]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
migration: consolidate time info into populate_time_info
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3
PB
45#include "hw/hw.h"
46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
9c607668 49#include "sysemu/numa.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
9dfeca7c
BR
69#include "migration/vmstate.h"
70
b35ba30f 71#include "qemu/range.h"
794e8f30
MT
72#ifndef _WIN32
73#include "qemu/mmap-alloc.h"
74#endif
b35ba30f 75
be9b23c4
PX
76#include "monitor/monitor.h"
77
db7b5426 78//#define DEBUG_SUBPAGE
1196be37 79
e2eef170 80#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
81/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
82 * are protected by the ramlist lock.
83 */
0d53d9fe 84RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
85
86static MemoryRegion *system_memory;
309cb471 87static MemoryRegion *system_io;
62152b8a 88
f6790af6
AK
89AddressSpace address_space_io;
90AddressSpace address_space_memory;
2673a5da 91
0844e007 92MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 93static MemoryRegion io_mem_unassigned;
e2eef170 94#endif
9fa3e853 95
20bccb82
PM
96#ifdef TARGET_PAGE_BITS_VARY
97int target_page_bits;
98bool target_page_bits_decided;
99#endif
100
f481ee2d
PB
101CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102
6a00d601
FB
103/* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
f240eb6f 105__thread CPUState *current_cpu;
2e70f6ef 106/* 0 = Do not count executed instructions.
bf20dc07 107 1 = Precise instruction counting.
2e70f6ef 108 2 = Adaptive rate instruction counting. */
5708fc66 109int use_icount;
6a00d601 110
a0be0c58
YZ
111uintptr_t qemu_host_page_size;
112intptr_t qemu_host_page_mask;
a0be0c58 113
20bccb82
PM
114bool set_preferred_target_page_bits(int bits)
115{
116 /* The target page size is the lowest common denominator for all
117 * the CPUs in the system, so we can only make it smaller, never
118 * larger. And we can't make it smaller once we've committed to
119 * a particular size.
120 */
121#ifdef TARGET_PAGE_BITS_VARY
122 assert(bits >= TARGET_PAGE_BITS_MIN);
123 if (target_page_bits == 0 || target_page_bits > bits) {
124 if (target_page_bits_decided) {
125 return false;
126 }
127 target_page_bits = bits;
128 }
129#endif
130 return true;
131}
132
e2eef170 133#if !defined(CONFIG_USER_ONLY)
4346ae3e 134
20bccb82
PM
135static void finalize_target_page_bits(void)
136{
137#ifdef TARGET_PAGE_BITS_VARY
138 if (target_page_bits == 0) {
139 target_page_bits = TARGET_PAGE_BITS_MIN;
140 }
141 target_page_bits_decided = true;
142#endif
143}
144
1db8abb1
PB
145typedef struct PhysPageEntry PhysPageEntry;
146
147struct PhysPageEntry {
9736e55b 148 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 149 uint32_t skip : 6;
9736e55b 150 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 151 uint32_t ptr : 26;
1db8abb1
PB
152};
153
8b795765
MT
154#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155
03f49957 156/* Size of the L2 (and L3, etc) page tables. */
57271d63 157#define ADDR_SPACE_BITS 64
03f49957 158
026736ce 159#define P_L2_BITS 9
03f49957
PB
160#define P_L2_SIZE (1 << P_L2_BITS)
161
162#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163
164typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 165
53cb28cb 166typedef struct PhysPageMap {
79e2b9ae
PB
167 struct rcu_head rcu;
168
53cb28cb
MA
169 unsigned sections_nb;
170 unsigned sections_nb_alloc;
171 unsigned nodes_nb;
172 unsigned nodes_nb_alloc;
173 Node *nodes;
174 MemoryRegionSection *sections;
175} PhysPageMap;
176
1db8abb1 177struct AddressSpaceDispatch {
729633c2 178 MemoryRegionSection *mru_section;
1db8abb1
PB
179 /* This is a multi-level map on the physical address space.
180 * The bottom level has pointers to MemoryRegionSections.
181 */
182 PhysPageEntry phys_map;
53cb28cb 183 PhysPageMap map;
1db8abb1
PB
184};
185
90260c6c
JK
186#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
187typedef struct subpage_t {
188 MemoryRegion iomem;
16620684 189 FlatView *fv;
90260c6c 190 hwaddr base;
2615fabd 191 uint16_t sub_section[];
90260c6c
JK
192} subpage_t;
193
b41aac4f
LPF
194#define PHYS_SECTION_UNASSIGNED 0
195#define PHYS_SECTION_NOTDIRTY 1
196#define PHYS_SECTION_ROM 2
197#define PHYS_SECTION_WATCH 3
5312bd8b 198
e2eef170 199static void io_mem_init(void);
62152b8a 200static void memory_map_init(void);
09daed84 201static void tcg_commit(MemoryListener *listener);
e2eef170 202
1ec9b909 203static MemoryRegion io_mem_watch;
32857f4d
PM
204
205/**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217};
218
8deaf12c
GH
219struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223};
224
6658ffb8 225#endif
fd6ce8f6 226
6d9a1304 227#if !defined(CONFIG_USER_ONLY)
d6f2ea22 228
53cb28cb 229static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 230{
101420b8 231 static unsigned alloc_hint = 16;
53cb28cb 232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 236 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 237 }
f7bf5461
AK
238}
239
db94604b 240static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
241{
242 unsigned i;
8b795765 243 uint32_t ret;
db94604b
PB
244 PhysPageEntry e;
245 PhysPageEntry *p;
f7bf5461 246
53cb28cb 247 ret = map->nodes_nb++;
db94604b 248 p = map->nodes[ret];
f7bf5461 249 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 250 assert(ret != map->nodes_nb_alloc);
db94604b
PB
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 254 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 255 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 256 }
f7bf5461 257 return ret;
d6f2ea22
AK
258}
259
53cb28cb
MA
260static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 262 int level)
f7bf5461
AK
263{
264 PhysPageEntry *p;
03f49957 265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 266
9736e55b 267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 268 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 269 }
db94604b 270 p = map->nodes[lp->ptr];
03f49957 271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 272
03f49957 273 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 274 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 275 lp->skip = 0;
c19e8800 276 lp->ptr = leaf;
07f07b31
AK
277 *index += step;
278 *nb -= step;
2999097b 279 } else {
53cb28cb 280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
281 }
282 ++lp;
f7bf5461
AK
283 }
284}
285
ac1970fb 286static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 287 hwaddr index, hwaddr nb,
2999097b 288 uint16_t leaf)
f7bf5461 289{
2999097b 290 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 292
53cb28cb 293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
294}
295
b35ba30f
MT
296/* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
efee678d 299static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
300{
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
efee678d 319 phys_page_compact(&p[i], nodes);
b35ba30f
MT
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347}
348
8629d3fc 349void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 350{
b35ba30f 351 if (d->phys_map.skip) {
efee678d 352 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
353 }
354}
355
29cb533d
FZ
356static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358{
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
258dfaaa 362 return int128_gethi(section->size) ||
29cb533d 363 range_covers_byte(section->offset_within_address_space,
258dfaaa 364 int128_getlo(section->size), addr);
29cb533d
FZ
365}
366
003a0cf2 367static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 368{
003a0cf2
PX
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
97115a8d 372 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 373 int i;
f1f6e3b8 374
9736e55b 375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 377 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 378 }
9affd6fc 379 p = nodes[lp.ptr];
03f49957 380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 381 }
b35ba30f 382
29cb533d 383 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
f3705d53
AK
388}
389
79e2b9ae 390/* Called from RCU critical section */
c7086b4a 391static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
392 hwaddr addr,
393 bool resolve_subpage)
9f029603 394{
729633c2 395 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
396 subpage_t *subpage;
397
07c114bb
PB
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
003a0cf2 400 section = phys_page_find(d, addr);
07c114bb 401 atomic_set(&d->mru_section, section);
729633c2 402 }
90260c6c
JK
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
406 }
407 return section;
9f029603
JK
408}
409
79e2b9ae 410/* Called from RCU critical section */
90260c6c 411static MemoryRegionSection *
c7086b4a 412address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 413 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
414{
415 MemoryRegionSection *section;
965eb2fc 416 MemoryRegion *mr;
a87f3954 417 Int128 diff;
149f54b5 418
c7086b4a 419 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
965eb2fc 426 mr = section->mr;
b242e0e0
PB
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
965eb2fc 439 if (memory_region_is_ram(mr)) {
e4a511f8 440 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
149f54b5
PB
443 return section;
444}
90260c6c 445
a411c84b
PB
446/**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
2f7b009c 463 * @attrs: transaction attributes
a411c84b
PB
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
2f7b009c
PM
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
a411c84b
PB
476{
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517}
518
d5e5fafd
PX
519/**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 534 * @target_as: the address space targeted by the IOMMU
49e14aa8 535 * @attrs: memory transaction attributes
d5e5fafd
PX
536 *
537 * This function is called from RCU critical section
538 */
16620684
AK
539static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
d5e5fafd
PX
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
16620684
AK
544 bool is_write,
545 bool is_mmio,
49e14aa8
PM
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
052c8fa9 548{
052c8fa9 549 MemoryRegionSection *section;
3df9d748 550 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
551 hwaddr plen = (hwaddr)(-1);
552
ad2804d9
PB
553 if (!plen_out) {
554 plen_out = &plen;
d5e5fafd 555 }
052c8fa9 556
a411c84b
PB
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
052c8fa9 560
a411c84b
PB
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
2f7b009c 566 target_as, attrs);
052c8fa9 567 }
d5e5fafd 568 if (page_mask_out) {
a411c84b
PB
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
571 }
572
a764040c 573 return *section;
052c8fa9
JW
574}
575
576/* Called from RCU critical section */
a764040c 577IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 578 bool is_write, MemTxAttrs attrs)
90260c6c 579{
a764040c 580 MemoryRegionSection section;
076a93d7 581 hwaddr xlat, page_mask;
30951157 582
076a93d7
PX
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
30951157 590
a764040c
PX
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
30951157 595
a764040c
PX
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
a764040c 600 return (IOMMUTLBEntry) {
e76bb18f 601 .target_as = as,
076a93d7
PX
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
a764040c
PX
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611}
612
613/* Called from RCU critical section */
16620684 614MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
a764040c
PX
617{
618 MemoryRegion *mr;
619 MemoryRegionSection section;
16620684 620 AddressSpace *as = NULL;
a764040c
PX
621
622 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 624 is_write, true, &as, attrs);
a764040c
PX
625 mr = section.mr;
626
fe680d0d 627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 629 *plen = MIN(page, *plen);
a87f3954
PB
630 }
631
30951157 632 return mr;
90260c6c
JK
633}
634
1f871c5e
PM
635typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641} TCGIOMMUNotifier;
642
643static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644{
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657}
658
659static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662{
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704}
705
706static void tcg_iommu_free_notifier_list(CPUState *cpu)
707{
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 715 g_free(notifier);
1f871c5e
PM
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718}
719
79e2b9ae 720/* Called from RCU critical section */
90260c6c 721MemoryRegionSection *
d7898cda 722address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
90260c6c 725{
30951157 726 MemoryRegionSection *section;
1f871c5e
PM
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
f35e44e7 731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 732
1f871c5e
PM
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
30951157 768
3df9d748 769 assert(!memory_region_is_iommu(section->mr));
1f871c5e 770 *xlat = addr;
30951157 771 return section;
1f871c5e
PM
772
773translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 775}
5b6dd868 776#endif
fd6ce8f6 777
b170fce3 778#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
779
780static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 781{
259186a7 782 CPUState *cpu = opaque;
a513fe19 783
5b6dd868
BS
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
259186a7 786 cpu->interrupt_request &= ~0x01;
d10eb08f 787 tlb_flush(cpu);
5b6dd868 788
15a356c4
PD
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
5b6dd868 796 return 0;
a513fe19 797}
7501267e 798
6c3bff0e
PD
799static int cpu_common_pre_load(void *opaque)
800{
801 CPUState *cpu = opaque;
802
adee6424 803 cpu->exception_index = -1;
6c3bff0e
PD
804
805 return 0;
806}
807
808static bool cpu_common_exception_index_needed(void *opaque)
809{
810 CPUState *cpu = opaque;
811
adee6424 812 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
813}
814
815static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
5cd8cada 819 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824};
825
bac05aa9
AS
826static bool cpu_common_crash_occurred_needed(void *opaque)
827{
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831}
832
833static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842};
843
1a1562f5 844const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
6c3bff0e 848 .pre_load = cpu_common_pre_load,
5b6dd868 849 .post_load = cpu_common_post_load,
35d08458 850 .fields = (VMStateField[]) {
259186a7
AF
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 853 VMSTATE_END_OF_LIST()
6c3bff0e 854 },
5cd8cada
JQ
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
bac05aa9 857 &vmstate_cpu_common_crash_occurred,
5cd8cada 858 NULL
5b6dd868
BS
859 }
860};
1a1562f5 861
5b6dd868 862#endif
ea041c0e 863
38d8f5c8 864CPUState *qemu_get_cpu(int index)
ea041c0e 865{
bdc44640 866 CPUState *cpu;
ea041c0e 867
bdc44640 868 CPU_FOREACH(cpu) {
55e5c285 869 if (cpu->cpu_index == index) {
bdc44640 870 return cpu;
55e5c285 871 }
ea041c0e 872 }
5b6dd868 873
bdc44640 874 return NULL;
ea041c0e
FB
875}
876
09daed84 877#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
878void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
09daed84 880{
12ebc9a7 881 CPUAddressSpace *newas;
80ceb07a 882 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 883 char *as_name;
80ceb07a
PX
884
885 assert(mr);
87a621d8
PX
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
12ebc9a7
PM
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
56943e8c
PM
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
12ebc9a7
PM
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
09daed84 900
12ebc9a7
PM
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 903 }
32857f4d 904
12ebc9a7
PM
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
56943e8c 908 if (tcg_enabled()) {
12ebc9a7
PM
909 newas->tcg_as_listener.commit = tcg_commit;
910 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 911 }
09daed84 912}
651a5bc0
PM
913
914AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
915{
916 /* Return the AddressSpace corresponding to the specified index */
917 return cpu->cpu_ases[asidx].as;
918}
09daed84
EI
919#endif
920
7bbc124e 921void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 922{
9dfeca7c
BR
923 CPUClass *cc = CPU_GET_CLASS(cpu);
924
267f685b 925 cpu_list_remove(cpu);
9dfeca7c
BR
926
927 if (cc->vmsd != NULL) {
928 vmstate_unregister(NULL, cc->vmsd, cpu);
929 }
930 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
931 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
932 }
1f871c5e
PM
933#ifndef CONFIG_USER_ONLY
934 tcg_iommu_free_notifier_list(cpu);
935#endif
1c59eb39
BR
936}
937
c7e002c5
FZ
938Property cpu_common_props[] = {
939#ifndef CONFIG_USER_ONLY
940 /* Create a memory property for softmmu CPU object,
941 * so users can wire up its memory. (This can't go in qom/cpu.c
942 * because that file is compiled only once for both user-mode
943 * and system builds.) The default if no link is set up is to use
944 * the system address space.
945 */
946 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
947 MemoryRegion *),
948#endif
949 DEFINE_PROP_END_OF_LIST(),
950};
951
39e329e3 952void cpu_exec_initfn(CPUState *cpu)
ea041c0e 953{
56943e8c 954 cpu->as = NULL;
12ebc9a7 955 cpu->num_ases = 0;
56943e8c 956
291135b5 957#ifndef CONFIG_USER_ONLY
291135b5 958 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
959 cpu->memory = system_memory;
960 object_ref(OBJECT(cpu->memory));
291135b5 961#endif
39e329e3
LV
962}
963
ce5b1bbf 964void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 965{
55c3ceef 966 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 967 static bool tcg_target_initialized;
291135b5 968
267f685b 969 cpu_list_add(cpu);
1bc7e522 970
2dda6354
EC
971 if (tcg_enabled() && !tcg_target_initialized) {
972 tcg_target_initialized = true;
55c3ceef
RH
973 cc->tcg_initialize();
974 }
5005e253 975 tlb_init(cpu);
55c3ceef 976
1bc7e522 977#ifndef CONFIG_USER_ONLY
e0d47944 978 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 979 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 980 }
b170fce3 981 if (cc->vmsd != NULL) {
741da0d3 982 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 983 }
1f871c5e 984
5601be3b 985 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 986#endif
ea041c0e
FB
987}
988
c1c8cfe5 989const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
990{
991 ObjectClass *oc;
992 CPUClass *cc;
993 gchar **model_pieces;
994 const char *cpu_type;
995
c1c8cfe5 996 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
997 if (!model_pieces[0]) {
998 error_report("-cpu option cannot be empty");
999 exit(1);
1000 }
2278b939
IM
1001
1002 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1003 if (oc == NULL) {
1004 error_report("unable to find CPU model '%s'", model_pieces[0]);
1005 g_strfreev(model_pieces);
1006 exit(EXIT_FAILURE);
1007 }
1008
1009 cpu_type = object_class_get_name(oc);
1010 cc = CPU_CLASS(oc);
1011 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1012 g_strfreev(model_pieces);
1013 return cpu_type;
1014}
1015
c40d4792 1016#if defined(CONFIG_USER_ONLY)
8bca9a03 1017void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1018{
406bc339 1019 mmap_lock();
8bca9a03 1020 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1021 mmap_unlock();
1022}
8bca9a03
PB
1023
1024static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1025{
1026 tb_invalidate_phys_addr(pc);
1027}
406bc339 1028#else
8bca9a03
PB
1029void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1030{
1031 ram_addr_t ram_addr;
1032 MemoryRegion *mr;
1033 hwaddr l = 1;
1034
c40d4792
PB
1035 if (!tcg_enabled()) {
1036 return;
1037 }
1038
8bca9a03
PB
1039 rcu_read_lock();
1040 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1041 if (!(memory_region_is_ram(mr)
1042 || memory_region_is_romd(mr))) {
1043 rcu_read_unlock();
1044 return;
1045 }
1046 ram_addr = memory_region_get_ram_addr(mr) + addr;
1047 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1048 rcu_read_unlock();
1049}
1050
406bc339
PK
1051static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1052{
1053 MemTxAttrs attrs;
1054 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1055 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1056 if (phys != -1) {
1057 /* Locks grabbed by tb_invalidate_phys_addr */
1058 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1059 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1060 }
1e7855a5 1061}
406bc339 1062#endif
d720b93d 1063
c527ee8f 1064#if defined(CONFIG_USER_ONLY)
75a34036 1065void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1066
1067{
1068}
1069
3ee887e8
PM
1070int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1071 int flags)
1072{
1073 return -ENOSYS;
1074}
1075
1076void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1077{
1078}
1079
75a34036 1080int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1081 int flags, CPUWatchpoint **watchpoint)
1082{
1083 return -ENOSYS;
1084}
1085#else
6658ffb8 1086/* Add a watchpoint. */
75a34036 1087int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1088 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1089{
c0ce998e 1090 CPUWatchpoint *wp;
6658ffb8 1091
05068c0d 1092 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1093 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1094 error_report("tried to set invalid watchpoint at %"
1095 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1096 return -EINVAL;
1097 }
7267c094 1098 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1099
1100 wp->vaddr = addr;
05068c0d 1101 wp->len = len;
a1d1bb31
AL
1102 wp->flags = flags;
1103
2dc9f411 1104 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1105 if (flags & BP_GDB) {
1106 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1107 } else {
1108 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1109 }
6658ffb8 1110
31b030d4 1111 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1112
1113 if (watchpoint)
1114 *watchpoint = wp;
1115 return 0;
6658ffb8
PB
1116}
1117
a1d1bb31 1118/* Remove a specific watchpoint. */
75a34036 1119int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1120 int flags)
6658ffb8 1121{
a1d1bb31 1122 CPUWatchpoint *wp;
6658ffb8 1123
ff4700b0 1124 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1125 if (addr == wp->vaddr && len == wp->len
6e140f28 1126 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1127 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1128 return 0;
1129 }
1130 }
a1d1bb31 1131 return -ENOENT;
6658ffb8
PB
1132}
1133
a1d1bb31 1134/* Remove a specific watchpoint by reference. */
75a34036 1135void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1136{
ff4700b0 1137 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1138
31b030d4 1139 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1140
7267c094 1141 g_free(watchpoint);
a1d1bb31
AL
1142}
1143
1144/* Remove all matching watchpoints. */
75a34036 1145void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1146{
c0ce998e 1147 CPUWatchpoint *wp, *next;
a1d1bb31 1148
ff4700b0 1149 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1150 if (wp->flags & mask) {
1151 cpu_watchpoint_remove_by_ref(cpu, wp);
1152 }
c0ce998e 1153 }
7d03f82f 1154}
05068c0d
PM
1155
1156/* Return true if this watchpoint address matches the specified
1157 * access (ie the address range covered by the watchpoint overlaps
1158 * partially or completely with the address range covered by the
1159 * access).
1160 */
1161static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1162 vaddr addr,
1163 vaddr len)
1164{
1165 /* We know the lengths are non-zero, but a little caution is
1166 * required to avoid errors in the case where the range ends
1167 * exactly at the top of the address space and so addr + len
1168 * wraps round to zero.
1169 */
1170 vaddr wpend = wp->vaddr + wp->len - 1;
1171 vaddr addrend = addr + len - 1;
1172
1173 return !(addr > wpend || wp->vaddr > addrend);
1174}
1175
c527ee8f 1176#endif
7d03f82f 1177
a1d1bb31 1178/* Add a breakpoint. */
b3310ab3 1179int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1180 CPUBreakpoint **breakpoint)
4c3a88a2 1181{
c0ce998e 1182 CPUBreakpoint *bp;
3b46e624 1183
7267c094 1184 bp = g_malloc(sizeof(*bp));
4c3a88a2 1185
a1d1bb31
AL
1186 bp->pc = pc;
1187 bp->flags = flags;
1188
2dc9f411 1189 /* keep all GDB-injected breakpoints in front */
00b941e5 1190 if (flags & BP_GDB) {
f0c3c505 1191 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1192 } else {
f0c3c505 1193 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1194 }
3b46e624 1195
f0c3c505 1196 breakpoint_invalidate(cpu, pc);
a1d1bb31 1197
00b941e5 1198 if (breakpoint) {
a1d1bb31 1199 *breakpoint = bp;
00b941e5 1200 }
4c3a88a2 1201 return 0;
4c3a88a2
FB
1202}
1203
a1d1bb31 1204/* Remove a specific breakpoint. */
b3310ab3 1205int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1206{
a1d1bb31
AL
1207 CPUBreakpoint *bp;
1208
f0c3c505 1209 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1210 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1211 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1212 return 0;
1213 }
7d03f82f 1214 }
a1d1bb31 1215 return -ENOENT;
7d03f82f
EI
1216}
1217
a1d1bb31 1218/* Remove a specific breakpoint by reference. */
b3310ab3 1219void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1220{
f0c3c505
AF
1221 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1222
1223 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1224
7267c094 1225 g_free(breakpoint);
a1d1bb31
AL
1226}
1227
1228/* Remove all matching breakpoints. */
b3310ab3 1229void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1230{
c0ce998e 1231 CPUBreakpoint *bp, *next;
a1d1bb31 1232
f0c3c505 1233 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1234 if (bp->flags & mask) {
1235 cpu_breakpoint_remove_by_ref(cpu, bp);
1236 }
c0ce998e 1237 }
4c3a88a2
FB
1238}
1239
c33a346e
FB
1240/* enable or disable single step mode. EXCP_DEBUG is returned by the
1241 CPU loop after each instruction */
3825b28f 1242void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1243{
ed2803da
AF
1244 if (cpu->singlestep_enabled != enabled) {
1245 cpu->singlestep_enabled = enabled;
1246 if (kvm_enabled()) {
38e478ec 1247 kvm_update_guest_debug(cpu, 0);
ed2803da 1248 } else {
ccbb4d44 1249 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1250 /* XXX: only flush what is necessary */
bbd77c18 1251 tb_flush(cpu);
e22a25c9 1252 }
c33a346e 1253 }
c33a346e
FB
1254}
1255
a47dddd7 1256void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1257{
1258 va_list ap;
493ae1f0 1259 va_list ap2;
7501267e
FB
1260
1261 va_start(ap, fmt);
493ae1f0 1262 va_copy(ap2, ap);
7501267e
FB
1263 fprintf(stderr, "qemu: fatal: ");
1264 vfprintf(stderr, fmt, ap);
1265 fprintf(stderr, "\n");
90c84c56 1266 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1267 if (qemu_log_separate()) {
1ee73216 1268 qemu_log_lock();
93fcfe39
AL
1269 qemu_log("qemu: fatal: ");
1270 qemu_log_vprintf(fmt, ap2);
1271 qemu_log("\n");
a0762859 1272 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1273 qemu_log_flush();
1ee73216 1274 qemu_log_unlock();
93fcfe39 1275 qemu_log_close();
924edcae 1276 }
493ae1f0 1277 va_end(ap2);
f9373291 1278 va_end(ap);
7615936e 1279 replay_finish();
fd052bf6
RV
1280#if defined(CONFIG_USER_ONLY)
1281 {
1282 struct sigaction act;
1283 sigfillset(&act.sa_mask);
1284 act.sa_handler = SIG_DFL;
8347c185 1285 act.sa_flags = 0;
fd052bf6
RV
1286 sigaction(SIGABRT, &act, NULL);
1287 }
1288#endif
7501267e
FB
1289 abort();
1290}
1291
0124311e 1292#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1293/* Called from RCU critical section */
041603fe
PB
1294static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1295{
1296 RAMBlock *block;
1297
43771539 1298 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1299 if (block && addr - block->offset < block->max_length) {
68851b98 1300 return block;
041603fe 1301 }
99e15582 1302 RAMBLOCK_FOREACH(block) {
9b8424d5 1303 if (addr - block->offset < block->max_length) {
041603fe
PB
1304 goto found;
1305 }
1306 }
1307
1308 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1309 abort();
1310
1311found:
43771539
PB
1312 /* It is safe to write mru_block outside the iothread lock. This
1313 * is what happens:
1314 *
1315 * mru_block = xxx
1316 * rcu_read_unlock()
1317 * xxx removed from list
1318 * rcu_read_lock()
1319 * read mru_block
1320 * mru_block = NULL;
1321 * call_rcu(reclaim_ramblock, xxx);
1322 * rcu_read_unlock()
1323 *
1324 * atomic_rcu_set is not needed here. The block was already published
1325 * when it was placed into the list. Here we're just making an extra
1326 * copy of the pointer.
1327 */
041603fe
PB
1328 ram_list.mru_block = block;
1329 return block;
1330}
1331
a2f4d5be 1332static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1333{
9a13565d 1334 CPUState *cpu;
041603fe 1335 ram_addr_t start1;
a2f4d5be
JQ
1336 RAMBlock *block;
1337 ram_addr_t end;
1338
f28d0dfd 1339 assert(tcg_enabled());
a2f4d5be
JQ
1340 end = TARGET_PAGE_ALIGN(start + length);
1341 start &= TARGET_PAGE_MASK;
d24981d3 1342
0dc3f44a 1343 rcu_read_lock();
041603fe
PB
1344 block = qemu_get_ram_block(start);
1345 assert(block == qemu_get_ram_block(end - 1));
1240be24 1346 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1347 CPU_FOREACH(cpu) {
1348 tlb_reset_dirty(cpu, start1, length);
1349 }
0dc3f44a 1350 rcu_read_unlock();
d24981d3
JQ
1351}
1352
5579c7f3 1353/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1354bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1355 ram_addr_t length,
1356 unsigned client)
1ccde1cb 1357{
5b82b703 1358 DirtyMemoryBlocks *blocks;
03eebc9e 1359 unsigned long end, page;
5b82b703 1360 bool dirty = false;
077874e0
PX
1361 RAMBlock *ramblock;
1362 uint64_t mr_offset, mr_size;
03eebc9e
SH
1363
1364 if (length == 0) {
1365 return false;
1366 }
f23db169 1367
03eebc9e
SH
1368 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1369 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1370
1371 rcu_read_lock();
1372
1373 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
077874e0
PX
1374 ramblock = qemu_get_ram_block(start);
1375 /* Range sanity check on the ramblock */
1376 assert(start >= ramblock->offset &&
1377 start + length <= ramblock->offset + ramblock->used_length);
5b82b703
SH
1378
1379 while (page < end) {
1380 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1381 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1382 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1383
1384 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1385 offset, num);
1386 page += num;
1387 }
1388
077874e0
PX
1389 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1390 mr_size = (end - page) << TARGET_PAGE_BITS;
1391 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
1392
5b82b703 1393 rcu_read_unlock();
03eebc9e
SH
1394
1395 if (dirty && tcg_enabled()) {
a2f4d5be 1396 tlb_reset_dirty_range_all(start, length);
5579c7f3 1397 }
03eebc9e
SH
1398
1399 return dirty;
1ccde1cb
FB
1400}
1401
8deaf12c 1402DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1403 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1404{
1405 DirtyMemoryBlocks *blocks;
5dea4079 1406 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1407 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1408 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1409 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1410 DirtyBitmapSnapshot *snap;
1411 unsigned long page, end, dest;
1412
1413 snap = g_malloc0(sizeof(*snap) +
1414 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1415 snap->start = first;
1416 snap->end = last;
1417
1418 page = first >> TARGET_PAGE_BITS;
1419 end = last >> TARGET_PAGE_BITS;
1420 dest = 0;
1421
1422 rcu_read_lock();
1423
1424 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1425
1426 while (page < end) {
1427 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1428 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1429 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1430
1431 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1432 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1433 offset >>= BITS_PER_LEVEL;
1434
1435 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1436 blocks->blocks[idx] + offset,
1437 num);
1438 page += num;
1439 dest += num >> BITS_PER_LEVEL;
1440 }
1441
1442 rcu_read_unlock();
1443
1444 if (tcg_enabled()) {
1445 tlb_reset_dirty_range_all(start, length);
1446 }
1447
077874e0
PX
1448 memory_region_clear_dirty_bitmap(mr, offset, length);
1449
8deaf12c
GH
1450 return snap;
1451}
1452
1453bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1454 ram_addr_t start,
1455 ram_addr_t length)
1456{
1457 unsigned long page, end;
1458
1459 assert(start >= snap->start);
1460 assert(start + length <= snap->end);
1461
1462 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1463 page = (start - snap->start) >> TARGET_PAGE_BITS;
1464
1465 while (page < end) {
1466 if (test_bit(page, snap->dirty)) {
1467 return true;
1468 }
1469 page++;
1470 }
1471 return false;
1472}
1473
79e2b9ae 1474/* Called from RCU critical section */
bb0e627a 1475hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1476 MemoryRegionSection *section,
1477 target_ulong vaddr,
1478 hwaddr paddr, hwaddr xlat,
1479 int prot,
1480 target_ulong *address)
e5548617 1481{
a8170e5e 1482 hwaddr iotlb;
e5548617
BS
1483 CPUWatchpoint *wp;
1484
cc5bea60 1485 if (memory_region_is_ram(section->mr)) {
e5548617 1486 /* Normal RAM. */
e4e69794 1487 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1488 if (!section->readonly) {
b41aac4f 1489 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1490 } else {
b41aac4f 1491 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1492 }
1493 } else {
0b8e2c10
PM
1494 AddressSpaceDispatch *d;
1495
16620684 1496 d = flatview_to_dispatch(section->fv);
0b8e2c10 1497 iotlb = section - d->map.sections;
149f54b5 1498 iotlb += xlat;
e5548617
BS
1499 }
1500
1501 /* Make accesses to pages with watchpoints go via the
1502 watchpoint trap routines. */
ff4700b0 1503 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1504 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1505 /* Avoid trapping reads of pages with a write breakpoint. */
1506 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1507 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1508 *address |= TLB_MMIO;
1509 break;
1510 }
1511 }
1512 }
1513
1514 return iotlb;
1515}
9fa3e853
FB
1516#endif /* defined(CONFIG_USER_ONLY) */
1517
e2eef170 1518#if !defined(CONFIG_USER_ONLY)
8da3ff18 1519
c227f099 1520static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1521 uint16_t section);
16620684 1522static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1523
06329cce 1524static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1525 qemu_anon_ram_alloc;
91138037
MA
1526
1527/*
1528 * Set a custom physical guest memory alloator.
1529 * Accelerators with unusual needs may need this. Hopefully, we can
1530 * get rid of it eventually.
1531 */
06329cce 1532void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1533{
1534 phys_mem_alloc = alloc;
1535}
1536
53cb28cb
MA
1537static uint16_t phys_section_add(PhysPageMap *map,
1538 MemoryRegionSection *section)
5312bd8b 1539{
68f3f65b
PB
1540 /* The physical section number is ORed with a page-aligned
1541 * pointer to produce the iotlb entries. Thus it should
1542 * never overflow into the page-aligned value.
1543 */
53cb28cb 1544 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1545
53cb28cb
MA
1546 if (map->sections_nb == map->sections_nb_alloc) {
1547 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1548 map->sections = g_renew(MemoryRegionSection, map->sections,
1549 map->sections_nb_alloc);
5312bd8b 1550 }
53cb28cb 1551 map->sections[map->sections_nb] = *section;
dfde4e6e 1552 memory_region_ref(section->mr);
53cb28cb 1553 return map->sections_nb++;
5312bd8b
AK
1554}
1555
058bc4b5
PB
1556static void phys_section_destroy(MemoryRegion *mr)
1557{
55b4e80b
DS
1558 bool have_sub_page = mr->subpage;
1559
dfde4e6e
PB
1560 memory_region_unref(mr);
1561
55b4e80b 1562 if (have_sub_page) {
058bc4b5 1563 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1564 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1565 g_free(subpage);
1566 }
1567}
1568
6092666e 1569static void phys_sections_free(PhysPageMap *map)
5312bd8b 1570{
9affd6fc
PB
1571 while (map->sections_nb > 0) {
1572 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1573 phys_section_destroy(section->mr);
1574 }
9affd6fc
PB
1575 g_free(map->sections);
1576 g_free(map->nodes);
5312bd8b
AK
1577}
1578
9950322a 1579static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1580{
9950322a 1581 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1582 subpage_t *subpage;
a8170e5e 1583 hwaddr base = section->offset_within_address_space
0f0cb164 1584 & TARGET_PAGE_MASK;
003a0cf2 1585 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1586 MemoryRegionSection subsection = {
1587 .offset_within_address_space = base,
052e87b0 1588 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1589 };
a8170e5e 1590 hwaddr start, end;
0f0cb164 1591
f3705d53 1592 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1593
f3705d53 1594 if (!(existing->mr->subpage)) {
16620684
AK
1595 subpage = subpage_init(fv, base);
1596 subsection.fv = fv;
0f0cb164 1597 subsection.mr = &subpage->iomem;
ac1970fb 1598 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1599 phys_section_add(&d->map, &subsection));
0f0cb164 1600 } else {
f3705d53 1601 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1602 }
1603 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1604 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1605 subpage_register(subpage, start, end,
1606 phys_section_add(&d->map, section));
0f0cb164
AK
1607}
1608
1609
9950322a 1610static void register_multipage(FlatView *fv,
052e87b0 1611 MemoryRegionSection *section)
33417e70 1612{
9950322a 1613 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1614 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1615 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1616 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1617 TARGET_PAGE_BITS));
dd81124b 1618
733d5ef5
PB
1619 assert(num_pages);
1620 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1621}
1622
494d1997
WY
1623/*
1624 * The range in *section* may look like this:
1625 *
1626 * |s|PPPPPPP|s|
1627 *
1628 * where s stands for subpage and P for page.
1629 */
8629d3fc 1630void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1631{
494d1997 1632 MemoryRegionSection remain = *section;
052e87b0 1633 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1634
494d1997
WY
1635 /* register first subpage */
1636 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1637 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1638 - remain.offset_within_address_space;
733d5ef5 1639
494d1997 1640 MemoryRegionSection now = remain;
052e87b0 1641 now.size = int128_min(int128_make64(left), now.size);
9950322a 1642 register_subpage(fv, &now);
494d1997
WY
1643 if (int128_eq(remain.size, now.size)) {
1644 return;
1645 }
052e87b0
PB
1646 remain.size = int128_sub(remain.size, now.size);
1647 remain.offset_within_address_space += int128_get64(now.size);
1648 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1649 }
1650
1651 /* register whole pages */
1652 if (int128_ge(remain.size, page_size)) {
1653 MemoryRegionSection now = remain;
1654 now.size = int128_and(now.size, int128_neg(page_size));
1655 register_multipage(fv, &now);
1656 if (int128_eq(remain.size, now.size)) {
1657 return;
69b67646 1658 }
494d1997
WY
1659 remain.size = int128_sub(remain.size, now.size);
1660 remain.offset_within_address_space += int128_get64(now.size);
1661 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1662 }
494d1997
WY
1663
1664 /* register last subpage */
1665 register_subpage(fv, &remain);
0f0cb164
AK
1666}
1667
62a2744c
SY
1668void qemu_flush_coalesced_mmio_buffer(void)
1669{
1670 if (kvm_enabled())
1671 kvm_flush_coalesced_mmio_buffer();
1672}
1673
b2a8658e
UD
1674void qemu_mutex_lock_ramlist(void)
1675{
1676 qemu_mutex_lock(&ram_list.mutex);
1677}
1678
1679void qemu_mutex_unlock_ramlist(void)
1680{
1681 qemu_mutex_unlock(&ram_list.mutex);
1682}
1683
be9b23c4
PX
1684void ram_block_dump(Monitor *mon)
1685{
1686 RAMBlock *block;
1687 char *psize;
1688
1689 rcu_read_lock();
1690 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1691 "Block Name", "PSize", "Offset", "Used", "Total");
1692 RAMBLOCK_FOREACH(block) {
1693 psize = size_to_str(block->page_size);
1694 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1695 " 0x%016" PRIx64 "\n", block->idstr, psize,
1696 (uint64_t)block->offset,
1697 (uint64_t)block->used_length,
1698 (uint64_t)block->max_length);
1699 g_free(psize);
1700 }
1701 rcu_read_unlock();
1702}
1703
9c607668
AK
1704#ifdef __linux__
1705/*
1706 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1707 * may or may not name the same files / on the same filesystem now as
1708 * when we actually open and map them. Iterate over the file
1709 * descriptors instead, and use qemu_fd_getpagesize().
1710 */
905b7ee4 1711static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1712{
9c607668
AK
1713 long *hpsize_min = opaque;
1714
1715 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1716 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1717 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1718
7d5489e6 1719 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1720 *hpsize_min = hpsize;
9c607668
AK
1721 }
1722 }
1723
1724 return 0;
1725}
1726
905b7ee4
DH
1727static int find_max_backend_pagesize(Object *obj, void *opaque)
1728{
1729 long *hpsize_max = opaque;
1730
1731 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1732 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1733 long hpsize = host_memory_backend_pagesize(backend);
1734
1735 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1736 *hpsize_max = hpsize;
1737 }
1738 }
1739
1740 return 0;
1741}
1742
1743/*
1744 * TODO: We assume right now that all mapped host memory backends are
1745 * used as RAM, however some might be used for different purposes.
1746 */
1747long qemu_minrampagesize(void)
9c607668
AK
1748{
1749 long hpsize = LONG_MAX;
1750 long mainrampagesize;
1751 Object *memdev_root;
1752
0de6e2a3 1753 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1754
1755 /* it's possible we have memory-backend objects with
1756 * hugepage-backed RAM. these may get mapped into system
1757 * address space via -numa parameters or memory hotplug
1758 * hooks. we want to take these into account, but we
1759 * also want to make sure these supported hugepage
1760 * sizes are applicable across the entire range of memory
1761 * we may boot from, so we take the min across all
1762 * backends, and assume normal pages in cases where a
1763 * backend isn't backed by hugepages.
1764 */
1765 memdev_root = object_resolve_path("/objects", NULL);
1766 if (memdev_root) {
905b7ee4 1767 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1768 }
1769 if (hpsize == LONG_MAX) {
1770 /* No additional memory regions found ==> Report main RAM page size */
1771 return mainrampagesize;
1772 }
1773
1774 /* If NUMA is disabled or the NUMA nodes are not backed with a
1775 * memory-backend, then there is at least one node using "normal" RAM,
1776 * so if its page size is smaller we have got to report that size instead.
1777 */
1778 if (hpsize > mainrampagesize &&
1779 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1780 static bool warned;
1781 if (!warned) {
1782 error_report("Huge page support disabled (n/a for main memory).");
1783 warned = true;
1784 }
1785 return mainrampagesize;
1786 }
1787
1788 return hpsize;
1789}
905b7ee4
DH
1790
1791long qemu_maxrampagesize(void)
1792{
1793 long pagesize = qemu_mempath_getpagesize(mem_path);
1794 Object *memdev_root = object_resolve_path("/objects", NULL);
1795
1796 if (memdev_root) {
1797 object_child_foreach(memdev_root, find_max_backend_pagesize,
1798 &pagesize);
1799 }
1800 return pagesize;
1801}
9c607668 1802#else
905b7ee4
DH
1803long qemu_minrampagesize(void)
1804{
1805 return getpagesize();
1806}
1807long qemu_maxrampagesize(void)
9c607668
AK
1808{
1809 return getpagesize();
1810}
1811#endif
1812
d5dbde46 1813#ifdef CONFIG_POSIX
d6af99c9
HZ
1814static int64_t get_file_size(int fd)
1815{
1816 int64_t size = lseek(fd, 0, SEEK_END);
1817 if (size < 0) {
1818 return -errno;
1819 }
1820 return size;
1821}
1822
8d37b030
MAL
1823static int file_ram_open(const char *path,
1824 const char *region_name,
1825 bool *created,
1826 Error **errp)
c902760f
MT
1827{
1828 char *filename;
8ca761f6
PF
1829 char *sanitized_name;
1830 char *c;
5c3ece79 1831 int fd = -1;
c902760f 1832
8d37b030 1833 *created = false;
fd97fd44
MA
1834 for (;;) {
1835 fd = open(path, O_RDWR);
1836 if (fd >= 0) {
1837 /* @path names an existing file, use it */
1838 break;
8d31d6b6 1839 }
fd97fd44
MA
1840 if (errno == ENOENT) {
1841 /* @path names a file that doesn't exist, create it */
1842 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1843 if (fd >= 0) {
8d37b030 1844 *created = true;
fd97fd44
MA
1845 break;
1846 }
1847 } else if (errno == EISDIR) {
1848 /* @path names a directory, create a file there */
1849 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1850 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1851 for (c = sanitized_name; *c != '\0'; c++) {
1852 if (*c == '/') {
1853 *c = '_';
1854 }
1855 }
8ca761f6 1856
fd97fd44
MA
1857 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1858 sanitized_name);
1859 g_free(sanitized_name);
8d31d6b6 1860
fd97fd44
MA
1861 fd = mkstemp(filename);
1862 if (fd >= 0) {
1863 unlink(filename);
1864 g_free(filename);
1865 break;
1866 }
1867 g_free(filename);
8d31d6b6 1868 }
fd97fd44
MA
1869 if (errno != EEXIST && errno != EINTR) {
1870 error_setg_errno(errp, errno,
1871 "can't open backing store %s for guest RAM",
1872 path);
8d37b030 1873 return -1;
fd97fd44
MA
1874 }
1875 /*
1876 * Try again on EINTR and EEXIST. The latter happens when
1877 * something else creates the file between our two open().
1878 */
8d31d6b6 1879 }
c902760f 1880
8d37b030
MAL
1881 return fd;
1882}
1883
1884static void *file_ram_alloc(RAMBlock *block,
1885 ram_addr_t memory,
1886 int fd,
1887 bool truncate,
1888 Error **errp)
1889{
5cc8767d 1890 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1891 void *area;
1892
863e9621 1893 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1894 if (block->mr->align % block->page_size) {
1895 error_setg(errp, "alignment 0x%" PRIx64
1896 " must be multiples of page size 0x%zx",
1897 block->mr->align, block->page_size);
1898 return NULL;
61362b71
DH
1899 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1900 error_setg(errp, "alignment 0x%" PRIx64
1901 " must be a power of two", block->mr->align);
1902 return NULL;
98376843
HZ
1903 }
1904 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1905#if defined(__s390x__)
1906 if (kvm_enabled()) {
1907 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1908 }
1909#endif
fd97fd44 1910
863e9621 1911 if (memory < block->page_size) {
fd97fd44 1912 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1913 "or larger than page size 0x%zx",
1914 memory, block->page_size);
8d37b030 1915 return NULL;
1775f111
HZ
1916 }
1917
863e9621 1918 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1919
1920 /*
1921 * ftruncate is not supported by hugetlbfs in older
1922 * hosts, so don't bother bailing out on errors.
1923 * If anything goes wrong with it under other filesystems,
1924 * mmap will fail.
d6af99c9
HZ
1925 *
1926 * Do not truncate the non-empty backend file to avoid corrupting
1927 * the existing data in the file. Disabling shrinking is not
1928 * enough. For example, the current vNVDIMM implementation stores
1929 * the guest NVDIMM labels at the end of the backend file. If the
1930 * backend file is later extended, QEMU will not be able to find
1931 * those labels. Therefore, extending the non-empty backend file
1932 * is disabled as well.
c902760f 1933 */
8d37b030 1934 if (truncate && ftruncate(fd, memory)) {
9742bf26 1935 perror("ftruncate");
7f56e740 1936 }
c902760f 1937
d2f39add 1938 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1939 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1940 if (area == MAP_FAILED) {
7f56e740 1941 error_setg_errno(errp, errno,
fd97fd44 1942 "unable to map backing store for guest RAM");
8d37b030 1943 return NULL;
c902760f 1944 }
ef36fa14
MT
1945
1946 if (mem_prealloc) {
5cc8767d 1947 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
056b68af 1948 if (errp && *errp) {
53adb9d4 1949 qemu_ram_munmap(fd, area, memory);
8d37b030 1950 return NULL;
056b68af 1951 }
ef36fa14
MT
1952 }
1953
04b16653 1954 block->fd = fd;
c902760f
MT
1955 return area;
1956}
1957#endif
1958
154cc9ea
DDAG
1959/* Allocate space within the ram_addr_t space that governs the
1960 * dirty bitmaps.
1961 * Called with the ramlist lock held.
1962 */
d17b5288 1963static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1964{
1965 RAMBlock *block, *next_block;
3e837b2c 1966 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1967
49cd9ac6
SH
1968 assert(size != 0); /* it would hand out same offset multiple times */
1969
0dc3f44a 1970 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1971 return 0;
0d53d9fe 1972 }
04b16653 1973
99e15582 1974 RAMBLOCK_FOREACH(block) {
154cc9ea 1975 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1976
801110ab
DDAG
1977 /* Align blocks to start on a 'long' in the bitmap
1978 * which makes the bitmap sync'ing take the fast path.
1979 */
154cc9ea 1980 candidate = block->offset + block->max_length;
801110ab 1981 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1982
154cc9ea
DDAG
1983 /* Search for the closest following block
1984 * and find the gap.
1985 */
99e15582 1986 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1987 if (next_block->offset >= candidate) {
04b16653
AW
1988 next = MIN(next, next_block->offset);
1989 }
1990 }
154cc9ea
DDAG
1991
1992 /* If it fits remember our place and remember the size
1993 * of gap, but keep going so that we might find a smaller
1994 * gap to fill so avoiding fragmentation.
1995 */
1996 if (next - candidate >= size && next - candidate < mingap) {
1997 offset = candidate;
1998 mingap = next - candidate;
04b16653 1999 }
154cc9ea
DDAG
2000
2001 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 2002 }
3e837b2c
AW
2003
2004 if (offset == RAM_ADDR_MAX) {
2005 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2006 (uint64_t)size);
2007 abort();
2008 }
2009
154cc9ea
DDAG
2010 trace_find_ram_offset(size, offset);
2011
04b16653
AW
2012 return offset;
2013}
2014
c136180c 2015static unsigned long last_ram_page(void)
d17b5288
AW
2016{
2017 RAMBlock *block;
2018 ram_addr_t last = 0;
2019
0dc3f44a 2020 rcu_read_lock();
99e15582 2021 RAMBLOCK_FOREACH(block) {
62be4e3a 2022 last = MAX(last, block->offset + block->max_length);
0d53d9fe 2023 }
0dc3f44a 2024 rcu_read_unlock();
b8c48993 2025 return last >> TARGET_PAGE_BITS;
d17b5288
AW
2026}
2027
ddb97f1d
JB
2028static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2029{
2030 int ret;
ddb97f1d
JB
2031
2032 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 2033 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
2034 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2035 if (ret) {
2036 perror("qemu_madvise");
2037 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2038 "but dump_guest_core=off specified\n");
2039 }
2040 }
2041}
2042
422148d3
DDAG
2043const char *qemu_ram_get_idstr(RAMBlock *rb)
2044{
2045 return rb->idstr;
2046}
2047
754cb9c0
YK
2048void *qemu_ram_get_host_addr(RAMBlock *rb)
2049{
2050 return rb->host;
2051}
2052
2053ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2054{
2055 return rb->offset;
2056}
2057
2058ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2059{
2060 return rb->used_length;
2061}
2062
463a4ac2
DDAG
2063bool qemu_ram_is_shared(RAMBlock *rb)
2064{
2065 return rb->flags & RAM_SHARED;
2066}
2067
2ce16640
DDAG
2068/* Note: Only set at the start of postcopy */
2069bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2070{
2071 return rb->flags & RAM_UF_ZEROPAGE;
2072}
2073
2074void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2075{
2076 rb->flags |= RAM_UF_ZEROPAGE;
2077}
2078
b895de50
CLG
2079bool qemu_ram_is_migratable(RAMBlock *rb)
2080{
2081 return rb->flags & RAM_MIGRATABLE;
2082}
2083
2084void qemu_ram_set_migratable(RAMBlock *rb)
2085{
2086 rb->flags |= RAM_MIGRATABLE;
2087}
2088
2089void qemu_ram_unset_migratable(RAMBlock *rb)
2090{
2091 rb->flags &= ~RAM_MIGRATABLE;
2092}
2093
ae3a7047 2094/* Called with iothread lock held. */
fa53a0e5 2095void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2096{
fa53a0e5 2097 RAMBlock *block;
20cfe881 2098
c5705a77
AK
2099 assert(new_block);
2100 assert(!new_block->idstr[0]);
84b89d78 2101
09e5ab63
AL
2102 if (dev) {
2103 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2104 if (id) {
2105 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2106 g_free(id);
84b89d78
CM
2107 }
2108 }
2109 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2110
ab0a9956 2111 rcu_read_lock();
99e15582 2112 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2113 if (block != new_block &&
2114 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2115 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2116 new_block->idstr);
2117 abort();
2118 }
2119 }
0dc3f44a 2120 rcu_read_unlock();
c5705a77
AK
2121}
2122
ae3a7047 2123/* Called with iothread lock held. */
fa53a0e5 2124void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2125{
ae3a7047
MD
2126 /* FIXME: arch_init.c assumes that this is not called throughout
2127 * migration. Ignore the problem since hot-unplug during migration
2128 * does not work anyway.
2129 */
20cfe881
HT
2130 if (block) {
2131 memset(block->idstr, 0, sizeof(block->idstr));
2132 }
2133}
2134
863e9621
DDAG
2135size_t qemu_ram_pagesize(RAMBlock *rb)
2136{
2137 return rb->page_size;
2138}
2139
67f11b5c
DDAG
2140/* Returns the largest size of page in use */
2141size_t qemu_ram_pagesize_largest(void)
2142{
2143 RAMBlock *block;
2144 size_t largest = 0;
2145
99e15582 2146 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2147 largest = MAX(largest, qemu_ram_pagesize(block));
2148 }
2149
2150 return largest;
2151}
2152
8490fc78
LC
2153static int memory_try_enable_merging(void *addr, size_t len)
2154{
75cc7f01 2155 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2156 /* disabled by the user */
2157 return 0;
2158 }
2159
2160 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2161}
2162
62be4e3a
MT
2163/* Only legal before guest might have detected the memory size: e.g. on
2164 * incoming migration, or right after reset.
2165 *
2166 * As memory core doesn't know how is memory accessed, it is up to
2167 * resize callback to update device state and/or add assertions to detect
2168 * misuse, if necessary.
2169 */
fa53a0e5 2170int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2171{
62be4e3a
MT
2172 assert(block);
2173
4ed023ce 2174 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2175
62be4e3a
MT
2176 if (block->used_length == newsize) {
2177 return 0;
2178 }
2179
2180 if (!(block->flags & RAM_RESIZEABLE)) {
2181 error_setg_errno(errp, EINVAL,
2182 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2183 " in != 0x" RAM_ADDR_FMT, block->idstr,
2184 newsize, block->used_length);
2185 return -EINVAL;
2186 }
2187
2188 if (block->max_length < newsize) {
2189 error_setg_errno(errp, EINVAL,
2190 "Length too large: %s: 0x" RAM_ADDR_FMT
2191 " > 0x" RAM_ADDR_FMT, block->idstr,
2192 newsize, block->max_length);
2193 return -EINVAL;
2194 }
2195
2196 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2197 block->used_length = newsize;
58d2707e
PB
2198 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2199 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2200 memory_region_set_size(block->mr, newsize);
2201 if (block->resized) {
2202 block->resized(block->idstr, newsize, block->host);
2203 }
2204 return 0;
2205}
2206
5b82b703
SH
2207/* Called with ram_list.mutex held */
2208static void dirty_memory_extend(ram_addr_t old_ram_size,
2209 ram_addr_t new_ram_size)
2210{
2211 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2212 DIRTY_MEMORY_BLOCK_SIZE);
2213 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2214 DIRTY_MEMORY_BLOCK_SIZE);
2215 int i;
2216
2217 /* Only need to extend if block count increased */
2218 if (new_num_blocks <= old_num_blocks) {
2219 return;
2220 }
2221
2222 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2223 DirtyMemoryBlocks *old_blocks;
2224 DirtyMemoryBlocks *new_blocks;
2225 int j;
2226
2227 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2228 new_blocks = g_malloc(sizeof(*new_blocks) +
2229 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2230
2231 if (old_num_blocks) {
2232 memcpy(new_blocks->blocks, old_blocks->blocks,
2233 old_num_blocks * sizeof(old_blocks->blocks[0]));
2234 }
2235
2236 for (j = old_num_blocks; j < new_num_blocks; j++) {
2237 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2238 }
2239
2240 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2241
2242 if (old_blocks) {
2243 g_free_rcu(old_blocks, rcu);
2244 }
2245 }
2246}
2247
06329cce 2248static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2249{
e1c57ab8 2250 RAMBlock *block;
0d53d9fe 2251 RAMBlock *last_block = NULL;
2152f5ca 2252 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2253 Error *err = NULL;
2152f5ca 2254
b8c48993 2255 old_ram_size = last_ram_page();
c5705a77 2256
b2a8658e 2257 qemu_mutex_lock_ramlist();
9b8424d5 2258 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2259
2260 if (!new_block->host) {
2261 if (xen_enabled()) {
9b8424d5 2262 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2263 new_block->mr, &err);
2264 if (err) {
2265 error_propagate(errp, err);
2266 qemu_mutex_unlock_ramlist();
39c350ee 2267 return;
37aa7a0e 2268 }
e1c57ab8 2269 } else {
9b8424d5 2270 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2271 &new_block->mr->align, shared);
39228250 2272 if (!new_block->host) {
ef701d7b
HT
2273 error_setg_errno(errp, errno,
2274 "cannot set up guest memory '%s'",
2275 memory_region_name(new_block->mr));
2276 qemu_mutex_unlock_ramlist();
39c350ee 2277 return;
39228250 2278 }
9b8424d5 2279 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2280 }
c902760f 2281 }
94a6b54f 2282
dd631697
LZ
2283 new_ram_size = MAX(old_ram_size,
2284 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2285 if (new_ram_size > old_ram_size) {
5b82b703 2286 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2287 }
0d53d9fe
MD
2288 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2289 * QLIST (which has an RCU-friendly variant) does not have insertion at
2290 * tail, so save the last element in last_block.
2291 */
99e15582 2292 RAMBLOCK_FOREACH(block) {
0d53d9fe 2293 last_block = block;
9b8424d5 2294 if (block->max_length < new_block->max_length) {
abb26d63
PB
2295 break;
2296 }
2297 }
2298 if (block) {
0dc3f44a 2299 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2300 } else if (last_block) {
0dc3f44a 2301 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2302 } else { /* list is empty */
0dc3f44a 2303 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2304 }
0d6d3c87 2305 ram_list.mru_block = NULL;
94a6b54f 2306
0dc3f44a
MD
2307 /* Write list before version */
2308 smp_wmb();
f798b07f 2309 ram_list.version++;
b2a8658e 2310 qemu_mutex_unlock_ramlist();
f798b07f 2311
9b8424d5 2312 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2313 new_block->used_length,
2314 DIRTY_CLIENTS_ALL);
94a6b54f 2315
a904c911
PB
2316 if (new_block->host) {
2317 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2318 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2319 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2320 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2321 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2322 }
94a6b54f 2323}
e9a1ab19 2324
d5dbde46 2325#ifdef CONFIG_POSIX
38b3362d 2326RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2327 uint32_t ram_flags, int fd,
38b3362d 2328 Error **errp)
e1c57ab8
PB
2329{
2330 RAMBlock *new_block;
ef701d7b 2331 Error *local_err = NULL;
8d37b030 2332 int64_t file_size;
e1c57ab8 2333
a4de8552
JH
2334 /* Just support these ram flags by now. */
2335 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2336
e1c57ab8 2337 if (xen_enabled()) {
7f56e740 2338 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2339 return NULL;
e1c57ab8
PB
2340 }
2341
e45e7ae2
MAL
2342 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2343 error_setg(errp,
2344 "host lacks kvm mmu notifiers, -mem-path unsupported");
2345 return NULL;
2346 }
2347
e1c57ab8
PB
2348 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2349 /*
2350 * file_ram_alloc() needs to allocate just like
2351 * phys_mem_alloc, but we haven't bothered to provide
2352 * a hook there.
2353 */
7f56e740
PB
2354 error_setg(errp,
2355 "-mem-path not supported with this accelerator");
528f46af 2356 return NULL;
e1c57ab8
PB
2357 }
2358
4ed023ce 2359 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2360 file_size = get_file_size(fd);
2361 if (file_size > 0 && file_size < size) {
2362 error_setg(errp, "backing store %s size 0x%" PRIx64
2363 " does not match 'size' option 0x" RAM_ADDR_FMT,
2364 mem_path, file_size, size);
8d37b030
MAL
2365 return NULL;
2366 }
2367
e1c57ab8
PB
2368 new_block = g_malloc0(sizeof(*new_block));
2369 new_block->mr = mr;
9b8424d5
MT
2370 new_block->used_length = size;
2371 new_block->max_length = size;
cbfc0171 2372 new_block->flags = ram_flags;
8d37b030 2373 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2374 if (!new_block->host) {
2375 g_free(new_block);
528f46af 2376 return NULL;
7f56e740
PB
2377 }
2378
cbfc0171 2379 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2380 if (local_err) {
2381 g_free(new_block);
2382 error_propagate(errp, local_err);
528f46af 2383 return NULL;
ef701d7b 2384 }
528f46af 2385 return new_block;
38b3362d
MAL
2386
2387}
2388
2389
2390RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2391 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2392 Error **errp)
2393{
2394 int fd;
2395 bool created;
2396 RAMBlock *block;
2397
2398 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2399 if (fd < 0) {
2400 return NULL;
2401 }
2402
cbfc0171 2403 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2404 if (!block) {
2405 if (created) {
2406 unlink(mem_path);
2407 }
2408 close(fd);
2409 return NULL;
2410 }
2411
2412 return block;
e1c57ab8 2413}
0b183fc8 2414#endif
e1c57ab8 2415
62be4e3a 2416static
528f46af
FZ
2417RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2418 void (*resized)(const char*,
2419 uint64_t length,
2420 void *host),
06329cce 2421 void *host, bool resizeable, bool share,
528f46af 2422 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2423{
2424 RAMBlock *new_block;
ef701d7b 2425 Error *local_err = NULL;
e1c57ab8 2426
4ed023ce
DDAG
2427 size = HOST_PAGE_ALIGN(size);
2428 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2429 new_block = g_malloc0(sizeof(*new_block));
2430 new_block->mr = mr;
62be4e3a 2431 new_block->resized = resized;
9b8424d5
MT
2432 new_block->used_length = size;
2433 new_block->max_length = max_size;
62be4e3a 2434 assert(max_size >= size);
e1c57ab8 2435 new_block->fd = -1;
863e9621 2436 new_block->page_size = getpagesize();
e1c57ab8
PB
2437 new_block->host = host;
2438 if (host) {
7bd4f430 2439 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2440 }
62be4e3a
MT
2441 if (resizeable) {
2442 new_block->flags |= RAM_RESIZEABLE;
2443 }
06329cce 2444 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2445 if (local_err) {
2446 g_free(new_block);
2447 error_propagate(errp, local_err);
528f46af 2448 return NULL;
ef701d7b 2449 }
528f46af 2450 return new_block;
e1c57ab8
PB
2451}
2452
528f46af 2453RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2454 MemoryRegion *mr, Error **errp)
2455{
06329cce
MA
2456 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2457 false, mr, errp);
62be4e3a
MT
2458}
2459
06329cce
MA
2460RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2461 MemoryRegion *mr, Error **errp)
6977dfe6 2462{
06329cce
MA
2463 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2464 share, mr, errp);
62be4e3a
MT
2465}
2466
528f46af 2467RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2468 void (*resized)(const char*,
2469 uint64_t length,
2470 void *host),
2471 MemoryRegion *mr, Error **errp)
2472{
06329cce
MA
2473 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2474 false, mr, errp);
6977dfe6
YT
2475}
2476
43771539
PB
2477static void reclaim_ramblock(RAMBlock *block)
2478{
2479 if (block->flags & RAM_PREALLOC) {
2480 ;
2481 } else if (xen_enabled()) {
2482 xen_invalidate_map_cache_entry(block->host);
2483#ifndef _WIN32
2484 } else if (block->fd >= 0) {
53adb9d4 2485 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2486 close(block->fd);
2487#endif
2488 } else {
2489 qemu_anon_ram_free(block->host, block->max_length);
2490 }
2491 g_free(block);
2492}
2493
f1060c55 2494void qemu_ram_free(RAMBlock *block)
e9a1ab19 2495{
85bc2a15
MAL
2496 if (!block) {
2497 return;
2498 }
2499
0987d735
PB
2500 if (block->host) {
2501 ram_block_notify_remove(block->host, block->max_length);
2502 }
2503
b2a8658e 2504 qemu_mutex_lock_ramlist();
f1060c55
FZ
2505 QLIST_REMOVE_RCU(block, next);
2506 ram_list.mru_block = NULL;
2507 /* Write list before version */
2508 smp_wmb();
2509 ram_list.version++;
2510 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2511 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2512}
2513
cd19cfa2
HY
2514#ifndef _WIN32
2515void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2516{
2517 RAMBlock *block;
2518 ram_addr_t offset;
2519 int flags;
2520 void *area, *vaddr;
2521
99e15582 2522 RAMBLOCK_FOREACH(block) {
cd19cfa2 2523 offset = addr - block->offset;
9b8424d5 2524 if (offset < block->max_length) {
1240be24 2525 vaddr = ramblock_ptr(block, offset);
7bd4f430 2526 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2527 ;
dfeaf2ab
MA
2528 } else if (xen_enabled()) {
2529 abort();
cd19cfa2
HY
2530 } else {
2531 flags = MAP_FIXED;
3435f395 2532 if (block->fd >= 0) {
dbcb8981
PB
2533 flags |= (block->flags & RAM_SHARED ?
2534 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2535 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2536 flags, block->fd, offset);
cd19cfa2 2537 } else {
2eb9fbaa
MA
2538 /*
2539 * Remap needs to match alloc. Accelerators that
2540 * set phys_mem_alloc never remap. If they did,
2541 * we'd need a remap hook here.
2542 */
2543 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2544
cd19cfa2
HY
2545 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2546 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2547 flags, -1, 0);
cd19cfa2
HY
2548 }
2549 if (area != vaddr) {
493d89bf
AF
2550 error_report("Could not remap addr: "
2551 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2552 length, addr);
cd19cfa2
HY
2553 exit(1);
2554 }
8490fc78 2555 memory_try_enable_merging(vaddr, length);
ddb97f1d 2556 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2557 }
cd19cfa2
HY
2558 }
2559 }
2560}
2561#endif /* !_WIN32 */
2562
1b5ec234 2563/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2564 * This should not be used for general purpose DMA. Use address_space_map
2565 * or address_space_rw instead. For local memory (e.g. video ram) that the
2566 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2567 *
49b24afc 2568 * Called within RCU critical section.
1b5ec234 2569 */
0878d0e1 2570void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2571{
3655cb9c
GA
2572 RAMBlock *block = ram_block;
2573
2574 if (block == NULL) {
2575 block = qemu_get_ram_block(addr);
0878d0e1 2576 addr -= block->offset;
3655cb9c 2577 }
ae3a7047
MD
2578
2579 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2580 /* We need to check if the requested address is in the RAM
2581 * because we don't want to map the entire memory in QEMU.
2582 * In that case just map until the end of the page.
2583 */
2584 if (block->offset == 0) {
1ff7c598 2585 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2586 }
ae3a7047 2587
1ff7c598 2588 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2589 }
0878d0e1 2590 return ramblock_ptr(block, addr);
dc828ca1
PB
2591}
2592
0878d0e1 2593/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2594 * but takes a size argument.
0dc3f44a 2595 *
e81bcda5 2596 * Called within RCU critical section.
ae3a7047 2597 */
3655cb9c 2598static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2599 hwaddr *size, bool lock)
38bee5dc 2600{
3655cb9c 2601 RAMBlock *block = ram_block;
8ab934f9
SS
2602 if (*size == 0) {
2603 return NULL;
2604 }
e81bcda5 2605
3655cb9c
GA
2606 if (block == NULL) {
2607 block = qemu_get_ram_block(addr);
0878d0e1 2608 addr -= block->offset;
3655cb9c 2609 }
0878d0e1 2610 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2611
2612 if (xen_enabled() && block->host == NULL) {
2613 /* We need to check if the requested address is in the RAM
2614 * because we don't want to map the entire memory in QEMU.
2615 * In that case just map the requested area.
2616 */
2617 if (block->offset == 0) {
f5aa69bd 2618 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2619 }
2620
f5aa69bd 2621 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2622 }
e81bcda5 2623
0878d0e1 2624 return ramblock_ptr(block, addr);
38bee5dc
SS
2625}
2626
f90bb71b
DDAG
2627/* Return the offset of a hostpointer within a ramblock */
2628ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2629{
2630 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2631 assert((uintptr_t)host >= (uintptr_t)rb->host);
2632 assert(res < rb->max_length);
2633
2634 return res;
2635}
2636
422148d3
DDAG
2637/*
2638 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2639 * in that RAMBlock.
2640 *
2641 * ptr: Host pointer to look up
2642 * round_offset: If true round the result offset down to a page boundary
2643 * *ram_addr: set to result ram_addr
2644 * *offset: set to result offset within the RAMBlock
2645 *
2646 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2647 *
2648 * By the time this function returns, the returned pointer is not protected
2649 * by RCU anymore. If the caller is not within an RCU critical section and
2650 * does not hold the iothread lock, it must have other means of protecting the
2651 * pointer, such as a reference to the region that includes the incoming
2652 * ram_addr_t.
2653 */
422148d3 2654RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2655 ram_addr_t *offset)
5579c7f3 2656{
94a6b54f
PB
2657 RAMBlock *block;
2658 uint8_t *host = ptr;
2659
868bb33f 2660 if (xen_enabled()) {
f615f396 2661 ram_addr_t ram_addr;
0dc3f44a 2662 rcu_read_lock();
f615f396
PB
2663 ram_addr = xen_ram_addr_from_mapcache(ptr);
2664 block = qemu_get_ram_block(ram_addr);
422148d3 2665 if (block) {
d6b6aec4 2666 *offset = ram_addr - block->offset;
422148d3 2667 }
0dc3f44a 2668 rcu_read_unlock();
422148d3 2669 return block;
712c2b41
SS
2670 }
2671
0dc3f44a
MD
2672 rcu_read_lock();
2673 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2674 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2675 goto found;
2676 }
2677
99e15582 2678 RAMBLOCK_FOREACH(block) {
432d268c
JN
2679 /* This case append when the block is not mapped. */
2680 if (block->host == NULL) {
2681 continue;
2682 }
9b8424d5 2683 if (host - block->host < block->max_length) {
23887b79 2684 goto found;
f471a17e 2685 }
94a6b54f 2686 }
432d268c 2687
0dc3f44a 2688 rcu_read_unlock();
1b5ec234 2689 return NULL;
23887b79
PB
2690
2691found:
422148d3
DDAG
2692 *offset = (host - block->host);
2693 if (round_offset) {
2694 *offset &= TARGET_PAGE_MASK;
2695 }
0dc3f44a 2696 rcu_read_unlock();
422148d3
DDAG
2697 return block;
2698}
2699
e3dd7493
DDAG
2700/*
2701 * Finds the named RAMBlock
2702 *
2703 * name: The name of RAMBlock to find
2704 *
2705 * Returns: RAMBlock (or NULL if not found)
2706 */
2707RAMBlock *qemu_ram_block_by_name(const char *name)
2708{
2709 RAMBlock *block;
2710
99e15582 2711 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2712 if (!strcmp(name, block->idstr)) {
2713 return block;
2714 }
2715 }
2716
2717 return NULL;
2718}
2719
422148d3
DDAG
2720/* Some of the softmmu routines need to translate from a host pointer
2721 (typically a TLB entry) back to a ram offset. */
07bdaa41 2722ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2723{
2724 RAMBlock *block;
f615f396 2725 ram_addr_t offset;
422148d3 2726
f615f396 2727 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2728 if (!block) {
07bdaa41 2729 return RAM_ADDR_INVALID;
422148d3
DDAG
2730 }
2731
07bdaa41 2732 return block->offset + offset;
e890261f 2733}
f471a17e 2734
27266271
PM
2735/* Called within RCU critical section. */
2736void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2737 CPUState *cpu,
2738 vaddr mem_vaddr,
2739 ram_addr_t ram_addr,
2740 unsigned size)
2741{
2742 ndi->cpu = cpu;
2743 ndi->ram_addr = ram_addr;
2744 ndi->mem_vaddr = mem_vaddr;
2745 ndi->size = size;
0ac20318 2746 ndi->pages = NULL;
ba051fb5 2747
5aa1ef71 2748 assert(tcg_enabled());
52159192 2749 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2750 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2751 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2752 }
27266271
PM
2753}
2754
2755/* Called within RCU critical section. */
2756void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2757{
0ac20318 2758 if (ndi->pages) {
f28d0dfd 2759 assert(tcg_enabled());
0ac20318
EC
2760 page_collection_unlock(ndi->pages);
2761 ndi->pages = NULL;
27266271
PM
2762 }
2763
2764 /* Set both VGA and migration bits for simplicity and to remove
2765 * the notdirty callback faster.
2766 */
2767 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2768 DIRTY_CLIENTS_NOCODE);
2769 /* we remove the notdirty callback only if the code has been
2770 flushed */
2771 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2772 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2773 }
2774}
2775
2776/* Called within RCU critical section. */
2777static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2778 uint64_t val, unsigned size)
2779{
2780 NotDirtyInfo ndi;
2781
2782 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2783 ram_addr, size);
2784
6d3ede54 2785 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2786 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2787}
2788
b018ddf6 2789static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2790 unsigned size, bool is_write,
2791 MemTxAttrs attrs)
b018ddf6
PB
2792{
2793 return is_write;
2794}
2795
0e0df1e2 2796static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2797 .write = notdirty_mem_write,
b018ddf6 2798 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2799 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2800 .valid = {
2801 .min_access_size = 1,
2802 .max_access_size = 8,
2803 .unaligned = false,
2804 },
2805 .impl = {
2806 .min_access_size = 1,
2807 .max_access_size = 8,
2808 .unaligned = false,
2809 },
1ccde1cb
FB
2810};
2811
0f459d16 2812/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2813static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2814{
93afeade 2815 CPUState *cpu = current_cpu;
568496c0 2816 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2817 target_ulong vaddr;
a1d1bb31 2818 CPUWatchpoint *wp;
0f459d16 2819
5aa1ef71 2820 assert(tcg_enabled());
ff4700b0 2821 if (cpu->watchpoint_hit) {
06d55cc1
AL
2822 /* We re-entered the check after replacing the TB. Now raise
2823 * the debug interrupt so that is will trigger after the
2824 * current instruction. */
93afeade 2825 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2826 return;
2827 }
93afeade 2828 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2829 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2830 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2831 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2832 && (wp->flags & flags)) {
08225676
PM
2833 if (flags == BP_MEM_READ) {
2834 wp->flags |= BP_WATCHPOINT_HIT_READ;
2835 } else {
2836 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2837 }
2838 wp->hitaddr = vaddr;
66b9b43c 2839 wp->hitattrs = attrs;
ff4700b0 2840 if (!cpu->watchpoint_hit) {
568496c0
SF
2841 if (wp->flags & BP_CPU &&
2842 !cc->debug_check_watchpoint(cpu, wp)) {
2843 wp->flags &= ~BP_WATCHPOINT_HIT;
2844 continue;
2845 }
ff4700b0 2846 cpu->watchpoint_hit = wp;
a5e99826 2847
0ac20318 2848 mmap_lock();
239c51a5 2849 tb_check_watchpoint(cpu);
6e140f28 2850 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2851 cpu->exception_index = EXCP_DEBUG;
0ac20318 2852 mmap_unlock();
5638d180 2853 cpu_loop_exit(cpu);
6e140f28 2854 } else {
9b990ee5
RH
2855 /* Force execution of one insn next time. */
2856 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2857 mmap_unlock();
6886b980 2858 cpu_loop_exit_noexc(cpu);
6e140f28 2859 }
06d55cc1 2860 }
6e140f28
AL
2861 } else {
2862 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2863 }
2864 }
2865}
2866
6658ffb8
PB
2867/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2868 so these check for a hit then pass through to the normal out-of-line
2869 phys routines. */
66b9b43c
PM
2870static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2871 unsigned size, MemTxAttrs attrs)
6658ffb8 2872{
66b9b43c
PM
2873 MemTxResult res;
2874 uint64_t data;
79ed0416
PM
2875 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2876 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2877
2878 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2879 switch (size) {
66b9b43c 2880 case 1:
79ed0416 2881 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2882 break;
2883 case 2:
79ed0416 2884 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2885 break;
2886 case 4:
79ed0416 2887 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2888 break;
306526b5
PB
2889 case 8:
2890 data = address_space_ldq(as, addr, attrs, &res);
2891 break;
1ec9b909
AK
2892 default: abort();
2893 }
66b9b43c
PM
2894 *pdata = data;
2895 return res;
6658ffb8
PB
2896}
2897
66b9b43c
PM
2898static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2899 uint64_t val, unsigned size,
2900 MemTxAttrs attrs)
6658ffb8 2901{
66b9b43c 2902 MemTxResult res;
79ed0416
PM
2903 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2904 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2905
2906 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2907 switch (size) {
67364150 2908 case 1:
79ed0416 2909 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2910 break;
2911 case 2:
79ed0416 2912 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2913 break;
2914 case 4:
79ed0416 2915 address_space_stl(as, addr, val, attrs, &res);
67364150 2916 break;
306526b5
PB
2917 case 8:
2918 address_space_stq(as, addr, val, attrs, &res);
2919 break;
1ec9b909
AK
2920 default: abort();
2921 }
66b9b43c 2922 return res;
6658ffb8
PB
2923}
2924
1ec9b909 2925static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2926 .read_with_attrs = watch_mem_read,
2927 .write_with_attrs = watch_mem_write,
1ec9b909 2928 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2929 .valid = {
2930 .min_access_size = 1,
2931 .max_access_size = 8,
2932 .unaligned = false,
2933 },
2934 .impl = {
2935 .min_access_size = 1,
2936 .max_access_size = 8,
2937 .unaligned = false,
2938 },
6658ffb8 2939};
6658ffb8 2940
b2a44fca 2941static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2942 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2943static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2944 const uint8_t *buf, hwaddr len);
2945static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2946 bool is_write, MemTxAttrs attrs);
16620684 2947
f25a49e0
PM
2948static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2949 unsigned len, MemTxAttrs attrs)
db7b5426 2950{
acc9d80b 2951 subpage_t *subpage = opaque;
ff6cff75 2952 uint8_t buf[8];
5c9eb028 2953 MemTxResult res;
791af8c8 2954
db7b5426 2955#if defined(DEBUG_SUBPAGE)
016e9d62 2956 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2957 subpage, len, addr);
db7b5426 2958#endif
16620684 2959 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2960 if (res) {
2961 return res;
f25a49e0 2962 }
6d3ede54
PM
2963 *data = ldn_p(buf, len);
2964 return MEMTX_OK;
db7b5426
BS
2965}
2966
f25a49e0
PM
2967static MemTxResult subpage_write(void *opaque, hwaddr addr,
2968 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2969{
acc9d80b 2970 subpage_t *subpage = opaque;
ff6cff75 2971 uint8_t buf[8];
acc9d80b 2972
db7b5426 2973#if defined(DEBUG_SUBPAGE)
016e9d62 2974 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2975 " value %"PRIx64"\n",
2976 __func__, subpage, len, addr, value);
db7b5426 2977#endif
6d3ede54 2978 stn_p(buf, len, value);
16620684 2979 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2980}
2981
c353e4cc 2982static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2983 unsigned len, bool is_write,
2984 MemTxAttrs attrs)
c353e4cc 2985{
acc9d80b 2986 subpage_t *subpage = opaque;
c353e4cc 2987#if defined(DEBUG_SUBPAGE)
016e9d62 2988 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2989 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2990#endif
2991
16620684 2992 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2993 len, is_write, attrs);
c353e4cc
PB
2994}
2995
70c68e44 2996static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2997 .read_with_attrs = subpage_read,
2998 .write_with_attrs = subpage_write,
ff6cff75
PB
2999 .impl.min_access_size = 1,
3000 .impl.max_access_size = 8,
3001 .valid.min_access_size = 1,
3002 .valid.max_access_size = 8,
c353e4cc 3003 .valid.accepts = subpage_accepts,
70c68e44 3004 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3005};
3006
c227f099 3007static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3008 uint16_t section)
db7b5426
BS
3009{
3010 int idx, eidx;
3011
3012 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3013 return -1;
3014 idx = SUBPAGE_IDX(start);
3015 eidx = SUBPAGE_IDX(end);
3016#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3017 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3018 __func__, mmio, start, end, idx, eidx, section);
db7b5426 3019#endif
db7b5426 3020 for (; idx <= eidx; idx++) {
5312bd8b 3021 mmio->sub_section[idx] = section;
db7b5426
BS
3022 }
3023
3024 return 0;
3025}
3026
16620684 3027static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 3028{
c227f099 3029 subpage_t *mmio;
db7b5426 3030
2615fabd 3031 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 3032 mmio->fv = fv;
1eec614b 3033 mmio->base = base;
2c9b15ca 3034 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 3035 NULL, TARGET_PAGE_SIZE);
b3b00c78 3036 mmio->iomem.subpage = true;
db7b5426 3037#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3038 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3039 mmio, base, TARGET_PAGE_SIZE);
db7b5426 3040#endif
b41aac4f 3041 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
3042
3043 return mmio;
3044}
3045
16620684 3046static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 3047{
16620684 3048 assert(fv);
5312bd8b 3049 MemoryRegionSection section = {
16620684 3050 .fv = fv,
5312bd8b
AK
3051 .mr = mr,
3052 .offset_within_address_space = 0,
3053 .offset_within_region = 0,
052e87b0 3054 .size = int128_2_64(),
5312bd8b
AK
3055 };
3056
53cb28cb 3057 return phys_section_add(map, &section);
5312bd8b
AK
3058}
3059
8af36743
PM
3060static void readonly_mem_write(void *opaque, hwaddr addr,
3061 uint64_t val, unsigned size)
3062{
3063 /* Ignore any write to ROM. */
3064}
3065
3066static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3067 unsigned size, bool is_write,
3068 MemTxAttrs attrs)
8af36743
PM
3069{
3070 return is_write;
3071}
3072
3073/* This will only be used for writes, because reads are special cased
3074 * to directly access the underlying host ram.
3075 */
3076static const MemoryRegionOps readonly_mem_ops = {
3077 .write = readonly_mem_write,
3078 .valid.accepts = readonly_mem_accepts,
3079 .endianness = DEVICE_NATIVE_ENDIAN,
3080 .valid = {
3081 .min_access_size = 1,
3082 .max_access_size = 8,
3083 .unaligned = false,
3084 },
3085 .impl = {
3086 .min_access_size = 1,
3087 .max_access_size = 8,
3088 .unaligned = false,
3089 },
3090};
3091
2d54f194
PM
3092MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3093 hwaddr index, MemTxAttrs attrs)
aa102231 3094{
a54c87b6
PM
3095 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3096 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3097 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3098 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3099
2d54f194 3100 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3101}
3102
e9179ce1
AK
3103static void io_mem_init(void)
3104{
8af36743
PM
3105 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3106 NULL, NULL, UINT64_MAX);
2c9b15ca 3107 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3108 NULL, UINT64_MAX);
8d04fb55
JK
3109
3110 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3111 * which can be called without the iothread mutex.
3112 */
2c9b15ca 3113 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3114 NULL, UINT64_MAX);
8d04fb55
JK
3115 memory_region_clear_global_locking(&io_mem_notdirty);
3116
2c9b15ca 3117 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3118 NULL, UINT64_MAX);
e9179ce1
AK
3119}
3120
8629d3fc 3121AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3122{
53cb28cb
MA
3123 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3124 uint16_t n;
3125
16620684 3126 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3127 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3128 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3129 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3130 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3131 assert(n == PHYS_SECTION_ROM);
16620684 3132 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3133 assert(n == PHYS_SECTION_WATCH);
00752703 3134
9736e55b 3135 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3136
3137 return d;
00752703
PB
3138}
3139
66a6df1d 3140void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3141{
3142 phys_sections_free(&d->map);
3143 g_free(d);
3144}
3145
1d71148e 3146static void tcg_commit(MemoryListener *listener)
50c1e149 3147{
32857f4d
PM
3148 CPUAddressSpace *cpuas;
3149 AddressSpaceDispatch *d;
117712c3 3150
f28d0dfd 3151 assert(tcg_enabled());
117712c3
AK
3152 /* since each CPU stores ram addresses in its TLB cache, we must
3153 reset the modified entries */
32857f4d
PM
3154 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3155 cpu_reloading_memory_map();
3156 /* The CPU and TLB are protected by the iothread lock.
3157 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3158 * may have split the RCU critical section.
3159 */
66a6df1d 3160 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3161 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3162 tlb_flush(cpuas->cpu);
50c1e149
AK
3163}
3164
62152b8a
AK
3165static void memory_map_init(void)
3166{
7267c094 3167 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3168
57271d63 3169 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3170 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3171
7267c094 3172 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3173 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3174 65536);
7dca8043 3175 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3176}
3177
3178MemoryRegion *get_system_memory(void)
3179{
3180 return system_memory;
3181}
3182
309cb471
AK
3183MemoryRegion *get_system_io(void)
3184{
3185 return system_io;
3186}
3187
e2eef170
PB
3188#endif /* !defined(CONFIG_USER_ONLY) */
3189
13eb76e0
FB
3190/* physical memory access (slow version, mainly for debug) */
3191#if defined(CONFIG_USER_ONLY)
f17ec444 3192int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3193 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3194{
0c249ff7
LZ
3195 int flags;
3196 target_ulong l, page;
53a5960a 3197 void * p;
13eb76e0
FB
3198
3199 while (len > 0) {
3200 page = addr & TARGET_PAGE_MASK;
3201 l = (page + TARGET_PAGE_SIZE) - addr;
3202 if (l > len)
3203 l = len;
3204 flags = page_get_flags(page);
3205 if (!(flags & PAGE_VALID))
a68fe89c 3206 return -1;
13eb76e0
FB
3207 if (is_write) {
3208 if (!(flags & PAGE_WRITE))
a68fe89c 3209 return -1;
579a97f7 3210 /* XXX: this code should not depend on lock_user */
72fb7daa 3211 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3212 return -1;
72fb7daa
AJ
3213 memcpy(p, buf, l);
3214 unlock_user(p, addr, l);
13eb76e0
FB
3215 } else {
3216 if (!(flags & PAGE_READ))
a68fe89c 3217 return -1;
579a97f7 3218 /* XXX: this code should not depend on lock_user */
72fb7daa 3219 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3220 return -1;
72fb7daa 3221 memcpy(buf, p, l);
5b257578 3222 unlock_user(p, addr, 0);
13eb76e0
FB
3223 }
3224 len -= l;
3225 buf += l;
3226 addr += l;
3227 }
a68fe89c 3228 return 0;
13eb76e0 3229}
8df1cd07 3230
13eb76e0 3231#else
51d7a9eb 3232
845b6214 3233static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3234 hwaddr length)
51d7a9eb 3235{
e87f7778 3236 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3237 addr += memory_region_get_ram_addr(mr);
3238
e87f7778
PB
3239 /* No early return if dirty_log_mask is or becomes 0, because
3240 * cpu_physical_memory_set_dirty_range will still call
3241 * xen_modified_memory.
3242 */
3243 if (dirty_log_mask) {
3244 dirty_log_mask =
3245 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3246 }
3247 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3248 assert(tcg_enabled());
e87f7778
PB
3249 tb_invalidate_phys_range(addr, addr + length);
3250 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3251 }
e87f7778 3252 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3253}
3254
047be4ed
SH
3255void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3256{
3257 /*
3258 * In principle this function would work on other memory region types too,
3259 * but the ROM device use case is the only one where this operation is
3260 * necessary. Other memory regions should use the
3261 * address_space_read/write() APIs.
3262 */
3263 assert(memory_region_is_romd(mr));
3264
3265 invalidate_and_set_dirty(mr, addr, size);
3266}
3267
23326164 3268static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3269{
e1622f4b 3270 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3271
3272 /* Regions are assumed to support 1-4 byte accesses unless
3273 otherwise specified. */
23326164
RH
3274 if (access_size_max == 0) {
3275 access_size_max = 4;
3276 }
3277
3278 /* Bound the maximum access by the alignment of the address. */
3279 if (!mr->ops->impl.unaligned) {
3280 unsigned align_size_max = addr & -addr;
3281 if (align_size_max != 0 && align_size_max < access_size_max) {
3282 access_size_max = align_size_max;
3283 }
82f2563f 3284 }
23326164
RH
3285
3286 /* Don't attempt accesses larger than the maximum. */
3287 if (l > access_size_max) {
3288 l = access_size_max;
82f2563f 3289 }
6554f5c0 3290 l = pow2floor(l);
23326164
RH
3291
3292 return l;
82f2563f
PB
3293}
3294
4840f10e 3295static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3296{
4840f10e
JK
3297 bool unlocked = !qemu_mutex_iothread_locked();
3298 bool release_lock = false;
3299
3300 if (unlocked && mr->global_locking) {
3301 qemu_mutex_lock_iothread();
3302 unlocked = false;
3303 release_lock = true;
3304 }
125b3806 3305 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3306 if (unlocked) {
3307 qemu_mutex_lock_iothread();
3308 }
125b3806 3309 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3310 if (unlocked) {
3311 qemu_mutex_unlock_iothread();
3312 }
125b3806 3313 }
4840f10e
JK
3314
3315 return release_lock;
125b3806
PB
3316}
3317
a203ac70 3318/* Called within RCU critical section. */
16620684
AK
3319static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3320 MemTxAttrs attrs,
3321 const uint8_t *buf,
0c249ff7 3322 hwaddr len, hwaddr addr1,
16620684 3323 hwaddr l, MemoryRegion *mr)
13eb76e0 3324{
13eb76e0 3325 uint8_t *ptr;
791af8c8 3326 uint64_t val;
3b643495 3327 MemTxResult result = MEMTX_OK;
4840f10e 3328 bool release_lock = false;
3b46e624 3329
a203ac70 3330 for (;;) {
eb7eeb88
PB
3331 if (!memory_access_is_direct(mr, true)) {
3332 release_lock |= prepare_mmio_access(mr);
3333 l = memory_access_size(mr, l, addr1);
3334 /* XXX: could force current_cpu to NULL to avoid
3335 potential bugs */
6d3ede54
PM
3336 val = ldn_p(buf, l);
3337 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3338 } else {
eb7eeb88 3339 /* RAM case */
f5aa69bd 3340 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3341 memcpy(ptr, buf, l);
3342 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3343 }
4840f10e
JK
3344
3345 if (release_lock) {
3346 qemu_mutex_unlock_iothread();
3347 release_lock = false;
3348 }
3349
13eb76e0
FB
3350 len -= l;
3351 buf += l;
3352 addr += l;
a203ac70
PB
3353
3354 if (!len) {
3355 break;
3356 }
3357
3358 l = len;
efa99a2f 3359 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3360 }
fd8aaa76 3361
3b643495 3362 return result;
13eb76e0 3363}
8df1cd07 3364
4c6ebbb3 3365/* Called from RCU critical section. */
16620684 3366static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3367 const uint8_t *buf, hwaddr len)
ac1970fb 3368{
eb7eeb88 3369 hwaddr l;
eb7eeb88
PB
3370 hwaddr addr1;
3371 MemoryRegion *mr;
3372 MemTxResult result = MEMTX_OK;
eb7eeb88 3373
4c6ebbb3 3374 l = len;
efa99a2f 3375 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3376 result = flatview_write_continue(fv, addr, attrs, buf, len,
3377 addr1, l, mr);
a203ac70
PB
3378
3379 return result;
3380}
3381
3382/* Called within RCU critical section. */
16620684
AK
3383MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3384 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3385 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3386 MemoryRegion *mr)
a203ac70
PB
3387{
3388 uint8_t *ptr;
3389 uint64_t val;
3390 MemTxResult result = MEMTX_OK;
3391 bool release_lock = false;
eb7eeb88 3392
a203ac70 3393 for (;;) {
eb7eeb88
PB
3394 if (!memory_access_is_direct(mr, false)) {
3395 /* I/O case */
3396 release_lock |= prepare_mmio_access(mr);
3397 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3398 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3399 stn_p(buf, l, val);
eb7eeb88
PB
3400 } else {
3401 /* RAM case */
f5aa69bd 3402 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3403 memcpy(buf, ptr, l);
3404 }
3405
3406 if (release_lock) {
3407 qemu_mutex_unlock_iothread();
3408 release_lock = false;
3409 }
3410
3411 len -= l;
3412 buf += l;
3413 addr += l;
a203ac70
PB
3414
3415 if (!len) {
3416 break;
3417 }
3418
3419 l = len;
efa99a2f 3420 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3421 }
3422
3423 return result;
3424}
3425
b2a44fca
PB
3426/* Called from RCU critical section. */
3427static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3428 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3429{
3430 hwaddr l;
3431 hwaddr addr1;
3432 MemoryRegion *mr;
eb7eeb88 3433
b2a44fca 3434 l = len;
efa99a2f 3435 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3436 return flatview_read_continue(fv, addr, attrs, buf, len,
3437 addr1, l, mr);
ac1970fb
AK
3438}
3439
b2a44fca 3440MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3441 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3442{
3443 MemTxResult result = MEMTX_OK;
3444 FlatView *fv;
3445
3446 if (len > 0) {
3447 rcu_read_lock();
3448 fv = address_space_to_flatview(as);
3449 result = flatview_read(fv, addr, attrs, buf, len);
3450 rcu_read_unlock();
3451 }
3452
3453 return result;
3454}
3455
4c6ebbb3
PB
3456MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3457 MemTxAttrs attrs,
0c249ff7 3458 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3459{
3460 MemTxResult result = MEMTX_OK;
3461 FlatView *fv;
3462
3463 if (len > 0) {
3464 rcu_read_lock();
3465 fv = address_space_to_flatview(as);
3466 result = flatview_write(fv, addr, attrs, buf, len);
3467 rcu_read_unlock();
3468 }
3469
3470 return result;
3471}
3472
db84fd97 3473MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3474 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3475{
3476 if (is_write) {
3477 return address_space_write(as, addr, attrs, buf, len);
3478 } else {
3479 return address_space_read_full(as, addr, attrs, buf, len);
3480 }
3481}
3482
a8170e5e 3483void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3484 hwaddr len, int is_write)
ac1970fb 3485{
5c9eb028
PM
3486 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3487 buf, len, is_write);
ac1970fb
AK
3488}
3489
582b55a9
AG
3490enum write_rom_type {
3491 WRITE_DATA,
3492 FLUSH_CACHE,
3493};
3494
75693e14
PM
3495static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3496 hwaddr addr,
3497 MemTxAttrs attrs,
3498 const uint8_t *buf,
0c249ff7 3499 hwaddr len,
75693e14 3500 enum write_rom_type type)
d0ecd2aa 3501{
149f54b5 3502 hwaddr l;
d0ecd2aa 3503 uint8_t *ptr;
149f54b5 3504 hwaddr addr1;
5c8a00ce 3505 MemoryRegion *mr;
3b46e624 3506
41063e1e 3507 rcu_read_lock();
d0ecd2aa 3508 while (len > 0) {
149f54b5 3509 l = len;
75693e14 3510 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3511
5c8a00ce
PB
3512 if (!(memory_region_is_ram(mr) ||
3513 memory_region_is_romd(mr))) {
b242e0e0 3514 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3515 } else {
d0ecd2aa 3516 /* ROM/RAM case */
0878d0e1 3517 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3518 switch (type) {
3519 case WRITE_DATA:
3520 memcpy(ptr, buf, l);
845b6214 3521 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3522 break;
3523 case FLUSH_CACHE:
3524 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3525 break;
3526 }
d0ecd2aa
FB
3527 }
3528 len -= l;
3529 buf += l;
3530 addr += l;
3531 }
41063e1e 3532 rcu_read_unlock();
75693e14 3533 return MEMTX_OK;
d0ecd2aa
FB
3534}
3535
582b55a9 3536/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3537MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3538 MemTxAttrs attrs,
0c249ff7 3539 const uint8_t *buf, hwaddr len)
582b55a9 3540{
3c8133f9
PM
3541 return address_space_write_rom_internal(as, addr, attrs,
3542 buf, len, WRITE_DATA);
582b55a9
AG
3543}
3544
0c249ff7 3545void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3546{
3547 /*
3548 * This function should do the same thing as an icache flush that was
3549 * triggered from within the guest. For TCG we are always cache coherent,
3550 * so there is no need to flush anything. For KVM / Xen we need to flush
3551 * the host's instruction cache at least.
3552 */
3553 if (tcg_enabled()) {
3554 return;
3555 }
3556
75693e14
PM
3557 address_space_write_rom_internal(&address_space_memory,
3558 start, MEMTXATTRS_UNSPECIFIED,
3559 NULL, len, FLUSH_CACHE);
582b55a9
AG
3560}
3561
6d16c2f8 3562typedef struct {
d3e71559 3563 MemoryRegion *mr;
6d16c2f8 3564 void *buffer;
a8170e5e
AK
3565 hwaddr addr;
3566 hwaddr len;
c2cba0ff 3567 bool in_use;
6d16c2f8
AL
3568} BounceBuffer;
3569
3570static BounceBuffer bounce;
3571
ba223c29 3572typedef struct MapClient {
e95205e1 3573 QEMUBH *bh;
72cf2d4f 3574 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3575} MapClient;
3576
38e047b5 3577QemuMutex map_client_list_lock;
b58deb34 3578static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3579 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3580
e95205e1
FZ
3581static void cpu_unregister_map_client_do(MapClient *client)
3582{
3583 QLIST_REMOVE(client, link);
3584 g_free(client);
3585}
3586
33b6c2ed
FZ
3587static void cpu_notify_map_clients_locked(void)
3588{
3589 MapClient *client;
3590
3591 while (!QLIST_EMPTY(&map_client_list)) {
3592 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3593 qemu_bh_schedule(client->bh);
3594 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3595 }
3596}
3597
e95205e1 3598void cpu_register_map_client(QEMUBH *bh)
ba223c29 3599{
7267c094 3600 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3601
38e047b5 3602 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3603 client->bh = bh;
72cf2d4f 3604 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3605 if (!atomic_read(&bounce.in_use)) {
3606 cpu_notify_map_clients_locked();
3607 }
38e047b5 3608 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3609}
3610
38e047b5 3611void cpu_exec_init_all(void)
ba223c29 3612{
38e047b5 3613 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3614 /* The data structures we set up here depend on knowing the page size,
3615 * so no more changes can be made after this point.
3616 * In an ideal world, nothing we did before we had finished the
3617 * machine setup would care about the target page size, and we could
3618 * do this much later, rather than requiring board models to state
3619 * up front what their requirements are.
3620 */
3621 finalize_target_page_bits();
38e047b5 3622 io_mem_init();
680a4783 3623 memory_map_init();
38e047b5 3624 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3625}
3626
e95205e1 3627void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3628{
3629 MapClient *client;
3630
e95205e1
FZ
3631 qemu_mutex_lock(&map_client_list_lock);
3632 QLIST_FOREACH(client, &map_client_list, link) {
3633 if (client->bh == bh) {
3634 cpu_unregister_map_client_do(client);
3635 break;
3636 }
ba223c29 3637 }
e95205e1 3638 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3639}
3640
3641static void cpu_notify_map_clients(void)
3642{
38e047b5 3643 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3644 cpu_notify_map_clients_locked();
38e047b5 3645 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3646}
3647
0c249ff7 3648static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3649 bool is_write, MemTxAttrs attrs)
51644ab7 3650{
5c8a00ce 3651 MemoryRegion *mr;
51644ab7
PB
3652 hwaddr l, xlat;
3653
3654 while (len > 0) {
3655 l = len;
efa99a2f 3656 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3657 if (!memory_access_is_direct(mr, is_write)) {
3658 l = memory_access_size(mr, l, addr);
eace72b7 3659 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3660 return false;
3661 }
3662 }
3663
3664 len -= l;
3665 addr += l;
3666 }
3667 return true;
3668}
3669
16620684 3670bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3671 hwaddr len, bool is_write,
fddffa42 3672 MemTxAttrs attrs)
16620684 3673{
11e732a5
PB
3674 FlatView *fv;
3675 bool result;
3676
3677 rcu_read_lock();
3678 fv = address_space_to_flatview(as);
eace72b7 3679 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3680 rcu_read_unlock();
3681 return result;
16620684
AK
3682}
3683
715c31ec 3684static hwaddr
16620684 3685flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3686 hwaddr target_len,
3687 MemoryRegion *mr, hwaddr base, hwaddr len,
3688 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3689{
3690 hwaddr done = 0;
3691 hwaddr xlat;
3692 MemoryRegion *this_mr;
3693
3694 for (;;) {
3695 target_len -= len;
3696 addr += len;
3697 done += len;
3698 if (target_len == 0) {
3699 return done;
3700 }
3701
3702 len = target_len;
16620684 3703 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3704 &len, is_write, attrs);
715c31ec
PB
3705 if (this_mr != mr || xlat != base + done) {
3706 return done;
3707 }
3708 }
3709}
3710
6d16c2f8
AL
3711/* Map a physical memory region into a host virtual address.
3712 * May map a subset of the requested range, given by and returned in *plen.
3713 * May return NULL if resources needed to perform the mapping are exhausted.
3714 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3715 * Use cpu_register_map_client() to know when retrying the map operation is
3716 * likely to succeed.
6d16c2f8 3717 */
ac1970fb 3718void *address_space_map(AddressSpace *as,
a8170e5e
AK
3719 hwaddr addr,
3720 hwaddr *plen,
f26404fb
PM
3721 bool is_write,
3722 MemTxAttrs attrs)
6d16c2f8 3723{
a8170e5e 3724 hwaddr len = *plen;
715c31ec
PB
3725 hwaddr l, xlat;
3726 MemoryRegion *mr;
e81bcda5 3727 void *ptr;
ad0c60fa 3728 FlatView *fv;
6d16c2f8 3729
e3127ae0
PB
3730 if (len == 0) {
3731 return NULL;
3732 }
38bee5dc 3733
e3127ae0 3734 l = len;
41063e1e 3735 rcu_read_lock();
ad0c60fa 3736 fv = address_space_to_flatview(as);
efa99a2f 3737 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3738
e3127ae0 3739 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3740 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3741 rcu_read_unlock();
e3127ae0 3742 return NULL;
6d16c2f8 3743 }
e85d9db5
KW
3744 /* Avoid unbounded allocations */
3745 l = MIN(l, TARGET_PAGE_SIZE);
3746 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3747 bounce.addr = addr;
3748 bounce.len = l;
d3e71559
PB
3749
3750 memory_region_ref(mr);
3751 bounce.mr = mr;
e3127ae0 3752 if (!is_write) {
16620684 3753 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3754 bounce.buffer, l);
8ab934f9 3755 }
6d16c2f8 3756
41063e1e 3757 rcu_read_unlock();
e3127ae0
PB
3758 *plen = l;
3759 return bounce.buffer;
3760 }
3761
e3127ae0 3762
d3e71559 3763 memory_region_ref(mr);
16620684 3764 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3765 l, is_write, attrs);
f5aa69bd 3766 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3767 rcu_read_unlock();
3768
3769 return ptr;
6d16c2f8
AL
3770}
3771
ac1970fb 3772/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3773 * Will also mark the memory as dirty if is_write == 1. access_len gives
3774 * the amount of memory that was actually read or written by the caller.
3775 */
a8170e5e
AK
3776void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3777 int is_write, hwaddr access_len)
6d16c2f8
AL
3778{
3779 if (buffer != bounce.buffer) {
d3e71559
PB
3780 MemoryRegion *mr;
3781 ram_addr_t addr1;
3782
07bdaa41 3783 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3784 assert(mr != NULL);
6d16c2f8 3785 if (is_write) {
845b6214 3786 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3787 }
868bb33f 3788 if (xen_enabled()) {
e41d7c69 3789 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3790 }
d3e71559 3791 memory_region_unref(mr);
6d16c2f8
AL
3792 return;
3793 }
3794 if (is_write) {
5c9eb028
PM
3795 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3796 bounce.buffer, access_len);
6d16c2f8 3797 }
f8a83245 3798 qemu_vfree(bounce.buffer);
6d16c2f8 3799 bounce.buffer = NULL;
d3e71559 3800 memory_region_unref(bounce.mr);
c2cba0ff 3801 atomic_mb_set(&bounce.in_use, false);
ba223c29 3802 cpu_notify_map_clients();
6d16c2f8 3803}
d0ecd2aa 3804
a8170e5e
AK
3805void *cpu_physical_memory_map(hwaddr addr,
3806 hwaddr *plen,
ac1970fb
AK
3807 int is_write)
3808{
f26404fb
PM
3809 return address_space_map(&address_space_memory, addr, plen, is_write,
3810 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3811}
3812
a8170e5e
AK
3813void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3814 int is_write, hwaddr access_len)
ac1970fb
AK
3815{
3816 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3817}
3818
0ce265ff
PB
3819#define ARG1_DECL AddressSpace *as
3820#define ARG1 as
3821#define SUFFIX
3822#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3823#define RCU_READ_LOCK(...) rcu_read_lock()
3824#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3825#include "memory_ldst.inc.c"
1e78bcc1 3826
1f4e496e
PB
3827int64_t address_space_cache_init(MemoryRegionCache *cache,
3828 AddressSpace *as,
3829 hwaddr addr,
3830 hwaddr len,
3831 bool is_write)
3832{
48564041
PB
3833 AddressSpaceDispatch *d;
3834 hwaddr l;
3835 MemoryRegion *mr;
3836
3837 assert(len > 0);
3838
3839 l = len;
3840 cache->fv = address_space_get_flatview(as);
3841 d = flatview_to_dispatch(cache->fv);
3842 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3843
3844 mr = cache->mrs.mr;
3845 memory_region_ref(mr);
3846 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3847 /* We don't care about the memory attributes here as we're only
3848 * doing this if we found actual RAM, which behaves the same
3849 * regardless of attributes; so UNSPECIFIED is fine.
3850 */
48564041 3851 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3852 cache->xlat, l, is_write,
3853 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3854 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3855 } else {
3856 cache->ptr = NULL;
3857 }
3858
3859 cache->len = l;
3860 cache->is_write = is_write;
3861 return l;
1f4e496e
PB
3862}
3863
3864void address_space_cache_invalidate(MemoryRegionCache *cache,
3865 hwaddr addr,
3866 hwaddr access_len)
3867{
48564041
PB
3868 assert(cache->is_write);
3869 if (likely(cache->ptr)) {
3870 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3871 }
1f4e496e
PB
3872}
3873
3874void address_space_cache_destroy(MemoryRegionCache *cache)
3875{
48564041
PB
3876 if (!cache->mrs.mr) {
3877 return;
3878 }
3879
3880 if (xen_enabled()) {
3881 xen_invalidate_map_cache_entry(cache->ptr);
3882 }
3883 memory_region_unref(cache->mrs.mr);
3884 flatview_unref(cache->fv);
3885 cache->mrs.mr = NULL;
3886 cache->fv = NULL;
3887}
3888
3889/* Called from RCU critical section. This function has the same
3890 * semantics as address_space_translate, but it only works on a
3891 * predefined range of a MemoryRegion that was mapped with
3892 * address_space_cache_init.
3893 */
3894static inline MemoryRegion *address_space_translate_cached(
3895 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3896 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3897{
3898 MemoryRegionSection section;
3899 MemoryRegion *mr;
3900 IOMMUMemoryRegion *iommu_mr;
3901 AddressSpace *target_as;
3902
3903 assert(!cache->ptr);
3904 *xlat = addr + cache->xlat;
3905
3906 mr = cache->mrs.mr;
3907 iommu_mr = memory_region_get_iommu(mr);
3908 if (!iommu_mr) {
3909 /* MMIO region. */
3910 return mr;
3911 }
3912
3913 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3914 NULL, is_write, true,
2f7b009c 3915 &target_as, attrs);
48564041
PB
3916 return section.mr;
3917}
3918
3919/* Called from RCU critical section. address_space_read_cached uses this
3920 * out of line function when the target is an MMIO or IOMMU region.
3921 */
3922void
3923address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3924 void *buf, hwaddr len)
48564041
PB
3925{
3926 hwaddr addr1, l;
3927 MemoryRegion *mr;
3928
3929 l = len;
bc6b1cec
PM
3930 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3931 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3932 flatview_read_continue(cache->fv,
3933 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3934 addr1, l, mr);
3935}
3936
3937/* Called from RCU critical section. address_space_write_cached uses this
3938 * out of line function when the target is an MMIO or IOMMU region.
3939 */
3940void
3941address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3942 const void *buf, hwaddr len)
48564041
PB
3943{
3944 hwaddr addr1, l;
3945 MemoryRegion *mr;
3946
3947 l = len;
bc6b1cec
PM
3948 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3949 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3950 flatview_write_continue(cache->fv,
3951 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3952 addr1, l, mr);
1f4e496e
PB
3953}
3954
3955#define ARG1_DECL MemoryRegionCache *cache
3956#define ARG1 cache
48564041
PB
3957#define SUFFIX _cached_slow
3958#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3959#define RCU_READ_LOCK() ((void)0)
3960#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3961#include "memory_ldst.inc.c"
3962
5e2972fd 3963/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3964int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3965 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3966{
a8170e5e 3967 hwaddr phys_addr;
0c249ff7 3968 target_ulong l, page;
13eb76e0 3969
79ca7a1b 3970 cpu_synchronize_state(cpu);
13eb76e0 3971 while (len > 0) {
5232e4c7
PM
3972 int asidx;
3973 MemTxAttrs attrs;
3974
13eb76e0 3975 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3976 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3977 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3978 /* if no physical page mapped, return an error */
3979 if (phys_addr == -1)
3980 return -1;
3981 l = (page + TARGET_PAGE_SIZE) - addr;
3982 if (l > len)
3983 l = len;
5e2972fd 3984 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3985 if (is_write) {
3c8133f9 3986 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3987 attrs, buf, l);
2e38847b 3988 } else {
5232e4c7 3989 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3990 attrs, buf, l, 0);
2e38847b 3991 }
13eb76e0
FB
3992 len -= l;
3993 buf += l;
3994 addr += l;
3995 }
3996 return 0;
3997}
038629a6
DDAG
3998
3999/*
4000 * Allows code that needs to deal with migration bitmaps etc to still be built
4001 * target independent.
4002 */
20afaed9 4003size_t qemu_target_page_size(void)
038629a6 4004{
20afaed9 4005 return TARGET_PAGE_SIZE;
038629a6
DDAG
4006}
4007
46d702b1
JQ
4008int qemu_target_page_bits(void)
4009{
4010 return TARGET_PAGE_BITS;
4011}
4012
4013int qemu_target_page_bits_min(void)
4014{
4015 return TARGET_PAGE_BITS_MIN;
4016}
a68fe89c 4017#endif
13eb76e0 4018
98ed8ecf 4019bool target_words_bigendian(void)
8e4a424b
BS
4020{
4021#if defined(TARGET_WORDS_BIGENDIAN)
4022 return true;
4023#else
4024 return false;
4025#endif
4026}
4027
76f35538 4028#ifndef CONFIG_USER_ONLY
a8170e5e 4029bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 4030{
5c8a00ce 4031 MemoryRegion*mr;
149f54b5 4032 hwaddr l = 1;
41063e1e 4033 bool res;
76f35538 4034
41063e1e 4035 rcu_read_lock();
5c8a00ce 4036 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
4037 phys_addr, &phys_addr, &l, false,
4038 MEMTXATTRS_UNSPECIFIED);
76f35538 4039
41063e1e
PB
4040 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4041 rcu_read_unlock();
4042 return res;
76f35538 4043}
bd2fa51f 4044
e3807054 4045int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
4046{
4047 RAMBlock *block;
e3807054 4048 int ret = 0;
bd2fa51f 4049
0dc3f44a 4050 rcu_read_lock();
99e15582 4051 RAMBLOCK_FOREACH(block) {
754cb9c0 4052 ret = func(block, opaque);
e3807054
DDAG
4053 if (ret) {
4054 break;
4055 }
bd2fa51f 4056 }
0dc3f44a 4057 rcu_read_unlock();
e3807054 4058 return ret;
bd2fa51f 4059}
d3a5038c
DDAG
4060
4061/*
4062 * Unmap pages of memory from start to start+length such that
4063 * they a) read as 0, b) Trigger whatever fault mechanism
4064 * the OS provides for postcopy.
4065 * The pages must be unmapped by the end of the function.
4066 * Returns: 0 on success, none-0 on failure
4067 *
4068 */
4069int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4070{
4071 int ret = -1;
4072
4073 uint8_t *host_startaddr = rb->host + start;
4074
4075 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4076 error_report("ram_block_discard_range: Unaligned start address: %p",
4077 host_startaddr);
4078 goto err;
4079 }
4080
4081 if ((start + length) <= rb->used_length) {
db144f70 4082 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4083 uint8_t *host_endaddr = host_startaddr + length;
4084 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4085 error_report("ram_block_discard_range: Unaligned end address: %p",
4086 host_endaddr);
4087 goto err;
4088 }
4089
4090 errno = ENOTSUP; /* If we are missing MADVISE etc */
4091
db144f70
DDAG
4092 /* The logic here is messy;
4093 * madvise DONTNEED fails for hugepages
4094 * fallocate works on hugepages and shmem
4095 */
4096 need_madvise = (rb->page_size == qemu_host_page_size);
4097 need_fallocate = rb->fd != -1;
4098 if (need_fallocate) {
4099 /* For a file, this causes the area of the file to be zero'd
4100 * if read, and for hugetlbfs also causes it to be unmapped
4101 * so a userfault will trigger.
e2fa71f5
DDAG
4102 */
4103#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4104 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4105 start, length);
db144f70
DDAG
4106 if (ret) {
4107 ret = -errno;
4108 error_report("ram_block_discard_range: Failed to fallocate "
4109 "%s:%" PRIx64 " +%zx (%d)",
4110 rb->idstr, start, length, ret);
4111 goto err;
4112 }
4113#else
4114 ret = -ENOSYS;
4115 error_report("ram_block_discard_range: fallocate not available/file"
4116 "%s:%" PRIx64 " +%zx (%d)",
4117 rb->idstr, start, length, ret);
4118 goto err;
e2fa71f5
DDAG
4119#endif
4120 }
db144f70
DDAG
4121 if (need_madvise) {
4122 /* For normal RAM this causes it to be unmapped,
4123 * for shared memory it causes the local mapping to disappear
4124 * and to fall back on the file contents (which we just
4125 * fallocate'd away).
4126 */
4127#if defined(CONFIG_MADVISE)
4128 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4129 if (ret) {
4130 ret = -errno;
4131 error_report("ram_block_discard_range: Failed to discard range "
4132 "%s:%" PRIx64 " +%zx (%d)",
4133 rb->idstr, start, length, ret);
4134 goto err;
4135 }
4136#else
4137 ret = -ENOSYS;
4138 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4139 "%s:%" PRIx64 " +%zx (%d)",
4140 rb->idstr, start, length, ret);
db144f70
DDAG
4141 goto err;
4142#endif
d3a5038c 4143 }
db144f70
DDAG
4144 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4145 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4146 } else {
4147 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4148 "/%zx/" RAM_ADDR_FMT")",
4149 rb->idstr, start, length, rb->used_length);
4150 }
4151
4152err:
4153 return ret;
4154}
4155
a4de8552
JH
4156bool ramblock_is_pmem(RAMBlock *rb)
4157{
4158 return rb->flags & RAM_PMEM;
4159}
4160
ec3f8c99 4161#endif
a0be0c58
YZ
4162
4163void page_size_init(void)
4164{
4165 /* NOTE: we can always suppose that qemu_host_page_size >=
4166 TARGET_PAGE_SIZE */
a0be0c58
YZ
4167 if (qemu_host_page_size == 0) {
4168 qemu_host_page_size = qemu_real_host_page_size;
4169 }
4170 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4171 qemu_host_page_size = TARGET_PAGE_SIZE;
4172 }
4173 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4174}
5e8fd947
AK
4175
4176#if !defined(CONFIG_USER_ONLY)
4177
b6b71cb5 4178static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4179{
4180 if (start == end - 1) {
b6b71cb5 4181 qemu_printf("\t%3d ", start);
5e8fd947 4182 } else {
b6b71cb5 4183 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4184 }
b6b71cb5 4185 qemu_printf(" skip=%d ", skip);
5e8fd947 4186 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4187 qemu_printf(" ptr=NIL");
5e8fd947 4188 } else if (!skip) {
b6b71cb5 4189 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4190 } else {
b6b71cb5 4191 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4192 }
b6b71cb5 4193 qemu_printf("\n");
5e8fd947
AK
4194}
4195
4196#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4197 int128_sub((size), int128_one())) : 0)
4198
b6b71cb5 4199void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4200{
4201 int i;
4202
b6b71cb5
MA
4203 qemu_printf(" Dispatch\n");
4204 qemu_printf(" Physical sections\n");
5e8fd947
AK
4205
4206 for (i = 0; i < d->map.sections_nb; ++i) {
4207 MemoryRegionSection *s = d->map.sections + i;
4208 const char *names[] = { " [unassigned]", " [not dirty]",
4209 " [ROM]", " [watch]" };
4210
b6b71cb5
MA
4211 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4212 " %s%s%s%s%s",
5e8fd947
AK
4213 i,
4214 s->offset_within_address_space,
4215 s->offset_within_address_space + MR_SIZE(s->mr->size),
4216 s->mr->name ? s->mr->name : "(noname)",
4217 i < ARRAY_SIZE(names) ? names[i] : "",
4218 s->mr == root ? " [ROOT]" : "",
4219 s == d->mru_section ? " [MRU]" : "",
4220 s->mr->is_iommu ? " [iommu]" : "");
4221
4222 if (s->mr->alias) {
b6b71cb5 4223 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4224 s->mr->alias->name : "noname");
4225 }
b6b71cb5 4226 qemu_printf("\n");
5e8fd947
AK
4227 }
4228
b6b71cb5 4229 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4230 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4231 for (i = 0; i < d->map.nodes_nb; ++i) {
4232 int j, jprev;
4233 PhysPageEntry prev;
4234 Node *n = d->map.nodes + i;
4235
b6b71cb5 4236 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4237
4238 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4239 PhysPageEntry *pe = *n + j;
4240
4241 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4242 continue;
4243 }
4244
b6b71cb5 4245 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4246
4247 jprev = j;
4248 prev = *pe;
4249 }
4250
4251 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4252 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4253 }
4254 }
4255}
4256
4257#endif