]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/spa_misc.c
Make metaslab class rotor and aliquot per-allocator.
[mirror_zfs.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
93e28d66 23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
adfe9d93 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
3c67d83a 26 * Copyright 2013 Saso Kiselkov. All rights reserved.
0ea05c64 27 * Copyright (c) 2017 Datto Inc.
cc99f275 28 * Copyright (c) 2017, Intel Corporation.
e3570464 29 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
34dc7c2f
BB
30 */
31
34dc7c2f
BB
32#include <sys/zfs_context.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/zio_checksum.h>
36#include <sys/zio_compress.h>
37#include <sys/dmu.h>
38#include <sys/dmu_tx.h>
39#include <sys/zap.h>
40#include <sys/zil.h>
41#include <sys/vdev_impl.h>
619f0976 42#include <sys/vdev_initialize.h>
1b939560 43#include <sys/vdev_trim.h>
bc25c932 44#include <sys/vdev_file.h>
ab9f4b0b 45#include <sys/vdev_raidz.h>
34dc7c2f
BB
46#include <sys/metaslab.h>
47#include <sys/uberblock_impl.h>
48#include <sys/txg.h>
49#include <sys/avl.h>
50#include <sys/unique.h>
51#include <sys/dsl_pool.h>
52#include <sys/dsl_dir.h>
53#include <sys/dsl_prop.h>
26685276 54#include <sys/fm/util.h>
428870ff 55#include <sys/dsl_scan.h>
34dc7c2f
BB
56#include <sys/fs/zfs.h>
57#include <sys/metaslab_impl.h>
b128c09f 58#include <sys/arc.h>
428870ff 59#include <sys/ddt.h>
1421c891 60#include <sys/kstat.h>
34dc7c2f 61#include "zfs_prop.h"
ca577779 62#include <sys/btree.h>
3c67d83a 63#include <sys/zfeature.h>
bced7e3a 64#include <sys/qat.h>
10b3c7f5 65#include <sys/zstd/zstd.h>
34dc7c2f
BB
66
67/*
68 * SPA locking
69 *
93e28d66 70 * There are three basic locks for managing spa_t structures:
34dc7c2f
BB
71 *
72 * spa_namespace_lock (global mutex)
73 *
74 * This lock must be acquired to do any of the following:
75 *
76 * - Lookup a spa_t by name
77 * - Add or remove a spa_t from the namespace
78 * - Increase spa_refcount from non-zero
79 * - Check if spa_refcount is zero
80 * - Rename a spa_t
81 * - add/remove/attach/detach devices
82 * - Held for the duration of create/destroy/import/export
83 *
84 * It does not need to handle recursion. A create or destroy may
85 * reference objects (files or zvols) in other pools, but by
86 * definition they must have an existing reference, and will never need
87 * to lookup a spa_t by name.
88 *
c13060e4 89 * spa_refcount (per-spa zfs_refcount_t protected by mutex)
34dc7c2f
BB
90 *
91 * This reference count keep track of any active users of the spa_t. The
92 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
93 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 94 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
95 * present the image of a zero/non-zero value to consumers.
96 *
b128c09f 97 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
98 *
99 * This protects the spa_t from config changes, and must be held in
100 * the following circumstances:
101 *
102 * - RW_READER to perform I/O to the spa
103 * - RW_WRITER to change the vdev config
104 *
34dc7c2f
BB
105 * The locking order is fairly straightforward:
106 *
107 * spa_namespace_lock -> spa_refcount
108 *
109 * The namespace lock must be acquired to increase the refcount from 0
110 * or to check if it is zero.
111 *
b128c09f 112 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
113 *
114 * There must be at least one valid reference on the spa_t to acquire
115 * the config lock.
116 *
b128c09f 117 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
118 *
119 * The namespace lock must always be taken before the config lock.
120 *
121 *
b128c09f 122 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 123 *
b128c09f
BB
124 * The namespace is manipulated using the following functions, all of which
125 * require the spa_namespace_lock to be held.
34dc7c2f
BB
126 *
127 * spa_lookup() Lookup a spa_t by name.
128 *
129 * spa_add() Create a new spa_t in the namespace.
130 *
131 * spa_remove() Remove a spa_t from the namespace. This also
132 * frees up any memory associated with the spa_t.
133 *
134 * spa_next() Returns the next spa_t in the system, or the
135 * first if NULL is passed.
136 *
137 * spa_evict_all() Shutdown and remove all spa_t structures in
138 * the system.
139 *
140 * spa_guid_exists() Determine whether a pool/device guid exists.
141 *
142 * The spa_refcount is manipulated using the following functions:
143 *
144 * spa_open_ref() Adds a reference to the given spa_t. Must be
145 * called with spa_namespace_lock held if the
146 * refcount is currently zero.
147 *
148 * spa_close() Remove a reference from the spa_t. This will
149 * not free the spa_t or remove it from the
150 * namespace. No locking is required.
151 *
152 * spa_refcount_zero() Returns true if the refcount is currently
153 * zero. Must be called with spa_namespace_lock
154 * held.
155 *
b128c09f
BB
156 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
157 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
158 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
159 *
160 * To read the configuration, it suffices to hold one of these locks as reader.
161 * To modify the configuration, you must hold all locks as writer. To modify
162 * vdev state without altering the vdev tree's topology (e.g. online/offline),
163 * you must hold SCL_STATE and SCL_ZIO as writer.
164 *
165 * We use these distinct config locks to avoid recursive lock entry.
166 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
167 * block allocations (SCL_ALLOC), which may require reading space maps
168 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
169 *
170 * The spa config locks cannot be normal rwlocks because we need the
171 * ability to hand off ownership. For example, SCL_ZIO is acquired
172 * by the issuing thread and later released by an interrupt thread.
173 * They do, however, obey the usual write-wanted semantics to prevent
174 * writer (i.e. system administrator) starvation.
175 *
176 * The lock acquisition rules are as follows:
177 *
178 * SCL_CONFIG
179 * Protects changes to the vdev tree topology, such as vdev
180 * add/remove/attach/detach. Protects the dirty config list
181 * (spa_config_dirty_list) and the set of spares and l2arc devices.
182 *
183 * SCL_STATE
184 * Protects changes to pool state and vdev state, such as vdev
185 * online/offline/fault/degrade/clear. Protects the dirty state list
186 * (spa_state_dirty_list) and global pool state (spa_state).
187 *
188 * SCL_ALLOC
189 * Protects changes to metaslab groups and classes.
190 * Held as reader by metaslab_alloc() and metaslab_claim().
191 *
192 * SCL_ZIO
193 * Held by bp-level zios (those which have no io_vd upon entry)
194 * to prevent changes to the vdev tree. The bp-level zio implicitly
195 * protects all of its vdev child zios, which do not hold SCL_ZIO.
196 *
197 * SCL_FREE
198 * Protects changes to metaslab groups and classes.
199 * Held as reader by metaslab_free(). SCL_FREE is distinct from
200 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
201 * blocks in zio_done() while another i/o that holds either
202 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
203 *
204 * SCL_VDEV
205 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 206 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
207 * other locks, and lower than all of them, to ensure that it's safe
208 * to acquire regardless of caller context.
209 *
210 * In addition, the following rules apply:
211 *
212 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
213 * The lock ordering is SCL_CONFIG > spa_props_lock.
214 *
215 * (b) I/O operations on leaf vdevs. For any zio operation that takes
216 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
217 * or zio_write_phys() -- the caller must ensure that the config cannot
218 * cannot change in the interim, and that the vdev cannot be reopened.
219 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
220 *
221 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
222 *
223 * spa_vdev_enter() Acquire the namespace lock and the config lock
224 * for writing.
225 *
226 * spa_vdev_exit() Release the config lock, wait for all I/O
227 * to complete, sync the updated configs to the
228 * cache, and release the namespace lock.
229 *
b128c09f
BB
230 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
231 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
232 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
34dc7c2f
BB
233 */
234
235static avl_tree_t spa_namespace_avl;
236kmutex_t spa_namespace_lock;
237static kcondvar_t spa_namespace_cv;
34dc7c2f
BB
238int spa_max_replication_override = SPA_DVAS_PER_BP;
239
240static kmutex_t spa_spare_lock;
241static avl_tree_t spa_spare_avl;
242static kmutex_t spa_l2cache_lock;
243static avl_tree_t spa_l2cache_avl;
244
245kmem_cache_t *spa_buffer_pool;
da92d5cb 246spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
34dc7c2f 247
0b39b9f9 248#ifdef ZFS_DEBUG
a1d477c2
MA
249/*
250 * Everything except dprintf, set_error, spa, and indirect_remap is on
251 * by default in debug builds.
252 */
253int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
964c2d69 254 ZFS_DEBUG_INDIRECT_REMAP);
0b39b9f9
PS
255#else
256int zfs_flags = 0;
257#endif
258
259/*
260 * zfs_recover can be set to nonzero to attempt to recover from
261 * otherwise-fatal errors, typically caused by on-disk corruption. When
262 * set, calls to zfs_panic_recover() will turn into warning messages.
263 * This should only be used as a last resort, as it typically results
264 * in leaked space, or worse.
265 */
266int zfs_recover = B_FALSE;
267
268/*
269 * If destroy encounters an EIO while reading metadata (e.g. indirect
270 * blocks), space referenced by the missing metadata can not be freed.
271 * Normally this causes the background destroy to become "stalled", as
272 * it is unable to make forward progress. While in this stalled state,
273 * all remaining space to free from the error-encountering filesystem is
274 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
275 * permanently leak the space from indirect blocks that can not be read,
276 * and continue to free everything else that it can.
277 *
278 * The default, "stalling" behavior is useful if the storage partially
279 * fails (i.e. some but not all i/os fail), and then later recovers. In
280 * this case, we will be able to continue pool operations while it is
281 * partially failed, and when it recovers, we can continue to free the
282 * space, with no leaks. However, note that this case is actually
283 * fairly rare.
284 *
285 * Typically pools either (a) fail completely (but perhaps temporarily,
286 * e.g. a top-level vdev going offline), or (b) have localized,
287 * permanent errors (e.g. disk returns the wrong data due to bit flip or
288 * firmware bug). In case (a), this setting does not matter because the
289 * pool will be suspended and the sync thread will not be able to make
290 * forward progress regardless. In case (b), because the error is
291 * permanent, the best we can do is leak the minimum amount of space,
292 * which is what setting this flag will do. Therefore, it is reasonable
293 * for this flag to normally be set, but we chose the more conservative
294 * approach of not setting it, so that there is no possibility of
295 * leaking space in the "partial temporary" failure case.
296 */
297int zfs_free_leak_on_eio = B_FALSE;
298
cc92e9d0 299/*
e8b96c60
MA
300 * Expiration time in milliseconds. This value has two meanings. First it is
301 * used to determine when the spa_deadman() logic should fire. By default the
8fb1ede1 302 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
e8b96c60
MA
303 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
304 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
8fb1ede1 305 * in one of three behaviors controlled by zfs_deadman_failmode.
cc92e9d0 306 */
57940b43 307unsigned long zfs_deadman_synctime_ms = 600000UL;
8fb1ede1
BB
308
309/*
310 * This value controls the maximum amount of time zio_wait() will block for an
311 * outstanding IO. By default this is 300 seconds at which point the "hung"
312 * behavior will be applied as described for zfs_deadman_synctime_ms.
313 */
57940b43 314unsigned long zfs_deadman_ziotime_ms = 300000UL;
cc92e9d0 315
b81a3ddc
TC
316/*
317 * Check time in milliseconds. This defines the frequency at which we check
318 * for hung I/O.
319 */
57940b43 320unsigned long zfs_deadman_checktime_ms = 60000UL;
b81a3ddc 321
cc92e9d0
GW
322/*
323 * By default the deadman is enabled.
324 */
325int zfs_deadman_enabled = 1;
326
8fb1ede1
BB
327/*
328 * Controls the behavior of the deadman when it detects a "hung" I/O.
329 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
330 *
331 * wait - Wait for the "hung" I/O (default)
332 * continue - Attempt to recover from a "hung" I/O
333 * panic - Panic the system
334 */
335char *zfs_deadman_failmode = "wait";
336
e8b96c60
MA
337/*
338 * The worst case is single-sector max-parity RAID-Z blocks, in which
339 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
340 * times the size; so just assume that. Add to this the fact that
341 * we can have up to 3 DVAs per bp, and one more factor of 2 because
342 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
343 * the worst case is:
344 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
345 */
346int spa_asize_inflation = 24;
347
3d45fdd6
MA
348/*
349 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
350 * the pool to be consumed. This ensures that we don't run the pool
351 * completely out of space, due to unaccounted changes (e.g. to the MOS).
352 * It also limits the worst-case time to allocate space. If we have
353 * less than this amount of free space, most ZPL operations (e.g. write,
354 * create) will return ENOSPC.
355 *
356 * Certain operations (e.g. file removal, most administrative actions) can
357 * use half the slop space. They will only return ENOSPC if less than half
358 * the slop space is free. Typically, once the pool has less than the slop
359 * space free, the user will use these operations to free up space in the pool.
360 * These are the operations that call dsl_pool_adjustedsize() with the netfree
361 * argument set to TRUE.
362 *
d2734cce
SD
363 * Operations that are almost guaranteed to free up space in the absence of
364 * a pool checkpoint can use up to three quarters of the slop space
365 * (e.g zfs destroy).
366 *
3d45fdd6
MA
367 * A very restricted set of operations are always permitted, regardless of
368 * the amount of free space. These are the operations that call
d2734cce
SD
369 * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
370 * increase in the amount of space used, it is possible to run the pool
371 * completely out of space, causing it to be permanently read-only.
3d45fdd6 372 *
d7958b4c
MA
373 * Note that on very small pools, the slop space will be larger than
374 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
375 * but we never allow it to be more than half the pool size.
376 *
3d45fdd6
MA
377 * See also the comments in zfs_space_check_t.
378 */
379int spa_slop_shift = 5;
d7958b4c 380uint64_t spa_min_slop = 128 * 1024 * 1024;
492f64e9
PD
381int spa_allocators = 4;
382
3d45fdd6 383
4a0ee12a
PZ
384/*PRINTFLIKE2*/
385void
386spa_load_failed(spa_t *spa, const char *fmt, ...)
387{
388 va_list adx;
389 char buf[256];
390
391 va_start(adx, fmt);
392 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
393 va_end(adx);
394
6cb8e530
PZ
395 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
396 spa->spa_trust_config ? "trusted" : "untrusted", buf);
4a0ee12a
PZ
397}
398
399/*PRINTFLIKE2*/
400void
401spa_load_note(spa_t *spa, const char *fmt, ...)
402{
403 va_list adx;
404 char buf[256];
405
406 va_start(adx, fmt);
407 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
408 va_end(adx);
409
6cb8e530
PZ
410 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
411 spa->spa_trust_config ? "trusted" : "untrusted", buf);
4a0ee12a
PZ
412}
413
cc99f275
DB
414/*
415 * By default dedup and user data indirects land in the special class
416 */
417int zfs_ddt_data_is_special = B_TRUE;
418int zfs_user_indirect_is_special = B_TRUE;
419
420/*
421 * The percentage of special class final space reserved for metadata only.
422 * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
423 * let metadata into the class.
424 */
425int zfs_special_class_metadata_reserve_pct = 25;
426
34dc7c2f
BB
427/*
428 * ==========================================================================
429 * SPA config locking
430 * ==========================================================================
431 */
432static void
b128c09f
BB
433spa_config_lock_init(spa_t *spa)
434{
1c27024e 435 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
436 spa_config_lock_t *scl = &spa->spa_config_lock[i];
437 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
438 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
424fd7c3 439 zfs_refcount_create_untracked(&scl->scl_count);
b128c09f
BB
440 scl->scl_writer = NULL;
441 scl->scl_write_wanted = 0;
442 }
34dc7c2f
BB
443}
444
445static void
b128c09f
BB
446spa_config_lock_destroy(spa_t *spa)
447{
1c27024e 448 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
449 spa_config_lock_t *scl = &spa->spa_config_lock[i];
450 mutex_destroy(&scl->scl_lock);
451 cv_destroy(&scl->scl_cv);
424fd7c3 452 zfs_refcount_destroy(&scl->scl_count);
b128c09f
BB
453 ASSERT(scl->scl_writer == NULL);
454 ASSERT(scl->scl_write_wanted == 0);
455 }
456}
457
458int
459spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 460{
1c27024e 461 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
462 spa_config_lock_t *scl = &spa->spa_config_lock[i];
463 if (!(locks & (1 << i)))
464 continue;
465 mutex_enter(&scl->scl_lock);
466 if (rw == RW_READER) {
467 if (scl->scl_writer || scl->scl_write_wanted) {
468 mutex_exit(&scl->scl_lock);
adfe9d93
SK
469 spa_config_exit(spa, locks & ((1 << i) - 1),
470 tag);
b128c09f
BB
471 return (0);
472 }
473 } else {
474 ASSERT(scl->scl_writer != curthread);
424fd7c3 475 if (!zfs_refcount_is_zero(&scl->scl_count)) {
b128c09f 476 mutex_exit(&scl->scl_lock);
adfe9d93
SK
477 spa_config_exit(spa, locks & ((1 << i) - 1),
478 tag);
b128c09f
BB
479 return (0);
480 }
481 scl->scl_writer = curthread;
482 }
c13060e4 483 (void) zfs_refcount_add(&scl->scl_count, tag);
b128c09f
BB
484 mutex_exit(&scl->scl_lock);
485 }
486 return (1);
34dc7c2f
BB
487}
488
489void
dc04a8c7 490spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
34dc7c2f 491{
45d1cae3
BB
492 int wlocks_held = 0;
493
13fe0198
MA
494 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
495
1c27024e 496 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f 497 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
498 if (scl->scl_writer == curthread)
499 wlocks_held |= (1 << i);
b128c09f
BB
500 if (!(locks & (1 << i)))
501 continue;
502 mutex_enter(&scl->scl_lock);
503 if (rw == RW_READER) {
504 while (scl->scl_writer || scl->scl_write_wanted) {
505 cv_wait(&scl->scl_cv, &scl->scl_lock);
506 }
507 } else {
508 ASSERT(scl->scl_writer != curthread);
424fd7c3 509 while (!zfs_refcount_is_zero(&scl->scl_count)) {
b128c09f
BB
510 scl->scl_write_wanted++;
511 cv_wait(&scl->scl_cv, &scl->scl_lock);
512 scl->scl_write_wanted--;
513 }
514 scl->scl_writer = curthread;
515 }
c13060e4 516 (void) zfs_refcount_add(&scl->scl_count, tag);
b128c09f 517 mutex_exit(&scl->scl_lock);
34dc7c2f 518 }
a1d477c2 519 ASSERT3U(wlocks_held, <=, locks);
34dc7c2f
BB
520}
521
522void
dc04a8c7 523spa_config_exit(spa_t *spa, int locks, const void *tag)
34dc7c2f 524{
1c27024e 525 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
b128c09f
BB
526 spa_config_lock_t *scl = &spa->spa_config_lock[i];
527 if (!(locks & (1 << i)))
528 continue;
529 mutex_enter(&scl->scl_lock);
424fd7c3
TS
530 ASSERT(!zfs_refcount_is_zero(&scl->scl_count));
531 if (zfs_refcount_remove(&scl->scl_count, tag) == 0) {
b128c09f
BB
532 ASSERT(scl->scl_writer == NULL ||
533 scl->scl_writer == curthread);
534 scl->scl_writer = NULL; /* OK in either case */
535 cv_broadcast(&scl->scl_cv);
536 }
537 mutex_exit(&scl->scl_lock);
34dc7c2f 538 }
34dc7c2f
BB
539}
540
b128c09f
BB
541int
542spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 543{
1c27024e 544 int locks_held = 0;
34dc7c2f 545
1c27024e 546 for (int i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
547 spa_config_lock_t *scl = &spa->spa_config_lock[i];
548 if (!(locks & (1 << i)))
549 continue;
424fd7c3
TS
550 if ((rw == RW_READER &&
551 !zfs_refcount_is_zero(&scl->scl_count)) ||
b128c09f
BB
552 (rw == RW_WRITER && scl->scl_writer == curthread))
553 locks_held |= 1 << i;
554 }
555
556 return (locks_held);
34dc7c2f
BB
557}
558
559/*
560 * ==========================================================================
561 * SPA namespace functions
562 * ==========================================================================
563 */
564
565/*
566 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
567 * Returns NULL if no matching spa_t is found.
568 */
569spa_t *
570spa_lookup(const char *name)
571{
b128c09f
BB
572 static spa_t search; /* spa_t is large; don't allocate on stack */
573 spa_t *spa;
34dc7c2f 574 avl_index_t where;
34dc7c2f
BB
575 char *cp;
576
577 ASSERT(MUTEX_HELD(&spa_namespace_lock));
578
13fe0198
MA
579 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
580
34dc7c2f
BB
581 /*
582 * If it's a full dataset name, figure out the pool name and
583 * just use that.
584 */
da536844 585 cp = strpbrk(search.spa_name, "/@#");
13fe0198 586 if (cp != NULL)
34dc7c2f 587 *cp = '\0';
34dc7c2f 588
34dc7c2f
BB
589 spa = avl_find(&spa_namespace_avl, &search, &where);
590
34dc7c2f
BB
591 return (spa);
592}
593
cc92e9d0
GW
594/*
595 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
596 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
597 * looking for potentially hung I/Os.
598 */
599void
600spa_deadman(void *arg)
601{
602 spa_t *spa = arg;
603
b81a3ddc
TC
604 /* Disable the deadman if the pool is suspended. */
605 if (spa_suspended(spa))
606 return;
607
cc92e9d0
GW
608 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
609 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
610 ++spa->spa_deadman_calls);
611 if (zfs_deadman_enabled)
8fb1ede1 612 vdev_deadman(spa->spa_root_vdev, FTAG);
cc92e9d0 613
57ddcda1 614 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
f764edf0 615 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
b81a3ddc 616 MSEC_TO_TICK(zfs_deadman_checktime_ms));
cc92e9d0
GW
617}
618
65c7cc49 619static int
93e28d66
SD
620spa_log_sm_sort_by_txg(const void *va, const void *vb)
621{
622 const spa_log_sm_t *a = va;
623 const spa_log_sm_t *b = vb;
624
ca577779 625 return (TREE_CMP(a->sls_txg, b->sls_txg));
93e28d66
SD
626}
627
34dc7c2f
BB
628/*
629 * Create an uninitialized spa_t with the given name. Requires
630 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
631 * exist by calling spa_lookup() first.
632 */
633spa_t *
428870ff 634spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
635{
636 spa_t *spa;
b128c09f 637 spa_config_dirent_t *dp;
34dc7c2f
BB
638
639 ASSERT(MUTEX_HELD(&spa_namespace_lock));
640
79c76d5b 641 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
34dc7c2f 642
34dc7c2f 643 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 644 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 645 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
0c66c32d 646 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 647 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 648 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 649 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
3c67d83a 650 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
651 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
652 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
653 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
4eb30c68 654 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
93e28d66 655 mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
e60e158e 656 mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
657
658 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
0c66c32d 659 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
428870ff 660 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 661 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 662 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
e60e158e
JG
663 cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
664 cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 665
1c27024e 666 for (int t = 0; t < TXG_SIZE; t++)
428870ff
BB
667 bplist_create(&spa->spa_free_bplist[t]);
668
b128c09f 669 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
670 spa->spa_state = POOL_STATE_UNINITIALIZED;
671 spa->spa_freeze_txg = UINT64_MAX;
672 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
673 spa->spa_load_max_txg = UINT64_MAX;
674 spa->spa_proc = &p0;
675 spa->spa_proc_state = SPA_PROC_NONE;
6cb8e530 676 spa->spa_trust_config = B_TRUE;
25f06d67 677 spa->spa_hostid = zone_get_hostid(NULL);
34dc7c2f 678
e8b96c60 679 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
8fb1ede1
BB
680 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
681 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
cc92e9d0 682
424fd7c3 683 zfs_refcount_create(&spa->spa_refcount);
b128c09f 684 spa_config_lock_init(spa);
1421c891 685 spa_stats_init(spa);
34dc7c2f
BB
686
687 avl_add(&spa_namespace_avl, spa);
688
34dc7c2f
BB
689 /*
690 * Set the alternate root, if there is one.
691 */
0336f3d0 692 if (altroot)
34dc7c2f 693 spa->spa_root = spa_strdup(altroot);
34dc7c2f 694
492f64e9
PD
695 spa->spa_alloc_count = spa_allocators;
696 spa->spa_alloc_locks = kmem_zalloc(spa->spa_alloc_count *
697 sizeof (kmutex_t), KM_SLEEP);
698 spa->spa_alloc_trees = kmem_zalloc(spa->spa_alloc_count *
699 sizeof (avl_tree_t), KM_SLEEP);
700 for (int i = 0; i < spa->spa_alloc_count; i++) {
701 mutex_init(&spa->spa_alloc_locks[i], NULL, MUTEX_DEFAULT, NULL);
702 avl_create(&spa->spa_alloc_trees[i], zio_bookmark_compare,
703 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
704 }
93e28d66
SD
705 avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
706 sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
707 avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
708 sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
709 list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
710 offsetof(log_summary_entry_t, lse_node));
3dfb57a3 711
b128c09f
BB
712 /*
713 * Every pool starts with the default cachefile
714 */
715 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
716 offsetof(spa_config_dirent_t, scd_link));
717
79c76d5b 718 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
428870ff 719 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
720 list_insert_head(&spa->spa_config_list, dp);
721
572e2857 722 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
79c76d5b 723 KM_SLEEP) == 0);
572e2857 724
9ae529ec
CS
725 if (config != NULL) {
726 nvlist_t *features;
727
728 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
729 &features) == 0) {
730 VERIFY(nvlist_dup(features, &spa->spa_label_features,
731 0) == 0);
732 }
733
428870ff 734 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
9ae529ec
CS
735 }
736
737 if (spa->spa_label_features == NULL) {
738 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
79c76d5b 739 KM_SLEEP) == 0);
9ae529ec 740 }
428870ff 741
c3520e7f
MA
742 spa->spa_min_ashift = INT_MAX;
743 spa->spa_max_ashift = 0;
b2255edc 744 spa->spa_min_alloc = INT_MAX;
c3520e7f 745
e8a20144
GN
746 /* Reset cached value */
747 spa->spa_dedup_dspace = ~0ULL;
748
b0bc7a84
MG
749 /*
750 * As a pool is being created, treat all features as disabled by
751 * setting SPA_FEATURE_DISABLED for all entries in the feature
752 * refcount cache.
753 */
1c27024e 754 for (int i = 0; i < SPA_FEATURES; i++) {
b0bc7a84
MG
755 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
756 }
757
3d31aad8
OF
758 list_create(&spa->spa_leaf_list, sizeof (vdev_t),
759 offsetof(vdev_t, vdev_leaf_node));
760
34dc7c2f
BB
761 return (spa);
762}
763
764/*
765 * Removes a spa_t from the namespace, freeing up any memory used. Requires
766 * spa_namespace_lock. This is called only after the spa_t has been closed and
767 * deactivated.
768 */
769void
770spa_remove(spa_t *spa)
771{
b128c09f
BB
772 spa_config_dirent_t *dp;
773
34dc7c2f 774 ASSERT(MUTEX_HELD(&spa_namespace_lock));
93e28d66 775 ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
424fd7c3 776 ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
e60e158e 777 ASSERT0(spa->spa_waiters);
34dc7c2f 778
428870ff
BB
779 nvlist_free(spa->spa_config_splitting);
780
34dc7c2f
BB
781 avl_remove(&spa_namespace_avl, spa);
782 cv_broadcast(&spa_namespace_cv);
783
0336f3d0 784 if (spa->spa_root)
34dc7c2f 785 spa_strfree(spa->spa_root);
34dc7c2f 786
b128c09f
BB
787 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
788 list_remove(&spa->spa_config_list, dp);
789 if (dp->scd_path != NULL)
790 spa_strfree(dp->scd_path);
791 kmem_free(dp, sizeof (spa_config_dirent_t));
792 }
34dc7c2f 793
492f64e9
PD
794 for (int i = 0; i < spa->spa_alloc_count; i++) {
795 avl_destroy(&spa->spa_alloc_trees[i]);
796 mutex_destroy(&spa->spa_alloc_locks[i]);
797 }
798 kmem_free(spa->spa_alloc_locks, spa->spa_alloc_count *
799 sizeof (kmutex_t));
800 kmem_free(spa->spa_alloc_trees, spa->spa_alloc_count *
801 sizeof (avl_tree_t));
802
93e28d66
SD
803 avl_destroy(&spa->spa_metaslabs_by_flushed);
804 avl_destroy(&spa->spa_sm_logs_by_txg);
805 list_destroy(&spa->spa_log_summary);
b128c09f 806 list_destroy(&spa->spa_config_list);
3d31aad8 807 list_destroy(&spa->spa_leaf_list);
34dc7c2f 808
9ae529ec 809 nvlist_free(spa->spa_label_features);
572e2857 810 nvlist_free(spa->spa_load_info);
417104bd 811 nvlist_free(spa->spa_feat_stats);
34dc7c2f
BB
812 spa_config_set(spa, NULL);
813
424fd7c3 814 zfs_refcount_destroy(&spa->spa_refcount);
34dc7c2f 815
1421c891 816 spa_stats_destroy(spa);
b128c09f 817 spa_config_lock_destroy(spa);
34dc7c2f 818
1c27024e 819 for (int t = 0; t < TXG_SIZE; t++)
428870ff
BB
820 bplist_destroy(&spa->spa_free_bplist[t]);
821
3c67d83a
TH
822 zio_checksum_templates_free(spa);
823
34dc7c2f 824 cv_destroy(&spa->spa_async_cv);
0c66c32d 825 cv_destroy(&spa->spa_evicting_os_cv);
428870ff 826 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 827 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 828 cv_destroy(&spa->spa_suspend_cv);
e60e158e
JG
829 cv_destroy(&spa->spa_activities_cv);
830 cv_destroy(&spa->spa_waiters_cv);
34dc7c2f 831
93e28d66 832 mutex_destroy(&spa->spa_flushed_ms_lock);
34dc7c2f 833 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 834 mutex_destroy(&spa->spa_errlist_lock);
428870ff 835 mutex_destroy(&spa->spa_errlog_lock);
0c66c32d 836 mutex_destroy(&spa->spa_evicting_os_lock);
34dc7c2f 837 mutex_destroy(&spa->spa_history_lock);
428870ff 838 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 839 mutex_destroy(&spa->spa_props_lock);
3c67d83a 840 mutex_destroy(&spa->spa_cksum_tmpls_lock);
428870ff 841 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 842 mutex_destroy(&spa->spa_suspend_lock);
428870ff 843 mutex_destroy(&spa->spa_vdev_top_lock);
4eb30c68 844 mutex_destroy(&spa->spa_feat_stats_lock);
e60e158e 845 mutex_destroy(&spa->spa_activities_lock);
34dc7c2f
BB
846
847 kmem_free(spa, sizeof (spa_t));
848}
849
850/*
851 * Given a pool, return the next pool in the namespace, or NULL if there is
852 * none. If 'prev' is NULL, return the first pool.
853 */
854spa_t *
855spa_next(spa_t *prev)
856{
857 ASSERT(MUTEX_HELD(&spa_namespace_lock));
858
859 if (prev)
860 return (AVL_NEXT(&spa_namespace_avl, prev));
861 else
862 return (avl_first(&spa_namespace_avl));
863}
864
865/*
866 * ==========================================================================
867 * SPA refcount functions
868 * ==========================================================================
869 */
870
871/*
872 * Add a reference to the given spa_t. Must have at least one reference, or
873 * have the namespace lock held.
874 */
875void
876spa_open_ref(spa_t *spa, void *tag)
877{
424fd7c3 878 ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 879 MUTEX_HELD(&spa_namespace_lock));
c13060e4 880 (void) zfs_refcount_add(&spa->spa_refcount, tag);
34dc7c2f
BB
881}
882
883/*
884 * Remove a reference to the given spa_t. Must have at least one reference, or
885 * have the namespace lock held.
886 */
887void
888spa_close(spa_t *spa, void *tag)
889{
424fd7c3 890 ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 891 MUTEX_HELD(&spa_namespace_lock));
424fd7c3 892 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
34dc7c2f
BB
893}
894
0c66c32d
JG
895/*
896 * Remove a reference to the given spa_t held by a dsl dir that is
897 * being asynchronously released. Async releases occur from a taskq
898 * performing eviction of dsl datasets and dirs. The namespace lock
899 * isn't held and the hold by the object being evicted may contribute to
900 * spa_minref (e.g. dataset or directory released during pool export),
901 * so the asserts in spa_close() do not apply.
902 */
903void
904spa_async_close(spa_t *spa, void *tag)
905{
424fd7c3 906 (void) zfs_refcount_remove(&spa->spa_refcount, tag);
0c66c32d
JG
907}
908
34dc7c2f
BB
909/*
910 * Check to see if the spa refcount is zero. Must be called with
b128c09f 911 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
912 * number of references acquired when opening a pool
913 */
914boolean_t
915spa_refcount_zero(spa_t *spa)
916{
917 ASSERT(MUTEX_HELD(&spa_namespace_lock));
918
424fd7c3 919 return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
920}
921
922/*
923 * ==========================================================================
924 * SPA spare and l2cache tracking
925 * ==========================================================================
926 */
927
928/*
929 * Hot spares and cache devices are tracked using the same code below,
930 * for 'auxiliary' devices.
931 */
932
933typedef struct spa_aux {
934 uint64_t aux_guid;
935 uint64_t aux_pool;
936 avl_node_t aux_avl;
937 int aux_count;
938} spa_aux_t;
939
ee36c709 940static inline int
34dc7c2f
BB
941spa_aux_compare(const void *a, const void *b)
942{
ee36c709
GN
943 const spa_aux_t *sa = (const spa_aux_t *)a;
944 const spa_aux_t *sb = (const spa_aux_t *)b;
34dc7c2f 945
ca577779 946 return (TREE_CMP(sa->aux_guid, sb->aux_guid));
34dc7c2f
BB
947}
948
65c7cc49 949static void
34dc7c2f
BB
950spa_aux_add(vdev_t *vd, avl_tree_t *avl)
951{
952 avl_index_t where;
953 spa_aux_t search;
954 spa_aux_t *aux;
955
956 search.aux_guid = vd->vdev_guid;
957 if ((aux = avl_find(avl, &search, &where)) != NULL) {
958 aux->aux_count++;
959 } else {
79c76d5b 960 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
34dc7c2f
BB
961 aux->aux_guid = vd->vdev_guid;
962 aux->aux_count = 1;
963 avl_insert(avl, aux, where);
964 }
965}
966
65c7cc49 967static void
34dc7c2f
BB
968spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
969{
970 spa_aux_t search;
971 spa_aux_t *aux;
972 avl_index_t where;
973
974 search.aux_guid = vd->vdev_guid;
975 aux = avl_find(avl, &search, &where);
976
977 ASSERT(aux != NULL);
978
979 if (--aux->aux_count == 0) {
980 avl_remove(avl, aux);
981 kmem_free(aux, sizeof (spa_aux_t));
982 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
983 aux->aux_pool = 0ULL;
984 }
985}
986
65c7cc49 987static boolean_t
b128c09f 988spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
989{
990 spa_aux_t search, *found;
34dc7c2f
BB
991
992 search.aux_guid = guid;
b128c09f 993 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
994
995 if (pool) {
996 if (found)
997 *pool = found->aux_pool;
998 else
999 *pool = 0ULL;
1000 }
1001
b128c09f
BB
1002 if (refcnt) {
1003 if (found)
1004 *refcnt = found->aux_count;
1005 else
1006 *refcnt = 0;
1007 }
1008
34dc7c2f
BB
1009 return (found != NULL);
1010}
1011
65c7cc49 1012static void
34dc7c2f
BB
1013spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1014{
1015 spa_aux_t search, *found;
1016 avl_index_t where;
1017
1018 search.aux_guid = vd->vdev_guid;
1019 found = avl_find(avl, &search, &where);
1020 ASSERT(found != NULL);
1021 ASSERT(found->aux_pool == 0ULL);
1022
1023 found->aux_pool = spa_guid(vd->vdev_spa);
1024}
1025
1026/*
1027 * Spares are tracked globally due to the following constraints:
1028 *
1029 * - A spare may be part of multiple pools.
1030 * - A spare may be added to a pool even if it's actively in use within
1031 * another pool.
1032 * - A spare in use in any pool can only be the source of a replacement if
1033 * the target is a spare in the same pool.
1034 *
1035 * We keep track of all spares on the system through the use of a reference
1036 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
1037 * spare, then we bump the reference count in the AVL tree. In addition, we set
1038 * the 'vdev_isspare' member to indicate that the device is a spare (active or
1039 * inactive). When a spare is made active (used to replace a device in the
1040 * pool), we also keep track of which pool its been made a part of.
1041 *
1042 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
1043 * called under the spa_namespace lock as part of vdev reconfiguration. The
1044 * separate spare lock exists for the status query path, which does not need to
1045 * be completely consistent with respect to other vdev configuration changes.
1046 */
1047
1048static int
1049spa_spare_compare(const void *a, const void *b)
1050{
1051 return (spa_aux_compare(a, b));
1052}
1053
1054void
1055spa_spare_add(vdev_t *vd)
1056{
1057 mutex_enter(&spa_spare_lock);
1058 ASSERT(!vd->vdev_isspare);
1059 spa_aux_add(vd, &spa_spare_avl);
1060 vd->vdev_isspare = B_TRUE;
1061 mutex_exit(&spa_spare_lock);
1062}
1063
1064void
1065spa_spare_remove(vdev_t *vd)
1066{
1067 mutex_enter(&spa_spare_lock);
1068 ASSERT(vd->vdev_isspare);
1069 spa_aux_remove(vd, &spa_spare_avl);
1070 vd->vdev_isspare = B_FALSE;
1071 mutex_exit(&spa_spare_lock);
1072}
1073
1074boolean_t
b128c09f 1075spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
1076{
1077 boolean_t found;
1078
1079 mutex_enter(&spa_spare_lock);
b128c09f 1080 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
1081 mutex_exit(&spa_spare_lock);
1082
1083 return (found);
1084}
1085
1086void
1087spa_spare_activate(vdev_t *vd)
1088{
1089 mutex_enter(&spa_spare_lock);
1090 ASSERT(vd->vdev_isspare);
1091 spa_aux_activate(vd, &spa_spare_avl);
1092 mutex_exit(&spa_spare_lock);
1093}
1094
1095/*
1096 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1097 * Cache devices currently only support one pool per cache device, and so
1098 * for these devices the aux reference count is currently unused beyond 1.
1099 */
1100
1101static int
1102spa_l2cache_compare(const void *a, const void *b)
1103{
1104 return (spa_aux_compare(a, b));
1105}
1106
1107void
1108spa_l2cache_add(vdev_t *vd)
1109{
1110 mutex_enter(&spa_l2cache_lock);
1111 ASSERT(!vd->vdev_isl2cache);
1112 spa_aux_add(vd, &spa_l2cache_avl);
1113 vd->vdev_isl2cache = B_TRUE;
1114 mutex_exit(&spa_l2cache_lock);
1115}
1116
1117void
1118spa_l2cache_remove(vdev_t *vd)
1119{
1120 mutex_enter(&spa_l2cache_lock);
1121 ASSERT(vd->vdev_isl2cache);
1122 spa_aux_remove(vd, &spa_l2cache_avl);
1123 vd->vdev_isl2cache = B_FALSE;
1124 mutex_exit(&spa_l2cache_lock);
1125}
1126
1127boolean_t
1128spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1129{
1130 boolean_t found;
1131
1132 mutex_enter(&spa_l2cache_lock);
b128c09f 1133 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
1134 mutex_exit(&spa_l2cache_lock);
1135
1136 return (found);
1137}
1138
1139void
1140spa_l2cache_activate(vdev_t *vd)
1141{
1142 mutex_enter(&spa_l2cache_lock);
1143 ASSERT(vd->vdev_isl2cache);
1144 spa_aux_activate(vd, &spa_l2cache_avl);
1145 mutex_exit(&spa_l2cache_lock);
1146}
1147
34dc7c2f
BB
1148/*
1149 * ==========================================================================
1150 * SPA vdev locking
1151 * ==========================================================================
1152 */
1153
1154/*
1155 * Lock the given spa_t for the purpose of adding or removing a vdev.
1156 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1157 * It returns the next transaction group for the spa_t.
1158 */
1159uint64_t
1160spa_vdev_enter(spa_t *spa)
1161{
428870ff 1162 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 1163 mutex_enter(&spa_namespace_lock);
1b939560
BB
1164
1165 vdev_autotrim_stop_all(spa);
1166
428870ff
BB
1167 return (spa_vdev_config_enter(spa));
1168}
1169
9a49d3f3
BB
1170/*
1171 * The same as spa_vdev_enter() above but additionally takes the guid of
1172 * the vdev being detached. When there is a rebuild in process it will be
1173 * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1174 * The rebuild is canceled if only a single child remains after the detach.
1175 */
1176uint64_t
1177spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1178{
1179 mutex_enter(&spa->spa_vdev_top_lock);
1180 mutex_enter(&spa_namespace_lock);
1181
1182 vdev_autotrim_stop_all(spa);
1183
1184 if (guid != 0) {
1185 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1186 if (vd) {
1187 vdev_rebuild_stop_wait(vd->vdev_top);
1188 }
1189 }
1190
1191 return (spa_vdev_config_enter(spa));
1192}
1193
428870ff
BB
1194/*
1195 * Internal implementation for spa_vdev_enter(). Used when a vdev
1196 * operation requires multiple syncs (i.e. removing a device) while
1197 * keeping the spa_namespace_lock held.
1198 */
1199uint64_t
1200spa_vdev_config_enter(spa_t *spa)
1201{
1202 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 1203
b128c09f 1204 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
1205
1206 return (spa_last_synced_txg(spa) + 1);
1207}
1208
1209/*
428870ff
BB
1210 * Used in combination with spa_vdev_config_enter() to allow the syncing
1211 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 1212 */
428870ff
BB
1213void
1214spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f 1215{
1c27024e
DB
1216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1217
34dc7c2f
BB
1218 int config_changed = B_FALSE;
1219
1220 ASSERT(txg > spa_last_synced_txg(spa));
1221
b128c09f
BB
1222 spa->spa_pending_vdev = NULL;
1223
34dc7c2f
BB
1224 /*
1225 * Reassess the DTLs.
1226 */
9a49d3f3 1227 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
34dc7c2f 1228
b128c09f 1229 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 1230 config_changed = B_TRUE;
428870ff 1231 spa->spa_config_generation++;
34dc7c2f
BB
1232 }
1233
428870ff
BB
1234 /*
1235 * Verify the metaslab classes.
1236 */
1237 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1238 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
cc99f275
DB
1239 ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1240 ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
428870ff 1241
b128c09f 1242 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 1243
428870ff
BB
1244 /*
1245 * Panic the system if the specified tag requires it. This
1246 * is useful for ensuring that configurations are updated
1247 * transactionally.
1248 */
1249 if (zio_injection_enabled)
1250 zio_handle_panic_injection(spa, tag, 0);
1251
34dc7c2f
BB
1252 /*
1253 * Note: this txg_wait_synced() is important because it ensures
1254 * that there won't be more than one config change per txg.
1255 * This allows us to use the txg as the generation number.
1256 */
1257 if (error == 0)
1258 txg_wait_synced(spa->spa_dsl_pool, txg);
1259
1260 if (vd != NULL) {
93cf2076 1261 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
619f0976
GW
1262 if (vd->vdev_ops->vdev_op_leaf) {
1263 mutex_enter(&vd->vdev_initialize_lock);
c10d37dd
GW
1264 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1265 NULL);
619f0976 1266 mutex_exit(&vd->vdev_initialize_lock);
1b939560
BB
1267
1268 mutex_enter(&vd->vdev_trim_lock);
1269 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1270 mutex_exit(&vd->vdev_trim_lock);
619f0976
GW
1271 }
1272
1b939560
BB
1273 /*
1274 * The vdev may be both a leaf and top-level device.
1275 */
1276 vdev_autotrim_stop_wait(vd);
1277
fb5f0bc8 1278 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 1279 vdev_free(vd);
fb5f0bc8 1280 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
1281 }
1282
1283 /*
1284 * If the config changed, update the config cache.
1285 */
1286 if (config_changed)
a1d477c2 1287 spa_write_cachefile(spa, B_FALSE, B_TRUE);
428870ff 1288}
34dc7c2f 1289
428870ff
BB
1290/*
1291 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1292 * locking of spa_vdev_enter(), we also want make sure the transactions have
1293 * synced to disk, and then update the global configuration cache with the new
1294 * information.
1295 */
1296int
1297spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1298{
1b939560 1299 vdev_autotrim_restart(spa);
9a49d3f3 1300 vdev_rebuild_restart(spa);
1b939560 1301
428870ff 1302 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 1303 mutex_exit(&spa_namespace_lock);
428870ff 1304 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
1305
1306 return (error);
1307}
1308
b128c09f
BB
1309/*
1310 * Lock the given spa_t for the purpose of changing vdev state.
1311 */
1312void
428870ff 1313spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 1314{
428870ff
BB
1315 int locks = SCL_STATE_ALL | oplocks;
1316
1317 /*
1318 * Root pools may need to read of the underlying devfs filesystem
1319 * when opening up a vdev. Unfortunately if we're holding the
1320 * SCL_ZIO lock it will result in a deadlock when we try to issue
1321 * the read from the root filesystem. Instead we "prefetch"
1322 * the associated vnodes that we need prior to opening the
1323 * underlying devices and cache them so that we can prevent
1324 * any I/O when we are doing the actual open.
1325 */
1326 if (spa_is_root(spa)) {
1327 int low = locks & ~(SCL_ZIO - 1);
1328 int high = locks & ~low;
1329
1330 spa_config_enter(spa, high, spa, RW_WRITER);
1331 vdev_hold(spa->spa_root_vdev);
1332 spa_config_enter(spa, low, spa, RW_WRITER);
1333 } else {
1334 spa_config_enter(spa, locks, spa, RW_WRITER);
1335 }
1336 spa->spa_vdev_locks = locks;
b128c09f
BB
1337}
1338
1339int
1340spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1341{
428870ff 1342 boolean_t config_changed = B_FALSE;
4a283c7f
TH
1343 vdev_t *vdev_top;
1344
1345 if (vd == NULL || vd == spa->spa_root_vdev) {
1346 vdev_top = spa->spa_root_vdev;
1347 } else {
1348 vdev_top = vd->vdev_top;
1349 }
428870ff
BB
1350
1351 if (vd != NULL || error == 0)
9a49d3f3 1352 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
428870ff
BB
1353
1354 if (vd != NULL) {
4a283c7f
TH
1355 if (vd != spa->spa_root_vdev)
1356 vdev_state_dirty(vdev_top);
1357
428870ff
BB
1358 config_changed = B_TRUE;
1359 spa->spa_config_generation++;
1360 }
b128c09f 1361
428870ff
BB
1362 if (spa_is_root(spa))
1363 vdev_rele(spa->spa_root_vdev);
1364
1365 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1366 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1367
fb5f0bc8
BB
1368 /*
1369 * If anything changed, wait for it to sync. This ensures that,
76d04993 1370 * from the system administrator's perspective, zpool(8) commands
fb5f0bc8
BB
1371 * are synchronous. This is important for things like zpool offline:
1372 * when the command completes, you expect no further I/O from ZFS.
1373 */
1374 if (vd != NULL)
1375 txg_wait_synced(spa->spa_dsl_pool, 0);
1376
428870ff
BB
1377 /*
1378 * If the config changed, update the config cache.
1379 */
1380 if (config_changed) {
1381 mutex_enter(&spa_namespace_lock);
a1d477c2 1382 spa_write_cachefile(spa, B_FALSE, B_TRUE);
428870ff
BB
1383 mutex_exit(&spa_namespace_lock);
1384 }
1385
b128c09f
BB
1386 return (error);
1387}
1388
34dc7c2f
BB
1389/*
1390 * ==========================================================================
1391 * Miscellaneous functions
1392 * ==========================================================================
1393 */
1394
9ae529ec 1395void
b0bc7a84 1396spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
9ae529ec 1397{
fa86b5db
MA
1398 if (!nvlist_exists(spa->spa_label_features, feature)) {
1399 fnvlist_add_boolean(spa->spa_label_features, feature);
b0bc7a84
MG
1400 /*
1401 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1402 * dirty the vdev config because lock SCL_CONFIG is not held.
1403 * Thankfully, in this case we don't need to dirty the config
1404 * because it will be written out anyway when we finish
1405 * creating the pool.
1406 */
1407 if (tx->tx_txg != TXG_INITIAL)
1408 vdev_config_dirty(spa->spa_root_vdev);
fa86b5db 1409 }
9ae529ec
CS
1410}
1411
1412void
1413spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1414{
fa86b5db
MA
1415 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1416 vdev_config_dirty(spa->spa_root_vdev);
9ae529ec
CS
1417}
1418
34dc7c2f 1419/*
572e2857
BB
1420 * Return the spa_t associated with given pool_guid, if it exists. If
1421 * device_guid is non-zero, determine whether the pool exists *and* contains
1422 * a device with the specified device_guid.
34dc7c2f 1423 */
572e2857
BB
1424spa_t *
1425spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1426{
1427 spa_t *spa;
1428 avl_tree_t *t = &spa_namespace_avl;
1429
1430 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1431
1432 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1433 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1434 continue;
1435 if (spa->spa_root_vdev == NULL)
1436 continue;
1437 if (spa_guid(spa) == pool_guid) {
1438 if (device_guid == 0)
1439 break;
1440
1441 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1442 device_guid) != NULL)
1443 break;
1444
1445 /*
1446 * Check any devices we may be in the process of adding.
1447 */
1448 if (spa->spa_pending_vdev) {
1449 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1450 device_guid) != NULL)
1451 break;
1452 }
1453 }
1454 }
1455
572e2857
BB
1456 return (spa);
1457}
1458
1459/*
1460 * Determine whether a pool with the given pool_guid exists.
1461 */
1462boolean_t
1463spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1464{
1465 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1466}
1467
1468char *
1469spa_strdup(const char *s)
1470{
1471 size_t len;
1472 char *new;
1473
1474 len = strlen(s);
79c76d5b 1475 new = kmem_alloc(len + 1, KM_SLEEP);
34dc7c2f
BB
1476 bcopy(s, new, len);
1477 new[len] = '\0';
1478
1479 return (new);
1480}
1481
1482void
1483spa_strfree(char *s)
1484{
1485 kmem_free(s, strlen(s) + 1);
1486}
1487
1488uint64_t
1489spa_get_random(uint64_t range)
1490{
1491 uint64_t r;
1492
1493 ASSERT(range != 0);
1494
379ca9cf
OF
1495 if (range == 1)
1496 return (0);
1497
34dc7c2f
BB
1498 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1499
1500 return (r % range);
1501}
1502
428870ff
BB
1503uint64_t
1504spa_generate_guid(spa_t *spa)
34dc7c2f 1505{
428870ff 1506 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1507
428870ff
BB
1508 if (spa != NULL) {
1509 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1510 guid = spa_get_random(-1ULL);
1511 } else {
1512 while (guid == 0 || spa_guid_exists(guid, 0))
1513 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1514 }
1515
428870ff
BB
1516 return (guid);
1517}
1518
1519void
b0bc7a84 1520snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
428870ff 1521{
9ae529ec 1522 char type[256];
428870ff
BB
1523 char *checksum = NULL;
1524 char *compress = NULL;
34dc7c2f 1525
428870ff 1526 if (bp != NULL) {
9ae529ec
CS
1527 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1528 dmu_object_byteswap_t bswap =
1529 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1530 (void) snprintf(type, sizeof (type), "bswap %s %s",
1531 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1532 "metadata" : "data",
1533 dmu_ot_byteswap[bswap].ob_name);
1534 } else {
1535 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1536 sizeof (type));
1537 }
9b67f605
MA
1538 if (!BP_IS_EMBEDDED(bp)) {
1539 checksum =
1540 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1541 }
428870ff 1542 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1543 }
1544
b0bc7a84 1545 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
5c27ec10 1546 compress);
34dc7c2f
BB
1547}
1548
1549void
1550spa_freeze(spa_t *spa)
1551{
1552 uint64_t freeze_txg = 0;
1553
b128c09f 1554 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1555 if (spa->spa_freeze_txg == UINT64_MAX) {
1556 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1557 spa->spa_freeze_txg = freeze_txg;
1558 }
b128c09f 1559 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1560 if (freeze_txg != 0)
1561 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1562}
1563
0b39b9f9
PS
1564void
1565zfs_panic_recover(const char *fmt, ...)
1566{
1567 va_list adx;
1568
1569 va_start(adx, fmt);
1570 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1571 va_end(adx);
1572}
1573
428870ff
BB
1574/*
1575 * This is a stripped-down version of strtoull, suitable only for converting
d3cc8b15 1576 * lowercase hexadecimal numbers that don't overflow.
428870ff
BB
1577 */
1578uint64_t
e19572e4 1579zfs_strtonum(const char *str, char **nptr)
428870ff
BB
1580{
1581 uint64_t val = 0;
1582 char c;
1583 int digit;
1584
1585 while ((c = *str) != '\0') {
1586 if (c >= '0' && c <= '9')
1587 digit = c - '0';
1588 else if (c >= 'a' && c <= 'f')
1589 digit = 10 + c - 'a';
1590 else
1591 break;
1592
1593 val *= 16;
1594 val += digit;
1595
1596 str++;
1597 }
1598
1599 if (nptr)
1600 *nptr = (char *)str;
1601
1602 return (val);
1603}
1604
cc99f275
DB
1605void
1606spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1607{
1608 /*
1609 * We bump the feature refcount for each special vdev added to the pool
1610 */
1611 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1612 spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1613}
1614
34dc7c2f
BB
1615/*
1616 * ==========================================================================
1617 * Accessor functions
1618 * ==========================================================================
1619 */
1620
b128c09f
BB
1621boolean_t
1622spa_shutting_down(spa_t *spa)
34dc7c2f 1623{
b128c09f 1624 return (spa->spa_async_suspended);
34dc7c2f
BB
1625}
1626
1627dsl_pool_t *
1628spa_get_dsl(spa_t *spa)
1629{
1630 return (spa->spa_dsl_pool);
1631}
1632
9ae529ec
CS
1633boolean_t
1634spa_is_initializing(spa_t *spa)
1635{
1636 return (spa->spa_is_initializing);
1637}
1638
a1d477c2
MA
1639boolean_t
1640spa_indirect_vdevs_loaded(spa_t *spa)
1641{
1642 return (spa->spa_indirect_vdevs_loaded);
1643}
1644
34dc7c2f
BB
1645blkptr_t *
1646spa_get_rootblkptr(spa_t *spa)
1647{
1648 return (&spa->spa_ubsync.ub_rootbp);
1649}
1650
1651void
1652spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1653{
1654 spa->spa_uberblock.ub_rootbp = *bp;
1655}
1656
1657void
1658spa_altroot(spa_t *spa, char *buf, size_t buflen)
1659{
1660 if (spa->spa_root == NULL)
1661 buf[0] = '\0';
1662 else
1663 (void) strncpy(buf, spa->spa_root, buflen);
1664}
1665
1666int
1667spa_sync_pass(spa_t *spa)
1668{
1669 return (spa->spa_sync_pass);
1670}
1671
1672char *
1673spa_name(spa_t *spa)
1674{
34dc7c2f
BB
1675 return (spa->spa_name);
1676}
1677
1678uint64_t
1679spa_guid(spa_t *spa)
1680{
3bc7e0fb
GW
1681 dsl_pool_t *dp = spa_get_dsl(spa);
1682 uint64_t guid;
1683
34dc7c2f
BB
1684 /*
1685 * If we fail to parse the config during spa_load(), we can go through
1686 * the error path (which posts an ereport) and end up here with no root
3541dc6d 1687 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
34dc7c2f
BB
1688 * this case.
1689 */
3bc7e0fb
GW
1690 if (spa->spa_root_vdev == NULL)
1691 return (spa->spa_config_guid);
1692
1693 guid = spa->spa_last_synced_guid != 0 ?
1694 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1695
1696 /*
1697 * Return the most recently synced out guid unless we're
1698 * in syncing context.
1699 */
1700 if (dp && dsl_pool_sync_context(dp))
34dc7c2f
BB
1701 return (spa->spa_root_vdev->vdev_guid);
1702 else
3bc7e0fb 1703 return (guid);
3541dc6d
GA
1704}
1705
1706uint64_t
1707spa_load_guid(spa_t *spa)
1708{
1709 /*
1710 * This is a GUID that exists solely as a reference for the
1711 * purposes of the arc. It is generated at load time, and
1712 * is never written to persistent storage.
1713 */
1714 return (spa->spa_load_guid);
34dc7c2f
BB
1715}
1716
1717uint64_t
1718spa_last_synced_txg(spa_t *spa)
1719{
1720 return (spa->spa_ubsync.ub_txg);
1721}
1722
1723uint64_t
1724spa_first_txg(spa_t *spa)
1725{
1726 return (spa->spa_first_txg);
1727}
1728
428870ff
BB
1729uint64_t
1730spa_syncing_txg(spa_t *spa)
1731{
1732 return (spa->spa_syncing_txg);
1733}
1734
3b7f360c
GW
1735/*
1736 * Return the last txg where data can be dirtied. The final txgs
1737 * will be used to just clear out any deferred frees that remain.
1738 */
1739uint64_t
1740spa_final_dirty_txg(spa_t *spa)
1741{
1742 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1743}
1744
b128c09f 1745pool_state_t
34dc7c2f
BB
1746spa_state(spa_t *spa)
1747{
1748 return (spa->spa_state);
1749}
1750
428870ff
BB
1751spa_load_state_t
1752spa_load_state(spa_t *spa)
34dc7c2f 1753{
428870ff 1754 return (spa->spa_load_state);
34dc7c2f
BB
1755}
1756
34dc7c2f 1757uint64_t
428870ff 1758spa_freeze_txg(spa_t *spa)
34dc7c2f 1759{
428870ff 1760 return (spa->spa_freeze_txg);
34dc7c2f
BB
1761}
1762
047187c1 1763/*
1764 * Return the inflated asize for a logical write in bytes. This is used by the
1765 * DMU to calculate the space a logical write will require on disk.
1766 * If lsize is smaller than the largest physical block size allocatable on this
1767 * pool we use its value instead, since the write will end up using the whole
1768 * block anyway.
1769 */
34dc7c2f 1770uint64_t
3ec3bc21 1771spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1772{
047187c1 1773 if (lsize == 0)
1774 return (0); /* No inflation needed */
1775 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
34dc7c2f
BB
1776}
1777
3d45fdd6
MA
1778/*
1779 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
d7958b4c
MA
1780 * or at least 128MB, unless that would cause it to be more than half the
1781 * pool size.
3d45fdd6
MA
1782 *
1783 * See the comment above spa_slop_shift for details.
1784 */
1785uint64_t
4ea3f864
GM
1786spa_get_slop_space(spa_t *spa)
1787{
3d45fdd6 1788 uint64_t space = spa_get_dspace(spa);
d7958b4c 1789 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
3d45fdd6
MA
1790}
1791
34dc7c2f
BB
1792uint64_t
1793spa_get_dspace(spa_t *spa)
1794{
428870ff 1795 return (spa->spa_dspace);
34dc7c2f
BB
1796}
1797
d2734cce
SD
1798uint64_t
1799spa_get_checkpoint_space(spa_t *spa)
1800{
1801 return (spa->spa_checkpoint_info.sci_dspace);
1802}
1803
428870ff
BB
1804void
1805spa_update_dspace(spa_t *spa)
34dc7c2f 1806{
428870ff
BB
1807 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1808 ddt_get_dedup_dspace(spa);
a1d477c2
MA
1809 if (spa->spa_vdev_removal != NULL) {
1810 /*
1811 * We can't allocate from the removing device, so
1812 * subtract its size. This prevents the DMU/DSL from
1813 * filling up the (now smaller) pool while we are in the
1814 * middle of removing the device.
1815 *
1816 * Note that the DMU/DSL doesn't actually know or care
1817 * how much space is allocated (it does its own tracking
1818 * of how much space has been logically used). So it
1819 * doesn't matter that the data we are moving may be
1820 * allocated twice (on the old device and the new
1821 * device).
1822 */
9e052db4
MA
1823 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1824 vdev_t *vd =
1825 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
a1d477c2
MA
1826 spa->spa_dspace -= spa_deflate(spa) ?
1827 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
9e052db4 1828 spa_config_exit(spa, SCL_VDEV, FTAG);
a1d477c2 1829 }
34dc7c2f
BB
1830}
1831
1832/*
1833 * Return the failure mode that has been set to this pool. The default
1834 * behavior will be to block all I/Os when a complete failure occurs.
1835 */
8fb1ede1 1836uint64_t
34dc7c2f
BB
1837spa_get_failmode(spa_t *spa)
1838{
1839 return (spa->spa_failmode);
1840}
1841
b128c09f
BB
1842boolean_t
1843spa_suspended(spa_t *spa)
1844{
cec3a0a1 1845 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
b128c09f
BB
1846}
1847
34dc7c2f
BB
1848uint64_t
1849spa_version(spa_t *spa)
1850{
1851 return (spa->spa_ubsync.ub_version);
1852}
1853
428870ff
BB
1854boolean_t
1855spa_deflate(spa_t *spa)
1856{
1857 return (spa->spa_deflate);
1858}
1859
1860metaslab_class_t *
1861spa_normal_class(spa_t *spa)
1862{
1863 return (spa->spa_normal_class);
1864}
1865
1866metaslab_class_t *
1867spa_log_class(spa_t *spa)
1868{
1869 return (spa->spa_log_class);
1870}
1871
cc99f275
DB
1872metaslab_class_t *
1873spa_special_class(spa_t *spa)
1874{
1875 return (spa->spa_special_class);
1876}
1877
1878metaslab_class_t *
1879spa_dedup_class(spa_t *spa)
1880{
1881 return (spa->spa_dedup_class);
1882}
1883
1884/*
1885 * Locate an appropriate allocation class
1886 */
1887metaslab_class_t *
1888spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1889 uint_t level, uint_t special_smallblk)
1890{
1891 if (DMU_OT_IS_ZIL(objtype)) {
1892 if (spa->spa_log_class->mc_groups != 0)
1893 return (spa_log_class(spa));
1894 else
1895 return (spa_normal_class(spa));
1896 }
1897
1898 boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1899
1900 if (DMU_OT_IS_DDT(objtype)) {
1901 if (spa->spa_dedup_class->mc_groups != 0)
1902 return (spa_dedup_class(spa));
1903 else if (has_special_class && zfs_ddt_data_is_special)
1904 return (spa_special_class(spa));
1905 else
1906 return (spa_normal_class(spa));
1907 }
1908
1909 /* Indirect blocks for user data can land in special if allowed */
1910 if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1911 if (has_special_class && zfs_user_indirect_is_special)
1912 return (spa_special_class(spa));
1913 else
1914 return (spa_normal_class(spa));
1915 }
1916
1917 if (DMU_OT_IS_METADATA(objtype) || level > 0) {
1918 if (has_special_class)
1919 return (spa_special_class(spa));
1920 else
1921 return (spa_normal_class(spa));
1922 }
1923
1924 /*
1925 * Allow small file blocks in special class in some cases (like
1926 * for the dRAID vdev feature). But always leave a reserve of
1927 * zfs_special_class_metadata_reserve_pct exclusively for metadata.
1928 */
1929 if (DMU_OT_IS_FILE(objtype) &&
44170969 1930 has_special_class && size <= special_smallblk) {
cc99f275
DB
1931 metaslab_class_t *special = spa_special_class(spa);
1932 uint64_t alloc = metaslab_class_get_alloc(special);
1933 uint64_t space = metaslab_class_get_space(special);
1934 uint64_t limit =
1935 (space * (100 - zfs_special_class_metadata_reserve_pct))
1936 / 100;
1937
1938 if (alloc < limit)
1939 return (special);
1940 }
1941
1942 return (spa_normal_class(spa));
1943}
1944
0c66c32d
JG
1945void
1946spa_evicting_os_register(spa_t *spa, objset_t *os)
1947{
1948 mutex_enter(&spa->spa_evicting_os_lock);
1949 list_insert_head(&spa->spa_evicting_os_list, os);
1950 mutex_exit(&spa->spa_evicting_os_lock);
1951}
1952
1953void
1954spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1955{
1956 mutex_enter(&spa->spa_evicting_os_lock);
1957 list_remove(&spa->spa_evicting_os_list, os);
1958 cv_broadcast(&spa->spa_evicting_os_cv);
1959 mutex_exit(&spa->spa_evicting_os_lock);
1960}
1961
1962void
1963spa_evicting_os_wait(spa_t *spa)
1964{
1965 mutex_enter(&spa->spa_evicting_os_lock);
1966 while (!list_is_empty(&spa->spa_evicting_os_list))
1967 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1968 mutex_exit(&spa->spa_evicting_os_lock);
1969
1970 dmu_buf_user_evict_wait();
1971}
1972
34dc7c2f
BB
1973int
1974spa_max_replication(spa_t *spa)
1975{
1976 /*
1977 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1978 * handle BPs with more than one DVA allocated. Set our max
1979 * replication level accordingly.
1980 */
1981 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1982 return (1);
1983 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1984}
1985
428870ff
BB
1986int
1987spa_prev_software_version(spa_t *spa)
1988{
1989 return (spa->spa_prev_software_version);
1990}
1991
cc92e9d0
GW
1992uint64_t
1993spa_deadman_synctime(spa_t *spa)
1994{
1995 return (spa->spa_deadman_synctime);
1996}
1997
1b939560
BB
1998spa_autotrim_t
1999spa_get_autotrim(spa_t *spa)
2000{
2001 return (spa->spa_autotrim);
2002}
2003
8fb1ede1
BB
2004uint64_t
2005spa_deadman_ziotime(spa_t *spa)
2006{
2007 return (spa->spa_deadman_ziotime);
2008}
2009
2010uint64_t
2011spa_get_deadman_failmode(spa_t *spa)
2012{
2013 return (spa->spa_deadman_failmode);
2014}
2015
2016void
2017spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2018{
2019 if (strcmp(failmode, "wait") == 0)
2020 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2021 else if (strcmp(failmode, "continue") == 0)
2022 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2023 else if (strcmp(failmode, "panic") == 0)
2024 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2025 else
2026 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2027}
2028
57940b43
RM
2029void
2030spa_set_deadman_ziotime(hrtime_t ns)
2031{
2032 spa_t *spa = NULL;
2033
2034 if (spa_mode_global != SPA_MODE_UNINIT) {
2035 mutex_enter(&spa_namespace_lock);
2036 while ((spa = spa_next(spa)) != NULL)
2037 spa->spa_deadman_ziotime = ns;
2038 mutex_exit(&spa_namespace_lock);
2039 }
2040}
2041
2042void
2043spa_set_deadman_synctime(hrtime_t ns)
2044{
2045 spa_t *spa = NULL;
2046
2047 if (spa_mode_global != SPA_MODE_UNINIT) {
2048 mutex_enter(&spa_namespace_lock);
2049 while ((spa = spa_next(spa)) != NULL)
2050 spa->spa_deadman_synctime = ns;
2051 mutex_exit(&spa_namespace_lock);
2052 }
2053}
2054
34dc7c2f 2055uint64_t
428870ff 2056dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 2057{
428870ff
BB
2058 uint64_t asize = DVA_GET_ASIZE(dva);
2059 uint64_t dsize = asize;
34dc7c2f 2060
428870ff 2061 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 2062
428870ff
BB
2063 if (asize != 0 && spa->spa_deflate) {
2064 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2c33b912
BB
2065 if (vd != NULL)
2066 dsize = (asize >> SPA_MINBLOCKSHIFT) *
2067 vd->vdev_deflate_ratio;
34dc7c2f 2068 }
428870ff
BB
2069
2070 return (dsize);
2071}
2072
2073uint64_t
2074bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2075{
2076 uint64_t dsize = 0;
2077
1c27024e 2078 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
2079 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2080
2081 return (dsize);
2082}
2083
2084uint64_t
2085bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2086{
2087 uint64_t dsize = 0;
2088
2089 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2090
1c27024e 2091 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
2092 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2093
b128c09f 2094 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
2095
2096 return (dsize);
34dc7c2f
BB
2097}
2098
dae3e9ea
DB
2099uint64_t
2100spa_dirty_data(spa_t *spa)
2101{
2102 return (spa->spa_dsl_pool->dp_dirty_total);
2103}
2104
ca95f70d
OF
2105/*
2106 * ==========================================================================
2107 * SPA Import Progress Routines
2108 * ==========================================================================
2109 */
2110
2111typedef struct spa_import_progress {
2112 uint64_t pool_guid; /* unique id for updates */
2113 char *pool_name;
2114 spa_load_state_t spa_load_state;
2115 uint64_t mmp_sec_remaining; /* MMP activity check */
2116 uint64_t spa_load_max_txg; /* rewind txg */
2117 procfs_list_node_t smh_node;
2118} spa_import_progress_t;
2119
2120spa_history_list_t *spa_import_progress_list = NULL;
2121
2122static int
2123spa_import_progress_show_header(struct seq_file *f)
2124{
2125 seq_printf(f, "%-20s %-14s %-14s %-12s %s\n", "pool_guid",
2126 "load_state", "multihost_secs", "max_txg",
2127 "pool_name");
2128 return (0);
2129}
2130
2131static int
2132spa_import_progress_show(struct seq_file *f, void *data)
2133{
2134 spa_import_progress_t *sip = (spa_import_progress_t *)data;
2135
2136 seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %s\n",
2137 (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2138 (u_longlong_t)sip->mmp_sec_remaining,
2139 (u_longlong_t)sip->spa_load_max_txg,
2140 (sip->pool_name ? sip->pool_name : "-"));
2141
2142 return (0);
2143}
2144
2145/* Remove oldest elements from list until there are no more than 'size' left */
2146static void
2147spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2148{
2149 spa_import_progress_t *sip;
2150 while (shl->size > size) {
2151 sip = list_remove_head(&shl->procfs_list.pl_list);
2152 if (sip->pool_name)
2153 spa_strfree(sip->pool_name);
2154 kmem_free(sip, sizeof (spa_import_progress_t));
2155 shl->size--;
2156 }
2157
2158 IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2159}
2160
2161static void
2162spa_import_progress_init(void)
2163{
2164 spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2165 KM_SLEEP);
2166
2167 spa_import_progress_list->size = 0;
2168
2169 spa_import_progress_list->procfs_list.pl_private =
2170 spa_import_progress_list;
2171
2172 procfs_list_install("zfs",
7b8363d7 2173 NULL,
ca95f70d
OF
2174 "import_progress",
2175 0644,
2176 &spa_import_progress_list->procfs_list,
2177 spa_import_progress_show,
2178 spa_import_progress_show_header,
2179 NULL,
2180 offsetof(spa_import_progress_t, smh_node));
2181}
2182
2183static void
2184spa_import_progress_destroy(void)
2185{
2186 spa_history_list_t *shl = spa_import_progress_list;
2187 procfs_list_uninstall(&shl->procfs_list);
2188 spa_import_progress_truncate(shl, 0);
ca95f70d 2189 procfs_list_destroy(&shl->procfs_list);
75c09c50 2190 kmem_free(shl, sizeof (spa_history_list_t));
ca95f70d
OF
2191}
2192
2193int
2194spa_import_progress_set_state(uint64_t pool_guid,
2195 spa_load_state_t load_state)
2196{
2197 spa_history_list_t *shl = spa_import_progress_list;
2198 spa_import_progress_t *sip;
2199 int error = ENOENT;
2200
2201 if (shl->size == 0)
2202 return (0);
2203
2204 mutex_enter(&shl->procfs_list.pl_lock);
2205 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2206 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2207 if (sip->pool_guid == pool_guid) {
2208 sip->spa_load_state = load_state;
2209 error = 0;
2210 break;
2211 }
2212 }
2213 mutex_exit(&shl->procfs_list.pl_lock);
2214
2215 return (error);
2216}
2217
2218int
2219spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2220{
2221 spa_history_list_t *shl = spa_import_progress_list;
2222 spa_import_progress_t *sip;
2223 int error = ENOENT;
2224
2225 if (shl->size == 0)
2226 return (0);
2227
2228 mutex_enter(&shl->procfs_list.pl_lock);
2229 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2230 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2231 if (sip->pool_guid == pool_guid) {
2232 sip->spa_load_max_txg = load_max_txg;
2233 error = 0;
2234 break;
2235 }
2236 }
2237 mutex_exit(&shl->procfs_list.pl_lock);
2238
2239 return (error);
2240}
2241
2242int
2243spa_import_progress_set_mmp_check(uint64_t pool_guid,
2244 uint64_t mmp_sec_remaining)
2245{
2246 spa_history_list_t *shl = spa_import_progress_list;
2247 spa_import_progress_t *sip;
2248 int error = ENOENT;
2249
2250 if (shl->size == 0)
2251 return (0);
2252
2253 mutex_enter(&shl->procfs_list.pl_lock);
2254 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2255 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2256 if (sip->pool_guid == pool_guid) {
2257 sip->mmp_sec_remaining = mmp_sec_remaining;
2258 error = 0;
2259 break;
2260 }
2261 }
2262 mutex_exit(&shl->procfs_list.pl_lock);
2263
2264 return (error);
2265}
2266
2267/*
2268 * A new import is in progress, add an entry.
2269 */
2270void
2271spa_import_progress_add(spa_t *spa)
2272{
2273 spa_history_list_t *shl = spa_import_progress_list;
2274 spa_import_progress_t *sip;
2275 char *poolname = NULL;
2276
2277 sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2278 sip->pool_guid = spa_guid(spa);
2279
2280 (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2281 &poolname);
2282 if (poolname == NULL)
2283 poolname = spa_name(spa);
2284 sip->pool_name = spa_strdup(poolname);
2285 sip->spa_load_state = spa_load_state(spa);
2286
2287 mutex_enter(&shl->procfs_list.pl_lock);
2288 procfs_list_add(&shl->procfs_list, sip);
2289 shl->size++;
2290 mutex_exit(&shl->procfs_list.pl_lock);
2291}
2292
2293void
2294spa_import_progress_remove(uint64_t pool_guid)
2295{
2296 spa_history_list_t *shl = spa_import_progress_list;
2297 spa_import_progress_t *sip;
2298
2299 mutex_enter(&shl->procfs_list.pl_lock);
2300 for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2301 sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2302 if (sip->pool_guid == pool_guid) {
2303 if (sip->pool_name)
2304 spa_strfree(sip->pool_name);
2305 list_remove(&shl->procfs_list.pl_list, sip);
2306 shl->size--;
2307 kmem_free(sip, sizeof (spa_import_progress_t));
2308 break;
2309 }
2310 }
2311 mutex_exit(&shl->procfs_list.pl_lock);
2312}
2313
34dc7c2f
BB
2314/*
2315 * ==========================================================================
2316 * Initialization and Termination
2317 * ==========================================================================
2318 */
2319
2320static int
2321spa_name_compare(const void *a1, const void *a2)
2322{
2323 const spa_t *s1 = a1;
2324 const spa_t *s2 = a2;
2325 int s;
2326
2327 s = strcmp(s1->spa_name, s2->spa_name);
ee36c709 2328
ca577779 2329 return (TREE_ISIGN(s));
34dc7c2f
BB
2330}
2331
34dc7c2f 2332void
0bc8fd78 2333spa_boot_init(void)
34dc7c2f
BB
2334{
2335 spa_config_load();
2336}
2337
2338void
da92d5cb 2339spa_init(spa_mode_t mode)
34dc7c2f
BB
2340{
2341 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2342 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2343 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2344 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2345
2346 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2347 offsetof(spa_t, spa_avl));
2348
2349 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2350 offsetof(spa_aux_t, aux_avl));
2351
2352 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2353 offsetof(spa_aux_t, aux_avl));
2354
fb5f0bc8 2355 spa_mode_global = mode;
34dc7c2f 2356
498877ba 2357#ifndef _KERNEL
da92d5cb 2358 if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
498877ba
MA
2359 struct sigaction sa;
2360
2361 sa.sa_flags = SA_SIGINFO;
2362 sigemptyset(&sa.sa_mask);
2363 sa.sa_sigaction = arc_buf_sigsegv;
2364
2365 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2366 perror("could not enable watchpoints: "
2367 "sigaction(SIGSEGV, ...) = ");
2368 } else {
2369 arc_watch = B_TRUE;
2370 }
2371 }
2372#endif
2373
26685276 2374 fm_init();
424fd7c3 2375 zfs_refcount_init();
34dc7c2f 2376 unique_init();
ca577779
PD
2377 zfs_btree_init();
2378 metaslab_stat_init();
ecf3d9b8 2379 ddt_init();
34dc7c2f
BB
2380 zio_init();
2381 dmu_init();
2382 zil_init();
2383 vdev_cache_stat_init();
551905dd 2384 vdev_mirror_stat_init();
ab9f4b0b 2385 vdev_raidz_math_init();
da8f51e1 2386 vdev_file_init();
34dc7c2f
BB
2387 zfs_prop_init();
2388 zpool_prop_init();
9ae529ec 2389 zpool_feature_init();
34dc7c2f 2390 spa_config_load();
b128c09f 2391 l2arc_start();
d4a72f23 2392 scan_init();
6a9d6359 2393 qat_init();
ca95f70d 2394 spa_import_progress_init();
34dc7c2f
BB
2395}
2396
2397void
2398spa_fini(void)
2399{
b128c09f
BB
2400 l2arc_stop();
2401
34dc7c2f
BB
2402 spa_evict_all();
2403
da8f51e1 2404 vdev_file_fini();
34dc7c2f 2405 vdev_cache_stat_fini();
551905dd 2406 vdev_mirror_stat_fini();
ab9f4b0b 2407 vdev_raidz_math_fini();
34dc7c2f
BB
2408 zil_fini();
2409 dmu_fini();
2410 zio_fini();
ecf3d9b8 2411 ddt_fini();
ca577779
PD
2412 metaslab_stat_fini();
2413 zfs_btree_fini();
34dc7c2f 2414 unique_fini();
424fd7c3 2415 zfs_refcount_fini();
26685276 2416 fm_fini();
d4a72f23 2417 scan_fini();
6a9d6359 2418 qat_fini();
ca95f70d 2419 spa_import_progress_destroy();
34dc7c2f
BB
2420
2421 avl_destroy(&spa_namespace_avl);
2422 avl_destroy(&spa_spare_avl);
2423 avl_destroy(&spa_l2cache_avl);
2424
2425 cv_destroy(&spa_namespace_cv);
2426 mutex_destroy(&spa_namespace_lock);
2427 mutex_destroy(&spa_spare_lock);
2428 mutex_destroy(&spa_l2cache_lock);
2429}
2430
2431/*
2432 * Return whether this pool has slogs. No locking needed.
2433 * It's not a problem if the wrong answer is returned as it's only for
2434 * performance and not correctness
2435 */
2436boolean_t
2437spa_has_slogs(spa_t *spa)
2438{
f8020c93 2439 return (spa->spa_log_class->mc_groups != 0);
34dc7c2f 2440}
b128c09f 2441
428870ff
BB
2442spa_log_state_t
2443spa_get_log_state(spa_t *spa)
2444{
2445 return (spa->spa_log_state);
2446}
2447
2448void
2449spa_set_log_state(spa_t *spa, spa_log_state_t state)
2450{
2451 spa->spa_log_state = state;
2452}
2453
b128c09f
BB
2454boolean_t
2455spa_is_root(spa_t *spa)
2456{
2457 return (spa->spa_is_root);
2458}
fb5f0bc8
BB
2459
2460boolean_t
2461spa_writeable(spa_t *spa)
2462{
da92d5cb 2463 return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
fb5f0bc8
BB
2464}
2465
acbad6ff
AR
2466/*
2467 * Returns true if there is a pending sync task in any of the current
2468 * syncing txg, the current quiescing txg, or the current open txg.
2469 */
2470boolean_t
2471spa_has_pending_synctask(spa_t *spa)
2472{
d2734cce
SD
2473 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2474 !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
acbad6ff
AR
2475}
2476
da92d5cb 2477spa_mode_t
fb5f0bc8
BB
2478spa_mode(spa_t *spa)
2479{
2480 return (spa->spa_mode);
2481}
428870ff
BB
2482
2483uint64_t
2484spa_bootfs(spa_t *spa)
2485{
2486 return (spa->spa_bootfs);
2487}
2488
2489uint64_t
2490spa_delegation(spa_t *spa)
2491{
2492 return (spa->spa_delegation);
2493}
2494
2495objset_t *
2496spa_meta_objset(spa_t *spa)
2497{
2498 return (spa->spa_meta_objset);
2499}
2500
2501enum zio_checksum
2502spa_dedup_checksum(spa_t *spa)
2503{
2504 return (spa->spa_dedup_checksum);
2505}
2506
2507/*
2508 * Reset pool scan stat per scan pass (or reboot).
2509 */
2510void
2511spa_scan_stat_init(spa_t *spa)
2512{
2513 /* data not stored on disk */
2514 spa->spa_scan_pass_start = gethrestime_sec();
0ea05c64
AP
2515 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2516 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2517 else
2518 spa->spa_scan_pass_scrub_pause = 0;
2519 spa->spa_scan_pass_scrub_spent_paused = 0;
428870ff 2520 spa->spa_scan_pass_exam = 0;
d4a72f23 2521 spa->spa_scan_pass_issued = 0;
428870ff
BB
2522 vdev_scan_stat_init(spa->spa_root_vdev);
2523}
2524
2525/*
2526 * Get scan stats for zpool status reports
2527 */
2528int
2529spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2530{
2531 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2532
2533 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2e528b49 2534 return (SET_ERROR(ENOENT));
428870ff
BB
2535 bzero(ps, sizeof (pool_scan_stat_t));
2536
2537 /* data stored on disk */
2538 ps->pss_func = scn->scn_phys.scn_func;
d4a72f23 2539 ps->pss_state = scn->scn_phys.scn_state;
428870ff
BB
2540 ps->pss_start_time = scn->scn_phys.scn_start_time;
2541 ps->pss_end_time = scn->scn_phys.scn_end_time;
2542 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
d4677269 2543 ps->pss_examined = scn->scn_phys.scn_examined;
428870ff
BB
2544 ps->pss_to_process = scn->scn_phys.scn_to_process;
2545 ps->pss_processed = scn->scn_phys.scn_processed;
2546 ps->pss_errors = scn->scn_phys.scn_errors;
428870ff
BB
2547
2548 /* data not stored on disk */
428870ff 2549 ps->pss_pass_exam = spa->spa_scan_pass_exam;
d4677269 2550 ps->pss_pass_start = spa->spa_scan_pass_start;
0ea05c64
AP
2551 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2552 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
d4677269
TC
2553 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2554 ps->pss_issued =
2555 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
428870ff
BB
2556
2557 return (0);
2558}
c28b2279 2559
f1512ee6
MA
2560int
2561spa_maxblocksize(spa_t *spa)
2562{
2563 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2564 return (SPA_MAXBLOCKSIZE);
2565 else
2566 return (SPA_OLD_MAXBLOCKSIZE);
2567}
2568
a1d477c2
MA
2569
2570/*
2571 * Returns the txg that the last device removal completed. No indirect mappings
2572 * have been added since this txg.
2573 */
2574uint64_t
2575spa_get_last_removal_txg(spa_t *spa)
2576{
2577 uint64_t vdevid;
2578 uint64_t ret = -1ULL;
2579
2580 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2581 /*
2582 * sr_prev_indirect_vdev is only modified while holding all the
2583 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2584 * examining it.
2585 */
2586 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2587
2588 while (vdevid != -1ULL) {
2589 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2590 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2591
2592 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2593
2594 /*
2595 * If the removal did not remap any data, we don't care.
2596 */
2597 if (vdev_indirect_births_count(vib) != 0) {
2598 ret = vdev_indirect_births_last_entry_txg(vib);
2599 break;
2600 }
2601
2602 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2603 }
2604 spa_config_exit(spa, SCL_VDEV, FTAG);
2605
2606 IMPLY(ret != -1ULL,
2607 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2608
2609 return (ret);
2610}
2611
50c957f7
NB
2612int
2613spa_maxdnodesize(spa_t *spa)
2614{
2615 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2616 return (DNODE_MAX_SIZE);
2617 else
2618 return (DNODE_MIN_SIZE);
2619}
2620
379ca9cf
OF
2621boolean_t
2622spa_multihost(spa_t *spa)
2623{
2624 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2625}
2626
25f06d67
BB
2627uint32_t
2628spa_get_hostid(spa_t *spa)
379ca9cf 2629{
25f06d67 2630 return (spa->spa_hostid);
379ca9cf
OF
2631}
2632
6cb8e530
PZ
2633boolean_t
2634spa_trust_config(spa_t *spa)
2635{
2636 return (spa->spa_trust_config);
2637}
2638
2639uint64_t
2640spa_missing_tvds_allowed(spa_t *spa)
2641{
2642 return (spa->spa_missing_tvds_allowed);
2643}
2644
93e28d66
SD
2645space_map_t *
2646spa_syncing_log_sm(spa_t *spa)
2647{
2648 return (spa->spa_syncing_log_sm);
2649}
2650
6cb8e530
PZ
2651void
2652spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2653{
2654 spa->spa_missing_tvds = missing;
2655}
2656
f0ed6c74
TH
2657/*
2658 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2659 */
2660const char *
2661spa_state_to_name(spa_t *spa)
2662{
78fac8d9
RE
2663 ASSERT3P(spa, !=, NULL);
2664
2665 /*
2666 * it is possible for the spa to exist, without root vdev
2667 * as the spa transitions during import/export
2668 */
2669 vdev_t *rvd = spa->spa_root_vdev;
2670 if (rvd == NULL) {
2671 return ("TRANSITIONING");
2672 }
2673 vdev_state_t state = rvd->vdev_state;
2674 vdev_aux_t aux = rvd->vdev_stat.vs_aux;
f0ed6c74
TH
2675
2676 if (spa_suspended(spa) &&
2677 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2678 return ("SUSPENDED");
2679
2680 switch (state) {
2681 case VDEV_STATE_CLOSED:
2682 case VDEV_STATE_OFFLINE:
2683 return ("OFFLINE");
2684 case VDEV_STATE_REMOVED:
2685 return ("REMOVED");
2686 case VDEV_STATE_CANT_OPEN:
2687 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2688 return ("FAULTED");
2689 else if (aux == VDEV_AUX_SPLIT_POOL)
2690 return ("SPLIT");
2691 else
2692 return ("UNAVAIL");
2693 case VDEV_STATE_FAULTED:
2694 return ("FAULTED");
2695 case VDEV_STATE_DEGRADED:
2696 return ("DEGRADED");
2697 case VDEV_STATE_HEALTHY:
2698 return ("ONLINE");
2699 default:
2700 break;
2701 }
2702
2703 return ("UNKNOWN");
2704}
2705
d2734cce
SD
2706boolean_t
2707spa_top_vdevs_spacemap_addressable(spa_t *spa)
2708{
2709 vdev_t *rvd = spa->spa_root_vdev;
2710 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2711 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2712 return (B_FALSE);
2713 }
2714 return (B_TRUE);
2715}
2716
2717boolean_t
2718spa_has_checkpoint(spa_t *spa)
2719{
2720 return (spa->spa_checkpoint_txg != 0);
2721}
2722
2723boolean_t
2724spa_importing_readonly_checkpoint(spa_t *spa)
2725{
2726 return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
da92d5cb 2727 spa->spa_mode == SPA_MODE_READ);
d2734cce
SD
2728}
2729
2730uint64_t
2731spa_min_claim_txg(spa_t *spa)
2732{
2733 uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2734
2735 if (checkpoint_txg != 0)
2736 return (checkpoint_txg + 1);
2737
2738 return (spa->spa_first_txg);
2739}
2740
2741/*
2742 * If there is a checkpoint, async destroys may consume more space from
2743 * the pool instead of freeing it. In an attempt to save the pool from
2744 * getting suspended when it is about to run out of space, we stop
2745 * processing async destroys.
2746 */
2747boolean_t
2748spa_suspend_async_destroy(spa_t *spa)
2749{
2750 dsl_pool_t *dp = spa_get_dsl(spa);
2751
2752 uint64_t unreserved = dsl_pool_unreserved_space(dp,
2753 ZFS_SPACE_CHECK_EXTRA_RESERVED);
2754 uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2755 uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2756
2757 if (spa_has_checkpoint(spa) && avail == 0)
2758 return (B_TRUE);
2759
2760 return (B_FALSE);
2761}
2762
93ce2b4c 2763#if defined(_KERNEL)
8fb1ede1 2764
e64e84ec
MM
2765int
2766param_set_deadman_failmode_common(const char *val)
8fb1ede1
BB
2767{
2768 spa_t *spa = NULL;
2769 char *p;
2770
2771 if (val == NULL)
e64e84ec 2772 return (SET_ERROR(EINVAL));
8fb1ede1
BB
2773
2774 if ((p = strchr(val, '\n')) != NULL)
2775 *p = '\0';
2776
2777 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2778 strcmp(val, "panic"))
e64e84ec 2779 return (SET_ERROR(EINVAL));
8fb1ede1 2780
da92d5cb 2781 if (spa_mode_global != SPA_MODE_UNINIT) {
d1043e2f
TC
2782 mutex_enter(&spa_namespace_lock);
2783 while ((spa = spa_next(spa)) != NULL)
2784 spa_set_deadman_failmode(spa, val);
2785 mutex_exit(&spa_namespace_lock);
2786 }
8fb1ede1 2787
e64e84ec 2788 return (0);
8fb1ede1 2789}
03fdcb9a
MM
2790#endif
2791
c28b2279
BB
2792/* Namespace manipulation */
2793EXPORT_SYMBOL(spa_lookup);
2794EXPORT_SYMBOL(spa_add);
2795EXPORT_SYMBOL(spa_remove);
2796EXPORT_SYMBOL(spa_next);
2797
2798/* Refcount functions */
2799EXPORT_SYMBOL(spa_open_ref);
2800EXPORT_SYMBOL(spa_close);
2801EXPORT_SYMBOL(spa_refcount_zero);
2802
2803/* Pool configuration lock */
2804EXPORT_SYMBOL(spa_config_tryenter);
2805EXPORT_SYMBOL(spa_config_enter);
2806EXPORT_SYMBOL(spa_config_exit);
2807EXPORT_SYMBOL(spa_config_held);
2808
2809/* Pool vdev add/remove lock */
2810EXPORT_SYMBOL(spa_vdev_enter);
2811EXPORT_SYMBOL(spa_vdev_exit);
2812
2813/* Pool vdev state change lock */
2814EXPORT_SYMBOL(spa_vdev_state_enter);
2815EXPORT_SYMBOL(spa_vdev_state_exit);
2816
2817/* Accessor functions */
2818EXPORT_SYMBOL(spa_shutting_down);
2819EXPORT_SYMBOL(spa_get_dsl);
2820EXPORT_SYMBOL(spa_get_rootblkptr);
2821EXPORT_SYMBOL(spa_set_rootblkptr);
2822EXPORT_SYMBOL(spa_altroot);
2823EXPORT_SYMBOL(spa_sync_pass);
2824EXPORT_SYMBOL(spa_name);
2825EXPORT_SYMBOL(spa_guid);
2826EXPORT_SYMBOL(spa_last_synced_txg);
2827EXPORT_SYMBOL(spa_first_txg);
2828EXPORT_SYMBOL(spa_syncing_txg);
2829EXPORT_SYMBOL(spa_version);
2830EXPORT_SYMBOL(spa_state);
2831EXPORT_SYMBOL(spa_load_state);
2832EXPORT_SYMBOL(spa_freeze_txg);
c28b2279
BB
2833EXPORT_SYMBOL(spa_get_dspace);
2834EXPORT_SYMBOL(spa_update_dspace);
2835EXPORT_SYMBOL(spa_deflate);
2836EXPORT_SYMBOL(spa_normal_class);
2837EXPORT_SYMBOL(spa_log_class);
cc99f275
DB
2838EXPORT_SYMBOL(spa_special_class);
2839EXPORT_SYMBOL(spa_preferred_class);
c28b2279
BB
2840EXPORT_SYMBOL(spa_max_replication);
2841EXPORT_SYMBOL(spa_prev_software_version);
2842EXPORT_SYMBOL(spa_get_failmode);
2843EXPORT_SYMBOL(spa_suspended);
2844EXPORT_SYMBOL(spa_bootfs);
2845EXPORT_SYMBOL(spa_delegation);
2846EXPORT_SYMBOL(spa_meta_objset);
f1512ee6 2847EXPORT_SYMBOL(spa_maxblocksize);
50c957f7 2848EXPORT_SYMBOL(spa_maxdnodesize);
c28b2279
BB
2849
2850/* Miscellaneous support routines */
c28b2279
BB
2851EXPORT_SYMBOL(spa_guid_exists);
2852EXPORT_SYMBOL(spa_strdup);
2853EXPORT_SYMBOL(spa_strfree);
2854EXPORT_SYMBOL(spa_get_random);
2855EXPORT_SYMBOL(spa_generate_guid);
b0bc7a84 2856EXPORT_SYMBOL(snprintf_blkptr);
c28b2279
BB
2857EXPORT_SYMBOL(spa_freeze);
2858EXPORT_SYMBOL(spa_upgrade);
2859EXPORT_SYMBOL(spa_evict_all);
2860EXPORT_SYMBOL(spa_lookup_by_guid);
2861EXPORT_SYMBOL(spa_has_spare);
2862EXPORT_SYMBOL(dva_get_dsize_sync);
2863EXPORT_SYMBOL(bp_get_dsize_sync);
2864EXPORT_SYMBOL(bp_get_dsize);
2865EXPORT_SYMBOL(spa_has_slogs);
2866EXPORT_SYMBOL(spa_is_root);
2867EXPORT_SYMBOL(spa_writeable);
2868EXPORT_SYMBOL(spa_mode);
c28b2279 2869EXPORT_SYMBOL(spa_namespace_lock);
6cb8e530
PZ
2870EXPORT_SYMBOL(spa_trust_config);
2871EXPORT_SYMBOL(spa_missing_tvds_allowed);
2872EXPORT_SYMBOL(spa_set_missing_tvds);
f0ed6c74 2873EXPORT_SYMBOL(spa_state_to_name);
d2734cce
SD
2874EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
2875EXPORT_SYMBOL(spa_min_claim_txg);
2876EXPORT_SYMBOL(spa_suspend_async_destroy);
2877EXPORT_SYMBOL(spa_has_checkpoint);
2878EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
cc92e9d0 2879
03fdcb9a
MM
2880ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
2881 "Set additional debugging flags");
0b39b9f9 2882
03fdcb9a
MM
2883ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
2884 "Set to attempt to recover from fatal errors");
0b39b9f9 2885
03fdcb9a 2886ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
0b39b9f9
PS
2887 "Set to ignore IO errors during free and permanently leak the space");
2888
03fdcb9a
MM
2889ZFS_MODULE_PARAM(zfs, zfs_, deadman_checktime_ms, ULONG, ZMOD_RW,
2890 "Dead I/O check interval in milliseconds");
2891
2892ZFS_MODULE_PARAM(zfs, zfs_, deadman_enabled, INT, ZMOD_RW,
2893 "Enable deadman timer");
2894
2895ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, INT, ZMOD_RW,
2896 "SPA size estimate multiplication factor");
2897
2898ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
2899 "Place DDT data into the special class");
2900
2901ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
2902 "Place user data indirect blocks into the special class");
2903
03fdcb9a 2904/* BEGIN CSTYLED */
e64e84ec
MM
2905ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
2906 param_set_deadman_failmode, param_get_charp, ZMOD_RW,
2907 "Failmode for deadman timer");
2908
2a3aa5a1
MM
2909ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
2910 param_set_deadman_synctime, param_get_ulong, ZMOD_RW,
2911 "Pool sync expiration time in milliseconds");
2912
2913ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
2914 param_set_deadman_ziotime, param_get_ulong, ZMOD_RW,
2915 "IO expiration time in milliseconds");
2916
03fdcb9a 2917ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, INT, ZMOD_RW,
1f02ecc5
D
2918 "Small file blocks in special vdevs depends on this much "
2919 "free space available");
02730c33 2920/* END CSTYLED */
2a3aa5a1 2921
7e3df9db 2922ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
2a3aa5a1 2923 param_get_int, ZMOD_RW, "Reserved free space in pool");