]> git.proxmox.com Git - mirror_edk2.git/blame - MdePkg/Include/Library/BaseLib.h
Sync EDKII BaseTools to BaseTools project r1928
[mirror_edk2.git] / MdePkg / Include / Library / BaseLib.h
CommitLineData
ac644614 1/** @file\r
50a64e5b 2 Provides string functions, linked list functions, math functions, synchronization\r
1a2f870c 3 functions, and CPU architecture-specific functions.\r
ac644614 4\r
2fe241a2 5Copyright (c) 2006 - 2008, Intel Corporation<BR>\r
8992ce06 6Portions copyright (c) 2008-2009 Apple Inc. All rights reserved.<BR>\r
50a64e5b 7All rights reserved. This program and the accompanying materials\r
8are licensed and made available under the terms and conditions of the BSD License\r
9which accompanies this distribution. The full text of the license may be found at\r
10http://opensource.org/licenses/bsd-license.php\r
ac644614 11\r
50a64e5b 12THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
13WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
ac644614 14\r
15**/\r
16\r
17#ifndef __BASE_LIB__\r
18#define __BASE_LIB__\r
19\r
1106ffe1 20//\r
1a2f870c 21// Definitions for architecture-specific types\r
1106ffe1 22//\r
ac644614 23#if defined (MDE_CPU_IA32)\r
fc30687f 24///\r
1a2f870c 25/// IA-32 architecture context buffer used by SetJump() and LongJump()\r
fc30687f 26///\r
ac644614 27typedef struct {\r
28 UINT32 Ebx;\r
29 UINT32 Esi;\r
30 UINT32 Edi;\r
31 UINT32 Ebp;\r
32 UINT32 Esp;\r
33 UINT32 Eip;\r
34} BASE_LIBRARY_JUMP_BUFFER;\r
35\r
36#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
37\r
aa4df547 38#endif // defined (MDE_CPU_IA32)\r
39\r
40#if defined (MDE_CPU_IPF)\r
ac644614 41\r
fc30687f 42///\r
1a2f870c 43/// Itanium architecture context buffer used by SetJump() and LongJump()\r
fc30687f 44///\r
ac644614 45typedef struct {\r
46 UINT64 F2[2];\r
47 UINT64 F3[2];\r
48 UINT64 F4[2];\r
49 UINT64 F5[2];\r
50 UINT64 F16[2];\r
51 UINT64 F17[2];\r
52 UINT64 F18[2];\r
53 UINT64 F19[2];\r
54 UINT64 F20[2];\r
55 UINT64 F21[2];\r
56 UINT64 F22[2];\r
57 UINT64 F23[2];\r
58 UINT64 F24[2];\r
59 UINT64 F25[2];\r
60 UINT64 F26[2];\r
61 UINT64 F27[2];\r
62 UINT64 F28[2];\r
63 UINT64 F29[2];\r
64 UINT64 F30[2];\r
65 UINT64 F31[2];\r
66 UINT64 R4;\r
67 UINT64 R5;\r
68 UINT64 R6;\r
69 UINT64 R7;\r
70 UINT64 SP;\r
71 UINT64 BR0;\r
72 UINT64 BR1;\r
73 UINT64 BR2;\r
74 UINT64 BR3;\r
75 UINT64 BR4;\r
76 UINT64 BR5;\r
77 UINT64 InitialUNAT;\r
78 UINT64 AfterSpillUNAT;\r
79 UINT64 PFS;\r
80 UINT64 BSP;\r
81 UINT64 Predicates;\r
82 UINT64 LoopCount;\r
83 UINT64 FPSR;\r
84} BASE_LIBRARY_JUMP_BUFFER;\r
85\r
86#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 0x10\r
87\r
aa4df547 88#endif // defined (MDE_CPU_IPF)\r
89\r
90#if defined (MDE_CPU_X64)\r
fc30687f 91///\r
1a2f870c 92/// x64 architecture context buffer used by SetJump() and LongJump()\r
fc30687f 93///\r
ac644614 94typedef struct {\r
95 UINT64 Rbx;\r
96 UINT64 Rsp;\r
97 UINT64 Rbp;\r
98 UINT64 Rdi;\r
99 UINT64 Rsi;\r
100 UINT64 R12;\r
101 UINT64 R13;\r
102 UINT64 R14;\r
103 UINT64 R15;\r
104 UINT64 Rip;\r
9b9641c6 105 UINT64 MxCsr;\r
106 UINT8 XmmBuffer[160]; ///< XMM6-XMM15\r
ac644614 107} BASE_LIBRARY_JUMP_BUFFER;\r
108\r
109#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
110\r
aa4df547 111#endif // defined (MDE_CPU_X64)\r
112\r
113#if defined (MDE_CPU_EBC)\r
fc30687f 114///\r
115/// EBC context buffer used by SetJump() and LongJump()\r
116///\r
ac644614 117typedef struct {\r
118 UINT64 R0;\r
119 UINT64 R1;\r
120 UINT64 R2;\r
121 UINT64 R3;\r
122 UINT64 IP;\r
123} BASE_LIBRARY_JUMP_BUFFER;\r
124\r
125#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 8\r
126\r
aa4df547 127#endif // defined (MDE_CPU_EBC)\r
ac644614 128\r
ebd04fc2 129#if defined (MDE_CPU_ARM)\r
130\r
131typedef struct {\r
01a54966 132 UINT32 R3; ///< Copy of R13\r
133 UINT32 R4;\r
134 UINT32 R5;\r
135 UINT32 R6;\r
136 UINT32 R7;\r
137 UINT32 R8;\r
138 UINT32 R9;\r
139 UINT32 R10;\r
140 UINT32 R11;\r
141 UINT32 R12;\r
142 UINT32 R14;\r
ebd04fc2 143} BASE_LIBRARY_JUMP_BUFFER;\r
144\r
145#define BASE_LIBRARY_JUMP_BUFFER_ALIGNMENT 4\r
146\r
147#endif // defined (MDE_CPU_ARM)\r
148\r
ac644614 149//\r
150// String Services\r
151//\r
152\r
153/**\r
154 Copies one Null-terminated Unicode string to another Null-terminated Unicode\r
155 string and returns the new Unicode string.\r
156\r
157 This function copies the contents of the Unicode string Source to the Unicode\r
158 string Destination, and returns Destination. If Source and Destination\r
159 overlap, then the results are undefined.\r
160\r
161 If Destination is NULL, then ASSERT().\r
162 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
163 If Source is NULL, then ASSERT().\r
164 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
165 If Source and Destination overlap, then ASSERT().\r
166 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
167 PcdMaximumUnicodeStringLength Unicode characters not including the\r
168 Null-terminator, then ASSERT().\r
169\r
170 @param Destination Pointer to a Null-terminated Unicode string.\r
171 @param Source Pointer to a Null-terminated Unicode string.\r
172\r
9aa049d9 173 @return Destination.\r
ac644614 174\r
175**/\r
176CHAR16 *\r
177EFIAPI\r
178StrCpy (\r
179 OUT CHAR16 *Destination,\r
180 IN CONST CHAR16 *Source\r
181 );\r
182\r
183\r
184/**\r
17f695ed 185 Copies up to a specified length from one Null-terminated Unicode string to \r
186 another Null-terminated Unicode string and returns the new Unicode string.\r
ac644614 187\r
188 This function copies the contents of the Unicode string Source to the Unicode\r
189 string Destination, and returns Destination. At most, Length Unicode\r
190 characters are copied from Source to Destination. If Length is 0, then\r
191 Destination is returned unmodified. If Length is greater that the number of\r
192 Unicode characters in Source, then Destination is padded with Null Unicode\r
193 characters. If Source and Destination overlap, then the results are\r
194 undefined.\r
195\r
196 If Length > 0 and Destination is NULL, then ASSERT().\r
197 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
198 If Length > 0 and Source is NULL, then ASSERT().\r
77f863ee 199 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 200 If Source and Destination overlap, then ASSERT().\r
50c247fd 201 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
202 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 203 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 204 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
205 then ASSERT().\r
ac644614 206\r
207 @param Destination Pointer to a Null-terminated Unicode string.\r
208 @param Source Pointer to a Null-terminated Unicode string.\r
209 @param Length Maximum number of Unicode characters to copy.\r
210\r
9aa049d9 211 @return Destination.\r
ac644614 212\r
213**/\r
214CHAR16 *\r
215EFIAPI\r
216StrnCpy (\r
217 OUT CHAR16 *Destination,\r
218 IN CONST CHAR16 *Source,\r
219 IN UINTN Length\r
220 );\r
221\r
222\r
223/**\r
224 Returns the length of a Null-terminated Unicode string.\r
225\r
226 This function returns the number of Unicode characters in the Null-terminated\r
227 Unicode string specified by String.\r
228\r
229 If String is NULL, then ASSERT().\r
230 If String is not aligned on a 16-bit boundary, then ASSERT().\r
231 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
232 PcdMaximumUnicodeStringLength Unicode characters not including the\r
233 Null-terminator, then ASSERT().\r
234\r
235 @param String Pointer to a Null-terminated Unicode string.\r
236\r
237 @return The length of String.\r
238\r
239**/\r
240UINTN\r
241EFIAPI\r
242StrLen (\r
243 IN CONST CHAR16 *String\r
244 );\r
245\r
246\r
247/**\r
248 Returns the size of a Null-terminated Unicode string in bytes, including the\r
249 Null terminator.\r
250\r
17f695ed 251 This function returns the size, in bytes, of the Null-terminated Unicode string \r
252 specified by String.\r
ac644614 253\r
254 If String is NULL, then ASSERT().\r
255 If String is not aligned on a 16-bit boundary, then ASSERT().\r
256 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
257 PcdMaximumUnicodeStringLength Unicode characters not including the\r
258 Null-terminator, then ASSERT().\r
259\r
260 @param String Pointer to a Null-terminated Unicode string.\r
261\r
262 @return The size of String.\r
263\r
264**/\r
265UINTN\r
266EFIAPI\r
267StrSize (\r
268 IN CONST CHAR16 *String\r
269 );\r
270\r
271\r
272/**\r
273 Compares two Null-terminated Unicode strings, and returns the difference\r
274 between the first mismatched Unicode characters.\r
275\r
276 This function compares the Null-terminated Unicode string FirstString to the\r
277 Null-terminated Unicode string SecondString. If FirstString is identical to\r
278 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
279 mismatched Unicode character in SecondString subtracted from the first\r
280 mismatched Unicode character in FirstString.\r
281\r
282 If FirstString is NULL, then ASSERT().\r
283 If FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
284 If SecondString is NULL, then ASSERT().\r
285 If SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
286 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more\r
287 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
288 Null-terminator, then ASSERT().\r
289 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more\r
290 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
291 Null-terminator, then ASSERT().\r
292\r
293 @param FirstString Pointer to a Null-terminated Unicode string.\r
294 @param SecondString Pointer to a Null-terminated Unicode string.\r
295\r
1106ffe1 296 @retval 0 FirstString is identical to SecondString.\r
297 @return others FirstString is not identical to SecondString.\r
ac644614 298\r
299**/\r
300INTN\r
301EFIAPI\r
302StrCmp (\r
303 IN CONST CHAR16 *FirstString,\r
304 IN CONST CHAR16 *SecondString\r
305 );\r
306\r
307\r
308/**\r
17f695ed 309 Compares up to a specified length the contents of two Null-terminated Unicode strings,\r
310 and returns the difference between the first mismatched Unicode characters.\r
311 \r
ac644614 312 This function compares the Null-terminated Unicode string FirstString to the\r
313 Null-terminated Unicode string SecondString. At most, Length Unicode\r
314 characters will be compared. If Length is 0, then 0 is returned. If\r
315 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
316 value returned is the first mismatched Unicode character in SecondString\r
317 subtracted from the first mismatched Unicode character in FirstString.\r
318\r
319 If Length > 0 and FirstString is NULL, then ASSERT().\r
77f863ee 320 If Length > 0 and FirstString is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 321 If Length > 0 and SecondString is NULL, then ASSERT().\r
77f863ee 322 If Length > 0 and SecondString is not aligned on a 16-bit boundary, then ASSERT().\r
50c247fd 323 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than\r
324 PcdMaximumUnicodeStringLength, then ASSERT().\r
325 If PcdMaximumUnicodeStringLength is not zero, and FirstString contains more than\r
326 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
327 then ASSERT().\r
328 If PcdMaximumUnicodeStringLength is not zero, and SecondString contains more than\r
329 PcdMaximumUnicodeStringLength Unicode characters, not including the Null-terminator,\r
330 then ASSERT().\r
ac644614 331\r
332 @param FirstString Pointer to a Null-terminated Unicode string.\r
333 @param SecondString Pointer to a Null-terminated Unicode string.\r
334 @param Length Maximum number of Unicode characters to compare.\r
335\r
1106ffe1 336 @retval 0 FirstString is identical to SecondString.\r
337 @return others FirstString is not identical to SecondString.\r
ac644614 338\r
339**/\r
340INTN\r
341EFIAPI\r
342StrnCmp (\r
343 IN CONST CHAR16 *FirstString,\r
344 IN CONST CHAR16 *SecondString,\r
345 IN UINTN Length\r
346 );\r
347\r
348\r
349/**\r
350 Concatenates one Null-terminated Unicode string to another Null-terminated\r
351 Unicode string, and returns the concatenated Unicode string.\r
352\r
353 This function concatenates two Null-terminated Unicode strings. The contents\r
354 of Null-terminated Unicode string Source are concatenated to the end of\r
355 Null-terminated Unicode string Destination. The Null-terminated concatenated\r
356 Unicode String is returned. If Source and Destination overlap, then the\r
357 results are undefined.\r
358\r
359 If Destination is NULL, then ASSERT().\r
77f863ee 360 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 361 If Source is NULL, then ASSERT().\r
77f863ee 362 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
ac644614 363 If Source and Destination overlap, then ASSERT().\r
364 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
365 than PcdMaximumUnicodeStringLength Unicode characters not including the\r
366 Null-terminator, then ASSERT().\r
367 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
368 PcdMaximumUnicodeStringLength Unicode characters not including the\r
369 Null-terminator, then ASSERT().\r
370 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
371 and Source results in a Unicode string with more than\r
372 PcdMaximumUnicodeStringLength Unicode characters not including the\r
373 Null-terminator, then ASSERT().\r
374\r
375 @param Destination Pointer to a Null-terminated Unicode string.\r
376 @param Source Pointer to a Null-terminated Unicode string.\r
377\r
9aa049d9 378 @return Destination.\r
ac644614 379\r
380**/\r
381CHAR16 *\r
382EFIAPI\r
383StrCat (\r
384 IN OUT CHAR16 *Destination,\r
385 IN CONST CHAR16 *Source\r
386 );\r
387\r
388\r
389/**\r
17f695ed 390 Concatenates up to a specified length one Null-terminated Unicode to the end \r
391 of another Null-terminated Unicode string, and returns the concatenated \r
ac644614 392 Unicode string.\r
393\r
394 This function concatenates two Null-terminated Unicode strings. The contents\r
395 of Null-terminated Unicode string Source are concatenated to the end of\r
396 Null-terminated Unicode string Destination, and Destination is returned. At\r
397 most, Length Unicode characters are concatenated from Source to the end of\r
398 Destination, and Destination is always Null-terminated. If Length is 0, then\r
399 Destination is returned unmodified. If Source and Destination overlap, then\r
400 the results are undefined.\r
401\r
402 If Destination is NULL, then ASSERT().\r
403 If Length > 0 and Destination is not aligned on a 16-bit boundary, then ASSERT().\r
404 If Length > 0 and Source is NULL, then ASSERT().\r
405 If Length > 0 and Source is not aligned on a 16-bit boundary, then ASSERT().\r
406 If Source and Destination overlap, then ASSERT().\r
50c247fd 407 If PcdMaximumUnicodeStringLength is not zero, and Length is greater than \r
408 PcdMaximumUnicodeStringLength, then ASSERT().\r
ac644614 409 If PcdMaximumUnicodeStringLength is not zero, and Destination contains more\r
50c247fd 410 than PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 411 Null-terminator, then ASSERT().\r
412 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
50c247fd 413 PcdMaximumUnicodeStringLength Unicode characters, not including the\r
ac644614 414 Null-terminator, then ASSERT().\r
415 If PcdMaximumUnicodeStringLength is not zero, and concatenating Destination\r
50c247fd 416 and Source results in a Unicode string with more than PcdMaximumUnicodeStringLength\r
417 Unicode characters, not including the Null-terminator, then ASSERT().\r
ac644614 418\r
419 @param Destination Pointer to a Null-terminated Unicode string.\r
420 @param Source Pointer to a Null-terminated Unicode string.\r
421 @param Length Maximum number of Unicode characters to concatenate from\r
422 Source.\r
423\r
9aa049d9 424 @return Destination.\r
ac644614 425\r
426**/\r
427CHAR16 *\r
428EFIAPI\r
429StrnCat (\r
430 IN OUT CHAR16 *Destination,\r
431 IN CONST CHAR16 *Source,\r
432 IN UINTN Length\r
433 );\r
434\r
435/**\r
9aa049d9 436 Returns the first occurrence of a Null-terminated Unicode sub-string\r
ac644614 437 in a Null-terminated Unicode string.\r
438\r
439 This function scans the contents of the Null-terminated Unicode string\r
440 specified by String and returns the first occurrence of SearchString.\r
441 If SearchString is not found in String, then NULL is returned. If\r
442 the length of SearchString is zero, then String is\r
443 returned.\r
444\r
445 If String is NULL, then ASSERT().\r
446 If String is not aligned on a 16-bit boundary, then ASSERT().\r
447 If SearchString is NULL, then ASSERT().\r
448 If SearchString is not aligned on a 16-bit boundary, then ASSERT().\r
449\r
450 If PcdMaximumUnicodeStringLength is not zero, and SearchString\r
451 or String contains more than PcdMaximumUnicodeStringLength Unicode\r
452 characters not including the Null-terminator, then ASSERT().\r
453\r
17f695ed 454 @param String Pointer to a Null-terminated Unicode string.\r
455 @param SearchString Pointer to a Null-terminated Unicode string to search for.\r
ac644614 456\r
457 @retval NULL If the SearchString does not appear in String.\r
1106ffe1 458 @return others If there is a match.\r
ac644614 459\r
460**/\r
461CHAR16 *\r
462EFIAPI\r
463StrStr (\r
17f695ed 464 IN CONST CHAR16 *String,\r
465 IN CONST CHAR16 *SearchString\r
ac644614 466 );\r
467\r
468/**\r
469 Convert a Null-terminated Unicode decimal string to a value of\r
470 type UINTN.\r
471\r
472 This function returns a value of type UINTN by interpreting the contents\r
473 of the Unicode string specified by String as a decimal number. The format\r
474 of the input Unicode string String is:\r
475\r
476 [spaces] [decimal digits].\r
477\r
478 The valid decimal digit character is in the range [0-9]. The\r
479 function will ignore the pad space, which includes spaces or\r
480 tab characters, before [decimal digits]. The running zero in the\r
481 beginning of [decimal digits] will be ignored. Then, the function\r
482 stops at the first character that is a not a valid decimal character\r
483 or a Null-terminator, whichever one comes first.\r
484\r
485 If String is NULL, then ASSERT().\r
486 If String is not aligned in a 16-bit boundary, then ASSERT().\r
487 If String has only pad spaces, then 0 is returned.\r
488 If String has no pad spaces or valid decimal digits,\r
489 then 0 is returned.\r
490 If the number represented by String overflows according\r
491 to the range defined by UINTN, then ASSERT().\r
492\r
493 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
494 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
495 the Null-terminator, then ASSERT().\r
496\r
17f695ed 497 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 498\r
38bbd3d9 499 @retval Value translated from String.\r
ac644614 500\r
501**/\r
502UINTN\r
503EFIAPI\r
504StrDecimalToUintn (\r
17f695ed 505 IN CONST CHAR16 *String\r
ac644614 506 );\r
507\r
508/**\r
509 Convert a Null-terminated Unicode decimal string to a value of\r
510 type UINT64.\r
511\r
512 This function returns a value of type UINT64 by interpreting the contents\r
513 of the Unicode string specified by String as a decimal number. The format\r
514 of the input Unicode string String is:\r
515\r
516 [spaces] [decimal digits].\r
517\r
518 The valid decimal digit character is in the range [0-9]. The\r
519 function will ignore the pad space, which includes spaces or\r
520 tab characters, before [decimal digits]. The running zero in the\r
521 beginning of [decimal digits] will be ignored. Then, the function\r
522 stops at the first character that is a not a valid decimal character\r
523 or a Null-terminator, whichever one comes first.\r
524\r
525 If String is NULL, then ASSERT().\r
526 If String is not aligned in a 16-bit boundary, then ASSERT().\r
527 If String has only pad spaces, then 0 is returned.\r
528 If String has no pad spaces or valid decimal digits,\r
529 then 0 is returned.\r
530 If the number represented by String overflows according\r
531 to the range defined by UINT64, then ASSERT().\r
532\r
533 If PcdMaximumUnicodeStringLength is not zero, and String contains\r
534 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
535 the Null-terminator, then ASSERT().\r
536\r
17f695ed 537 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 538\r
38bbd3d9 539 @retval Value translated from String.\r
ac644614 540\r
541**/\r
542UINT64\r
543EFIAPI\r
544StrDecimalToUint64 (\r
17f695ed 545 IN CONST CHAR16 *String\r
ac644614 546 );\r
547 \r
548\r
549/**\r
550 Convert a Null-terminated Unicode hexadecimal string to a value of type UINTN.\r
551\r
552 This function returns a value of type UINTN by interpreting the contents\r
553 of the Unicode string specified by String as a hexadecimal number.\r
554 The format of the input Unicode string String is:\r
555\r
556 [spaces][zeros][x][hexadecimal digits].\r
557\r
558 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
559 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
560 If "x" appears in the input string, it must be prefixed with at least one 0.\r
561 The function will ignore the pad space, which includes spaces or tab characters,\r
562 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
563 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
564 first valid hexadecimal digit. Then, the function stops at the first character that is\r
565 a not a valid hexadecimal character or NULL, whichever one comes first.\r
566\r
567 If String is NULL, then ASSERT().\r
568 If String is not aligned in a 16-bit boundary, then ASSERT().\r
569 If String has only pad spaces, then zero is returned.\r
570 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
571 then zero is returned.\r
572 If the number represented by String overflows according to the range defined by\r
573 UINTN, then ASSERT().\r
574\r
575 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
576 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
577 then ASSERT().\r
578\r
17f695ed 579 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 580\r
38bbd3d9 581 @retval Value translated from String.\r
ac644614 582\r
583**/\r
584UINTN\r
585EFIAPI\r
586StrHexToUintn (\r
17f695ed 587 IN CONST CHAR16 *String\r
ac644614 588 );\r
589\r
590\r
591/**\r
592 Convert a Null-terminated Unicode hexadecimal string to a value of type UINT64.\r
593\r
594 This function returns a value of type UINT64 by interpreting the contents\r
595 of the Unicode string specified by String as a hexadecimal number.\r
596 The format of the input Unicode string String is\r
597\r
598 [spaces][zeros][x][hexadecimal digits].\r
599\r
600 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
601 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix.\r
602 If "x" appears in the input string, it must be prefixed with at least one 0.\r
603 The function will ignore the pad space, which includes spaces or tab characters,\r
604 before [zeros], [x] or [hexadecimal digit]. The running zero before [x] or\r
605 [hexadecimal digit] will be ignored. Then, the decoding starts after [x] or the\r
606 first valid hexadecimal digit. Then, the function stops at the first character that is\r
607 a not a valid hexadecimal character or NULL, whichever one comes first.\r
608\r
609 If String is NULL, then ASSERT().\r
610 If String is not aligned in a 16-bit boundary, then ASSERT().\r
611 If String has only pad spaces, then zero is returned.\r
612 If String has no leading pad spaces, leading zeros or valid hexadecimal digits,\r
613 then zero is returned.\r
614 If the number represented by String overflows according to the range defined by\r
615 UINT64, then ASSERT().\r
616\r
617 If PcdMaximumUnicodeStringLength is not zero, and String contains more than\r
618 PcdMaximumUnicodeStringLength Unicode characters not including the Null-terminator,\r
619 then ASSERT().\r
620\r
17f695ed 621 @param String Pointer to a Null-terminated Unicode string.\r
ac644614 622\r
38bbd3d9 623 @retval Value translated from String.\r
ac644614 624\r
625**/\r
626UINT64\r
627EFIAPI\r
628StrHexToUint64 (\r
17f695ed 629 IN CONST CHAR16 *String\r
ac644614 630 );\r
631\r
ac644614 632/**\r
17f695ed 633 Convert a Null-terminated Unicode string to a Null-terminated\r
ac644614 634 ASCII string and returns the ASCII string.\r
635\r
636 This function converts the content of the Unicode string Source\r
637 to the ASCII string Destination by copying the lower 8 bits of\r
638 each Unicode character. It returns Destination.\r
639\r
640 If any Unicode characters in Source contain non-zero value in\r
641 the upper 8 bits, then ASSERT().\r
642\r
643 If Destination is NULL, then ASSERT().\r
644 If Source is NULL, then ASSERT().\r
645 If Source is not aligned on a 16-bit boundary, then ASSERT().\r
646 If Source and Destination overlap, then ASSERT().\r
647\r
648 If PcdMaximumUnicodeStringLength is not zero, and Source contains\r
649 more than PcdMaximumUnicodeStringLength Unicode characters not including\r
650 the Null-terminator, then ASSERT().\r
651\r
652 If PcdMaximumAsciiStringLength is not zero, and Source contains more\r
653 than PcdMaximumAsciiStringLength Unicode characters not including the\r
654 Null-terminator, then ASSERT().\r
655\r
656 @param Source Pointer to a Null-terminated Unicode string.\r
657 @param Destination Pointer to a Null-terminated ASCII string.\r
658\r
9aa049d9 659 @return Destination.\r
ac644614 660\r
661**/\r
662CHAR8 *\r
663EFIAPI\r
664UnicodeStrToAsciiStr (\r
17f695ed 665 IN CONST CHAR16 *Source,\r
666 OUT CHAR8 *Destination\r
ac644614 667 );\r
668\r
669\r
670/**\r
671 Copies one Null-terminated ASCII string to another Null-terminated ASCII\r
672 string and returns the new ASCII string.\r
673\r
674 This function copies the contents of the ASCII string Source to the ASCII\r
675 string Destination, and returns Destination. If Source and Destination\r
676 overlap, then the results are undefined.\r
677\r
678 If Destination is NULL, then ASSERT().\r
679 If Source is NULL, then ASSERT().\r
680 If Source and Destination overlap, then ASSERT().\r
681 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
682 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
683 then ASSERT().\r
684\r
685 @param Destination Pointer to a Null-terminated ASCII string.\r
686 @param Source Pointer to a Null-terminated ASCII string.\r
687\r
688 @return Destination\r
689\r
690**/\r
691CHAR8 *\r
692EFIAPI\r
693AsciiStrCpy (\r
694 OUT CHAR8 *Destination,\r
695 IN CONST CHAR8 *Source\r
696 );\r
697\r
698\r
699/**\r
17f695ed 700 Copies up to a specified length one Null-terminated ASCII string to another \r
701 Null-terminated ASCII string and returns the new ASCII string.\r
ac644614 702\r
703 This function copies the contents of the ASCII string Source to the ASCII\r
704 string Destination, and returns Destination. At most, Length ASCII characters\r
705 are copied from Source to Destination. If Length is 0, then Destination is\r
706 returned unmodified. If Length is greater that the number of ASCII characters\r
707 in Source, then Destination is padded with Null ASCII characters. If Source\r
708 and Destination overlap, then the results are undefined.\r
709\r
710 If Destination is NULL, then ASSERT().\r
711 If Source is NULL, then ASSERT().\r
712 If Source and Destination overlap, then ASSERT().\r
50c247fd 713 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
714 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 715 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 716 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 717 then ASSERT().\r
718\r
719 @param Destination Pointer to a Null-terminated ASCII string.\r
720 @param Source Pointer to a Null-terminated ASCII string.\r
721 @param Length Maximum number of ASCII characters to copy.\r
722\r
723 @return Destination\r
724\r
725**/\r
726CHAR8 *\r
727EFIAPI\r
728AsciiStrnCpy (\r
729 OUT CHAR8 *Destination,\r
730 IN CONST CHAR8 *Source,\r
731 IN UINTN Length\r
732 );\r
733\r
734\r
735/**\r
736 Returns the length of a Null-terminated ASCII string.\r
737\r
738 This function returns the number of ASCII characters in the Null-terminated\r
739 ASCII string specified by String.\r
740\r
741 If Length > 0 and Destination is NULL, then ASSERT().\r
742 If Length > 0 and Source is NULL, then ASSERT().\r
743 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
744 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
745 then ASSERT().\r
746\r
747 @param String Pointer to a Null-terminated ASCII string.\r
748\r
749 @return The length of String.\r
750\r
751**/\r
752UINTN\r
753EFIAPI\r
754AsciiStrLen (\r
755 IN CONST CHAR8 *String\r
756 );\r
757\r
758\r
759/**\r
760 Returns the size of a Null-terminated ASCII string in bytes, including the\r
761 Null terminator.\r
762\r
763 This function returns the size, in bytes, of the Null-terminated ASCII string\r
764 specified by String.\r
765\r
766 If String is NULL, then ASSERT().\r
767 If PcdMaximumAsciiStringLength is not zero and String contains more than\r
768 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
769 then ASSERT().\r
770\r
771 @param String Pointer to a Null-terminated ASCII string.\r
772\r
773 @return The size of String.\r
774\r
775**/\r
776UINTN\r
777EFIAPI\r
778AsciiStrSize (\r
779 IN CONST CHAR8 *String\r
780 );\r
781\r
782\r
783/**\r
784 Compares two Null-terminated ASCII strings, and returns the difference\r
785 between the first mismatched ASCII characters.\r
786\r
787 This function compares the Null-terminated ASCII string FirstString to the\r
788 Null-terminated ASCII string SecondString. If FirstString is identical to\r
789 SecondString, then 0 is returned. Otherwise, the value returned is the first\r
790 mismatched ASCII character in SecondString subtracted from the first\r
791 mismatched ASCII character in FirstString.\r
792\r
793 If FirstString is NULL, then ASSERT().\r
794 If SecondString is NULL, then ASSERT().\r
795 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
796 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
797 then ASSERT().\r
798 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
799 than PcdMaximumAsciiStringLength ASCII characters not including the\r
800 Null-terminator, then ASSERT().\r
801\r
802 @param FirstString Pointer to a Null-terminated ASCII string.\r
803 @param SecondString Pointer to a Null-terminated ASCII string.\r
804\r
17f695ed 805 @retval ==0 FirstString is identical to SecondString.\r
806 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 807\r
808**/\r
809INTN\r
810EFIAPI\r
811AsciiStrCmp (\r
812 IN CONST CHAR8 *FirstString,\r
813 IN CONST CHAR8 *SecondString\r
814 );\r
815\r
816\r
817/**\r
818 Performs a case insensitive comparison of two Null-terminated ASCII strings,\r
819 and returns the difference between the first mismatched ASCII characters.\r
820\r
821 This function performs a case insensitive comparison of the Null-terminated\r
822 ASCII string FirstString to the Null-terminated ASCII string SecondString. If\r
823 FirstString is identical to SecondString, then 0 is returned. Otherwise, the\r
824 value returned is the first mismatched lower case ASCII character in\r
825 SecondString subtracted from the first mismatched lower case ASCII character\r
826 in FirstString.\r
827\r
828 If FirstString is NULL, then ASSERT().\r
829 If SecondString is NULL, then ASSERT().\r
830 If PcdMaximumAsciiStringLength is not zero and FirstString contains more than\r
831 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
832 then ASSERT().\r
833 If PcdMaximumAsciiStringLength is not zero and SecondString contains more\r
834 than PcdMaximumAsciiStringLength ASCII characters not including the\r
835 Null-terminator, then ASSERT().\r
836\r
837 @param FirstString Pointer to a Null-terminated ASCII string.\r
838 @param SecondString Pointer to a Null-terminated ASCII string.\r
839\r
17f695ed 840 @retval ==0 FirstString is identical to SecondString using case insensitive\r
1106ffe1 841 comparisons.\r
17f695ed 842 @retval !=0 FirstString is not identical to SecondString using case\r
1106ffe1 843 insensitive comparisons.\r
ac644614 844\r
845**/\r
846INTN\r
847EFIAPI\r
848AsciiStriCmp (\r
849 IN CONST CHAR8 *FirstString,\r
850 IN CONST CHAR8 *SecondString\r
851 );\r
852\r
853\r
854/**\r
855 Compares two Null-terminated ASCII strings with maximum lengths, and returns\r
856 the difference between the first mismatched ASCII characters.\r
857\r
858 This function compares the Null-terminated ASCII string FirstString to the\r
859 Null-terminated ASCII string SecondString. At most, Length ASCII characters\r
860 will be compared. If Length is 0, then 0 is returned. If FirstString is\r
861 identical to SecondString, then 0 is returned. Otherwise, the value returned\r
862 is the first mismatched ASCII character in SecondString subtracted from the\r
863 first mismatched ASCII character in FirstString.\r
864\r
865 If Length > 0 and FirstString is NULL, then ASSERT().\r
866 If Length > 0 and SecondString is NULL, then ASSERT().\r
50c247fd 867 If PcdMaximumAsciiStringLength is not zero, and Length is greater than \r
868 PcdMaximumAsciiStringLength, then ASSERT().\r
869 If PcdMaximumAsciiStringLength is not zero, and FirstString contains more than\r
870 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 871 then ASSERT().\r
50c247fd 872 If PcdMaximumAsciiStringLength is not zero, and SecondString contains more than\r
873 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 874 then ASSERT().\r
875\r
876 @param FirstString Pointer to a Null-terminated ASCII string.\r
877 @param SecondString Pointer to a Null-terminated ASCII string.\r
878 @param Length Maximum number of ASCII characters for compare.\r
879 \r
17f695ed 880 @retval ==0 FirstString is identical to SecondString.\r
881 @retval !=0 FirstString is not identical to SecondString.\r
ac644614 882\r
883**/\r
884INTN\r
885EFIAPI\r
886AsciiStrnCmp (\r
887 IN CONST CHAR8 *FirstString,\r
888 IN CONST CHAR8 *SecondString,\r
889 IN UINTN Length\r
890 );\r
891\r
892\r
893/**\r
894 Concatenates one Null-terminated ASCII string to another Null-terminated\r
895 ASCII string, and returns the concatenated ASCII string.\r
896\r
897 This function concatenates two Null-terminated ASCII strings. The contents of\r
898 Null-terminated ASCII string Source are concatenated to the end of Null-\r
899 terminated ASCII string Destination. The Null-terminated concatenated ASCII\r
900 String is returned.\r
901\r
902 If Destination is NULL, then ASSERT().\r
903 If Source is NULL, then ASSERT().\r
904 If PcdMaximumAsciiStringLength is not zero and Destination contains more than\r
905 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
906 then ASSERT().\r
907 If PcdMaximumAsciiStringLength is not zero and Source contains more than\r
908 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
909 then ASSERT().\r
910 If PcdMaximumAsciiStringLength is not zero and concatenating Destination and\r
911 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
912 ASCII characters, then ASSERT().\r
913\r
914 @param Destination Pointer to a Null-terminated ASCII string.\r
915 @param Source Pointer to a Null-terminated ASCII string.\r
916\r
917 @return Destination\r
918\r
919**/\r
920CHAR8 *\r
921EFIAPI\r
922AsciiStrCat (\r
923 IN OUT CHAR8 *Destination,\r
924 IN CONST CHAR8 *Source\r
925 );\r
926\r
927\r
928/**\r
17f695ed 929 Concatenates up to a specified length one Null-terminated ASCII string to \r
930 the end of another Null-terminated ASCII string, and returns the \r
931 concatenated ASCII string.\r
ac644614 932\r
933 This function concatenates two Null-terminated ASCII strings. The contents\r
934 of Null-terminated ASCII string Source are concatenated to the end of Null-\r
935 terminated ASCII string Destination, and Destination is returned. At most,\r
936 Length ASCII characters are concatenated from Source to the end of\r
937 Destination, and Destination is always Null-terminated. If Length is 0, then\r
938 Destination is returned unmodified. If Source and Destination overlap, then\r
939 the results are undefined.\r
940\r
941 If Length > 0 and Destination is NULL, then ASSERT().\r
942 If Length > 0 and Source is NULL, then ASSERT().\r
943 If Source and Destination overlap, then ASSERT().\r
50c247fd 944 If PcdMaximumAsciiStringLength is not zero, and Length is greater than\r
945 PcdMaximumAsciiStringLength, then ASSERT().\r
ac644614 946 If PcdMaximumAsciiStringLength is not zero, and Destination contains more than\r
50c247fd 947 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 948 then ASSERT().\r
949 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
50c247fd 950 PcdMaximumAsciiStringLength ASCII characters, not including the Null-terminator,\r
ac644614 951 then ASSERT().\r
952 If PcdMaximumAsciiStringLength is not zero, and concatenating Destination and\r
953 Source results in a ASCII string with more than PcdMaximumAsciiStringLength\r
50c247fd 954 ASCII characters, not including the Null-terminator, then ASSERT().\r
ac644614 955\r
956 @param Destination Pointer to a Null-terminated ASCII string.\r
957 @param Source Pointer to a Null-terminated ASCII string.\r
958 @param Length Maximum number of ASCII characters to concatenate from\r
959 Source.\r
960\r
961 @return Destination\r
962\r
963**/\r
964CHAR8 *\r
965EFIAPI\r
966AsciiStrnCat (\r
967 IN OUT CHAR8 *Destination,\r
968 IN CONST CHAR8 *Source,\r
969 IN UINTN Length\r
970 );\r
971\r
972\r
973/**\r
9aa049d9 974 Returns the first occurrence of a Null-terminated ASCII sub-string\r
ac644614 975 in a Null-terminated ASCII string.\r
976\r
977 This function scans the contents of the ASCII string specified by String\r
978 and returns the first occurrence of SearchString. If SearchString is not\r
979 found in String, then NULL is returned. If the length of SearchString is zero,\r
980 then String is returned.\r
981\r
982 If String is NULL, then ASSERT().\r
983 If SearchString is NULL, then ASSERT().\r
984\r
985 If PcdMaximumAsciiStringLength is not zero, and SearchString or\r
986 String contains more than PcdMaximumAsciiStringLength Unicode characters\r
987 not including the Null-terminator, then ASSERT().\r
988\r
1106ffe1 989 @param String Pointer to a Null-terminated ASCII string.\r
990 @param SearchString Pointer to a Null-terminated ASCII string to search for.\r
ac644614 991\r
992 @retval NULL If the SearchString does not appear in String.\r
17f695ed 993 @retval others If there is a match return the first occurrence of SearchingString.\r
9aa049d9 994 If the length of SearchString is zero,return String.\r
ac644614 995\r
996**/\r
997CHAR8 *\r
998EFIAPI\r
999AsciiStrStr (\r
17f695ed 1000 IN CONST CHAR8 *String,\r
1001 IN CONST CHAR8 *SearchString\r
ac644614 1002 );\r
1003\r
1004\r
1005/**\r
1006 Convert a Null-terminated ASCII decimal string to a value of type\r
1007 UINTN.\r
1008\r
1009 This function returns a value of type UINTN by interpreting the contents\r
1010 of the ASCII string String as a decimal number. The format of the input\r
1011 ASCII string String is:\r
1012\r
1013 [spaces] [decimal digits].\r
1014\r
1015 The valid decimal digit character is in the range [0-9]. The function will\r
1016 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1017 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1018 function stops at the first character that is a not a valid decimal character or\r
1019 Null-terminator, whichever on comes first.\r
1020\r
1021 If String has only pad spaces, then 0 is returned.\r
1022 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1023 If the number represented by String overflows according to the range defined by\r
1024 UINTN, then ASSERT().\r
1025 If String is NULL, then ASSERT().\r
1026 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1027 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1028 then ASSERT().\r
1029\r
17f695ed 1030 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1031\r
38bbd3d9 1032 @retval Value translated from String.\r
ac644614 1033\r
1034**/\r
1035UINTN\r
1036EFIAPI\r
1037AsciiStrDecimalToUintn (\r
1038 IN CONST CHAR8 *String\r
1039 );\r
1040\r
1041\r
1042/**\r
1043 Convert a Null-terminated ASCII decimal string to a value of type\r
1044 UINT64.\r
1045\r
1046 This function returns a value of type UINT64 by interpreting the contents\r
1047 of the ASCII string String as a decimal number. The format of the input\r
1048 ASCII string String is:\r
1049\r
1050 [spaces] [decimal digits].\r
1051\r
1052 The valid decimal digit character is in the range [0-9]. The function will\r
1053 ignore the pad space, which includes spaces or tab characters, before the digits.\r
1054 The running zero in the beginning of [decimal digits] will be ignored. Then, the\r
1055 function stops at the first character that is a not a valid decimal character or\r
1056 Null-terminator, whichever on comes first.\r
1057\r
1058 If String has only pad spaces, then 0 is returned.\r
1059 If String has no pad spaces or valid decimal digits, then 0 is returned.\r
1060 If the number represented by String overflows according to the range defined by\r
1061 UINT64, then ASSERT().\r
1062 If String is NULL, then ASSERT().\r
1063 If PcdMaximumAsciiStringLength is not zero, and String contains more than\r
1064 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1065 then ASSERT().\r
1066\r
17f695ed 1067 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1068\r
38bbd3d9 1069 @retval Value translated from String.\r
ac644614 1070\r
1071**/\r
1072UINT64\r
1073EFIAPI\r
1074AsciiStrDecimalToUint64 (\r
17f695ed 1075 IN CONST CHAR8 *String\r
ac644614 1076 );\r
1077\r
1078\r
1079/**\r
1080 Convert a Null-terminated ASCII hexadecimal string to a value of type UINTN.\r
1081\r
1082 This function returns a value of type UINTN by interpreting the contents of\r
1083 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1084 string String is:\r
1085\r
1086 [spaces][zeros][x][hexadecimal digits].\r
1087\r
1088 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1089 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1090 appears in the input string, it must be prefixed with at least one 0. The function\r
1091 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1092 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1093 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1094 digit. Then, the function stops at the first character that is a not a valid\r
1095 hexadecimal character or Null-terminator, whichever on comes first.\r
1096\r
1097 If String has only pad spaces, then 0 is returned.\r
1098 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1099 0 is returned.\r
1100\r
1101 If the number represented by String overflows according to the range defined by UINTN,\r
1102 then ASSERT().\r
1103 If String is NULL, then ASSERT().\r
1104 If PcdMaximumAsciiStringLength is not zero,\r
1105 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1106 the Null-terminator, then ASSERT().\r
1107\r
17f695ed 1108 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1109\r
38bbd3d9 1110 @retval Value translated from String.\r
ac644614 1111\r
1112**/\r
1113UINTN\r
1114EFIAPI\r
1115AsciiStrHexToUintn (\r
17f695ed 1116 IN CONST CHAR8 *String\r
ac644614 1117 );\r
1118\r
1119\r
1120/**\r
1121 Convert a Null-terminated ASCII hexadecimal string to a value of type UINT64.\r
1122\r
1123 This function returns a value of type UINT64 by interpreting the contents of\r
1124 the ASCII string String as a hexadecimal number. The format of the input ASCII\r
1125 string String is:\r
1126\r
1127 [spaces][zeros][x][hexadecimal digits].\r
1128\r
1129 The valid hexadecimal digit character is in the range [0-9], [a-f] and [A-F].\r
1130 The prefix "0x" is optional. Both "x" and "X" is allowed in "0x" prefix. If "x"\r
1131 appears in the input string, it must be prefixed with at least one 0. The function\r
1132 will ignore the pad space, which includes spaces or tab characters, before [zeros],\r
1133 [x] or [hexadecimal digits]. The running zero before [x] or [hexadecimal digits]\r
1134 will be ignored. Then, the decoding starts after [x] or the first valid hexadecimal\r
1135 digit. Then, the function stops at the first character that is a not a valid\r
1136 hexadecimal character or Null-terminator, whichever on comes first.\r
1137\r
1138 If String has only pad spaces, then 0 is returned.\r
1139 If String has no leading pad spaces, leading zeros or valid hexadecimal digits, then\r
1140 0 is returned.\r
1141\r
1142 If the number represented by String overflows according to the range defined by UINT64,\r
1143 then ASSERT().\r
1144 If String is NULL, then ASSERT().\r
1145 If PcdMaximumAsciiStringLength is not zero,\r
1146 and String contains more than PcdMaximumAsciiStringLength ASCII characters not including\r
1147 the Null-terminator, then ASSERT().\r
1148\r
17f695ed 1149 @param String Pointer to a Null-terminated ASCII string.\r
ac644614 1150\r
38bbd3d9 1151 @retval Value translated from String.\r
ac644614 1152\r
1153**/\r
1154UINT64\r
1155EFIAPI\r
1156AsciiStrHexToUint64 (\r
17f695ed 1157 IN CONST CHAR8 *String\r
ac644614 1158 );\r
1159\r
1160\r
1161/**\r
1162 Convert one Null-terminated ASCII string to a Null-terminated\r
1163 Unicode string and returns the Unicode string.\r
1164\r
1165 This function converts the contents of the ASCII string Source to the Unicode\r
1166 string Destination, and returns Destination. The function terminates the\r
1167 Unicode string Destination by appending a Null-terminator character at the end.\r
1168 The caller is responsible to make sure Destination points to a buffer with size\r
1169 equal or greater than ((AsciiStrLen (Source) + 1) * sizeof (CHAR16)) in bytes.\r
1170\r
1171 If Destination is NULL, then ASSERT().\r
1172 If Destination is not aligned on a 16-bit boundary, then ASSERT().\r
1173 If Source is NULL, then ASSERT().\r
1174 If Source and Destination overlap, then ASSERT().\r
1175 If PcdMaximumAsciiStringLength is not zero, and Source contains more than\r
1176 PcdMaximumAsciiStringLength ASCII characters not including the Null-terminator,\r
1177 then ASSERT().\r
1178 If PcdMaximumUnicodeStringLength is not zero, and Source contains more than\r
1179 PcdMaximumUnicodeStringLength ASCII characters not including the\r
1180 Null-terminator, then ASSERT().\r
1181\r
1182 @param Source Pointer to a Null-terminated ASCII string.\r
1183 @param Destination Pointer to a Null-terminated Unicode string.\r
1184\r
9aa049d9 1185 @return Destination.\r
ac644614 1186\r
1187**/\r
1188CHAR16 *\r
1189EFIAPI\r
1190AsciiStrToUnicodeStr (\r
17f695ed 1191 IN CONST CHAR8 *Source,\r
1192 OUT CHAR16 *Destination\r
ac644614 1193 );\r
1194\r
1195\r
1196/**\r
1197 Converts an 8-bit value to an 8-bit BCD value.\r
1198\r
1199 Converts the 8-bit value specified by Value to BCD. The BCD value is\r
1200 returned.\r
1201\r
1202 If Value >= 100, then ASSERT().\r
1203\r
1204 @param Value The 8-bit value to convert to BCD. Range 0..99.\r
1205\r
9aa049d9 1206 @return The BCD value.\r
ac644614 1207\r
1208**/\r
1209UINT8\r
1210EFIAPI\r
1211DecimalToBcd8 (\r
1212 IN UINT8 Value\r
1213 );\r
1214\r
1215\r
1216/**\r
1217 Converts an 8-bit BCD value to an 8-bit value.\r
1218\r
1219 Converts the 8-bit BCD value specified by Value to an 8-bit value. The 8-bit\r
1220 value is returned.\r
1221\r
1222 If Value >= 0xA0, then ASSERT().\r
1223 If (Value & 0x0F) >= 0x0A, then ASSERT().\r
1224\r
1225 @param Value The 8-bit BCD value to convert to an 8-bit value.\r
1226\r
1227 @return The 8-bit value is returned.\r
1228\r
1229**/\r
1230UINT8\r
1231EFIAPI\r
1232BcdToDecimal8 (\r
1233 IN UINT8 Value\r
1234 );\r
1235\r
1236\r
1237//\r
1238// Linked List Functions and Macros\r
1239//\r
1240\r
1241/**\r
1242 Initializes the head node of a doubly linked list that is declared as a\r
1243 global variable in a module.\r
1244\r
1245 Initializes the forward and backward links of a new linked list. After\r
1246 initializing a linked list with this macro, the other linked list functions\r
1247 may be used to add and remove nodes from the linked list. This macro results\r
1248 in smaller executables by initializing the linked list in the data section,\r
1249 instead if calling the InitializeListHead() function to perform the\r
1250 equivalent operation.\r
1251\r
77f863ee 1252 @param ListHead The head note of a list to initialize.\r
ac644614 1253\r
1254**/\r
17f695ed 1255#define INITIALIZE_LIST_HEAD_VARIABLE(ListHead) {&(ListHead), &(ListHead)}\r
ac644614 1256\r
1257\r
1258/**\r
1259 Initializes the head node of a doubly linked list, and returns the pointer to\r
1260 the head node of the doubly linked list.\r
1261\r
1262 Initializes the forward and backward links of a new linked list. After\r
1263 initializing a linked list with this function, the other linked list\r
1264 functions may be used to add and remove nodes from the linked list. It is up\r
1265 to the caller of this function to allocate the memory for ListHead.\r
1266\r
1267 If ListHead is NULL, then ASSERT().\r
1268\r
1269 @param ListHead A pointer to the head node of a new doubly linked list.\r
1270\r
1271 @return ListHead\r
1272\r
1273**/\r
1274LIST_ENTRY *\r
1275EFIAPI\r
1276InitializeListHead (\r
aa0583c7 1277 IN OUT LIST_ENTRY *ListHead\r
ac644614 1278 );\r
1279\r
1280\r
1281/**\r
1282 Adds a node to the beginning of a doubly linked list, and returns the pointer\r
1283 to the head node of the doubly linked list.\r
1284\r
1285 Adds the node Entry at the beginning of the doubly linked list denoted by\r
1286 ListHead, and returns ListHead.\r
1287\r
1288 If ListHead is NULL, then ASSERT().\r
1289 If Entry is NULL, then ASSERT().\r
17f695ed 1290 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1291 InitializeListHead(), then ASSERT().\r
ac644614 1292 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1293 of nodes in ListHead, including the ListHead node, is greater than or\r
1294 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1295\r
1296 @param ListHead A pointer to the head node of a doubly linked list.\r
1297 @param Entry A pointer to a node that is to be inserted at the beginning\r
1298 of a doubly linked list.\r
1299\r
1300 @return ListHead\r
1301\r
1302**/\r
1303LIST_ENTRY *\r
1304EFIAPI\r
1305InsertHeadList (\r
aa0583c7 1306 IN OUT LIST_ENTRY *ListHead,\r
1307 IN OUT LIST_ENTRY *Entry\r
ac644614 1308 );\r
1309\r
1310\r
1311/**\r
1312 Adds a node to the end of a doubly linked list, and returns the pointer to\r
1313 the head node of the doubly linked list.\r
1314\r
1315 Adds the node Entry to the end of the doubly linked list denoted by ListHead,\r
1316 and returns ListHead.\r
1317\r
1318 If ListHead is NULL, then ASSERT().\r
1319 If Entry is NULL, then ASSERT().\r
17f695ed 1320 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1321 InitializeListHead(), then ASSERT().\r
ac644614 1322 If PcdMaximumLinkedListLenth is not zero, and prior to insertion the number\r
1323 of nodes in ListHead, including the ListHead node, is greater than or\r
1324 equal to PcdMaximumLinkedListLength, then ASSERT().\r
1325\r
1326 @param ListHead A pointer to the head node of a doubly linked list.\r
1327 @param Entry A pointer to a node that is to be added at the end of the\r
1328 doubly linked list.\r
1329\r
1330 @return ListHead\r
1331\r
1332**/\r
1333LIST_ENTRY *\r
1334EFIAPI\r
1335InsertTailList (\r
aa0583c7 1336 IN OUT LIST_ENTRY *ListHead,\r
1337 IN OUT LIST_ENTRY *Entry\r
ac644614 1338 );\r
1339\r
1340\r
1341/**\r
1342 Retrieves the first node of a doubly linked list.\r
1343\r
17f695ed 1344 Returns the first node of a doubly linked list. List must have been \r
1345 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
1346 If List is empty, then List is returned.\r
ac644614 1347\r
1348 If List is NULL, then ASSERT().\r
17f695ed 1349 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1350 InitializeListHead(), then ASSERT().\r
ac644614 1351 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1352 in List, including the List node, is greater than or equal to\r
1353 PcdMaximumLinkedListLength, then ASSERT().\r
1354\r
1355 @param List A pointer to the head node of a doubly linked list.\r
1356\r
1357 @return The first node of a doubly linked list.\r
1358 @retval NULL The list is empty.\r
1359\r
1360**/\r
1361LIST_ENTRY *\r
1362EFIAPI\r
1363GetFirstNode (\r
1364 IN CONST LIST_ENTRY *List\r
1365 );\r
1366\r
1367\r
1368/**\r
1369 Retrieves the next node of a doubly linked list.\r
1370\r
17f695ed 1371 Returns the node of a doubly linked list that follows Node. \r
1372 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1373 or InitializeListHead(). If List is empty, then List is returned.\r
ac644614 1374\r
1375 If List is NULL, then ASSERT().\r
1376 If Node is NULL, then ASSERT().\r
17f695ed 1377 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1378 InitializeListHead(), then ASSERT().\r
ac644614 1379 If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
1380 PcdMaximumLinkedListLenth nodes, then ASSERT().\r
1081f624 1381 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 1382\r
1383 @param List A pointer to the head node of a doubly linked list.\r
1384 @param Node A pointer to a node in the doubly linked list.\r
1385\r
cbca8de5 1386 @return Pointer to the next node if one exists. Otherwise List is returned.\r
ac644614 1387\r
1388**/\r
1389LIST_ENTRY *\r
1390EFIAPI\r
1391GetNextNode (\r
1392 IN CONST LIST_ENTRY *List,\r
1393 IN CONST LIST_ENTRY *Node\r
1394 );\r
1395\r
cbca8de5 1396 \r
1397/**\r
1398 Retrieves the previous node of a doubly linked list.\r
1399 \r
1400 Returns the node of a doubly linked list that precedes Node. \r
1401 List must have been initialized with INTIALIZE_LIST_HEAD_VARIABLE()\r
1402 or InitializeListHead(). If List is empty, then List is returned.\r
1403 \r
1404 If List is NULL, then ASSERT().\r
1405 If Node is NULL, then ASSERT().\r
1406 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1407 InitializeListHead(), then ASSERT().\r
1408 If PcdMaximumLinkedListLenth is not zero, and List contains more than\r
1409 PcdMaximumLinkedListLenth nodes, then ASSERT().\r
1410 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
1411 \r
1412 @param List A pointer to the head node of a doubly linked list.\r
1413 @param Node A pointer to a node in the doubly linked list.\r
1414 \r
1415 @return Pointer to the previous node if one exists. Otherwise List is returned.\r
1416 \r
1417**/\r
1418LIST_ENTRY *\r
1419EFIAPI\r
1420GetPreviousNode (\r
1421 IN CONST LIST_ENTRY *List,\r
1422 IN CONST LIST_ENTRY *Node\r
1423 );\r
ac644614 1424\r
cbca8de5 1425 \r
ac644614 1426/**\r
1427 Checks to see if a doubly linked list is empty or not.\r
1428\r
1429 Checks to see if the doubly linked list is empty. If the linked list contains\r
1430 zero nodes, this function returns TRUE. Otherwise, it returns FALSE.\r
1431\r
1432 If ListHead is NULL, then ASSERT().\r
17f695ed 1433 If ListHead was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or \r
1434 InitializeListHead(), then ASSERT().\r
ac644614 1435 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1436 in List, including the List node, is greater than or equal to\r
1437 PcdMaximumLinkedListLength, then ASSERT().\r
1438\r
1439 @param ListHead A pointer to the head node of a doubly linked list.\r
1440\r
1441 @retval TRUE The linked list is empty.\r
1442 @retval FALSE The linked list is not empty.\r
1443\r
1444**/\r
1445BOOLEAN\r
1446EFIAPI\r
1447IsListEmpty (\r
1448 IN CONST LIST_ENTRY *ListHead\r
1449 );\r
1450\r
1451\r
1452/**\r
aa0583c7 1453 Determines if a node in a doubly linked list is the head node of a the same\r
1454 doubly linked list. This function is typically used to terminate a loop that\r
1455 traverses all the nodes in a doubly linked list starting with the head node.\r
ac644614 1456\r
aa0583c7 1457 Returns TRUE if Node is equal to List. Returns FALSE if Node is one of the\r
1458 nodes in the doubly linked list specified by List. List must have been\r
17f695ed 1459 initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 1460\r
1461 If List is NULL, then ASSERT().\r
1462 If Node is NULL, then ASSERT().\r
17f695ed 1463 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(), \r
1464 then ASSERT().\r
ac644614 1465 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1466 in List, including the List node, is greater than or equal to\r
1467 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 1468 If PcdVerifyNodeInList is TRUE and Node is not a node in List the and Node is not equal \r
1469 to List, then ASSERT().\r
ac644614 1470\r
1471 @param List A pointer to the head node of a doubly linked list.\r
1472 @param Node A pointer to a node in the doubly linked list.\r
1473\r
1474 @retval TRUE Node is one of the nodes in the doubly linked list.\r
1475 @retval FALSE Node is not one of the nodes in the doubly linked list.\r
1476\r
1477**/\r
1478BOOLEAN\r
1479EFIAPI\r
1480IsNull (\r
1481 IN CONST LIST_ENTRY *List,\r
1482 IN CONST LIST_ENTRY *Node\r
1483 );\r
1484\r
1485\r
1486/**\r
1487 Determines if a node the last node in a doubly linked list.\r
1488\r
1489 Returns TRUE if Node is the last node in the doubly linked list specified by\r
1490 List. Otherwise, FALSE is returned. List must have been initialized with\r
17f695ed 1491 INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead().\r
ac644614 1492\r
1493 If List is NULL, then ASSERT().\r
1494 If Node is NULL, then ASSERT().\r
17f695ed 1495 If List was not initialized with INTIALIZE_LIST_HEAD_VARIABLE() or\r
1496 InitializeListHead(), then ASSERT().\r
ac644614 1497 If PcdMaximumLinkedListLenth is not zero, and the number of nodes\r
1498 in List, including the List node, is greater than or equal to\r
1499 PcdMaximumLinkedListLength, then ASSERT().\r
1081f624 1500 If PcdVerifyNodeInList is TRUE and Node is not a node in List, then ASSERT().\r
ac644614 1501\r
1502 @param List A pointer to the head node of a doubly linked list.\r
1503 @param Node A pointer to a node in the doubly linked list.\r
1504\r
1505 @retval TRUE Node is the last node in the linked list.\r
1506 @retval FALSE Node is not the last node in the linked list.\r
1507\r
1508**/\r
1509BOOLEAN\r
1510EFIAPI\r
1511IsNodeAtEnd (\r
1512 IN CONST LIST_ENTRY *List,\r
1513 IN CONST LIST_ENTRY *Node\r
1514 );\r
1515\r
1516\r
1517/**\r
1518 Swaps the location of two nodes in a doubly linked list, and returns the\r
1519 first node after the swap.\r
1520\r
1521 If FirstEntry is identical to SecondEntry, then SecondEntry is returned.\r
1522 Otherwise, the location of the FirstEntry node is swapped with the location\r
1523 of the SecondEntry node in a doubly linked list. SecondEntry must be in the\r
1524 same double linked list as FirstEntry and that double linked list must have\r
17f695ed 1525 been initialized with INTIALIZE_LIST_HEAD_VARIABLE() or InitializeListHead(). \r
1526 SecondEntry is returned after the nodes are swapped.\r
ac644614 1527\r
1528 If FirstEntry is NULL, then ASSERT().\r
1529 If SecondEntry is NULL, then ASSERT().\r
1081f624 1530 If PcdVerifyNodeInList is TRUE and SecondEntry and FirstEntry are not in the \r
1531 same linked list, then ASSERT().\r
ac644614 1532 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1533 linked list containing the FirstEntry and SecondEntry nodes, including\r
1534 the FirstEntry and SecondEntry nodes, is greater than or equal to\r
1535 PcdMaximumLinkedListLength, then ASSERT().\r
1536\r
1537 @param FirstEntry A pointer to a node in a linked list.\r
1538 @param SecondEntry A pointer to another node in the same linked list.\r
38bbd3d9 1539 \r
9aa049d9 1540 @return SecondEntry.\r
ac644614 1541\r
1542**/\r
1543LIST_ENTRY *\r
1544EFIAPI\r
1545SwapListEntries (\r
aa0583c7 1546 IN OUT LIST_ENTRY *FirstEntry,\r
1547 IN OUT LIST_ENTRY *SecondEntry\r
ac644614 1548 );\r
1549\r
1550\r
1551/**\r
1552 Removes a node from a doubly linked list, and returns the node that follows\r
1553 the removed node.\r
1554\r
1555 Removes the node Entry from a doubly linked list. It is up to the caller of\r
1556 this function to release the memory used by this node if that is required. On\r
1557 exit, the node following Entry in the doubly linked list is returned. If\r
1558 Entry is the only node in the linked list, then the head node of the linked\r
1559 list is returned.\r
1560\r
1561 If Entry is NULL, then ASSERT().\r
1562 If Entry is the head node of an empty list, then ASSERT().\r
1563 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the\r
1564 linked list containing Entry, including the Entry node, is greater than\r
1565 or equal to PcdMaximumLinkedListLength, then ASSERT().\r
1566\r
9aa049d9 1567 @param Entry A pointer to a node in a linked list.\r
ac644614 1568\r
9aa049d9 1569 @return Entry.\r
ac644614 1570\r
1571**/\r
1572LIST_ENTRY *\r
1573EFIAPI\r
1574RemoveEntryList (\r
1575 IN CONST LIST_ENTRY *Entry\r
1576 );\r
1577\r
1578//\r
1579// Math Services\r
1580//\r
1581\r
1582/**\r
1583 Shifts a 64-bit integer left between 0 and 63 bits. The low bits are filled\r
1584 with zeros. The shifted value is returned.\r
1585\r
1586 This function shifts the 64-bit value Operand to the left by Count bits. The\r
1587 low Count bits are set to zero. The shifted value is returned.\r
1588\r
1589 If Count is greater than 63, then ASSERT().\r
1590\r
1591 @param Operand The 64-bit operand to shift left.\r
1592 @param Count The number of bits to shift left.\r
1593\r
9aa049d9 1594 @return Operand << Count.\r
ac644614 1595\r
1596**/\r
1597UINT64\r
1598EFIAPI\r
1599LShiftU64 (\r
1600 IN UINT64 Operand,\r
1601 IN UINTN Count\r
1602 );\r
1603\r
1604\r
1605/**\r
1606 Shifts a 64-bit integer right between 0 and 63 bits. This high bits are\r
1607 filled with zeros. The shifted value is returned.\r
1608\r
1609 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1610 high Count bits are set to zero. The shifted value is returned.\r
1611\r
1612 If Count is greater than 63, then ASSERT().\r
1613\r
1614 @param Operand The 64-bit operand to shift right.\r
1615 @param Count The number of bits to shift right.\r
1616\r
1617 @return Operand >> Count\r
1618\r
1619**/\r
1620UINT64\r
1621EFIAPI\r
1622RShiftU64 (\r
1623 IN UINT64 Operand,\r
1624 IN UINTN Count\r
1625 );\r
1626\r
1627\r
1628/**\r
1629 Shifts a 64-bit integer right between 0 and 63 bits. The high bits are filled\r
1630 with original integer's bit 63. The shifted value is returned.\r
1631\r
1632 This function shifts the 64-bit value Operand to the right by Count bits. The\r
1633 high Count bits are set to bit 63 of Operand. The shifted value is returned.\r
1634\r
1635 If Count is greater than 63, then ASSERT().\r
1636\r
1637 @param Operand The 64-bit operand to shift right.\r
1638 @param Count The number of bits to shift right.\r
1639\r
1640 @return Operand >> Count\r
1641\r
1642**/\r
1643UINT64\r
1644EFIAPI\r
1645ARShiftU64 (\r
1646 IN UINT64 Operand,\r
1647 IN UINTN Count\r
1648 );\r
1649\r
1650\r
1651/**\r
1652 Rotates a 32-bit integer left between 0 and 31 bits, filling the low bits\r
1653 with the high bits that were rotated.\r
1654\r
1655 This function rotates the 32-bit value Operand to the left by Count bits. The\r
1656 low Count bits are fill with the high Count bits of Operand. The rotated\r
1657 value is returned.\r
1658\r
1659 If Count is greater than 31, then ASSERT().\r
1660\r
1661 @param Operand The 32-bit operand to rotate left.\r
1662 @param Count The number of bits to rotate left.\r
1663\r
17f695ed 1664 @return Operand << Count\r
ac644614 1665\r
1666**/\r
1667UINT32\r
1668EFIAPI\r
1669LRotU32 (\r
1670 IN UINT32 Operand,\r
1671 IN UINTN Count\r
1672 );\r
1673\r
1674\r
1675/**\r
1676 Rotates a 32-bit integer right between 0 and 31 bits, filling the high bits\r
1677 with the low bits that were rotated.\r
1678\r
1679 This function rotates the 32-bit value Operand to the right by Count bits.\r
1680 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1681 value is returned.\r
1682\r
1683 If Count is greater than 31, then ASSERT().\r
1684\r
1685 @param Operand The 32-bit operand to rotate right.\r
1686 @param Count The number of bits to rotate right.\r
1687\r
2fe241a2 1688 @return Operand >> Count\r
ac644614 1689\r
1690**/\r
1691UINT32\r
1692EFIAPI\r
1693RRotU32 (\r
1694 IN UINT32 Operand,\r
1695 IN UINTN Count\r
1696 );\r
1697\r
1698\r
1699/**\r
1700 Rotates a 64-bit integer left between 0 and 63 bits, filling the low bits\r
1701 with the high bits that were rotated.\r
1702\r
1703 This function rotates the 64-bit value Operand to the left by Count bits. The\r
1704 low Count bits are fill with the high Count bits of Operand. The rotated\r
1705 value is returned.\r
1706\r
1707 If Count is greater than 63, then ASSERT().\r
1708\r
1709 @param Operand The 64-bit operand to rotate left.\r
1710 @param Count The number of bits to rotate left.\r
1711\r
17f695ed 1712 @return Operand << Count\r
ac644614 1713\r
1714**/\r
1715UINT64\r
1716EFIAPI\r
1717LRotU64 (\r
1718 IN UINT64 Operand,\r
1719 IN UINTN Count\r
1720 );\r
1721\r
1722\r
1723/**\r
1724 Rotates a 64-bit integer right between 0 and 63 bits, filling the high bits\r
1725 with the high low bits that were rotated.\r
1726\r
1727 This function rotates the 64-bit value Operand to the right by Count bits.\r
1728 The high Count bits are fill with the low Count bits of Operand. The rotated\r
1729 value is returned.\r
1730\r
1731 If Count is greater than 63, then ASSERT().\r
1732\r
1733 @param Operand The 64-bit operand to rotate right.\r
1734 @param Count The number of bits to rotate right.\r
1735\r
17f695ed 1736 @return Operand >> Count\r
ac644614 1737\r
1738**/\r
1739UINT64\r
1740EFIAPI\r
1741RRotU64 (\r
1742 IN UINT64 Operand,\r
1743 IN UINTN Count\r
1744 );\r
1745\r
1746\r
1747/**\r
1748 Returns the bit position of the lowest bit set in a 32-bit value.\r
1749\r
1750 This function computes the bit position of the lowest bit set in the 32-bit\r
1751 value specified by Operand. If Operand is zero, then -1 is returned.\r
1752 Otherwise, a value between 0 and 31 is returned.\r
1753\r
1754 @param Operand The 32-bit operand to evaluate.\r
1755\r
9aa049d9 1756 @retval 0..31 The lowest bit set in Operand was found.\r
17f695ed 1757 @retval -1 Operand is zero.\r
ac644614 1758\r
1759**/\r
1760INTN\r
1761EFIAPI\r
1762LowBitSet32 (\r
1763 IN UINT32 Operand\r
1764 );\r
1765\r
1766\r
1767/**\r
1768 Returns the bit position of the lowest bit set in a 64-bit value.\r
1769\r
1770 This function computes the bit position of the lowest bit set in the 64-bit\r
1771 value specified by Operand. If Operand is zero, then -1 is returned.\r
1772 Otherwise, a value between 0 and 63 is returned.\r
1773\r
1774 @param Operand The 64-bit operand to evaluate.\r
1775\r
9aa049d9 1776 @retval 0..63 The lowest bit set in Operand was found.\r
17f695ed 1777 @retval -1 Operand is zero.\r
1778\r
ac644614 1779\r
1780**/\r
1781INTN\r
1782EFIAPI\r
1783LowBitSet64 (\r
1784 IN UINT64 Operand\r
1785 );\r
1786\r
1787\r
1788/**\r
1789 Returns the bit position of the highest bit set in a 32-bit value. Equivalent\r
1790 to log2(x).\r
1791\r
1792 This function computes the bit position of the highest bit set in the 32-bit\r
1793 value specified by Operand. If Operand is zero, then -1 is returned.\r
1794 Otherwise, a value between 0 and 31 is returned.\r
1795\r
1796 @param Operand The 32-bit operand to evaluate.\r
1797\r
9aa049d9 1798 @retval 0..31 Position of the highest bit set in Operand if found.\r
17f695ed 1799 @retval -1 Operand is zero.\r
ac644614 1800\r
1801**/\r
1802INTN\r
1803EFIAPI\r
1804HighBitSet32 (\r
1805 IN UINT32 Operand\r
1806 );\r
1807\r
1808\r
1809/**\r
1810 Returns the bit position of the highest bit set in a 64-bit value. Equivalent\r
1811 to log2(x).\r
1812\r
1813 This function computes the bit position of the highest bit set in the 64-bit\r
1814 value specified by Operand. If Operand is zero, then -1 is returned.\r
1815 Otherwise, a value between 0 and 63 is returned.\r
1816\r
1817 @param Operand The 64-bit operand to evaluate.\r
1818\r
9aa049d9 1819 @retval 0..63 Position of the highest bit set in Operand if found.\r
17f695ed 1820 @retval -1 Operand is zero.\r
ac644614 1821\r
1822**/\r
1823INTN\r
1824EFIAPI\r
1825HighBitSet64 (\r
1826 IN UINT64 Operand\r
1827 );\r
1828\r
1829\r
1830/**\r
1831 Returns the value of the highest bit set in a 32-bit value. Equivalent to\r
17f695ed 1832 1 << log2(x).\r
ac644614 1833\r
1834 This function computes the value of the highest bit set in the 32-bit value\r
1835 specified by Operand. If Operand is zero, then zero is returned.\r
1836\r
1837 @param Operand The 32-bit operand to evaluate.\r
1838\r
1839 @return 1 << HighBitSet32(Operand)\r
1840 @retval 0 Operand is zero.\r
1841\r
1842**/\r
1843UINT32\r
1844EFIAPI\r
1845GetPowerOfTwo32 (\r
1846 IN UINT32 Operand\r
1847 );\r
1848\r
1849\r
1850/**\r
1851 Returns the value of the highest bit set in a 64-bit value. Equivalent to\r
17f695ed 1852 1 << log2(x).\r
ac644614 1853\r
1854 This function computes the value of the highest bit set in the 64-bit value\r
1855 specified by Operand. If Operand is zero, then zero is returned.\r
1856\r
1857 @param Operand The 64-bit operand to evaluate.\r
1858\r
1859 @return 1 << HighBitSet64(Operand)\r
1860 @retval 0 Operand is zero.\r
1861\r
1862**/\r
1863UINT64\r
1864EFIAPI\r
1865GetPowerOfTwo64 (\r
1866 IN UINT64 Operand\r
1867 );\r
1868\r
1869\r
1870/**\r
1871 Switches the endianess of a 16-bit integer.\r
1872\r
1873 This function swaps the bytes in a 16-bit unsigned value to switch the value\r
1874 from little endian to big endian or vice versa. The byte swapped value is\r
1875 returned.\r
1876\r
2a53dabf 1877 @param Value A 16-bit unsigned value.\r
ac644614 1878\r
efb23117 1879 @return The byte swapped Value.\r
ac644614 1880\r
1881**/\r
1882UINT16\r
1883EFIAPI\r
1884SwapBytes16 (\r
1885 IN UINT16 Value\r
1886 );\r
1887\r
1888\r
1889/**\r
1890 Switches the endianess of a 32-bit integer.\r
1891\r
1892 This function swaps the bytes in a 32-bit unsigned value to switch the value\r
1893 from little endian to big endian or vice versa. The byte swapped value is\r
1894 returned.\r
1895\r
2a53dabf 1896 @param Value A 32-bit unsigned value.\r
ac644614 1897\r
efb23117 1898 @return The byte swapped Value.\r
ac644614 1899\r
1900**/\r
1901UINT32\r
1902EFIAPI\r
1903SwapBytes32 (\r
1904 IN UINT32 Value\r
1905 );\r
1906\r
1907\r
1908/**\r
1909 Switches the endianess of a 64-bit integer.\r
1910\r
1911 This function swaps the bytes in a 64-bit unsigned value to switch the value\r
1912 from little endian to big endian or vice versa. The byte swapped value is\r
1913 returned.\r
1914\r
2a53dabf 1915 @param Value A 64-bit unsigned value.\r
ac644614 1916\r
efb23117 1917 @return The byte swapped Value.\r
ac644614 1918\r
1919**/\r
1920UINT64\r
1921EFIAPI\r
1922SwapBytes64 (\r
1923 IN UINT64 Value\r
1924 );\r
1925\r
1926\r
1927/**\r
1928 Multiples a 64-bit unsigned integer by a 32-bit unsigned integer and\r
1929 generates a 64-bit unsigned result.\r
1930\r
1931 This function multiples the 64-bit unsigned value Multiplicand by the 32-bit\r
1932 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1933 bit unsigned result is returned.\r
1934\r
ac644614 1935 @param Multiplicand A 64-bit unsigned value.\r
1936 @param Multiplier A 32-bit unsigned value.\r
1937\r
1938 @return Multiplicand * Multiplier\r
1939\r
1940**/\r
1941UINT64\r
1942EFIAPI\r
1943MultU64x32 (\r
1944 IN UINT64 Multiplicand,\r
1945 IN UINT32 Multiplier\r
1946 );\r
1947\r
1948\r
1949/**\r
1950 Multiples a 64-bit unsigned integer by a 64-bit unsigned integer and\r
1951 generates a 64-bit unsigned result.\r
1952\r
1953 This function multiples the 64-bit unsigned value Multiplicand by the 64-bit\r
1954 unsigned value Multiplier and generates a 64-bit unsigned result. This 64-\r
1955 bit unsigned result is returned.\r
1956\r
ac644614 1957 @param Multiplicand A 64-bit unsigned value.\r
1958 @param Multiplier A 64-bit unsigned value.\r
1959\r
1960 @return Multiplicand * Multiplier\r
1961\r
1962**/\r
1963UINT64\r
1964EFIAPI\r
1965MultU64x64 (\r
1966 IN UINT64 Multiplicand,\r
1967 IN UINT64 Multiplier\r
1968 );\r
1969\r
1970\r
1971/**\r
1972 Multiples a 64-bit signed integer by a 64-bit signed integer and generates a\r
1973 64-bit signed result.\r
1974\r
1975 This function multiples the 64-bit signed value Multiplicand by the 64-bit\r
1976 signed value Multiplier and generates a 64-bit signed result. This 64-bit\r
1977 signed result is returned.\r
1978\r
ac644614 1979 @param Multiplicand A 64-bit signed value.\r
1980 @param Multiplier A 64-bit signed value.\r
1981\r
1982 @return Multiplicand * Multiplier\r
1983\r
1984**/\r
1985INT64\r
1986EFIAPI\r
1987MultS64x64 (\r
1988 IN INT64 Multiplicand,\r
1989 IN INT64 Multiplier\r
1990 );\r
1991\r
1992\r
1993/**\r
1994 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
1995 a 64-bit unsigned result.\r
1996\r
1997 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
1998 unsigned value Divisor and generates a 64-bit unsigned quotient. This\r
1999 function returns the 64-bit unsigned quotient.\r
2000\r
2001 If Divisor is 0, then ASSERT().\r
2002\r
2003 @param Dividend A 64-bit unsigned value.\r
2004 @param Divisor A 32-bit unsigned value.\r
2005\r
2006 @return Dividend / Divisor\r
2007\r
2008**/\r
2009UINT64\r
2010EFIAPI\r
2011DivU64x32 (\r
2012 IN UINT64 Dividend,\r
2013 IN UINT32 Divisor\r
2014 );\r
2015\r
2016\r
2017/**\r
2018 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2019 a 32-bit unsigned remainder.\r
2020\r
2021 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2022 unsigned value Divisor and generates a 32-bit remainder. This function\r
2023 returns the 32-bit unsigned remainder.\r
2024\r
2025 If Divisor is 0, then ASSERT().\r
2026\r
2027 @param Dividend A 64-bit unsigned value.\r
2028 @param Divisor A 32-bit unsigned value.\r
2029\r
2030 @return Dividend % Divisor\r
2031\r
2032**/\r
2033UINT32\r
2034EFIAPI\r
2035ModU64x32 (\r
2036 IN UINT64 Dividend,\r
2037 IN UINT32 Divisor\r
2038 );\r
2039\r
2040\r
2041/**\r
2042 Divides a 64-bit unsigned integer by a 32-bit unsigned integer and generates\r
2043 a 64-bit unsigned result and an optional 32-bit unsigned remainder.\r
2044\r
2045 This function divides the 64-bit unsigned value Dividend by the 32-bit\r
2046 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2047 is not NULL, then the 32-bit unsigned remainder is returned in Remainder.\r
2048 This function returns the 64-bit unsigned quotient.\r
2049\r
2050 If Divisor is 0, then ASSERT().\r
2051\r
2052 @param Dividend A 64-bit unsigned value.\r
2053 @param Divisor A 32-bit unsigned value.\r
2054 @param Remainder A pointer to a 32-bit unsigned value. This parameter is\r
2055 optional and may be NULL.\r
2056\r
2057 @return Dividend / Divisor\r
2058\r
2059**/\r
2060UINT64\r
2061EFIAPI\r
2062DivU64x32Remainder (\r
2063 IN UINT64 Dividend,\r
2064 IN UINT32 Divisor,\r
2065 OUT UINT32 *Remainder OPTIONAL\r
2066 );\r
2067\r
2068\r
2069/**\r
2070 Divides a 64-bit unsigned integer by a 64-bit unsigned integer and generates\r
2071 a 64-bit unsigned result and an optional 64-bit unsigned remainder.\r
2072\r
2073 This function divides the 64-bit unsigned value Dividend by the 64-bit\r
2074 unsigned value Divisor and generates a 64-bit unsigned quotient. If Remainder\r
2075 is not NULL, then the 64-bit unsigned remainder is returned in Remainder.\r
2076 This function returns the 64-bit unsigned quotient.\r
2077\r
2078 If Divisor is 0, then ASSERT().\r
2079\r
2080 @param Dividend A 64-bit unsigned value.\r
2081 @param Divisor A 64-bit unsigned value.\r
2082 @param Remainder A pointer to a 64-bit unsigned value. This parameter is\r
2083 optional and may be NULL.\r
2084\r
2085 @return Dividend / Divisor\r
2086\r
2087**/\r
2088UINT64\r
2089EFIAPI\r
2090DivU64x64Remainder (\r
2091 IN UINT64 Dividend,\r
2092 IN UINT64 Divisor,\r
2093 OUT UINT64 *Remainder OPTIONAL\r
2094 );\r
2095\r
2096\r
2097/**\r
2098 Divides a 64-bit signed integer by a 64-bit signed integer and generates a\r
2099 64-bit signed result and a optional 64-bit signed remainder.\r
2100\r
2101 This function divides the 64-bit signed value Dividend by the 64-bit signed\r
2102 value Divisor and generates a 64-bit signed quotient. If Remainder is not\r
2103 NULL, then the 64-bit signed remainder is returned in Remainder. This\r
2104 function returns the 64-bit signed quotient.\r
2105\r
9aa049d9 2106 It is the caller's responsibility to not call this function with a Divisor of 0.\r
17f695ed 2107 If Divisor is 0, then the quotient and remainder should be assumed to be \r
2108 the largest negative integer.\r
2109\r
ac644614 2110 If Divisor is 0, then ASSERT().\r
2111\r
2112 @param Dividend A 64-bit signed value.\r
2113 @param Divisor A 64-bit signed value.\r
2114 @param Remainder A pointer to a 64-bit signed value. This parameter is\r
2115 optional and may be NULL.\r
2116\r
2117 @return Dividend / Divisor\r
2118\r
2119**/\r
2120INT64\r
2121EFIAPI\r
2122DivS64x64Remainder (\r
2123 IN INT64 Dividend,\r
2124 IN INT64 Divisor,\r
2125 OUT INT64 *Remainder OPTIONAL\r
2126 );\r
2127\r
2128\r
2129/**\r
2130 Reads a 16-bit value from memory that may be unaligned.\r
2131\r
2132 This function returns the 16-bit value pointed to by Buffer. The function\r
2133 guarantees that the read operation does not produce an alignment fault.\r
2134\r
2135 If the Buffer is NULL, then ASSERT().\r
2136\r
5385a579 2137 @param Buffer Pointer to a 16-bit value that may be unaligned.\r
ac644614 2138\r
5385a579 2139 @return The 16-bit value read from Buffer.\r
ac644614 2140\r
2141**/\r
2142UINT16\r
2143EFIAPI\r
2144ReadUnaligned16 (\r
5385a579 2145 IN CONST UINT16 *Buffer\r
ac644614 2146 );\r
2147\r
2148\r
2149/**\r
2150 Writes a 16-bit value to memory that may be unaligned.\r
2151\r
2152 This function writes the 16-bit value specified by Value to Buffer. Value is\r
2153 returned. The function guarantees that the write operation does not produce\r
2154 an alignment fault.\r
2155\r
2156 If the Buffer is NULL, then ASSERT().\r
2157\r
5385a579 2158 @param Buffer Pointer to a 16-bit value that may be unaligned.\r
ac644614 2159 @param Value 16-bit value to write to Buffer.\r
2160\r
5385a579 2161 @return The 16-bit value to write to Buffer.\r
ac644614 2162\r
2163**/\r
2164UINT16\r
2165EFIAPI\r
2166WriteUnaligned16 (\r
5385a579 2167 OUT UINT16 *Buffer,\r
2168 IN UINT16 Value\r
ac644614 2169 );\r
2170\r
2171\r
2172/**\r
2173 Reads a 24-bit value from memory that may be unaligned.\r
2174\r
2175 This function returns the 24-bit value pointed to by Buffer. The function\r
2176 guarantees that the read operation does not produce an alignment fault.\r
2177\r
2178 If the Buffer is NULL, then ASSERT().\r
2179\r
2180 @param Buffer Pointer to a 24-bit value that may be unaligned.\r
2181\r
5385a579 2182 @return The 24-bit value read from Buffer.\r
ac644614 2183\r
2184**/\r
2185UINT32\r
2186EFIAPI\r
2187ReadUnaligned24 (\r
5385a579 2188 IN CONST UINT32 *Buffer\r
ac644614 2189 );\r
2190\r
2191\r
2192/**\r
2193 Writes a 24-bit value to memory that may be unaligned.\r
2194\r
2195 This function writes the 24-bit value specified by Value to Buffer. Value is\r
2196 returned. The function guarantees that the write operation does not produce\r
2197 an alignment fault.\r
2198\r
2199 If the Buffer is NULL, then ASSERT().\r
2200\r
2201 @param Buffer Pointer to a 24-bit value that may be unaligned.\r
2202 @param Value 24-bit value to write to Buffer.\r
2203\r
5385a579 2204 @return The 24-bit value to write to Buffer.\r
ac644614 2205\r
2206**/\r
2207UINT32\r
2208EFIAPI\r
2209WriteUnaligned24 (\r
5385a579 2210 OUT UINT32 *Buffer,\r
2211 IN UINT32 Value\r
ac644614 2212 );\r
2213\r
2214\r
2215/**\r
2216 Reads a 32-bit value from memory that may be unaligned.\r
2217\r
2218 This function returns the 32-bit value pointed to by Buffer. The function\r
2219 guarantees that the read operation does not produce an alignment fault.\r
2220\r
2221 If the Buffer is NULL, then ASSERT().\r
2222\r
5385a579 2223 @param Buffer Pointer to a 32-bit value that may be unaligned.\r
ac644614 2224\r
5385a579 2225 @return The 32-bit value read from Buffer.\r
ac644614 2226\r
2227**/\r
2228UINT32\r
2229EFIAPI\r
2230ReadUnaligned32 (\r
5385a579 2231 IN CONST UINT32 *Buffer\r
ac644614 2232 );\r
2233\r
2234\r
2235/**\r
2236 Writes a 32-bit value to memory that may be unaligned.\r
2237\r
2238 This function writes the 32-bit value specified by Value to Buffer. Value is\r
2239 returned. The function guarantees that the write operation does not produce\r
2240 an alignment fault.\r
2241\r
2242 If the Buffer is NULL, then ASSERT().\r
2243\r
5385a579 2244 @param Buffer Pointer to a 32-bit value that may be unaligned.\r
ac644614 2245 @param Value 32-bit value to write to Buffer.\r
2246\r
5385a579 2247 @return The 32-bit value to write to Buffer.\r
ac644614 2248\r
2249**/\r
2250UINT32\r
2251EFIAPI\r
2252WriteUnaligned32 (\r
5385a579 2253 OUT UINT32 *Buffer,\r
2254 IN UINT32 Value\r
ac644614 2255 );\r
2256\r
2257\r
2258/**\r
2259 Reads a 64-bit value from memory that may be unaligned.\r
2260\r
2261 This function returns the 64-bit value pointed to by Buffer. The function\r
2262 guarantees that the read operation does not produce an alignment fault.\r
2263\r
2264 If the Buffer is NULL, then ASSERT().\r
2265\r
5385a579 2266 @param Buffer Pointer to a 64-bit value that may be unaligned.\r
ac644614 2267\r
5385a579 2268 @return The 64-bit value read from Buffer.\r
ac644614 2269\r
2270**/\r
2271UINT64\r
2272EFIAPI\r
2273ReadUnaligned64 (\r
5385a579 2274 IN CONST UINT64 *Buffer\r
ac644614 2275 );\r
2276\r
2277\r
2278/**\r
2279 Writes a 64-bit value to memory that may be unaligned.\r
2280\r
2281 This function writes the 64-bit value specified by Value to Buffer. Value is\r
2282 returned. The function guarantees that the write operation does not produce\r
2283 an alignment fault.\r
2284\r
2285 If the Buffer is NULL, then ASSERT().\r
2286\r
5385a579 2287 @param Buffer Pointer to a 64-bit value that may be unaligned.\r
ac644614 2288 @param Value 64-bit value to write to Buffer.\r
2289\r
5385a579 2290 @return The 64-bit value to write to Buffer.\r
ac644614 2291\r
2292**/\r
2293UINT64\r
2294EFIAPI\r
2295WriteUnaligned64 (\r
5385a579 2296 OUT UINT64 *Buffer,\r
2297 IN UINT64 Value\r
ac644614 2298 );\r
2299\r
2300\r
2301//\r
2302// Bit Field Functions\r
2303//\r
2304\r
2305/**\r
2306 Returns a bit field from an 8-bit value.\r
2307\r
2308 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2309\r
2310 If 8-bit operations are not supported, then ASSERT().\r
2311 If StartBit is greater than 7, then ASSERT().\r
2312 If EndBit is greater than 7, then ASSERT().\r
2313 If EndBit is less than StartBit, then ASSERT().\r
2314\r
2315 @param Operand Operand on which to perform the bitfield operation.\r
2316 @param StartBit The ordinal of the least significant bit in the bit field.\r
2317 Range 0..7.\r
2318 @param EndBit The ordinal of the most significant bit in the bit field.\r
2319 Range 0..7.\r
2320\r
2321 @return The bit field read.\r
2322\r
2323**/\r
2324UINT8\r
2325EFIAPI\r
2326BitFieldRead8 (\r
2327 IN UINT8 Operand,\r
2328 IN UINTN StartBit,\r
2329 IN UINTN EndBit\r
2330 );\r
2331\r
2332\r
2333/**\r
2334 Writes a bit field to an 8-bit value, and returns the result.\r
2335\r
2336 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2337 Operand. All other bits in Operand are preserved. The new 8-bit value is\r
2338 returned.\r
2339\r
2340 If 8-bit operations are not supported, then ASSERT().\r
2341 If StartBit is greater than 7, then ASSERT().\r
2342 If EndBit is greater than 7, then ASSERT().\r
2343 If EndBit is less than StartBit, then ASSERT().\r
2344\r
2345 @param Operand Operand on which to perform the bitfield operation.\r
2346 @param StartBit The ordinal of the least significant bit in the bit field.\r
2347 Range 0..7.\r
2348 @param EndBit The ordinal of the most significant bit in the bit field.\r
2349 Range 0..7.\r
2350 @param Value New value of the bit field.\r
2351\r
2352 @return The new 8-bit value.\r
2353\r
2354**/\r
2355UINT8\r
2356EFIAPI\r
2357BitFieldWrite8 (\r
2358 IN UINT8 Operand,\r
2359 IN UINTN StartBit,\r
2360 IN UINTN EndBit,\r
2361 IN UINT8 Value\r
2362 );\r
2363\r
2364\r
2365/**\r
2366 Reads a bit field from an 8-bit value, performs a bitwise OR, and returns the\r
2367 result.\r
2368\r
62991af2 2369 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2370 and EndBit in Operand and the value specified by OrData. All other bits in\r
2371 Operand are preserved. The new 8-bit value is returned.\r
2372\r
2373 If 8-bit operations are not supported, then ASSERT().\r
2374 If StartBit is greater than 7, then ASSERT().\r
2375 If EndBit is greater than 7, then ASSERT().\r
2376 If EndBit is less than StartBit, then ASSERT().\r
2377\r
2378 @param Operand Operand on which to perform the bitfield operation.\r
2379 @param StartBit The ordinal of the least significant bit in the bit field.\r
2380 Range 0..7.\r
2381 @param EndBit The ordinal of the most significant bit in the bit field.\r
2382 Range 0..7.\r
2383 @param OrData The value to OR with the read value from the value\r
2384\r
2385 @return The new 8-bit value.\r
2386\r
2387**/\r
2388UINT8\r
2389EFIAPI\r
2390BitFieldOr8 (\r
2391 IN UINT8 Operand,\r
2392 IN UINTN StartBit,\r
2393 IN UINTN EndBit,\r
2394 IN UINT8 OrData\r
2395 );\r
2396\r
2397\r
2398/**\r
2399 Reads a bit field from an 8-bit value, performs a bitwise AND, and returns\r
2400 the result.\r
2401\r
2402 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2403 in Operand and the value specified by AndData. All other bits in Operand are\r
2404 preserved. The new 8-bit value is returned.\r
2405\r
2406 If 8-bit operations are not supported, then ASSERT().\r
2407 If StartBit is greater than 7, then ASSERT().\r
2408 If EndBit is greater than 7, then ASSERT().\r
2409 If EndBit is less than StartBit, then ASSERT().\r
2410\r
2411 @param Operand Operand on which to perform the bitfield operation.\r
2412 @param StartBit The ordinal of the least significant bit in the bit field.\r
2413 Range 0..7.\r
2414 @param EndBit The ordinal of the most significant bit in the bit field.\r
2415 Range 0..7.\r
2416 @param AndData The value to AND with the read value from the value.\r
2417\r
2418 @return The new 8-bit value.\r
2419\r
2420**/\r
2421UINT8\r
2422EFIAPI\r
2423BitFieldAnd8 (\r
2424 IN UINT8 Operand,\r
2425 IN UINTN StartBit,\r
2426 IN UINTN EndBit,\r
2427 IN UINT8 AndData\r
2428 );\r
2429\r
2430\r
2431/**\r
2432 Reads a bit field from an 8-bit value, performs a bitwise AND followed by a\r
2433 bitwise OR, and returns the result.\r
2434\r
2435 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2436 in Operand and the value specified by AndData, followed by a bitwise \r
2437 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2438 preserved. The new 8-bit value is returned.\r
2439\r
2440 If 8-bit operations are not supported, then ASSERT().\r
2441 If StartBit is greater than 7, then ASSERT().\r
2442 If EndBit is greater than 7, then ASSERT().\r
2443 If EndBit is less than StartBit, then ASSERT().\r
2444\r
2445 @param Operand Operand on which to perform the bitfield operation.\r
2446 @param StartBit The ordinal of the least significant bit in the bit field.\r
2447 Range 0..7.\r
2448 @param EndBit The ordinal of the most significant bit in the bit field.\r
2449 Range 0..7.\r
2450 @param AndData The value to AND with the read value from the value.\r
2451 @param OrData The value to OR with the result of the AND operation.\r
2452\r
2453 @return The new 8-bit value.\r
2454\r
2455**/\r
2456UINT8\r
2457EFIAPI\r
2458BitFieldAndThenOr8 (\r
2459 IN UINT8 Operand,\r
2460 IN UINTN StartBit,\r
2461 IN UINTN EndBit,\r
2462 IN UINT8 AndData,\r
2463 IN UINT8 OrData\r
2464 );\r
2465\r
2466\r
2467/**\r
2468 Returns a bit field from a 16-bit value.\r
2469\r
2470 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2471\r
2472 If 16-bit operations are not supported, then ASSERT().\r
2473 If StartBit is greater than 15, then ASSERT().\r
2474 If EndBit is greater than 15, then ASSERT().\r
2475 If EndBit is less than StartBit, then ASSERT().\r
2476\r
2477 @param Operand Operand on which to perform the bitfield operation.\r
2478 @param StartBit The ordinal of the least significant bit in the bit field.\r
2479 Range 0..15.\r
2480 @param EndBit The ordinal of the most significant bit in the bit field.\r
2481 Range 0..15.\r
2482\r
2483 @return The bit field read.\r
2484\r
2485**/\r
2486UINT16\r
2487EFIAPI\r
2488BitFieldRead16 (\r
2489 IN UINT16 Operand,\r
2490 IN UINTN StartBit,\r
2491 IN UINTN EndBit\r
2492 );\r
2493\r
2494\r
2495/**\r
2496 Writes a bit field to a 16-bit value, and returns the result.\r
2497\r
2498 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2499 Operand. All other bits in Operand are preserved. The new 16-bit value is\r
2500 returned.\r
2501\r
2502 If 16-bit operations are not supported, then ASSERT().\r
2503 If StartBit is greater than 15, then ASSERT().\r
2504 If EndBit is greater than 15, then ASSERT().\r
2505 If EndBit is less than StartBit, then ASSERT().\r
2506\r
2507 @param Operand Operand on which to perform the bitfield operation.\r
2508 @param StartBit The ordinal of the least significant bit in the bit field.\r
2509 Range 0..15.\r
2510 @param EndBit The ordinal of the most significant bit in the bit field.\r
2511 Range 0..15.\r
2512 @param Value New value of the bit field.\r
2513\r
2514 @return The new 16-bit value.\r
2515\r
2516**/\r
2517UINT16\r
2518EFIAPI\r
2519BitFieldWrite16 (\r
2520 IN UINT16 Operand,\r
2521 IN UINTN StartBit,\r
2522 IN UINTN EndBit,\r
2523 IN UINT16 Value\r
2524 );\r
2525\r
2526\r
2527/**\r
2528 Reads a bit field from a 16-bit value, performs a bitwise OR, and returns the\r
2529 result.\r
2530\r
62991af2 2531 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2532 and EndBit in Operand and the value specified by OrData. All other bits in\r
2533 Operand are preserved. The new 16-bit value is returned.\r
2534\r
2535 If 16-bit operations are not supported, then ASSERT().\r
2536 If StartBit is greater than 15, then ASSERT().\r
2537 If EndBit is greater than 15, then ASSERT().\r
2538 If EndBit is less than StartBit, then ASSERT().\r
2539\r
2540 @param Operand Operand on which to perform the bitfield operation.\r
2541 @param StartBit The ordinal of the least significant bit in the bit field.\r
2542 Range 0..15.\r
2543 @param EndBit The ordinal of the most significant bit in the bit field.\r
2544 Range 0..15.\r
2545 @param OrData The value to OR with the read value from the value\r
2546\r
2547 @return The new 16-bit value.\r
2548\r
2549**/\r
2550UINT16\r
2551EFIAPI\r
2552BitFieldOr16 (\r
2553 IN UINT16 Operand,\r
2554 IN UINTN StartBit,\r
2555 IN UINTN EndBit,\r
2556 IN UINT16 OrData\r
2557 );\r
2558\r
2559\r
2560/**\r
2561 Reads a bit field from a 16-bit value, performs a bitwise AND, and returns\r
2562 the result.\r
2563\r
2564 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2565 in Operand and the value specified by AndData. All other bits in Operand are\r
2566 preserved. The new 16-bit value is returned.\r
2567\r
2568 If 16-bit operations are not supported, then ASSERT().\r
2569 If StartBit is greater than 15, then ASSERT().\r
2570 If EndBit is greater than 15, then ASSERT().\r
2571 If EndBit is less than StartBit, then ASSERT().\r
2572\r
2573 @param Operand Operand on which to perform the bitfield operation.\r
2574 @param StartBit The ordinal of the least significant bit in the bit field.\r
2575 Range 0..15.\r
2576 @param EndBit The ordinal of the most significant bit in the bit field.\r
2577 Range 0..15.\r
2578 @param AndData The value to AND with the read value from the value\r
2579\r
2580 @return The new 16-bit value.\r
2581\r
2582**/\r
2583UINT16\r
2584EFIAPI\r
2585BitFieldAnd16 (\r
2586 IN UINT16 Operand,\r
2587 IN UINTN StartBit,\r
2588 IN UINTN EndBit,\r
2589 IN UINT16 AndData\r
2590 );\r
2591\r
2592\r
2593/**\r
2594 Reads a bit field from a 16-bit value, performs a bitwise AND followed by a\r
2595 bitwise OR, and returns the result.\r
2596\r
2597 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2598 in Operand and the value specified by AndData, followed by a bitwise \r
2599 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2600 preserved. The new 16-bit value is returned.\r
2601\r
2602 If 16-bit operations are not supported, then ASSERT().\r
2603 If StartBit is greater than 15, then ASSERT().\r
2604 If EndBit is greater than 15, then ASSERT().\r
2605 If EndBit is less than StartBit, then ASSERT().\r
2606\r
2607 @param Operand Operand on which to perform the bitfield operation.\r
2608 @param StartBit The ordinal of the least significant bit in the bit field.\r
2609 Range 0..15.\r
2610 @param EndBit The ordinal of the most significant bit in the bit field.\r
2611 Range 0..15.\r
2612 @param AndData The value to AND with the read value from the value.\r
2613 @param OrData The value to OR with the result of the AND operation.\r
2614\r
2615 @return The new 16-bit value.\r
2616\r
2617**/\r
2618UINT16\r
2619EFIAPI\r
2620BitFieldAndThenOr16 (\r
2621 IN UINT16 Operand,\r
2622 IN UINTN StartBit,\r
2623 IN UINTN EndBit,\r
2624 IN UINT16 AndData,\r
2625 IN UINT16 OrData\r
2626 );\r
2627\r
2628\r
2629/**\r
2630 Returns a bit field from a 32-bit value.\r
2631\r
2632 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2633\r
2634 If 32-bit operations are not supported, then ASSERT().\r
2635 If StartBit is greater than 31, then ASSERT().\r
2636 If EndBit is greater than 31, then ASSERT().\r
2637 If EndBit is less than StartBit, then ASSERT().\r
2638\r
2639 @param Operand Operand on which to perform the bitfield operation.\r
2640 @param StartBit The ordinal of the least significant bit in the bit field.\r
2641 Range 0..31.\r
2642 @param EndBit The ordinal of the most significant bit in the bit field.\r
2643 Range 0..31.\r
2644\r
2645 @return The bit field read.\r
2646\r
2647**/\r
2648UINT32\r
2649EFIAPI\r
2650BitFieldRead32 (\r
2651 IN UINT32 Operand,\r
2652 IN UINTN StartBit,\r
2653 IN UINTN EndBit\r
2654 );\r
2655\r
2656\r
2657/**\r
2658 Writes a bit field to a 32-bit value, and returns the result.\r
2659\r
2660 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2661 Operand. All other bits in Operand are preserved. The new 32-bit value is\r
2662 returned.\r
2663\r
2664 If 32-bit operations are not supported, then ASSERT().\r
2665 If StartBit is greater than 31, then ASSERT().\r
2666 If EndBit is greater than 31, then ASSERT().\r
2667 If EndBit is less than StartBit, then ASSERT().\r
2668\r
2669 @param Operand Operand on which to perform the bitfield operation.\r
2670 @param StartBit The ordinal of the least significant bit in the bit field.\r
2671 Range 0..31.\r
2672 @param EndBit The ordinal of the most significant bit in the bit field.\r
2673 Range 0..31.\r
2674 @param Value New value of the bit field.\r
2675\r
2676 @return The new 32-bit value.\r
2677\r
2678**/\r
2679UINT32\r
2680EFIAPI\r
2681BitFieldWrite32 (\r
2682 IN UINT32 Operand,\r
2683 IN UINTN StartBit,\r
2684 IN UINTN EndBit,\r
2685 IN UINT32 Value\r
2686 );\r
2687\r
2688\r
2689/**\r
2690 Reads a bit field from a 32-bit value, performs a bitwise OR, and returns the\r
2691 result.\r
2692\r
62991af2 2693 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2694 and EndBit in Operand and the value specified by OrData. All other bits in\r
2695 Operand are preserved. The new 32-bit value is returned.\r
2696\r
2697 If 32-bit operations are not supported, then ASSERT().\r
2698 If StartBit is greater than 31, then ASSERT().\r
2699 If EndBit is greater than 31, then ASSERT().\r
2700 If EndBit is less than StartBit, then ASSERT().\r
2701\r
2702 @param Operand Operand on which to perform the bitfield operation.\r
2703 @param StartBit The ordinal of the least significant bit in the bit field.\r
2704 Range 0..31.\r
2705 @param EndBit The ordinal of the most significant bit in the bit field.\r
2706 Range 0..31.\r
2707 @param OrData The value to OR with the read value from the value\r
2708\r
2709 @return The new 32-bit value.\r
2710\r
2711**/\r
2712UINT32\r
2713EFIAPI\r
2714BitFieldOr32 (\r
2715 IN UINT32 Operand,\r
2716 IN UINTN StartBit,\r
2717 IN UINTN EndBit,\r
2718 IN UINT32 OrData\r
2719 );\r
2720\r
2721\r
2722/**\r
2723 Reads a bit field from a 32-bit value, performs a bitwise AND, and returns\r
2724 the result.\r
2725\r
2726 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2727 in Operand and the value specified by AndData. All other bits in Operand are\r
2728 preserved. The new 32-bit value is returned.\r
2729\r
2730 If 32-bit operations are not supported, then ASSERT().\r
2731 If StartBit is greater than 31, then ASSERT().\r
2732 If EndBit is greater than 31, then ASSERT().\r
2733 If EndBit is less than StartBit, then ASSERT().\r
2734\r
2735 @param Operand Operand on which to perform the bitfield operation.\r
2736 @param StartBit The ordinal of the least significant bit in the bit field.\r
2737 Range 0..31.\r
2738 @param EndBit The ordinal of the most significant bit in the bit field.\r
2739 Range 0..31.\r
2740 @param AndData The value to AND with the read value from the value\r
2741\r
2742 @return The new 32-bit value.\r
2743\r
2744**/\r
2745UINT32\r
2746EFIAPI\r
2747BitFieldAnd32 (\r
2748 IN UINT32 Operand,\r
2749 IN UINTN StartBit,\r
2750 IN UINTN EndBit,\r
2751 IN UINT32 AndData\r
2752 );\r
2753\r
2754\r
2755/**\r
2756 Reads a bit field from a 32-bit value, performs a bitwise AND followed by a\r
2757 bitwise OR, and returns the result.\r
2758\r
2759 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2760 in Operand and the value specified by AndData, followed by a bitwise \r
2761 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2762 preserved. The new 32-bit value is returned.\r
2763\r
2764 If 32-bit operations are not supported, then ASSERT().\r
2765 If StartBit is greater than 31, then ASSERT().\r
2766 If EndBit is greater than 31, then ASSERT().\r
2767 If EndBit is less than StartBit, then ASSERT().\r
2768\r
2769 @param Operand Operand on which to perform the bitfield operation.\r
2770 @param StartBit The ordinal of the least significant bit in the bit field.\r
2771 Range 0..31.\r
2772 @param EndBit The ordinal of the most significant bit in the bit field.\r
2773 Range 0..31.\r
2774 @param AndData The value to AND with the read value from the value.\r
2775 @param OrData The value to OR with the result of the AND operation.\r
2776\r
2777 @return The new 32-bit value.\r
2778\r
2779**/\r
2780UINT32\r
2781EFIAPI\r
2782BitFieldAndThenOr32 (\r
2783 IN UINT32 Operand,\r
2784 IN UINTN StartBit,\r
2785 IN UINTN EndBit,\r
2786 IN UINT32 AndData,\r
2787 IN UINT32 OrData\r
2788 );\r
2789\r
2790\r
2791/**\r
2792 Returns a bit field from a 64-bit value.\r
2793\r
2794 Returns the bitfield specified by the StartBit and the EndBit from Operand.\r
2795\r
2796 If 64-bit operations are not supported, then ASSERT().\r
2797 If StartBit is greater than 63, then ASSERT().\r
2798 If EndBit is greater than 63, then ASSERT().\r
2799 If EndBit is less than StartBit, then ASSERT().\r
2800\r
2801 @param Operand Operand on which to perform the bitfield operation.\r
2802 @param StartBit The ordinal of the least significant bit in the bit field.\r
2803 Range 0..63.\r
2804 @param EndBit The ordinal of the most significant bit in the bit field.\r
2805 Range 0..63.\r
2806\r
2807 @return The bit field read.\r
2808\r
2809**/\r
2810UINT64\r
2811EFIAPI\r
2812BitFieldRead64 (\r
2813 IN UINT64 Operand,\r
2814 IN UINTN StartBit,\r
2815 IN UINTN EndBit\r
2816 );\r
2817\r
2818\r
2819/**\r
2820 Writes a bit field to a 64-bit value, and returns the result.\r
2821\r
2822 Writes Value to the bit field specified by the StartBit and the EndBit in\r
2823 Operand. All other bits in Operand are preserved. The new 64-bit value is\r
2824 returned.\r
2825\r
2826 If 64-bit operations are not supported, then ASSERT().\r
2827 If StartBit is greater than 63, then ASSERT().\r
2828 If EndBit is greater than 63, then ASSERT().\r
2829 If EndBit is less than StartBit, then ASSERT().\r
2830\r
2831 @param Operand Operand on which to perform the bitfield operation.\r
2832 @param StartBit The ordinal of the least significant bit in the bit field.\r
2833 Range 0..63.\r
2834 @param EndBit The ordinal of the most significant bit in the bit field.\r
2835 Range 0..63.\r
2836 @param Value New value of the bit field.\r
2837\r
2838 @return The new 64-bit value.\r
2839\r
2840**/\r
2841UINT64\r
2842EFIAPI\r
2843BitFieldWrite64 (\r
2844 IN UINT64 Operand,\r
2845 IN UINTN StartBit,\r
2846 IN UINTN EndBit,\r
2847 IN UINT64 Value\r
2848 );\r
2849\r
2850\r
2851/**\r
2852 Reads a bit field from a 64-bit value, performs a bitwise OR, and returns the\r
2853 result.\r
2854\r
62991af2 2855 Performs a bitwise OR between the bit field specified by StartBit\r
ac644614 2856 and EndBit in Operand and the value specified by OrData. All other bits in\r
2857 Operand are preserved. The new 64-bit value is returned.\r
2858\r
2859 If 64-bit operations are not supported, then ASSERT().\r
2860 If StartBit is greater than 63, then ASSERT().\r
2861 If EndBit is greater than 63, then ASSERT().\r
2862 If EndBit is less than StartBit, then ASSERT().\r
2863\r
2864 @param Operand Operand on which to perform the bitfield operation.\r
2865 @param StartBit The ordinal of the least significant bit in the bit field.\r
2866 Range 0..63.\r
2867 @param EndBit The ordinal of the most significant bit in the bit field.\r
2868 Range 0..63.\r
2869 @param OrData The value to OR with the read value from the value\r
2870\r
2871 @return The new 64-bit value.\r
2872\r
2873**/\r
2874UINT64\r
2875EFIAPI\r
2876BitFieldOr64 (\r
2877 IN UINT64 Operand,\r
2878 IN UINTN StartBit,\r
2879 IN UINTN EndBit,\r
2880 IN UINT64 OrData\r
2881 );\r
2882\r
2883\r
2884/**\r
2885 Reads a bit field from a 64-bit value, performs a bitwise AND, and returns\r
2886 the result.\r
2887\r
2888 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
2889 in Operand and the value specified by AndData. All other bits in Operand are\r
2890 preserved. The new 64-bit value is returned.\r
2891\r
2892 If 64-bit operations are not supported, then ASSERT().\r
2893 If StartBit is greater than 63, then ASSERT().\r
2894 If EndBit is greater than 63, then ASSERT().\r
2895 If EndBit is less than StartBit, then ASSERT().\r
2896\r
2897 @param Operand Operand on which to perform the bitfield operation.\r
2898 @param StartBit The ordinal of the least significant bit in the bit field.\r
2899 Range 0..63.\r
2900 @param EndBit The ordinal of the most significant bit in the bit field.\r
2901 Range 0..63.\r
2902 @param AndData The value to AND with the read value from the value\r
2903\r
2904 @return The new 64-bit value.\r
2905\r
2906**/\r
2907UINT64\r
2908EFIAPI\r
2909BitFieldAnd64 (\r
2910 IN UINT64 Operand,\r
2911 IN UINTN StartBit,\r
2912 IN UINTN EndBit,\r
2913 IN UINT64 AndData\r
2914 );\r
2915\r
2916\r
2917/**\r
2918 Reads a bit field from a 64-bit value, performs a bitwise AND followed by a\r
2919 bitwise OR, and returns the result.\r
2920\r
2921 Performs a bitwise AND between the bit field specified by StartBit and EndBit\r
62991af2 2922 in Operand and the value specified by AndData, followed by a bitwise \r
2923 OR with value specified by OrData. All other bits in Operand are\r
ac644614 2924 preserved. The new 64-bit value is returned.\r
2925\r
2926 If 64-bit operations are not supported, then ASSERT().\r
2927 If StartBit is greater than 63, then ASSERT().\r
2928 If EndBit is greater than 63, then ASSERT().\r
2929 If EndBit is less than StartBit, then ASSERT().\r
2930\r
2931 @param Operand Operand on which to perform the bitfield operation.\r
2932 @param StartBit The ordinal of the least significant bit in the bit field.\r
2933 Range 0..63.\r
2934 @param EndBit The ordinal of the most significant bit in the bit field.\r
2935 Range 0..63.\r
2936 @param AndData The value to AND with the read value from the value.\r
2937 @param OrData The value to OR with the result of the AND operation.\r
2938\r
2939 @return The new 64-bit value.\r
2940\r
2941**/\r
2942UINT64\r
2943EFIAPI\r
2944BitFieldAndThenOr64 (\r
2945 IN UINT64 Operand,\r
2946 IN UINTN StartBit,\r
2947 IN UINTN EndBit,\r
2948 IN UINT64 AndData,\r
2949 IN UINT64 OrData\r
2950 );\r
2951\r
ac644614 2952//\r
2953// Base Library Checksum Functions\r
2954//\r
2955\r
2956/**\r
17f695ed 2957 Returns the sum of all elements in a buffer in unit of UINT8.\r
ac644614 2958 During calculation, the carry bits are dropped.\r
2959\r
2960 This function calculates the sum of all elements in a buffer\r
2961 in unit of UINT8. The carry bits in result of addition are dropped.\r
2962 The result is returned as UINT8. If Length is Zero, then Zero is\r
2963 returned.\r
2964\r
2965 If Buffer is NULL, then ASSERT().\r
2966 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2967\r
1106ffe1 2968 @param Buffer Pointer to the buffer to carry out the sum operation.\r
17f695ed 2969 @param Length The size, in bytes, of Buffer.\r
ac644614 2970\r
2971 @return Sum The sum of Buffer with carry bits dropped during additions.\r
2972\r
2973**/\r
2974UINT8\r
2975EFIAPI\r
2976CalculateSum8 (\r
ee6c452c 2977 IN CONST UINT8 *Buffer,\r
2978 IN UINTN Length\r
ac644614 2979 );\r
2980\r
2981\r
2982/**\r
2983 Returns the two's complement checksum of all elements in a buffer\r
2984 of 8-bit values.\r
2985\r
2986 This function first calculates the sum of the 8-bit values in the\r
2987 buffer specified by Buffer and Length. The carry bits in the result\r
2988 of addition are dropped. Then, the two's complement of the sum is\r
2989 returned. If Length is 0, then 0 is returned.\r
2990\r
2991 If Buffer is NULL, then ASSERT().\r
2992 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
2993\r
1106ffe1 2994 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
2995 @param Length The size, in bytes, of Buffer.\r
ac644614 2996\r
ee6c452c 2997 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 2998\r
2999**/\r
3000UINT8\r
3001EFIAPI\r
3002CalculateCheckSum8 (\r
ee6c452c 3003 IN CONST UINT8 *Buffer,\r
3004 IN UINTN Length\r
ac644614 3005 );\r
3006\r
3007\r
3008/**\r
3009 Returns the sum of all elements in a buffer of 16-bit values. During\r
3010 calculation, the carry bits are dropped.\r
3011\r
3012 This function calculates the sum of the 16-bit values in the buffer\r
3013 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3014 The 16-bit result is returned. If Length is 0, then 0 is returned.\r
3015\r
3016 If Buffer is NULL, then ASSERT().\r
3017 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3018 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3019 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3020\r
1106ffe1 3021 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3022 @param Length The size, in bytes, of Buffer.\r
ac644614 3023\r
3024 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3025\r
3026**/\r
3027UINT16\r
3028EFIAPI\r
3029CalculateSum16 (\r
ee6c452c 3030 IN CONST UINT16 *Buffer,\r
3031 IN UINTN Length\r
ac644614 3032 );\r
3033\r
3034\r
3035/**\r
3036 Returns the two's complement checksum of all elements in a buffer of\r
3037 16-bit values.\r
3038\r
3039 This function first calculates the sum of the 16-bit values in the buffer\r
3040 specified by Buffer and Length. The carry bits in the result of addition\r
3041 are dropped. Then, the two's complement of the sum is returned. If Length\r
3042 is 0, then 0 is returned.\r
3043\r
3044 If Buffer is NULL, then ASSERT().\r
3045 If Buffer is not aligned on a 16-bit boundary, then ASSERT().\r
3046 If Length is not aligned on a 16-bit boundary, then ASSERT().\r
3047 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3048\r
1106ffe1 3049 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3050 @param Length The size, in bytes, of Buffer.\r
ac644614 3051\r
ee6c452c 3052 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3053\r
3054**/\r
3055UINT16\r
3056EFIAPI\r
3057CalculateCheckSum16 (\r
ee6c452c 3058 IN CONST UINT16 *Buffer,\r
3059 IN UINTN Length\r
ac644614 3060 );\r
3061\r
3062\r
3063/**\r
17f695ed 3064 Returns the sum of all elements in a buffer of 32-bit values. During\r
ac644614 3065 calculation, the carry bits are dropped.\r
3066\r
3067 This function calculates the sum of the 32-bit values in the buffer\r
3068 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
17f695ed 3069 The 32-bit result is returned. If Length is 0, then 0 is returned.\r
ac644614 3070\r
3071 If Buffer is NULL, then ASSERT().\r
3072 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3073 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3074 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3075\r
1106ffe1 3076 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3077 @param Length The size, in bytes, of Buffer.\r
ac644614 3078\r
3079 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3080\r
3081**/\r
3082UINT32\r
3083EFIAPI\r
3084CalculateSum32 (\r
ee6c452c 3085 IN CONST UINT32 *Buffer,\r
3086 IN UINTN Length\r
ac644614 3087 );\r
3088\r
3089\r
3090/**\r
3091 Returns the two's complement checksum of all elements in a buffer of\r
3092 32-bit values.\r
3093\r
3094 This function first calculates the sum of the 32-bit values in the buffer\r
3095 specified by Buffer and Length. The carry bits in the result of addition\r
3096 are dropped. Then, the two's complement of the sum is returned. If Length\r
3097 is 0, then 0 is returned.\r
3098\r
3099 If Buffer is NULL, then ASSERT().\r
3100 If Buffer is not aligned on a 32-bit boundary, then ASSERT().\r
3101 If Length is not aligned on a 32-bit boundary, then ASSERT().\r
3102 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3103\r
1106ffe1 3104 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3105 @param Length The size, in bytes, of Buffer.\r
ac644614 3106\r
ee6c452c 3107 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3108\r
3109**/\r
3110UINT32\r
3111EFIAPI\r
3112CalculateCheckSum32 (\r
ee6c452c 3113 IN CONST UINT32 *Buffer,\r
3114 IN UINTN Length\r
ac644614 3115 );\r
3116\r
3117\r
3118/**\r
3119 Returns the sum of all elements in a buffer of 64-bit values. During\r
3120 calculation, the carry bits are dropped.\r
3121\r
3122 This function calculates the sum of the 64-bit values in the buffer\r
3123 specified by Buffer and Length. The carry bits in result of addition are dropped.\r
3124 The 64-bit result is returned. If Length is 0, then 0 is returned.\r
3125\r
3126 If Buffer is NULL, then ASSERT().\r
3127 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3128 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3129 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3130\r
1106ffe1 3131 @param Buffer Pointer to the buffer to carry out the sum operation.\r
3132 @param Length The size, in bytes, of Buffer.\r
ac644614 3133\r
3134 @return Sum The sum of Buffer with carry bits dropped during additions.\r
3135\r
3136**/\r
3137UINT64\r
3138EFIAPI\r
3139CalculateSum64 (\r
ee6c452c 3140 IN CONST UINT64 *Buffer,\r
3141 IN UINTN Length\r
ac644614 3142 );\r
3143\r
3144\r
3145/**\r
3146 Returns the two's complement checksum of all elements in a buffer of\r
3147 64-bit values.\r
3148\r
3149 This function first calculates the sum of the 64-bit values in the buffer\r
3150 specified by Buffer and Length. The carry bits in the result of addition\r
3151 are dropped. Then, the two's complement of the sum is returned. If Length\r
3152 is 0, then 0 is returned.\r
3153\r
3154 If Buffer is NULL, then ASSERT().\r
3155 If Buffer is not aligned on a 64-bit boundary, then ASSERT().\r
3156 If Length is not aligned on a 64-bit boundary, then ASSERT().\r
3157 If Length is greater than (MAX_ADDRESS - Buffer + 1), then ASSERT().\r
3158\r
1106ffe1 3159 @param Buffer Pointer to the buffer to carry out the checksum operation.\r
3160 @param Length The size, in bytes, of Buffer.\r
ac644614 3161\r
ee6c452c 3162 @return Checksum The 2's complement checksum of Buffer.\r
ac644614 3163\r
3164**/\r
3165UINT64\r
3166EFIAPI\r
3167CalculateCheckSum64 (\r
ee6c452c 3168 IN CONST UINT64 *Buffer,\r
3169 IN UINTN Length\r
ac644614 3170 );\r
3171\r
3172\r
d75f9fc2 3173//\r
3174// Base Library CPU Functions\r
3175//\r
3176\r
3177/**\r
3178 Function entry point used when a stack switch is requested with SwitchStack()\r
3179\r
3180 @param Context1 Context1 parameter passed into SwitchStack().\r
3181 @param Context2 Context2 parameter passed into SwitchStack().\r
3182\r
3183**/\r
ac644614 3184typedef\r
3185VOID\r
9810cdd8 3186(EFIAPI *SWITCH_STACK_ENTRY_POINT)(\r
ac644614 3187 IN VOID *Context1, OPTIONAL\r
3188 IN VOID *Context2 OPTIONAL\r
3189 );\r
3190\r
3191\r
3192/**\r
3193 Used to serialize load and store operations.\r
3194\r
3195 All loads and stores that proceed calls to this function are guaranteed to be\r
3196 globally visible when this function returns.\r
3197\r
3198**/\r
3199VOID\r
3200EFIAPI\r
3201MemoryFence (\r
3202 VOID\r
3203 );\r
3204\r
3205\r
3206/**\r
3207 Saves the current CPU context that can be restored with a call to LongJump()\r
3208 and returns 0.\r
3209\r
3210 Saves the current CPU context in the buffer specified by JumpBuffer and\r
3211 returns 0. The initial call to SetJump() must always return 0. Subsequent\r
3212 calls to LongJump() cause a non-zero value to be returned by SetJump().\r
3213\r
3214 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 3215 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
17f695ed 3216 \r
3217 NOTE: The structure BASE_LIBRARY_JUMP_BUFFER is CPU architecture specific.\r
3218 The same structure must never be used for more than one CPU architecture context.\r
3219 For example, a BASE_LIBRARY_JUMP_BUFFER allocated by an IA-32 module must never be used from an x64 module. \r
3220 SetJump()/LongJump() is not currently supported for the EBC processor type. \r
ac644614 3221\r
3222 @param JumpBuffer A pointer to CPU context buffer.\r
3223\r
3224 @retval 0 Indicates a return from SetJump().\r
3225\r
3226**/\r
3227UINTN\r
3228EFIAPI\r
3229SetJump (\r
3230 OUT BASE_LIBRARY_JUMP_BUFFER *JumpBuffer\r
3231 );\r
3232\r
3233\r
3234/**\r
3235 Restores the CPU context that was saved with SetJump().\r
3236\r
3237 Restores the CPU context from the buffer specified by JumpBuffer. This\r
3238 function never returns to the caller. Instead is resumes execution based on\r
3239 the state of JumpBuffer.\r
3240\r
3241 If JumpBuffer is NULL, then ASSERT().\r
1a2f870c 3242 For Itanium processors, if JumpBuffer is not aligned on a 16-byte boundary, then ASSERT().\r
ac644614 3243 If Value is 0, then ASSERT().\r
3244\r
3245 @param JumpBuffer A pointer to CPU context buffer.\r
3246 @param Value The value to return when the SetJump() context is\r
3247 restored and must be non-zero.\r
3248\r
3249**/\r
3250VOID\r
3251EFIAPI\r
3252LongJump (\r
3253 IN BASE_LIBRARY_JUMP_BUFFER *JumpBuffer,\r
3254 IN UINTN Value\r
3255 );\r
3256\r
3257\r
3258/**\r
3259 Enables CPU interrupts.\r
3260\r
ac644614 3261**/\r
3262VOID\r
3263EFIAPI\r
3264EnableInterrupts (\r
3265 VOID\r
3266 );\r
3267\r
3268\r
3269/**\r
3270 Disables CPU interrupts.\r
3271\r
ac644614 3272**/\r
3273VOID\r
3274EFIAPI\r
3275DisableInterrupts (\r
3276 VOID\r
3277 );\r
3278\r
3279\r
3280/**\r
3281 Disables CPU interrupts and returns the interrupt state prior to the disable\r
3282 operation.\r
3283\r
ac644614 3284 @retval TRUE CPU interrupts were enabled on entry to this call.\r
3285 @retval FALSE CPU interrupts were disabled on entry to this call.\r
3286\r
3287**/\r
3288BOOLEAN\r
3289EFIAPI\r
3290SaveAndDisableInterrupts (\r
3291 VOID\r
3292 );\r
3293\r
3294\r
3295/**\r
3296 Enables CPU interrupts for the smallest window required to capture any\r
3297 pending interrupts.\r
3298\r
ac644614 3299**/\r
3300VOID\r
3301EFIAPI\r
3302EnableDisableInterrupts (\r
3303 VOID\r
3304 );\r
3305\r
3306\r
3307/**\r
3308 Retrieves the current CPU interrupt state.\r
3309\r
38bbd3d9 3310 Returns TRUE is interrupts are currently enabled. Otherwise\r
3311 returns FALSE.\r
ac644614 3312\r
3313 @retval TRUE CPU interrupts are enabled.\r
3314 @retval FALSE CPU interrupts are disabled.\r
3315\r
3316**/\r
3317BOOLEAN\r
3318EFIAPI\r
3319GetInterruptState (\r
3320 VOID\r
3321 );\r
3322\r
3323\r
3324/**\r
3325 Set the current CPU interrupt state.\r
3326\r
3327 Sets the current CPU interrupt state to the state specified by\r
3328 InterruptState. If InterruptState is TRUE, then interrupts are enabled. If\r
3329 InterruptState is FALSE, then interrupts are disabled. InterruptState is\r
3330 returned.\r
3331\r
3332 @param InterruptState TRUE if interrupts should enabled. FALSE if\r
3333 interrupts should be disabled.\r
3334\r
3335 @return InterruptState\r
3336\r
3337**/\r
3338BOOLEAN\r
3339EFIAPI\r
3340SetInterruptState (\r
3341 IN BOOLEAN InterruptState\r
3342 );\r
3343\r
3344\r
3345/**\r
3346 Requests CPU to pause for a short period of time.\r
3347\r
3348 Requests CPU to pause for a short period of time. Typically used in MP\r
3349 systems to prevent memory starvation while waiting for a spin lock.\r
3350\r
3351**/\r
3352VOID\r
3353EFIAPI\r
3354CpuPause (\r
3355 VOID\r
3356 );\r
3357\r
3358\r
3359/**\r
3360 Transfers control to a function starting with a new stack.\r
3361\r
3362 Transfers control to the function specified by EntryPoint using the\r
3363 new stack specified by NewStack and passing in the parameters specified\r
3364 by Context1 and Context2. Context1 and Context2 are optional and may\r
3365 be NULL. The function EntryPoint must never return. This function\r
3366 supports a variable number of arguments following the NewStack parameter.\r
1a2f870c 3367 These additional arguments are ignored on IA-32, x64, and EBC architectures.\r
3368 Itanium processors expect one additional parameter of type VOID * that specifies\r
ac644614 3369 the new backing store pointer.\r
3370\r
3371 If EntryPoint is NULL, then ASSERT().\r
3372 If NewStack is NULL, then ASSERT().\r
3373\r
3374 @param EntryPoint A pointer to function to call with the new stack.\r
3375 @param Context1 A pointer to the context to pass into the EntryPoint\r
3376 function.\r
3377 @param Context2 A pointer to the context to pass into the EntryPoint\r
3378 function.\r
3379 @param NewStack A pointer to the new stack to use for the EntryPoint\r
3380 function.\r
1a2f870c 3381 @param ... This variable argument list is ignored for IA-32, x64, and EBC architectures. \r
3382 For Itanium processors, this variable argument list is expected to contain \r
285010e7 3383 a single parameter of type VOID * that specifies the new backing \r
3384 store pointer.\r
42eedea9 3385\r
ac644614 3386\r
3387**/\r
3388VOID\r
3389EFIAPI\r
3390SwitchStack (\r
3391 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
3392 IN VOID *Context1, OPTIONAL\r
3393 IN VOID *Context2, OPTIONAL\r
3394 IN VOID *NewStack,\r
3395 ...\r
3396 );\r
3397\r
3398\r
3399/**\r
3400 Generates a breakpoint on the CPU.\r
3401\r
3402 Generates a breakpoint on the CPU. The breakpoint must be implemented such\r
3403 that code can resume normal execution after the breakpoint.\r
3404\r
3405**/\r
3406VOID\r
3407EFIAPI\r
3408CpuBreakpoint (\r
3409 VOID\r
3410 );\r
3411\r
3412\r
3413/**\r
3414 Executes an infinite loop.\r
3415\r
3416 Forces the CPU to execute an infinite loop. A debugger may be used to skip\r
3417 past the loop and the code that follows the loop must execute properly. This\r
3418 implies that the infinite loop must not cause the code that follow it to be\r
3419 optimized away.\r
3420\r
3421**/\r
3422VOID\r
3423EFIAPI\r
3424CpuDeadLoop (\r
3425 VOID\r
3426 );\r
2fe241a2 3427 \r
ac644614 3428#if defined (MDE_CPU_IPF)\r
3429\r
3430/**\r
3431 Flush a range of cache lines in the cache coherency domain of the calling\r
3432 CPU.\r
3433\r
cc39b88b 3434 Flushes the cache lines specified by Address and Length. If Address is not aligned \r
3435 on a cache line boundary, then entire cache line containing Address is flushed. \r
3436 If Address + Length is not aligned on a cache line boundary, then the entire cache \r
3437 line containing Address + Length - 1 is flushed. This function may choose to flush \r
3438 the entire cache if that is more efficient than flushing the specified range. If \r
3439 Length is 0, the no cache lines are flushed. Address is returned. \r
1a2f870c 3440 This function is only available on Itanium processors.\r
ac644614 3441\r
3442 If Length is greater than (MAX_ADDRESS - Address + 1), then ASSERT().\r
3443\r
3444 @param Address The base address of the instruction lines to invalidate. If\r
3445 the CPU is in a physical addressing mode, then Address is a\r
3446 physical address. If the CPU is in a virtual addressing mode,\r
3447 then Address is a virtual address.\r
3448\r
3449 @param Length The number of bytes to invalidate from the instruction cache.\r
3450\r
cc39b88b 3451 @return Address.\r
ac644614 3452\r
3453**/\r
3454VOID *\r
3455EFIAPI\r
cc39b88b 3456AsmFlushCacheRange (\r
ac644614 3457 IN VOID *Address,\r
3458 IN UINTN Length\r
3459 );\r
3460\r
3461\r
3462/**\r
3463 Executes a FC instruction\r
3464 Executes a FC instruction on the cache line specified by Address.\r
3465 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 3466 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 3467\r
ee6c452c 3468 @param Address The Address of cache line to be flushed.\r
ac644614 3469\r
3470 @return The address of FC instruction executed.\r
3471\r
3472**/\r
3473UINT64\r
3474EFIAPI\r
3475AsmFc (\r
3476 IN UINT64 Address\r
3477 );\r
3478\r
3479\r
3480/**\r
3481 Executes a FC.I instruction.\r
3482 Executes a FC.I instruction on the cache line specified by Address.\r
3483 The cache line size affected is at least 32-bytes (aligned on a 32-byte boundary).\r
1a2f870c 3484 An implementation may flush a larger region. This function is only available on Itanium processors.\r
ac644614 3485\r
ee6c452c 3486 @param Address The Address of cache line to be flushed.\r
ac644614 3487\r
3488 @return The address of FC.I instruction executed.\r
3489\r
3490**/\r
3491UINT64\r
3492EFIAPI\r
3493AsmFci (\r
3494 IN UINT64 Address\r
3495 );\r
3496\r
3497\r
3498/**\r
3499 Reads the current value of a Processor Identifier Register (CPUID).\r
17f695ed 3500 \r
3501 Reads and returns the current value of Processor Identifier Register specified by Index. \r
ac644614 3502 The Index of largest implemented CPUID (One less than the number of implemented CPUID\r
3503 registers) is determined by CPUID [3] bits {7:0}.\r
3504 No parameter checking is performed on Index. If the Index value is beyond the\r
3505 implemented CPUID register range, a Reserved Register/Field fault may occur. The caller\r
3506 must either guarantee that Index is valid, or the caller must set up fault handlers to\r
1a2f870c 3507 catch the faults. This function is only available on Itanium processors.\r
ac644614 3508\r
ee6c452c 3509 @param Index The 8-bit Processor Identifier Register index to read.\r
ac644614 3510\r
3511 @return The current value of Processor Identifier Register specified by Index.\r
3512\r
3513**/\r
3514UINT64\r
3515EFIAPI\r
3516AsmReadCpuid (\r
3517 IN UINT8 Index\r
3518 );\r
3519\r
3520\r
3521/**\r
3522 Reads the current value of 64-bit Processor Status Register (PSR).\r
1a2f870c 3523 This function is only available on Itanium processors.\r
ac644614 3524\r
3525 @return The current value of PSR.\r
3526\r
3527**/\r
3528UINT64\r
3529EFIAPI\r
3530AsmReadPsr (\r
3531 VOID\r
3532 );\r
3533\r
3534\r
3535/**\r
3536 Writes the current value of 64-bit Processor Status Register (PSR).\r
22388319 3537\r
ac644614 3538 No parameter checking is performed on Value. All bits of Value corresponding to\r
22388319 3539 reserved fields of PSR must be 0 or a Reserved Register/Field fault may occur.\r
3540 The caller must either guarantee that Value is valid, or the caller must set up\r
1a2f870c 3541 fault handlers to catch the faults. This function is only available on Itanium processors.\r
ac644614 3542\r
ee6c452c 3543 @param Value The 64-bit value to write to PSR.\r
ac644614 3544\r
3545 @return The 64-bit value written to the PSR.\r
3546\r
3547**/\r
3548UINT64\r
3549EFIAPI\r
3550AsmWritePsr (\r
3551 IN UINT64 Value\r
3552 );\r
3553\r
3554\r
3555/**\r
3556 Reads the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 3557 \r
3558 Reads and returns the current value of KR0. \r
1a2f870c 3559 This function is only available on Itanium processors.\r
ac644614 3560\r
3561 @return The current value of KR0.\r
3562\r
3563**/\r
3564UINT64\r
3565EFIAPI\r
3566AsmReadKr0 (\r
3567 VOID\r
3568 );\r
3569\r
3570\r
3571/**\r
3572 Reads the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 3573\r
3574 Reads and returns the current value of KR1. \r
1a2f870c 3575 This function is only available on Itanium processors.\r
ac644614 3576\r
3577 @return The current value of KR1.\r
3578\r
3579**/\r
3580UINT64\r
3581EFIAPI\r
3582AsmReadKr1 (\r
3583 VOID\r
3584 );\r
3585\r
3586\r
3587/**\r
3588 Reads the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 3589\r
3590 Reads and returns the current value of KR2. \r
1a2f870c 3591 This function is only available on Itanium processors.\r
ac644614 3592\r
3593 @return The current value of KR2.\r
3594\r
3595**/\r
3596UINT64\r
3597EFIAPI\r
3598AsmReadKr2 (\r
3599 VOID\r
3600 );\r
3601\r
3602\r
3603/**\r
3604 Reads the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 3605\r
3606 Reads and returns the current value of KR3. \r
1a2f870c 3607 This function is only available on Itanium processors.\r
ac644614 3608\r
3609 @return The current value of KR3.\r
3610\r
3611**/\r
3612UINT64\r
3613EFIAPI\r
3614AsmReadKr3 (\r
3615 VOID\r
3616 );\r
3617\r
3618\r
3619/**\r
3620 Reads the current value of 64-bit Kernel Register #4 (KR4).\r
ac644614 3621\r
2fe241a2 3622 Reads and returns the current value of KR4. \r
1a2f870c 3623 This function is only available on Itanium processors.\r
2fe241a2 3624 \r
ac644614 3625 @return The current value of KR4.\r
3626\r
3627**/\r
3628UINT64\r
3629EFIAPI\r
3630AsmReadKr4 (\r
3631 VOID\r
3632 );\r
3633\r
3634\r
3635/**\r
3636 Reads the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 3637\r
3638 Reads and returns the current value of KR5. \r
1a2f870c 3639 This function is only available on Itanium processors.\r
ac644614 3640\r
3641 @return The current value of KR5.\r
3642\r
3643**/\r
3644UINT64\r
3645EFIAPI\r
3646AsmReadKr5 (\r
3647 VOID\r
3648 );\r
3649\r
3650\r
3651/**\r
3652 Reads the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 3653\r
3654 Reads and returns the current value of KR6. \r
1a2f870c 3655 This function is only available on Itanium processors.\r
ac644614 3656\r
3657 @return The current value of KR6.\r
3658\r
3659**/\r
3660UINT64\r
3661EFIAPI\r
3662AsmReadKr6 (\r
3663 VOID\r
3664 );\r
3665\r
3666\r
3667/**\r
3668 Reads the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 3669\r
3670 Reads and returns the current value of KR7. \r
1a2f870c 3671 This function is only available on Itanium processors.\r
ac644614 3672\r
3673 @return The current value of KR7.\r
3674\r
3675**/\r
3676UINT64\r
3677EFIAPI\r
3678AsmReadKr7 (\r
3679 VOID\r
3680 );\r
3681\r
3682\r
3683/**\r
3684 Write the current value of 64-bit Kernel Register #0 (KR0).\r
2fe241a2 3685 \r
3686 Writes the current value of KR0. The 64-bit value written to \r
1a2f870c 3687 the KR0 is returned. This function is only available on Itanium processors.\r
ac644614 3688\r
ee6c452c 3689 @param Value The 64-bit value to write to KR0.\r
ac644614 3690\r
3691 @return The 64-bit value written to the KR0.\r
3692\r
3693**/\r
3694UINT64\r
3695EFIAPI\r
3696AsmWriteKr0 (\r
3697 IN UINT64 Value\r
3698 );\r
3699\r
3700\r
3701/**\r
3702 Write the current value of 64-bit Kernel Register #1 (KR1).\r
2fe241a2 3703\r
3704 Writes the current value of KR1. The 64-bit value written to \r
1a2f870c 3705 the KR1 is returned. This function is only available on Itanium processors.\r
ac644614 3706\r
ee6c452c 3707 @param Value The 64-bit value to write to KR1.\r
ac644614 3708\r
3709 @return The 64-bit value written to the KR1.\r
3710\r
3711**/\r
3712UINT64\r
3713EFIAPI\r
3714AsmWriteKr1 (\r
3715 IN UINT64 Value\r
3716 );\r
3717\r
3718\r
3719/**\r
3720 Write the current value of 64-bit Kernel Register #2 (KR2).\r
2fe241a2 3721\r
3722 Writes the current value of KR2. The 64-bit value written to \r
1a2f870c 3723 the KR2 is returned. This function is only available on Itanium processors.\r
ac644614 3724\r
ee6c452c 3725 @param Value The 64-bit value to write to KR2.\r
ac644614 3726\r
3727 @return The 64-bit value written to the KR2.\r
3728\r
3729**/\r
3730UINT64\r
3731EFIAPI\r
3732AsmWriteKr2 (\r
3733 IN UINT64 Value\r
3734 );\r
3735\r
3736\r
3737/**\r
3738 Write the current value of 64-bit Kernel Register #3 (KR3).\r
2fe241a2 3739\r
3740 Writes the current value of KR3. The 64-bit value written to \r
1a2f870c 3741 the KR3 is returned. This function is only available on Itanium processors.\r
ac644614 3742\r
ee6c452c 3743 @param Value The 64-bit value to write to KR3.\r
ac644614 3744\r
3745 @return The 64-bit value written to the KR3.\r
3746\r
3747**/\r
3748UINT64\r
3749EFIAPI\r
3750AsmWriteKr3 (\r
3751 IN UINT64 Value\r
3752 );\r
3753\r
3754\r
3755/**\r
3756 Write the current value of 64-bit Kernel Register #4 (KR4).\r
2fe241a2 3757\r
3758 Writes the current value of KR4. The 64-bit value written to \r
1a2f870c 3759 the KR4 is returned. This function is only available on Itanium processors.\r
ac644614 3760\r
ee6c452c 3761 @param Value The 64-bit value to write to KR4.\r
ac644614 3762\r
3763 @return The 64-bit value written to the KR4.\r
3764\r
3765**/\r
3766UINT64\r
3767EFIAPI\r
3768AsmWriteKr4 (\r
3769 IN UINT64 Value\r
3770 );\r
3771\r
3772\r
3773/**\r
3774 Write the current value of 64-bit Kernel Register #5 (KR5).\r
2fe241a2 3775\r
3776 Writes the current value of KR5. The 64-bit value written to \r
1a2f870c 3777 the KR5 is returned. This function is only available on Itanium processors.\r
ac644614 3778\r
ee6c452c 3779 @param Value The 64-bit value to write to KR5.\r
ac644614 3780\r
3781 @return The 64-bit value written to the KR5.\r
3782\r
3783**/\r
3784UINT64\r
3785EFIAPI\r
3786AsmWriteKr5 (\r
3787 IN UINT64 Value\r
3788 );\r
3789\r
3790\r
3791/**\r
3792 Write the current value of 64-bit Kernel Register #6 (KR6).\r
2fe241a2 3793\r
3794 Writes the current value of KR6. The 64-bit value written to \r
1a2f870c 3795 the KR6 is returned. This function is only available on Itanium processors.\r
ac644614 3796\r
ee6c452c 3797 @param Value The 64-bit value to write to KR6.\r
ac644614 3798\r
3799 @return The 64-bit value written to the KR6.\r
3800\r
3801**/\r
3802UINT64\r
3803EFIAPI\r
3804AsmWriteKr6 (\r
3805 IN UINT64 Value\r
3806 );\r
3807\r
3808\r
3809/**\r
3810 Write the current value of 64-bit Kernel Register #7 (KR7).\r
2fe241a2 3811\r
3812 Writes the current value of KR7. The 64-bit value written to \r
1a2f870c 3813 the KR7 is returned. This function is only available on Itanium processors.\r
ac644614 3814\r
ee6c452c 3815 @param Value The 64-bit value to write to KR7.\r
ac644614 3816\r
3817 @return The 64-bit value written to the KR7.\r
3818\r
3819**/\r
3820UINT64\r
3821EFIAPI\r
3822AsmWriteKr7 (\r
3823 IN UINT64 Value\r
3824 );\r
3825\r
3826\r
3827/**\r
3828 Reads the current value of Interval Timer Counter Register (ITC).\r
2fe241a2 3829 \r
3830 Reads and returns the current value of ITC.\r
1a2f870c 3831 This function is only available on Itanium processors.\r
ac644614 3832\r
3833 @return The current value of ITC.\r
3834\r
3835**/\r
3836UINT64\r
3837EFIAPI\r
3838AsmReadItc (\r
3839 VOID\r
3840 );\r
3841\r
3842\r
3843/**\r
3844 Reads the current value of Interval Timer Vector Register (ITV).\r
2fe241a2 3845 \r
3846 Reads and returns the current value of ITV. \r
1a2f870c 3847 This function is only available on Itanium processors.\r
ac644614 3848\r
3849 @return The current value of ITV.\r
3850\r
3851**/\r
3852UINT64\r
3853EFIAPI\r
3854AsmReadItv (\r
3855 VOID\r
3856 );\r
3857\r
3858\r
3859/**\r
3860 Reads the current value of Interval Timer Match Register (ITM).\r
2fe241a2 3861 \r
3862 Reads and returns the current value of ITM.\r
1a2f870c 3863 This function is only available on Itanium processors.\r
ac644614 3864\r
3865 @return The current value of ITM.\r
3866**/\r
3867UINT64\r
3868EFIAPI\r
3869AsmReadItm (\r
3870 VOID\r
3871 );\r
3872\r
3873\r
3874/**\r
3875 Writes the current value of 64-bit Interval Timer Counter Register (ITC).\r
2fe241a2 3876 \r
3877 Writes the current value of ITC. The 64-bit value written to the ITC is returned. \r
1a2f870c 3878 This function is only available on Itanium processors.\r
ac644614 3879\r
ee6c452c 3880 @param Value The 64-bit value to write to ITC.\r
ac644614 3881\r
3882 @return The 64-bit value written to the ITC.\r
3883\r
3884**/\r
3885UINT64\r
3886EFIAPI\r
3887AsmWriteItc (\r
3888 IN UINT64 Value\r
3889 );\r
3890\r
3891\r
3892/**\r
3893 Writes the current value of 64-bit Interval Timer Match Register (ITM).\r
2fe241a2 3894 \r
3895 Writes the current value of ITM. The 64-bit value written to the ITM is returned. \r
1a2f870c 3896 This function is only available on Itanium processors.\r
ac644614 3897\r
ee6c452c 3898 @param Value The 64-bit value to write to ITM.\r
ac644614 3899\r
3900 @return The 64-bit value written to the ITM.\r
3901\r
3902**/\r
3903UINT64\r
3904EFIAPI\r
3905AsmWriteItm (\r
3906 IN UINT64 Value\r
3907 );\r
3908\r
3909\r
3910/**\r
3911 Writes the current value of 64-bit Interval Timer Vector Register (ITV).\r
2fe241a2 3912 \r
3913 Writes the current value of ITV. The 64-bit value written to the ITV is returned. \r
ac644614 3914 No parameter checking is performed on Value. All bits of Value corresponding to\r
3915 reserved fields of ITV must be 0 or a Reserved Register/Field fault may occur.\r
3916 The caller must either guarantee that Value is valid, or the caller must set up\r
3917 fault handlers to catch the faults.\r
1a2f870c 3918 This function is only available on Itanium processors.\r
ac644614 3919\r
ee6c452c 3920 @param Value The 64-bit value to write to ITV.\r
ac644614 3921\r
3922 @return The 64-bit value written to the ITV.\r
3923\r
3924**/\r
3925UINT64\r
3926EFIAPI\r
3927AsmWriteItv (\r
3928 IN UINT64 Value\r
3929 );\r
3930\r
3931\r
3932/**\r
3933 Reads the current value of Default Control Register (DCR).\r
2fe241a2 3934 \r
1a2f870c 3935 Reads and returns the current value of DCR. This function is only available on Itanium processors.\r
ac644614 3936\r
3937 @return The current value of DCR.\r
3938\r
3939**/\r
3940UINT64\r
3941EFIAPI\r
3942AsmReadDcr (\r
3943 VOID\r
3944 );\r
3945\r
3946\r
3947/**\r
3948 Reads the current value of Interruption Vector Address Register (IVA).\r
2fe241a2 3949 \r
1a2f870c 3950 Reads and returns the current value of IVA. This function is only available on Itanium processors.\r
ac644614 3951\r
3952 @return The current value of IVA.\r
3953**/\r
3954UINT64\r
3955EFIAPI\r
3956AsmReadIva (\r
3957 VOID\r
3958 );\r
3959\r
3960\r
3961/**\r
3962 Reads the current value of Page Table Address Register (PTA).\r
2fe241a2 3963 \r
1a2f870c 3964 Reads and returns the current value of PTA. This function is only available on Itanium processors.\r
ac644614 3965\r
3966 @return The current value of PTA.\r
3967\r
3968**/\r
3969UINT64\r
3970EFIAPI\r
3971AsmReadPta (\r
3972 VOID\r
3973 );\r
3974\r
3975\r
3976/**\r
3977 Writes the current value of 64-bit Default Control Register (DCR).\r
2fe241a2 3978 \r
3979 Writes the current value of DCR. The 64-bit value written to the DCR is returned. \r
ac644614 3980 No parameter checking is performed on Value. All bits of Value corresponding to\r
3981 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
3982 The caller must either guarantee that Value is valid, or the caller must set up\r
3983 fault handlers to catch the faults.\r
1a2f870c 3984 This function is only available on Itanium processors.\r
ac644614 3985\r
ee6c452c 3986 @param Value The 64-bit value to write to DCR.\r
ac644614 3987\r
3988 @return The 64-bit value written to the DCR.\r
3989\r
3990**/\r
3991UINT64\r
3992EFIAPI\r
3993AsmWriteDcr (\r
3994 IN UINT64 Value\r
3995 );\r
3996\r
3997\r
3998/**\r
3999 Writes the current value of 64-bit Interruption Vector Address Register (IVA).\r
2fe241a2 4000 \r
4001 Writes the current value of IVA. The 64-bit value written to the IVA is returned. \r
ac644614 4002 The size of vector table is 32 K bytes and is 32 K bytes aligned\r
4003 the low 15 bits of Value is ignored when written.\r
1a2f870c 4004 This function is only available on Itanium processors.\r
ac644614 4005\r
ee6c452c 4006 @param Value The 64-bit value to write to IVA.\r
ac644614 4007\r
4008 @return The 64-bit value written to the IVA.\r
4009\r
4010**/\r
4011UINT64\r
4012EFIAPI\r
4013AsmWriteIva (\r
4014 IN UINT64 Value\r
4015 );\r
4016\r
4017\r
4018/**\r
4019 Writes the current value of 64-bit Page Table Address Register (PTA).\r
2fe241a2 4020 \r
4021 Writes the current value of PTA. The 64-bit value written to the PTA is returned. \r
ac644614 4022 No parameter checking is performed on Value. All bits of Value corresponding to\r
4023 reserved fields of DCR must be 0 or a Reserved Register/Field fault may occur.\r
4024 The caller must either guarantee that Value is valid, or the caller must set up\r
4025 fault handlers to catch the faults.\r
1a2f870c 4026 This function is only available on Itanium processors.\r
ac644614 4027\r
ee6c452c 4028 @param Value The 64-bit value to write to PTA.\r
ac644614 4029\r
4030 @return The 64-bit value written to the PTA.\r
4031**/\r
4032UINT64\r
4033EFIAPI\r
4034AsmWritePta (\r
4035 IN UINT64 Value\r
4036 );\r
4037\r
4038\r
4039/**\r
4040 Reads the current value of Local Interrupt ID Register (LID).\r
2fe241a2 4041 \r
1a2f870c 4042 Reads and returns the current value of LID. This function is only available on Itanium processors.\r
ac644614 4043\r
4044 @return The current value of LID.\r
4045\r
4046**/\r
4047UINT64\r
4048EFIAPI\r
4049AsmReadLid (\r
4050 VOID\r
4051 );\r
4052\r
4053\r
4054/**\r
4055 Reads the current value of External Interrupt Vector Register (IVR).\r
2fe241a2 4056 \r
1a2f870c 4057 Reads and returns the current value of IVR. This function is only available on Itanium processors. \r
ac644614 4058\r
4059 @return The current value of IVR.\r
4060\r
4061**/\r
4062UINT64\r
4063EFIAPI\r
4064AsmReadIvr (\r
4065 VOID\r
4066 );\r
4067\r
4068\r
4069/**\r
4070 Reads the current value of Task Priority Register (TPR).\r
2fe241a2 4071 \r
1a2f870c 4072 Reads and returns the current value of TPR. This function is only available on Itanium processors. \r
ac644614 4073\r
4074 @return The current value of TPR.\r
4075\r
4076**/\r
4077UINT64\r
4078EFIAPI\r
4079AsmReadTpr (\r
4080 VOID\r
4081 );\r
4082\r
4083\r
4084/**\r
4085 Reads the current value of External Interrupt Request Register #0 (IRR0).\r
2fe241a2 4086 \r
1a2f870c 4087 Reads and returns the current value of IRR0. This function is only available on Itanium processors. \r
ac644614 4088\r
4089 @return The current value of IRR0.\r
4090\r
4091**/\r
4092UINT64\r
4093EFIAPI\r
4094AsmReadIrr0 (\r
4095 VOID\r
4096 );\r
4097\r
4098\r
4099/**\r
4100 Reads the current value of External Interrupt Request Register #1 (IRR1).\r
2fe241a2 4101 \r
1a2f870c 4102 Reads and returns the current value of IRR1. This function is only available on Itanium processors. \r
ac644614 4103\r
4104 @return The current value of IRR1.\r
4105\r
4106**/\r
4107UINT64\r
4108EFIAPI\r
4109AsmReadIrr1 (\r
4110 VOID\r
4111 );\r
4112\r
4113\r
4114/**\r
4115 Reads the current value of External Interrupt Request Register #2 (IRR2).\r
2fe241a2 4116 \r
1a2f870c 4117 Reads and returns the current value of IRR2. This function is only available on Itanium processors.\r
ac644614 4118\r
4119 @return The current value of IRR2.\r
4120\r
4121**/\r
4122UINT64\r
4123EFIAPI\r
4124AsmReadIrr2 (\r
4125 VOID\r
4126 );\r
4127\r
4128\r
4129/**\r
4130 Reads the current value of External Interrupt Request Register #3 (IRR3).\r
2fe241a2 4131 \r
1a2f870c 4132 Reads and returns the current value of IRR3. This function is only available on Itanium processors. \r
ac644614 4133\r
4134 @return The current value of IRR3.\r
4135\r
4136**/\r
4137UINT64\r
4138EFIAPI\r
4139AsmReadIrr3 (\r
4140 VOID\r
4141 );\r
4142\r
4143\r
4144/**\r
4145 Reads the current value of Performance Monitor Vector Register (PMV).\r
2fe241a2 4146 \r
1a2f870c 4147 Reads and returns the current value of PMV. This function is only available on Itanium processors. \r
ac644614 4148\r
4149 @return The current value of PMV.\r
4150\r
4151**/\r
4152UINT64\r
4153EFIAPI\r
4154AsmReadPmv (\r
4155 VOID\r
4156 );\r
4157\r
4158\r
4159/**\r
4160 Reads the current value of Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 4161 \r
1a2f870c 4162 Reads and returns the current value of CMCV. This function is only available on Itanium processors.\r
ac644614 4163\r
4164 @return The current value of CMCV.\r
4165\r
4166**/\r
4167UINT64\r
4168EFIAPI\r
4169AsmReadCmcv (\r
4170 VOID\r
4171 );\r
4172\r
4173\r
4174/**\r
4175 Reads the current value of Local Redirection Register #0 (LRR0).\r
2fe241a2 4176 \r
1a2f870c 4177 Reads and returns the current value of LRR0. This function is only available on Itanium processors. \r
ac644614 4178\r
4179 @return The current value of LRR0.\r
4180\r
4181**/\r
4182UINT64\r
4183EFIAPI\r
4184AsmReadLrr0 (\r
4185 VOID\r
4186 );\r
4187\r
4188\r
4189/**\r
4190 Reads the current value of Local Redirection Register #1 (LRR1).\r
2fe241a2 4191 \r
1a2f870c 4192 Reads and returns the current value of LRR1. This function is only available on Itanium processors.\r
ac644614 4193\r
4194 @return The current value of LRR1.\r
4195\r
4196**/\r
4197UINT64\r
4198EFIAPI\r
4199AsmReadLrr1 (\r
4200 VOID\r
4201 );\r
4202\r
4203\r
4204/**\r
4205 Writes the current value of 64-bit Page Local Interrupt ID Register (LID).\r
2fe241a2 4206 \r
4207 Writes the current value of LID. The 64-bit value written to the LID is returned. \r
ac644614 4208 No parameter checking is performed on Value. All bits of Value corresponding to\r
4209 reserved fields of LID must be 0 or a Reserved Register/Field fault may occur.\r
4210 The caller must either guarantee that Value is valid, or the caller must set up\r
4211 fault handlers to catch the faults.\r
1a2f870c 4212 This function is only available on Itanium processors.\r
ac644614 4213\r
ee6c452c 4214 @param Value The 64-bit value to write to LID.\r
ac644614 4215\r
4216 @return The 64-bit value written to the LID.\r
4217\r
4218**/\r
4219UINT64\r
4220EFIAPI\r
4221AsmWriteLid (\r
4222 IN UINT64 Value\r
4223 );\r
4224\r
4225\r
4226/**\r
4227 Writes the current value of 64-bit Task Priority Register (TPR).\r
2fe241a2 4228 \r
4229 Writes the current value of TPR. The 64-bit value written to the TPR is returned. \r
ac644614 4230 No parameter checking is performed on Value. All bits of Value corresponding to\r
4231 reserved fields of TPR must be 0 or a Reserved Register/Field fault may occur.\r
4232 The caller must either guarantee that Value is valid, or the caller must set up\r
4233 fault handlers to catch the faults.\r
1a2f870c 4234 This function is only available on Itanium processors.\r
ac644614 4235\r
ee6c452c 4236 @param Value The 64-bit value to write to TPR.\r
ac644614 4237\r
4238 @return The 64-bit value written to the TPR.\r
4239\r
4240**/\r
4241UINT64\r
4242EFIAPI\r
4243AsmWriteTpr (\r
4244 IN UINT64 Value\r
4245 );\r
4246\r
4247\r
4248/**\r
4249 Performs a write operation on End OF External Interrupt Register (EOI).\r
2fe241a2 4250 \r
1a2f870c 4251 Writes a value of 0 to the EOI Register. This function is only available on Itanium processors.\r
ac644614 4252\r
4253**/\r
4254VOID\r
4255EFIAPI\r
4256AsmWriteEoi (\r
4257 VOID\r
4258 );\r
4259\r
4260\r
4261/**\r
4262 Writes the current value of 64-bit Performance Monitor Vector Register (PMV).\r
2fe241a2 4263 \r
4264 Writes the current value of PMV. The 64-bit value written to the PMV is returned. \r
ac644614 4265 No parameter checking is performed on Value. All bits of Value corresponding\r
4266 to reserved fields of PMV must be 0 or a Reserved Register/Field fault may occur.\r
4267 The caller must either guarantee that Value is valid, or the caller must set up\r
4268 fault handlers to catch the faults.\r
1a2f870c 4269 This function is only available on Itanium processors.\r
ac644614 4270\r
ee6c452c 4271 @param Value The 64-bit value to write to PMV.\r
ac644614 4272\r
4273 @return The 64-bit value written to the PMV.\r
4274\r
4275**/\r
4276UINT64\r
4277EFIAPI\r
4278AsmWritePmv (\r
4279 IN UINT64 Value\r
4280 );\r
4281\r
4282\r
4283/**\r
4284 Writes the current value of 64-bit Corrected Machine Check Vector Register (CMCV).\r
2fe241a2 4285 \r
4286 Writes the current value of CMCV. The 64-bit value written to the CMCV is returned. \r
ac644614 4287 No parameter checking is performed on Value. All bits of Value corresponding\r
4288 to reserved fields of CMCV must be 0 or a Reserved Register/Field fault may occur.\r
4289 The caller must either guarantee that Value is valid, or the caller must set up\r
4290 fault handlers to catch the faults.\r
1a2f870c 4291 This function is only available on Itanium processors.\r
ac644614 4292\r
ee6c452c 4293 @param Value The 64-bit value to write to CMCV.\r
ac644614 4294\r
4295 @return The 64-bit value written to the CMCV.\r
4296\r
4297**/\r
4298UINT64\r
4299EFIAPI\r
4300AsmWriteCmcv (\r
4301 IN UINT64 Value\r
4302 );\r
4303\r
4304\r
4305/**\r
4306 Writes the current value of 64-bit Local Redirection Register #0 (LRR0).\r
2fe241a2 4307 \r
4308 Writes the current value of LRR0. The 64-bit value written to the LRR0 is returned. \r
ac644614 4309 No parameter checking is performed on Value. All bits of Value corresponding\r
4310 to reserved fields of LRR0 must be 0 or a Reserved Register/Field fault may occur.\r
4311 The caller must either guarantee that Value is valid, or the caller must set up\r
4312 fault handlers to catch the faults.\r
1a2f870c 4313 This function is only available on Itanium processors.\r
ac644614 4314\r
ee6c452c 4315 @param Value The 64-bit value to write to LRR0.\r
ac644614 4316\r
4317 @return The 64-bit value written to the LRR0.\r
4318\r
4319**/\r
4320UINT64\r
4321EFIAPI\r
4322AsmWriteLrr0 (\r
4323 IN UINT64 Value\r
4324 );\r
4325\r
4326\r
4327/**\r
4328 Writes the current value of 64-bit Local Redirection Register #1 (LRR1).\r
2fe241a2 4329 \r
4330 Writes the current value of LRR1. The 64-bit value written to the LRR1 is returned. \r
ac644614 4331 No parameter checking is performed on Value. All bits of Value corresponding\r
4332 to reserved fields of LRR1 must be 0 or a Reserved Register/Field fault may occur.\r
4333 The caller must either guarantee that Value is valid, or the caller must\r
4334 set up fault handlers to catch the faults.\r
1a2f870c 4335 This function is only available on Itanium processors.\r
ac644614 4336\r
ee6c452c 4337 @param Value The 64-bit value to write to LRR1.\r
ac644614 4338\r
4339 @return The 64-bit value written to the LRR1.\r
4340\r
4341**/\r
4342UINT64\r
4343EFIAPI\r
4344AsmWriteLrr1 (\r
4345 IN UINT64 Value\r
4346 );\r
4347\r
4348\r
4349/**\r
4350 Reads the current value of Instruction Breakpoint Register (IBR).\r
4351 \r
4352 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4353 registers contain breakpoint addresses, and the odd numbered registers contain\r
4354 breakpoint mask conditions. At least 4 instruction registers pairs are implemented\r
4355 on all processor models. Implemented registers are contiguous starting with\r
4356 register 0. No parameter checking is performed on Index, and if the Index value\r
4357 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4358 occur. The caller must either guarantee that Index is valid, or the caller must\r
4359 set up fault handlers to catch the faults.\r
1a2f870c 4360 This function is only available on Itanium processors.\r
ac644614 4361\r
ee6c452c 4362 @param Index The 8-bit Instruction Breakpoint Register index to read.\r
ac644614 4363\r
4364 @return The current value of Instruction Breakpoint Register specified by Index.\r
4365\r
4366**/\r
4367UINT64\r
4368EFIAPI\r
4369AsmReadIbr (\r
4370 IN UINT8 Index\r
4371 );\r
4372\r
4373\r
4374/**\r
4375 Reads the current value of Data Breakpoint Register (DBR).\r
4376\r
4377 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4378 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4379 mask conditions. At least 4 data registers pairs are implemented on all processor\r
4380 models. Implemented registers are contiguous starting with register 0.\r
4381 No parameter checking is performed on Index. If the Index value is beyond\r
4382 the implemented DBR register range, a Reserved Register/Field fault may occur.\r
4383 The caller must either guarantee that Index is valid, or the caller must set up\r
4384 fault handlers to catch the faults.\r
1a2f870c 4385 This function is only available on Itanium processors.\r
ac644614 4386\r
ee6c452c 4387 @param Index The 8-bit Data Breakpoint Register index to read.\r
ac644614 4388\r
4389 @return The current value of Data Breakpoint Register specified by Index.\r
4390\r
4391**/\r
4392UINT64\r
4393EFIAPI\r
4394AsmReadDbr (\r
4395 IN UINT8 Index\r
4396 );\r
4397\r
4398\r
4399/**\r
4400 Reads the current value of Performance Monitor Configuration Register (PMC).\r
4401\r
4402 All processor implementations provide at least 4 performance counters\r
4403 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
4404 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4405 additional implementation-dependent PMC and PMD to increase the number of\r
4406 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4407 register set is implementation dependent. No parameter checking is performed\r
4408 on Index. If the Index value is beyond the implemented PMC register range,\r
4409 zero value will be returned.\r
1a2f870c 4410 This function is only available on Itanium processors.\r
ac644614 4411\r
ee6c452c 4412 @param Index The 8-bit Performance Monitor Configuration Register index to read.\r
ac644614 4413\r
2fe241a2 4414 @return The current value of Performance Monitor Configuration Register\r
4415 specified by Index.\r
ac644614 4416\r
4417**/\r
4418UINT64\r
4419EFIAPI\r
4420AsmReadPmc (\r
4421 IN UINT8 Index\r
4422 );\r
4423\r
4424\r
4425/**\r
4426 Reads the current value of Performance Monitor Data Register (PMD).\r
4427\r
4428 All processor implementations provide at least 4 performance counters\r
4429 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter\r
4430 overflow status registers (PMC [0]... PMC [3]). Processor implementations may\r
4431 provide additional implementation-dependent PMC and PMD to increase the number\r
4432 of 'generic' performance counters (PMC/PMD pairs). The remainder of PMC and PMD\r
4433 register set is implementation dependent. No parameter checking is performed\r
4434 on Index. If the Index value is beyond the implemented PMD register range,\r
4435 zero value will be returned.\r
1a2f870c 4436 This function is only available on Itanium processors.\r
ac644614 4437\r
ee6c452c 4438 @param Index The 8-bit Performance Monitor Data Register index to read.\r
ac644614 4439\r
4440 @return The current value of Performance Monitor Data Register specified by Index.\r
4441\r
4442**/\r
4443UINT64\r
4444EFIAPI\r
4445AsmReadPmd (\r
4446 IN UINT8 Index\r
4447 );\r
4448\r
4449\r
4450/**\r
4451 Writes the current value of 64-bit Instruction Breakpoint Register (IBR).\r
4452\r
4453 Writes current value of Instruction Breakpoint Register specified by Index.\r
4454 The Instruction Breakpoint Registers are used in pairs. The even numbered\r
4455 registers contain breakpoint addresses, and odd numbered registers contain\r
4456 breakpoint mask conditions. At least 4 instruction registers pairs are implemented\r
4457 on all processor models. Implemented registers are contiguous starting with\r
4458 register 0. No parameter checking is performed on Index. If the Index value\r
4459 is beyond the implemented IBR register range, a Reserved Register/Field fault may\r
4460 occur. The caller must either guarantee that Index is valid, or the caller must\r
4461 set up fault handlers to catch the faults.\r
1a2f870c 4462 This function is only available on Itanium processors.\r
ac644614 4463\r
ee6c452c 4464 @param Index The 8-bit Instruction Breakpoint Register index to write.\r
4465 @param Value The 64-bit value to write to IBR.\r
ac644614 4466\r
4467 @return The 64-bit value written to the IBR.\r
4468\r
4469**/\r
4470UINT64\r
4471EFIAPI\r
4472AsmWriteIbr (\r
4473 IN UINT8 Index,\r
4474 IN UINT64 Value\r
4475 );\r
4476\r
4477\r
4478/**\r
4479 Writes the current value of 64-bit Data Breakpoint Register (DBR).\r
4480\r
4481 Writes current value of Data Breakpoint Register specified by Index.\r
4482 The Data Breakpoint Registers are used in pairs. The even numbered registers\r
4483 contain breakpoint addresses, and odd numbered registers contain breakpoint\r
4484 mask conditions. At least 4 data registers pairs are implemented on all processor\r
4485 models. Implemented registers are contiguous starting with register 0. No parameter\r
4486 checking is performed on Index. If the Index value is beyond the implemented\r
4487 DBR register range, a Reserved Register/Field fault may occur. The caller must\r
4488 either guarantee that Index is valid, or the caller must set up fault handlers to\r
4489 catch the faults.\r
1a2f870c 4490 This function is only available on Itanium processors.\r
ac644614 4491\r
ee6c452c 4492 @param Index The 8-bit Data Breakpoint Register index to write.\r
4493 @param Value The 64-bit value to write to DBR.\r
ac644614 4494\r
4495 @return The 64-bit value written to the DBR.\r
4496\r
4497**/\r
4498UINT64\r
4499EFIAPI\r
4500AsmWriteDbr (\r
4501 IN UINT8 Index,\r
4502 IN UINT64 Value\r
4503 );\r
4504\r
4505\r
4506/**\r
4507 Writes the current value of 64-bit Performance Monitor Configuration Register (PMC).\r
4508\r
4509 Writes current value of Performance Monitor Configuration Register specified by Index.\r
4510 All processor implementations provide at least 4 performance counters\r
4511 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow status\r
4512 registers (PMC [0]... PMC [3]). Processor implementations may provide additional\r
4513 implementation-dependent PMC and PMD to increase the number of 'generic' performance\r
4514 counters (PMC/PMD pairs). The remainder of PMC and PMD register set is implementation\r
4515 dependent. No parameter checking is performed on Index. If the Index value is\r
4516 beyond the implemented PMC register range, the write is ignored.\r
1a2f870c 4517 This function is only available on Itanium processors.\r
ac644614 4518\r
ee6c452c 4519 @param Index The 8-bit Performance Monitor Configuration Register index to write.\r
4520 @param Value The 64-bit value to write to PMC.\r
ac644614 4521\r
4522 @return The 64-bit value written to the PMC.\r
4523\r
4524**/\r
4525UINT64\r
4526EFIAPI\r
4527AsmWritePmc (\r
4528 IN UINT8 Index,\r
4529 IN UINT64 Value\r
4530 );\r
4531\r
4532\r
4533/**\r
4534 Writes the current value of 64-bit Performance Monitor Data Register (PMD).\r
4535\r
4536 Writes current value of Performance Monitor Data Register specified by Index.\r
4537 All processor implementations provide at least 4 performance counters\r
4538 (PMC/PMD [4]...PMC/PMD [7] pairs), and 4 performance monitor counter overflow\r
4539 status registers (PMC [0]... PMC [3]). Processor implementations may provide\r
4540 additional implementation-dependent PMC and PMD to increase the number of 'generic'\r
4541 performance counters (PMC/PMD pairs). The remainder of PMC and PMD register set\r
4542 is implementation dependent. No parameter checking is performed on Index. If the\r
4543 Index value is beyond the implemented PMD register range, the write is ignored.\r
1a2f870c 4544 This function is only available on Itanium processors.\r
ac644614 4545\r
ee6c452c 4546 @param Index The 8-bit Performance Monitor Data Register index to write.\r
4547 @param Value The 64-bit value to write to PMD.\r
ac644614 4548\r
4549 @return The 64-bit value written to the PMD.\r
4550\r
4551**/\r
4552UINT64\r
4553EFIAPI\r
4554AsmWritePmd (\r
4555 IN UINT8 Index,\r
4556 IN UINT64 Value\r
4557 );\r
4558\r
4559\r
4560/**\r
4561 Reads the current value of 64-bit Global Pointer (GP).\r
4562\r
4563 Reads and returns the current value of GP.\r
1a2f870c 4564 This function is only available on Itanium processors.\r
ac644614 4565\r
4566 @return The current value of GP.\r
4567\r
4568**/\r
4569UINT64\r
4570EFIAPI\r
4571AsmReadGp (\r
4572 VOID\r
4573 );\r
4574\r
4575\r
4576/**\r
4577 Write the current value of 64-bit Global Pointer (GP).\r
4578\r
4579 Writes the current value of GP. The 64-bit value written to the GP is returned.\r
4580 No parameter checking is performed on Value.\r
1a2f870c 4581 This function is only available on Itanium processors.\r
ac644614 4582\r
4583 @param Value The 64-bit value to write to GP.\r
4584\r
4585 @return The 64-bit value written to the GP.\r
4586\r
4587**/\r
4588UINT64\r
4589EFIAPI\r
4590AsmWriteGp (\r
4591 IN UINT64 Value\r
4592 );\r
4593\r
4594\r
4595/**\r
4596 Reads the current value of 64-bit Stack Pointer (SP).\r
4597\r
4598 Reads and returns the current value of SP.\r
1a2f870c 4599 This function is only available on Itanium processors.\r
ac644614 4600\r
4601 @return The current value of SP.\r
4602\r
4603**/\r
4604UINT64\r
4605EFIAPI\r
4606AsmReadSp (\r
4607 VOID\r
4608 );\r
4609\r
4610\r
aad6137d 4611///\r
4612/// Valid Index value for AsmReadControlRegister()\r
4613///\r
4614#define IPF_CONTROL_REGISTER_DCR 0\r
4615#define IPF_CONTROL_REGISTER_ITM 1\r
4616#define IPF_CONTROL_REGISTER_IVA 2\r
4617#define IPF_CONTROL_REGISTER_PTA 8\r
4618#define IPF_CONTROL_REGISTER_IPSR 16\r
4619#define IPF_CONTROL_REGISTER_ISR 17\r
4620#define IPF_CONTROL_REGISTER_IIP 19\r
4621#define IPF_CONTROL_REGISTER_IFA 20\r
4622#define IPF_CONTROL_REGISTER_ITIR 21\r
4623#define IPF_CONTROL_REGISTER_IIPA 22\r
4624#define IPF_CONTROL_REGISTER_IFS 23\r
4625#define IPF_CONTROL_REGISTER_IIM 24\r
4626#define IPF_CONTROL_REGISTER_IHA 25\r
4627#define IPF_CONTROL_REGISTER_LID 64\r
4628#define IPF_CONTROL_REGISTER_IVR 65\r
4629#define IPF_CONTROL_REGISTER_TPR 66\r
4630#define IPF_CONTROL_REGISTER_EOI 67\r
4631#define IPF_CONTROL_REGISTER_IRR0 68\r
4632#define IPF_CONTROL_REGISTER_IRR1 69\r
4633#define IPF_CONTROL_REGISTER_IRR2 70\r
4634#define IPF_CONTROL_REGISTER_IRR3 71\r
4635#define IPF_CONTROL_REGISTER_ITV 72\r
4636#define IPF_CONTROL_REGISTER_PMV 73\r
4637#define IPF_CONTROL_REGISTER_CMCV 74\r
4638#define IPF_CONTROL_REGISTER_LRR0 80\r
4639#define IPF_CONTROL_REGISTER_LRR1 81\r
4640\r
4641/**\r
4642 Reads a 64-bit control register.\r
4643\r
4644 Reads and returns the control register specified by Index. The valid Index valued are defined\r
4645 above in "Related Definitions".\r
1a2f870c 4646 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on Itanium processors.\r
aad6137d 4647\r
4648 @param Index The index of the control register to read.\r
4649\r
4650 @return The control register specified by Index.\r
4651\r
4652**/\r
4653UINT64\r
4654EFIAPI\r
4655AsmReadControlRegister (\r
4656 IN UINT64 Index\r
4657 );\r
4658\r
4659\r
4660///\r
4661/// Valid Index value for AsmReadApplicationRegister()\r
4662///\r
4663#define IPF_APPLICATION_REGISTER_K0 0\r
4664#define IPF_APPLICATION_REGISTER_K1 1\r
4665#define IPF_APPLICATION_REGISTER_K2 2\r
4666#define IPF_APPLICATION_REGISTER_K3 3\r
4667#define IPF_APPLICATION_REGISTER_K4 4\r
4668#define IPF_APPLICATION_REGISTER_K5 5\r
4669#define IPF_APPLICATION_REGISTER_K6 6\r
4670#define IPF_APPLICATION_REGISTER_K7 7\r
4671#define IPF_APPLICATION_REGISTER_RSC 16\r
4672#define IPF_APPLICATION_REGISTER_BSP 17\r
4673#define IPF_APPLICATION_REGISTER_BSPSTORE 18\r
4674#define IPF_APPLICATION_REGISTER_RNAT 19\r
4675#define IPF_APPLICATION_REGISTER_FCR 21\r
4676#define IPF_APPLICATION_REGISTER_EFLAG 24\r
4677#define IPF_APPLICATION_REGISTER_CSD 25\r
4678#define IPF_APPLICATION_REGISTER_SSD 26\r
4679#define IPF_APPLICATION_REGISTER_CFLG 27\r
4680#define IPF_APPLICATION_REGISTER_FSR 28\r
4681#define IPF_APPLICATION_REGISTER_FIR 29\r
4682#define IPF_APPLICATION_REGISTER_FDR 30\r
4683#define IPF_APPLICATION_REGISTER_CCV 32\r
4684#define IPF_APPLICATION_REGISTER_UNAT 36\r
4685#define IPF_APPLICATION_REGISTER_FPSR 40\r
4686#define IPF_APPLICATION_REGISTER_ITC 44\r
4687#define IPF_APPLICATION_REGISTER_PFS 64\r
4688#define IPF_APPLICATION_REGISTER_LC 65\r
4689#define IPF_APPLICATION_REGISTER_EC 66\r
4690\r
4691/**\r
4692 Reads a 64-bit application register.\r
4693\r
4694 Reads and returns the application register specified by Index. The valid Index valued are defined\r
4695 above in "Related Definitions".\r
1a2f870c 4696 If Index is invalid then 0xFFFFFFFFFFFFFFFF is returned. This function is only available on Itanium processors.\r
aad6137d 4697\r
4698 @param Index The index of the application register to read.\r
4699\r
4700 @return The application register specified by Index.\r
4701\r
4702**/\r
4703UINT64\r
4704EFIAPI\r
4705AsmReadApplicationRegister (\r
4706 IN UINT64 Index\r
4707 );\r
4708\r
4709\r
59e0bb0c 4710/**\r
4711 Reads the current value of a Machine Specific Register (MSR).\r
4712\r
4713 Reads and returns the current value of the Machine Specific Register specified by Index. No\r
4714 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
4715 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
4716 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 4717 only available on Itanium processors.\r
59e0bb0c 4718\r
4719 @param Index The 8-bit Machine Specific Register index to read.\r
4720\r
4721 @return The current value of the Machine Specific Register specified by Index. \r
4722\r
4723**/\r
4724UINT64\r
4725EFIAPI\r
4726AsmReadMsr (\r
4727 IN UINT8 Index \r
4728 );\r
4729\r
4730\r
4731/**\r
4732 Writes the current value of a Machine Specific Register (MSR).\r
4733\r
4734 Writes Value to the Machine Specific Register specified by Index. Value is returned. No\r
4735 parameter checking is performed on Index, and if the Index value is beyond the implemented MSR\r
4736 register range, a Reserved Register/Field fault may occur. The caller must either guarantee that\r
4737 Index is valid, or the caller must set up fault handlers to catch the faults. This function is\r
1a2f870c 4738 only available on Itanium processors.\r
59e0bb0c 4739\r
4740 @param Index The 8-bit Machine Specific Register index to write.\r
4741 @param Value The 64-bit value to write to the Machine Specific Register.\r
4742\r
4743 @return The 64-bit value to write to the Machine Specific Register. \r
4744\r
4745**/\r
4746UINT64\r
4747EFIAPI\r
4748AsmWriteMsr (\r
4749 IN UINT8 Index, \r
4750 IN UINT64 Value \r
4751 );\r
4752\r
4753\r
ac644614 4754/**\r
4755 Determines if the CPU is currently executing in virtual, physical, or mixed mode.\r
4756\r
4757 Determines the current execution mode of the CPU.\r
4758 If the CPU is in virtual mode(PSR.RT=1, PSR.DT=1, PSR.IT=1), then 1 is returned.\r
4759 If the CPU is in physical mode(PSR.RT=0, PSR.DT=0, PSR.IT=0), then 0 is returned.\r
4760 If the CPU is not in physical mode or virtual mode, then it is in mixed mode,\r
4761 and -1 is returned.\r
1a2f870c 4762 This function is only available on Itanium processors.\r
ac644614 4763\r
17f695ed 4764 @retval 1 The CPU is in virtual mode.\r
4765 @retval 0 The CPU is in physical mode.\r
4766 @retval -1 The CPU is in mixed mode.\r
ac644614 4767\r
4768**/\r
4769INT64\r
4770EFIAPI\r
4771AsmCpuVirtual (\r
4772 VOID\r
4773 );\r
4774\r
4775\r
4776/**\r
4777 Makes a PAL procedure call.\r
4778\r
4779 This is a wrapper function to make a PAL procedure call. Based on the Index\r
4780 value this API will make static or stacked PAL call. The following table\r
4781 describes the usage of PAL Procedure Index Assignment. Architected procedures\r
4782 may be designated as required or optional. If a PAL procedure is specified\r
4783 as optional, a unique return code of 0xFFFFFFFFFFFFFFFF is returned in the\r
4784 Status field of the PAL_CALL_RETURN structure.\r
4785 This indicates that the procedure is not present in this PAL implementation.\r
4786 It is the caller's responsibility to check for this return code after calling\r
4787 any optional PAL procedure.\r
4788 No parameter checking is performed on the 5 input parameters, but there are\r
4789 some common rules that the caller should follow when making a PAL call. Any\r
4790 address passed to PAL as buffers for return parameters must be 8-byte aligned.\r
4791 Unaligned addresses may cause undefined results. For those parameters defined\r
4792 as reserved or some fields defined as reserved must be zero filled or the invalid\r
4793 argument return value may be returned or undefined result may occur during the\r
4794 execution of the procedure. If the PalEntryPoint does not point to a valid\r
4795 PAL entry point then the system behavior is undefined. This function is only\r
1a2f870c 4796 available on Itanium processors.\r
ac644614 4797\r
ee6c452c 4798 @param PalEntryPoint The PAL procedure calls entry point.\r
4799 @param Index The PAL procedure Index number.\r
4800 @param Arg2 The 2nd parameter for PAL procedure calls.\r
4801 @param Arg3 The 3rd parameter for PAL procedure calls.\r
4802 @param Arg4 The 4th parameter for PAL procedure calls.\r
ac644614 4803\r
4804 @return structure returned from the PAL Call procedure, including the status and return value.\r
4805\r
4806**/\r
4807PAL_CALL_RETURN\r
4808EFIAPI\r
4809AsmPalCall (\r
4810 IN UINT64 PalEntryPoint,\r
4811 IN UINT64 Index,\r
4812 IN UINT64 Arg2,\r
4813 IN UINT64 Arg3,\r
4814 IN UINT64 Arg4\r
4815 );\r
fd163050 4816#endif\r
ac644614 4817\r
fd163050 4818#if defined (MDE_CPU_IA32) || defined (MDE_CPU_X64)\r
1106ffe1 4819///\r
030cd1a2 4820/// IA32 and x64 Specific Functions\r
1106ffe1 4821/// Byte packed structure for 16-bit Real Mode EFLAGS\r
4822///\r
ac644614 4823typedef union {\r
4824 struct {\r
2a53dabf
LG
4825 UINT32 CF:1; ///< Carry Flag\r
4826 UINT32 Reserved_0:1; ///< Reserved\r
4827 UINT32 PF:1; ///< Parity Flag\r
4828 UINT32 Reserved_1:1; ///< Reserved\r
4829 UINT32 AF:1; ///< Auxiliary Carry Flag\r
4830 UINT32 Reserved_2:1; ///< Reserved\r
4831 UINT32 ZF:1; ///< Zero Flag\r
4832 UINT32 SF:1; ///< Sign Flag\r
4833 UINT32 TF:1; ///< Trap Flag\r
4834 UINT32 IF:1; ///< Interrupt Enable Flag\r
4835 UINT32 DF:1; ///< Direction Flag\r
4836 UINT32 OF:1; ///< Overflow Flag\r
4837 UINT32 IOPL:2; ///< I/O Privilege Level\r
4838 UINT32 NT:1; ///< Nested Task\r
4839 UINT32 Reserved_3:1; ///< Reserved\r
ac644614 4840 } Bits;\r
4841 UINT16 Uint16;\r
4842} IA32_FLAGS16;\r
4843\r
1106ffe1 4844///\r
4845/// Byte packed structure for EFLAGS/RFLAGS\r
4846/// 32-bits on IA-32\r
030cd1a2 4847/// 64-bits on x64. The upper 32-bits on x64 are reserved\r
1106ffe1 4848///\r
ac644614 4849typedef union {\r
4850 struct {\r
2a53dabf
LG
4851 UINT32 CF:1; ///< Carry Flag\r
4852 UINT32 Reserved_0:1; ///< Reserved\r
4853 UINT32 PF:1; ///< Parity Flag\r
4854 UINT32 Reserved_1:1; ///< Reserved\r
4855 UINT32 AF:1; ///< Auxiliary Carry Flag\r
4856 UINT32 Reserved_2:1; ///< Reserved\r
4857 UINT32 ZF:1; ///< Zero Flag\r
4858 UINT32 SF:1; ///< Sign Flag\r
4859 UINT32 TF:1; ///< Trap Flag\r
4860 UINT32 IF:1; ///< Interrupt Enable Flag\r
4861 UINT32 DF:1; ///< Direction Flag\r
4862 UINT32 OF:1; ///< Overflow Flag\r
4863 UINT32 IOPL:2; ///< I/O Privilege Level\r
4864 UINT32 NT:1; ///< Nested Task\r
4865 UINT32 Reserved_3:1; ///< Reserved\r
4866 UINT32 RF:1; ///< Resume Flag\r
4867 UINT32 VM:1; ///< Virtual 8086 Mode\r
4868 UINT32 AC:1; ///< Alignment Check\r
4869 UINT32 VIF:1; ///< Virtual Interrupt Flag\r
4870 UINT32 VIP:1; ///< Virtual Interrupt Pending\r
4871 UINT32 ID:1; ///< ID Flag\r
4872 UINT32 Reserved_4:10; ///< Reserved\r
ac644614 4873 } Bits;\r
4874 UINTN UintN;\r
4875} IA32_EFLAGS32;\r
4876\r
1106ffe1 4877///\r
4878/// Byte packed structure for Control Register 0 (CR0)\r
4879/// 32-bits on IA-32\r
030cd1a2 4880/// 64-bits on x64. The upper 32-bits on x64 are reserved\r
1106ffe1 4881///\r
ac644614 4882typedef union {\r
4883 struct {\r
2a53dabf
LG
4884 UINT32 PE:1; ///< Protection Enable\r
4885 UINT32 MP:1; ///< Monitor Coprocessor\r
4886 UINT32 EM:1; ///< Emulation\r
4887 UINT32 TS:1; ///< Task Switched\r
4888 UINT32 ET:1; ///< Extension Type\r
4889 UINT32 NE:1; ///< Numeric Error\r
4890 UINT32 Reserved_0:10; ///< Reserved\r
4891 UINT32 WP:1; ///< Write Protect\r
4892 UINT32 Reserved_1:1; ///< Reserved\r
4893 UINT32 AM:1; ///< Alignment Mask\r
4894 UINT32 Reserved_2:10; ///< Reserved\r
4895 UINT32 NW:1; ///< Mot Write-through\r
4896 UINT32 CD:1; ///< Cache Disable\r
4897 UINT32 PG:1; ///< Paging\r
ac644614 4898 } Bits;\r
4899 UINTN UintN;\r
4900} IA32_CR0;\r
4901\r
1106ffe1 4902///\r
4903/// Byte packed structure for Control Register 4 (CR4)\r
4904/// 32-bits on IA-32\r
030cd1a2 4905/// 64-bits on x64. The upper 32-bits on x64 are reserved\r
1106ffe1 4906///\r
ac644614 4907typedef union {\r
4908 struct {\r
2a53dabf
LG
4909 UINT32 VME:1; ///< Virtual-8086 Mode Extensions\r
4910 UINT32 PVI:1; ///< Protected-Mode Virtual Interrupts\r
4911 UINT32 TSD:1; ///< Time Stamp Disable\r
4912 UINT32 DE:1; ///< Debugging Extensions\r
4913 UINT32 PSE:1; ///< Page Size Extensions\r
4914 UINT32 PAE:1; ///< Physical Address Extension\r
4915 UINT32 MCE:1; ///< Machine Check Enable\r
4916 UINT32 PGE:1; ///< Page Global Enable\r
4917 UINT32 PCE:1; ///< Performance Monitoring Counter\r
4918 ///< Enable\r
4919 UINT32 OSFXSR:1; ///< Operating System Support for\r
4920 ///< FXSAVE and FXRSTOR instructions\r
4921 UINT32 OSXMMEXCPT:1; ///< Operating System Support for\r
4922 ///< Unmasked SIMD Floating Point\r
4923 ///< Exceptions\r
4924 UINT32 Reserved_0:2; ///< Reserved\r
4925 UINT32 VMXE:1; ///< VMX Enable\r
77f863ee 4926 UINT32 Reserved_1:18; ///< Reserved\r
ac644614 4927 } Bits;\r
4928 UINTN UintN;\r
4929} IA32_CR4;\r
4930\r
1106ffe1 4931///\r
4932/// Byte packed structure for an IDTR, GDTR, LDTR descriptor\r
1106ffe1 4933///\r
ac644614 4934#pragma pack (1)\r
4935typedef struct {\r
4936 UINT16 Limit;\r
4937 UINTN Base;\r
4938} IA32_DESCRIPTOR;\r
4939#pragma pack ()\r
4940\r
4941#define IA32_IDT_GATE_TYPE_TASK 0x85\r
4942#define IA32_IDT_GATE_TYPE_INTERRUPT_16 0x86\r
4943#define IA32_IDT_GATE_TYPE_TRAP_16 0x87\r
4944#define IA32_IDT_GATE_TYPE_INTERRUPT_32 0x8E\r
4945#define IA32_IDT_GATE_TYPE_TRAP_32 0x8F\r
4946\r
6f4aad3b 4947\r
4948#if defined (MDE_CPU_IA32)\r
1106ffe1 4949///\r
1a2f870c 4950/// Byte packed structure for an IA-32 Interrupt Gate Descriptor\r
1106ffe1 4951///\r
dc317713 4952typedef union {\r
4953 struct {\r
6f4aad3b 4954 UINT32 OffsetLow:16; ///< Offset bits 15..0\r
4955 UINT32 Selector:16; ///< Selector\r
4956 UINT32 Reserved_0:8; ///< Reserved\r
4957 UINT32 GateType:8; ///< Gate Type. See #defines above\r
4958 UINT32 OffsetHigh:16; ///< Offset bits 31..16\r
dc317713 4959 } Bits;\r
4960 UINT64 Uint64;\r
4961} IA32_IDT_GATE_DESCRIPTOR;\r
4962\r
4963#endif\r
4964\r
4965#if defined (MDE_CPU_X64)\r
6f4aad3b 4966///\r
4967/// Byte packed structure for an x64 Interrupt Gate Descriptor\r
4968///\r
ac644614 4969typedef union {\r
4970 struct {\r
6f4aad3b 4971 UINT32 OffsetLow:16; ///< Offset bits 15..0\r
4972 UINT32 Selector:16; ///< Selector\r
4973 UINT32 Reserved_0:8; ///< Reserved\r
4974 UINT32 GateType:8; ///< Gate Type. See #defines above\r
4975 UINT32 OffsetHigh:16; ///< Offset bits 31..16\r
4976 UINT32 OffsetUpper:32; ///< Offset bits 63..32\r
4977 UINT32 Reserved_1:32; ///< Reserved\r
ac644614 4978 } Bits;\r
6f4aad3b 4979 struct {\r
4980 UINT64 Uint64;\r
4981 UINT64 Uint64_1;\r
4982 } Uint128; \r
ac644614 4983} IA32_IDT_GATE_DESCRIPTOR;\r
4984\r
dc317713 4985#endif\r
4986\r
1106ffe1 4987///\r
4988/// Byte packed structure for an FP/SSE/SSE2 context\r
4989///\r
ac644614 4990typedef struct {\r
4991 UINT8 Buffer[512];\r
4992} IA32_FX_BUFFER;\r
4993\r
1106ffe1 4994///\r
4995/// Structures for the 16-bit real mode thunks\r
4996///\r
ac644614 4997typedef struct {\r
4998 UINT32 Reserved1;\r
4999 UINT32 Reserved2;\r
5000 UINT32 Reserved3;\r
5001 UINT32 Reserved4;\r
5002 UINT8 BL;\r
5003 UINT8 BH;\r
5004 UINT16 Reserved5;\r
5005 UINT8 DL;\r
5006 UINT8 DH;\r
5007 UINT16 Reserved6;\r
5008 UINT8 CL;\r
5009 UINT8 CH;\r
5010 UINT16 Reserved7;\r
5011 UINT8 AL;\r
5012 UINT8 AH;\r
5013 UINT16 Reserved8;\r
5014} IA32_BYTE_REGS;\r
5015\r
5016typedef struct {\r
5017 UINT16 DI;\r
5018 UINT16 Reserved1;\r
5019 UINT16 SI;\r
5020 UINT16 Reserved2;\r
5021 UINT16 BP;\r
5022 UINT16 Reserved3;\r
5023 UINT16 SP;\r
5024 UINT16 Reserved4;\r
5025 UINT16 BX;\r
5026 UINT16 Reserved5;\r
5027 UINT16 DX;\r
5028 UINT16 Reserved6;\r
5029 UINT16 CX;\r
5030 UINT16 Reserved7;\r
5031 UINT16 AX;\r
5032 UINT16 Reserved8;\r
5033} IA32_WORD_REGS;\r
5034\r
5035typedef struct {\r
5036 UINT32 EDI;\r
5037 UINT32 ESI;\r
5038 UINT32 EBP;\r
5039 UINT32 ESP;\r
5040 UINT32 EBX;\r
5041 UINT32 EDX;\r
5042 UINT32 ECX;\r
5043 UINT32 EAX;\r
5044 UINT16 DS;\r
5045 UINT16 ES;\r
5046 UINT16 FS;\r
5047 UINT16 GS;\r
5048 IA32_EFLAGS32 EFLAGS;\r
5049 UINT32 Eip;\r
5050 UINT16 CS;\r
5051 UINT16 SS;\r
5052} IA32_DWORD_REGS;\r
5053\r
5054typedef union {\r
5055 IA32_DWORD_REGS E;\r
5056 IA32_WORD_REGS X;\r
5057 IA32_BYTE_REGS H;\r
5058} IA32_REGISTER_SET;\r
5059\r
1106ffe1 5060///\r
5061/// Byte packed structure for an 16-bit real mode thunks\r
5062///\r
ac644614 5063typedef struct {\r
5064 IA32_REGISTER_SET *RealModeState;\r
5065 VOID *RealModeBuffer;\r
5066 UINT32 RealModeBufferSize;\r
5067 UINT32 ThunkAttributes;\r
5068} THUNK_CONTEXT;\r
5069\r
5070#define THUNK_ATTRIBUTE_BIG_REAL_MODE 0x00000001\r
5071#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 0x00000002\r
5072#define THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL 0x00000004\r
5073\r
5074/**\r
5075 Retrieves CPUID information.\r
5076\r
5077 Executes the CPUID instruction with EAX set to the value specified by Index.\r
5078 This function always returns Index.\r
5079 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5080 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5081 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5082 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
030cd1a2 5083 This function is only available on IA-32 and x64.\r
ac644614 5084\r
5085 @param Index The 32-bit value to load into EAX prior to invoking the CPUID\r
5086 instruction.\r
5087 @param Eax Pointer to the 32-bit EAX value returned by the CPUID\r
5088 instruction. This is an optional parameter that may be NULL.\r
5089 @param Ebx Pointer to the 32-bit EBX value returned by the CPUID\r
5090 instruction. This is an optional parameter that may be NULL.\r
5091 @param Ecx Pointer to the 32-bit ECX value returned by the CPUID\r
5092 instruction. This is an optional parameter that may be NULL.\r
5093 @param Edx Pointer to the 32-bit EDX value returned by the CPUID\r
5094 instruction. This is an optional parameter that may be NULL.\r
5095\r
2fe241a2 5096 @return Index.\r
ac644614 5097\r
5098**/\r
5099UINT32\r
5100EFIAPI\r
5101AsmCpuid (\r
5102 IN UINT32 Index,\r
5103 OUT UINT32 *Eax, OPTIONAL\r
5104 OUT UINT32 *Ebx, OPTIONAL\r
5105 OUT UINT32 *Ecx, OPTIONAL\r
5106 OUT UINT32 *Edx OPTIONAL\r
5107 );\r
5108\r
5109\r
5110/**\r
5111 Retrieves CPUID information using an extended leaf identifier.\r
5112\r
5113 Executes the CPUID instruction with EAX set to the value specified by Index\r
5114 and ECX set to the value specified by SubIndex. This function always returns\r
5115 Index. This function is only available on IA-32 and x64.\r
5116\r
5117 If Eax is not NULL, then the value of EAX after CPUID is returned in Eax.\r
5118 If Ebx is not NULL, then the value of EBX after CPUID is returned in Ebx.\r
5119 If Ecx is not NULL, then the value of ECX after CPUID is returned in Ecx.\r
5120 If Edx is not NULL, then the value of EDX after CPUID is returned in Edx.\r
5121\r
5122 @param Index The 32-bit value to load into EAX prior to invoking the\r
5123 CPUID instruction.\r
5124 @param SubIndex The 32-bit value to load into ECX prior to invoking the\r
5125 CPUID instruction.\r
5126 @param Eax Pointer to the 32-bit EAX value returned by the CPUID\r
5127 instruction. This is an optional parameter that may be\r
5128 NULL.\r
5129 @param Ebx Pointer to the 32-bit EBX value returned by the CPUID\r
5130 instruction. This is an optional parameter that may be\r
5131 NULL.\r
5132 @param Ecx Pointer to the 32-bit ECX value returned by the CPUID\r
5133 instruction. This is an optional parameter that may be\r
5134 NULL.\r
5135 @param Edx Pointer to the 32-bit EDX value returned by the CPUID\r
5136 instruction. This is an optional parameter that may be\r
5137 NULL.\r
5138\r
2fe241a2 5139 @return Index.\r
ac644614 5140\r
5141**/\r
5142UINT32\r
5143EFIAPI\r
5144AsmCpuidEx (\r
5145 IN UINT32 Index,\r
5146 IN UINT32 SubIndex,\r
5147 OUT UINT32 *Eax, OPTIONAL\r
5148 OUT UINT32 *Ebx, OPTIONAL\r
5149 OUT UINT32 *Ecx, OPTIONAL\r
5150 OUT UINT32 *Edx OPTIONAL\r
5151 );\r
5152\r
5153\r
be5f1614 5154/**\r
5155 Set CD bit and clear NW bit of CR0 followed by a WBINVD.\r
5156\r
5157 Disables the caches by setting the CD bit of CR0 to 1, clearing the NW bit of CR0 to 0,\r
5158 and executing a WBINVD instruction. This function is only available on IA-32 and x64.\r
5159\r
5160**/\r
5161VOID\r
5162EFIAPI\r
5163AsmDisableCache (\r
5164 VOID\r
5165 );\r
5166\r
5167\r
5168/**\r
5169 Perform a WBINVD and clear both the CD and NW bits of CR0.\r
5170\r
5171 Enables the caches by executing a WBINVD instruction and then clear both the CD and NW\r
5172 bits of CR0 to 0. This function is only available on IA-32 and x64.\r
5173\r
5174**/\r
5175VOID\r
5176EFIAPI\r
5177AsmEnableCache (\r
5178 VOID\r
5179 );\r
5180\r
5181\r
ac644614 5182/**\r
5183 Returns the lower 32-bits of a Machine Specific Register(MSR).\r
5184\r
5185 Reads and returns the lower 32-bits of the MSR specified by Index.\r
5186 No parameter checking is performed on Index, and some Index values may cause\r
5187 CPU exceptions. The caller must either guarantee that Index is valid, or the\r
5188 caller must set up exception handlers to catch the exceptions. This function\r
030cd1a2 5189 is only available on IA-32 and x64.\r
ac644614 5190\r
5191 @param Index The 32-bit MSR index to read.\r
5192\r
5193 @return The lower 32 bits of the MSR identified by Index.\r
5194\r
5195**/\r
5196UINT32\r
5197EFIAPI\r
5198AsmReadMsr32 (\r
5199 IN UINT32 Index\r
5200 );\r
5201\r
5202\r
5203/**\r
17f695ed 5204 Writes a 32-bit value to a Machine Specific Register(MSR), and returns the value.\r
5205 The upper 32-bits of the MSR are set to zero.\r
ac644614 5206\r
5207 Writes the 32-bit value specified by Value to the MSR specified by Index. The\r
5208 upper 32-bits of the MSR write are set to zero. The 32-bit value written to\r
5209 the MSR is returned. No parameter checking is performed on Index or Value,\r
5210 and some of these may cause CPU exceptions. The caller must either guarantee\r
5211 that Index and Value are valid, or the caller must establish proper exception\r
030cd1a2 5212 handlers. This function is only available on IA-32 and x64.\r
ac644614 5213\r
5214 @param Index The 32-bit MSR index to write.\r
5215 @param Value The 32-bit value to write to the MSR.\r
5216\r
5217 @return Value\r
5218\r
5219**/\r
5220UINT32\r
5221EFIAPI\r
5222AsmWriteMsr32 (\r
5223 IN UINT32 Index,\r
5224 IN UINT32 Value\r
5225 );\r
5226\r
5227\r
5228/**\r
62991af2 5229 Reads a 64-bit MSR, performs a bitwise OR on the lower 32-bits, and\r
ac644614 5230 writes the result back to the 64-bit MSR.\r
5231\r
62991af2 5232 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5233 between the lower 32-bits of the read result and the value specified by\r
5234 OrData, and writes the result to the 64-bit MSR specified by Index. The lower\r
5235 32-bits of the value written to the MSR is returned. No parameter checking is\r
5236 performed on Index or OrData, and some of these may cause CPU exceptions. The\r
5237 caller must either guarantee that Index and OrData are valid, or the caller\r
5238 must establish proper exception handlers. This function is only available on\r
030cd1a2 5239 IA-32 and x64.\r
ac644614 5240\r
5241 @param Index The 32-bit MSR index to write.\r
5242 @param OrData The value to OR with the read value from the MSR.\r
5243\r
5244 @return The lower 32-bit value written to the MSR.\r
5245\r
5246**/\r
5247UINT32\r
5248EFIAPI\r
5249AsmMsrOr32 (\r
5250 IN UINT32 Index,\r
5251 IN UINT32 OrData\r
5252 );\r
5253\r
5254\r
5255/**\r
5256 Reads a 64-bit MSR, performs a bitwise AND on the lower 32-bits, and writes\r
5257 the result back to the 64-bit MSR.\r
5258\r
5259 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5260 lower 32-bits of the read result and the value specified by AndData, and\r
5261 writes the result to the 64-bit MSR specified by Index. The lower 32-bits of\r
5262 the value written to the MSR is returned. No parameter checking is performed\r
5263 on Index or AndData, and some of these may cause CPU exceptions. The caller\r
5264 must either guarantee that Index and AndData are valid, or the caller must\r
5265 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 5266 and x64.\r
ac644614 5267\r
5268 @param Index The 32-bit MSR index to write.\r
5269 @param AndData The value to AND with the read value from the MSR.\r
5270\r
5271 @return The lower 32-bit value written to the MSR.\r
5272\r
5273**/\r
5274UINT32\r
5275EFIAPI\r
5276AsmMsrAnd32 (\r
5277 IN UINT32 Index,\r
5278 IN UINT32 AndData\r
5279 );\r
5280\r
5281\r
5282/**\r
62991af2 5283 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise OR\r
ac644614 5284 on the lower 32-bits, and writes the result back to the 64-bit MSR.\r
5285\r
5286 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5287 lower 32-bits of the read result and the value specified by AndData\r
62991af2 5288 preserving the upper 32-bits, performs a bitwise OR between the\r
ac644614 5289 result of the AND operation and the value specified by OrData, and writes the\r
5290 result to the 64-bit MSR specified by Address. The lower 32-bits of the value\r
5291 written to the MSR is returned. No parameter checking is performed on Index,\r
5292 AndData, or OrData, and some of these may cause CPU exceptions. The caller\r
5293 must either guarantee that Index, AndData, and OrData are valid, or the\r
5294 caller must establish proper exception handlers. This function is only\r
030cd1a2 5295 available on IA-32 and x64.\r
ac644614 5296\r
5297 @param Index The 32-bit MSR index to write.\r
5298 @param AndData The value to AND with the read value from the MSR.\r
5299 @param OrData The value to OR with the result of the AND operation.\r
5300\r
5301 @return The lower 32-bit value written to the MSR.\r
5302\r
5303**/\r
5304UINT32\r
5305EFIAPI\r
5306AsmMsrAndThenOr32 (\r
5307 IN UINT32 Index,\r
5308 IN UINT32 AndData,\r
5309 IN UINT32 OrData\r
5310 );\r
5311\r
5312\r
5313/**\r
5314 Reads a bit field of an MSR.\r
5315\r
5316 Reads the bit field in the lower 32-bits of a 64-bit MSR. The bit field is\r
5317 specified by the StartBit and the EndBit. The value of the bit field is\r
5318 returned. The caller must either guarantee that Index is valid, or the caller\r
5319 must set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 5320 available on IA-32 and x64.\r
ac644614 5321\r
5322 If StartBit is greater than 31, then ASSERT().\r
5323 If EndBit is greater than 31, then ASSERT().\r
5324 If EndBit is less than StartBit, then ASSERT().\r
5325\r
5326 @param Index The 32-bit MSR index to read.\r
5327 @param StartBit The ordinal of the least significant bit in the bit field.\r
5328 Range 0..31.\r
5329 @param EndBit The ordinal of the most significant bit in the bit field.\r
5330 Range 0..31.\r
5331\r
5332 @return The bit field read from the MSR.\r
5333\r
5334**/\r
5335UINT32\r
5336EFIAPI\r
5337AsmMsrBitFieldRead32 (\r
5338 IN UINT32 Index,\r
5339 IN UINTN StartBit,\r
5340 IN UINTN EndBit\r
5341 );\r
5342\r
5343\r
5344/**\r
5345 Writes a bit field to an MSR.\r
5346\r
2fe241a2 5347 Writes Value to a bit field in the lower 32-bits of a 64-bit MSR. The bit\r
ac644614 5348 field is specified by the StartBit and the EndBit. All other bits in the\r
5349 destination MSR are preserved. The lower 32-bits of the MSR written is\r
62991af2 5350 returned. The caller must either guarantee that Index and the data written \r
5351 is valid, or the caller must set up exception handlers to catch the exceptions. \r
5352 This function is only available on IA-32 and x64.\r
ac644614 5353\r
5354 If StartBit is greater than 31, then ASSERT().\r
5355 If EndBit is greater than 31, then ASSERT().\r
5356 If EndBit is less than StartBit, then ASSERT().\r
5357\r
5358 @param Index The 32-bit MSR index to write.\r
5359 @param StartBit The ordinal of the least significant bit in the bit field.\r
5360 Range 0..31.\r
5361 @param EndBit The ordinal of the most significant bit in the bit field.\r
5362 Range 0..31.\r
5363 @param Value New value of the bit field.\r
5364\r
5365 @return The lower 32-bit of the value written to the MSR.\r
5366\r
5367**/\r
5368UINT32\r
5369EFIAPI\r
5370AsmMsrBitFieldWrite32 (\r
5371 IN UINT32 Index,\r
5372 IN UINTN StartBit,\r
5373 IN UINTN EndBit,\r
5374 IN UINT32 Value\r
5375 );\r
5376\r
5377\r
5378/**\r
5379 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and writes the\r
5380 result back to the bit field in the 64-bit MSR.\r
5381\r
62991af2 5382 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5383 between the read result and the value specified by OrData, and writes the\r
5384 result to the 64-bit MSR specified by Index. The lower 32-bits of the value\r
5385 written to the MSR are returned. Extra left bits in OrData are stripped. The\r
5386 caller must either guarantee that Index and the data written is valid, or\r
5387 the caller must set up exception handlers to catch the exceptions. This\r
030cd1a2 5388 function is only available on IA-32 and x64.\r
ac644614 5389\r
5390 If StartBit is greater than 31, then ASSERT().\r
5391 If EndBit is greater than 31, then ASSERT().\r
5392 If EndBit is less than StartBit, then ASSERT().\r
5393\r
5394 @param Index The 32-bit MSR index to write.\r
5395 @param StartBit The ordinal of the least significant bit in the bit field.\r
5396 Range 0..31.\r
5397 @param EndBit The ordinal of the most significant bit in the bit field.\r
5398 Range 0..31.\r
5399 @param OrData The value to OR with the read value from the MSR.\r
5400\r
5401 @return The lower 32-bit of the value written to the MSR.\r
5402\r
5403**/\r
5404UINT32\r
5405EFIAPI\r
5406AsmMsrBitFieldOr32 (\r
5407 IN UINT32 Index,\r
5408 IN UINTN StartBit,\r
5409 IN UINTN EndBit,\r
5410 IN UINT32 OrData\r
5411 );\r
5412\r
5413\r
5414/**\r
5415 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5416 result back to the bit field in the 64-bit MSR.\r
5417\r
5418 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5419 read result and the value specified by AndData, and writes the result to the\r
5420 64-bit MSR specified by Index. The lower 32-bits of the value written to the\r
5421 MSR are returned. Extra left bits in AndData are stripped. The caller must\r
5422 either guarantee that Index and the data written is valid, or the caller must\r
5423 set up exception handlers to catch the exceptions. This function is only\r
030cd1a2 5424 available on IA-32 and x64.\r
ac644614 5425\r
5426 If StartBit is greater than 31, then ASSERT().\r
5427 If EndBit is greater than 31, then ASSERT().\r
5428 If EndBit is less than StartBit, then ASSERT().\r
5429\r
5430 @param Index The 32-bit MSR index to write.\r
5431 @param StartBit The ordinal of the least significant bit in the bit field.\r
5432 Range 0..31.\r
5433 @param EndBit The ordinal of the most significant bit in the bit field.\r
5434 Range 0..31.\r
5435 @param AndData The value to AND with the read value from the MSR.\r
5436\r
5437 @return The lower 32-bit of the value written to the MSR.\r
5438\r
5439**/\r
5440UINT32\r
5441EFIAPI\r
5442AsmMsrBitFieldAnd32 (\r
5443 IN UINT32 Index,\r
5444 IN UINTN StartBit,\r
5445 IN UINTN EndBit,\r
5446 IN UINT32 AndData\r
5447 );\r
5448\r
5449\r
5450/**\r
5451 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 5452 bitwise OR, and writes the result back to the bit field in the\r
ac644614 5453 64-bit MSR.\r
5454\r
5455 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by a\r
62991af2 5456 bitwise OR between the read result and the value specified by\r
ac644614 5457 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5458 lower 32-bits of the value written to the MSR are returned. Extra left bits\r
5459 in both AndData and OrData are stripped. The caller must either guarantee\r
5460 that Index and the data written is valid, or the caller must set up exception\r
5461 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 5462 and x64.\r
ac644614 5463\r
5464 If StartBit is greater than 31, then ASSERT().\r
5465 If EndBit is greater than 31, then ASSERT().\r
5466 If EndBit is less than StartBit, then ASSERT().\r
5467\r
5468 @param Index The 32-bit MSR index to write.\r
5469 @param StartBit The ordinal of the least significant bit in the bit field.\r
5470 Range 0..31.\r
5471 @param EndBit The ordinal of the most significant bit in the bit field.\r
5472 Range 0..31.\r
5473 @param AndData The value to AND with the read value from the MSR.\r
5474 @param OrData The value to OR with the result of the AND operation.\r
5475\r
5476 @return The lower 32-bit of the value written to the MSR.\r
5477\r
5478**/\r
5479UINT32\r
5480EFIAPI\r
5481AsmMsrBitFieldAndThenOr32 (\r
5482 IN UINT32 Index,\r
5483 IN UINTN StartBit,\r
5484 IN UINTN EndBit,\r
5485 IN UINT32 AndData,\r
5486 IN UINT32 OrData\r
5487 );\r
5488\r
5489\r
5490/**\r
5491 Returns a 64-bit Machine Specific Register(MSR).\r
5492\r
5493 Reads and returns the 64-bit MSR specified by Index. No parameter checking is\r
5494 performed on Index, and some Index values may cause CPU exceptions. The\r
5495 caller must either guarantee that Index is valid, or the caller must set up\r
5496 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 5497 on IA-32 and x64.\r
ac644614 5498\r
5499 @param Index The 32-bit MSR index to read.\r
5500\r
5501 @return The value of the MSR identified by Index.\r
5502\r
5503**/\r
5504UINT64\r
5505EFIAPI\r
5506AsmReadMsr64 (\r
5507 IN UINT32 Index\r
5508 );\r
5509\r
5510\r
5511/**\r
5512 Writes a 64-bit value to a Machine Specific Register(MSR), and returns the\r
5513 value.\r
5514\r
5515 Writes the 64-bit value specified by Value to the MSR specified by Index. The\r
5516 64-bit value written to the MSR is returned. No parameter checking is\r
5517 performed on Index or Value, and some of these may cause CPU exceptions. The\r
5518 caller must either guarantee that Index and Value are valid, or the caller\r
5519 must establish proper exception handlers. This function is only available on\r
030cd1a2 5520 IA-32 and x64.\r
ac644614 5521\r
5522 @param Index The 32-bit MSR index to write.\r
5523 @param Value The 64-bit value to write to the MSR.\r
5524\r
5525 @return Value\r
5526\r
5527**/\r
5528UINT64\r
5529EFIAPI\r
5530AsmWriteMsr64 (\r
5531 IN UINT32 Index,\r
5532 IN UINT64 Value\r
5533 );\r
5534\r
5535\r
5536/**\r
62991af2 5537 Reads a 64-bit MSR, performs a bitwise OR, and writes the result\r
ac644614 5538 back to the 64-bit MSR.\r
5539\r
62991af2 5540 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5541 between the read result and the value specified by OrData, and writes the\r
5542 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5543 returned. No parameter checking is performed on Index or OrData, and some of\r
5544 these may cause CPU exceptions. The caller must either guarantee that Index\r
5545 and OrData are valid, or the caller must establish proper exception handlers.\r
030cd1a2 5546 This function is only available on IA-32 and x64.\r
ac644614 5547\r
5548 @param Index The 32-bit MSR index to write.\r
5549 @param OrData The value to OR with the read value from the MSR.\r
5550\r
5551 @return The value written back to the MSR.\r
5552\r
5553**/\r
5554UINT64\r
5555EFIAPI\r
5556AsmMsrOr64 (\r
5557 IN UINT32 Index,\r
5558 IN UINT64 OrData\r
5559 );\r
5560\r
5561\r
5562/**\r
5563 Reads a 64-bit MSR, performs a bitwise AND, and writes the result back to the\r
5564 64-bit MSR.\r
5565\r
5566 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5567 read result and the value specified by OrData, and writes the result to the\r
5568 64-bit MSR specified by Index. The value written to the MSR is returned. No\r
5569 parameter checking is performed on Index or OrData, and some of these may\r
5570 cause CPU exceptions. The caller must either guarantee that Index and OrData\r
5571 are valid, or the caller must establish proper exception handlers. This\r
030cd1a2 5572 function is only available on IA-32 and x64.\r
ac644614 5573\r
5574 @param Index The 32-bit MSR index to write.\r
5575 @param AndData The value to AND with the read value from the MSR.\r
5576\r
5577 @return The value written back to the MSR.\r
5578\r
5579**/\r
5580UINT64\r
5581EFIAPI\r
5582AsmMsrAnd64 (\r
5583 IN UINT32 Index,\r
5584 IN UINT64 AndData\r
5585 );\r
5586\r
5587\r
5588/**\r
62991af2 5589 Reads a 64-bit MSR, performs a bitwise AND followed by a bitwise \r
ac644614 5590 OR, and writes the result back to the 64-bit MSR.\r
5591\r
5592 Reads the 64-bit MSR specified by Index, performs a bitwise AND between read\r
62991af2 5593 result and the value specified by AndData, performs a bitwise OR\r
ac644614 5594 between the result of the AND operation and the value specified by OrData,\r
5595 and writes the result to the 64-bit MSR specified by Index. The value written\r
5596 to the MSR is returned. No parameter checking is performed on Index, AndData,\r
5597 or OrData, and some of these may cause CPU exceptions. The caller must either\r
5598 guarantee that Index, AndData, and OrData are valid, or the caller must\r
5599 establish proper exception handlers. This function is only available on IA-32\r
030cd1a2 5600 and x64.\r
ac644614 5601\r
5602 @param Index The 32-bit MSR index to write.\r
5603 @param AndData The value to AND with the read value from the MSR.\r
5604 @param OrData The value to OR with the result of the AND operation.\r
5605\r
5606 @return The value written back to the MSR.\r
5607\r
5608**/\r
5609UINT64\r
5610EFIAPI\r
5611AsmMsrAndThenOr64 (\r
5612 IN UINT32 Index,\r
5613 IN UINT64 AndData,\r
5614 IN UINT64 OrData\r
5615 );\r
5616\r
5617\r
5618/**\r
5619 Reads a bit field of an MSR.\r
5620\r
5621 Reads the bit field in the 64-bit MSR. The bit field is specified by the\r
5622 StartBit and the EndBit. The value of the bit field is returned. The caller\r
5623 must either guarantee that Index is valid, or the caller must set up\r
5624 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 5625 on IA-32 and x64.\r
ac644614 5626\r
5627 If StartBit is greater than 63, then ASSERT().\r
5628 If EndBit is greater than 63, then ASSERT().\r
5629 If EndBit is less than StartBit, then ASSERT().\r
5630\r
5631 @param Index The 32-bit MSR index to read.\r
5632 @param StartBit The ordinal of the least significant bit in the bit field.\r
5633 Range 0..63.\r
5634 @param EndBit The ordinal of the most significant bit in the bit field.\r
5635 Range 0..63.\r
5636\r
5637 @return The value read from the MSR.\r
5638\r
5639**/\r
5640UINT64\r
5641EFIAPI\r
5642AsmMsrBitFieldRead64 (\r
5643 IN UINT32 Index,\r
5644 IN UINTN StartBit,\r
5645 IN UINTN EndBit\r
5646 );\r
5647\r
5648\r
5649/**\r
5650 Writes a bit field to an MSR.\r
5651\r
5652 Writes Value to a bit field in a 64-bit MSR. The bit field is specified by\r
5653 the StartBit and the EndBit. All other bits in the destination MSR are\r
62991af2 5654 preserved. The MSR written is returned. The caller must either guarantee \r
5655 that Index and the data written is valid, or the caller must set up exception \r
5656 handlers to catch the exceptions. This function is only available on IA-32 and x64.\r
ac644614 5657\r
5658 If StartBit is greater than 63, then ASSERT().\r
5659 If EndBit is greater than 63, then ASSERT().\r
5660 If EndBit is less than StartBit, then ASSERT().\r
5661\r
5662 @param Index The 32-bit MSR index to write.\r
5663 @param StartBit The ordinal of the least significant bit in the bit field.\r
5664 Range 0..63.\r
5665 @param EndBit The ordinal of the most significant bit in the bit field.\r
5666 Range 0..63.\r
5667 @param Value New value of the bit field.\r
5668\r
5669 @return The value written back to the MSR.\r
5670\r
5671**/\r
5672UINT64\r
5673EFIAPI\r
5674AsmMsrBitFieldWrite64 (\r
5675 IN UINT32 Index,\r
5676 IN UINTN StartBit,\r
5677 IN UINTN EndBit,\r
5678 IN UINT64 Value\r
5679 );\r
5680\r
5681\r
5682/**\r
62991af2 5683 Reads a bit field in a 64-bit MSR, performs a bitwise OR, and\r
ac644614 5684 writes the result back to the bit field in the 64-bit MSR.\r
5685\r
62991af2 5686 Reads the 64-bit MSR specified by Index, performs a bitwise OR\r
ac644614 5687 between the read result and the value specified by OrData, and writes the\r
5688 result to the 64-bit MSR specified by Index. The value written to the MSR is\r
5689 returned. Extra left bits in OrData are stripped. The caller must either\r
5690 guarantee that Index and the data written is valid, or the caller must set up\r
5691 exception handlers to catch the exceptions. This function is only available\r
030cd1a2 5692 on IA-32 and x64.\r
ac644614 5693\r
5694 If StartBit is greater than 63, then ASSERT().\r
5695 If EndBit is greater than 63, then ASSERT().\r
5696 If EndBit is less than StartBit, then ASSERT().\r
5697\r
5698 @param Index The 32-bit MSR index to write.\r
5699 @param StartBit The ordinal of the least significant bit in the bit field.\r
5700 Range 0..63.\r
5701 @param EndBit The ordinal of the most significant bit in the bit field.\r
5702 Range 0..63.\r
5703 @param OrData The value to OR with the read value from the bit field.\r
5704\r
5705 @return The value written back to the MSR.\r
5706\r
5707**/\r
5708UINT64\r
5709EFIAPI\r
5710AsmMsrBitFieldOr64 (\r
5711 IN UINT32 Index,\r
5712 IN UINTN StartBit,\r
5713 IN UINTN EndBit,\r
5714 IN UINT64 OrData\r
5715 );\r
5716\r
5717\r
5718/**\r
5719 Reads a bit field in a 64-bit MSR, performs a bitwise AND, and writes the\r
5720 result back to the bit field in the 64-bit MSR.\r
5721\r
5722 Reads the 64-bit MSR specified by Index, performs a bitwise AND between the\r
5723 read result and the value specified by AndData, and writes the result to the\r
5724 64-bit MSR specified by Index. The value written to the MSR is returned.\r
5725 Extra left bits in AndData are stripped. The caller must either guarantee\r
5726 that Index and the data written is valid, or the caller must set up exception\r
5727 handlers to catch the exceptions. This function is only available on IA-32\r
030cd1a2 5728 and x64.\r
ac644614 5729\r
5730 If StartBit is greater than 63, then ASSERT().\r
5731 If EndBit is greater than 63, then ASSERT().\r
5732 If EndBit is less than StartBit, then ASSERT().\r
5733\r
5734 @param Index The 32-bit MSR index to write.\r
5735 @param StartBit The ordinal of the least significant bit in the bit field.\r
5736 Range 0..63.\r
5737 @param EndBit The ordinal of the most significant bit in the bit field.\r
5738 Range 0..63.\r
5739 @param AndData The value to AND with the read value from the bit field.\r
5740\r
5741 @return The value written back to the MSR.\r
5742\r
5743**/\r
5744UINT64\r
5745EFIAPI\r
5746AsmMsrBitFieldAnd64 (\r
5747 IN UINT32 Index,\r
5748 IN UINTN StartBit,\r
5749 IN UINTN EndBit,\r
5750 IN UINT64 AndData\r
5751 );\r
5752\r
5753\r
5754/**\r
5755 Reads a bit field in a 64-bit MSR, performs a bitwise AND followed by a\r
62991af2 5756 bitwise OR, and writes the result back to the bit field in the\r
ac644614 5757 64-bit MSR.\r
5758\r
5759 Reads the 64-bit MSR specified by Index, performs a bitwise AND followed by\r
62991af2 5760 a bitwise OR between the read result and the value specified by\r
ac644614 5761 AndData, and writes the result to the 64-bit MSR specified by Index. The\r
5762 value written to the MSR is returned. Extra left bits in both AndData and\r
5763 OrData are stripped. The caller must either guarantee that Index and the data\r
5764 written is valid, or the caller must set up exception handlers to catch the\r
030cd1a2 5765 exceptions. This function is only available on IA-32 and x64.\r
ac644614 5766\r
5767 If StartBit is greater than 63, then ASSERT().\r
5768 If EndBit is greater than 63, then ASSERT().\r
5769 If EndBit is less than StartBit, then ASSERT().\r
5770\r
5771 @param Index The 32-bit MSR index to write.\r
5772 @param StartBit The ordinal of the least significant bit in the bit field.\r
5773 Range 0..63.\r
5774 @param EndBit The ordinal of the most significant bit in the bit field.\r
5775 Range 0..63.\r
5776 @param AndData The value to AND with the read value from the bit field.\r
5777 @param OrData The value to OR with the result of the AND operation.\r
5778\r
5779 @return The value written back to the MSR.\r
5780\r
5781**/\r
5782UINT64\r
5783EFIAPI\r
5784AsmMsrBitFieldAndThenOr64 (\r
5785 IN UINT32 Index,\r
5786 IN UINTN StartBit,\r
5787 IN UINTN EndBit,\r
5788 IN UINT64 AndData,\r
5789 IN UINT64 OrData\r
5790 );\r
5791\r
5792\r
5793/**\r
5794 Reads the current value of the EFLAGS register.\r
5795\r
5796 Reads and returns the current value of the EFLAGS register. This function is\r
030cd1a2 5797 only available on IA-32 and x64. This returns a 32-bit value on IA-32 and a\r
5798 64-bit value on x64.\r
ac644614 5799\r
030cd1a2 5800 @return EFLAGS on IA-32 or RFLAGS on x64.\r
ac644614 5801\r
5802**/\r
5803UINTN\r
5804EFIAPI\r
5805AsmReadEflags (\r
5806 VOID\r
5807 );\r
5808\r
5809\r
5810/**\r
5811 Reads the current value of the Control Register 0 (CR0).\r
5812\r
5813 Reads and returns the current value of CR0. This function is only available\r
030cd1a2 5814 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5815 x64.\r
ac644614 5816\r
5817 @return The value of the Control Register 0 (CR0).\r
5818\r
5819**/\r
5820UINTN\r
5821EFIAPI\r
5822AsmReadCr0 (\r
5823 VOID\r
5824 );\r
5825\r
5826\r
5827/**\r
5828 Reads the current value of the Control Register 2 (CR2).\r
5829\r
5830 Reads and returns the current value of CR2. This function is only available\r
030cd1a2 5831 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5832 x64.\r
ac644614 5833\r
5834 @return The value of the Control Register 2 (CR2).\r
5835\r
5836**/\r
5837UINTN\r
5838EFIAPI\r
5839AsmReadCr2 (\r
5840 VOID\r
5841 );\r
5842\r
5843\r
5844/**\r
5845 Reads the current value of the Control Register 3 (CR3).\r
5846\r
5847 Reads and returns the current value of CR3. This function is only available\r
030cd1a2 5848 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5849 x64.\r
ac644614 5850\r
5851 @return The value of the Control Register 3 (CR3).\r
5852\r
5853**/\r
5854UINTN\r
5855EFIAPI\r
5856AsmReadCr3 (\r
5857 VOID\r
5858 );\r
5859\r
5860\r
5861/**\r
5862 Reads the current value of the Control Register 4 (CR4).\r
5863\r
5864 Reads and returns the current value of CR4. This function is only available\r
030cd1a2 5865 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5866 x64.\r
ac644614 5867\r
5868 @return The value of the Control Register 4 (CR4).\r
5869\r
5870**/\r
5871UINTN\r
5872EFIAPI\r
5873AsmReadCr4 (\r
5874 VOID\r
5875 );\r
5876\r
5877\r
5878/**\r
5879 Writes a value to Control Register 0 (CR0).\r
5880\r
5881 Writes and returns a new value to CR0. This function is only available on\r
030cd1a2 5882 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5883\r
5884 @param Cr0 The value to write to CR0.\r
5885\r
5886 @return The value written to CR0.\r
5887\r
5888**/\r
5889UINTN\r
5890EFIAPI\r
5891AsmWriteCr0 (\r
5892 UINTN Cr0\r
5893 );\r
5894\r
5895\r
5896/**\r
5897 Writes a value to Control Register 2 (CR2).\r
5898\r
5899 Writes and returns a new value to CR2. This function is only available on\r
030cd1a2 5900 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5901\r
5902 @param Cr2 The value to write to CR2.\r
5903\r
5904 @return The value written to CR2.\r
5905\r
5906**/\r
5907UINTN\r
5908EFIAPI\r
5909AsmWriteCr2 (\r
5910 UINTN Cr2\r
5911 );\r
5912\r
5913\r
5914/**\r
5915 Writes a value to Control Register 3 (CR3).\r
5916\r
5917 Writes and returns a new value to CR3. This function is only available on\r
030cd1a2 5918 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5919\r
5920 @param Cr3 The value to write to CR3.\r
5921\r
5922 @return The value written to CR3.\r
5923\r
5924**/\r
5925UINTN\r
5926EFIAPI\r
5927AsmWriteCr3 (\r
5928 UINTN Cr3\r
5929 );\r
5930\r
5931\r
5932/**\r
5933 Writes a value to Control Register 4 (CR4).\r
5934\r
5935 Writes and returns a new value to CR4. This function is only available on\r
030cd1a2 5936 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 5937\r
5938 @param Cr4 The value to write to CR4.\r
5939\r
5940 @return The value written to CR4.\r
5941\r
5942**/\r
5943UINTN\r
5944EFIAPI\r
5945AsmWriteCr4 (\r
5946 UINTN Cr4\r
5947 );\r
5948\r
5949\r
5950/**\r
5951 Reads the current value of Debug Register 0 (DR0).\r
5952\r
5953 Reads and returns the current value of DR0. This function is only available\r
030cd1a2 5954 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5955 x64.\r
ac644614 5956\r
5957 @return The value of Debug Register 0 (DR0).\r
5958\r
5959**/\r
5960UINTN\r
5961EFIAPI\r
5962AsmReadDr0 (\r
5963 VOID\r
5964 );\r
5965\r
5966\r
5967/**\r
5968 Reads the current value of Debug Register 1 (DR1).\r
5969\r
5970 Reads and returns the current value of DR1. This function is only available\r
030cd1a2 5971 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5972 x64.\r
ac644614 5973\r
5974 @return The value of Debug Register 1 (DR1).\r
5975\r
5976**/\r
5977UINTN\r
5978EFIAPI\r
5979AsmReadDr1 (\r
5980 VOID\r
5981 );\r
5982\r
5983\r
5984/**\r
5985 Reads the current value of Debug Register 2 (DR2).\r
5986\r
5987 Reads and returns the current value of DR2. This function is only available\r
030cd1a2 5988 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
5989 x64.\r
ac644614 5990\r
5991 @return The value of Debug Register 2 (DR2).\r
5992\r
5993**/\r
5994UINTN\r
5995EFIAPI\r
5996AsmReadDr2 (\r
5997 VOID\r
5998 );\r
5999\r
6000\r
6001/**\r
6002 Reads the current value of Debug Register 3 (DR3).\r
6003\r
6004 Reads and returns the current value of DR3. This function is only available\r
030cd1a2 6005 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6006 x64.\r
ac644614 6007\r
6008 @return The value of Debug Register 3 (DR3).\r
6009\r
6010**/\r
6011UINTN\r
6012EFIAPI\r
6013AsmReadDr3 (\r
6014 VOID\r
6015 );\r
6016\r
6017\r
6018/**\r
6019 Reads the current value of Debug Register 4 (DR4).\r
6020\r
6021 Reads and returns the current value of DR4. This function is only available\r
030cd1a2 6022 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6023 x64.\r
ac644614 6024\r
6025 @return The value of Debug Register 4 (DR4).\r
6026\r
6027**/\r
6028UINTN\r
6029EFIAPI\r
6030AsmReadDr4 (\r
6031 VOID\r
6032 );\r
6033\r
6034\r
6035/**\r
6036 Reads the current value of Debug Register 5 (DR5).\r
6037\r
6038 Reads and returns the current value of DR5. This function is only available\r
030cd1a2 6039 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6040 x64.\r
ac644614 6041\r
6042 @return The value of Debug Register 5 (DR5).\r
6043\r
6044**/\r
6045UINTN\r
6046EFIAPI\r
6047AsmReadDr5 (\r
6048 VOID\r
6049 );\r
6050\r
6051\r
6052/**\r
6053 Reads the current value of Debug Register 6 (DR6).\r
6054\r
6055 Reads and returns the current value of DR6. This function is only available\r
030cd1a2 6056 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6057 x64.\r
ac644614 6058\r
6059 @return The value of Debug Register 6 (DR6).\r
6060\r
6061**/\r
6062UINTN\r
6063EFIAPI\r
6064AsmReadDr6 (\r
6065 VOID\r
6066 );\r
6067\r
6068\r
6069/**\r
6070 Reads the current value of Debug Register 7 (DR7).\r
6071\r
6072 Reads and returns the current value of DR7. This function is only available\r
030cd1a2 6073 on IA-32 and x64. This returns a 32-bit value on IA-32 and a 64-bit value on\r
6074 x64.\r
ac644614 6075\r
6076 @return The value of Debug Register 7 (DR7).\r
6077\r
6078**/\r
6079UINTN\r
6080EFIAPI\r
6081AsmReadDr7 (\r
6082 VOID\r
6083 );\r
6084\r
6085\r
6086/**\r
6087 Writes a value to Debug Register 0 (DR0).\r
6088\r
6089 Writes and returns a new value to DR0. This function is only available on\r
030cd1a2 6090 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6091\r
6092 @param Dr0 The value to write to Dr0.\r
6093\r
6094 @return The value written to Debug Register 0 (DR0).\r
6095\r
6096**/\r
6097UINTN\r
6098EFIAPI\r
6099AsmWriteDr0 (\r
6100 UINTN Dr0\r
6101 );\r
6102\r
6103\r
6104/**\r
6105 Writes a value to Debug Register 1 (DR1).\r
6106\r
6107 Writes and returns a new value to DR1. This function is only available on\r
030cd1a2 6108 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6109\r
6110 @param Dr1 The value to write to Dr1.\r
6111\r
6112 @return The value written to Debug Register 1 (DR1).\r
6113\r
6114**/\r
6115UINTN\r
6116EFIAPI\r
6117AsmWriteDr1 (\r
6118 UINTN Dr1\r
6119 );\r
6120\r
6121\r
6122/**\r
6123 Writes a value to Debug Register 2 (DR2).\r
6124\r
6125 Writes and returns a new value to DR2. This function is only available on\r
030cd1a2 6126 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6127\r
6128 @param Dr2 The value to write to Dr2.\r
6129\r
6130 @return The value written to Debug Register 2 (DR2).\r
6131\r
6132**/\r
6133UINTN\r
6134EFIAPI\r
6135AsmWriteDr2 (\r
6136 UINTN Dr2\r
6137 );\r
6138\r
6139\r
6140/**\r
6141 Writes a value to Debug Register 3 (DR3).\r
6142\r
6143 Writes and returns a new value to DR3. This function is only available on\r
030cd1a2 6144 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6145\r
6146 @param Dr3 The value to write to Dr3.\r
6147\r
6148 @return The value written to Debug Register 3 (DR3).\r
6149\r
6150**/\r
6151UINTN\r
6152EFIAPI\r
6153AsmWriteDr3 (\r
6154 UINTN Dr3\r
6155 );\r
6156\r
6157\r
6158/**\r
6159 Writes a value to Debug Register 4 (DR4).\r
6160\r
6161 Writes and returns a new value to DR4. This function is only available on\r
030cd1a2 6162 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6163\r
6164 @param Dr4 The value to write to Dr4.\r
6165\r
6166 @return The value written to Debug Register 4 (DR4).\r
6167\r
6168**/\r
6169UINTN\r
6170EFIAPI\r
6171AsmWriteDr4 (\r
6172 UINTN Dr4\r
6173 );\r
6174\r
6175\r
6176/**\r
6177 Writes a value to Debug Register 5 (DR5).\r
6178\r
6179 Writes and returns a new value to DR5. This function is only available on\r
030cd1a2 6180 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6181\r
6182 @param Dr5 The value to write to Dr5.\r
6183\r
6184 @return The value written to Debug Register 5 (DR5).\r
6185\r
6186**/\r
6187UINTN\r
6188EFIAPI\r
6189AsmWriteDr5 (\r
6190 UINTN Dr5\r
6191 );\r
6192\r
6193\r
6194/**\r
6195 Writes a value to Debug Register 6 (DR6).\r
6196\r
6197 Writes and returns a new value to DR6. This function is only available on\r
030cd1a2 6198 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6199\r
6200 @param Dr6 The value to write to Dr6.\r
6201\r
6202 @return The value written to Debug Register 6 (DR6).\r
6203\r
6204**/\r
6205UINTN\r
6206EFIAPI\r
6207AsmWriteDr6 (\r
6208 UINTN Dr6\r
6209 );\r
6210\r
6211\r
6212/**\r
6213 Writes a value to Debug Register 7 (DR7).\r
6214\r
6215 Writes and returns a new value to DR7. This function is only available on\r
030cd1a2 6216 IA-32 and x64. This writes a 32-bit value on IA-32 and a 64-bit value on x64.\r
ac644614 6217\r
6218 @param Dr7 The value to write to Dr7.\r
6219\r
6220 @return The value written to Debug Register 7 (DR7).\r
6221\r
6222**/\r
6223UINTN\r
6224EFIAPI\r
6225AsmWriteDr7 (\r
6226 UINTN Dr7\r
6227 );\r
6228\r
6229\r
6230/**\r
6231 Reads the current value of Code Segment Register (CS).\r
6232\r
6233 Reads and returns the current value of CS. This function is only available on\r
030cd1a2 6234 IA-32 and x64.\r
ac644614 6235\r
6236 @return The current value of CS.\r
6237\r
6238**/\r
6239UINT16\r
6240EFIAPI\r
6241AsmReadCs (\r
6242 VOID\r
6243 );\r
6244\r
6245\r
6246/**\r
6247 Reads the current value of Data Segment Register (DS).\r
6248\r
6249 Reads and returns the current value of DS. This function is only available on\r
030cd1a2 6250 IA-32 and x64.\r
ac644614 6251\r
6252 @return The current value of DS.\r
6253\r
6254**/\r
6255UINT16\r
6256EFIAPI\r
6257AsmReadDs (\r
6258 VOID\r
6259 );\r
6260\r
6261\r
6262/**\r
6263 Reads the current value of Extra Segment Register (ES).\r
6264\r
6265 Reads and returns the current value of ES. This function is only available on\r
030cd1a2 6266 IA-32 and x64.\r
ac644614 6267\r
6268 @return The current value of ES.\r
6269\r
6270**/\r
6271UINT16\r
6272EFIAPI\r
6273AsmReadEs (\r
6274 VOID\r
6275 );\r
6276\r
6277\r
6278/**\r
6279 Reads the current value of FS Data Segment Register (FS).\r
6280\r
6281 Reads and returns the current value of FS. This function is only available on\r
030cd1a2 6282 IA-32 and x64.\r
ac644614 6283\r
6284 @return The current value of FS.\r
6285\r
6286**/\r
6287UINT16\r
6288EFIAPI\r
6289AsmReadFs (\r
6290 VOID\r
6291 );\r
6292\r
6293\r
6294/**\r
6295 Reads the current value of GS Data Segment Register (GS).\r
6296\r
6297 Reads and returns the current value of GS. This function is only available on\r
030cd1a2 6298 IA-32 and x64.\r
ac644614 6299\r
6300 @return The current value of GS.\r
6301\r
6302**/\r
6303UINT16\r
6304EFIAPI\r
6305AsmReadGs (\r
6306 VOID\r
6307 );\r
6308\r
6309\r
6310/**\r
6311 Reads the current value of Stack Segment Register (SS).\r
6312\r
6313 Reads and returns the current value of SS. This function is only available on\r
030cd1a2 6314 IA-32 and x64.\r
ac644614 6315\r
6316 @return The current value of SS.\r
6317\r
6318**/\r
6319UINT16\r
6320EFIAPI\r
6321AsmReadSs (\r
6322 VOID\r
6323 );\r
6324\r
6325\r
6326/**\r
6327 Reads the current value of Task Register (TR).\r
6328\r
6329 Reads and returns the current value of TR. This function is only available on\r
030cd1a2 6330 IA-32 and x64.\r
ac644614 6331\r
6332 @return The current value of TR.\r
6333\r
6334**/\r
6335UINT16\r
6336EFIAPI\r
6337AsmReadTr (\r
6338 VOID\r
6339 );\r
6340\r
6341\r
6342/**\r
6343 Reads the current Global Descriptor Table Register(GDTR) descriptor.\r
6344\r
6345 Reads and returns the current GDTR descriptor and returns it in Gdtr. This\r
030cd1a2 6346 function is only available on IA-32 and x64.\r
ac644614 6347\r
6348 If Gdtr is NULL, then ASSERT().\r
6349\r
6350 @param Gdtr Pointer to a GDTR descriptor.\r
6351\r
6352**/\r
6353VOID\r
6354EFIAPI\r
6355AsmReadGdtr (\r
6356 OUT IA32_DESCRIPTOR *Gdtr\r
6357 );\r
6358\r
6359\r
6360/**\r
6361 Writes the current Global Descriptor Table Register (GDTR) descriptor.\r
6362\r
6363 Writes and the current GDTR descriptor specified by Gdtr. This function is\r
030cd1a2 6364 only available on IA-32 and x64.\r
ac644614 6365\r
6366 If Gdtr is NULL, then ASSERT().\r
6367\r
6368 @param Gdtr Pointer to a GDTR descriptor.\r
6369\r
6370**/\r
6371VOID\r
6372EFIAPI\r
6373AsmWriteGdtr (\r
6374 IN CONST IA32_DESCRIPTOR *Gdtr\r
6375 );\r
6376\r
6377\r
6378/**\r
17f695ed 6379 Reads the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 6380\r
6381 Reads and returns the current IDTR descriptor and returns it in Idtr. This\r
030cd1a2 6382 function is only available on IA-32 and x64.\r
ac644614 6383\r
6384 If Idtr is NULL, then ASSERT().\r
6385\r
6386 @param Idtr Pointer to a IDTR descriptor.\r
6387\r
6388**/\r
6389VOID\r
6390EFIAPI\r
6391AsmReadIdtr (\r
6392 OUT IA32_DESCRIPTOR *Idtr\r
6393 );\r
6394\r
6395\r
6396/**\r
17f695ed 6397 Writes the current Interrupt Descriptor Table Register(IDTR) descriptor.\r
ac644614 6398\r
6399 Writes the current IDTR descriptor and returns it in Idtr. This function is\r
030cd1a2 6400 only available on IA-32 and x64.\r
ac644614 6401\r
6402 If Idtr is NULL, then ASSERT().\r
6403\r
6404 @param Idtr Pointer to a IDTR descriptor.\r
6405\r
6406**/\r
6407VOID\r
6408EFIAPI\r
6409AsmWriteIdtr (\r
6410 IN CONST IA32_DESCRIPTOR *Idtr\r
6411 );\r
6412\r
6413\r
6414/**\r
6415 Reads the current Local Descriptor Table Register(LDTR) selector.\r
6416\r
6417 Reads and returns the current 16-bit LDTR descriptor value. This function is\r
030cd1a2 6418 only available on IA-32 and x64.\r
ac644614 6419\r
6420 @return The current selector of LDT.\r
6421\r
6422**/\r
6423UINT16\r
6424EFIAPI\r
6425AsmReadLdtr (\r
6426 VOID\r
6427 );\r
6428\r
6429\r
6430/**\r
17f695ed 6431 Writes the current Local Descriptor Table Register (LDTR) selector.\r
ac644614 6432\r
6433 Writes and the current LDTR descriptor specified by Ldtr. This function is\r
030cd1a2 6434 only available on IA-32 and x64.\r
ac644614 6435\r
6436 @param Ldtr 16-bit LDTR selector value.\r
6437\r
6438**/\r
6439VOID\r
6440EFIAPI\r
6441AsmWriteLdtr (\r
6442 IN UINT16 Ldtr\r
6443 );\r
6444\r
6445\r
6446/**\r
6447 Save the current floating point/SSE/SSE2 context to a buffer.\r
6448\r
6449 Saves the current floating point/SSE/SSE2 state to the buffer specified by\r
6450 Buffer. Buffer must be aligned on a 16-byte boundary. This function is only\r
030cd1a2 6451 available on IA-32 and x64.\r
ac644614 6452\r
6453 If Buffer is NULL, then ASSERT().\r
6454 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6455\r
6456 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6457\r
6458**/\r
6459VOID\r
6460EFIAPI\r
6461AsmFxSave (\r
6462 OUT IA32_FX_BUFFER *Buffer\r
6463 );\r
6464\r
6465\r
6466/**\r
6467 Restores the current floating point/SSE/SSE2 context from a buffer.\r
6468\r
6469 Restores the current floating point/SSE/SSE2 state from the buffer specified\r
6470 by Buffer. Buffer must be aligned on a 16-byte boundary. This function is\r
030cd1a2 6471 only available on IA-32 and x64.\r
ac644614 6472\r
6473 If Buffer is NULL, then ASSERT().\r
6474 If Buffer is not aligned on a 16-byte boundary, then ASSERT().\r
6475 If Buffer was not saved with AsmFxSave(), then ASSERT().\r
6476\r
6477 @param Buffer Pointer to a buffer to save the floating point/SSE/SSE2 context.\r
6478\r
6479**/\r
6480VOID\r
6481EFIAPI\r
6482AsmFxRestore (\r
6483 IN CONST IA32_FX_BUFFER *Buffer\r
6484 );\r
6485\r
6486\r
6487/**\r
6488 Reads the current value of 64-bit MMX Register #0 (MM0).\r
6489\r
6490 Reads and returns the current value of MM0. This function is only available\r
030cd1a2 6491 on IA-32 and x64.\r
ac644614 6492\r
6493 @return The current value of MM0.\r
6494\r
6495**/\r
6496UINT64\r
6497EFIAPI\r
6498AsmReadMm0 (\r
6499 VOID\r
6500 );\r
6501\r
6502\r
6503/**\r
6504 Reads the current value of 64-bit MMX Register #1 (MM1).\r
6505\r
6506 Reads and returns the current value of MM1. This function is only available\r
030cd1a2 6507 on IA-32 and x64.\r
ac644614 6508\r
6509 @return The current value of MM1.\r
6510\r
6511**/\r
6512UINT64\r
6513EFIAPI\r
6514AsmReadMm1 (\r
6515 VOID\r
6516 );\r
6517\r
6518\r
6519/**\r
6520 Reads the current value of 64-bit MMX Register #2 (MM2).\r
6521\r
6522 Reads and returns the current value of MM2. This function is only available\r
030cd1a2 6523 on IA-32 and x64.\r
ac644614 6524\r
6525 @return The current value of MM2.\r
6526\r
6527**/\r
6528UINT64\r
6529EFIAPI\r
6530AsmReadMm2 (\r
6531 VOID\r
6532 );\r
6533\r
6534\r
6535/**\r
6536 Reads the current value of 64-bit MMX Register #3 (MM3).\r
6537\r
6538 Reads and returns the current value of MM3. This function is only available\r
030cd1a2 6539 on IA-32 and x64.\r
ac644614 6540\r
6541 @return The current value of MM3.\r
6542\r
6543**/\r
6544UINT64\r
6545EFIAPI\r
6546AsmReadMm3 (\r
6547 VOID\r
6548 );\r
6549\r
6550\r
6551/**\r
6552 Reads the current value of 64-bit MMX Register #4 (MM4).\r
6553\r
6554 Reads and returns the current value of MM4. This function is only available\r
030cd1a2 6555 on IA-32 and x64.\r
ac644614 6556\r
6557 @return The current value of MM4.\r
6558\r
6559**/\r
6560UINT64\r
6561EFIAPI\r
6562AsmReadMm4 (\r
6563 VOID\r
6564 );\r
6565\r
6566\r
6567/**\r
6568 Reads the current value of 64-bit MMX Register #5 (MM5).\r
6569\r
6570 Reads and returns the current value of MM5. This function is only available\r
030cd1a2 6571 on IA-32 and x64.\r
ac644614 6572\r
6573 @return The current value of MM5.\r
6574\r
6575**/\r
6576UINT64\r
6577EFIAPI\r
6578AsmReadMm5 (\r
6579 VOID\r
6580 );\r
6581\r
6582\r
6583/**\r
6584 Reads the current value of 64-bit MMX Register #6 (MM6).\r
6585\r
6586 Reads and returns the current value of MM6. This function is only available\r
030cd1a2 6587 on IA-32 and x64.\r
ac644614 6588\r
6589 @return The current value of MM6.\r
6590\r
6591**/\r
6592UINT64\r
6593EFIAPI\r
6594AsmReadMm6 (\r
6595 VOID\r
6596 );\r
6597\r
6598\r
6599/**\r
6600 Reads the current value of 64-bit MMX Register #7 (MM7).\r
6601\r
6602 Reads and returns the current value of MM7. This function is only available\r
030cd1a2 6603 on IA-32 and x64.\r
ac644614 6604\r
6605 @return The current value of MM7.\r
6606\r
6607**/\r
6608UINT64\r
6609EFIAPI\r
6610AsmReadMm7 (\r
6611 VOID\r
6612 );\r
6613\r
6614\r
6615/**\r
6616 Writes the current value of 64-bit MMX Register #0 (MM0).\r
6617\r
6618 Writes the current value of MM0. This function is only available on IA32 and\r
030cd1a2 6619 x64.\r
ac644614 6620\r
6621 @param Value The 64-bit value to write to MM0.\r
6622\r
6623**/\r
6624VOID\r
6625EFIAPI\r
6626AsmWriteMm0 (\r
6627 IN UINT64 Value\r
6628 );\r
6629\r
6630\r
6631/**\r
6632 Writes the current value of 64-bit MMX Register #1 (MM1).\r
6633\r
6634 Writes the current value of MM1. This function is only available on IA32 and\r
030cd1a2 6635 x64.\r
ac644614 6636\r
6637 @param Value The 64-bit value to write to MM1.\r
6638\r
6639**/\r
6640VOID\r
6641EFIAPI\r
6642AsmWriteMm1 (\r
6643 IN UINT64 Value\r
6644 );\r
6645\r
6646\r
6647/**\r
6648 Writes the current value of 64-bit MMX Register #2 (MM2).\r
6649\r
6650 Writes the current value of MM2. This function is only available on IA32 and\r
030cd1a2 6651 x64.\r
ac644614 6652\r
6653 @param Value The 64-bit value to write to MM2.\r
6654\r
6655**/\r
6656VOID\r
6657EFIAPI\r
6658AsmWriteMm2 (\r
6659 IN UINT64 Value\r
6660 );\r
6661\r
6662\r
6663/**\r
6664 Writes the current value of 64-bit MMX Register #3 (MM3).\r
6665\r
6666 Writes the current value of MM3. This function is only available on IA32 and\r
030cd1a2 6667 x64.\r
ac644614 6668\r
6669 @param Value The 64-bit value to write to MM3.\r
6670\r
6671**/\r
6672VOID\r
6673EFIAPI\r
6674AsmWriteMm3 (\r
6675 IN UINT64 Value\r
6676 );\r
6677\r
6678\r
6679/**\r
6680 Writes the current value of 64-bit MMX Register #4 (MM4).\r
6681\r
6682 Writes the current value of MM4. This function is only available on IA32 and\r
030cd1a2 6683 x64.\r
ac644614 6684\r
6685 @param Value The 64-bit value to write to MM4.\r
6686\r
6687**/\r
6688VOID\r
6689EFIAPI\r
6690AsmWriteMm4 (\r
6691 IN UINT64 Value\r
6692 );\r
6693\r
6694\r
6695/**\r
6696 Writes the current value of 64-bit MMX Register #5 (MM5).\r
6697\r
6698 Writes the current value of MM5. This function is only available on IA32 and\r
030cd1a2 6699 x64.\r
ac644614 6700\r
6701 @param Value The 64-bit value to write to MM5.\r
6702\r
6703**/\r
6704VOID\r
6705EFIAPI\r
6706AsmWriteMm5 (\r
6707 IN UINT64 Value\r
6708 );\r
6709\r
6710\r
6711/**\r
6712 Writes the current value of 64-bit MMX Register #6 (MM6).\r
6713\r
6714 Writes the current value of MM6. This function is only available on IA32 and\r
030cd1a2 6715 x64.\r
ac644614 6716\r
6717 @param Value The 64-bit value to write to MM6.\r
6718\r
6719**/\r
6720VOID\r
6721EFIAPI\r
6722AsmWriteMm6 (\r
6723 IN UINT64 Value\r
6724 );\r
6725\r
6726\r
6727/**\r
6728 Writes the current value of 64-bit MMX Register #7 (MM7).\r
6729\r
6730 Writes the current value of MM7. This function is only available on IA32 and\r
030cd1a2 6731 x64.\r
ac644614 6732\r
6733 @param Value The 64-bit value to write to MM7.\r
6734\r
6735**/\r
6736VOID\r
6737EFIAPI\r
6738AsmWriteMm7 (\r
6739 IN UINT64 Value\r
6740 );\r
6741\r
6742\r
6743/**\r
6744 Reads the current value of Time Stamp Counter (TSC).\r
6745\r
6746 Reads and returns the current value of TSC. This function is only available\r
030cd1a2 6747 on IA-32 and x64.\r
ac644614 6748\r
6749 @return The current value of TSC\r
6750\r
6751**/\r
6752UINT64\r
6753EFIAPI\r
6754AsmReadTsc (\r
6755 VOID\r
6756 );\r
6757\r
6758\r
6759/**\r
6760 Reads the current value of a Performance Counter (PMC).\r
6761\r
6762 Reads and returns the current value of performance counter specified by\r
030cd1a2 6763 Index. This function is only available on IA-32 and x64.\r
ac644614 6764\r
6765 @param Index The 32-bit Performance Counter index to read.\r
6766\r
6767 @return The value of the PMC specified by Index.\r
6768\r
6769**/\r
6770UINT64\r
6771EFIAPI\r
6772AsmReadPmc (\r
6773 IN UINT32 Index\r
6774 );\r
6775\r
6776\r
6777/**\r
6778 Sets up a monitor buffer that is used by AsmMwait().\r
6779\r
6780 Executes a MONITOR instruction with the register state specified by Eax, Ecx\r
030cd1a2 6781 and Edx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 6782\r
6783 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6784 instruction.\r
6785 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6786 instruction.\r
6787 @param Edx The value to load into EDX or RDX before executing the MONITOR\r
6788 instruction.\r
6789\r
6790 @return Eax\r
6791\r
6792**/\r
6793UINTN\r
6794EFIAPI\r
6795AsmMonitor (\r
6796 IN UINTN Eax,\r
6797 IN UINTN Ecx,\r
6798 IN UINTN Edx\r
6799 );\r
6800\r
6801\r
6802/**\r
6803 Executes an MWAIT instruction.\r
6804\r
6805 Executes an MWAIT instruction with the register state specified by Eax and\r
030cd1a2 6806 Ecx. Returns Eax. This function is only available on IA-32 and x64.\r
ac644614 6807\r
6808 @param Eax The value to load into EAX or RAX before executing the MONITOR\r
6809 instruction.\r
6810 @param Ecx The value to load into ECX or RCX before executing the MONITOR\r
6811 instruction.\r
6812\r
6813 @return Eax\r
6814\r
6815**/\r
6816UINTN\r
6817EFIAPI\r
6818AsmMwait (\r
6819 IN UINTN Eax,\r
6820 IN UINTN Ecx\r
6821 );\r
6822\r
6823\r
6824/**\r
6825 Executes a WBINVD instruction.\r
6826\r
6827 Executes a WBINVD instruction. This function is only available on IA-32 and\r
030cd1a2 6828 x64.\r
ac644614 6829\r
6830**/\r
6831VOID\r
6832EFIAPI\r
6833AsmWbinvd (\r
6834 VOID\r
6835 );\r
6836\r
6837\r
6838/**\r
6839 Executes a INVD instruction.\r
6840\r
6841 Executes a INVD instruction. This function is only available on IA-32 and\r
030cd1a2 6842 x64.\r
ac644614 6843\r
6844**/\r
6845VOID\r
6846EFIAPI\r
6847AsmInvd (\r
6848 VOID\r
6849 );\r
6850\r
6851\r
6852/**\r
6853 Flushes a cache line from all the instruction and data caches within the\r
6854 coherency domain of the CPU.\r
6855\r
6856 Flushed the cache line specified by LinearAddress, and returns LinearAddress.\r
030cd1a2 6857 This function is only available on IA-32 and x64.\r
ac644614 6858\r
6859 @param LinearAddress The address of the cache line to flush. If the CPU is\r
6860 in a physical addressing mode, then LinearAddress is a\r
6861 physical address. If the CPU is in a virtual\r
6862 addressing mode, then LinearAddress is a virtual\r
6863 address.\r
6864\r
6865 @return LinearAddress\r
6866**/\r
6867VOID *\r
6868EFIAPI\r
6869AsmFlushCacheLine (\r
6870 IN VOID *LinearAddress\r
6871 );\r
6872\r
6873\r
6874/**\r
6875 Enables the 32-bit paging mode on the CPU.\r
6876\r
6877 Enables the 32-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6878 must be properly initialized prior to calling this service. This function\r
6879 assumes the current execution mode is 32-bit protected mode. This function is\r
6880 only available on IA-32. After the 32-bit paging mode is enabled, control is\r
6881 transferred to the function specified by EntryPoint using the new stack\r
6882 specified by NewStack and passing in the parameters specified by Context1 and\r
6883 Context2. Context1 and Context2 are optional and may be NULL. The function\r
6884 EntryPoint must never return.\r
6885\r
6886 If the current execution mode is not 32-bit protected mode, then ASSERT().\r
6887 If EntryPoint is NULL, then ASSERT().\r
6888 If NewStack is NULL, then ASSERT().\r
6889\r
6890 There are a number of constraints that must be followed before calling this\r
6891 function:\r
6892 1) Interrupts must be disabled.\r
6893 2) The caller must be in 32-bit protected mode with flat descriptors. This\r
6894 means all descriptors must have a base of 0 and a limit of 4GB.\r
6895 3) CR0 and CR4 must be compatible with 32-bit protected mode with flat\r
6896 descriptors.\r
6897 4) CR3 must point to valid page tables that will be used once the transition\r
6898 is complete, and those page tables must guarantee that the pages for this\r
6899 function and the stack are identity mapped.\r
6900\r
6901 @param EntryPoint A pointer to function to call with the new stack after\r
6902 paging is enabled.\r
6903 @param Context1 A pointer to the context to pass into the EntryPoint\r
6904 function as the first parameter after paging is enabled.\r
6905 @param Context2 A pointer to the context to pass into the EntryPoint\r
6906 function as the second parameter after paging is enabled.\r
6907 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6908 function after paging is enabled.\r
6909\r
6910**/\r
6911VOID\r
6912EFIAPI\r
6913AsmEnablePaging32 (\r
6914 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6915 IN VOID *Context1, OPTIONAL\r
6916 IN VOID *Context2, OPTIONAL\r
6917 IN VOID *NewStack\r
6918 );\r
6919\r
6920\r
6921/**\r
6922 Disables the 32-bit paging mode on the CPU.\r
6923\r
6924 Disables the 32-bit paging mode on the CPU and returns to 32-bit protected\r
6925 mode. This function assumes the current execution mode is 32-paged protected\r
6926 mode. This function is only available on IA-32. After the 32-bit paging mode\r
6927 is disabled, control is transferred to the function specified by EntryPoint\r
6928 using the new stack specified by NewStack and passing in the parameters\r
6929 specified by Context1 and Context2. Context1 and Context2 are optional and\r
6930 may be NULL. The function EntryPoint must never return.\r
6931\r
6932 If the current execution mode is not 32-bit paged mode, then ASSERT().\r
6933 If EntryPoint is NULL, then ASSERT().\r
6934 If NewStack is NULL, then ASSERT().\r
6935\r
6936 There are a number of constraints that must be followed before calling this\r
6937 function:\r
6938 1) Interrupts must be disabled.\r
6939 2) The caller must be in 32-bit paged mode.\r
6940 3) CR0, CR3, and CR4 must be compatible with 32-bit paged mode.\r
6941 4) CR3 must point to valid page tables that guarantee that the pages for\r
6942 this function and the stack are identity mapped.\r
6943\r
6944 @param EntryPoint A pointer to function to call with the new stack after\r
6945 paging is disabled.\r
6946 @param Context1 A pointer to the context to pass into the EntryPoint\r
6947 function as the first parameter after paging is disabled.\r
6948 @param Context2 A pointer to the context to pass into the EntryPoint\r
6949 function as the second parameter after paging is\r
6950 disabled.\r
6951 @param NewStack A pointer to the new stack to use for the EntryPoint\r
6952 function after paging is disabled.\r
6953\r
6954**/\r
6955VOID\r
6956EFIAPI\r
6957AsmDisablePaging32 (\r
6958 IN SWITCH_STACK_ENTRY_POINT EntryPoint,\r
6959 IN VOID *Context1, OPTIONAL\r
6960 IN VOID *Context2, OPTIONAL\r
6961 IN VOID *NewStack\r
6962 );\r
6963\r
6964\r
6965/**\r
6966 Enables the 64-bit paging mode on the CPU.\r
6967\r
6968 Enables the 64-bit paging mode on the CPU. CR0, CR3, CR4, and the page tables\r
6969 must be properly initialized prior to calling this service. This function\r
6970 assumes the current execution mode is 32-bit protected mode with flat\r
6971 descriptors. This function is only available on IA-32. After the 64-bit\r
6972 paging mode is enabled, control is transferred to the function specified by\r
6973 EntryPoint using the new stack specified by NewStack and passing in the\r
6974 parameters specified by Context1 and Context2. Context1 and Context2 are\r
6975 optional and may be 0. The function EntryPoint must never return.\r
6976\r
6977 If the current execution mode is not 32-bit protected mode with flat\r
6978 descriptors, then ASSERT().\r
6979 If EntryPoint is 0, then ASSERT().\r
6980 If NewStack is 0, then ASSERT().\r
6981\r
17f695ed 6982 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 6983 is called. The descriptor in the GDT that this selector\r
6984 references must be setup for long mode.\r
6985 @param EntryPoint The 64-bit virtual address of the function to call with\r
6986 the new stack after paging is enabled.\r
6987 @param Context1 The 64-bit virtual address of the context to pass into\r
6988 the EntryPoint function as the first parameter after\r
6989 paging is enabled.\r
6990 @param Context2 The 64-bit virtual address of the context to pass into\r
6991 the EntryPoint function as the second parameter after\r
6992 paging is enabled.\r
6993 @param NewStack The 64-bit virtual address of the new stack to use for\r
6994 the EntryPoint function after paging is enabled.\r
6995\r
6996**/\r
6997VOID\r
6998EFIAPI\r
6999AsmEnablePaging64 (\r
17f695ed 7000 IN UINT16 Cs,\r
ac644614 7001 IN UINT64 EntryPoint,\r
7002 IN UINT64 Context1, OPTIONAL\r
7003 IN UINT64 Context2, OPTIONAL\r
7004 IN UINT64 NewStack\r
7005 );\r
7006\r
7007\r
7008/**\r
7009 Disables the 64-bit paging mode on the CPU.\r
7010\r
7011 Disables the 64-bit paging mode on the CPU and returns to 32-bit protected\r
7012 mode. This function assumes the current execution mode is 64-paging mode.\r
030cd1a2 7013 This function is only available on x64. After the 64-bit paging mode is\r
ac644614 7014 disabled, control is transferred to the function specified by EntryPoint\r
7015 using the new stack specified by NewStack and passing in the parameters\r
7016 specified by Context1 and Context2. Context1 and Context2 are optional and\r
7017 may be 0. The function EntryPoint must never return.\r
7018\r
7019 If the current execution mode is not 64-bit paged mode, then ASSERT().\r
7020 If EntryPoint is 0, then ASSERT().\r
7021 If NewStack is 0, then ASSERT().\r
7022\r
17f695ed 7023 @param Cs The 16-bit selector to load in the CS before EntryPoint\r
ac644614 7024 is called. The descriptor in the GDT that this selector\r
7025 references must be setup for 32-bit protected mode.\r
7026 @param EntryPoint The 64-bit virtual address of the function to call with\r
7027 the new stack after paging is disabled.\r
7028 @param Context1 The 64-bit virtual address of the context to pass into\r
7029 the EntryPoint function as the first parameter after\r
7030 paging is disabled.\r
7031 @param Context2 The 64-bit virtual address of the context to pass into\r
7032 the EntryPoint function as the second parameter after\r
7033 paging is disabled.\r
7034 @param NewStack The 64-bit virtual address of the new stack to use for\r
7035 the EntryPoint function after paging is disabled.\r
7036\r
7037**/\r
7038VOID\r
7039EFIAPI\r
7040AsmDisablePaging64 (\r
17f695ed 7041 IN UINT16 Cs,\r
ac644614 7042 IN UINT32 EntryPoint,\r
7043 IN UINT32 Context1, OPTIONAL\r
7044 IN UINT32 Context2, OPTIONAL\r
7045 IN UINT32 NewStack\r
7046 );\r
7047\r
7048\r
7049//\r
7050// 16-bit thunking services\r
7051//\r
7052\r
7053/**\r
7054 Retrieves the properties for 16-bit thunk functions.\r
7055\r
7056 Computes the size of the buffer and stack below 1MB required to use the\r
7057 AsmPrepareThunk16(), AsmThunk16() and AsmPrepareAndThunk16() functions. This\r
7058 buffer size is returned in RealModeBufferSize, and the stack size is returned\r
7059 in ExtraStackSize. If parameters are passed to the 16-bit real mode code,\r
7060 then the actual minimum stack size is ExtraStackSize plus the maximum number\r
7061 of bytes that need to be passed to the 16-bit real mode code.\r
52fa075c 7062 \r
ac644614 7063 If RealModeBufferSize is NULL, then ASSERT().\r
7064 If ExtraStackSize is NULL, then ASSERT().\r
7065\r
7066 @param RealModeBufferSize A pointer to the size of the buffer below 1MB\r
7067 required to use the 16-bit thunk functions.\r
7068 @param ExtraStackSize A pointer to the extra size of stack below 1MB\r
7069 that the 16-bit thunk functions require for\r
7070 temporary storage in the transition to and from\r
7071 16-bit real mode.\r
7072\r
7073**/\r
7074VOID\r
7075EFIAPI\r
7076AsmGetThunk16Properties (\r
7077 OUT UINT32 *RealModeBufferSize,\r
7078 OUT UINT32 *ExtraStackSize\r
7079 );\r
7080\r
7081\r
7082/**\r
7083 Prepares all structures a code required to use AsmThunk16().\r
7084\r
7085 Prepares all structures and code required to use AsmThunk16().\r
52fa075c 7086 \r
8243b089 7087 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7088 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
ac644614 7089\r
7090 If ThunkContext is NULL, then ASSERT().\r
7091\r
7092 @param ThunkContext A pointer to the context structure that describes the\r
7093 16-bit real mode code to call.\r
7094\r
7095**/\r
7096VOID\r
7097EFIAPI\r
7098AsmPrepareThunk16 (\r
7099 OUT THUNK_CONTEXT *ThunkContext\r
7100 );\r
7101\r
7102\r
7103/**\r
7104 Transfers control to a 16-bit real mode entry point and returns the results.\r
7105\r
7106 Transfers control to a 16-bit real mode entry point and returns the results.\r
17f695ed 7107 AsmPrepareThunk16() must be called with ThunkContext before this function is used.\r
7108 This function must be called with interrupts disabled.\r
7109\r
7110 The register state from the RealModeState field of ThunkContext is restored just prior \r
7111 to calling the 16-bit real mode entry point. This includes the EFLAGS field of RealModeState, \r
7112 which is used to set the interrupt state when a 16-bit real mode entry point is called.\r
7113 Control is transferred to the 16-bit real mode entry point specified by the CS and Eip fields of RealModeState.\r
7114 The stack is initialized to the SS and ESP fields of RealModeState. Any parameters passed to \r
7115 the 16-bit real mode code must be populated by the caller at SS:ESP prior to calling this function. \r
7116 The 16-bit real mode entry point is invoked with a 16-bit CALL FAR instruction,\r
7117 so when accessing stack contents, the 16-bit real mode code must account for the 16-bit segment \r
7118 and 16-bit offset of the return address that were pushed onto the stack. The 16-bit real mode entry \r
7119 point must exit with a RETF instruction. The register state is captured into RealModeState immediately \r
7120 after the RETF instruction is executed.\r
7121 \r
7122 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7123 or any of the 16-bit real mode code makes a SW interrupt, then the caller is responsible for making sure \r
7124 the IDT at address 0 is initialized to handle any HW or SW interrupts that may occur while in 16-bit real mode. \r
7125 \r
7126 If EFLAGS specifies interrupts enabled, or any of the 16-bit real mode code enables interrupts, \r
7127 then the caller is responsible for making sure the 8259 PIC is in a state compatible with 16-bit real mode. \r
7128 This includes the base vectors, the interrupt masks, and the edge/level trigger mode.\r
7129 \r
7130 If THUNK_ATTRIBUTE_BIG_REAL_MODE is set in the ThunkAttributes field of ThunkContext, then the user code \r
7131 is invoked in big real mode. Otherwise, the user code is invoked in 16-bit real mode with 64KB segment limits.\r
7132 \r
7133 If neither THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 nor THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7134 ThunkAttributes, then it is assumed that the user code did not enable the A20 mask, and no attempt is made to \r
7135 disable the A20 mask.\r
7136 \r
7137 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is set and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is clear in \r
7138 ThunkAttributes, then attempt to use the INT 15 service to disable the A20 mask. If this INT 15 call fails, \r
7139 then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7140 \r
7141 If THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 is clear and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL is set in \r
7142 ThunkAttributes, then attempt to disable the A20 mask by directly accessing the 8042 keyboard controller I/O ports.\r
7143 \r
ac644614 7144 If ThunkContext is NULL, then ASSERT().\r
7145 If AsmPrepareThunk16() was not previously called with ThunkContext, then ASSERT().\r
17f695ed 7146 If both THUNK_ATTRIBUTE_DISABLE_A20_MASK_INT_15 and THUNK_ATTRIBUTE_DISABLE_A20_MASK_KBD_CTRL are set in \r
7147 ThunkAttributes, then ASSERT().\r
ac644614 7148\r
8243b089 7149 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7150 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 7151\r
ac644614 7152 @param ThunkContext A pointer to the context structure that describes the\r
7153 16-bit real mode code to call.\r
7154\r
7155**/\r
7156VOID\r
7157EFIAPI\r
7158AsmThunk16 (\r
7159 IN OUT THUNK_CONTEXT *ThunkContext\r
7160 );\r
7161\r
7162\r
7163/**\r
7164 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7165 control to a 16-bit real mode entry point, and returns the results.\r
7166\r
7167 Prepares all structures and code for a 16-bit real mode thunk, transfers\r
7168 control to a 16-bit real mode entry point, and returns the results. If the\r
7169 caller only need to perform a single 16-bit real mode thunk, then this\r
7170 service should be used. If the caller intends to make more than one 16-bit\r
7171 real mode thunk, then it is more efficient if AsmPrepareThunk16() is called\r
7172 once and AsmThunk16() can be called for each 16-bit real mode thunk.\r
7173\r
8243b089 7174 This interface is limited to be used in either physical mode or virtual modes with paging enabled where the\r
7175 virtual to physical mappings for ThunkContext.RealModeBuffer is mapped 1:1.\r
52fa075c 7176\r
17f695ed 7177 See AsmPrepareThunk16() and AsmThunk16() for the detailed description and ASSERT() conditions.\r
ac644614 7178\r
7179 @param ThunkContext A pointer to the context structure that describes the\r
7180 16-bit real mode code to call.\r
7181\r
7182**/\r
7183VOID\r
7184EFIAPI\r
7185AsmPrepareAndThunk16 (\r
7186 IN OUT THUNK_CONTEXT *ThunkContext\r
7187 );\r
7188\r
ac644614 7189#endif\r
e3a7917f 7190#endif\r
ac644614 7191\r
7192\r