]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
tpm_tis: convert tpm_tis_show_buffer() to use trace event
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
e2eef170 90#endif
9fa3e853 91
20bccb82
PM
92#ifdef TARGET_PAGE_BITS_VARY
93int target_page_bits;
94bool target_page_bits_decided;
95#endif
96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
2e70f6ef 102/* 0 = Do not count executed instructions.
bf20dc07 103 1 = Precise instruction counting.
2e70f6ef 104 2 = Adaptive rate instruction counting. */
5708fc66 105int use_icount;
6a00d601 106
a0be0c58
YZ
107uintptr_t qemu_host_page_size;
108intptr_t qemu_host_page_mask;
a0be0c58 109
20bccb82
PM
110bool set_preferred_target_page_bits(int bits)
111{
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
116 */
117#ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
122 }
123 target_page_bits = bits;
124 }
125#endif
126 return true;
127}
128
e2eef170 129#if !defined(CONFIG_USER_ONLY)
4346ae3e 130
20bccb82
PM
131static void finalize_target_page_bits(void)
132{
133#ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
136 }
137 target_page_bits_decided = true;
138#endif
139}
140
1db8abb1
PB
141typedef struct PhysPageEntry PhysPageEntry;
142
143struct PhysPageEntry {
9736e55b 144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 145 uint32_t skip : 6;
9736e55b 146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 147 uint32_t ptr : 26;
1db8abb1
PB
148};
149
8b795765
MT
150#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151
03f49957 152/* Size of the L2 (and L3, etc) page tables. */
57271d63 153#define ADDR_SPACE_BITS 64
03f49957 154
026736ce 155#define P_L2_BITS 9
03f49957
PB
156#define P_L2_SIZE (1 << P_L2_BITS)
157
158#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159
160typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 161
53cb28cb 162typedef struct PhysPageMap {
79e2b9ae
PB
163 struct rcu_head rcu;
164
53cb28cb
MA
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171} PhysPageMap;
172
1db8abb1 173struct AddressSpaceDispatch {
729633c2 174 MemoryRegionSection *mru_section;
1db8abb1
PB
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
177 */
178 PhysPageEntry phys_map;
53cb28cb 179 PhysPageMap map;
1db8abb1
PB
180};
181
90260c6c
JK
182#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183typedef struct subpage_t {
184 MemoryRegion iomem;
16620684 185 FlatView *fv;
90260c6c 186 hwaddr base;
2615fabd 187 uint16_t sub_section[];
90260c6c
JK
188} subpage_t;
189
b41aac4f
LPF
190#define PHYS_SECTION_UNASSIGNED 0
191#define PHYS_SECTION_NOTDIRTY 1
192#define PHYS_SECTION_ROM 2
193#define PHYS_SECTION_WATCH 3
5312bd8b 194
e2eef170 195static void io_mem_init(void);
62152b8a 196static void memory_map_init(void);
09daed84 197static void tcg_commit(MemoryListener *listener);
e2eef170 198
1ec9b909 199static MemoryRegion io_mem_watch;
32857f4d
PM
200
201/**
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 */
208struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
213};
214
8deaf12c
GH
215struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
219};
220
6658ffb8 221#endif
fd6ce8f6 222
6d9a1304 223#if !defined(CONFIG_USER_ONLY)
d6f2ea22 224
53cb28cb 225static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 226{
101420b8 227 static unsigned alloc_hint = 16;
53cb28cb 228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 232 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 233 }
f7bf5461
AK
234}
235
db94604b 236static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
237{
238 unsigned i;
8b795765 239 uint32_t ret;
db94604b
PB
240 PhysPageEntry e;
241 PhysPageEntry *p;
f7bf5461 242
53cb28cb 243 ret = map->nodes_nb++;
db94604b 244 p = map->nodes[ret];
f7bf5461 245 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 246 assert(ret != map->nodes_nb_alloc);
db94604b
PB
247
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 250 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 251 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 252 }
f7bf5461 253 return ret;
d6f2ea22
AK
254}
255
53cb28cb
MA
256static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 258 int level)
f7bf5461
AK
259{
260 PhysPageEntry *p;
03f49957 261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 262
9736e55b 263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 264 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 265 }
db94604b 266 p = map->nodes[lp->ptr];
03f49957 267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 268
03f49957 269 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 270 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 271 lp->skip = 0;
c19e8800 272 lp->ptr = leaf;
07f07b31
AK
273 *index += step;
274 *nb -= step;
2999097b 275 } else {
53cb28cb 276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
277 }
278 ++lp;
f7bf5461
AK
279 }
280}
281
ac1970fb 282static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 283 hwaddr index, hwaddr nb,
2999097b 284 uint16_t leaf)
f7bf5461 285{
2999097b 286 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 288
53cb28cb 289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
290}
291
b35ba30f
MT
292/* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
294 */
efee678d 295static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
296{
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
301
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
304 }
305
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
310 }
311
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
efee678d 315 phys_page_compact(&p[i], nodes);
b35ba30f
MT
316 }
317 }
318
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
322 }
323
324 assert(valid_ptr < P_L2_SIZE);
325
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
329 }
330
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
338 */
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
342 }
343}
344
8629d3fc 345void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 346{
b35ba30f 347 if (d->phys_map.skip) {
efee678d 348 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
349 }
350}
351
29cb533d
FZ
352static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
354{
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
357 */
258dfaaa 358 return int128_gethi(section->size) ||
29cb533d 359 range_covers_byte(section->offset_within_address_space,
258dfaaa 360 int128_getlo(section->size), addr);
29cb533d
FZ
361}
362
003a0cf2 363static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 364{
003a0cf2
PX
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
97115a8d 368 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 369 int i;
f1f6e3b8 370
9736e55b 371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 373 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 374 }
9affd6fc 375 p = nodes[lp.ptr];
03f49957 376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 377 }
b35ba30f 378
29cb533d 379 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
383 }
f3705d53
AK
384}
385
79e2b9ae 386/* Called from RCU critical section */
c7086b4a 387static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
388 hwaddr addr,
389 bool resolve_subpage)
9f029603 390{
729633c2 391 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
392 subpage_t *subpage;
393
07c114bb
PB
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
003a0cf2 396 section = phys_page_find(d, addr);
07c114bb 397 atomic_set(&d->mru_section, section);
729633c2 398 }
90260c6c
JK
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
402 }
403 return section;
9f029603
JK
404}
405
79e2b9ae 406/* Called from RCU critical section */
90260c6c 407static MemoryRegionSection *
c7086b4a 408address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 409 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
410{
411 MemoryRegionSection *section;
965eb2fc 412 MemoryRegion *mr;
a87f3954 413 Int128 diff;
149f54b5 414
c7086b4a 415 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
418
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
421
965eb2fc 422 mr = section->mr;
b242e0e0
PB
423
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
430 *
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
434 */
965eb2fc 435 if (memory_region_is_ram(mr)) {
e4a511f8 436 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
438 }
149f54b5
PB
439 return section;
440}
90260c6c 441
a411c84b
PB
442/**
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
445 *
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
2f7b009c 459 * @attrs: transaction attributes
a411c84b
PB
460 *
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
463 */
464static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
2f7b009c
PM
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
a411c84b
PB
472{
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
475
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
481
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
484 }
485
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
488
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
491 }
492
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
498
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
502
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
505
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
508 }
509 return *section;
510
511unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
513}
514
d5e5fafd
PX
515/**
516 * flatview_do_translate - translate an address in FlatView
517 *
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 530 * @target_as: the address space targeted by the IOMMU
49e14aa8 531 * @attrs: memory transaction attributes
d5e5fafd
PX
532 *
533 * This function is called from RCU critical section
534 */
16620684
AK
535static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
d5e5fafd
PX
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
16620684
AK
540 bool is_write,
541 bool is_mmio,
49e14aa8
PM
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
052c8fa9 544{
052c8fa9 545 MemoryRegionSection *section;
3df9d748 546 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
547 hwaddr plen = (hwaddr)(-1);
548
ad2804d9
PB
549 if (!plen_out) {
550 plen_out = &plen;
d5e5fafd 551 }
052c8fa9 552
a411c84b
PB
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
052c8fa9 556
a411c84b
PB
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
2f7b009c 562 target_as, attrs);
052c8fa9 563 }
d5e5fafd 564 if (page_mask_out) {
a411c84b
PB
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
567 }
568
a764040c 569 return *section;
052c8fa9
JW
570}
571
572/* Called from RCU critical section */
a764040c 573IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 574 bool is_write, MemTxAttrs attrs)
90260c6c 575{
a764040c 576 MemoryRegionSection section;
076a93d7 577 hwaddr xlat, page_mask;
30951157 578
076a93d7
PX
579 /*
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
582 */
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
30951157 586
a764040c
PX
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
590 }
30951157 591
a764040c
PX
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
595
a764040c 596 return (IOMMUTLBEntry) {
e76bb18f 597 .target_as = as,
076a93d7
PX
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
a764040c
PX
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
603 };
604
605iotlb_fail:
606 return (IOMMUTLBEntry) {0};
607}
608
609/* Called from RCU critical section */
16620684 610MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
a764040c
PX
613{
614 MemoryRegion *mr;
615 MemoryRegionSection section;
16620684 616 AddressSpace *as = NULL;
a764040c
PX
617
618 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 620 is_write, true, &as, attrs);
a764040c
PX
621 mr = section.mr;
622
fe680d0d 623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 625 *plen = MIN(page, *plen);
a87f3954
PB
626 }
627
30951157 628 return mr;
90260c6c
JK
629}
630
1f871c5e
PM
631typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637} TCGIOMMUNotifier;
638
639static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
640{
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
642
643 if (!notifier->active) {
644 return;
645 }
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
652 */
653}
654
655static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
658{
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
662 */
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
666
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
671 }
672 }
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
676 notifier = g_new0(TCGIOMMUNotifier, 1);
677 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
678
679 notifier->mr = mr;
680 notifier->iommu_idx = iommu_idx;
681 notifier->cpu = cpu;
682 /* Rather than trying to register interest in the specific part
683 * of the iommu's address space that we've accessed and then
684 * expand it later as subsequent accesses touch more of it, we
685 * just register interest in the whole thing, on the assumption
686 * that iommu reconfiguration will be rare.
687 */
688 iommu_notifier_init(&notifier->n,
689 tcg_iommu_unmap_notify,
690 IOMMU_NOTIFIER_UNMAP,
691 0,
692 HWADDR_MAX,
693 iommu_idx);
694 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
695 }
696
697 if (!notifier->active) {
698 notifier->active = true;
699 }
700}
701
702static void tcg_iommu_free_notifier_list(CPUState *cpu)
703{
704 /* Destroy the CPU's notifier list */
705 int i;
706 TCGIOMMUNotifier *notifier;
707
708 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 709 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 710 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 711 g_free(notifier);
1f871c5e
PM
712 }
713 g_array_free(cpu->iommu_notifiers, true);
714}
715
79e2b9ae 716/* Called from RCU critical section */
90260c6c 717MemoryRegionSection *
d7898cda 718address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
719 hwaddr *xlat, hwaddr *plen,
720 MemTxAttrs attrs, int *prot)
90260c6c 721{
30951157 722 MemoryRegionSection *section;
1f871c5e
PM
723 IOMMUMemoryRegion *iommu_mr;
724 IOMMUMemoryRegionClass *imrc;
725 IOMMUTLBEntry iotlb;
726 int iommu_idx;
f35e44e7 727 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 728
1f871c5e
PM
729 for (;;) {
730 section = address_space_translate_internal(d, addr, &addr, plen, false);
731
732 iommu_mr = memory_region_get_iommu(section->mr);
733 if (!iommu_mr) {
734 break;
735 }
736
737 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
738
739 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
740 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
741 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
742 * doesn't short-cut its translation table walk.
743 */
744 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
745 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
746 | (addr & iotlb.addr_mask));
747 /* Update the caller's prot bits to remove permissions the IOMMU
748 * is giving us a failure response for. If we get down to no
749 * permissions left at all we can give up now.
750 */
751 if (!(iotlb.perm & IOMMU_RO)) {
752 *prot &= ~(PAGE_READ | PAGE_EXEC);
753 }
754 if (!(iotlb.perm & IOMMU_WO)) {
755 *prot &= ~PAGE_WRITE;
756 }
757
758 if (!*prot) {
759 goto translate_fail;
760 }
761
762 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
763 }
30951157 764
3df9d748 765 assert(!memory_region_is_iommu(section->mr));
1f871c5e 766 *xlat = addr;
30951157 767 return section;
1f871c5e
PM
768
769translate_fail:
770 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 771}
5b6dd868 772#endif
fd6ce8f6 773
b170fce3 774#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
775
776static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 777{
259186a7 778 CPUState *cpu = opaque;
a513fe19 779
5b6dd868
BS
780 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
781 version_id is increased. */
259186a7 782 cpu->interrupt_request &= ~0x01;
d10eb08f 783 tlb_flush(cpu);
5b6dd868 784
15a356c4
PD
785 /* loadvm has just updated the content of RAM, bypassing the
786 * usual mechanisms that ensure we flush TBs for writes to
787 * memory we've translated code from. So we must flush all TBs,
788 * which will now be stale.
789 */
790 tb_flush(cpu);
791
5b6dd868 792 return 0;
a513fe19 793}
7501267e 794
6c3bff0e
PD
795static int cpu_common_pre_load(void *opaque)
796{
797 CPUState *cpu = opaque;
798
adee6424 799 cpu->exception_index = -1;
6c3bff0e
PD
800
801 return 0;
802}
803
804static bool cpu_common_exception_index_needed(void *opaque)
805{
806 CPUState *cpu = opaque;
807
adee6424 808 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
809}
810
811static const VMStateDescription vmstate_cpu_common_exception_index = {
812 .name = "cpu_common/exception_index",
813 .version_id = 1,
814 .minimum_version_id = 1,
5cd8cada 815 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(exception_index, CPUState),
818 VMSTATE_END_OF_LIST()
819 }
820};
821
bac05aa9
AS
822static bool cpu_common_crash_occurred_needed(void *opaque)
823{
824 CPUState *cpu = opaque;
825
826 return cpu->crash_occurred;
827}
828
829static const VMStateDescription vmstate_cpu_common_crash_occurred = {
830 .name = "cpu_common/crash_occurred",
831 .version_id = 1,
832 .minimum_version_id = 1,
833 .needed = cpu_common_crash_occurred_needed,
834 .fields = (VMStateField[]) {
835 VMSTATE_BOOL(crash_occurred, CPUState),
836 VMSTATE_END_OF_LIST()
837 }
838};
839
1a1562f5 840const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
841 .name = "cpu_common",
842 .version_id = 1,
843 .minimum_version_id = 1,
6c3bff0e 844 .pre_load = cpu_common_pre_load,
5b6dd868 845 .post_load = cpu_common_post_load,
35d08458 846 .fields = (VMStateField[]) {
259186a7
AF
847 VMSTATE_UINT32(halted, CPUState),
848 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 849 VMSTATE_END_OF_LIST()
6c3bff0e 850 },
5cd8cada
JQ
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_cpu_common_exception_index,
bac05aa9 853 &vmstate_cpu_common_crash_occurred,
5cd8cada 854 NULL
5b6dd868
BS
855 }
856};
1a1562f5 857
5b6dd868 858#endif
ea041c0e 859
38d8f5c8 860CPUState *qemu_get_cpu(int index)
ea041c0e 861{
bdc44640 862 CPUState *cpu;
ea041c0e 863
bdc44640 864 CPU_FOREACH(cpu) {
55e5c285 865 if (cpu->cpu_index == index) {
bdc44640 866 return cpu;
55e5c285 867 }
ea041c0e 868 }
5b6dd868 869
bdc44640 870 return NULL;
ea041c0e
FB
871}
872
09daed84 873#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
874void cpu_address_space_init(CPUState *cpu, int asidx,
875 const char *prefix, MemoryRegion *mr)
09daed84 876{
12ebc9a7 877 CPUAddressSpace *newas;
80ceb07a 878 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 879 char *as_name;
80ceb07a
PX
880
881 assert(mr);
87a621d8
PX
882 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
883 address_space_init(as, mr, as_name);
884 g_free(as_name);
12ebc9a7
PM
885
886 /* Target code should have set num_ases before calling us */
887 assert(asidx < cpu->num_ases);
888
56943e8c
PM
889 if (asidx == 0) {
890 /* address space 0 gets the convenience alias */
891 cpu->as = as;
892 }
893
12ebc9a7
PM
894 /* KVM cannot currently support multiple address spaces. */
895 assert(asidx == 0 || !kvm_enabled());
09daed84 896
12ebc9a7
PM
897 if (!cpu->cpu_ases) {
898 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 899 }
32857f4d 900
12ebc9a7
PM
901 newas = &cpu->cpu_ases[asidx];
902 newas->cpu = cpu;
903 newas->as = as;
56943e8c 904 if (tcg_enabled()) {
12ebc9a7
PM
905 newas->tcg_as_listener.commit = tcg_commit;
906 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 907 }
09daed84 908}
651a5bc0
PM
909
910AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
911{
912 /* Return the AddressSpace corresponding to the specified index */
913 return cpu->cpu_ases[asidx].as;
914}
09daed84
EI
915#endif
916
7bbc124e 917void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 918{
9dfeca7c
BR
919 CPUClass *cc = CPU_GET_CLASS(cpu);
920
267f685b 921 cpu_list_remove(cpu);
9dfeca7c
BR
922
923 if (cc->vmsd != NULL) {
924 vmstate_unregister(NULL, cc->vmsd, cpu);
925 }
926 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
927 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
928 }
1f871c5e
PM
929#ifndef CONFIG_USER_ONLY
930 tcg_iommu_free_notifier_list(cpu);
931#endif
1c59eb39
BR
932}
933
c7e002c5
FZ
934Property cpu_common_props[] = {
935#ifndef CONFIG_USER_ONLY
936 /* Create a memory property for softmmu CPU object,
937 * so users can wire up its memory. (This can't go in qom/cpu.c
938 * because that file is compiled only once for both user-mode
939 * and system builds.) The default if no link is set up is to use
940 * the system address space.
941 */
942 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
943 MemoryRegion *),
944#endif
945 DEFINE_PROP_END_OF_LIST(),
946};
947
39e329e3 948void cpu_exec_initfn(CPUState *cpu)
ea041c0e 949{
56943e8c 950 cpu->as = NULL;
12ebc9a7 951 cpu->num_ases = 0;
56943e8c 952
291135b5 953#ifndef CONFIG_USER_ONLY
291135b5 954 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
955 cpu->memory = system_memory;
956 object_ref(OBJECT(cpu->memory));
291135b5 957#endif
39e329e3
LV
958}
959
ce5b1bbf 960void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 961{
55c3ceef 962 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 963 static bool tcg_target_initialized;
291135b5 964
267f685b 965 cpu_list_add(cpu);
1bc7e522 966
2dda6354
EC
967 if (tcg_enabled() && !tcg_target_initialized) {
968 tcg_target_initialized = true;
55c3ceef
RH
969 cc->tcg_initialize();
970 }
5005e253 971 tlb_init(cpu);
55c3ceef 972
1bc7e522 973#ifndef CONFIG_USER_ONLY
e0d47944 974 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 975 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 976 }
b170fce3 977 if (cc->vmsd != NULL) {
741da0d3 978 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 979 }
1f871c5e 980
5601be3b 981 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 982#endif
ea041c0e
FB
983}
984
2278b939
IM
985const char *parse_cpu_model(const char *cpu_model)
986{
987 ObjectClass *oc;
988 CPUClass *cc;
989 gchar **model_pieces;
990 const char *cpu_type;
991
992 model_pieces = g_strsplit(cpu_model, ",", 2);
993
994 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
995 if (oc == NULL) {
996 error_report("unable to find CPU model '%s'", model_pieces[0]);
997 g_strfreev(model_pieces);
998 exit(EXIT_FAILURE);
999 }
1000
1001 cpu_type = object_class_get_name(oc);
1002 cc = CPU_CLASS(oc);
1003 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1004 g_strfreev(model_pieces);
1005 return cpu_type;
1006}
1007
c40d4792 1008#if defined(CONFIG_USER_ONLY)
8bca9a03 1009void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1010{
406bc339 1011 mmap_lock();
8bca9a03 1012 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1013 mmap_unlock();
1014}
8bca9a03
PB
1015
1016static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1017{
1018 tb_invalidate_phys_addr(pc);
1019}
406bc339 1020#else
8bca9a03
PB
1021void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1022{
1023 ram_addr_t ram_addr;
1024 MemoryRegion *mr;
1025 hwaddr l = 1;
1026
c40d4792
PB
1027 if (!tcg_enabled()) {
1028 return;
1029 }
1030
8bca9a03
PB
1031 rcu_read_lock();
1032 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1033 if (!(memory_region_is_ram(mr)
1034 || memory_region_is_romd(mr))) {
1035 rcu_read_unlock();
1036 return;
1037 }
1038 ram_addr = memory_region_get_ram_addr(mr) + addr;
1039 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1040 rcu_read_unlock();
1041}
1042
406bc339
PK
1043static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1044{
1045 MemTxAttrs attrs;
1046 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1047 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1048 if (phys != -1) {
1049 /* Locks grabbed by tb_invalidate_phys_addr */
1050 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1051 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1052 }
1e7855a5 1053}
406bc339 1054#endif
d720b93d 1055
c527ee8f 1056#if defined(CONFIG_USER_ONLY)
75a34036 1057void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1058
1059{
1060}
1061
3ee887e8
PM
1062int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1063 int flags)
1064{
1065 return -ENOSYS;
1066}
1067
1068void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1069{
1070}
1071
75a34036 1072int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1073 int flags, CPUWatchpoint **watchpoint)
1074{
1075 return -ENOSYS;
1076}
1077#else
6658ffb8 1078/* Add a watchpoint. */
75a34036 1079int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1080 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1081{
c0ce998e 1082 CPUWatchpoint *wp;
6658ffb8 1083
05068c0d 1084 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1085 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1086 error_report("tried to set invalid watchpoint at %"
1087 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1088 return -EINVAL;
1089 }
7267c094 1090 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1091
1092 wp->vaddr = addr;
05068c0d 1093 wp->len = len;
a1d1bb31
AL
1094 wp->flags = flags;
1095
2dc9f411 1096 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1097 if (flags & BP_GDB) {
1098 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1099 } else {
1100 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1101 }
6658ffb8 1102
31b030d4 1103 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1104
1105 if (watchpoint)
1106 *watchpoint = wp;
1107 return 0;
6658ffb8
PB
1108}
1109
a1d1bb31 1110/* Remove a specific watchpoint. */
75a34036 1111int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1112 int flags)
6658ffb8 1113{
a1d1bb31 1114 CPUWatchpoint *wp;
6658ffb8 1115
ff4700b0 1116 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1117 if (addr == wp->vaddr && len == wp->len
6e140f28 1118 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1119 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1120 return 0;
1121 }
1122 }
a1d1bb31 1123 return -ENOENT;
6658ffb8
PB
1124}
1125
a1d1bb31 1126/* Remove a specific watchpoint by reference. */
75a34036 1127void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1128{
ff4700b0 1129 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1130
31b030d4 1131 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1132
7267c094 1133 g_free(watchpoint);
a1d1bb31
AL
1134}
1135
1136/* Remove all matching watchpoints. */
75a34036 1137void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1138{
c0ce998e 1139 CPUWatchpoint *wp, *next;
a1d1bb31 1140
ff4700b0 1141 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1142 if (wp->flags & mask) {
1143 cpu_watchpoint_remove_by_ref(cpu, wp);
1144 }
c0ce998e 1145 }
7d03f82f 1146}
05068c0d
PM
1147
1148/* Return true if this watchpoint address matches the specified
1149 * access (ie the address range covered by the watchpoint overlaps
1150 * partially or completely with the address range covered by the
1151 * access).
1152 */
1153static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1154 vaddr addr,
1155 vaddr len)
1156{
1157 /* We know the lengths are non-zero, but a little caution is
1158 * required to avoid errors in the case where the range ends
1159 * exactly at the top of the address space and so addr + len
1160 * wraps round to zero.
1161 */
1162 vaddr wpend = wp->vaddr + wp->len - 1;
1163 vaddr addrend = addr + len - 1;
1164
1165 return !(addr > wpend || wp->vaddr > addrend);
1166}
1167
c527ee8f 1168#endif
7d03f82f 1169
a1d1bb31 1170/* Add a breakpoint. */
b3310ab3 1171int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1172 CPUBreakpoint **breakpoint)
4c3a88a2 1173{
c0ce998e 1174 CPUBreakpoint *bp;
3b46e624 1175
7267c094 1176 bp = g_malloc(sizeof(*bp));
4c3a88a2 1177
a1d1bb31
AL
1178 bp->pc = pc;
1179 bp->flags = flags;
1180
2dc9f411 1181 /* keep all GDB-injected breakpoints in front */
00b941e5 1182 if (flags & BP_GDB) {
f0c3c505 1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1184 } else {
f0c3c505 1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1186 }
3b46e624 1187
f0c3c505 1188 breakpoint_invalidate(cpu, pc);
a1d1bb31 1189
00b941e5 1190 if (breakpoint) {
a1d1bb31 1191 *breakpoint = bp;
00b941e5 1192 }
4c3a88a2 1193 return 0;
4c3a88a2
FB
1194}
1195
a1d1bb31 1196/* Remove a specific breakpoint. */
b3310ab3 1197int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1198{
a1d1bb31
AL
1199 CPUBreakpoint *bp;
1200
f0c3c505 1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1202 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1203 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1204 return 0;
1205 }
7d03f82f 1206 }
a1d1bb31 1207 return -ENOENT;
7d03f82f
EI
1208}
1209
a1d1bb31 1210/* Remove a specific breakpoint by reference. */
b3310ab3 1211void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1212{
f0c3c505
AF
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1214
1215 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1216
7267c094 1217 g_free(breakpoint);
a1d1bb31
AL
1218}
1219
1220/* Remove all matching breakpoints. */
b3310ab3 1221void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1222{
c0ce998e 1223 CPUBreakpoint *bp, *next;
a1d1bb31 1224
f0c3c505 1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1228 }
c0ce998e 1229 }
4c3a88a2
FB
1230}
1231
c33a346e
FB
1232/* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
3825b28f 1234void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1235{
ed2803da
AF
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
38e478ec 1239 kvm_update_guest_debug(cpu, 0);
ed2803da 1240 } else {
ccbb4d44 1241 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1242 /* XXX: only flush what is necessary */
bbd77c18 1243 tb_flush(cpu);
e22a25c9 1244 }
c33a346e 1245 }
c33a346e
FB
1246}
1247
a47dddd7 1248void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1249{
1250 va_list ap;
493ae1f0 1251 va_list ap2;
7501267e
FB
1252
1253 va_start(ap, fmt);
493ae1f0 1254 va_copy(ap2, ap);
7501267e
FB
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
878096ee 1258 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1259 if (qemu_log_separate()) {
1ee73216 1260 qemu_log_lock();
93fcfe39
AL
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
a0762859 1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1265 qemu_log_flush();
1ee73216 1266 qemu_log_unlock();
93fcfe39 1267 qemu_log_close();
924edcae 1268 }
493ae1f0 1269 va_end(ap2);
f9373291 1270 va_end(ap);
7615936e 1271 replay_finish();
fd052bf6
RV
1272#if defined(CONFIG_USER_ONLY)
1273 {
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
8347c185 1277 act.sa_flags = 0;
fd052bf6
RV
1278 sigaction(SIGABRT, &act, NULL);
1279 }
1280#endif
7501267e
FB
1281 abort();
1282}
1283
0124311e 1284#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1285/* Called from RCU critical section */
041603fe
PB
1286static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1287{
1288 RAMBlock *block;
1289
43771539 1290 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1291 if (block && addr - block->offset < block->max_length) {
68851b98 1292 return block;
041603fe 1293 }
99e15582 1294 RAMBLOCK_FOREACH(block) {
9b8424d5 1295 if (addr - block->offset < block->max_length) {
041603fe
PB
1296 goto found;
1297 }
1298 }
1299
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1302
1303found:
43771539
PB
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1306 *
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1315 *
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1319 */
041603fe
PB
1320 ram_list.mru_block = block;
1321 return block;
1322}
1323
a2f4d5be 1324static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1325{
9a13565d 1326 CPUState *cpu;
041603fe 1327 ram_addr_t start1;
a2f4d5be
JQ
1328 RAMBlock *block;
1329 ram_addr_t end;
1330
f28d0dfd 1331 assert(tcg_enabled());
a2f4d5be
JQ
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
d24981d3 1334
0dc3f44a 1335 rcu_read_lock();
041603fe
PB
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1240be24 1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1341 }
0dc3f44a 1342 rcu_read_unlock();
d24981d3
JQ
1343}
1344
5579c7f3 1345/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1346bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1ccde1cb 1349{
5b82b703 1350 DirtyMemoryBlocks *blocks;
03eebc9e 1351 unsigned long end, page;
5b82b703 1352 bool dirty = false;
03eebc9e
SH
1353
1354 if (length == 0) {
1355 return false;
1356 }
f23db169 1357
03eebc9e
SH
1358 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1359 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1360
1361 rcu_read_lock();
1362
1363 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1364
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1369
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1373 }
1374
1375 rcu_read_unlock();
03eebc9e
SH
1376
1377 if (dirty && tcg_enabled()) {
a2f4d5be 1378 tlb_reset_dirty_range_all(start, length);
5579c7f3 1379 }
03eebc9e
SH
1380
1381 return dirty;
1ccde1cb
FB
1382}
1383
8deaf12c
GH
1384DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1385 (ram_addr_t start, ram_addr_t length, unsigned client)
1386{
1387 DirtyMemoryBlocks *blocks;
1388 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1389 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1390 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1391 DirtyBitmapSnapshot *snap;
1392 unsigned long page, end, dest;
1393
1394 snap = g_malloc0(sizeof(*snap) +
1395 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1396 snap->start = first;
1397 snap->end = last;
1398
1399 page = first >> TARGET_PAGE_BITS;
1400 end = last >> TARGET_PAGE_BITS;
1401 dest = 0;
1402
1403 rcu_read_lock();
1404
1405 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1406
1407 while (page < end) {
1408 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1409 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1411
1412 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1413 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1414 offset >>= BITS_PER_LEVEL;
1415
1416 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1417 blocks->blocks[idx] + offset,
1418 num);
1419 page += num;
1420 dest += num >> BITS_PER_LEVEL;
1421 }
1422
1423 rcu_read_unlock();
1424
1425 if (tcg_enabled()) {
1426 tlb_reset_dirty_range_all(start, length);
1427 }
1428
1429 return snap;
1430}
1431
1432bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1435{
1436 unsigned long page, end;
1437
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1440
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1443
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1447 }
1448 page++;
1449 }
1450 return false;
1451}
1452
79e2b9ae 1453/* Called from RCU critical section */
bb0e627a 1454hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
e5548617 1460{
a8170e5e 1461 hwaddr iotlb;
e5548617
BS
1462 CPUWatchpoint *wp;
1463
cc5bea60 1464 if (memory_region_is_ram(section->mr)) {
e5548617 1465 /* Normal RAM. */
e4e69794 1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1467 if (!section->readonly) {
b41aac4f 1468 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1469 } else {
b41aac4f 1470 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1471 }
1472 } else {
0b8e2c10
PM
1473 AddressSpaceDispatch *d;
1474
16620684 1475 d = flatview_to_dispatch(section->fv);
0b8e2c10 1476 iotlb = section - d->map.sections;
149f54b5 1477 iotlb += xlat;
e5548617
BS
1478 }
1479
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
ff4700b0 1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1486 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1487 *address |= TLB_MMIO;
1488 break;
1489 }
1490 }
1491 }
1492
1493 return iotlb;
1494}
9fa3e853
FB
1495#endif /* defined(CONFIG_USER_ONLY) */
1496
e2eef170 1497#if !defined(CONFIG_USER_ONLY)
8da3ff18 1498
c227f099 1499static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1500 uint16_t section);
16620684 1501static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1502
06329cce 1503static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1504 qemu_anon_ram_alloc;
91138037
MA
1505
1506/*
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1510 */
06329cce 1511void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1512{
1513 phys_mem_alloc = alloc;
1514}
1515
53cb28cb
MA
1516static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
5312bd8b 1518{
68f3f65b
PB
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1522 */
53cb28cb 1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1524
53cb28cb
MA
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
5312bd8b 1529 }
53cb28cb 1530 map->sections[map->sections_nb] = *section;
dfde4e6e 1531 memory_region_ref(section->mr);
53cb28cb 1532 return map->sections_nb++;
5312bd8b
AK
1533}
1534
058bc4b5
PB
1535static void phys_section_destroy(MemoryRegion *mr)
1536{
55b4e80b
DS
1537 bool have_sub_page = mr->subpage;
1538
dfde4e6e
PB
1539 memory_region_unref(mr);
1540
55b4e80b 1541 if (have_sub_page) {
058bc4b5 1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1543 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1544 g_free(subpage);
1545 }
1546}
1547
6092666e 1548static void phys_sections_free(PhysPageMap *map)
5312bd8b 1549{
9affd6fc
PB
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1552 phys_section_destroy(section->mr);
1553 }
9affd6fc
PB
1554 g_free(map->sections);
1555 g_free(map->nodes);
5312bd8b
AK
1556}
1557
9950322a 1558static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1559{
9950322a 1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1561 subpage_t *subpage;
a8170e5e 1562 hwaddr base = section->offset_within_address_space
0f0cb164 1563 & TARGET_PAGE_MASK;
003a0cf2 1564 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
052e87b0 1567 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1568 };
a8170e5e 1569 hwaddr start, end;
0f0cb164 1570
f3705d53 1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1572
f3705d53 1573 if (!(existing->mr->subpage)) {
16620684
AK
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
0f0cb164 1576 subsection.mr = &subpage->iomem;
ac1970fb 1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1578 phys_section_add(&d->map, &subsection));
0f0cb164 1579 } else {
f3705d53 1580 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1581 }
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1583 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
0f0cb164
AK
1586}
1587
1588
9950322a 1589static void register_multipage(FlatView *fv,
052e87b0 1590 MemoryRegionSection *section)
33417e70 1591{
9950322a 1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1593 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1594 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
dd81124b 1597
733d5ef5
PB
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1600}
1601
8629d3fc 1602void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1603{
99b9cc06 1604 MemoryRegionSection now = *section, remain = *section;
052e87b0 1605 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1606
733d5ef5
PB
1607 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1608 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1609 - now.offset_within_address_space;
1610
052e87b0 1611 now.size = int128_min(int128_make64(left), now.size);
9950322a 1612 register_subpage(fv, &now);
733d5ef5 1613 } else {
052e87b0 1614 now.size = int128_zero();
733d5ef5 1615 }
052e87b0
PB
1616 while (int128_ne(remain.size, now.size)) {
1617 remain.size = int128_sub(remain.size, now.size);
1618 remain.offset_within_address_space += int128_get64(now.size);
1619 remain.offset_within_region += int128_get64(now.size);
69b67646 1620 now = remain;
052e87b0 1621 if (int128_lt(remain.size, page_size)) {
9950322a 1622 register_subpage(fv, &now);
88266249 1623 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1624 now.size = page_size;
9950322a 1625 register_subpage(fv, &now);
69b67646 1626 } else {
052e87b0 1627 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1628 register_multipage(fv, &now);
69b67646 1629 }
0f0cb164
AK
1630 }
1631}
1632
62a2744c
SY
1633void qemu_flush_coalesced_mmio_buffer(void)
1634{
1635 if (kvm_enabled())
1636 kvm_flush_coalesced_mmio_buffer();
1637}
1638
b2a8658e
UD
1639void qemu_mutex_lock_ramlist(void)
1640{
1641 qemu_mutex_lock(&ram_list.mutex);
1642}
1643
1644void qemu_mutex_unlock_ramlist(void)
1645{
1646 qemu_mutex_unlock(&ram_list.mutex);
1647}
1648
be9b23c4
PX
1649void ram_block_dump(Monitor *mon)
1650{
1651 RAMBlock *block;
1652 char *psize;
1653
1654 rcu_read_lock();
1655 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1656 "Block Name", "PSize", "Offset", "Used", "Total");
1657 RAMBLOCK_FOREACH(block) {
1658 psize = size_to_str(block->page_size);
1659 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1660 " 0x%016" PRIx64 "\n", block->idstr, psize,
1661 (uint64_t)block->offset,
1662 (uint64_t)block->used_length,
1663 (uint64_t)block->max_length);
1664 g_free(psize);
1665 }
1666 rcu_read_unlock();
1667}
1668
9c607668
AK
1669#ifdef __linux__
1670/*
1671 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1672 * may or may not name the same files / on the same filesystem now as
1673 * when we actually open and map them. Iterate over the file
1674 * descriptors instead, and use qemu_fd_getpagesize().
1675 */
1676static int find_max_supported_pagesize(Object *obj, void *opaque)
1677{
9c607668
AK
1678 long *hpsize_min = opaque;
1679
1680 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
2b108085
DG
1681 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1682
0de6e2a3
DG
1683 if (hpsize < *hpsize_min) {
1684 *hpsize_min = hpsize;
9c607668
AK
1685 }
1686 }
1687
1688 return 0;
1689}
1690
1691long qemu_getrampagesize(void)
1692{
1693 long hpsize = LONG_MAX;
1694 long mainrampagesize;
1695 Object *memdev_root;
1696
0de6e2a3 1697 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1698
1699 /* it's possible we have memory-backend objects with
1700 * hugepage-backed RAM. these may get mapped into system
1701 * address space via -numa parameters or memory hotplug
1702 * hooks. we want to take these into account, but we
1703 * also want to make sure these supported hugepage
1704 * sizes are applicable across the entire range of memory
1705 * we may boot from, so we take the min across all
1706 * backends, and assume normal pages in cases where a
1707 * backend isn't backed by hugepages.
1708 */
1709 memdev_root = object_resolve_path("/objects", NULL);
1710 if (memdev_root) {
1711 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1712 }
1713 if (hpsize == LONG_MAX) {
1714 /* No additional memory regions found ==> Report main RAM page size */
1715 return mainrampagesize;
1716 }
1717
1718 /* If NUMA is disabled or the NUMA nodes are not backed with a
1719 * memory-backend, then there is at least one node using "normal" RAM,
1720 * so if its page size is smaller we have got to report that size instead.
1721 */
1722 if (hpsize > mainrampagesize &&
1723 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1724 static bool warned;
1725 if (!warned) {
1726 error_report("Huge page support disabled (n/a for main memory).");
1727 warned = true;
1728 }
1729 return mainrampagesize;
1730 }
1731
1732 return hpsize;
1733}
1734#else
1735long qemu_getrampagesize(void)
1736{
1737 return getpagesize();
1738}
1739#endif
1740
d5dbde46 1741#ifdef CONFIG_POSIX
d6af99c9
HZ
1742static int64_t get_file_size(int fd)
1743{
1744 int64_t size = lseek(fd, 0, SEEK_END);
1745 if (size < 0) {
1746 return -errno;
1747 }
1748 return size;
1749}
1750
8d37b030
MAL
1751static int file_ram_open(const char *path,
1752 const char *region_name,
1753 bool *created,
1754 Error **errp)
c902760f
MT
1755{
1756 char *filename;
8ca761f6
PF
1757 char *sanitized_name;
1758 char *c;
5c3ece79 1759 int fd = -1;
c902760f 1760
8d37b030 1761 *created = false;
fd97fd44
MA
1762 for (;;) {
1763 fd = open(path, O_RDWR);
1764 if (fd >= 0) {
1765 /* @path names an existing file, use it */
1766 break;
8d31d6b6 1767 }
fd97fd44
MA
1768 if (errno == ENOENT) {
1769 /* @path names a file that doesn't exist, create it */
1770 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1771 if (fd >= 0) {
8d37b030 1772 *created = true;
fd97fd44
MA
1773 break;
1774 }
1775 } else if (errno == EISDIR) {
1776 /* @path names a directory, create a file there */
1777 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1778 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1779 for (c = sanitized_name; *c != '\0'; c++) {
1780 if (*c == '/') {
1781 *c = '_';
1782 }
1783 }
8ca761f6 1784
fd97fd44
MA
1785 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1786 sanitized_name);
1787 g_free(sanitized_name);
8d31d6b6 1788
fd97fd44
MA
1789 fd = mkstemp(filename);
1790 if (fd >= 0) {
1791 unlink(filename);
1792 g_free(filename);
1793 break;
1794 }
1795 g_free(filename);
8d31d6b6 1796 }
fd97fd44
MA
1797 if (errno != EEXIST && errno != EINTR) {
1798 error_setg_errno(errp, errno,
1799 "can't open backing store %s for guest RAM",
1800 path);
8d37b030 1801 return -1;
fd97fd44
MA
1802 }
1803 /*
1804 * Try again on EINTR and EEXIST. The latter happens when
1805 * something else creates the file between our two open().
1806 */
8d31d6b6 1807 }
c902760f 1808
8d37b030
MAL
1809 return fd;
1810}
1811
1812static void *file_ram_alloc(RAMBlock *block,
1813 ram_addr_t memory,
1814 int fd,
1815 bool truncate,
1816 Error **errp)
1817{
1818 void *area;
1819
863e9621 1820 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1821 if (block->mr->align % block->page_size) {
1822 error_setg(errp, "alignment 0x%" PRIx64
1823 " must be multiples of page size 0x%zx",
1824 block->mr->align, block->page_size);
1825 return NULL;
61362b71
DH
1826 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1827 error_setg(errp, "alignment 0x%" PRIx64
1828 " must be a power of two", block->mr->align);
1829 return NULL;
98376843
HZ
1830 }
1831 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1832#if defined(__s390x__)
1833 if (kvm_enabled()) {
1834 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1835 }
1836#endif
fd97fd44 1837
863e9621 1838 if (memory < block->page_size) {
fd97fd44 1839 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1840 "or larger than page size 0x%zx",
1841 memory, block->page_size);
8d37b030 1842 return NULL;
1775f111
HZ
1843 }
1844
863e9621 1845 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1846
1847 /*
1848 * ftruncate is not supported by hugetlbfs in older
1849 * hosts, so don't bother bailing out on errors.
1850 * If anything goes wrong with it under other filesystems,
1851 * mmap will fail.
d6af99c9
HZ
1852 *
1853 * Do not truncate the non-empty backend file to avoid corrupting
1854 * the existing data in the file. Disabling shrinking is not
1855 * enough. For example, the current vNVDIMM implementation stores
1856 * the guest NVDIMM labels at the end of the backend file. If the
1857 * backend file is later extended, QEMU will not be able to find
1858 * those labels. Therefore, extending the non-empty backend file
1859 * is disabled as well.
c902760f 1860 */
8d37b030 1861 if (truncate && ftruncate(fd, memory)) {
9742bf26 1862 perror("ftruncate");
7f56e740 1863 }
c902760f 1864
d2f39add
DD
1865 area = qemu_ram_mmap(fd, memory, block->mr->align,
1866 block->flags & RAM_SHARED);
c902760f 1867 if (area == MAP_FAILED) {
7f56e740 1868 error_setg_errno(errp, errno,
fd97fd44 1869 "unable to map backing store for guest RAM");
8d37b030 1870 return NULL;
c902760f 1871 }
ef36fa14
MT
1872
1873 if (mem_prealloc) {
1e356fc1 1874 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1875 if (errp && *errp) {
53adb9d4 1876 qemu_ram_munmap(fd, area, memory);
8d37b030 1877 return NULL;
056b68af 1878 }
ef36fa14
MT
1879 }
1880
04b16653 1881 block->fd = fd;
c902760f
MT
1882 return area;
1883}
1884#endif
1885
154cc9ea
DDAG
1886/* Allocate space within the ram_addr_t space that governs the
1887 * dirty bitmaps.
1888 * Called with the ramlist lock held.
1889 */
d17b5288 1890static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1891{
1892 RAMBlock *block, *next_block;
3e837b2c 1893 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1894
49cd9ac6
SH
1895 assert(size != 0); /* it would hand out same offset multiple times */
1896
0dc3f44a 1897 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1898 return 0;
0d53d9fe 1899 }
04b16653 1900
99e15582 1901 RAMBLOCK_FOREACH(block) {
154cc9ea 1902 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1903
801110ab
DDAG
1904 /* Align blocks to start on a 'long' in the bitmap
1905 * which makes the bitmap sync'ing take the fast path.
1906 */
154cc9ea 1907 candidate = block->offset + block->max_length;
801110ab 1908 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1909
154cc9ea
DDAG
1910 /* Search for the closest following block
1911 * and find the gap.
1912 */
99e15582 1913 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1914 if (next_block->offset >= candidate) {
04b16653
AW
1915 next = MIN(next, next_block->offset);
1916 }
1917 }
154cc9ea
DDAG
1918
1919 /* If it fits remember our place and remember the size
1920 * of gap, but keep going so that we might find a smaller
1921 * gap to fill so avoiding fragmentation.
1922 */
1923 if (next - candidate >= size && next - candidate < mingap) {
1924 offset = candidate;
1925 mingap = next - candidate;
04b16653 1926 }
154cc9ea
DDAG
1927
1928 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1929 }
3e837b2c
AW
1930
1931 if (offset == RAM_ADDR_MAX) {
1932 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1933 (uint64_t)size);
1934 abort();
1935 }
1936
154cc9ea
DDAG
1937 trace_find_ram_offset(size, offset);
1938
04b16653
AW
1939 return offset;
1940}
1941
c136180c 1942static unsigned long last_ram_page(void)
d17b5288
AW
1943{
1944 RAMBlock *block;
1945 ram_addr_t last = 0;
1946
0dc3f44a 1947 rcu_read_lock();
99e15582 1948 RAMBLOCK_FOREACH(block) {
62be4e3a 1949 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1950 }
0dc3f44a 1951 rcu_read_unlock();
b8c48993 1952 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1953}
1954
ddb97f1d
JB
1955static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1956{
1957 int ret;
ddb97f1d
JB
1958
1959 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1960 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1961 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1962 if (ret) {
1963 perror("qemu_madvise");
1964 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1965 "but dump_guest_core=off specified\n");
1966 }
1967 }
1968}
1969
422148d3
DDAG
1970const char *qemu_ram_get_idstr(RAMBlock *rb)
1971{
1972 return rb->idstr;
1973}
1974
463a4ac2
DDAG
1975bool qemu_ram_is_shared(RAMBlock *rb)
1976{
1977 return rb->flags & RAM_SHARED;
1978}
1979
2ce16640
DDAG
1980/* Note: Only set at the start of postcopy */
1981bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1982{
1983 return rb->flags & RAM_UF_ZEROPAGE;
1984}
1985
1986void qemu_ram_set_uf_zeroable(RAMBlock *rb)
1987{
1988 rb->flags |= RAM_UF_ZEROPAGE;
1989}
1990
b895de50
CLG
1991bool qemu_ram_is_migratable(RAMBlock *rb)
1992{
1993 return rb->flags & RAM_MIGRATABLE;
1994}
1995
1996void qemu_ram_set_migratable(RAMBlock *rb)
1997{
1998 rb->flags |= RAM_MIGRATABLE;
1999}
2000
2001void qemu_ram_unset_migratable(RAMBlock *rb)
2002{
2003 rb->flags &= ~RAM_MIGRATABLE;
2004}
2005
ae3a7047 2006/* Called with iothread lock held. */
fa53a0e5 2007void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2008{
fa53a0e5 2009 RAMBlock *block;
20cfe881 2010
c5705a77
AK
2011 assert(new_block);
2012 assert(!new_block->idstr[0]);
84b89d78 2013
09e5ab63
AL
2014 if (dev) {
2015 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2016 if (id) {
2017 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2018 g_free(id);
84b89d78
CM
2019 }
2020 }
2021 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2022
ab0a9956 2023 rcu_read_lock();
99e15582 2024 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2025 if (block != new_block &&
2026 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2027 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2028 new_block->idstr);
2029 abort();
2030 }
2031 }
0dc3f44a 2032 rcu_read_unlock();
c5705a77
AK
2033}
2034
ae3a7047 2035/* Called with iothread lock held. */
fa53a0e5 2036void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2037{
ae3a7047
MD
2038 /* FIXME: arch_init.c assumes that this is not called throughout
2039 * migration. Ignore the problem since hot-unplug during migration
2040 * does not work anyway.
2041 */
20cfe881
HT
2042 if (block) {
2043 memset(block->idstr, 0, sizeof(block->idstr));
2044 }
2045}
2046
863e9621
DDAG
2047size_t qemu_ram_pagesize(RAMBlock *rb)
2048{
2049 return rb->page_size;
2050}
2051
67f11b5c
DDAG
2052/* Returns the largest size of page in use */
2053size_t qemu_ram_pagesize_largest(void)
2054{
2055 RAMBlock *block;
2056 size_t largest = 0;
2057
99e15582 2058 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2059 largest = MAX(largest, qemu_ram_pagesize(block));
2060 }
2061
2062 return largest;
2063}
2064
8490fc78
LC
2065static int memory_try_enable_merging(void *addr, size_t len)
2066{
75cc7f01 2067 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2068 /* disabled by the user */
2069 return 0;
2070 }
2071
2072 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2073}
2074
62be4e3a
MT
2075/* Only legal before guest might have detected the memory size: e.g. on
2076 * incoming migration, or right after reset.
2077 *
2078 * As memory core doesn't know how is memory accessed, it is up to
2079 * resize callback to update device state and/or add assertions to detect
2080 * misuse, if necessary.
2081 */
fa53a0e5 2082int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2083{
62be4e3a
MT
2084 assert(block);
2085
4ed023ce 2086 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2087
62be4e3a
MT
2088 if (block->used_length == newsize) {
2089 return 0;
2090 }
2091
2092 if (!(block->flags & RAM_RESIZEABLE)) {
2093 error_setg_errno(errp, EINVAL,
2094 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2095 " in != 0x" RAM_ADDR_FMT, block->idstr,
2096 newsize, block->used_length);
2097 return -EINVAL;
2098 }
2099
2100 if (block->max_length < newsize) {
2101 error_setg_errno(errp, EINVAL,
2102 "Length too large: %s: 0x" RAM_ADDR_FMT
2103 " > 0x" RAM_ADDR_FMT, block->idstr,
2104 newsize, block->max_length);
2105 return -EINVAL;
2106 }
2107
2108 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2109 block->used_length = newsize;
58d2707e
PB
2110 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2111 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2112 memory_region_set_size(block->mr, newsize);
2113 if (block->resized) {
2114 block->resized(block->idstr, newsize, block->host);
2115 }
2116 return 0;
2117}
2118
5b82b703
SH
2119/* Called with ram_list.mutex held */
2120static void dirty_memory_extend(ram_addr_t old_ram_size,
2121 ram_addr_t new_ram_size)
2122{
2123 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2124 DIRTY_MEMORY_BLOCK_SIZE);
2125 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2126 DIRTY_MEMORY_BLOCK_SIZE);
2127 int i;
2128
2129 /* Only need to extend if block count increased */
2130 if (new_num_blocks <= old_num_blocks) {
2131 return;
2132 }
2133
2134 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2135 DirtyMemoryBlocks *old_blocks;
2136 DirtyMemoryBlocks *new_blocks;
2137 int j;
2138
2139 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2140 new_blocks = g_malloc(sizeof(*new_blocks) +
2141 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2142
2143 if (old_num_blocks) {
2144 memcpy(new_blocks->blocks, old_blocks->blocks,
2145 old_num_blocks * sizeof(old_blocks->blocks[0]));
2146 }
2147
2148 for (j = old_num_blocks; j < new_num_blocks; j++) {
2149 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2150 }
2151
2152 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2153
2154 if (old_blocks) {
2155 g_free_rcu(old_blocks, rcu);
2156 }
2157 }
2158}
2159
06329cce 2160static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2161{
e1c57ab8 2162 RAMBlock *block;
0d53d9fe 2163 RAMBlock *last_block = NULL;
2152f5ca 2164 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2165 Error *err = NULL;
2152f5ca 2166
b8c48993 2167 old_ram_size = last_ram_page();
c5705a77 2168
b2a8658e 2169 qemu_mutex_lock_ramlist();
9b8424d5 2170 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2171
2172 if (!new_block->host) {
2173 if (xen_enabled()) {
9b8424d5 2174 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2175 new_block->mr, &err);
2176 if (err) {
2177 error_propagate(errp, err);
2178 qemu_mutex_unlock_ramlist();
39c350ee 2179 return;
37aa7a0e 2180 }
e1c57ab8 2181 } else {
9b8424d5 2182 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2183 &new_block->mr->align, shared);
39228250 2184 if (!new_block->host) {
ef701d7b
HT
2185 error_setg_errno(errp, errno,
2186 "cannot set up guest memory '%s'",
2187 memory_region_name(new_block->mr));
2188 qemu_mutex_unlock_ramlist();
39c350ee 2189 return;
39228250 2190 }
9b8424d5 2191 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2192 }
c902760f 2193 }
94a6b54f 2194
dd631697
LZ
2195 new_ram_size = MAX(old_ram_size,
2196 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2197 if (new_ram_size > old_ram_size) {
5b82b703 2198 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2199 }
0d53d9fe
MD
2200 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2201 * QLIST (which has an RCU-friendly variant) does not have insertion at
2202 * tail, so save the last element in last_block.
2203 */
99e15582 2204 RAMBLOCK_FOREACH(block) {
0d53d9fe 2205 last_block = block;
9b8424d5 2206 if (block->max_length < new_block->max_length) {
abb26d63
PB
2207 break;
2208 }
2209 }
2210 if (block) {
0dc3f44a 2211 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2212 } else if (last_block) {
0dc3f44a 2213 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2214 } else { /* list is empty */
0dc3f44a 2215 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2216 }
0d6d3c87 2217 ram_list.mru_block = NULL;
94a6b54f 2218
0dc3f44a
MD
2219 /* Write list before version */
2220 smp_wmb();
f798b07f 2221 ram_list.version++;
b2a8658e 2222 qemu_mutex_unlock_ramlist();
f798b07f 2223
9b8424d5 2224 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2225 new_block->used_length,
2226 DIRTY_CLIENTS_ALL);
94a6b54f 2227
a904c911
PB
2228 if (new_block->host) {
2229 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2230 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2231 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2232 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2233 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2234 }
94a6b54f 2235}
e9a1ab19 2236
d5dbde46 2237#ifdef CONFIG_POSIX
38b3362d 2238RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2239 uint32_t ram_flags, int fd,
38b3362d 2240 Error **errp)
e1c57ab8
PB
2241{
2242 RAMBlock *new_block;
ef701d7b 2243 Error *local_err = NULL;
8d37b030 2244 int64_t file_size;
e1c57ab8 2245
a4de8552
JH
2246 /* Just support these ram flags by now. */
2247 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2248
e1c57ab8 2249 if (xen_enabled()) {
7f56e740 2250 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2251 return NULL;
e1c57ab8
PB
2252 }
2253
e45e7ae2
MAL
2254 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2255 error_setg(errp,
2256 "host lacks kvm mmu notifiers, -mem-path unsupported");
2257 return NULL;
2258 }
2259
e1c57ab8
PB
2260 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2261 /*
2262 * file_ram_alloc() needs to allocate just like
2263 * phys_mem_alloc, but we haven't bothered to provide
2264 * a hook there.
2265 */
7f56e740
PB
2266 error_setg(errp,
2267 "-mem-path not supported with this accelerator");
528f46af 2268 return NULL;
e1c57ab8
PB
2269 }
2270
4ed023ce 2271 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2272 file_size = get_file_size(fd);
2273 if (file_size > 0 && file_size < size) {
2274 error_setg(errp, "backing store %s size 0x%" PRIx64
2275 " does not match 'size' option 0x" RAM_ADDR_FMT,
2276 mem_path, file_size, size);
8d37b030
MAL
2277 return NULL;
2278 }
2279
e1c57ab8
PB
2280 new_block = g_malloc0(sizeof(*new_block));
2281 new_block->mr = mr;
9b8424d5
MT
2282 new_block->used_length = size;
2283 new_block->max_length = size;
cbfc0171 2284 new_block->flags = ram_flags;
8d37b030 2285 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2286 if (!new_block->host) {
2287 g_free(new_block);
528f46af 2288 return NULL;
7f56e740
PB
2289 }
2290
cbfc0171 2291 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2292 if (local_err) {
2293 g_free(new_block);
2294 error_propagate(errp, local_err);
528f46af 2295 return NULL;
ef701d7b 2296 }
528f46af 2297 return new_block;
38b3362d
MAL
2298
2299}
2300
2301
2302RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2303 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2304 Error **errp)
2305{
2306 int fd;
2307 bool created;
2308 RAMBlock *block;
2309
2310 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2311 if (fd < 0) {
2312 return NULL;
2313 }
2314
cbfc0171 2315 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2316 if (!block) {
2317 if (created) {
2318 unlink(mem_path);
2319 }
2320 close(fd);
2321 return NULL;
2322 }
2323
2324 return block;
e1c57ab8 2325}
0b183fc8 2326#endif
e1c57ab8 2327
62be4e3a 2328static
528f46af
FZ
2329RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2330 void (*resized)(const char*,
2331 uint64_t length,
2332 void *host),
06329cce 2333 void *host, bool resizeable, bool share,
528f46af 2334 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2335{
2336 RAMBlock *new_block;
ef701d7b 2337 Error *local_err = NULL;
e1c57ab8 2338
4ed023ce
DDAG
2339 size = HOST_PAGE_ALIGN(size);
2340 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2341 new_block = g_malloc0(sizeof(*new_block));
2342 new_block->mr = mr;
62be4e3a 2343 new_block->resized = resized;
9b8424d5
MT
2344 new_block->used_length = size;
2345 new_block->max_length = max_size;
62be4e3a 2346 assert(max_size >= size);
e1c57ab8 2347 new_block->fd = -1;
863e9621 2348 new_block->page_size = getpagesize();
e1c57ab8
PB
2349 new_block->host = host;
2350 if (host) {
7bd4f430 2351 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2352 }
62be4e3a
MT
2353 if (resizeable) {
2354 new_block->flags |= RAM_RESIZEABLE;
2355 }
06329cce 2356 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2357 if (local_err) {
2358 g_free(new_block);
2359 error_propagate(errp, local_err);
528f46af 2360 return NULL;
ef701d7b 2361 }
528f46af 2362 return new_block;
e1c57ab8
PB
2363}
2364
528f46af 2365RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2366 MemoryRegion *mr, Error **errp)
2367{
06329cce
MA
2368 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2369 false, mr, errp);
62be4e3a
MT
2370}
2371
06329cce
MA
2372RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2373 MemoryRegion *mr, Error **errp)
6977dfe6 2374{
06329cce
MA
2375 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2376 share, mr, errp);
62be4e3a
MT
2377}
2378
528f46af 2379RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2380 void (*resized)(const char*,
2381 uint64_t length,
2382 void *host),
2383 MemoryRegion *mr, Error **errp)
2384{
06329cce
MA
2385 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2386 false, mr, errp);
6977dfe6
YT
2387}
2388
43771539
PB
2389static void reclaim_ramblock(RAMBlock *block)
2390{
2391 if (block->flags & RAM_PREALLOC) {
2392 ;
2393 } else if (xen_enabled()) {
2394 xen_invalidate_map_cache_entry(block->host);
2395#ifndef _WIN32
2396 } else if (block->fd >= 0) {
53adb9d4 2397 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2398 close(block->fd);
2399#endif
2400 } else {
2401 qemu_anon_ram_free(block->host, block->max_length);
2402 }
2403 g_free(block);
2404}
2405
f1060c55 2406void qemu_ram_free(RAMBlock *block)
e9a1ab19 2407{
85bc2a15
MAL
2408 if (!block) {
2409 return;
2410 }
2411
0987d735
PB
2412 if (block->host) {
2413 ram_block_notify_remove(block->host, block->max_length);
2414 }
2415
b2a8658e 2416 qemu_mutex_lock_ramlist();
f1060c55
FZ
2417 QLIST_REMOVE_RCU(block, next);
2418 ram_list.mru_block = NULL;
2419 /* Write list before version */
2420 smp_wmb();
2421 ram_list.version++;
2422 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2423 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2424}
2425
cd19cfa2
HY
2426#ifndef _WIN32
2427void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2428{
2429 RAMBlock *block;
2430 ram_addr_t offset;
2431 int flags;
2432 void *area, *vaddr;
2433
99e15582 2434 RAMBLOCK_FOREACH(block) {
cd19cfa2 2435 offset = addr - block->offset;
9b8424d5 2436 if (offset < block->max_length) {
1240be24 2437 vaddr = ramblock_ptr(block, offset);
7bd4f430 2438 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2439 ;
dfeaf2ab
MA
2440 } else if (xen_enabled()) {
2441 abort();
cd19cfa2
HY
2442 } else {
2443 flags = MAP_FIXED;
3435f395 2444 if (block->fd >= 0) {
dbcb8981
PB
2445 flags |= (block->flags & RAM_SHARED ?
2446 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2447 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2448 flags, block->fd, offset);
cd19cfa2 2449 } else {
2eb9fbaa
MA
2450 /*
2451 * Remap needs to match alloc. Accelerators that
2452 * set phys_mem_alloc never remap. If they did,
2453 * we'd need a remap hook here.
2454 */
2455 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2456
cd19cfa2
HY
2457 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2458 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2459 flags, -1, 0);
cd19cfa2
HY
2460 }
2461 if (area != vaddr) {
493d89bf
AF
2462 error_report("Could not remap addr: "
2463 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2464 length, addr);
cd19cfa2
HY
2465 exit(1);
2466 }
8490fc78 2467 memory_try_enable_merging(vaddr, length);
ddb97f1d 2468 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2469 }
cd19cfa2
HY
2470 }
2471 }
2472}
2473#endif /* !_WIN32 */
2474
1b5ec234 2475/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2476 * This should not be used for general purpose DMA. Use address_space_map
2477 * or address_space_rw instead. For local memory (e.g. video ram) that the
2478 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2479 *
49b24afc 2480 * Called within RCU critical section.
1b5ec234 2481 */
0878d0e1 2482void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2483{
3655cb9c
GA
2484 RAMBlock *block = ram_block;
2485
2486 if (block == NULL) {
2487 block = qemu_get_ram_block(addr);
0878d0e1 2488 addr -= block->offset;
3655cb9c 2489 }
ae3a7047
MD
2490
2491 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2492 /* We need to check if the requested address is in the RAM
2493 * because we don't want to map the entire memory in QEMU.
2494 * In that case just map until the end of the page.
2495 */
2496 if (block->offset == 0) {
1ff7c598 2497 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2498 }
ae3a7047 2499
1ff7c598 2500 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2501 }
0878d0e1 2502 return ramblock_ptr(block, addr);
dc828ca1
PB
2503}
2504
0878d0e1 2505/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2506 * but takes a size argument.
0dc3f44a 2507 *
e81bcda5 2508 * Called within RCU critical section.
ae3a7047 2509 */
3655cb9c 2510static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2511 hwaddr *size, bool lock)
38bee5dc 2512{
3655cb9c 2513 RAMBlock *block = ram_block;
8ab934f9
SS
2514 if (*size == 0) {
2515 return NULL;
2516 }
e81bcda5 2517
3655cb9c
GA
2518 if (block == NULL) {
2519 block = qemu_get_ram_block(addr);
0878d0e1 2520 addr -= block->offset;
3655cb9c 2521 }
0878d0e1 2522 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2523
2524 if (xen_enabled() && block->host == NULL) {
2525 /* We need to check if the requested address is in the RAM
2526 * because we don't want to map the entire memory in QEMU.
2527 * In that case just map the requested area.
2528 */
2529 if (block->offset == 0) {
f5aa69bd 2530 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2531 }
2532
f5aa69bd 2533 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2534 }
e81bcda5 2535
0878d0e1 2536 return ramblock_ptr(block, addr);
38bee5dc
SS
2537}
2538
f90bb71b
DDAG
2539/* Return the offset of a hostpointer within a ramblock */
2540ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2541{
2542 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2543 assert((uintptr_t)host >= (uintptr_t)rb->host);
2544 assert(res < rb->max_length);
2545
2546 return res;
2547}
2548
422148d3
DDAG
2549/*
2550 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2551 * in that RAMBlock.
2552 *
2553 * ptr: Host pointer to look up
2554 * round_offset: If true round the result offset down to a page boundary
2555 * *ram_addr: set to result ram_addr
2556 * *offset: set to result offset within the RAMBlock
2557 *
2558 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2559 *
2560 * By the time this function returns, the returned pointer is not protected
2561 * by RCU anymore. If the caller is not within an RCU critical section and
2562 * does not hold the iothread lock, it must have other means of protecting the
2563 * pointer, such as a reference to the region that includes the incoming
2564 * ram_addr_t.
2565 */
422148d3 2566RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2567 ram_addr_t *offset)
5579c7f3 2568{
94a6b54f
PB
2569 RAMBlock *block;
2570 uint8_t *host = ptr;
2571
868bb33f 2572 if (xen_enabled()) {
f615f396 2573 ram_addr_t ram_addr;
0dc3f44a 2574 rcu_read_lock();
f615f396
PB
2575 ram_addr = xen_ram_addr_from_mapcache(ptr);
2576 block = qemu_get_ram_block(ram_addr);
422148d3 2577 if (block) {
d6b6aec4 2578 *offset = ram_addr - block->offset;
422148d3 2579 }
0dc3f44a 2580 rcu_read_unlock();
422148d3 2581 return block;
712c2b41
SS
2582 }
2583
0dc3f44a
MD
2584 rcu_read_lock();
2585 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2586 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2587 goto found;
2588 }
2589
99e15582 2590 RAMBLOCK_FOREACH(block) {
432d268c
JN
2591 /* This case append when the block is not mapped. */
2592 if (block->host == NULL) {
2593 continue;
2594 }
9b8424d5 2595 if (host - block->host < block->max_length) {
23887b79 2596 goto found;
f471a17e 2597 }
94a6b54f 2598 }
432d268c 2599
0dc3f44a 2600 rcu_read_unlock();
1b5ec234 2601 return NULL;
23887b79
PB
2602
2603found:
422148d3
DDAG
2604 *offset = (host - block->host);
2605 if (round_offset) {
2606 *offset &= TARGET_PAGE_MASK;
2607 }
0dc3f44a 2608 rcu_read_unlock();
422148d3
DDAG
2609 return block;
2610}
2611
e3dd7493
DDAG
2612/*
2613 * Finds the named RAMBlock
2614 *
2615 * name: The name of RAMBlock to find
2616 *
2617 * Returns: RAMBlock (or NULL if not found)
2618 */
2619RAMBlock *qemu_ram_block_by_name(const char *name)
2620{
2621 RAMBlock *block;
2622
99e15582 2623 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2624 if (!strcmp(name, block->idstr)) {
2625 return block;
2626 }
2627 }
2628
2629 return NULL;
2630}
2631
422148d3
DDAG
2632/* Some of the softmmu routines need to translate from a host pointer
2633 (typically a TLB entry) back to a ram offset. */
07bdaa41 2634ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2635{
2636 RAMBlock *block;
f615f396 2637 ram_addr_t offset;
422148d3 2638
f615f396 2639 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2640 if (!block) {
07bdaa41 2641 return RAM_ADDR_INVALID;
422148d3
DDAG
2642 }
2643
07bdaa41 2644 return block->offset + offset;
e890261f 2645}
f471a17e 2646
27266271
PM
2647/* Called within RCU critical section. */
2648void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2649 CPUState *cpu,
2650 vaddr mem_vaddr,
2651 ram_addr_t ram_addr,
2652 unsigned size)
2653{
2654 ndi->cpu = cpu;
2655 ndi->ram_addr = ram_addr;
2656 ndi->mem_vaddr = mem_vaddr;
2657 ndi->size = size;
0ac20318 2658 ndi->pages = NULL;
ba051fb5 2659
5aa1ef71 2660 assert(tcg_enabled());
52159192 2661 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2662 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2663 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2664 }
27266271
PM
2665}
2666
2667/* Called within RCU critical section. */
2668void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2669{
0ac20318 2670 if (ndi->pages) {
f28d0dfd 2671 assert(tcg_enabled());
0ac20318
EC
2672 page_collection_unlock(ndi->pages);
2673 ndi->pages = NULL;
27266271
PM
2674 }
2675
2676 /* Set both VGA and migration bits for simplicity and to remove
2677 * the notdirty callback faster.
2678 */
2679 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2680 DIRTY_CLIENTS_NOCODE);
2681 /* we remove the notdirty callback only if the code has been
2682 flushed */
2683 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2684 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2685 }
2686}
2687
2688/* Called within RCU critical section. */
2689static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2690 uint64_t val, unsigned size)
2691{
2692 NotDirtyInfo ndi;
2693
2694 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2695 ram_addr, size);
2696
6d3ede54 2697 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2698 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2699}
2700
b018ddf6 2701static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2702 unsigned size, bool is_write,
2703 MemTxAttrs attrs)
b018ddf6
PB
2704{
2705 return is_write;
2706}
2707
0e0df1e2 2708static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2709 .write = notdirty_mem_write,
b018ddf6 2710 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2711 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2712 .valid = {
2713 .min_access_size = 1,
2714 .max_access_size = 8,
2715 .unaligned = false,
2716 },
2717 .impl = {
2718 .min_access_size = 1,
2719 .max_access_size = 8,
2720 .unaligned = false,
2721 },
1ccde1cb
FB
2722};
2723
0f459d16 2724/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2725static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2726{
93afeade 2727 CPUState *cpu = current_cpu;
568496c0 2728 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2729 target_ulong vaddr;
a1d1bb31 2730 CPUWatchpoint *wp;
0f459d16 2731
5aa1ef71 2732 assert(tcg_enabled());
ff4700b0 2733 if (cpu->watchpoint_hit) {
06d55cc1
AL
2734 /* We re-entered the check after replacing the TB. Now raise
2735 * the debug interrupt so that is will trigger after the
2736 * current instruction. */
93afeade 2737 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2738 return;
2739 }
93afeade 2740 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2741 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2742 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2743 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2744 && (wp->flags & flags)) {
08225676
PM
2745 if (flags == BP_MEM_READ) {
2746 wp->flags |= BP_WATCHPOINT_HIT_READ;
2747 } else {
2748 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2749 }
2750 wp->hitaddr = vaddr;
66b9b43c 2751 wp->hitattrs = attrs;
ff4700b0 2752 if (!cpu->watchpoint_hit) {
568496c0
SF
2753 if (wp->flags & BP_CPU &&
2754 !cc->debug_check_watchpoint(cpu, wp)) {
2755 wp->flags &= ~BP_WATCHPOINT_HIT;
2756 continue;
2757 }
ff4700b0 2758 cpu->watchpoint_hit = wp;
a5e99826 2759
0ac20318 2760 mmap_lock();
239c51a5 2761 tb_check_watchpoint(cpu);
6e140f28 2762 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2763 cpu->exception_index = EXCP_DEBUG;
0ac20318 2764 mmap_unlock();
5638d180 2765 cpu_loop_exit(cpu);
6e140f28 2766 } else {
9b990ee5
RH
2767 /* Force execution of one insn next time. */
2768 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2769 mmap_unlock();
6886b980 2770 cpu_loop_exit_noexc(cpu);
6e140f28 2771 }
06d55cc1 2772 }
6e140f28
AL
2773 } else {
2774 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2775 }
2776 }
2777}
2778
6658ffb8
PB
2779/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2780 so these check for a hit then pass through to the normal out-of-line
2781 phys routines. */
66b9b43c
PM
2782static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2783 unsigned size, MemTxAttrs attrs)
6658ffb8 2784{
66b9b43c
PM
2785 MemTxResult res;
2786 uint64_t data;
79ed0416
PM
2787 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2788 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2789
2790 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2791 switch (size) {
66b9b43c 2792 case 1:
79ed0416 2793 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2794 break;
2795 case 2:
79ed0416 2796 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2797 break;
2798 case 4:
79ed0416 2799 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2800 break;
306526b5
PB
2801 case 8:
2802 data = address_space_ldq(as, addr, attrs, &res);
2803 break;
1ec9b909
AK
2804 default: abort();
2805 }
66b9b43c
PM
2806 *pdata = data;
2807 return res;
6658ffb8
PB
2808}
2809
66b9b43c
PM
2810static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2811 uint64_t val, unsigned size,
2812 MemTxAttrs attrs)
6658ffb8 2813{
66b9b43c 2814 MemTxResult res;
79ed0416
PM
2815 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2816 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2817
2818 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2819 switch (size) {
67364150 2820 case 1:
79ed0416 2821 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2822 break;
2823 case 2:
79ed0416 2824 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2825 break;
2826 case 4:
79ed0416 2827 address_space_stl(as, addr, val, attrs, &res);
67364150 2828 break;
306526b5
PB
2829 case 8:
2830 address_space_stq(as, addr, val, attrs, &res);
2831 break;
1ec9b909
AK
2832 default: abort();
2833 }
66b9b43c 2834 return res;
6658ffb8
PB
2835}
2836
1ec9b909 2837static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2838 .read_with_attrs = watch_mem_read,
2839 .write_with_attrs = watch_mem_write,
1ec9b909 2840 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2841 .valid = {
2842 .min_access_size = 1,
2843 .max_access_size = 8,
2844 .unaligned = false,
2845 },
2846 .impl = {
2847 .min_access_size = 1,
2848 .max_access_size = 8,
2849 .unaligned = false,
2850 },
6658ffb8 2851};
6658ffb8 2852
b2a44fca 2853static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2854 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2855static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2856 const uint8_t *buf, hwaddr len);
2857static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2858 bool is_write, MemTxAttrs attrs);
16620684 2859
f25a49e0
PM
2860static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2861 unsigned len, MemTxAttrs attrs)
db7b5426 2862{
acc9d80b 2863 subpage_t *subpage = opaque;
ff6cff75 2864 uint8_t buf[8];
5c9eb028 2865 MemTxResult res;
791af8c8 2866
db7b5426 2867#if defined(DEBUG_SUBPAGE)
016e9d62 2868 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2869 subpage, len, addr);
db7b5426 2870#endif
16620684 2871 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2872 if (res) {
2873 return res;
f25a49e0 2874 }
6d3ede54
PM
2875 *data = ldn_p(buf, len);
2876 return MEMTX_OK;
db7b5426
BS
2877}
2878
f25a49e0
PM
2879static MemTxResult subpage_write(void *opaque, hwaddr addr,
2880 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2881{
acc9d80b 2882 subpage_t *subpage = opaque;
ff6cff75 2883 uint8_t buf[8];
acc9d80b 2884
db7b5426 2885#if defined(DEBUG_SUBPAGE)
016e9d62 2886 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2887 " value %"PRIx64"\n",
2888 __func__, subpage, len, addr, value);
db7b5426 2889#endif
6d3ede54 2890 stn_p(buf, len, value);
16620684 2891 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2892}
2893
c353e4cc 2894static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2895 unsigned len, bool is_write,
2896 MemTxAttrs attrs)
c353e4cc 2897{
acc9d80b 2898 subpage_t *subpage = opaque;
c353e4cc 2899#if defined(DEBUG_SUBPAGE)
016e9d62 2900 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2901 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2902#endif
2903
16620684 2904 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2905 len, is_write, attrs);
c353e4cc
PB
2906}
2907
70c68e44 2908static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2909 .read_with_attrs = subpage_read,
2910 .write_with_attrs = subpage_write,
ff6cff75
PB
2911 .impl.min_access_size = 1,
2912 .impl.max_access_size = 8,
2913 .valid.min_access_size = 1,
2914 .valid.max_access_size = 8,
c353e4cc 2915 .valid.accepts = subpage_accepts,
70c68e44 2916 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2917};
2918
c227f099 2919static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2920 uint16_t section)
db7b5426
BS
2921{
2922 int idx, eidx;
2923
2924 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2925 return -1;
2926 idx = SUBPAGE_IDX(start);
2927 eidx = SUBPAGE_IDX(end);
2928#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2929 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2930 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2931#endif
db7b5426 2932 for (; idx <= eidx; idx++) {
5312bd8b 2933 mmio->sub_section[idx] = section;
db7b5426
BS
2934 }
2935
2936 return 0;
2937}
2938
16620684 2939static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2940{
c227f099 2941 subpage_t *mmio;
db7b5426 2942
2615fabd 2943 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2944 mmio->fv = fv;
1eec614b 2945 mmio->base = base;
2c9b15ca 2946 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2947 NULL, TARGET_PAGE_SIZE);
b3b00c78 2948 mmio->iomem.subpage = true;
db7b5426 2949#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2950 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2951 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2952#endif
b41aac4f 2953 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2954
2955 return mmio;
2956}
2957
16620684 2958static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2959{
16620684 2960 assert(fv);
5312bd8b 2961 MemoryRegionSection section = {
16620684 2962 .fv = fv,
5312bd8b
AK
2963 .mr = mr,
2964 .offset_within_address_space = 0,
2965 .offset_within_region = 0,
052e87b0 2966 .size = int128_2_64(),
5312bd8b
AK
2967 };
2968
53cb28cb 2969 return phys_section_add(map, &section);
5312bd8b
AK
2970}
2971
8af36743
PM
2972static void readonly_mem_write(void *opaque, hwaddr addr,
2973 uint64_t val, unsigned size)
2974{
2975 /* Ignore any write to ROM. */
2976}
2977
2978static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2979 unsigned size, bool is_write,
2980 MemTxAttrs attrs)
8af36743
PM
2981{
2982 return is_write;
2983}
2984
2985/* This will only be used for writes, because reads are special cased
2986 * to directly access the underlying host ram.
2987 */
2988static const MemoryRegionOps readonly_mem_ops = {
2989 .write = readonly_mem_write,
2990 .valid.accepts = readonly_mem_accepts,
2991 .endianness = DEVICE_NATIVE_ENDIAN,
2992 .valid = {
2993 .min_access_size = 1,
2994 .max_access_size = 8,
2995 .unaligned = false,
2996 },
2997 .impl = {
2998 .min_access_size = 1,
2999 .max_access_size = 8,
3000 .unaligned = false,
3001 },
3002};
3003
2d54f194
PM
3004MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3005 hwaddr index, MemTxAttrs attrs)
aa102231 3006{
a54c87b6
PM
3007 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3008 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3009 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3010 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3011
2d54f194 3012 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3013}
3014
e9179ce1
AK
3015static void io_mem_init(void)
3016{
8af36743
PM
3017 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3018 NULL, NULL, UINT64_MAX);
2c9b15ca 3019 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3020 NULL, UINT64_MAX);
8d04fb55
JK
3021
3022 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3023 * which can be called without the iothread mutex.
3024 */
2c9b15ca 3025 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3026 NULL, UINT64_MAX);
8d04fb55
JK
3027 memory_region_clear_global_locking(&io_mem_notdirty);
3028
2c9b15ca 3029 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3030 NULL, UINT64_MAX);
e9179ce1
AK
3031}
3032
8629d3fc 3033AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3034{
53cb28cb
MA
3035 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3036 uint16_t n;
3037
16620684 3038 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3039 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3040 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3041 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3042 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3043 assert(n == PHYS_SECTION_ROM);
16620684 3044 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3045 assert(n == PHYS_SECTION_WATCH);
00752703 3046
9736e55b 3047 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3048
3049 return d;
00752703
PB
3050}
3051
66a6df1d 3052void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3053{
3054 phys_sections_free(&d->map);
3055 g_free(d);
3056}
3057
1d71148e 3058static void tcg_commit(MemoryListener *listener)
50c1e149 3059{
32857f4d
PM
3060 CPUAddressSpace *cpuas;
3061 AddressSpaceDispatch *d;
117712c3 3062
f28d0dfd 3063 assert(tcg_enabled());
117712c3
AK
3064 /* since each CPU stores ram addresses in its TLB cache, we must
3065 reset the modified entries */
32857f4d
PM
3066 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3067 cpu_reloading_memory_map();
3068 /* The CPU and TLB are protected by the iothread lock.
3069 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3070 * may have split the RCU critical section.
3071 */
66a6df1d 3072 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3073 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3074 tlb_flush(cpuas->cpu);
50c1e149
AK
3075}
3076
62152b8a
AK
3077static void memory_map_init(void)
3078{
7267c094 3079 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3080
57271d63 3081 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3082 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3083
7267c094 3084 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3085 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3086 65536);
7dca8043 3087 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3088}
3089
3090MemoryRegion *get_system_memory(void)
3091{
3092 return system_memory;
3093}
3094
309cb471
AK
3095MemoryRegion *get_system_io(void)
3096{
3097 return system_io;
3098}
3099
e2eef170
PB
3100#endif /* !defined(CONFIG_USER_ONLY) */
3101
13eb76e0
FB
3102/* physical memory access (slow version, mainly for debug) */
3103#if defined(CONFIG_USER_ONLY)
f17ec444 3104int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3105 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3106{
0c249ff7
LZ
3107 int flags;
3108 target_ulong l, page;
53a5960a 3109 void * p;
13eb76e0
FB
3110
3111 while (len > 0) {
3112 page = addr & TARGET_PAGE_MASK;
3113 l = (page + TARGET_PAGE_SIZE) - addr;
3114 if (l > len)
3115 l = len;
3116 flags = page_get_flags(page);
3117 if (!(flags & PAGE_VALID))
a68fe89c 3118 return -1;
13eb76e0
FB
3119 if (is_write) {
3120 if (!(flags & PAGE_WRITE))
a68fe89c 3121 return -1;
579a97f7 3122 /* XXX: this code should not depend on lock_user */
72fb7daa 3123 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3124 return -1;
72fb7daa
AJ
3125 memcpy(p, buf, l);
3126 unlock_user(p, addr, l);
13eb76e0
FB
3127 } else {
3128 if (!(flags & PAGE_READ))
a68fe89c 3129 return -1;
579a97f7 3130 /* XXX: this code should not depend on lock_user */
72fb7daa 3131 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3132 return -1;
72fb7daa 3133 memcpy(buf, p, l);
5b257578 3134 unlock_user(p, addr, 0);
13eb76e0
FB
3135 }
3136 len -= l;
3137 buf += l;
3138 addr += l;
3139 }
a68fe89c 3140 return 0;
13eb76e0 3141}
8df1cd07 3142
13eb76e0 3143#else
51d7a9eb 3144
845b6214 3145static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3146 hwaddr length)
51d7a9eb 3147{
e87f7778 3148 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3149 addr += memory_region_get_ram_addr(mr);
3150
e87f7778
PB
3151 /* No early return if dirty_log_mask is or becomes 0, because
3152 * cpu_physical_memory_set_dirty_range will still call
3153 * xen_modified_memory.
3154 */
3155 if (dirty_log_mask) {
3156 dirty_log_mask =
3157 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3158 }
3159 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3160 assert(tcg_enabled());
e87f7778
PB
3161 tb_invalidate_phys_range(addr, addr + length);
3162 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3163 }
e87f7778 3164 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3165}
3166
047be4ed
SH
3167void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3168{
3169 /*
3170 * In principle this function would work on other memory region types too,
3171 * but the ROM device use case is the only one where this operation is
3172 * necessary. Other memory regions should use the
3173 * address_space_read/write() APIs.
3174 */
3175 assert(memory_region_is_romd(mr));
3176
3177 invalidate_and_set_dirty(mr, addr, size);
3178}
3179
23326164 3180static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3181{
e1622f4b 3182 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3183
3184 /* Regions are assumed to support 1-4 byte accesses unless
3185 otherwise specified. */
23326164
RH
3186 if (access_size_max == 0) {
3187 access_size_max = 4;
3188 }
3189
3190 /* Bound the maximum access by the alignment of the address. */
3191 if (!mr->ops->impl.unaligned) {
3192 unsigned align_size_max = addr & -addr;
3193 if (align_size_max != 0 && align_size_max < access_size_max) {
3194 access_size_max = align_size_max;
3195 }
82f2563f 3196 }
23326164
RH
3197
3198 /* Don't attempt accesses larger than the maximum. */
3199 if (l > access_size_max) {
3200 l = access_size_max;
82f2563f 3201 }
6554f5c0 3202 l = pow2floor(l);
23326164
RH
3203
3204 return l;
82f2563f
PB
3205}
3206
4840f10e 3207static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3208{
4840f10e
JK
3209 bool unlocked = !qemu_mutex_iothread_locked();
3210 bool release_lock = false;
3211
3212 if (unlocked && mr->global_locking) {
3213 qemu_mutex_lock_iothread();
3214 unlocked = false;
3215 release_lock = true;
3216 }
125b3806 3217 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3218 if (unlocked) {
3219 qemu_mutex_lock_iothread();
3220 }
125b3806 3221 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3222 if (unlocked) {
3223 qemu_mutex_unlock_iothread();
3224 }
125b3806 3225 }
4840f10e
JK
3226
3227 return release_lock;
125b3806
PB
3228}
3229
a203ac70 3230/* Called within RCU critical section. */
16620684
AK
3231static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3232 MemTxAttrs attrs,
3233 const uint8_t *buf,
0c249ff7 3234 hwaddr len, hwaddr addr1,
16620684 3235 hwaddr l, MemoryRegion *mr)
13eb76e0 3236{
13eb76e0 3237 uint8_t *ptr;
791af8c8 3238 uint64_t val;
3b643495 3239 MemTxResult result = MEMTX_OK;
4840f10e 3240 bool release_lock = false;
3b46e624 3241
a203ac70 3242 for (;;) {
eb7eeb88
PB
3243 if (!memory_access_is_direct(mr, true)) {
3244 release_lock |= prepare_mmio_access(mr);
3245 l = memory_access_size(mr, l, addr1);
3246 /* XXX: could force current_cpu to NULL to avoid
3247 potential bugs */
6d3ede54
PM
3248 val = ldn_p(buf, l);
3249 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3250 } else {
eb7eeb88 3251 /* RAM case */
f5aa69bd 3252 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3253 memcpy(ptr, buf, l);
3254 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3255 }
4840f10e
JK
3256
3257 if (release_lock) {
3258 qemu_mutex_unlock_iothread();
3259 release_lock = false;
3260 }
3261
13eb76e0
FB
3262 len -= l;
3263 buf += l;
3264 addr += l;
a203ac70
PB
3265
3266 if (!len) {
3267 break;
3268 }
3269
3270 l = len;
efa99a2f 3271 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3272 }
fd8aaa76 3273
3b643495 3274 return result;
13eb76e0 3275}
8df1cd07 3276
4c6ebbb3 3277/* Called from RCU critical section. */
16620684 3278static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3279 const uint8_t *buf, hwaddr len)
ac1970fb 3280{
eb7eeb88 3281 hwaddr l;
eb7eeb88
PB
3282 hwaddr addr1;
3283 MemoryRegion *mr;
3284 MemTxResult result = MEMTX_OK;
eb7eeb88 3285
4c6ebbb3 3286 l = len;
efa99a2f 3287 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3288 result = flatview_write_continue(fv, addr, attrs, buf, len,
3289 addr1, l, mr);
a203ac70
PB
3290
3291 return result;
3292}
3293
3294/* Called within RCU critical section. */
16620684
AK
3295MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3296 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3297 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3298 MemoryRegion *mr)
a203ac70
PB
3299{
3300 uint8_t *ptr;
3301 uint64_t val;
3302 MemTxResult result = MEMTX_OK;
3303 bool release_lock = false;
eb7eeb88 3304
a203ac70 3305 for (;;) {
eb7eeb88
PB
3306 if (!memory_access_is_direct(mr, false)) {
3307 /* I/O case */
3308 release_lock |= prepare_mmio_access(mr);
3309 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3310 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3311 stn_p(buf, l, val);
eb7eeb88
PB
3312 } else {
3313 /* RAM case */
f5aa69bd 3314 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3315 memcpy(buf, ptr, l);
3316 }
3317
3318 if (release_lock) {
3319 qemu_mutex_unlock_iothread();
3320 release_lock = false;
3321 }
3322
3323 len -= l;
3324 buf += l;
3325 addr += l;
a203ac70
PB
3326
3327 if (!len) {
3328 break;
3329 }
3330
3331 l = len;
efa99a2f 3332 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3333 }
3334
3335 return result;
3336}
3337
b2a44fca
PB
3338/* Called from RCU critical section. */
3339static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3340 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3341{
3342 hwaddr l;
3343 hwaddr addr1;
3344 MemoryRegion *mr;
eb7eeb88 3345
b2a44fca 3346 l = len;
efa99a2f 3347 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3348 return flatview_read_continue(fv, addr, attrs, buf, len,
3349 addr1, l, mr);
ac1970fb
AK
3350}
3351
b2a44fca 3352MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3353 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3354{
3355 MemTxResult result = MEMTX_OK;
3356 FlatView *fv;
3357
3358 if (len > 0) {
3359 rcu_read_lock();
3360 fv = address_space_to_flatview(as);
3361 result = flatview_read(fv, addr, attrs, buf, len);
3362 rcu_read_unlock();
3363 }
3364
3365 return result;
3366}
3367
4c6ebbb3
PB
3368MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3369 MemTxAttrs attrs,
0c249ff7 3370 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3371{
3372 MemTxResult result = MEMTX_OK;
3373 FlatView *fv;
3374
3375 if (len > 0) {
3376 rcu_read_lock();
3377 fv = address_space_to_flatview(as);
3378 result = flatview_write(fv, addr, attrs, buf, len);
3379 rcu_read_unlock();
3380 }
3381
3382 return result;
3383}
3384
db84fd97 3385MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3386 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3387{
3388 if (is_write) {
3389 return address_space_write(as, addr, attrs, buf, len);
3390 } else {
3391 return address_space_read_full(as, addr, attrs, buf, len);
3392 }
3393}
3394
a8170e5e 3395void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3396 hwaddr len, int is_write)
ac1970fb 3397{
5c9eb028
PM
3398 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3399 buf, len, is_write);
ac1970fb
AK
3400}
3401
582b55a9
AG
3402enum write_rom_type {
3403 WRITE_DATA,
3404 FLUSH_CACHE,
3405};
3406
75693e14
PM
3407static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3408 hwaddr addr,
3409 MemTxAttrs attrs,
3410 const uint8_t *buf,
0c249ff7 3411 hwaddr len,
75693e14 3412 enum write_rom_type type)
d0ecd2aa 3413{
149f54b5 3414 hwaddr l;
d0ecd2aa 3415 uint8_t *ptr;
149f54b5 3416 hwaddr addr1;
5c8a00ce 3417 MemoryRegion *mr;
3b46e624 3418
41063e1e 3419 rcu_read_lock();
d0ecd2aa 3420 while (len > 0) {
149f54b5 3421 l = len;
75693e14 3422 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3423
5c8a00ce
PB
3424 if (!(memory_region_is_ram(mr) ||
3425 memory_region_is_romd(mr))) {
b242e0e0 3426 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3427 } else {
d0ecd2aa 3428 /* ROM/RAM case */
0878d0e1 3429 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3430 switch (type) {
3431 case WRITE_DATA:
3432 memcpy(ptr, buf, l);
845b6214 3433 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3434 break;
3435 case FLUSH_CACHE:
3436 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3437 break;
3438 }
d0ecd2aa
FB
3439 }
3440 len -= l;
3441 buf += l;
3442 addr += l;
3443 }
41063e1e 3444 rcu_read_unlock();
75693e14 3445 return MEMTX_OK;
d0ecd2aa
FB
3446}
3447
582b55a9 3448/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3449MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3450 MemTxAttrs attrs,
0c249ff7 3451 const uint8_t *buf, hwaddr len)
582b55a9 3452{
3c8133f9
PM
3453 return address_space_write_rom_internal(as, addr, attrs,
3454 buf, len, WRITE_DATA);
582b55a9
AG
3455}
3456
0c249ff7 3457void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3458{
3459 /*
3460 * This function should do the same thing as an icache flush that was
3461 * triggered from within the guest. For TCG we are always cache coherent,
3462 * so there is no need to flush anything. For KVM / Xen we need to flush
3463 * the host's instruction cache at least.
3464 */
3465 if (tcg_enabled()) {
3466 return;
3467 }
3468
75693e14
PM
3469 address_space_write_rom_internal(&address_space_memory,
3470 start, MEMTXATTRS_UNSPECIFIED,
3471 NULL, len, FLUSH_CACHE);
582b55a9
AG
3472}
3473
6d16c2f8 3474typedef struct {
d3e71559 3475 MemoryRegion *mr;
6d16c2f8 3476 void *buffer;
a8170e5e
AK
3477 hwaddr addr;
3478 hwaddr len;
c2cba0ff 3479 bool in_use;
6d16c2f8
AL
3480} BounceBuffer;
3481
3482static BounceBuffer bounce;
3483
ba223c29 3484typedef struct MapClient {
e95205e1 3485 QEMUBH *bh;
72cf2d4f 3486 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3487} MapClient;
3488
38e047b5 3489QemuMutex map_client_list_lock;
b58deb34 3490static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3491 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3492
e95205e1
FZ
3493static void cpu_unregister_map_client_do(MapClient *client)
3494{
3495 QLIST_REMOVE(client, link);
3496 g_free(client);
3497}
3498
33b6c2ed
FZ
3499static void cpu_notify_map_clients_locked(void)
3500{
3501 MapClient *client;
3502
3503 while (!QLIST_EMPTY(&map_client_list)) {
3504 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3505 qemu_bh_schedule(client->bh);
3506 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3507 }
3508}
3509
e95205e1 3510void cpu_register_map_client(QEMUBH *bh)
ba223c29 3511{
7267c094 3512 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3513
38e047b5 3514 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3515 client->bh = bh;
72cf2d4f 3516 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3517 if (!atomic_read(&bounce.in_use)) {
3518 cpu_notify_map_clients_locked();
3519 }
38e047b5 3520 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3521}
3522
38e047b5 3523void cpu_exec_init_all(void)
ba223c29 3524{
38e047b5 3525 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3526 /* The data structures we set up here depend on knowing the page size,
3527 * so no more changes can be made after this point.
3528 * In an ideal world, nothing we did before we had finished the
3529 * machine setup would care about the target page size, and we could
3530 * do this much later, rather than requiring board models to state
3531 * up front what their requirements are.
3532 */
3533 finalize_target_page_bits();
38e047b5 3534 io_mem_init();
680a4783 3535 memory_map_init();
38e047b5 3536 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3537}
3538
e95205e1 3539void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3540{
3541 MapClient *client;
3542
e95205e1
FZ
3543 qemu_mutex_lock(&map_client_list_lock);
3544 QLIST_FOREACH(client, &map_client_list, link) {
3545 if (client->bh == bh) {
3546 cpu_unregister_map_client_do(client);
3547 break;
3548 }
ba223c29 3549 }
e95205e1 3550 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3551}
3552
3553static void cpu_notify_map_clients(void)
3554{
38e047b5 3555 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3556 cpu_notify_map_clients_locked();
38e047b5 3557 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3558}
3559
0c249ff7 3560static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3561 bool is_write, MemTxAttrs attrs)
51644ab7 3562{
5c8a00ce 3563 MemoryRegion *mr;
51644ab7
PB
3564 hwaddr l, xlat;
3565
3566 while (len > 0) {
3567 l = len;
efa99a2f 3568 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3569 if (!memory_access_is_direct(mr, is_write)) {
3570 l = memory_access_size(mr, l, addr);
eace72b7 3571 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3572 return false;
3573 }
3574 }
3575
3576 len -= l;
3577 addr += l;
3578 }
3579 return true;
3580}
3581
16620684 3582bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3583 hwaddr len, bool is_write,
fddffa42 3584 MemTxAttrs attrs)
16620684 3585{
11e732a5
PB
3586 FlatView *fv;
3587 bool result;
3588
3589 rcu_read_lock();
3590 fv = address_space_to_flatview(as);
eace72b7 3591 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3592 rcu_read_unlock();
3593 return result;
16620684
AK
3594}
3595
715c31ec 3596static hwaddr
16620684 3597flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3598 hwaddr target_len,
3599 MemoryRegion *mr, hwaddr base, hwaddr len,
3600 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3601{
3602 hwaddr done = 0;
3603 hwaddr xlat;
3604 MemoryRegion *this_mr;
3605
3606 for (;;) {
3607 target_len -= len;
3608 addr += len;
3609 done += len;
3610 if (target_len == 0) {
3611 return done;
3612 }
3613
3614 len = target_len;
16620684 3615 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3616 &len, is_write, attrs);
715c31ec
PB
3617 if (this_mr != mr || xlat != base + done) {
3618 return done;
3619 }
3620 }
3621}
3622
6d16c2f8
AL
3623/* Map a physical memory region into a host virtual address.
3624 * May map a subset of the requested range, given by and returned in *plen.
3625 * May return NULL if resources needed to perform the mapping are exhausted.
3626 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3627 * Use cpu_register_map_client() to know when retrying the map operation is
3628 * likely to succeed.
6d16c2f8 3629 */
ac1970fb 3630void *address_space_map(AddressSpace *as,
a8170e5e
AK
3631 hwaddr addr,
3632 hwaddr *plen,
f26404fb
PM
3633 bool is_write,
3634 MemTxAttrs attrs)
6d16c2f8 3635{
a8170e5e 3636 hwaddr len = *plen;
715c31ec
PB
3637 hwaddr l, xlat;
3638 MemoryRegion *mr;
e81bcda5 3639 void *ptr;
ad0c60fa 3640 FlatView *fv;
6d16c2f8 3641
e3127ae0
PB
3642 if (len == 0) {
3643 return NULL;
3644 }
38bee5dc 3645
e3127ae0 3646 l = len;
41063e1e 3647 rcu_read_lock();
ad0c60fa 3648 fv = address_space_to_flatview(as);
efa99a2f 3649 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3650
e3127ae0 3651 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3652 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3653 rcu_read_unlock();
e3127ae0 3654 return NULL;
6d16c2f8 3655 }
e85d9db5
KW
3656 /* Avoid unbounded allocations */
3657 l = MIN(l, TARGET_PAGE_SIZE);
3658 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3659 bounce.addr = addr;
3660 bounce.len = l;
d3e71559
PB
3661
3662 memory_region_ref(mr);
3663 bounce.mr = mr;
e3127ae0 3664 if (!is_write) {
16620684 3665 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3666 bounce.buffer, l);
8ab934f9 3667 }
6d16c2f8 3668
41063e1e 3669 rcu_read_unlock();
e3127ae0
PB
3670 *plen = l;
3671 return bounce.buffer;
3672 }
3673
e3127ae0 3674
d3e71559 3675 memory_region_ref(mr);
16620684 3676 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3677 l, is_write, attrs);
f5aa69bd 3678 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3679 rcu_read_unlock();
3680
3681 return ptr;
6d16c2f8
AL
3682}
3683
ac1970fb 3684/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3685 * Will also mark the memory as dirty if is_write == 1. access_len gives
3686 * the amount of memory that was actually read or written by the caller.
3687 */
a8170e5e
AK
3688void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3689 int is_write, hwaddr access_len)
6d16c2f8
AL
3690{
3691 if (buffer != bounce.buffer) {
d3e71559
PB
3692 MemoryRegion *mr;
3693 ram_addr_t addr1;
3694
07bdaa41 3695 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3696 assert(mr != NULL);
6d16c2f8 3697 if (is_write) {
845b6214 3698 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3699 }
868bb33f 3700 if (xen_enabled()) {
e41d7c69 3701 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3702 }
d3e71559 3703 memory_region_unref(mr);
6d16c2f8
AL
3704 return;
3705 }
3706 if (is_write) {
5c9eb028
PM
3707 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3708 bounce.buffer, access_len);
6d16c2f8 3709 }
f8a83245 3710 qemu_vfree(bounce.buffer);
6d16c2f8 3711 bounce.buffer = NULL;
d3e71559 3712 memory_region_unref(bounce.mr);
c2cba0ff 3713 atomic_mb_set(&bounce.in_use, false);
ba223c29 3714 cpu_notify_map_clients();
6d16c2f8 3715}
d0ecd2aa 3716
a8170e5e
AK
3717void *cpu_physical_memory_map(hwaddr addr,
3718 hwaddr *plen,
ac1970fb
AK
3719 int is_write)
3720{
f26404fb
PM
3721 return address_space_map(&address_space_memory, addr, plen, is_write,
3722 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3723}
3724
a8170e5e
AK
3725void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3726 int is_write, hwaddr access_len)
ac1970fb
AK
3727{
3728 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3729}
3730
0ce265ff
PB
3731#define ARG1_DECL AddressSpace *as
3732#define ARG1 as
3733#define SUFFIX
3734#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3735#define RCU_READ_LOCK(...) rcu_read_lock()
3736#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3737#include "memory_ldst.inc.c"
1e78bcc1 3738
1f4e496e
PB
3739int64_t address_space_cache_init(MemoryRegionCache *cache,
3740 AddressSpace *as,
3741 hwaddr addr,
3742 hwaddr len,
3743 bool is_write)
3744{
48564041
PB
3745 AddressSpaceDispatch *d;
3746 hwaddr l;
3747 MemoryRegion *mr;
3748
3749 assert(len > 0);
3750
3751 l = len;
3752 cache->fv = address_space_get_flatview(as);
3753 d = flatview_to_dispatch(cache->fv);
3754 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3755
3756 mr = cache->mrs.mr;
3757 memory_region_ref(mr);
3758 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3759 /* We don't care about the memory attributes here as we're only
3760 * doing this if we found actual RAM, which behaves the same
3761 * regardless of attributes; so UNSPECIFIED is fine.
3762 */
48564041 3763 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3764 cache->xlat, l, is_write,
3765 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3766 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3767 } else {
3768 cache->ptr = NULL;
3769 }
3770
3771 cache->len = l;
3772 cache->is_write = is_write;
3773 return l;
1f4e496e
PB
3774}
3775
3776void address_space_cache_invalidate(MemoryRegionCache *cache,
3777 hwaddr addr,
3778 hwaddr access_len)
3779{
48564041
PB
3780 assert(cache->is_write);
3781 if (likely(cache->ptr)) {
3782 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3783 }
1f4e496e
PB
3784}
3785
3786void address_space_cache_destroy(MemoryRegionCache *cache)
3787{
48564041
PB
3788 if (!cache->mrs.mr) {
3789 return;
3790 }
3791
3792 if (xen_enabled()) {
3793 xen_invalidate_map_cache_entry(cache->ptr);
3794 }
3795 memory_region_unref(cache->mrs.mr);
3796 flatview_unref(cache->fv);
3797 cache->mrs.mr = NULL;
3798 cache->fv = NULL;
3799}
3800
3801/* Called from RCU critical section. This function has the same
3802 * semantics as address_space_translate, but it only works on a
3803 * predefined range of a MemoryRegion that was mapped with
3804 * address_space_cache_init.
3805 */
3806static inline MemoryRegion *address_space_translate_cached(
3807 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3808 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3809{
3810 MemoryRegionSection section;
3811 MemoryRegion *mr;
3812 IOMMUMemoryRegion *iommu_mr;
3813 AddressSpace *target_as;
3814
3815 assert(!cache->ptr);
3816 *xlat = addr + cache->xlat;
3817
3818 mr = cache->mrs.mr;
3819 iommu_mr = memory_region_get_iommu(mr);
3820 if (!iommu_mr) {
3821 /* MMIO region. */
3822 return mr;
3823 }
3824
3825 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3826 NULL, is_write, true,
2f7b009c 3827 &target_as, attrs);
48564041
PB
3828 return section.mr;
3829}
3830
3831/* Called from RCU critical section. address_space_read_cached uses this
3832 * out of line function when the target is an MMIO or IOMMU region.
3833 */
3834void
3835address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3836 void *buf, hwaddr len)
48564041
PB
3837{
3838 hwaddr addr1, l;
3839 MemoryRegion *mr;
3840
3841 l = len;
bc6b1cec
PM
3842 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3843 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3844 flatview_read_continue(cache->fv,
3845 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3846 addr1, l, mr);
3847}
3848
3849/* Called from RCU critical section. address_space_write_cached uses this
3850 * out of line function when the target is an MMIO or IOMMU region.
3851 */
3852void
3853address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3854 const void *buf, hwaddr len)
48564041
PB
3855{
3856 hwaddr addr1, l;
3857 MemoryRegion *mr;
3858
3859 l = len;
bc6b1cec
PM
3860 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3861 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3862 flatview_write_continue(cache->fv,
3863 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3864 addr1, l, mr);
1f4e496e
PB
3865}
3866
3867#define ARG1_DECL MemoryRegionCache *cache
3868#define ARG1 cache
48564041
PB
3869#define SUFFIX _cached_slow
3870#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3871#define RCU_READ_LOCK() ((void)0)
3872#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3873#include "memory_ldst.inc.c"
3874
5e2972fd 3875/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3876int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3877 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3878{
a8170e5e 3879 hwaddr phys_addr;
0c249ff7 3880 target_ulong l, page;
13eb76e0 3881
79ca7a1b 3882 cpu_synchronize_state(cpu);
13eb76e0 3883 while (len > 0) {
5232e4c7
PM
3884 int asidx;
3885 MemTxAttrs attrs;
3886
13eb76e0 3887 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3888 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3889 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3890 /* if no physical page mapped, return an error */
3891 if (phys_addr == -1)
3892 return -1;
3893 l = (page + TARGET_PAGE_SIZE) - addr;
3894 if (l > len)
3895 l = len;
5e2972fd 3896 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3897 if (is_write) {
3c8133f9 3898 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3899 attrs, buf, l);
2e38847b 3900 } else {
5232e4c7 3901 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3902 attrs, buf, l, 0);
2e38847b 3903 }
13eb76e0
FB
3904 len -= l;
3905 buf += l;
3906 addr += l;
3907 }
3908 return 0;
3909}
038629a6
DDAG
3910
3911/*
3912 * Allows code that needs to deal with migration bitmaps etc to still be built
3913 * target independent.
3914 */
20afaed9 3915size_t qemu_target_page_size(void)
038629a6 3916{
20afaed9 3917 return TARGET_PAGE_SIZE;
038629a6
DDAG
3918}
3919
46d702b1
JQ
3920int qemu_target_page_bits(void)
3921{
3922 return TARGET_PAGE_BITS;
3923}
3924
3925int qemu_target_page_bits_min(void)
3926{
3927 return TARGET_PAGE_BITS_MIN;
3928}
a68fe89c 3929#endif
13eb76e0 3930
98ed8ecf 3931bool target_words_bigendian(void)
8e4a424b
BS
3932{
3933#if defined(TARGET_WORDS_BIGENDIAN)
3934 return true;
3935#else
3936 return false;
3937#endif
3938}
3939
76f35538 3940#ifndef CONFIG_USER_ONLY
a8170e5e 3941bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3942{
5c8a00ce 3943 MemoryRegion*mr;
149f54b5 3944 hwaddr l = 1;
41063e1e 3945 bool res;
76f35538 3946
41063e1e 3947 rcu_read_lock();
5c8a00ce 3948 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3949 phys_addr, &phys_addr, &l, false,
3950 MEMTXATTRS_UNSPECIFIED);
76f35538 3951
41063e1e
PB
3952 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3953 rcu_read_unlock();
3954 return res;
76f35538 3955}
bd2fa51f 3956
e3807054 3957int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3958{
3959 RAMBlock *block;
e3807054 3960 int ret = 0;
bd2fa51f 3961
0dc3f44a 3962 rcu_read_lock();
99e15582 3963 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3964 ret = func(block->idstr, block->host, block->offset,
3965 block->used_length, opaque);
3966 if (ret) {
3967 break;
3968 }
bd2fa51f 3969 }
0dc3f44a 3970 rcu_read_unlock();
e3807054 3971 return ret;
bd2fa51f 3972}
d3a5038c 3973
b895de50
CLG
3974int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3975{
3976 RAMBlock *block;
3977 int ret = 0;
3978
3979 rcu_read_lock();
3980 RAMBLOCK_FOREACH(block) {
3981 if (!qemu_ram_is_migratable(block)) {
3982 continue;
3983 }
3984 ret = func(block->idstr, block->host, block->offset,
3985 block->used_length, opaque);
3986 if (ret) {
3987 break;
3988 }
3989 }
3990 rcu_read_unlock();
3991 return ret;
3992}
3993
d3a5038c
DDAG
3994/*
3995 * Unmap pages of memory from start to start+length such that
3996 * they a) read as 0, b) Trigger whatever fault mechanism
3997 * the OS provides for postcopy.
3998 * The pages must be unmapped by the end of the function.
3999 * Returns: 0 on success, none-0 on failure
4000 *
4001 */
4002int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4003{
4004 int ret = -1;
4005
4006 uint8_t *host_startaddr = rb->host + start;
4007
4008 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4009 error_report("ram_block_discard_range: Unaligned start address: %p",
4010 host_startaddr);
4011 goto err;
4012 }
4013
4014 if ((start + length) <= rb->used_length) {
db144f70 4015 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4016 uint8_t *host_endaddr = host_startaddr + length;
4017 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4018 error_report("ram_block_discard_range: Unaligned end address: %p",
4019 host_endaddr);
4020 goto err;
4021 }
4022
4023 errno = ENOTSUP; /* If we are missing MADVISE etc */
4024
db144f70
DDAG
4025 /* The logic here is messy;
4026 * madvise DONTNEED fails for hugepages
4027 * fallocate works on hugepages and shmem
4028 */
4029 need_madvise = (rb->page_size == qemu_host_page_size);
4030 need_fallocate = rb->fd != -1;
4031 if (need_fallocate) {
4032 /* For a file, this causes the area of the file to be zero'd
4033 * if read, and for hugetlbfs also causes it to be unmapped
4034 * so a userfault will trigger.
e2fa71f5
DDAG
4035 */
4036#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4037 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4038 start, length);
db144f70
DDAG
4039 if (ret) {
4040 ret = -errno;
4041 error_report("ram_block_discard_range: Failed to fallocate "
4042 "%s:%" PRIx64 " +%zx (%d)",
4043 rb->idstr, start, length, ret);
4044 goto err;
4045 }
4046#else
4047 ret = -ENOSYS;
4048 error_report("ram_block_discard_range: fallocate not available/file"
4049 "%s:%" PRIx64 " +%zx (%d)",
4050 rb->idstr, start, length, ret);
4051 goto err;
e2fa71f5
DDAG
4052#endif
4053 }
db144f70
DDAG
4054 if (need_madvise) {
4055 /* For normal RAM this causes it to be unmapped,
4056 * for shared memory it causes the local mapping to disappear
4057 * and to fall back on the file contents (which we just
4058 * fallocate'd away).
4059 */
4060#if defined(CONFIG_MADVISE)
4061 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4062 if (ret) {
4063 ret = -errno;
4064 error_report("ram_block_discard_range: Failed to discard range "
4065 "%s:%" PRIx64 " +%zx (%d)",
4066 rb->idstr, start, length, ret);
4067 goto err;
4068 }
4069#else
4070 ret = -ENOSYS;
4071 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4072 "%s:%" PRIx64 " +%zx (%d)",
4073 rb->idstr, start, length, ret);
db144f70
DDAG
4074 goto err;
4075#endif
d3a5038c 4076 }
db144f70
DDAG
4077 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4078 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4079 } else {
4080 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4081 "/%zx/" RAM_ADDR_FMT")",
4082 rb->idstr, start, length, rb->used_length);
4083 }
4084
4085err:
4086 return ret;
4087}
4088
a4de8552
JH
4089bool ramblock_is_pmem(RAMBlock *rb)
4090{
4091 return rb->flags & RAM_PMEM;
4092}
4093
ec3f8c99 4094#endif
a0be0c58
YZ
4095
4096void page_size_init(void)
4097{
4098 /* NOTE: we can always suppose that qemu_host_page_size >=
4099 TARGET_PAGE_SIZE */
a0be0c58
YZ
4100 if (qemu_host_page_size == 0) {
4101 qemu_host_page_size = qemu_real_host_page_size;
4102 }
4103 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4104 qemu_host_page_size = TARGET_PAGE_SIZE;
4105 }
4106 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4107}
5e8fd947
AK
4108
4109#if !defined(CONFIG_USER_ONLY)
4110
4111static void mtree_print_phys_entries(fprintf_function mon, void *f,
4112 int start, int end, int skip, int ptr)
4113{
4114 if (start == end - 1) {
4115 mon(f, "\t%3d ", start);
4116 } else {
4117 mon(f, "\t%3d..%-3d ", start, end - 1);
4118 }
4119 mon(f, " skip=%d ", skip);
4120 if (ptr == PHYS_MAP_NODE_NIL) {
4121 mon(f, " ptr=NIL");
4122 } else if (!skip) {
4123 mon(f, " ptr=#%d", ptr);
4124 } else {
4125 mon(f, " ptr=[%d]", ptr);
4126 }
4127 mon(f, "\n");
4128}
4129
4130#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4131 int128_sub((size), int128_one())) : 0)
4132
4133void mtree_print_dispatch(fprintf_function mon, void *f,
4134 AddressSpaceDispatch *d, MemoryRegion *root)
4135{
4136 int i;
4137
4138 mon(f, " Dispatch\n");
4139 mon(f, " Physical sections\n");
4140
4141 for (i = 0; i < d->map.sections_nb; ++i) {
4142 MemoryRegionSection *s = d->map.sections + i;
4143 const char *names[] = { " [unassigned]", " [not dirty]",
4144 " [ROM]", " [watch]" };
4145
4146 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4147 i,
4148 s->offset_within_address_space,
4149 s->offset_within_address_space + MR_SIZE(s->mr->size),
4150 s->mr->name ? s->mr->name : "(noname)",
4151 i < ARRAY_SIZE(names) ? names[i] : "",
4152 s->mr == root ? " [ROOT]" : "",
4153 s == d->mru_section ? " [MRU]" : "",
4154 s->mr->is_iommu ? " [iommu]" : "");
4155
4156 if (s->mr->alias) {
4157 mon(f, " alias=%s", s->mr->alias->name ?
4158 s->mr->alias->name : "noname");
4159 }
4160 mon(f, "\n");
4161 }
4162
4163 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4164 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4165 for (i = 0; i < d->map.nodes_nb; ++i) {
4166 int j, jprev;
4167 PhysPageEntry prev;
4168 Node *n = d->map.nodes + i;
4169
4170 mon(f, " [%d]\n", i);
4171
4172 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4173 PhysPageEntry *pe = *n + j;
4174
4175 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4176 continue;
4177 }
4178
4179 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4180
4181 jprev = j;
4182 prev = *pe;
4183 }
4184
4185 if (jprev != ARRAY_SIZE(*n)) {
4186 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4187 }
4188 }
4189}
4190
4191#endif