]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
minikconf: do not include variables from MINIKCONF_ARGS in config-all-devices.mak
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3
PB
45#include "hw/hw.h"
46#include "exec/memory.h"
df43d49c 47#include "exec/ioport.h"
741da0d3 48#include "sysemu/dma.h"
9c607668 49#include "sysemu/numa.h"
79ca7a1b 50#include "sysemu/hw_accel.h"
741da0d3 51#include "exec/address-spaces.h"
9c17d615 52#include "sysemu/xen-mapcache.h"
0ab8ed18 53#include "trace-root.h"
d3a5038c 54
e2fa71f5 55#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
56#include <linux/falloc.h>
57#endif
58
53a5960a 59#endif
0dc3f44a 60#include "qemu/rcu_queue.h"
4840f10e 61#include "qemu/main-loop.h"
5b6dd868 62#include "translate-all.h"
7615936e 63#include "sysemu/replay.h"
0cac1b66 64
022c62cb 65#include "exec/memory-internal.h"
220c3ebd 66#include "exec/ram_addr.h"
508127e2 67#include "exec/log.h"
67d95c15 68
9dfeca7c
BR
69#include "migration/vmstate.h"
70
b35ba30f 71#include "qemu/range.h"
794e8f30
MT
72#ifndef _WIN32
73#include "qemu/mmap-alloc.h"
74#endif
b35ba30f 75
be9b23c4
PX
76#include "monitor/monitor.h"
77
db7b5426 78//#define DEBUG_SUBPAGE
1196be37 79
e2eef170 80#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
81/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
82 * are protected by the ramlist lock.
83 */
0d53d9fe 84RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
85
86static MemoryRegion *system_memory;
309cb471 87static MemoryRegion *system_io;
62152b8a 88
f6790af6
AK
89AddressSpace address_space_io;
90AddressSpace address_space_memory;
2673a5da 91
0844e007 92MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 93static MemoryRegion io_mem_unassigned;
e2eef170 94#endif
9fa3e853 95
20bccb82
PM
96#ifdef TARGET_PAGE_BITS_VARY
97int target_page_bits;
98bool target_page_bits_decided;
99#endif
100
f481ee2d
PB
101CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
102
6a00d601
FB
103/* current CPU in the current thread. It is only valid inside
104 cpu_exec() */
f240eb6f 105__thread CPUState *current_cpu;
2e70f6ef 106/* 0 = Do not count executed instructions.
bf20dc07 107 1 = Precise instruction counting.
2e70f6ef 108 2 = Adaptive rate instruction counting. */
5708fc66 109int use_icount;
6a00d601 110
a0be0c58
YZ
111uintptr_t qemu_host_page_size;
112intptr_t qemu_host_page_mask;
a0be0c58 113
20bccb82
PM
114bool set_preferred_target_page_bits(int bits)
115{
116 /* The target page size is the lowest common denominator for all
117 * the CPUs in the system, so we can only make it smaller, never
118 * larger. And we can't make it smaller once we've committed to
119 * a particular size.
120 */
121#ifdef TARGET_PAGE_BITS_VARY
122 assert(bits >= TARGET_PAGE_BITS_MIN);
123 if (target_page_bits == 0 || target_page_bits > bits) {
124 if (target_page_bits_decided) {
125 return false;
126 }
127 target_page_bits = bits;
128 }
129#endif
130 return true;
131}
132
e2eef170 133#if !defined(CONFIG_USER_ONLY)
4346ae3e 134
20bccb82
PM
135static void finalize_target_page_bits(void)
136{
137#ifdef TARGET_PAGE_BITS_VARY
138 if (target_page_bits == 0) {
139 target_page_bits = TARGET_PAGE_BITS_MIN;
140 }
141 target_page_bits_decided = true;
142#endif
143}
144
1db8abb1
PB
145typedef struct PhysPageEntry PhysPageEntry;
146
147struct PhysPageEntry {
9736e55b 148 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 149 uint32_t skip : 6;
9736e55b 150 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 151 uint32_t ptr : 26;
1db8abb1
PB
152};
153
8b795765
MT
154#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
155
03f49957 156/* Size of the L2 (and L3, etc) page tables. */
57271d63 157#define ADDR_SPACE_BITS 64
03f49957 158
026736ce 159#define P_L2_BITS 9
03f49957
PB
160#define P_L2_SIZE (1 << P_L2_BITS)
161
162#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
163
164typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 165
53cb28cb 166typedef struct PhysPageMap {
79e2b9ae
PB
167 struct rcu_head rcu;
168
53cb28cb
MA
169 unsigned sections_nb;
170 unsigned sections_nb_alloc;
171 unsigned nodes_nb;
172 unsigned nodes_nb_alloc;
173 Node *nodes;
174 MemoryRegionSection *sections;
175} PhysPageMap;
176
1db8abb1 177struct AddressSpaceDispatch {
729633c2 178 MemoryRegionSection *mru_section;
1db8abb1
PB
179 /* This is a multi-level map on the physical address space.
180 * The bottom level has pointers to MemoryRegionSections.
181 */
182 PhysPageEntry phys_map;
53cb28cb 183 PhysPageMap map;
1db8abb1
PB
184};
185
90260c6c
JK
186#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
187typedef struct subpage_t {
188 MemoryRegion iomem;
16620684 189 FlatView *fv;
90260c6c 190 hwaddr base;
2615fabd 191 uint16_t sub_section[];
90260c6c
JK
192} subpage_t;
193
b41aac4f
LPF
194#define PHYS_SECTION_UNASSIGNED 0
195#define PHYS_SECTION_NOTDIRTY 1
196#define PHYS_SECTION_ROM 2
197#define PHYS_SECTION_WATCH 3
5312bd8b 198
e2eef170 199static void io_mem_init(void);
62152b8a 200static void memory_map_init(void);
09daed84 201static void tcg_commit(MemoryListener *listener);
e2eef170 202
1ec9b909 203static MemoryRegion io_mem_watch;
32857f4d
PM
204
205/**
206 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
207 * @cpu: the CPU whose AddressSpace this is
208 * @as: the AddressSpace itself
209 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
210 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 */
212struct CPUAddressSpace {
213 CPUState *cpu;
214 AddressSpace *as;
215 struct AddressSpaceDispatch *memory_dispatch;
216 MemoryListener tcg_as_listener;
217};
218
8deaf12c
GH
219struct DirtyBitmapSnapshot {
220 ram_addr_t start;
221 ram_addr_t end;
222 unsigned long dirty[];
223};
224
6658ffb8 225#endif
fd6ce8f6 226
6d9a1304 227#if !defined(CONFIG_USER_ONLY)
d6f2ea22 228
53cb28cb 229static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 230{
101420b8 231 static unsigned alloc_hint = 16;
53cb28cb 232 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 233 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
234 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
235 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 236 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 237 }
f7bf5461
AK
238}
239
db94604b 240static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
241{
242 unsigned i;
8b795765 243 uint32_t ret;
db94604b
PB
244 PhysPageEntry e;
245 PhysPageEntry *p;
f7bf5461 246
53cb28cb 247 ret = map->nodes_nb++;
db94604b 248 p = map->nodes[ret];
f7bf5461 249 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 250 assert(ret != map->nodes_nb_alloc);
db94604b
PB
251
252 e.skip = leaf ? 0 : 1;
253 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 254 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 255 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 256 }
f7bf5461 257 return ret;
d6f2ea22
AK
258}
259
53cb28cb
MA
260static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
261 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 262 int level)
f7bf5461
AK
263{
264 PhysPageEntry *p;
03f49957 265 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 266
9736e55b 267 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 268 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 269 }
db94604b 270 p = map->nodes[lp->ptr];
03f49957 271 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 272
03f49957 273 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 274 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 275 lp->skip = 0;
c19e8800 276 lp->ptr = leaf;
07f07b31
AK
277 *index += step;
278 *nb -= step;
2999097b 279 } else {
53cb28cb 280 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
281 }
282 ++lp;
f7bf5461
AK
283 }
284}
285
ac1970fb 286static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 287 hwaddr index, hwaddr nb,
2999097b 288 uint16_t leaf)
f7bf5461 289{
2999097b 290 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 291 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 292
53cb28cb 293 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
294}
295
b35ba30f
MT
296/* Compact a non leaf page entry. Simply detect that the entry has a single child,
297 * and update our entry so we can skip it and go directly to the destination.
298 */
efee678d 299static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
300{
301 unsigned valid_ptr = P_L2_SIZE;
302 int valid = 0;
303 PhysPageEntry *p;
304 int i;
305
306 if (lp->ptr == PHYS_MAP_NODE_NIL) {
307 return;
308 }
309
310 p = nodes[lp->ptr];
311 for (i = 0; i < P_L2_SIZE; i++) {
312 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
313 continue;
314 }
315
316 valid_ptr = i;
317 valid++;
318 if (p[i].skip) {
efee678d 319 phys_page_compact(&p[i], nodes);
b35ba30f
MT
320 }
321 }
322
323 /* We can only compress if there's only one child. */
324 if (valid != 1) {
325 return;
326 }
327
328 assert(valid_ptr < P_L2_SIZE);
329
330 /* Don't compress if it won't fit in the # of bits we have. */
331 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
332 return;
333 }
334
335 lp->ptr = p[valid_ptr].ptr;
336 if (!p[valid_ptr].skip) {
337 /* If our only child is a leaf, make this a leaf. */
338 /* By design, we should have made this node a leaf to begin with so we
339 * should never reach here.
340 * But since it's so simple to handle this, let's do it just in case we
341 * change this rule.
342 */
343 lp->skip = 0;
344 } else {
345 lp->skip += p[valid_ptr].skip;
346 }
347}
348
8629d3fc 349void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 350{
b35ba30f 351 if (d->phys_map.skip) {
efee678d 352 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
353 }
354}
355
29cb533d
FZ
356static inline bool section_covers_addr(const MemoryRegionSection *section,
357 hwaddr addr)
358{
359 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
360 * the section must cover the entire address space.
361 */
258dfaaa 362 return int128_gethi(section->size) ||
29cb533d 363 range_covers_byte(section->offset_within_address_space,
258dfaaa 364 int128_getlo(section->size), addr);
29cb533d
FZ
365}
366
003a0cf2 367static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 368{
003a0cf2
PX
369 PhysPageEntry lp = d->phys_map, *p;
370 Node *nodes = d->map.nodes;
371 MemoryRegionSection *sections = d->map.sections;
97115a8d 372 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 373 int i;
f1f6e3b8 374
9736e55b 375 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 376 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 377 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 378 }
9affd6fc 379 p = nodes[lp.ptr];
03f49957 380 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 381 }
b35ba30f 382
29cb533d 383 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
384 return &sections[lp.ptr];
385 } else {
386 return &sections[PHYS_SECTION_UNASSIGNED];
387 }
f3705d53
AK
388}
389
79e2b9ae 390/* Called from RCU critical section */
c7086b4a 391static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
392 hwaddr addr,
393 bool resolve_subpage)
9f029603 394{
729633c2 395 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
396 subpage_t *subpage;
397
07c114bb
PB
398 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
399 !section_covers_addr(section, addr)) {
003a0cf2 400 section = phys_page_find(d, addr);
07c114bb 401 atomic_set(&d->mru_section, section);
729633c2 402 }
90260c6c
JK
403 if (resolve_subpage && section->mr->subpage) {
404 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 405 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
406 }
407 return section;
9f029603
JK
408}
409
79e2b9ae 410/* Called from RCU critical section */
90260c6c 411static MemoryRegionSection *
c7086b4a 412address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 413 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
414{
415 MemoryRegionSection *section;
965eb2fc 416 MemoryRegion *mr;
a87f3954 417 Int128 diff;
149f54b5 418
c7086b4a 419 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
420 /* Compute offset within MemoryRegionSection */
421 addr -= section->offset_within_address_space;
422
423 /* Compute offset within MemoryRegion */
424 *xlat = addr + section->offset_within_region;
425
965eb2fc 426 mr = section->mr;
b242e0e0
PB
427
428 /* MMIO registers can be expected to perform full-width accesses based only
429 * on their address, without considering adjacent registers that could
430 * decode to completely different MemoryRegions. When such registers
431 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
432 * regions overlap wildly. For this reason we cannot clamp the accesses
433 * here.
434 *
435 * If the length is small (as is the case for address_space_ldl/stl),
436 * everything works fine. If the incoming length is large, however,
437 * the caller really has to do the clamping through memory_access_size.
438 */
965eb2fc 439 if (memory_region_is_ram(mr)) {
e4a511f8 440 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
441 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
442 }
149f54b5
PB
443 return section;
444}
90260c6c 445
a411c84b
PB
446/**
447 * address_space_translate_iommu - translate an address through an IOMMU
448 * memory region and then through the target address space.
449 *
450 * @iommu_mr: the IOMMU memory region that we start the translation from
451 * @addr: the address to be translated through the MMU
452 * @xlat: the translated address offset within the destination memory region.
453 * It cannot be %NULL.
454 * @plen_out: valid read/write length of the translated address. It
455 * cannot be %NULL.
456 * @page_mask_out: page mask for the translated address. This
457 * should only be meaningful for IOMMU translated
458 * addresses, since there may be huge pages that this bit
459 * would tell. It can be %NULL if we don't care about it.
460 * @is_write: whether the translation operation is for write
461 * @is_mmio: whether this can be MMIO, set true if it can
462 * @target_as: the address space targeted by the IOMMU
2f7b009c 463 * @attrs: transaction attributes
a411c84b
PB
464 *
465 * This function is called from RCU critical section. It is the common
466 * part of flatview_do_translate and address_space_translate_cached.
467 */
468static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
469 hwaddr *xlat,
470 hwaddr *plen_out,
471 hwaddr *page_mask_out,
472 bool is_write,
473 bool is_mmio,
2f7b009c
PM
474 AddressSpace **target_as,
475 MemTxAttrs attrs)
a411c84b
PB
476{
477 MemoryRegionSection *section;
478 hwaddr page_mask = (hwaddr)-1;
479
480 do {
481 hwaddr addr = *xlat;
482 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
483 int iommu_idx = 0;
484 IOMMUTLBEntry iotlb;
485
486 if (imrc->attrs_to_index) {
487 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
488 }
489
490 iotlb = imrc->translate(iommu_mr, addr, is_write ?
491 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
492
493 if (!(iotlb.perm & (1 << is_write))) {
494 goto unassigned;
495 }
496
497 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
498 | (addr & iotlb.addr_mask));
499 page_mask &= iotlb.addr_mask;
500 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
501 *target_as = iotlb.target_as;
502
503 section = address_space_translate_internal(
504 address_space_to_dispatch(iotlb.target_as), addr, xlat,
505 plen_out, is_mmio);
506
507 iommu_mr = memory_region_get_iommu(section->mr);
508 } while (unlikely(iommu_mr));
509
510 if (page_mask_out) {
511 *page_mask_out = page_mask;
512 }
513 return *section;
514
515unassigned:
516 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
517}
518
d5e5fafd
PX
519/**
520 * flatview_do_translate - translate an address in FlatView
521 *
522 * @fv: the flat view that we want to translate on
523 * @addr: the address to be translated in above address space
524 * @xlat: the translated address offset within memory region. It
525 * cannot be @NULL.
526 * @plen_out: valid read/write length of the translated address. It
527 * can be @NULL when we don't care about it.
528 * @page_mask_out: page mask for the translated address. This
529 * should only be meaningful for IOMMU translated
530 * addresses, since there may be huge pages that this bit
531 * would tell. It can be @NULL if we don't care about it.
532 * @is_write: whether the translation operation is for write
533 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 534 * @target_as: the address space targeted by the IOMMU
49e14aa8 535 * @attrs: memory transaction attributes
d5e5fafd
PX
536 *
537 * This function is called from RCU critical section
538 */
16620684
AK
539static MemoryRegionSection flatview_do_translate(FlatView *fv,
540 hwaddr addr,
541 hwaddr *xlat,
d5e5fafd
PX
542 hwaddr *plen_out,
543 hwaddr *page_mask_out,
16620684
AK
544 bool is_write,
545 bool is_mmio,
49e14aa8
PM
546 AddressSpace **target_as,
547 MemTxAttrs attrs)
052c8fa9 548{
052c8fa9 549 MemoryRegionSection *section;
3df9d748 550 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
551 hwaddr plen = (hwaddr)(-1);
552
ad2804d9
PB
553 if (!plen_out) {
554 plen_out = &plen;
d5e5fafd 555 }
052c8fa9 556
a411c84b
PB
557 section = address_space_translate_internal(
558 flatview_to_dispatch(fv), addr, xlat,
559 plen_out, is_mmio);
052c8fa9 560
a411c84b
PB
561 iommu_mr = memory_region_get_iommu(section->mr);
562 if (unlikely(iommu_mr)) {
563 return address_space_translate_iommu(iommu_mr, xlat,
564 plen_out, page_mask_out,
565 is_write, is_mmio,
2f7b009c 566 target_as, attrs);
052c8fa9 567 }
d5e5fafd 568 if (page_mask_out) {
a411c84b
PB
569 /* Not behind an IOMMU, use default page size. */
570 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
571 }
572
a764040c 573 return *section;
052c8fa9
JW
574}
575
576/* Called from RCU critical section */
a764040c 577IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 578 bool is_write, MemTxAttrs attrs)
90260c6c 579{
a764040c 580 MemoryRegionSection section;
076a93d7 581 hwaddr xlat, page_mask;
30951157 582
076a93d7
PX
583 /*
584 * This can never be MMIO, and we don't really care about plen,
585 * but page mask.
586 */
587 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
588 NULL, &page_mask, is_write, false, &as,
589 attrs);
30951157 590
a764040c
PX
591 /* Illegal translation */
592 if (section.mr == &io_mem_unassigned) {
593 goto iotlb_fail;
594 }
30951157 595
a764040c
PX
596 /* Convert memory region offset into address space offset */
597 xlat += section.offset_within_address_space -
598 section.offset_within_region;
599
a764040c 600 return (IOMMUTLBEntry) {
e76bb18f 601 .target_as = as,
076a93d7
PX
602 .iova = addr & ~page_mask,
603 .translated_addr = xlat & ~page_mask,
604 .addr_mask = page_mask,
a764040c
PX
605 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
606 .perm = IOMMU_RW,
607 };
608
609iotlb_fail:
610 return (IOMMUTLBEntry) {0};
611}
612
613/* Called from RCU critical section */
16620684 614MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
615 hwaddr *plen, bool is_write,
616 MemTxAttrs attrs)
a764040c
PX
617{
618 MemoryRegion *mr;
619 MemoryRegionSection section;
16620684 620 AddressSpace *as = NULL;
a764040c
PX
621
622 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 623 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 624 is_write, true, &as, attrs);
a764040c
PX
625 mr = section.mr;
626
fe680d0d 627 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 628 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 629 *plen = MIN(page, *plen);
a87f3954
PB
630 }
631
30951157 632 return mr;
90260c6c
JK
633}
634
1f871c5e
PM
635typedef struct TCGIOMMUNotifier {
636 IOMMUNotifier n;
637 MemoryRegion *mr;
638 CPUState *cpu;
639 int iommu_idx;
640 bool active;
641} TCGIOMMUNotifier;
642
643static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
644{
645 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
646
647 if (!notifier->active) {
648 return;
649 }
650 tlb_flush(notifier->cpu);
651 notifier->active = false;
652 /* We leave the notifier struct on the list to avoid reallocating it later.
653 * Generally the number of IOMMUs a CPU deals with will be small.
654 * In any case we can't unregister the iommu notifier from a notify
655 * callback.
656 */
657}
658
659static void tcg_register_iommu_notifier(CPUState *cpu,
660 IOMMUMemoryRegion *iommu_mr,
661 int iommu_idx)
662{
663 /* Make sure this CPU has an IOMMU notifier registered for this
664 * IOMMU/IOMMU index combination, so that we can flush its TLB
665 * when the IOMMU tells us the mappings we've cached have changed.
666 */
667 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
668 TCGIOMMUNotifier *notifier;
669 int i;
670
671 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 672 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
673 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
674 break;
675 }
676 }
677 if (i == cpu->iommu_notifiers->len) {
678 /* Not found, add a new entry at the end of the array */
679 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
680 notifier = g_new0(TCGIOMMUNotifier, 1);
681 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
682
683 notifier->mr = mr;
684 notifier->iommu_idx = iommu_idx;
685 notifier->cpu = cpu;
686 /* Rather than trying to register interest in the specific part
687 * of the iommu's address space that we've accessed and then
688 * expand it later as subsequent accesses touch more of it, we
689 * just register interest in the whole thing, on the assumption
690 * that iommu reconfiguration will be rare.
691 */
692 iommu_notifier_init(&notifier->n,
693 tcg_iommu_unmap_notify,
694 IOMMU_NOTIFIER_UNMAP,
695 0,
696 HWADDR_MAX,
697 iommu_idx);
698 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704}
705
706static void tcg_iommu_free_notifier_list(CPUState *cpu)
707{
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 715 g_free(notifier);
1f871c5e
PM
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718}
719
79e2b9ae 720/* Called from RCU critical section */
90260c6c 721MemoryRegionSection *
d7898cda 722address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
90260c6c 725{
30951157 726 MemoryRegionSection *section;
1f871c5e
PM
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
f35e44e7 731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 732
1f871c5e
PM
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
30951157 768
3df9d748 769 assert(!memory_region_is_iommu(section->mr));
1f871c5e 770 *xlat = addr;
30951157 771 return section;
1f871c5e
PM
772
773translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 775}
5b6dd868 776#endif
fd6ce8f6 777
b170fce3 778#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
779
780static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 781{
259186a7 782 CPUState *cpu = opaque;
a513fe19 783
5b6dd868
BS
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
259186a7 786 cpu->interrupt_request &= ~0x01;
d10eb08f 787 tlb_flush(cpu);
5b6dd868 788
15a356c4
PD
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
5b6dd868 796 return 0;
a513fe19 797}
7501267e 798
6c3bff0e
PD
799static int cpu_common_pre_load(void *opaque)
800{
801 CPUState *cpu = opaque;
802
adee6424 803 cpu->exception_index = -1;
6c3bff0e
PD
804
805 return 0;
806}
807
808static bool cpu_common_exception_index_needed(void *opaque)
809{
810 CPUState *cpu = opaque;
811
adee6424 812 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
813}
814
815static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
5cd8cada 819 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824};
825
bac05aa9
AS
826static bool cpu_common_crash_occurred_needed(void *opaque)
827{
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831}
832
833static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842};
843
1a1562f5 844const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
6c3bff0e 848 .pre_load = cpu_common_pre_load,
5b6dd868 849 .post_load = cpu_common_post_load,
35d08458 850 .fields = (VMStateField[]) {
259186a7
AF
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 853 VMSTATE_END_OF_LIST()
6c3bff0e 854 },
5cd8cada
JQ
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
bac05aa9 857 &vmstate_cpu_common_crash_occurred,
5cd8cada 858 NULL
5b6dd868
BS
859 }
860};
1a1562f5 861
5b6dd868 862#endif
ea041c0e 863
38d8f5c8 864CPUState *qemu_get_cpu(int index)
ea041c0e 865{
bdc44640 866 CPUState *cpu;
ea041c0e 867
bdc44640 868 CPU_FOREACH(cpu) {
55e5c285 869 if (cpu->cpu_index == index) {
bdc44640 870 return cpu;
55e5c285 871 }
ea041c0e 872 }
5b6dd868 873
bdc44640 874 return NULL;
ea041c0e
FB
875}
876
09daed84 877#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
878void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
09daed84 880{
12ebc9a7 881 CPUAddressSpace *newas;
80ceb07a 882 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 883 char *as_name;
80ceb07a
PX
884
885 assert(mr);
87a621d8
PX
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
12ebc9a7
PM
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
56943e8c
PM
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
12ebc9a7
PM
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
09daed84 900
12ebc9a7
PM
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 903 }
32857f4d 904
12ebc9a7
PM
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
56943e8c 908 if (tcg_enabled()) {
12ebc9a7
PM
909 newas->tcg_as_listener.commit = tcg_commit;
910 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 911 }
09daed84 912}
651a5bc0
PM
913
914AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
915{
916 /* Return the AddressSpace corresponding to the specified index */
917 return cpu->cpu_ases[asidx].as;
918}
09daed84
EI
919#endif
920
7bbc124e 921void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 922{
9dfeca7c
BR
923 CPUClass *cc = CPU_GET_CLASS(cpu);
924
267f685b 925 cpu_list_remove(cpu);
9dfeca7c
BR
926
927 if (cc->vmsd != NULL) {
928 vmstate_unregister(NULL, cc->vmsd, cpu);
929 }
930 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
931 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
932 }
1f871c5e
PM
933#ifndef CONFIG_USER_ONLY
934 tcg_iommu_free_notifier_list(cpu);
935#endif
1c59eb39
BR
936}
937
c7e002c5
FZ
938Property cpu_common_props[] = {
939#ifndef CONFIG_USER_ONLY
940 /* Create a memory property for softmmu CPU object,
941 * so users can wire up its memory. (This can't go in qom/cpu.c
942 * because that file is compiled only once for both user-mode
943 * and system builds.) The default if no link is set up is to use
944 * the system address space.
945 */
946 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
947 MemoryRegion *),
948#endif
949 DEFINE_PROP_END_OF_LIST(),
950};
951
39e329e3 952void cpu_exec_initfn(CPUState *cpu)
ea041c0e 953{
56943e8c 954 cpu->as = NULL;
12ebc9a7 955 cpu->num_ases = 0;
56943e8c 956
291135b5 957#ifndef CONFIG_USER_ONLY
291135b5 958 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
959 cpu->memory = system_memory;
960 object_ref(OBJECT(cpu->memory));
291135b5 961#endif
39e329e3
LV
962}
963
ce5b1bbf 964void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 965{
55c3ceef 966 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 967 static bool tcg_target_initialized;
291135b5 968
267f685b 969 cpu_list_add(cpu);
1bc7e522 970
2dda6354
EC
971 if (tcg_enabled() && !tcg_target_initialized) {
972 tcg_target_initialized = true;
55c3ceef
RH
973 cc->tcg_initialize();
974 }
5005e253 975 tlb_init(cpu);
55c3ceef 976
1bc7e522 977#ifndef CONFIG_USER_ONLY
e0d47944 978 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 979 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 980 }
b170fce3 981 if (cc->vmsd != NULL) {
741da0d3 982 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 983 }
1f871c5e 984
5601be3b 985 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 986#endif
ea041c0e
FB
987}
988
c1c8cfe5 989const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
990{
991 ObjectClass *oc;
992 CPUClass *cc;
993 gchar **model_pieces;
994 const char *cpu_type;
995
c1c8cfe5 996 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
997 if (!model_pieces[0]) {
998 error_report("-cpu option cannot be empty");
999 exit(1);
1000 }
2278b939
IM
1001
1002 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1003 if (oc == NULL) {
1004 error_report("unable to find CPU model '%s'", model_pieces[0]);
1005 g_strfreev(model_pieces);
1006 exit(EXIT_FAILURE);
1007 }
1008
1009 cpu_type = object_class_get_name(oc);
1010 cc = CPU_CLASS(oc);
1011 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1012 g_strfreev(model_pieces);
1013 return cpu_type;
1014}
1015
c40d4792 1016#if defined(CONFIG_USER_ONLY)
8bca9a03 1017void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1018{
406bc339 1019 mmap_lock();
8bca9a03 1020 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1021 mmap_unlock();
1022}
8bca9a03
PB
1023
1024static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1025{
1026 tb_invalidate_phys_addr(pc);
1027}
406bc339 1028#else
8bca9a03
PB
1029void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1030{
1031 ram_addr_t ram_addr;
1032 MemoryRegion *mr;
1033 hwaddr l = 1;
1034
c40d4792
PB
1035 if (!tcg_enabled()) {
1036 return;
1037 }
1038
8bca9a03
PB
1039 rcu_read_lock();
1040 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1041 if (!(memory_region_is_ram(mr)
1042 || memory_region_is_romd(mr))) {
1043 rcu_read_unlock();
1044 return;
1045 }
1046 ram_addr = memory_region_get_ram_addr(mr) + addr;
1047 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1048 rcu_read_unlock();
1049}
1050
406bc339
PK
1051static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1052{
1053 MemTxAttrs attrs;
1054 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1055 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1056 if (phys != -1) {
1057 /* Locks grabbed by tb_invalidate_phys_addr */
1058 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1059 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1060 }
1e7855a5 1061}
406bc339 1062#endif
d720b93d 1063
c527ee8f 1064#if defined(CONFIG_USER_ONLY)
75a34036 1065void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1066
1067{
1068}
1069
3ee887e8
PM
1070int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1071 int flags)
1072{
1073 return -ENOSYS;
1074}
1075
1076void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1077{
1078}
1079
75a34036 1080int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1081 int flags, CPUWatchpoint **watchpoint)
1082{
1083 return -ENOSYS;
1084}
1085#else
6658ffb8 1086/* Add a watchpoint. */
75a34036 1087int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1088 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1089{
c0ce998e 1090 CPUWatchpoint *wp;
6658ffb8 1091
05068c0d 1092 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1093 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1094 error_report("tried to set invalid watchpoint at %"
1095 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1096 return -EINVAL;
1097 }
7267c094 1098 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1099
1100 wp->vaddr = addr;
05068c0d 1101 wp->len = len;
a1d1bb31
AL
1102 wp->flags = flags;
1103
2dc9f411 1104 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1105 if (flags & BP_GDB) {
1106 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1107 } else {
1108 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1109 }
6658ffb8 1110
31b030d4 1111 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1112
1113 if (watchpoint)
1114 *watchpoint = wp;
1115 return 0;
6658ffb8
PB
1116}
1117
a1d1bb31 1118/* Remove a specific watchpoint. */
75a34036 1119int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1120 int flags)
6658ffb8 1121{
a1d1bb31 1122 CPUWatchpoint *wp;
6658ffb8 1123
ff4700b0 1124 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1125 if (addr == wp->vaddr && len == wp->len
6e140f28 1126 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1127 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1128 return 0;
1129 }
1130 }
a1d1bb31 1131 return -ENOENT;
6658ffb8
PB
1132}
1133
a1d1bb31 1134/* Remove a specific watchpoint by reference. */
75a34036 1135void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1136{
ff4700b0 1137 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1138
31b030d4 1139 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1140
7267c094 1141 g_free(watchpoint);
a1d1bb31
AL
1142}
1143
1144/* Remove all matching watchpoints. */
75a34036 1145void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1146{
c0ce998e 1147 CPUWatchpoint *wp, *next;
a1d1bb31 1148
ff4700b0 1149 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1150 if (wp->flags & mask) {
1151 cpu_watchpoint_remove_by_ref(cpu, wp);
1152 }
c0ce998e 1153 }
7d03f82f 1154}
05068c0d
PM
1155
1156/* Return true if this watchpoint address matches the specified
1157 * access (ie the address range covered by the watchpoint overlaps
1158 * partially or completely with the address range covered by the
1159 * access).
1160 */
1161static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1162 vaddr addr,
1163 vaddr len)
1164{
1165 /* We know the lengths are non-zero, but a little caution is
1166 * required to avoid errors in the case where the range ends
1167 * exactly at the top of the address space and so addr + len
1168 * wraps round to zero.
1169 */
1170 vaddr wpend = wp->vaddr + wp->len - 1;
1171 vaddr addrend = addr + len - 1;
1172
1173 return !(addr > wpend || wp->vaddr > addrend);
1174}
1175
c527ee8f 1176#endif
7d03f82f 1177
a1d1bb31 1178/* Add a breakpoint. */
b3310ab3 1179int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1180 CPUBreakpoint **breakpoint)
4c3a88a2 1181{
c0ce998e 1182 CPUBreakpoint *bp;
3b46e624 1183
7267c094 1184 bp = g_malloc(sizeof(*bp));
4c3a88a2 1185
a1d1bb31
AL
1186 bp->pc = pc;
1187 bp->flags = flags;
1188
2dc9f411 1189 /* keep all GDB-injected breakpoints in front */
00b941e5 1190 if (flags & BP_GDB) {
f0c3c505 1191 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1192 } else {
f0c3c505 1193 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1194 }
3b46e624 1195
f0c3c505 1196 breakpoint_invalidate(cpu, pc);
a1d1bb31 1197
00b941e5 1198 if (breakpoint) {
a1d1bb31 1199 *breakpoint = bp;
00b941e5 1200 }
4c3a88a2 1201 return 0;
4c3a88a2
FB
1202}
1203
a1d1bb31 1204/* Remove a specific breakpoint. */
b3310ab3 1205int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1206{
a1d1bb31
AL
1207 CPUBreakpoint *bp;
1208
f0c3c505 1209 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1210 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1211 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1212 return 0;
1213 }
7d03f82f 1214 }
a1d1bb31 1215 return -ENOENT;
7d03f82f
EI
1216}
1217
a1d1bb31 1218/* Remove a specific breakpoint by reference. */
b3310ab3 1219void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1220{
f0c3c505
AF
1221 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1222
1223 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1224
7267c094 1225 g_free(breakpoint);
a1d1bb31
AL
1226}
1227
1228/* Remove all matching breakpoints. */
b3310ab3 1229void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1230{
c0ce998e 1231 CPUBreakpoint *bp, *next;
a1d1bb31 1232
f0c3c505 1233 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1234 if (bp->flags & mask) {
1235 cpu_breakpoint_remove_by_ref(cpu, bp);
1236 }
c0ce998e 1237 }
4c3a88a2
FB
1238}
1239
c33a346e
FB
1240/* enable or disable single step mode. EXCP_DEBUG is returned by the
1241 CPU loop after each instruction */
3825b28f 1242void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1243{
ed2803da
AF
1244 if (cpu->singlestep_enabled != enabled) {
1245 cpu->singlestep_enabled = enabled;
1246 if (kvm_enabled()) {
38e478ec 1247 kvm_update_guest_debug(cpu, 0);
ed2803da 1248 } else {
ccbb4d44 1249 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1250 /* XXX: only flush what is necessary */
bbd77c18 1251 tb_flush(cpu);
e22a25c9 1252 }
c33a346e 1253 }
c33a346e
FB
1254}
1255
a47dddd7 1256void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1257{
1258 va_list ap;
493ae1f0 1259 va_list ap2;
7501267e
FB
1260
1261 va_start(ap, fmt);
493ae1f0 1262 va_copy(ap2, ap);
7501267e
FB
1263 fprintf(stderr, "qemu: fatal: ");
1264 vfprintf(stderr, fmt, ap);
1265 fprintf(stderr, "\n");
90c84c56 1266 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1267 if (qemu_log_separate()) {
1ee73216 1268 qemu_log_lock();
93fcfe39
AL
1269 qemu_log("qemu: fatal: ");
1270 qemu_log_vprintf(fmt, ap2);
1271 qemu_log("\n");
a0762859 1272 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1273 qemu_log_flush();
1ee73216 1274 qemu_log_unlock();
93fcfe39 1275 qemu_log_close();
924edcae 1276 }
493ae1f0 1277 va_end(ap2);
f9373291 1278 va_end(ap);
7615936e 1279 replay_finish();
fd052bf6
RV
1280#if defined(CONFIG_USER_ONLY)
1281 {
1282 struct sigaction act;
1283 sigfillset(&act.sa_mask);
1284 act.sa_handler = SIG_DFL;
8347c185 1285 act.sa_flags = 0;
fd052bf6
RV
1286 sigaction(SIGABRT, &act, NULL);
1287 }
1288#endif
7501267e
FB
1289 abort();
1290}
1291
0124311e 1292#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1293/* Called from RCU critical section */
041603fe
PB
1294static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1295{
1296 RAMBlock *block;
1297
43771539 1298 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1299 if (block && addr - block->offset < block->max_length) {
68851b98 1300 return block;
041603fe 1301 }
99e15582 1302 RAMBLOCK_FOREACH(block) {
9b8424d5 1303 if (addr - block->offset < block->max_length) {
041603fe
PB
1304 goto found;
1305 }
1306 }
1307
1308 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1309 abort();
1310
1311found:
43771539
PB
1312 /* It is safe to write mru_block outside the iothread lock. This
1313 * is what happens:
1314 *
1315 * mru_block = xxx
1316 * rcu_read_unlock()
1317 * xxx removed from list
1318 * rcu_read_lock()
1319 * read mru_block
1320 * mru_block = NULL;
1321 * call_rcu(reclaim_ramblock, xxx);
1322 * rcu_read_unlock()
1323 *
1324 * atomic_rcu_set is not needed here. The block was already published
1325 * when it was placed into the list. Here we're just making an extra
1326 * copy of the pointer.
1327 */
041603fe
PB
1328 ram_list.mru_block = block;
1329 return block;
1330}
1331
a2f4d5be 1332static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1333{
9a13565d 1334 CPUState *cpu;
041603fe 1335 ram_addr_t start1;
a2f4d5be
JQ
1336 RAMBlock *block;
1337 ram_addr_t end;
1338
f28d0dfd 1339 assert(tcg_enabled());
a2f4d5be
JQ
1340 end = TARGET_PAGE_ALIGN(start + length);
1341 start &= TARGET_PAGE_MASK;
d24981d3 1342
0dc3f44a 1343 rcu_read_lock();
041603fe
PB
1344 block = qemu_get_ram_block(start);
1345 assert(block == qemu_get_ram_block(end - 1));
1240be24 1346 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1347 CPU_FOREACH(cpu) {
1348 tlb_reset_dirty(cpu, start1, length);
1349 }
0dc3f44a 1350 rcu_read_unlock();
d24981d3
JQ
1351}
1352
5579c7f3 1353/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1354bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1355 ram_addr_t length,
1356 unsigned client)
1ccde1cb 1357{
5b82b703 1358 DirtyMemoryBlocks *blocks;
03eebc9e 1359 unsigned long end, page;
5b82b703 1360 bool dirty = false;
03eebc9e
SH
1361
1362 if (length == 0) {
1363 return false;
1364 }
f23db169 1365
03eebc9e
SH
1366 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1367 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1368
1369 rcu_read_lock();
1370
1371 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1372
1373 while (page < end) {
1374 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1375 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1376 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1377
1378 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1379 offset, num);
1380 page += num;
1381 }
1382
1383 rcu_read_unlock();
03eebc9e
SH
1384
1385 if (dirty && tcg_enabled()) {
a2f4d5be 1386 tlb_reset_dirty_range_all(start, length);
5579c7f3 1387 }
03eebc9e
SH
1388
1389 return dirty;
1ccde1cb
FB
1390}
1391
8deaf12c
GH
1392DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1393 (ram_addr_t start, ram_addr_t length, unsigned client)
1394{
1395 DirtyMemoryBlocks *blocks;
1396 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1397 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1398 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1399 DirtyBitmapSnapshot *snap;
1400 unsigned long page, end, dest;
1401
1402 snap = g_malloc0(sizeof(*snap) +
1403 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1404 snap->start = first;
1405 snap->end = last;
1406
1407 page = first >> TARGET_PAGE_BITS;
1408 end = last >> TARGET_PAGE_BITS;
1409 dest = 0;
1410
1411 rcu_read_lock();
1412
1413 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1414
1415 while (page < end) {
1416 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1417 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1418 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1419
1420 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1421 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1422 offset >>= BITS_PER_LEVEL;
1423
1424 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1425 blocks->blocks[idx] + offset,
1426 num);
1427 page += num;
1428 dest += num >> BITS_PER_LEVEL;
1429 }
1430
1431 rcu_read_unlock();
1432
1433 if (tcg_enabled()) {
1434 tlb_reset_dirty_range_all(start, length);
1435 }
1436
1437 return snap;
1438}
1439
1440bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1441 ram_addr_t start,
1442 ram_addr_t length)
1443{
1444 unsigned long page, end;
1445
1446 assert(start >= snap->start);
1447 assert(start + length <= snap->end);
1448
1449 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1450 page = (start - snap->start) >> TARGET_PAGE_BITS;
1451
1452 while (page < end) {
1453 if (test_bit(page, snap->dirty)) {
1454 return true;
1455 }
1456 page++;
1457 }
1458 return false;
1459}
1460
79e2b9ae 1461/* Called from RCU critical section */
bb0e627a 1462hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1463 MemoryRegionSection *section,
1464 target_ulong vaddr,
1465 hwaddr paddr, hwaddr xlat,
1466 int prot,
1467 target_ulong *address)
e5548617 1468{
a8170e5e 1469 hwaddr iotlb;
e5548617
BS
1470 CPUWatchpoint *wp;
1471
cc5bea60 1472 if (memory_region_is_ram(section->mr)) {
e5548617 1473 /* Normal RAM. */
e4e69794 1474 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1475 if (!section->readonly) {
b41aac4f 1476 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1477 } else {
b41aac4f 1478 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1479 }
1480 } else {
0b8e2c10
PM
1481 AddressSpaceDispatch *d;
1482
16620684 1483 d = flatview_to_dispatch(section->fv);
0b8e2c10 1484 iotlb = section - d->map.sections;
149f54b5 1485 iotlb += xlat;
e5548617
BS
1486 }
1487
1488 /* Make accesses to pages with watchpoints go via the
1489 watchpoint trap routines. */
ff4700b0 1490 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1491 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1492 /* Avoid trapping reads of pages with a write breakpoint. */
1493 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1494 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1495 *address |= TLB_MMIO;
1496 break;
1497 }
1498 }
1499 }
1500
1501 return iotlb;
1502}
9fa3e853
FB
1503#endif /* defined(CONFIG_USER_ONLY) */
1504
e2eef170 1505#if !defined(CONFIG_USER_ONLY)
8da3ff18 1506
c227f099 1507static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1508 uint16_t section);
16620684 1509static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1510
06329cce 1511static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1512 qemu_anon_ram_alloc;
91138037
MA
1513
1514/*
1515 * Set a custom physical guest memory alloator.
1516 * Accelerators with unusual needs may need this. Hopefully, we can
1517 * get rid of it eventually.
1518 */
06329cce 1519void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1520{
1521 phys_mem_alloc = alloc;
1522}
1523
53cb28cb
MA
1524static uint16_t phys_section_add(PhysPageMap *map,
1525 MemoryRegionSection *section)
5312bd8b 1526{
68f3f65b
PB
1527 /* The physical section number is ORed with a page-aligned
1528 * pointer to produce the iotlb entries. Thus it should
1529 * never overflow into the page-aligned value.
1530 */
53cb28cb 1531 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1532
53cb28cb
MA
1533 if (map->sections_nb == map->sections_nb_alloc) {
1534 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1535 map->sections = g_renew(MemoryRegionSection, map->sections,
1536 map->sections_nb_alloc);
5312bd8b 1537 }
53cb28cb 1538 map->sections[map->sections_nb] = *section;
dfde4e6e 1539 memory_region_ref(section->mr);
53cb28cb 1540 return map->sections_nb++;
5312bd8b
AK
1541}
1542
058bc4b5
PB
1543static void phys_section_destroy(MemoryRegion *mr)
1544{
55b4e80b
DS
1545 bool have_sub_page = mr->subpage;
1546
dfde4e6e
PB
1547 memory_region_unref(mr);
1548
55b4e80b 1549 if (have_sub_page) {
058bc4b5 1550 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1551 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1552 g_free(subpage);
1553 }
1554}
1555
6092666e 1556static void phys_sections_free(PhysPageMap *map)
5312bd8b 1557{
9affd6fc
PB
1558 while (map->sections_nb > 0) {
1559 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1560 phys_section_destroy(section->mr);
1561 }
9affd6fc
PB
1562 g_free(map->sections);
1563 g_free(map->nodes);
5312bd8b
AK
1564}
1565
9950322a 1566static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1567{
9950322a 1568 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1569 subpage_t *subpage;
a8170e5e 1570 hwaddr base = section->offset_within_address_space
0f0cb164 1571 & TARGET_PAGE_MASK;
003a0cf2 1572 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1573 MemoryRegionSection subsection = {
1574 .offset_within_address_space = base,
052e87b0 1575 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1576 };
a8170e5e 1577 hwaddr start, end;
0f0cb164 1578
f3705d53 1579 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1580
f3705d53 1581 if (!(existing->mr->subpage)) {
16620684
AK
1582 subpage = subpage_init(fv, base);
1583 subsection.fv = fv;
0f0cb164 1584 subsection.mr = &subpage->iomem;
ac1970fb 1585 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1586 phys_section_add(&d->map, &subsection));
0f0cb164 1587 } else {
f3705d53 1588 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1589 }
1590 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1591 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1592 subpage_register(subpage, start, end,
1593 phys_section_add(&d->map, section));
0f0cb164
AK
1594}
1595
1596
9950322a 1597static void register_multipage(FlatView *fv,
052e87b0 1598 MemoryRegionSection *section)
33417e70 1599{
9950322a 1600 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1601 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1602 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1603 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1604 TARGET_PAGE_BITS));
dd81124b 1605
733d5ef5
PB
1606 assert(num_pages);
1607 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1608}
1609
494d1997
WY
1610/*
1611 * The range in *section* may look like this:
1612 *
1613 * |s|PPPPPPP|s|
1614 *
1615 * where s stands for subpage and P for page.
1616 */
8629d3fc 1617void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1618{
494d1997 1619 MemoryRegionSection remain = *section;
052e87b0 1620 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1621
494d1997
WY
1622 /* register first subpage */
1623 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1624 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1625 - remain.offset_within_address_space;
733d5ef5 1626
494d1997 1627 MemoryRegionSection now = remain;
052e87b0 1628 now.size = int128_min(int128_make64(left), now.size);
9950322a 1629 register_subpage(fv, &now);
494d1997
WY
1630 if (int128_eq(remain.size, now.size)) {
1631 return;
1632 }
052e87b0
PB
1633 remain.size = int128_sub(remain.size, now.size);
1634 remain.offset_within_address_space += int128_get64(now.size);
1635 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1636 }
1637
1638 /* register whole pages */
1639 if (int128_ge(remain.size, page_size)) {
1640 MemoryRegionSection now = remain;
1641 now.size = int128_and(now.size, int128_neg(page_size));
1642 register_multipage(fv, &now);
1643 if (int128_eq(remain.size, now.size)) {
1644 return;
69b67646 1645 }
494d1997
WY
1646 remain.size = int128_sub(remain.size, now.size);
1647 remain.offset_within_address_space += int128_get64(now.size);
1648 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1649 }
494d1997
WY
1650
1651 /* register last subpage */
1652 register_subpage(fv, &remain);
0f0cb164
AK
1653}
1654
62a2744c
SY
1655void qemu_flush_coalesced_mmio_buffer(void)
1656{
1657 if (kvm_enabled())
1658 kvm_flush_coalesced_mmio_buffer();
1659}
1660
b2a8658e
UD
1661void qemu_mutex_lock_ramlist(void)
1662{
1663 qemu_mutex_lock(&ram_list.mutex);
1664}
1665
1666void qemu_mutex_unlock_ramlist(void)
1667{
1668 qemu_mutex_unlock(&ram_list.mutex);
1669}
1670
be9b23c4
PX
1671void ram_block_dump(Monitor *mon)
1672{
1673 RAMBlock *block;
1674 char *psize;
1675
1676 rcu_read_lock();
1677 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1678 "Block Name", "PSize", "Offset", "Used", "Total");
1679 RAMBLOCK_FOREACH(block) {
1680 psize = size_to_str(block->page_size);
1681 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1682 " 0x%016" PRIx64 "\n", block->idstr, psize,
1683 (uint64_t)block->offset,
1684 (uint64_t)block->used_length,
1685 (uint64_t)block->max_length);
1686 g_free(psize);
1687 }
1688 rcu_read_unlock();
1689}
1690
9c607668
AK
1691#ifdef __linux__
1692/*
1693 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1694 * may or may not name the same files / on the same filesystem now as
1695 * when we actually open and map them. Iterate over the file
1696 * descriptors instead, and use qemu_fd_getpagesize().
1697 */
905b7ee4 1698static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1699{
9c607668
AK
1700 long *hpsize_min = opaque;
1701
1702 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1703 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1704 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1705
7d5489e6 1706 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1707 *hpsize_min = hpsize;
9c607668
AK
1708 }
1709 }
1710
1711 return 0;
1712}
1713
905b7ee4
DH
1714static int find_max_backend_pagesize(Object *obj, void *opaque)
1715{
1716 long *hpsize_max = opaque;
1717
1718 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1719 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1720 long hpsize = host_memory_backend_pagesize(backend);
1721
1722 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1723 *hpsize_max = hpsize;
1724 }
1725 }
1726
1727 return 0;
1728}
1729
1730/*
1731 * TODO: We assume right now that all mapped host memory backends are
1732 * used as RAM, however some might be used for different purposes.
1733 */
1734long qemu_minrampagesize(void)
9c607668
AK
1735{
1736 long hpsize = LONG_MAX;
1737 long mainrampagesize;
1738 Object *memdev_root;
1739
0de6e2a3 1740 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1741
1742 /* it's possible we have memory-backend objects with
1743 * hugepage-backed RAM. these may get mapped into system
1744 * address space via -numa parameters or memory hotplug
1745 * hooks. we want to take these into account, but we
1746 * also want to make sure these supported hugepage
1747 * sizes are applicable across the entire range of memory
1748 * we may boot from, so we take the min across all
1749 * backends, and assume normal pages in cases where a
1750 * backend isn't backed by hugepages.
1751 */
1752 memdev_root = object_resolve_path("/objects", NULL);
1753 if (memdev_root) {
905b7ee4 1754 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1755 }
1756 if (hpsize == LONG_MAX) {
1757 /* No additional memory regions found ==> Report main RAM page size */
1758 return mainrampagesize;
1759 }
1760
1761 /* If NUMA is disabled or the NUMA nodes are not backed with a
1762 * memory-backend, then there is at least one node using "normal" RAM,
1763 * so if its page size is smaller we have got to report that size instead.
1764 */
1765 if (hpsize > mainrampagesize &&
1766 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1767 static bool warned;
1768 if (!warned) {
1769 error_report("Huge page support disabled (n/a for main memory).");
1770 warned = true;
1771 }
1772 return mainrampagesize;
1773 }
1774
1775 return hpsize;
1776}
905b7ee4
DH
1777
1778long qemu_maxrampagesize(void)
1779{
1780 long pagesize = qemu_mempath_getpagesize(mem_path);
1781 Object *memdev_root = object_resolve_path("/objects", NULL);
1782
1783 if (memdev_root) {
1784 object_child_foreach(memdev_root, find_max_backend_pagesize,
1785 &pagesize);
1786 }
1787 return pagesize;
1788}
9c607668 1789#else
905b7ee4
DH
1790long qemu_minrampagesize(void)
1791{
1792 return getpagesize();
1793}
1794long qemu_maxrampagesize(void)
9c607668
AK
1795{
1796 return getpagesize();
1797}
1798#endif
1799
d5dbde46 1800#ifdef CONFIG_POSIX
d6af99c9
HZ
1801static int64_t get_file_size(int fd)
1802{
1803 int64_t size = lseek(fd, 0, SEEK_END);
1804 if (size < 0) {
1805 return -errno;
1806 }
1807 return size;
1808}
1809
8d37b030
MAL
1810static int file_ram_open(const char *path,
1811 const char *region_name,
1812 bool *created,
1813 Error **errp)
c902760f
MT
1814{
1815 char *filename;
8ca761f6
PF
1816 char *sanitized_name;
1817 char *c;
5c3ece79 1818 int fd = -1;
c902760f 1819
8d37b030 1820 *created = false;
fd97fd44
MA
1821 for (;;) {
1822 fd = open(path, O_RDWR);
1823 if (fd >= 0) {
1824 /* @path names an existing file, use it */
1825 break;
8d31d6b6 1826 }
fd97fd44
MA
1827 if (errno == ENOENT) {
1828 /* @path names a file that doesn't exist, create it */
1829 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1830 if (fd >= 0) {
8d37b030 1831 *created = true;
fd97fd44
MA
1832 break;
1833 }
1834 } else if (errno == EISDIR) {
1835 /* @path names a directory, create a file there */
1836 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1837 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1838 for (c = sanitized_name; *c != '\0'; c++) {
1839 if (*c == '/') {
1840 *c = '_';
1841 }
1842 }
8ca761f6 1843
fd97fd44
MA
1844 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1845 sanitized_name);
1846 g_free(sanitized_name);
8d31d6b6 1847
fd97fd44
MA
1848 fd = mkstemp(filename);
1849 if (fd >= 0) {
1850 unlink(filename);
1851 g_free(filename);
1852 break;
1853 }
1854 g_free(filename);
8d31d6b6 1855 }
fd97fd44
MA
1856 if (errno != EEXIST && errno != EINTR) {
1857 error_setg_errno(errp, errno,
1858 "can't open backing store %s for guest RAM",
1859 path);
8d37b030 1860 return -1;
fd97fd44
MA
1861 }
1862 /*
1863 * Try again on EINTR and EEXIST. The latter happens when
1864 * something else creates the file between our two open().
1865 */
8d31d6b6 1866 }
c902760f 1867
8d37b030
MAL
1868 return fd;
1869}
1870
1871static void *file_ram_alloc(RAMBlock *block,
1872 ram_addr_t memory,
1873 int fd,
1874 bool truncate,
1875 Error **errp)
1876{
1877 void *area;
1878
863e9621 1879 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1880 if (block->mr->align % block->page_size) {
1881 error_setg(errp, "alignment 0x%" PRIx64
1882 " must be multiples of page size 0x%zx",
1883 block->mr->align, block->page_size);
1884 return NULL;
61362b71
DH
1885 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1886 error_setg(errp, "alignment 0x%" PRIx64
1887 " must be a power of two", block->mr->align);
1888 return NULL;
98376843
HZ
1889 }
1890 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1891#if defined(__s390x__)
1892 if (kvm_enabled()) {
1893 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1894 }
1895#endif
fd97fd44 1896
863e9621 1897 if (memory < block->page_size) {
fd97fd44 1898 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1899 "or larger than page size 0x%zx",
1900 memory, block->page_size);
8d37b030 1901 return NULL;
1775f111
HZ
1902 }
1903
863e9621 1904 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1905
1906 /*
1907 * ftruncate is not supported by hugetlbfs in older
1908 * hosts, so don't bother bailing out on errors.
1909 * If anything goes wrong with it under other filesystems,
1910 * mmap will fail.
d6af99c9
HZ
1911 *
1912 * Do not truncate the non-empty backend file to avoid corrupting
1913 * the existing data in the file. Disabling shrinking is not
1914 * enough. For example, the current vNVDIMM implementation stores
1915 * the guest NVDIMM labels at the end of the backend file. If the
1916 * backend file is later extended, QEMU will not be able to find
1917 * those labels. Therefore, extending the non-empty backend file
1918 * is disabled as well.
c902760f 1919 */
8d37b030 1920 if (truncate && ftruncate(fd, memory)) {
9742bf26 1921 perror("ftruncate");
7f56e740 1922 }
c902760f 1923
d2f39add 1924 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1925 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1926 if (area == MAP_FAILED) {
7f56e740 1927 error_setg_errno(errp, errno,
fd97fd44 1928 "unable to map backing store for guest RAM");
8d37b030 1929 return NULL;
c902760f 1930 }
ef36fa14
MT
1931
1932 if (mem_prealloc) {
1e356fc1 1933 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1934 if (errp && *errp) {
53adb9d4 1935 qemu_ram_munmap(fd, area, memory);
8d37b030 1936 return NULL;
056b68af 1937 }
ef36fa14
MT
1938 }
1939
04b16653 1940 block->fd = fd;
c902760f
MT
1941 return area;
1942}
1943#endif
1944
154cc9ea
DDAG
1945/* Allocate space within the ram_addr_t space that governs the
1946 * dirty bitmaps.
1947 * Called with the ramlist lock held.
1948 */
d17b5288 1949static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1950{
1951 RAMBlock *block, *next_block;
3e837b2c 1952 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1953
49cd9ac6
SH
1954 assert(size != 0); /* it would hand out same offset multiple times */
1955
0dc3f44a 1956 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1957 return 0;
0d53d9fe 1958 }
04b16653 1959
99e15582 1960 RAMBLOCK_FOREACH(block) {
154cc9ea 1961 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1962
801110ab
DDAG
1963 /* Align blocks to start on a 'long' in the bitmap
1964 * which makes the bitmap sync'ing take the fast path.
1965 */
154cc9ea 1966 candidate = block->offset + block->max_length;
801110ab 1967 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1968
154cc9ea
DDAG
1969 /* Search for the closest following block
1970 * and find the gap.
1971 */
99e15582 1972 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1973 if (next_block->offset >= candidate) {
04b16653
AW
1974 next = MIN(next, next_block->offset);
1975 }
1976 }
154cc9ea
DDAG
1977
1978 /* If it fits remember our place and remember the size
1979 * of gap, but keep going so that we might find a smaller
1980 * gap to fill so avoiding fragmentation.
1981 */
1982 if (next - candidate >= size && next - candidate < mingap) {
1983 offset = candidate;
1984 mingap = next - candidate;
04b16653 1985 }
154cc9ea
DDAG
1986
1987 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1988 }
3e837b2c
AW
1989
1990 if (offset == RAM_ADDR_MAX) {
1991 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1992 (uint64_t)size);
1993 abort();
1994 }
1995
154cc9ea
DDAG
1996 trace_find_ram_offset(size, offset);
1997
04b16653
AW
1998 return offset;
1999}
2000
c136180c 2001static unsigned long last_ram_page(void)
d17b5288
AW
2002{
2003 RAMBlock *block;
2004 ram_addr_t last = 0;
2005
0dc3f44a 2006 rcu_read_lock();
99e15582 2007 RAMBLOCK_FOREACH(block) {
62be4e3a 2008 last = MAX(last, block->offset + block->max_length);
0d53d9fe 2009 }
0dc3f44a 2010 rcu_read_unlock();
b8c48993 2011 return last >> TARGET_PAGE_BITS;
d17b5288
AW
2012}
2013
ddb97f1d
JB
2014static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2015{
2016 int ret;
ddb97f1d
JB
2017
2018 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 2019 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
2020 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2021 if (ret) {
2022 perror("qemu_madvise");
2023 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2024 "but dump_guest_core=off specified\n");
2025 }
2026 }
2027}
2028
422148d3
DDAG
2029const char *qemu_ram_get_idstr(RAMBlock *rb)
2030{
2031 return rb->idstr;
2032}
2033
754cb9c0
YK
2034void *qemu_ram_get_host_addr(RAMBlock *rb)
2035{
2036 return rb->host;
2037}
2038
2039ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2040{
2041 return rb->offset;
2042}
2043
2044ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2045{
2046 return rb->used_length;
2047}
2048
463a4ac2
DDAG
2049bool qemu_ram_is_shared(RAMBlock *rb)
2050{
2051 return rb->flags & RAM_SHARED;
2052}
2053
2ce16640
DDAG
2054/* Note: Only set at the start of postcopy */
2055bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2056{
2057 return rb->flags & RAM_UF_ZEROPAGE;
2058}
2059
2060void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2061{
2062 rb->flags |= RAM_UF_ZEROPAGE;
2063}
2064
b895de50
CLG
2065bool qemu_ram_is_migratable(RAMBlock *rb)
2066{
2067 return rb->flags & RAM_MIGRATABLE;
2068}
2069
2070void qemu_ram_set_migratable(RAMBlock *rb)
2071{
2072 rb->flags |= RAM_MIGRATABLE;
2073}
2074
2075void qemu_ram_unset_migratable(RAMBlock *rb)
2076{
2077 rb->flags &= ~RAM_MIGRATABLE;
2078}
2079
ae3a7047 2080/* Called with iothread lock held. */
fa53a0e5 2081void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2082{
fa53a0e5 2083 RAMBlock *block;
20cfe881 2084
c5705a77
AK
2085 assert(new_block);
2086 assert(!new_block->idstr[0]);
84b89d78 2087
09e5ab63
AL
2088 if (dev) {
2089 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2090 if (id) {
2091 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2092 g_free(id);
84b89d78
CM
2093 }
2094 }
2095 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2096
ab0a9956 2097 rcu_read_lock();
99e15582 2098 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2099 if (block != new_block &&
2100 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2101 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2102 new_block->idstr);
2103 abort();
2104 }
2105 }
0dc3f44a 2106 rcu_read_unlock();
c5705a77
AK
2107}
2108
ae3a7047 2109/* Called with iothread lock held. */
fa53a0e5 2110void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2111{
ae3a7047
MD
2112 /* FIXME: arch_init.c assumes that this is not called throughout
2113 * migration. Ignore the problem since hot-unplug during migration
2114 * does not work anyway.
2115 */
20cfe881
HT
2116 if (block) {
2117 memset(block->idstr, 0, sizeof(block->idstr));
2118 }
2119}
2120
863e9621
DDAG
2121size_t qemu_ram_pagesize(RAMBlock *rb)
2122{
2123 return rb->page_size;
2124}
2125
67f11b5c
DDAG
2126/* Returns the largest size of page in use */
2127size_t qemu_ram_pagesize_largest(void)
2128{
2129 RAMBlock *block;
2130 size_t largest = 0;
2131
99e15582 2132 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2133 largest = MAX(largest, qemu_ram_pagesize(block));
2134 }
2135
2136 return largest;
2137}
2138
8490fc78
LC
2139static int memory_try_enable_merging(void *addr, size_t len)
2140{
75cc7f01 2141 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2142 /* disabled by the user */
2143 return 0;
2144 }
2145
2146 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2147}
2148
62be4e3a
MT
2149/* Only legal before guest might have detected the memory size: e.g. on
2150 * incoming migration, or right after reset.
2151 *
2152 * As memory core doesn't know how is memory accessed, it is up to
2153 * resize callback to update device state and/or add assertions to detect
2154 * misuse, if necessary.
2155 */
fa53a0e5 2156int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2157{
62be4e3a
MT
2158 assert(block);
2159
4ed023ce 2160 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2161
62be4e3a
MT
2162 if (block->used_length == newsize) {
2163 return 0;
2164 }
2165
2166 if (!(block->flags & RAM_RESIZEABLE)) {
2167 error_setg_errno(errp, EINVAL,
2168 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2169 " in != 0x" RAM_ADDR_FMT, block->idstr,
2170 newsize, block->used_length);
2171 return -EINVAL;
2172 }
2173
2174 if (block->max_length < newsize) {
2175 error_setg_errno(errp, EINVAL,
2176 "Length too large: %s: 0x" RAM_ADDR_FMT
2177 " > 0x" RAM_ADDR_FMT, block->idstr,
2178 newsize, block->max_length);
2179 return -EINVAL;
2180 }
2181
2182 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2183 block->used_length = newsize;
58d2707e
PB
2184 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2185 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2186 memory_region_set_size(block->mr, newsize);
2187 if (block->resized) {
2188 block->resized(block->idstr, newsize, block->host);
2189 }
2190 return 0;
2191}
2192
5b82b703
SH
2193/* Called with ram_list.mutex held */
2194static void dirty_memory_extend(ram_addr_t old_ram_size,
2195 ram_addr_t new_ram_size)
2196{
2197 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2198 DIRTY_MEMORY_BLOCK_SIZE);
2199 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2200 DIRTY_MEMORY_BLOCK_SIZE);
2201 int i;
2202
2203 /* Only need to extend if block count increased */
2204 if (new_num_blocks <= old_num_blocks) {
2205 return;
2206 }
2207
2208 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2209 DirtyMemoryBlocks *old_blocks;
2210 DirtyMemoryBlocks *new_blocks;
2211 int j;
2212
2213 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2214 new_blocks = g_malloc(sizeof(*new_blocks) +
2215 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2216
2217 if (old_num_blocks) {
2218 memcpy(new_blocks->blocks, old_blocks->blocks,
2219 old_num_blocks * sizeof(old_blocks->blocks[0]));
2220 }
2221
2222 for (j = old_num_blocks; j < new_num_blocks; j++) {
2223 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2224 }
2225
2226 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2227
2228 if (old_blocks) {
2229 g_free_rcu(old_blocks, rcu);
2230 }
2231 }
2232}
2233
06329cce 2234static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2235{
e1c57ab8 2236 RAMBlock *block;
0d53d9fe 2237 RAMBlock *last_block = NULL;
2152f5ca 2238 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2239 Error *err = NULL;
2152f5ca 2240
b8c48993 2241 old_ram_size = last_ram_page();
c5705a77 2242
b2a8658e 2243 qemu_mutex_lock_ramlist();
9b8424d5 2244 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2245
2246 if (!new_block->host) {
2247 if (xen_enabled()) {
9b8424d5 2248 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2249 new_block->mr, &err);
2250 if (err) {
2251 error_propagate(errp, err);
2252 qemu_mutex_unlock_ramlist();
39c350ee 2253 return;
37aa7a0e 2254 }
e1c57ab8 2255 } else {
9b8424d5 2256 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2257 &new_block->mr->align, shared);
39228250 2258 if (!new_block->host) {
ef701d7b
HT
2259 error_setg_errno(errp, errno,
2260 "cannot set up guest memory '%s'",
2261 memory_region_name(new_block->mr));
2262 qemu_mutex_unlock_ramlist();
39c350ee 2263 return;
39228250 2264 }
9b8424d5 2265 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2266 }
c902760f 2267 }
94a6b54f 2268
dd631697
LZ
2269 new_ram_size = MAX(old_ram_size,
2270 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2271 if (new_ram_size > old_ram_size) {
5b82b703 2272 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2273 }
0d53d9fe
MD
2274 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2275 * QLIST (which has an RCU-friendly variant) does not have insertion at
2276 * tail, so save the last element in last_block.
2277 */
99e15582 2278 RAMBLOCK_FOREACH(block) {
0d53d9fe 2279 last_block = block;
9b8424d5 2280 if (block->max_length < new_block->max_length) {
abb26d63
PB
2281 break;
2282 }
2283 }
2284 if (block) {
0dc3f44a 2285 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2286 } else if (last_block) {
0dc3f44a 2287 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2288 } else { /* list is empty */
0dc3f44a 2289 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2290 }
0d6d3c87 2291 ram_list.mru_block = NULL;
94a6b54f 2292
0dc3f44a
MD
2293 /* Write list before version */
2294 smp_wmb();
f798b07f 2295 ram_list.version++;
b2a8658e 2296 qemu_mutex_unlock_ramlist();
f798b07f 2297
9b8424d5 2298 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2299 new_block->used_length,
2300 DIRTY_CLIENTS_ALL);
94a6b54f 2301
a904c911
PB
2302 if (new_block->host) {
2303 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2304 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2305 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2306 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2307 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2308 }
94a6b54f 2309}
e9a1ab19 2310
d5dbde46 2311#ifdef CONFIG_POSIX
38b3362d 2312RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2313 uint32_t ram_flags, int fd,
38b3362d 2314 Error **errp)
e1c57ab8
PB
2315{
2316 RAMBlock *new_block;
ef701d7b 2317 Error *local_err = NULL;
8d37b030 2318 int64_t file_size;
e1c57ab8 2319
a4de8552
JH
2320 /* Just support these ram flags by now. */
2321 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2322
e1c57ab8 2323 if (xen_enabled()) {
7f56e740 2324 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2325 return NULL;
e1c57ab8
PB
2326 }
2327
e45e7ae2
MAL
2328 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2329 error_setg(errp,
2330 "host lacks kvm mmu notifiers, -mem-path unsupported");
2331 return NULL;
2332 }
2333
e1c57ab8
PB
2334 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2335 /*
2336 * file_ram_alloc() needs to allocate just like
2337 * phys_mem_alloc, but we haven't bothered to provide
2338 * a hook there.
2339 */
7f56e740
PB
2340 error_setg(errp,
2341 "-mem-path not supported with this accelerator");
528f46af 2342 return NULL;
e1c57ab8
PB
2343 }
2344
4ed023ce 2345 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2346 file_size = get_file_size(fd);
2347 if (file_size > 0 && file_size < size) {
2348 error_setg(errp, "backing store %s size 0x%" PRIx64
2349 " does not match 'size' option 0x" RAM_ADDR_FMT,
2350 mem_path, file_size, size);
8d37b030
MAL
2351 return NULL;
2352 }
2353
e1c57ab8
PB
2354 new_block = g_malloc0(sizeof(*new_block));
2355 new_block->mr = mr;
9b8424d5
MT
2356 new_block->used_length = size;
2357 new_block->max_length = size;
cbfc0171 2358 new_block->flags = ram_flags;
8d37b030 2359 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2360 if (!new_block->host) {
2361 g_free(new_block);
528f46af 2362 return NULL;
7f56e740
PB
2363 }
2364
cbfc0171 2365 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2366 if (local_err) {
2367 g_free(new_block);
2368 error_propagate(errp, local_err);
528f46af 2369 return NULL;
ef701d7b 2370 }
528f46af 2371 return new_block;
38b3362d
MAL
2372
2373}
2374
2375
2376RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2377 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2378 Error **errp)
2379{
2380 int fd;
2381 bool created;
2382 RAMBlock *block;
2383
2384 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2385 if (fd < 0) {
2386 return NULL;
2387 }
2388
cbfc0171 2389 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2390 if (!block) {
2391 if (created) {
2392 unlink(mem_path);
2393 }
2394 close(fd);
2395 return NULL;
2396 }
2397
2398 return block;
e1c57ab8 2399}
0b183fc8 2400#endif
e1c57ab8 2401
62be4e3a 2402static
528f46af
FZ
2403RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2404 void (*resized)(const char*,
2405 uint64_t length,
2406 void *host),
06329cce 2407 void *host, bool resizeable, bool share,
528f46af 2408 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2409{
2410 RAMBlock *new_block;
ef701d7b 2411 Error *local_err = NULL;
e1c57ab8 2412
4ed023ce
DDAG
2413 size = HOST_PAGE_ALIGN(size);
2414 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2415 new_block = g_malloc0(sizeof(*new_block));
2416 new_block->mr = mr;
62be4e3a 2417 new_block->resized = resized;
9b8424d5
MT
2418 new_block->used_length = size;
2419 new_block->max_length = max_size;
62be4e3a 2420 assert(max_size >= size);
e1c57ab8 2421 new_block->fd = -1;
863e9621 2422 new_block->page_size = getpagesize();
e1c57ab8
PB
2423 new_block->host = host;
2424 if (host) {
7bd4f430 2425 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2426 }
62be4e3a
MT
2427 if (resizeable) {
2428 new_block->flags |= RAM_RESIZEABLE;
2429 }
06329cce 2430 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2431 if (local_err) {
2432 g_free(new_block);
2433 error_propagate(errp, local_err);
528f46af 2434 return NULL;
ef701d7b 2435 }
528f46af 2436 return new_block;
e1c57ab8
PB
2437}
2438
528f46af 2439RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2440 MemoryRegion *mr, Error **errp)
2441{
06329cce
MA
2442 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2443 false, mr, errp);
62be4e3a
MT
2444}
2445
06329cce
MA
2446RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2447 MemoryRegion *mr, Error **errp)
6977dfe6 2448{
06329cce
MA
2449 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2450 share, mr, errp);
62be4e3a
MT
2451}
2452
528f46af 2453RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2454 void (*resized)(const char*,
2455 uint64_t length,
2456 void *host),
2457 MemoryRegion *mr, Error **errp)
2458{
06329cce
MA
2459 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2460 false, mr, errp);
6977dfe6
YT
2461}
2462
43771539
PB
2463static void reclaim_ramblock(RAMBlock *block)
2464{
2465 if (block->flags & RAM_PREALLOC) {
2466 ;
2467 } else if (xen_enabled()) {
2468 xen_invalidate_map_cache_entry(block->host);
2469#ifndef _WIN32
2470 } else if (block->fd >= 0) {
53adb9d4 2471 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2472 close(block->fd);
2473#endif
2474 } else {
2475 qemu_anon_ram_free(block->host, block->max_length);
2476 }
2477 g_free(block);
2478}
2479
f1060c55 2480void qemu_ram_free(RAMBlock *block)
e9a1ab19 2481{
85bc2a15
MAL
2482 if (!block) {
2483 return;
2484 }
2485
0987d735
PB
2486 if (block->host) {
2487 ram_block_notify_remove(block->host, block->max_length);
2488 }
2489
b2a8658e 2490 qemu_mutex_lock_ramlist();
f1060c55
FZ
2491 QLIST_REMOVE_RCU(block, next);
2492 ram_list.mru_block = NULL;
2493 /* Write list before version */
2494 smp_wmb();
2495 ram_list.version++;
2496 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2497 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2498}
2499
cd19cfa2
HY
2500#ifndef _WIN32
2501void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2502{
2503 RAMBlock *block;
2504 ram_addr_t offset;
2505 int flags;
2506 void *area, *vaddr;
2507
99e15582 2508 RAMBLOCK_FOREACH(block) {
cd19cfa2 2509 offset = addr - block->offset;
9b8424d5 2510 if (offset < block->max_length) {
1240be24 2511 vaddr = ramblock_ptr(block, offset);
7bd4f430 2512 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2513 ;
dfeaf2ab
MA
2514 } else if (xen_enabled()) {
2515 abort();
cd19cfa2
HY
2516 } else {
2517 flags = MAP_FIXED;
3435f395 2518 if (block->fd >= 0) {
dbcb8981
PB
2519 flags |= (block->flags & RAM_SHARED ?
2520 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2521 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2522 flags, block->fd, offset);
cd19cfa2 2523 } else {
2eb9fbaa
MA
2524 /*
2525 * Remap needs to match alloc. Accelerators that
2526 * set phys_mem_alloc never remap. If they did,
2527 * we'd need a remap hook here.
2528 */
2529 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2530
cd19cfa2
HY
2531 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2532 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2533 flags, -1, 0);
cd19cfa2
HY
2534 }
2535 if (area != vaddr) {
493d89bf
AF
2536 error_report("Could not remap addr: "
2537 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2538 length, addr);
cd19cfa2
HY
2539 exit(1);
2540 }
8490fc78 2541 memory_try_enable_merging(vaddr, length);
ddb97f1d 2542 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2543 }
cd19cfa2
HY
2544 }
2545 }
2546}
2547#endif /* !_WIN32 */
2548
1b5ec234 2549/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2550 * This should not be used for general purpose DMA. Use address_space_map
2551 * or address_space_rw instead. For local memory (e.g. video ram) that the
2552 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2553 *
49b24afc 2554 * Called within RCU critical section.
1b5ec234 2555 */
0878d0e1 2556void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2557{
3655cb9c
GA
2558 RAMBlock *block = ram_block;
2559
2560 if (block == NULL) {
2561 block = qemu_get_ram_block(addr);
0878d0e1 2562 addr -= block->offset;
3655cb9c 2563 }
ae3a7047
MD
2564
2565 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2566 /* We need to check if the requested address is in the RAM
2567 * because we don't want to map the entire memory in QEMU.
2568 * In that case just map until the end of the page.
2569 */
2570 if (block->offset == 0) {
1ff7c598 2571 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2572 }
ae3a7047 2573
1ff7c598 2574 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2575 }
0878d0e1 2576 return ramblock_ptr(block, addr);
dc828ca1
PB
2577}
2578
0878d0e1 2579/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2580 * but takes a size argument.
0dc3f44a 2581 *
e81bcda5 2582 * Called within RCU critical section.
ae3a7047 2583 */
3655cb9c 2584static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2585 hwaddr *size, bool lock)
38bee5dc 2586{
3655cb9c 2587 RAMBlock *block = ram_block;
8ab934f9
SS
2588 if (*size == 0) {
2589 return NULL;
2590 }
e81bcda5 2591
3655cb9c
GA
2592 if (block == NULL) {
2593 block = qemu_get_ram_block(addr);
0878d0e1 2594 addr -= block->offset;
3655cb9c 2595 }
0878d0e1 2596 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2597
2598 if (xen_enabled() && block->host == NULL) {
2599 /* We need to check if the requested address is in the RAM
2600 * because we don't want to map the entire memory in QEMU.
2601 * In that case just map the requested area.
2602 */
2603 if (block->offset == 0) {
f5aa69bd 2604 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2605 }
2606
f5aa69bd 2607 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2608 }
e81bcda5 2609
0878d0e1 2610 return ramblock_ptr(block, addr);
38bee5dc
SS
2611}
2612
f90bb71b
DDAG
2613/* Return the offset of a hostpointer within a ramblock */
2614ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2615{
2616 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2617 assert((uintptr_t)host >= (uintptr_t)rb->host);
2618 assert(res < rb->max_length);
2619
2620 return res;
2621}
2622
422148d3
DDAG
2623/*
2624 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2625 * in that RAMBlock.
2626 *
2627 * ptr: Host pointer to look up
2628 * round_offset: If true round the result offset down to a page boundary
2629 * *ram_addr: set to result ram_addr
2630 * *offset: set to result offset within the RAMBlock
2631 *
2632 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2633 *
2634 * By the time this function returns, the returned pointer is not protected
2635 * by RCU anymore. If the caller is not within an RCU critical section and
2636 * does not hold the iothread lock, it must have other means of protecting the
2637 * pointer, such as a reference to the region that includes the incoming
2638 * ram_addr_t.
2639 */
422148d3 2640RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2641 ram_addr_t *offset)
5579c7f3 2642{
94a6b54f
PB
2643 RAMBlock *block;
2644 uint8_t *host = ptr;
2645
868bb33f 2646 if (xen_enabled()) {
f615f396 2647 ram_addr_t ram_addr;
0dc3f44a 2648 rcu_read_lock();
f615f396
PB
2649 ram_addr = xen_ram_addr_from_mapcache(ptr);
2650 block = qemu_get_ram_block(ram_addr);
422148d3 2651 if (block) {
d6b6aec4 2652 *offset = ram_addr - block->offset;
422148d3 2653 }
0dc3f44a 2654 rcu_read_unlock();
422148d3 2655 return block;
712c2b41
SS
2656 }
2657
0dc3f44a
MD
2658 rcu_read_lock();
2659 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2660 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2661 goto found;
2662 }
2663
99e15582 2664 RAMBLOCK_FOREACH(block) {
432d268c
JN
2665 /* This case append when the block is not mapped. */
2666 if (block->host == NULL) {
2667 continue;
2668 }
9b8424d5 2669 if (host - block->host < block->max_length) {
23887b79 2670 goto found;
f471a17e 2671 }
94a6b54f 2672 }
432d268c 2673
0dc3f44a 2674 rcu_read_unlock();
1b5ec234 2675 return NULL;
23887b79
PB
2676
2677found:
422148d3
DDAG
2678 *offset = (host - block->host);
2679 if (round_offset) {
2680 *offset &= TARGET_PAGE_MASK;
2681 }
0dc3f44a 2682 rcu_read_unlock();
422148d3
DDAG
2683 return block;
2684}
2685
e3dd7493
DDAG
2686/*
2687 * Finds the named RAMBlock
2688 *
2689 * name: The name of RAMBlock to find
2690 *
2691 * Returns: RAMBlock (or NULL if not found)
2692 */
2693RAMBlock *qemu_ram_block_by_name(const char *name)
2694{
2695 RAMBlock *block;
2696
99e15582 2697 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2698 if (!strcmp(name, block->idstr)) {
2699 return block;
2700 }
2701 }
2702
2703 return NULL;
2704}
2705
422148d3
DDAG
2706/* Some of the softmmu routines need to translate from a host pointer
2707 (typically a TLB entry) back to a ram offset. */
07bdaa41 2708ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2709{
2710 RAMBlock *block;
f615f396 2711 ram_addr_t offset;
422148d3 2712
f615f396 2713 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2714 if (!block) {
07bdaa41 2715 return RAM_ADDR_INVALID;
422148d3
DDAG
2716 }
2717
07bdaa41 2718 return block->offset + offset;
e890261f 2719}
f471a17e 2720
27266271
PM
2721/* Called within RCU critical section. */
2722void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2723 CPUState *cpu,
2724 vaddr mem_vaddr,
2725 ram_addr_t ram_addr,
2726 unsigned size)
2727{
2728 ndi->cpu = cpu;
2729 ndi->ram_addr = ram_addr;
2730 ndi->mem_vaddr = mem_vaddr;
2731 ndi->size = size;
0ac20318 2732 ndi->pages = NULL;
ba051fb5 2733
5aa1ef71 2734 assert(tcg_enabled());
52159192 2735 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2736 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2737 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2738 }
27266271
PM
2739}
2740
2741/* Called within RCU critical section. */
2742void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2743{
0ac20318 2744 if (ndi->pages) {
f28d0dfd 2745 assert(tcg_enabled());
0ac20318
EC
2746 page_collection_unlock(ndi->pages);
2747 ndi->pages = NULL;
27266271
PM
2748 }
2749
2750 /* Set both VGA and migration bits for simplicity and to remove
2751 * the notdirty callback faster.
2752 */
2753 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2754 DIRTY_CLIENTS_NOCODE);
2755 /* we remove the notdirty callback only if the code has been
2756 flushed */
2757 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2758 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2759 }
2760}
2761
2762/* Called within RCU critical section. */
2763static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2764 uint64_t val, unsigned size)
2765{
2766 NotDirtyInfo ndi;
2767
2768 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2769 ram_addr, size);
2770
6d3ede54 2771 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2772 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2773}
2774
b018ddf6 2775static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2776 unsigned size, bool is_write,
2777 MemTxAttrs attrs)
b018ddf6
PB
2778{
2779 return is_write;
2780}
2781
0e0df1e2 2782static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2783 .write = notdirty_mem_write,
b018ddf6 2784 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2785 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2786 .valid = {
2787 .min_access_size = 1,
2788 .max_access_size = 8,
2789 .unaligned = false,
2790 },
2791 .impl = {
2792 .min_access_size = 1,
2793 .max_access_size = 8,
2794 .unaligned = false,
2795 },
1ccde1cb
FB
2796};
2797
0f459d16 2798/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2799static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2800{
93afeade 2801 CPUState *cpu = current_cpu;
568496c0 2802 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2803 target_ulong vaddr;
a1d1bb31 2804 CPUWatchpoint *wp;
0f459d16 2805
5aa1ef71 2806 assert(tcg_enabled());
ff4700b0 2807 if (cpu->watchpoint_hit) {
06d55cc1
AL
2808 /* We re-entered the check after replacing the TB. Now raise
2809 * the debug interrupt so that is will trigger after the
2810 * current instruction. */
93afeade 2811 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2812 return;
2813 }
93afeade 2814 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2815 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2816 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2817 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2818 && (wp->flags & flags)) {
08225676
PM
2819 if (flags == BP_MEM_READ) {
2820 wp->flags |= BP_WATCHPOINT_HIT_READ;
2821 } else {
2822 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2823 }
2824 wp->hitaddr = vaddr;
66b9b43c 2825 wp->hitattrs = attrs;
ff4700b0 2826 if (!cpu->watchpoint_hit) {
568496c0
SF
2827 if (wp->flags & BP_CPU &&
2828 !cc->debug_check_watchpoint(cpu, wp)) {
2829 wp->flags &= ~BP_WATCHPOINT_HIT;
2830 continue;
2831 }
ff4700b0 2832 cpu->watchpoint_hit = wp;
a5e99826 2833
0ac20318 2834 mmap_lock();
239c51a5 2835 tb_check_watchpoint(cpu);
6e140f28 2836 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2837 cpu->exception_index = EXCP_DEBUG;
0ac20318 2838 mmap_unlock();
5638d180 2839 cpu_loop_exit(cpu);
6e140f28 2840 } else {
9b990ee5
RH
2841 /* Force execution of one insn next time. */
2842 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2843 mmap_unlock();
6886b980 2844 cpu_loop_exit_noexc(cpu);
6e140f28 2845 }
06d55cc1 2846 }
6e140f28
AL
2847 } else {
2848 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2849 }
2850 }
2851}
2852
6658ffb8
PB
2853/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2854 so these check for a hit then pass through to the normal out-of-line
2855 phys routines. */
66b9b43c
PM
2856static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2857 unsigned size, MemTxAttrs attrs)
6658ffb8 2858{
66b9b43c
PM
2859 MemTxResult res;
2860 uint64_t data;
79ed0416
PM
2861 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2862 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2863
2864 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2865 switch (size) {
66b9b43c 2866 case 1:
79ed0416 2867 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2868 break;
2869 case 2:
79ed0416 2870 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2871 break;
2872 case 4:
79ed0416 2873 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2874 break;
306526b5
PB
2875 case 8:
2876 data = address_space_ldq(as, addr, attrs, &res);
2877 break;
1ec9b909
AK
2878 default: abort();
2879 }
66b9b43c
PM
2880 *pdata = data;
2881 return res;
6658ffb8
PB
2882}
2883
66b9b43c
PM
2884static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2885 uint64_t val, unsigned size,
2886 MemTxAttrs attrs)
6658ffb8 2887{
66b9b43c 2888 MemTxResult res;
79ed0416
PM
2889 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2890 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2891
2892 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2893 switch (size) {
67364150 2894 case 1:
79ed0416 2895 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2896 break;
2897 case 2:
79ed0416 2898 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2899 break;
2900 case 4:
79ed0416 2901 address_space_stl(as, addr, val, attrs, &res);
67364150 2902 break;
306526b5
PB
2903 case 8:
2904 address_space_stq(as, addr, val, attrs, &res);
2905 break;
1ec9b909
AK
2906 default: abort();
2907 }
66b9b43c 2908 return res;
6658ffb8
PB
2909}
2910
1ec9b909 2911static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2912 .read_with_attrs = watch_mem_read,
2913 .write_with_attrs = watch_mem_write,
1ec9b909 2914 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2915 .valid = {
2916 .min_access_size = 1,
2917 .max_access_size = 8,
2918 .unaligned = false,
2919 },
2920 .impl = {
2921 .min_access_size = 1,
2922 .max_access_size = 8,
2923 .unaligned = false,
2924 },
6658ffb8 2925};
6658ffb8 2926
b2a44fca 2927static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2928 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2929static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2930 const uint8_t *buf, hwaddr len);
2931static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2932 bool is_write, MemTxAttrs attrs);
16620684 2933
f25a49e0
PM
2934static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2935 unsigned len, MemTxAttrs attrs)
db7b5426 2936{
acc9d80b 2937 subpage_t *subpage = opaque;
ff6cff75 2938 uint8_t buf[8];
5c9eb028 2939 MemTxResult res;
791af8c8 2940
db7b5426 2941#if defined(DEBUG_SUBPAGE)
016e9d62 2942 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2943 subpage, len, addr);
db7b5426 2944#endif
16620684 2945 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2946 if (res) {
2947 return res;
f25a49e0 2948 }
6d3ede54
PM
2949 *data = ldn_p(buf, len);
2950 return MEMTX_OK;
db7b5426
BS
2951}
2952
f25a49e0
PM
2953static MemTxResult subpage_write(void *opaque, hwaddr addr,
2954 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2955{
acc9d80b 2956 subpage_t *subpage = opaque;
ff6cff75 2957 uint8_t buf[8];
acc9d80b 2958
db7b5426 2959#if defined(DEBUG_SUBPAGE)
016e9d62 2960 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2961 " value %"PRIx64"\n",
2962 __func__, subpage, len, addr, value);
db7b5426 2963#endif
6d3ede54 2964 stn_p(buf, len, value);
16620684 2965 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2966}
2967
c353e4cc 2968static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2969 unsigned len, bool is_write,
2970 MemTxAttrs attrs)
c353e4cc 2971{
acc9d80b 2972 subpage_t *subpage = opaque;
c353e4cc 2973#if defined(DEBUG_SUBPAGE)
016e9d62 2974 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2975 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2976#endif
2977
16620684 2978 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2979 len, is_write, attrs);
c353e4cc
PB
2980}
2981
70c68e44 2982static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2983 .read_with_attrs = subpage_read,
2984 .write_with_attrs = subpage_write,
ff6cff75
PB
2985 .impl.min_access_size = 1,
2986 .impl.max_access_size = 8,
2987 .valid.min_access_size = 1,
2988 .valid.max_access_size = 8,
c353e4cc 2989 .valid.accepts = subpage_accepts,
70c68e44 2990 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2991};
2992
c227f099 2993static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2994 uint16_t section)
db7b5426
BS
2995{
2996 int idx, eidx;
2997
2998 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2999 return -1;
3000 idx = SUBPAGE_IDX(start);
3001 eidx = SUBPAGE_IDX(end);
3002#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3003 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
3004 __func__, mmio, start, end, idx, eidx, section);
db7b5426 3005#endif
db7b5426 3006 for (; idx <= eidx; idx++) {
5312bd8b 3007 mmio->sub_section[idx] = section;
db7b5426
BS
3008 }
3009
3010 return 0;
3011}
3012
16620684 3013static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 3014{
c227f099 3015 subpage_t *mmio;
db7b5426 3016
2615fabd 3017 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 3018 mmio->fv = fv;
1eec614b 3019 mmio->base = base;
2c9b15ca 3020 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 3021 NULL, TARGET_PAGE_SIZE);
b3b00c78 3022 mmio->iomem.subpage = true;
db7b5426 3023#if defined(DEBUG_SUBPAGE)
016e9d62
AK
3024 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
3025 mmio, base, TARGET_PAGE_SIZE);
db7b5426 3026#endif
b41aac4f 3027 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
3028
3029 return mmio;
3030}
3031
16620684 3032static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 3033{
16620684 3034 assert(fv);
5312bd8b 3035 MemoryRegionSection section = {
16620684 3036 .fv = fv,
5312bd8b
AK
3037 .mr = mr,
3038 .offset_within_address_space = 0,
3039 .offset_within_region = 0,
052e87b0 3040 .size = int128_2_64(),
5312bd8b
AK
3041 };
3042
53cb28cb 3043 return phys_section_add(map, &section);
5312bd8b
AK
3044}
3045
8af36743
PM
3046static void readonly_mem_write(void *opaque, hwaddr addr,
3047 uint64_t val, unsigned size)
3048{
3049 /* Ignore any write to ROM. */
3050}
3051
3052static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
3053 unsigned size, bool is_write,
3054 MemTxAttrs attrs)
8af36743
PM
3055{
3056 return is_write;
3057}
3058
3059/* This will only be used for writes, because reads are special cased
3060 * to directly access the underlying host ram.
3061 */
3062static const MemoryRegionOps readonly_mem_ops = {
3063 .write = readonly_mem_write,
3064 .valid.accepts = readonly_mem_accepts,
3065 .endianness = DEVICE_NATIVE_ENDIAN,
3066 .valid = {
3067 .min_access_size = 1,
3068 .max_access_size = 8,
3069 .unaligned = false,
3070 },
3071 .impl = {
3072 .min_access_size = 1,
3073 .max_access_size = 8,
3074 .unaligned = false,
3075 },
3076};
3077
2d54f194
PM
3078MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3079 hwaddr index, MemTxAttrs attrs)
aa102231 3080{
a54c87b6
PM
3081 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3082 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3083 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3084 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3085
2d54f194 3086 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3087}
3088
e9179ce1
AK
3089static void io_mem_init(void)
3090{
8af36743
PM
3091 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3092 NULL, NULL, UINT64_MAX);
2c9b15ca 3093 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3094 NULL, UINT64_MAX);
8d04fb55
JK
3095
3096 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3097 * which can be called without the iothread mutex.
3098 */
2c9b15ca 3099 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3100 NULL, UINT64_MAX);
8d04fb55
JK
3101 memory_region_clear_global_locking(&io_mem_notdirty);
3102
2c9b15ca 3103 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3104 NULL, UINT64_MAX);
e9179ce1
AK
3105}
3106
8629d3fc 3107AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3108{
53cb28cb
MA
3109 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3110 uint16_t n;
3111
16620684 3112 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3113 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3114 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3115 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3116 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3117 assert(n == PHYS_SECTION_ROM);
16620684 3118 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3119 assert(n == PHYS_SECTION_WATCH);
00752703 3120
9736e55b 3121 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3122
3123 return d;
00752703
PB
3124}
3125
66a6df1d 3126void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3127{
3128 phys_sections_free(&d->map);
3129 g_free(d);
3130}
3131
1d71148e 3132static void tcg_commit(MemoryListener *listener)
50c1e149 3133{
32857f4d
PM
3134 CPUAddressSpace *cpuas;
3135 AddressSpaceDispatch *d;
117712c3 3136
f28d0dfd 3137 assert(tcg_enabled());
117712c3
AK
3138 /* since each CPU stores ram addresses in its TLB cache, we must
3139 reset the modified entries */
32857f4d
PM
3140 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3141 cpu_reloading_memory_map();
3142 /* The CPU and TLB are protected by the iothread lock.
3143 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3144 * may have split the RCU critical section.
3145 */
66a6df1d 3146 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3147 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3148 tlb_flush(cpuas->cpu);
50c1e149
AK
3149}
3150
62152b8a
AK
3151static void memory_map_init(void)
3152{
7267c094 3153 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3154
57271d63 3155 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3156 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3157
7267c094 3158 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3159 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3160 65536);
7dca8043 3161 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3162}
3163
3164MemoryRegion *get_system_memory(void)
3165{
3166 return system_memory;
3167}
3168
309cb471
AK
3169MemoryRegion *get_system_io(void)
3170{
3171 return system_io;
3172}
3173
e2eef170
PB
3174#endif /* !defined(CONFIG_USER_ONLY) */
3175
13eb76e0
FB
3176/* physical memory access (slow version, mainly for debug) */
3177#if defined(CONFIG_USER_ONLY)
f17ec444 3178int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3179 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3180{
0c249ff7
LZ
3181 int flags;
3182 target_ulong l, page;
53a5960a 3183 void * p;
13eb76e0
FB
3184
3185 while (len > 0) {
3186 page = addr & TARGET_PAGE_MASK;
3187 l = (page + TARGET_PAGE_SIZE) - addr;
3188 if (l > len)
3189 l = len;
3190 flags = page_get_flags(page);
3191 if (!(flags & PAGE_VALID))
a68fe89c 3192 return -1;
13eb76e0
FB
3193 if (is_write) {
3194 if (!(flags & PAGE_WRITE))
a68fe89c 3195 return -1;
579a97f7 3196 /* XXX: this code should not depend on lock_user */
72fb7daa 3197 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3198 return -1;
72fb7daa
AJ
3199 memcpy(p, buf, l);
3200 unlock_user(p, addr, l);
13eb76e0
FB
3201 } else {
3202 if (!(flags & PAGE_READ))
a68fe89c 3203 return -1;
579a97f7 3204 /* XXX: this code should not depend on lock_user */
72fb7daa 3205 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3206 return -1;
72fb7daa 3207 memcpy(buf, p, l);
5b257578 3208 unlock_user(p, addr, 0);
13eb76e0
FB
3209 }
3210 len -= l;
3211 buf += l;
3212 addr += l;
3213 }
a68fe89c 3214 return 0;
13eb76e0 3215}
8df1cd07 3216
13eb76e0 3217#else
51d7a9eb 3218
845b6214 3219static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3220 hwaddr length)
51d7a9eb 3221{
e87f7778 3222 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3223 addr += memory_region_get_ram_addr(mr);
3224
e87f7778
PB
3225 /* No early return if dirty_log_mask is or becomes 0, because
3226 * cpu_physical_memory_set_dirty_range will still call
3227 * xen_modified_memory.
3228 */
3229 if (dirty_log_mask) {
3230 dirty_log_mask =
3231 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3232 }
3233 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3234 assert(tcg_enabled());
e87f7778
PB
3235 tb_invalidate_phys_range(addr, addr + length);
3236 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3237 }
e87f7778 3238 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3239}
3240
047be4ed
SH
3241void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3242{
3243 /*
3244 * In principle this function would work on other memory region types too,
3245 * but the ROM device use case is the only one where this operation is
3246 * necessary. Other memory regions should use the
3247 * address_space_read/write() APIs.
3248 */
3249 assert(memory_region_is_romd(mr));
3250
3251 invalidate_and_set_dirty(mr, addr, size);
3252}
3253
23326164 3254static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3255{
e1622f4b 3256 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3257
3258 /* Regions are assumed to support 1-4 byte accesses unless
3259 otherwise specified. */
23326164
RH
3260 if (access_size_max == 0) {
3261 access_size_max = 4;
3262 }
3263
3264 /* Bound the maximum access by the alignment of the address. */
3265 if (!mr->ops->impl.unaligned) {
3266 unsigned align_size_max = addr & -addr;
3267 if (align_size_max != 0 && align_size_max < access_size_max) {
3268 access_size_max = align_size_max;
3269 }
82f2563f 3270 }
23326164
RH
3271
3272 /* Don't attempt accesses larger than the maximum. */
3273 if (l > access_size_max) {
3274 l = access_size_max;
82f2563f 3275 }
6554f5c0 3276 l = pow2floor(l);
23326164
RH
3277
3278 return l;
82f2563f
PB
3279}
3280
4840f10e 3281static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3282{
4840f10e
JK
3283 bool unlocked = !qemu_mutex_iothread_locked();
3284 bool release_lock = false;
3285
3286 if (unlocked && mr->global_locking) {
3287 qemu_mutex_lock_iothread();
3288 unlocked = false;
3289 release_lock = true;
3290 }
125b3806 3291 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3292 if (unlocked) {
3293 qemu_mutex_lock_iothread();
3294 }
125b3806 3295 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3296 if (unlocked) {
3297 qemu_mutex_unlock_iothread();
3298 }
125b3806 3299 }
4840f10e
JK
3300
3301 return release_lock;
125b3806
PB
3302}
3303
a203ac70 3304/* Called within RCU critical section. */
16620684
AK
3305static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3306 MemTxAttrs attrs,
3307 const uint8_t *buf,
0c249ff7 3308 hwaddr len, hwaddr addr1,
16620684 3309 hwaddr l, MemoryRegion *mr)
13eb76e0 3310{
13eb76e0 3311 uint8_t *ptr;
791af8c8 3312 uint64_t val;
3b643495 3313 MemTxResult result = MEMTX_OK;
4840f10e 3314 bool release_lock = false;
3b46e624 3315
a203ac70 3316 for (;;) {
eb7eeb88
PB
3317 if (!memory_access_is_direct(mr, true)) {
3318 release_lock |= prepare_mmio_access(mr);
3319 l = memory_access_size(mr, l, addr1);
3320 /* XXX: could force current_cpu to NULL to avoid
3321 potential bugs */
6d3ede54
PM
3322 val = ldn_p(buf, l);
3323 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3324 } else {
eb7eeb88 3325 /* RAM case */
f5aa69bd 3326 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3327 memcpy(ptr, buf, l);
3328 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3329 }
4840f10e
JK
3330
3331 if (release_lock) {
3332 qemu_mutex_unlock_iothread();
3333 release_lock = false;
3334 }
3335
13eb76e0
FB
3336 len -= l;
3337 buf += l;
3338 addr += l;
a203ac70
PB
3339
3340 if (!len) {
3341 break;
3342 }
3343
3344 l = len;
efa99a2f 3345 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3346 }
fd8aaa76 3347
3b643495 3348 return result;
13eb76e0 3349}
8df1cd07 3350
4c6ebbb3 3351/* Called from RCU critical section. */
16620684 3352static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3353 const uint8_t *buf, hwaddr len)
ac1970fb 3354{
eb7eeb88 3355 hwaddr l;
eb7eeb88
PB
3356 hwaddr addr1;
3357 MemoryRegion *mr;
3358 MemTxResult result = MEMTX_OK;
eb7eeb88 3359
4c6ebbb3 3360 l = len;
efa99a2f 3361 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3362 result = flatview_write_continue(fv, addr, attrs, buf, len,
3363 addr1, l, mr);
a203ac70
PB
3364
3365 return result;
3366}
3367
3368/* Called within RCU critical section. */
16620684
AK
3369MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3370 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3371 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3372 MemoryRegion *mr)
a203ac70
PB
3373{
3374 uint8_t *ptr;
3375 uint64_t val;
3376 MemTxResult result = MEMTX_OK;
3377 bool release_lock = false;
eb7eeb88 3378
a203ac70 3379 for (;;) {
eb7eeb88
PB
3380 if (!memory_access_is_direct(mr, false)) {
3381 /* I/O case */
3382 release_lock |= prepare_mmio_access(mr);
3383 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3384 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3385 stn_p(buf, l, val);
eb7eeb88
PB
3386 } else {
3387 /* RAM case */
f5aa69bd 3388 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3389 memcpy(buf, ptr, l);
3390 }
3391
3392 if (release_lock) {
3393 qemu_mutex_unlock_iothread();
3394 release_lock = false;
3395 }
3396
3397 len -= l;
3398 buf += l;
3399 addr += l;
a203ac70
PB
3400
3401 if (!len) {
3402 break;
3403 }
3404
3405 l = len;
efa99a2f 3406 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3407 }
3408
3409 return result;
3410}
3411
b2a44fca
PB
3412/* Called from RCU critical section. */
3413static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3414 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3415{
3416 hwaddr l;
3417 hwaddr addr1;
3418 MemoryRegion *mr;
eb7eeb88 3419
b2a44fca 3420 l = len;
efa99a2f 3421 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3422 return flatview_read_continue(fv, addr, attrs, buf, len,
3423 addr1, l, mr);
ac1970fb
AK
3424}
3425
b2a44fca 3426MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3427 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3428{
3429 MemTxResult result = MEMTX_OK;
3430 FlatView *fv;
3431
3432 if (len > 0) {
3433 rcu_read_lock();
3434 fv = address_space_to_flatview(as);
3435 result = flatview_read(fv, addr, attrs, buf, len);
3436 rcu_read_unlock();
3437 }
3438
3439 return result;
3440}
3441
4c6ebbb3
PB
3442MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3443 MemTxAttrs attrs,
0c249ff7 3444 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3445{
3446 MemTxResult result = MEMTX_OK;
3447 FlatView *fv;
3448
3449 if (len > 0) {
3450 rcu_read_lock();
3451 fv = address_space_to_flatview(as);
3452 result = flatview_write(fv, addr, attrs, buf, len);
3453 rcu_read_unlock();
3454 }
3455
3456 return result;
3457}
3458
db84fd97 3459MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3460 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3461{
3462 if (is_write) {
3463 return address_space_write(as, addr, attrs, buf, len);
3464 } else {
3465 return address_space_read_full(as, addr, attrs, buf, len);
3466 }
3467}
3468
a8170e5e 3469void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3470 hwaddr len, int is_write)
ac1970fb 3471{
5c9eb028
PM
3472 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3473 buf, len, is_write);
ac1970fb
AK
3474}
3475
582b55a9
AG
3476enum write_rom_type {
3477 WRITE_DATA,
3478 FLUSH_CACHE,
3479};
3480
75693e14
PM
3481static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3482 hwaddr addr,
3483 MemTxAttrs attrs,
3484 const uint8_t *buf,
0c249ff7 3485 hwaddr len,
75693e14 3486 enum write_rom_type type)
d0ecd2aa 3487{
149f54b5 3488 hwaddr l;
d0ecd2aa 3489 uint8_t *ptr;
149f54b5 3490 hwaddr addr1;
5c8a00ce 3491 MemoryRegion *mr;
3b46e624 3492
41063e1e 3493 rcu_read_lock();
d0ecd2aa 3494 while (len > 0) {
149f54b5 3495 l = len;
75693e14 3496 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3497
5c8a00ce
PB
3498 if (!(memory_region_is_ram(mr) ||
3499 memory_region_is_romd(mr))) {
b242e0e0 3500 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3501 } else {
d0ecd2aa 3502 /* ROM/RAM case */
0878d0e1 3503 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3504 switch (type) {
3505 case WRITE_DATA:
3506 memcpy(ptr, buf, l);
845b6214 3507 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3508 break;
3509 case FLUSH_CACHE:
3510 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3511 break;
3512 }
d0ecd2aa
FB
3513 }
3514 len -= l;
3515 buf += l;
3516 addr += l;
3517 }
41063e1e 3518 rcu_read_unlock();
75693e14 3519 return MEMTX_OK;
d0ecd2aa
FB
3520}
3521
582b55a9 3522/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3523MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3524 MemTxAttrs attrs,
0c249ff7 3525 const uint8_t *buf, hwaddr len)
582b55a9 3526{
3c8133f9
PM
3527 return address_space_write_rom_internal(as, addr, attrs,
3528 buf, len, WRITE_DATA);
582b55a9
AG
3529}
3530
0c249ff7 3531void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3532{
3533 /*
3534 * This function should do the same thing as an icache flush that was
3535 * triggered from within the guest. For TCG we are always cache coherent,
3536 * so there is no need to flush anything. For KVM / Xen we need to flush
3537 * the host's instruction cache at least.
3538 */
3539 if (tcg_enabled()) {
3540 return;
3541 }
3542
75693e14
PM
3543 address_space_write_rom_internal(&address_space_memory,
3544 start, MEMTXATTRS_UNSPECIFIED,
3545 NULL, len, FLUSH_CACHE);
582b55a9
AG
3546}
3547
6d16c2f8 3548typedef struct {
d3e71559 3549 MemoryRegion *mr;
6d16c2f8 3550 void *buffer;
a8170e5e
AK
3551 hwaddr addr;
3552 hwaddr len;
c2cba0ff 3553 bool in_use;
6d16c2f8
AL
3554} BounceBuffer;
3555
3556static BounceBuffer bounce;
3557
ba223c29 3558typedef struct MapClient {
e95205e1 3559 QEMUBH *bh;
72cf2d4f 3560 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3561} MapClient;
3562
38e047b5 3563QemuMutex map_client_list_lock;
b58deb34 3564static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3565 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3566
e95205e1
FZ
3567static void cpu_unregister_map_client_do(MapClient *client)
3568{
3569 QLIST_REMOVE(client, link);
3570 g_free(client);
3571}
3572
33b6c2ed
FZ
3573static void cpu_notify_map_clients_locked(void)
3574{
3575 MapClient *client;
3576
3577 while (!QLIST_EMPTY(&map_client_list)) {
3578 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3579 qemu_bh_schedule(client->bh);
3580 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3581 }
3582}
3583
e95205e1 3584void cpu_register_map_client(QEMUBH *bh)
ba223c29 3585{
7267c094 3586 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3587
38e047b5 3588 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3589 client->bh = bh;
72cf2d4f 3590 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3591 if (!atomic_read(&bounce.in_use)) {
3592 cpu_notify_map_clients_locked();
3593 }
38e047b5 3594 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3595}
3596
38e047b5 3597void cpu_exec_init_all(void)
ba223c29 3598{
38e047b5 3599 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3600 /* The data structures we set up here depend on knowing the page size,
3601 * so no more changes can be made after this point.
3602 * In an ideal world, nothing we did before we had finished the
3603 * machine setup would care about the target page size, and we could
3604 * do this much later, rather than requiring board models to state
3605 * up front what their requirements are.
3606 */
3607 finalize_target_page_bits();
38e047b5 3608 io_mem_init();
680a4783 3609 memory_map_init();
38e047b5 3610 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3611}
3612
e95205e1 3613void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3614{
3615 MapClient *client;
3616
e95205e1
FZ
3617 qemu_mutex_lock(&map_client_list_lock);
3618 QLIST_FOREACH(client, &map_client_list, link) {
3619 if (client->bh == bh) {
3620 cpu_unregister_map_client_do(client);
3621 break;
3622 }
ba223c29 3623 }
e95205e1 3624 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3625}
3626
3627static void cpu_notify_map_clients(void)
3628{
38e047b5 3629 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3630 cpu_notify_map_clients_locked();
38e047b5 3631 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3632}
3633
0c249ff7 3634static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3635 bool is_write, MemTxAttrs attrs)
51644ab7 3636{
5c8a00ce 3637 MemoryRegion *mr;
51644ab7
PB
3638 hwaddr l, xlat;
3639
3640 while (len > 0) {
3641 l = len;
efa99a2f 3642 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3643 if (!memory_access_is_direct(mr, is_write)) {
3644 l = memory_access_size(mr, l, addr);
eace72b7 3645 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3646 return false;
3647 }
3648 }
3649
3650 len -= l;
3651 addr += l;
3652 }
3653 return true;
3654}
3655
16620684 3656bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3657 hwaddr len, bool is_write,
fddffa42 3658 MemTxAttrs attrs)
16620684 3659{
11e732a5
PB
3660 FlatView *fv;
3661 bool result;
3662
3663 rcu_read_lock();
3664 fv = address_space_to_flatview(as);
eace72b7 3665 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3666 rcu_read_unlock();
3667 return result;
16620684
AK
3668}
3669
715c31ec 3670static hwaddr
16620684 3671flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3672 hwaddr target_len,
3673 MemoryRegion *mr, hwaddr base, hwaddr len,
3674 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3675{
3676 hwaddr done = 0;
3677 hwaddr xlat;
3678 MemoryRegion *this_mr;
3679
3680 for (;;) {
3681 target_len -= len;
3682 addr += len;
3683 done += len;
3684 if (target_len == 0) {
3685 return done;
3686 }
3687
3688 len = target_len;
16620684 3689 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3690 &len, is_write, attrs);
715c31ec
PB
3691 if (this_mr != mr || xlat != base + done) {
3692 return done;
3693 }
3694 }
3695}
3696
6d16c2f8
AL
3697/* Map a physical memory region into a host virtual address.
3698 * May map a subset of the requested range, given by and returned in *plen.
3699 * May return NULL if resources needed to perform the mapping are exhausted.
3700 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3701 * Use cpu_register_map_client() to know when retrying the map operation is
3702 * likely to succeed.
6d16c2f8 3703 */
ac1970fb 3704void *address_space_map(AddressSpace *as,
a8170e5e
AK
3705 hwaddr addr,
3706 hwaddr *plen,
f26404fb
PM
3707 bool is_write,
3708 MemTxAttrs attrs)
6d16c2f8 3709{
a8170e5e 3710 hwaddr len = *plen;
715c31ec
PB
3711 hwaddr l, xlat;
3712 MemoryRegion *mr;
e81bcda5 3713 void *ptr;
ad0c60fa 3714 FlatView *fv;
6d16c2f8 3715
e3127ae0
PB
3716 if (len == 0) {
3717 return NULL;
3718 }
38bee5dc 3719
e3127ae0 3720 l = len;
41063e1e 3721 rcu_read_lock();
ad0c60fa 3722 fv = address_space_to_flatview(as);
efa99a2f 3723 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3724
e3127ae0 3725 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3726 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3727 rcu_read_unlock();
e3127ae0 3728 return NULL;
6d16c2f8 3729 }
e85d9db5
KW
3730 /* Avoid unbounded allocations */
3731 l = MIN(l, TARGET_PAGE_SIZE);
3732 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3733 bounce.addr = addr;
3734 bounce.len = l;
d3e71559
PB
3735
3736 memory_region_ref(mr);
3737 bounce.mr = mr;
e3127ae0 3738 if (!is_write) {
16620684 3739 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3740 bounce.buffer, l);
8ab934f9 3741 }
6d16c2f8 3742
41063e1e 3743 rcu_read_unlock();
e3127ae0
PB
3744 *plen = l;
3745 return bounce.buffer;
3746 }
3747
e3127ae0 3748
d3e71559 3749 memory_region_ref(mr);
16620684 3750 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3751 l, is_write, attrs);
f5aa69bd 3752 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3753 rcu_read_unlock();
3754
3755 return ptr;
6d16c2f8
AL
3756}
3757
ac1970fb 3758/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3759 * Will also mark the memory as dirty if is_write == 1. access_len gives
3760 * the amount of memory that was actually read or written by the caller.
3761 */
a8170e5e
AK
3762void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3763 int is_write, hwaddr access_len)
6d16c2f8
AL
3764{
3765 if (buffer != bounce.buffer) {
d3e71559
PB
3766 MemoryRegion *mr;
3767 ram_addr_t addr1;
3768
07bdaa41 3769 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3770 assert(mr != NULL);
6d16c2f8 3771 if (is_write) {
845b6214 3772 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3773 }
868bb33f 3774 if (xen_enabled()) {
e41d7c69 3775 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3776 }
d3e71559 3777 memory_region_unref(mr);
6d16c2f8
AL
3778 return;
3779 }
3780 if (is_write) {
5c9eb028
PM
3781 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3782 bounce.buffer, access_len);
6d16c2f8 3783 }
f8a83245 3784 qemu_vfree(bounce.buffer);
6d16c2f8 3785 bounce.buffer = NULL;
d3e71559 3786 memory_region_unref(bounce.mr);
c2cba0ff 3787 atomic_mb_set(&bounce.in_use, false);
ba223c29 3788 cpu_notify_map_clients();
6d16c2f8 3789}
d0ecd2aa 3790
a8170e5e
AK
3791void *cpu_physical_memory_map(hwaddr addr,
3792 hwaddr *plen,
ac1970fb
AK
3793 int is_write)
3794{
f26404fb
PM
3795 return address_space_map(&address_space_memory, addr, plen, is_write,
3796 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3797}
3798
a8170e5e
AK
3799void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3800 int is_write, hwaddr access_len)
ac1970fb
AK
3801{
3802 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3803}
3804
0ce265ff
PB
3805#define ARG1_DECL AddressSpace *as
3806#define ARG1 as
3807#define SUFFIX
3808#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3809#define RCU_READ_LOCK(...) rcu_read_lock()
3810#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3811#include "memory_ldst.inc.c"
1e78bcc1 3812
1f4e496e
PB
3813int64_t address_space_cache_init(MemoryRegionCache *cache,
3814 AddressSpace *as,
3815 hwaddr addr,
3816 hwaddr len,
3817 bool is_write)
3818{
48564041
PB
3819 AddressSpaceDispatch *d;
3820 hwaddr l;
3821 MemoryRegion *mr;
3822
3823 assert(len > 0);
3824
3825 l = len;
3826 cache->fv = address_space_get_flatview(as);
3827 d = flatview_to_dispatch(cache->fv);
3828 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3829
3830 mr = cache->mrs.mr;
3831 memory_region_ref(mr);
3832 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3833 /* We don't care about the memory attributes here as we're only
3834 * doing this if we found actual RAM, which behaves the same
3835 * regardless of attributes; so UNSPECIFIED is fine.
3836 */
48564041 3837 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3838 cache->xlat, l, is_write,
3839 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3840 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3841 } else {
3842 cache->ptr = NULL;
3843 }
3844
3845 cache->len = l;
3846 cache->is_write = is_write;
3847 return l;
1f4e496e
PB
3848}
3849
3850void address_space_cache_invalidate(MemoryRegionCache *cache,
3851 hwaddr addr,
3852 hwaddr access_len)
3853{
48564041
PB
3854 assert(cache->is_write);
3855 if (likely(cache->ptr)) {
3856 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3857 }
1f4e496e
PB
3858}
3859
3860void address_space_cache_destroy(MemoryRegionCache *cache)
3861{
48564041
PB
3862 if (!cache->mrs.mr) {
3863 return;
3864 }
3865
3866 if (xen_enabled()) {
3867 xen_invalidate_map_cache_entry(cache->ptr);
3868 }
3869 memory_region_unref(cache->mrs.mr);
3870 flatview_unref(cache->fv);
3871 cache->mrs.mr = NULL;
3872 cache->fv = NULL;
3873}
3874
3875/* Called from RCU critical section. This function has the same
3876 * semantics as address_space_translate, but it only works on a
3877 * predefined range of a MemoryRegion that was mapped with
3878 * address_space_cache_init.
3879 */
3880static inline MemoryRegion *address_space_translate_cached(
3881 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3882 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3883{
3884 MemoryRegionSection section;
3885 MemoryRegion *mr;
3886 IOMMUMemoryRegion *iommu_mr;
3887 AddressSpace *target_as;
3888
3889 assert(!cache->ptr);
3890 *xlat = addr + cache->xlat;
3891
3892 mr = cache->mrs.mr;
3893 iommu_mr = memory_region_get_iommu(mr);
3894 if (!iommu_mr) {
3895 /* MMIO region. */
3896 return mr;
3897 }
3898
3899 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3900 NULL, is_write, true,
2f7b009c 3901 &target_as, attrs);
48564041
PB
3902 return section.mr;
3903}
3904
3905/* Called from RCU critical section. address_space_read_cached uses this
3906 * out of line function when the target is an MMIO or IOMMU region.
3907 */
3908void
3909address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3910 void *buf, hwaddr len)
48564041
PB
3911{
3912 hwaddr addr1, l;
3913 MemoryRegion *mr;
3914
3915 l = len;
bc6b1cec
PM
3916 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3917 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3918 flatview_read_continue(cache->fv,
3919 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3920 addr1, l, mr);
3921}
3922
3923/* Called from RCU critical section. address_space_write_cached uses this
3924 * out of line function when the target is an MMIO or IOMMU region.
3925 */
3926void
3927address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3928 const void *buf, hwaddr len)
48564041
PB
3929{
3930 hwaddr addr1, l;
3931 MemoryRegion *mr;
3932
3933 l = len;
bc6b1cec
PM
3934 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3935 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3936 flatview_write_continue(cache->fv,
3937 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3938 addr1, l, mr);
1f4e496e
PB
3939}
3940
3941#define ARG1_DECL MemoryRegionCache *cache
3942#define ARG1 cache
48564041
PB
3943#define SUFFIX _cached_slow
3944#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3945#define RCU_READ_LOCK() ((void)0)
3946#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3947#include "memory_ldst.inc.c"
3948
5e2972fd 3949/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3950int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3951 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3952{
a8170e5e 3953 hwaddr phys_addr;
0c249ff7 3954 target_ulong l, page;
13eb76e0 3955
79ca7a1b 3956 cpu_synchronize_state(cpu);
13eb76e0 3957 while (len > 0) {
5232e4c7
PM
3958 int asidx;
3959 MemTxAttrs attrs;
3960
13eb76e0 3961 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3962 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3963 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3964 /* if no physical page mapped, return an error */
3965 if (phys_addr == -1)
3966 return -1;
3967 l = (page + TARGET_PAGE_SIZE) - addr;
3968 if (l > len)
3969 l = len;
5e2972fd 3970 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3971 if (is_write) {
3c8133f9 3972 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3973 attrs, buf, l);
2e38847b 3974 } else {
5232e4c7 3975 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3976 attrs, buf, l, 0);
2e38847b 3977 }
13eb76e0
FB
3978 len -= l;
3979 buf += l;
3980 addr += l;
3981 }
3982 return 0;
3983}
038629a6
DDAG
3984
3985/*
3986 * Allows code that needs to deal with migration bitmaps etc to still be built
3987 * target independent.
3988 */
20afaed9 3989size_t qemu_target_page_size(void)
038629a6 3990{
20afaed9 3991 return TARGET_PAGE_SIZE;
038629a6
DDAG
3992}
3993
46d702b1
JQ
3994int qemu_target_page_bits(void)
3995{
3996 return TARGET_PAGE_BITS;
3997}
3998
3999int qemu_target_page_bits_min(void)
4000{
4001 return TARGET_PAGE_BITS_MIN;
4002}
a68fe89c 4003#endif
13eb76e0 4004
98ed8ecf 4005bool target_words_bigendian(void)
8e4a424b
BS
4006{
4007#if defined(TARGET_WORDS_BIGENDIAN)
4008 return true;
4009#else
4010 return false;
4011#endif
4012}
4013
76f35538 4014#ifndef CONFIG_USER_ONLY
a8170e5e 4015bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 4016{
5c8a00ce 4017 MemoryRegion*mr;
149f54b5 4018 hwaddr l = 1;
41063e1e 4019 bool res;
76f35538 4020
41063e1e 4021 rcu_read_lock();
5c8a00ce 4022 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
4023 phys_addr, &phys_addr, &l, false,
4024 MEMTXATTRS_UNSPECIFIED);
76f35538 4025
41063e1e
PB
4026 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
4027 rcu_read_unlock();
4028 return res;
76f35538 4029}
bd2fa51f 4030
e3807054 4031int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
4032{
4033 RAMBlock *block;
e3807054 4034 int ret = 0;
bd2fa51f 4035
0dc3f44a 4036 rcu_read_lock();
99e15582 4037 RAMBLOCK_FOREACH(block) {
754cb9c0 4038 ret = func(block, opaque);
e3807054
DDAG
4039 if (ret) {
4040 break;
4041 }
bd2fa51f 4042 }
0dc3f44a 4043 rcu_read_unlock();
e3807054 4044 return ret;
bd2fa51f 4045}
d3a5038c
DDAG
4046
4047/*
4048 * Unmap pages of memory from start to start+length such that
4049 * they a) read as 0, b) Trigger whatever fault mechanism
4050 * the OS provides for postcopy.
4051 * The pages must be unmapped by the end of the function.
4052 * Returns: 0 on success, none-0 on failure
4053 *
4054 */
4055int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4056{
4057 int ret = -1;
4058
4059 uint8_t *host_startaddr = rb->host + start;
4060
4061 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4062 error_report("ram_block_discard_range: Unaligned start address: %p",
4063 host_startaddr);
4064 goto err;
4065 }
4066
4067 if ((start + length) <= rb->used_length) {
db144f70 4068 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4069 uint8_t *host_endaddr = host_startaddr + length;
4070 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4071 error_report("ram_block_discard_range: Unaligned end address: %p",
4072 host_endaddr);
4073 goto err;
4074 }
4075
4076 errno = ENOTSUP; /* If we are missing MADVISE etc */
4077
db144f70
DDAG
4078 /* The logic here is messy;
4079 * madvise DONTNEED fails for hugepages
4080 * fallocate works on hugepages and shmem
4081 */
4082 need_madvise = (rb->page_size == qemu_host_page_size);
4083 need_fallocate = rb->fd != -1;
4084 if (need_fallocate) {
4085 /* For a file, this causes the area of the file to be zero'd
4086 * if read, and for hugetlbfs also causes it to be unmapped
4087 * so a userfault will trigger.
e2fa71f5
DDAG
4088 */
4089#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4090 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4091 start, length);
db144f70
DDAG
4092 if (ret) {
4093 ret = -errno;
4094 error_report("ram_block_discard_range: Failed to fallocate "
4095 "%s:%" PRIx64 " +%zx (%d)",
4096 rb->idstr, start, length, ret);
4097 goto err;
4098 }
4099#else
4100 ret = -ENOSYS;
4101 error_report("ram_block_discard_range: fallocate not available/file"
4102 "%s:%" PRIx64 " +%zx (%d)",
4103 rb->idstr, start, length, ret);
4104 goto err;
e2fa71f5
DDAG
4105#endif
4106 }
db144f70
DDAG
4107 if (need_madvise) {
4108 /* For normal RAM this causes it to be unmapped,
4109 * for shared memory it causes the local mapping to disappear
4110 * and to fall back on the file contents (which we just
4111 * fallocate'd away).
4112 */
4113#if defined(CONFIG_MADVISE)
4114 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4115 if (ret) {
4116 ret = -errno;
4117 error_report("ram_block_discard_range: Failed to discard range "
4118 "%s:%" PRIx64 " +%zx (%d)",
4119 rb->idstr, start, length, ret);
4120 goto err;
4121 }
4122#else
4123 ret = -ENOSYS;
4124 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4125 "%s:%" PRIx64 " +%zx (%d)",
4126 rb->idstr, start, length, ret);
db144f70
DDAG
4127 goto err;
4128#endif
d3a5038c 4129 }
db144f70
DDAG
4130 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4131 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4132 } else {
4133 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4134 "/%zx/" RAM_ADDR_FMT")",
4135 rb->idstr, start, length, rb->used_length);
4136 }
4137
4138err:
4139 return ret;
4140}
4141
a4de8552
JH
4142bool ramblock_is_pmem(RAMBlock *rb)
4143{
4144 return rb->flags & RAM_PMEM;
4145}
4146
ec3f8c99 4147#endif
a0be0c58
YZ
4148
4149void page_size_init(void)
4150{
4151 /* NOTE: we can always suppose that qemu_host_page_size >=
4152 TARGET_PAGE_SIZE */
a0be0c58
YZ
4153 if (qemu_host_page_size == 0) {
4154 qemu_host_page_size = qemu_real_host_page_size;
4155 }
4156 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4157 qemu_host_page_size = TARGET_PAGE_SIZE;
4158 }
4159 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4160}
5e8fd947
AK
4161
4162#if !defined(CONFIG_USER_ONLY)
4163
b6b71cb5 4164static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
4165{
4166 if (start == end - 1) {
b6b71cb5 4167 qemu_printf("\t%3d ", start);
5e8fd947 4168 } else {
b6b71cb5 4169 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4170 }
b6b71cb5 4171 qemu_printf(" skip=%d ", skip);
5e8fd947 4172 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4173 qemu_printf(" ptr=NIL");
5e8fd947 4174 } else if (!skip) {
b6b71cb5 4175 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4176 } else {
b6b71cb5 4177 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4178 }
b6b71cb5 4179 qemu_printf("\n");
5e8fd947
AK
4180}
4181
4182#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4183 int128_sub((size), int128_one())) : 0)
4184
b6b71cb5 4185void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4186{
4187 int i;
4188
b6b71cb5
MA
4189 qemu_printf(" Dispatch\n");
4190 qemu_printf(" Physical sections\n");
5e8fd947
AK
4191
4192 for (i = 0; i < d->map.sections_nb; ++i) {
4193 MemoryRegionSection *s = d->map.sections + i;
4194 const char *names[] = { " [unassigned]", " [not dirty]",
4195 " [ROM]", " [watch]" };
4196
b6b71cb5
MA
4197 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4198 " %s%s%s%s%s",
5e8fd947
AK
4199 i,
4200 s->offset_within_address_space,
4201 s->offset_within_address_space + MR_SIZE(s->mr->size),
4202 s->mr->name ? s->mr->name : "(noname)",
4203 i < ARRAY_SIZE(names) ? names[i] : "",
4204 s->mr == root ? " [ROOT]" : "",
4205 s == d->mru_section ? " [MRU]" : "",
4206 s->mr->is_iommu ? " [iommu]" : "");
4207
4208 if (s->mr->alias) {
b6b71cb5 4209 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4210 s->mr->alias->name : "noname");
4211 }
b6b71cb5 4212 qemu_printf("\n");
5e8fd947
AK
4213 }
4214
b6b71cb5 4215 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4216 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4217 for (i = 0; i < d->map.nodes_nb; ++i) {
4218 int j, jprev;
4219 PhysPageEntry prev;
4220 Node *n = d->map.nodes + i;
4221
b6b71cb5 4222 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4223
4224 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4225 PhysPageEntry *pe = *n + j;
4226
4227 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4228 continue;
4229 }
4230
b6b71cb5 4231 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4232
4233 jprev = j;
4234 prev = *pe;
4235 }
4236
4237 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4238 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4239 }
4240 }
4241}
4242
4243#endif