_datacnt, >, 0);
2385 while (hdr->b_l1hdr.b_buf) {
2386 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
2387 if (!mutex_tryenter(&buf->b_evict_lock)) {
2388 ARCSTAT_BUMP(arcstat_mutex_miss);
2389 break;
2390 }
2391 if (buf->b_data != NULL)
2392 bytes_evicted += hdr->b_size;
2393 if (buf->b_efunc != NULL) {
2394 mutex_enter(&arc_user_evicts_lock);
2395 arc_buf_destroy(buf, FALSE);
2396 hdr->b_l1hdr.b_buf = buf->b_next;
2397 buf->b_hdr = &arc_eviction_hdr;
2398 buf->b_next = arc_eviction_list;
2399 arc_eviction_list = buf;
2400 cv_signal(&arc_user_evicts_cv);
2401 mutex_exit(&arc_user_evicts_lock);
2402 mutex_exit(&buf->b_evict_lock);
2403 } else {
2404 mutex_exit(&buf->b_evict_lock);
2405 arc_buf_destroy(buf, TRUE);
2406 }
2407 }
34dc7c2f 2408
ca0bf58d
PS
2409 if (HDR_HAS_L2HDR(hdr)) {
2410 ARCSTAT_INCR(arcstat_evict_l2_cached, hdr->b_size);
2411 } else {
2412 if (l2arc_write_eligible(hdr->b_spa, hdr))
2413 ARCSTAT_INCR(arcstat_evict_l2_eligible, hdr->b_size);
2414 else
2415 ARCSTAT_INCR(arcstat_evict_l2_ineligible, hdr->b_size);
2416 }
34dc7c2f 2417
ca0bf58d
PS
2418 if (hdr->b_l1hdr.b_datacnt == 0) {
2419 arc_change_state(evicted_state, hdr, hash_lock);
2420 ASSERT(HDR_IN_HASH_TABLE(hdr));
2421 hdr->b_flags |= ARC_FLAG_IN_HASH_TABLE;
2422 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
2423 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
2424 }
34dc7c2f 2425
ca0bf58d 2426 return (bytes_evicted);
34dc7c2f
BB
2427}
2428
ca0bf58d
PS
2429static uint64_t
2430arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
2431 uint64_t spa, int64_t bytes)
34dc7c2f 2432{
ca0bf58d
PS
2433 multilist_sublist_t *mls;
2434 uint64_t bytes_evicted = 0;
2435 arc_buf_hdr_t *hdr;
34dc7c2f 2436 kmutex_t *hash_lock;
ca0bf58d 2437 int evict_count = 0;
34dc7c2f 2438
ca0bf58d 2439 ASSERT3P(marker, !=, NULL);
96c080cb 2440 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
2441
2442 mls = multilist_sublist_lock(ml, idx);
572e2857 2443
ca0bf58d
PS
2444 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
2445 hdr = multilist_sublist_prev(mls, marker)) {
2446 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
2447 (evict_count >= zfs_arc_evict_batch_limit))
2448 break;
2449
2450 /*
2451 * To keep our iteration location, move the marker
2452 * forward. Since we're not holding hdr's hash lock, we
2453 * must be very careful and not remove 'hdr' from the
2454 * sublist. Otherwise, other consumers might mistake the
2455 * 'hdr' as not being on a sublist when they call the
2456 * multilist_link_active() function (they all rely on
2457 * the hash lock protecting concurrent insertions and
2458 * removals). multilist_sublist_move_forward() was
2459 * specifically implemented to ensure this is the case
2460 * (only 'marker' will be removed and re-inserted).
2461 */
2462 multilist_sublist_move_forward(mls, marker);
2463
2464 /*
2465 * The only case where the b_spa field should ever be
2466 * zero, is the marker headers inserted by
2467 * arc_evict_state(). It's possible for multiple threads
2468 * to be calling arc_evict_state() concurrently (e.g.
2469 * dsl_pool_close() and zio_inject_fault()), so we must
2470 * skip any markers we see from these other threads.
2471 */
2a432414 2472 if (hdr->b_spa == 0)
572e2857
BB
2473 continue;
2474
ca0bf58d
PS
2475 /* we're only interested in evicting buffers of a certain spa */
2476 if (spa != 0 && hdr->b_spa != spa) {
2477 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 2478 continue;
ca0bf58d
PS
2479 }
2480
2481 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
2482
2483 /*
ca0bf58d
PS
2484 * We aren't calling this function from any code path
2485 * that would already be holding a hash lock, so we're
2486 * asserting on this assumption to be defensive in case
2487 * this ever changes. Without this check, it would be
2488 * possible to incorrectly increment arcstat_mutex_miss
2489 * below (e.g. if the code changed such that we called
2490 * this function with a hash lock held).
e8b96c60 2491 */
ca0bf58d
PS
2492 ASSERT(!MUTEX_HELD(hash_lock));
2493
34dc7c2f 2494 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
2495 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
2496 mutex_exit(hash_lock);
34dc7c2f 2497
ca0bf58d 2498 bytes_evicted += evicted;
34dc7c2f 2499
572e2857 2500 /*
ca0bf58d
PS
2501 * If evicted is zero, arc_evict_hdr() must have
2502 * decided to skip this header, don't increment
2503 * evict_count in this case.
572e2857 2504 */
ca0bf58d
PS
2505 if (evicted != 0)
2506 evict_count++;
2507
2508 /*
2509 * If arc_size isn't overflowing, signal any
2510 * threads that might happen to be waiting.
2511 *
2512 * For each header evicted, we wake up a single
2513 * thread. If we used cv_broadcast, we could
2514 * wake up "too many" threads causing arc_size
2515 * to significantly overflow arc_c; since
2516 * arc_get_data_buf() doesn't check for overflow
2517 * when it's woken up (it doesn't because it's
2518 * possible for the ARC to be overflowing while
2519 * full of un-evictable buffers, and the
2520 * function should proceed in this case).
2521 *
2522 * If threads are left sleeping, due to not
2523 * using cv_broadcast, they will be woken up
2524 * just before arc_reclaim_thread() sleeps.
2525 */
2526 mutex_enter(&arc_reclaim_lock);
2527 if (!arc_is_overflowing())
2528 cv_signal(&arc_reclaim_waiters_cv);
2529 mutex_exit(&arc_reclaim_lock);
e8b96c60 2530 } else {
ca0bf58d 2531 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 2532 }
34dc7c2f 2533 }
34dc7c2f 2534
ca0bf58d 2535 multilist_sublist_unlock(mls);
34dc7c2f 2536
ca0bf58d 2537 return (bytes_evicted);
34dc7c2f
BB
2538}
2539
ca0bf58d
PS
2540/*
2541 * Evict buffers from the given arc state, until we've removed the
2542 * specified number of bytes. Move the removed buffers to the
2543 * appropriate evict state.
2544 *
2545 * This function makes a "best effort". It skips over any buffers
2546 * it can't get a hash_lock on, and so, may not catch all candidates.
2547 * It may also return without evicting as much space as requested.
2548 *
2549 * If bytes is specified using the special value ARC_EVICT_ALL, this
2550 * will evict all available (i.e. unlocked and evictable) buffers from
2551 * the given arc state; which is used by arc_flush().
2552 */
2553static uint64_t
2554arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
2555 arc_buf_contents_t type)
34dc7c2f 2556{
ca0bf58d
PS
2557 uint64_t total_evicted = 0;
2558 multilist_t *ml = &state->arcs_list[type];
2559 int num_sublists;
2560 arc_buf_hdr_t **markers;
2561 int i;
2562
96c080cb 2563 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
2564
2565 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
2566
2567 /*
ca0bf58d
PS
2568 * If we've tried to evict from each sublist, made some
2569 * progress, but still have not hit the target number of bytes
2570 * to evict, we want to keep trying. The markers allow us to
2571 * pick up where we left off for each individual sublist, rather
2572 * than starting from the tail each time.
d164b209 2573 */
ca0bf58d
PS
2574 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
2575 for (i = 0; i < num_sublists; i++) {
2576 multilist_sublist_t *mls;
34dc7c2f 2577
ca0bf58d
PS
2578 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
2579
2580 /*
2581 * A b_spa of 0 is used to indicate that this header is
2582 * a marker. This fact is used in arc_adjust_type() and
2583 * arc_evict_state_impl().
2584 */
2585 markers[i]->b_spa = 0;
34dc7c2f 2586
ca0bf58d
PS
2587 mls = multilist_sublist_lock(ml, i);
2588 multilist_sublist_insert_tail(mls, markers[i]);
2589 multilist_sublist_unlock(mls);
34dc7c2f
BB
2590 }
2591
d164b209 2592 /*
ca0bf58d
PS
2593 * While we haven't hit our target number of bytes to evict, or
2594 * we're evicting all available buffers.
d164b209 2595 */
ca0bf58d
PS
2596 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
2597 /*
2598 * Start eviction using a randomly selected sublist,
2599 * this is to try and evenly balance eviction across all
2600 * sublists. Always starting at the same sublist
2601 * (e.g. index 0) would cause evictions to favor certain
2602 * sublists over others.
2603 */
2604 int sublist_idx = multilist_get_random_index(ml);
2605 uint64_t scan_evicted = 0;
34dc7c2f 2606
ca0bf58d
PS
2607 for (i = 0; i < num_sublists; i++) {
2608 uint64_t bytes_remaining;
2609 uint64_t bytes_evicted;
d164b209 2610
ca0bf58d
PS
2611 if (bytes == ARC_EVICT_ALL)
2612 bytes_remaining = ARC_EVICT_ALL;
2613 else if (total_evicted < bytes)
2614 bytes_remaining = bytes - total_evicted;
2615 else
2616 break;
34dc7c2f 2617
ca0bf58d
PS
2618 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
2619 markers[sublist_idx], spa, bytes_remaining);
2620
2621 scan_evicted += bytes_evicted;
2622 total_evicted += bytes_evicted;
2623
2624 /* we've reached the end, wrap to the beginning */
2625 if (++sublist_idx >= num_sublists)
2626 sublist_idx = 0;
2627 }
2628
2629 /*
2630 * If we didn't evict anything during this scan, we have
2631 * no reason to believe we'll evict more during another
2632 * scan, so break the loop.
2633 */
2634 if (scan_evicted == 0) {
2635 /* This isn't possible, let's make that obvious */
2636 ASSERT3S(bytes, !=, 0);
34dc7c2f 2637
ca0bf58d
PS
2638 /*
2639 * When bytes is ARC_EVICT_ALL, the only way to
2640 * break the loop is when scan_evicted is zero.
2641 * In that case, we actually have evicted enough,
2642 * so we don't want to increment the kstat.
2643 */
2644 if (bytes != ARC_EVICT_ALL) {
2645 ASSERT3S(total_evicted, <, bytes);
2646 ARCSTAT_BUMP(arcstat_evict_not_enough);
2647 }
d164b209 2648
ca0bf58d
PS
2649 break;
2650 }
d164b209 2651 }
34dc7c2f 2652
ca0bf58d
PS
2653 for (i = 0; i < num_sublists; i++) {
2654 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
2655 multilist_sublist_remove(mls, markers[i]);
2656 multilist_sublist_unlock(mls);
34dc7c2f 2657
ca0bf58d 2658 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 2659 }
ca0bf58d
PS
2660 kmem_free(markers, sizeof (*markers) * num_sublists);
2661
2662 return (total_evicted);
2663}
2664
2665/*
2666 * Flush all "evictable" data of the given type from the arc state
2667 * specified. This will not evict any "active" buffers (i.e. referenced).
2668 *
2669 * When 'retry' is set to FALSE, the function will make a single pass
2670 * over the state and evict any buffers that it can. Since it doesn't
2671 * continually retry the eviction, it might end up leaving some buffers
2672 * in the ARC due to lock misses.
2673 *
2674 * When 'retry' is set to TRUE, the function will continually retry the
2675 * eviction until *all* evictable buffers have been removed from the
2676 * state. As a result, if concurrent insertions into the state are
2677 * allowed (e.g. if the ARC isn't shutting down), this function might
2678 * wind up in an infinite loop, continually trying to evict buffers.
2679 */
2680static uint64_t
2681arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
2682 boolean_t retry)
2683{
2684 uint64_t evicted = 0;
2685
2686 while (state->arcs_lsize[type] != 0) {
2687 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
2688
2689 if (!retry)
2690 break;
2691 }
2692
2693 return (evicted);
34dc7c2f
BB
2694}
2695
ab26409d 2696/*
f6046738
BB
2697 * Helper function for arc_prune() it is responsible for safely handling
2698 * the execution of a registered arc_prune_func_t.
ab26409d
BB
2699 */
2700static void
f6046738 2701arc_prune_task(void *ptr)
ab26409d 2702{
f6046738
BB
2703 arc_prune_t *ap = (arc_prune_t *)ptr;
2704 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 2705
f6046738
BB
2706 if (func != NULL)
2707 func(ap->p_adjust, ap->p_private);
ab26409d 2708
f6046738
BB
2709 /* Callback unregistered concurrently with execution */
2710 if (refcount_remove(&ap->p_refcnt, func) == 0) {
2711 ASSERT(!list_link_active(&ap->p_node));
2712 refcount_destroy(&ap->p_refcnt);
2713 kmem_free(ap, sizeof (*ap));
2714 }
2715}
ab26409d 2716
f6046738
BB
2717/*
2718 * Notify registered consumers they must drop holds on a portion of the ARC
2719 * buffered they reference. This provides a mechanism to ensure the ARC can
2720 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
2721 * is analogous to dnlc_reduce_cache() but more generic.
2722 *
2723 * This operation is performed asyncronously so it may be safely called
ca67b33a 2724 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
2725 * for each registered arc_prune_t and the arc_prune_task() is responsible
2726 * for releasing it once the registered arc_prune_func_t has completed.
2727 */
2728static void
2729arc_prune_async(int64_t adjust)
2730{
2731 arc_prune_t *ap;
ab26409d 2732
f6046738
BB
2733 mutex_enter(&arc_prune_mtx);
2734 for (ap = list_head(&arc_prune_list); ap != NULL;
2735 ap = list_next(&arc_prune_list, ap)) {
ab26409d 2736
f6046738
BB
2737 if (refcount_count(&ap->p_refcnt) >= 2)
2738 continue;
ab26409d 2739
f6046738
BB
2740 refcount_add(&ap->p_refcnt, ap->p_pfunc);
2741 ap->p_adjust = adjust;
2742 taskq_dispatch(arc_prune_taskq, arc_prune_task, ap, TQ_SLEEP);
2743 ARCSTAT_BUMP(arcstat_prune);
ab26409d 2744 }
ab26409d
BB
2745 mutex_exit(&arc_prune_mtx);
2746}
2747
f6046738
BB
2748static void
2749arc_prune(int64_t adjust)
2750{
2751 arc_prune_async(adjust);
2752 taskq_wait_outstanding(arc_prune_taskq, 0);
2753}
2754
ca0bf58d
PS
2755/*
2756 * Evict the specified number of bytes from the state specified,
2757 * restricting eviction to the spa and type given. This function
2758 * prevents us from trying to evict more from a state's list than
2759 * is "evictable", and to skip evicting altogether when passed a
2760 * negative value for "bytes". In contrast, arc_evict_state() will
2761 * evict everything it can, when passed a negative value for "bytes".
2762 */
2763static uint64_t
2764arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
2765 arc_buf_contents_t type)
2766{
2767 int64_t delta;
2768
2769 if (bytes > 0 && state->arcs_lsize[type] > 0) {
2770 delta = MIN(state->arcs_lsize[type], bytes);
2771 return (arc_evict_state(state, spa, delta, type));
2772 }
2773
2774 return (0);
2775}
2776
2777/*
2778 * The goal of this function is to evict enough meta data buffers from the
2779 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
2780 * more complicated than it appears because it is common for data buffers
2781 * to have holds on meta data buffers. In addition, dnode meta data buffers
2782 * will be held by the dnodes in the block preventing them from being freed.
2783 * This means we can't simply traverse the ARC and expect to always find
2784 * enough unheld meta data buffer to release.
2785 *
2786 * Therefore, this function has been updated to make alternating passes
2787 * over the ARC releasing data buffers and then newly unheld meta data
2788 * buffers. This ensures forward progress is maintained and arc_meta_used
2789 * will decrease. Normally this is sufficient, but if required the ARC
2790 * will call the registered prune callbacks causing dentry and inodes to
2791 * be dropped from the VFS cache. This will make dnode meta data buffers
2792 * available for reclaim.
2793 */
2794static uint64_t
f6046738 2795arc_adjust_meta_balanced(void)
ca0bf58d
PS
2796{
2797 int64_t adjustmnt, delta, prune = 0;
2798 uint64_t total_evicted = 0;
2799 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 2800 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
2801
2802restart:
2803 /*
2804 * This slightly differs than the way we evict from the mru in
2805 * arc_adjust because we don't have a "target" value (i.e. no
2806 * "meta" arc_p). As a result, I think we can completely
2807 * cannibalize the metadata in the MRU before we evict the
2808 * metadata from the MFU. I think we probably need to implement a
2809 * "metadata arc_p" value to do this properly.
2810 */
2811 adjustmnt = arc_meta_used - arc_meta_limit;
2812
2813 if (adjustmnt > 0 && arc_mru->arcs_lsize[type] > 0) {
2814 delta = MIN(arc_mru->arcs_lsize[type], adjustmnt);
2815 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
2816 adjustmnt -= delta;
2817 }
2818
2819 /*
2820 * We can't afford to recalculate adjustmnt here. If we do,
2821 * new metadata buffers can sneak into the MRU or ANON lists,
2822 * thus penalize the MFU metadata. Although the fudge factor is
2823 * small, it has been empirically shown to be significant for
2824 * certain workloads (e.g. creating many empty directories). As
2825 * such, we use the original calculation for adjustmnt, and
2826 * simply decrement the amount of data evicted from the MRU.
2827 */
2828
2829 if (adjustmnt > 0 && arc_mfu->arcs_lsize[type] > 0) {
2830 delta = MIN(arc_mfu->arcs_lsize[type], adjustmnt);
2831 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
2832 }
2833
2834 adjustmnt = arc_meta_used - arc_meta_limit;
2835
2836 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[type] > 0) {
2837 delta = MIN(adjustmnt,
2838 arc_mru_ghost->arcs_lsize[type]);
2839 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
2840 adjustmnt -= delta;
2841 }
2842
2843 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[type] > 0) {
2844 delta = MIN(adjustmnt,
2845 arc_mfu_ghost->arcs_lsize[type]);
2846 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
2847 }
2848
2849 /*
2850 * If after attempting to make the requested adjustment to the ARC
2851 * the meta limit is still being exceeded then request that the
2852 * higher layers drop some cached objects which have holds on ARC
2853 * meta buffers. Requests to the upper layers will be made with
2854 * increasingly large scan sizes until the ARC is below the limit.
2855 */
2856 if (arc_meta_used > arc_meta_limit) {
2857 if (type == ARC_BUFC_DATA) {
2858 type = ARC_BUFC_METADATA;
2859 } else {
2860 type = ARC_BUFC_DATA;
2861
2862 if (zfs_arc_meta_prune) {
2863 prune += zfs_arc_meta_prune;
f6046738 2864 arc_prune_async(prune);
ca0bf58d
PS
2865 }
2866 }
2867
2868 if (restarts > 0) {
2869 restarts--;
2870 goto restart;
2871 }
2872 }
2873 return (total_evicted);
2874}
2875
f6046738
BB
2876/*
2877 * Evict metadata buffers from the cache, such that arc_meta_used is
2878 * capped by the arc_meta_limit tunable.
2879 */
2880static uint64_t
2881arc_adjust_meta_only(void)
2882{
2883 uint64_t total_evicted = 0;
2884 int64_t target;
2885
2886 /*
2887 * If we're over the meta limit, we want to evict enough
2888 * metadata to get back under the meta limit. We don't want to
2889 * evict so much that we drop the MRU below arc_p, though. If
2890 * we're over the meta limit more than we're over arc_p, we
2891 * evict some from the MRU here, and some from the MFU below.
2892 */
2893 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef
PS
2894 (int64_t)(refcount_count(&arc_anon->arcs_size) +
2895 refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738
BB
2896
2897 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
2898
2899 /*
2900 * Similar to the above, we want to evict enough bytes to get us
2901 * below the meta limit, but not so much as to drop us below the
2902 * space alloted to the MFU (which is defined as arc_c - arc_p).
2903 */
2904 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
36da08ef 2905 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
f6046738
BB
2906
2907 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
2908
2909 return (total_evicted);
2910}
2911
2912static uint64_t
2913arc_adjust_meta(void)
2914{
2915 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
2916 return (arc_adjust_meta_only());
2917 else
2918 return (arc_adjust_meta_balanced());
2919}
2920
ca0bf58d
PS
2921/*
2922 * Return the type of the oldest buffer in the given arc state
2923 *
2924 * This function will select a random sublist of type ARC_BUFC_DATA and
2925 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
2926 * is compared, and the type which contains the "older" buffer will be
2927 * returned.
2928 */
2929static arc_buf_contents_t
2930arc_adjust_type(arc_state_t *state)
2931{
2932 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
2933 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
2934 int data_idx = multilist_get_random_index(data_ml);
2935 int meta_idx = multilist_get_random_index(meta_ml);
2936 multilist_sublist_t *data_mls;
2937 multilist_sublist_t *meta_mls;
2938 arc_buf_contents_t type;
2939 arc_buf_hdr_t *data_hdr;
2940 arc_buf_hdr_t *meta_hdr;
2941
2942 /*
2943 * We keep the sublist lock until we're finished, to prevent
2944 * the headers from being destroyed via arc_evict_state().
2945 */
2946 data_mls = multilist_sublist_lock(data_ml, data_idx);
2947 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
2948
2949 /*
2950 * These two loops are to ensure we skip any markers that
2951 * might be at the tail of the lists due to arc_evict_state().
2952 */
2953
2954 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
2955 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
2956 if (data_hdr->b_spa != 0)
2957 break;
2958 }
2959
2960 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
2961 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
2962 if (meta_hdr->b_spa != 0)
2963 break;
2964 }
2965
2966 if (data_hdr == NULL && meta_hdr == NULL) {
2967 type = ARC_BUFC_DATA;
2968 } else if (data_hdr == NULL) {
2969 ASSERT3P(meta_hdr, !=, NULL);
2970 type = ARC_BUFC_METADATA;
2971 } else if (meta_hdr == NULL) {
2972 ASSERT3P(data_hdr, !=, NULL);
2973 type = ARC_BUFC_DATA;
2974 } else {
2975 ASSERT3P(data_hdr, !=, NULL);
2976 ASSERT3P(meta_hdr, !=, NULL);
2977
2978 /* The headers can't be on the sublist without an L1 header */
2979 ASSERT(HDR_HAS_L1HDR(data_hdr));
2980 ASSERT(HDR_HAS_L1HDR(meta_hdr));
2981
2982 if (data_hdr->b_l1hdr.b_arc_access <
2983 meta_hdr->b_l1hdr.b_arc_access) {
2984 type = ARC_BUFC_DATA;
2985 } else {
2986 type = ARC_BUFC_METADATA;
2987 }
2988 }
2989
2990 multilist_sublist_unlock(meta_mls);
2991 multilist_sublist_unlock(data_mls);
2992
2993 return (type);
2994}
2995
2996/*
2997 * Evict buffers from the cache, such that arc_size is capped by arc_c.
2998 */
2999static uint64_t
3000arc_adjust(void)
3001{
3002 uint64_t total_evicted = 0;
3003 uint64_t bytes;
3004 int64_t target;
3005
3006 /*
3007 * If we're over arc_meta_limit, we want to correct that before
3008 * potentially evicting data buffers below.
3009 */
3010 total_evicted += arc_adjust_meta();
3011
3012 /*
3013 * Adjust MRU size
3014 *
3015 * If we're over the target cache size, we want to evict enough
3016 * from the list to get back to our target size. We don't want
3017 * to evict too much from the MRU, such that it drops below
3018 * arc_p. So, if we're over our target cache size more than
3019 * the MRU is over arc_p, we'll evict enough to get back to
3020 * arc_p here, and then evict more from the MFU below.
3021 */
3022 target = MIN((int64_t)(arc_size - arc_c),
36da08ef
PS
3023 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3024 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
ca0bf58d
PS
3025
3026 /*
3027 * If we're below arc_meta_min, always prefer to evict data.
3028 * Otherwise, try to satisfy the requested number of bytes to
3029 * evict from the type which contains older buffers; in an
3030 * effort to keep newer buffers in the cache regardless of their
3031 * type. If we cannot satisfy the number of bytes from this
3032 * type, spill over into the next type.
3033 */
3034 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3035 arc_meta_used > arc_meta_min) {
3036 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3037 total_evicted += bytes;
3038
3039 /*
3040 * If we couldn't evict our target number of bytes from
3041 * metadata, we try to get the rest from data.
3042 */
3043 target -= bytes;
3044
3045 total_evicted +=
3046 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3047 } else {
3048 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3049 total_evicted += bytes;
3050
3051 /*
3052 * If we couldn't evict our target number of bytes from
3053 * data, we try to get the rest from metadata.
3054 */
3055 target -= bytes;
3056
3057 total_evicted +=
3058 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3059 }
3060
3061 /*
3062 * Adjust MFU size
3063 *
3064 * Now that we've tried to evict enough from the MRU to get its
3065 * size back to arc_p, if we're still above the target cache
3066 * size, we evict the rest from the MFU.
3067 */
3068 target = arc_size - arc_c;
3069
a7b10a93 3070 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
ca0bf58d
PS
3071 arc_meta_used > arc_meta_min) {
3072 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3073 total_evicted += bytes;
3074
3075 /*
3076 * If we couldn't evict our target number of bytes from
3077 * metadata, we try to get the rest from data.
3078 */
3079 target -= bytes;
3080
3081 total_evicted +=
3082 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3083 } else {
3084 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3085 total_evicted += bytes;
3086
3087 /*
3088 * If we couldn't evict our target number of bytes from
3089 * data, we try to get the rest from data.
3090 */
3091 target -= bytes;
3092
3093 total_evicted +=
3094 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3095 }
3096
3097 /*
3098 * Adjust ghost lists
3099 *
3100 * In addition to the above, the ARC also defines target values
3101 * for the ghost lists. The sum of the mru list and mru ghost
3102 * list should never exceed the target size of the cache, and
3103 * the sum of the mru list, mfu list, mru ghost list, and mfu
3104 * ghost list should never exceed twice the target size of the
3105 * cache. The following logic enforces these limits on the ghost
3106 * caches, and evicts from them as needed.
3107 */
36da08ef
PS
3108 target = refcount_count(&arc_mru->arcs_size) +
3109 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d
PS
3110
3111 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3112 total_evicted += bytes;
3113
3114 target -= bytes;
3115
3116 total_evicted +=
3117 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3118
3119 /*
3120 * We assume the sum of the mru list and mfu list is less than
3121 * or equal to arc_c (we enforced this above), which means we
3122 * can use the simpler of the two equations below:
3123 *
3124 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3125 * mru ghost + mfu ghost <= arc_c
3126 */
36da08ef
PS
3127 target = refcount_count(&arc_mru_ghost->arcs_size) +
3128 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d
PS
3129
3130 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3131 total_evicted += bytes;
3132
3133 target -= bytes;
3134
3135 total_evicted +=
3136 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3137
3138 return (total_evicted);
3139}
3140
34dc7c2f
BB
3141static void
3142arc_do_user_evicts(void)
3143{
ca0bf58d 3144 mutex_enter(&arc_user_evicts_lock);
34dc7c2f
BB
3145 while (arc_eviction_list != NULL) {
3146 arc_buf_t *buf = arc_eviction_list;
3147 arc_eviction_list = buf->b_next;
428870ff 3148 mutex_enter(&buf->b_evict_lock);
34dc7c2f 3149 buf->b_hdr = NULL;
428870ff 3150 mutex_exit(&buf->b_evict_lock);
ca0bf58d 3151 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
3152
3153 if (buf->b_efunc != NULL)
bd089c54 3154 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
3155
3156 buf->b_efunc = NULL;
3157 buf->b_private = NULL;
3158 kmem_cache_free(buf_cache, buf);
ca0bf58d 3159 mutex_enter(&arc_user_evicts_lock);
34dc7c2f 3160 }
ca0bf58d 3161 mutex_exit(&arc_user_evicts_lock);
34dc7c2f
BB
3162}
3163
ca0bf58d
PS
3164void
3165arc_flush(spa_t *spa, boolean_t retry)
ab26409d 3166{
ca0bf58d 3167 uint64_t guid = 0;
94520ca4 3168
bc888666 3169 /*
ca0bf58d
PS
3170 * If retry is TRUE, a spa must not be specified since we have
3171 * no good way to determine if all of a spa's buffers have been
3172 * evicted from an arc state.
bc888666 3173 */
ca0bf58d 3174 ASSERT(!retry || spa == 0);
d164b209 3175
b9541d6b 3176 if (spa != NULL)
3541dc6d 3177 guid = spa_load_guid(spa);
d164b209 3178
ca0bf58d
PS
3179 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3180 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3181
3182 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3183 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3184
3185 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3186 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3187
ca0bf58d
PS
3188 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3189 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 3190
34dc7c2f 3191 arc_do_user_evicts();
34dc7c2f
BB
3192 ASSERT(spa || arc_eviction_list == NULL);
3193}
3194
34dc7c2f 3195void
ca67b33a 3196arc_shrink(int64_t to_free)
34dc7c2f
BB
3197{
3198 if (arc_c > arc_c_min) {
302f753f 3199
34dc7c2f
BB
3200 if (arc_c > arc_c_min + to_free)
3201 atomic_add_64(&arc_c, -to_free);
3202 else
3203 arc_c = arc_c_min;
3204
ca67b33a 3205 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
34dc7c2f
BB
3206 if (arc_c > arc_size)
3207 arc_c = MAX(arc_size, arc_c_min);
3208 if (arc_p > arc_c)
3209 arc_p = (arc_c >> 1);
3210 ASSERT(arc_c >= arc_c_min);
3211 ASSERT((int64_t)arc_p >= 0);
3212 }
3213
3214 if (arc_size > arc_c)
ca0bf58d 3215 (void) arc_adjust();
34dc7c2f
BB
3216}
3217
ca67b33a
MA
3218typedef enum free_memory_reason_t {
3219 FMR_UNKNOWN,
3220 FMR_NEEDFREE,
3221 FMR_LOTSFREE,
3222 FMR_SWAPFS_MINFREE,
3223 FMR_PAGES_PP_MAXIMUM,
3224 FMR_HEAP_ARENA,
3225 FMR_ZIO_ARENA,
3226} free_memory_reason_t;
3227
3228int64_t last_free_memory;
3229free_memory_reason_t last_free_reason;
3230
3231#ifdef _KERNEL
ca67b33a
MA
3232/*
3233 * Additional reserve of pages for pp_reserve.
3234 */
3235int64_t arc_pages_pp_reserve = 64;
3236
3237/*
3238 * Additional reserve of pages for swapfs.
3239 */
3240int64_t arc_swapfs_reserve = 64;
ca67b33a
MA
3241#endif /* _KERNEL */
3242
3243/*
3244 * Return the amount of memory that can be consumed before reclaim will be
3245 * needed. Positive if there is sufficient free memory, negative indicates
3246 * the amount of memory that needs to be freed up.
3247 */
3248static int64_t
3249arc_available_memory(void)
3250{
3251 int64_t lowest = INT64_MAX;
3252 free_memory_reason_t r = FMR_UNKNOWN;
ca67b33a 3253#ifdef _KERNEL
ca67b33a 3254 int64_t n;
11f552fa
BB
3255#ifdef __linux__
3256 pgcnt_t needfree = btop(arc_need_free);
3257 pgcnt_t lotsfree = btop(arc_sys_free);
3258 pgcnt_t desfree = 0;
3259#endif
ca67b33a 3260
ca67b33a
MA
3261 if (needfree > 0) {
3262 n = PAGESIZE * (-needfree);
3263 if (n < lowest) {
3264 lowest = n;
3265 r = FMR_NEEDFREE;
3266 }
3267 }
3268
3269 /*
3270 * check that we're out of range of the pageout scanner. It starts to
3271 * schedule paging if freemem is less than lotsfree and needfree.
3272 * lotsfree is the high-water mark for pageout, and needfree is the
3273 * number of needed free pages. We add extra pages here to make sure
3274 * the scanner doesn't start up while we're freeing memory.
3275 */
3276 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
3277 if (n < lowest) {
3278 lowest = n;
3279 r = FMR_LOTSFREE;
3280 }
3281
11f552fa 3282#ifndef __linux__
ca67b33a
MA
3283 /*
3284 * check to make sure that swapfs has enough space so that anon
3285 * reservations can still succeed. anon_resvmem() checks that the
3286 * availrmem is greater than swapfs_minfree, and the number of reserved
3287 * swap pages. We also add a bit of extra here just to prevent
3288 * circumstances from getting really dire.
3289 */
3290 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
3291 desfree - arc_swapfs_reserve);
3292 if (n < lowest) {
3293 lowest = n;
3294 r = FMR_SWAPFS_MINFREE;
3295 }
3296
3297
3298 /*
3299 * Check that we have enough availrmem that memory locking (e.g., via
3300 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
3301 * stores the number of pages that cannot be locked; when availrmem
3302 * drops below pages_pp_maximum, page locking mechanisms such as
3303 * page_pp_lock() will fail.)
3304 */
3305 n = PAGESIZE * (availrmem - pages_pp_maximum -
3306 arc_pages_pp_reserve);
3307 if (n < lowest) {
3308 lowest = n;
3309 r = FMR_PAGES_PP_MAXIMUM;
3310 }
11f552fa 3311#endif
ca67b33a
MA
3312
3313#if defined(__i386)
3314 /*
3315 * If we're on an i386 platform, it's possible that we'll exhaust the
3316 * kernel heap space before we ever run out of available physical
3317 * memory. Most checks of the size of the heap_area compare against
3318 * tune.t_minarmem, which is the minimum available real memory that we
3319 * can have in the system. However, this is generally fixed at 25 pages
3320 * which is so low that it's useless. In this comparison, we seek to
3321 * calculate the total heap-size, and reclaim if more than 3/4ths of the
3322 * heap is allocated. (Or, in the calculation, if less than 1/4th is
3323 * free)
3324 */
3325 n = vmem_size(heap_arena, VMEM_FREE) -
3326 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
3327 if (n < lowest) {
3328 lowest = n;
3329 r = FMR_HEAP_ARENA;
3330 }
3331#endif
3332
3333 /*
3334 * If zio data pages are being allocated out of a separate heap segment,
3335 * then enforce that the size of available vmem for this arena remains
3336 * above about 1/16th free.
3337 *
3338 * Note: The 1/16th arena free requirement was put in place
3339 * to aggressively evict memory from the arc in order to avoid
3340 * memory fragmentation issues.
3341 */
3342 if (zio_arena != NULL) {
3343 n = vmem_size(zio_arena, VMEM_FREE) -
3344 (vmem_size(zio_arena, VMEM_ALLOC) >> 4);
3345 if (n < lowest) {
3346 lowest = n;
3347 r = FMR_ZIO_ARENA;
3348 }
3349 }
11f552fa 3350#else /* _KERNEL */
ca67b33a
MA
3351 /* Every 100 calls, free a small amount */
3352 if (spa_get_random(100) == 0)
3353 lowest = -1024;
11f552fa 3354#endif /* _KERNEL */
ca67b33a
MA
3355
3356 last_free_memory = lowest;
3357 last_free_reason = r;
3358
3359 return (lowest);
3360}
3361
3362/*
3363 * Determine if the system is under memory pressure and is asking
3364 * to reclaim memory. A return value of TRUE indicates that the system
3365 * is under memory pressure and that the arc should adjust accordingly.
3366 */
3367static boolean_t
3368arc_reclaim_needed(void)
3369{
3370 return (arc_available_memory() < 0);
3371}
3372
34dc7c2f 3373static void
ca67b33a 3374arc_kmem_reap_now(void)
34dc7c2f
BB
3375{
3376 size_t i;
3377 kmem_cache_t *prev_cache = NULL;
3378 kmem_cache_t *prev_data_cache = NULL;
3379 extern kmem_cache_t *zio_buf_cache[];
3380 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 3381 extern kmem_cache_t *range_seg_cache;
34dc7c2f 3382
f6046738
BB
3383 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
3384 /*
3385 * We are exceeding our meta-data cache limit.
3386 * Prune some entries to release holds on meta-data.
3387 */
3388 arc_prune(zfs_arc_meta_prune);
3389 }
3390
34dc7c2f
BB
3391 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
3392 if (zio_buf_cache[i] != prev_cache) {
3393 prev_cache = zio_buf_cache[i];
3394 kmem_cache_reap_now(zio_buf_cache[i]);
3395 }
3396 if (zio_data_buf_cache[i] != prev_data_cache) {
3397 prev_data_cache = zio_data_buf_cache[i];
3398 kmem_cache_reap_now(zio_data_buf_cache[i]);
3399 }
3400 }
ca0bf58d 3401 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
3402 kmem_cache_reap_now(hdr_full_cache);
3403 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 3404 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
3405
3406 if (zio_arena != NULL) {
3407 /*
3408 * Ask the vmem arena to reclaim unused memory from its
3409 * quantum caches.
3410 */
3411 vmem_qcache_reap(zio_arena);
3412 }
34dc7c2f
BB
3413}
3414
302f753f 3415/*
ca0bf58d
PS
3416 * Threads can block in arc_get_data_buf() waiting for this thread to evict
3417 * enough data and signal them to proceed. When this happens, the threads in
3418 * arc_get_data_buf() are sleeping while holding the hash lock for their
3419 * particular arc header. Thus, we must be careful to never sleep on a
3420 * hash lock in this thread. This is to prevent the following deadlock:
3421 *
3422 * - Thread A sleeps on CV in arc_get_data_buf() holding hash lock "L",
3423 * waiting for the reclaim thread to signal it.
3424 *
3425 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
3426 * fails, and goes to sleep forever.
3427 *
3428 * This possible deadlock is avoided by always acquiring a hash lock
3429 * using mutex_tryenter() from arc_reclaim_thread().
302f753f 3430 */
34dc7c2f 3431static void
ca67b33a 3432arc_reclaim_thread(void)
34dc7c2f 3433{
ca67b33a
MA
3434 fstrans_cookie_t cookie = spl_fstrans_mark();
3435 clock_t growtime = 0;
34dc7c2f
BB
3436 callb_cpr_t cpr;
3437
ca0bf58d 3438 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
34dc7c2f 3439
ca0bf58d 3440 mutex_enter(&arc_reclaim_lock);
ca67b33a
MA
3441 while (!arc_reclaim_thread_exit) {
3442 int64_t to_free;
3443 int64_t free_memory = arc_available_memory();
3444 uint64_t evicted = 0;
302f753f 3445
ca67b33a 3446 arc_tuning_update();
34dc7c2f 3447
ca67b33a 3448 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3449
ca67b33a 3450 if (free_memory < 0) {
34dc7c2f 3451
ca67b33a 3452 arc_no_grow = B_TRUE;
b128c09f 3453 arc_warm = B_TRUE;
34dc7c2f 3454
ca67b33a
MA
3455 /*
3456 * Wait at least zfs_grow_retry (default 5) seconds
3457 * before considering growing.
3458 */
3459 growtime = ddi_get_lbolt() + (arc_grow_retry * hz);
6a8f9b6b 3460
ca67b33a 3461 arc_kmem_reap_now();
34dc7c2f 3462
ca67b33a
MA
3463 /*
3464 * If we are still low on memory, shrink the ARC
3465 * so that we have arc_shrink_min free space.
3466 */
3467 free_memory = arc_available_memory();
34dc7c2f 3468
ca67b33a
MA
3469 to_free = (arc_c >> arc_shrink_shift) - free_memory;
3470 if (to_free > 0) {
3471#ifdef _KERNEL
11f552fa 3472 to_free = MAX(to_free, arc_need_free);
ca67b33a
MA
3473#endif
3474 arc_shrink(to_free);
3475 }
3476 } else if (free_memory < arc_c >> arc_no_grow_shift) {
3477 arc_no_grow = B_TRUE;
3478 } else if (ddi_get_lbolt() >= growtime) {
3479 arc_no_grow = B_FALSE;
3480 }
bce45ec9 3481
ca67b33a 3482 evicted = arc_adjust();
bce45ec9 3483
ca67b33a 3484 mutex_enter(&arc_reclaim_lock);
bce45ec9 3485
ca67b33a
MA
3486 /*
3487 * If evicted is zero, we couldn't evict anything via
3488 * arc_adjust(). This could be due to hash lock
3489 * collisions, but more likely due to the majority of
3490 * arc buffers being unevictable. Therefore, even if
3491 * arc_size is above arc_c, another pass is unlikely to
3492 * be helpful and could potentially cause us to enter an
3493 * infinite loop.
3494 */
3495 if (arc_size <= arc_c || evicted == 0) {
3496 /*
3497 * We're either no longer overflowing, or we
3498 * can't evict anything more, so we should wake
11f552fa
BB
3499 * up any threads before we go to sleep and clear
3500 * arc_need_free since nothing more can be done.
ca67b33a
MA
3501 */
3502 cv_broadcast(&arc_reclaim_waiters_cv);
11f552fa 3503 arc_need_free = 0;
bce45ec9 3504
ca67b33a
MA
3505 /*
3506 * Block until signaled, or after one second (we
3507 * might need to perform arc_kmem_reap_now()
3508 * even if we aren't being signalled)
3509 */
3510 CALLB_CPR_SAFE_BEGIN(&cpr);
3511 (void) cv_timedwait_sig(&arc_reclaim_thread_cv,
3512 &arc_reclaim_lock, ddi_get_lbolt() + hz);
3513 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
3514 }
ca0bf58d 3515 }
bce45ec9 3516
ca67b33a 3517 arc_reclaim_thread_exit = FALSE;
ca0bf58d
PS
3518 cv_broadcast(&arc_reclaim_thread_cv);
3519 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
3520 spl_fstrans_unmark(cookie);
3521 thread_exit();
3522}
3523
3524static void
3525arc_user_evicts_thread(void)
3526{
ca67b33a 3527 fstrans_cookie_t cookie = spl_fstrans_mark();
ca0bf58d 3528 callb_cpr_t cpr;
bce45ec9 3529
ca0bf58d 3530 CALLB_CPR_INIT(&cpr, &arc_user_evicts_lock, callb_generic_cpr, FTAG);
bce45ec9 3531
ca0bf58d
PS
3532 mutex_enter(&arc_user_evicts_lock);
3533 while (!arc_user_evicts_thread_exit) {
3534 mutex_exit(&arc_user_evicts_lock);
3535
3536 arc_do_user_evicts();
3537
3538 /*
3539 * This is necessary in order for the mdb ::arc dcmd to
3540 * show up to date information. Since the ::arc command
3541 * does not call the kstat's update function, without
3542 * this call, the command may show stale stats for the
3543 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
3544 * with this change, the data might be up to 1 second
3545 * out of date; but that should suffice. The arc_state_t
3546 * structures can be queried directly if more accurate
3547 * information is needed.
3548 */
3549 if (arc_ksp != NULL)
3550 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
3551
3552 mutex_enter(&arc_user_evicts_lock);
3553
3554 /*
3555 * Block until signaled, or after one second (we need to
3556 * call the arc's kstat update function regularly).
3557 */
3558 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 3559 (void) cv_timedwait_sig(&arc_user_evicts_cv,
ca0bf58d
PS
3560 &arc_user_evicts_lock, ddi_get_lbolt() + hz);
3561 CALLB_CPR_SAFE_END(&cpr, &arc_user_evicts_lock);
34dc7c2f
BB
3562 }
3563
ca0bf58d
PS
3564 arc_user_evicts_thread_exit = FALSE;
3565 cv_broadcast(&arc_user_evicts_cv);
3566 CALLB_CPR_EXIT(&cpr); /* drops arc_user_evicts_lock */
40d06e3c 3567 spl_fstrans_unmark(cookie);
34dc7c2f
BB
3568 thread_exit();
3569}
3570
7cb67b45
BB
3571#ifdef _KERNEL
3572/*
302f753f
BB
3573 * Determine the amount of memory eligible for eviction contained in the
3574 * ARC. All clean data reported by the ghost lists can always be safely
3575 * evicted. Due to arc_c_min, the same does not hold for all clean data
3576 * contained by the regular mru and mfu lists.
3577 *
3578 * In the case of the regular mru and mfu lists, we need to report as
3579 * much clean data as possible, such that evicting that same reported
3580 * data will not bring arc_size below arc_c_min. Thus, in certain
3581 * circumstances, the total amount of clean data in the mru and mfu
3582 * lists might not actually be evictable.
3583 *
3584 * The following two distinct cases are accounted for:
3585 *
3586 * 1. The sum of the amount of dirty data contained by both the mru and
3587 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3588 * is greater than or equal to arc_c_min.
3589 * (i.e. amount of dirty data >= arc_c_min)
3590 *
3591 * This is the easy case; all clean data contained by the mru and mfu
3592 * lists is evictable. Evicting all clean data can only drop arc_size
3593 * to the amount of dirty data, which is greater than arc_c_min.
3594 *
3595 * 2. The sum of the amount of dirty data contained by both the mru and
3596 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
3597 * is less than arc_c_min.
3598 * (i.e. arc_c_min > amount of dirty data)
3599 *
3600 * 2.1. arc_size is greater than or equal arc_c_min.
3601 * (i.e. arc_size >= arc_c_min > amount of dirty data)
3602 *
3603 * In this case, not all clean data from the regular mru and mfu
3604 * lists is actually evictable; we must leave enough clean data
3605 * to keep arc_size above arc_c_min. Thus, the maximum amount of
3606 * evictable data from the two lists combined, is exactly the
3607 * difference between arc_size and arc_c_min.
3608 *
3609 * 2.2. arc_size is less than arc_c_min
3610 * (i.e. arc_c_min > arc_size > amount of dirty data)
3611 *
3612 * In this case, none of the data contained in the mru and mfu
3613 * lists is evictable, even if it's clean. Since arc_size is
3614 * already below arc_c_min, evicting any more would only
3615 * increase this negative difference.
7cb67b45 3616 */
302f753f
BB
3617static uint64_t
3618arc_evictable_memory(void) {
3619 uint64_t arc_clean =
3620 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
3621 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
3622 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
3623 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
3624 uint64_t ghost_clean =
3625 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
3626 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
3627 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
3628 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
3629 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
3630
3631 if (arc_dirty >= arc_c_min)
3632 return (ghost_clean + arc_clean);
3633
3634 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
3635}
3636
ed6e9cc2
TC
3637/*
3638 * If sc->nr_to_scan is zero, the caller is requesting a query of the
3639 * number of objects which can potentially be freed. If it is nonzero,
3640 * the request is to free that many objects.
3641 *
3642 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
3643 * in struct shrinker and also require the shrinker to return the number
3644 * of objects freed.
3645 *
3646 * Older kernels require the shrinker to return the number of freeable
3647 * objects following the freeing of nr_to_free.
3648 */
3649static spl_shrinker_t
7e7baeca 3650__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 3651{
ed6e9cc2 3652 int64_t pages;
7cb67b45 3653
302f753f
BB
3654 /* The arc is considered warm once reclaim has occurred */
3655 if (unlikely(arc_warm == B_FALSE))
3656 arc_warm = B_TRUE;
7cb67b45 3657
302f753f 3658 /* Return the potential number of reclaimable pages */
ed6e9cc2 3659 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
3660 if (sc->nr_to_scan == 0)
3661 return (pages);
3fd70ee6
BB
3662
3663 /* Not allowed to perform filesystem reclaim */
7e7baeca 3664 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 3665 return (SHRINK_STOP);
3fd70ee6 3666
7cb67b45 3667 /* Reclaim in progress */
ca0bf58d 3668 if (mutex_tryenter(&arc_reclaim_lock) == 0)
ed6e9cc2 3669 return (SHRINK_STOP);
7cb67b45 3670
ca0bf58d
PS
3671 mutex_exit(&arc_reclaim_lock);
3672
302f753f
BB
3673 /*
3674 * Evict the requested number of pages by shrinking arc_c the
3675 * requested amount. If there is nothing left to evict just
3676 * reap whatever we can from the various arc slabs.
3677 */
3678 if (pages > 0) {
ca67b33a
MA
3679 arc_shrink(ptob(sc->nr_to_scan));
3680 arc_kmem_reap_now();
ed6e9cc2
TC
3681#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
3682 pages = MAX(pages - btop(arc_evictable_memory()), 0);
3683#else
1e3cb67b 3684 pages = btop(arc_evictable_memory());
ed6e9cc2 3685#endif
302f753f 3686 } else {
ca67b33a 3687 arc_kmem_reap_now();
ed6e9cc2 3688 pages = SHRINK_STOP;
302f753f
BB
3689 }
3690
ca0bf58d
PS
3691 /*
3692 * We've reaped what we can, wake up threads.
3693 */
3694 cv_broadcast(&arc_reclaim_waiters_cv);
3695
302f753f
BB
3696 /*
3697 * When direct reclaim is observed it usually indicates a rapid
3698 * increase in memory pressure. This occurs because the kswapd
3699 * threads were unable to asynchronously keep enough free memory
3700 * available. In this case set arc_no_grow to briefly pause arc
3701 * growth to avoid compounding the memory pressure.
3702 */
7cb67b45 3703 if (current_is_kswapd()) {
302f753f 3704 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 3705 } else {
302f753f 3706 arc_no_grow = B_TRUE;
11f552fa 3707 arc_need_free = ptob(sc->nr_to_scan);
302f753f 3708 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
3709 }
3710
1e3cb67b 3711 return (pages);
7cb67b45 3712}
7e7baeca 3713SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
3714
3715SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
3716#endif /* _KERNEL */
3717
34dc7c2f
BB
3718/*
3719 * Adapt arc info given the number of bytes we are trying to add and
3720 * the state that we are comming from. This function is only called
3721 * when we are adding new content to the cache.
3722 */
3723static void
3724arc_adapt(int bytes, arc_state_t *state)
3725{
3726 int mult;
728d6ae9 3727 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
36da08ef
PS
3728 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
3729 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f
BB
3730
3731 if (state == arc_l2c_only)
3732 return;
3733
3734 ASSERT(bytes > 0);
3735 /*
3736 * Adapt the target size of the MRU list:
3737 * - if we just hit in the MRU ghost list, then increase
3738 * the target size of the MRU list.
3739 * - if we just hit in the MFU ghost list, then increase
3740 * the target size of the MFU list by decreasing the
3741 * target size of the MRU list.
3742 */
3743 if (state == arc_mru_ghost) {
36da08ef 3744 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
3745 if (!zfs_arc_p_dampener_disable)
3746 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 3747
728d6ae9 3748 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 3749 } else if (state == arc_mfu_ghost) {
d164b209
BB
3750 uint64_t delta;
3751
36da08ef 3752 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
3753 if (!zfs_arc_p_dampener_disable)
3754 mult = MIN(mult, 10);
34dc7c2f 3755
d164b209 3756 delta = MIN(bytes * mult, arc_p);
728d6ae9 3757 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
3758 }
3759 ASSERT((int64_t)arc_p >= 0);
3760
ca67b33a
MA
3761 if (arc_reclaim_needed()) {
3762 cv_signal(&arc_reclaim_thread_cv);
3763 return;
3764 }
3765
34dc7c2f
BB
3766 if (arc_no_grow)
3767 return;
3768
3769 if (arc_c >= arc_c_max)
3770 return;
3771
3772 /*
3773 * If we're within (2 * maxblocksize) bytes of the target
3774 * cache size, increment the target cache size
3775 */
121b3cae
TC
3776 VERIFY3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
3777 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
34dc7c2f
BB
3778 atomic_add_64(&arc_c, (int64_t)bytes);
3779 if (arc_c > arc_c_max)
3780 arc_c = arc_c_max;
3781 else if (state == arc_anon)
3782 atomic_add_64(&arc_p, (int64_t)bytes);
3783 if (arc_p > arc_c)
3784 arc_p = arc_c;
3785 }
3786 ASSERT((int64_t)arc_p >= 0);
3787}
3788
3789/*
ca0bf58d
PS
3790 * Check if arc_size has grown past our upper threshold, determined by
3791 * zfs_arc_overflow_shift.
34dc7c2f 3792 */
ca0bf58d
PS
3793static boolean_t
3794arc_is_overflowing(void)
34dc7c2f 3795{
ca0bf58d
PS
3796 /* Always allow at least one block of overflow */
3797 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
3798 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 3799
ca0bf58d 3800 return (arc_size >= arc_c + overflow);
34dc7c2f
BB
3801}
3802
3803/*
ca0bf58d
PS
3804 * The buffer, supplied as the first argument, needs a data block. If we
3805 * are hitting the hard limit for the cache size, we must sleep, waiting
3806 * for the eviction thread to catch up. If we're past the target size
3807 * but below the hard limit, we'll only signal the reclaim thread and
3808 * continue on.
34dc7c2f
BB
3809 */
3810static void
3811arc_get_data_buf(arc_buf_t *buf)
3812{
b9541d6b 3813 arc_state_t *state = buf->b_hdr->b_l1hdr.b_state;
34dc7c2f 3814 uint64_t size = buf->b_hdr->b_size;
b9541d6b 3815 arc_buf_contents_t type = arc_buf_type(buf->b_hdr);
34dc7c2f
BB
3816
3817 arc_adapt(size, state);
3818
3819 /*
ca0bf58d
PS
3820 * If arc_size is currently overflowing, and has grown past our
3821 * upper limit, we must be adding data faster than the evict
3822 * thread can evict. Thus, to ensure we don't compound the
3823 * problem by adding more data and forcing arc_size to grow even
3824 * further past it's target size, we halt and wait for the
3825 * eviction thread to catch up.
3826 *
3827 * It's also possible that the reclaim thread is unable to evict
3828 * enough buffers to get arc_size below the overflow limit (e.g.
3829 * due to buffers being un-evictable, or hash lock collisions).
3830 * In this case, we want to proceed regardless if we're
3831 * overflowing; thus we don't use a while loop here.
34dc7c2f 3832 */
ca0bf58d
PS
3833 if (arc_is_overflowing()) {
3834 mutex_enter(&arc_reclaim_lock);
3835
3836 /*
3837 * Now that we've acquired the lock, we may no longer be
3838 * over the overflow limit, lets check.
3839 *
3840 * We're ignoring the case of spurious wake ups. If that
3841 * were to happen, it'd let this thread consume an ARC
3842 * buffer before it should have (i.e. before we're under
3843 * the overflow limit and were signalled by the reclaim
3844 * thread). As long as that is a rare occurrence, it
3845 * shouldn't cause any harm.
3846 */
3847 if (arc_is_overflowing()) {
3848 cv_signal(&arc_reclaim_thread_cv);
3849 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
34dc7c2f 3850 }
34dc7c2f 3851
ca0bf58d 3852 mutex_exit(&arc_reclaim_lock);
34dc7c2f 3853 }
ab26409d 3854
da8ccd0e 3855 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
3856 buf->b_data = zio_buf_alloc(size);
3857 arc_space_consume(size, ARC_SPACE_META);
3858 } else {
3859 ASSERT(type == ARC_BUFC_DATA);
3860 buf->b_data = zio_data_buf_alloc(size);
3861 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
3862 }
3863
34dc7c2f
BB
3864 /*
3865 * Update the state size. Note that ghost states have a
3866 * "ghost size" and so don't need to be updated.
3867 */
b9541d6b 3868 if (!GHOST_STATE(buf->b_hdr->b_l1hdr.b_state)) {
34dc7c2f 3869 arc_buf_hdr_t *hdr = buf->b_hdr;
36da08ef 3870 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 3871
36da08ef 3872 (void) refcount_add_many(&state->arcs_size, size, buf);
ca0bf58d
PS
3873
3874 /*
3875 * If this is reached via arc_read, the link is
3876 * protected by the hash lock. If reached via
3877 * arc_buf_alloc, the header should not be accessed by
3878 * any other thread. And, if reached via arc_read_done,
3879 * the hash lock will protect it if it's found in the
3880 * hash table; otherwise no other thread should be
3881 * trying to [add|remove]_reference it.
3882 */
3883 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
b9541d6b
CW
3884 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3885 atomic_add_64(&hdr->b_l1hdr.b_state->arcs_lsize[type],
3886 size);
34dc7c2f
BB
3887 }
3888 /*
3889 * If we are growing the cache, and we are adding anonymous
3890 * data, and we have outgrown arc_p, update arc_p
3891 */
ca0bf58d 3892 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
36da08ef
PS
3893 (refcount_count(&arc_anon->arcs_size) +
3894 refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
3895 arc_p = MIN(arc_c, arc_p + size);
3896 }
3897}
3898
3899/*
3900 * This routine is called whenever a buffer is accessed.
3901 * NOTE: the hash lock is dropped in this function.
3902 */
3903static void
2a432414 3904arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3905{
428870ff
BB
3906 clock_t now;
3907
34dc7c2f 3908 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 3909 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 3910
b9541d6b 3911 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
3912 /*
3913 * This buffer is not in the cache, and does not
3914 * appear in our "ghost" list. Add the new buffer
3915 * to the MRU state.
3916 */
3917
b9541d6b
CW
3918 ASSERT0(hdr->b_l1hdr.b_arc_access);
3919 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
3920 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
3921 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 3922
b9541d6b 3923 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
3924 now = ddi_get_lbolt();
3925
34dc7c2f
BB
3926 /*
3927 * If this buffer is here because of a prefetch, then either:
3928 * - clear the flag if this is a "referencing" read
3929 * (any subsequent access will bump this into the MFU state).
3930 * or
3931 * - move the buffer to the head of the list if this is
3932 * another prefetch (to make it less likely to be evicted).
3933 */
b9541d6b
CW
3934 if (HDR_PREFETCH(hdr)) {
3935 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
3936 /* link protected by hash lock */
3937 ASSERT(multilist_link_active(
b9541d6b 3938 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 3939 } else {
2a432414 3940 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
b9541d6b 3941 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
3942 ARCSTAT_BUMP(arcstat_mru_hits);
3943 }
b9541d6b 3944 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
3945 return;
3946 }
3947
3948 /*
3949 * This buffer has been "accessed" only once so far,
3950 * but it is still in the cache. Move it to the MFU
3951 * state.
3952 */
b9541d6b
CW
3953 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
3954 ARC_MINTIME)) {
34dc7c2f
BB
3955 /*
3956 * More than 125ms have passed since we
3957 * instantiated this buffer. Move it to the
3958 * most frequently used state.
3959 */
b9541d6b 3960 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
3961 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
3962 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 3963 }
b9541d6b 3964 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 3965 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 3966 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
3967 arc_state_t *new_state;
3968 /*
3969 * This buffer has been "accessed" recently, but
3970 * was evicted from the cache. Move it to the
3971 * MFU state.
3972 */
3973
b9541d6b 3974 if (HDR_PREFETCH(hdr)) {
34dc7c2f 3975 new_state = arc_mru;
b9541d6b 3976 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
2a432414
GW
3977 hdr->b_flags &= ~ARC_FLAG_PREFETCH;
3978 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3979 } else {
3980 new_state = arc_mfu;
2a432414 3981 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
3982 }
3983
b9541d6b 3984 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 3985 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 3986
b9541d6b 3987 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 3988 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 3989 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
3990 /*
3991 * This buffer has been accessed more than once and is
3992 * still in the cache. Keep it in the MFU state.
3993 *
3994 * NOTE: an add_reference() that occurred when we did
3995 * the arc_read() will have kicked this off the list.
3996 * If it was a prefetch, we will explicitly move it to
3997 * the head of the list now.
3998 */
b9541d6b
CW
3999 if ((HDR_PREFETCH(hdr)) != 0) {
4000 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
4001 /* link protected by hash_lock */
4002 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4003 }
b9541d6b 4004 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 4005 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
4006 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4007 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
4008 arc_state_t *new_state = arc_mfu;
4009 /*
4010 * This buffer has been accessed more than once but has
4011 * been evicted from the cache. Move it back to the
4012 * MFU state.
4013 */
4014
b9541d6b 4015 if (HDR_PREFETCH(hdr)) {
34dc7c2f
BB
4016 /*
4017 * This is a prefetch access...
4018 * move this block back to the MRU state.
4019 */
b9541d6b 4020 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
34dc7c2f
BB
4021 new_state = arc_mru;
4022 }
4023
b9541d6b 4024 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4025 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4026 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 4027
b9541d6b 4028 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 4029 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 4030 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
4031 /*
4032 * This buffer is on the 2nd Level ARC.
4033 */
4034
b9541d6b 4035 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
4036 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4037 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 4038 } else {
b9541d6b
CW
4039 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4040 hdr->b_l1hdr.b_state);
34dc7c2f
BB
4041 }
4042}
4043
4044/* a generic arc_done_func_t which you can use */
4045/* ARGSUSED */
4046void
4047arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4048{
428870ff
BB
4049 if (zio == NULL || zio->io_error == 0)
4050 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 4051 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
4052}
4053
4054/* a generic arc_done_func_t */
4055void
4056arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4057{
4058 arc_buf_t **bufp = arg;
4059 if (zio && zio->io_error) {
13fe0198 4060 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
4061 *bufp = NULL;
4062 } else {
4063 *bufp = buf;
428870ff 4064 ASSERT(buf->b_data);
34dc7c2f
BB
4065 }
4066}
4067
4068static void
4069arc_read_done(zio_t *zio)
4070{
9b67f605 4071 arc_buf_hdr_t *hdr;
34dc7c2f
BB
4072 arc_buf_t *buf;
4073 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 4074 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
4075 arc_callback_t *callback_list, *acb;
4076 int freeable = FALSE;
4077
4078 buf = zio->io_private;
4079 hdr = buf->b_hdr;
4080
4081 /*
4082 * The hdr was inserted into hash-table and removed from lists
4083 * prior to starting I/O. We should find this header, since
4084 * it's in the hash table, and it should be legit since it's
4085 * not possible to evict it during the I/O. The only possible
4086 * reason for it not to be found is if we were freed during the
4087 * read.
4088 */
9b67f605
MA
4089 if (HDR_IN_HASH_TABLE(hdr)) {
4090 arc_buf_hdr_t *found;
4091
4092 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
4093 ASSERT3U(hdr->b_dva.dva_word[0], ==,
4094 BP_IDENTITY(zio->io_bp)->dva_word[0]);
4095 ASSERT3U(hdr->b_dva.dva_word[1], ==,
4096 BP_IDENTITY(zio->io_bp)->dva_word[1]);
4097
4098 found = buf_hash_find(hdr->b_spa, zio->io_bp,
4099 &hash_lock);
4100
4101 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
4102 hash_lock == NULL) ||
4103 (found == hdr &&
4104 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
4105 (found == hdr && HDR_L2_READING(hdr)));
4106 }
34dc7c2f 4107
2a432414 4108 hdr->b_flags &= ~ARC_FLAG_L2_EVICTED;
b9541d6b 4109 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
2a432414 4110 hdr->b_flags &= ~ARC_FLAG_L2CACHE;
34dc7c2f
BB
4111
4112 /* byteswap if necessary */
b9541d6b 4113 callback_list = hdr->b_l1hdr.b_acb;
34dc7c2f 4114 ASSERT(callback_list != NULL);
428870ff 4115 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
4116 dmu_object_byteswap_t bswap =
4117 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
4118 if (BP_GET_LEVEL(zio->io_bp) > 0)
4119 byteswap_uint64_array(buf->b_data, hdr->b_size);
4120 else
4121 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 4122 }
34dc7c2f
BB
4123
4124 arc_cksum_compute(buf, B_FALSE);
498877ba 4125 arc_buf_watch(buf);
34dc7c2f 4126
b9541d6b
CW
4127 if (hash_lock && zio->io_error == 0 &&
4128 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
4129 /*
4130 * Only call arc_access on anonymous buffers. This is because
4131 * if we've issued an I/O for an evicted buffer, we've already
4132 * called arc_access (to prevent any simultaneous readers from
4133 * getting confused).
4134 */
4135 arc_access(hdr, hash_lock);
4136 }
4137
34dc7c2f
BB
4138 /* create copies of the data buffer for the callers */
4139 abuf = buf;
4140 for (acb = callback_list; acb; acb = acb->acb_next) {
4141 if (acb->acb_done) {
1eb5bfa3
GW
4142 if (abuf == NULL) {
4143 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 4144 abuf = arc_buf_clone(buf);
1eb5bfa3 4145 }
34dc7c2f
BB
4146 acb->acb_buf = abuf;
4147 abuf = NULL;
4148 }
4149 }
b9541d6b 4150 hdr->b_l1hdr.b_acb = NULL;
2a432414 4151 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4152 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
4153 if (abuf == buf) {
4154 ASSERT(buf->b_efunc == NULL);
b9541d6b 4155 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
2a432414 4156 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
428870ff 4157 }
34dc7c2f 4158
b9541d6b
CW
4159 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
4160 callback_list != NULL);
34dc7c2f
BB
4161
4162 if (zio->io_error != 0) {
2a432414 4163 hdr->b_flags |= ARC_FLAG_IO_ERROR;
b9541d6b 4164 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
4165 arc_change_state(arc_anon, hdr, hash_lock);
4166 if (HDR_IN_HASH_TABLE(hdr))
4167 buf_hash_remove(hdr);
b9541d6b 4168 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
4169 }
4170
4171 /*
4172 * Broadcast before we drop the hash_lock to avoid the possibility
4173 * that the hdr (and hence the cv) might be freed before we get to
4174 * the cv_broadcast().
4175 */
b9541d6b 4176 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 4177
b9541d6b 4178 if (hash_lock != NULL) {
34dc7c2f
BB
4179 mutex_exit(hash_lock);
4180 } else {
4181 /*
4182 * This block was freed while we waited for the read to
4183 * complete. It has been removed from the hash table and
4184 * moved to the anonymous state (so that it won't show up
4185 * in the cache).
4186 */
b9541d6b
CW
4187 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
4188 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
4189 }
4190
4191 /* execute each callback and free its structure */
4192 while ((acb = callback_list) != NULL) {
4193 if (acb->acb_done)
4194 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
4195
4196 if (acb->acb_zio_dummy != NULL) {
4197 acb->acb_zio_dummy->io_error = zio->io_error;
4198 zio_nowait(acb->acb_zio_dummy);
4199 }
4200
4201 callback_list = acb->acb_next;
4202 kmem_free(acb, sizeof (arc_callback_t));
4203 }
4204
4205 if (freeable)
4206 arc_hdr_destroy(hdr);
4207}
4208
4209/*
5c839890 4210 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
4211 * cache. If the block is found in the cache, invoke the provided
4212 * callback immediately and return. Note that the `zio' parameter
4213 * in the callback will be NULL in this case, since no IO was
4214 * required. If the block is not in the cache pass the read request
4215 * on to the spa with a substitute callback function, so that the
4216 * requested block will be added to the cache.
4217 *
4218 * If a read request arrives for a block that has a read in-progress,
4219 * either wait for the in-progress read to complete (and return the
4220 * results); or, if this is a read with a "done" func, add a record
4221 * to the read to invoke the "done" func when the read completes,
4222 * and return; or just return.
4223 *
4224 * arc_read_done() will invoke all the requested "done" functions
4225 * for readers of this block.
4226 */
4227int
294f6806 4228arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
2a432414
GW
4229 void *private, zio_priority_t priority, int zio_flags,
4230 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 4231{
9b67f605 4232 arc_buf_hdr_t *hdr = NULL;
d4ed6673 4233 arc_buf_t *buf = NULL;
9b67f605 4234 kmutex_t *hash_lock = NULL;
34dc7c2f 4235 zio_t *rzio;
3541dc6d 4236 uint64_t guid = spa_load_guid(spa);
1421c891 4237 int rc = 0;
34dc7c2f 4238
9b67f605
MA
4239 ASSERT(!BP_IS_EMBEDDED(bp) ||
4240 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
4241
34dc7c2f 4242top:
9b67f605
MA
4243 if (!BP_IS_EMBEDDED(bp)) {
4244 /*
4245 * Embedded BP's have no DVA and require no I/O to "read".
4246 * Create an anonymous arc buf to back it.
4247 */
4248 hdr = buf_hash_find(guid, bp, &hash_lock);
4249 }
4250
b9541d6b 4251 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_datacnt > 0) {
34dc7c2f 4252
2a432414 4253 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
4254
4255 if (HDR_IO_IN_PROGRESS(hdr)) {
4256
2a432414 4257 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 4258 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
4259 mutex_exit(hash_lock);
4260 goto top;
4261 }
2a432414 4262 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4263
4264 if (done) {
4265 arc_callback_t *acb = NULL;
4266
4267 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 4268 KM_SLEEP);
34dc7c2f
BB
4269 acb->acb_done = done;
4270 acb->acb_private = private;
34dc7c2f
BB
4271 if (pio != NULL)
4272 acb->acb_zio_dummy = zio_null(pio,
d164b209 4273 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
4274
4275 ASSERT(acb->acb_done != NULL);
b9541d6b
CW
4276 acb->acb_next = hdr->b_l1hdr.b_acb;
4277 hdr->b_l1hdr.b_acb = acb;
34dc7c2f
BB
4278 add_reference(hdr, hash_lock, private);
4279 mutex_exit(hash_lock);
1421c891 4280 goto out;
34dc7c2f
BB
4281 }
4282 mutex_exit(hash_lock);
1421c891 4283 goto out;
34dc7c2f
BB
4284 }
4285
b9541d6b
CW
4286 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4287 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
4288
4289 if (done) {
4290 add_reference(hdr, hash_lock, private);
4291 /*
4292 * If this block is already in use, create a new
4293 * copy of the data so that we will be guaranteed
4294 * that arc_release() will always succeed.
4295 */
b9541d6b 4296 buf = hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4297 ASSERT(buf);
4298 ASSERT(buf->b_data);
4299 if (HDR_BUF_AVAILABLE(hdr)) {
4300 ASSERT(buf->b_efunc == NULL);
2a432414 4301 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
34dc7c2f
BB
4302 } else {
4303 buf = arc_buf_clone(buf);
4304 }
428870ff 4305
2a432414 4306 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
b9541d6b 4307 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
2a432414 4308 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
4309 }
4310 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4311 arc_access(hdr, hash_lock);
2a432414
GW
4312 if (*arc_flags & ARC_FLAG_L2CACHE)
4313 hdr->b_flags |= ARC_FLAG_L2CACHE;
4314 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4315 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4316 mutex_exit(hash_lock);
4317 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
4318 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4319 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4320 data, metadata, hits);
4321
4322 if (done)
4323 done(NULL, buf, private);
4324 } else {
4325 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 4326 arc_callback_t *acb;
b128c09f 4327 vdev_t *vd = NULL;
a117a6d6 4328 uint64_t addr = 0;
d164b209 4329 boolean_t devw = B_FALSE;
0ed212dc 4330 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
b9541d6b 4331 int32_t b_asize = 0;
34dc7c2f 4332
5f6d0b6f
BB
4333 /*
4334 * Gracefully handle a damaged logical block size as a
4335 * checksum error by passing a dummy zio to the done callback.
4336 */
f1512ee6 4337 if (size > spa_maxblocksize(spa)) {
5f6d0b6f
BB
4338 if (done) {
4339 rzio = zio_null(pio, spa, NULL,
4340 NULL, NULL, zio_flags);
4341 rzio->io_error = ECKSUM;
4342 done(rzio, buf, private);
4343 zio_nowait(rzio);
4344 }
4345 rc = ECKSUM;
4346 goto out;
4347 }
4348
34dc7c2f
BB
4349 if (hdr == NULL) {
4350 /* this block is not in the cache */
9b67f605 4351 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
4352 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
4353 buf = arc_buf_alloc(spa, size, private, type);
4354 hdr = buf->b_hdr;
9b67f605
MA
4355 if (!BP_IS_EMBEDDED(bp)) {
4356 hdr->b_dva = *BP_IDENTITY(bp);
4357 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
4358 exists = buf_hash_insert(hdr, &hash_lock);
4359 }
4360 if (exists != NULL) {
34dc7c2f
BB
4361 /* somebody beat us to the hash insert */
4362 mutex_exit(hash_lock);
428870ff 4363 buf_discard_identity(hdr);
34dc7c2f
BB
4364 (void) arc_buf_remove_ref(buf, private);
4365 goto top; /* restart the IO request */
4366 }
2a432414 4367
34dc7c2f 4368 /* if this is a prefetch, we don't have a reference */
2a432414 4369 if (*arc_flags & ARC_FLAG_PREFETCH) {
34dc7c2f
BB
4370 (void) remove_reference(hdr, hash_lock,
4371 private);
2a432414 4372 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f 4373 }
2a432414
GW
4374 if (*arc_flags & ARC_FLAG_L2CACHE)
4375 hdr->b_flags |= ARC_FLAG_L2CACHE;
4376 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4377 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f 4378 if (BP_GET_LEVEL(bp) > 0)
2a432414 4379 hdr->b_flags |= ARC_FLAG_INDIRECT;
34dc7c2f 4380 } else {
b9541d6b
CW
4381 /*
4382 * This block is in the ghost cache. If it was L2-only
4383 * (and thus didn't have an L1 hdr), we realloc the
4384 * header to add an L1 hdr.
4385 */
4386 if (!HDR_HAS_L1HDR(hdr)) {
4387 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
4388 hdr_full_cache);
4389 }
4390
4391 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
34dc7c2f 4392 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b 4393 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 4394 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
34dc7c2f
BB
4395
4396 /* if this is a prefetch, we don't have a reference */
2a432414
GW
4397 if (*arc_flags & ARC_FLAG_PREFETCH)
4398 hdr->b_flags |= ARC_FLAG_PREFETCH;
34dc7c2f
BB
4399 else
4400 add_reference(hdr, hash_lock, private);
2a432414
GW
4401 if (*arc_flags & ARC_FLAG_L2CACHE)
4402 hdr->b_flags |= ARC_FLAG_L2CACHE;
4403 if (*arc_flags & ARC_FLAG_L2COMPRESS)
4404 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
34dc7c2f
BB
4405 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
4406 buf->b_hdr = hdr;
4407 buf->b_data = NULL;
4408 buf->b_efunc = NULL;
4409 buf->b_private = NULL;
4410 buf->b_next = NULL;
b9541d6b
CW
4411 hdr->b_l1hdr.b_buf = buf;
4412 ASSERT0(hdr->b_l1hdr.b_datacnt);
4413 hdr->b_l1hdr.b_datacnt = 1;
428870ff
BB
4414 arc_get_data_buf(buf);
4415 arc_access(hdr, hash_lock);
34dc7c2f
BB
4416 }
4417
b9541d6b 4418 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 4419
79c76d5b 4420 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
4421 acb->acb_done = done;
4422 acb->acb_private = private;
34dc7c2f 4423
b9541d6b
CW
4424 ASSERT(hdr->b_l1hdr.b_acb == NULL);
4425 hdr->b_l1hdr.b_acb = acb;
2a432414 4426 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f 4427
b9541d6b
CW
4428 if (HDR_HAS_L2HDR(hdr) &&
4429 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
4430 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
4431 addr = hdr->b_l2hdr.b_daddr;
4432 b_compress = HDR_GET_COMPRESS(hdr);
4433 b_asize = hdr->b_l2hdr.b_asize;
b128c09f
BB
4434 /*
4435 * Lock out device removal.
4436 */
4437 if (vdev_is_dead(vd) ||
4438 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
4439 vd = NULL;
4440 }
4441
9b67f605
MA
4442 if (hash_lock != NULL)
4443 mutex_exit(hash_lock);
b128c09f 4444
e49f1e20
WA
4445 /*
4446 * At this point, we have a level 1 cache miss. Try again in
4447 * L2ARC if possible.
4448 */
34dc7c2f 4449 ASSERT3U(hdr->b_size, ==, size);
428870ff 4450 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 4451 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f 4452 ARCSTAT_BUMP(arcstat_misses);
b9541d6b
CW
4453 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
4454 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
4455 data, metadata, misses);
4456
d164b209 4457 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
4458 /*
4459 * Read from the L2ARC if the following are true:
b128c09f
BB
4460 * 1. The L2ARC vdev was previously cached.
4461 * 2. This buffer still has L2ARC metadata.
4462 * 3. This buffer isn't currently writing to the L2ARC.
4463 * 4. The L2ARC entry wasn't evicted, which may
4464 * also have invalidated the vdev.
d164b209 4465 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 4466 */
b9541d6b 4467 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
4468 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
4469 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
4470 l2arc_read_callback_t *cb;
4471
4472 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
4473 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 4474 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 4475
34dc7c2f 4476 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 4477 KM_SLEEP);
34dc7c2f
BB
4478 cb->l2rcb_buf = buf;
4479 cb->l2rcb_spa = spa;
4480 cb->l2rcb_bp = *bp;
4481 cb->l2rcb_zb = *zb;
b128c09f 4482 cb->l2rcb_flags = zio_flags;
0ed212dc 4483 cb->l2rcb_compress = b_compress;
34dc7c2f 4484
a117a6d6
GW
4485 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
4486 addr + size < vd->vdev_psize -
4487 VDEV_LABEL_END_SIZE);
4488
34dc7c2f 4489 /*
b128c09f
BB
4490 * l2arc read. The SCL_L2ARC lock will be
4491 * released by l2arc_read_done().
3a17a7a9
SK
4492 * Issue a null zio if the underlying buffer
4493 * was squashed to zero size by compression.
34dc7c2f 4494 */
0ed212dc 4495 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
4496 rzio = zio_null(pio, spa, vd,
4497 l2arc_read_done, cb,
4498 zio_flags | ZIO_FLAG_DONT_CACHE |
4499 ZIO_FLAG_CANFAIL |
4500 ZIO_FLAG_DONT_PROPAGATE |
4501 ZIO_FLAG_DONT_RETRY);
4502 } else {
4503 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
4504 b_asize, buf->b_data,
4505 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
4506 l2arc_read_done, cb, priority,
4507 zio_flags | ZIO_FLAG_DONT_CACHE |
4508 ZIO_FLAG_CANFAIL |
4509 ZIO_FLAG_DONT_PROPAGATE |
4510 ZIO_FLAG_DONT_RETRY, B_FALSE);
4511 }
34dc7c2f
BB
4512 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
4513 zio_t *, rzio);
0ed212dc 4514 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 4515
2a432414 4516 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 4517 zio_nowait(rzio);
1421c891 4518 goto out;
b128c09f 4519 }
34dc7c2f 4520
2a432414 4521 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 4522 if (zio_wait(rzio) == 0)
1421c891 4523 goto out;
b128c09f
BB
4524
4525 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
4526 } else {
4527 DTRACE_PROBE1(l2arc__miss,
4528 arc_buf_hdr_t *, hdr);
4529 ARCSTAT_BUMP(arcstat_l2_misses);
4530 if (HDR_L2_WRITING(hdr))
4531 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 4532 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 4533 }
d164b209
BB
4534 } else {
4535 if (vd != NULL)
4536 spa_config_exit(spa, SCL_L2ARC, vd);
4537 if (l2arc_ndev != 0) {
4538 DTRACE_PROBE1(l2arc__miss,
4539 arc_buf_hdr_t *, hdr);
4540 ARCSTAT_BUMP(arcstat_l2_misses);
4541 }
34dc7c2f 4542 }
34dc7c2f
BB
4543
4544 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 4545 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 4546
2a432414 4547 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
4548 rc = zio_wait(rzio);
4549 goto out;
4550 }
34dc7c2f 4551
2a432414 4552 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
4553 zio_nowait(rzio);
4554 }
1421c891
PS
4555
4556out:
4557 spa_read_history_add(spa, zb, *arc_flags);
4558 return (rc);
34dc7c2f
BB
4559}
4560
ab26409d
BB
4561arc_prune_t *
4562arc_add_prune_callback(arc_prune_func_t *func, void *private)
4563{
4564 arc_prune_t *p;
4565
d1d7e268 4566 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
4567 p->p_pfunc = func;
4568 p->p_private = private;
4569 list_link_init(&p->p_node);
4570 refcount_create(&p->p_refcnt);
4571
4572 mutex_enter(&arc_prune_mtx);
4573 refcount_add(&p->p_refcnt, &arc_prune_list);
4574 list_insert_head(&arc_prune_list, p);
4575 mutex_exit(&arc_prune_mtx);
4576
4577 return (p);
4578}
4579
4580void
4581arc_remove_prune_callback(arc_prune_t *p)
4582{
4583 mutex_enter(&arc_prune_mtx);
4584 list_remove(&arc_prune_list, p);
4585 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
4586 refcount_destroy(&p->p_refcnt);
4587 kmem_free(p, sizeof (*p));
4588 }
4589 mutex_exit(&arc_prune_mtx);
4590}
4591
34dc7c2f
BB
4592void
4593arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
4594{
4595 ASSERT(buf->b_hdr != NULL);
b9541d6b
CW
4596 ASSERT(buf->b_hdr->b_l1hdr.b_state != arc_anon);
4597 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt) ||
4598 func == NULL);
428870ff
BB
4599 ASSERT(buf->b_efunc == NULL);
4600 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
4601
34dc7c2f
BB
4602 buf->b_efunc = func;
4603 buf->b_private = private;
4604}
4605
df4474f9
MA
4606/*
4607 * Notify the arc that a block was freed, and thus will never be used again.
4608 */
4609void
4610arc_freed(spa_t *spa, const blkptr_t *bp)
4611{
4612 arc_buf_hdr_t *hdr;
4613 kmutex_t *hash_lock;
4614 uint64_t guid = spa_load_guid(spa);
4615
9b67f605
MA
4616 ASSERT(!BP_IS_EMBEDDED(bp));
4617
4618 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
4619 if (hdr == NULL)
4620 return;
4621 if (HDR_BUF_AVAILABLE(hdr)) {
b9541d6b 4622 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
df4474f9 4623 add_reference(hdr, hash_lock, FTAG);
2a432414 4624 hdr->b_flags &= ~ARC_FLAG_BUF_AVAILABLE;
df4474f9
MA
4625 mutex_exit(hash_lock);
4626
4627 arc_release(buf, FTAG);
4628 (void) arc_buf_remove_ref(buf, FTAG);
4629 } else {
4630 mutex_exit(hash_lock);
4631 }
4632
4633}
4634
34dc7c2f 4635/*
bd089c54
MA
4636 * Clear the user eviction callback set by arc_set_callback(), first calling
4637 * it if it exists. Because the presence of a callback keeps an arc_buf cached
4638 * clearing the callback may result in the arc_buf being destroyed. However,
4639 * it will not result in the *last* arc_buf being destroyed, hence the data
4640 * will remain cached in the ARC. We make a copy of the arc buffer here so
4641 * that we can process the callback without holding any locks.
4642 *
4643 * It's possible that the callback is already in the process of being cleared
4644 * by another thread. In this case we can not clear the callback.
4645 *
4646 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 4647 */
bd089c54
MA
4648boolean_t
4649arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
4650{
4651 arc_buf_hdr_t *hdr;
4652 kmutex_t *hash_lock;
bd089c54
MA
4653 arc_evict_func_t *efunc = buf->b_efunc;
4654 void *private = buf->b_private;
34dc7c2f 4655
428870ff 4656 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
4657 hdr = buf->b_hdr;
4658 if (hdr == NULL) {
4659 /*
4660 * We are in arc_do_user_evicts().
4661 */
4662 ASSERT(buf->b_data == NULL);
428870ff 4663 mutex_exit(&buf->b_evict_lock);
bd089c54 4664 return (B_FALSE);
b128c09f 4665 } else if (buf->b_data == NULL) {
34dc7c2f 4666 /*
b128c09f
BB
4667 * We are on the eviction list; process this buffer now
4668 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 4669 */
b128c09f 4670 buf->b_efunc = NULL;
428870ff 4671 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
4672 VERIFY0(efunc(private));
4673 return (B_TRUE);
34dc7c2f 4674 }
b128c09f
BB
4675 hash_lock = HDR_LOCK(hdr);
4676 mutex_enter(hash_lock);
428870ff
BB
4677 hdr = buf->b_hdr;
4678 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4679
b9541d6b
CW
4680 ASSERT3U(refcount_count(&hdr->b_l1hdr.b_refcnt), <,
4681 hdr->b_l1hdr.b_datacnt);
4682 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4683 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f 4684
bd089c54
MA
4685 buf->b_efunc = NULL;
4686 buf->b_private = NULL;
34dc7c2f 4687
b9541d6b 4688 if (hdr->b_l1hdr.b_datacnt > 1) {
bd089c54 4689 mutex_exit(&buf->b_evict_lock);
ca0bf58d 4690 arc_buf_destroy(buf, TRUE);
bd089c54 4691 } else {
b9541d6b 4692 ASSERT(buf == hdr->b_l1hdr.b_buf);
2a432414 4693 hdr->b_flags |= ARC_FLAG_BUF_AVAILABLE;
bd089c54 4694 mutex_exit(&buf->b_evict_lock);
34dc7c2f 4695 }
34dc7c2f 4696
bd089c54
MA
4697 mutex_exit(hash_lock);
4698 VERIFY0(efunc(private));
4699 return (B_TRUE);
34dc7c2f
BB
4700}
4701
4702/*
e49f1e20
WA
4703 * Release this buffer from the cache, making it an anonymous buffer. This
4704 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 4705 * If the buffer has more than one reference, we must make
b128c09f 4706 * a new hdr for the buffer.
34dc7c2f
BB
4707 */
4708void
4709arc_release(arc_buf_t *buf, void *tag)
4710{
b9541d6b
CW
4711 kmutex_t *hash_lock;
4712 arc_state_t *state;
4713 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 4714
428870ff 4715 /*
ca0bf58d 4716 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
4717 * 0 || it's the dnode file), then it must be syncing context.
4718 * But we don't know that information at this level.
4719 */
4720
4721 mutex_enter(&buf->b_evict_lock);
b128c09f 4722
ca0bf58d
PS
4723 ASSERT(HDR_HAS_L1HDR(hdr));
4724
b9541d6b
CW
4725 /*
4726 * We don't grab the hash lock prior to this check, because if
4727 * the buffer's header is in the arc_anon state, it won't be
4728 * linked into the hash table.
4729 */
4730 if (hdr->b_l1hdr.b_state == arc_anon) {
4731 mutex_exit(&buf->b_evict_lock);
4732 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
4733 ASSERT(!HDR_IN_HASH_TABLE(hdr));
4734 ASSERT(!HDR_HAS_L2HDR(hdr));
4735 ASSERT(BUF_EMPTY(hdr));
34dc7c2f 4736
b9541d6b
CW
4737 ASSERT3U(hdr->b_l1hdr.b_datacnt, ==, 1);
4738 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
4739 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
4740
4741 ASSERT3P(buf->b_efunc, ==, NULL);
4742 ASSERT3P(buf->b_private, ==, NULL);
4743
4744 hdr->b_l1hdr.b_arc_access = 0;
4745 arc_buf_thaw(buf);
4746
4747 return;
34dc7c2f
BB
4748 }
4749
b9541d6b
CW
4750 hash_lock = HDR_LOCK(hdr);
4751 mutex_enter(hash_lock);
4752
4753 /*
4754 * This assignment is only valid as long as the hash_lock is
4755 * held, we must be careful not to reference state or the
4756 * b_state field after dropping the lock.
4757 */
4758 state = hdr->b_l1hdr.b_state;
4759 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
4760 ASSERT3P(state, !=, arc_anon);
4761
4762 /* this buffer is not on any list */
4763 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) > 0);
4764
4765 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 4766 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
4767
4768 /*
d962d5da
PS
4769 * We have to recheck this conditional again now that
4770 * we're holding the l2ad_mtx to prevent a race with
4771 * another thread which might be concurrently calling
4772 * l2arc_evict(). In that case, l2arc_evict() might have
4773 * destroyed the header's L2 portion as we were waiting
4774 * to acquire the l2ad_mtx.
ca0bf58d 4775 */
d962d5da
PS
4776 if (HDR_HAS_L2HDR(hdr))
4777 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 4778
b9541d6b 4779 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
4780 }
4781
34dc7c2f
BB
4782 /*
4783 * Do we have more than one buf?
4784 */
b9541d6b 4785 if (hdr->b_l1hdr.b_datacnt > 1) {
34dc7c2f
BB
4786 arc_buf_hdr_t *nhdr;
4787 arc_buf_t **bufp;
4788 uint64_t blksz = hdr->b_size;
d164b209 4789 uint64_t spa = hdr->b_spa;
b9541d6b 4790 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
4791 uint32_t flags = hdr->b_flags;
4792
b9541d6b 4793 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
34dc7c2f 4794 /*
428870ff
BB
4795 * Pull the data off of this hdr and attach it to
4796 * a new anonymous hdr.
34dc7c2f
BB
4797 */
4798 (void) remove_reference(hdr, hash_lock, tag);
b9541d6b 4799 bufp = &hdr->b_l1hdr.b_buf;
34dc7c2f
BB
4800 while (*bufp != buf)
4801 bufp = &(*bufp)->b_next;
428870ff 4802 *bufp = buf->b_next;
34dc7c2f
BB
4803 buf->b_next = NULL;
4804
b9541d6b 4805 ASSERT3P(state, !=, arc_l2c_only);
36da08ef
PS
4806
4807 (void) refcount_remove_many(
4808 &state->arcs_size, hdr->b_size, buf);
4809
b9541d6b
CW
4810 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
4811 uint64_t *size;
4812
4813 ASSERT3P(state, !=, arc_l2c_only);
4814 size = &state->arcs_lsize[type];
34dc7c2f
BB
4815 ASSERT3U(*size, >=, hdr->b_size);
4816 atomic_add_64(size, -hdr->b_size);
4817 }
1eb5bfa3
GW
4818
4819 /*
4820 * We're releasing a duplicate user data buffer, update
4821 * our statistics accordingly.
4822 */
b9541d6b 4823 if (HDR_ISTYPE_DATA(hdr)) {
1eb5bfa3
GW
4824 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
4825 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
4826 -hdr->b_size);
4827 }
b9541d6b 4828 hdr->b_l1hdr.b_datacnt -= 1;
34dc7c2f 4829 arc_cksum_verify(buf);
498877ba 4830 arc_buf_unwatch(buf);
34dc7c2f
BB
4831
4832 mutex_exit(hash_lock);
4833
b9541d6b 4834 nhdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
34dc7c2f
BB
4835 nhdr->b_size = blksz;
4836 nhdr->b_spa = spa;
b9541d6b
CW
4837
4838 nhdr->b_l1hdr.b_mru_hits = 0;
4839 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
4840 nhdr->b_l1hdr.b_mfu_hits = 0;
4841 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
4842 nhdr->b_l1hdr.b_l2_hits = 0;
2a432414 4843 nhdr->b_flags = flags & ARC_FLAG_L2_WRITING;
b9541d6b
CW
4844 nhdr->b_flags |= arc_bufc_to_flags(type);
4845 nhdr->b_flags |= ARC_FLAG_HAS_L1HDR;
4846
4847 nhdr->b_l1hdr.b_buf = buf;
4848 nhdr->b_l1hdr.b_datacnt = 1;
4849 nhdr->b_l1hdr.b_state = arc_anon;
4850 nhdr->b_l1hdr.b_arc_access = 0;
ca0bf58d 4851 nhdr->b_l1hdr.b_tmp_cdata = NULL;
34dc7c2f 4852 nhdr->b_freeze_cksum = NULL;
b9541d6b
CW
4853
4854 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 4855 buf->b_hdr = nhdr;
428870ff 4856 mutex_exit(&buf->b_evict_lock);
36da08ef 4857 (void) refcount_add_many(&arc_anon->arcs_size, blksz, buf);
34dc7c2f 4858 } else {
428870ff 4859 mutex_exit(&buf->b_evict_lock);
b9541d6b 4860 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
4861 /* protected by hash lock, or hdr is on arc_anon */
4862 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 4863 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
4864 hdr->b_l1hdr.b_mru_hits = 0;
4865 hdr->b_l1hdr.b_mru_ghost_hits = 0;
4866 hdr->b_l1hdr.b_mfu_hits = 0;
4867 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
4868 hdr->b_l1hdr.b_l2_hits = 0;
4869 arc_change_state(arc_anon, hdr, hash_lock);
4870 hdr->b_l1hdr.b_arc_access = 0;
4871 mutex_exit(hash_lock);
34dc7c2f 4872
428870ff 4873 buf_discard_identity(hdr);
34dc7c2f
BB
4874 arc_buf_thaw(buf);
4875 }
4876 buf->b_efunc = NULL;
4877 buf->b_private = NULL;
34dc7c2f
BB
4878}
4879
4880int
4881arc_released(arc_buf_t *buf)
4882{
b128c09f
BB
4883 int released;
4884
428870ff 4885 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
4886 released = (buf->b_data != NULL &&
4887 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 4888 mutex_exit(&buf->b_evict_lock);
b128c09f 4889 return (released);
34dc7c2f
BB
4890}
4891
34dc7c2f
BB
4892#ifdef ZFS_DEBUG
4893int
4894arc_referenced(arc_buf_t *buf)
4895{
b128c09f
BB
4896 int referenced;
4897
428870ff 4898 mutex_enter(&buf->b_evict_lock);
b9541d6b 4899 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 4900 mutex_exit(&buf->b_evict_lock);
b128c09f 4901 return (referenced);
34dc7c2f
BB
4902}
4903#endif
4904
4905static void
4906arc_write_ready(zio_t *zio)
4907{
4908 arc_write_callback_t *callback = zio->io_private;
4909 arc_buf_t *buf = callback->awcb_buf;
4910 arc_buf_hdr_t *hdr = buf->b_hdr;
4911
b9541d6b
CW
4912 ASSERT(HDR_HAS_L1HDR(hdr));
4913 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
4914 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f
BB
4915 callback->awcb_ready(zio, buf, callback->awcb_private);
4916
34dc7c2f
BB
4917 /*
4918 * If the IO is already in progress, then this is a re-write
b128c09f
BB
4919 * attempt, so we need to thaw and re-compute the cksum.
4920 * It is the responsibility of the callback to handle the
4921 * accounting for any re-write attempt.
34dc7c2f
BB
4922 */
4923 if (HDR_IO_IN_PROGRESS(hdr)) {
b9541d6b 4924 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4925 if (hdr->b_freeze_cksum != NULL) {
4926 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
4927 hdr->b_freeze_cksum = NULL;
4928 }
b9541d6b 4929 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
4930 }
4931 arc_cksum_compute(buf, B_FALSE);
2a432414 4932 hdr->b_flags |= ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
4933}
4934
e8b96c60
MA
4935/*
4936 * The SPA calls this callback for each physical write that happens on behalf
4937 * of a logical write. See the comment in dbuf_write_physdone() for details.
4938 */
4939static void
4940arc_write_physdone(zio_t *zio)
4941{
4942 arc_write_callback_t *cb = zio->io_private;
4943 if (cb->awcb_physdone != NULL)
4944 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
4945}
4946
34dc7c2f
BB
4947static void
4948arc_write_done(zio_t *zio)
4949{
4950 arc_write_callback_t *callback = zio->io_private;
4951 arc_buf_t *buf = callback->awcb_buf;
4952 arc_buf_hdr_t *hdr = buf->b_hdr;
4953
b9541d6b 4954 ASSERT(hdr->b_l1hdr.b_acb == NULL);
428870ff
BB
4955
4956 if (zio->io_error == 0) {
9b67f605 4957 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
4958 buf_discard_identity(hdr);
4959 } else {
4960 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
4961 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 4962 }
428870ff
BB
4963 } else {
4964 ASSERT(BUF_EMPTY(hdr));
4965 }
34dc7c2f 4966
34dc7c2f 4967 /*
9b67f605
MA
4968 * If the block to be written was all-zero or compressed enough to be
4969 * embedded in the BP, no write was performed so there will be no
4970 * dva/birth/checksum. The buffer must therefore remain anonymous
4971 * (and uncached).
34dc7c2f
BB
4972 */
4973 if (!BUF_EMPTY(hdr)) {
4974 arc_buf_hdr_t *exists;
4975 kmutex_t *hash_lock;
4976
428870ff
BB
4977 ASSERT(zio->io_error == 0);
4978
34dc7c2f
BB
4979 arc_cksum_verify(buf);
4980
4981 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 4982 if (exists != NULL) {
34dc7c2f
BB
4983 /*
4984 * This can only happen if we overwrite for
4985 * sync-to-convergence, because we remove
4986 * buffers from the hash table when we arc_free().
4987 */
428870ff
BB
4988 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
4989 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
4990 panic("bad overwrite, hdr=%p exists=%p",
4991 (void *)hdr, (void *)exists);
b9541d6b
CW
4992 ASSERT(refcount_is_zero(
4993 &exists->b_l1hdr.b_refcnt));
428870ff
BB
4994 arc_change_state(arc_anon, exists, hash_lock);
4995 mutex_exit(hash_lock);
4996 arc_hdr_destroy(exists);
4997 exists = buf_hash_insert(hdr, &hash_lock);
4998 ASSERT3P(exists, ==, NULL);
03c6040b
GW
4999 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
5000 /* nopwrite */
5001 ASSERT(zio->io_prop.zp_nopwrite);
5002 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
5003 panic("bad nopwrite, hdr=%p exists=%p",
5004 (void *)hdr, (void *)exists);
428870ff
BB
5005 } else {
5006 /* Dedup */
b9541d6b
CW
5007 ASSERT(hdr->b_l1hdr.b_datacnt == 1);
5008 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
5009 ASSERT(BP_GET_DEDUP(zio->io_bp));
5010 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
5011 }
34dc7c2f 5012 }
2a432414 5013 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
b128c09f 5014 /* if it's not anon, we are doing a scrub */
b9541d6b 5015 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 5016 arc_access(hdr, hash_lock);
34dc7c2f 5017 mutex_exit(hash_lock);
34dc7c2f 5018 } else {
2a432414 5019 hdr->b_flags &= ~ARC_FLAG_IO_IN_PROGRESS;
34dc7c2f
BB
5020 }
5021
b9541d6b 5022 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 5023 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
5024
5025 kmem_free(callback, sizeof (arc_write_callback_t));
5026}
5027
5028zio_t *
428870ff 5029arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 5030 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
5031 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
5032 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 5033 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
5034{
5035 arc_buf_hdr_t *hdr = buf->b_hdr;
5036 arc_write_callback_t *callback;
b128c09f 5037 zio_t *zio;
34dc7c2f 5038
b128c09f 5039 ASSERT(ready != NULL);
428870ff 5040 ASSERT(done != NULL);
34dc7c2f 5041 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b
CW
5042 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5043 ASSERT(hdr->b_l1hdr.b_acb == NULL);
5044 ASSERT(hdr->b_l1hdr.b_datacnt > 0);
b128c09f 5045 if (l2arc)
2a432414 5046 hdr->b_flags |= ARC_FLAG_L2CACHE;
3a17a7a9 5047 if (l2arc_compress)
2a432414 5048 hdr->b_flags |= ARC_FLAG_L2COMPRESS;
79c76d5b 5049 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 5050 callback->awcb_ready = ready;
e8b96c60 5051 callback->awcb_physdone = physdone;
34dc7c2f
BB
5052 callback->awcb_done = done;
5053 callback->awcb_private = private;
5054 callback->awcb_buf = buf;
b128c09f 5055
428870ff 5056 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
5057 arc_write_ready, arc_write_physdone, arc_write_done, callback,
5058 priority, zio_flags, zb);
34dc7c2f
BB
5059
5060 return (zio);
5061}
5062
34dc7c2f 5063static int
e8b96c60 5064arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
5065{
5066#ifdef _KERNEL
7e8bddd0
BB
5067 uint64_t available_memory = ptob(freemem);
5068 static uint64_t page_load = 0;
5069 static uint64_t last_txg = 0;
5070#ifdef __linux__
5071 pgcnt_t minfree = btop(arc_sys_free / 4);
5072#endif
0c5493d4 5073
ca67b33a
MA
5074 if (freemem > physmem * arc_lotsfree_percent / 100)
5075 return (0);
5076
7e8bddd0
BB
5077 if (txg > last_txg) {
5078 last_txg = txg;
5079 page_load = 0;
5080 }
5081
5082 /*
5083 * If we are in pageout, we know that memory is already tight,
5084 * the arc is already going to be evicting, so we just want to
5085 * continue to let page writes occur as quickly as possible.
5086 */
5087 if (current_is_kswapd()) {
5088 if (page_load > MAX(ptob(minfree), available_memory) / 4) {
5089 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
5090 return (SET_ERROR(ERESTART));
5091 }
5092 /* Note: reserve is inflated, so we deflate */
5093 page_load += reserve / 8;
5094 return (0);
5095 } else if (page_load > 0 && arc_reclaim_needed()) {
ca67b33a 5096 /* memory is low, delay before restarting */
34dc7c2f 5097 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 5098 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 5099 return (SET_ERROR(EAGAIN));
34dc7c2f 5100 }
7e8bddd0 5101 page_load = 0;
34dc7c2f
BB
5102#endif
5103 return (0);
5104}
5105
5106void
5107arc_tempreserve_clear(uint64_t reserve)
5108{
5109 atomic_add_64(&arc_tempreserve, -reserve);
5110 ASSERT((int64_t)arc_tempreserve >= 0);
5111}
5112
5113int
5114arc_tempreserve_space(uint64_t reserve, uint64_t txg)
5115{
5116 int error;
9babb374 5117 uint64_t anon_size;
34dc7c2f 5118
34dc7c2f
BB
5119 if (reserve > arc_c/4 && !arc_no_grow)
5120 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
5121
5122 /*
5123 * Throttle when the calculated memory footprint for the TXG
5124 * exceeds the target ARC size.
5125 */
570827e1
BB
5126 if (reserve > arc_c) {
5127 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 5128 return (SET_ERROR(ERESTART));
570827e1 5129 }
34dc7c2f 5130
9babb374
BB
5131 /*
5132 * Don't count loaned bufs as in flight dirty data to prevent long
5133 * network delays from blocking transactions that are ready to be
5134 * assigned to a txg.
5135 */
36da08ef
PS
5136 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
5137 arc_loaned_bytes), 0);
9babb374 5138
34dc7c2f
BB
5139 /*
5140 * Writes will, almost always, require additional memory allocations
d3cc8b15 5141 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
5142 * make sure that there is sufficient available memory for this.
5143 */
e8b96c60
MA
5144 error = arc_memory_throttle(reserve, txg);
5145 if (error != 0)
34dc7c2f
BB
5146 return (error);
5147
5148 /*
5149 * Throttle writes when the amount of dirty data in the cache
5150 * gets too large. We try to keep the cache less than half full
5151 * of dirty blocks so that our sync times don't grow too large.
5152 * Note: if two requests come in concurrently, we might let them
5153 * both succeed, when one of them should fail. Not a huge deal.
5154 */
9babb374
BB
5155
5156 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
5157 anon_size > arc_c / 4) {
34dc7c2f
BB
5158 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
5159 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
5160 arc_tempreserve>>10,
5161 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
5162 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
5163 reserve>>10, arc_c>>10);
570827e1 5164 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 5165 return (SET_ERROR(ERESTART));
34dc7c2f
BB
5166 }
5167 atomic_add_64(&arc_tempreserve, reserve);
5168 return (0);
5169}
5170
13be560d
BB
5171static void
5172arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
5173 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
5174{
36da08ef 5175 size->value.ui64 = refcount_count(&state->arcs_size);
13be560d
BB
5176 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
5177 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
5178}
5179
5180static int
5181arc_kstat_update(kstat_t *ksp, int rw)
5182{
5183 arc_stats_t *as = ksp->ks_data;
5184
5185 if (rw == KSTAT_WRITE) {
500445c0 5186 return (EACCES);
13be560d
BB
5187 } else {
5188 arc_kstat_update_state(arc_anon,
5189 &as->arcstat_anon_size,
500445c0
PS
5190 &as->arcstat_anon_evictable_data,
5191 &as->arcstat_anon_evictable_metadata);
13be560d
BB
5192 arc_kstat_update_state(arc_mru,
5193 &as->arcstat_mru_size,
500445c0
PS
5194 &as->arcstat_mru_evictable_data,
5195 &as->arcstat_mru_evictable_metadata);
13be560d
BB
5196 arc_kstat_update_state(arc_mru_ghost,
5197 &as->arcstat_mru_ghost_size,
500445c0
PS
5198 &as->arcstat_mru_ghost_evictable_data,
5199 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
5200 arc_kstat_update_state(arc_mfu,
5201 &as->arcstat_mfu_size,
500445c0
PS
5202 &as->arcstat_mfu_evictable_data,
5203 &as->arcstat_mfu_evictable_metadata);
fc41c640 5204 arc_kstat_update_state(arc_mfu_ghost,
13be560d 5205 &as->arcstat_mfu_ghost_size,
500445c0
PS
5206 &as->arcstat_mfu_ghost_evictable_data,
5207 &as->arcstat_mfu_ghost_evictable_metadata);
13be560d
BB
5208 }
5209
5210 return (0);
5211}
5212
ca0bf58d
PS
5213/*
5214 * This function *must* return indices evenly distributed between all
5215 * sublists of the multilist. This is needed due to how the ARC eviction
5216 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
5217 * distributed between all sublists and uses this assumption when
5218 * deciding which sublist to evict from and how much to evict from it.
5219 */
5220unsigned int
5221arc_state_multilist_index_func(multilist_t *ml, void *obj)
5222{
5223 arc_buf_hdr_t *hdr = obj;
5224
5225 /*
5226 * We rely on b_dva to generate evenly distributed index
5227 * numbers using buf_hash below. So, as an added precaution,
5228 * let's make sure we never add empty buffers to the arc lists.
5229 */
5230 ASSERT(!BUF_EMPTY(hdr));
5231
5232 /*
5233 * The assumption here, is the hash value for a given
5234 * arc_buf_hdr_t will remain constant throughout its lifetime
5235 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
5236 * Thus, we don't need to store the header's sublist index
5237 * on insertion, as this index can be recalculated on removal.
5238 *
5239 * Also, the low order bits of the hash value are thought to be
5240 * distributed evenly. Otherwise, in the case that the multilist
5241 * has a power of two number of sublists, each sublists' usage
5242 * would not be evenly distributed.
5243 */
5244 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
5245 multilist_get_num_sublists(ml));
5246}
5247
ca67b33a
MA
5248/*
5249 * Called during module initialization and periodically thereafter to
5250 * apply reasonable changes to the exposed performance tunings. Non-zero
5251 * zfs_* values which differ from the currently set values will be applied.
5252 */
5253static void
5254arc_tuning_update(void)
5255{
5256 /* Valid range: 64M - <all physical memory> */
5257 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
5258 (zfs_arc_max > 64 << 20) && (zfs_arc_max < ptob(physmem)) &&
5259 (zfs_arc_max > arc_c_min)) {
5260 arc_c_max = zfs_arc_max;
5261 arc_c = arc_c_max;
5262 arc_p = (arc_c >> 1);
5263 arc_meta_limit = MIN(arc_meta_limit, arc_c_max);
5264 }
5265
5266 /* Valid range: 32M - <arc_c_max> */
5267 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
5268 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
5269 (zfs_arc_min <= arc_c_max)) {
5270 arc_c_min = zfs_arc_min;
5271 arc_c = MAX(arc_c, arc_c_min);
5272 }
5273
5274 /* Valid range: 16M - <arc_c_max> */
5275 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
5276 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
5277 (zfs_arc_meta_min <= arc_c_max)) {
5278 arc_meta_min = zfs_arc_meta_min;
5279 arc_meta_limit = MAX(arc_meta_limit, arc_meta_min);
5280 }
5281
5282 /* Valid range: <arc_meta_min> - <arc_c_max> */
5283 if ((zfs_arc_meta_limit) && (zfs_arc_meta_limit != arc_meta_limit) &&
5284 (zfs_arc_meta_limit >= zfs_arc_meta_min) &&
5285 (zfs_arc_meta_limit <= arc_c_max))
5286 arc_meta_limit = zfs_arc_meta_limit;
5287
5288 /* Valid range: 1 - N */
5289 if (zfs_arc_grow_retry)
5290 arc_grow_retry = zfs_arc_grow_retry;
5291
5292 /* Valid range: 1 - N */
5293 if (zfs_arc_shrink_shift) {
5294 arc_shrink_shift = zfs_arc_shrink_shift;
5295 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
5296 }
5297
728d6ae9
BB
5298 /* Valid range: 1 - N */
5299 if (zfs_arc_p_min_shift)
5300 arc_p_min_shift = zfs_arc_p_min_shift;
5301
ca67b33a
MA
5302 /* Valid range: 1 - N ticks */
5303 if (zfs_arc_min_prefetch_lifespan)
5304 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
11f552fa 5305
7e8bddd0
BB
5306 /* Valid range: 0 - 100 */
5307 if ((zfs_arc_lotsfree_percent >= 0) &&
5308 (zfs_arc_lotsfree_percent <= 100))
5309 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
5310
11f552fa
BB
5311 /* Valid range: 0 - <all physical memory> */
5312 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
5313 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), ptob(physmem));
7e8bddd0 5314
ca67b33a
MA
5315}
5316
34dc7c2f
BB
5317void
5318arc_init(void)
5319{
ca67b33a
MA
5320 /*
5321 * allmem is "all memory that we could possibly use".
5322 */
5323#ifdef _KERNEL
5324 uint64_t allmem = ptob(physmem);
5325#else
5326 uint64_t allmem = (physmem * PAGESIZE) / 2;
5327#endif
5328
ca0bf58d
PS
5329 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
5330 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
5331 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
5332
5333 mutex_init(&arc_user_evicts_lock, NULL, MUTEX_DEFAULT, NULL);
5334 cv_init(&arc_user_evicts_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f
BB
5335
5336 /* Convert seconds to clock ticks */
ca67b33a 5337 arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
5338
5339 /* Start out with 1/8 of all memory */
ca67b33a 5340 arc_c = allmem / 8;
34dc7c2f
BB
5341
5342#ifdef _KERNEL
5343 /*
5344 * On architectures where the physical memory can be larger
5345 * than the addressable space (intel in 32-bit mode), we may
5346 * need to limit the cache to 1/8 of VM size.
5347 */
5348 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
ca67b33a 5349
7cb67b45
BB
5350 /*
5351 * Register a shrinker to support synchronous (direct) memory
5352 * reclaim from the arc. This is done to prevent kswapd from
5353 * swapping out pages when it is preferable to shrink the arc.
5354 */
5355 spl_register_shrinker(&arc_shrinker);
11f552fa
BB
5356
5357 /* Set to 1/64 of all memory or a minimum of 512K */
5358 arc_sys_free = MAX(ptob(physmem / 64), (512 * 1024));
5359 arc_need_free = 0;
34dc7c2f
BB
5360#endif
5361
ca67b33a 5362 /* Set min cache to allow safe operation of arc_adapt() */
121b3cae 5363 arc_c_min = 2ULL << SPA_MAXBLOCKSHIFT;
ca67b33a
MA
5364 /* Set max to 1/2 of all memory */
5365 arc_c_max = allmem / 2;
34dc7c2f
BB
5366
5367 arc_c = arc_c_max;
5368 arc_p = (arc_c >> 1);
5369
ca67b33a
MA
5370 /* Set min to 1/2 of arc_c_min */
5371 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
5372 /* Initialize maximum observed usage to zero */
1834f2d8 5373 arc_meta_max = 0;
ca67b33a
MA
5374 /* Set limit to 3/4 of arc_c_max with a floor of arc_meta_min */
5375 arc_meta_limit = MAX((3 * arc_c_max) / 4, arc_meta_min);
34dc7c2f 5376
ca67b33a
MA
5377 /* Apply user specified tunings */
5378 arc_tuning_update();
c52fca13 5379
ca0bf58d 5380 if (zfs_arc_num_sublists_per_state < 1)
ca67b33a 5381 zfs_arc_num_sublists_per_state = MAX(boot_ncpus, 1);
ca0bf58d 5382
34dc7c2f
BB
5383 /* if kmem_flags are set, lets try to use less memory */
5384 if (kmem_debugging())
5385 arc_c = arc_c / 2;
5386 if (arc_c < arc_c_min)
5387 arc_c = arc_c_min;
5388
5389 arc_anon = &ARC_anon;
5390 arc_mru = &ARC_mru;
5391 arc_mru_ghost = &ARC_mru_ghost;
5392 arc_mfu = &ARC_mfu;
5393 arc_mfu_ghost = &ARC_mfu_ghost;
5394 arc_l2c_only = &ARC_l2c_only;
5395 arc_size = 0;
5396
ca0bf58d 5397 multilist_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5398 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5399 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5400 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5401 multilist_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
b9541d6b 5402 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5403 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5404 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5405 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5406 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5407 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5408 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5409 multilist_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 5410 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5411 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5412 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5413 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5414 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5415 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5416 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5417 multilist_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
b9541d6b 5418 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5419 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5420 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5421 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5422 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5423 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5424 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5425 multilist_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
b9541d6b 5426 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5427 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5428 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5429 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
b9541d6b 5430 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5431 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5432 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
5433 multilist_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
b9541d6b 5434 sizeof (arc_buf_hdr_t),
ca0bf58d
PS
5435 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
5436 zfs_arc_num_sublists_per_state, arc_state_multilist_index_func);
34dc7c2f 5437
e0b0ca98
BB
5438 arc_anon->arcs_state = ARC_STATE_ANON;
5439 arc_mru->arcs_state = ARC_STATE_MRU;
5440 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
5441 arc_mfu->arcs_state = ARC_STATE_MFU;
5442 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
5443 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
5444
36da08ef
PS
5445 refcount_create(&arc_anon->arcs_size);
5446 refcount_create(&arc_mru->arcs_size);
5447 refcount_create(&arc_mru_ghost->arcs_size);
5448 refcount_create(&arc_mfu->arcs_size);
5449 refcount_create(&arc_mfu_ghost->arcs_size);
5450 refcount_create(&arc_l2c_only->arcs_size);
5451
34dc7c2f
BB
5452 buf_init();
5453
ca0bf58d
PS
5454 arc_reclaim_thread_exit = FALSE;
5455 arc_user_evicts_thread_exit = FALSE;
ab26409d
BB
5456 list_create(&arc_prune_list, sizeof (arc_prune_t),
5457 offsetof(arc_prune_t, p_node));
34dc7c2f 5458 arc_eviction_list = NULL;
ab26409d 5459 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
5460 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
5461
1229323d 5462 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
aa9af22c 5463 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 5464
34dc7c2f
BB
5465 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
5466 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
5467
5468 if (arc_ksp != NULL) {
5469 arc_ksp->ks_data = &arc_stats;
13be560d 5470 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
5471 kstat_install(arc_ksp);
5472 }
5473
ca67b33a 5474 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
1229323d 5475 TS_RUN, defclsyspri);
34dc7c2f 5476
ca0bf58d 5477 (void) thread_create(NULL, 0, arc_user_evicts_thread, NULL, 0, &p0,
1229323d 5478 TS_RUN, defclsyspri);
ca0bf58d 5479
34dc7c2f 5480 arc_dead = FALSE;
b128c09f 5481 arc_warm = B_FALSE;
34dc7c2f 5482
e8b96c60
MA
5483 /*
5484 * Calculate maximum amount of dirty data per pool.
5485 *
5486 * If it has been set by a module parameter, take that.
5487 * Otherwise, use a percentage of physical memory defined by
5488 * zfs_dirty_data_max_percent (default 10%) with a cap at
5489 * zfs_dirty_data_max_max (default 25% of physical memory).
5490 */
5491 if (zfs_dirty_data_max_max == 0)
5492 zfs_dirty_data_max_max = physmem * PAGESIZE *
5493 zfs_dirty_data_max_max_percent / 100;
5494
5495 if (zfs_dirty_data_max == 0) {
5496 zfs_dirty_data_max = physmem * PAGESIZE *
5497 zfs_dirty_data_max_percent / 100;
5498 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
5499 zfs_dirty_data_max_max);
5500 }
34dc7c2f
BB
5501}
5502
5503void
5504arc_fini(void)
5505{
ab26409d
BB
5506 arc_prune_t *p;
5507
7cb67b45
BB
5508#ifdef _KERNEL
5509 spl_unregister_shrinker(&arc_shrinker);
5510#endif /* _KERNEL */
5511
ca0bf58d
PS
5512 mutex_enter(&arc_reclaim_lock);
5513 arc_reclaim_thread_exit = TRUE;
5514 /*
5515 * The reclaim thread will set arc_reclaim_thread_exit back to
5516 * FALSE when it is finished exiting; we're waiting for that.
5517 */
5518 while (arc_reclaim_thread_exit) {
5519 cv_signal(&arc_reclaim_thread_cv);
5520 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
5521 }
5522 mutex_exit(&arc_reclaim_lock);
5523
5524 mutex_enter(&arc_user_evicts_lock);
5525 arc_user_evicts_thread_exit = TRUE;
5526 /*
5527 * The user evicts thread will set arc_user_evicts_thread_exit
5528 * to FALSE when it is finished exiting; we're waiting for that.
5529 */
5530 while (arc_user_evicts_thread_exit) {
5531 cv_signal(&arc_user_evicts_cv);
5532 cv_wait(&arc_user_evicts_cv, &arc_user_evicts_lock);
5533 }
5534 mutex_exit(&arc_user_evicts_lock);
34dc7c2f 5535
ca0bf58d
PS
5536 /* Use TRUE to ensure *all* buffers are evicted */
5537 arc_flush(NULL, TRUE);
34dc7c2f
BB
5538
5539 arc_dead = TRUE;
5540
5541 if (arc_ksp != NULL) {
5542 kstat_delete(arc_ksp);
5543 arc_ksp = NULL;
5544 }
5545
f6046738
BB
5546 taskq_wait(arc_prune_taskq);
5547 taskq_destroy(arc_prune_taskq);
5548
ab26409d
BB
5549 mutex_enter(&arc_prune_mtx);
5550 while ((p = list_head(&arc_prune_list)) != NULL) {
5551 list_remove(&arc_prune_list, p);
5552 refcount_remove(&p->p_refcnt, &arc_prune_list);
5553 refcount_destroy(&p->p_refcnt);
5554 kmem_free(p, sizeof (*p));
5555 }
5556 mutex_exit(&arc_prune_mtx);
5557
5558 list_destroy(&arc_prune_list);
5559 mutex_destroy(&arc_prune_mtx);
ca0bf58d
PS
5560 mutex_destroy(&arc_reclaim_lock);
5561 cv_destroy(&arc_reclaim_thread_cv);
5562 cv_destroy(&arc_reclaim_waiters_cv);
5563
5564 mutex_destroy(&arc_user_evicts_lock);
5565 cv_destroy(&arc_user_evicts_cv);
5566
36da08ef
PS
5567 refcount_destroy(&arc_anon->arcs_size);
5568 refcount_destroy(&arc_mru->arcs_size);
5569 refcount_destroy(&arc_mru_ghost->arcs_size);
5570 refcount_destroy(&arc_mfu->arcs_size);
5571 refcount_destroy(&arc_mfu_ghost->arcs_size);
5572 refcount_destroy(&arc_l2c_only->arcs_size);
5573
ca0bf58d
PS
5574 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
5575 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
5576 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
5577 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
5578 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
5579 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
5580 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
5581 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
5582 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
5583 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
34dc7c2f
BB
5584
5585 buf_fini();
9babb374 5586
b9541d6b 5587 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
5588}
5589
5590/*
5591 * Level 2 ARC
5592 *
5593 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
5594 * It uses dedicated storage devices to hold cached data, which are populated
5595 * using large infrequent writes. The main role of this cache is to boost
5596 * the performance of random read workloads. The intended L2ARC devices
5597 * include short-stroked disks, solid state disks, and other media with
5598 * substantially faster read latency than disk.
5599 *
5600 * +-----------------------+
5601 * | ARC |
5602 * +-----------------------+
5603 * | ^ ^
5604 * | | |
5605 * l2arc_feed_thread() arc_read()
5606 * | | |
5607 * | l2arc read |
5608 * V | |
5609 * +---------------+ |
5610 * | L2ARC | |
5611 * +---------------+ |
5612 * | ^ |
5613 * l2arc_write() | |
5614 * | | |
5615 * V | |
5616 * +-------+ +-------+
5617 * | vdev | | vdev |
5618 * | cache | | cache |
5619 * +-------+ +-------+
5620 * +=========+ .-----.
5621 * : L2ARC : |-_____-|
5622 * : devices : | Disks |
5623 * +=========+ `-_____-'
5624 *
5625 * Read requests are satisfied from the following sources, in order:
5626 *
5627 * 1) ARC
5628 * 2) vdev cache of L2ARC devices
5629 * 3) L2ARC devices
5630 * 4) vdev cache of disks
5631 * 5) disks
5632 *
5633 * Some L2ARC device types exhibit extremely slow write performance.
5634 * To accommodate for this there are some significant differences between
5635 * the L2ARC and traditional cache design:
5636 *
5637 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
5638 * the ARC behave as usual, freeing buffers and placing headers on ghost
5639 * lists. The ARC does not send buffers to the L2ARC during eviction as
5640 * this would add inflated write latencies for all ARC memory pressure.
5641 *
5642 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
5643 * It does this by periodically scanning buffers from the eviction-end of
5644 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
5645 * not already there. It scans until a headroom of buffers is satisfied,
5646 * which itself is a buffer for ARC eviction. If a compressible buffer is
5647 * found during scanning and selected for writing to an L2ARC device, we
5648 * temporarily boost scanning headroom during the next scan cycle to make
5649 * sure we adapt to compression effects (which might significantly reduce
5650 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
5651 * l2arc_feed_thread(), illustrated below; example sizes are included to
5652 * provide a better sense of ratio than this diagram:
5653 *
5654 * head --> tail
5655 * +---------------------+----------+
5656 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
5657 * +---------------------+----------+ | o L2ARC eligible
5658 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
5659 * +---------------------+----------+ |
5660 * 15.9 Gbytes ^ 32 Mbytes |
5661 * headroom |
5662 * l2arc_feed_thread()
5663 * |
5664 * l2arc write hand <--[oooo]--'
5665 * | 8 Mbyte
5666 * | write max
5667 * V
5668 * +==============================+
5669 * L2ARC dev |####|#|###|###| |####| ... |
5670 * +==============================+
5671 * 32 Gbytes
5672 *
5673 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
5674 * evicted, then the L2ARC has cached a buffer much sooner than it probably
5675 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
5676 * safe to say that this is an uncommon case, since buffers at the end of
5677 * the ARC lists have moved there due to inactivity.
5678 *
5679 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
5680 * then the L2ARC simply misses copying some buffers. This serves as a
5681 * pressure valve to prevent heavy read workloads from both stalling the ARC
5682 * with waits and clogging the L2ARC with writes. This also helps prevent
5683 * the potential for the L2ARC to churn if it attempts to cache content too
5684 * quickly, such as during backups of the entire pool.
5685 *
b128c09f
BB
5686 * 5. After system boot and before the ARC has filled main memory, there are
5687 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
5688 * lists can remain mostly static. Instead of searching from tail of these
5689 * lists as pictured, the l2arc_feed_thread() will search from the list heads
5690 * for eligible buffers, greatly increasing its chance of finding them.
5691 *
5692 * The L2ARC device write speed is also boosted during this time so that
5693 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
5694 * there are no L2ARC reads, and no fear of degrading read performance
5695 * through increased writes.
5696 *
5697 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
5698 * the vdev queue can aggregate them into larger and fewer writes. Each
5699 * device is written to in a rotor fashion, sweeping writes through
5700 * available space then repeating.
5701 *
b128c09f 5702 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
5703 * write buffers back to disk based storage.
5704 *
b128c09f 5705 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
5706 * L2ARC, the now stale L2ARC buffer is immediately dropped.
5707 *
5708 * The performance of the L2ARC can be tweaked by a number of tunables, which
5709 * may be necessary for different workloads:
5710 *
5711 * l2arc_write_max max write bytes per interval
b128c09f 5712 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 5713 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 5714 * l2arc_nocompress skip compressing buffers
34dc7c2f 5715 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
5716 * l2arc_headroom_boost when we find compressed buffers during ARC
5717 * scanning, we multiply headroom by this
5718 * percentage factor for the next scan cycle,
5719 * since more compressed buffers are likely to
5720 * be present
34dc7c2f
BB
5721 * l2arc_feed_secs seconds between L2ARC writing
5722 *
5723 * Tunables may be removed or added as future performance improvements are
5724 * integrated, and also may become zpool properties.
d164b209
BB
5725 *
5726 * There are three key functions that control how the L2ARC warms up:
5727 *
5728 * l2arc_write_eligible() check if a buffer is eligible to cache
5729 * l2arc_write_size() calculate how much to write
5730 * l2arc_write_interval() calculate sleep delay between writes
5731 *
5732 * These three functions determine what to write, how much, and how quickly
5733 * to send writes.
34dc7c2f
BB
5734 */
5735
d164b209 5736static boolean_t
2a432414 5737l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
5738{
5739 /*
5740 * A buffer is *not* eligible for the L2ARC if it:
5741 * 1. belongs to a different spa.
428870ff
BB
5742 * 2. is already cached on the L2ARC.
5743 * 3. has an I/O in progress (it may be an incomplete read).
5744 * 4. is flagged not eligible (zfs property).
d164b209 5745 */
b9541d6b 5746 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 5747 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
5748 return (B_FALSE);
5749
5750 return (B_TRUE);
5751}
5752
5753static uint64_t
3a17a7a9 5754l2arc_write_size(void)
d164b209
BB
5755{
5756 uint64_t size;
5757
3a17a7a9
SK
5758 /*
5759 * Make sure our globals have meaningful values in case the user
5760 * altered them.
5761 */
5762 size = l2arc_write_max;
5763 if (size == 0) {
5764 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
5765 "be greater than zero, resetting it to the default (%d)",
5766 L2ARC_WRITE_SIZE);
5767 size = l2arc_write_max = L2ARC_WRITE_SIZE;
5768 }
d164b209
BB
5769
5770 if (arc_warm == B_FALSE)
3a17a7a9 5771 size += l2arc_write_boost;
d164b209
BB
5772
5773 return (size);
5774
5775}
5776
5777static clock_t
5778l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
5779{
428870ff 5780 clock_t interval, next, now;
d164b209
BB
5781
5782 /*
5783 * If the ARC lists are busy, increase our write rate; if the
5784 * lists are stale, idle back. This is achieved by checking
5785 * how much we previously wrote - if it was more than half of
5786 * what we wanted, schedule the next write much sooner.
5787 */
5788 if (l2arc_feed_again && wrote > (wanted / 2))
5789 interval = (hz * l2arc_feed_min_ms) / 1000;
5790 else
5791 interval = hz * l2arc_feed_secs;
5792
428870ff
BB
5793 now = ddi_get_lbolt();
5794 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
5795
5796 return (next);
5797}
5798
34dc7c2f
BB
5799/*
5800 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 5801 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
5802 */
5803static l2arc_dev_t *
5804l2arc_dev_get_next(void)
5805{
b128c09f 5806 l2arc_dev_t *first, *next = NULL;
34dc7c2f 5807
b128c09f
BB
5808 /*
5809 * Lock out the removal of spas (spa_namespace_lock), then removal
5810 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
5811 * both locks will be dropped and a spa config lock held instead.
5812 */
5813 mutex_enter(&spa_namespace_lock);
5814 mutex_enter(&l2arc_dev_mtx);
5815
5816 /* if there are no vdevs, there is nothing to do */
5817 if (l2arc_ndev == 0)
5818 goto out;
5819
5820 first = NULL;
5821 next = l2arc_dev_last;
5822 do {
5823 /* loop around the list looking for a non-faulted vdev */
5824 if (next == NULL) {
34dc7c2f 5825 next = list_head(l2arc_dev_list);
b128c09f
BB
5826 } else {
5827 next = list_next(l2arc_dev_list, next);
5828 if (next == NULL)
5829 next = list_head(l2arc_dev_list);
5830 }
5831
5832 /* if we have come back to the start, bail out */
5833 if (first == NULL)
5834 first = next;
5835 else if (next == first)
5836 break;
5837
5838 } while (vdev_is_dead(next->l2ad_vdev));
5839
5840 /* if we were unable to find any usable vdevs, return NULL */
5841 if (vdev_is_dead(next->l2ad_vdev))
5842 next = NULL;
34dc7c2f
BB
5843
5844 l2arc_dev_last = next;
5845
b128c09f
BB
5846out:
5847 mutex_exit(&l2arc_dev_mtx);
5848
5849 /*
5850 * Grab the config lock to prevent the 'next' device from being
5851 * removed while we are writing to it.
5852 */
5853 if (next != NULL)
5854 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
5855 mutex_exit(&spa_namespace_lock);
5856
34dc7c2f
BB
5857 return (next);
5858}
5859
b128c09f
BB
5860/*
5861 * Free buffers that were tagged for destruction.
5862 */
5863static void
0bc8fd78 5864l2arc_do_free_on_write(void)
b128c09f
BB
5865{
5866 list_t *buflist;
5867 l2arc_data_free_t *df, *df_prev;
5868
5869 mutex_enter(&l2arc_free_on_write_mtx);
5870 buflist = l2arc_free_on_write;
5871
5872 for (df = list_tail(buflist); df; df = df_prev) {
5873 df_prev = list_prev(buflist, df);
5874 ASSERT(df->l2df_data != NULL);
5875 ASSERT(df->l2df_func != NULL);
5876 df->l2df_func(df->l2df_data, df->l2df_size);
5877 list_remove(buflist, df);
5878 kmem_free(df, sizeof (l2arc_data_free_t));
5879 }
5880
5881 mutex_exit(&l2arc_free_on_write_mtx);
5882}
5883
34dc7c2f
BB
5884/*
5885 * A write to a cache device has completed. Update all headers to allow
5886 * reads from these buffers to begin.
5887 */
5888static void
5889l2arc_write_done(zio_t *zio)
5890{
5891 l2arc_write_callback_t *cb;
5892 l2arc_dev_t *dev;
5893 list_t *buflist;
2a432414 5894 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 5895 kmutex_t *hash_lock;
3bec585e 5896 int64_t bytes_dropped = 0;
34dc7c2f
BB
5897
5898 cb = zio->io_private;
5899 ASSERT(cb != NULL);
5900 dev = cb->l2wcb_dev;
5901 ASSERT(dev != NULL);
5902 head = cb->l2wcb_head;
5903 ASSERT(head != NULL);
b9541d6b 5904 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
5905 ASSERT(buflist != NULL);
5906 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
5907 l2arc_write_callback_t *, cb);
5908
5909 if (zio->io_error != 0)
5910 ARCSTAT_BUMP(arcstat_l2_writes_error);
5911
34dc7c2f
BB
5912 /*
5913 * All writes completed, or an error was hit.
5914 */
ca0bf58d
PS
5915top:
5916 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
5917 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
5918 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 5919
2a432414 5920 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
5921
5922 /*
5923 * We cannot use mutex_enter or else we can deadlock
5924 * with l2arc_write_buffers (due to swapping the order
5925 * the hash lock and l2ad_mtx are taken).
5926 */
34dc7c2f
BB
5927 if (!mutex_tryenter(hash_lock)) {
5928 /*
ca0bf58d
PS
5929 * Missed the hash lock. We must retry so we
5930 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 5931 */
ca0bf58d
PS
5932 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
5933
5934 /*
5935 * We don't want to rescan the headers we've
5936 * already marked as having been written out, so
5937 * we reinsert the head node so we can pick up
5938 * where we left off.
5939 */
5940 list_remove(buflist, head);
5941 list_insert_after(buflist, hdr, head);
5942
5943 mutex_exit(&dev->l2ad_mtx);
5944
5945 /*
5946 * We wait for the hash lock to become available
5947 * to try and prevent busy waiting, and increase
5948 * the chance we'll be able to acquire the lock
5949 * the next time around.
5950 */
5951 mutex_enter(hash_lock);
5952 mutex_exit(hash_lock);
5953 goto top;
34dc7c2f
BB
5954 }
5955
b9541d6b 5956 /*
ca0bf58d
PS
5957 * We could not have been moved into the arc_l2c_only
5958 * state while in-flight due to our ARC_FLAG_L2_WRITING
5959 * bit being set. Let's just ensure that's being enforced.
5960 */
5961 ASSERT(HDR_HAS_L1HDR(hdr));
5962
5963 /*
5964 * We may have allocated a buffer for L2ARC compression,
5965 * we must release it to avoid leaking this data.
b9541d6b 5966 */
ca0bf58d 5967 l2arc_release_cdata_buf(hdr);
b9541d6b 5968
34dc7c2f
BB
5969 if (zio->io_error != 0) {
5970 /*
b128c09f 5971 * Error - drop L2ARC entry.
34dc7c2f 5972 */
2a432414 5973 list_remove(buflist, hdr);
b9541d6b
CW
5974 hdr->b_flags &= ~ARC_FLAG_HAS_L2HDR;
5975
5976 ARCSTAT_INCR(arcstat_l2_asize, -hdr->b_l2hdr.b_asize);
2a432414 5977 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
d962d5da
PS
5978
5979 bytes_dropped += hdr->b_l2hdr.b_asize;
5980 (void) refcount_remove_many(&dev->l2ad_alloc,
5981 hdr->b_l2hdr.b_asize, hdr);
34dc7c2f
BB
5982 }
5983
5984 /*
ca0bf58d
PS
5985 * Allow ARC to begin reads and ghost list evictions to
5986 * this L2ARC entry.
34dc7c2f 5987 */
2a432414 5988 hdr->b_flags &= ~ARC_FLAG_L2_WRITING;
34dc7c2f
BB
5989
5990 mutex_exit(hash_lock);
5991 }
5992
5993 atomic_inc_64(&l2arc_writes_done);
5994 list_remove(buflist, head);
b9541d6b
CW
5995 ASSERT(!HDR_HAS_L1HDR(head));
5996 kmem_cache_free(hdr_l2only_cache, head);
5997 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 5998
3bec585e
SK
5999 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
6000
b128c09f 6001 l2arc_do_free_on_write();
34dc7c2f
BB
6002
6003 kmem_free(cb, sizeof (l2arc_write_callback_t));
6004}
6005
6006/*
6007 * A read to a cache device completed. Validate buffer contents before
6008 * handing over to the regular ARC routines.
6009 */
6010static void
6011l2arc_read_done(zio_t *zio)
6012{
6013 l2arc_read_callback_t *cb;
6014 arc_buf_hdr_t *hdr;
6015 arc_buf_t *buf;
34dc7c2f 6016 kmutex_t *hash_lock;
b128c09f
BB
6017 int equal;
6018
6019 ASSERT(zio->io_vd != NULL);
6020 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
6021
6022 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
6023
6024 cb = zio->io_private;
6025 ASSERT(cb != NULL);
6026 buf = cb->l2rcb_buf;
6027 ASSERT(buf != NULL);
34dc7c2f 6028
428870ff 6029 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 6030 mutex_enter(hash_lock);
428870ff
BB
6031 hdr = buf->b_hdr;
6032 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 6033
3a17a7a9
SK
6034 /*
6035 * If the buffer was compressed, decompress it first.
6036 */
6037 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
6038 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
6039 ASSERT(zio->io_data != NULL);
6040
34dc7c2f
BB
6041 /*
6042 * Check this survived the L2ARC journey.
6043 */
6044 equal = arc_cksum_equal(buf);
6045 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
6046 mutex_exit(hash_lock);
6047 zio->io_private = buf;
b128c09f
BB
6048 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
6049 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
6050 arc_read_done(zio);
6051 } else {
6052 mutex_exit(hash_lock);
6053 /*
6054 * Buffer didn't survive caching. Increment stats and
6055 * reissue to the original storage device.
6056 */
b128c09f 6057 if (zio->io_error != 0) {
34dc7c2f 6058 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 6059 } else {
2e528b49 6060 zio->io_error = SET_ERROR(EIO);
b128c09f 6061 }
34dc7c2f
BB
6062 if (!equal)
6063 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
6064
34dc7c2f 6065 /*
b128c09f
BB
6066 * If there's no waiter, issue an async i/o to the primary
6067 * storage now. If there *is* a waiter, the caller must
6068 * issue the i/o in a context where it's OK to block.
34dc7c2f 6069 */
d164b209
BB
6070 if (zio->io_waiter == NULL) {
6071 zio_t *pio = zio_unique_parent(zio);
6072
6073 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
6074
6075 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
6076 buf->b_data, zio->io_size, arc_read_done, buf,
6077 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 6078 }
34dc7c2f
BB
6079 }
6080
6081 kmem_free(cb, sizeof (l2arc_read_callback_t));
6082}
6083
6084/*
6085 * This is the list priority from which the L2ARC will search for pages to
6086 * cache. This is used within loops (0..3) to cycle through lists in the
6087 * desired order. This order can have a significant effect on cache
6088 * performance.
6089 *
6090 * Currently the metadata lists are hit first, MFU then MRU, followed by
6091 * the data lists. This function returns a locked list, and also returns
6092 * the lock pointer.
6093 */
ca0bf58d
PS
6094static multilist_sublist_t *
6095l2arc_sublist_lock(int list_num)
34dc7c2f 6096{
ca0bf58d
PS
6097 multilist_t *ml = NULL;
6098 unsigned int idx;
34dc7c2f
BB
6099
6100 ASSERT(list_num >= 0 && list_num <= 3);
6101
6102 switch (list_num) {
6103 case 0:
ca0bf58d 6104 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
6105 break;
6106 case 1:
ca0bf58d 6107 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
6108 break;
6109 case 2:
ca0bf58d 6110 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
6111 break;
6112 case 3:
ca0bf58d 6113 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
6114 break;
6115 }
6116
ca0bf58d
PS
6117 /*
6118 * Return a randomly-selected sublist. This is acceptable
6119 * because the caller feeds only a little bit of data for each
6120 * call (8MB). Subsequent calls will result in different
6121 * sublists being selected.
6122 */
6123 idx = multilist_get_random_index(ml);
6124 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
6125}
6126
6127/*
6128 * Evict buffers from the device write hand to the distance specified in
6129 * bytes. This distance may span populated buffers, it may span nothing.
6130 * This is clearing a region on the L2ARC device ready for writing.
6131 * If the 'all' boolean is set, every buffer is evicted.
6132 */
6133static void
6134l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
6135{
6136 list_t *buflist;
2a432414 6137 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
6138 kmutex_t *hash_lock;
6139 uint64_t taddr;
6140
b9541d6b 6141 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
6142
6143 if (!all && dev->l2ad_first) {
6144 /*
6145 * This is the first sweep through the device. There is
6146 * nothing to evict.
6147 */
6148 return;
6149 }
6150
b128c09f 6151 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
6152 /*
6153 * When nearing the end of the device, evict to the end
6154 * before the device write hand jumps to the start.
6155 */
6156 taddr = dev->l2ad_end;
6157 } else {
6158 taddr = dev->l2ad_hand + distance;
6159 }
6160 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
6161 uint64_t, taddr, boolean_t, all);
6162
6163top:
b9541d6b 6164 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
6165 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
6166 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 6167
2a432414 6168 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
6169
6170 /*
6171 * We cannot use mutex_enter or else we can deadlock
6172 * with l2arc_write_buffers (due to swapping the order
6173 * the hash lock and l2ad_mtx are taken).
6174 */
34dc7c2f
BB
6175 if (!mutex_tryenter(hash_lock)) {
6176 /*
6177 * Missed the hash lock. Retry.
6178 */
6179 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 6180 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6181 mutex_enter(hash_lock);
6182 mutex_exit(hash_lock);
6183 goto top;
6184 }
6185
2a432414 6186 if (HDR_L2_WRITE_HEAD(hdr)) {
34dc7c2f
BB
6187 /*
6188 * We hit a write head node. Leave it for
6189 * l2arc_write_done().
6190 */
2a432414 6191 list_remove(buflist, hdr);
34dc7c2f
BB
6192 mutex_exit(hash_lock);
6193 continue;
6194 }
6195
b9541d6b
CW
6196 if (!all && HDR_HAS_L2HDR(hdr) &&
6197 (hdr->b_l2hdr.b_daddr > taddr ||
6198 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
6199 /*
6200 * We've evicted to the target address,
6201 * or the end of the device.
6202 */
6203 mutex_exit(hash_lock);
6204 break;
6205 }
6206
b9541d6b
CW
6207 ASSERT(HDR_HAS_L2HDR(hdr));
6208 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 6209 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
6210 /*
6211 * This doesn't exist in the ARC. Destroy.
6212 * arc_hdr_destroy() will call list_remove()
6213 * and decrement arcstat_l2_size.
6214 */
2a432414
GW
6215 arc_change_state(arc_anon, hdr, hash_lock);
6216 arc_hdr_destroy(hdr);
34dc7c2f 6217 } else {
b9541d6b
CW
6218 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
6219 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
6220 /*
6221 * Invalidate issued or about to be issued
6222 * reads, since we may be about to write
6223 * over this location.
6224 */
2a432414 6225 if (HDR_L2_READING(hdr)) {
b128c09f 6226 ARCSTAT_BUMP(arcstat_l2_evict_reading);
2a432414 6227 hdr->b_flags |= ARC_FLAG_L2_EVICTED;
b128c09f
BB
6228 }
6229
ca0bf58d
PS
6230 /* Ensure this header has finished being written */
6231 ASSERT(!HDR_L2_WRITING(hdr));
6232 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
d962d5da
PS
6233
6234 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
6235 }
6236 mutex_exit(hash_lock);
6237 }
b9541d6b 6238 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6239}
6240
6241/*
6242 * Find and write ARC buffers to the L2ARC device.
6243 *
2a432414 6244 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 6245 * for reading until they have completed writing.
3a17a7a9
SK
6246 * The headroom_boost is an in-out parameter used to maintain headroom boost
6247 * state between calls to this function.
6248 *
6249 * Returns the number of bytes actually written (which may be smaller than
6250 * the delta by which the device hand has changed due to alignment).
34dc7c2f 6251 */
d164b209 6252static uint64_t
3a17a7a9
SK
6253l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
6254 boolean_t *headroom_boost)
34dc7c2f 6255{
2a432414 6256 arc_buf_hdr_t *hdr, *hdr_prev, *head;
ef56b078
AG
6257 uint64_t write_asize, write_sz, headroom, buf_compress_minsz,
6258 stats_size;
34dc7c2f 6259 void *buf_data;
3a17a7a9 6260 boolean_t full;
34dc7c2f
BB
6261 l2arc_write_callback_t *cb;
6262 zio_t *pio, *wzio;
3541dc6d 6263 uint64_t guid = spa_load_guid(spa);
d6320ddb 6264 int try;
3a17a7a9 6265 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 6266
34dc7c2f
BB
6267 ASSERT(dev->l2ad_vdev != NULL);
6268
3a17a7a9
SK
6269 /* Lower the flag now, we might want to raise it again later. */
6270 *headroom_boost = B_FALSE;
6271
34dc7c2f 6272 pio = NULL;
ef56b078 6273 write_sz = write_asize = 0;
34dc7c2f 6274 full = B_FALSE;
b9541d6b 6275 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
2a432414 6276 head->b_flags |= ARC_FLAG_L2_WRITE_HEAD;
b9541d6b 6277 head->b_flags |= ARC_FLAG_HAS_L2HDR;
34dc7c2f 6278
3a17a7a9
SK
6279 /*
6280 * We will want to try to compress buffers that are at least 2x the
6281 * device sector size.
6282 */
6283 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
6284
34dc7c2f
BB
6285 /*
6286 * Copy buffers for L2ARC writing.
6287 */
d6320ddb 6288 for (try = 0; try <= 3; try++) {
ca0bf58d 6289 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
6290 uint64_t passed_sz = 0;
6291
b128c09f
BB
6292 /*
6293 * L2ARC fast warmup.
6294 *
6295 * Until the ARC is warm and starts to evict, read from the
6296 * head of the ARC lists rather than the tail.
6297 */
b128c09f 6298 if (arc_warm == B_FALSE)
ca0bf58d 6299 hdr = multilist_sublist_head(mls);
b128c09f 6300 else
ca0bf58d 6301 hdr = multilist_sublist_tail(mls);
b128c09f 6302
3a17a7a9
SK
6303 headroom = target_sz * l2arc_headroom;
6304 if (do_headroom_boost)
6305 headroom = (headroom * l2arc_headroom_boost) / 100;
6306
2a432414 6307 for (; hdr; hdr = hdr_prev) {
3a17a7a9
SK
6308 kmutex_t *hash_lock;
6309 uint64_t buf_sz;
ef56b078 6310 uint64_t buf_a_sz;
3a17a7a9 6311
b128c09f 6312 if (arc_warm == B_FALSE)
ca0bf58d 6313 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 6314 else
ca0bf58d 6315 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 6316
2a432414 6317 hash_lock = HDR_LOCK(hdr);
3a17a7a9 6318 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
6319 /*
6320 * Skip this buffer rather than waiting.
6321 */
6322 continue;
6323 }
6324
2a432414 6325 passed_sz += hdr->b_size;
34dc7c2f
BB
6326 if (passed_sz > headroom) {
6327 /*
6328 * Searched too far.
6329 */
6330 mutex_exit(hash_lock);
6331 break;
6332 }
6333
2a432414 6334 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
6335 mutex_exit(hash_lock);
6336 continue;
6337 }
6338
ef56b078
AG
6339 /*
6340 * Assume that the buffer is not going to be compressed
6341 * and could take more space on disk because of a larger
6342 * disk block size.
6343 */
6344 buf_sz = hdr->b_size;
6345 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6346
6347 if ((write_asize + buf_a_sz) > target_sz) {
34dc7c2f
BB
6348 full = B_TRUE;
6349 mutex_exit(hash_lock);
6350 break;
6351 }
6352
34dc7c2f
BB
6353 if (pio == NULL) {
6354 /*
6355 * Insert a dummy header on the buflist so
6356 * l2arc_write_done() can find where the
6357 * write buffers begin without searching.
6358 */
ca0bf58d 6359 mutex_enter(&dev->l2ad_mtx);
b9541d6b 6360 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 6361 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6362
96c080cb
BB
6363 cb = kmem_alloc(
6364 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
6365 cb->l2wcb_dev = dev;
6366 cb->l2wcb_head = head;
6367 pio = zio_root(spa, l2arc_write_done, cb,
6368 ZIO_FLAG_CANFAIL);
6369 }
6370
6371 /*
6372 * Create and add a new L2ARC header.
6373 */
b9541d6b 6374 hdr->b_l2hdr.b_dev = dev;
2a432414 6375 hdr->b_flags |= ARC_FLAG_L2_WRITING;
3a17a7a9
SK
6376 /*
6377 * Temporarily stash the data buffer in b_tmp_cdata.
6378 * The subsequent write step will pick it up from
b9541d6b 6379 * there. This is because can't access b_l1hdr.b_buf
3a17a7a9
SK
6380 * without holding the hash_lock, which we in turn
6381 * can't access without holding the ARC list locks
6382 * (which we want to avoid during compression/writing)
6383 */
b9541d6b
CW
6384 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
6385 hdr->b_l2hdr.b_asize = hdr->b_size;
6386 hdr->b_l2hdr.b_hits = 0;
6387 hdr->b_l1hdr.b_tmp_cdata = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9 6388
d962d5da
PS
6389 /*
6390 * Explicitly set the b_daddr field to a known
6391 * value which means "invalid address". This
6392 * enables us to differentiate which stage of
6393 * l2arc_write_buffers() the particular header
6394 * is in (e.g. this loop, or the one below).
6395 * ARC_FLAG_L2_WRITING is not enough to make
6396 * this distinction, and we need to know in
6397 * order to do proper l2arc vdev accounting in
6398 * arc_release() and arc_hdr_destroy().
6399 *
6400 * Note, we can't use a new flag to distinguish
6401 * the two stages because we don't hold the
6402 * header's hash_lock below, in the second stage
6403 * of this function. Thus, we can't simply
6404 * change the b_flags field to denote that the
6405 * IO has been sent. We can change the b_daddr
6406 * field of the L2 portion, though, since we'll
6407 * be holding the l2ad_mtx; which is why we're
6408 * using it to denote the header's state change.
6409 */
6410 hdr->b_l2hdr.b_daddr = L2ARC_ADDR_UNSET;
b9541d6b 6411 hdr->b_flags |= ARC_FLAG_HAS_L2HDR;
3a17a7a9 6412
ca0bf58d 6413 mutex_enter(&dev->l2ad_mtx);
b9541d6b 6414 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 6415 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
6416
6417 /*
6418 * Compute and store the buffer cksum before
6419 * writing. On debug the cksum is verified first.
6420 */
b9541d6b
CW
6421 arc_cksum_verify(hdr->b_l1hdr.b_buf);
6422 arc_cksum_compute(hdr->b_l1hdr.b_buf, B_TRUE);
34dc7c2f
BB
6423
6424 mutex_exit(hash_lock);
6425
3a17a7a9 6426 write_sz += buf_sz;
ef56b078 6427 write_asize += buf_a_sz;
3a17a7a9
SK
6428 }
6429
ca0bf58d 6430 multilist_sublist_unlock(mls);
3a17a7a9
SK
6431
6432 if (full == B_TRUE)
6433 break;
6434 }
6435
6436 /* No buffers selected for writing? */
6437 if (pio == NULL) {
6438 ASSERT0(write_sz);
b9541d6b
CW
6439 ASSERT(!HDR_HAS_L1HDR(head));
6440 kmem_cache_free(hdr_l2only_cache, head);
3a17a7a9
SK
6441 return (0);
6442 }
6443
ca0bf58d
PS
6444 mutex_enter(&dev->l2ad_mtx);
6445
ef56b078
AG
6446 /*
6447 * Note that elsewhere in this file arcstat_l2_asize
6448 * and the used space on l2ad_vdev are updated using b_asize,
6449 * which is not necessarily rounded up to the device block size.
6450 * Too keep accounting consistent we do the same here as well:
6451 * stats_size accumulates the sum of b_asize of the written buffers,
6452 * while write_asize accumulates the sum of b_asize rounded up
6453 * to the device block size.
6454 * The latter sum is used only to validate the corectness of the code.
6455 */
6456 stats_size = 0;
6457 write_asize = 0;
6458
3a17a7a9
SK
6459 /*
6460 * Now start writing the buffers. We're starting at the write head
6461 * and work backwards, retracing the course of the buffer selector
6462 * loop above.
6463 */
b9541d6b
CW
6464 for (hdr = list_prev(&dev->l2ad_buflist, head); hdr;
6465 hdr = list_prev(&dev->l2ad_buflist, hdr)) {
3a17a7a9
SK
6466 uint64_t buf_sz;
6467
ca0bf58d
PS
6468 /*
6469 * We rely on the L1 portion of the header below, so
6470 * it's invalid for this header to have been evicted out
6471 * of the ghost cache, prior to being written out. The
6472 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
6473 */
6474 ASSERT(HDR_HAS_L1HDR(hdr));
6475
3a17a7a9
SK
6476 /*
6477 * We shouldn't need to lock the buffer here, since we flagged
2a432414
GW
6478 * it as ARC_FLAG_L2_WRITING in the previous step, but we must
6479 * take care to only access its L2 cache parameters. In
b9541d6b 6480 * particular, hdr->l1hdr.b_buf may be invalid by now due to
2a432414 6481 * ARC eviction.
3a17a7a9 6482 */
b9541d6b 6483 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
3a17a7a9 6484
b9541d6b
CW
6485 if ((!l2arc_nocompress && HDR_L2COMPRESS(hdr)) &&
6486 hdr->b_l2hdr.b_asize >= buf_compress_minsz) {
6487 if (l2arc_compress_buf(hdr)) {
3a17a7a9
SK
6488 /*
6489 * If compression succeeded, enable headroom
6490 * boost on the next scan cycle.
6491 */
6492 *headroom_boost = B_TRUE;
6493 }
6494 }
6495
6496 /*
6497 * Pick up the buffer data we had previously stashed away
6498 * (and now potentially also compressed).
6499 */
b9541d6b
CW
6500 buf_data = hdr->b_l1hdr.b_tmp_cdata;
6501 buf_sz = hdr->b_l2hdr.b_asize;
3a17a7a9 6502
d962d5da
PS
6503 /*
6504 * We need to do this regardless if buf_sz is zero or
6505 * not, otherwise, when this l2hdr is evicted we'll
6506 * remove a reference that was never added.
6507 */
6508 (void) refcount_add_many(&dev->l2ad_alloc, buf_sz, hdr);
6509
3a17a7a9
SK
6510 /* Compression may have squashed the buffer to zero length. */
6511 if (buf_sz != 0) {
ef56b078 6512 uint64_t buf_a_sz;
3a17a7a9 6513
34dc7c2f
BB
6514 wzio = zio_write_phys(pio, dev->l2ad_vdev,
6515 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
6516 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
6517 ZIO_FLAG_CANFAIL, B_FALSE);
6518
6519 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
6520 zio_t *, wzio);
6521 (void) zio_nowait(wzio);
6522
ef56b078 6523 stats_size += buf_sz;
d962d5da 6524
b128c09f
BB
6525 /*
6526 * Keep the clock hand suitably device-aligned.
6527 */
ef56b078
AG
6528 buf_a_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
6529 write_asize += buf_a_sz;
6530 dev->l2ad_hand += buf_a_sz;
34dc7c2f 6531 }
34dc7c2f 6532 }
34dc7c2f 6533
b9541d6b 6534 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 6535
3a17a7a9 6536 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 6537 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 6538 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 6539 ARCSTAT_INCR(arcstat_l2_size, write_sz);
ef56b078
AG
6540 ARCSTAT_INCR(arcstat_l2_asize, stats_size);
6541 vdev_space_update(dev->l2ad_vdev, stats_size, 0, 0);
34dc7c2f
BB
6542
6543 /*
6544 * Bump device hand to the device start if it is approaching the end.
6545 * l2arc_evict() will already have evicted ahead for this case.
6546 */
b128c09f 6547 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 6548 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
6549 dev->l2ad_first = B_FALSE;
6550 }
6551
d164b209 6552 dev->l2ad_writing = B_TRUE;
34dc7c2f 6553 (void) zio_wait(pio);
d164b209
BB
6554 dev->l2ad_writing = B_FALSE;
6555
3a17a7a9
SK
6556 return (write_asize);
6557}
6558
6559/*
6560 * Compresses an L2ARC buffer.
b9541d6b 6561 * The data to be compressed must be prefilled in l1hdr.b_tmp_cdata and its
3a17a7a9
SK
6562 * size in l2hdr->b_asize. This routine tries to compress the data and
6563 * depending on the compression result there are three possible outcomes:
6564 * *) The buffer was incompressible. The original l2hdr contents were left
6565 * untouched and are ready for writing to an L2 device.
6566 * *) The buffer was all-zeros, so there is no need to write it to an L2
6567 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
6568 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
6569 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
6570 * data buffer which holds the compressed data to be written, and b_asize
6571 * tells us how much data there is. b_compress is set to the appropriate
6572 * compression algorithm. Once writing is done, invoke
6573 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
6574 *
6575 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
6576 * buffer was incompressible).
6577 */
6578static boolean_t
b9541d6b 6579l2arc_compress_buf(arc_buf_hdr_t *hdr)
3a17a7a9
SK
6580{
6581 void *cdata;
9b67f605 6582 size_t csize, len, rounded;
b9541d6b 6583 l2arc_buf_hdr_t *l2hdr;
3a17a7a9 6584
b9541d6b
CW
6585 ASSERT(HDR_HAS_L2HDR(hdr));
6586
6587 l2hdr = &hdr->b_l2hdr;
6588
6589 ASSERT(HDR_HAS_L1HDR(hdr));
6590 ASSERT(HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF);
6591 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
3a17a7a9
SK
6592
6593 len = l2hdr->b_asize;
6594 cdata = zio_data_buf_alloc(len);
b9541d6b
CW
6595 ASSERT3P(cdata, !=, NULL);
6596 csize = zio_compress_data(ZIO_COMPRESS_LZ4, hdr->b_l1hdr.b_tmp_cdata,
3a17a7a9
SK
6597 cdata, l2hdr->b_asize);
6598
9b67f605
MA
6599 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
6600 if (rounded > csize) {
6601 bzero((char *)cdata + csize, rounded - csize);
6602 csize = rounded;
6603 }
6604
3a17a7a9
SK
6605 if (csize == 0) {
6606 /* zero block, indicate that there's nothing to write */
6607 zio_data_buf_free(cdata, len);
b9541d6b 6608 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_EMPTY);
3a17a7a9 6609 l2hdr->b_asize = 0;
b9541d6b 6610 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9
SK
6611 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
6612 return (B_TRUE);
6613 } else if (csize > 0 && csize < len) {
6614 /*
6615 * Compression succeeded, we'll keep the cdata around for
6616 * writing and release it afterwards.
6617 */
b9541d6b 6618 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_LZ4);
3a17a7a9 6619 l2hdr->b_asize = csize;
b9541d6b 6620 hdr->b_l1hdr.b_tmp_cdata = cdata;
3a17a7a9
SK
6621 ARCSTAT_BUMP(arcstat_l2_compress_successes);
6622 return (B_TRUE);
6623 } else {
6624 /*
6625 * Compression failed, release the compressed buffer.
6626 * l2hdr will be left unmodified.
6627 */
6628 zio_data_buf_free(cdata, len);
6629 ARCSTAT_BUMP(arcstat_l2_compress_failures);
6630 return (B_FALSE);
6631 }
6632}
6633
6634/*
6635 * Decompresses a zio read back from an l2arc device. On success, the
6636 * underlying zio's io_data buffer is overwritten by the uncompressed
6637 * version. On decompression error (corrupt compressed stream), the
6638 * zio->io_error value is set to signal an I/O error.
6639 *
6640 * Please note that the compressed data stream is not checksummed, so
6641 * if the underlying device is experiencing data corruption, we may feed
6642 * corrupt data to the decompressor, so the decompressor needs to be
6643 * able to handle this situation (LZ4 does).
6644 */
6645static void
6646l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
6647{
6648 uint64_t csize;
6649 void *cdata;
6650
6651 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
6652
6653 if (zio->io_error != 0) {
6654 /*
6655 * An io error has occured, just restore the original io
6656 * size in preparation for a main pool read.
6657 */
6658 zio->io_orig_size = zio->io_size = hdr->b_size;
6659 return;
6660 }
6661
6662 if (c == ZIO_COMPRESS_EMPTY) {
6663 /*
6664 * An empty buffer results in a null zio, which means we
6665 * need to fill its io_data after we're done restoring the
6666 * buffer's contents.
6667 */
b9541d6b
CW
6668 ASSERT(hdr->b_l1hdr.b_buf != NULL);
6669 bzero(hdr->b_l1hdr.b_buf->b_data, hdr->b_size);
6670 zio->io_data = zio->io_orig_data = hdr->b_l1hdr.b_buf->b_data;
3a17a7a9
SK
6671 } else {
6672 ASSERT(zio->io_data != NULL);
6673 /*
6674 * We copy the compressed data from the start of the arc buffer
6675 * (the zio_read will have pulled in only what we need, the
6676 * rest is garbage which we will overwrite at decompression)
6677 * and then decompress back to the ARC data buffer. This way we
6678 * can minimize copying by simply decompressing back over the
6679 * original compressed data (rather than decompressing to an
6680 * aux buffer and then copying back the uncompressed buffer,
6681 * which is likely to be much larger).
6682 */
6683 csize = zio->io_size;
6684 cdata = zio_data_buf_alloc(csize);
6685 bcopy(zio->io_data, cdata, csize);
6686 if (zio_decompress_data(c, cdata, zio->io_data, csize,
6687 hdr->b_size) != 0)
96c080cb 6688 zio->io_error = EIO;
3a17a7a9
SK
6689 zio_data_buf_free(cdata, csize);
6690 }
6691
6692 /* Restore the expected uncompressed IO size. */
6693 zio->io_orig_size = zio->io_size = hdr->b_size;
6694}
6695
6696/*
6697 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
6698 * This buffer serves as a temporary holder of compressed data while
6699 * the buffer entry is being written to an l2arc device. Once that is
6700 * done, we can dispose of it.
6701 */
6702static void
2a432414 6703l2arc_release_cdata_buf(arc_buf_hdr_t *hdr)
3a17a7a9 6704{
ca0bf58d
PS
6705 enum zio_compress comp = HDR_GET_COMPRESS(hdr);
6706
b9541d6b 6707 ASSERT(HDR_HAS_L1HDR(hdr));
ca0bf58d
PS
6708 ASSERT(comp == ZIO_COMPRESS_OFF || L2ARC_IS_VALID_COMPRESS(comp));
6709
6710 if (comp == ZIO_COMPRESS_OFF) {
6711 /*
6712 * In this case, b_tmp_cdata points to the same buffer
6713 * as the arc_buf_t's b_data field. We don't want to
6714 * free it, since the arc_buf_t will handle that.
6715 */
6716 hdr->b_l1hdr.b_tmp_cdata = NULL;
6717 } else if (comp == ZIO_COMPRESS_EMPTY) {
6718 /*
6719 * In this case, b_tmp_cdata was compressed to an empty
6720 * buffer, thus there's nothing to free and b_tmp_cdata
6721 * should have been set to NULL in l2arc_write_buffers().
6722 */
6723 ASSERT3P(hdr->b_l1hdr.b_tmp_cdata, ==, NULL);
6724 } else {
3a17a7a9
SK
6725 /*
6726 * If the data was compressed, then we've allocated a
6727 * temporary buffer for it, so now we need to release it.
6728 */
b9541d6b
CW
6729 ASSERT(hdr->b_l1hdr.b_tmp_cdata != NULL);
6730 zio_data_buf_free(hdr->b_l1hdr.b_tmp_cdata,
6731 hdr->b_size);
ca0bf58d 6732 hdr->b_l1hdr.b_tmp_cdata = NULL;
3a17a7a9 6733 }
ca0bf58d 6734
34dc7c2f
BB
6735}
6736
6737/*
6738 * This thread feeds the L2ARC at regular intervals. This is the beating
6739 * heart of the L2ARC.
6740 */
6741static void
6742l2arc_feed_thread(void)
6743{
6744 callb_cpr_t cpr;
6745 l2arc_dev_t *dev;
6746 spa_t *spa;
d164b209 6747 uint64_t size, wrote;
428870ff 6748 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 6749 boolean_t headroom_boost = B_FALSE;
40d06e3c 6750 fstrans_cookie_t cookie;
34dc7c2f
BB
6751
6752 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
6753
6754 mutex_enter(&l2arc_feed_thr_lock);
6755
40d06e3c 6756 cookie = spl_fstrans_mark();
34dc7c2f 6757 while (l2arc_thread_exit == 0) {
34dc7c2f 6758 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 6759 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 6760 &l2arc_feed_thr_lock, next);
34dc7c2f 6761 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 6762 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
6763
6764 /*
b128c09f 6765 * Quick check for L2ARC devices.
34dc7c2f
BB
6766 */
6767 mutex_enter(&l2arc_dev_mtx);
6768 if (l2arc_ndev == 0) {
6769 mutex_exit(&l2arc_dev_mtx);
6770 continue;
6771 }
b128c09f 6772 mutex_exit(&l2arc_dev_mtx);
428870ff 6773 begin = ddi_get_lbolt();
34dc7c2f
BB
6774
6775 /*
b128c09f
BB
6776 * This selects the next l2arc device to write to, and in
6777 * doing so the next spa to feed from: dev->l2ad_spa. This
6778 * will return NULL if there are now no l2arc devices or if
6779 * they are all faulted.
6780 *
6781 * If a device is returned, its spa's config lock is also
6782 * held to prevent device removal. l2arc_dev_get_next()
6783 * will grab and release l2arc_dev_mtx.
34dc7c2f 6784 */
b128c09f 6785 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 6786 continue;
b128c09f
BB
6787
6788 spa = dev->l2ad_spa;
6789 ASSERT(spa != NULL);
34dc7c2f 6790
572e2857
BB
6791 /*
6792 * If the pool is read-only then force the feed thread to
6793 * sleep a little longer.
6794 */
6795 if (!spa_writeable(spa)) {
6796 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
6797 spa_config_exit(spa, SCL_L2ARC, dev);
6798 continue;
6799 }
6800
34dc7c2f 6801 /*
b128c09f 6802 * Avoid contributing to memory pressure.
34dc7c2f 6803 */
ca67b33a 6804 if (arc_reclaim_needed()) {
b128c09f
BB
6805 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
6806 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
6807 continue;
6808 }
b128c09f 6809
34dc7c2f
BB
6810 ARCSTAT_BUMP(arcstat_l2_feeds);
6811
3a17a7a9 6812 size = l2arc_write_size();
b128c09f 6813
34dc7c2f
BB
6814 /*
6815 * Evict L2ARC buffers that will be overwritten.
6816 */
b128c09f 6817 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
6818
6819 /*
6820 * Write ARC buffers.
6821 */
3a17a7a9 6822 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
6823
6824 /*
6825 * Calculate interval between writes.
6826 */
6827 next = l2arc_write_interval(begin, size, wrote);
b128c09f 6828 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 6829 }
40d06e3c 6830 spl_fstrans_unmark(cookie);
34dc7c2f
BB
6831
6832 l2arc_thread_exit = 0;
6833 cv_broadcast(&l2arc_feed_thr_cv);
6834 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
6835 thread_exit();
6836}
6837
b128c09f
BB
6838boolean_t
6839l2arc_vdev_present(vdev_t *vd)
6840{
6841 l2arc_dev_t *dev;
6842
6843 mutex_enter(&l2arc_dev_mtx);
6844 for (dev = list_head(l2arc_dev_list); dev != NULL;
6845 dev = list_next(l2arc_dev_list, dev)) {
6846 if (dev->l2ad_vdev == vd)
6847 break;
6848 }
6849 mutex_exit(&l2arc_dev_mtx);
6850
6851 return (dev != NULL);
6852}
6853
34dc7c2f
BB
6854/*
6855 * Add a vdev for use by the L2ARC. By this point the spa has already
6856 * validated the vdev and opened it.
6857 */
6858void
9babb374 6859l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
6860{
6861 l2arc_dev_t *adddev;
6862
b128c09f
BB
6863 ASSERT(!l2arc_vdev_present(vd));
6864
34dc7c2f
BB
6865 /*
6866 * Create a new l2arc device entry.
6867 */
6868 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
6869 adddev->l2ad_spa = spa;
6870 adddev->l2ad_vdev = vd;
9babb374
BB
6871 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
6872 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 6873 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 6874 adddev->l2ad_first = B_TRUE;
d164b209 6875 adddev->l2ad_writing = B_FALSE;
98f72a53 6876 list_link_init(&adddev->l2ad_node);
34dc7c2f 6877
b9541d6b 6878 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6879 /*
6880 * This is a list of all ARC buffers that are still valid on the
6881 * device.
6882 */
b9541d6b
CW
6883 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
6884 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 6885
428870ff 6886 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
d962d5da 6887 refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
6888
6889 /*
6890 * Add device to global list
6891 */
6892 mutex_enter(&l2arc_dev_mtx);
6893 list_insert_head(l2arc_dev_list, adddev);
6894 atomic_inc_64(&l2arc_ndev);
6895 mutex_exit(&l2arc_dev_mtx);
6896}
6897
6898/*
6899 * Remove a vdev from the L2ARC.
6900 */
6901void
6902l2arc_remove_vdev(vdev_t *vd)
6903{
6904 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
6905
34dc7c2f
BB
6906 /*
6907 * Find the device by vdev
6908 */
6909 mutex_enter(&l2arc_dev_mtx);
6910 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
6911 nextdev = list_next(l2arc_dev_list, dev);
6912 if (vd == dev->l2ad_vdev) {
6913 remdev = dev;
6914 break;
6915 }
6916 }
6917 ASSERT(remdev != NULL);
6918
6919 /*
6920 * Remove device from global list
6921 */
6922 list_remove(l2arc_dev_list, remdev);
6923 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
6924 atomic_dec_64(&l2arc_ndev);
6925 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
6926
6927 /*
6928 * Clear all buflists and ARC references. L2ARC device flush.
6929 */
6930 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
6931 list_destroy(&remdev->l2ad_buflist);
6932 mutex_destroy(&remdev->l2ad_mtx);
d962d5da 6933 refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 6934 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
6935}
6936
6937void
b128c09f 6938l2arc_init(void)
34dc7c2f
BB
6939{
6940 l2arc_thread_exit = 0;
6941 l2arc_ndev = 0;
6942 l2arc_writes_sent = 0;
6943 l2arc_writes_done = 0;
6944
6945 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
6946 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
6947 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
6948 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
6949
6950 l2arc_dev_list = &L2ARC_dev_list;
6951 l2arc_free_on_write = &L2ARC_free_on_write;
6952 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
6953 offsetof(l2arc_dev_t, l2ad_node));
6954 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
6955 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
6956}
6957
6958void
b128c09f 6959l2arc_fini(void)
34dc7c2f 6960{
b128c09f
BB
6961 /*
6962 * This is called from dmu_fini(), which is called from spa_fini();
6963 * Because of this, we can assume that all l2arc devices have
6964 * already been removed when the pools themselves were removed.
6965 */
6966
6967 l2arc_do_free_on_write();
34dc7c2f
BB
6968
6969 mutex_destroy(&l2arc_feed_thr_lock);
6970 cv_destroy(&l2arc_feed_thr_cv);
6971 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
6972 mutex_destroy(&l2arc_free_on_write_mtx);
6973
6974 list_destroy(l2arc_dev_list);
6975 list_destroy(l2arc_free_on_write);
6976}
b128c09f
BB
6977
6978void
6979l2arc_start(void)
6980{
fb5f0bc8 6981 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6982 return;
6983
6984 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 6985 TS_RUN, defclsyspri);
b128c09f
BB
6986}
6987
6988void
6989l2arc_stop(void)
6990{
fb5f0bc8 6991 if (!(spa_mode_global & FWRITE))
b128c09f
BB
6992 return;
6993
6994 mutex_enter(&l2arc_feed_thr_lock);
6995 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
6996 l2arc_thread_exit = 1;
6997 while (l2arc_thread_exit != 0)
6998 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
6999 mutex_exit(&l2arc_feed_thr_lock);
7000}
c28b2279
BB
7001
7002#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
7003EXPORT_SYMBOL(arc_buf_size);
7004EXPORT_SYMBOL(arc_write);
c28b2279
BB
7005EXPORT_SYMBOL(arc_read);
7006EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 7007EXPORT_SYMBOL(arc_buf_info);
c28b2279 7008EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
7009EXPORT_SYMBOL(arc_add_prune_callback);
7010EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 7011
bce45ec9 7012module_param(zfs_arc_min, ulong, 0644);
c409e464 7013MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 7014
bce45ec9 7015module_param(zfs_arc_max, ulong, 0644);
c409e464 7016MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 7017
bce45ec9 7018module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 7019MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 7020
ca0bf58d
PS
7021module_param(zfs_arc_meta_min, ulong, 0644);
7022MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7023
bce45ec9 7024module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 7025MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 7026
ca67b33a 7027module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
7028MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7029 "Limit number of restarts in arc_adjust_meta");
7030
f6046738
BB
7031module_param(zfs_arc_meta_strategy, int, 0644);
7032MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7033
bce45ec9 7034module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
7035MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7036
89c8cac4
PS
7037module_param(zfs_arc_p_aggressive_disable, int, 0644);
7038MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7039
62422785
PS
7040module_param(zfs_arc_p_dampener_disable, int, 0644);
7041MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7042
bce45ec9 7043module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
7044MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7045
728d6ae9
BB
7046module_param(zfs_arc_p_min_shift, int, 0644);
7047MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7048
1f7c30df
BB
7049module_param(zfs_disable_dup_eviction, int, 0644);
7050MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
7051
49ddb315
MA
7052module_param(zfs_arc_average_blocksize, int, 0444);
7053MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7054
bce45ec9
BB
7055module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7056MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7057
ca0bf58d
PS
7058module_param(zfs_arc_num_sublists_per_state, int, 0644);
7059MODULE_PARM_DESC(zfs_arc_num_sublists_per_state,
7060 "Number of sublists used in each of the ARC state lists");
7061
bce45ec9 7062module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
7063MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7064
bce45ec9 7065module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
7066MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7067
bce45ec9 7068module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
7069MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7070
3a17a7a9
SK
7071module_param(l2arc_headroom_boost, ulong, 0644);
7072MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7073
bce45ec9 7074module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
7075MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7076
bce45ec9 7077module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
7078MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7079
bce45ec9 7080module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
7081MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7082
3a17a7a9
SK
7083module_param(l2arc_nocompress, int, 0644);
7084MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
7085
bce45ec9 7086module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
7087MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7088
bce45ec9 7089module_param(l2arc_norw, int, 0644);
abd8610c
BB
7090MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7091
7e8bddd0
BB
7092module_param(zfs_arc_lotsfree_percent, int, 0644);
7093MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7094 "System free memory I/O throttle in bytes");
7095
11f552fa
BB
7096module_param(zfs_arc_sys_free, ulong, 0644);
7097MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7098
c28b2279 7099#endif