]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/spa_misc.c
FreeBSD: Remove BIO_ORDERED flag from BIO_FLUSH
[mirror_zfs.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
93e28d66 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
adfe9d93 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
3c67d83a 26 * Copyright 2013 Saso Kiselkov. All rights reserved.
0ea05c64 27 * Copyright (c) 2017 Datto Inc.
cc99f275 28 * Copyright (c) 2017, Intel Corporation.
e3570464 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
34dc7c2f
BB
30 */
31
34dc7c2f
BB
32#include <sys/zfs_context.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
619f0976 42#include <sys/vdev_initialize.h>
1b939560 43#include <sys/vdev_trim.h>
bc25c932 44#include <sys/vdev_file.h>
ab9f4b0b 45#include <sys/vdev_raidz.h>
34dc7c2f
BB
46#include <sys/metaslab.h>
47#include <sys/uberblock_impl.h>
48#include <sys/txg.h>
49#include <sys/avl.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dir.h>
53#include <sys/dsl_prop.h>
26685276 54#include <sys/fm/util.h>
428870ff 55#include <sys/dsl_scan.h>
34dc7c2f
BB
56#include <sys/fs/zfs.h>
57#include <sys/metaslab_impl.h>
b128c09f 58#include <sys/arc.h>
428870ff 59#include <sys/ddt.h>
1421c891 60#include <sys/kstat.h>
34dc7c2f 61#include "zfs_prop.h"
ca577779 62#include <sys/btree.h>
3c67d83a 63#include <sys/zfeature.h>
bced7e3a 64#include <sys/qat.h>
10b3c7f5 65#include <sys/zstd/zstd.h>
34dc7c2f
BB
66
67/*
68 * SPA locking
69 *
93e28d66 70 * There are three basic locks for managing spa_t structures:
34dc7c2f
BB
71 *
72 * spa_namespace_lock (global mutex)
73 *
74 * This lock must be acquired to do any of the following:
75 *
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
83 *
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
88 *
c13060e4 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
34dc7c2f
BB
90 *
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 94 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
95 * present the image of a zero/non-zero value to consumers.
96 *
b128c09f 97 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
98 *
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
101 *
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
104 *
34dc7c2f
BB
105 * The locking order is fairly straightforward:
106 *
107 * spa_namespace_lock -> spa_refcount
108 *
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
111 *
b128c09f 112 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
113 *
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
116 *
b128c09f 117 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
118 *
119 * The namespace lock must always be taken before the config lock.
120 *
121 *
b128c09f 122 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 123 *
b128c09f
BB
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
34dc7c2f
BB
126 *
127 * spa_lookup() Lookup a spa_t by name.
128 *
129 * spa_add() Create a new spa_t in the namespace.
130 *
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
133 *
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
136 *
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
139 *
140 * spa_guid_exists() Determine whether a pool/device guid exists.
141 *
142 * The spa_refcount is manipulated using the following functions:
143 *
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
147 *
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
151 *
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
155 *
b128c09f
BB
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159 *
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
164 *
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169 *
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
175 *
176 * The lock acquisition rules are as follows:
177 *
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
182 *
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
187 *
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
191 *
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
196 *
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203 *
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
209 *
210 * In addition, the following rules apply:
211 *
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
214 *
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
220 *
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222 *
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
225 *
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
229 *
b128c09f
BB
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
34dc7c2f
BB
233 */
234
235static avl_tree_t spa_namespace_avl;
236kmutex_t spa_namespace_lock;
237static kcondvar_t spa_namespace_cv;
34dc7c2f
BB
238int spa_max_replication_override = SPA_DVAS_PER_BP;
239
240static kmutex_t spa_spare_lock;
241static avl_tree_t spa_spare_avl;
242static kmutex_t spa_l2cache_lock;
243static avl_tree_t spa_l2cache_avl;
244
245kmem_cache_t *spa_buffer_pool;
da92d5cb 246spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
34dc7c2f 247
0b39b9f9 248#ifdef ZFS_DEBUG
a1d477c2
MA
249/*
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
252 */
253int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
964c2d69 254 ZFS_DEBUG_INDIRECT_REMAP);
0b39b9f9
PS
255#else
256int zfs_flags = 0;
257#endif
258
259/*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266int zfs_recover = B_FALSE;
267
268/*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297int zfs_free_leak_on_eio = B_FALSE;
298
cc92e9d0 299/*
e8b96c60
MA
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
8fb1ede1 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
e8b96c60
MA
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
8fb1ede1 305 * in one of three behaviors controlled by zfs_deadman_failmode.
cc92e9d0 306 */
57940b43 307unsigned long zfs_deadman_synctime_ms = 600000UL;
8fb1ede1
BB
308
309/*
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
313 */
57940b43 314unsigned long zfs_deadman_ziotime_ms = 300000UL;
cc92e9d0 315
b81a3ddc
TC
316/*
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
319 */
57940b43 320unsigned long zfs_deadman_checktime_ms = 60000UL;
b81a3ddc 321
cc92e9d0
GW
322/*
323 * By default the deadman is enabled.
324 */
325int zfs_deadman_enabled = 1;
326
8fb1ede1
BB
327/*
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330 *
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
334 */
335char *zfs_deadman_failmode = "wait";
336
e8b96c60
MA
337/*
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345 */
346int spa_asize_inflation = 24;
347
3d45fdd6
MA
348/*
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed. This ensures that we don't run the pool
351 * completely out of space, due to unaccounted changes (e.g. to the MOS).
352 * It also limits the worst-case time to allocate space. If we have
353 * less than this amount of free space, most ZPL operations (e.g. write,
354 * create) will return ENOSPC.
355 *
356 * Certain operations (e.g. file removal, most administrative actions) can
357 * use half the slop space. They will only return ENOSPC if less than half
358 * the slop space is free. Typically, once the pool has less than the slop
359 * space free, the user will use these operations to free up space in the pool.
360 * These are the operations that call dsl_pool_adjustedsize() with the netfree
361 * argument set to TRUE.
362 *
d2734cce
SD
363 * Operations that are almost guaranteed to free up space in the absence of
364 * a pool checkpoint can use up to three quarters of the slop space
365 * (e.g zfs destroy).
366 *
3d45fdd6
MA
367 * A very restricted set of operations are always permitted, regardless of
368 * the amount of free space. These are the operations that call
d2734cce
SD
369 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
370 * increase in the amount of space used, it is possible to run the pool
371 * completely out of space, causing it to be permanently read-only.
3d45fdd6 372 *
d7958b4c
MA
373 * Note that on very small pools, the slop space will be larger than
374 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
375 * but we never allow it to be more than half the pool size.
376 *
3d45fdd6
MA
377 * See also the comments in zfs_space_check_t.
378 */
379int spa_slop_shift = 5;
d7958b4c 380uint64_t spa_min_slop = 128 * 1024 * 1024;
492f64e9
PD
381int spa_allocators = 4;
382
3d45fdd6 383
4a0ee12a
PZ
384/*PRINTFLIKE2*/
385void
386spa_load_failed(spa_t *spa, const char *fmt, ...)
387{
388 va_list adx;
389 char buf[256];
390
391 va_start(adx, fmt);
392 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
393 va_end(adx);
394
6cb8e530
PZ
395 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
396 spa->spa_trust_config ? "trusted" : "untrusted", buf);
4a0ee12a
PZ
397}
398
399/*PRINTFLIKE2*/
400void
401spa_load_note(spa_t *spa, const char *fmt, ...)
402{
403 va_list adx;
404 char buf[256];
405
406 va_start(adx, fmt);
407 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
408 va_end(adx);
409
6cb8e530
PZ
410 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
411 spa->spa_trust_config ? "trusted" : "untrusted", buf);
4a0ee12a
PZ
412}
413
cc99f275
DB
414/*
415 * By default dedup and user data indirects land in the special class
416 */
417int zfs_ddt_data_is_special = B_TRUE;
418int zfs_user_indirect_is_special = B_TRUE;
419
420/*
421 * The percentage of special class final space reserved for metadata only.
422 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
423 * let metadata into the class.
424 */
425int zfs_special_class_metadata_reserve_pct = 25;
426
34dc7c2f
BB
427/*
428 * ==========================================================================
429 * SPA config locking
430 * ==========================================================================
431 */
432static void
b128c09f
BB
433spa_config_lock_init(spa_t *spa)
434{
1c27024e 435 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
436 spa_config_lock_t *scl = &spa->spa_config_lock[i];
437 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
438 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
424fd7c3 439 zfs_refcount_create_untracked(&scl->scl_count);
b128c09f
BB
440 scl->scl_writer = NULL;
441 scl->scl_write_wanted = 0;
442 }
34dc7c2f
BB
443}
444
445static void
b128c09f
BB
446spa_config_lock_destroy(spa_t *spa)
447{
1c27024e 448 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
449 spa_config_lock_t *scl = &spa->spa_config_lock[i];
450 mutex_destroy(&scl->scl_lock);
451 cv_destroy(&scl->scl_cv);
424fd7c3 452 zfs_refcount_destroy(&scl->scl_count);
b128c09f
BB
453 ASSERT(scl->scl_writer == NULL);
454 ASSERT(scl->scl_write_wanted == 0);
455 }
456}
457
458int
459spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 460{
1c27024e 461 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
462 spa_config_lock_t *scl = &spa->spa_config_lock[i];
463 if (!(locks & (1 << i)))
464 continue;
465 mutex_enter(&scl->scl_lock);
466 if (rw == RW_READER) {
467 if (scl->scl_writer || scl->scl_write_wanted) {
468 mutex_exit(&scl->scl_lock);
adfe9d93
SK
469 spa_config_exit(spa, locks & ((1 << i) - 1),
470 tag);
b128c09f
BB
471 return (0);
472 }
473 } else {
474 ASSERT(scl->scl_writer != curthread);
424fd7c3 475 if (!zfs_refcount_is_zero(&scl->scl_count)) {
b128c09f 476 mutex_exit(&scl->scl_lock);
adfe9d93
SK
477 spa_config_exit(spa, locks & ((1 << i) - 1),
478 tag);
b128c09f
BB
479 return (0);
480 }
481 scl->scl_writer = curthread;
482 }
c13060e4 483 (void) zfs_refcount_add(&scl->scl_count, tag);
b128c09f
BB
484 mutex_exit(&scl->scl_lock);
485 }
486 return (1);
34dc7c2f
BB
487}
488
489void
dc04a8c7 490spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
34dc7c2f 491{
45d1cae3
BB
492 int wlocks_held = 0;
493
13fe0198
MA
494 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
495
1c27024e 496 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f 497 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
498 if (scl->scl_writer == curthread)
499 wlocks_held |= (1 << i);
b128c09f
BB
500 if (!(locks & (1 << i)))
501 continue;
502 mutex_enter(&scl->scl_lock);
503 if (rw == RW_READER) {
504 while (scl->scl_writer || scl->scl_write_wanted) {
505 cv_wait(&scl->scl_cv, &scl->scl_lock);
506 }
507 } else {
508 ASSERT(scl->scl_writer != curthread);
424fd7c3 509 while (!zfs_refcount_is_zero(&scl->scl_count)) {
b128c09f
BB
510 scl->scl_write_wanted++;
511 cv_wait(&scl->scl_cv, &scl->scl_lock);
512 scl->scl_write_wanted--;
513 }
514 scl->scl_writer = curthread;
515 }
c13060e4 516 (void) zfs_refcount_add(&scl->scl_count, tag);
b128c09f 517 mutex_exit(&scl->scl_lock);
34dc7c2f 518 }
a1d477c2 519 ASSERT3U(wlocks_held, <=, locks);
34dc7c2f
BB
520}
521
522void
dc04a8c7 523spa_config_exit(spa_t *spa, int locks, const void *tag)
34dc7c2f 524{
1c27024e 525 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
b128c09f
BB
526 spa_config_lock_t *scl = &spa->spa_config_lock[i];
527 if (!(locks & (1 << i)))
528 continue;
529 mutex_enter(&scl->scl_lock);
424fd7c3
TS
530 ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
531 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
b128c09f
BB
532 ASSERT(scl->scl_writer == NULL ||
533 scl->scl_writer == curthread);
534 scl->scl_writer = NULL; /* OK in either case */
535 cv_broadcast(&scl->scl_cv);
536 }
537 mutex_exit(&scl->scl_lock);
34dc7c2f 538 }
34dc7c2f
BB
539}
540
b128c09f
BB
541int
542spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 543{
1c27024e 544 int locks_held = 0;
34dc7c2f 545
1c27024e 546 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
547 spa_config_lock_t *scl = &spa->spa_config_lock[i];
548 if (!(locks & (1 << i)))
549 continue;
424fd7c3
TS
550 if ((rw == RW_READER &&
551 !zfs_refcount_is_zero(&scl->scl_count)) ||
b128c09f
BB
552 (rw == RW_WRITER && scl->scl_writer == curthread))
553 locks_held |= 1 << i;
554 }
555
556 return (locks_held);
34dc7c2f
BB
557}
558
559/*
560 * ==========================================================================
561 * SPA namespace functions
562 * ==========================================================================
563 */
564
565/*
566 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
567 * Returns NULL if no matching spa_t is found.
568 */
569spa_t *
570spa_lookup(const char *name)
571{
b128c09f
BB
572 static spa_t search; /* spa_t is large; don't allocate on stack */
573 spa_t *spa;
34dc7c2f 574 avl_index_t where;
34dc7c2f
BB
575 char *cp;
576
577 ASSERT(MUTEX_HELD(&spa_namespace_lock));
578
13fe0198
MA
579 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
580
34dc7c2f
BB
581 /*
582 * If it's a full dataset name, figure out the pool name and
583 * just use that.
584 */
da536844 585 cp = strpbrk(search.spa_name, "/@#");
13fe0198 586 if (cp != NULL)
34dc7c2f 587 *cp = '\0';
34dc7c2f 588
34dc7c2f
BB
589 spa = avl_find(&spa_namespace_avl, &search, &where);
590
34dc7c2f
BB
591 return (spa);
592}
593
cc92e9d0
GW
594/*
595 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
596 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
597 * looking for potentially hung I/Os.
598 */
599void
600spa_deadman(void *arg)
601{
602 spa_t *spa = arg;
603
b81a3ddc
TC
604 /* Disable the deadman if the pool is suspended. */
605 if (spa_suspended(spa))
606 return;
607
cc92e9d0
GW
608 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
609 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
610 ++spa->spa_deadman_calls);
611 if (zfs_deadman_enabled)
8fb1ede1 612 vdev_deadman(spa->spa_root_vdev, FTAG);
cc92e9d0 613
57ddcda1 614 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
f764edf0 615 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
b81a3ddc 616 MSEC_TO_TICK(zfs_deadman_checktime_ms));
cc92e9d0
GW
617}
618
65c7cc49 619static int
93e28d66
SD
620spa_log_sm_sort_by_txg(const void *va, const void *vb)
621{
622 const spa_log_sm_t *a = va;
623 const spa_log_sm_t *b = vb;
624
ca577779 625 return (TREE_CMP(a->sls_txg, b->sls_txg));
93e28d66
SD
626}
627
34dc7c2f
BB
628/*
629 * Create an uninitialized spa_t with the given name. Requires
630 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
631 * exist by calling spa_lookup() first.
632 */
633spa_t *
428870ff 634spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
635{
636 spa_t *spa;
b128c09f 637 spa_config_dirent_t *dp;
34dc7c2f
BB
638
639 ASSERT(MUTEX_HELD(&spa_namespace_lock));
640
79c76d5b 641 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
34dc7c2f 642
34dc7c2f 643 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 644 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 645 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
0c66c32d 646 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 647 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 648 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 649 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
3c67d83a 650 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
651 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
4eb30c68 654 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
93e28d66 655 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
e60e158e 656 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
657
658 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
0c66c32d 659 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
428870ff 660 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 661 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 662 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
e60e158e
JG
663 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
664 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 665
1c27024e 666 for (int t = 0; t < TXG_SIZE; t++)
428870ff
BB
667 bplist_create(&spa->spa_free_bplist[t]);
668
b128c09f 669 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
670 spa->spa_state = POOL_STATE_UNINITIALIZED;
671 spa->spa_freeze_txg = UINT64_MAX;
672 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
673 spa->spa_load_max_txg = UINT64_MAX;
674 spa->spa_proc = &p0;
675 spa->spa_proc_state = SPA_PROC_NONE;
6cb8e530 676 spa->spa_trust_config = B_TRUE;
25f06d67 677 spa->spa_hostid = zone_get_hostid(NULL);
34dc7c2f 678
e8b96c60 679 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
8fb1ede1
BB
680 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
681 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
cc92e9d0 682
424fd7c3 683 zfs_refcount_create(&spa->spa_refcount);
b128c09f 684 spa_config_lock_init(spa);
1421c891 685 spa_stats_init(spa);
34dc7c2f
BB
686
687 avl_add(&spa_namespace_avl, spa);
688
34dc7c2f
BB
689 /*
690 * Set the alternate root, if there is one.
691 */
0336f3d0 692 if (altroot)
34dc7c2f 693 spa->spa_root = spa_strdup(altroot);
34dc7c2f 694
492f64e9
PD
695 spa->spa_alloc_count = spa_allocators;
696 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
697 sizeof (kmutex_t), KM_SLEEP);
698 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
699 sizeof (avl_tree_t), KM_SLEEP);
700 for (int i = 0; i < spa->spa_alloc_count; i++) {
701 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
702 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
703 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
704 }
93e28d66
SD
705 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
706 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
707 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
708 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
709 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
710 offsetof(log_summary_entry_t, lse_node));
3dfb57a3 711
b128c09f
BB
712 /*
713 * Every pool starts with the default cachefile
714 */
715 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
716 offsetof(spa_config_dirent_t, scd_link));
717
79c76d5b 718 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
428870ff 719 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
720 list_insert_head(&spa->spa_config_list, dp);
721
572e2857 722 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
79c76d5b 723 KM_SLEEP) == 0);
572e2857 724
9ae529ec
CS
725 if (config != NULL) {
726 nvlist_t *features;
727
728 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
729 &features) == 0) {
730 VERIFY(nvlist_dup(features, &spa->spa_label_features,
731 0) == 0);
732 }
733
428870ff 734 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
9ae529ec
CS
735 }
736
737 if (spa->spa_label_features == NULL) {
738 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
79c76d5b 739 KM_SLEEP) == 0);
9ae529ec 740 }
428870ff 741
c3520e7f
MA
742 spa->spa_min_ashift = INT_MAX;
743 spa->spa_max_ashift = 0;
744
e8a20144
GN
745 /* Reset cached value */
746 spa->spa_dedup_dspace = ~0ULL;
747
b0bc7a84
MG
748 /*
749 * As a pool is being created, treat all features as disabled by
750 * setting SPA_FEATURE_DISABLED for all entries in the feature
751 * refcount cache.
752 */
1c27024e 753 for (int i = 0; i < SPA_FEATURES; i++) {
b0bc7a84
MG
754 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
755 }
756
3d31aad8
OF
757 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
758 offsetof(vdev_t, vdev_leaf_node));
759
34dc7c2f
BB
760 return (spa);
761}
762
763/*
764 * Removes a spa_t from the namespace, freeing up any memory used. Requires
765 * spa_namespace_lock. This is called only after the spa_t has been closed and
766 * deactivated.
767 */
768void
769spa_remove(spa_t *spa)
770{
b128c09f
BB
771 spa_config_dirent_t *dp;
772
34dc7c2f 773 ASSERT(MUTEX_HELD(&spa_namespace_lock));
93e28d66 774 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
424fd7c3 775 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
e60e158e 776 ASSERT0(spa->spa_waiters);
34dc7c2f 777
428870ff
BB
778 nvlist_free(spa->spa_config_splitting);
779
34dc7c2f
BB
780 avl_remove(&spa_namespace_avl, spa);
781 cv_broadcast(&spa_namespace_cv);
782
0336f3d0 783 if (spa->spa_root)
34dc7c2f 784 spa_strfree(spa->spa_root);
34dc7c2f 785
b128c09f
BB
786 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
787 list_remove(&spa->spa_config_list, dp);
788 if (dp->scd_path != NULL)
789 spa_strfree(dp->scd_path);
790 kmem_free(dp, sizeof (spa_config_dirent_t));
791 }
34dc7c2f 792
492f64e9
PD
793 for (int i = 0; i < spa->spa_alloc_count; i++) {
794 avl_destroy(&spa->spa_alloc_trees[i]);
795 mutex_destroy(&spa->spa_alloc_locks[i]);
796 }
797 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
798 sizeof (kmutex_t));
799 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
800 sizeof (avl_tree_t));
801
93e28d66
SD
802 avl_destroy(&spa->spa_metaslabs_by_flushed);
803 avl_destroy(&spa->spa_sm_logs_by_txg);
804 list_destroy(&spa->spa_log_summary);
b128c09f 805 list_destroy(&spa->spa_config_list);
3d31aad8 806 list_destroy(&spa->spa_leaf_list);
34dc7c2f 807
9ae529ec 808 nvlist_free(spa->spa_label_features);
572e2857 809 nvlist_free(spa->spa_load_info);
417104bd 810 nvlist_free(spa->spa_feat_stats);
34dc7c2f
BB
811 spa_config_set(spa, NULL);
812
424fd7c3 813 zfs_refcount_destroy(&spa->spa_refcount);
34dc7c2f 814
1421c891 815 spa_stats_destroy(spa);
b128c09f 816 spa_config_lock_destroy(spa);
34dc7c2f 817
1c27024e 818 for (int t = 0; t < TXG_SIZE; t++)
428870ff
BB
819 bplist_destroy(&spa->spa_free_bplist[t]);
820
3c67d83a
TH
821 zio_checksum_templates_free(spa);
822
34dc7c2f 823 cv_destroy(&spa->spa_async_cv);
0c66c32d 824 cv_destroy(&spa->spa_evicting_os_cv);
428870ff 825 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 826 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 827 cv_destroy(&spa->spa_suspend_cv);
e60e158e
JG
828 cv_destroy(&spa->spa_activities_cv);
829 cv_destroy(&spa->spa_waiters_cv);
34dc7c2f 830
93e28d66 831 mutex_destroy(&spa->spa_flushed_ms_lock);
34dc7c2f 832 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 833 mutex_destroy(&spa->spa_errlist_lock);
428870ff 834 mutex_destroy(&spa->spa_errlog_lock);
0c66c32d 835 mutex_destroy(&spa->spa_evicting_os_lock);
34dc7c2f 836 mutex_destroy(&spa->spa_history_lock);
428870ff 837 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 838 mutex_destroy(&spa->spa_props_lock);
3c67d83a 839 mutex_destroy(&spa->spa_cksum_tmpls_lock);
428870ff 840 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 841 mutex_destroy(&spa->spa_suspend_lock);
428870ff 842 mutex_destroy(&spa->spa_vdev_top_lock);
4eb30c68 843 mutex_destroy(&spa->spa_feat_stats_lock);
e60e158e 844 mutex_destroy(&spa->spa_activities_lock);
34dc7c2f
BB
845
846 kmem_free(spa, sizeof (spa_t));
847}
848
849/*
850 * Given a pool, return the next pool in the namespace, or NULL if there is
851 * none. If 'prev' is NULL, return the first pool.
852 */
853spa_t *
854spa_next(spa_t *prev)
855{
856 ASSERT(MUTEX_HELD(&spa_namespace_lock));
857
858 if (prev)
859 return (AVL_NEXT(&spa_namespace_avl, prev));
860 else
861 return (avl_first(&spa_namespace_avl));
862}
863
864/*
865 * ==========================================================================
866 * SPA refcount functions
867 * ==========================================================================
868 */
869
870/*
871 * Add a reference to the given spa_t. Must have at least one reference, or
872 * have the namespace lock held.
873 */
874void
875spa_open_ref(spa_t *spa, void *tag)
876{
424fd7c3 877 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 878 MUTEX_HELD(&spa_namespace_lock));
c13060e4 879 (void) zfs_refcount_add(&spa->spa_refcount, tag);
34dc7c2f
BB
880}
881
882/*
883 * Remove a reference to the given spa_t. Must have at least one reference, or
884 * have the namespace lock held.
885 */
886void
887spa_close(spa_t *spa, void *tag)
888{
424fd7c3 889 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 890 MUTEX_HELD(&spa_namespace_lock));
424fd7c3 891 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
34dc7c2f
BB
892}
893
0c66c32d
JG
894/*
895 * Remove a reference to the given spa_t held by a dsl dir that is
896 * being asynchronously released. Async releases occur from a taskq
897 * performing eviction of dsl datasets and dirs. The namespace lock
898 * isn't held and the hold by the object being evicted may contribute to
899 * spa_minref (e.g. dataset or directory released during pool export),
900 * so the asserts in spa_close() do not apply.
901 */
902void
903spa_async_close(spa_t *spa, void *tag)
904{
424fd7c3 905 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
0c66c32d
JG
906}
907
34dc7c2f
BB
908/*
909 * Check to see if the spa refcount is zero. Must be called with
b128c09f 910 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
911 * number of references acquired when opening a pool
912 */
913boolean_t
914spa_refcount_zero(spa_t *spa)
915{
916 ASSERT(MUTEX_HELD(&spa_namespace_lock));
917
424fd7c3 918 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
919}
920
921/*
922 * ==========================================================================
923 * SPA spare and l2cache tracking
924 * ==========================================================================
925 */
926
927/*
928 * Hot spares and cache devices are tracked using the same code below,
929 * for 'auxiliary' devices.
930 */
931
932typedef struct spa_aux {
933 uint64_t aux_guid;
934 uint64_t aux_pool;
935 avl_node_t aux_avl;
936 int aux_count;
937} spa_aux_t;
938
ee36c709 939static inline int
34dc7c2f
BB
940spa_aux_compare(const void *a, const void *b)
941{
ee36c709
GN
942 const spa_aux_t *sa = (const spa_aux_t *)a;
943 const spa_aux_t *sb = (const spa_aux_t *)b;
34dc7c2f 944
ca577779 945 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
34dc7c2f
BB
946}
947
65c7cc49 948static void
34dc7c2f
BB
949spa_aux_add(vdev_t *vd, avl_tree_t *avl)
950{
951 avl_index_t where;
952 spa_aux_t search;
953 spa_aux_t *aux;
954
955 search.aux_guid = vd->vdev_guid;
956 if ((aux = avl_find(avl, &search, &where)) != NULL) {
957 aux->aux_count++;
958 } else {
79c76d5b 959 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
34dc7c2f
BB
960 aux->aux_guid = vd->vdev_guid;
961 aux->aux_count = 1;
962 avl_insert(avl, aux, where);
963 }
964}
965
65c7cc49 966static void
34dc7c2f
BB
967spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
968{
969 spa_aux_t search;
970 spa_aux_t *aux;
971 avl_index_t where;
972
973 search.aux_guid = vd->vdev_guid;
974 aux = avl_find(avl, &search, &where);
975
976 ASSERT(aux != NULL);
977
978 if (--aux->aux_count == 0) {
979 avl_remove(avl, aux);
980 kmem_free(aux, sizeof (spa_aux_t));
981 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
982 aux->aux_pool = 0ULL;
983 }
984}
985
65c7cc49 986static boolean_t
b128c09f 987spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
988{
989 spa_aux_t search, *found;
34dc7c2f
BB
990
991 search.aux_guid = guid;
b128c09f 992 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
993
994 if (pool) {
995 if (found)
996 *pool = found->aux_pool;
997 else
998 *pool = 0ULL;
999 }
1000
b128c09f
BB
1001 if (refcnt) {
1002 if (found)
1003 *refcnt = found->aux_count;
1004 else
1005 *refcnt = 0;
1006 }
1007
34dc7c2f
BB
1008 return (found != NULL);
1009}
1010
65c7cc49 1011static void
34dc7c2f
BB
1012spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1013{
1014 spa_aux_t search, *found;
1015 avl_index_t where;
1016
1017 search.aux_guid = vd->vdev_guid;
1018 found = avl_find(avl, &search, &where);
1019 ASSERT(found != NULL);
1020 ASSERT(found->aux_pool == 0ULL);
1021
1022 found->aux_pool = spa_guid(vd->vdev_spa);
1023}
1024
1025/*
1026 * Spares are tracked globally due to the following constraints:
1027 *
1028 * - A spare may be part of multiple pools.
1029 * - A spare may be added to a pool even if it's actively in use within
1030 * another pool.
1031 * - A spare in use in any pool can only be the source of a replacement if
1032 * the target is a spare in the same pool.
1033 *
1034 * We keep track of all spares on the system through the use of a reference
1035 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1036 * spare, then we bump the reference count in the AVL tree. In addition, we set
1037 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1038 * inactive). When a spare is made active (used to replace a device in the
1039 * pool), we also keep track of which pool its been made a part of.
1040 *
1041 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1042 * called under the spa_namespace lock as part of vdev reconfiguration. The
1043 * separate spare lock exists for the status query path, which does not need to
1044 * be completely consistent with respect to other vdev configuration changes.
1045 */
1046
1047static int
1048spa_spare_compare(const void *a, const void *b)
1049{
1050 return (spa_aux_compare(a, b));
1051}
1052
1053void
1054spa_spare_add(vdev_t *vd)
1055{
1056 mutex_enter(&spa_spare_lock);
1057 ASSERT(!vd->vdev_isspare);
1058 spa_aux_add(vd, &spa_spare_avl);
1059 vd->vdev_isspare = B_TRUE;
1060 mutex_exit(&spa_spare_lock);
1061}
1062
1063void
1064spa_spare_remove(vdev_t *vd)
1065{
1066 mutex_enter(&spa_spare_lock);
1067 ASSERT(vd->vdev_isspare);
1068 spa_aux_remove(vd, &spa_spare_avl);
1069 vd->vdev_isspare = B_FALSE;
1070 mutex_exit(&spa_spare_lock);
1071}
1072
1073boolean_t
b128c09f 1074spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
1075{
1076 boolean_t found;
1077
1078 mutex_enter(&spa_spare_lock);
b128c09f 1079 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
1080 mutex_exit(&spa_spare_lock);
1081
1082 return (found);
1083}
1084
1085void
1086spa_spare_activate(vdev_t *vd)
1087{
1088 mutex_enter(&spa_spare_lock);
1089 ASSERT(vd->vdev_isspare);
1090 spa_aux_activate(vd, &spa_spare_avl);
1091 mutex_exit(&spa_spare_lock);
1092}
1093
1094/*
1095 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1096 * Cache devices currently only support one pool per cache device, and so
1097 * for these devices the aux reference count is currently unused beyond 1.
1098 */
1099
1100static int
1101spa_l2cache_compare(const void *a, const void *b)
1102{
1103 return (spa_aux_compare(a, b));
1104}
1105
1106void
1107spa_l2cache_add(vdev_t *vd)
1108{
1109 mutex_enter(&spa_l2cache_lock);
1110 ASSERT(!vd->vdev_isl2cache);
1111 spa_aux_add(vd, &spa_l2cache_avl);
1112 vd->vdev_isl2cache = B_TRUE;
1113 mutex_exit(&spa_l2cache_lock);
1114}
1115
1116void
1117spa_l2cache_remove(vdev_t *vd)
1118{
1119 mutex_enter(&spa_l2cache_lock);
1120 ASSERT(vd->vdev_isl2cache);
1121 spa_aux_remove(vd, &spa_l2cache_avl);
1122 vd->vdev_isl2cache = B_FALSE;
1123 mutex_exit(&spa_l2cache_lock);
1124}
1125
1126boolean_t
1127spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1128{
1129 boolean_t found;
1130
1131 mutex_enter(&spa_l2cache_lock);
b128c09f 1132 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
1133 mutex_exit(&spa_l2cache_lock);
1134
1135 return (found);
1136}
1137
1138void
1139spa_l2cache_activate(vdev_t *vd)
1140{
1141 mutex_enter(&spa_l2cache_lock);
1142 ASSERT(vd->vdev_isl2cache);
1143 spa_aux_activate(vd, &spa_l2cache_avl);
1144 mutex_exit(&spa_l2cache_lock);
1145}
1146
34dc7c2f
BB
1147/*
1148 * ==========================================================================
1149 * SPA vdev locking
1150 * ==========================================================================
1151 */
1152
1153/*
1154 * Lock the given spa_t for the purpose of adding or removing a vdev.
1155 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1156 * It returns the next transaction group for the spa_t.
1157 */
1158uint64_t
1159spa_vdev_enter(spa_t *spa)
1160{
428870ff 1161 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 1162 mutex_enter(&spa_namespace_lock);
1b939560
BB
1163
1164 vdev_autotrim_stop_all(spa);
1165
428870ff
BB
1166 return (spa_vdev_config_enter(spa));
1167}
1168
9a49d3f3
BB
1169/*
1170 * The same as spa_vdev_enter() above but additionally takes the guid of
1171 * the vdev being detached. When there is a rebuild in process it will be
1172 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1173 * The rebuild is canceled if only a single child remains after the detach.
1174 */
1175uint64_t
1176spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1177{
1178 mutex_enter(&spa->spa_vdev_top_lock);
1179 mutex_enter(&spa_namespace_lock);
1180
1181 vdev_autotrim_stop_all(spa);
1182
1183 if (guid != 0) {
1184 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1185 if (vd) {
1186 vdev_rebuild_stop_wait(vd->vdev_top);
1187 }
1188 }
1189
1190 return (spa_vdev_config_enter(spa));
1191}
1192
428870ff
BB
1193/*
1194 * Internal implementation for spa_vdev_enter(). Used when a vdev
1195 * operation requires multiple syncs (i.e. removing a device) while
1196 * keeping the spa_namespace_lock held.
1197 */
1198uint64_t
1199spa_vdev_config_enter(spa_t *spa)
1200{
1201 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 1202
b128c09f 1203 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
1204
1205 return (spa_last_synced_txg(spa) + 1);
1206}
1207
1208/*
428870ff
BB
1209 * Used in combination with spa_vdev_config_enter() to allow the syncing
1210 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 1211 */
428870ff
BB
1212void
1213spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f 1214{
1c27024e
DB
1215 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1216
34dc7c2f
BB
1217 int config_changed = B_FALSE;
1218
1219 ASSERT(txg > spa_last_synced_txg(spa));
1220
b128c09f
BB
1221 spa->spa_pending_vdev = NULL;
1222
34dc7c2f
BB
1223 /*
1224 * Reassess the DTLs.
1225 */
9a49d3f3 1226 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
34dc7c2f 1227
b128c09f 1228 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 1229 config_changed = B_TRUE;
428870ff 1230 spa->spa_config_generation++;
34dc7c2f
BB
1231 }
1232
428870ff
BB
1233 /*
1234 * Verify the metaslab classes.
1235 */
1236 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1237 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
cc99f275
DB
1238 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1239 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
428870ff 1240
b128c09f 1241 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 1242
428870ff
BB
1243 /*
1244 * Panic the system if the specified tag requires it. This
1245 * is useful for ensuring that configurations are updated
1246 * transactionally.
1247 */
1248 if (zio_injection_enabled)
1249 zio_handle_panic_injection(spa, tag, 0);
1250
34dc7c2f
BB
1251 /*
1252 * Note: this txg_wait_synced() is important because it ensures
1253 * that there won't be more than one config change per txg.
1254 * This allows us to use the txg as the generation number.
1255 */
1256 if (error == 0)
1257 txg_wait_synced(spa->spa_dsl_pool, txg);
1258
1259 if (vd != NULL) {
93cf2076 1260 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
619f0976
GW
1261 if (vd->vdev_ops->vdev_op_leaf) {
1262 mutex_enter(&vd->vdev_initialize_lock);
c10d37dd
GW
1263 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1264 NULL);
619f0976 1265 mutex_exit(&vd->vdev_initialize_lock);
1b939560
BB
1266
1267 mutex_enter(&vd->vdev_trim_lock);
1268 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1269 mutex_exit(&vd->vdev_trim_lock);
619f0976
GW
1270 }
1271
1b939560
BB
1272 /*
1273 * The vdev may be both a leaf and top-level device.
1274 */
1275 vdev_autotrim_stop_wait(vd);
1276
fb5f0bc8 1277 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 1278 vdev_free(vd);
fb5f0bc8 1279 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
1280 }
1281
1282 /*
1283 * If the config changed, update the config cache.
1284 */
1285 if (config_changed)
a1d477c2 1286 spa_write_cachefile(spa, B_FALSE, B_TRUE);
428870ff 1287}
34dc7c2f 1288
428870ff
BB
1289/*
1290 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1291 * locking of spa_vdev_enter(), we also want make sure the transactions have
1292 * synced to disk, and then update the global configuration cache with the new
1293 * information.
1294 */
1295int
1296spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1297{
1b939560 1298 vdev_autotrim_restart(spa);
9a49d3f3 1299 vdev_rebuild_restart(spa);
1b939560 1300
428870ff 1301 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 1302 mutex_exit(&spa_namespace_lock);
428870ff 1303 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
1304
1305 return (error);
1306}
1307
b128c09f
BB
1308/*
1309 * Lock the given spa_t for the purpose of changing vdev state.
1310 */
1311void
428870ff 1312spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 1313{
428870ff
BB
1314 int locks = SCL_STATE_ALL | oplocks;
1315
1316 /*
1317 * Root pools may need to read of the underlying devfs filesystem
1318 * when opening up a vdev. Unfortunately if we're holding the
1319 * SCL_ZIO lock it will result in a deadlock when we try to issue
1320 * the read from the root filesystem. Instead we "prefetch"
1321 * the associated vnodes that we need prior to opening the
1322 * underlying devices and cache them so that we can prevent
1323 * any I/O when we are doing the actual open.
1324 */
1325 if (spa_is_root(spa)) {
1326 int low = locks & ~(SCL_ZIO - 1);
1327 int high = locks & ~low;
1328
1329 spa_config_enter(spa, high, spa, RW_WRITER);
1330 vdev_hold(spa->spa_root_vdev);
1331 spa_config_enter(spa, low, spa, RW_WRITER);
1332 } else {
1333 spa_config_enter(spa, locks, spa, RW_WRITER);
1334 }
1335 spa->spa_vdev_locks = locks;
b128c09f
BB
1336}
1337
1338int
1339spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1340{
428870ff 1341 boolean_t config_changed = B_FALSE;
4a283c7f
TH
1342 vdev_t *vdev_top;
1343
1344 if (vd == NULL || vd == spa->spa_root_vdev) {
1345 vdev_top = spa->spa_root_vdev;
1346 } else {
1347 vdev_top = vd->vdev_top;
1348 }
428870ff
BB
1349
1350 if (vd != NULL || error == 0)
9a49d3f3 1351 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
428870ff
BB
1352
1353 if (vd != NULL) {
4a283c7f
TH
1354 if (vd != spa->spa_root_vdev)
1355 vdev_state_dirty(vdev_top);
1356
428870ff
BB
1357 config_changed = B_TRUE;
1358 spa->spa_config_generation++;
1359 }
b128c09f 1360
428870ff
BB
1361 if (spa_is_root(spa))
1362 vdev_rele(spa->spa_root_vdev);
1363
1364 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1365 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1366
fb5f0bc8
BB
1367 /*
1368 * If anything changed, wait for it to sync. This ensures that,
1369 * from the system administrator's perspective, zpool(1M) commands
1370 * are synchronous. This is important for things like zpool offline:
1371 * when the command completes, you expect no further I/O from ZFS.
1372 */
1373 if (vd != NULL)
1374 txg_wait_synced(spa->spa_dsl_pool, 0);
1375
428870ff
BB
1376 /*
1377 * If the config changed, update the config cache.
1378 */
1379 if (config_changed) {
1380 mutex_enter(&spa_namespace_lock);
a1d477c2 1381 spa_write_cachefile(spa, B_FALSE, B_TRUE);
428870ff
BB
1382 mutex_exit(&spa_namespace_lock);
1383 }
1384
b128c09f
BB
1385 return (error);
1386}
1387
34dc7c2f
BB
1388/*
1389 * ==========================================================================
1390 * Miscellaneous functions
1391 * ==========================================================================
1392 */
1393
9ae529ec 1394void
b0bc7a84 1395spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
9ae529ec 1396{
fa86b5db
MA
1397 if (!nvlist_exists(spa->spa_label_features, feature)) {
1398 fnvlist_add_boolean(spa->spa_label_features, feature);
b0bc7a84
MG
1399 /*
1400 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1401 * dirty the vdev config because lock SCL_CONFIG is not held.
1402 * Thankfully, in this case we don't need to dirty the config
1403 * because it will be written out anyway when we finish
1404 * creating the pool.
1405 */
1406 if (tx->tx_txg != TXG_INITIAL)
1407 vdev_config_dirty(spa->spa_root_vdev);
fa86b5db 1408 }
9ae529ec
CS
1409}
1410
1411void
1412spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1413{
fa86b5db
MA
1414 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1415 vdev_config_dirty(spa->spa_root_vdev);
9ae529ec
CS
1416}
1417
34dc7c2f 1418/*
572e2857
BB
1419 * Return the spa_t associated with given pool_guid, if it exists. If
1420 * device_guid is non-zero, determine whether the pool exists *and* contains
1421 * a device with the specified device_guid.
34dc7c2f 1422 */
572e2857
BB
1423spa_t *
1424spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1425{
1426 spa_t *spa;
1427 avl_tree_t *t = &spa_namespace_avl;
1428
1429 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1430
1431 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1432 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1433 continue;
1434 if (spa->spa_root_vdev == NULL)
1435 continue;
1436 if (spa_guid(spa) == pool_guid) {
1437 if (device_guid == 0)
1438 break;
1439
1440 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1441 device_guid) != NULL)
1442 break;
1443
1444 /*
1445 * Check any devices we may be in the process of adding.
1446 */
1447 if (spa->spa_pending_vdev) {
1448 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1449 device_guid) != NULL)
1450 break;
1451 }
1452 }
1453 }
1454
572e2857
BB
1455 return (spa);
1456}
1457
1458/*
1459 * Determine whether a pool with the given pool_guid exists.
1460 */
1461boolean_t
1462spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1463{
1464 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1465}
1466
1467char *
1468spa_strdup(const char *s)
1469{
1470 size_t len;
1471 char *new;
1472
1473 len = strlen(s);
79c76d5b 1474 new = kmem_alloc(len + 1, KM_SLEEP);
34dc7c2f
BB
1475 bcopy(s, new, len);
1476 new[len] = '\0';
1477
1478 return (new);
1479}
1480
1481void
1482spa_strfree(char *s)
1483{
1484 kmem_free(s, strlen(s) + 1);
1485}
1486
1487uint64_t
1488spa_get_random(uint64_t range)
1489{
1490 uint64_t r;
1491
1492 ASSERT(range != 0);
1493
379ca9cf
OF
1494 if (range == 1)
1495 return (0);
1496
34dc7c2f
BB
1497 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1498
1499 return (r % range);
1500}
1501
428870ff
BB
1502uint64_t
1503spa_generate_guid(spa_t *spa)
34dc7c2f 1504{
428870ff 1505 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1506
428870ff
BB
1507 if (spa != NULL) {
1508 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1509 guid = spa_get_random(-1ULL);
1510 } else {
1511 while (guid == 0 || spa_guid_exists(guid, 0))
1512 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1513 }
1514
428870ff
BB
1515 return (guid);
1516}
1517
1518void
b0bc7a84 1519snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
428870ff 1520{
9ae529ec 1521 char type[256];
428870ff
BB
1522 char *checksum = NULL;
1523 char *compress = NULL;
34dc7c2f 1524
428870ff 1525 if (bp != NULL) {
9ae529ec
CS
1526 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1527 dmu_object_byteswap_t bswap =
1528 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1529 (void) snprintf(type, sizeof (type), "bswap %s %s",
1530 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1531 "metadata" : "data",
1532 dmu_ot_byteswap[bswap].ob_name);
1533 } else {
1534 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1535 sizeof (type));
1536 }
9b67f605
MA
1537 if (!BP_IS_EMBEDDED(bp)) {
1538 checksum =
1539 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1540 }
428870ff 1541 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1542 }
1543
b0bc7a84 1544 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
5c27ec10 1545 compress);
34dc7c2f
BB
1546}
1547
1548void
1549spa_freeze(spa_t *spa)
1550{
1551 uint64_t freeze_txg = 0;
1552
b128c09f 1553 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1554 if (spa->spa_freeze_txg == UINT64_MAX) {
1555 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1556 spa->spa_freeze_txg = freeze_txg;
1557 }
b128c09f 1558 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1559 if (freeze_txg != 0)
1560 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1561}
1562
0b39b9f9
PS
1563void
1564zfs_panic_recover(const char *fmt, ...)
1565{
1566 va_list adx;
1567
1568 va_start(adx, fmt);
1569 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1570 va_end(adx);
1571}
1572
428870ff
BB
1573/*
1574 * This is a stripped-down version of strtoull, suitable only for converting
d3cc8b15 1575 * lowercase hexadecimal numbers that don't overflow.
428870ff
BB
1576 */
1577uint64_t
e19572e4 1578zfs_strtonum(const char *str, char **nptr)
428870ff
BB
1579{
1580 uint64_t val = 0;
1581 char c;
1582 int digit;
1583
1584 while ((c = *str) != '\0') {
1585 if (c >= '0' && c <= '9')
1586 digit = c - '0';
1587 else if (c >= 'a' && c <= 'f')
1588 digit = 10 + c - 'a';
1589 else
1590 break;
1591
1592 val *= 16;
1593 val += digit;
1594
1595 str++;
1596 }
1597
1598 if (nptr)
1599 *nptr = (char *)str;
1600
1601 return (val);
1602}
1603
cc99f275
DB
1604void
1605spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1606{
1607 /*
1608 * We bump the feature refcount for each special vdev added to the pool
1609 */
1610 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1611 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1612}
1613
34dc7c2f
BB
1614/*
1615 * ==========================================================================
1616 * Accessor functions
1617 * ==========================================================================
1618 */
1619
b128c09f
BB
1620boolean_t
1621spa_shutting_down(spa_t *spa)
34dc7c2f 1622{
b128c09f 1623 return (spa->spa_async_suspended);
34dc7c2f
BB
1624}
1625
1626dsl_pool_t *
1627spa_get_dsl(spa_t *spa)
1628{
1629 return (spa->spa_dsl_pool);
1630}
1631
9ae529ec
CS
1632boolean_t
1633spa_is_initializing(spa_t *spa)
1634{
1635 return (spa->spa_is_initializing);
1636}
1637
a1d477c2
MA
1638boolean_t
1639spa_indirect_vdevs_loaded(spa_t *spa)
1640{
1641 return (spa->spa_indirect_vdevs_loaded);
1642}
1643
34dc7c2f
BB
1644blkptr_t *
1645spa_get_rootblkptr(spa_t *spa)
1646{
1647 return (&spa->spa_ubsync.ub_rootbp);
1648}
1649
1650void
1651spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1652{
1653 spa->spa_uberblock.ub_rootbp = *bp;
1654}
1655
1656void
1657spa_altroot(spa_t *spa, char *buf, size_t buflen)
1658{
1659 if (spa->spa_root == NULL)
1660 buf[0] = '\0';
1661 else
1662 (void) strncpy(buf, spa->spa_root, buflen);
1663}
1664
1665int
1666spa_sync_pass(spa_t *spa)
1667{
1668 return (spa->spa_sync_pass);
1669}
1670
1671char *
1672spa_name(spa_t *spa)
1673{
34dc7c2f
BB
1674 return (spa->spa_name);
1675}
1676
1677uint64_t
1678spa_guid(spa_t *spa)
1679{
3bc7e0fb
GW
1680 dsl_pool_t *dp = spa_get_dsl(spa);
1681 uint64_t guid;
1682
34dc7c2f
BB
1683 /*
1684 * If we fail to parse the config during spa_load(), we can go through
1685 * the error path (which posts an ereport) and end up here with no root
3541dc6d 1686 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
34dc7c2f
BB
1687 * this case.
1688 */
3bc7e0fb
GW
1689 if (spa->spa_root_vdev == NULL)
1690 return (spa->spa_config_guid);
1691
1692 guid = spa->spa_last_synced_guid != 0 ?
1693 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1694
1695 /*
1696 * Return the most recently synced out guid unless we're
1697 * in syncing context.
1698 */
1699 if (dp && dsl_pool_sync_context(dp))
34dc7c2f
BB
1700 return (spa->spa_root_vdev->vdev_guid);
1701 else
3bc7e0fb 1702 return (guid);
3541dc6d
GA
1703}
1704
1705uint64_t
1706spa_load_guid(spa_t *spa)
1707{
1708 /*
1709 * This is a GUID that exists solely as a reference for the
1710 * purposes of the arc. It is generated at load time, and
1711 * is never written to persistent storage.
1712 */
1713 return (spa->spa_load_guid);
34dc7c2f
BB
1714}
1715
1716uint64_t
1717spa_last_synced_txg(spa_t *spa)
1718{
1719 return (spa->spa_ubsync.ub_txg);
1720}
1721
1722uint64_t
1723spa_first_txg(spa_t *spa)
1724{
1725 return (spa->spa_first_txg);
1726}
1727
428870ff
BB
1728uint64_t
1729spa_syncing_txg(spa_t *spa)
1730{
1731 return (spa->spa_syncing_txg);
1732}
1733
3b7f360c
GW
1734/*
1735 * Return the last txg where data can be dirtied. The final txgs
1736 * will be used to just clear out any deferred frees that remain.
1737 */
1738uint64_t
1739spa_final_dirty_txg(spa_t *spa)
1740{
1741 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1742}
1743
b128c09f 1744pool_state_t
34dc7c2f
BB
1745spa_state(spa_t *spa)
1746{
1747 return (spa->spa_state);
1748}
1749
428870ff
BB
1750spa_load_state_t
1751spa_load_state(spa_t *spa)
34dc7c2f 1752{
428870ff 1753 return (spa->spa_load_state);
34dc7c2f
BB
1754}
1755
34dc7c2f 1756uint64_t
428870ff 1757spa_freeze_txg(spa_t *spa)
34dc7c2f 1758{
428870ff 1759 return (spa->spa_freeze_txg);
34dc7c2f
BB
1760}
1761
047187c1 1762/*
1763 * Return the inflated asize for a logical write in bytes. This is used by the
1764 * DMU to calculate the space a logical write will require on disk.
1765 * If lsize is smaller than the largest physical block size allocatable on this
1766 * pool we use its value instead, since the write will end up using the whole
1767 * block anyway.
1768 */
34dc7c2f 1769uint64_t
3ec3bc21 1770spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1771{
047187c1 1772 if (lsize == 0)
1773 return (0); /* No inflation needed */
1774 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
34dc7c2f
BB
1775}
1776
3d45fdd6
MA
1777/*
1778 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
d7958b4c
MA
1779 * or at least 128MB, unless that would cause it to be more than half the
1780 * pool size.
3d45fdd6
MA
1781 *
1782 * See the comment above spa_slop_shift for details.
1783 */
1784uint64_t
4ea3f864
GM
1785spa_get_slop_space(spa_t *spa)
1786{
3d45fdd6 1787 uint64_t space = spa_get_dspace(spa);
d7958b4c 1788 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
3d45fdd6
MA
1789}
1790
34dc7c2f
BB
1791uint64_t
1792spa_get_dspace(spa_t *spa)
1793{
428870ff 1794 return (spa->spa_dspace);
34dc7c2f
BB
1795}
1796
d2734cce
SD
1797uint64_t
1798spa_get_checkpoint_space(spa_t *spa)
1799{
1800 return (spa->spa_checkpoint_info.sci_dspace);
1801}
1802
428870ff
BB
1803void
1804spa_update_dspace(spa_t *spa)
34dc7c2f 1805{
428870ff
BB
1806 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1807 ddt_get_dedup_dspace(spa);
a1d477c2
MA
1808 if (spa->spa_vdev_removal != NULL) {
1809 /*
1810 * We can't allocate from the removing device, so
1811 * subtract its size. This prevents the DMU/DSL from
1812 * filling up the (now smaller) pool while we are in the
1813 * middle of removing the device.
1814 *
1815 * Note that the DMU/DSL doesn't actually know or care
1816 * how much space is allocated (it does its own tracking
1817 * of how much space has been logically used). So it
1818 * doesn't matter that the data we are moving may be
1819 * allocated twice (on the old device and the new
1820 * device).
1821 */
9e052db4
MA
1822 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1823 vdev_t *vd =
1824 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
a1d477c2
MA
1825 spa->spa_dspace -= spa_deflate(spa) ?
1826 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
9e052db4 1827 spa_config_exit(spa, SCL_VDEV, FTAG);
a1d477c2 1828 }
34dc7c2f
BB
1829}
1830
1831/*
1832 * Return the failure mode that has been set to this pool. The default
1833 * behavior will be to block all I/Os when a complete failure occurs.
1834 */
8fb1ede1 1835uint64_t
34dc7c2f
BB
1836spa_get_failmode(spa_t *spa)
1837{
1838 return (spa->spa_failmode);
1839}
1840
b128c09f
BB
1841boolean_t
1842spa_suspended(spa_t *spa)
1843{
cec3a0a1 1844 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
b128c09f
BB
1845}
1846
34dc7c2f
BB
1847uint64_t
1848spa_version(spa_t *spa)
1849{
1850 return (spa->spa_ubsync.ub_version);
1851}
1852
428870ff
BB
1853boolean_t
1854spa_deflate(spa_t *spa)
1855{
1856 return (spa->spa_deflate);
1857}
1858
1859metaslab_class_t *
1860spa_normal_class(spa_t *spa)
1861{
1862 return (spa->spa_normal_class);
1863}
1864
1865metaslab_class_t *
1866spa_log_class(spa_t *spa)
1867{
1868 return (spa->spa_log_class);
1869}
1870
cc99f275
DB
1871metaslab_class_t *
1872spa_special_class(spa_t *spa)
1873{
1874 return (spa->spa_special_class);
1875}
1876
1877metaslab_class_t *
1878spa_dedup_class(spa_t *spa)
1879{
1880 return (spa->spa_dedup_class);
1881}
1882
1883/*
1884 * Locate an appropriate allocation class
1885 */
1886metaslab_class_t *
1887spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1888 uint_t level, uint_t special_smallblk)
1889{
1890 if (DMU_OT_IS_ZIL(objtype)) {
1891 if (spa->spa_log_class->mc_groups != 0)
1892 return (spa_log_class(spa));
1893 else
1894 return (spa_normal_class(spa));
1895 }
1896
1897 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1898
1899 if (DMU_OT_IS_DDT(objtype)) {
1900 if (spa->spa_dedup_class->mc_groups != 0)
1901 return (spa_dedup_class(spa));
1902 else if (has_special_class && zfs_ddt_data_is_special)
1903 return (spa_special_class(spa));
1904 else
1905 return (spa_normal_class(spa));
1906 }
1907
1908 /* Indirect blocks for user data can land in special if allowed */
1909 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1910 if (has_special_class && zfs_user_indirect_is_special)
1911 return (spa_special_class(spa));
1912 else
1913 return (spa_normal_class(spa));
1914 }
1915
1916 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1917 if (has_special_class)
1918 return (spa_special_class(spa));
1919 else
1920 return (spa_normal_class(spa));
1921 }
1922
1923 /*
1924 * Allow small file blocks in special class in some cases (like
1925 * for the dRAID vdev feature). But always leave a reserve of
1926 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1927 */
1928 if (DMU_OT_IS_FILE(objtype) &&
44170969 1929 has_special_class && size <= special_smallblk) {
cc99f275
DB
1930 metaslab_class_t *special = spa_special_class(spa);
1931 uint64_t alloc = metaslab_class_get_alloc(special);
1932 uint64_t space = metaslab_class_get_space(special);
1933 uint64_t limit =
1934 (space * (100 - zfs_special_class_metadata_reserve_pct))
1935 / 100;
1936
1937 if (alloc < limit)
1938 return (special);
1939 }
1940
1941 return (spa_normal_class(spa));
1942}
1943
0c66c32d
JG
1944void
1945spa_evicting_os_register(spa_t *spa, objset_t *os)
1946{
1947 mutex_enter(&spa->spa_evicting_os_lock);
1948 list_insert_head(&spa->spa_evicting_os_list, os);
1949 mutex_exit(&spa->spa_evicting_os_lock);
1950}
1951
1952void
1953spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1954{
1955 mutex_enter(&spa->spa_evicting_os_lock);
1956 list_remove(&spa->spa_evicting_os_list, os);
1957 cv_broadcast(&spa->spa_evicting_os_cv);
1958 mutex_exit(&spa->spa_evicting_os_lock);
1959}
1960
1961void
1962spa_evicting_os_wait(spa_t *spa)
1963{
1964 mutex_enter(&spa->spa_evicting_os_lock);
1965 while (!list_is_empty(&spa->spa_evicting_os_list))
1966 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1967 mutex_exit(&spa->spa_evicting_os_lock);
1968
1969 dmu_buf_user_evict_wait();
1970}
1971
34dc7c2f
BB
1972int
1973spa_max_replication(spa_t *spa)
1974{
1975 /*
1976 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1977 * handle BPs with more than one DVA allocated. Set our max
1978 * replication level accordingly.
1979 */
1980 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1981 return (1);
1982 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1983}
1984
428870ff
BB
1985int
1986spa_prev_software_version(spa_t *spa)
1987{
1988 return (spa->spa_prev_software_version);
1989}
1990
cc92e9d0
GW
1991uint64_t
1992spa_deadman_synctime(spa_t *spa)
1993{
1994 return (spa->spa_deadman_synctime);
1995}
1996
1b939560
BB
1997spa_autotrim_t
1998spa_get_autotrim(spa_t *spa)
1999{
2000 return (spa->spa_autotrim);
2001}
2002
8fb1ede1
BB
2003uint64_t
2004spa_deadman_ziotime(spa_t *spa)
2005{
2006 return (spa->spa_deadman_ziotime);
2007}
2008
2009uint64_t
2010spa_get_deadman_failmode(spa_t *spa)
2011{
2012 return (spa->spa_deadman_failmode);
2013}
2014
2015void
2016spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2017{
2018 if (strcmp(failmode, "wait") == 0)
2019 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2020 else if (strcmp(failmode, "continue") == 0)
2021 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2022 else if (strcmp(failmode, "panic") == 0)
2023 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2024 else
2025 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2026}
2027
57940b43
RM
2028void
2029spa_set_deadman_ziotime(hrtime_t ns)
2030{
2031 spa_t *spa = NULL;
2032
2033 if (spa_mode_global != SPA_MODE_UNINIT) {
2034 mutex_enter(&spa_namespace_lock);
2035 while ((spa = spa_next(spa)) != NULL)
2036 spa->spa_deadman_ziotime = ns;
2037 mutex_exit(&spa_namespace_lock);
2038 }
2039}
2040
2041void
2042spa_set_deadman_synctime(hrtime_t ns)
2043{
2044 spa_t *spa = NULL;
2045
2046 if (spa_mode_global != SPA_MODE_UNINIT) {
2047 mutex_enter(&spa_namespace_lock);
2048 while ((spa = spa_next(spa)) != NULL)
2049 spa->spa_deadman_synctime = ns;
2050 mutex_exit(&spa_namespace_lock);
2051 }
2052}
2053
34dc7c2f 2054uint64_t
428870ff 2055dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 2056{
428870ff
BB
2057 uint64_t asize = DVA_GET_ASIZE(dva);
2058 uint64_t dsize = asize;
34dc7c2f 2059
428870ff 2060 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 2061
428870ff
BB
2062 if (asize != 0 && spa->spa_deflate) {
2063 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2c33b912
BB
2064 if (vd != NULL)
2065 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2066 vd->vdev_deflate_ratio;
34dc7c2f 2067 }
428870ff
BB
2068
2069 return (dsize);
2070}
2071
2072uint64_t
2073bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2074{
2075 uint64_t dsize = 0;
2076
1c27024e 2077 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
2078 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2079
2080 return (dsize);
2081}
2082
2083uint64_t
2084bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2085{
2086 uint64_t dsize = 0;
2087
2088 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2089
1c27024e 2090 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
2091 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2092
b128c09f 2093 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
2094
2095 return (dsize);
34dc7c2f
BB
2096}
2097
dae3e9ea
DB
2098uint64_t
2099spa_dirty_data(spa_t *spa)
2100{
2101 return (spa->spa_dsl_pool->dp_dirty_total);
2102}
2103
ca95f70d
OF
2104/*
2105 * ==========================================================================
2106 * SPA Import Progress Routines
2107 * ==========================================================================
2108 */
2109
2110typedef struct spa_import_progress {
2111 uint64_t pool_guid; /* unique id for updates */
2112 char *pool_name;
2113 spa_load_state_t spa_load_state;
2114 uint64_t mmp_sec_remaining; /* MMP activity check */
2115 uint64_t spa_load_max_txg; /* rewind txg */
2116 procfs_list_node_t smh_node;
2117} spa_import_progress_t;
2118
2119spa_history_list_t *spa_import_progress_list = NULL;
2120
2121static int
2122spa_import_progress_show_header(struct seq_file *f)
2123{
2124 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2125 "load_state", "multihost_secs", "max_txg",
2126 "pool_name");
2127 return (0);
2128}
2129
2130static int
2131spa_import_progress_show(struct seq_file *f, void *data)
2132{
2133 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2134
2135 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2136 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2137 (u_longlong_t)sip->mmp_sec_remaining,
2138 (u_longlong_t)sip->spa_load_max_txg,
2139 (sip->pool_name ? sip->pool_name : "-"));
2140
2141 return (0);
2142}
2143
2144/* Remove oldest elements from list until there are no more than 'size' left */
2145static void
2146spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2147{
2148 spa_import_progress_t *sip;
2149 while (shl->size > size) {
2150 sip = list_remove_head(&shl->procfs_list.pl_list);
2151 if (sip->pool_name)
2152 spa_strfree(sip->pool_name);
2153 kmem_free(sip, sizeof (spa_import_progress_t));
2154 shl->size--;
2155 }
2156
2157 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2158}
2159
2160static void
2161spa_import_progress_init(void)
2162{
2163 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2164 KM_SLEEP);
2165
2166 spa_import_progress_list->size = 0;
2167
2168 spa_import_progress_list->procfs_list.pl_private =
2169 spa_import_progress_list;
2170
2171 procfs_list_install("zfs",
7b8363d7 2172 NULL,
ca95f70d
OF
2173 "import_progress",
2174 0644,
2175 &spa_import_progress_list->procfs_list,
2176 spa_import_progress_show,
2177 spa_import_progress_show_header,
2178 NULL,
2179 offsetof(spa_import_progress_t, smh_node));
2180}
2181
2182static void
2183spa_import_progress_destroy(void)
2184{
2185 spa_history_list_t *shl = spa_import_progress_list;
2186 procfs_list_uninstall(&shl->procfs_list);
2187 spa_import_progress_truncate(shl, 0);
ca95f70d 2188 procfs_list_destroy(&shl->procfs_list);
75c09c50 2189 kmem_free(shl, sizeof (spa_history_list_t));
ca95f70d
OF
2190}
2191
2192int
2193spa_import_progress_set_state(uint64_t pool_guid,
2194 spa_load_state_t load_state)
2195{
2196 spa_history_list_t *shl = spa_import_progress_list;
2197 spa_import_progress_t *sip;
2198 int error = ENOENT;
2199
2200 if (shl->size == 0)
2201 return (0);
2202
2203 mutex_enter(&shl->procfs_list.pl_lock);
2204 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2205 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2206 if (sip->pool_guid == pool_guid) {
2207 sip->spa_load_state = load_state;
2208 error = 0;
2209 break;
2210 }
2211 }
2212 mutex_exit(&shl->procfs_list.pl_lock);
2213
2214 return (error);
2215}
2216
2217int
2218spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2219{
2220 spa_history_list_t *shl = spa_import_progress_list;
2221 spa_import_progress_t *sip;
2222 int error = ENOENT;
2223
2224 if (shl->size == 0)
2225 return (0);
2226
2227 mutex_enter(&shl->procfs_list.pl_lock);
2228 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2229 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2230 if (sip->pool_guid == pool_guid) {
2231 sip->spa_load_max_txg = load_max_txg;
2232 error = 0;
2233 break;
2234 }
2235 }
2236 mutex_exit(&shl->procfs_list.pl_lock);
2237
2238 return (error);
2239}
2240
2241int
2242spa_import_progress_set_mmp_check(uint64_t pool_guid,
2243 uint64_t mmp_sec_remaining)
2244{
2245 spa_history_list_t *shl = spa_import_progress_list;
2246 spa_import_progress_t *sip;
2247 int error = ENOENT;
2248
2249 if (shl->size == 0)
2250 return (0);
2251
2252 mutex_enter(&shl->procfs_list.pl_lock);
2253 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2254 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2255 if (sip->pool_guid == pool_guid) {
2256 sip->mmp_sec_remaining = mmp_sec_remaining;
2257 error = 0;
2258 break;
2259 }
2260 }
2261 mutex_exit(&shl->procfs_list.pl_lock);
2262
2263 return (error);
2264}
2265
2266/*
2267 * A new import is in progress, add an entry.
2268 */
2269void
2270spa_import_progress_add(spa_t *spa)
2271{
2272 spa_history_list_t *shl = spa_import_progress_list;
2273 spa_import_progress_t *sip;
2274 char *poolname = NULL;
2275
2276 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2277 sip->pool_guid = spa_guid(spa);
2278
2279 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2280 &poolname);
2281 if (poolname == NULL)
2282 poolname = spa_name(spa);
2283 sip->pool_name = spa_strdup(poolname);
2284 sip->spa_load_state = spa_load_state(spa);
2285
2286 mutex_enter(&shl->procfs_list.pl_lock);
2287 procfs_list_add(&shl->procfs_list, sip);
2288 shl->size++;
2289 mutex_exit(&shl->procfs_list.pl_lock);
2290}
2291
2292void
2293spa_import_progress_remove(uint64_t pool_guid)
2294{
2295 spa_history_list_t *shl = spa_import_progress_list;
2296 spa_import_progress_t *sip;
2297
2298 mutex_enter(&shl->procfs_list.pl_lock);
2299 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2300 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2301 if (sip->pool_guid == pool_guid) {
2302 if (sip->pool_name)
2303 spa_strfree(sip->pool_name);
2304 list_remove(&shl->procfs_list.pl_list, sip);
2305 shl->size--;
2306 kmem_free(sip, sizeof (spa_import_progress_t));
2307 break;
2308 }
2309 }
2310 mutex_exit(&shl->procfs_list.pl_lock);
2311}
2312
34dc7c2f
BB
2313/*
2314 * ==========================================================================
2315 * Initialization and Termination
2316 * ==========================================================================
2317 */
2318
2319static int
2320spa_name_compare(const void *a1, const void *a2)
2321{
2322 const spa_t *s1 = a1;
2323 const spa_t *s2 = a2;
2324 int s;
2325
2326 s = strcmp(s1->spa_name, s2->spa_name);
ee36c709 2327
ca577779 2328 return (TREE_ISIGN(s));
34dc7c2f
BB
2329}
2330
34dc7c2f 2331void
0bc8fd78 2332spa_boot_init(void)
34dc7c2f
BB
2333{
2334 spa_config_load();
2335}
2336
2337void
da92d5cb 2338spa_init(spa_mode_t mode)
34dc7c2f
BB
2339{
2340 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2341 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2342 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2343 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2344
2345 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2346 offsetof(spa_t, spa_avl));
2347
2348 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2349 offsetof(spa_aux_t, aux_avl));
2350
2351 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2352 offsetof(spa_aux_t, aux_avl));
2353
fb5f0bc8 2354 spa_mode_global = mode;
34dc7c2f 2355
498877ba 2356#ifndef _KERNEL
da92d5cb 2357 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
498877ba
MA
2358 struct sigaction sa;
2359
2360 sa.sa_flags = SA_SIGINFO;
2361 sigemptyset(&sa.sa_mask);
2362 sa.sa_sigaction = arc_buf_sigsegv;
2363
2364 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2365 perror("could not enable watchpoints: "
2366 "sigaction(SIGSEGV, ...) = ");
2367 } else {
2368 arc_watch = B_TRUE;
2369 }
2370 }
2371#endif
2372
26685276 2373 fm_init();
424fd7c3 2374 zfs_refcount_init();
34dc7c2f 2375 unique_init();
ca577779
PD
2376 zfs_btree_init();
2377 metaslab_stat_init();
ecf3d9b8 2378 ddt_init();
34dc7c2f
BB
2379 zio_init();
2380 dmu_init();
2381 zil_init();
2382 vdev_cache_stat_init();
551905dd 2383 vdev_mirror_stat_init();
ab9f4b0b 2384 vdev_raidz_math_init();
da8f51e1 2385 vdev_file_init();
34dc7c2f
BB
2386 zfs_prop_init();
2387 zpool_prop_init();
9ae529ec 2388 zpool_feature_init();
34dc7c2f 2389 spa_config_load();
b128c09f 2390 l2arc_start();
d4a72f23 2391 scan_init();
6a9d6359 2392 qat_init();
ca95f70d 2393 spa_import_progress_init();
34dc7c2f
BB
2394}
2395
2396void
2397spa_fini(void)
2398{
b128c09f
BB
2399 l2arc_stop();
2400
34dc7c2f
BB
2401 spa_evict_all();
2402
da8f51e1 2403 vdev_file_fini();
34dc7c2f 2404 vdev_cache_stat_fini();
551905dd 2405 vdev_mirror_stat_fini();
ab9f4b0b 2406 vdev_raidz_math_fini();
34dc7c2f
BB
2407 zil_fini();
2408 dmu_fini();
2409 zio_fini();
ecf3d9b8 2410 ddt_fini();
ca577779
PD
2411 metaslab_stat_fini();
2412 zfs_btree_fini();
34dc7c2f 2413 unique_fini();
424fd7c3 2414 zfs_refcount_fini();
26685276 2415 fm_fini();
d4a72f23 2416 scan_fini();
6a9d6359 2417 qat_fini();
ca95f70d 2418 spa_import_progress_destroy();
34dc7c2f
BB
2419
2420 avl_destroy(&spa_namespace_avl);
2421 avl_destroy(&spa_spare_avl);
2422 avl_destroy(&spa_l2cache_avl);
2423
2424 cv_destroy(&spa_namespace_cv);
2425 mutex_destroy(&spa_namespace_lock);
2426 mutex_destroy(&spa_spare_lock);
2427 mutex_destroy(&spa_l2cache_lock);
2428}
2429
2430/*
2431 * Return whether this pool has slogs. No locking needed.
2432 * It's not a problem if the wrong answer is returned as it's only for
2433 * performance and not correctness
2434 */
2435boolean_t
2436spa_has_slogs(spa_t *spa)
2437{
2438 return (spa->spa_log_class->mc_rotor != NULL);
2439}
b128c09f 2440
428870ff
BB
2441spa_log_state_t
2442spa_get_log_state(spa_t *spa)
2443{
2444 return (spa->spa_log_state);
2445}
2446
2447void
2448spa_set_log_state(spa_t *spa, spa_log_state_t state)
2449{
2450 spa->spa_log_state = state;
2451}
2452
b128c09f
BB
2453boolean_t
2454spa_is_root(spa_t *spa)
2455{
2456 return (spa->spa_is_root);
2457}
fb5f0bc8
BB
2458
2459boolean_t
2460spa_writeable(spa_t *spa)
2461{
da92d5cb 2462 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
fb5f0bc8
BB
2463}
2464
acbad6ff
AR
2465/*
2466 * Returns true if there is a pending sync task in any of the current
2467 * syncing txg, the current quiescing txg, or the current open txg.
2468 */
2469boolean_t
2470spa_has_pending_synctask(spa_t *spa)
2471{
d2734cce
SD
2472 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2473 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
acbad6ff
AR
2474}
2475
da92d5cb 2476spa_mode_t
fb5f0bc8
BB
2477spa_mode(spa_t *spa)
2478{
2479 return (spa->spa_mode);
2480}
428870ff
BB
2481
2482uint64_t
2483spa_bootfs(spa_t *spa)
2484{
2485 return (spa->spa_bootfs);
2486}
2487
2488uint64_t
2489spa_delegation(spa_t *spa)
2490{
2491 return (spa->spa_delegation);
2492}
2493
2494objset_t *
2495spa_meta_objset(spa_t *spa)
2496{
2497 return (spa->spa_meta_objset);
2498}
2499
2500enum zio_checksum
2501spa_dedup_checksum(spa_t *spa)
2502{
2503 return (spa->spa_dedup_checksum);
2504}
2505
2506/*
2507 * Reset pool scan stat per scan pass (or reboot).
2508 */
2509void
2510spa_scan_stat_init(spa_t *spa)
2511{
2512 /* data not stored on disk */
2513 spa->spa_scan_pass_start = gethrestime_sec();
0ea05c64
AP
2514 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2515 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2516 else
2517 spa->spa_scan_pass_scrub_pause = 0;
2518 spa->spa_scan_pass_scrub_spent_paused = 0;
428870ff 2519 spa->spa_scan_pass_exam = 0;
d4a72f23 2520 spa->spa_scan_pass_issued = 0;
428870ff
BB
2521 vdev_scan_stat_init(spa->spa_root_vdev);
2522}
2523
2524/*
2525 * Get scan stats for zpool status reports
2526 */
2527int
2528spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2529{
2530 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2531
2532 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2e528b49 2533 return (SET_ERROR(ENOENT));
428870ff
BB
2534 bzero(ps, sizeof (pool_scan_stat_t));
2535
2536 /* data stored on disk */
2537 ps->pss_func = scn->scn_phys.scn_func;
d4a72f23 2538 ps->pss_state = scn->scn_phys.scn_state;
428870ff
BB
2539 ps->pss_start_time = scn->scn_phys.scn_start_time;
2540 ps->pss_end_time = scn->scn_phys.scn_end_time;
2541 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
d4677269 2542 ps->pss_examined = scn->scn_phys.scn_examined;
428870ff
BB
2543 ps->pss_to_process = scn->scn_phys.scn_to_process;
2544 ps->pss_processed = scn->scn_phys.scn_processed;
2545 ps->pss_errors = scn->scn_phys.scn_errors;
428870ff
BB
2546
2547 /* data not stored on disk */
428870ff 2548 ps->pss_pass_exam = spa->spa_scan_pass_exam;
d4677269 2549 ps->pss_pass_start = spa->spa_scan_pass_start;
0ea05c64
AP
2550 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2551 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
d4677269
TC
2552 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2553 ps->pss_issued =
2554 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
428870ff
BB
2555
2556 return (0);
2557}
c28b2279 2558
f1512ee6
MA
2559int
2560spa_maxblocksize(spa_t *spa)
2561{
2562 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2563 return (SPA_MAXBLOCKSIZE);
2564 else
2565 return (SPA_OLD_MAXBLOCKSIZE);
2566}
2567
a1d477c2
MA
2568
2569/*
2570 * Returns the txg that the last device removal completed. No indirect mappings
2571 * have been added since this txg.
2572 */
2573uint64_t
2574spa_get_last_removal_txg(spa_t *spa)
2575{
2576 uint64_t vdevid;
2577 uint64_t ret = -1ULL;
2578
2579 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2580 /*
2581 * sr_prev_indirect_vdev is only modified while holding all the
2582 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2583 * examining it.
2584 */
2585 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2586
2587 while (vdevid != -1ULL) {
2588 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2589 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2590
2591 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2592
2593 /*
2594 * If the removal did not remap any data, we don't care.
2595 */
2596 if (vdev_indirect_births_count(vib) != 0) {
2597 ret = vdev_indirect_births_last_entry_txg(vib);
2598 break;
2599 }
2600
2601 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2602 }
2603 spa_config_exit(spa, SCL_VDEV, FTAG);
2604
2605 IMPLY(ret != -1ULL,
2606 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2607
2608 return (ret);
2609}
2610
50c957f7
NB
2611int
2612spa_maxdnodesize(spa_t *spa)
2613{
2614 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2615 return (DNODE_MAX_SIZE);
2616 else
2617 return (DNODE_MIN_SIZE);
2618}
2619
379ca9cf
OF
2620boolean_t
2621spa_multihost(spa_t *spa)
2622{
2623 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2624}
2625
25f06d67
BB
2626uint32_t
2627spa_get_hostid(spa_t *spa)
379ca9cf 2628{
25f06d67 2629 return (spa->spa_hostid);
379ca9cf
OF
2630}
2631
6cb8e530
PZ
2632boolean_t
2633spa_trust_config(spa_t *spa)
2634{
2635 return (spa->spa_trust_config);
2636}
2637
2638uint64_t
2639spa_missing_tvds_allowed(spa_t *spa)
2640{
2641 return (spa->spa_missing_tvds_allowed);
2642}
2643
93e28d66
SD
2644space_map_t *
2645spa_syncing_log_sm(spa_t *spa)
2646{
2647 return (spa->spa_syncing_log_sm);
2648}
2649
6cb8e530
PZ
2650void
2651spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2652{
2653 spa->spa_missing_tvds = missing;
2654}
2655
f0ed6c74
TH
2656/*
2657 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2658 */
2659const char *
2660spa_state_to_name(spa_t *spa)
2661{
78fac8d9
RE
2662 ASSERT3P(spa, !=, NULL);
2663
2664 /*
2665 * it is possible for the spa to exist, without root vdev
2666 * as the spa transitions during import/export
2667 */
2668 vdev_t *rvd = spa->spa_root_vdev;
2669 if (rvd == NULL) {
2670 return ("TRANSITIONING");
2671 }
2672 vdev_state_t state = rvd->vdev_state;
2673 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
f0ed6c74
TH
2674
2675 if (spa_suspended(spa) &&
2676 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2677 return ("SUSPENDED");
2678
2679 switch (state) {
2680 case VDEV_STATE_CLOSED:
2681 case VDEV_STATE_OFFLINE:
2682 return ("OFFLINE");
2683 case VDEV_STATE_REMOVED:
2684 return ("REMOVED");
2685 case VDEV_STATE_CANT_OPEN:
2686 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2687 return ("FAULTED");
2688 else if (aux == VDEV_AUX_SPLIT_POOL)
2689 return ("SPLIT");
2690 else
2691 return ("UNAVAIL");
2692 case VDEV_STATE_FAULTED:
2693 return ("FAULTED");
2694 case VDEV_STATE_DEGRADED:
2695 return ("DEGRADED");
2696 case VDEV_STATE_HEALTHY:
2697 return ("ONLINE");
2698 default:
2699 break;
2700 }
2701
2702 return ("UNKNOWN");
2703}
2704
d2734cce
SD
2705boolean_t
2706spa_top_vdevs_spacemap_addressable(spa_t *spa)
2707{
2708 vdev_t *rvd = spa->spa_root_vdev;
2709 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2710 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2711 return (B_FALSE);
2712 }
2713 return (B_TRUE);
2714}
2715
2716boolean_t
2717spa_has_checkpoint(spa_t *spa)
2718{
2719 return (spa->spa_checkpoint_txg != 0);
2720}
2721
2722boolean_t
2723spa_importing_readonly_checkpoint(spa_t *spa)
2724{
2725 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
da92d5cb 2726 spa->spa_mode == SPA_MODE_READ);
d2734cce
SD
2727}
2728
2729uint64_t
2730spa_min_claim_txg(spa_t *spa)
2731{
2732 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2733
2734 if (checkpoint_txg != 0)
2735 return (checkpoint_txg + 1);
2736
2737 return (spa->spa_first_txg);
2738}
2739
2740/*
2741 * If there is a checkpoint, async destroys may consume more space from
2742 * the pool instead of freeing it. In an attempt to save the pool from
2743 * getting suspended when it is about to run out of space, we stop
2744 * processing async destroys.
2745 */
2746boolean_t
2747spa_suspend_async_destroy(spa_t *spa)
2748{
2749 dsl_pool_t *dp = spa_get_dsl(spa);
2750
2751 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2752 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2753 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2754 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2755
2756 if (spa_has_checkpoint(spa) && avail == 0)
2757 return (B_TRUE);
2758
2759 return (B_FALSE);
2760}
2761
93ce2b4c 2762#if defined(_KERNEL)
8fb1ede1 2763
e64e84ec
MM
2764int
2765param_set_deadman_failmode_common(const char *val)
8fb1ede1
BB
2766{
2767 spa_t *spa = NULL;
2768 char *p;
2769
2770 if (val == NULL)
e64e84ec 2771 return (SET_ERROR(EINVAL));
8fb1ede1
BB
2772
2773 if ((p = strchr(val, '\n')) != NULL)
2774 *p = '\0';
2775
2776 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2777 strcmp(val, "panic"))
e64e84ec 2778 return (SET_ERROR(EINVAL));
8fb1ede1 2779
da92d5cb 2780 if (spa_mode_global != SPA_MODE_UNINIT) {
d1043e2f
TC
2781 mutex_enter(&spa_namespace_lock);
2782 while ((spa = spa_next(spa)) != NULL)
2783 spa_set_deadman_failmode(spa, val);
2784 mutex_exit(&spa_namespace_lock);
2785 }
8fb1ede1 2786
e64e84ec 2787 return (0);
8fb1ede1 2788}
03fdcb9a
MM
2789#endif
2790
c28b2279
BB
2791/* Namespace manipulation */
2792EXPORT_SYMBOL(spa_lookup);
2793EXPORT_SYMBOL(spa_add);
2794EXPORT_SYMBOL(spa_remove);
2795EXPORT_SYMBOL(spa_next);
2796
2797/* Refcount functions */
2798EXPORT_SYMBOL(spa_open_ref);
2799EXPORT_SYMBOL(spa_close);
2800EXPORT_SYMBOL(spa_refcount_zero);
2801
2802/* Pool configuration lock */
2803EXPORT_SYMBOL(spa_config_tryenter);
2804EXPORT_SYMBOL(spa_config_enter);
2805EXPORT_SYMBOL(spa_config_exit);
2806EXPORT_SYMBOL(spa_config_held);
2807
2808/* Pool vdev add/remove lock */
2809EXPORT_SYMBOL(spa_vdev_enter);
2810EXPORT_SYMBOL(spa_vdev_exit);
2811
2812/* Pool vdev state change lock */
2813EXPORT_SYMBOL(spa_vdev_state_enter);
2814EXPORT_SYMBOL(spa_vdev_state_exit);
2815
2816/* Accessor functions */
2817EXPORT_SYMBOL(spa_shutting_down);
2818EXPORT_SYMBOL(spa_get_dsl);
2819EXPORT_SYMBOL(spa_get_rootblkptr);
2820EXPORT_SYMBOL(spa_set_rootblkptr);
2821EXPORT_SYMBOL(spa_altroot);
2822EXPORT_SYMBOL(spa_sync_pass);
2823EXPORT_SYMBOL(spa_name);
2824EXPORT_SYMBOL(spa_guid);
2825EXPORT_SYMBOL(spa_last_synced_txg);
2826EXPORT_SYMBOL(spa_first_txg);
2827EXPORT_SYMBOL(spa_syncing_txg);
2828EXPORT_SYMBOL(spa_version);
2829EXPORT_SYMBOL(spa_state);
2830EXPORT_SYMBOL(spa_load_state);
2831EXPORT_SYMBOL(spa_freeze_txg);
c28b2279
BB
2832EXPORT_SYMBOL(spa_get_dspace);
2833EXPORT_SYMBOL(spa_update_dspace);
2834EXPORT_SYMBOL(spa_deflate);
2835EXPORT_SYMBOL(spa_normal_class);
2836EXPORT_SYMBOL(spa_log_class);
cc99f275
DB
2837EXPORT_SYMBOL(spa_special_class);
2838EXPORT_SYMBOL(spa_preferred_class);
c28b2279
BB
2839EXPORT_SYMBOL(spa_max_replication);
2840EXPORT_SYMBOL(spa_prev_software_version);
2841EXPORT_SYMBOL(spa_get_failmode);
2842EXPORT_SYMBOL(spa_suspended);
2843EXPORT_SYMBOL(spa_bootfs);
2844EXPORT_SYMBOL(spa_delegation);
2845EXPORT_SYMBOL(spa_meta_objset);
f1512ee6 2846EXPORT_SYMBOL(spa_maxblocksize);
50c957f7 2847EXPORT_SYMBOL(spa_maxdnodesize);
c28b2279
BB
2848
2849/* Miscellaneous support routines */
c28b2279
BB
2850EXPORT_SYMBOL(spa_guid_exists);
2851EXPORT_SYMBOL(spa_strdup);
2852EXPORT_SYMBOL(spa_strfree);
2853EXPORT_SYMBOL(spa_get_random);
2854EXPORT_SYMBOL(spa_generate_guid);
b0bc7a84 2855EXPORT_SYMBOL(snprintf_blkptr);
c28b2279
BB
2856EXPORT_SYMBOL(spa_freeze);
2857EXPORT_SYMBOL(spa_upgrade);
2858EXPORT_SYMBOL(spa_evict_all);
2859EXPORT_SYMBOL(spa_lookup_by_guid);
2860EXPORT_SYMBOL(spa_has_spare);
2861EXPORT_SYMBOL(dva_get_dsize_sync);
2862EXPORT_SYMBOL(bp_get_dsize_sync);
2863EXPORT_SYMBOL(bp_get_dsize);
2864EXPORT_SYMBOL(spa_has_slogs);
2865EXPORT_SYMBOL(spa_is_root);
2866EXPORT_SYMBOL(spa_writeable);
2867EXPORT_SYMBOL(spa_mode);
c28b2279 2868EXPORT_SYMBOL(spa_namespace_lock);
6cb8e530
PZ
2869EXPORT_SYMBOL(spa_trust_config);
2870EXPORT_SYMBOL(spa_missing_tvds_allowed);
2871EXPORT_SYMBOL(spa_set_missing_tvds);
f0ed6c74 2872EXPORT_SYMBOL(spa_state_to_name);
d2734cce
SD
2873EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2874EXPORT_SYMBOL(spa_min_claim_txg);
2875EXPORT_SYMBOL(spa_suspend_async_destroy);
2876EXPORT_SYMBOL(spa_has_checkpoint);
2877EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
cc92e9d0 2878
03fdcb9a
MM
2879ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2880 "Set additional debugging flags");
0b39b9f9 2881
03fdcb9a
MM
2882ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2883 "Set to attempt to recover from fatal errors");
0b39b9f9 2884
03fdcb9a 2885ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
0b39b9f9
PS
2886 "Set to ignore IO errors during free and permanently leak the space");
2887
03fdcb9a
MM
2888ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
2889 "Dead I/O check interval in milliseconds");
2890
2891ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
2892 "Enable deadman timer");
2893
2894ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2895 "SPA size estimate multiplication factor");
2896
2897ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2898 "Place DDT data into the special class");
2899
2900ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2901 "Place user data indirect blocks into the special class");
2902
03fdcb9a 2903/* BEGIN CSTYLED */
e64e84ec
MM
2904ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2905 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2906 "Failmode for deadman timer");
2907
2a3aa5a1
MM
2908ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2909 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2910 "Pool sync expiration time in milliseconds");
2911
2912ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2913 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2914 "IO expiration time in milliseconds");
2915
03fdcb9a 2916ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
1f02ecc5
D
2917 "Small file blocks in special vdevs depends on this much "
2918 "free space available");
02730c33 2919/* END CSTYLED */
2a3aa5a1 2920
7e3df9db 2921ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2a3aa5a1 2922 param_get_int, ZMOD_RW, "Reserved free space in pool");