]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Set X2ApicEnable flag from BSP
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
9fc1b85f 4 Copyright (c) 2016 - 2019, Intel Corporation. All rights reserved.<BR>\r
0acd8697 5 SPDX-License-Identifier: BSD-2-Clause-Patent\r
3e8ad6bd
JF
6\r
7**/\r
8\r
9#include "MpLib.h"\r
10\r
93ca4c0f
JF
11EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
12\r
7c3f2a12
JF
13/**\r
14 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
15\r
16 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
17 get the status and sync up the settings.\r
18 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
19 not working actually.\r
7c3f2a12
JF
20\r
21 @retval TRUE BSP Execute Disable is enabled.\r
22 @retval FALSE BSP Execute Disable is not enabled.\r
23**/\r
24BOOLEAN\r
25IsBspExecuteDisableEnabled (\r
26 VOID\r
27 )\r
28{\r
29 UINT32 Eax;\r
30 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
31 MSR_IA32_EFER_REGISTER EferMsr;\r
32 BOOLEAN Enabled;\r
844b2d07 33 IA32_CR0 Cr0;\r
7c3f2a12
JF
34\r
35 Enabled = FALSE;\r
844b2d07
JF
36 Cr0.UintN = AsmReadCr0 ();\r
37 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 38 //\r
844b2d07 39 // If CR0 Paging bit is set\r
7c3f2a12 40 //\r
844b2d07
JF
41 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
42 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
43 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 44 //\r
844b2d07
JF
45 // CPUID 0x80000001\r
46 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 47 //\r
844b2d07
JF
48 if (Edx.Bits.NX != 0) {\r
49 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
50 //\r
51 // MSR 0xC0000080\r
52 // Bit 11: Execute Disable Bit enable.\r
53 //\r
54 if (EferMsr.Bits.NXE != 0) {\r
55 Enabled = TRUE;\r
56 }\r
7c3f2a12
JF
57 }\r
58 }\r
59 }\r
60\r
61 return Enabled;\r
62}\r
63\r
41be0da5
JF
64/**\r
65 Worker function for SwitchBSP().\r
66\r
67 Worker function for SwitchBSP(), assigned to the AP which is intended\r
68 to become BSP.\r
69\r
70 @param[in] Buffer Pointer to CPU MP Data\r
71**/\r
72VOID\r
73EFIAPI\r
74FutureBSPProc (\r
75 IN VOID *Buffer\r
76 )\r
77{\r
78 CPU_MP_DATA *DataInHob;\r
79\r
80 DataInHob = (CPU_MP_DATA *) Buffer;\r
81 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
82}\r
83\r
03a1a925
JF
84/**\r
85 Get the Application Processors state.\r
86\r
87 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
88\r
89 @return The AP status\r
90**/\r
91CPU_STATE\r
92GetApState (\r
93 IN CPU_AP_DATA *CpuData\r
94 )\r
95{\r
96 return CpuData->State;\r
97}\r
98\r
99/**\r
100 Set the Application Processors state.\r
101\r
102 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
103 @param[in] State The AP status\r
104**/\r
105VOID\r
106SetApState (\r
107 IN CPU_AP_DATA *CpuData,\r
108 IN CPU_STATE State\r
109 )\r
110{\r
111 AcquireSpinLock (&CpuData->ApLock);\r
112 CpuData->State = State;\r
113 ReleaseSpinLock (&CpuData->ApLock);\r
114}\r
3e8ad6bd 115\r
ffab2442 116/**\r
f70174d6 117 Save BSP's local APIC timer setting.\r
ffab2442
JF
118\r
119 @param[in] CpuMpData Pointer to CPU MP Data\r
120**/\r
121VOID\r
122SaveLocalApicTimerSetting (\r
123 IN CPU_MP_DATA *CpuMpData\r
124 )\r
125{\r
126 //\r
127 // Record the current local APIC timer setting of BSP\r
128 //\r
129 GetApicTimerState (\r
130 &CpuMpData->DivideValue,\r
131 &CpuMpData->PeriodicMode,\r
132 &CpuMpData->Vector\r
133 );\r
134 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
135 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
136}\r
137\r
138/**\r
139 Sync local APIC timer setting from BSP to AP.\r
140\r
141 @param[in] CpuMpData Pointer to CPU MP Data\r
142**/\r
143VOID\r
144SyncLocalApicTimerSetting (\r
145 IN CPU_MP_DATA *CpuMpData\r
146 )\r
147{\r
148 //\r
149 // Sync local APIC timer setting from BSP to AP\r
150 //\r
151 InitializeApicTimer (\r
152 CpuMpData->DivideValue,\r
153 CpuMpData->CurrentTimerCount,\r
154 CpuMpData->PeriodicMode,\r
155 CpuMpData->Vector\r
156 );\r
157 //\r
158 // Disable AP's local APIC timer interrupt\r
159 //\r
160 DisableApicTimerInterrupt ();\r
161}\r
162\r
68cb9330
JF
163/**\r
164 Save the volatile registers required to be restored following INIT IPI.\r
165\r
166 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
167**/\r
168VOID\r
169SaveVolatileRegisters (\r
170 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
171 )\r
172{\r
173 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
174\r
175 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
176 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
177 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
178\r
179 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
180 if (VersionInfoEdx.Bits.DE != 0) {\r
181 //\r
182 // If processor supports Debugging Extensions feature\r
183 // by CPUID.[EAX=01H]:EDX.BIT2\r
184 //\r
185 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
186 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
187 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
188 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
189 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
190 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
191 }\r
e9415e48
JW
192\r
193 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
194 AsmReadIdtr (&VolatileRegisters->Idtr);\r
195 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
196}\r
197\r
198/**\r
199 Restore the volatile registers following INIT IPI.\r
200\r
201 @param[in] VolatileRegisters Pointer to volatile resisters\r
202 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
203 FALSE: Do not restore DRx\r
204**/\r
205VOID\r
206RestoreVolatileRegisters (\r
207 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
208 IN BOOLEAN IsRestoreDr\r
209 )\r
210{\r
211 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 212 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330 213\r
68cb9330
JF
214 AsmWriteCr3 (VolatileRegisters->Cr3);\r
215 AsmWriteCr4 (VolatileRegisters->Cr4);\r
e09b6b59 216 AsmWriteCr0 (VolatileRegisters->Cr0);\r
68cb9330
JF
217\r
218 if (IsRestoreDr) {\r
219 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
220 if (VersionInfoEdx.Bits.DE != 0) {\r
221 //\r
222 // If processor supports Debugging Extensions feature\r
223 // by CPUID.[EAX=01H]:EDX.BIT2\r
224 //\r
225 AsmWriteDr0 (VolatileRegisters->Dr0);\r
226 AsmWriteDr1 (VolatileRegisters->Dr1);\r
227 AsmWriteDr2 (VolatileRegisters->Dr2);\r
228 AsmWriteDr3 (VolatileRegisters->Dr3);\r
229 AsmWriteDr6 (VolatileRegisters->Dr6);\r
230 AsmWriteDr7 (VolatileRegisters->Dr7);\r
231 }\r
232 }\r
e9415e48
JW
233\r
234 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
235 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
236 if (VolatileRegisters->Tr != 0 &&\r
237 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
238 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
239 VolatileRegisters->Tr);\r
d69ba6a7 240 if (Tss->Bits.P == 1) {\r
e9415e48
JW
241 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
242 AsmWriteTr (VolatileRegisters->Tr);\r
243 }\r
244 }\r
68cb9330
JF
245}\r
246\r
9ebcf0f4
JF
247/**\r
248 Detect whether Mwait-monitor feature is supported.\r
249\r
250 @retval TRUE Mwait-monitor feature is supported.\r
251 @retval FALSE Mwait-monitor feature is not supported.\r
252**/\r
253BOOLEAN\r
254IsMwaitSupport (\r
255 VOID\r
256 )\r
257{\r
258 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
259\r
260 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
261 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
262}\r
263\r
264/**\r
265 Get AP loop mode.\r
266\r
267 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
268\r
269 @return The AP loop mode.\r
270**/\r
271UINT8\r
272GetApLoopMode (\r
273 OUT UINT32 *MonitorFilterSize\r
274 )\r
275{\r
276 UINT8 ApLoopMode;\r
277 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
278\r
279 ASSERT (MonitorFilterSize != NULL);\r
280\r
281 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
282 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
283 if (ApLoopMode == ApInMwaitLoop) {\r
284 if (!IsMwaitSupport ()) {\r
285 //\r
286 // If processor does not support MONITOR/MWAIT feature,\r
287 // force AP in Hlt-loop mode\r
288 //\r
289 ApLoopMode = ApInHltLoop;\r
290 }\r
291 }\r
292\r
293 if (ApLoopMode != ApInMwaitLoop) {\r
294 *MonitorFilterSize = sizeof (UINT32);\r
295 } else {\r
296 //\r
297 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
298 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
299 //\r
300 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
301 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
302 }\r
303\r
304 return ApLoopMode;\r
305}\r
b8b04307 306\r
8a2d564b
JF
307/**\r
308 Sort the APIC ID of all processors.\r
309\r
310 This function sorts the APIC ID of all processors so that processor number is\r
311 assigned in the ascending order of APIC ID which eases MP debugging.\r
312\r
313 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
314**/\r
315VOID\r
316SortApicId (\r
317 IN CPU_MP_DATA *CpuMpData\r
318 )\r
319{\r
320 UINTN Index1;\r
321 UINTN Index2;\r
322 UINTN Index3;\r
323 UINT32 ApicId;\r
31a1e4da 324 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
325 UINT32 ApCount;\r
326 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 327 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
328\r
329 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 330 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
331 if (ApCount != 0) {\r
332 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
333 Index3 = Index1;\r
334 //\r
335 // Sort key is the hardware default APIC ID\r
336 //\r
31a1e4da 337 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 338 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 339 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 340 Index3 = Index2;\r
31a1e4da 341 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
342 }\r
343 }\r
344 if (Index3 != Index1) {\r
31a1e4da 345 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 346 CopyMem (\r
31a1e4da
JF
347 &CpuInfoInHob[Index3],\r
348 &CpuInfoInHob[Index1],\r
349 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 350 );\r
31a1e4da 351 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
352\r
353 //\r
354 // Also exchange the StartupApSignal.\r
355 //\r
356 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
357 CpuMpData->CpuData[Index3].StartupApSignal =\r
358 CpuMpData->CpuData[Index1].StartupApSignal;\r
359 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
360 }\r
361 }\r
362\r
363 //\r
364 // Get the processor number for the BSP\r
365 //\r
366 ApicId = GetInitialApicId ();\r
367 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 368 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
369 CpuMpData->BspNumber = (UINT32) Index1;\r
370 break;\r
371 }\r
372 }\r
8a2d564b
JF
373 }\r
374}\r
375\r
fe627769
JF
376/**\r
377 Enable x2APIC mode on APs.\r
378\r
379 @param[in, out] Buffer Pointer to private data buffer.\r
380**/\r
381VOID\r
382EFIAPI\r
383ApFuncEnableX2Apic (\r
384 IN OUT VOID *Buffer\r
385 )\r
386{\r
387 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
388}\r
389\r
b8b04307
JF
390/**\r
391 Do sync on APs.\r
392\r
393 @param[in, out] Buffer Pointer to private data buffer.\r
394**/\r
395VOID\r
396EFIAPI\r
397ApInitializeSync (\r
398 IN OUT VOID *Buffer\r
399 )\r
400{\r
401 CPU_MP_DATA *CpuMpData;\r
402\r
403 CpuMpData = (CPU_MP_DATA *) Buffer;\r
404 //\r
b8b04307
JF
405 // Load microcode on AP\r
406 //\r
2a089134 407 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
408 //\r
409 // Sync BSP's MTRR table to AP\r
410 //\r
411 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
412}\r
413\r
414/**\r
415 Find the current Processor number by APIC ID.\r
416\r
367284e7
DB
417 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
418 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
419\r
420 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
421 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
422**/\r
423EFI_STATUS\r
424GetProcessorNumber (\r
425 IN CPU_MP_DATA *CpuMpData,\r
426 OUT UINTN *ProcessorNumber\r
427 )\r
428{\r
429 UINTN TotalProcessorNumber;\r
430 UINTN Index;\r
31a1e4da 431 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 432 UINT32 CurrentApicId;\r
31a1e4da
JF
433\r
434 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
435\r
436 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 437 CurrentApicId = GetApicId ();\r
b8b04307 438 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 439 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
440 *ProcessorNumber = Index;\r
441 return EFI_SUCCESS;\r
442 }\r
443 }\r
e52838d3 444\r
b8b04307
JF
445 return EFI_NOT_FOUND;\r
446}\r
447\r
03434dff
JF
448/**\r
449 This function will get CPU count in the system.\r
450\r
451 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
452\r
453 @return CPU count detected\r
454**/\r
455UINTN\r
456CollectProcessorCount (\r
457 IN CPU_MP_DATA *CpuMpData\r
458 )\r
459{\r
59a119f0 460 UINTN Index;\r
54d1e76f 461 CPU_INFO_IN_HOB *CpuInfoInHob;\r
59a119f0 462\r
03434dff
JF
463 //\r
464 // Send 1st broadcast IPI to APs to wakeup APs\r
465 //\r
466 CpuMpData->InitFlag = ApInitConfig;\r
467 CpuMpData->X2ApicEnable = FALSE;\r
cf4e79e4 468 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
469 CpuMpData->InitFlag = ApInitDone;\r
470 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
471 //\r
472 // Wait for all APs finished the initialization\r
473 //\r
474 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
475 CpuPause ();\r
476 }\r
477\r
54d1e76f
RN
478 \r
479 //\r
480 // Enable x2APIC mode if\r
481 // 1. Number of CPU is greater than 255; or\r
482 // 2. There are any logical processors reporting an Initial APIC ID of 255 or greater.\r
483 //\r
71d8226a
JF
484 if (CpuMpData->CpuCount > 255) {\r
485 //\r
486 // If there are more than 255 processor found, force to enable X2APIC\r
487 //\r
488 CpuMpData->X2ApicEnable = TRUE;\r
54d1e76f
RN
489 } else {\r
490 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
491 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
492 if (CpuInfoInHob[Index].InitialApicId >= 0xFF) {\r
493 CpuMpData->X2ApicEnable = TRUE;\r
494 break;\r
495 }\r
496 }\r
71d8226a 497 }\r
54d1e76f 498\r
fe627769
JF
499 if (CpuMpData->X2ApicEnable) {\r
500 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
501 //\r
502 // Wakeup all APs to enable x2APIC mode\r
503 //\r
cf4e79e4 504 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
505 //\r
506 // Wait for all known APs finished\r
507 //\r
508 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
509 CpuPause ();\r
510 }\r
511 //\r
512 // Enable x2APIC on BSP\r
513 //\r
514 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
515 //\r
516 // Set BSP/Aps state to IDLE\r
517 //\r
518 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
519 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
520 }\r
fe627769
JF
521 }\r
522 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
523 //\r
524 // Sort BSP/Aps by CPU APIC ID in ascending order\r
525 //\r
526 SortApicId (CpuMpData);\r
527\r
03434dff
JF
528 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
529\r
530 return CpuMpData->CpuCount;\r
531}\r
532\r
367284e7 533/**\r
03a1a925
JF
534 Initialize CPU AP Data when AP is wakeup at the first time.\r
535\r
536 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
537 @param[in] ProcessorNumber The handle number of processor\r
538 @param[in] BistData Processor BIST data\r
367284e7 539 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
540\r
541**/\r
542VOID\r
543InitializeApData (\r
544 IN OUT CPU_MP_DATA *CpuMpData,\r
545 IN UINTN ProcessorNumber,\r
845c5be1 546 IN UINT32 BistData,\r
dd3fa0cd 547 IN UINT64 ApTopOfStack\r
03a1a925
JF
548 )\r
549{\r
31a1e4da
JF
550 CPU_INFO_IN_HOB *CpuInfoInHob;\r
551\r
552 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
553 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
554 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
555 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 556 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 557\r
03a1a925 558 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 559 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
03a1a925
JF
560\r
561 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
562 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
563}\r
564\r
b8b04307
JF
565/**\r
566 This function will be called from AP reset code if BSP uses WakeUpAP.\r
567\r
568 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 569 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
570**/\r
571VOID\r
572EFIAPI\r
573ApWakeupFunction (\r
574 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 575 IN UINTN ApIndex\r
b8b04307
JF
576 )\r
577{\r
578 CPU_MP_DATA *CpuMpData;\r
579 UINTN ProcessorNumber;\r
580 EFI_AP_PROCEDURE Procedure;\r
581 VOID *Parameter;\r
582 UINT32 BistData;\r
583 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 584 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 585 UINT64 ApTopOfStack;\r
c6b0feb3 586 UINTN CurrentApicMode;\r
b8b04307
JF
587\r
588 //\r
589 // AP finished assembly code and begin to execute C code\r
590 //\r
591 CpuMpData = ExchangeInfo->CpuMpData;\r
592\r
ffab2442
JF
593 //\r
594 // AP's local APIC settings will be lost after received INIT IPI\r
595 // We need to re-initialize them at here\r
596 //\r
597 ProgramVirtualWireMode ();\r
a2ea6894
RN
598 //\r
599 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
600 //\r
601 DisableLvtInterrupts ();\r
ffab2442 602 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 603\r
c6b0feb3 604 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
605 while (TRUE) {\r
606 if (CpuMpData->InitFlag == ApInitConfig) {\r
607 //\r
608 // Add CPU number\r
609 //\r
610 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 611 ProcessorNumber = ApIndex;\r
b8b04307
JF
612 //\r
613 // This is first time AP wakeup, get BIST information from AP stack\r
614 //\r
845c5be1 615 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 616 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
617 //\r
618 // Do some AP initialize sync\r
619 //\r
620 ApInitializeSync (CpuMpData);\r
621 //\r
c563077a
RN
622 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
623 // to initialize AP in InitConfig path.\r
624 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
625 //\r
626 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 627 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307 628 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
9fc1b85f
RN
629\r
630 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
631 } else {\r
632 //\r
633 // Execute AP function if AP is ready\r
634 //\r
635 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
636 //\r
637 // Clear AP start-up signal when AP waken up\r
638 //\r
639 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
640 InterlockedCompareExchange32 (\r
641 (UINT32 *) ApStartupSignalBuffer,\r
642 WAKEUP_AP_SIGNAL,\r
643 0\r
644 );\r
645 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
646 //\r
647 // Restore AP's volatile registers saved\r
648 //\r
649 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
650 } else {\r
651 //\r
652 // The CPU driver might not flush TLB for APs on spot after updating\r
653 // page attributes. AP in mwait loop mode needs to take care of it when\r
654 // woken up.\r
655 //\r
656 CpuFlushTlb ();\r
b8b04307
JF
657 }\r
658\r
659 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
660 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
661 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
662 if (Procedure != NULL) {\r
663 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
664 //\r
43c9fdcc 665 // Enable source debugging on AP function\r
7367cc6c 666 //\r
43c9fdcc
JF
667 EnableDebugAgent ();\r
668 //\r
b8b04307
JF
669 // Invoke AP function here\r
670 //\r
671 Procedure (Parameter);\r
31a1e4da 672 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
673 if (CpuMpData->SwitchBspFlag) {\r
674 //\r
675 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
676 //\r
677 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
678 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
679 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
680 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
681 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 682 } else {\r
c6b0feb3
JF
683 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
684 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
685 if (CurrentApicMode != GetApicMode ()) {\r
686 //\r
687 // If APIC mode change happened during AP function execution,\r
688 // we do not support APIC ID value changed.\r
689 //\r
690 ASSERT (FALSE);\r
691 CpuDeadLoop ();\r
692 } else {\r
693 //\r
694 // Re-get the CPU APICID and Initial APICID if they are changed\r
695 //\r
696 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
697 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
698 }\r
699 }\r
41be0da5 700 }\r
b8b04307 701 }\r
e048ce88 702 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);\r
b8b04307
JF
703 }\r
704 }\r
705\r
706 //\r
707 // AP finished executing C code\r
708 //\r
709 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
710\r
711 //\r
712 // Place AP is specified loop mode\r
713 //\r
714 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
715 //\r
716 // Save AP volatile registers\r
717 //\r
718 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
719 //\r
720 // Place AP in HLT-loop\r
721 //\r
722 while (TRUE) {\r
723 DisableInterrupts ();\r
724 CpuSleep ();\r
725 CpuPause ();\r
726 }\r
727 }\r
728 while (TRUE) {\r
729 DisableInterrupts ();\r
730 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
731 //\r
732 // Place AP in MWAIT-loop\r
733 //\r
734 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
735 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
736 //\r
737 // Check AP start-up signal again.\r
738 // If AP start-up signal is not set, place AP into\r
739 // the specified C-state\r
740 //\r
741 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
742 }\r
743 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
744 //\r
745 // Place AP in Run-loop\r
746 //\r
747 CpuPause ();\r
748 } else {\r
749 ASSERT (FALSE);\r
750 }\r
751\r
752 //\r
753 // If AP start-up signal is written, AP is waken up\r
754 // otherwise place AP in loop again\r
755 //\r
756 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
757 break;\r
758 }\r
759 }\r
760 }\r
761}\r
762\r
96f5920d
JF
763/**\r
764 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
765\r
766 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
767**/\r
768VOID\r
769WaitApWakeup (\r
770 IN volatile UINT32 *ApStartupSignalBuffer\r
771 )\r
772{\r
773 //\r
774 // If AP is waken up, StartupApSignal should be cleared.\r
775 // Otherwise, write StartupApSignal again till AP waken up.\r
776 //\r
777 while (InterlockedCompareExchange32 (\r
778 (UINT32 *) ApStartupSignalBuffer,\r
779 WAKEUP_AP_SIGNAL,\r
780 WAKEUP_AP_SIGNAL\r
781 ) != 0) {\r
782 CpuPause ();\r
783 }\r
784}\r
785\r
7c3f2a12
JF
786/**\r
787 This function will fill the exchange info structure.\r
788\r
789 @param[in] CpuMpData Pointer to CPU MP Data\r
790\r
791**/\r
792VOID\r
793FillExchangeInfoData (\r
794 IN CPU_MP_DATA *CpuMpData\r
795 )\r
796{\r
797 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
798 UINTN Size;\r
799 IA32_SEGMENT_DESCRIPTOR *Selector;\r
09f69a87 800 IA32_CR4 Cr4;\r
7c3f2a12
JF
801\r
802 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
803 ExchangeInfo->Lock = 0;\r
804 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
805 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
806 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
807 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
808\r
809 ExchangeInfo->CodeSegment = AsmReadCs ();\r
810 ExchangeInfo->DataSegment = AsmReadDs ();\r
811\r
812 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
813\r
814 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 815 ExchangeInfo->ApIndex = 0;\r
0594ec41 816 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
817 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
818 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
819 ExchangeInfo->CpuMpData = CpuMpData;\r
820\r
821 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
822\r
3b2928b4
MK
823 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
824\r
09f69a87
RN
825 //\r
826 // We can check either CPUID(7).ECX[bit16] or check CR4.LA57[bit12]\r
827 // to determin whether 5-Level Paging is enabled.\r
828 // CPUID(7).ECX[bit16] shows CPU's capability, CR4.LA57[bit12] shows\r
829 // current system setting.\r
830 // Using latter way is simpler because it also eliminates the needs to\r
831 // check whether platform wants to enable it.\r
832 //\r
833 Cr4.UintN = AsmReadCr4 ();\r
834 ExchangeInfo->Enable5LevelPaging = (BOOLEAN) (Cr4.Bits.LA57 == 1);\r
835 DEBUG ((DEBUG_INFO, "%a: 5-Level Paging = %d\n", gEfiCallerBaseName, ExchangeInfo->Enable5LevelPaging));\r
836\r
7c3f2a12
JF
837 //\r
838 // Get the BSP's data of GDT and IDT\r
839 //\r
840 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
841 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
842\r
843 //\r
844 // Find a 32-bit code segment\r
845 //\r
846 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
847 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
848 while (Size > 0) {\r
849 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
850 ExchangeInfo->ModeTransitionSegment =\r
851 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
852 break;\r
853 }\r
854 Selector += 1;\r
855 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
856 }\r
857\r
858 //\r
859 // Copy all 32-bit code and 64-bit code into memory with type of\r
860 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
861 //\r
66833b2a 862 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
863 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
864 CpuMpData->AddressMap.ModeTransitionOffset;\r
865 CopyMem (\r
66833b2a 866 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
867 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
868 CpuMpData->AddressMap.ModeTransitionOffset,\r
869 Size\r
870 );\r
871\r
66833b2a 872 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
873 } else {\r
874 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
875 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
876 }\r
69dfa8d8
JW
877\r
878 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
879 (UINT32)ExchangeInfo->ModeOffset -\r
880 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
881 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
882}\r
883\r
6e1987f1
LE
884/**\r
885 Helper function that waits until the finished AP count reaches the specified\r
886 limit, or the specified timeout elapses (whichever comes first).\r
887\r
888 @param[in] CpuMpData Pointer to CPU MP Data.\r
889 @param[in] FinishedApLimit The number of finished APs to wait for.\r
890 @param[in] TimeLimit The number of microseconds to wait for.\r
891**/\r
892VOID\r
893TimedWaitForApFinish (\r
894 IN CPU_MP_DATA *CpuMpData,\r
895 IN UINT32 FinishedApLimit,\r
896 IN UINT32 TimeLimit\r
897 );\r
898\r
a6b3d753
SZ
899/**\r
900 Get available system memory below 1MB by specified size.\r
901\r
902 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
903**/\r
904VOID\r
905BackupAndPrepareWakeupBuffer(\r
906 IN CPU_MP_DATA *CpuMpData\r
907 )\r
908{\r
909 CopyMem (\r
910 (VOID *) CpuMpData->BackupBuffer,\r
911 (VOID *) CpuMpData->WakeupBuffer,\r
912 CpuMpData->BackupBufferSize\r
913 );\r
914 CopyMem (\r
915 (VOID *) CpuMpData->WakeupBuffer,\r
916 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
917 CpuMpData->AddressMap.RendezvousFunnelSize\r
918 );\r
919}\r
920\r
921/**\r
922 Restore wakeup buffer data.\r
923\r
924 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
925**/\r
926VOID\r
927RestoreWakeupBuffer(\r
928 IN CPU_MP_DATA *CpuMpData\r
929 )\r
930{\r
931 CopyMem (\r
932 (VOID *) CpuMpData->WakeupBuffer,\r
933 (VOID *) CpuMpData->BackupBuffer,\r
934 CpuMpData->BackupBufferSize\r
935 );\r
936}\r
937\r
938/**\r
939 Allocate reset vector buffer.\r
940\r
941 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
942**/\r
943VOID\r
944AllocateResetVector (\r
945 IN OUT CPU_MP_DATA *CpuMpData\r
946 )\r
947{\r
948 UINTN ApResetVectorSize;\r
949\r
950 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
951 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
952 sizeof (MP_CPU_EXCHANGE_INFO);\r
953\r
954 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
955 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
956 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
957 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
958 CpuMpData->AddressMap.RendezvousFunnelSize -\r
959 CpuMpData->AddressMap.ModeTransitionOffset\r
960 );\r
a6b3d753
SZ
961 }\r
962 BackupAndPrepareWakeupBuffer (CpuMpData);\r
963}\r
964\r
965/**\r
966 Free AP reset vector buffer.\r
967\r
968 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
969**/\r
970VOID\r
971FreeResetVector (\r
972 IN CPU_MP_DATA *CpuMpData\r
973 )\r
974{\r
975 RestoreWakeupBuffer (CpuMpData);\r
976}\r
977\r
96f5920d
JF
978/**\r
979 This function will be called by BSP to wakeup AP.\r
980\r
981 @param[in] CpuMpData Pointer to CPU MP Data\r
982 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
983 FALSE: Send IPI to AP by ApicId\r
984 @param[in] ProcessorNumber The handle number of specified processor\r
985 @param[in] Procedure The function to be invoked by AP\r
986 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 987 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
988**/\r
989VOID\r
990WakeUpAP (\r
991 IN CPU_MP_DATA *CpuMpData,\r
992 IN BOOLEAN Broadcast,\r
993 IN UINTN ProcessorNumber,\r
994 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
995 IN VOID *ProcedureArgument, OPTIONAL\r
996 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
997 )\r
998{\r
999 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
1000 UINTN Index;\r
1001 CPU_AP_DATA *CpuData;\r
1002 BOOLEAN ResetVectorRequired;\r
31a1e4da 1003 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
1004\r
1005 CpuMpData->FinishedCount = 0;\r
1006 ResetVectorRequired = FALSE;\r
1007\r
58942277 1008 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
1009 CpuMpData->InitFlag != ApInitDone) {\r
1010 ResetVectorRequired = TRUE;\r
1011 AllocateResetVector (CpuMpData);\r
1012 FillExchangeInfoData (CpuMpData);\r
ffab2442 1013 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
1014 }\r
1015\r
1016 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1017 //\r
1018 // Get AP target C-state each time when waking up AP,\r
1019 // for it maybe updated by platform again\r
1020 //\r
1021 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1022 }\r
1023\r
1024 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1025\r
1026 if (Broadcast) {\r
1027 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1028 if (Index != CpuMpData->BspNumber) {\r
1029 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1030 //\r
1031 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
e23d9c3e 1032 // the AP procedure will be skipped for disabled AP because AP state\r
cf4e79e4
ED
1033 // is not CpuStateReady.\r
1034 //\r
1035 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1036 continue;\r
1037 }\r
1038\r
96f5920d
JF
1039 CpuData->ApFunction = (UINTN) Procedure;\r
1040 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1041 SetApState (CpuData, CpuStateReady);\r
1042 if (CpuMpData->InitFlag != ApInitConfig) {\r
1043 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1044 }\r
1045 }\r
1046 }\r
1047 if (ResetVectorRequired) {\r
1048 //\r
1049 // Wakeup all APs\r
1050 //\r
1051 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1052 }\r
c1192210 1053 if (CpuMpData->InitFlag == ApInitConfig) {\r
778832bc
LE
1054 if (PcdGet32 (PcdCpuBootLogicalProcessorNumber) > 0) {\r
1055 //\r
1056 // The AP enumeration algorithm below is suitable only when the\r
1057 // platform can tell us the *exact* boot CPU count in advance.\r
1058 //\r
1059 // The wait below finishes only when the detected AP count reaches\r
1060 // (PcdCpuBootLogicalProcessorNumber - 1), regardless of how long that\r
1061 // takes. If at least one AP fails to check in (meaning a platform\r
1062 // hardware bug), the detection hangs forever, by design. If the actual\r
1063 // boot CPU count in the system is higher than\r
1064 // PcdCpuBootLogicalProcessorNumber (meaning a platform\r
1065 // misconfiguration), then some APs may complete initialization after\r
1066 // the wait finishes, and cause undefined behavior.\r
1067 //\r
1068 TimedWaitForApFinish (\r
1069 CpuMpData,\r
1070 PcdGet32 (PcdCpuBootLogicalProcessorNumber) - 1,\r
1071 MAX_UINT32 // approx. 71 minutes\r
1072 );\r
1073 } else {\r
1074 //\r
1075 // The AP enumeration algorithm below is suitable for two use cases.\r
1076 //\r
1077 // (1) The check-in time for an individual AP is bounded, and APs run\r
1078 // through their initialization routines strongly concurrently. In\r
1079 // particular, the number of concurrently running APs\r
1080 // ("NumApsExecuting") is never expected to fall to zero\r
1081 // *temporarily* -- it is expected to fall to zero only when all\r
1082 // APs have checked-in.\r
1083 //\r
1084 // In this case, the platform is supposed to set\r
1085 // PcdCpuApInitTimeOutInMicroSeconds to a low-ish value (just long\r
1086 // enough for one AP to start initialization). The timeout will be\r
1087 // reached soon, and remaining APs are collected by watching\r
1088 // NumApsExecuting fall to zero. If NumApsExecuting falls to zero\r
1089 // mid-process, while some APs have not completed initialization,\r
1090 // the behavior is undefined.\r
1091 //\r
1092 // (2) The check-in time for an individual AP is unbounded, and/or APs\r
1093 // may complete their initializations widely spread out. In\r
1094 // particular, some APs may finish initialization before some APs\r
1095 // even start.\r
1096 //\r
1097 // In this case, the platform is supposed to set\r
1098 // PcdCpuApInitTimeOutInMicroSeconds to a high-ish value. The AP\r
1099 // enumeration will always take that long (except when the boot CPU\r
1100 // count happens to be maximal, that is,\r
1101 // PcdCpuMaxLogicalProcessorNumber). All APs are expected to\r
1102 // check-in before the timeout, and NumApsExecuting is assumed zero\r
1103 // at timeout. APs that miss the time-out may cause undefined\r
1104 // behavior.\r
1105 //\r
1106 TimedWaitForApFinish (\r
1107 CpuMpData,\r
1108 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1109 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1110 );\r
0594ec41 1111\r
778832bc
LE
1112 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1113 CpuPause();\r
1114 }\r
0594ec41 1115 }\r
c1192210 1116 } else {\r
96f5920d
JF
1117 //\r
1118 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1119 //\r
1120 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1121 CpuData = &CpuMpData->CpuData[Index];\r
1122 if (Index != CpuMpData->BspNumber) {\r
1123 WaitApWakeup (CpuData->StartupApSignal);\r
1124 }\r
1125 }\r
1126 }\r
1127 } else {\r
1128 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1129 CpuData->ApFunction = (UINTN) Procedure;\r
1130 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1131 SetApState (CpuData, CpuStateReady);\r
1132 //\r
1133 // Wakeup specified AP\r
1134 //\r
1135 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1136 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1137 if (ResetVectorRequired) {\r
31a1e4da 1138 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1139 SendInitSipiSipi (\r
31a1e4da 1140 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1141 (UINT32) ExchangeInfo->BufferStart\r
1142 );\r
1143 }\r
1144 //\r
1145 // Wait specified AP waken up\r
1146 //\r
1147 WaitApWakeup (CpuData->StartupApSignal);\r
1148 }\r
1149\r
1150 if (ResetVectorRequired) {\r
1151 FreeResetVector (CpuMpData);\r
1152 }\r
58942277
ED
1153\r
1154 //\r
1155 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1156 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1157 // S3SmmInitDone Ppi.\r
1158 //\r
1159 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1160}\r
1161\r
08085f08
JF
1162/**\r
1163 Calculate timeout value and return the current performance counter value.\r
1164\r
1165 Calculate the number of performance counter ticks required for a timeout.\r
1166 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1167 as infinity.\r
1168\r
1169 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1170 @param[out] CurrentTime Returns the current value of the performance counter.\r
1171\r
1172 @return Expected time stamp counter for timeout.\r
1173 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1174 as infinity.\r
1175\r
1176**/\r
1177UINT64\r
1178CalculateTimeout (\r
1179 IN UINTN TimeoutInMicroseconds,\r
1180 OUT UINT64 *CurrentTime\r
1181 )\r
1182{\r
48cfb7c0
ED
1183 UINT64 TimeoutInSeconds;\r
1184 UINT64 TimestampCounterFreq;\r
1185\r
08085f08
JF
1186 //\r
1187 // Read the current value of the performance counter\r
1188 //\r
1189 *CurrentTime = GetPerformanceCounter ();\r
1190\r
1191 //\r
1192 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1193 // as infinity.\r
1194 //\r
1195 if (TimeoutInMicroseconds == 0) {\r
1196 return 0;\r
1197 }\r
1198\r
1199 //\r
1200 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1201 // in Hz.\r
48cfb7c0
ED
1202 //\r
1203 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1204\r
08085f08 1205 //\r
48cfb7c0
ED
1206 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1207 //\r
1208 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1209 //\r
1210 // Convert microseconds into seconds if direct multiplication overflows\r
1211 //\r
1212 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1213 //\r
1214 // Assertion if the final tick count exceeds MAX_UINT64\r
1215 //\r
1216 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1217 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1218 } else {\r
1219 //\r
1220 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1221 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1222 //\r
1223 return DivU64x32 (\r
1224 MultU64x64 (\r
1225 TimestampCounterFreq,\r
1226 TimeoutInMicroseconds\r
1227 ),\r
1228 1000000\r
1229 );\r
1230 }\r
08085f08
JF
1231}\r
1232\r
1233/**\r
1234 Checks whether timeout expires.\r
1235\r
1236 Check whether the number of elapsed performance counter ticks required for\r
1237 a timeout condition has been reached.\r
1238 If Timeout is zero, which means infinity, return value is always FALSE.\r
1239\r
1240 @param[in, out] PreviousTime On input, the value of the performance counter\r
1241 when it was last read.\r
1242 On output, the current value of the performance\r
1243 counter\r
1244 @param[in] TotalTime The total amount of elapsed time in performance\r
1245 counter ticks.\r
1246 @param[in] Timeout The number of performance counter ticks required\r
1247 to reach a timeout condition.\r
1248\r
1249 @retval TRUE A timeout condition has been reached.\r
1250 @retval FALSE A timeout condition has not been reached.\r
1251\r
1252**/\r
1253BOOLEAN\r
1254CheckTimeout (\r
1255 IN OUT UINT64 *PreviousTime,\r
1256 IN UINT64 *TotalTime,\r
1257 IN UINT64 Timeout\r
1258 )\r
1259{\r
1260 UINT64 Start;\r
1261 UINT64 End;\r
1262 UINT64 CurrentTime;\r
1263 INT64 Delta;\r
1264 INT64 Cycle;\r
1265\r
1266 if (Timeout == 0) {\r
1267 return FALSE;\r
1268 }\r
1269 GetPerformanceCounterProperties (&Start, &End);\r
1270 Cycle = End - Start;\r
1271 if (Cycle < 0) {\r
1272 Cycle = -Cycle;\r
1273 }\r
1274 Cycle++;\r
1275 CurrentTime = GetPerformanceCounter();\r
1276 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1277 if (Start > End) {\r
1278 Delta = -Delta;\r
1279 }\r
1280 if (Delta < 0) {\r
1281 Delta += Cycle;\r
1282 }\r
1283 *TotalTime += Delta;\r
1284 *PreviousTime = CurrentTime;\r
1285 if (*TotalTime > Timeout) {\r
1286 return TRUE;\r
1287 }\r
1288 return FALSE;\r
1289}\r
1290\r
6e1987f1
LE
1291/**\r
1292 Helper function that waits until the finished AP count reaches the specified\r
1293 limit, or the specified timeout elapses (whichever comes first).\r
1294\r
1295 @param[in] CpuMpData Pointer to CPU MP Data.\r
1296 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1297 @param[in] TimeLimit The number of microseconds to wait for.\r
1298**/\r
1299VOID\r
1300TimedWaitForApFinish (\r
1301 IN CPU_MP_DATA *CpuMpData,\r
1302 IN UINT32 FinishedApLimit,\r
1303 IN UINT32 TimeLimit\r
1304 )\r
1305{\r
1306 //\r
1307 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1308 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1309 //\r
1310 if (TimeLimit == 0) {\r
1311 return;\r
1312 }\r
1313\r
1314 CpuMpData->TotalTime = 0;\r
1315 CpuMpData->ExpectedTime = CalculateTimeout (\r
1316 TimeLimit,\r
1317 &CpuMpData->CurrentTime\r
1318 );\r
1319 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1320 !CheckTimeout (\r
1321 &CpuMpData->CurrentTime,\r
1322 &CpuMpData->TotalTime,\r
1323 CpuMpData->ExpectedTime\r
1324 )) {\r
1325 CpuPause ();\r
1326 }\r
1327\r
1328 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1329 DEBUG ((\r
1330 DEBUG_VERBOSE,\r
1331 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1332 __FUNCTION__,\r
1333 FinishedApLimit,\r
1334 DivU64x64Remainder (\r
1335 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1336 GetPerformanceCounterProperties (NULL, NULL),\r
1337 NULL\r
1338 )\r
1339 ));\r
1340 }\r
1341}\r
1342\r
08085f08
JF
1343/**\r
1344 Reset an AP to Idle state.\r
1345\r
1346 Any task being executed by the AP will be aborted and the AP\r
1347 will be waiting for a new task in Wait-For-SIPI state.\r
1348\r
1349 @param[in] ProcessorNumber The handle number of processor.\r
1350**/\r
1351VOID\r
1352ResetProcessorToIdleState (\r
1353 IN UINTN ProcessorNumber\r
1354 )\r
1355{\r
1356 CPU_MP_DATA *CpuMpData;\r
1357\r
1358 CpuMpData = GetCpuMpData ();\r
1359\r
cb33bde4 1360 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1361 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1362 while (CpuMpData->FinishedCount < 1) {\r
1363 CpuPause ();\r
1364 }\r
1365 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1366\r
1367 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1368}\r
1369\r
1370/**\r
1371 Searches for the next waiting AP.\r
1372\r
1373 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1374\r
1375 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1376\r
1377 @retval EFI_SUCCESS The next waiting AP has been found.\r
1378 @retval EFI_NOT_FOUND No waiting AP exists.\r
1379\r
1380**/\r
1381EFI_STATUS\r
1382GetNextWaitingProcessorNumber (\r
1383 OUT UINTN *NextProcessorNumber\r
1384 )\r
1385{\r
1386 UINTN ProcessorNumber;\r
1387 CPU_MP_DATA *CpuMpData;\r
1388\r
1389 CpuMpData = GetCpuMpData ();\r
1390\r
1391 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1392 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1393 *NextProcessorNumber = ProcessorNumber;\r
1394 return EFI_SUCCESS;\r
1395 }\r
1396 }\r
1397\r
1398 return EFI_NOT_FOUND;\r
1399}\r
1400\r
1401/** Checks status of specified AP.\r
1402\r
1403 This function checks whether the specified AP has finished the task assigned\r
1404 by StartupThisAP(), and whether timeout expires.\r
1405\r
1406 @param[in] ProcessorNumber The handle number of processor.\r
1407\r
1408 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1409 @retval EFI_TIMEOUT The timeout expires.\r
1410 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1411**/\r
1412EFI_STATUS\r
1413CheckThisAP (\r
1414 IN UINTN ProcessorNumber\r
1415 )\r
1416{\r
1417 CPU_MP_DATA *CpuMpData;\r
1418 CPU_AP_DATA *CpuData;\r
1419\r
1420 CpuMpData = GetCpuMpData ();\r
1421 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1422\r
1423 //\r
2a5997f8 1424 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1425 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1426 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1427 //\r
1428 //\r
1429 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1430 //\r
e048ce88 1431 if (GetApState(CpuData) == CpuStateFinished) {\r
08085f08
JF
1432 if (CpuData->Finished != NULL) {\r
1433 *(CpuData->Finished) = TRUE;\r
1434 }\r
e048ce88 1435 SetApState (CpuData, CpuStateIdle);\r
08085f08
JF
1436 return EFI_SUCCESS;\r
1437 } else {\r
1438 //\r
1439 // If timeout expires for StartupThisAP(), report timeout.\r
1440 //\r
1441 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1442 if (CpuData->Finished != NULL) {\r
1443 *(CpuData->Finished) = FALSE;\r
1444 }\r
1445 //\r
1446 // Reset failed AP to idle state\r
1447 //\r
1448 ResetProcessorToIdleState (ProcessorNumber);\r
1449\r
1450 return EFI_TIMEOUT;\r
1451 }\r
1452 }\r
1453 return EFI_NOT_READY;\r
1454}\r
1455\r
1456/**\r
1457 Checks status of all APs.\r
1458\r
1459 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1460 and whether timeout expires.\r
1461\r
1462 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1463 @retval EFI_TIMEOUT The timeout expires.\r
1464 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1465**/\r
1466EFI_STATUS\r
1467CheckAllAPs (\r
1468 VOID\r
1469 )\r
1470{\r
1471 UINTN ProcessorNumber;\r
1472 UINTN NextProcessorNumber;\r
1473 UINTN ListIndex;\r
1474 EFI_STATUS Status;\r
1475 CPU_MP_DATA *CpuMpData;\r
1476 CPU_AP_DATA *CpuData;\r
1477\r
1478 CpuMpData = GetCpuMpData ();\r
1479\r
1480 NextProcessorNumber = 0;\r
1481\r
1482 //\r
1483 // Go through all APs that are responsible for the StartupAllAPs().\r
1484 //\r
1485 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1486 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1487 continue;\r
1488 }\r
1489\r
1490 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1491 //\r
2a5997f8 1492 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1493 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1494 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1495 //\r
e048ce88 1496 if (GetApState(CpuData) == CpuStateFinished) {\r
2da3e96c 1497 CpuMpData->RunningCount --;\r
08085f08 1498 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
e048ce88 1499 SetApState(CpuData, CpuStateIdle);\r
08085f08
JF
1500\r
1501 //\r
1502 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1503 //\r
1504 if (CpuMpData->SingleThread) {\r
1505 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1506\r
1507 if (!EFI_ERROR (Status)) {\r
1508 WakeUpAP (\r
1509 CpuMpData,\r
1510 FALSE,\r
1511 (UINT32) NextProcessorNumber,\r
1512 CpuMpData->Procedure,\r
cf4e79e4
ED
1513 CpuMpData->ProcArguments,\r
1514 TRUE\r
08085f08
JF
1515 );\r
1516 }\r
1517 }\r
1518 }\r
1519 }\r
1520\r
1521 //\r
1522 // If all APs finish, return EFI_SUCCESS.\r
1523 //\r
2da3e96c 1524 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1525 return EFI_SUCCESS;\r
1526 }\r
1527\r
1528 //\r
1529 // If timeout expires, report timeout.\r
1530 //\r
1531 if (CheckTimeout (\r
1532 &CpuMpData->CurrentTime,\r
1533 &CpuMpData->TotalTime,\r
1534 CpuMpData->ExpectedTime)\r
1535 ) {\r
1536 //\r
1537 // If FailedCpuList is not NULL, record all failed APs in it.\r
1538 //\r
1539 if (CpuMpData->FailedCpuList != NULL) {\r
1540 *CpuMpData->FailedCpuList =\r
2da3e96c 1541 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1542 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1543 }\r
1544 ListIndex = 0;\r
1545\r
1546 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1547 //\r
1548 // Check whether this processor is responsible for StartupAllAPs().\r
1549 //\r
1550 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1551 //\r
1552 // Reset failed APs to idle state\r
1553 //\r
1554 ResetProcessorToIdleState (ProcessorNumber);\r
1555 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1556 if (CpuMpData->FailedCpuList != NULL) {\r
1557 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1558 }\r
1559 }\r
1560 }\r
1561 if (CpuMpData->FailedCpuList != NULL) {\r
1562 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1563 }\r
1564 return EFI_TIMEOUT;\r
1565 }\r
1566 return EFI_NOT_READY;\r
1567}\r
1568\r
3e8ad6bd
JF
1569/**\r
1570 MP Initialize Library initialization.\r
1571\r
1572 This service will allocate AP reset vector and wakeup all APs to do APs\r
1573 initialization.\r
1574\r
1575 This service must be invoked before all other MP Initialize Library\r
1576 service are invoked.\r
1577\r
1578 @retval EFI_SUCCESS MP initialization succeeds.\r
1579 @retval Others MP initialization fails.\r
1580\r
1581**/\r
1582EFI_STATUS\r
1583EFIAPI\r
1584MpInitLibInitialize (\r
1585 VOID\r
1586 )\r
1587{\r
6a2ee2bb
JF
1588 CPU_MP_DATA *OldCpuMpData;\r
1589 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1590 UINT32 MaxLogicalProcessorNumber;\r
1591 UINT32 ApStackSize;\r
f7f85d83 1592 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1593 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1594 UINTN BufferSize;\r
9ebcf0f4 1595 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1596 VOID *MpBuffer;\r
1597 UINTN Buffer;\r
1598 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1599 UINT8 ApLoopMode;\r
e59f8f6b 1600 UINT8 *MonitorBuffer;\r
03a1a925 1601 UINTN Index;\r
f7f85d83 1602 UINTN ApResetVectorSize;\r
e59f8f6b 1603 UINTN BackupBufferAddr;\r
c563077a 1604 UINTN ApIdtBase;\r
6936ee03 1605 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1606\r
1607 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1608 if (OldCpuMpData == NULL) {\r
1609 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1610 } else {\r
1611 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1612 }\r
14e8137c 1613 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1614\r
1615 AsmGetAddressMap (&AddressMap);\r
1616 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1617 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1618 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1619\r
c563077a 1620 //\r
e09b6b59 1621 // Save BSP's Control registers for APs.\r
c563077a
RN
1622 //\r
1623 SaveVolatileRegisters (&VolatileRegisters);\r
1624\r
e59f8f6b
JF
1625 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1626 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1627 BufferSize += ApResetVectorSize;\r
c563077a
RN
1628 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1629 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1630 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1631 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1632 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1633 ASSERT (MpBuffer != NULL);\r
1634 ZeroMem (MpBuffer, BufferSize);\r
1635 Buffer = (UINTN) MpBuffer;\r
1636\r
c563077a
RN
1637 //\r
1638 // The layout of the Buffer is as below:\r
1639 //\r
1640 // +--------------------+ <-- Buffer\r
1641 // AP Stacks (N)\r
1642 // +--------------------+ <-- MonitorBuffer\r
1643 // AP Monitor Filters (N)\r
1644 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1645 // Backup Buffer\r
1646 // +--------------------+\r
1647 // Padding\r
1648 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1649 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1650 // +--------------------+ <-- CpuMpData\r
1651 // CPU_MP_DATA\r
1652 // +--------------------+ <-- CpuMpData->CpuData\r
1653 // CPU_AP_DATA (N)\r
1654 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1655 // CPU_INFO_IN_HOB (N)\r
1656 // +--------------------+\r
1657 //\r
e59f8f6b
JF
1658 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1659 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1660 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1661 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1662 CpuMpData->Buffer = Buffer;\r
1663 CpuMpData->CpuApStackSize = ApStackSize;\r
1664 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1665 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1666 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1667 CpuMpData->CpuCount = 1;\r
1668 CpuMpData->BspNumber = 0;\r
1669 CpuMpData->WaitEvent = NULL;\r
41be0da5 1670 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1671 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1672 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
89164bab
ED
1673 if (OldCpuMpData == NULL) {\r
1674 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03 1675 //\r
89164bab
ED
1676 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1677 // loading microcode time.\r
6936ee03 1678 //\r
89164bab
ED
1679 MicrocodePatchInRam = NULL;\r
1680 if (MaxLogicalProcessorNumber > 1) {\r
1681 MicrocodePatchInRam = AllocatePages (\r
1682 EFI_SIZE_TO_PAGES (\r
1683 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1684 )\r
1685 );\r
1686 }\r
1687 if (MicrocodePatchInRam == NULL) {\r
1688 //\r
1689 // there is only one processor, or no microcode patch is available, or\r
1690 // memory allocation failed\r
1691 //\r
1692 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1693 } else {\r
1694 //\r
1695 // there are multiple processors, and a microcode patch is available, and\r
1696 // memory allocation succeeded\r
1697 //\r
1698 CopyMem (\r
1699 MicrocodePatchInRam,\r
1700 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1701 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1702 );\r
1703 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1704 }\r
1705 }else {\r
1706 CpuMpData->MicrocodePatchRegionSize = OldCpuMpData->MicrocodePatchRegionSize;\r
1707 CpuMpData->MicrocodePatchAddress = OldCpuMpData->MicrocodePatchAddress;\r
6936ee03 1708 }\r
e59f8f6b 1709 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1710\r
1711 //\r
1712 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1713 //\r
c563077a
RN
1714 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1715 Buffer + BufferSize);\r
1716\r
1717 //\r
1718 // Duplicate BSP's IDT to APs.\r
1719 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1720 //\r
c563077a
RN
1721 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1722 VolatileRegisters.Idtr.Base = ApIdtBase;\r
e09b6b59
JW
1723 //\r
1724 // Don't pass BSP's TR to APs to avoid AP init failure.\r
1725 //\r
1726 VolatileRegisters.Tr = 0;\r
c563077a 1727 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1728 //\r
03a1a925
JF
1729 // Set BSP basic information\r
1730 //\r
f2655dcf 1731 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1732 //\r
e59f8f6b
JF
1733 // Save assembly code information\r
1734 //\r
1735 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1736 //\r
1737 // Finally set AP loop mode\r
1738 //\r
1739 CpuMpData->ApLoopMode = ApLoopMode;\r
1740 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1741\r
1742 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1743\r
e59f8f6b 1744 //\r
03a1a925
JF
1745 // Set up APs wakeup signal buffer\r
1746 //\r
1747 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1748 CpuMpData->CpuData[Index].StartupApSignal =\r
1749 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1750 }\r
94f63c76
JF
1751 //\r
1752 // Load Microcode on BSP\r
1753 //\r
2a089134 1754 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1755 //\r
e59f8f6b
JF
1756 // Store BSP's MTRR setting\r
1757 //\r
1758 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1759 //\r
1760 // Enable the local APIC for Virtual Wire Mode.\r
1761 //\r
1762 ProgramVirtualWireMode ();\r
e59f8f6b 1763\r
6a2ee2bb 1764 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1765 if (MaxLogicalProcessorNumber > 1) {\r
1766 //\r
1767 // Wakeup all APs and calculate the processor count in system\r
1768 //\r
1769 CollectProcessorCount (CpuMpData);\r
1770 }\r
6a2ee2bb
JF
1771 } else {\r
1772 //\r
1773 // APs have been wakeup before, just get the CPU Information\r
1774 // from HOB\r
1775 //\r
1776 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1777 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1778 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1779 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1780 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1781 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1782 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1783 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1784 CpuMpData->X2ApicEnable = TRUE;\r
1785 }\r
31a1e4da 1786 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1787 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1788 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1789 }\r
14e8137c
JF
1790 if (MaxLogicalProcessorNumber > 1) {\r
1791 //\r
1792 // Wakeup APs to do some AP initialize sync\r
1793 //\r
cf4e79e4 1794 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
14e8137c
JF
1795 //\r
1796 // Wait for all APs finished initialization\r
1797 //\r
1798 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1799 CpuPause ();\r
1800 }\r
1801 CpuMpData->InitFlag = ApInitDone;\r
1802 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1803 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1804 }\r
6a2ee2bb
JF
1805 }\r
1806 }\r
93ca4c0f
JF
1807\r
1808 //\r
1809 // Initialize global data for MP support\r
1810 //\r
1811 InitMpGlobalData (CpuMpData);\r
1812\r
f7f85d83 1813 return EFI_SUCCESS;\r
3e8ad6bd
JF
1814}\r
1815\r
1816/**\r
1817 Gets detailed MP-related information on the requested processor at the\r
1818 instant this call is made. This service may only be called from the BSP.\r
1819\r
1820 @param[in] ProcessorNumber The handle number of processor.\r
1821 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1822 the requested processor is deposited.\r
1823 @param[out] HealthData Return processor health data.\r
1824\r
1825 @retval EFI_SUCCESS Processor information was returned.\r
1826 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1827 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1828 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1829 ProcessorNumber does not exist in the platform.\r
1830 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1831\r
1832**/\r
1833EFI_STATUS\r
1834EFIAPI\r
1835MpInitLibGetProcessorInfo (\r
1836 IN UINTN ProcessorNumber,\r
1837 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1838 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1839 )\r
1840{\r
ad52f25e
JF
1841 CPU_MP_DATA *CpuMpData;\r
1842 UINTN CallerNumber;\r
31a1e4da 1843 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1844\r
1845 CpuMpData = GetCpuMpData ();\r
31a1e4da 1846 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1847\r
1848 //\r
1849 // Check whether caller processor is BSP\r
1850 //\r
1851 MpInitLibWhoAmI (&CallerNumber);\r
1852 if (CallerNumber != CpuMpData->BspNumber) {\r
1853 return EFI_DEVICE_ERROR;\r
1854 }\r
1855\r
1856 if (ProcessorInfoBuffer == NULL) {\r
1857 return EFI_INVALID_PARAMETER;\r
1858 }\r
1859\r
1860 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1861 return EFI_NOT_FOUND;\r
1862 }\r
1863\r
31a1e4da 1864 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1865 ProcessorInfoBuffer->StatusFlag = 0;\r
1866 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1867 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1868 }\r
1869 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1870 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1871 }\r
1872 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1873 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1874 } else {\r
1875 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1876 }\r
1877\r
1878 //\r
1879 // Get processor location information\r
1880 //\r
262128e5 1881 GetProcessorLocationByApicId (\r
31a1e4da 1882 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1883 &ProcessorInfoBuffer->Location.Package,\r
1884 &ProcessorInfoBuffer->Location.Core,\r
1885 &ProcessorInfoBuffer->Location.Thread\r
1886 );\r
ad52f25e
JF
1887\r
1888 if (HealthData != NULL) {\r
31a1e4da 1889 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1890 }\r
1891\r
1892 return EFI_SUCCESS;\r
3e8ad6bd 1893}\r
ad52f25e 1894\r
41be0da5
JF
1895/**\r
1896 Worker function to switch the requested AP to be the BSP from that point onward.\r
1897\r
1898 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1899 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1900 enabled AP. Otherwise, it will be disabled.\r
1901\r
1902 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1903 @retval others Failed to switch BSP.\r
41be0da5
JF
1904\r
1905**/\r
1906EFI_STATUS\r
1907SwitchBSPWorker (\r
1908 IN UINTN ProcessorNumber,\r
1909 IN BOOLEAN EnableOldBSP\r
1910 )\r
1911{\r
1912 CPU_MP_DATA *CpuMpData;\r
1913 UINTN CallerNumber;\r
1914 CPU_STATE State;\r
1915 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1916 BOOLEAN OldInterruptState;\r
26b43433 1917 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1918\r
26b43433
JF
1919 //\r
1920 // Save and Disable Local APIC timer interrupt\r
1921 //\r
1922 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1923 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1924 //\r
1925 // Before send both BSP and AP to a procedure to exchange their roles,\r
1926 // interrupt must be disabled. This is because during the exchange role\r
1927 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1928 // be corrupted, since interrupt return address will be pushed to stack\r
1929 // by hardware.\r
1930 //\r
1931 OldInterruptState = SaveAndDisableInterrupts ();\r
1932\r
1933 //\r
1934 // Mask LINT0 & LINT1 for the old BSP\r
1935 //\r
1936 DisableLvtInterrupts ();\r
41be0da5
JF
1937\r
1938 CpuMpData = GetCpuMpData ();\r
1939\r
1940 //\r
1941 // Check whether caller processor is BSP\r
1942 //\r
1943 MpInitLibWhoAmI (&CallerNumber);\r
1944 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1945 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1946 }\r
1947\r
1948 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1949 return EFI_NOT_FOUND;\r
1950 }\r
1951\r
1952 //\r
1953 // Check whether specified AP is disabled\r
1954 //\r
1955 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1956 if (State == CpuStateDisabled) {\r
1957 return EFI_INVALID_PARAMETER;\r
1958 }\r
1959\r
1960 //\r
1961 // Check whether ProcessorNumber specifies the current BSP\r
1962 //\r
1963 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1964 return EFI_INVALID_PARAMETER;\r
1965 }\r
1966\r
1967 //\r
1968 // Check whether specified AP is busy\r
1969 //\r
1970 if (State == CpuStateBusy) {\r
1971 return EFI_NOT_READY;\r
1972 }\r
1973\r
1974 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1975 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1976 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1977 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1978\r
1979 //\r
1980 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1981 //\r
1982 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1983 ApicBaseMsr.Bits.BSP = 0;\r
1984 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1985\r
1986 //\r
1987 // Need to wakeUp AP (future BSP).\r
1988 //\r
cf4e79e4 1989 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
1990\r
1991 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1992\r
1993 //\r
1994 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1995 //\r
1996 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1997 ApicBaseMsr.Bits.BSP = 1;\r
1998 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1999 ProgramVirtualWireMode ();\r
41be0da5
JF
2000\r
2001 //\r
2002 // Wait for old BSP finished AP task\r
2003 //\r
e048ce88 2004 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateFinished) {\r
41be0da5
JF
2005 CpuPause ();\r
2006 }\r
2007\r
2008 CpuMpData->SwitchBspFlag = FALSE;\r
2009 //\r
2010 // Set old BSP enable state\r
2011 //\r
2012 if (!EnableOldBSP) {\r
2013 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
2014 } else {\r
2015 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
2016 }\r
2017 //\r
2018 // Save new BSP number\r
2019 //\r
2020 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
2021\r
a8d75a18
JF
2022 //\r
2023 // Restore interrupt state.\r
2024 //\r
2025 SetInterruptState (OldInterruptState);\r
2026\r
26b43433
JF
2027 if (OldTimerInterruptState) {\r
2028 EnableApicTimerInterrupt ();\r
2029 }\r
a8d75a18 2030\r
41be0da5
JF
2031 return EFI_SUCCESS;\r
2032}\r
ad52f25e 2033\r
e37109bc
JF
2034/**\r
2035 Worker function to let the caller enable or disable an AP from this point onward.\r
2036 This service may only be called from the BSP.\r
2037\r
2038 @param[in] ProcessorNumber The handle number of AP.\r
2039 @param[in] EnableAP Specifies the new state for the processor for\r
2040 enabled, FALSE for disabled.\r
2041 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
2042 the new health status of the AP.\r
2043\r
2044 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
2045 @retval others Failed to Enable/Disable AP.\r
2046\r
2047**/\r
2048EFI_STATUS\r
2049EnableDisableApWorker (\r
2050 IN UINTN ProcessorNumber,\r
2051 IN BOOLEAN EnableAP,\r
2052 IN UINT32 *HealthFlag OPTIONAL\r
2053 )\r
2054{\r
2055 CPU_MP_DATA *CpuMpData;\r
2056 UINTN CallerNumber;\r
2057\r
2058 CpuMpData = GetCpuMpData ();\r
2059\r
2060 //\r
2061 // Check whether caller processor is BSP\r
2062 //\r
2063 MpInitLibWhoAmI (&CallerNumber);\r
2064 if (CallerNumber != CpuMpData->BspNumber) {\r
2065 return EFI_DEVICE_ERROR;\r
2066 }\r
2067\r
2068 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2069 return EFI_INVALID_PARAMETER;\r
2070 }\r
2071\r
2072 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2073 return EFI_NOT_FOUND;\r
2074 }\r
2075\r
2076 if (!EnableAP) {\r
2077 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2078 } else {\r
d5fdae96 2079 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2080 }\r
2081\r
2082 if (HealthFlag != NULL) {\r
2083 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2084 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2085 }\r
2086\r
2087 return EFI_SUCCESS;\r
2088}\r
2089\r
3e8ad6bd
JF
2090/**\r
2091 This return the handle number for the calling processor. This service may be\r
2092 called from the BSP and APs.\r
2093\r
2094 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2095 The range is from 0 to the total number of\r
2096 logical processors minus 1. The total number of\r
2097 logical processors can be retrieved by\r
2098 MpInitLibGetNumberOfProcessors().\r
2099\r
2100 @retval EFI_SUCCESS The current processor handle number was returned\r
2101 in ProcessorNumber.\r
2102 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2103 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2104\r
2105**/\r
2106EFI_STATUS\r
2107EFIAPI\r
2108MpInitLibWhoAmI (\r
2109 OUT UINTN *ProcessorNumber\r
2110 )\r
2111{\r
5c9e0997
JF
2112 CPU_MP_DATA *CpuMpData;\r
2113\r
2114 if (ProcessorNumber == NULL) {\r
2115 return EFI_INVALID_PARAMETER;\r
2116 }\r
2117\r
2118 CpuMpData = GetCpuMpData ();\r
2119\r
2120 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2121}\r
809213a6 2122\r
3e8ad6bd
JF
2123/**\r
2124 Retrieves the number of logical processor in the platform and the number of\r
2125 those logical processors that are enabled on this boot. This service may only\r
2126 be called from the BSP.\r
2127\r
2128 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2129 processors in the system, including the BSP\r
2130 and disabled APs.\r
2131 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2132 processors that exist in system, including\r
2133 the BSP.\r
2134\r
2135 @retval EFI_SUCCESS The number of logical processors and enabled\r
2136 logical processors was retrieved.\r
2137 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2138 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2139 is NULL.\r
2140 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2141\r
2142**/\r
2143EFI_STATUS\r
2144EFIAPI\r
2145MpInitLibGetNumberOfProcessors (\r
2146 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2147 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2148 )\r
2149{\r
809213a6
JF
2150 CPU_MP_DATA *CpuMpData;\r
2151 UINTN CallerNumber;\r
2152 UINTN ProcessorNumber;\r
2153 UINTN EnabledProcessorNumber;\r
2154 UINTN Index;\r
2155\r
2156 CpuMpData = GetCpuMpData ();\r
2157\r
2158 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2159 return EFI_INVALID_PARAMETER;\r
2160 }\r
2161\r
2162 //\r
2163 // Check whether caller processor is BSP\r
2164 //\r
2165 MpInitLibWhoAmI (&CallerNumber);\r
2166 if (CallerNumber != CpuMpData->BspNumber) {\r
2167 return EFI_DEVICE_ERROR;\r
2168 }\r
2169\r
2170 ProcessorNumber = CpuMpData->CpuCount;\r
2171 EnabledProcessorNumber = 0;\r
2172 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2173 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2174 EnabledProcessorNumber ++;\r
2175 }\r
2176 }\r
2177\r
2178 if (NumberOfProcessors != NULL) {\r
2179 *NumberOfProcessors = ProcessorNumber;\r
2180 }\r
2181 if (NumberOfEnabledProcessors != NULL) {\r
2182 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2183 }\r
2184\r
2185 return EFI_SUCCESS;\r
3e8ad6bd 2186}\r
6a2ee2bb 2187\r
809213a6 2188\r
86efe976
JF
2189/**\r
2190 Worker function to execute a caller provided function on all enabled APs.\r
2191\r
2192 @param[in] Procedure A pointer to the function to be run on\r
2193 enabled APs of the system.\r
2194 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2195 the function specified by Procedure one by\r
2196 one, in ascending order of processor handle\r
2197 number. If FALSE, then all the enabled APs\r
2198 execute the function specified by Procedure\r
2199 simultaneously.\r
ee0c39fa 2200 @param[in] ExcludeBsp Whether let BSP also trig this task.\r
86efe976
JF
2201 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2202 service.\r
367284e7 2203 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2204 APs to return from Procedure, either for\r
2205 blocking or non-blocking mode.\r
2206 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2207 all APs.\r
2208 @param[out] FailedCpuList If all APs finish successfully, then its\r
2209 content is set to NULL. If not all APs\r
2210 finish before timeout expires, then its\r
2211 content is set to address of the buffer\r
2212 holding handle numbers of the failed APs.\r
2213\r
2214 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2215 the timeout expired.\r
2216 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2217 to all enabled APs.\r
2218 @retval others Failed to Startup all APs.\r
2219\r
2220**/\r
2221EFI_STATUS\r
ee0c39fa 2222StartupAllCPUsWorker (\r
86efe976
JF
2223 IN EFI_AP_PROCEDURE Procedure,\r
2224 IN BOOLEAN SingleThread,\r
ee0c39fa 2225 IN BOOLEAN ExcludeBsp,\r
86efe976
JF
2226 IN EFI_EVENT WaitEvent OPTIONAL,\r
2227 IN UINTN TimeoutInMicroseconds,\r
2228 IN VOID *ProcedureArgument OPTIONAL,\r
2229 OUT UINTN **FailedCpuList OPTIONAL\r
2230 )\r
2231{\r
2232 EFI_STATUS Status;\r
2233 CPU_MP_DATA *CpuMpData;\r
2234 UINTN ProcessorCount;\r
2235 UINTN ProcessorNumber;\r
2236 UINTN CallerNumber;\r
2237 CPU_AP_DATA *CpuData;\r
2238 BOOLEAN HasEnabledAp;\r
2239 CPU_STATE ApState;\r
2240\r
2241 CpuMpData = GetCpuMpData ();\r
2242\r
2243 if (FailedCpuList != NULL) {\r
2244 *FailedCpuList = NULL;\r
2245 }\r
2246\r
ee0c39fa 2247 if (CpuMpData->CpuCount == 1 && ExcludeBsp) {\r
86efe976
JF
2248 return EFI_NOT_STARTED;\r
2249 }\r
2250\r
2251 if (Procedure == NULL) {\r
2252 return EFI_INVALID_PARAMETER;\r
2253 }\r
2254\r
2255 //\r
2256 // Check whether caller processor is BSP\r
2257 //\r
2258 MpInitLibWhoAmI (&CallerNumber);\r
2259 if (CallerNumber != CpuMpData->BspNumber) {\r
2260 return EFI_DEVICE_ERROR;\r
2261 }\r
2262\r
2263 //\r
2264 // Update AP state\r
2265 //\r
2266 CheckAndUpdateApsStatus ();\r
2267\r
2268 ProcessorCount = CpuMpData->CpuCount;\r
2269 HasEnabledAp = FALSE;\r
2270 //\r
2271 // Check whether all enabled APs are idle.\r
2272 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2273 //\r
2274 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2275 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2276 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2277 ApState = GetApState (CpuData);\r
2278 if (ApState != CpuStateDisabled) {\r
2279 HasEnabledAp = TRUE;\r
2280 if (ApState != CpuStateIdle) {\r
2281 //\r
2282 // If any enabled APs are busy, return EFI_NOT_READY.\r
2283 //\r
2284 return EFI_NOT_READY;\r
2285 }\r
2286 }\r
2287 }\r
2288 }\r
2289\r
ee0c39fa 2290 if (!HasEnabledAp && ExcludeBsp) {\r
86efe976 2291 //\r
ee0c39fa 2292 // If no enabled AP exists and not include Bsp to do the procedure, return EFI_NOT_STARTED.\r
86efe976
JF
2293 //\r
2294 return EFI_NOT_STARTED;\r
2295 }\r
2296\r
2da3e96c 2297 CpuMpData->RunningCount = 0;\r
86efe976
JF
2298 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2299 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2300 CpuData->Waiting = FALSE;\r
2301 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2302 if (CpuData->State == CpuStateIdle) {\r
2303 //\r
2304 // Mark this processor as responsible for current calling.\r
2305 //\r
2306 CpuData->Waiting = TRUE;\r
2da3e96c 2307 CpuMpData->RunningCount++;\r
86efe976
JF
2308 }\r
2309 }\r
2310 }\r
2311\r
2312 CpuMpData->Procedure = Procedure;\r
2313 CpuMpData->ProcArguments = ProcedureArgument;\r
2314 CpuMpData->SingleThread = SingleThread;\r
2315 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2316 CpuMpData->FailedCpuList = FailedCpuList;\r
2317 CpuMpData->ExpectedTime = CalculateTimeout (\r
2318 TimeoutInMicroseconds,\r
2319 &CpuMpData->CurrentTime\r
2320 );\r
2321 CpuMpData->TotalTime = 0;\r
2322 CpuMpData->WaitEvent = WaitEvent;\r
2323\r
2324 if (!SingleThread) {\r
cf4e79e4 2325 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2326 } else {\r
2327 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2328 if (ProcessorNumber == CallerNumber) {\r
2329 continue;\r
2330 }\r
2331 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2332 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2333 break;\r
2334 }\r
2335 }\r
2336 }\r
2337\r
ee0c39fa
ED
2338 if (!ExcludeBsp) {\r
2339 //\r
2340 // Start BSP.\r
2341 //\r
2342 Procedure (ProcedureArgument);\r
2343 }\r
2344\r
86efe976
JF
2345 Status = EFI_SUCCESS;\r
2346 if (WaitEvent == NULL) {\r
2347 do {\r
2348 Status = CheckAllAPs ();\r
2349 } while (Status == EFI_NOT_READY);\r
2350 }\r
2351\r
2352 return Status;\r
2353}\r
2354\r
20ae5774
JF
2355/**\r
2356 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2357 function.\r
2358\r
2359 @param[in] Procedure A pointer to the function to be run on\r
2360 enabled APs of the system.\r
2361 @param[in] ProcessorNumber The handle number of the AP.\r
2362 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2363 service.\r
367284e7 2364 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2365 APs to return from Procedure, either for\r
2366 blocking or non-blocking mode.\r
2367 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2368 all APs.\r
2369 @param[out] Finished If AP returns from Procedure before the\r
2370 timeout expires, its content is set to TRUE.\r
2371 Otherwise, the value is set to FALSE.\r
2372\r
2373 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2374 the timeout expires.\r
2375 @retval others Failed to Startup AP.\r
2376\r
2377**/\r
2378EFI_STATUS\r
2379StartupThisAPWorker (\r
2380 IN EFI_AP_PROCEDURE Procedure,\r
2381 IN UINTN ProcessorNumber,\r
2382 IN EFI_EVENT WaitEvent OPTIONAL,\r
2383 IN UINTN TimeoutInMicroseconds,\r
2384 IN VOID *ProcedureArgument OPTIONAL,\r
2385 OUT BOOLEAN *Finished OPTIONAL\r
2386 )\r
2387{\r
2388 EFI_STATUS Status;\r
2389 CPU_MP_DATA *CpuMpData;\r
2390 CPU_AP_DATA *CpuData;\r
2391 UINTN CallerNumber;\r
2392\r
2393 CpuMpData = GetCpuMpData ();\r
2394\r
2395 if (Finished != NULL) {\r
2396 *Finished = FALSE;\r
2397 }\r
2398\r
2399 //\r
2400 // Check whether caller processor is BSP\r
2401 //\r
2402 MpInitLibWhoAmI (&CallerNumber);\r
2403 if (CallerNumber != CpuMpData->BspNumber) {\r
2404 return EFI_DEVICE_ERROR;\r
2405 }\r
2406\r
2407 //\r
2408 // Check whether processor with the handle specified by ProcessorNumber exists\r
2409 //\r
2410 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2411 return EFI_NOT_FOUND;\r
2412 }\r
2413\r
2414 //\r
2415 // Check whether specified processor is BSP\r
2416 //\r
2417 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2418 return EFI_INVALID_PARAMETER;\r
2419 }\r
2420\r
2421 //\r
2422 // Check parameter Procedure\r
2423 //\r
2424 if (Procedure == NULL) {\r
2425 return EFI_INVALID_PARAMETER;\r
2426 }\r
2427\r
2428 //\r
2429 // Update AP state\r
2430 //\r
2431 CheckAndUpdateApsStatus ();\r
2432\r
2433 //\r
2434 // Check whether specified AP is disabled\r
2435 //\r
2436 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2437 return EFI_INVALID_PARAMETER;\r
2438 }\r
2439\r
2440 //\r
2441 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2442 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2443 // CheckAPsStatus() will check completion and timeout periodically.\r
2444 //\r
2445 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2446 CpuData->WaitEvent = WaitEvent;\r
2447 CpuData->Finished = Finished;\r
2448 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2449 CpuData->TotalTime = 0;\r
2450\r
cf4e79e4 2451 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2452\r
2453 //\r
2454 // If WaitEvent is NULL, execute in blocking mode.\r
2455 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2456 //\r
2457 Status = EFI_SUCCESS;\r
2458 if (WaitEvent == NULL) {\r
2459 do {\r
2460 Status = CheckThisAP (ProcessorNumber);\r
2461 } while (Status == EFI_NOT_READY);\r
2462 }\r
2463\r
2464 return Status;\r
2465}\r
2466\r
93ca4c0f
JF
2467/**\r
2468 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2469\r
2470 @return The pointer to CPU MP Data structure.\r
2471**/\r
2472CPU_MP_DATA *\r
2473GetCpuMpDataFromGuidedHob (\r
2474 VOID\r
2475 )\r
2476{\r
2477 EFI_HOB_GUID_TYPE *GuidHob;\r
2478 VOID *DataInHob;\r
2479 CPU_MP_DATA *CpuMpData;\r
2480\r
2481 CpuMpData = NULL;\r
2482 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2483 if (GuidHob != NULL) {\r
2484 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2485 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2486 }\r
2487 return CpuMpData;\r
2488}\r
42c37b3b 2489\r
ee0c39fa
ED
2490/**\r
2491 This service executes a caller provided function on all enabled CPUs.\r
2492\r
2493 @param[in] Procedure A pointer to the function to be run on\r
2494 enabled APs of the system. See type\r
2495 EFI_AP_PROCEDURE.\r
2496 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
2497 APs to return from Procedure, either for\r
2498 blocking or non-blocking mode. Zero means\r
2499 infinity. TimeoutInMicroseconds is ignored\r
2500 for BSP.\r
2501 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2502 all APs.\r
2503\r
2504 @retval EFI_SUCCESS In blocking mode, all CPUs have finished before\r
2505 the timeout expired.\r
2506 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2507 to all enabled CPUs.\r
2508 @retval EFI_DEVICE_ERROR Caller processor is AP.\r
2509 @retval EFI_NOT_READY Any enabled APs are busy.\r
2510 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2511 @retval EFI_TIMEOUT In blocking mode, the timeout expired before\r
2512 all enabled APs have finished.\r
2513 @retval EFI_INVALID_PARAMETER Procedure is NULL.\r
2514\r
2515**/\r
2516EFI_STATUS\r
2517EFIAPI\r
2518MpInitLibStartupAllCPUs (\r
2519 IN EFI_AP_PROCEDURE Procedure,\r
2520 IN UINTN TimeoutInMicroseconds,\r
2521 IN VOID *ProcedureArgument OPTIONAL\r
2522 )\r
2523{\r
2524 return StartupAllCPUsWorker (\r
2525 Procedure,\r
2526 FALSE,\r
2527 FALSE,\r
2528 NULL,\r
2529 TimeoutInMicroseconds,\r
2530 ProcedureArgument,\r
2531 NULL\r
2532 );\r
2533}\r