]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Merge remote-tracking branch 'remotes/stsquad/tags/pull-gitdm-next-271019-1' into...
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3 45#include "exec/memory.h"
df43d49c 46#include "exec/ioport.h"
741da0d3 47#include "sysemu/dma.h"
b58c5c2d 48#include "sysemu/hostmem.h"
79ca7a1b 49#include "sysemu/hw_accel.h"
741da0d3 50#include "exec/address-spaces.h"
9c17d615 51#include "sysemu/xen-mapcache.h"
0ab8ed18 52#include "trace-root.h"
d3a5038c 53
e2fa71f5 54#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
acc9d80b 91static MemoryRegion io_mem_unassigned;
e2eef170 92#endif
9fa3e853 93
f481ee2d
PB
94CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
95
6a00d601
FB
96/* current CPU in the current thread. It is only valid inside
97 cpu_exec() */
f240eb6f 98__thread CPUState *current_cpu;
2e70f6ef 99/* 0 = Do not count executed instructions.
bf20dc07 100 1 = Precise instruction counting.
2e70f6ef 101 2 = Adaptive rate instruction counting. */
5708fc66 102int use_icount;
6a00d601 103
a0be0c58
YZ
104uintptr_t qemu_host_page_size;
105intptr_t qemu_host_page_mask;
a0be0c58 106
e2eef170 107#if !defined(CONFIG_USER_ONLY)
4346ae3e 108
1db8abb1
PB
109typedef struct PhysPageEntry PhysPageEntry;
110
111struct PhysPageEntry {
9736e55b 112 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 113 uint32_t skip : 6;
9736e55b 114 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 115 uint32_t ptr : 26;
1db8abb1
PB
116};
117
8b795765
MT
118#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
119
03f49957 120/* Size of the L2 (and L3, etc) page tables. */
57271d63 121#define ADDR_SPACE_BITS 64
03f49957 122
026736ce 123#define P_L2_BITS 9
03f49957
PB
124#define P_L2_SIZE (1 << P_L2_BITS)
125
126#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
127
128typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 129
53cb28cb 130typedef struct PhysPageMap {
79e2b9ae
PB
131 struct rcu_head rcu;
132
53cb28cb
MA
133 unsigned sections_nb;
134 unsigned sections_nb_alloc;
135 unsigned nodes_nb;
136 unsigned nodes_nb_alloc;
137 Node *nodes;
138 MemoryRegionSection *sections;
139} PhysPageMap;
140
1db8abb1 141struct AddressSpaceDispatch {
729633c2 142 MemoryRegionSection *mru_section;
1db8abb1
PB
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
145 */
146 PhysPageEntry phys_map;
53cb28cb 147 PhysPageMap map;
1db8abb1
PB
148};
149
90260c6c
JK
150#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
151typedef struct subpage_t {
152 MemoryRegion iomem;
16620684 153 FlatView *fv;
90260c6c 154 hwaddr base;
2615fabd 155 uint16_t sub_section[];
90260c6c
JK
156} subpage_t;
157
b41aac4f 158#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 159
e2eef170 160static void io_mem_init(void);
62152b8a 161static void memory_map_init(void);
9458a9a1 162static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 163static void tcg_commit(MemoryListener *listener);
e2eef170 164
32857f4d
PM
165/**
166 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
167 * @cpu: the CPU whose AddressSpace this is
168 * @as: the AddressSpace itself
169 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
170 * @tcg_as_listener: listener for tracking changes to the AddressSpace
171 */
172struct CPUAddressSpace {
173 CPUState *cpu;
174 AddressSpace *as;
175 struct AddressSpaceDispatch *memory_dispatch;
176 MemoryListener tcg_as_listener;
177};
178
8deaf12c
GH
179struct DirtyBitmapSnapshot {
180 ram_addr_t start;
181 ram_addr_t end;
182 unsigned long dirty[];
183};
184
6658ffb8 185#endif
fd6ce8f6 186
6d9a1304 187#if !defined(CONFIG_USER_ONLY)
d6f2ea22 188
53cb28cb 189static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 190{
101420b8 191 static unsigned alloc_hint = 16;
53cb28cb 192 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 193 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 194 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 195 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 196 }
f7bf5461
AK
197}
198
db94604b 199static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
200{
201 unsigned i;
8b795765 202 uint32_t ret;
db94604b
PB
203 PhysPageEntry e;
204 PhysPageEntry *p;
f7bf5461 205
53cb28cb 206 ret = map->nodes_nb++;
db94604b 207 p = map->nodes[ret];
f7bf5461 208 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 209 assert(ret != map->nodes_nb_alloc);
db94604b
PB
210
211 e.skip = leaf ? 0 : 1;
212 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 213 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 214 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 215 }
f7bf5461 216 return ret;
d6f2ea22
AK
217}
218
53cb28cb 219static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 220 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 221 int level)
f7bf5461
AK
222{
223 PhysPageEntry *p;
03f49957 224 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 225
9736e55b 226 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 227 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 228 }
db94604b 229 p = map->nodes[lp->ptr];
03f49957 230 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 231
03f49957 232 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 233 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 234 lp->skip = 0;
c19e8800 235 lp->ptr = leaf;
07f07b31
AK
236 *index += step;
237 *nb -= step;
2999097b 238 } else {
53cb28cb 239 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
240 }
241 ++lp;
f7bf5461
AK
242 }
243}
244
ac1970fb 245static void phys_page_set(AddressSpaceDispatch *d,
56b15076 246 hwaddr index, uint64_t nb,
2999097b 247 uint16_t leaf)
f7bf5461 248{
2999097b 249 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 250 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 251
53cb28cb 252 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
253}
254
b35ba30f
MT
255/* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
257 */
efee678d 258static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
259{
260 unsigned valid_ptr = P_L2_SIZE;
261 int valid = 0;
262 PhysPageEntry *p;
263 int i;
264
265 if (lp->ptr == PHYS_MAP_NODE_NIL) {
266 return;
267 }
268
269 p = nodes[lp->ptr];
270 for (i = 0; i < P_L2_SIZE; i++) {
271 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
272 continue;
273 }
274
275 valid_ptr = i;
276 valid++;
277 if (p[i].skip) {
efee678d 278 phys_page_compact(&p[i], nodes);
b35ba30f
MT
279 }
280 }
281
282 /* We can only compress if there's only one child. */
283 if (valid != 1) {
284 return;
285 }
286
287 assert(valid_ptr < P_L2_SIZE);
288
289 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
290 if (P_L2_LEVELS >= (1 << 6) &&
291 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
292 return;
293 }
294
295 lp->ptr = p[valid_ptr].ptr;
296 if (!p[valid_ptr].skip) {
297 /* If our only child is a leaf, make this a leaf. */
298 /* By design, we should have made this node a leaf to begin with so we
299 * should never reach here.
300 * But since it's so simple to handle this, let's do it just in case we
301 * change this rule.
302 */
303 lp->skip = 0;
304 } else {
305 lp->skip += p[valid_ptr].skip;
306 }
307}
308
8629d3fc 309void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 310{
b35ba30f 311 if (d->phys_map.skip) {
efee678d 312 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
313 }
314}
315
29cb533d
FZ
316static inline bool section_covers_addr(const MemoryRegionSection *section,
317 hwaddr addr)
318{
319 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
320 * the section must cover the entire address space.
321 */
258dfaaa 322 return int128_gethi(section->size) ||
29cb533d 323 range_covers_byte(section->offset_within_address_space,
258dfaaa 324 int128_getlo(section->size), addr);
29cb533d
FZ
325}
326
003a0cf2 327static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 328{
003a0cf2
PX
329 PhysPageEntry lp = d->phys_map, *p;
330 Node *nodes = d->map.nodes;
331 MemoryRegionSection *sections = d->map.sections;
97115a8d 332 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 333 int i;
f1f6e3b8 334
9736e55b 335 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 336 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 337 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 338 }
9affd6fc 339 p = nodes[lp.ptr];
03f49957 340 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 341 }
b35ba30f 342
29cb533d 343 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
344 return &sections[lp.ptr];
345 } else {
346 return &sections[PHYS_SECTION_UNASSIGNED];
347 }
f3705d53
AK
348}
349
79e2b9ae 350/* Called from RCU critical section */
c7086b4a 351static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
352 hwaddr addr,
353 bool resolve_subpage)
9f029603 354{
729633c2 355 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
356 subpage_t *subpage;
357
07c114bb
PB
358 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
359 !section_covers_addr(section, addr)) {
003a0cf2 360 section = phys_page_find(d, addr);
07c114bb 361 atomic_set(&d->mru_section, section);
729633c2 362 }
90260c6c
JK
363 if (resolve_subpage && section->mr->subpage) {
364 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 365 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
366 }
367 return section;
9f029603
JK
368}
369
79e2b9ae 370/* Called from RCU critical section */
90260c6c 371static MemoryRegionSection *
c7086b4a 372address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 373 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
374{
375 MemoryRegionSection *section;
965eb2fc 376 MemoryRegion *mr;
a87f3954 377 Int128 diff;
149f54b5 378
c7086b4a 379 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
380 /* Compute offset within MemoryRegionSection */
381 addr -= section->offset_within_address_space;
382
383 /* Compute offset within MemoryRegion */
384 *xlat = addr + section->offset_within_region;
385
965eb2fc 386 mr = section->mr;
b242e0e0
PB
387
388 /* MMIO registers can be expected to perform full-width accesses based only
389 * on their address, without considering adjacent registers that could
390 * decode to completely different MemoryRegions. When such registers
391 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
392 * regions overlap wildly. For this reason we cannot clamp the accesses
393 * here.
394 *
395 * If the length is small (as is the case for address_space_ldl/stl),
396 * everything works fine. If the incoming length is large, however,
397 * the caller really has to do the clamping through memory_access_size.
398 */
965eb2fc 399 if (memory_region_is_ram(mr)) {
e4a511f8 400 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
401 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
402 }
149f54b5
PB
403 return section;
404}
90260c6c 405
a411c84b
PB
406/**
407 * address_space_translate_iommu - translate an address through an IOMMU
408 * memory region and then through the target address space.
409 *
410 * @iommu_mr: the IOMMU memory region that we start the translation from
411 * @addr: the address to be translated through the MMU
412 * @xlat: the translated address offset within the destination memory region.
413 * It cannot be %NULL.
414 * @plen_out: valid read/write length of the translated address. It
415 * cannot be %NULL.
416 * @page_mask_out: page mask for the translated address. This
417 * should only be meaningful for IOMMU translated
418 * addresses, since there may be huge pages that this bit
419 * would tell. It can be %NULL if we don't care about it.
420 * @is_write: whether the translation operation is for write
421 * @is_mmio: whether this can be MMIO, set true if it can
422 * @target_as: the address space targeted by the IOMMU
2f7b009c 423 * @attrs: transaction attributes
a411c84b
PB
424 *
425 * This function is called from RCU critical section. It is the common
426 * part of flatview_do_translate and address_space_translate_cached.
427 */
428static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
429 hwaddr *xlat,
430 hwaddr *plen_out,
431 hwaddr *page_mask_out,
432 bool is_write,
433 bool is_mmio,
2f7b009c
PM
434 AddressSpace **target_as,
435 MemTxAttrs attrs)
a411c84b
PB
436{
437 MemoryRegionSection *section;
438 hwaddr page_mask = (hwaddr)-1;
439
440 do {
441 hwaddr addr = *xlat;
442 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
443 int iommu_idx = 0;
444 IOMMUTLBEntry iotlb;
445
446 if (imrc->attrs_to_index) {
447 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
448 }
449
450 iotlb = imrc->translate(iommu_mr, addr, is_write ?
451 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
452
453 if (!(iotlb.perm & (1 << is_write))) {
454 goto unassigned;
455 }
456
457 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
458 | (addr & iotlb.addr_mask));
459 page_mask &= iotlb.addr_mask;
460 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
461 *target_as = iotlb.target_as;
462
463 section = address_space_translate_internal(
464 address_space_to_dispatch(iotlb.target_as), addr, xlat,
465 plen_out, is_mmio);
466
467 iommu_mr = memory_region_get_iommu(section->mr);
468 } while (unlikely(iommu_mr));
469
470 if (page_mask_out) {
471 *page_mask_out = page_mask;
472 }
473 return *section;
474
475unassigned:
476 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
477}
478
d5e5fafd
PX
479/**
480 * flatview_do_translate - translate an address in FlatView
481 *
482 * @fv: the flat view that we want to translate on
483 * @addr: the address to be translated in above address space
484 * @xlat: the translated address offset within memory region. It
485 * cannot be @NULL.
486 * @plen_out: valid read/write length of the translated address. It
487 * can be @NULL when we don't care about it.
488 * @page_mask_out: page mask for the translated address. This
489 * should only be meaningful for IOMMU translated
490 * addresses, since there may be huge pages that this bit
491 * would tell. It can be @NULL if we don't care about it.
492 * @is_write: whether the translation operation is for write
493 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 494 * @target_as: the address space targeted by the IOMMU
49e14aa8 495 * @attrs: memory transaction attributes
d5e5fafd
PX
496 *
497 * This function is called from RCU critical section
498 */
16620684
AK
499static MemoryRegionSection flatview_do_translate(FlatView *fv,
500 hwaddr addr,
501 hwaddr *xlat,
d5e5fafd
PX
502 hwaddr *plen_out,
503 hwaddr *page_mask_out,
16620684
AK
504 bool is_write,
505 bool is_mmio,
49e14aa8
PM
506 AddressSpace **target_as,
507 MemTxAttrs attrs)
052c8fa9 508{
052c8fa9 509 MemoryRegionSection *section;
3df9d748 510 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
511 hwaddr plen = (hwaddr)(-1);
512
ad2804d9
PB
513 if (!plen_out) {
514 plen_out = &plen;
d5e5fafd 515 }
052c8fa9 516
a411c84b
PB
517 section = address_space_translate_internal(
518 flatview_to_dispatch(fv), addr, xlat,
519 plen_out, is_mmio);
052c8fa9 520
a411c84b
PB
521 iommu_mr = memory_region_get_iommu(section->mr);
522 if (unlikely(iommu_mr)) {
523 return address_space_translate_iommu(iommu_mr, xlat,
524 plen_out, page_mask_out,
525 is_write, is_mmio,
2f7b009c 526 target_as, attrs);
052c8fa9 527 }
d5e5fafd 528 if (page_mask_out) {
a411c84b
PB
529 /* Not behind an IOMMU, use default page size. */
530 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
531 }
532
a764040c 533 return *section;
052c8fa9
JW
534}
535
536/* Called from RCU critical section */
a764040c 537IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 538 bool is_write, MemTxAttrs attrs)
90260c6c 539{
a764040c 540 MemoryRegionSection section;
076a93d7 541 hwaddr xlat, page_mask;
30951157 542
076a93d7
PX
543 /*
544 * This can never be MMIO, and we don't really care about plen,
545 * but page mask.
546 */
547 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
548 NULL, &page_mask, is_write, false, &as,
549 attrs);
30951157 550
a764040c
PX
551 /* Illegal translation */
552 if (section.mr == &io_mem_unassigned) {
553 goto iotlb_fail;
554 }
30951157 555
a764040c
PX
556 /* Convert memory region offset into address space offset */
557 xlat += section.offset_within_address_space -
558 section.offset_within_region;
559
a764040c 560 return (IOMMUTLBEntry) {
e76bb18f 561 .target_as = as,
076a93d7
PX
562 .iova = addr & ~page_mask,
563 .translated_addr = xlat & ~page_mask,
564 .addr_mask = page_mask,
a764040c
PX
565 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
566 .perm = IOMMU_RW,
567 };
568
569iotlb_fail:
570 return (IOMMUTLBEntry) {0};
571}
572
573/* Called from RCU critical section */
16620684 574MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
575 hwaddr *plen, bool is_write,
576 MemTxAttrs attrs)
a764040c
PX
577{
578 MemoryRegion *mr;
579 MemoryRegionSection section;
16620684 580 AddressSpace *as = NULL;
a764040c
PX
581
582 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 583 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 584 is_write, true, &as, attrs);
a764040c
PX
585 mr = section.mr;
586
fe680d0d 587 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 588 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 589 *plen = MIN(page, *plen);
a87f3954
PB
590 }
591
30951157 592 return mr;
90260c6c
JK
593}
594
1f871c5e
PM
595typedef struct TCGIOMMUNotifier {
596 IOMMUNotifier n;
597 MemoryRegion *mr;
598 CPUState *cpu;
599 int iommu_idx;
600 bool active;
601} TCGIOMMUNotifier;
602
603static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
604{
605 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
606
607 if (!notifier->active) {
608 return;
609 }
610 tlb_flush(notifier->cpu);
611 notifier->active = false;
612 /* We leave the notifier struct on the list to avoid reallocating it later.
613 * Generally the number of IOMMUs a CPU deals with will be small.
614 * In any case we can't unregister the iommu notifier from a notify
615 * callback.
616 */
617}
618
619static void tcg_register_iommu_notifier(CPUState *cpu,
620 IOMMUMemoryRegion *iommu_mr,
621 int iommu_idx)
622{
623 /* Make sure this CPU has an IOMMU notifier registered for this
624 * IOMMU/IOMMU index combination, so that we can flush its TLB
625 * when the IOMMU tells us the mappings we've cached have changed.
626 */
627 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
628 TCGIOMMUNotifier *notifier;
549d4005
EA
629 Error *err = NULL;
630 int i, ret;
1f871c5e
PM
631
632 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 633 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
634 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
635 break;
636 }
637 }
638 if (i == cpu->iommu_notifiers->len) {
639 /* Not found, add a new entry at the end of the array */
640 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
641 notifier = g_new0(TCGIOMMUNotifier, 1);
642 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
643
644 notifier->mr = mr;
645 notifier->iommu_idx = iommu_idx;
646 notifier->cpu = cpu;
647 /* Rather than trying to register interest in the specific part
648 * of the iommu's address space that we've accessed and then
649 * expand it later as subsequent accesses touch more of it, we
650 * just register interest in the whole thing, on the assumption
651 * that iommu reconfiguration will be rare.
652 */
653 iommu_notifier_init(&notifier->n,
654 tcg_iommu_unmap_notify,
655 IOMMU_NOTIFIER_UNMAP,
656 0,
657 HWADDR_MAX,
658 iommu_idx);
549d4005
EA
659 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
660 &err);
661 if (ret) {
662 error_report_err(err);
663 exit(1);
664 }
1f871c5e
PM
665 }
666
667 if (!notifier->active) {
668 notifier->active = true;
669 }
670}
671
672static void tcg_iommu_free_notifier_list(CPUState *cpu)
673{
674 /* Destroy the CPU's notifier list */
675 int i;
676 TCGIOMMUNotifier *notifier;
677
678 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 679 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 680 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 681 g_free(notifier);
1f871c5e
PM
682 }
683 g_array_free(cpu->iommu_notifiers, true);
684}
685
79e2b9ae 686/* Called from RCU critical section */
90260c6c 687MemoryRegionSection *
d7898cda 688address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
689 hwaddr *xlat, hwaddr *plen,
690 MemTxAttrs attrs, int *prot)
90260c6c 691{
30951157 692 MemoryRegionSection *section;
1f871c5e
PM
693 IOMMUMemoryRegion *iommu_mr;
694 IOMMUMemoryRegionClass *imrc;
695 IOMMUTLBEntry iotlb;
696 int iommu_idx;
f35e44e7 697 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 698
1f871c5e
PM
699 for (;;) {
700 section = address_space_translate_internal(d, addr, &addr, plen, false);
701
702 iommu_mr = memory_region_get_iommu(section->mr);
703 if (!iommu_mr) {
704 break;
705 }
706
707 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
708
709 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
710 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
711 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
712 * doesn't short-cut its translation table walk.
713 */
714 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
715 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
716 | (addr & iotlb.addr_mask));
717 /* Update the caller's prot bits to remove permissions the IOMMU
718 * is giving us a failure response for. If we get down to no
719 * permissions left at all we can give up now.
720 */
721 if (!(iotlb.perm & IOMMU_RO)) {
722 *prot &= ~(PAGE_READ | PAGE_EXEC);
723 }
724 if (!(iotlb.perm & IOMMU_WO)) {
725 *prot &= ~PAGE_WRITE;
726 }
727
728 if (!*prot) {
729 goto translate_fail;
730 }
731
732 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
733 }
30951157 734
3df9d748 735 assert(!memory_region_is_iommu(section->mr));
1f871c5e 736 *xlat = addr;
30951157 737 return section;
1f871c5e
PM
738
739translate_fail:
740 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 741}
5b6dd868 742#endif
fd6ce8f6 743
b170fce3 744#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
745
746static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 747{
259186a7 748 CPUState *cpu = opaque;
a513fe19 749
5b6dd868
BS
750 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
751 version_id is increased. */
259186a7 752 cpu->interrupt_request &= ~0x01;
d10eb08f 753 tlb_flush(cpu);
5b6dd868 754
15a356c4
PD
755 /* loadvm has just updated the content of RAM, bypassing the
756 * usual mechanisms that ensure we flush TBs for writes to
757 * memory we've translated code from. So we must flush all TBs,
758 * which will now be stale.
759 */
760 tb_flush(cpu);
761
5b6dd868 762 return 0;
a513fe19 763}
7501267e 764
6c3bff0e
PD
765static int cpu_common_pre_load(void *opaque)
766{
767 CPUState *cpu = opaque;
768
adee6424 769 cpu->exception_index = -1;
6c3bff0e
PD
770
771 return 0;
772}
773
774static bool cpu_common_exception_index_needed(void *opaque)
775{
776 CPUState *cpu = opaque;
777
adee6424 778 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
779}
780
781static const VMStateDescription vmstate_cpu_common_exception_index = {
782 .name = "cpu_common/exception_index",
783 .version_id = 1,
784 .minimum_version_id = 1,
5cd8cada 785 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
786 .fields = (VMStateField[]) {
787 VMSTATE_INT32(exception_index, CPUState),
788 VMSTATE_END_OF_LIST()
789 }
790};
791
bac05aa9
AS
792static bool cpu_common_crash_occurred_needed(void *opaque)
793{
794 CPUState *cpu = opaque;
795
796 return cpu->crash_occurred;
797}
798
799static const VMStateDescription vmstate_cpu_common_crash_occurred = {
800 .name = "cpu_common/crash_occurred",
801 .version_id = 1,
802 .minimum_version_id = 1,
803 .needed = cpu_common_crash_occurred_needed,
804 .fields = (VMStateField[]) {
805 VMSTATE_BOOL(crash_occurred, CPUState),
806 VMSTATE_END_OF_LIST()
807 }
808};
809
1a1562f5 810const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
811 .name = "cpu_common",
812 .version_id = 1,
813 .minimum_version_id = 1,
6c3bff0e 814 .pre_load = cpu_common_pre_load,
5b6dd868 815 .post_load = cpu_common_post_load,
35d08458 816 .fields = (VMStateField[]) {
259186a7
AF
817 VMSTATE_UINT32(halted, CPUState),
818 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 819 VMSTATE_END_OF_LIST()
6c3bff0e 820 },
5cd8cada
JQ
821 .subsections = (const VMStateDescription*[]) {
822 &vmstate_cpu_common_exception_index,
bac05aa9 823 &vmstate_cpu_common_crash_occurred,
5cd8cada 824 NULL
5b6dd868
BS
825 }
826};
1a1562f5 827
5b6dd868 828#endif
ea041c0e 829
38d8f5c8 830CPUState *qemu_get_cpu(int index)
ea041c0e 831{
bdc44640 832 CPUState *cpu;
ea041c0e 833
bdc44640 834 CPU_FOREACH(cpu) {
55e5c285 835 if (cpu->cpu_index == index) {
bdc44640 836 return cpu;
55e5c285 837 }
ea041c0e 838 }
5b6dd868 839
bdc44640 840 return NULL;
ea041c0e
FB
841}
842
09daed84 843#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
844void cpu_address_space_init(CPUState *cpu, int asidx,
845 const char *prefix, MemoryRegion *mr)
09daed84 846{
12ebc9a7 847 CPUAddressSpace *newas;
80ceb07a 848 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 849 char *as_name;
80ceb07a
PX
850
851 assert(mr);
87a621d8
PX
852 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
853 address_space_init(as, mr, as_name);
854 g_free(as_name);
12ebc9a7
PM
855
856 /* Target code should have set num_ases before calling us */
857 assert(asidx < cpu->num_ases);
858
56943e8c
PM
859 if (asidx == 0) {
860 /* address space 0 gets the convenience alias */
861 cpu->as = as;
862 }
863
12ebc9a7
PM
864 /* KVM cannot currently support multiple address spaces. */
865 assert(asidx == 0 || !kvm_enabled());
09daed84 866
12ebc9a7
PM
867 if (!cpu->cpu_ases) {
868 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 869 }
32857f4d 870
12ebc9a7
PM
871 newas = &cpu->cpu_ases[asidx];
872 newas->cpu = cpu;
873 newas->as = as;
56943e8c 874 if (tcg_enabled()) {
9458a9a1 875 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
876 newas->tcg_as_listener.commit = tcg_commit;
877 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 878 }
09daed84 879}
651a5bc0
PM
880
881AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
882{
883 /* Return the AddressSpace corresponding to the specified index */
884 return cpu->cpu_ases[asidx].as;
885}
09daed84
EI
886#endif
887
7bbc124e 888void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 889{
9dfeca7c
BR
890 CPUClass *cc = CPU_GET_CLASS(cpu);
891
267f685b 892 cpu_list_remove(cpu);
9dfeca7c
BR
893
894 if (cc->vmsd != NULL) {
895 vmstate_unregister(NULL, cc->vmsd, cpu);
896 }
897 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
898 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
899 }
1f871c5e
PM
900#ifndef CONFIG_USER_ONLY
901 tcg_iommu_free_notifier_list(cpu);
902#endif
1c59eb39
BR
903}
904
c7e002c5
FZ
905Property cpu_common_props[] = {
906#ifndef CONFIG_USER_ONLY
907 /* Create a memory property for softmmu CPU object,
2e5b09fd 908 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
909 * because that file is compiled only once for both user-mode
910 * and system builds.) The default if no link is set up is to use
911 * the system address space.
912 */
913 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
914 MemoryRegion *),
915#endif
916 DEFINE_PROP_END_OF_LIST(),
917};
918
39e329e3 919void cpu_exec_initfn(CPUState *cpu)
ea041c0e 920{
56943e8c 921 cpu->as = NULL;
12ebc9a7 922 cpu->num_ases = 0;
56943e8c 923
291135b5 924#ifndef CONFIG_USER_ONLY
291135b5 925 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
926 cpu->memory = system_memory;
927 object_ref(OBJECT(cpu->memory));
291135b5 928#endif
39e329e3
LV
929}
930
ce5b1bbf 931void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 932{
55c3ceef 933 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 934 static bool tcg_target_initialized;
291135b5 935
267f685b 936 cpu_list_add(cpu);
1bc7e522 937
2dda6354
EC
938 if (tcg_enabled() && !tcg_target_initialized) {
939 tcg_target_initialized = true;
55c3ceef
RH
940 cc->tcg_initialize();
941 }
5005e253 942 tlb_init(cpu);
55c3ceef 943
1bc7e522 944#ifndef CONFIG_USER_ONLY
e0d47944 945 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 946 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 947 }
b170fce3 948 if (cc->vmsd != NULL) {
741da0d3 949 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 950 }
1f871c5e 951
5601be3b 952 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 953#endif
ea041c0e
FB
954}
955
c1c8cfe5 956const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
957{
958 ObjectClass *oc;
959 CPUClass *cc;
960 gchar **model_pieces;
961 const char *cpu_type;
962
c1c8cfe5 963 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
964 if (!model_pieces[0]) {
965 error_report("-cpu option cannot be empty");
966 exit(1);
967 }
2278b939
IM
968
969 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
970 if (oc == NULL) {
971 error_report("unable to find CPU model '%s'", model_pieces[0]);
972 g_strfreev(model_pieces);
973 exit(EXIT_FAILURE);
974 }
975
976 cpu_type = object_class_get_name(oc);
977 cc = CPU_CLASS(oc);
978 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
979 g_strfreev(model_pieces);
980 return cpu_type;
981}
982
c40d4792 983#if defined(CONFIG_USER_ONLY)
8bca9a03 984void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 985{
406bc339 986 mmap_lock();
ce9f5e27 987 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
988 mmap_unlock();
989}
8bca9a03
PB
990
991static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
992{
993 tb_invalidate_phys_addr(pc);
994}
406bc339 995#else
8bca9a03
PB
996void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
997{
998 ram_addr_t ram_addr;
999 MemoryRegion *mr;
1000 hwaddr l = 1;
1001
c40d4792
PB
1002 if (!tcg_enabled()) {
1003 return;
1004 }
1005
694ea274 1006 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1007 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1008 if (!(memory_region_is_ram(mr)
1009 || memory_region_is_romd(mr))) {
8bca9a03
PB
1010 return;
1011 }
1012 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1013 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1014}
1015
406bc339
PK
1016static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1017{
1018 MemTxAttrs attrs;
1019 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1020 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1021 if (phys != -1) {
1022 /* Locks grabbed by tb_invalidate_phys_addr */
1023 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1024 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1025 }
1e7855a5 1026}
406bc339 1027#endif
d720b93d 1028
74841f04 1029#ifndef CONFIG_USER_ONLY
6658ffb8 1030/* Add a watchpoint. */
75a34036 1031int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1032 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1033{
c0ce998e 1034 CPUWatchpoint *wp;
6658ffb8 1035
05068c0d 1036 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1037 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1038 error_report("tried to set invalid watchpoint at %"
1039 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1040 return -EINVAL;
1041 }
7267c094 1042 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1043
1044 wp->vaddr = addr;
05068c0d 1045 wp->len = len;
a1d1bb31
AL
1046 wp->flags = flags;
1047
2dc9f411 1048 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1049 if (flags & BP_GDB) {
1050 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1051 } else {
1052 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1053 }
6658ffb8 1054
31b030d4 1055 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1056
1057 if (watchpoint)
1058 *watchpoint = wp;
1059 return 0;
6658ffb8
PB
1060}
1061
a1d1bb31 1062/* Remove a specific watchpoint. */
75a34036 1063int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1064 int flags)
6658ffb8 1065{
a1d1bb31 1066 CPUWatchpoint *wp;
6658ffb8 1067
ff4700b0 1068 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1069 if (addr == wp->vaddr && len == wp->len
6e140f28 1070 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1071 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1072 return 0;
1073 }
1074 }
a1d1bb31 1075 return -ENOENT;
6658ffb8
PB
1076}
1077
a1d1bb31 1078/* Remove a specific watchpoint by reference. */
75a34036 1079void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1080{
ff4700b0 1081 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1082
31b030d4 1083 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1084
7267c094 1085 g_free(watchpoint);
a1d1bb31
AL
1086}
1087
1088/* Remove all matching watchpoints. */
75a34036 1089void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1090{
c0ce998e 1091 CPUWatchpoint *wp, *next;
a1d1bb31 1092
ff4700b0 1093 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1094 if (wp->flags & mask) {
1095 cpu_watchpoint_remove_by_ref(cpu, wp);
1096 }
c0ce998e 1097 }
7d03f82f 1098}
05068c0d
PM
1099
1100/* Return true if this watchpoint address matches the specified
1101 * access (ie the address range covered by the watchpoint overlaps
1102 * partially or completely with the address range covered by the
1103 * access).
1104 */
56ad8b00
RH
1105static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1106 vaddr addr, vaddr len)
05068c0d
PM
1107{
1108 /* We know the lengths are non-zero, but a little caution is
1109 * required to avoid errors in the case where the range ends
1110 * exactly at the top of the address space and so addr + len
1111 * wraps round to zero.
1112 */
1113 vaddr wpend = wp->vaddr + wp->len - 1;
1114 vaddr addrend = addr + len - 1;
1115
1116 return !(addr > wpend || wp->vaddr > addrend);
1117}
1118
56ad8b00
RH
1119/* Return flags for watchpoints that match addr + prot. */
1120int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1121{
1122 CPUWatchpoint *wp;
1123 int ret = 0;
1124
1125 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1126 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1127 ret |= wp->flags;
1128 }
1129 }
1130 return ret;
1131}
74841f04 1132#endif /* !CONFIG_USER_ONLY */
7d03f82f 1133
a1d1bb31 1134/* Add a breakpoint. */
b3310ab3 1135int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1136 CPUBreakpoint **breakpoint)
4c3a88a2 1137{
c0ce998e 1138 CPUBreakpoint *bp;
3b46e624 1139
7267c094 1140 bp = g_malloc(sizeof(*bp));
4c3a88a2 1141
a1d1bb31
AL
1142 bp->pc = pc;
1143 bp->flags = flags;
1144
2dc9f411 1145 /* keep all GDB-injected breakpoints in front */
00b941e5 1146 if (flags & BP_GDB) {
f0c3c505 1147 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1148 } else {
f0c3c505 1149 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1150 }
3b46e624 1151
f0c3c505 1152 breakpoint_invalidate(cpu, pc);
a1d1bb31 1153
00b941e5 1154 if (breakpoint) {
a1d1bb31 1155 *breakpoint = bp;
00b941e5 1156 }
4c3a88a2 1157 return 0;
4c3a88a2
FB
1158}
1159
a1d1bb31 1160/* Remove a specific breakpoint. */
b3310ab3 1161int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1162{
a1d1bb31
AL
1163 CPUBreakpoint *bp;
1164
f0c3c505 1165 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1166 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1167 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1168 return 0;
1169 }
7d03f82f 1170 }
a1d1bb31 1171 return -ENOENT;
7d03f82f
EI
1172}
1173
a1d1bb31 1174/* Remove a specific breakpoint by reference. */
b3310ab3 1175void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1176{
f0c3c505
AF
1177 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1178
1179 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1180
7267c094 1181 g_free(breakpoint);
a1d1bb31
AL
1182}
1183
1184/* Remove all matching breakpoints. */
b3310ab3 1185void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1186{
c0ce998e 1187 CPUBreakpoint *bp, *next;
a1d1bb31 1188
f0c3c505 1189 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1190 if (bp->flags & mask) {
1191 cpu_breakpoint_remove_by_ref(cpu, bp);
1192 }
c0ce998e 1193 }
4c3a88a2
FB
1194}
1195
c33a346e
FB
1196/* enable or disable single step mode. EXCP_DEBUG is returned by the
1197 CPU loop after each instruction */
3825b28f 1198void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1199{
ed2803da
AF
1200 if (cpu->singlestep_enabled != enabled) {
1201 cpu->singlestep_enabled = enabled;
1202 if (kvm_enabled()) {
38e478ec 1203 kvm_update_guest_debug(cpu, 0);
ed2803da 1204 } else {
ccbb4d44 1205 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1206 /* XXX: only flush what is necessary */
bbd77c18 1207 tb_flush(cpu);
e22a25c9 1208 }
c33a346e 1209 }
c33a346e
FB
1210}
1211
a47dddd7 1212void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1213{
1214 va_list ap;
493ae1f0 1215 va_list ap2;
7501267e
FB
1216
1217 va_start(ap, fmt);
493ae1f0 1218 va_copy(ap2, ap);
7501267e
FB
1219 fprintf(stderr, "qemu: fatal: ");
1220 vfprintf(stderr, fmt, ap);
1221 fprintf(stderr, "\n");
90c84c56 1222 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1223 if (qemu_log_separate()) {
1ee73216 1224 qemu_log_lock();
93fcfe39
AL
1225 qemu_log("qemu: fatal: ");
1226 qemu_log_vprintf(fmt, ap2);
1227 qemu_log("\n");
a0762859 1228 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1229 qemu_log_flush();
1ee73216 1230 qemu_log_unlock();
93fcfe39 1231 qemu_log_close();
924edcae 1232 }
493ae1f0 1233 va_end(ap2);
f9373291 1234 va_end(ap);
7615936e 1235 replay_finish();
fd052bf6
RV
1236#if defined(CONFIG_USER_ONLY)
1237 {
1238 struct sigaction act;
1239 sigfillset(&act.sa_mask);
1240 act.sa_handler = SIG_DFL;
8347c185 1241 act.sa_flags = 0;
fd052bf6
RV
1242 sigaction(SIGABRT, &act, NULL);
1243 }
1244#endif
7501267e
FB
1245 abort();
1246}
1247
0124311e 1248#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1249/* Called from RCU critical section */
041603fe
PB
1250static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1251{
1252 RAMBlock *block;
1253
43771539 1254 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1255 if (block && addr - block->offset < block->max_length) {
68851b98 1256 return block;
041603fe 1257 }
99e15582 1258 RAMBLOCK_FOREACH(block) {
9b8424d5 1259 if (addr - block->offset < block->max_length) {
041603fe
PB
1260 goto found;
1261 }
1262 }
1263
1264 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1265 abort();
1266
1267found:
43771539
PB
1268 /* It is safe to write mru_block outside the iothread lock. This
1269 * is what happens:
1270 *
1271 * mru_block = xxx
1272 * rcu_read_unlock()
1273 * xxx removed from list
1274 * rcu_read_lock()
1275 * read mru_block
1276 * mru_block = NULL;
1277 * call_rcu(reclaim_ramblock, xxx);
1278 * rcu_read_unlock()
1279 *
1280 * atomic_rcu_set is not needed here. The block was already published
1281 * when it was placed into the list. Here we're just making an extra
1282 * copy of the pointer.
1283 */
041603fe
PB
1284 ram_list.mru_block = block;
1285 return block;
1286}
1287
a2f4d5be 1288static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1289{
9a13565d 1290 CPUState *cpu;
041603fe 1291 ram_addr_t start1;
a2f4d5be
JQ
1292 RAMBlock *block;
1293 ram_addr_t end;
1294
f28d0dfd 1295 assert(tcg_enabled());
a2f4d5be
JQ
1296 end = TARGET_PAGE_ALIGN(start + length);
1297 start &= TARGET_PAGE_MASK;
d24981d3 1298
694ea274 1299 RCU_READ_LOCK_GUARD();
041603fe
PB
1300 block = qemu_get_ram_block(start);
1301 assert(block == qemu_get_ram_block(end - 1));
1240be24 1302 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1303 CPU_FOREACH(cpu) {
1304 tlb_reset_dirty(cpu, start1, length);
1305 }
d24981d3
JQ
1306}
1307
5579c7f3 1308/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1309bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1310 ram_addr_t length,
1311 unsigned client)
1ccde1cb 1312{
5b82b703 1313 DirtyMemoryBlocks *blocks;
03eebc9e 1314 unsigned long end, page;
5b82b703 1315 bool dirty = false;
077874e0
PX
1316 RAMBlock *ramblock;
1317 uint64_t mr_offset, mr_size;
03eebc9e
SH
1318
1319 if (length == 0) {
1320 return false;
1321 }
f23db169 1322
03eebc9e
SH
1323 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1324 page = start >> TARGET_PAGE_BITS;
5b82b703 1325
694ea274
DDAG
1326 WITH_RCU_READ_LOCK_GUARD() {
1327 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1328 ramblock = qemu_get_ram_block(start);
1329 /* Range sanity check on the ramblock */
1330 assert(start >= ramblock->offset &&
1331 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1332
694ea274
DDAG
1333 while (page < end) {
1334 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1335 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1336 unsigned long num = MIN(end - page,
1337 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1338
694ea274
DDAG
1339 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1340 offset, num);
1341 page += num;
1342 }
5b82b703 1343
694ea274
DDAG
1344 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1345 mr_size = (end - page) << TARGET_PAGE_BITS;
1346 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1347 }
1348
03eebc9e 1349 if (dirty && tcg_enabled()) {
a2f4d5be 1350 tlb_reset_dirty_range_all(start, length);
5579c7f3 1351 }
03eebc9e
SH
1352
1353 return dirty;
1ccde1cb
FB
1354}
1355
8deaf12c 1356DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1357 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1358{
1359 DirtyMemoryBlocks *blocks;
5dea4079 1360 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1361 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1362 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1363 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1364 DirtyBitmapSnapshot *snap;
1365 unsigned long page, end, dest;
1366
1367 snap = g_malloc0(sizeof(*snap) +
1368 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1369 snap->start = first;
1370 snap->end = last;
1371
1372 page = first >> TARGET_PAGE_BITS;
1373 end = last >> TARGET_PAGE_BITS;
1374 dest = 0;
1375
694ea274
DDAG
1376 WITH_RCU_READ_LOCK_GUARD() {
1377 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1378
694ea274
DDAG
1379 while (page < end) {
1380 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1381 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1382 unsigned long num = MIN(end - page,
1383 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1384
694ea274
DDAG
1385 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1386 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1387 offset >>= BITS_PER_LEVEL;
8deaf12c 1388
694ea274
DDAG
1389 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1390 blocks->blocks[idx] + offset,
1391 num);
1392 page += num;
1393 dest += num >> BITS_PER_LEVEL;
1394 }
8deaf12c
GH
1395 }
1396
8deaf12c
GH
1397 if (tcg_enabled()) {
1398 tlb_reset_dirty_range_all(start, length);
1399 }
1400
077874e0
PX
1401 memory_region_clear_dirty_bitmap(mr, offset, length);
1402
8deaf12c
GH
1403 return snap;
1404}
1405
1406bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1407 ram_addr_t start,
1408 ram_addr_t length)
1409{
1410 unsigned long page, end;
1411
1412 assert(start >= snap->start);
1413 assert(start + length <= snap->end);
1414
1415 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1416 page = (start - snap->start) >> TARGET_PAGE_BITS;
1417
1418 while (page < end) {
1419 if (test_bit(page, snap->dirty)) {
1420 return true;
1421 }
1422 page++;
1423 }
1424 return false;
1425}
1426
79e2b9ae 1427/* Called from RCU critical section */
bb0e627a 1428hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1429 MemoryRegionSection *section)
e5548617 1430{
8f5db641
RH
1431 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1432 return section - d->map.sections;
e5548617 1433}
9fa3e853
FB
1434#endif /* defined(CONFIG_USER_ONLY) */
1435
e2eef170 1436#if !defined(CONFIG_USER_ONLY)
8da3ff18 1437
b797ab1a
WY
1438static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1439 uint16_t section);
16620684 1440static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1441
06329cce 1442static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1443 qemu_anon_ram_alloc;
91138037
MA
1444
1445/*
1446 * Set a custom physical guest memory alloator.
1447 * Accelerators with unusual needs may need this. Hopefully, we can
1448 * get rid of it eventually.
1449 */
06329cce 1450void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1451{
1452 phys_mem_alloc = alloc;
1453}
1454
53cb28cb
MA
1455static uint16_t phys_section_add(PhysPageMap *map,
1456 MemoryRegionSection *section)
5312bd8b 1457{
68f3f65b
PB
1458 /* The physical section number is ORed with a page-aligned
1459 * pointer to produce the iotlb entries. Thus it should
1460 * never overflow into the page-aligned value.
1461 */
53cb28cb 1462 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1463
53cb28cb
MA
1464 if (map->sections_nb == map->sections_nb_alloc) {
1465 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1466 map->sections = g_renew(MemoryRegionSection, map->sections,
1467 map->sections_nb_alloc);
5312bd8b 1468 }
53cb28cb 1469 map->sections[map->sections_nb] = *section;
dfde4e6e 1470 memory_region_ref(section->mr);
53cb28cb 1471 return map->sections_nb++;
5312bd8b
AK
1472}
1473
058bc4b5
PB
1474static void phys_section_destroy(MemoryRegion *mr)
1475{
55b4e80b
DS
1476 bool have_sub_page = mr->subpage;
1477
dfde4e6e
PB
1478 memory_region_unref(mr);
1479
55b4e80b 1480 if (have_sub_page) {
058bc4b5 1481 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1482 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1483 g_free(subpage);
1484 }
1485}
1486
6092666e 1487static void phys_sections_free(PhysPageMap *map)
5312bd8b 1488{
9affd6fc
PB
1489 while (map->sections_nb > 0) {
1490 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1491 phys_section_destroy(section->mr);
1492 }
9affd6fc
PB
1493 g_free(map->sections);
1494 g_free(map->nodes);
5312bd8b
AK
1495}
1496
9950322a 1497static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1498{
9950322a 1499 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1500 subpage_t *subpage;
a8170e5e 1501 hwaddr base = section->offset_within_address_space
0f0cb164 1502 & TARGET_PAGE_MASK;
003a0cf2 1503 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1504 MemoryRegionSection subsection = {
1505 .offset_within_address_space = base,
052e87b0 1506 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1507 };
a8170e5e 1508 hwaddr start, end;
0f0cb164 1509
f3705d53 1510 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1511
f3705d53 1512 if (!(existing->mr->subpage)) {
16620684
AK
1513 subpage = subpage_init(fv, base);
1514 subsection.fv = fv;
0f0cb164 1515 subsection.mr = &subpage->iomem;
ac1970fb 1516 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1517 phys_section_add(&d->map, &subsection));
0f0cb164 1518 } else {
f3705d53 1519 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1520 }
1521 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1522 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1523 subpage_register(subpage, start, end,
1524 phys_section_add(&d->map, section));
0f0cb164
AK
1525}
1526
1527
9950322a 1528static void register_multipage(FlatView *fv,
052e87b0 1529 MemoryRegionSection *section)
33417e70 1530{
9950322a 1531 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1532 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1533 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1534 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1535 TARGET_PAGE_BITS));
dd81124b 1536
733d5ef5
PB
1537 assert(num_pages);
1538 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1539}
1540
494d1997
WY
1541/*
1542 * The range in *section* may look like this:
1543 *
1544 * |s|PPPPPPP|s|
1545 *
1546 * where s stands for subpage and P for page.
1547 */
8629d3fc 1548void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1549{
494d1997 1550 MemoryRegionSection remain = *section;
052e87b0 1551 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1552
494d1997
WY
1553 /* register first subpage */
1554 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1555 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1556 - remain.offset_within_address_space;
733d5ef5 1557
494d1997 1558 MemoryRegionSection now = remain;
052e87b0 1559 now.size = int128_min(int128_make64(left), now.size);
9950322a 1560 register_subpage(fv, &now);
494d1997
WY
1561 if (int128_eq(remain.size, now.size)) {
1562 return;
1563 }
052e87b0
PB
1564 remain.size = int128_sub(remain.size, now.size);
1565 remain.offset_within_address_space += int128_get64(now.size);
1566 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1567 }
1568
1569 /* register whole pages */
1570 if (int128_ge(remain.size, page_size)) {
1571 MemoryRegionSection now = remain;
1572 now.size = int128_and(now.size, int128_neg(page_size));
1573 register_multipage(fv, &now);
1574 if (int128_eq(remain.size, now.size)) {
1575 return;
69b67646 1576 }
494d1997
WY
1577 remain.size = int128_sub(remain.size, now.size);
1578 remain.offset_within_address_space += int128_get64(now.size);
1579 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1580 }
494d1997
WY
1581
1582 /* register last subpage */
1583 register_subpage(fv, &remain);
0f0cb164
AK
1584}
1585
62a2744c
SY
1586void qemu_flush_coalesced_mmio_buffer(void)
1587{
1588 if (kvm_enabled())
1589 kvm_flush_coalesced_mmio_buffer();
1590}
1591
b2a8658e
UD
1592void qemu_mutex_lock_ramlist(void)
1593{
1594 qemu_mutex_lock(&ram_list.mutex);
1595}
1596
1597void qemu_mutex_unlock_ramlist(void)
1598{
1599 qemu_mutex_unlock(&ram_list.mutex);
1600}
1601
be9b23c4
PX
1602void ram_block_dump(Monitor *mon)
1603{
1604 RAMBlock *block;
1605 char *psize;
1606
694ea274 1607 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1608 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1609 "Block Name", "PSize", "Offset", "Used", "Total");
1610 RAMBLOCK_FOREACH(block) {
1611 psize = size_to_str(block->page_size);
1612 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1613 " 0x%016" PRIx64 "\n", block->idstr, psize,
1614 (uint64_t)block->offset,
1615 (uint64_t)block->used_length,
1616 (uint64_t)block->max_length);
1617 g_free(psize);
1618 }
be9b23c4
PX
1619}
1620
9c607668
AK
1621#ifdef __linux__
1622/*
1623 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1624 * may or may not name the same files / on the same filesystem now as
1625 * when we actually open and map them. Iterate over the file
1626 * descriptors instead, and use qemu_fd_getpagesize().
1627 */
905b7ee4 1628static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1629{
9c607668
AK
1630 long *hpsize_min = opaque;
1631
1632 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1633 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1634 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1635
7d5489e6 1636 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1637 *hpsize_min = hpsize;
9c607668
AK
1638 }
1639 }
1640
1641 return 0;
1642}
1643
905b7ee4
DH
1644static int find_max_backend_pagesize(Object *obj, void *opaque)
1645{
1646 long *hpsize_max = opaque;
1647
1648 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1649 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1650 long hpsize = host_memory_backend_pagesize(backend);
1651
1652 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1653 *hpsize_max = hpsize;
1654 }
1655 }
1656
1657 return 0;
1658}
1659
1660/*
1661 * TODO: We assume right now that all mapped host memory backends are
1662 * used as RAM, however some might be used for different purposes.
1663 */
1664long qemu_minrampagesize(void)
9c607668
AK
1665{
1666 long hpsize = LONG_MAX;
1667 long mainrampagesize;
1668 Object *memdev_root;
aa570207 1669 MachineState *ms = MACHINE(qdev_get_machine());
9c607668 1670
0de6e2a3 1671 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1672
1673 /* it's possible we have memory-backend objects with
1674 * hugepage-backed RAM. these may get mapped into system
1675 * address space via -numa parameters or memory hotplug
1676 * hooks. we want to take these into account, but we
1677 * also want to make sure these supported hugepage
1678 * sizes are applicable across the entire range of memory
1679 * we may boot from, so we take the min across all
1680 * backends, and assume normal pages in cases where a
1681 * backend isn't backed by hugepages.
1682 */
1683 memdev_root = object_resolve_path("/objects", NULL);
1684 if (memdev_root) {
905b7ee4 1685 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1686 }
1687 if (hpsize == LONG_MAX) {
1688 /* No additional memory regions found ==> Report main RAM page size */
1689 return mainrampagesize;
1690 }
1691
1692 /* If NUMA is disabled or the NUMA nodes are not backed with a
1693 * memory-backend, then there is at least one node using "normal" RAM,
1694 * so if its page size is smaller we have got to report that size instead.
1695 */
1696 if (hpsize > mainrampagesize &&
aa570207
TX
1697 (ms->numa_state == NULL ||
1698 ms->numa_state->num_nodes == 0 ||
7e721e7b 1699 ms->numa_state->nodes[0].node_memdev == NULL)) {
9c607668
AK
1700 static bool warned;
1701 if (!warned) {
1702 error_report("Huge page support disabled (n/a for main memory).");
1703 warned = true;
1704 }
1705 return mainrampagesize;
1706 }
1707
1708 return hpsize;
1709}
905b7ee4
DH
1710
1711long qemu_maxrampagesize(void)
1712{
1713 long pagesize = qemu_mempath_getpagesize(mem_path);
1714 Object *memdev_root = object_resolve_path("/objects", NULL);
1715
1716 if (memdev_root) {
1717 object_child_foreach(memdev_root, find_max_backend_pagesize,
1718 &pagesize);
1719 }
1720 return pagesize;
1721}
9c607668 1722#else
905b7ee4
DH
1723long qemu_minrampagesize(void)
1724{
038adc2f 1725 return qemu_real_host_page_size;
905b7ee4
DH
1726}
1727long qemu_maxrampagesize(void)
9c607668 1728{
038adc2f 1729 return qemu_real_host_page_size;
9c607668
AK
1730}
1731#endif
1732
d5dbde46 1733#ifdef CONFIG_POSIX
d6af99c9
HZ
1734static int64_t get_file_size(int fd)
1735{
72d41eb4
SH
1736 int64_t size;
1737#if defined(__linux__)
1738 struct stat st;
1739
1740 if (fstat(fd, &st) < 0) {
1741 return -errno;
1742 }
1743
1744 /* Special handling for devdax character devices */
1745 if (S_ISCHR(st.st_mode)) {
1746 g_autofree char *subsystem_path = NULL;
1747 g_autofree char *subsystem = NULL;
1748
1749 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1750 major(st.st_rdev), minor(st.st_rdev));
1751 subsystem = g_file_read_link(subsystem_path, NULL);
1752
1753 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1754 g_autofree char *size_path = NULL;
1755 g_autofree char *size_str = NULL;
1756
1757 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1758 major(st.st_rdev), minor(st.st_rdev));
1759
1760 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1761 return g_ascii_strtoll(size_str, NULL, 0);
1762 }
1763 }
1764 }
1765#endif /* defined(__linux__) */
1766
1767 /* st.st_size may be zero for special files yet lseek(2) works */
1768 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1769 if (size < 0) {
1770 return -errno;
1771 }
1772 return size;
1773}
1774
8d37b030
MAL
1775static int file_ram_open(const char *path,
1776 const char *region_name,
1777 bool *created,
1778 Error **errp)
c902760f
MT
1779{
1780 char *filename;
8ca761f6
PF
1781 char *sanitized_name;
1782 char *c;
5c3ece79 1783 int fd = -1;
c902760f 1784
8d37b030 1785 *created = false;
fd97fd44
MA
1786 for (;;) {
1787 fd = open(path, O_RDWR);
1788 if (fd >= 0) {
1789 /* @path names an existing file, use it */
1790 break;
8d31d6b6 1791 }
fd97fd44
MA
1792 if (errno == ENOENT) {
1793 /* @path names a file that doesn't exist, create it */
1794 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1795 if (fd >= 0) {
8d37b030 1796 *created = true;
fd97fd44
MA
1797 break;
1798 }
1799 } else if (errno == EISDIR) {
1800 /* @path names a directory, create a file there */
1801 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1802 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1803 for (c = sanitized_name; *c != '\0'; c++) {
1804 if (*c == '/') {
1805 *c = '_';
1806 }
1807 }
8ca761f6 1808
fd97fd44
MA
1809 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1810 sanitized_name);
1811 g_free(sanitized_name);
8d31d6b6 1812
fd97fd44
MA
1813 fd = mkstemp(filename);
1814 if (fd >= 0) {
1815 unlink(filename);
1816 g_free(filename);
1817 break;
1818 }
1819 g_free(filename);
8d31d6b6 1820 }
fd97fd44
MA
1821 if (errno != EEXIST && errno != EINTR) {
1822 error_setg_errno(errp, errno,
1823 "can't open backing store %s for guest RAM",
1824 path);
8d37b030 1825 return -1;
fd97fd44
MA
1826 }
1827 /*
1828 * Try again on EINTR and EEXIST. The latter happens when
1829 * something else creates the file between our two open().
1830 */
8d31d6b6 1831 }
c902760f 1832
8d37b030
MAL
1833 return fd;
1834}
1835
1836static void *file_ram_alloc(RAMBlock *block,
1837 ram_addr_t memory,
1838 int fd,
1839 bool truncate,
1840 Error **errp)
1841{
5cc8767d 1842 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1843 void *area;
1844
863e9621 1845 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1846 if (block->mr->align % block->page_size) {
1847 error_setg(errp, "alignment 0x%" PRIx64
1848 " must be multiples of page size 0x%zx",
1849 block->mr->align, block->page_size);
1850 return NULL;
61362b71
DH
1851 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1852 error_setg(errp, "alignment 0x%" PRIx64
1853 " must be a power of two", block->mr->align);
1854 return NULL;
98376843
HZ
1855 }
1856 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1857#if defined(__s390x__)
1858 if (kvm_enabled()) {
1859 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1860 }
1861#endif
fd97fd44 1862
863e9621 1863 if (memory < block->page_size) {
fd97fd44 1864 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1865 "or larger than page size 0x%zx",
1866 memory, block->page_size);
8d37b030 1867 return NULL;
1775f111
HZ
1868 }
1869
863e9621 1870 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1871
1872 /*
1873 * ftruncate is not supported by hugetlbfs in older
1874 * hosts, so don't bother bailing out on errors.
1875 * If anything goes wrong with it under other filesystems,
1876 * mmap will fail.
d6af99c9
HZ
1877 *
1878 * Do not truncate the non-empty backend file to avoid corrupting
1879 * the existing data in the file. Disabling shrinking is not
1880 * enough. For example, the current vNVDIMM implementation stores
1881 * the guest NVDIMM labels at the end of the backend file. If the
1882 * backend file is later extended, QEMU will not be able to find
1883 * those labels. Therefore, extending the non-empty backend file
1884 * is disabled as well.
c902760f 1885 */
8d37b030 1886 if (truncate && ftruncate(fd, memory)) {
9742bf26 1887 perror("ftruncate");
7f56e740 1888 }
c902760f 1889
d2f39add 1890 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1891 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1892 if (area == MAP_FAILED) {
7f56e740 1893 error_setg_errno(errp, errno,
fd97fd44 1894 "unable to map backing store for guest RAM");
8d37b030 1895 return NULL;
c902760f 1896 }
ef36fa14
MT
1897
1898 if (mem_prealloc) {
5cc8767d 1899 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
056b68af 1900 if (errp && *errp) {
53adb9d4 1901 qemu_ram_munmap(fd, area, memory);
8d37b030 1902 return NULL;
056b68af 1903 }
ef36fa14
MT
1904 }
1905
04b16653 1906 block->fd = fd;
c902760f
MT
1907 return area;
1908}
1909#endif
1910
154cc9ea
DDAG
1911/* Allocate space within the ram_addr_t space that governs the
1912 * dirty bitmaps.
1913 * Called with the ramlist lock held.
1914 */
d17b5288 1915static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1916{
1917 RAMBlock *block, *next_block;
3e837b2c 1918 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1919
49cd9ac6
SH
1920 assert(size != 0); /* it would hand out same offset multiple times */
1921
0dc3f44a 1922 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1923 return 0;
0d53d9fe 1924 }
04b16653 1925
99e15582 1926 RAMBLOCK_FOREACH(block) {
154cc9ea 1927 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1928
801110ab
DDAG
1929 /* Align blocks to start on a 'long' in the bitmap
1930 * which makes the bitmap sync'ing take the fast path.
1931 */
154cc9ea 1932 candidate = block->offset + block->max_length;
801110ab 1933 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1934
154cc9ea
DDAG
1935 /* Search for the closest following block
1936 * and find the gap.
1937 */
99e15582 1938 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1939 if (next_block->offset >= candidate) {
04b16653
AW
1940 next = MIN(next, next_block->offset);
1941 }
1942 }
154cc9ea
DDAG
1943
1944 /* If it fits remember our place and remember the size
1945 * of gap, but keep going so that we might find a smaller
1946 * gap to fill so avoiding fragmentation.
1947 */
1948 if (next - candidate >= size && next - candidate < mingap) {
1949 offset = candidate;
1950 mingap = next - candidate;
04b16653 1951 }
154cc9ea
DDAG
1952
1953 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1954 }
3e837b2c
AW
1955
1956 if (offset == RAM_ADDR_MAX) {
1957 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1958 (uint64_t)size);
1959 abort();
1960 }
1961
154cc9ea
DDAG
1962 trace_find_ram_offset(size, offset);
1963
04b16653
AW
1964 return offset;
1965}
1966
c136180c 1967static unsigned long last_ram_page(void)
d17b5288
AW
1968{
1969 RAMBlock *block;
1970 ram_addr_t last = 0;
1971
694ea274 1972 RCU_READ_LOCK_GUARD();
99e15582 1973 RAMBLOCK_FOREACH(block) {
62be4e3a 1974 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1975 }
b8c48993 1976 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1977}
1978
ddb97f1d
JB
1979static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1980{
1981 int ret;
ddb97f1d
JB
1982
1983 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1984 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1985 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1986 if (ret) {
1987 perror("qemu_madvise");
1988 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1989 "but dump_guest_core=off specified\n");
1990 }
1991 }
1992}
1993
422148d3
DDAG
1994const char *qemu_ram_get_idstr(RAMBlock *rb)
1995{
1996 return rb->idstr;
1997}
1998
754cb9c0
YK
1999void *qemu_ram_get_host_addr(RAMBlock *rb)
2000{
2001 return rb->host;
2002}
2003
2004ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2005{
2006 return rb->offset;
2007}
2008
2009ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2010{
2011 return rb->used_length;
2012}
2013
463a4ac2
DDAG
2014bool qemu_ram_is_shared(RAMBlock *rb)
2015{
2016 return rb->flags & RAM_SHARED;
2017}
2018
2ce16640
DDAG
2019/* Note: Only set at the start of postcopy */
2020bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2021{
2022 return rb->flags & RAM_UF_ZEROPAGE;
2023}
2024
2025void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2026{
2027 rb->flags |= RAM_UF_ZEROPAGE;
2028}
2029
b895de50
CLG
2030bool qemu_ram_is_migratable(RAMBlock *rb)
2031{
2032 return rb->flags & RAM_MIGRATABLE;
2033}
2034
2035void qemu_ram_set_migratable(RAMBlock *rb)
2036{
2037 rb->flags |= RAM_MIGRATABLE;
2038}
2039
2040void qemu_ram_unset_migratable(RAMBlock *rb)
2041{
2042 rb->flags &= ~RAM_MIGRATABLE;
2043}
2044
ae3a7047 2045/* Called with iothread lock held. */
fa53a0e5 2046void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2047{
fa53a0e5 2048 RAMBlock *block;
20cfe881 2049
c5705a77
AK
2050 assert(new_block);
2051 assert(!new_block->idstr[0]);
84b89d78 2052
09e5ab63
AL
2053 if (dev) {
2054 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2055 if (id) {
2056 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2057 g_free(id);
84b89d78
CM
2058 }
2059 }
2060 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2061
694ea274 2062 RCU_READ_LOCK_GUARD();
99e15582 2063 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2064 if (block != new_block &&
2065 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2066 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2067 new_block->idstr);
2068 abort();
2069 }
2070 }
c5705a77
AK
2071}
2072
ae3a7047 2073/* Called with iothread lock held. */
fa53a0e5 2074void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2075{
ae3a7047
MD
2076 /* FIXME: arch_init.c assumes that this is not called throughout
2077 * migration. Ignore the problem since hot-unplug during migration
2078 * does not work anyway.
2079 */
20cfe881
HT
2080 if (block) {
2081 memset(block->idstr, 0, sizeof(block->idstr));
2082 }
2083}
2084
863e9621
DDAG
2085size_t qemu_ram_pagesize(RAMBlock *rb)
2086{
2087 return rb->page_size;
2088}
2089
67f11b5c
DDAG
2090/* Returns the largest size of page in use */
2091size_t qemu_ram_pagesize_largest(void)
2092{
2093 RAMBlock *block;
2094 size_t largest = 0;
2095
99e15582 2096 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2097 largest = MAX(largest, qemu_ram_pagesize(block));
2098 }
2099
2100 return largest;
2101}
2102
8490fc78
LC
2103static int memory_try_enable_merging(void *addr, size_t len)
2104{
75cc7f01 2105 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2106 /* disabled by the user */
2107 return 0;
2108 }
2109
2110 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2111}
2112
62be4e3a
MT
2113/* Only legal before guest might have detected the memory size: e.g. on
2114 * incoming migration, or right after reset.
2115 *
2116 * As memory core doesn't know how is memory accessed, it is up to
2117 * resize callback to update device state and/or add assertions to detect
2118 * misuse, if necessary.
2119 */
fa53a0e5 2120int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2121{
62be4e3a
MT
2122 assert(block);
2123
4ed023ce 2124 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2125
62be4e3a
MT
2126 if (block->used_length == newsize) {
2127 return 0;
2128 }
2129
2130 if (!(block->flags & RAM_RESIZEABLE)) {
2131 error_setg_errno(errp, EINVAL,
2132 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2133 " in != 0x" RAM_ADDR_FMT, block->idstr,
2134 newsize, block->used_length);
2135 return -EINVAL;
2136 }
2137
2138 if (block->max_length < newsize) {
2139 error_setg_errno(errp, EINVAL,
2140 "Length too large: %s: 0x" RAM_ADDR_FMT
2141 " > 0x" RAM_ADDR_FMT, block->idstr,
2142 newsize, block->max_length);
2143 return -EINVAL;
2144 }
2145
2146 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2147 block->used_length = newsize;
58d2707e
PB
2148 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2149 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2150 memory_region_set_size(block->mr, newsize);
2151 if (block->resized) {
2152 block->resized(block->idstr, newsize, block->host);
2153 }
2154 return 0;
2155}
2156
5b82b703
SH
2157/* Called with ram_list.mutex held */
2158static void dirty_memory_extend(ram_addr_t old_ram_size,
2159 ram_addr_t new_ram_size)
2160{
2161 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2162 DIRTY_MEMORY_BLOCK_SIZE);
2163 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2164 DIRTY_MEMORY_BLOCK_SIZE);
2165 int i;
2166
2167 /* Only need to extend if block count increased */
2168 if (new_num_blocks <= old_num_blocks) {
2169 return;
2170 }
2171
2172 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2173 DirtyMemoryBlocks *old_blocks;
2174 DirtyMemoryBlocks *new_blocks;
2175 int j;
2176
2177 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2178 new_blocks = g_malloc(sizeof(*new_blocks) +
2179 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2180
2181 if (old_num_blocks) {
2182 memcpy(new_blocks->blocks, old_blocks->blocks,
2183 old_num_blocks * sizeof(old_blocks->blocks[0]));
2184 }
2185
2186 for (j = old_num_blocks; j < new_num_blocks; j++) {
2187 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2188 }
2189
2190 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2191
2192 if (old_blocks) {
2193 g_free_rcu(old_blocks, rcu);
2194 }
2195 }
2196}
2197
06329cce 2198static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2199{
e1c57ab8 2200 RAMBlock *block;
0d53d9fe 2201 RAMBlock *last_block = NULL;
2152f5ca 2202 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2203 Error *err = NULL;
2152f5ca 2204
b8c48993 2205 old_ram_size = last_ram_page();
c5705a77 2206
b2a8658e 2207 qemu_mutex_lock_ramlist();
9b8424d5 2208 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2209
2210 if (!new_block->host) {
2211 if (xen_enabled()) {
9b8424d5 2212 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2213 new_block->mr, &err);
2214 if (err) {
2215 error_propagate(errp, err);
2216 qemu_mutex_unlock_ramlist();
39c350ee 2217 return;
37aa7a0e 2218 }
e1c57ab8 2219 } else {
9b8424d5 2220 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2221 &new_block->mr->align, shared);
39228250 2222 if (!new_block->host) {
ef701d7b
HT
2223 error_setg_errno(errp, errno,
2224 "cannot set up guest memory '%s'",
2225 memory_region_name(new_block->mr));
2226 qemu_mutex_unlock_ramlist();
39c350ee 2227 return;
39228250 2228 }
9b8424d5 2229 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2230 }
c902760f 2231 }
94a6b54f 2232
dd631697
LZ
2233 new_ram_size = MAX(old_ram_size,
2234 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2235 if (new_ram_size > old_ram_size) {
5b82b703 2236 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2237 }
0d53d9fe
MD
2238 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2239 * QLIST (which has an RCU-friendly variant) does not have insertion at
2240 * tail, so save the last element in last_block.
2241 */
99e15582 2242 RAMBLOCK_FOREACH(block) {
0d53d9fe 2243 last_block = block;
9b8424d5 2244 if (block->max_length < new_block->max_length) {
abb26d63
PB
2245 break;
2246 }
2247 }
2248 if (block) {
0dc3f44a 2249 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2250 } else if (last_block) {
0dc3f44a 2251 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2252 } else { /* list is empty */
0dc3f44a 2253 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2254 }
0d6d3c87 2255 ram_list.mru_block = NULL;
94a6b54f 2256
0dc3f44a
MD
2257 /* Write list before version */
2258 smp_wmb();
f798b07f 2259 ram_list.version++;
b2a8658e 2260 qemu_mutex_unlock_ramlist();
f798b07f 2261
9b8424d5 2262 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2263 new_block->used_length,
2264 DIRTY_CLIENTS_ALL);
94a6b54f 2265
a904c911
PB
2266 if (new_block->host) {
2267 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2268 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2269 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2270 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2271 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2272 }
94a6b54f 2273}
e9a1ab19 2274
d5dbde46 2275#ifdef CONFIG_POSIX
38b3362d 2276RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2277 uint32_t ram_flags, int fd,
38b3362d 2278 Error **errp)
e1c57ab8
PB
2279{
2280 RAMBlock *new_block;
ef701d7b 2281 Error *local_err = NULL;
8d37b030 2282 int64_t file_size;
e1c57ab8 2283
a4de8552
JH
2284 /* Just support these ram flags by now. */
2285 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2286
e1c57ab8 2287 if (xen_enabled()) {
7f56e740 2288 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2289 return NULL;
e1c57ab8
PB
2290 }
2291
e45e7ae2
MAL
2292 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2293 error_setg(errp,
2294 "host lacks kvm mmu notifiers, -mem-path unsupported");
2295 return NULL;
2296 }
2297
e1c57ab8
PB
2298 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2299 /*
2300 * file_ram_alloc() needs to allocate just like
2301 * phys_mem_alloc, but we haven't bothered to provide
2302 * a hook there.
2303 */
7f56e740
PB
2304 error_setg(errp,
2305 "-mem-path not supported with this accelerator");
528f46af 2306 return NULL;
e1c57ab8
PB
2307 }
2308
4ed023ce 2309 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2310 file_size = get_file_size(fd);
2311 if (file_size > 0 && file_size < size) {
2312 error_setg(errp, "backing store %s size 0x%" PRIx64
2313 " does not match 'size' option 0x" RAM_ADDR_FMT,
2314 mem_path, file_size, size);
8d37b030
MAL
2315 return NULL;
2316 }
2317
e1c57ab8
PB
2318 new_block = g_malloc0(sizeof(*new_block));
2319 new_block->mr = mr;
9b8424d5
MT
2320 new_block->used_length = size;
2321 new_block->max_length = size;
cbfc0171 2322 new_block->flags = ram_flags;
8d37b030 2323 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2324 if (!new_block->host) {
2325 g_free(new_block);
528f46af 2326 return NULL;
7f56e740
PB
2327 }
2328
cbfc0171 2329 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2330 if (local_err) {
2331 g_free(new_block);
2332 error_propagate(errp, local_err);
528f46af 2333 return NULL;
ef701d7b 2334 }
528f46af 2335 return new_block;
38b3362d
MAL
2336
2337}
2338
2339
2340RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2341 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2342 Error **errp)
2343{
2344 int fd;
2345 bool created;
2346 RAMBlock *block;
2347
2348 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2349 if (fd < 0) {
2350 return NULL;
2351 }
2352
cbfc0171 2353 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2354 if (!block) {
2355 if (created) {
2356 unlink(mem_path);
2357 }
2358 close(fd);
2359 return NULL;
2360 }
2361
2362 return block;
e1c57ab8 2363}
0b183fc8 2364#endif
e1c57ab8 2365
62be4e3a 2366static
528f46af
FZ
2367RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2368 void (*resized)(const char*,
2369 uint64_t length,
2370 void *host),
06329cce 2371 void *host, bool resizeable, bool share,
528f46af 2372 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2373{
2374 RAMBlock *new_block;
ef701d7b 2375 Error *local_err = NULL;
e1c57ab8 2376
4ed023ce
DDAG
2377 size = HOST_PAGE_ALIGN(size);
2378 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2379 new_block = g_malloc0(sizeof(*new_block));
2380 new_block->mr = mr;
62be4e3a 2381 new_block->resized = resized;
9b8424d5
MT
2382 new_block->used_length = size;
2383 new_block->max_length = max_size;
62be4e3a 2384 assert(max_size >= size);
e1c57ab8 2385 new_block->fd = -1;
038adc2f 2386 new_block->page_size = qemu_real_host_page_size;
e1c57ab8
PB
2387 new_block->host = host;
2388 if (host) {
7bd4f430 2389 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2390 }
62be4e3a
MT
2391 if (resizeable) {
2392 new_block->flags |= RAM_RESIZEABLE;
2393 }
06329cce 2394 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2395 if (local_err) {
2396 g_free(new_block);
2397 error_propagate(errp, local_err);
528f46af 2398 return NULL;
ef701d7b 2399 }
528f46af 2400 return new_block;
e1c57ab8
PB
2401}
2402
528f46af 2403RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2404 MemoryRegion *mr, Error **errp)
2405{
06329cce
MA
2406 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2407 false, mr, errp);
62be4e3a
MT
2408}
2409
06329cce
MA
2410RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2411 MemoryRegion *mr, Error **errp)
6977dfe6 2412{
06329cce
MA
2413 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2414 share, mr, errp);
62be4e3a
MT
2415}
2416
528f46af 2417RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2418 void (*resized)(const char*,
2419 uint64_t length,
2420 void *host),
2421 MemoryRegion *mr, Error **errp)
2422{
06329cce
MA
2423 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2424 false, mr, errp);
6977dfe6
YT
2425}
2426
43771539
PB
2427static void reclaim_ramblock(RAMBlock *block)
2428{
2429 if (block->flags & RAM_PREALLOC) {
2430 ;
2431 } else if (xen_enabled()) {
2432 xen_invalidate_map_cache_entry(block->host);
2433#ifndef _WIN32
2434 } else if (block->fd >= 0) {
53adb9d4 2435 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2436 close(block->fd);
2437#endif
2438 } else {
2439 qemu_anon_ram_free(block->host, block->max_length);
2440 }
2441 g_free(block);
2442}
2443
f1060c55 2444void qemu_ram_free(RAMBlock *block)
e9a1ab19 2445{
85bc2a15
MAL
2446 if (!block) {
2447 return;
2448 }
2449
0987d735
PB
2450 if (block->host) {
2451 ram_block_notify_remove(block->host, block->max_length);
2452 }
2453
b2a8658e 2454 qemu_mutex_lock_ramlist();
f1060c55
FZ
2455 QLIST_REMOVE_RCU(block, next);
2456 ram_list.mru_block = NULL;
2457 /* Write list before version */
2458 smp_wmb();
2459 ram_list.version++;
2460 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2461 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2462}
2463
cd19cfa2
HY
2464#ifndef _WIN32
2465void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2466{
2467 RAMBlock *block;
2468 ram_addr_t offset;
2469 int flags;
2470 void *area, *vaddr;
2471
99e15582 2472 RAMBLOCK_FOREACH(block) {
cd19cfa2 2473 offset = addr - block->offset;
9b8424d5 2474 if (offset < block->max_length) {
1240be24 2475 vaddr = ramblock_ptr(block, offset);
7bd4f430 2476 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2477 ;
dfeaf2ab
MA
2478 } else if (xen_enabled()) {
2479 abort();
cd19cfa2
HY
2480 } else {
2481 flags = MAP_FIXED;
3435f395 2482 if (block->fd >= 0) {
dbcb8981
PB
2483 flags |= (block->flags & RAM_SHARED ?
2484 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2485 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2486 flags, block->fd, offset);
cd19cfa2 2487 } else {
2eb9fbaa
MA
2488 /*
2489 * Remap needs to match alloc. Accelerators that
2490 * set phys_mem_alloc never remap. If they did,
2491 * we'd need a remap hook here.
2492 */
2493 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2494
cd19cfa2
HY
2495 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2496 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2497 flags, -1, 0);
cd19cfa2
HY
2498 }
2499 if (area != vaddr) {
493d89bf
AF
2500 error_report("Could not remap addr: "
2501 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2502 length, addr);
cd19cfa2
HY
2503 exit(1);
2504 }
8490fc78 2505 memory_try_enable_merging(vaddr, length);
ddb97f1d 2506 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2507 }
cd19cfa2
HY
2508 }
2509 }
2510}
2511#endif /* !_WIN32 */
2512
1b5ec234 2513/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2514 * This should not be used for general purpose DMA. Use address_space_map
2515 * or address_space_rw instead. For local memory (e.g. video ram) that the
2516 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2517 *
49b24afc 2518 * Called within RCU critical section.
1b5ec234 2519 */
0878d0e1 2520void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2521{
3655cb9c
GA
2522 RAMBlock *block = ram_block;
2523
2524 if (block == NULL) {
2525 block = qemu_get_ram_block(addr);
0878d0e1 2526 addr -= block->offset;
3655cb9c 2527 }
ae3a7047
MD
2528
2529 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2530 /* We need to check if the requested address is in the RAM
2531 * because we don't want to map the entire memory in QEMU.
2532 * In that case just map until the end of the page.
2533 */
2534 if (block->offset == 0) {
1ff7c598 2535 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2536 }
ae3a7047 2537
1ff7c598 2538 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2539 }
0878d0e1 2540 return ramblock_ptr(block, addr);
dc828ca1
PB
2541}
2542
0878d0e1 2543/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2544 * but takes a size argument.
0dc3f44a 2545 *
e81bcda5 2546 * Called within RCU critical section.
ae3a7047 2547 */
3655cb9c 2548static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2549 hwaddr *size, bool lock)
38bee5dc 2550{
3655cb9c 2551 RAMBlock *block = ram_block;
8ab934f9
SS
2552 if (*size == 0) {
2553 return NULL;
2554 }
e81bcda5 2555
3655cb9c
GA
2556 if (block == NULL) {
2557 block = qemu_get_ram_block(addr);
0878d0e1 2558 addr -= block->offset;
3655cb9c 2559 }
0878d0e1 2560 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2561
2562 if (xen_enabled() && block->host == NULL) {
2563 /* We need to check if the requested address is in the RAM
2564 * because we don't want to map the entire memory in QEMU.
2565 * In that case just map the requested area.
2566 */
2567 if (block->offset == 0) {
f5aa69bd 2568 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2569 }
2570
f5aa69bd 2571 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2572 }
e81bcda5 2573
0878d0e1 2574 return ramblock_ptr(block, addr);
38bee5dc
SS
2575}
2576
f90bb71b
DDAG
2577/* Return the offset of a hostpointer within a ramblock */
2578ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2579{
2580 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2581 assert((uintptr_t)host >= (uintptr_t)rb->host);
2582 assert(res < rb->max_length);
2583
2584 return res;
2585}
2586
422148d3
DDAG
2587/*
2588 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2589 * in that RAMBlock.
2590 *
2591 * ptr: Host pointer to look up
2592 * round_offset: If true round the result offset down to a page boundary
2593 * *ram_addr: set to result ram_addr
2594 * *offset: set to result offset within the RAMBlock
2595 *
2596 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2597 *
2598 * By the time this function returns, the returned pointer is not protected
2599 * by RCU anymore. If the caller is not within an RCU critical section and
2600 * does not hold the iothread lock, it must have other means of protecting the
2601 * pointer, such as a reference to the region that includes the incoming
2602 * ram_addr_t.
2603 */
422148d3 2604RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2605 ram_addr_t *offset)
5579c7f3 2606{
94a6b54f
PB
2607 RAMBlock *block;
2608 uint8_t *host = ptr;
2609
868bb33f 2610 if (xen_enabled()) {
f615f396 2611 ram_addr_t ram_addr;
694ea274 2612 RCU_READ_LOCK_GUARD();
f615f396
PB
2613 ram_addr = xen_ram_addr_from_mapcache(ptr);
2614 block = qemu_get_ram_block(ram_addr);
422148d3 2615 if (block) {
d6b6aec4 2616 *offset = ram_addr - block->offset;
422148d3 2617 }
422148d3 2618 return block;
712c2b41
SS
2619 }
2620
694ea274 2621 RCU_READ_LOCK_GUARD();
0dc3f44a 2622 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2623 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2624 goto found;
2625 }
2626
99e15582 2627 RAMBLOCK_FOREACH(block) {
432d268c
JN
2628 /* This case append when the block is not mapped. */
2629 if (block->host == NULL) {
2630 continue;
2631 }
9b8424d5 2632 if (host - block->host < block->max_length) {
23887b79 2633 goto found;
f471a17e 2634 }
94a6b54f 2635 }
432d268c 2636
1b5ec234 2637 return NULL;
23887b79
PB
2638
2639found:
422148d3
DDAG
2640 *offset = (host - block->host);
2641 if (round_offset) {
2642 *offset &= TARGET_PAGE_MASK;
2643 }
422148d3
DDAG
2644 return block;
2645}
2646
e3dd7493
DDAG
2647/*
2648 * Finds the named RAMBlock
2649 *
2650 * name: The name of RAMBlock to find
2651 *
2652 * Returns: RAMBlock (or NULL if not found)
2653 */
2654RAMBlock *qemu_ram_block_by_name(const char *name)
2655{
2656 RAMBlock *block;
2657
99e15582 2658 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2659 if (!strcmp(name, block->idstr)) {
2660 return block;
2661 }
2662 }
2663
2664 return NULL;
2665}
2666
422148d3
DDAG
2667/* Some of the softmmu routines need to translate from a host pointer
2668 (typically a TLB entry) back to a ram offset. */
07bdaa41 2669ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2670{
2671 RAMBlock *block;
f615f396 2672 ram_addr_t offset;
422148d3 2673
f615f396 2674 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2675 if (!block) {
07bdaa41 2676 return RAM_ADDR_INVALID;
422148d3
DDAG
2677 }
2678
07bdaa41 2679 return block->offset + offset;
e890261f 2680}
f471a17e 2681
0f459d16 2682/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2683void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2684 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2685{
568496c0 2686 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2687 CPUWatchpoint *wp;
0f459d16 2688
5aa1ef71 2689 assert(tcg_enabled());
ff4700b0 2690 if (cpu->watchpoint_hit) {
50b107c5
RH
2691 /*
2692 * We re-entered the check after replacing the TB.
2693 * Now raise the debug interrupt so that it will
2694 * trigger after the current instruction.
2695 */
2696 qemu_mutex_lock_iothread();
93afeade 2697 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2698 qemu_mutex_unlock_iothread();
06d55cc1
AL
2699 return;
2700 }
0026348b
DH
2701
2702 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2703 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2704 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2705 && (wp->flags & flags)) {
08225676
PM
2706 if (flags == BP_MEM_READ) {
2707 wp->flags |= BP_WATCHPOINT_HIT_READ;
2708 } else {
2709 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2710 }
0026348b 2711 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2712 wp->hitattrs = attrs;
ff4700b0 2713 if (!cpu->watchpoint_hit) {
568496c0
SF
2714 if (wp->flags & BP_CPU &&
2715 !cc->debug_check_watchpoint(cpu, wp)) {
2716 wp->flags &= ~BP_WATCHPOINT_HIT;
2717 continue;
2718 }
ff4700b0 2719 cpu->watchpoint_hit = wp;
a5e99826 2720
0ac20318 2721 mmap_lock();
ae57db63 2722 tb_check_watchpoint(cpu, ra);
6e140f28 2723 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2724 cpu->exception_index = EXCP_DEBUG;
0ac20318 2725 mmap_unlock();
0026348b 2726 cpu_loop_exit_restore(cpu, ra);
6e140f28 2727 } else {
9b990ee5
RH
2728 /* Force execution of one insn next time. */
2729 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2730 mmap_unlock();
0026348b
DH
2731 if (ra) {
2732 cpu_restore_state(cpu, ra, true);
2733 }
6886b980 2734 cpu_loop_exit_noexc(cpu);
6e140f28 2735 }
06d55cc1 2736 }
6e140f28
AL
2737 } else {
2738 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2739 }
2740 }
2741}
2742
b2a44fca 2743static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2744 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2745static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2746 const uint8_t *buf, hwaddr len);
2747static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2748 bool is_write, MemTxAttrs attrs);
16620684 2749
f25a49e0
PM
2750static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2751 unsigned len, MemTxAttrs attrs)
db7b5426 2752{
acc9d80b 2753 subpage_t *subpage = opaque;
ff6cff75 2754 uint8_t buf[8];
5c9eb028 2755 MemTxResult res;
791af8c8 2756
db7b5426 2757#if defined(DEBUG_SUBPAGE)
016e9d62 2758 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2759 subpage, len, addr);
db7b5426 2760#endif
16620684 2761 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2762 if (res) {
2763 return res;
f25a49e0 2764 }
6d3ede54
PM
2765 *data = ldn_p(buf, len);
2766 return MEMTX_OK;
db7b5426
BS
2767}
2768
f25a49e0
PM
2769static MemTxResult subpage_write(void *opaque, hwaddr addr,
2770 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2771{
acc9d80b 2772 subpage_t *subpage = opaque;
ff6cff75 2773 uint8_t buf[8];
acc9d80b 2774
db7b5426 2775#if defined(DEBUG_SUBPAGE)
016e9d62 2776 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2777 " value %"PRIx64"\n",
2778 __func__, subpage, len, addr, value);
db7b5426 2779#endif
6d3ede54 2780 stn_p(buf, len, value);
16620684 2781 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2782}
2783
c353e4cc 2784static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2785 unsigned len, bool is_write,
2786 MemTxAttrs attrs)
c353e4cc 2787{
acc9d80b 2788 subpage_t *subpage = opaque;
c353e4cc 2789#if defined(DEBUG_SUBPAGE)
016e9d62 2790 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2791 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2792#endif
2793
16620684 2794 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2795 len, is_write, attrs);
c353e4cc
PB
2796}
2797
70c68e44 2798static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2799 .read_with_attrs = subpage_read,
2800 .write_with_attrs = subpage_write,
ff6cff75
PB
2801 .impl.min_access_size = 1,
2802 .impl.max_access_size = 8,
2803 .valid.min_access_size = 1,
2804 .valid.max_access_size = 8,
c353e4cc 2805 .valid.accepts = subpage_accepts,
70c68e44 2806 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2807};
2808
b797ab1a
WY
2809static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2810 uint16_t section)
db7b5426
BS
2811{
2812 int idx, eidx;
2813
2814 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2815 return -1;
2816 idx = SUBPAGE_IDX(start);
2817 eidx = SUBPAGE_IDX(end);
2818#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2819 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2820 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2821#endif
db7b5426 2822 for (; idx <= eidx; idx++) {
5312bd8b 2823 mmio->sub_section[idx] = section;
db7b5426
BS
2824 }
2825
2826 return 0;
2827}
2828
16620684 2829static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2830{
c227f099 2831 subpage_t *mmio;
db7b5426 2832
b797ab1a 2833 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2834 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2835 mmio->fv = fv;
1eec614b 2836 mmio->base = base;
2c9b15ca 2837 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2838 NULL, TARGET_PAGE_SIZE);
b3b00c78 2839 mmio->iomem.subpage = true;
db7b5426 2840#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2841 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2842 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2843#endif
db7b5426
BS
2844
2845 return mmio;
2846}
2847
16620684 2848static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2849{
16620684 2850 assert(fv);
5312bd8b 2851 MemoryRegionSection section = {
16620684 2852 .fv = fv,
5312bd8b
AK
2853 .mr = mr,
2854 .offset_within_address_space = 0,
2855 .offset_within_region = 0,
052e87b0 2856 .size = int128_2_64(),
5312bd8b
AK
2857 };
2858
53cb28cb 2859 return phys_section_add(map, &section);
5312bd8b
AK
2860}
2861
2d54f194
PM
2862MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2863 hwaddr index, MemTxAttrs attrs)
aa102231 2864{
a54c87b6
PM
2865 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2866 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2867 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2868 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2869
2d54f194 2870 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2871}
2872
e9179ce1
AK
2873static void io_mem_init(void)
2874{
2c9b15ca 2875 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2876 NULL, UINT64_MAX);
e9179ce1
AK
2877}
2878
8629d3fc 2879AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2880{
53cb28cb
MA
2881 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2882 uint16_t n;
2883
16620684 2884 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2885 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2886
9736e55b 2887 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2888
2889 return d;
00752703
PB
2890}
2891
66a6df1d 2892void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2893{
2894 phys_sections_free(&d->map);
2895 g_free(d);
2896}
2897
9458a9a1
PB
2898static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2899{
2900}
2901
2902static void tcg_log_global_after_sync(MemoryListener *listener)
2903{
2904 CPUAddressSpace *cpuas;
2905
2906 /* Wait for the CPU to end the current TB. This avoids the following
2907 * incorrect race:
2908 *
2909 * vCPU migration
2910 * ---------------------- -------------------------
2911 * TLB check -> slow path
2912 * notdirty_mem_write
2913 * write to RAM
2914 * mark dirty
2915 * clear dirty flag
2916 * TLB check -> fast path
2917 * read memory
2918 * write to RAM
2919 *
2920 * by pushing the migration thread's memory read after the vCPU thread has
2921 * written the memory.
2922 */
86cf9e15
PD
2923 if (replay_mode == REPLAY_MODE_NONE) {
2924 /*
2925 * VGA can make calls to this function while updating the screen.
2926 * In record/replay mode this causes a deadlock, because
2927 * run_on_cpu waits for rr mutex. Therefore no races are possible
2928 * in this case and no need for making run_on_cpu when
2929 * record/replay is not enabled.
2930 */
2931 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2932 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2933 }
9458a9a1
PB
2934}
2935
1d71148e 2936static void tcg_commit(MemoryListener *listener)
50c1e149 2937{
32857f4d
PM
2938 CPUAddressSpace *cpuas;
2939 AddressSpaceDispatch *d;
117712c3 2940
f28d0dfd 2941 assert(tcg_enabled());
117712c3
AK
2942 /* since each CPU stores ram addresses in its TLB cache, we must
2943 reset the modified entries */
32857f4d
PM
2944 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2945 cpu_reloading_memory_map();
2946 /* The CPU and TLB are protected by the iothread lock.
2947 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2948 * may have split the RCU critical section.
2949 */
66a6df1d 2950 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2951 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2952 tlb_flush(cpuas->cpu);
50c1e149
AK
2953}
2954
62152b8a
AK
2955static void memory_map_init(void)
2956{
7267c094 2957 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2958
57271d63 2959 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2960 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2961
7267c094 2962 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2963 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2964 65536);
7dca8043 2965 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2966}
2967
2968MemoryRegion *get_system_memory(void)
2969{
2970 return system_memory;
2971}
2972
309cb471
AK
2973MemoryRegion *get_system_io(void)
2974{
2975 return system_io;
2976}
2977
e2eef170
PB
2978#endif /* !defined(CONFIG_USER_ONLY) */
2979
13eb76e0
FB
2980/* physical memory access (slow version, mainly for debug) */
2981#if defined(CONFIG_USER_ONLY)
f17ec444 2982int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 2983 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 2984{
0c249ff7
LZ
2985 int flags;
2986 target_ulong l, page;
53a5960a 2987 void * p;
13eb76e0
FB
2988
2989 while (len > 0) {
2990 page = addr & TARGET_PAGE_MASK;
2991 l = (page + TARGET_PAGE_SIZE) - addr;
2992 if (l > len)
2993 l = len;
2994 flags = page_get_flags(page);
2995 if (!(flags & PAGE_VALID))
a68fe89c 2996 return -1;
13eb76e0
FB
2997 if (is_write) {
2998 if (!(flags & PAGE_WRITE))
a68fe89c 2999 return -1;
579a97f7 3000 /* XXX: this code should not depend on lock_user */
72fb7daa 3001 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3002 return -1;
72fb7daa
AJ
3003 memcpy(p, buf, l);
3004 unlock_user(p, addr, l);
13eb76e0
FB
3005 } else {
3006 if (!(flags & PAGE_READ))
a68fe89c 3007 return -1;
579a97f7 3008 /* XXX: this code should not depend on lock_user */
72fb7daa 3009 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3010 return -1;
72fb7daa 3011 memcpy(buf, p, l);
5b257578 3012 unlock_user(p, addr, 0);
13eb76e0
FB
3013 }
3014 len -= l;
3015 buf += l;
3016 addr += l;
3017 }
a68fe89c 3018 return 0;
13eb76e0 3019}
8df1cd07 3020
13eb76e0 3021#else
51d7a9eb 3022
845b6214 3023static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3024 hwaddr length)
51d7a9eb 3025{
e87f7778 3026 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3027 addr += memory_region_get_ram_addr(mr);
3028
e87f7778
PB
3029 /* No early return if dirty_log_mask is or becomes 0, because
3030 * cpu_physical_memory_set_dirty_range will still call
3031 * xen_modified_memory.
3032 */
3033 if (dirty_log_mask) {
3034 dirty_log_mask =
3035 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3036 }
3037 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3038 assert(tcg_enabled());
e87f7778
PB
3039 tb_invalidate_phys_range(addr, addr + length);
3040 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3041 }
e87f7778 3042 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3043}
3044
047be4ed
SH
3045void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3046{
3047 /*
3048 * In principle this function would work on other memory region types too,
3049 * but the ROM device use case is the only one where this operation is
3050 * necessary. Other memory regions should use the
3051 * address_space_read/write() APIs.
3052 */
3053 assert(memory_region_is_romd(mr));
3054
3055 invalidate_and_set_dirty(mr, addr, size);
3056}
3057
23326164 3058static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3059{
e1622f4b 3060 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3061
3062 /* Regions are assumed to support 1-4 byte accesses unless
3063 otherwise specified. */
23326164
RH
3064 if (access_size_max == 0) {
3065 access_size_max = 4;
3066 }
3067
3068 /* Bound the maximum access by the alignment of the address. */
3069 if (!mr->ops->impl.unaligned) {
3070 unsigned align_size_max = addr & -addr;
3071 if (align_size_max != 0 && align_size_max < access_size_max) {
3072 access_size_max = align_size_max;
3073 }
82f2563f 3074 }
23326164
RH
3075
3076 /* Don't attempt accesses larger than the maximum. */
3077 if (l > access_size_max) {
3078 l = access_size_max;
82f2563f 3079 }
6554f5c0 3080 l = pow2floor(l);
23326164
RH
3081
3082 return l;
82f2563f
PB
3083}
3084
4840f10e 3085static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3086{
4840f10e
JK
3087 bool unlocked = !qemu_mutex_iothread_locked();
3088 bool release_lock = false;
3089
3090 if (unlocked && mr->global_locking) {
3091 qemu_mutex_lock_iothread();
3092 unlocked = false;
3093 release_lock = true;
3094 }
125b3806 3095 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3096 if (unlocked) {
3097 qemu_mutex_lock_iothread();
3098 }
125b3806 3099 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3100 if (unlocked) {
3101 qemu_mutex_unlock_iothread();
3102 }
125b3806 3103 }
4840f10e
JK
3104
3105 return release_lock;
125b3806
PB
3106}
3107
a203ac70 3108/* Called within RCU critical section. */
16620684
AK
3109static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3110 MemTxAttrs attrs,
3111 const uint8_t *buf,
0c249ff7 3112 hwaddr len, hwaddr addr1,
16620684 3113 hwaddr l, MemoryRegion *mr)
13eb76e0 3114{
13eb76e0 3115 uint8_t *ptr;
791af8c8 3116 uint64_t val;
3b643495 3117 MemTxResult result = MEMTX_OK;
4840f10e 3118 bool release_lock = false;
3b46e624 3119
a203ac70 3120 for (;;) {
eb7eeb88
PB
3121 if (!memory_access_is_direct(mr, true)) {
3122 release_lock |= prepare_mmio_access(mr);
3123 l = memory_access_size(mr, l, addr1);
3124 /* XXX: could force current_cpu to NULL to avoid
3125 potential bugs */
9bf825bf 3126 val = ldn_he_p(buf, l);
3d9e7c3e 3127 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3128 size_memop(l), attrs);
13eb76e0 3129 } else {
eb7eeb88 3130 /* RAM case */
f5aa69bd 3131 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3132 memcpy(ptr, buf, l);
3133 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3134 }
4840f10e
JK
3135
3136 if (release_lock) {
3137 qemu_mutex_unlock_iothread();
3138 release_lock = false;
3139 }
3140
13eb76e0
FB
3141 len -= l;
3142 buf += l;
3143 addr += l;
a203ac70
PB
3144
3145 if (!len) {
3146 break;
3147 }
3148
3149 l = len;
efa99a2f 3150 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3151 }
fd8aaa76 3152
3b643495 3153 return result;
13eb76e0 3154}
8df1cd07 3155
4c6ebbb3 3156/* Called from RCU critical section. */
16620684 3157static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3158 const uint8_t *buf, hwaddr len)
ac1970fb 3159{
eb7eeb88 3160 hwaddr l;
eb7eeb88
PB
3161 hwaddr addr1;
3162 MemoryRegion *mr;
3163 MemTxResult result = MEMTX_OK;
eb7eeb88 3164
4c6ebbb3 3165 l = len;
efa99a2f 3166 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3167 result = flatview_write_continue(fv, addr, attrs, buf, len,
3168 addr1, l, mr);
a203ac70
PB
3169
3170 return result;
3171}
3172
3173/* Called within RCU critical section. */
16620684
AK
3174MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3175 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3176 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3177 MemoryRegion *mr)
a203ac70
PB
3178{
3179 uint8_t *ptr;
3180 uint64_t val;
3181 MemTxResult result = MEMTX_OK;
3182 bool release_lock = false;
eb7eeb88 3183
a203ac70 3184 for (;;) {
eb7eeb88
PB
3185 if (!memory_access_is_direct(mr, false)) {
3186 /* I/O case */
3187 release_lock |= prepare_mmio_access(mr);
3188 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3189 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3190 size_memop(l), attrs);
3191 stn_he_p(buf, l, val);
eb7eeb88
PB
3192 } else {
3193 /* RAM case */
f5aa69bd 3194 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3195 memcpy(buf, ptr, l);
3196 }
3197
3198 if (release_lock) {
3199 qemu_mutex_unlock_iothread();
3200 release_lock = false;
3201 }
3202
3203 len -= l;
3204 buf += l;
3205 addr += l;
a203ac70
PB
3206
3207 if (!len) {
3208 break;
3209 }
3210
3211 l = len;
efa99a2f 3212 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3213 }
3214
3215 return result;
3216}
3217
b2a44fca
PB
3218/* Called from RCU critical section. */
3219static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3220 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3221{
3222 hwaddr l;
3223 hwaddr addr1;
3224 MemoryRegion *mr;
eb7eeb88 3225
b2a44fca 3226 l = len;
efa99a2f 3227 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3228 return flatview_read_continue(fv, addr, attrs, buf, len,
3229 addr1, l, mr);
ac1970fb
AK
3230}
3231
b2a44fca 3232MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3233 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3234{
3235 MemTxResult result = MEMTX_OK;
3236 FlatView *fv;
3237
3238 if (len > 0) {
694ea274 3239 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3240 fv = address_space_to_flatview(as);
3241 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3242 }
3243
3244 return result;
3245}
3246
4c6ebbb3
PB
3247MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3248 MemTxAttrs attrs,
0c249ff7 3249 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3250{
3251 MemTxResult result = MEMTX_OK;
3252 FlatView *fv;
3253
3254 if (len > 0) {
694ea274 3255 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3256 fv = address_space_to_flatview(as);
3257 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3258 }
3259
3260 return result;
3261}
3262
db84fd97 3263MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3264 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3265{
3266 if (is_write) {
3267 return address_space_write(as, addr, attrs, buf, len);
3268 } else {
3269 return address_space_read_full(as, addr, attrs, buf, len);
3270 }
3271}
3272
a8170e5e 3273void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3274 hwaddr len, int is_write)
ac1970fb 3275{
5c9eb028
PM
3276 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3277 buf, len, is_write);
ac1970fb
AK
3278}
3279
582b55a9
AG
3280enum write_rom_type {
3281 WRITE_DATA,
3282 FLUSH_CACHE,
3283};
3284
75693e14
PM
3285static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3286 hwaddr addr,
3287 MemTxAttrs attrs,
3288 const uint8_t *buf,
0c249ff7 3289 hwaddr len,
75693e14 3290 enum write_rom_type type)
d0ecd2aa 3291{
149f54b5 3292 hwaddr l;
d0ecd2aa 3293 uint8_t *ptr;
149f54b5 3294 hwaddr addr1;
5c8a00ce 3295 MemoryRegion *mr;
3b46e624 3296
694ea274 3297 RCU_READ_LOCK_GUARD();
d0ecd2aa 3298 while (len > 0) {
149f54b5 3299 l = len;
75693e14 3300 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3301
5c8a00ce
PB
3302 if (!(memory_region_is_ram(mr) ||
3303 memory_region_is_romd(mr))) {
b242e0e0 3304 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3305 } else {
d0ecd2aa 3306 /* ROM/RAM case */
0878d0e1 3307 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3308 switch (type) {
3309 case WRITE_DATA:
3310 memcpy(ptr, buf, l);
845b6214 3311 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3312 break;
3313 case FLUSH_CACHE:
3314 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3315 break;
3316 }
d0ecd2aa
FB
3317 }
3318 len -= l;
3319 buf += l;
3320 addr += l;
3321 }
75693e14 3322 return MEMTX_OK;
d0ecd2aa
FB
3323}
3324
582b55a9 3325/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3326MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3327 MemTxAttrs attrs,
0c249ff7 3328 const uint8_t *buf, hwaddr len)
582b55a9 3329{
3c8133f9
PM
3330 return address_space_write_rom_internal(as, addr, attrs,
3331 buf, len, WRITE_DATA);
582b55a9
AG
3332}
3333
0c249ff7 3334void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3335{
3336 /*
3337 * This function should do the same thing as an icache flush that was
3338 * triggered from within the guest. For TCG we are always cache coherent,
3339 * so there is no need to flush anything. For KVM / Xen we need to flush
3340 * the host's instruction cache at least.
3341 */
3342 if (tcg_enabled()) {
3343 return;
3344 }
3345
75693e14
PM
3346 address_space_write_rom_internal(&address_space_memory,
3347 start, MEMTXATTRS_UNSPECIFIED,
3348 NULL, len, FLUSH_CACHE);
582b55a9
AG
3349}
3350
6d16c2f8 3351typedef struct {
d3e71559 3352 MemoryRegion *mr;
6d16c2f8 3353 void *buffer;
a8170e5e
AK
3354 hwaddr addr;
3355 hwaddr len;
c2cba0ff 3356 bool in_use;
6d16c2f8
AL
3357} BounceBuffer;
3358
3359static BounceBuffer bounce;
3360
ba223c29 3361typedef struct MapClient {
e95205e1 3362 QEMUBH *bh;
72cf2d4f 3363 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3364} MapClient;
3365
38e047b5 3366QemuMutex map_client_list_lock;
b58deb34 3367static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3368 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3369
e95205e1
FZ
3370static void cpu_unregister_map_client_do(MapClient *client)
3371{
3372 QLIST_REMOVE(client, link);
3373 g_free(client);
3374}
3375
33b6c2ed
FZ
3376static void cpu_notify_map_clients_locked(void)
3377{
3378 MapClient *client;
3379
3380 while (!QLIST_EMPTY(&map_client_list)) {
3381 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3382 qemu_bh_schedule(client->bh);
3383 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3384 }
3385}
3386
e95205e1 3387void cpu_register_map_client(QEMUBH *bh)
ba223c29 3388{
7267c094 3389 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3390
38e047b5 3391 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3392 client->bh = bh;
72cf2d4f 3393 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3394 if (!atomic_read(&bounce.in_use)) {
3395 cpu_notify_map_clients_locked();
3396 }
38e047b5 3397 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3398}
3399
38e047b5 3400void cpu_exec_init_all(void)
ba223c29 3401{
38e047b5 3402 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3403 /* The data structures we set up here depend on knowing the page size,
3404 * so no more changes can be made after this point.
3405 * In an ideal world, nothing we did before we had finished the
3406 * machine setup would care about the target page size, and we could
3407 * do this much later, rather than requiring board models to state
3408 * up front what their requirements are.
3409 */
3410 finalize_target_page_bits();
38e047b5 3411 io_mem_init();
680a4783 3412 memory_map_init();
38e047b5 3413 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3414}
3415
e95205e1 3416void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3417{
3418 MapClient *client;
3419
e95205e1
FZ
3420 qemu_mutex_lock(&map_client_list_lock);
3421 QLIST_FOREACH(client, &map_client_list, link) {
3422 if (client->bh == bh) {
3423 cpu_unregister_map_client_do(client);
3424 break;
3425 }
ba223c29 3426 }
e95205e1 3427 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3428}
3429
3430static void cpu_notify_map_clients(void)
3431{
38e047b5 3432 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3433 cpu_notify_map_clients_locked();
38e047b5 3434 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3435}
3436
0c249ff7 3437static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3438 bool is_write, MemTxAttrs attrs)
51644ab7 3439{
5c8a00ce 3440 MemoryRegion *mr;
51644ab7
PB
3441 hwaddr l, xlat;
3442
3443 while (len > 0) {
3444 l = len;
efa99a2f 3445 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3446 if (!memory_access_is_direct(mr, is_write)) {
3447 l = memory_access_size(mr, l, addr);
eace72b7 3448 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3449 return false;
3450 }
3451 }
3452
3453 len -= l;
3454 addr += l;
3455 }
3456 return true;
3457}
3458
16620684 3459bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3460 hwaddr len, bool is_write,
fddffa42 3461 MemTxAttrs attrs)
16620684 3462{
11e732a5
PB
3463 FlatView *fv;
3464 bool result;
3465
694ea274 3466 RCU_READ_LOCK_GUARD();
11e732a5 3467 fv = address_space_to_flatview(as);
eace72b7 3468 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3469 return result;
16620684
AK
3470}
3471
715c31ec 3472static hwaddr
16620684 3473flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3474 hwaddr target_len,
3475 MemoryRegion *mr, hwaddr base, hwaddr len,
3476 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3477{
3478 hwaddr done = 0;
3479 hwaddr xlat;
3480 MemoryRegion *this_mr;
3481
3482 for (;;) {
3483 target_len -= len;
3484 addr += len;
3485 done += len;
3486 if (target_len == 0) {
3487 return done;
3488 }
3489
3490 len = target_len;
16620684 3491 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3492 &len, is_write, attrs);
715c31ec
PB
3493 if (this_mr != mr || xlat != base + done) {
3494 return done;
3495 }
3496 }
3497}
3498
6d16c2f8
AL
3499/* Map a physical memory region into a host virtual address.
3500 * May map a subset of the requested range, given by and returned in *plen.
3501 * May return NULL if resources needed to perform the mapping are exhausted.
3502 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3503 * Use cpu_register_map_client() to know when retrying the map operation is
3504 * likely to succeed.
6d16c2f8 3505 */
ac1970fb 3506void *address_space_map(AddressSpace *as,
a8170e5e
AK
3507 hwaddr addr,
3508 hwaddr *plen,
f26404fb
PM
3509 bool is_write,
3510 MemTxAttrs attrs)
6d16c2f8 3511{
a8170e5e 3512 hwaddr len = *plen;
715c31ec
PB
3513 hwaddr l, xlat;
3514 MemoryRegion *mr;
e81bcda5 3515 void *ptr;
ad0c60fa 3516 FlatView *fv;
6d16c2f8 3517
e3127ae0
PB
3518 if (len == 0) {
3519 return NULL;
3520 }
38bee5dc 3521
e3127ae0 3522 l = len;
694ea274 3523 RCU_READ_LOCK_GUARD();
ad0c60fa 3524 fv = address_space_to_flatview(as);
efa99a2f 3525 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3526
e3127ae0 3527 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3528 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3529 return NULL;
6d16c2f8 3530 }
e85d9db5
KW
3531 /* Avoid unbounded allocations */
3532 l = MIN(l, TARGET_PAGE_SIZE);
3533 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3534 bounce.addr = addr;
3535 bounce.len = l;
d3e71559
PB
3536
3537 memory_region_ref(mr);
3538 bounce.mr = mr;
e3127ae0 3539 if (!is_write) {
16620684 3540 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3541 bounce.buffer, l);
8ab934f9 3542 }
6d16c2f8 3543
e3127ae0
PB
3544 *plen = l;
3545 return bounce.buffer;
3546 }
3547
e3127ae0 3548
d3e71559 3549 memory_region_ref(mr);
16620684 3550 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3551 l, is_write, attrs);
f5aa69bd 3552 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3553
3554 return ptr;
6d16c2f8
AL
3555}
3556
ac1970fb 3557/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3558 * Will also mark the memory as dirty if is_write == 1. access_len gives
3559 * the amount of memory that was actually read or written by the caller.
3560 */
a8170e5e
AK
3561void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3562 int is_write, hwaddr access_len)
6d16c2f8
AL
3563{
3564 if (buffer != bounce.buffer) {
d3e71559
PB
3565 MemoryRegion *mr;
3566 ram_addr_t addr1;
3567
07bdaa41 3568 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3569 assert(mr != NULL);
6d16c2f8 3570 if (is_write) {
845b6214 3571 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3572 }
868bb33f 3573 if (xen_enabled()) {
e41d7c69 3574 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3575 }
d3e71559 3576 memory_region_unref(mr);
6d16c2f8
AL
3577 return;
3578 }
3579 if (is_write) {
5c9eb028
PM
3580 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3581 bounce.buffer, access_len);
6d16c2f8 3582 }
f8a83245 3583 qemu_vfree(bounce.buffer);
6d16c2f8 3584 bounce.buffer = NULL;
d3e71559 3585 memory_region_unref(bounce.mr);
c2cba0ff 3586 atomic_mb_set(&bounce.in_use, false);
ba223c29 3587 cpu_notify_map_clients();
6d16c2f8 3588}
d0ecd2aa 3589
a8170e5e
AK
3590void *cpu_physical_memory_map(hwaddr addr,
3591 hwaddr *plen,
ac1970fb
AK
3592 int is_write)
3593{
f26404fb
PM
3594 return address_space_map(&address_space_memory, addr, plen, is_write,
3595 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3596}
3597
a8170e5e
AK
3598void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3599 int is_write, hwaddr access_len)
ac1970fb
AK
3600{
3601 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3602}
3603
0ce265ff
PB
3604#define ARG1_DECL AddressSpace *as
3605#define ARG1 as
3606#define SUFFIX
3607#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3608#define RCU_READ_LOCK(...) rcu_read_lock()
3609#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3610#include "memory_ldst.inc.c"
1e78bcc1 3611
1f4e496e
PB
3612int64_t address_space_cache_init(MemoryRegionCache *cache,
3613 AddressSpace *as,
3614 hwaddr addr,
3615 hwaddr len,
3616 bool is_write)
3617{
48564041
PB
3618 AddressSpaceDispatch *d;
3619 hwaddr l;
3620 MemoryRegion *mr;
3621
3622 assert(len > 0);
3623
3624 l = len;
3625 cache->fv = address_space_get_flatview(as);
3626 d = flatview_to_dispatch(cache->fv);
3627 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3628
3629 mr = cache->mrs.mr;
3630 memory_region_ref(mr);
3631 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3632 /* We don't care about the memory attributes here as we're only
3633 * doing this if we found actual RAM, which behaves the same
3634 * regardless of attributes; so UNSPECIFIED is fine.
3635 */
48564041 3636 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3637 cache->xlat, l, is_write,
3638 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3639 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3640 } else {
3641 cache->ptr = NULL;
3642 }
3643
3644 cache->len = l;
3645 cache->is_write = is_write;
3646 return l;
1f4e496e
PB
3647}
3648
3649void address_space_cache_invalidate(MemoryRegionCache *cache,
3650 hwaddr addr,
3651 hwaddr access_len)
3652{
48564041
PB
3653 assert(cache->is_write);
3654 if (likely(cache->ptr)) {
3655 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3656 }
1f4e496e
PB
3657}
3658
3659void address_space_cache_destroy(MemoryRegionCache *cache)
3660{
48564041
PB
3661 if (!cache->mrs.mr) {
3662 return;
3663 }
3664
3665 if (xen_enabled()) {
3666 xen_invalidate_map_cache_entry(cache->ptr);
3667 }
3668 memory_region_unref(cache->mrs.mr);
3669 flatview_unref(cache->fv);
3670 cache->mrs.mr = NULL;
3671 cache->fv = NULL;
3672}
3673
3674/* Called from RCU critical section. This function has the same
3675 * semantics as address_space_translate, but it only works on a
3676 * predefined range of a MemoryRegion that was mapped with
3677 * address_space_cache_init.
3678 */
3679static inline MemoryRegion *address_space_translate_cached(
3680 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3681 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3682{
3683 MemoryRegionSection section;
3684 MemoryRegion *mr;
3685 IOMMUMemoryRegion *iommu_mr;
3686 AddressSpace *target_as;
3687
3688 assert(!cache->ptr);
3689 *xlat = addr + cache->xlat;
3690
3691 mr = cache->mrs.mr;
3692 iommu_mr = memory_region_get_iommu(mr);
3693 if (!iommu_mr) {
3694 /* MMIO region. */
3695 return mr;
3696 }
3697
3698 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3699 NULL, is_write, true,
2f7b009c 3700 &target_as, attrs);
48564041
PB
3701 return section.mr;
3702}
3703
3704/* Called from RCU critical section. address_space_read_cached uses this
3705 * out of line function when the target is an MMIO or IOMMU region.
3706 */
3707void
3708address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3709 void *buf, hwaddr len)
48564041
PB
3710{
3711 hwaddr addr1, l;
3712 MemoryRegion *mr;
3713
3714 l = len;
bc6b1cec
PM
3715 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3716 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3717 flatview_read_continue(cache->fv,
3718 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3719 addr1, l, mr);
3720}
3721
3722/* Called from RCU critical section. address_space_write_cached uses this
3723 * out of line function when the target is an MMIO or IOMMU region.
3724 */
3725void
3726address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3727 const void *buf, hwaddr len)
48564041
PB
3728{
3729 hwaddr addr1, l;
3730 MemoryRegion *mr;
3731
3732 l = len;
bc6b1cec
PM
3733 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3734 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3735 flatview_write_continue(cache->fv,
3736 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3737 addr1, l, mr);
1f4e496e
PB
3738}
3739
3740#define ARG1_DECL MemoryRegionCache *cache
3741#define ARG1 cache
48564041
PB
3742#define SUFFIX _cached_slow
3743#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3744#define RCU_READ_LOCK() ((void)0)
3745#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3746#include "memory_ldst.inc.c"
3747
5e2972fd 3748/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3749int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3750 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3751{
a8170e5e 3752 hwaddr phys_addr;
0c249ff7 3753 target_ulong l, page;
13eb76e0 3754
79ca7a1b 3755 cpu_synchronize_state(cpu);
13eb76e0 3756 while (len > 0) {
5232e4c7
PM
3757 int asidx;
3758 MemTxAttrs attrs;
3759
13eb76e0 3760 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3761 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3762 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3763 /* if no physical page mapped, return an error */
3764 if (phys_addr == -1)
3765 return -1;
3766 l = (page + TARGET_PAGE_SIZE) - addr;
3767 if (l > len)
3768 l = len;
5e2972fd 3769 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3770 if (is_write) {
3c8133f9 3771 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3772 attrs, buf, l);
2e38847b 3773 } else {
5232e4c7 3774 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3775 attrs, buf, l, 0);
2e38847b 3776 }
13eb76e0
FB
3777 len -= l;
3778 buf += l;
3779 addr += l;
3780 }
3781 return 0;
3782}
038629a6
DDAG
3783
3784/*
3785 * Allows code that needs to deal with migration bitmaps etc to still be built
3786 * target independent.
3787 */
20afaed9 3788size_t qemu_target_page_size(void)
038629a6 3789{
20afaed9 3790 return TARGET_PAGE_SIZE;
038629a6
DDAG
3791}
3792
46d702b1
JQ
3793int qemu_target_page_bits(void)
3794{
3795 return TARGET_PAGE_BITS;
3796}
3797
3798int qemu_target_page_bits_min(void)
3799{
3800 return TARGET_PAGE_BITS_MIN;
3801}
a68fe89c 3802#endif
13eb76e0 3803
98ed8ecf 3804bool target_words_bigendian(void)
8e4a424b
BS
3805{
3806#if defined(TARGET_WORDS_BIGENDIAN)
3807 return true;
3808#else
3809 return false;
3810#endif
3811}
3812
76f35538 3813#ifndef CONFIG_USER_ONLY
a8170e5e 3814bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3815{
5c8a00ce 3816 MemoryRegion*mr;
149f54b5 3817 hwaddr l = 1;
41063e1e 3818 bool res;
76f35538 3819
694ea274 3820 RCU_READ_LOCK_GUARD();
5c8a00ce 3821 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3822 phys_addr, &phys_addr, &l, false,
3823 MEMTXATTRS_UNSPECIFIED);
76f35538 3824
41063e1e 3825 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3826 return res;
76f35538 3827}
bd2fa51f 3828
e3807054 3829int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3830{
3831 RAMBlock *block;
e3807054 3832 int ret = 0;
bd2fa51f 3833
694ea274 3834 RCU_READ_LOCK_GUARD();
99e15582 3835 RAMBLOCK_FOREACH(block) {
754cb9c0 3836 ret = func(block, opaque);
e3807054
DDAG
3837 if (ret) {
3838 break;
3839 }
bd2fa51f 3840 }
e3807054 3841 return ret;
bd2fa51f 3842}
d3a5038c
DDAG
3843
3844/*
3845 * Unmap pages of memory from start to start+length such that
3846 * they a) read as 0, b) Trigger whatever fault mechanism
3847 * the OS provides for postcopy.
3848 * The pages must be unmapped by the end of the function.
3849 * Returns: 0 on success, none-0 on failure
3850 *
3851 */
3852int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3853{
3854 int ret = -1;
3855
3856 uint8_t *host_startaddr = rb->host + start;
3857
3858 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3859 error_report("ram_block_discard_range: Unaligned start address: %p",
3860 host_startaddr);
3861 goto err;
3862 }
3863
3864 if ((start + length) <= rb->used_length) {
db144f70 3865 bool need_madvise, need_fallocate;
d3a5038c
DDAG
3866 uint8_t *host_endaddr = host_startaddr + length;
3867 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3868 error_report("ram_block_discard_range: Unaligned end address: %p",
3869 host_endaddr);
3870 goto err;
3871 }
3872
3873 errno = ENOTSUP; /* If we are missing MADVISE etc */
3874
db144f70
DDAG
3875 /* The logic here is messy;
3876 * madvise DONTNEED fails for hugepages
3877 * fallocate works on hugepages and shmem
3878 */
3879 need_madvise = (rb->page_size == qemu_host_page_size);
3880 need_fallocate = rb->fd != -1;
3881 if (need_fallocate) {
3882 /* For a file, this causes the area of the file to be zero'd
3883 * if read, and for hugetlbfs also causes it to be unmapped
3884 * so a userfault will trigger.
e2fa71f5
DDAG
3885 */
3886#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3887 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3888 start, length);
db144f70
DDAG
3889 if (ret) {
3890 ret = -errno;
3891 error_report("ram_block_discard_range: Failed to fallocate "
3892 "%s:%" PRIx64 " +%zx (%d)",
3893 rb->idstr, start, length, ret);
3894 goto err;
3895 }
3896#else
3897 ret = -ENOSYS;
3898 error_report("ram_block_discard_range: fallocate not available/file"
3899 "%s:%" PRIx64 " +%zx (%d)",
3900 rb->idstr, start, length, ret);
3901 goto err;
e2fa71f5
DDAG
3902#endif
3903 }
db144f70
DDAG
3904 if (need_madvise) {
3905 /* For normal RAM this causes it to be unmapped,
3906 * for shared memory it causes the local mapping to disappear
3907 * and to fall back on the file contents (which we just
3908 * fallocate'd away).
3909 */
3910#if defined(CONFIG_MADVISE)
3911 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3912 if (ret) {
3913 ret = -errno;
3914 error_report("ram_block_discard_range: Failed to discard range "
3915 "%s:%" PRIx64 " +%zx (%d)",
3916 rb->idstr, start, length, ret);
3917 goto err;
3918 }
3919#else
3920 ret = -ENOSYS;
3921 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3922 "%s:%" PRIx64 " +%zx (%d)",
3923 rb->idstr, start, length, ret);
db144f70
DDAG
3924 goto err;
3925#endif
d3a5038c 3926 }
db144f70
DDAG
3927 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3928 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3929 } else {
3930 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3931 "/%zx/" RAM_ADDR_FMT")",
3932 rb->idstr, start, length, rb->used_length);
3933 }
3934
3935err:
3936 return ret;
3937}
3938
a4de8552
JH
3939bool ramblock_is_pmem(RAMBlock *rb)
3940{
3941 return rb->flags & RAM_PMEM;
3942}
3943
ec3f8c99 3944#endif
a0be0c58
YZ
3945
3946void page_size_init(void)
3947{
3948 /* NOTE: we can always suppose that qemu_host_page_size >=
3949 TARGET_PAGE_SIZE */
a0be0c58
YZ
3950 if (qemu_host_page_size == 0) {
3951 qemu_host_page_size = qemu_real_host_page_size;
3952 }
3953 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3954 qemu_host_page_size = TARGET_PAGE_SIZE;
3955 }
3956 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3957}
5e8fd947
AK
3958
3959#if !defined(CONFIG_USER_ONLY)
3960
b6b71cb5 3961static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3962{
3963 if (start == end - 1) {
b6b71cb5 3964 qemu_printf("\t%3d ", start);
5e8fd947 3965 } else {
b6b71cb5 3966 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 3967 }
b6b71cb5 3968 qemu_printf(" skip=%d ", skip);
5e8fd947 3969 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 3970 qemu_printf(" ptr=NIL");
5e8fd947 3971 } else if (!skip) {
b6b71cb5 3972 qemu_printf(" ptr=#%d", ptr);
5e8fd947 3973 } else {
b6b71cb5 3974 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 3975 }
b6b71cb5 3976 qemu_printf("\n");
5e8fd947
AK
3977}
3978
3979#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3980 int128_sub((size), int128_one())) : 0)
3981
b6b71cb5 3982void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
3983{
3984 int i;
3985
b6b71cb5
MA
3986 qemu_printf(" Dispatch\n");
3987 qemu_printf(" Physical sections\n");
5e8fd947
AK
3988
3989 for (i = 0; i < d->map.sections_nb; ++i) {
3990 MemoryRegionSection *s = d->map.sections + i;
3991 const char *names[] = { " [unassigned]", " [not dirty]",
3992 " [ROM]", " [watch]" };
3993
b6b71cb5
MA
3994 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
3995 " %s%s%s%s%s",
5e8fd947
AK
3996 i,
3997 s->offset_within_address_space,
3998 s->offset_within_address_space + MR_SIZE(s->mr->size),
3999 s->mr->name ? s->mr->name : "(noname)",
4000 i < ARRAY_SIZE(names) ? names[i] : "",
4001 s->mr == root ? " [ROOT]" : "",
4002 s == d->mru_section ? " [MRU]" : "",
4003 s->mr->is_iommu ? " [iommu]" : "");
4004
4005 if (s->mr->alias) {
b6b71cb5 4006 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4007 s->mr->alias->name : "noname");
4008 }
b6b71cb5 4009 qemu_printf("\n");
5e8fd947
AK
4010 }
4011
b6b71cb5 4012 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4013 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4014 for (i = 0; i < d->map.nodes_nb; ++i) {
4015 int j, jprev;
4016 PhysPageEntry prev;
4017 Node *n = d->map.nodes + i;
4018
b6b71cb5 4019 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4020
4021 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4022 PhysPageEntry *pe = *n + j;
4023
4024 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4025 continue;
4026 }
4027
b6b71cb5 4028 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4029
4030 jprev = j;
4031 prev = *pe;
4032 }
4033
4034 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4035 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4036 }
4037 }
4038}
4039
4040#endif