]> git.proxmox.com Git - mirror_edk2.git/blame - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Not use disabled AP when call StartAllAPs.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
CommitLineData
3e8ad6bd
JF
1/** @file\r
2 CPU MP Initialize Library common functions.\r
3\r
a2ea6894 4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>\r
3e8ad6bd
JF
5 This program and the accompanying materials\r
6 are licensed and made available under the terms and conditions of the BSD License\r
7 which accompanies this distribution. The full text of the license may be found at\r
8 http://opensource.org/licenses/bsd-license.php\r
9\r
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
12\r
13**/\r
14\r
15#include "MpLib.h"\r
16\r
93ca4c0f
JF
17EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;\r
18\r
7c3f2a12
JF
19/**\r
20 The function will check if BSP Execute Disable is enabled.\r
844b2d07
JF
21\r
22 DxeIpl may have enabled Execute Disable for BSP, APs need to\r
23 get the status and sync up the settings.\r
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is\r
25 not working actually.\r
7c3f2a12
JF
26\r
27 @retval TRUE BSP Execute Disable is enabled.\r
28 @retval FALSE BSP Execute Disable is not enabled.\r
29**/\r
30BOOLEAN\r
31IsBspExecuteDisableEnabled (\r
32 VOID\r
33 )\r
34{\r
35 UINT32 Eax;\r
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;\r
37 MSR_IA32_EFER_REGISTER EferMsr;\r
38 BOOLEAN Enabled;\r
844b2d07 39 IA32_CR0 Cr0;\r
7c3f2a12
JF
40\r
41 Enabled = FALSE;\r
844b2d07
JF
42 Cr0.UintN = AsmReadCr0 ();\r
43 if (Cr0.Bits.PG != 0) {\r
7c3f2a12 44 //\r
844b2d07 45 // If CR0 Paging bit is set\r
7c3f2a12 46 //\r
844b2d07
JF
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);\r
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {\r
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);\r
7c3f2a12 50 //\r
844b2d07
JF
51 // CPUID 0x80000001\r
52 // Bit 20: Execute Disable Bit available.\r
7c3f2a12 53 //\r
844b2d07
JF
54 if (Edx.Bits.NX != 0) {\r
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);\r
56 //\r
57 // MSR 0xC0000080\r
58 // Bit 11: Execute Disable Bit enable.\r
59 //\r
60 if (EferMsr.Bits.NXE != 0) {\r
61 Enabled = TRUE;\r
62 }\r
7c3f2a12
JF
63 }\r
64 }\r
65 }\r
66\r
67 return Enabled;\r
68}\r
69\r
41be0da5
JF
70/**\r
71 Worker function for SwitchBSP().\r
72\r
73 Worker function for SwitchBSP(), assigned to the AP which is intended\r
74 to become BSP.\r
75\r
76 @param[in] Buffer Pointer to CPU MP Data\r
77**/\r
78VOID\r
79EFIAPI\r
80FutureBSPProc (\r
81 IN VOID *Buffer\r
82 )\r
83{\r
84 CPU_MP_DATA *DataInHob;\r
85\r
86 DataInHob = (CPU_MP_DATA *) Buffer;\r
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);\r
88}\r
89\r
03a1a925
JF
90/**\r
91 Get the Application Processors state.\r
92\r
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
94\r
95 @return The AP status\r
96**/\r
97CPU_STATE\r
98GetApState (\r
99 IN CPU_AP_DATA *CpuData\r
100 )\r
101{\r
102 return CpuData->State;\r
103}\r
104\r
105/**\r
106 Set the Application Processors state.\r
107\r
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP\r
109 @param[in] State The AP status\r
110**/\r
111VOID\r
112SetApState (\r
113 IN CPU_AP_DATA *CpuData,\r
114 IN CPU_STATE State\r
115 )\r
116{\r
117 AcquireSpinLock (&CpuData->ApLock);\r
118 CpuData->State = State;\r
119 ReleaseSpinLock (&CpuData->ApLock);\r
120}\r
3e8ad6bd 121\r
ffab2442 122/**\r
f70174d6 123 Save BSP's local APIC timer setting.\r
ffab2442
JF
124\r
125 @param[in] CpuMpData Pointer to CPU MP Data\r
126**/\r
127VOID\r
128SaveLocalApicTimerSetting (\r
129 IN CPU_MP_DATA *CpuMpData\r
130 )\r
131{\r
132 //\r
133 // Record the current local APIC timer setting of BSP\r
134 //\r
135 GetApicTimerState (\r
136 &CpuMpData->DivideValue,\r
137 &CpuMpData->PeriodicMode,\r
138 &CpuMpData->Vector\r
139 );\r
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();\r
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();\r
142}\r
143\r
144/**\r
145 Sync local APIC timer setting from BSP to AP.\r
146\r
147 @param[in] CpuMpData Pointer to CPU MP Data\r
148**/\r
149VOID\r
150SyncLocalApicTimerSetting (\r
151 IN CPU_MP_DATA *CpuMpData\r
152 )\r
153{\r
154 //\r
155 // Sync local APIC timer setting from BSP to AP\r
156 //\r
157 InitializeApicTimer (\r
158 CpuMpData->DivideValue,\r
159 CpuMpData->CurrentTimerCount,\r
160 CpuMpData->PeriodicMode,\r
161 CpuMpData->Vector\r
162 );\r
163 //\r
164 // Disable AP's local APIC timer interrupt\r
165 //\r
166 DisableApicTimerInterrupt ();\r
167}\r
168\r
68cb9330
JF
169/**\r
170 Save the volatile registers required to be restored following INIT IPI.\r
171\r
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters\r
173**/\r
174VOID\r
175SaveVolatileRegisters (\r
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters\r
177 )\r
178{\r
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
180\r
181 VolatileRegisters->Cr0 = AsmReadCr0 ();\r
182 VolatileRegisters->Cr3 = AsmReadCr3 ();\r
183 VolatileRegisters->Cr4 = AsmReadCr4 ();\r
184\r
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
186 if (VersionInfoEdx.Bits.DE != 0) {\r
187 //\r
188 // If processor supports Debugging Extensions feature\r
189 // by CPUID.[EAX=01H]:EDX.BIT2\r
190 //\r
191 VolatileRegisters->Dr0 = AsmReadDr0 ();\r
192 VolatileRegisters->Dr1 = AsmReadDr1 ();\r
193 VolatileRegisters->Dr2 = AsmReadDr2 ();\r
194 VolatileRegisters->Dr3 = AsmReadDr3 ();\r
195 VolatileRegisters->Dr6 = AsmReadDr6 ();\r
196 VolatileRegisters->Dr7 = AsmReadDr7 ();\r
197 }\r
e9415e48
JW
198\r
199 AsmReadGdtr (&VolatileRegisters->Gdtr);\r
200 AsmReadIdtr (&VolatileRegisters->Idtr);\r
201 VolatileRegisters->Tr = AsmReadTr ();\r
68cb9330
JF
202}\r
203\r
204/**\r
205 Restore the volatile registers following INIT IPI.\r
206\r
207 @param[in] VolatileRegisters Pointer to volatile resisters\r
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported\r
209 FALSE: Do not restore DRx\r
210**/\r
211VOID\r
212RestoreVolatileRegisters (\r
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,\r
214 IN BOOLEAN IsRestoreDr\r
215 )\r
216{\r
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;\r
e9415e48 218 IA32_TSS_DESCRIPTOR *Tss;\r
68cb9330
JF
219\r
220 AsmWriteCr0 (VolatileRegisters->Cr0);\r
221 AsmWriteCr3 (VolatileRegisters->Cr3);\r
222 AsmWriteCr4 (VolatileRegisters->Cr4);\r
223\r
224 if (IsRestoreDr) {\r
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);\r
226 if (VersionInfoEdx.Bits.DE != 0) {\r
227 //\r
228 // If processor supports Debugging Extensions feature\r
229 // by CPUID.[EAX=01H]:EDX.BIT2\r
230 //\r
231 AsmWriteDr0 (VolatileRegisters->Dr0);\r
232 AsmWriteDr1 (VolatileRegisters->Dr1);\r
233 AsmWriteDr2 (VolatileRegisters->Dr2);\r
234 AsmWriteDr3 (VolatileRegisters->Dr3);\r
235 AsmWriteDr6 (VolatileRegisters->Dr6);\r
236 AsmWriteDr7 (VolatileRegisters->Dr7);\r
237 }\r
238 }\r
e9415e48
JW
239\r
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);\r
241 AsmWriteIdtr (&VolatileRegisters->Idtr);\r
242 if (VolatileRegisters->Tr != 0 &&\r
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {\r
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +\r
245 VolatileRegisters->Tr);\r
d69ba6a7 246 if (Tss->Bits.P == 1) {\r
e9415e48
JW
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case\r
248 AsmWriteTr (VolatileRegisters->Tr);\r
249 }\r
250 }\r
68cb9330
JF
251}\r
252\r
9ebcf0f4
JF
253/**\r
254 Detect whether Mwait-monitor feature is supported.\r
255\r
256 @retval TRUE Mwait-monitor feature is supported.\r
257 @retval FALSE Mwait-monitor feature is not supported.\r
258**/\r
259BOOLEAN\r
260IsMwaitSupport (\r
261 VOID\r
262 )\r
263{\r
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;\r
265\r
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);\r
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;\r
268}\r
269\r
270/**\r
271 Get AP loop mode.\r
272\r
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.\r
274\r
275 @return The AP loop mode.\r
276**/\r
277UINT8\r
278GetApLoopMode (\r
279 OUT UINT32 *MonitorFilterSize\r
280 )\r
281{\r
282 UINT8 ApLoopMode;\r
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;\r
284\r
285 ASSERT (MonitorFilterSize != NULL);\r
286\r
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);\r
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);\r
289 if (ApLoopMode == ApInMwaitLoop) {\r
290 if (!IsMwaitSupport ()) {\r
291 //\r
292 // If processor does not support MONITOR/MWAIT feature,\r
293 // force AP in Hlt-loop mode\r
294 //\r
295 ApLoopMode = ApInHltLoop;\r
296 }\r
297 }\r
298\r
299 if (ApLoopMode != ApInMwaitLoop) {\r
300 *MonitorFilterSize = sizeof (UINT32);\r
301 } else {\r
302 //\r
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes\r
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT\r
305 //\r
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);\r
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;\r
308 }\r
309\r
310 return ApLoopMode;\r
311}\r
b8b04307 312\r
8a2d564b
JF
313/**\r
314 Sort the APIC ID of all processors.\r
315\r
316 This function sorts the APIC ID of all processors so that processor number is\r
317 assigned in the ascending order of APIC ID which eases MP debugging.\r
318\r
319 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
320**/\r
321VOID\r
322SortApicId (\r
323 IN CPU_MP_DATA *CpuMpData\r
324 )\r
325{\r
326 UINTN Index1;\r
327 UINTN Index2;\r
328 UINTN Index3;\r
329 UINT32 ApicId;\r
31a1e4da 330 CPU_INFO_IN_HOB CpuInfo;\r
8a2d564b
JF
331 UINT32 ApCount;\r
332 CPU_INFO_IN_HOB *CpuInfoInHob;\r
bafa76ef 333 volatile UINT32 *StartupApSignal;\r
8a2d564b
JF
334\r
335 ApCount = CpuMpData->CpuCount - 1;\r
31a1e4da 336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
8a2d564b
JF
337 if (ApCount != 0) {\r
338 for (Index1 = 0; Index1 < ApCount; Index1++) {\r
339 Index3 = Index1;\r
340 //\r
341 // Sort key is the hardware default APIC ID\r
342 //\r
31a1e4da 343 ApicId = CpuInfoInHob[Index1].ApicId;\r
8a2d564b 344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {\r
31a1e4da 345 if (ApicId > CpuInfoInHob[Index2].ApicId) {\r
8a2d564b 346 Index3 = Index2;\r
31a1e4da 347 ApicId = CpuInfoInHob[Index2].ApicId;\r
8a2d564b
JF
348 }\r
349 }\r
350 if (Index3 != Index1) {\r
31a1e4da 351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));\r
8a2d564b 352 CopyMem (\r
31a1e4da
JF
353 &CpuInfoInHob[Index3],\r
354 &CpuInfoInHob[Index1],\r
355 sizeof (CPU_INFO_IN_HOB)\r
8a2d564b 356 );\r
31a1e4da 357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));\r
bafa76ef
SZ
358\r
359 //\r
360 // Also exchange the StartupApSignal.\r
361 //\r
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;\r
363 CpuMpData->CpuData[Index3].StartupApSignal =\r
364 CpuMpData->CpuData[Index1].StartupApSignal;\r
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;\r
8a2d564b
JF
366 }\r
367 }\r
368\r
369 //\r
370 // Get the processor number for the BSP\r
371 //\r
372 ApicId = GetInitialApicId ();\r
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {\r
31a1e4da 374 if (CpuInfoInHob[Index1].ApicId == ApicId) {\r
8a2d564b
JF
375 CpuMpData->BspNumber = (UINT32) Index1;\r
376 break;\r
377 }\r
378 }\r
8a2d564b
JF
379 }\r
380}\r
381\r
fe627769
JF
382/**\r
383 Enable x2APIC mode on APs.\r
384\r
385 @param[in, out] Buffer Pointer to private data buffer.\r
386**/\r
387VOID\r
388EFIAPI\r
389ApFuncEnableX2Apic (\r
390 IN OUT VOID *Buffer\r
391 )\r
392{\r
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
394}\r
395\r
b8b04307
JF
396/**\r
397 Do sync on APs.\r
398\r
399 @param[in, out] Buffer Pointer to private data buffer.\r
400**/\r
401VOID\r
402EFIAPI\r
403ApInitializeSync (\r
404 IN OUT VOID *Buffer\r
405 )\r
406{\r
407 CPU_MP_DATA *CpuMpData;\r
408\r
409 CpuMpData = (CPU_MP_DATA *) Buffer;\r
410 //\r
b8b04307
JF
411 // Load microcode on AP\r
412 //\r
2a089134 413 MicrocodeDetect (CpuMpData, FALSE);\r
cb811673
JF
414 //\r
415 // Sync BSP's MTRR table to AP\r
416 //\r
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);\r
b8b04307
JF
418}\r
419\r
420/**\r
421 Find the current Processor number by APIC ID.\r
422\r
367284e7
DB
423 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
424 @param[out] ProcessorNumber Return the pocessor number found\r
b8b04307
JF
425\r
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.\r
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.\r
428**/\r
429EFI_STATUS\r
430GetProcessorNumber (\r
431 IN CPU_MP_DATA *CpuMpData,\r
432 OUT UINTN *ProcessorNumber\r
433 )\r
434{\r
435 UINTN TotalProcessorNumber;\r
436 UINTN Index;\r
31a1e4da 437 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e52838d3 438 UINT32 CurrentApicId;\r
31a1e4da
JF
439\r
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
b8b04307
JF
441\r
442 TotalProcessorNumber = CpuMpData->CpuCount;\r
e52838d3 443 CurrentApicId = GetApicId ();\r
b8b04307 444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {\r
e52838d3 445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {\r
b8b04307
JF
446 *ProcessorNumber = Index;\r
447 return EFI_SUCCESS;\r
448 }\r
449 }\r
e52838d3 450\r
b8b04307
JF
451 return EFI_NOT_FOUND;\r
452}\r
453\r
03434dff
JF
454/**\r
455 This function will get CPU count in the system.\r
456\r
457 @param[in] CpuMpData Pointer to PEI CPU MP Data\r
458\r
459 @return CPU count detected\r
460**/\r
461UINTN\r
462CollectProcessorCount (\r
463 IN CPU_MP_DATA *CpuMpData\r
464 )\r
465{\r
59a119f0
JF
466 UINTN Index;\r
467\r
03434dff
JF
468 //\r
469 // Send 1st broadcast IPI to APs to wakeup APs\r
470 //\r
471 CpuMpData->InitFlag = ApInitConfig;\r
472 CpuMpData->X2ApicEnable = FALSE;\r
cf4e79e4 473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);\r
03434dff
JF
474 CpuMpData->InitFlag = ApInitDone;\r
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));\r
476 //\r
477 // Wait for all APs finished the initialization\r
478 //\r
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
480 CpuPause ();\r
481 }\r
482\r
71d8226a
JF
483 if (CpuMpData->CpuCount > 255) {\r
484 //\r
485 // If there are more than 255 processor found, force to enable X2APIC\r
486 //\r
487 CpuMpData->X2ApicEnable = TRUE;\r
488 }\r
fe627769
JF
489 if (CpuMpData->X2ApicEnable) {\r
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));\r
491 //\r
492 // Wakeup all APs to enable x2APIC mode\r
493 //\r
cf4e79e4 494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);\r
fe627769
JF
495 //\r
496 // Wait for all known APs finished\r
497 //\r
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
499 CpuPause ();\r
500 }\r
501 //\r
502 // Enable x2APIC on BSP\r
503 //\r
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);\r
59a119f0
JF
505 //\r
506 // Set BSP/Aps state to IDLE\r
507 //\r
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
510 }\r
fe627769
JF
511 }\r
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));\r
8a2d564b
JF
513 //\r
514 // Sort BSP/Aps by CPU APIC ID in ascending order\r
515 //\r
516 SortApicId (CpuMpData);\r
517\r
03434dff
JF
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));\r
519\r
520 return CpuMpData->CpuCount;\r
521}\r
522\r
367284e7 523/**\r
03a1a925
JF
524 Initialize CPU AP Data when AP is wakeup at the first time.\r
525\r
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data\r
527 @param[in] ProcessorNumber The handle number of processor\r
528 @param[in] BistData Processor BIST data\r
367284e7 529 @param[in] ApTopOfStack Top of AP stack\r
03a1a925
JF
530\r
531**/\r
532VOID\r
533InitializeApData (\r
534 IN OUT CPU_MP_DATA *CpuMpData,\r
535 IN UINTN ProcessorNumber,\r
845c5be1 536 IN UINT32 BistData,\r
dd3fa0cd 537 IN UINT64 ApTopOfStack\r
03a1a925
JF
538 )\r
539{\r
31a1e4da
JF
540 CPU_INFO_IN_HOB *CpuInfoInHob;\r
541\r
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
545 CpuInfoInHob[ProcessorNumber].Health = BistData;\r
dd3fa0cd 546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;\r
31a1e4da 547\r
03a1a925 548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
03a1a925 549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;\r
31a1e4da 550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {\r
03a1a925
JF
551 //\r
552 // Set x2APIC mode if there are any logical processor reporting\r
553 // an Initial APIC ID of 255 or greater.\r
554 //\r
555 AcquireSpinLock(&CpuMpData->MpLock);\r
556 CpuMpData->X2ApicEnable = TRUE;\r
557 ReleaseSpinLock(&CpuMpData->MpLock);\r
558 }\r
559\r
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);\r
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
562}\r
563\r
b8b04307
JF
564/**\r
565 This function will be called from AP reset code if BSP uses WakeUpAP.\r
566\r
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer\r
9fcea114 568 @param[in] ApIndex Number of current executing AP\r
b8b04307
JF
569**/\r
570VOID\r
571EFIAPI\r
572ApWakeupFunction (\r
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,\r
37676b9f 574 IN UINTN ApIndex\r
b8b04307
JF
575 )\r
576{\r
577 CPU_MP_DATA *CpuMpData;\r
578 UINTN ProcessorNumber;\r
579 EFI_AP_PROCEDURE Procedure;\r
580 VOID *Parameter;\r
581 UINT32 BistData;\r
582 volatile UINT32 *ApStartupSignalBuffer;\r
31a1e4da 583 CPU_INFO_IN_HOB *CpuInfoInHob;\r
dd3fa0cd 584 UINT64 ApTopOfStack;\r
c6b0feb3 585 UINTN CurrentApicMode;\r
b8b04307
JF
586\r
587 //\r
588 // AP finished assembly code and begin to execute C code\r
589 //\r
590 CpuMpData = ExchangeInfo->CpuMpData;\r
591\r
ffab2442
JF
592 //\r
593 // AP's local APIC settings will be lost after received INIT IPI\r
594 // We need to re-initialize them at here\r
595 //\r
596 ProgramVirtualWireMode ();\r
a2ea6894
RN
597 //\r
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.\r
599 //\r
600 DisableLvtInterrupts ();\r
ffab2442 601 SyncLocalApicTimerSetting (CpuMpData);\r
b8b04307 602\r
c6b0feb3 603 CurrentApicMode = GetApicMode ();\r
b8b04307
JF
604 while (TRUE) {\r
605 if (CpuMpData->InitFlag == ApInitConfig) {\r
606 //\r
607 // Add CPU number\r
608 //\r
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);\r
37676b9f 610 ProcessorNumber = ApIndex;\r
b8b04307
JF
611 //\r
612 // This is first time AP wakeup, get BIST information from AP stack\r
613 //\r
845c5be1 614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;\r
dd3fa0cd 615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));\r
b8b04307
JF
616 //\r
617 // Do some AP initialize sync\r
618 //\r
619 ApInitializeSync (CpuMpData);\r
620 //\r
c563077a
RN
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,\r
622 // to initialize AP in InitConfig path.\r
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.\r
b8b04307
JF
624 //\r
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);\r
845c5be1 626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);\r
b8b04307
JF
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
628 } else {\r
629 //\r
630 // Execute AP function if AP is ready\r
631 //\r
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
633 //\r
634 // Clear AP start-up signal when AP waken up\r
635 //\r
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
637 InterlockedCompareExchange32 (\r
638 (UINT32 *) ApStartupSignalBuffer,\r
639 WAKEUP_AP_SIGNAL,\r
640 0\r
641 );\r
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
643 //\r
644 // Restore AP's volatile registers saved\r
645 //\r
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);\r
199de896
JW
647 } else {\r
648 //\r
649 // The CPU driver might not flush TLB for APs on spot after updating\r
650 // page attributes. AP in mwait loop mode needs to take care of it when\r
651 // woken up.\r
652 //\r
653 CpuFlushTlb ();\r
b8b04307
JF
654 }\r
655\r
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {\r
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;\r
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;\r
659 if (Procedure != NULL) {\r
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);\r
661 //\r
43c9fdcc 662 // Enable source debugging on AP function\r
7367cc6c 663 //\r
43c9fdcc
JF
664 EnableDebugAgent ();\r
665 //\r
b8b04307
JF
666 // Invoke AP function here\r
667 //\r
668 Procedure (Parameter);\r
31a1e4da 669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
41be0da5
JF
670 if (CpuMpData->SwitchBspFlag) {\r
671 //\r
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function\r
673 //\r
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);\r
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;\r
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;\r
b3775af2
JF
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;\r
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;\r
41be0da5 679 } else {\r
c6b0feb3
JF
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||\r
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {\r
682 if (CurrentApicMode != GetApicMode ()) {\r
683 //\r
684 // If APIC mode change happened during AP function execution,\r
685 // we do not support APIC ID value changed.\r
686 //\r
687 ASSERT (FALSE);\r
688 CpuDeadLoop ();\r
689 } else {\r
690 //\r
691 // Re-get the CPU APICID and Initial APICID if they are changed\r
692 //\r
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();\r
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();\r
695 }\r
696 }\r
41be0da5 697 }\r
b8b04307 698 }\r
2a5997f8 699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
b8b04307
JF
700 }\r
701 }\r
702\r
703 //\r
704 // AP finished executing C code\r
705 //\r
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);\r
0594ec41 707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);\r
b8b04307
JF
708\r
709 //\r
710 // Place AP is specified loop mode\r
711 //\r
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {\r
713 //\r
714 // Save AP volatile registers\r
715 //\r
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);\r
717 //\r
718 // Place AP in HLT-loop\r
719 //\r
720 while (TRUE) {\r
721 DisableInterrupts ();\r
722 CpuSleep ();\r
723 CpuPause ();\r
724 }\r
725 }\r
726 while (TRUE) {\r
727 DisableInterrupts ();\r
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
729 //\r
730 // Place AP in MWAIT-loop\r
731 //\r
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);\r
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {\r
734 //\r
735 // Check AP start-up signal again.\r
736 // If AP start-up signal is not set, place AP into\r
737 // the specified C-state\r
738 //\r
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);\r
740 }\r
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {\r
742 //\r
743 // Place AP in Run-loop\r
744 //\r
745 CpuPause ();\r
746 } else {\r
747 ASSERT (FALSE);\r
748 }\r
749\r
750 //\r
751 // If AP start-up signal is written, AP is waken up\r
752 // otherwise place AP in loop again\r
753 //\r
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {\r
755 break;\r
756 }\r
757 }\r
758 }\r
759}\r
760\r
96f5920d
JF
761/**\r
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.\r
763\r
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal\r
765**/\r
766VOID\r
767WaitApWakeup (\r
768 IN volatile UINT32 *ApStartupSignalBuffer\r
769 )\r
770{\r
771 //\r
772 // If AP is waken up, StartupApSignal should be cleared.\r
773 // Otherwise, write StartupApSignal again till AP waken up.\r
774 //\r
775 while (InterlockedCompareExchange32 (\r
776 (UINT32 *) ApStartupSignalBuffer,\r
777 WAKEUP_AP_SIGNAL,\r
778 WAKEUP_AP_SIGNAL\r
779 ) != 0) {\r
780 CpuPause ();\r
781 }\r
782}\r
783\r
7c3f2a12
JF
784/**\r
785 This function will fill the exchange info structure.\r
786\r
787 @param[in] CpuMpData Pointer to CPU MP Data\r
788\r
789**/\r
790VOID\r
791FillExchangeInfoData (\r
792 IN CPU_MP_DATA *CpuMpData\r
793 )\r
794{\r
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
f32bfe6d
JW
796 UINTN Size;\r
797 IA32_SEGMENT_DESCRIPTOR *Selector;\r
7c3f2a12
JF
798\r
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
800 ExchangeInfo->Lock = 0;\r
801 ExchangeInfo->StackStart = CpuMpData->Buffer;\r
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;\r
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;\r
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;\r
805\r
806 ExchangeInfo->CodeSegment = AsmReadCs ();\r
807 ExchangeInfo->DataSegment = AsmReadDs ();\r
808\r
809 ExchangeInfo->Cr3 = AsmReadCr3 ();\r
810\r
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;\r
37676b9f 812 ExchangeInfo->ApIndex = 0;\r
0594ec41 813 ExchangeInfo->NumApsExecuting = 0;\r
46d4b885
JF
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;\r
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
7c3f2a12
JF
816 ExchangeInfo->CpuMpData = CpuMpData;\r
817\r
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();\r
819\r
3b2928b4
MK
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;\r
821\r
7c3f2a12
JF
822 //\r
823 // Get the BSP's data of GDT and IDT\r
824 //\r
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);\r
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);\r
f32bfe6d
JW
827\r
828 //\r
829 // Find a 32-bit code segment\r
830 //\r
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;\r
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;\r
833 while (Size > 0) {\r
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {\r
835 ExchangeInfo->ModeTransitionSegment =\r
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);\r
837 break;\r
838 }\r
839 Selector += 1;\r
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);\r
841 }\r
842\r
843 //\r
844 // Copy all 32-bit code and 64-bit code into memory with type of\r
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.\r
846 //\r
66833b2a 847 if (CpuMpData->WakeupBufferHigh != 0) {\r
f32bfe6d
JW
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -\r
849 CpuMpData->AddressMap.ModeTransitionOffset;\r
850 CopyMem (\r
66833b2a 851 (VOID *)CpuMpData->WakeupBufferHigh,\r
f32bfe6d
JW
852 CpuMpData->AddressMap.RendezvousFunnelAddress +\r
853 CpuMpData->AddressMap.ModeTransitionOffset,\r
854 Size\r
855 );\r
856\r
66833b2a 857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;\r
f32bfe6d
JW
858 } else {\r
859 ExchangeInfo->ModeTransitionMemory = (UINT32)\r
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);\r
861 }\r
69dfa8d8
JW
862\r
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +\r
864 (UINT32)ExchangeInfo->ModeOffset -\r
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;\r
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;\r
7c3f2a12
JF
867}\r
868\r
6e1987f1
LE
869/**\r
870 Helper function that waits until the finished AP count reaches the specified\r
871 limit, or the specified timeout elapses (whichever comes first).\r
872\r
873 @param[in] CpuMpData Pointer to CPU MP Data.\r
874 @param[in] FinishedApLimit The number of finished APs to wait for.\r
875 @param[in] TimeLimit The number of microseconds to wait for.\r
876**/\r
877VOID\r
878TimedWaitForApFinish (\r
879 IN CPU_MP_DATA *CpuMpData,\r
880 IN UINT32 FinishedApLimit,\r
881 IN UINT32 TimeLimit\r
882 );\r
883\r
a6b3d753
SZ
884/**\r
885 Get available system memory below 1MB by specified size.\r
886\r
887 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
888**/\r
889VOID\r
890BackupAndPrepareWakeupBuffer(\r
891 IN CPU_MP_DATA *CpuMpData\r
892 )\r
893{\r
894 CopyMem (\r
895 (VOID *) CpuMpData->BackupBuffer,\r
896 (VOID *) CpuMpData->WakeupBuffer,\r
897 CpuMpData->BackupBufferSize\r
898 );\r
899 CopyMem (\r
900 (VOID *) CpuMpData->WakeupBuffer,\r
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,\r
902 CpuMpData->AddressMap.RendezvousFunnelSize\r
903 );\r
904}\r
905\r
906/**\r
907 Restore wakeup buffer data.\r
908\r
909 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
910**/\r
911VOID\r
912RestoreWakeupBuffer(\r
913 IN CPU_MP_DATA *CpuMpData\r
914 )\r
915{\r
916 CopyMem (\r
917 (VOID *) CpuMpData->WakeupBuffer,\r
918 (VOID *) CpuMpData->BackupBuffer,\r
919 CpuMpData->BackupBufferSize\r
920 );\r
921}\r
922\r
923/**\r
924 Allocate reset vector buffer.\r
925\r
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.\r
927**/\r
928VOID\r
929AllocateResetVector (\r
930 IN OUT CPU_MP_DATA *CpuMpData\r
931 )\r
932{\r
933 UINTN ApResetVectorSize;\r
934\r
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {\r
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +\r
937 sizeof (MP_CPU_EXCHANGE_INFO);\r
938\r
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);\r
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)\r
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);\r
66833b2a
JW
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (\r
943 CpuMpData->AddressMap.RendezvousFunnelSize -\r
944 CpuMpData->AddressMap.ModeTransitionOffset\r
945 );\r
a6b3d753
SZ
946 }\r
947 BackupAndPrepareWakeupBuffer (CpuMpData);\r
948}\r
949\r
950/**\r
951 Free AP reset vector buffer.\r
952\r
953 @param[in] CpuMpData The pointer to CPU MP Data structure.\r
954**/\r
955VOID\r
956FreeResetVector (\r
957 IN CPU_MP_DATA *CpuMpData\r
958 )\r
959{\r
960 RestoreWakeupBuffer (CpuMpData);\r
961}\r
962\r
96f5920d
JF
963/**\r
964 This function will be called by BSP to wakeup AP.\r
965\r
966 @param[in] CpuMpData Pointer to CPU MP Data\r
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs\r
968 FALSE: Send IPI to AP by ApicId\r
969 @param[in] ProcessorNumber The handle number of specified processor\r
970 @param[in] Procedure The function to be invoked by AP\r
971 @param[in] ProcedureArgument The argument to be passed into AP function\r
cf4e79e4 972 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.\r
96f5920d
JF
973**/\r
974VOID\r
975WakeUpAP (\r
976 IN CPU_MP_DATA *CpuMpData,\r
977 IN BOOLEAN Broadcast,\r
978 IN UINTN ProcessorNumber,\r
979 IN EFI_AP_PROCEDURE Procedure, OPTIONAL\r
cf4e79e4
ED
980 IN VOID *ProcedureArgument, OPTIONAL\r
981 IN BOOLEAN WakeUpDisabledAps\r
96f5920d
JF
982 )\r
983{\r
984 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;\r
985 UINTN Index;\r
986 CPU_AP_DATA *CpuData;\r
987 BOOLEAN ResetVectorRequired;\r
31a1e4da 988 CPU_INFO_IN_HOB *CpuInfoInHob;\r
96f5920d
JF
989\r
990 CpuMpData->FinishedCount = 0;\r
991 ResetVectorRequired = FALSE;\r
992\r
58942277 993 if (CpuMpData->WakeUpByInitSipiSipi ||\r
96f5920d
JF
994 CpuMpData->InitFlag != ApInitDone) {\r
995 ResetVectorRequired = TRUE;\r
996 AllocateResetVector (CpuMpData);\r
997 FillExchangeInfoData (CpuMpData);\r
ffab2442 998 SaveLocalApicTimerSetting (CpuMpData);\r
58942277
ED
999 }\r
1000\r
1001 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {\r
96f5920d
JF
1002 //\r
1003 // Get AP target C-state each time when waking up AP,\r
1004 // for it maybe updated by platform again\r
1005 //\r
1006 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);\r
1007 }\r
1008\r
1009 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;\r
1010\r
1011 if (Broadcast) {\r
1012 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1013 if (Index != CpuMpData->BspNumber) {\r
1014 CpuData = &CpuMpData->CpuData[Index];\r
cf4e79e4
ED
1015 //\r
1016 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but\r
1017 // the AP procedure will be skipped for disabled AP because AP state \r
1018 // is not CpuStateReady.\r
1019 //\r
1020 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {\r
1021 continue;\r
1022 }\r
1023\r
96f5920d
JF
1024 CpuData->ApFunction = (UINTN) Procedure;\r
1025 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1026 SetApState (CpuData, CpuStateReady);\r
1027 if (CpuMpData->InitFlag != ApInitConfig) {\r
1028 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1029 }\r
1030 }\r
1031 }\r
1032 if (ResetVectorRequired) {\r
1033 //\r
1034 // Wakeup all APs\r
1035 //\r
1036 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);\r
1037 }\r
c1192210
JF
1038 if (CpuMpData->InitFlag == ApInitConfig) {\r
1039 //\r
86121874
ED
1040 // Here support two methods to collect AP count through adjust\r
1041 // PcdCpuApInitTimeOutInMicroSeconds values.\r
1042 //\r
1043 // one way is set a value to just let the first AP to start the\r
1044 // initialization, then through the later while loop to wait all Aps\r
1045 // finsh the initialization.\r
1046 // The other way is set a value to let all APs finished the initialzation.\r
1047 // In this case, the later while loop is useless.\r
1048 //\r
1049 TimedWaitForApFinish (\r
1050 CpuMpData,\r
1051 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,\r
1052 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)\r
1053 );\r
0594ec41
ED
1054\r
1055 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {\r
1056 CpuPause();\r
1057 }\r
c1192210 1058 } else {\r
96f5920d
JF
1059 //\r
1060 // Wait all APs waken up if this is not the 1st broadcast of SIPI\r
1061 //\r
1062 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1063 CpuData = &CpuMpData->CpuData[Index];\r
1064 if (Index != CpuMpData->BspNumber) {\r
1065 WaitApWakeup (CpuData->StartupApSignal);\r
1066 }\r
1067 }\r
1068 }\r
1069 } else {\r
1070 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1071 CpuData->ApFunction = (UINTN) Procedure;\r
1072 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;\r
1073 SetApState (CpuData, CpuStateReady);\r
1074 //\r
1075 // Wakeup specified AP\r
1076 //\r
1077 ASSERT (CpuMpData->InitFlag != ApInitConfig);\r
1078 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;\r
1079 if (ResetVectorRequired) {\r
31a1e4da 1080 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
96f5920d 1081 SendInitSipiSipi (\r
31a1e4da 1082 CpuInfoInHob[ProcessorNumber].ApicId,\r
96f5920d
JF
1083 (UINT32) ExchangeInfo->BufferStart\r
1084 );\r
1085 }\r
1086 //\r
1087 // Wait specified AP waken up\r
1088 //\r
1089 WaitApWakeup (CpuData->StartupApSignal);\r
1090 }\r
1091\r
1092 if (ResetVectorRequired) {\r
1093 FreeResetVector (CpuMpData);\r
1094 }\r
58942277
ED
1095\r
1096 //\r
1097 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with\r
1098 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by\r
1099 // S3SmmInitDone Ppi.\r
1100 //\r
1101 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
96f5920d
JF
1102}\r
1103\r
08085f08
JF
1104/**\r
1105 Calculate timeout value and return the current performance counter value.\r
1106\r
1107 Calculate the number of performance counter ticks required for a timeout.\r
1108 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1109 as infinity.\r
1110\r
1111 @param[in] TimeoutInMicroseconds Timeout value in microseconds.\r
1112 @param[out] CurrentTime Returns the current value of the performance counter.\r
1113\r
1114 @return Expected time stamp counter for timeout.\r
1115 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1116 as infinity.\r
1117\r
1118**/\r
1119UINT64\r
1120CalculateTimeout (\r
1121 IN UINTN TimeoutInMicroseconds,\r
1122 OUT UINT64 *CurrentTime\r
1123 )\r
1124{\r
48cfb7c0
ED
1125 UINT64 TimeoutInSeconds;\r
1126 UINT64 TimestampCounterFreq;\r
1127\r
08085f08
JF
1128 //\r
1129 // Read the current value of the performance counter\r
1130 //\r
1131 *CurrentTime = GetPerformanceCounter ();\r
1132\r
1133 //\r
1134 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized\r
1135 // as infinity.\r
1136 //\r
1137 if (TimeoutInMicroseconds == 0) {\r
1138 return 0;\r
1139 }\r
1140\r
1141 //\r
1142 // GetPerformanceCounterProperties () returns the timestamp counter's frequency\r
7367cc6c 1143 // in Hz.\r
48cfb7c0
ED
1144 //\r
1145 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);\r
1146\r
08085f08 1147 //\r
48cfb7c0
ED
1148 // Check the potential overflow before calculate the number of ticks for the timeout value.\r
1149 //\r
1150 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {\r
1151 //\r
1152 // Convert microseconds into seconds if direct multiplication overflows\r
1153 //\r
1154 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);\r
1155 //\r
1156 // Assertion if the final tick count exceeds MAX_UINT64\r
1157 //\r
1158 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);\r
1159 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);\r
1160 } else {\r
1161 //\r
1162 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide\r
1163 // it by 1,000,000, to get the number of ticks for the timeout value.\r
1164 //\r
1165 return DivU64x32 (\r
1166 MultU64x64 (\r
1167 TimestampCounterFreq,\r
1168 TimeoutInMicroseconds\r
1169 ),\r
1170 1000000\r
1171 );\r
1172 }\r
08085f08
JF
1173}\r
1174\r
1175/**\r
1176 Checks whether timeout expires.\r
1177\r
1178 Check whether the number of elapsed performance counter ticks required for\r
1179 a timeout condition has been reached.\r
1180 If Timeout is zero, which means infinity, return value is always FALSE.\r
1181\r
1182 @param[in, out] PreviousTime On input, the value of the performance counter\r
1183 when it was last read.\r
1184 On output, the current value of the performance\r
1185 counter\r
1186 @param[in] TotalTime The total amount of elapsed time in performance\r
1187 counter ticks.\r
1188 @param[in] Timeout The number of performance counter ticks required\r
1189 to reach a timeout condition.\r
1190\r
1191 @retval TRUE A timeout condition has been reached.\r
1192 @retval FALSE A timeout condition has not been reached.\r
1193\r
1194**/\r
1195BOOLEAN\r
1196CheckTimeout (\r
1197 IN OUT UINT64 *PreviousTime,\r
1198 IN UINT64 *TotalTime,\r
1199 IN UINT64 Timeout\r
1200 )\r
1201{\r
1202 UINT64 Start;\r
1203 UINT64 End;\r
1204 UINT64 CurrentTime;\r
1205 INT64 Delta;\r
1206 INT64 Cycle;\r
1207\r
1208 if (Timeout == 0) {\r
1209 return FALSE;\r
1210 }\r
1211 GetPerformanceCounterProperties (&Start, &End);\r
1212 Cycle = End - Start;\r
1213 if (Cycle < 0) {\r
1214 Cycle = -Cycle;\r
1215 }\r
1216 Cycle++;\r
1217 CurrentTime = GetPerformanceCounter();\r
1218 Delta = (INT64) (CurrentTime - *PreviousTime);\r
1219 if (Start > End) {\r
1220 Delta = -Delta;\r
1221 }\r
1222 if (Delta < 0) {\r
1223 Delta += Cycle;\r
1224 }\r
1225 *TotalTime += Delta;\r
1226 *PreviousTime = CurrentTime;\r
1227 if (*TotalTime > Timeout) {\r
1228 return TRUE;\r
1229 }\r
1230 return FALSE;\r
1231}\r
1232\r
6e1987f1
LE
1233/**\r
1234 Helper function that waits until the finished AP count reaches the specified\r
1235 limit, or the specified timeout elapses (whichever comes first).\r
1236\r
1237 @param[in] CpuMpData Pointer to CPU MP Data.\r
1238 @param[in] FinishedApLimit The number of finished APs to wait for.\r
1239 @param[in] TimeLimit The number of microseconds to wait for.\r
1240**/\r
1241VOID\r
1242TimedWaitForApFinish (\r
1243 IN CPU_MP_DATA *CpuMpData,\r
1244 IN UINT32 FinishedApLimit,\r
1245 IN UINT32 TimeLimit\r
1246 )\r
1247{\r
1248 //\r
1249 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0\r
1250 // "infinity", so check for (TimeLimit == 0) explicitly.\r
1251 //\r
1252 if (TimeLimit == 0) {\r
1253 return;\r
1254 }\r
1255\r
1256 CpuMpData->TotalTime = 0;\r
1257 CpuMpData->ExpectedTime = CalculateTimeout (\r
1258 TimeLimit,\r
1259 &CpuMpData->CurrentTime\r
1260 );\r
1261 while (CpuMpData->FinishedCount < FinishedApLimit &&\r
1262 !CheckTimeout (\r
1263 &CpuMpData->CurrentTime,\r
1264 &CpuMpData->TotalTime,\r
1265 CpuMpData->ExpectedTime\r
1266 )) {\r
1267 CpuPause ();\r
1268 }\r
1269\r
1270 if (CpuMpData->FinishedCount >= FinishedApLimit) {\r
1271 DEBUG ((\r
1272 DEBUG_VERBOSE,\r
1273 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",\r
1274 __FUNCTION__,\r
1275 FinishedApLimit,\r
1276 DivU64x64Remainder (\r
1277 MultU64x32 (CpuMpData->TotalTime, 1000000),\r
1278 GetPerformanceCounterProperties (NULL, NULL),\r
1279 NULL\r
1280 )\r
1281 ));\r
1282 }\r
1283}\r
1284\r
08085f08
JF
1285/**\r
1286 Reset an AP to Idle state.\r
1287\r
1288 Any task being executed by the AP will be aborted and the AP\r
1289 will be waiting for a new task in Wait-For-SIPI state.\r
1290\r
1291 @param[in] ProcessorNumber The handle number of processor.\r
1292**/\r
1293VOID\r
1294ResetProcessorToIdleState (\r
1295 IN UINTN ProcessorNumber\r
1296 )\r
1297{\r
1298 CPU_MP_DATA *CpuMpData;\r
1299\r
1300 CpuMpData = GetCpuMpData ();\r
1301\r
cb33bde4 1302 CpuMpData->InitFlag = ApInitReconfig;\r
cf4e79e4 1303 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);\r
cb33bde4
JF
1304 while (CpuMpData->FinishedCount < 1) {\r
1305 CpuPause ();\r
1306 }\r
1307 CpuMpData->InitFlag = ApInitDone;\r
08085f08
JF
1308\r
1309 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);\r
1310}\r
1311\r
1312/**\r
1313 Searches for the next waiting AP.\r
1314\r
1315 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().\r
1316\r
1317 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.\r
1318\r
1319 @retval EFI_SUCCESS The next waiting AP has been found.\r
1320 @retval EFI_NOT_FOUND No waiting AP exists.\r
1321\r
1322**/\r
1323EFI_STATUS\r
1324GetNextWaitingProcessorNumber (\r
1325 OUT UINTN *NextProcessorNumber\r
1326 )\r
1327{\r
1328 UINTN ProcessorNumber;\r
1329 CPU_MP_DATA *CpuMpData;\r
1330\r
1331 CpuMpData = GetCpuMpData ();\r
1332\r
1333 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1334 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1335 *NextProcessorNumber = ProcessorNumber;\r
1336 return EFI_SUCCESS;\r
1337 }\r
1338 }\r
1339\r
1340 return EFI_NOT_FOUND;\r
1341}\r
1342\r
1343/** Checks status of specified AP.\r
1344\r
1345 This function checks whether the specified AP has finished the task assigned\r
1346 by StartupThisAP(), and whether timeout expires.\r
1347\r
1348 @param[in] ProcessorNumber The handle number of processor.\r
1349\r
1350 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().\r
1351 @retval EFI_TIMEOUT The timeout expires.\r
1352 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.\r
1353**/\r
1354EFI_STATUS\r
1355CheckThisAP (\r
1356 IN UINTN ProcessorNumber\r
1357 )\r
1358{\r
1359 CPU_MP_DATA *CpuMpData;\r
1360 CPU_AP_DATA *CpuData;\r
1361\r
1362 CpuMpData = GetCpuMpData ();\r
1363 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1364\r
1365 //\r
2a5997f8 1366 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1367 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1368 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08
JF
1369 //\r
1370 //\r
1371 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.\r
1372 //\r
2a5997f8 1373 if (GetApState(CpuData) == CpuStateIdle) {\r
08085f08
JF
1374 if (CpuData->Finished != NULL) {\r
1375 *(CpuData->Finished) = TRUE;\r
1376 }\r
08085f08
JF
1377 return EFI_SUCCESS;\r
1378 } else {\r
1379 //\r
1380 // If timeout expires for StartupThisAP(), report timeout.\r
1381 //\r
1382 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {\r
1383 if (CpuData->Finished != NULL) {\r
1384 *(CpuData->Finished) = FALSE;\r
1385 }\r
1386 //\r
1387 // Reset failed AP to idle state\r
1388 //\r
1389 ResetProcessorToIdleState (ProcessorNumber);\r
1390\r
1391 return EFI_TIMEOUT;\r
1392 }\r
1393 }\r
1394 return EFI_NOT_READY;\r
1395}\r
1396\r
1397/**\r
1398 Checks status of all APs.\r
1399\r
1400 This function checks whether all APs have finished task assigned by StartupAllAPs(),\r
1401 and whether timeout expires.\r
1402\r
1403 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().\r
1404 @retval EFI_TIMEOUT The timeout expires.\r
1405 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.\r
1406**/\r
1407EFI_STATUS\r
1408CheckAllAPs (\r
1409 VOID\r
1410 )\r
1411{\r
1412 UINTN ProcessorNumber;\r
1413 UINTN NextProcessorNumber;\r
1414 UINTN ListIndex;\r
1415 EFI_STATUS Status;\r
1416 CPU_MP_DATA *CpuMpData;\r
1417 CPU_AP_DATA *CpuData;\r
1418\r
1419 CpuMpData = GetCpuMpData ();\r
1420\r
1421 NextProcessorNumber = 0;\r
1422\r
1423 //\r
1424 // Go through all APs that are responsible for the StartupAllAPs().\r
1425 //\r
1426 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1427 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1428 continue;\r
1429 }\r
1430\r
1431 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
1432 //\r
2a5997f8 1433 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.\r
08085f08 1434 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the\r
2a5997f8 1435 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.\r
08085f08 1436 //\r
2a5997f8 1437 if (GetApState(CpuData) == CpuStateIdle) {\r
2da3e96c 1438 CpuMpData->RunningCount --;\r
08085f08 1439 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
08085f08
JF
1440\r
1441 //\r
1442 // If in Single Thread mode, then search for the next waiting AP for execution.\r
1443 //\r
1444 if (CpuMpData->SingleThread) {\r
1445 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);\r
1446\r
1447 if (!EFI_ERROR (Status)) {\r
1448 WakeUpAP (\r
1449 CpuMpData,\r
1450 FALSE,\r
1451 (UINT32) NextProcessorNumber,\r
1452 CpuMpData->Procedure,\r
cf4e79e4
ED
1453 CpuMpData->ProcArguments,\r
1454 TRUE\r
08085f08
JF
1455 );\r
1456 }\r
1457 }\r
1458 }\r
1459 }\r
1460\r
1461 //\r
1462 // If all APs finish, return EFI_SUCCESS.\r
1463 //\r
2da3e96c 1464 if (CpuMpData->RunningCount == 0) {\r
08085f08
JF
1465 return EFI_SUCCESS;\r
1466 }\r
1467\r
1468 //\r
1469 // If timeout expires, report timeout.\r
1470 //\r
1471 if (CheckTimeout (\r
1472 &CpuMpData->CurrentTime,\r
1473 &CpuMpData->TotalTime,\r
1474 CpuMpData->ExpectedTime)\r
1475 ) {\r
1476 //\r
1477 // If FailedCpuList is not NULL, record all failed APs in it.\r
1478 //\r
1479 if (CpuMpData->FailedCpuList != NULL) {\r
1480 *CpuMpData->FailedCpuList =\r
2da3e96c 1481 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));\r
08085f08
JF
1482 ASSERT (*CpuMpData->FailedCpuList != NULL);\r
1483 }\r
1484 ListIndex = 0;\r
1485\r
1486 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {\r
1487 //\r
1488 // Check whether this processor is responsible for StartupAllAPs().\r
1489 //\r
1490 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
1491 //\r
1492 // Reset failed APs to idle state\r
1493 //\r
1494 ResetProcessorToIdleState (ProcessorNumber);\r
1495 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;\r
1496 if (CpuMpData->FailedCpuList != NULL) {\r
1497 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;\r
1498 }\r
1499 }\r
1500 }\r
1501 if (CpuMpData->FailedCpuList != NULL) {\r
1502 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;\r
1503 }\r
1504 return EFI_TIMEOUT;\r
1505 }\r
1506 return EFI_NOT_READY;\r
1507}\r
1508\r
3e8ad6bd
JF
1509/**\r
1510 MP Initialize Library initialization.\r
1511\r
1512 This service will allocate AP reset vector and wakeup all APs to do APs\r
1513 initialization.\r
1514\r
1515 This service must be invoked before all other MP Initialize Library\r
1516 service are invoked.\r
1517\r
1518 @retval EFI_SUCCESS MP initialization succeeds.\r
1519 @retval Others MP initialization fails.\r
1520\r
1521**/\r
1522EFI_STATUS\r
1523EFIAPI\r
1524MpInitLibInitialize (\r
1525 VOID\r
1526 )\r
1527{\r
6a2ee2bb
JF
1528 CPU_MP_DATA *OldCpuMpData;\r
1529 CPU_INFO_IN_HOB *CpuInfoInHob;\r
e59f8f6b
JF
1530 UINT32 MaxLogicalProcessorNumber;\r
1531 UINT32 ApStackSize;\r
f7f85d83 1532 MP_ASSEMBLY_ADDRESS_MAP AddressMap;\r
c563077a 1533 CPU_VOLATILE_REGISTERS VolatileRegisters;\r
e59f8f6b 1534 UINTN BufferSize;\r
9ebcf0f4 1535 UINT32 MonitorFilterSize;\r
e59f8f6b
JF
1536 VOID *MpBuffer;\r
1537 UINTN Buffer;\r
1538 CPU_MP_DATA *CpuMpData;\r
9ebcf0f4 1539 UINT8 ApLoopMode;\r
e59f8f6b 1540 UINT8 *MonitorBuffer;\r
03a1a925 1541 UINTN Index;\r
f7f85d83 1542 UINTN ApResetVectorSize;\r
e59f8f6b 1543 UINTN BackupBufferAddr;\r
c563077a 1544 UINTN ApIdtBase;\r
6936ee03 1545 VOID *MicrocodePatchInRam;\r
6a2ee2bb
JF
1546\r
1547 OldCpuMpData = GetCpuMpDataFromGuidedHob ();\r
1548 if (OldCpuMpData == NULL) {\r
1549 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);\r
1550 } else {\r
1551 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;\r
1552 }\r
14e8137c 1553 ASSERT (MaxLogicalProcessorNumber != 0);\r
f7f85d83
JF
1554\r
1555 AsmGetAddressMap (&AddressMap);\r
1556 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);\r
e59f8f6b 1557 ApStackSize = PcdGet32(PcdCpuApStackSize);\r
9ebcf0f4
JF
1558 ApLoopMode = GetApLoopMode (&MonitorFilterSize);\r
1559\r
c563077a
RN
1560 //\r
1561 // Save BSP's Control registers for APs\r
1562 //\r
1563 SaveVolatileRegisters (&VolatileRegisters);\r
1564\r
e59f8f6b
JF
1565 BufferSize = ApStackSize * MaxLogicalProcessorNumber;\r
1566 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;\r
e59f8f6b 1567 BufferSize += ApResetVectorSize;\r
c563077a
RN
1568 BufferSize = ALIGN_VALUE (BufferSize, 8);\r
1569 BufferSize += VolatileRegisters.Idtr.Limit + 1;\r
1570 BufferSize += sizeof (CPU_MP_DATA);\r
e59f8f6b
JF
1571 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;\r
1572 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));\r
1573 ASSERT (MpBuffer != NULL);\r
1574 ZeroMem (MpBuffer, BufferSize);\r
1575 Buffer = (UINTN) MpBuffer;\r
1576\r
c563077a
RN
1577 //\r
1578 // The layout of the Buffer is as below:\r
1579 //\r
1580 // +--------------------+ <-- Buffer\r
1581 // AP Stacks (N)\r
1582 // +--------------------+ <-- MonitorBuffer\r
1583 // AP Monitor Filters (N)\r
1584 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)\r
1585 // Backup Buffer\r
1586 // +--------------------+\r
1587 // Padding\r
1588 // +--------------------+ <-- ApIdtBase (8-byte boundary)\r
1589 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.\r
1590 // +--------------------+ <-- CpuMpData\r
1591 // CPU_MP_DATA\r
1592 // +--------------------+ <-- CpuMpData->CpuData\r
1593 // CPU_AP_DATA (N)\r
1594 // +--------------------+ <-- CpuMpData->CpuInfoInHob\r
1595 // CPU_INFO_IN_HOB (N)\r
1596 // +--------------------+\r
1597 //\r
e59f8f6b
JF
1598 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);\r
1599 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;\r
c563077a
RN
1600 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);\r
1601 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);\r
e59f8f6b
JF
1602 CpuMpData->Buffer = Buffer;\r
1603 CpuMpData->CpuApStackSize = ApStackSize;\r
1604 CpuMpData->BackupBuffer = BackupBufferAddr;\r
1605 CpuMpData->BackupBufferSize = ApResetVectorSize;\r
e59f8f6b
JF
1606 CpuMpData->WakeupBuffer = (UINTN) -1;\r
1607 CpuMpData->CpuCount = 1;\r
1608 CpuMpData->BspNumber = 0;\r
1609 CpuMpData->WaitEvent = NULL;\r
41be0da5 1610 CpuMpData->SwitchBspFlag = FALSE;\r
e59f8f6b
JF
1611 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);\r
1612 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);\r
1e3f7a37 1613 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);\r
6936ee03
ED
1614 //\r
1615 // If platform has more than one CPU, relocate microcode to memory to reduce\r
1616 // loading microcode time.\r
1617 //\r
1618 MicrocodePatchInRam = NULL;\r
1619 if (MaxLogicalProcessorNumber > 1) {\r
1620 MicrocodePatchInRam = AllocatePages (\r
1621 EFI_SIZE_TO_PAGES (\r
1622 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1623 )\r
1624 );\r
1625 }\r
1626 if (MicrocodePatchInRam == NULL) {\r
1627 //\r
1628 // there is only one processor, or no microcode patch is available, or\r
1629 // memory allocation failed\r
1630 //\r
1631 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);\r
1632 } else {\r
1633 //\r
1634 // there are multiple processors, and a microcode patch is available, and\r
1635 // memory allocation succeeded\r
1636 //\r
1637 CopyMem (\r
1638 MicrocodePatchInRam,\r
1639 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),\r
1640 (UINTN)CpuMpData->MicrocodePatchRegionSize\r
1641 );\r
1642 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;\r
1643 }\r
1644\r
e59f8f6b 1645 InitializeSpinLock(&CpuMpData->MpLock);\r
c563077a
RN
1646\r
1647 //\r
1648 // Make sure no memory usage outside of the allocated buffer.\r
e59f8f6b 1649 //\r
c563077a
RN
1650 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==\r
1651 Buffer + BufferSize);\r
1652\r
1653 //\r
1654 // Duplicate BSP's IDT to APs.\r
1655 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1\r
68cb9330 1656 //\r
c563077a
RN
1657 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);\r
1658 VolatileRegisters.Idtr.Base = ApIdtBase;\r
1659 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));\r
68cb9330 1660 //\r
03a1a925
JF
1661 // Set BSP basic information\r
1662 //\r
f2655dcf 1663 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);\r
03a1a925 1664 //\r
e59f8f6b
JF
1665 // Save assembly code information\r
1666 //\r
1667 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));\r
1668 //\r
1669 // Finally set AP loop mode\r
1670 //\r
1671 CpuMpData->ApLoopMode = ApLoopMode;\r
1672 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));\r
58942277
ED
1673\r
1674 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);\r
1675\r
e59f8f6b 1676 //\r
03a1a925
JF
1677 // Set up APs wakeup signal buffer\r
1678 //\r
1679 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {\r
1680 CpuMpData->CpuData[Index].StartupApSignal =\r
1681 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);\r
1682 }\r
94f63c76
JF
1683 //\r
1684 // Load Microcode on BSP\r
1685 //\r
2a089134 1686 MicrocodeDetect (CpuMpData, TRUE);\r
94f63c76 1687 //\r
e59f8f6b
JF
1688 // Store BSP's MTRR setting\r
1689 //\r
1690 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);\r
9d64a9fd
JF
1691 //\r
1692 // Enable the local APIC for Virtual Wire Mode.\r
1693 //\r
1694 ProgramVirtualWireMode ();\r
e59f8f6b 1695\r
6a2ee2bb 1696 if (OldCpuMpData == NULL) {\r
14e8137c
JF
1697 if (MaxLogicalProcessorNumber > 1) {\r
1698 //\r
1699 // Wakeup all APs and calculate the processor count in system\r
1700 //\r
1701 CollectProcessorCount (CpuMpData);\r
1702 }\r
6a2ee2bb
JF
1703 } else {\r
1704 //\r
1705 // APs have been wakeup before, just get the CPU Information\r
1706 // from HOB\r
1707 //\r
1708 CpuMpData->CpuCount = OldCpuMpData->CpuCount;\r
1709 CpuMpData->BspNumber = OldCpuMpData->BspNumber;\r
1710 CpuMpData->InitFlag = ApInitReconfig;\r
31a1e4da
JF
1711 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;\r
1712 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
6a2ee2bb
JF
1713 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1714 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);\r
71d8226a 1715 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {\r
6a2ee2bb
JF
1716 CpuMpData->X2ApicEnable = TRUE;\r
1717 }\r
31a1e4da 1718 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;\r
6a2ee2bb 1719 CpuMpData->CpuData[Index].ApFunction = 0;\r
c563077a 1720 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));\r
6a2ee2bb 1721 }\r
14e8137c
JF
1722 if (MaxLogicalProcessorNumber > 1) {\r
1723 //\r
1724 // Wakeup APs to do some AP initialize sync\r
1725 //\r
cf4e79e4 1726 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);\r
14e8137c
JF
1727 //\r
1728 // Wait for all APs finished initialization\r
1729 //\r
1730 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {\r
1731 CpuPause ();\r
1732 }\r
1733 CpuMpData->InitFlag = ApInitDone;\r
1734 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {\r
1735 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);\r
1736 }\r
6a2ee2bb
JF
1737 }\r
1738 }\r
93ca4c0f
JF
1739\r
1740 //\r
1741 // Initialize global data for MP support\r
1742 //\r
1743 InitMpGlobalData (CpuMpData);\r
1744\r
f7f85d83 1745 return EFI_SUCCESS;\r
3e8ad6bd
JF
1746}\r
1747\r
1748/**\r
1749 Gets detailed MP-related information on the requested processor at the\r
1750 instant this call is made. This service may only be called from the BSP.\r
1751\r
1752 @param[in] ProcessorNumber The handle number of processor.\r
1753 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for\r
1754 the requested processor is deposited.\r
1755 @param[out] HealthData Return processor health data.\r
1756\r
1757 @retval EFI_SUCCESS Processor information was returned.\r
1758 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
1759 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.\r
1760 @retval EFI_NOT_FOUND The processor with the handle specified by\r
1761 ProcessorNumber does not exist in the platform.\r
1762 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
1763\r
1764**/\r
1765EFI_STATUS\r
1766EFIAPI\r
1767MpInitLibGetProcessorInfo (\r
1768 IN UINTN ProcessorNumber,\r
1769 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,\r
1770 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL\r
1771 )\r
1772{\r
ad52f25e
JF
1773 CPU_MP_DATA *CpuMpData;\r
1774 UINTN CallerNumber;\r
31a1e4da 1775 CPU_INFO_IN_HOB *CpuInfoInHob;\r
ad52f25e
JF
1776\r
1777 CpuMpData = GetCpuMpData ();\r
31a1e4da 1778 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;\r
ad52f25e
JF
1779\r
1780 //\r
1781 // Check whether caller processor is BSP\r
1782 //\r
1783 MpInitLibWhoAmI (&CallerNumber);\r
1784 if (CallerNumber != CpuMpData->BspNumber) {\r
1785 return EFI_DEVICE_ERROR;\r
1786 }\r
1787\r
1788 if (ProcessorInfoBuffer == NULL) {\r
1789 return EFI_INVALID_PARAMETER;\r
1790 }\r
1791\r
1792 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1793 return EFI_NOT_FOUND;\r
1794 }\r
1795\r
31a1e4da 1796 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;\r
ad52f25e
JF
1797 ProcessorInfoBuffer->StatusFlag = 0;\r
1798 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1799 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;\r
1800 }\r
1801 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {\r
1802 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;\r
1803 }\r
1804 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
1805 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;\r
1806 } else {\r
1807 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;\r
1808 }\r
1809\r
1810 //\r
1811 // Get processor location information\r
1812 //\r
262128e5 1813 GetProcessorLocationByApicId (\r
31a1e4da 1814 CpuInfoInHob[ProcessorNumber].ApicId,\r
73152f19
LD
1815 &ProcessorInfoBuffer->Location.Package,\r
1816 &ProcessorInfoBuffer->Location.Core,\r
1817 &ProcessorInfoBuffer->Location.Thread\r
1818 );\r
ad52f25e
JF
1819\r
1820 if (HealthData != NULL) {\r
31a1e4da 1821 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;\r
ad52f25e
JF
1822 }\r
1823\r
1824 return EFI_SUCCESS;\r
3e8ad6bd 1825}\r
ad52f25e 1826\r
41be0da5
JF
1827/**\r
1828 Worker function to switch the requested AP to be the BSP from that point onward.\r
1829\r
1830 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.\r
1831 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an\r
1832 enabled AP. Otherwise, it will be disabled.\r
1833\r
1834 @retval EFI_SUCCESS BSP successfully switched.\r
7367cc6c 1835 @retval others Failed to switch BSP.\r
41be0da5
JF
1836\r
1837**/\r
1838EFI_STATUS\r
1839SwitchBSPWorker (\r
1840 IN UINTN ProcessorNumber,\r
1841 IN BOOLEAN EnableOldBSP\r
1842 )\r
1843{\r
1844 CPU_MP_DATA *CpuMpData;\r
1845 UINTN CallerNumber;\r
1846 CPU_STATE State;\r
1847 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;\r
a8d75a18 1848 BOOLEAN OldInterruptState;\r
26b43433 1849 BOOLEAN OldTimerInterruptState;\r
a8d75a18 1850\r
26b43433
JF
1851 //\r
1852 // Save and Disable Local APIC timer interrupt\r
1853 //\r
1854 OldTimerInterruptState = GetApicTimerInterruptState ();\r
1855 DisableApicTimerInterrupt ();\r
a8d75a18
JF
1856 //\r
1857 // Before send both BSP and AP to a procedure to exchange their roles,\r
1858 // interrupt must be disabled. This is because during the exchange role\r
1859 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will\r
1860 // be corrupted, since interrupt return address will be pushed to stack\r
1861 // by hardware.\r
1862 //\r
1863 OldInterruptState = SaveAndDisableInterrupts ();\r
1864\r
1865 //\r
1866 // Mask LINT0 & LINT1 for the old BSP\r
1867 //\r
1868 DisableLvtInterrupts ();\r
41be0da5
JF
1869\r
1870 CpuMpData = GetCpuMpData ();\r
1871\r
1872 //\r
1873 // Check whether caller processor is BSP\r
1874 //\r
1875 MpInitLibWhoAmI (&CallerNumber);\r
1876 if (CallerNumber != CpuMpData->BspNumber) {\r
5e72dacc 1877 return EFI_DEVICE_ERROR;\r
41be0da5
JF
1878 }\r
1879\r
1880 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
1881 return EFI_NOT_FOUND;\r
1882 }\r
1883\r
1884 //\r
1885 // Check whether specified AP is disabled\r
1886 //\r
1887 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);\r
1888 if (State == CpuStateDisabled) {\r
1889 return EFI_INVALID_PARAMETER;\r
1890 }\r
1891\r
1892 //\r
1893 // Check whether ProcessorNumber specifies the current BSP\r
1894 //\r
1895 if (ProcessorNumber == CpuMpData->BspNumber) {\r
1896 return EFI_INVALID_PARAMETER;\r
1897 }\r
1898\r
1899 //\r
1900 // Check whether specified AP is busy\r
1901 //\r
1902 if (State == CpuStateBusy) {\r
1903 return EFI_NOT_READY;\r
1904 }\r
1905\r
1906 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;\r
1907 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;\r
1908 CpuMpData->SwitchBspFlag = TRUE;\r
b3775af2 1909 CpuMpData->NewBspNumber = ProcessorNumber;\r
41be0da5
JF
1910\r
1911 //\r
1912 // Clear the BSP bit of MSR_IA32_APIC_BASE\r
1913 //\r
1914 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1915 ApicBaseMsr.Bits.BSP = 0;\r
1916 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
1917\r
1918 //\r
1919 // Need to wakeUp AP (future BSP).\r
1920 //\r
cf4e79e4 1921 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);\r
41be0da5
JF
1922\r
1923 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);\r
1924\r
1925 //\r
1926 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP\r
1927 //\r
1928 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);\r
1929 ApicBaseMsr.Bits.BSP = 1;\r
1930 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);\r
9c6961d5 1931 ProgramVirtualWireMode ();\r
41be0da5
JF
1932\r
1933 //\r
1934 // Wait for old BSP finished AP task\r
1935 //\r
2a5997f8 1936 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateIdle) {\r
41be0da5
JF
1937 CpuPause ();\r
1938 }\r
1939\r
1940 CpuMpData->SwitchBspFlag = FALSE;\r
1941 //\r
1942 // Set old BSP enable state\r
1943 //\r
1944 if (!EnableOldBSP) {\r
1945 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);\r
af8ba51a
JF
1946 } else {\r
1947 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);\r
41be0da5
JF
1948 }\r
1949 //\r
1950 // Save new BSP number\r
1951 //\r
1952 CpuMpData->BspNumber = (UINT32) ProcessorNumber;\r
1953\r
a8d75a18
JF
1954 //\r
1955 // Restore interrupt state.\r
1956 //\r
1957 SetInterruptState (OldInterruptState);\r
1958\r
26b43433
JF
1959 if (OldTimerInterruptState) {\r
1960 EnableApicTimerInterrupt ();\r
1961 }\r
a8d75a18 1962\r
41be0da5
JF
1963 return EFI_SUCCESS;\r
1964}\r
ad52f25e 1965\r
e37109bc
JF
1966/**\r
1967 Worker function to let the caller enable or disable an AP from this point onward.\r
1968 This service may only be called from the BSP.\r
1969\r
1970 @param[in] ProcessorNumber The handle number of AP.\r
1971 @param[in] EnableAP Specifies the new state for the processor for\r
1972 enabled, FALSE for disabled.\r
1973 @param[in] HealthFlag If not NULL, a pointer to a value that specifies\r
1974 the new health status of the AP.\r
1975\r
1976 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.\r
1977 @retval others Failed to Enable/Disable AP.\r
1978\r
1979**/\r
1980EFI_STATUS\r
1981EnableDisableApWorker (\r
1982 IN UINTN ProcessorNumber,\r
1983 IN BOOLEAN EnableAP,\r
1984 IN UINT32 *HealthFlag OPTIONAL\r
1985 )\r
1986{\r
1987 CPU_MP_DATA *CpuMpData;\r
1988 UINTN CallerNumber;\r
1989\r
1990 CpuMpData = GetCpuMpData ();\r
1991\r
1992 //\r
1993 // Check whether caller processor is BSP\r
1994 //\r
1995 MpInitLibWhoAmI (&CallerNumber);\r
1996 if (CallerNumber != CpuMpData->BspNumber) {\r
1997 return EFI_DEVICE_ERROR;\r
1998 }\r
1999\r
2000 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2001 return EFI_INVALID_PARAMETER;\r
2002 }\r
2003\r
2004 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2005 return EFI_NOT_FOUND;\r
2006 }\r
2007\r
2008 if (!EnableAP) {\r
2009 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);\r
2010 } else {\r
d5fdae96 2011 ResetProcessorToIdleState (ProcessorNumber);\r
e37109bc
JF
2012 }\r
2013\r
2014 if (HealthFlag != NULL) {\r
2015 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =\r
2016 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);\r
2017 }\r
2018\r
2019 return EFI_SUCCESS;\r
2020}\r
2021\r
3e8ad6bd
JF
2022/**\r
2023 This return the handle number for the calling processor. This service may be\r
2024 called from the BSP and APs.\r
2025\r
2026 @param[out] ProcessorNumber Pointer to the handle number of AP.\r
2027 The range is from 0 to the total number of\r
2028 logical processors minus 1. The total number of\r
2029 logical processors can be retrieved by\r
2030 MpInitLibGetNumberOfProcessors().\r
2031\r
2032 @retval EFI_SUCCESS The current processor handle number was returned\r
2033 in ProcessorNumber.\r
2034 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.\r
2035 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2036\r
2037**/\r
2038EFI_STATUS\r
2039EFIAPI\r
2040MpInitLibWhoAmI (\r
2041 OUT UINTN *ProcessorNumber\r
2042 )\r
2043{\r
5c9e0997
JF
2044 CPU_MP_DATA *CpuMpData;\r
2045\r
2046 if (ProcessorNumber == NULL) {\r
2047 return EFI_INVALID_PARAMETER;\r
2048 }\r
2049\r
2050 CpuMpData = GetCpuMpData ();\r
2051\r
2052 return GetProcessorNumber (CpuMpData, ProcessorNumber);\r
3e8ad6bd 2053}\r
809213a6 2054\r
3e8ad6bd
JF
2055/**\r
2056 Retrieves the number of logical processor in the platform and the number of\r
2057 those logical processors that are enabled on this boot. This service may only\r
2058 be called from the BSP.\r
2059\r
2060 @param[out] NumberOfProcessors Pointer to the total number of logical\r
2061 processors in the system, including the BSP\r
2062 and disabled APs.\r
2063 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical\r
2064 processors that exist in system, including\r
2065 the BSP.\r
2066\r
2067 @retval EFI_SUCCESS The number of logical processors and enabled\r
2068 logical processors was retrieved.\r
2069 @retval EFI_DEVICE_ERROR The calling processor is an AP.\r
2070 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors\r
2071 is NULL.\r
2072 @retval EFI_NOT_READY MP Initialize Library is not initialized.\r
2073\r
2074**/\r
2075EFI_STATUS\r
2076EFIAPI\r
2077MpInitLibGetNumberOfProcessors (\r
2078 OUT UINTN *NumberOfProcessors, OPTIONAL\r
2079 OUT UINTN *NumberOfEnabledProcessors OPTIONAL\r
2080 )\r
2081{\r
809213a6
JF
2082 CPU_MP_DATA *CpuMpData;\r
2083 UINTN CallerNumber;\r
2084 UINTN ProcessorNumber;\r
2085 UINTN EnabledProcessorNumber;\r
2086 UINTN Index;\r
2087\r
2088 CpuMpData = GetCpuMpData ();\r
2089\r
2090 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {\r
2091 return EFI_INVALID_PARAMETER;\r
2092 }\r
2093\r
2094 //\r
2095 // Check whether caller processor is BSP\r
2096 //\r
2097 MpInitLibWhoAmI (&CallerNumber);\r
2098 if (CallerNumber != CpuMpData->BspNumber) {\r
2099 return EFI_DEVICE_ERROR;\r
2100 }\r
2101\r
2102 ProcessorNumber = CpuMpData->CpuCount;\r
2103 EnabledProcessorNumber = 0;\r
2104 for (Index = 0; Index < ProcessorNumber; Index++) {\r
2105 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {\r
2106 EnabledProcessorNumber ++;\r
2107 }\r
2108 }\r
2109\r
2110 if (NumberOfProcessors != NULL) {\r
2111 *NumberOfProcessors = ProcessorNumber;\r
2112 }\r
2113 if (NumberOfEnabledProcessors != NULL) {\r
2114 *NumberOfEnabledProcessors = EnabledProcessorNumber;\r
2115 }\r
2116\r
2117 return EFI_SUCCESS;\r
3e8ad6bd 2118}\r
6a2ee2bb 2119\r
809213a6 2120\r
86efe976
JF
2121/**\r
2122 Worker function to execute a caller provided function on all enabled APs.\r
2123\r
2124 @param[in] Procedure A pointer to the function to be run on\r
2125 enabled APs of the system.\r
2126 @param[in] SingleThread If TRUE, then all the enabled APs execute\r
2127 the function specified by Procedure one by\r
2128 one, in ascending order of processor handle\r
2129 number. If FALSE, then all the enabled APs\r
2130 execute the function specified by Procedure\r
2131 simultaneously.\r
2132 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2133 service.\r
367284e7 2134 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
86efe976
JF
2135 APs to return from Procedure, either for\r
2136 blocking or non-blocking mode.\r
2137 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2138 all APs.\r
2139 @param[out] FailedCpuList If all APs finish successfully, then its\r
2140 content is set to NULL. If not all APs\r
2141 finish before timeout expires, then its\r
2142 content is set to address of the buffer\r
2143 holding handle numbers of the failed APs.\r
2144\r
2145 @retval EFI_SUCCESS In blocking mode, all APs have finished before\r
2146 the timeout expired.\r
2147 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched\r
2148 to all enabled APs.\r
2149 @retval others Failed to Startup all APs.\r
2150\r
2151**/\r
2152EFI_STATUS\r
2153StartupAllAPsWorker (\r
2154 IN EFI_AP_PROCEDURE Procedure,\r
2155 IN BOOLEAN SingleThread,\r
2156 IN EFI_EVENT WaitEvent OPTIONAL,\r
2157 IN UINTN TimeoutInMicroseconds,\r
2158 IN VOID *ProcedureArgument OPTIONAL,\r
2159 OUT UINTN **FailedCpuList OPTIONAL\r
2160 )\r
2161{\r
2162 EFI_STATUS Status;\r
2163 CPU_MP_DATA *CpuMpData;\r
2164 UINTN ProcessorCount;\r
2165 UINTN ProcessorNumber;\r
2166 UINTN CallerNumber;\r
2167 CPU_AP_DATA *CpuData;\r
2168 BOOLEAN HasEnabledAp;\r
2169 CPU_STATE ApState;\r
2170\r
2171 CpuMpData = GetCpuMpData ();\r
2172\r
2173 if (FailedCpuList != NULL) {\r
2174 *FailedCpuList = NULL;\r
2175 }\r
2176\r
2177 if (CpuMpData->CpuCount == 1) {\r
2178 return EFI_NOT_STARTED;\r
2179 }\r
2180\r
2181 if (Procedure == NULL) {\r
2182 return EFI_INVALID_PARAMETER;\r
2183 }\r
2184\r
2185 //\r
2186 // Check whether caller processor is BSP\r
2187 //\r
2188 MpInitLibWhoAmI (&CallerNumber);\r
2189 if (CallerNumber != CpuMpData->BspNumber) {\r
2190 return EFI_DEVICE_ERROR;\r
2191 }\r
2192\r
2193 //\r
2194 // Update AP state\r
2195 //\r
2196 CheckAndUpdateApsStatus ();\r
2197\r
2198 ProcessorCount = CpuMpData->CpuCount;\r
2199 HasEnabledAp = FALSE;\r
2200 //\r
2201 // Check whether all enabled APs are idle.\r
2202 // If any enabled AP is not idle, return EFI_NOT_READY.\r
2203 //\r
2204 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2205 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2206 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2207 ApState = GetApState (CpuData);\r
2208 if (ApState != CpuStateDisabled) {\r
2209 HasEnabledAp = TRUE;\r
2210 if (ApState != CpuStateIdle) {\r
2211 //\r
2212 // If any enabled APs are busy, return EFI_NOT_READY.\r
2213 //\r
2214 return EFI_NOT_READY;\r
2215 }\r
2216 }\r
2217 }\r
2218 }\r
2219\r
2220 if (!HasEnabledAp) {\r
2221 //\r
2222 // If no enabled AP exists, return EFI_NOT_STARTED.\r
2223 //\r
2224 return EFI_NOT_STARTED;\r
2225 }\r
2226\r
2da3e96c 2227 CpuMpData->RunningCount = 0;\r
86efe976
JF
2228 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2229 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2230 CpuData->Waiting = FALSE;\r
2231 if (ProcessorNumber != CpuMpData->BspNumber) {\r
2232 if (CpuData->State == CpuStateIdle) {\r
2233 //\r
2234 // Mark this processor as responsible for current calling.\r
2235 //\r
2236 CpuData->Waiting = TRUE;\r
2da3e96c 2237 CpuMpData->RunningCount++;\r
86efe976
JF
2238 }\r
2239 }\r
2240 }\r
2241\r
2242 CpuMpData->Procedure = Procedure;\r
2243 CpuMpData->ProcArguments = ProcedureArgument;\r
2244 CpuMpData->SingleThread = SingleThread;\r
2245 CpuMpData->FinishedCount = 0;\r
86efe976
JF
2246 CpuMpData->FailedCpuList = FailedCpuList;\r
2247 CpuMpData->ExpectedTime = CalculateTimeout (\r
2248 TimeoutInMicroseconds,\r
2249 &CpuMpData->CurrentTime\r
2250 );\r
2251 CpuMpData->TotalTime = 0;\r
2252 CpuMpData->WaitEvent = WaitEvent;\r
2253\r
2254 if (!SingleThread) {\r
cf4e79e4 2255 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);\r
86efe976
JF
2256 } else {\r
2257 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {\r
2258 if (ProcessorNumber == CallerNumber) {\r
2259 continue;\r
2260 }\r
2261 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {\r
cf4e79e4 2262 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
86efe976
JF
2263 break;\r
2264 }\r
2265 }\r
2266 }\r
2267\r
2268 Status = EFI_SUCCESS;\r
2269 if (WaitEvent == NULL) {\r
2270 do {\r
2271 Status = CheckAllAPs ();\r
2272 } while (Status == EFI_NOT_READY);\r
2273 }\r
2274\r
2275 return Status;\r
2276}\r
2277\r
20ae5774
JF
2278/**\r
2279 Worker function to let the caller get one enabled AP to execute a caller-provided\r
2280 function.\r
2281\r
2282 @param[in] Procedure A pointer to the function to be run on\r
2283 enabled APs of the system.\r
2284 @param[in] ProcessorNumber The handle number of the AP.\r
2285 @param[in] WaitEvent The event created by the caller with CreateEvent()\r
2286 service.\r
367284e7 2287 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for\r
20ae5774
JF
2288 APs to return from Procedure, either for\r
2289 blocking or non-blocking mode.\r
2290 @param[in] ProcedureArgument The parameter passed into Procedure for\r
2291 all APs.\r
2292 @param[out] Finished If AP returns from Procedure before the\r
2293 timeout expires, its content is set to TRUE.\r
2294 Otherwise, the value is set to FALSE.\r
2295\r
2296 @retval EFI_SUCCESS In blocking mode, specified AP finished before\r
2297 the timeout expires.\r
2298 @retval others Failed to Startup AP.\r
2299\r
2300**/\r
2301EFI_STATUS\r
2302StartupThisAPWorker (\r
2303 IN EFI_AP_PROCEDURE Procedure,\r
2304 IN UINTN ProcessorNumber,\r
2305 IN EFI_EVENT WaitEvent OPTIONAL,\r
2306 IN UINTN TimeoutInMicroseconds,\r
2307 IN VOID *ProcedureArgument OPTIONAL,\r
2308 OUT BOOLEAN *Finished OPTIONAL\r
2309 )\r
2310{\r
2311 EFI_STATUS Status;\r
2312 CPU_MP_DATA *CpuMpData;\r
2313 CPU_AP_DATA *CpuData;\r
2314 UINTN CallerNumber;\r
2315\r
2316 CpuMpData = GetCpuMpData ();\r
2317\r
2318 if (Finished != NULL) {\r
2319 *Finished = FALSE;\r
2320 }\r
2321\r
2322 //\r
2323 // Check whether caller processor is BSP\r
2324 //\r
2325 MpInitLibWhoAmI (&CallerNumber);\r
2326 if (CallerNumber != CpuMpData->BspNumber) {\r
2327 return EFI_DEVICE_ERROR;\r
2328 }\r
2329\r
2330 //\r
2331 // Check whether processor with the handle specified by ProcessorNumber exists\r
2332 //\r
2333 if (ProcessorNumber >= CpuMpData->CpuCount) {\r
2334 return EFI_NOT_FOUND;\r
2335 }\r
2336\r
2337 //\r
2338 // Check whether specified processor is BSP\r
2339 //\r
2340 if (ProcessorNumber == CpuMpData->BspNumber) {\r
2341 return EFI_INVALID_PARAMETER;\r
2342 }\r
2343\r
2344 //\r
2345 // Check parameter Procedure\r
2346 //\r
2347 if (Procedure == NULL) {\r
2348 return EFI_INVALID_PARAMETER;\r
2349 }\r
2350\r
2351 //\r
2352 // Update AP state\r
2353 //\r
2354 CheckAndUpdateApsStatus ();\r
2355\r
2356 //\r
2357 // Check whether specified AP is disabled\r
2358 //\r
2359 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {\r
2360 return EFI_INVALID_PARAMETER;\r
2361 }\r
2362\r
2363 //\r
2364 // If WaitEvent is not NULL, execute in non-blocking mode.\r
2365 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.\r
2366 // CheckAPsStatus() will check completion and timeout periodically.\r
2367 //\r
2368 CpuData = &CpuMpData->CpuData[ProcessorNumber];\r
2369 CpuData->WaitEvent = WaitEvent;\r
2370 CpuData->Finished = Finished;\r
2371 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);\r
2372 CpuData->TotalTime = 0;\r
2373\r
cf4e79e4 2374 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);\r
20ae5774
JF
2375\r
2376 //\r
2377 // If WaitEvent is NULL, execute in blocking mode.\r
2378 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.\r
2379 //\r
2380 Status = EFI_SUCCESS;\r
2381 if (WaitEvent == NULL) {\r
2382 do {\r
2383 Status = CheckThisAP (ProcessorNumber);\r
2384 } while (Status == EFI_NOT_READY);\r
2385 }\r
2386\r
2387 return Status;\r
2388}\r
2389\r
93ca4c0f
JF
2390/**\r
2391 Get pointer to CPU MP Data structure from GUIDed HOB.\r
2392\r
2393 @return The pointer to CPU MP Data structure.\r
2394**/\r
2395CPU_MP_DATA *\r
2396GetCpuMpDataFromGuidedHob (\r
2397 VOID\r
2398 )\r
2399{\r
2400 EFI_HOB_GUID_TYPE *GuidHob;\r
2401 VOID *DataInHob;\r
2402 CPU_MP_DATA *CpuMpData;\r
2403\r
2404 CpuMpData = NULL;\r
2405 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);\r
2406 if (GuidHob != NULL) {\r
2407 DataInHob = GET_GUID_HOB_DATA (GuidHob);\r
2408 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);\r
2409 }\r
2410 return CpuMpData;\r
2411}\r
42c37b3b 2412\r