]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Revert "audio: fix pc speaker init"
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
e2eef170 90#endif
9fa3e853 91
20bccb82
PM
92#ifdef TARGET_PAGE_BITS_VARY
93int target_page_bits;
94bool target_page_bits_decided;
95#endif
96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
2e70f6ef 102/* 0 = Do not count executed instructions.
bf20dc07 103 1 = Precise instruction counting.
2e70f6ef 104 2 = Adaptive rate instruction counting. */
5708fc66 105int use_icount;
6a00d601 106
a0be0c58
YZ
107uintptr_t qemu_host_page_size;
108intptr_t qemu_host_page_mask;
a0be0c58 109
20bccb82
PM
110bool set_preferred_target_page_bits(int bits)
111{
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
116 */
117#ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
122 }
123 target_page_bits = bits;
124 }
125#endif
126 return true;
127}
128
e2eef170 129#if !defined(CONFIG_USER_ONLY)
4346ae3e 130
20bccb82
PM
131static void finalize_target_page_bits(void)
132{
133#ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
136 }
137 target_page_bits_decided = true;
138#endif
139}
140
1db8abb1
PB
141typedef struct PhysPageEntry PhysPageEntry;
142
143struct PhysPageEntry {
9736e55b 144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 145 uint32_t skip : 6;
9736e55b 146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 147 uint32_t ptr : 26;
1db8abb1
PB
148};
149
8b795765
MT
150#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151
03f49957 152/* Size of the L2 (and L3, etc) page tables. */
57271d63 153#define ADDR_SPACE_BITS 64
03f49957 154
026736ce 155#define P_L2_BITS 9
03f49957
PB
156#define P_L2_SIZE (1 << P_L2_BITS)
157
158#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159
160typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 161
53cb28cb 162typedef struct PhysPageMap {
79e2b9ae
PB
163 struct rcu_head rcu;
164
53cb28cb
MA
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171} PhysPageMap;
172
1db8abb1 173struct AddressSpaceDispatch {
729633c2 174 MemoryRegionSection *mru_section;
1db8abb1
PB
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
177 */
178 PhysPageEntry phys_map;
53cb28cb 179 PhysPageMap map;
1db8abb1
PB
180};
181
90260c6c
JK
182#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183typedef struct subpage_t {
184 MemoryRegion iomem;
16620684 185 FlatView *fv;
90260c6c 186 hwaddr base;
2615fabd 187 uint16_t sub_section[];
90260c6c
JK
188} subpage_t;
189
b41aac4f
LPF
190#define PHYS_SECTION_UNASSIGNED 0
191#define PHYS_SECTION_NOTDIRTY 1
192#define PHYS_SECTION_ROM 2
193#define PHYS_SECTION_WATCH 3
5312bd8b 194
e2eef170 195static void io_mem_init(void);
62152b8a 196static void memory_map_init(void);
09daed84 197static void tcg_commit(MemoryListener *listener);
e2eef170 198
1ec9b909 199static MemoryRegion io_mem_watch;
32857f4d
PM
200
201/**
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 */
208struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
213};
214
8deaf12c
GH
215struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
219};
220
6658ffb8 221#endif
fd6ce8f6 222
6d9a1304 223#if !defined(CONFIG_USER_ONLY)
d6f2ea22 224
53cb28cb 225static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 226{
101420b8 227 static unsigned alloc_hint = 16;
53cb28cb 228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 232 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 233 }
f7bf5461
AK
234}
235
db94604b 236static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
237{
238 unsigned i;
8b795765 239 uint32_t ret;
db94604b
PB
240 PhysPageEntry e;
241 PhysPageEntry *p;
f7bf5461 242
53cb28cb 243 ret = map->nodes_nb++;
db94604b 244 p = map->nodes[ret];
f7bf5461 245 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 246 assert(ret != map->nodes_nb_alloc);
db94604b
PB
247
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 250 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 251 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 252 }
f7bf5461 253 return ret;
d6f2ea22
AK
254}
255
53cb28cb
MA
256static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 258 int level)
f7bf5461
AK
259{
260 PhysPageEntry *p;
03f49957 261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 262
9736e55b 263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 264 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 265 }
db94604b 266 p = map->nodes[lp->ptr];
03f49957 267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 268
03f49957 269 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 270 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 271 lp->skip = 0;
c19e8800 272 lp->ptr = leaf;
07f07b31
AK
273 *index += step;
274 *nb -= step;
2999097b 275 } else {
53cb28cb 276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
277 }
278 ++lp;
f7bf5461
AK
279 }
280}
281
ac1970fb 282static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 283 hwaddr index, hwaddr nb,
2999097b 284 uint16_t leaf)
f7bf5461 285{
2999097b 286 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 288
53cb28cb 289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
290}
291
b35ba30f
MT
292/* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
294 */
efee678d 295static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
296{
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
301
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
304 }
305
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
310 }
311
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
efee678d 315 phys_page_compact(&p[i], nodes);
b35ba30f
MT
316 }
317 }
318
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
322 }
323
324 assert(valid_ptr < P_L2_SIZE);
325
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
329 }
330
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
338 */
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
342 }
343}
344
8629d3fc 345void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 346{
b35ba30f 347 if (d->phys_map.skip) {
efee678d 348 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
349 }
350}
351
29cb533d
FZ
352static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
354{
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
357 */
258dfaaa 358 return int128_gethi(section->size) ||
29cb533d 359 range_covers_byte(section->offset_within_address_space,
258dfaaa 360 int128_getlo(section->size), addr);
29cb533d
FZ
361}
362
003a0cf2 363static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 364{
003a0cf2
PX
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
97115a8d 368 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 369 int i;
f1f6e3b8 370
9736e55b 371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 373 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 374 }
9affd6fc 375 p = nodes[lp.ptr];
03f49957 376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 377 }
b35ba30f 378
29cb533d 379 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
383 }
f3705d53
AK
384}
385
79e2b9ae 386/* Called from RCU critical section */
c7086b4a 387static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
388 hwaddr addr,
389 bool resolve_subpage)
9f029603 390{
729633c2 391 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
392 subpage_t *subpage;
393
07c114bb
PB
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
003a0cf2 396 section = phys_page_find(d, addr);
07c114bb 397 atomic_set(&d->mru_section, section);
729633c2 398 }
90260c6c
JK
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
402 }
403 return section;
9f029603
JK
404}
405
79e2b9ae 406/* Called from RCU critical section */
90260c6c 407static MemoryRegionSection *
c7086b4a 408address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 409 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
410{
411 MemoryRegionSection *section;
965eb2fc 412 MemoryRegion *mr;
a87f3954 413 Int128 diff;
149f54b5 414
c7086b4a 415 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
418
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
421
965eb2fc 422 mr = section->mr;
b242e0e0
PB
423
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
430 *
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
434 */
965eb2fc 435 if (memory_region_is_ram(mr)) {
e4a511f8 436 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
438 }
149f54b5
PB
439 return section;
440}
90260c6c 441
a411c84b
PB
442/**
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
445 *
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
2f7b009c 459 * @attrs: transaction attributes
a411c84b
PB
460 *
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
463 */
464static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
2f7b009c
PM
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
a411c84b
PB
472{
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
475
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
481
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
484 }
485
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
488
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
491 }
492
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
498
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
502
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
505
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
508 }
509 return *section;
510
511unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
513}
514
d5e5fafd
PX
515/**
516 * flatview_do_translate - translate an address in FlatView
517 *
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 530 * @target_as: the address space targeted by the IOMMU
49e14aa8 531 * @attrs: memory transaction attributes
d5e5fafd
PX
532 *
533 * This function is called from RCU critical section
534 */
16620684
AK
535static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
d5e5fafd
PX
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
16620684
AK
540 bool is_write,
541 bool is_mmio,
49e14aa8
PM
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
052c8fa9 544{
052c8fa9 545 MemoryRegionSection *section;
3df9d748 546 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
547 hwaddr plen = (hwaddr)(-1);
548
ad2804d9
PB
549 if (!plen_out) {
550 plen_out = &plen;
d5e5fafd 551 }
052c8fa9 552
a411c84b
PB
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
052c8fa9 556
a411c84b
PB
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
2f7b009c 562 target_as, attrs);
052c8fa9 563 }
d5e5fafd 564 if (page_mask_out) {
a411c84b
PB
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
567 }
568
a764040c 569 return *section;
052c8fa9
JW
570}
571
572/* Called from RCU critical section */
a764040c 573IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 574 bool is_write, MemTxAttrs attrs)
90260c6c 575{
a764040c 576 MemoryRegionSection section;
076a93d7 577 hwaddr xlat, page_mask;
30951157 578
076a93d7
PX
579 /*
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
582 */
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
30951157 586
a764040c
PX
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
590 }
30951157 591
a764040c
PX
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
595
a764040c 596 return (IOMMUTLBEntry) {
e76bb18f 597 .target_as = as,
076a93d7
PX
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
a764040c
PX
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
603 };
604
605iotlb_fail:
606 return (IOMMUTLBEntry) {0};
607}
608
609/* Called from RCU critical section */
16620684 610MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
a764040c
PX
613{
614 MemoryRegion *mr;
615 MemoryRegionSection section;
16620684 616 AddressSpace *as = NULL;
a764040c
PX
617
618 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 620 is_write, true, &as, attrs);
a764040c
PX
621 mr = section.mr;
622
fe680d0d 623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 625 *plen = MIN(page, *plen);
a87f3954
PB
626 }
627
30951157 628 return mr;
90260c6c
JK
629}
630
1f871c5e
PM
631typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637} TCGIOMMUNotifier;
638
639static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
640{
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
642
643 if (!notifier->active) {
644 return;
645 }
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
652 */
653}
654
655static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
658{
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
662 */
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
666
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
671 }
672 }
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
676 notifier = g_new0(TCGIOMMUNotifier, 1);
677 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
678
679 notifier->mr = mr;
680 notifier->iommu_idx = iommu_idx;
681 notifier->cpu = cpu;
682 /* Rather than trying to register interest in the specific part
683 * of the iommu's address space that we've accessed and then
684 * expand it later as subsequent accesses touch more of it, we
685 * just register interest in the whole thing, on the assumption
686 * that iommu reconfiguration will be rare.
687 */
688 iommu_notifier_init(&notifier->n,
689 tcg_iommu_unmap_notify,
690 IOMMU_NOTIFIER_UNMAP,
691 0,
692 HWADDR_MAX,
693 iommu_idx);
694 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
695 }
696
697 if (!notifier->active) {
698 notifier->active = true;
699 }
700}
701
702static void tcg_iommu_free_notifier_list(CPUState *cpu)
703{
704 /* Destroy the CPU's notifier list */
705 int i;
706 TCGIOMMUNotifier *notifier;
707
708 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 709 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 710 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 711 g_free(notifier);
1f871c5e
PM
712 }
713 g_array_free(cpu->iommu_notifiers, true);
714}
715
79e2b9ae 716/* Called from RCU critical section */
90260c6c 717MemoryRegionSection *
d7898cda 718address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
719 hwaddr *xlat, hwaddr *plen,
720 MemTxAttrs attrs, int *prot)
90260c6c 721{
30951157 722 MemoryRegionSection *section;
1f871c5e
PM
723 IOMMUMemoryRegion *iommu_mr;
724 IOMMUMemoryRegionClass *imrc;
725 IOMMUTLBEntry iotlb;
726 int iommu_idx;
f35e44e7 727 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 728
1f871c5e
PM
729 for (;;) {
730 section = address_space_translate_internal(d, addr, &addr, plen, false);
731
732 iommu_mr = memory_region_get_iommu(section->mr);
733 if (!iommu_mr) {
734 break;
735 }
736
737 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
738
739 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
740 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
741 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
742 * doesn't short-cut its translation table walk.
743 */
744 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
745 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
746 | (addr & iotlb.addr_mask));
747 /* Update the caller's prot bits to remove permissions the IOMMU
748 * is giving us a failure response for. If we get down to no
749 * permissions left at all we can give up now.
750 */
751 if (!(iotlb.perm & IOMMU_RO)) {
752 *prot &= ~(PAGE_READ | PAGE_EXEC);
753 }
754 if (!(iotlb.perm & IOMMU_WO)) {
755 *prot &= ~PAGE_WRITE;
756 }
757
758 if (!*prot) {
759 goto translate_fail;
760 }
761
762 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
763 }
30951157 764
3df9d748 765 assert(!memory_region_is_iommu(section->mr));
1f871c5e 766 *xlat = addr;
30951157 767 return section;
1f871c5e
PM
768
769translate_fail:
770 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 771}
5b6dd868 772#endif
fd6ce8f6 773
b170fce3 774#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
775
776static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 777{
259186a7 778 CPUState *cpu = opaque;
a513fe19 779
5b6dd868
BS
780 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
781 version_id is increased. */
259186a7 782 cpu->interrupt_request &= ~0x01;
d10eb08f 783 tlb_flush(cpu);
5b6dd868 784
15a356c4
PD
785 /* loadvm has just updated the content of RAM, bypassing the
786 * usual mechanisms that ensure we flush TBs for writes to
787 * memory we've translated code from. So we must flush all TBs,
788 * which will now be stale.
789 */
790 tb_flush(cpu);
791
5b6dd868 792 return 0;
a513fe19 793}
7501267e 794
6c3bff0e
PD
795static int cpu_common_pre_load(void *opaque)
796{
797 CPUState *cpu = opaque;
798
adee6424 799 cpu->exception_index = -1;
6c3bff0e
PD
800
801 return 0;
802}
803
804static bool cpu_common_exception_index_needed(void *opaque)
805{
806 CPUState *cpu = opaque;
807
adee6424 808 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
809}
810
811static const VMStateDescription vmstate_cpu_common_exception_index = {
812 .name = "cpu_common/exception_index",
813 .version_id = 1,
814 .minimum_version_id = 1,
5cd8cada 815 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(exception_index, CPUState),
818 VMSTATE_END_OF_LIST()
819 }
820};
821
bac05aa9
AS
822static bool cpu_common_crash_occurred_needed(void *opaque)
823{
824 CPUState *cpu = opaque;
825
826 return cpu->crash_occurred;
827}
828
829static const VMStateDescription vmstate_cpu_common_crash_occurred = {
830 .name = "cpu_common/crash_occurred",
831 .version_id = 1,
832 .minimum_version_id = 1,
833 .needed = cpu_common_crash_occurred_needed,
834 .fields = (VMStateField[]) {
835 VMSTATE_BOOL(crash_occurred, CPUState),
836 VMSTATE_END_OF_LIST()
837 }
838};
839
1a1562f5 840const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
841 .name = "cpu_common",
842 .version_id = 1,
843 .minimum_version_id = 1,
6c3bff0e 844 .pre_load = cpu_common_pre_load,
5b6dd868 845 .post_load = cpu_common_post_load,
35d08458 846 .fields = (VMStateField[]) {
259186a7
AF
847 VMSTATE_UINT32(halted, CPUState),
848 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 849 VMSTATE_END_OF_LIST()
6c3bff0e 850 },
5cd8cada
JQ
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_cpu_common_exception_index,
bac05aa9 853 &vmstate_cpu_common_crash_occurred,
5cd8cada 854 NULL
5b6dd868
BS
855 }
856};
1a1562f5 857
5b6dd868 858#endif
ea041c0e 859
38d8f5c8 860CPUState *qemu_get_cpu(int index)
ea041c0e 861{
bdc44640 862 CPUState *cpu;
ea041c0e 863
bdc44640 864 CPU_FOREACH(cpu) {
55e5c285 865 if (cpu->cpu_index == index) {
bdc44640 866 return cpu;
55e5c285 867 }
ea041c0e 868 }
5b6dd868 869
bdc44640 870 return NULL;
ea041c0e
FB
871}
872
09daed84 873#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
874void cpu_address_space_init(CPUState *cpu, int asidx,
875 const char *prefix, MemoryRegion *mr)
09daed84 876{
12ebc9a7 877 CPUAddressSpace *newas;
80ceb07a 878 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 879 char *as_name;
80ceb07a
PX
880
881 assert(mr);
87a621d8
PX
882 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
883 address_space_init(as, mr, as_name);
884 g_free(as_name);
12ebc9a7
PM
885
886 /* Target code should have set num_ases before calling us */
887 assert(asidx < cpu->num_ases);
888
56943e8c
PM
889 if (asidx == 0) {
890 /* address space 0 gets the convenience alias */
891 cpu->as = as;
892 }
893
12ebc9a7
PM
894 /* KVM cannot currently support multiple address spaces. */
895 assert(asidx == 0 || !kvm_enabled());
09daed84 896
12ebc9a7
PM
897 if (!cpu->cpu_ases) {
898 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 899 }
32857f4d 900
12ebc9a7
PM
901 newas = &cpu->cpu_ases[asidx];
902 newas->cpu = cpu;
903 newas->as = as;
56943e8c 904 if (tcg_enabled()) {
12ebc9a7
PM
905 newas->tcg_as_listener.commit = tcg_commit;
906 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 907 }
09daed84 908}
651a5bc0
PM
909
910AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
911{
912 /* Return the AddressSpace corresponding to the specified index */
913 return cpu->cpu_ases[asidx].as;
914}
09daed84
EI
915#endif
916
7bbc124e 917void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 918{
9dfeca7c
BR
919 CPUClass *cc = CPU_GET_CLASS(cpu);
920
267f685b 921 cpu_list_remove(cpu);
9dfeca7c
BR
922
923 if (cc->vmsd != NULL) {
924 vmstate_unregister(NULL, cc->vmsd, cpu);
925 }
926 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
927 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
928 }
1f871c5e
PM
929#ifndef CONFIG_USER_ONLY
930 tcg_iommu_free_notifier_list(cpu);
931#endif
1c59eb39
BR
932}
933
c7e002c5
FZ
934Property cpu_common_props[] = {
935#ifndef CONFIG_USER_ONLY
936 /* Create a memory property for softmmu CPU object,
937 * so users can wire up its memory. (This can't go in qom/cpu.c
938 * because that file is compiled only once for both user-mode
939 * and system builds.) The default if no link is set up is to use
940 * the system address space.
941 */
942 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
943 MemoryRegion *),
944#endif
945 DEFINE_PROP_END_OF_LIST(),
946};
947
39e329e3 948void cpu_exec_initfn(CPUState *cpu)
ea041c0e 949{
56943e8c 950 cpu->as = NULL;
12ebc9a7 951 cpu->num_ases = 0;
56943e8c 952
291135b5 953#ifndef CONFIG_USER_ONLY
291135b5 954 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
955 cpu->memory = system_memory;
956 object_ref(OBJECT(cpu->memory));
291135b5 957#endif
39e329e3
LV
958}
959
ce5b1bbf 960void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 961{
55c3ceef 962 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 963 static bool tcg_target_initialized;
291135b5 964
267f685b 965 cpu_list_add(cpu);
1bc7e522 966
2dda6354
EC
967 if (tcg_enabled() && !tcg_target_initialized) {
968 tcg_target_initialized = true;
55c3ceef
RH
969 cc->tcg_initialize();
970 }
5005e253 971 tlb_init(cpu);
55c3ceef 972
1bc7e522 973#ifndef CONFIG_USER_ONLY
e0d47944 974 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 975 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 976 }
b170fce3 977 if (cc->vmsd != NULL) {
741da0d3 978 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 979 }
1f871c5e 980
5601be3b 981 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 982#endif
ea041c0e
FB
983}
984
2278b939
IM
985const char *parse_cpu_model(const char *cpu_model)
986{
987 ObjectClass *oc;
988 CPUClass *cc;
989 gchar **model_pieces;
990 const char *cpu_type;
991
992 model_pieces = g_strsplit(cpu_model, ",", 2);
993
994 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
995 if (oc == NULL) {
996 error_report("unable to find CPU model '%s'", model_pieces[0]);
997 g_strfreev(model_pieces);
998 exit(EXIT_FAILURE);
999 }
1000
1001 cpu_type = object_class_get_name(oc);
1002 cc = CPU_CLASS(oc);
1003 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1004 g_strfreev(model_pieces);
1005 return cpu_type;
1006}
1007
c40d4792 1008#if defined(CONFIG_USER_ONLY)
8bca9a03 1009void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1010{
406bc339 1011 mmap_lock();
8bca9a03 1012 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1013 mmap_unlock();
1014}
8bca9a03
PB
1015
1016static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1017{
1018 tb_invalidate_phys_addr(pc);
1019}
406bc339 1020#else
8bca9a03
PB
1021void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1022{
1023 ram_addr_t ram_addr;
1024 MemoryRegion *mr;
1025 hwaddr l = 1;
1026
c40d4792
PB
1027 if (!tcg_enabled()) {
1028 return;
1029 }
1030
8bca9a03
PB
1031 rcu_read_lock();
1032 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1033 if (!(memory_region_is_ram(mr)
1034 || memory_region_is_romd(mr))) {
1035 rcu_read_unlock();
1036 return;
1037 }
1038 ram_addr = memory_region_get_ram_addr(mr) + addr;
1039 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1040 rcu_read_unlock();
1041}
1042
406bc339
PK
1043static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1044{
1045 MemTxAttrs attrs;
1046 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1047 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1048 if (phys != -1) {
1049 /* Locks grabbed by tb_invalidate_phys_addr */
1050 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1051 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1052 }
1e7855a5 1053}
406bc339 1054#endif
d720b93d 1055
c527ee8f 1056#if defined(CONFIG_USER_ONLY)
75a34036 1057void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1058
1059{
1060}
1061
3ee887e8
PM
1062int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1063 int flags)
1064{
1065 return -ENOSYS;
1066}
1067
1068void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1069{
1070}
1071
75a34036 1072int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1073 int flags, CPUWatchpoint **watchpoint)
1074{
1075 return -ENOSYS;
1076}
1077#else
6658ffb8 1078/* Add a watchpoint. */
75a34036 1079int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1080 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1081{
c0ce998e 1082 CPUWatchpoint *wp;
6658ffb8 1083
05068c0d 1084 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1085 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1086 error_report("tried to set invalid watchpoint at %"
1087 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1088 return -EINVAL;
1089 }
7267c094 1090 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1091
1092 wp->vaddr = addr;
05068c0d 1093 wp->len = len;
a1d1bb31
AL
1094 wp->flags = flags;
1095
2dc9f411 1096 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1097 if (flags & BP_GDB) {
1098 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1099 } else {
1100 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1101 }
6658ffb8 1102
31b030d4 1103 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1104
1105 if (watchpoint)
1106 *watchpoint = wp;
1107 return 0;
6658ffb8
PB
1108}
1109
a1d1bb31 1110/* Remove a specific watchpoint. */
75a34036 1111int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1112 int flags)
6658ffb8 1113{
a1d1bb31 1114 CPUWatchpoint *wp;
6658ffb8 1115
ff4700b0 1116 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1117 if (addr == wp->vaddr && len == wp->len
6e140f28 1118 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1119 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1120 return 0;
1121 }
1122 }
a1d1bb31 1123 return -ENOENT;
6658ffb8
PB
1124}
1125
a1d1bb31 1126/* Remove a specific watchpoint by reference. */
75a34036 1127void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1128{
ff4700b0 1129 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1130
31b030d4 1131 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1132
7267c094 1133 g_free(watchpoint);
a1d1bb31
AL
1134}
1135
1136/* Remove all matching watchpoints. */
75a34036 1137void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1138{
c0ce998e 1139 CPUWatchpoint *wp, *next;
a1d1bb31 1140
ff4700b0 1141 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1142 if (wp->flags & mask) {
1143 cpu_watchpoint_remove_by_ref(cpu, wp);
1144 }
c0ce998e 1145 }
7d03f82f 1146}
05068c0d
PM
1147
1148/* Return true if this watchpoint address matches the specified
1149 * access (ie the address range covered by the watchpoint overlaps
1150 * partially or completely with the address range covered by the
1151 * access).
1152 */
1153static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1154 vaddr addr,
1155 vaddr len)
1156{
1157 /* We know the lengths are non-zero, but a little caution is
1158 * required to avoid errors in the case where the range ends
1159 * exactly at the top of the address space and so addr + len
1160 * wraps round to zero.
1161 */
1162 vaddr wpend = wp->vaddr + wp->len - 1;
1163 vaddr addrend = addr + len - 1;
1164
1165 return !(addr > wpend || wp->vaddr > addrend);
1166}
1167
c527ee8f 1168#endif
7d03f82f 1169
a1d1bb31 1170/* Add a breakpoint. */
b3310ab3 1171int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1172 CPUBreakpoint **breakpoint)
4c3a88a2 1173{
c0ce998e 1174 CPUBreakpoint *bp;
3b46e624 1175
7267c094 1176 bp = g_malloc(sizeof(*bp));
4c3a88a2 1177
a1d1bb31
AL
1178 bp->pc = pc;
1179 bp->flags = flags;
1180
2dc9f411 1181 /* keep all GDB-injected breakpoints in front */
00b941e5 1182 if (flags & BP_GDB) {
f0c3c505 1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1184 } else {
f0c3c505 1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1186 }
3b46e624 1187
f0c3c505 1188 breakpoint_invalidate(cpu, pc);
a1d1bb31 1189
00b941e5 1190 if (breakpoint) {
a1d1bb31 1191 *breakpoint = bp;
00b941e5 1192 }
4c3a88a2 1193 return 0;
4c3a88a2
FB
1194}
1195
a1d1bb31 1196/* Remove a specific breakpoint. */
b3310ab3 1197int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1198{
a1d1bb31
AL
1199 CPUBreakpoint *bp;
1200
f0c3c505 1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1202 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1203 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1204 return 0;
1205 }
7d03f82f 1206 }
a1d1bb31 1207 return -ENOENT;
7d03f82f
EI
1208}
1209
a1d1bb31 1210/* Remove a specific breakpoint by reference. */
b3310ab3 1211void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1212{
f0c3c505
AF
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1214
1215 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1216
7267c094 1217 g_free(breakpoint);
a1d1bb31
AL
1218}
1219
1220/* Remove all matching breakpoints. */
b3310ab3 1221void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1222{
c0ce998e 1223 CPUBreakpoint *bp, *next;
a1d1bb31 1224
f0c3c505 1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1228 }
c0ce998e 1229 }
4c3a88a2
FB
1230}
1231
c33a346e
FB
1232/* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
3825b28f 1234void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1235{
ed2803da
AF
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
38e478ec 1239 kvm_update_guest_debug(cpu, 0);
ed2803da 1240 } else {
ccbb4d44 1241 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1242 /* XXX: only flush what is necessary */
bbd77c18 1243 tb_flush(cpu);
e22a25c9 1244 }
c33a346e 1245 }
c33a346e
FB
1246}
1247
a47dddd7 1248void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1249{
1250 va_list ap;
493ae1f0 1251 va_list ap2;
7501267e
FB
1252
1253 va_start(ap, fmt);
493ae1f0 1254 va_copy(ap2, ap);
7501267e
FB
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
878096ee 1258 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1259 if (qemu_log_separate()) {
1ee73216 1260 qemu_log_lock();
93fcfe39
AL
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
a0762859 1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1265 qemu_log_flush();
1ee73216 1266 qemu_log_unlock();
93fcfe39 1267 qemu_log_close();
924edcae 1268 }
493ae1f0 1269 va_end(ap2);
f9373291 1270 va_end(ap);
7615936e 1271 replay_finish();
fd052bf6
RV
1272#if defined(CONFIG_USER_ONLY)
1273 {
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
8347c185 1277 act.sa_flags = 0;
fd052bf6
RV
1278 sigaction(SIGABRT, &act, NULL);
1279 }
1280#endif
7501267e
FB
1281 abort();
1282}
1283
0124311e 1284#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1285/* Called from RCU critical section */
041603fe
PB
1286static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1287{
1288 RAMBlock *block;
1289
43771539 1290 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1291 if (block && addr - block->offset < block->max_length) {
68851b98 1292 return block;
041603fe 1293 }
99e15582 1294 RAMBLOCK_FOREACH(block) {
9b8424d5 1295 if (addr - block->offset < block->max_length) {
041603fe
PB
1296 goto found;
1297 }
1298 }
1299
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1302
1303found:
43771539
PB
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1306 *
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1315 *
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1319 */
041603fe
PB
1320 ram_list.mru_block = block;
1321 return block;
1322}
1323
a2f4d5be 1324static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1325{
9a13565d 1326 CPUState *cpu;
041603fe 1327 ram_addr_t start1;
a2f4d5be
JQ
1328 RAMBlock *block;
1329 ram_addr_t end;
1330
f28d0dfd 1331 assert(tcg_enabled());
a2f4d5be
JQ
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
d24981d3 1334
0dc3f44a 1335 rcu_read_lock();
041603fe
PB
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1240be24 1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1341 }
0dc3f44a 1342 rcu_read_unlock();
d24981d3
JQ
1343}
1344
5579c7f3 1345/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1346bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1ccde1cb 1349{
5b82b703 1350 DirtyMemoryBlocks *blocks;
03eebc9e 1351 unsigned long end, page;
5b82b703 1352 bool dirty = false;
03eebc9e
SH
1353
1354 if (length == 0) {
1355 return false;
1356 }
f23db169 1357
03eebc9e
SH
1358 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1359 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1360
1361 rcu_read_lock();
1362
1363 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1364
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1369
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1373 }
1374
1375 rcu_read_unlock();
03eebc9e
SH
1376
1377 if (dirty && tcg_enabled()) {
a2f4d5be 1378 tlb_reset_dirty_range_all(start, length);
5579c7f3 1379 }
03eebc9e
SH
1380
1381 return dirty;
1ccde1cb
FB
1382}
1383
8deaf12c
GH
1384DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1385 (ram_addr_t start, ram_addr_t length, unsigned client)
1386{
1387 DirtyMemoryBlocks *blocks;
1388 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1389 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1390 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1391 DirtyBitmapSnapshot *snap;
1392 unsigned long page, end, dest;
1393
1394 snap = g_malloc0(sizeof(*snap) +
1395 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1396 snap->start = first;
1397 snap->end = last;
1398
1399 page = first >> TARGET_PAGE_BITS;
1400 end = last >> TARGET_PAGE_BITS;
1401 dest = 0;
1402
1403 rcu_read_lock();
1404
1405 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1406
1407 while (page < end) {
1408 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1409 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1411
1412 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1413 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1414 offset >>= BITS_PER_LEVEL;
1415
1416 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1417 blocks->blocks[idx] + offset,
1418 num);
1419 page += num;
1420 dest += num >> BITS_PER_LEVEL;
1421 }
1422
1423 rcu_read_unlock();
1424
1425 if (tcg_enabled()) {
1426 tlb_reset_dirty_range_all(start, length);
1427 }
1428
1429 return snap;
1430}
1431
1432bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1435{
1436 unsigned long page, end;
1437
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1440
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1443
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1447 }
1448 page++;
1449 }
1450 return false;
1451}
1452
79e2b9ae 1453/* Called from RCU critical section */
bb0e627a 1454hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
e5548617 1460{
a8170e5e 1461 hwaddr iotlb;
e5548617
BS
1462 CPUWatchpoint *wp;
1463
cc5bea60 1464 if (memory_region_is_ram(section->mr)) {
e5548617 1465 /* Normal RAM. */
e4e69794 1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1467 if (!section->readonly) {
b41aac4f 1468 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1469 } else {
b41aac4f 1470 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1471 }
1472 } else {
0b8e2c10
PM
1473 AddressSpaceDispatch *d;
1474
16620684 1475 d = flatview_to_dispatch(section->fv);
0b8e2c10 1476 iotlb = section - d->map.sections;
149f54b5 1477 iotlb += xlat;
e5548617
BS
1478 }
1479
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
ff4700b0 1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1486 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1487 *address |= TLB_MMIO;
1488 break;
1489 }
1490 }
1491 }
1492
1493 return iotlb;
1494}
9fa3e853
FB
1495#endif /* defined(CONFIG_USER_ONLY) */
1496
e2eef170 1497#if !defined(CONFIG_USER_ONLY)
8da3ff18 1498
c227f099 1499static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1500 uint16_t section);
16620684 1501static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1502
06329cce 1503static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1504 qemu_anon_ram_alloc;
91138037
MA
1505
1506/*
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1510 */
06329cce 1511void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1512{
1513 phys_mem_alloc = alloc;
1514}
1515
53cb28cb
MA
1516static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
5312bd8b 1518{
68f3f65b
PB
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1522 */
53cb28cb 1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1524
53cb28cb
MA
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
5312bd8b 1529 }
53cb28cb 1530 map->sections[map->sections_nb] = *section;
dfde4e6e 1531 memory_region_ref(section->mr);
53cb28cb 1532 return map->sections_nb++;
5312bd8b
AK
1533}
1534
058bc4b5
PB
1535static void phys_section_destroy(MemoryRegion *mr)
1536{
55b4e80b
DS
1537 bool have_sub_page = mr->subpage;
1538
dfde4e6e
PB
1539 memory_region_unref(mr);
1540
55b4e80b 1541 if (have_sub_page) {
058bc4b5 1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1543 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1544 g_free(subpage);
1545 }
1546}
1547
6092666e 1548static void phys_sections_free(PhysPageMap *map)
5312bd8b 1549{
9affd6fc
PB
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1552 phys_section_destroy(section->mr);
1553 }
9affd6fc
PB
1554 g_free(map->sections);
1555 g_free(map->nodes);
5312bd8b
AK
1556}
1557
9950322a 1558static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1559{
9950322a 1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1561 subpage_t *subpage;
a8170e5e 1562 hwaddr base = section->offset_within_address_space
0f0cb164 1563 & TARGET_PAGE_MASK;
003a0cf2 1564 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
052e87b0 1567 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1568 };
a8170e5e 1569 hwaddr start, end;
0f0cb164 1570
f3705d53 1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1572
f3705d53 1573 if (!(existing->mr->subpage)) {
16620684
AK
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
0f0cb164 1576 subsection.mr = &subpage->iomem;
ac1970fb 1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1578 phys_section_add(&d->map, &subsection));
0f0cb164 1579 } else {
f3705d53 1580 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1581 }
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1583 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
0f0cb164
AK
1586}
1587
1588
9950322a 1589static void register_multipage(FlatView *fv,
052e87b0 1590 MemoryRegionSection *section)
33417e70 1591{
9950322a 1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1593 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1594 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
dd81124b 1597
733d5ef5
PB
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1600}
1601
494d1997
WY
1602/*
1603 * The range in *section* may look like this:
1604 *
1605 * |s|PPPPPPP|s|
1606 *
1607 * where s stands for subpage and P for page.
1608 */
8629d3fc 1609void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1610{
494d1997 1611 MemoryRegionSection remain = *section;
052e87b0 1612 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1613
494d1997
WY
1614 /* register first subpage */
1615 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1616 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1617 - remain.offset_within_address_space;
733d5ef5 1618
494d1997 1619 MemoryRegionSection now = remain;
052e87b0 1620 now.size = int128_min(int128_make64(left), now.size);
9950322a 1621 register_subpage(fv, &now);
494d1997
WY
1622 if (int128_eq(remain.size, now.size)) {
1623 return;
1624 }
052e87b0
PB
1625 remain.size = int128_sub(remain.size, now.size);
1626 remain.offset_within_address_space += int128_get64(now.size);
1627 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1628 }
1629
1630 /* register whole pages */
1631 if (int128_ge(remain.size, page_size)) {
1632 MemoryRegionSection now = remain;
1633 now.size = int128_and(now.size, int128_neg(page_size));
1634 register_multipage(fv, &now);
1635 if (int128_eq(remain.size, now.size)) {
1636 return;
69b67646 1637 }
494d1997
WY
1638 remain.size = int128_sub(remain.size, now.size);
1639 remain.offset_within_address_space += int128_get64(now.size);
1640 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1641 }
494d1997
WY
1642
1643 /* register last subpage */
1644 register_subpage(fv, &remain);
0f0cb164
AK
1645}
1646
62a2744c
SY
1647void qemu_flush_coalesced_mmio_buffer(void)
1648{
1649 if (kvm_enabled())
1650 kvm_flush_coalesced_mmio_buffer();
1651}
1652
b2a8658e
UD
1653void qemu_mutex_lock_ramlist(void)
1654{
1655 qemu_mutex_lock(&ram_list.mutex);
1656}
1657
1658void qemu_mutex_unlock_ramlist(void)
1659{
1660 qemu_mutex_unlock(&ram_list.mutex);
1661}
1662
be9b23c4
PX
1663void ram_block_dump(Monitor *mon)
1664{
1665 RAMBlock *block;
1666 char *psize;
1667
1668 rcu_read_lock();
1669 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1670 "Block Name", "PSize", "Offset", "Used", "Total");
1671 RAMBLOCK_FOREACH(block) {
1672 psize = size_to_str(block->page_size);
1673 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1674 " 0x%016" PRIx64 "\n", block->idstr, psize,
1675 (uint64_t)block->offset,
1676 (uint64_t)block->used_length,
1677 (uint64_t)block->max_length);
1678 g_free(psize);
1679 }
1680 rcu_read_unlock();
1681}
1682
9c607668
AK
1683#ifdef __linux__
1684/*
1685 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1686 * may or may not name the same files / on the same filesystem now as
1687 * when we actually open and map them. Iterate over the file
1688 * descriptors instead, and use qemu_fd_getpagesize().
1689 */
1690static int find_max_supported_pagesize(Object *obj, void *opaque)
1691{
9c607668
AK
1692 long *hpsize_min = opaque;
1693
1694 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1695 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1696 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1697
7d5489e6 1698 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1699 *hpsize_min = hpsize;
9c607668
AK
1700 }
1701 }
1702
1703 return 0;
1704}
1705
1706long qemu_getrampagesize(void)
1707{
1708 long hpsize = LONG_MAX;
1709 long mainrampagesize;
1710 Object *memdev_root;
1711
0de6e2a3 1712 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1713
1714 /* it's possible we have memory-backend objects with
1715 * hugepage-backed RAM. these may get mapped into system
1716 * address space via -numa parameters or memory hotplug
1717 * hooks. we want to take these into account, but we
1718 * also want to make sure these supported hugepage
1719 * sizes are applicable across the entire range of memory
1720 * we may boot from, so we take the min across all
1721 * backends, and assume normal pages in cases where a
1722 * backend isn't backed by hugepages.
1723 */
1724 memdev_root = object_resolve_path("/objects", NULL);
1725 if (memdev_root) {
1726 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1727 }
1728 if (hpsize == LONG_MAX) {
1729 /* No additional memory regions found ==> Report main RAM page size */
1730 return mainrampagesize;
1731 }
1732
1733 /* If NUMA is disabled or the NUMA nodes are not backed with a
1734 * memory-backend, then there is at least one node using "normal" RAM,
1735 * so if its page size is smaller we have got to report that size instead.
1736 */
1737 if (hpsize > mainrampagesize &&
1738 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1739 static bool warned;
1740 if (!warned) {
1741 error_report("Huge page support disabled (n/a for main memory).");
1742 warned = true;
1743 }
1744 return mainrampagesize;
1745 }
1746
1747 return hpsize;
1748}
1749#else
1750long qemu_getrampagesize(void)
1751{
1752 return getpagesize();
1753}
1754#endif
1755
d5dbde46 1756#ifdef CONFIG_POSIX
d6af99c9
HZ
1757static int64_t get_file_size(int fd)
1758{
1759 int64_t size = lseek(fd, 0, SEEK_END);
1760 if (size < 0) {
1761 return -errno;
1762 }
1763 return size;
1764}
1765
8d37b030
MAL
1766static int file_ram_open(const char *path,
1767 const char *region_name,
1768 bool *created,
1769 Error **errp)
c902760f
MT
1770{
1771 char *filename;
8ca761f6
PF
1772 char *sanitized_name;
1773 char *c;
5c3ece79 1774 int fd = -1;
c902760f 1775
8d37b030 1776 *created = false;
fd97fd44
MA
1777 for (;;) {
1778 fd = open(path, O_RDWR);
1779 if (fd >= 0) {
1780 /* @path names an existing file, use it */
1781 break;
8d31d6b6 1782 }
fd97fd44
MA
1783 if (errno == ENOENT) {
1784 /* @path names a file that doesn't exist, create it */
1785 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1786 if (fd >= 0) {
8d37b030 1787 *created = true;
fd97fd44
MA
1788 break;
1789 }
1790 } else if (errno == EISDIR) {
1791 /* @path names a directory, create a file there */
1792 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1793 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1794 for (c = sanitized_name; *c != '\0'; c++) {
1795 if (*c == '/') {
1796 *c = '_';
1797 }
1798 }
8ca761f6 1799
fd97fd44
MA
1800 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1801 sanitized_name);
1802 g_free(sanitized_name);
8d31d6b6 1803
fd97fd44
MA
1804 fd = mkstemp(filename);
1805 if (fd >= 0) {
1806 unlink(filename);
1807 g_free(filename);
1808 break;
1809 }
1810 g_free(filename);
8d31d6b6 1811 }
fd97fd44
MA
1812 if (errno != EEXIST && errno != EINTR) {
1813 error_setg_errno(errp, errno,
1814 "can't open backing store %s for guest RAM",
1815 path);
8d37b030 1816 return -1;
fd97fd44
MA
1817 }
1818 /*
1819 * Try again on EINTR and EEXIST. The latter happens when
1820 * something else creates the file between our two open().
1821 */
8d31d6b6 1822 }
c902760f 1823
8d37b030
MAL
1824 return fd;
1825}
1826
1827static void *file_ram_alloc(RAMBlock *block,
1828 ram_addr_t memory,
1829 int fd,
1830 bool truncate,
1831 Error **errp)
1832{
1833 void *area;
1834
863e9621 1835 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1836 if (block->mr->align % block->page_size) {
1837 error_setg(errp, "alignment 0x%" PRIx64
1838 " must be multiples of page size 0x%zx",
1839 block->mr->align, block->page_size);
1840 return NULL;
61362b71
DH
1841 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1842 error_setg(errp, "alignment 0x%" PRIx64
1843 " must be a power of two", block->mr->align);
1844 return NULL;
98376843
HZ
1845 }
1846 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1847#if defined(__s390x__)
1848 if (kvm_enabled()) {
1849 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1850 }
1851#endif
fd97fd44 1852
863e9621 1853 if (memory < block->page_size) {
fd97fd44 1854 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1855 "or larger than page size 0x%zx",
1856 memory, block->page_size);
8d37b030 1857 return NULL;
1775f111
HZ
1858 }
1859
863e9621 1860 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1861
1862 /*
1863 * ftruncate is not supported by hugetlbfs in older
1864 * hosts, so don't bother bailing out on errors.
1865 * If anything goes wrong with it under other filesystems,
1866 * mmap will fail.
d6af99c9
HZ
1867 *
1868 * Do not truncate the non-empty backend file to avoid corrupting
1869 * the existing data in the file. Disabling shrinking is not
1870 * enough. For example, the current vNVDIMM implementation stores
1871 * the guest NVDIMM labels at the end of the backend file. If the
1872 * backend file is later extended, QEMU will not be able to find
1873 * those labels. Therefore, extending the non-empty backend file
1874 * is disabled as well.
c902760f 1875 */
8d37b030 1876 if (truncate && ftruncate(fd, memory)) {
9742bf26 1877 perror("ftruncate");
7f56e740 1878 }
c902760f 1879
d2f39add
DD
1880 area = qemu_ram_mmap(fd, memory, block->mr->align,
1881 block->flags & RAM_SHARED);
c902760f 1882 if (area == MAP_FAILED) {
7f56e740 1883 error_setg_errno(errp, errno,
fd97fd44 1884 "unable to map backing store for guest RAM");
8d37b030 1885 return NULL;
c902760f 1886 }
ef36fa14
MT
1887
1888 if (mem_prealloc) {
1e356fc1 1889 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1890 if (errp && *errp) {
53adb9d4 1891 qemu_ram_munmap(fd, area, memory);
8d37b030 1892 return NULL;
056b68af 1893 }
ef36fa14
MT
1894 }
1895
04b16653 1896 block->fd = fd;
c902760f
MT
1897 return area;
1898}
1899#endif
1900
154cc9ea
DDAG
1901/* Allocate space within the ram_addr_t space that governs the
1902 * dirty bitmaps.
1903 * Called with the ramlist lock held.
1904 */
d17b5288 1905static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1906{
1907 RAMBlock *block, *next_block;
3e837b2c 1908 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1909
49cd9ac6
SH
1910 assert(size != 0); /* it would hand out same offset multiple times */
1911
0dc3f44a 1912 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1913 return 0;
0d53d9fe 1914 }
04b16653 1915
99e15582 1916 RAMBLOCK_FOREACH(block) {
154cc9ea 1917 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1918
801110ab
DDAG
1919 /* Align blocks to start on a 'long' in the bitmap
1920 * which makes the bitmap sync'ing take the fast path.
1921 */
154cc9ea 1922 candidate = block->offset + block->max_length;
801110ab 1923 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1924
154cc9ea
DDAG
1925 /* Search for the closest following block
1926 * and find the gap.
1927 */
99e15582 1928 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1929 if (next_block->offset >= candidate) {
04b16653
AW
1930 next = MIN(next, next_block->offset);
1931 }
1932 }
154cc9ea
DDAG
1933
1934 /* If it fits remember our place and remember the size
1935 * of gap, but keep going so that we might find a smaller
1936 * gap to fill so avoiding fragmentation.
1937 */
1938 if (next - candidate >= size && next - candidate < mingap) {
1939 offset = candidate;
1940 mingap = next - candidate;
04b16653 1941 }
154cc9ea
DDAG
1942
1943 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1944 }
3e837b2c
AW
1945
1946 if (offset == RAM_ADDR_MAX) {
1947 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1948 (uint64_t)size);
1949 abort();
1950 }
1951
154cc9ea
DDAG
1952 trace_find_ram_offset(size, offset);
1953
04b16653
AW
1954 return offset;
1955}
1956
c136180c 1957static unsigned long last_ram_page(void)
d17b5288
AW
1958{
1959 RAMBlock *block;
1960 ram_addr_t last = 0;
1961
0dc3f44a 1962 rcu_read_lock();
99e15582 1963 RAMBLOCK_FOREACH(block) {
62be4e3a 1964 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1965 }
0dc3f44a 1966 rcu_read_unlock();
b8c48993 1967 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1968}
1969
ddb97f1d
JB
1970static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1971{
1972 int ret;
ddb97f1d
JB
1973
1974 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1975 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1976 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1977 if (ret) {
1978 perror("qemu_madvise");
1979 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1980 "but dump_guest_core=off specified\n");
1981 }
1982 }
1983}
1984
422148d3
DDAG
1985const char *qemu_ram_get_idstr(RAMBlock *rb)
1986{
1987 return rb->idstr;
1988}
1989
754cb9c0
YK
1990void *qemu_ram_get_host_addr(RAMBlock *rb)
1991{
1992 return rb->host;
1993}
1994
1995ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1996{
1997 return rb->offset;
1998}
1999
2000ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2001{
2002 return rb->used_length;
2003}
2004
463a4ac2
DDAG
2005bool qemu_ram_is_shared(RAMBlock *rb)
2006{
2007 return rb->flags & RAM_SHARED;
2008}
2009
2ce16640
DDAG
2010/* Note: Only set at the start of postcopy */
2011bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2012{
2013 return rb->flags & RAM_UF_ZEROPAGE;
2014}
2015
2016void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2017{
2018 rb->flags |= RAM_UF_ZEROPAGE;
2019}
2020
b895de50
CLG
2021bool qemu_ram_is_migratable(RAMBlock *rb)
2022{
2023 return rb->flags & RAM_MIGRATABLE;
2024}
2025
2026void qemu_ram_set_migratable(RAMBlock *rb)
2027{
2028 rb->flags |= RAM_MIGRATABLE;
2029}
2030
2031void qemu_ram_unset_migratable(RAMBlock *rb)
2032{
2033 rb->flags &= ~RAM_MIGRATABLE;
2034}
2035
ae3a7047 2036/* Called with iothread lock held. */
fa53a0e5 2037void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2038{
fa53a0e5 2039 RAMBlock *block;
20cfe881 2040
c5705a77
AK
2041 assert(new_block);
2042 assert(!new_block->idstr[0]);
84b89d78 2043
09e5ab63
AL
2044 if (dev) {
2045 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2046 if (id) {
2047 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2048 g_free(id);
84b89d78
CM
2049 }
2050 }
2051 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2052
ab0a9956 2053 rcu_read_lock();
99e15582 2054 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2055 if (block != new_block &&
2056 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2057 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2058 new_block->idstr);
2059 abort();
2060 }
2061 }
0dc3f44a 2062 rcu_read_unlock();
c5705a77
AK
2063}
2064
ae3a7047 2065/* Called with iothread lock held. */
fa53a0e5 2066void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2067{
ae3a7047
MD
2068 /* FIXME: arch_init.c assumes that this is not called throughout
2069 * migration. Ignore the problem since hot-unplug during migration
2070 * does not work anyway.
2071 */
20cfe881
HT
2072 if (block) {
2073 memset(block->idstr, 0, sizeof(block->idstr));
2074 }
2075}
2076
863e9621
DDAG
2077size_t qemu_ram_pagesize(RAMBlock *rb)
2078{
2079 return rb->page_size;
2080}
2081
67f11b5c
DDAG
2082/* Returns the largest size of page in use */
2083size_t qemu_ram_pagesize_largest(void)
2084{
2085 RAMBlock *block;
2086 size_t largest = 0;
2087
99e15582 2088 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2089 largest = MAX(largest, qemu_ram_pagesize(block));
2090 }
2091
2092 return largest;
2093}
2094
8490fc78
LC
2095static int memory_try_enable_merging(void *addr, size_t len)
2096{
75cc7f01 2097 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2098 /* disabled by the user */
2099 return 0;
2100 }
2101
2102 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2103}
2104
62be4e3a
MT
2105/* Only legal before guest might have detected the memory size: e.g. on
2106 * incoming migration, or right after reset.
2107 *
2108 * As memory core doesn't know how is memory accessed, it is up to
2109 * resize callback to update device state and/or add assertions to detect
2110 * misuse, if necessary.
2111 */
fa53a0e5 2112int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2113{
62be4e3a
MT
2114 assert(block);
2115
4ed023ce 2116 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2117
62be4e3a
MT
2118 if (block->used_length == newsize) {
2119 return 0;
2120 }
2121
2122 if (!(block->flags & RAM_RESIZEABLE)) {
2123 error_setg_errno(errp, EINVAL,
2124 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2125 " in != 0x" RAM_ADDR_FMT, block->idstr,
2126 newsize, block->used_length);
2127 return -EINVAL;
2128 }
2129
2130 if (block->max_length < newsize) {
2131 error_setg_errno(errp, EINVAL,
2132 "Length too large: %s: 0x" RAM_ADDR_FMT
2133 " > 0x" RAM_ADDR_FMT, block->idstr,
2134 newsize, block->max_length);
2135 return -EINVAL;
2136 }
2137
2138 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2139 block->used_length = newsize;
58d2707e
PB
2140 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2141 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2142 memory_region_set_size(block->mr, newsize);
2143 if (block->resized) {
2144 block->resized(block->idstr, newsize, block->host);
2145 }
2146 return 0;
2147}
2148
5b82b703
SH
2149/* Called with ram_list.mutex held */
2150static void dirty_memory_extend(ram_addr_t old_ram_size,
2151 ram_addr_t new_ram_size)
2152{
2153 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2154 DIRTY_MEMORY_BLOCK_SIZE);
2155 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2156 DIRTY_MEMORY_BLOCK_SIZE);
2157 int i;
2158
2159 /* Only need to extend if block count increased */
2160 if (new_num_blocks <= old_num_blocks) {
2161 return;
2162 }
2163
2164 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2165 DirtyMemoryBlocks *old_blocks;
2166 DirtyMemoryBlocks *new_blocks;
2167 int j;
2168
2169 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2170 new_blocks = g_malloc(sizeof(*new_blocks) +
2171 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2172
2173 if (old_num_blocks) {
2174 memcpy(new_blocks->blocks, old_blocks->blocks,
2175 old_num_blocks * sizeof(old_blocks->blocks[0]));
2176 }
2177
2178 for (j = old_num_blocks; j < new_num_blocks; j++) {
2179 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2180 }
2181
2182 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2183
2184 if (old_blocks) {
2185 g_free_rcu(old_blocks, rcu);
2186 }
2187 }
2188}
2189
06329cce 2190static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2191{
e1c57ab8 2192 RAMBlock *block;
0d53d9fe 2193 RAMBlock *last_block = NULL;
2152f5ca 2194 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2195 Error *err = NULL;
2152f5ca 2196
b8c48993 2197 old_ram_size = last_ram_page();
c5705a77 2198
b2a8658e 2199 qemu_mutex_lock_ramlist();
9b8424d5 2200 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2201
2202 if (!new_block->host) {
2203 if (xen_enabled()) {
9b8424d5 2204 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2205 new_block->mr, &err);
2206 if (err) {
2207 error_propagate(errp, err);
2208 qemu_mutex_unlock_ramlist();
39c350ee 2209 return;
37aa7a0e 2210 }
e1c57ab8 2211 } else {
9b8424d5 2212 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2213 &new_block->mr->align, shared);
39228250 2214 if (!new_block->host) {
ef701d7b
HT
2215 error_setg_errno(errp, errno,
2216 "cannot set up guest memory '%s'",
2217 memory_region_name(new_block->mr));
2218 qemu_mutex_unlock_ramlist();
39c350ee 2219 return;
39228250 2220 }
9b8424d5 2221 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2222 }
c902760f 2223 }
94a6b54f 2224
dd631697
LZ
2225 new_ram_size = MAX(old_ram_size,
2226 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2227 if (new_ram_size > old_ram_size) {
5b82b703 2228 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2229 }
0d53d9fe
MD
2230 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2231 * QLIST (which has an RCU-friendly variant) does not have insertion at
2232 * tail, so save the last element in last_block.
2233 */
99e15582 2234 RAMBLOCK_FOREACH(block) {
0d53d9fe 2235 last_block = block;
9b8424d5 2236 if (block->max_length < new_block->max_length) {
abb26d63
PB
2237 break;
2238 }
2239 }
2240 if (block) {
0dc3f44a 2241 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2242 } else if (last_block) {
0dc3f44a 2243 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2244 } else { /* list is empty */
0dc3f44a 2245 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2246 }
0d6d3c87 2247 ram_list.mru_block = NULL;
94a6b54f 2248
0dc3f44a
MD
2249 /* Write list before version */
2250 smp_wmb();
f798b07f 2251 ram_list.version++;
b2a8658e 2252 qemu_mutex_unlock_ramlist();
f798b07f 2253
9b8424d5 2254 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2255 new_block->used_length,
2256 DIRTY_CLIENTS_ALL);
94a6b54f 2257
a904c911
PB
2258 if (new_block->host) {
2259 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2260 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2261 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2262 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2263 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2264 }
94a6b54f 2265}
e9a1ab19 2266
d5dbde46 2267#ifdef CONFIG_POSIX
38b3362d 2268RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2269 uint32_t ram_flags, int fd,
38b3362d 2270 Error **errp)
e1c57ab8
PB
2271{
2272 RAMBlock *new_block;
ef701d7b 2273 Error *local_err = NULL;
8d37b030 2274 int64_t file_size;
e1c57ab8 2275
a4de8552
JH
2276 /* Just support these ram flags by now. */
2277 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2278
e1c57ab8 2279 if (xen_enabled()) {
7f56e740 2280 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2281 return NULL;
e1c57ab8
PB
2282 }
2283
e45e7ae2
MAL
2284 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2285 error_setg(errp,
2286 "host lacks kvm mmu notifiers, -mem-path unsupported");
2287 return NULL;
2288 }
2289
e1c57ab8
PB
2290 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2291 /*
2292 * file_ram_alloc() needs to allocate just like
2293 * phys_mem_alloc, but we haven't bothered to provide
2294 * a hook there.
2295 */
7f56e740
PB
2296 error_setg(errp,
2297 "-mem-path not supported with this accelerator");
528f46af 2298 return NULL;
e1c57ab8
PB
2299 }
2300
4ed023ce 2301 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2302 file_size = get_file_size(fd);
2303 if (file_size > 0 && file_size < size) {
2304 error_setg(errp, "backing store %s size 0x%" PRIx64
2305 " does not match 'size' option 0x" RAM_ADDR_FMT,
2306 mem_path, file_size, size);
8d37b030
MAL
2307 return NULL;
2308 }
2309
e1c57ab8
PB
2310 new_block = g_malloc0(sizeof(*new_block));
2311 new_block->mr = mr;
9b8424d5
MT
2312 new_block->used_length = size;
2313 new_block->max_length = size;
cbfc0171 2314 new_block->flags = ram_flags;
8d37b030 2315 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2316 if (!new_block->host) {
2317 g_free(new_block);
528f46af 2318 return NULL;
7f56e740
PB
2319 }
2320
cbfc0171 2321 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2322 if (local_err) {
2323 g_free(new_block);
2324 error_propagate(errp, local_err);
528f46af 2325 return NULL;
ef701d7b 2326 }
528f46af 2327 return new_block;
38b3362d
MAL
2328
2329}
2330
2331
2332RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2333 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2334 Error **errp)
2335{
2336 int fd;
2337 bool created;
2338 RAMBlock *block;
2339
2340 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2341 if (fd < 0) {
2342 return NULL;
2343 }
2344
cbfc0171 2345 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2346 if (!block) {
2347 if (created) {
2348 unlink(mem_path);
2349 }
2350 close(fd);
2351 return NULL;
2352 }
2353
2354 return block;
e1c57ab8 2355}
0b183fc8 2356#endif
e1c57ab8 2357
62be4e3a 2358static
528f46af
FZ
2359RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2360 void (*resized)(const char*,
2361 uint64_t length,
2362 void *host),
06329cce 2363 void *host, bool resizeable, bool share,
528f46af 2364 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2365{
2366 RAMBlock *new_block;
ef701d7b 2367 Error *local_err = NULL;
e1c57ab8 2368
4ed023ce
DDAG
2369 size = HOST_PAGE_ALIGN(size);
2370 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2371 new_block = g_malloc0(sizeof(*new_block));
2372 new_block->mr = mr;
62be4e3a 2373 new_block->resized = resized;
9b8424d5
MT
2374 new_block->used_length = size;
2375 new_block->max_length = max_size;
62be4e3a 2376 assert(max_size >= size);
e1c57ab8 2377 new_block->fd = -1;
863e9621 2378 new_block->page_size = getpagesize();
e1c57ab8
PB
2379 new_block->host = host;
2380 if (host) {
7bd4f430 2381 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2382 }
62be4e3a
MT
2383 if (resizeable) {
2384 new_block->flags |= RAM_RESIZEABLE;
2385 }
06329cce 2386 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2387 if (local_err) {
2388 g_free(new_block);
2389 error_propagate(errp, local_err);
528f46af 2390 return NULL;
ef701d7b 2391 }
528f46af 2392 return new_block;
e1c57ab8
PB
2393}
2394
528f46af 2395RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2396 MemoryRegion *mr, Error **errp)
2397{
06329cce
MA
2398 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2399 false, mr, errp);
62be4e3a
MT
2400}
2401
06329cce
MA
2402RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2403 MemoryRegion *mr, Error **errp)
6977dfe6 2404{
06329cce
MA
2405 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2406 share, mr, errp);
62be4e3a
MT
2407}
2408
528f46af 2409RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2410 void (*resized)(const char*,
2411 uint64_t length,
2412 void *host),
2413 MemoryRegion *mr, Error **errp)
2414{
06329cce
MA
2415 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2416 false, mr, errp);
6977dfe6
YT
2417}
2418
43771539
PB
2419static void reclaim_ramblock(RAMBlock *block)
2420{
2421 if (block->flags & RAM_PREALLOC) {
2422 ;
2423 } else if (xen_enabled()) {
2424 xen_invalidate_map_cache_entry(block->host);
2425#ifndef _WIN32
2426 } else if (block->fd >= 0) {
53adb9d4 2427 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2428 close(block->fd);
2429#endif
2430 } else {
2431 qemu_anon_ram_free(block->host, block->max_length);
2432 }
2433 g_free(block);
2434}
2435
f1060c55 2436void qemu_ram_free(RAMBlock *block)
e9a1ab19 2437{
85bc2a15
MAL
2438 if (!block) {
2439 return;
2440 }
2441
0987d735
PB
2442 if (block->host) {
2443 ram_block_notify_remove(block->host, block->max_length);
2444 }
2445
b2a8658e 2446 qemu_mutex_lock_ramlist();
f1060c55
FZ
2447 QLIST_REMOVE_RCU(block, next);
2448 ram_list.mru_block = NULL;
2449 /* Write list before version */
2450 smp_wmb();
2451 ram_list.version++;
2452 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2453 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2454}
2455
cd19cfa2
HY
2456#ifndef _WIN32
2457void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2458{
2459 RAMBlock *block;
2460 ram_addr_t offset;
2461 int flags;
2462 void *area, *vaddr;
2463
99e15582 2464 RAMBLOCK_FOREACH(block) {
cd19cfa2 2465 offset = addr - block->offset;
9b8424d5 2466 if (offset < block->max_length) {
1240be24 2467 vaddr = ramblock_ptr(block, offset);
7bd4f430 2468 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2469 ;
dfeaf2ab
MA
2470 } else if (xen_enabled()) {
2471 abort();
cd19cfa2
HY
2472 } else {
2473 flags = MAP_FIXED;
3435f395 2474 if (block->fd >= 0) {
dbcb8981
PB
2475 flags |= (block->flags & RAM_SHARED ?
2476 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2477 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2478 flags, block->fd, offset);
cd19cfa2 2479 } else {
2eb9fbaa
MA
2480 /*
2481 * Remap needs to match alloc. Accelerators that
2482 * set phys_mem_alloc never remap. If they did,
2483 * we'd need a remap hook here.
2484 */
2485 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2486
cd19cfa2
HY
2487 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2488 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2489 flags, -1, 0);
cd19cfa2
HY
2490 }
2491 if (area != vaddr) {
493d89bf
AF
2492 error_report("Could not remap addr: "
2493 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2494 length, addr);
cd19cfa2
HY
2495 exit(1);
2496 }
8490fc78 2497 memory_try_enable_merging(vaddr, length);
ddb97f1d 2498 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2499 }
cd19cfa2
HY
2500 }
2501 }
2502}
2503#endif /* !_WIN32 */
2504
1b5ec234 2505/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2506 * This should not be used for general purpose DMA. Use address_space_map
2507 * or address_space_rw instead. For local memory (e.g. video ram) that the
2508 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2509 *
49b24afc 2510 * Called within RCU critical section.
1b5ec234 2511 */
0878d0e1 2512void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2513{
3655cb9c
GA
2514 RAMBlock *block = ram_block;
2515
2516 if (block == NULL) {
2517 block = qemu_get_ram_block(addr);
0878d0e1 2518 addr -= block->offset;
3655cb9c 2519 }
ae3a7047
MD
2520
2521 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2522 /* We need to check if the requested address is in the RAM
2523 * because we don't want to map the entire memory in QEMU.
2524 * In that case just map until the end of the page.
2525 */
2526 if (block->offset == 0) {
1ff7c598 2527 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2528 }
ae3a7047 2529
1ff7c598 2530 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2531 }
0878d0e1 2532 return ramblock_ptr(block, addr);
dc828ca1
PB
2533}
2534
0878d0e1 2535/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2536 * but takes a size argument.
0dc3f44a 2537 *
e81bcda5 2538 * Called within RCU critical section.
ae3a7047 2539 */
3655cb9c 2540static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2541 hwaddr *size, bool lock)
38bee5dc 2542{
3655cb9c 2543 RAMBlock *block = ram_block;
8ab934f9
SS
2544 if (*size == 0) {
2545 return NULL;
2546 }
e81bcda5 2547
3655cb9c
GA
2548 if (block == NULL) {
2549 block = qemu_get_ram_block(addr);
0878d0e1 2550 addr -= block->offset;
3655cb9c 2551 }
0878d0e1 2552 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2553
2554 if (xen_enabled() && block->host == NULL) {
2555 /* We need to check if the requested address is in the RAM
2556 * because we don't want to map the entire memory in QEMU.
2557 * In that case just map the requested area.
2558 */
2559 if (block->offset == 0) {
f5aa69bd 2560 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2561 }
2562
f5aa69bd 2563 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2564 }
e81bcda5 2565
0878d0e1 2566 return ramblock_ptr(block, addr);
38bee5dc
SS
2567}
2568
f90bb71b
DDAG
2569/* Return the offset of a hostpointer within a ramblock */
2570ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2571{
2572 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2573 assert((uintptr_t)host >= (uintptr_t)rb->host);
2574 assert(res < rb->max_length);
2575
2576 return res;
2577}
2578
422148d3
DDAG
2579/*
2580 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2581 * in that RAMBlock.
2582 *
2583 * ptr: Host pointer to look up
2584 * round_offset: If true round the result offset down to a page boundary
2585 * *ram_addr: set to result ram_addr
2586 * *offset: set to result offset within the RAMBlock
2587 *
2588 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2589 *
2590 * By the time this function returns, the returned pointer is not protected
2591 * by RCU anymore. If the caller is not within an RCU critical section and
2592 * does not hold the iothread lock, it must have other means of protecting the
2593 * pointer, such as a reference to the region that includes the incoming
2594 * ram_addr_t.
2595 */
422148d3 2596RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2597 ram_addr_t *offset)
5579c7f3 2598{
94a6b54f
PB
2599 RAMBlock *block;
2600 uint8_t *host = ptr;
2601
868bb33f 2602 if (xen_enabled()) {
f615f396 2603 ram_addr_t ram_addr;
0dc3f44a 2604 rcu_read_lock();
f615f396
PB
2605 ram_addr = xen_ram_addr_from_mapcache(ptr);
2606 block = qemu_get_ram_block(ram_addr);
422148d3 2607 if (block) {
d6b6aec4 2608 *offset = ram_addr - block->offset;
422148d3 2609 }
0dc3f44a 2610 rcu_read_unlock();
422148d3 2611 return block;
712c2b41
SS
2612 }
2613
0dc3f44a
MD
2614 rcu_read_lock();
2615 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2616 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2617 goto found;
2618 }
2619
99e15582 2620 RAMBLOCK_FOREACH(block) {
432d268c
JN
2621 /* This case append when the block is not mapped. */
2622 if (block->host == NULL) {
2623 continue;
2624 }
9b8424d5 2625 if (host - block->host < block->max_length) {
23887b79 2626 goto found;
f471a17e 2627 }
94a6b54f 2628 }
432d268c 2629
0dc3f44a 2630 rcu_read_unlock();
1b5ec234 2631 return NULL;
23887b79
PB
2632
2633found:
422148d3
DDAG
2634 *offset = (host - block->host);
2635 if (round_offset) {
2636 *offset &= TARGET_PAGE_MASK;
2637 }
0dc3f44a 2638 rcu_read_unlock();
422148d3
DDAG
2639 return block;
2640}
2641
e3dd7493
DDAG
2642/*
2643 * Finds the named RAMBlock
2644 *
2645 * name: The name of RAMBlock to find
2646 *
2647 * Returns: RAMBlock (or NULL if not found)
2648 */
2649RAMBlock *qemu_ram_block_by_name(const char *name)
2650{
2651 RAMBlock *block;
2652
99e15582 2653 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2654 if (!strcmp(name, block->idstr)) {
2655 return block;
2656 }
2657 }
2658
2659 return NULL;
2660}
2661
422148d3
DDAG
2662/* Some of the softmmu routines need to translate from a host pointer
2663 (typically a TLB entry) back to a ram offset. */
07bdaa41 2664ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2665{
2666 RAMBlock *block;
f615f396 2667 ram_addr_t offset;
422148d3 2668
f615f396 2669 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2670 if (!block) {
07bdaa41 2671 return RAM_ADDR_INVALID;
422148d3
DDAG
2672 }
2673
07bdaa41 2674 return block->offset + offset;
e890261f 2675}
f471a17e 2676
27266271
PM
2677/* Called within RCU critical section. */
2678void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2679 CPUState *cpu,
2680 vaddr mem_vaddr,
2681 ram_addr_t ram_addr,
2682 unsigned size)
2683{
2684 ndi->cpu = cpu;
2685 ndi->ram_addr = ram_addr;
2686 ndi->mem_vaddr = mem_vaddr;
2687 ndi->size = size;
0ac20318 2688 ndi->pages = NULL;
ba051fb5 2689
5aa1ef71 2690 assert(tcg_enabled());
52159192 2691 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2692 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2693 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2694 }
27266271
PM
2695}
2696
2697/* Called within RCU critical section. */
2698void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2699{
0ac20318 2700 if (ndi->pages) {
f28d0dfd 2701 assert(tcg_enabled());
0ac20318
EC
2702 page_collection_unlock(ndi->pages);
2703 ndi->pages = NULL;
27266271
PM
2704 }
2705
2706 /* Set both VGA and migration bits for simplicity and to remove
2707 * the notdirty callback faster.
2708 */
2709 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2710 DIRTY_CLIENTS_NOCODE);
2711 /* we remove the notdirty callback only if the code has been
2712 flushed */
2713 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2714 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2715 }
2716}
2717
2718/* Called within RCU critical section. */
2719static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2720 uint64_t val, unsigned size)
2721{
2722 NotDirtyInfo ndi;
2723
2724 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2725 ram_addr, size);
2726
6d3ede54 2727 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2728 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2729}
2730
b018ddf6 2731static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2732 unsigned size, bool is_write,
2733 MemTxAttrs attrs)
b018ddf6
PB
2734{
2735 return is_write;
2736}
2737
0e0df1e2 2738static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2739 .write = notdirty_mem_write,
b018ddf6 2740 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2741 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2742 .valid = {
2743 .min_access_size = 1,
2744 .max_access_size = 8,
2745 .unaligned = false,
2746 },
2747 .impl = {
2748 .min_access_size = 1,
2749 .max_access_size = 8,
2750 .unaligned = false,
2751 },
1ccde1cb
FB
2752};
2753
0f459d16 2754/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2755static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2756{
93afeade 2757 CPUState *cpu = current_cpu;
568496c0 2758 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2759 target_ulong vaddr;
a1d1bb31 2760 CPUWatchpoint *wp;
0f459d16 2761
5aa1ef71 2762 assert(tcg_enabled());
ff4700b0 2763 if (cpu->watchpoint_hit) {
06d55cc1
AL
2764 /* We re-entered the check after replacing the TB. Now raise
2765 * the debug interrupt so that is will trigger after the
2766 * current instruction. */
93afeade 2767 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2768 return;
2769 }
93afeade 2770 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2771 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2772 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2773 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2774 && (wp->flags & flags)) {
08225676
PM
2775 if (flags == BP_MEM_READ) {
2776 wp->flags |= BP_WATCHPOINT_HIT_READ;
2777 } else {
2778 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2779 }
2780 wp->hitaddr = vaddr;
66b9b43c 2781 wp->hitattrs = attrs;
ff4700b0 2782 if (!cpu->watchpoint_hit) {
568496c0
SF
2783 if (wp->flags & BP_CPU &&
2784 !cc->debug_check_watchpoint(cpu, wp)) {
2785 wp->flags &= ~BP_WATCHPOINT_HIT;
2786 continue;
2787 }
ff4700b0 2788 cpu->watchpoint_hit = wp;
a5e99826 2789
0ac20318 2790 mmap_lock();
239c51a5 2791 tb_check_watchpoint(cpu);
6e140f28 2792 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2793 cpu->exception_index = EXCP_DEBUG;
0ac20318 2794 mmap_unlock();
5638d180 2795 cpu_loop_exit(cpu);
6e140f28 2796 } else {
9b990ee5
RH
2797 /* Force execution of one insn next time. */
2798 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2799 mmap_unlock();
6886b980 2800 cpu_loop_exit_noexc(cpu);
6e140f28 2801 }
06d55cc1 2802 }
6e140f28
AL
2803 } else {
2804 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2805 }
2806 }
2807}
2808
6658ffb8
PB
2809/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2810 so these check for a hit then pass through to the normal out-of-line
2811 phys routines. */
66b9b43c
PM
2812static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2813 unsigned size, MemTxAttrs attrs)
6658ffb8 2814{
66b9b43c
PM
2815 MemTxResult res;
2816 uint64_t data;
79ed0416
PM
2817 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2818 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2819
2820 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2821 switch (size) {
66b9b43c 2822 case 1:
79ed0416 2823 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2824 break;
2825 case 2:
79ed0416 2826 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2827 break;
2828 case 4:
79ed0416 2829 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2830 break;
306526b5
PB
2831 case 8:
2832 data = address_space_ldq(as, addr, attrs, &res);
2833 break;
1ec9b909
AK
2834 default: abort();
2835 }
66b9b43c
PM
2836 *pdata = data;
2837 return res;
6658ffb8
PB
2838}
2839
66b9b43c
PM
2840static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2841 uint64_t val, unsigned size,
2842 MemTxAttrs attrs)
6658ffb8 2843{
66b9b43c 2844 MemTxResult res;
79ed0416
PM
2845 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2846 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2847
2848 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2849 switch (size) {
67364150 2850 case 1:
79ed0416 2851 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2852 break;
2853 case 2:
79ed0416 2854 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2855 break;
2856 case 4:
79ed0416 2857 address_space_stl(as, addr, val, attrs, &res);
67364150 2858 break;
306526b5
PB
2859 case 8:
2860 address_space_stq(as, addr, val, attrs, &res);
2861 break;
1ec9b909
AK
2862 default: abort();
2863 }
66b9b43c 2864 return res;
6658ffb8
PB
2865}
2866
1ec9b909 2867static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2868 .read_with_attrs = watch_mem_read,
2869 .write_with_attrs = watch_mem_write,
1ec9b909 2870 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2871 .valid = {
2872 .min_access_size = 1,
2873 .max_access_size = 8,
2874 .unaligned = false,
2875 },
2876 .impl = {
2877 .min_access_size = 1,
2878 .max_access_size = 8,
2879 .unaligned = false,
2880 },
6658ffb8 2881};
6658ffb8 2882
b2a44fca 2883static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2884 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2885static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2886 const uint8_t *buf, hwaddr len);
2887static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2888 bool is_write, MemTxAttrs attrs);
16620684 2889
f25a49e0
PM
2890static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2891 unsigned len, MemTxAttrs attrs)
db7b5426 2892{
acc9d80b 2893 subpage_t *subpage = opaque;
ff6cff75 2894 uint8_t buf[8];
5c9eb028 2895 MemTxResult res;
791af8c8 2896
db7b5426 2897#if defined(DEBUG_SUBPAGE)
016e9d62 2898 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2899 subpage, len, addr);
db7b5426 2900#endif
16620684 2901 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2902 if (res) {
2903 return res;
f25a49e0 2904 }
6d3ede54
PM
2905 *data = ldn_p(buf, len);
2906 return MEMTX_OK;
db7b5426
BS
2907}
2908
f25a49e0
PM
2909static MemTxResult subpage_write(void *opaque, hwaddr addr,
2910 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2911{
acc9d80b 2912 subpage_t *subpage = opaque;
ff6cff75 2913 uint8_t buf[8];
acc9d80b 2914
db7b5426 2915#if defined(DEBUG_SUBPAGE)
016e9d62 2916 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2917 " value %"PRIx64"\n",
2918 __func__, subpage, len, addr, value);
db7b5426 2919#endif
6d3ede54 2920 stn_p(buf, len, value);
16620684 2921 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2922}
2923
c353e4cc 2924static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2925 unsigned len, bool is_write,
2926 MemTxAttrs attrs)
c353e4cc 2927{
acc9d80b 2928 subpage_t *subpage = opaque;
c353e4cc 2929#if defined(DEBUG_SUBPAGE)
016e9d62 2930 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2931 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2932#endif
2933
16620684 2934 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2935 len, is_write, attrs);
c353e4cc
PB
2936}
2937
70c68e44 2938static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2939 .read_with_attrs = subpage_read,
2940 .write_with_attrs = subpage_write,
ff6cff75
PB
2941 .impl.min_access_size = 1,
2942 .impl.max_access_size = 8,
2943 .valid.min_access_size = 1,
2944 .valid.max_access_size = 8,
c353e4cc 2945 .valid.accepts = subpage_accepts,
70c68e44 2946 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2947};
2948
c227f099 2949static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2950 uint16_t section)
db7b5426
BS
2951{
2952 int idx, eidx;
2953
2954 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2955 return -1;
2956 idx = SUBPAGE_IDX(start);
2957 eidx = SUBPAGE_IDX(end);
2958#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2959 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2960 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2961#endif
db7b5426 2962 for (; idx <= eidx; idx++) {
5312bd8b 2963 mmio->sub_section[idx] = section;
db7b5426
BS
2964 }
2965
2966 return 0;
2967}
2968
16620684 2969static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2970{
c227f099 2971 subpage_t *mmio;
db7b5426 2972
2615fabd 2973 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2974 mmio->fv = fv;
1eec614b 2975 mmio->base = base;
2c9b15ca 2976 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2977 NULL, TARGET_PAGE_SIZE);
b3b00c78 2978 mmio->iomem.subpage = true;
db7b5426 2979#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2980 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2981 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2982#endif
b41aac4f 2983 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2984
2985 return mmio;
2986}
2987
16620684 2988static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2989{
16620684 2990 assert(fv);
5312bd8b 2991 MemoryRegionSection section = {
16620684 2992 .fv = fv,
5312bd8b
AK
2993 .mr = mr,
2994 .offset_within_address_space = 0,
2995 .offset_within_region = 0,
052e87b0 2996 .size = int128_2_64(),
5312bd8b
AK
2997 };
2998
53cb28cb 2999 return phys_section_add(map, &section);
5312bd8b
AK
3000}
3001
8af36743
PM
3002static void readonly_mem_write(void *opaque, hwaddr addr,
3003 uint64_t val, unsigned size)
3004{
3005 /* Ignore any write to ROM. */
3006}
3007
3008static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3009 unsigned size, bool is_write,
3010 MemTxAttrs attrs)
8af36743
PM
3011{
3012 return is_write;
3013}
3014
3015/* This will only be used for writes, because reads are special cased
3016 * to directly access the underlying host ram.
3017 */
3018static const MemoryRegionOps readonly_mem_ops = {
3019 .write = readonly_mem_write,
3020 .valid.accepts = readonly_mem_accepts,
3021 .endianness = DEVICE_NATIVE_ENDIAN,
3022 .valid = {
3023 .min_access_size = 1,
3024 .max_access_size = 8,
3025 .unaligned = false,
3026 },
3027 .impl = {
3028 .min_access_size = 1,
3029 .max_access_size = 8,
3030 .unaligned = false,
3031 },
3032};
3033
2d54f194
PM
3034MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3035 hwaddr index, MemTxAttrs attrs)
aa102231 3036{
a54c87b6
PM
3037 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3038 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3039 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3040 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3041
2d54f194 3042 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3043}
3044
e9179ce1
AK
3045static void io_mem_init(void)
3046{
8af36743
PM
3047 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3048 NULL, NULL, UINT64_MAX);
2c9b15ca 3049 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3050 NULL, UINT64_MAX);
8d04fb55
JK
3051
3052 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3053 * which can be called without the iothread mutex.
3054 */
2c9b15ca 3055 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3056 NULL, UINT64_MAX);
8d04fb55
JK
3057 memory_region_clear_global_locking(&io_mem_notdirty);
3058
2c9b15ca 3059 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3060 NULL, UINT64_MAX);
e9179ce1
AK
3061}
3062
8629d3fc 3063AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3064{
53cb28cb
MA
3065 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3066 uint16_t n;
3067
16620684 3068 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3069 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3070 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3071 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3072 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3073 assert(n == PHYS_SECTION_ROM);
16620684 3074 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3075 assert(n == PHYS_SECTION_WATCH);
00752703 3076
9736e55b 3077 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3078
3079 return d;
00752703
PB
3080}
3081
66a6df1d 3082void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3083{
3084 phys_sections_free(&d->map);
3085 g_free(d);
3086}
3087
1d71148e 3088static void tcg_commit(MemoryListener *listener)
50c1e149 3089{
32857f4d
PM
3090 CPUAddressSpace *cpuas;
3091 AddressSpaceDispatch *d;
117712c3 3092
f28d0dfd 3093 assert(tcg_enabled());
117712c3
AK
3094 /* since each CPU stores ram addresses in its TLB cache, we must
3095 reset the modified entries */
32857f4d
PM
3096 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3097 cpu_reloading_memory_map();
3098 /* The CPU and TLB are protected by the iothread lock.
3099 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3100 * may have split the RCU critical section.
3101 */
66a6df1d 3102 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3103 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3104 tlb_flush(cpuas->cpu);
50c1e149
AK
3105}
3106
62152b8a
AK
3107static void memory_map_init(void)
3108{
7267c094 3109 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3110
57271d63 3111 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3112 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3113
7267c094 3114 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3115 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3116 65536);
7dca8043 3117 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3118}
3119
3120MemoryRegion *get_system_memory(void)
3121{
3122 return system_memory;
3123}
3124
309cb471
AK
3125MemoryRegion *get_system_io(void)
3126{
3127 return system_io;
3128}
3129
e2eef170
PB
3130#endif /* !defined(CONFIG_USER_ONLY) */
3131
13eb76e0
FB
3132/* physical memory access (slow version, mainly for debug) */
3133#if defined(CONFIG_USER_ONLY)
f17ec444 3134int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3135 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3136{
0c249ff7
LZ
3137 int flags;
3138 target_ulong l, page;
53a5960a 3139 void * p;
13eb76e0
FB
3140
3141 while (len > 0) {
3142 page = addr & TARGET_PAGE_MASK;
3143 l = (page + TARGET_PAGE_SIZE) - addr;
3144 if (l > len)
3145 l = len;
3146 flags = page_get_flags(page);
3147 if (!(flags & PAGE_VALID))
a68fe89c 3148 return -1;
13eb76e0
FB
3149 if (is_write) {
3150 if (!(flags & PAGE_WRITE))
a68fe89c 3151 return -1;
579a97f7 3152 /* XXX: this code should not depend on lock_user */
72fb7daa 3153 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3154 return -1;
72fb7daa
AJ
3155 memcpy(p, buf, l);
3156 unlock_user(p, addr, l);
13eb76e0
FB
3157 } else {
3158 if (!(flags & PAGE_READ))
a68fe89c 3159 return -1;
579a97f7 3160 /* XXX: this code should not depend on lock_user */
72fb7daa 3161 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3162 return -1;
72fb7daa 3163 memcpy(buf, p, l);
5b257578 3164 unlock_user(p, addr, 0);
13eb76e0
FB
3165 }
3166 len -= l;
3167 buf += l;
3168 addr += l;
3169 }
a68fe89c 3170 return 0;
13eb76e0 3171}
8df1cd07 3172
13eb76e0 3173#else
51d7a9eb 3174
845b6214 3175static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3176 hwaddr length)
51d7a9eb 3177{
e87f7778 3178 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3179 addr += memory_region_get_ram_addr(mr);
3180
e87f7778
PB
3181 /* No early return if dirty_log_mask is or becomes 0, because
3182 * cpu_physical_memory_set_dirty_range will still call
3183 * xen_modified_memory.
3184 */
3185 if (dirty_log_mask) {
3186 dirty_log_mask =
3187 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3188 }
3189 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3190 assert(tcg_enabled());
e87f7778
PB
3191 tb_invalidate_phys_range(addr, addr + length);
3192 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3193 }
e87f7778 3194 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3195}
3196
047be4ed
SH
3197void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3198{
3199 /*
3200 * In principle this function would work on other memory region types too,
3201 * but the ROM device use case is the only one where this operation is
3202 * necessary. Other memory regions should use the
3203 * address_space_read/write() APIs.
3204 */
3205 assert(memory_region_is_romd(mr));
3206
3207 invalidate_and_set_dirty(mr, addr, size);
3208}
3209
23326164 3210static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3211{
e1622f4b 3212 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3213
3214 /* Regions are assumed to support 1-4 byte accesses unless
3215 otherwise specified. */
23326164
RH
3216 if (access_size_max == 0) {
3217 access_size_max = 4;
3218 }
3219
3220 /* Bound the maximum access by the alignment of the address. */
3221 if (!mr->ops->impl.unaligned) {
3222 unsigned align_size_max = addr & -addr;
3223 if (align_size_max != 0 && align_size_max < access_size_max) {
3224 access_size_max = align_size_max;
3225 }
82f2563f 3226 }
23326164
RH
3227
3228 /* Don't attempt accesses larger than the maximum. */
3229 if (l > access_size_max) {
3230 l = access_size_max;
82f2563f 3231 }
6554f5c0 3232 l = pow2floor(l);
23326164
RH
3233
3234 return l;
82f2563f
PB
3235}
3236
4840f10e 3237static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3238{
4840f10e
JK
3239 bool unlocked = !qemu_mutex_iothread_locked();
3240 bool release_lock = false;
3241
3242 if (unlocked && mr->global_locking) {
3243 qemu_mutex_lock_iothread();
3244 unlocked = false;
3245 release_lock = true;
3246 }
125b3806 3247 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3248 if (unlocked) {
3249 qemu_mutex_lock_iothread();
3250 }
125b3806 3251 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3252 if (unlocked) {
3253 qemu_mutex_unlock_iothread();
3254 }
125b3806 3255 }
4840f10e
JK
3256
3257 return release_lock;
125b3806
PB
3258}
3259
a203ac70 3260/* Called within RCU critical section. */
16620684
AK
3261static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3262 MemTxAttrs attrs,
3263 const uint8_t *buf,
0c249ff7 3264 hwaddr len, hwaddr addr1,
16620684 3265 hwaddr l, MemoryRegion *mr)
13eb76e0 3266{
13eb76e0 3267 uint8_t *ptr;
791af8c8 3268 uint64_t val;
3b643495 3269 MemTxResult result = MEMTX_OK;
4840f10e 3270 bool release_lock = false;
3b46e624 3271
a203ac70 3272 for (;;) {
eb7eeb88
PB
3273 if (!memory_access_is_direct(mr, true)) {
3274 release_lock |= prepare_mmio_access(mr);
3275 l = memory_access_size(mr, l, addr1);
3276 /* XXX: could force current_cpu to NULL to avoid
3277 potential bugs */
6d3ede54
PM
3278 val = ldn_p(buf, l);
3279 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3280 } else {
eb7eeb88 3281 /* RAM case */
f5aa69bd 3282 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3283 memcpy(ptr, buf, l);
3284 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3285 }
4840f10e
JK
3286
3287 if (release_lock) {
3288 qemu_mutex_unlock_iothread();
3289 release_lock = false;
3290 }
3291
13eb76e0
FB
3292 len -= l;
3293 buf += l;
3294 addr += l;
a203ac70
PB
3295
3296 if (!len) {
3297 break;
3298 }
3299
3300 l = len;
efa99a2f 3301 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3302 }
fd8aaa76 3303
3b643495 3304 return result;
13eb76e0 3305}
8df1cd07 3306
4c6ebbb3 3307/* Called from RCU critical section. */
16620684 3308static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3309 const uint8_t *buf, hwaddr len)
ac1970fb 3310{
eb7eeb88 3311 hwaddr l;
eb7eeb88
PB
3312 hwaddr addr1;
3313 MemoryRegion *mr;
3314 MemTxResult result = MEMTX_OK;
eb7eeb88 3315
4c6ebbb3 3316 l = len;
efa99a2f 3317 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3318 result = flatview_write_continue(fv, addr, attrs, buf, len,
3319 addr1, l, mr);
a203ac70
PB
3320
3321 return result;
3322}
3323
3324/* Called within RCU critical section. */
16620684
AK
3325MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3326 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3327 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3328 MemoryRegion *mr)
a203ac70
PB
3329{
3330 uint8_t *ptr;
3331 uint64_t val;
3332 MemTxResult result = MEMTX_OK;
3333 bool release_lock = false;
eb7eeb88 3334
a203ac70 3335 for (;;) {
eb7eeb88
PB
3336 if (!memory_access_is_direct(mr, false)) {
3337 /* I/O case */
3338 release_lock |= prepare_mmio_access(mr);
3339 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3340 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3341 stn_p(buf, l, val);
eb7eeb88
PB
3342 } else {
3343 /* RAM case */
f5aa69bd 3344 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3345 memcpy(buf, ptr, l);
3346 }
3347
3348 if (release_lock) {
3349 qemu_mutex_unlock_iothread();
3350 release_lock = false;
3351 }
3352
3353 len -= l;
3354 buf += l;
3355 addr += l;
a203ac70
PB
3356
3357 if (!len) {
3358 break;
3359 }
3360
3361 l = len;
efa99a2f 3362 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3363 }
3364
3365 return result;
3366}
3367
b2a44fca
PB
3368/* Called from RCU critical section. */
3369static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3370 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3371{
3372 hwaddr l;
3373 hwaddr addr1;
3374 MemoryRegion *mr;
eb7eeb88 3375
b2a44fca 3376 l = len;
efa99a2f 3377 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3378 return flatview_read_continue(fv, addr, attrs, buf, len,
3379 addr1, l, mr);
ac1970fb
AK
3380}
3381
b2a44fca 3382MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3383 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3384{
3385 MemTxResult result = MEMTX_OK;
3386 FlatView *fv;
3387
3388 if (len > 0) {
3389 rcu_read_lock();
3390 fv = address_space_to_flatview(as);
3391 result = flatview_read(fv, addr, attrs, buf, len);
3392 rcu_read_unlock();
3393 }
3394
3395 return result;
3396}
3397
4c6ebbb3
PB
3398MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3399 MemTxAttrs attrs,
0c249ff7 3400 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3401{
3402 MemTxResult result = MEMTX_OK;
3403 FlatView *fv;
3404
3405 if (len > 0) {
3406 rcu_read_lock();
3407 fv = address_space_to_flatview(as);
3408 result = flatview_write(fv, addr, attrs, buf, len);
3409 rcu_read_unlock();
3410 }
3411
3412 return result;
3413}
3414
db84fd97 3415MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3416 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3417{
3418 if (is_write) {
3419 return address_space_write(as, addr, attrs, buf, len);
3420 } else {
3421 return address_space_read_full(as, addr, attrs, buf, len);
3422 }
3423}
3424
a8170e5e 3425void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3426 hwaddr len, int is_write)
ac1970fb 3427{
5c9eb028
PM
3428 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3429 buf, len, is_write);
ac1970fb
AK
3430}
3431
582b55a9
AG
3432enum write_rom_type {
3433 WRITE_DATA,
3434 FLUSH_CACHE,
3435};
3436
75693e14
PM
3437static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3438 hwaddr addr,
3439 MemTxAttrs attrs,
3440 const uint8_t *buf,
0c249ff7 3441 hwaddr len,
75693e14 3442 enum write_rom_type type)
d0ecd2aa 3443{
149f54b5 3444 hwaddr l;
d0ecd2aa 3445 uint8_t *ptr;
149f54b5 3446 hwaddr addr1;
5c8a00ce 3447 MemoryRegion *mr;
3b46e624 3448
41063e1e 3449 rcu_read_lock();
d0ecd2aa 3450 while (len > 0) {
149f54b5 3451 l = len;
75693e14 3452 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3453
5c8a00ce
PB
3454 if (!(memory_region_is_ram(mr) ||
3455 memory_region_is_romd(mr))) {
b242e0e0 3456 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3457 } else {
d0ecd2aa 3458 /* ROM/RAM case */
0878d0e1 3459 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3460 switch (type) {
3461 case WRITE_DATA:
3462 memcpy(ptr, buf, l);
845b6214 3463 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3464 break;
3465 case FLUSH_CACHE:
3466 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3467 break;
3468 }
d0ecd2aa
FB
3469 }
3470 len -= l;
3471 buf += l;
3472 addr += l;
3473 }
41063e1e 3474 rcu_read_unlock();
75693e14 3475 return MEMTX_OK;
d0ecd2aa
FB
3476}
3477
582b55a9 3478/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3479MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3480 MemTxAttrs attrs,
0c249ff7 3481 const uint8_t *buf, hwaddr len)
582b55a9 3482{
3c8133f9
PM
3483 return address_space_write_rom_internal(as, addr, attrs,
3484 buf, len, WRITE_DATA);
582b55a9
AG
3485}
3486
0c249ff7 3487void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3488{
3489 /*
3490 * This function should do the same thing as an icache flush that was
3491 * triggered from within the guest. For TCG we are always cache coherent,
3492 * so there is no need to flush anything. For KVM / Xen we need to flush
3493 * the host's instruction cache at least.
3494 */
3495 if (tcg_enabled()) {
3496 return;
3497 }
3498
75693e14
PM
3499 address_space_write_rom_internal(&address_space_memory,
3500 start, MEMTXATTRS_UNSPECIFIED,
3501 NULL, len, FLUSH_CACHE);
582b55a9
AG
3502}
3503
6d16c2f8 3504typedef struct {
d3e71559 3505 MemoryRegion *mr;
6d16c2f8 3506 void *buffer;
a8170e5e
AK
3507 hwaddr addr;
3508 hwaddr len;
c2cba0ff 3509 bool in_use;
6d16c2f8
AL
3510} BounceBuffer;
3511
3512static BounceBuffer bounce;
3513
ba223c29 3514typedef struct MapClient {
e95205e1 3515 QEMUBH *bh;
72cf2d4f 3516 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3517} MapClient;
3518
38e047b5 3519QemuMutex map_client_list_lock;
b58deb34 3520static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3521 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3522
e95205e1
FZ
3523static void cpu_unregister_map_client_do(MapClient *client)
3524{
3525 QLIST_REMOVE(client, link);
3526 g_free(client);
3527}
3528
33b6c2ed
FZ
3529static void cpu_notify_map_clients_locked(void)
3530{
3531 MapClient *client;
3532
3533 while (!QLIST_EMPTY(&map_client_list)) {
3534 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3535 qemu_bh_schedule(client->bh);
3536 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3537 }
3538}
3539
e95205e1 3540void cpu_register_map_client(QEMUBH *bh)
ba223c29 3541{
7267c094 3542 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3543
38e047b5 3544 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3545 client->bh = bh;
72cf2d4f 3546 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3547 if (!atomic_read(&bounce.in_use)) {
3548 cpu_notify_map_clients_locked();
3549 }
38e047b5 3550 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3551}
3552
38e047b5 3553void cpu_exec_init_all(void)
ba223c29 3554{
38e047b5 3555 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3556 /* The data structures we set up here depend on knowing the page size,
3557 * so no more changes can be made after this point.
3558 * In an ideal world, nothing we did before we had finished the
3559 * machine setup would care about the target page size, and we could
3560 * do this much later, rather than requiring board models to state
3561 * up front what their requirements are.
3562 */
3563 finalize_target_page_bits();
38e047b5 3564 io_mem_init();
680a4783 3565 memory_map_init();
38e047b5 3566 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3567}
3568
e95205e1 3569void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3570{
3571 MapClient *client;
3572
e95205e1
FZ
3573 qemu_mutex_lock(&map_client_list_lock);
3574 QLIST_FOREACH(client, &map_client_list, link) {
3575 if (client->bh == bh) {
3576 cpu_unregister_map_client_do(client);
3577 break;
3578 }
ba223c29 3579 }
e95205e1 3580 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3581}
3582
3583static void cpu_notify_map_clients(void)
3584{
38e047b5 3585 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3586 cpu_notify_map_clients_locked();
38e047b5 3587 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3588}
3589
0c249ff7 3590static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3591 bool is_write, MemTxAttrs attrs)
51644ab7 3592{
5c8a00ce 3593 MemoryRegion *mr;
51644ab7
PB
3594 hwaddr l, xlat;
3595
3596 while (len > 0) {
3597 l = len;
efa99a2f 3598 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3599 if (!memory_access_is_direct(mr, is_write)) {
3600 l = memory_access_size(mr, l, addr);
eace72b7 3601 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3602 return false;
3603 }
3604 }
3605
3606 len -= l;
3607 addr += l;
3608 }
3609 return true;
3610}
3611
16620684 3612bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3613 hwaddr len, bool is_write,
fddffa42 3614 MemTxAttrs attrs)
16620684 3615{
11e732a5
PB
3616 FlatView *fv;
3617 bool result;
3618
3619 rcu_read_lock();
3620 fv = address_space_to_flatview(as);
eace72b7 3621 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3622 rcu_read_unlock();
3623 return result;
16620684
AK
3624}
3625
715c31ec 3626static hwaddr
16620684 3627flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3628 hwaddr target_len,
3629 MemoryRegion *mr, hwaddr base, hwaddr len,
3630 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3631{
3632 hwaddr done = 0;
3633 hwaddr xlat;
3634 MemoryRegion *this_mr;
3635
3636 for (;;) {
3637 target_len -= len;
3638 addr += len;
3639 done += len;
3640 if (target_len == 0) {
3641 return done;
3642 }
3643
3644 len = target_len;
16620684 3645 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3646 &len, is_write, attrs);
715c31ec
PB
3647 if (this_mr != mr || xlat != base + done) {
3648 return done;
3649 }
3650 }
3651}
3652
6d16c2f8
AL
3653/* Map a physical memory region into a host virtual address.
3654 * May map a subset of the requested range, given by and returned in *plen.
3655 * May return NULL if resources needed to perform the mapping are exhausted.
3656 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3657 * Use cpu_register_map_client() to know when retrying the map operation is
3658 * likely to succeed.
6d16c2f8 3659 */
ac1970fb 3660void *address_space_map(AddressSpace *as,
a8170e5e
AK
3661 hwaddr addr,
3662 hwaddr *plen,
f26404fb
PM
3663 bool is_write,
3664 MemTxAttrs attrs)
6d16c2f8 3665{
a8170e5e 3666 hwaddr len = *plen;
715c31ec
PB
3667 hwaddr l, xlat;
3668 MemoryRegion *mr;
e81bcda5 3669 void *ptr;
ad0c60fa 3670 FlatView *fv;
6d16c2f8 3671
e3127ae0
PB
3672 if (len == 0) {
3673 return NULL;
3674 }
38bee5dc 3675
e3127ae0 3676 l = len;
41063e1e 3677 rcu_read_lock();
ad0c60fa 3678 fv = address_space_to_flatview(as);
efa99a2f 3679 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3680
e3127ae0 3681 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3682 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3683 rcu_read_unlock();
e3127ae0 3684 return NULL;
6d16c2f8 3685 }
e85d9db5
KW
3686 /* Avoid unbounded allocations */
3687 l = MIN(l, TARGET_PAGE_SIZE);
3688 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3689 bounce.addr = addr;
3690 bounce.len = l;
d3e71559
PB
3691
3692 memory_region_ref(mr);
3693 bounce.mr = mr;
e3127ae0 3694 if (!is_write) {
16620684 3695 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3696 bounce.buffer, l);
8ab934f9 3697 }
6d16c2f8 3698
41063e1e 3699 rcu_read_unlock();
e3127ae0
PB
3700 *plen = l;
3701 return bounce.buffer;
3702 }
3703
e3127ae0 3704
d3e71559 3705 memory_region_ref(mr);
16620684 3706 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3707 l, is_write, attrs);
f5aa69bd 3708 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3709 rcu_read_unlock();
3710
3711 return ptr;
6d16c2f8
AL
3712}
3713
ac1970fb 3714/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3715 * Will also mark the memory as dirty if is_write == 1. access_len gives
3716 * the amount of memory that was actually read or written by the caller.
3717 */
a8170e5e
AK
3718void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3719 int is_write, hwaddr access_len)
6d16c2f8
AL
3720{
3721 if (buffer != bounce.buffer) {
d3e71559
PB
3722 MemoryRegion *mr;
3723 ram_addr_t addr1;
3724
07bdaa41 3725 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3726 assert(mr != NULL);
6d16c2f8 3727 if (is_write) {
845b6214 3728 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3729 }
868bb33f 3730 if (xen_enabled()) {
e41d7c69 3731 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3732 }
d3e71559 3733 memory_region_unref(mr);
6d16c2f8
AL
3734 return;
3735 }
3736 if (is_write) {
5c9eb028
PM
3737 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3738 bounce.buffer, access_len);
6d16c2f8 3739 }
f8a83245 3740 qemu_vfree(bounce.buffer);
6d16c2f8 3741 bounce.buffer = NULL;
d3e71559 3742 memory_region_unref(bounce.mr);
c2cba0ff 3743 atomic_mb_set(&bounce.in_use, false);
ba223c29 3744 cpu_notify_map_clients();
6d16c2f8 3745}
d0ecd2aa 3746
a8170e5e
AK
3747void *cpu_physical_memory_map(hwaddr addr,
3748 hwaddr *plen,
ac1970fb
AK
3749 int is_write)
3750{
f26404fb
PM
3751 return address_space_map(&address_space_memory, addr, plen, is_write,
3752 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3753}
3754
a8170e5e
AK
3755void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3756 int is_write, hwaddr access_len)
ac1970fb
AK
3757{
3758 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3759}
3760
0ce265ff
PB
3761#define ARG1_DECL AddressSpace *as
3762#define ARG1 as
3763#define SUFFIX
3764#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3765#define RCU_READ_LOCK(...) rcu_read_lock()
3766#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3767#include "memory_ldst.inc.c"
1e78bcc1 3768
1f4e496e
PB
3769int64_t address_space_cache_init(MemoryRegionCache *cache,
3770 AddressSpace *as,
3771 hwaddr addr,
3772 hwaddr len,
3773 bool is_write)
3774{
48564041
PB
3775 AddressSpaceDispatch *d;
3776 hwaddr l;
3777 MemoryRegion *mr;
3778
3779 assert(len > 0);
3780
3781 l = len;
3782 cache->fv = address_space_get_flatview(as);
3783 d = flatview_to_dispatch(cache->fv);
3784 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3785
3786 mr = cache->mrs.mr;
3787 memory_region_ref(mr);
3788 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3789 /* We don't care about the memory attributes here as we're only
3790 * doing this if we found actual RAM, which behaves the same
3791 * regardless of attributes; so UNSPECIFIED is fine.
3792 */
48564041 3793 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3794 cache->xlat, l, is_write,
3795 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3796 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3797 } else {
3798 cache->ptr = NULL;
3799 }
3800
3801 cache->len = l;
3802 cache->is_write = is_write;
3803 return l;
1f4e496e
PB
3804}
3805
3806void address_space_cache_invalidate(MemoryRegionCache *cache,
3807 hwaddr addr,
3808 hwaddr access_len)
3809{
48564041
PB
3810 assert(cache->is_write);
3811 if (likely(cache->ptr)) {
3812 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3813 }
1f4e496e
PB
3814}
3815
3816void address_space_cache_destroy(MemoryRegionCache *cache)
3817{
48564041
PB
3818 if (!cache->mrs.mr) {
3819 return;
3820 }
3821
3822 if (xen_enabled()) {
3823 xen_invalidate_map_cache_entry(cache->ptr);
3824 }
3825 memory_region_unref(cache->mrs.mr);
3826 flatview_unref(cache->fv);
3827 cache->mrs.mr = NULL;
3828 cache->fv = NULL;
3829}
3830
3831/* Called from RCU critical section. This function has the same
3832 * semantics as address_space_translate, but it only works on a
3833 * predefined range of a MemoryRegion that was mapped with
3834 * address_space_cache_init.
3835 */
3836static inline MemoryRegion *address_space_translate_cached(
3837 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3838 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3839{
3840 MemoryRegionSection section;
3841 MemoryRegion *mr;
3842 IOMMUMemoryRegion *iommu_mr;
3843 AddressSpace *target_as;
3844
3845 assert(!cache->ptr);
3846 *xlat = addr + cache->xlat;
3847
3848 mr = cache->mrs.mr;
3849 iommu_mr = memory_region_get_iommu(mr);
3850 if (!iommu_mr) {
3851 /* MMIO region. */
3852 return mr;
3853 }
3854
3855 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3856 NULL, is_write, true,
2f7b009c 3857 &target_as, attrs);
48564041
PB
3858 return section.mr;
3859}
3860
3861/* Called from RCU critical section. address_space_read_cached uses this
3862 * out of line function when the target is an MMIO or IOMMU region.
3863 */
3864void
3865address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3866 void *buf, hwaddr len)
48564041
PB
3867{
3868 hwaddr addr1, l;
3869 MemoryRegion *mr;
3870
3871 l = len;
bc6b1cec
PM
3872 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3873 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3874 flatview_read_continue(cache->fv,
3875 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3876 addr1, l, mr);
3877}
3878
3879/* Called from RCU critical section. address_space_write_cached uses this
3880 * out of line function when the target is an MMIO or IOMMU region.
3881 */
3882void
3883address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3884 const void *buf, hwaddr len)
48564041
PB
3885{
3886 hwaddr addr1, l;
3887 MemoryRegion *mr;
3888
3889 l = len;
bc6b1cec
PM
3890 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3891 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3892 flatview_write_continue(cache->fv,
3893 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3894 addr1, l, mr);
1f4e496e
PB
3895}
3896
3897#define ARG1_DECL MemoryRegionCache *cache
3898#define ARG1 cache
48564041
PB
3899#define SUFFIX _cached_slow
3900#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3901#define RCU_READ_LOCK() ((void)0)
3902#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3903#include "memory_ldst.inc.c"
3904
5e2972fd 3905/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3906int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3907 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3908{
a8170e5e 3909 hwaddr phys_addr;
0c249ff7 3910 target_ulong l, page;
13eb76e0 3911
79ca7a1b 3912 cpu_synchronize_state(cpu);
13eb76e0 3913 while (len > 0) {
5232e4c7
PM
3914 int asidx;
3915 MemTxAttrs attrs;
3916
13eb76e0 3917 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3918 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3919 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3920 /* if no physical page mapped, return an error */
3921 if (phys_addr == -1)
3922 return -1;
3923 l = (page + TARGET_PAGE_SIZE) - addr;
3924 if (l > len)
3925 l = len;
5e2972fd 3926 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3927 if (is_write) {
3c8133f9 3928 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3929 attrs, buf, l);
2e38847b 3930 } else {
5232e4c7 3931 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3932 attrs, buf, l, 0);
2e38847b 3933 }
13eb76e0
FB
3934 len -= l;
3935 buf += l;
3936 addr += l;
3937 }
3938 return 0;
3939}
038629a6
DDAG
3940
3941/*
3942 * Allows code that needs to deal with migration bitmaps etc to still be built
3943 * target independent.
3944 */
20afaed9 3945size_t qemu_target_page_size(void)
038629a6 3946{
20afaed9 3947 return TARGET_PAGE_SIZE;
038629a6
DDAG
3948}
3949
46d702b1
JQ
3950int qemu_target_page_bits(void)
3951{
3952 return TARGET_PAGE_BITS;
3953}
3954
3955int qemu_target_page_bits_min(void)
3956{
3957 return TARGET_PAGE_BITS_MIN;
3958}
a68fe89c 3959#endif
13eb76e0 3960
98ed8ecf 3961bool target_words_bigendian(void)
8e4a424b
BS
3962{
3963#if defined(TARGET_WORDS_BIGENDIAN)
3964 return true;
3965#else
3966 return false;
3967#endif
3968}
3969
76f35538 3970#ifndef CONFIG_USER_ONLY
a8170e5e 3971bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3972{
5c8a00ce 3973 MemoryRegion*mr;
149f54b5 3974 hwaddr l = 1;
41063e1e 3975 bool res;
76f35538 3976
41063e1e 3977 rcu_read_lock();
5c8a00ce 3978 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3979 phys_addr, &phys_addr, &l, false,
3980 MEMTXATTRS_UNSPECIFIED);
76f35538 3981
41063e1e
PB
3982 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3983 rcu_read_unlock();
3984 return res;
76f35538 3985}
bd2fa51f 3986
e3807054 3987int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3988{
3989 RAMBlock *block;
e3807054 3990 int ret = 0;
bd2fa51f 3991
0dc3f44a 3992 rcu_read_lock();
99e15582 3993 RAMBLOCK_FOREACH(block) {
754cb9c0 3994 ret = func(block, opaque);
e3807054
DDAG
3995 if (ret) {
3996 break;
3997 }
bd2fa51f 3998 }
0dc3f44a 3999 rcu_read_unlock();
e3807054 4000 return ret;
bd2fa51f 4001}
d3a5038c
DDAG
4002
4003/*
4004 * Unmap pages of memory from start to start+length such that
4005 * they a) read as 0, b) Trigger whatever fault mechanism
4006 * the OS provides for postcopy.
4007 * The pages must be unmapped by the end of the function.
4008 * Returns: 0 on success, none-0 on failure
4009 *
4010 */
4011int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4012{
4013 int ret = -1;
4014
4015 uint8_t *host_startaddr = rb->host + start;
4016
4017 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4018 error_report("ram_block_discard_range: Unaligned start address: %p",
4019 host_startaddr);
4020 goto err;
4021 }
4022
4023 if ((start + length) <= rb->used_length) {
db144f70 4024 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4025 uint8_t *host_endaddr = host_startaddr + length;
4026 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4027 error_report("ram_block_discard_range: Unaligned end address: %p",
4028 host_endaddr);
4029 goto err;
4030 }
4031
4032 errno = ENOTSUP; /* If we are missing MADVISE etc */
4033
db144f70
DDAG
4034 /* The logic here is messy;
4035 * madvise DONTNEED fails for hugepages
4036 * fallocate works on hugepages and shmem
4037 */
4038 need_madvise = (rb->page_size == qemu_host_page_size);
4039 need_fallocate = rb->fd != -1;
4040 if (need_fallocate) {
4041 /* For a file, this causes the area of the file to be zero'd
4042 * if read, and for hugetlbfs also causes it to be unmapped
4043 * so a userfault will trigger.
e2fa71f5
DDAG
4044 */
4045#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4046 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4047 start, length);
db144f70
DDAG
4048 if (ret) {
4049 ret = -errno;
4050 error_report("ram_block_discard_range: Failed to fallocate "
4051 "%s:%" PRIx64 " +%zx (%d)",
4052 rb->idstr, start, length, ret);
4053 goto err;
4054 }
4055#else
4056 ret = -ENOSYS;
4057 error_report("ram_block_discard_range: fallocate not available/file"
4058 "%s:%" PRIx64 " +%zx (%d)",
4059 rb->idstr, start, length, ret);
4060 goto err;
e2fa71f5
DDAG
4061#endif
4062 }
db144f70
DDAG
4063 if (need_madvise) {
4064 /* For normal RAM this causes it to be unmapped,
4065 * for shared memory it causes the local mapping to disappear
4066 * and to fall back on the file contents (which we just
4067 * fallocate'd away).
4068 */
4069#if defined(CONFIG_MADVISE)
4070 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4071 if (ret) {
4072 ret = -errno;
4073 error_report("ram_block_discard_range: Failed to discard range "
4074 "%s:%" PRIx64 " +%zx (%d)",
4075 rb->idstr, start, length, ret);
4076 goto err;
4077 }
4078#else
4079 ret = -ENOSYS;
4080 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4081 "%s:%" PRIx64 " +%zx (%d)",
4082 rb->idstr, start, length, ret);
db144f70
DDAG
4083 goto err;
4084#endif
d3a5038c 4085 }
db144f70
DDAG
4086 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4087 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4088 } else {
4089 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4090 "/%zx/" RAM_ADDR_FMT")",
4091 rb->idstr, start, length, rb->used_length);
4092 }
4093
4094err:
4095 return ret;
4096}
4097
a4de8552
JH
4098bool ramblock_is_pmem(RAMBlock *rb)
4099{
4100 return rb->flags & RAM_PMEM;
4101}
4102
ec3f8c99 4103#endif
a0be0c58
YZ
4104
4105void page_size_init(void)
4106{
4107 /* NOTE: we can always suppose that qemu_host_page_size >=
4108 TARGET_PAGE_SIZE */
a0be0c58
YZ
4109 if (qemu_host_page_size == 0) {
4110 qemu_host_page_size = qemu_real_host_page_size;
4111 }
4112 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4113 qemu_host_page_size = TARGET_PAGE_SIZE;
4114 }
4115 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4116}
5e8fd947
AK
4117
4118#if !defined(CONFIG_USER_ONLY)
4119
4120static void mtree_print_phys_entries(fprintf_function mon, void *f,
4121 int start, int end, int skip, int ptr)
4122{
4123 if (start == end - 1) {
4124 mon(f, "\t%3d ", start);
4125 } else {
4126 mon(f, "\t%3d..%-3d ", start, end - 1);
4127 }
4128 mon(f, " skip=%d ", skip);
4129 if (ptr == PHYS_MAP_NODE_NIL) {
4130 mon(f, " ptr=NIL");
4131 } else if (!skip) {
4132 mon(f, " ptr=#%d", ptr);
4133 } else {
4134 mon(f, " ptr=[%d]", ptr);
4135 }
4136 mon(f, "\n");
4137}
4138
4139#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4140 int128_sub((size), int128_one())) : 0)
4141
4142void mtree_print_dispatch(fprintf_function mon, void *f,
4143 AddressSpaceDispatch *d, MemoryRegion *root)
4144{
4145 int i;
4146
4147 mon(f, " Dispatch\n");
4148 mon(f, " Physical sections\n");
4149
4150 for (i = 0; i < d->map.sections_nb; ++i) {
4151 MemoryRegionSection *s = d->map.sections + i;
4152 const char *names[] = { " [unassigned]", " [not dirty]",
4153 " [ROM]", " [watch]" };
4154
4155 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4156 i,
4157 s->offset_within_address_space,
4158 s->offset_within_address_space + MR_SIZE(s->mr->size),
4159 s->mr->name ? s->mr->name : "(noname)",
4160 i < ARRAY_SIZE(names) ? names[i] : "",
4161 s->mr == root ? " [ROOT]" : "",
4162 s == d->mru_section ? " [MRU]" : "",
4163 s->mr->is_iommu ? " [iommu]" : "");
4164
4165 if (s->mr->alias) {
4166 mon(f, " alias=%s", s->mr->alias->name ?
4167 s->mr->alias->name : "noname");
4168 }
4169 mon(f, "\n");
4170 }
4171
4172 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4173 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4174 for (i = 0; i < d->map.nodes_nb; ++i) {
4175 int j, jprev;
4176 PhysPageEntry prev;
4177 Node *n = d->map.nodes + i;
4178
4179 mon(f, " [%d]\n", i);
4180
4181 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4182 PhysPageEntry *pe = *n + j;
4183
4184 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4185 continue;
4186 }
4187
4188 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4189
4190 jprev = j;
4191 prev = *pe;
4192 }
4193
4194 if (jprev != ARRAY_SIZE(*n)) {
4195 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4196 }
4197 }
4198}
4199
4200#endif