]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
migration/postcopy: rename postcopy_ram_enable_notify to postcopy_ram_incoming_setup
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
14a48c1d 19
7b31bbc2 20#include "qemu/osdep.h"
a8d25326 21#include "qemu-common.h"
da34e65c 22#include "qapi/error.h"
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
51180423 27#include "exec/target_page.h"
b67d9a52 28#include "tcg.h"
741da0d3 29#include "hw/qdev-core.h"
c7e002c5 30#include "hw/qdev-properties.h"
4485bd26 31#if !defined(CONFIG_USER_ONLY)
47c8ca53 32#include "hw/boards.h"
33c11879 33#include "hw/xen/xen.h"
4485bd26 34#endif
9c17d615 35#include "sysemu/kvm.h"
2ff3de68 36#include "sysemu/sysemu.h"
14a48c1d 37#include "sysemu/tcg.h"
1de7afc9
PB
38#include "qemu/timer.h"
39#include "qemu/config-file.h"
75a34036 40#include "qemu/error-report.h"
b6b71cb5 41#include "qemu/qemu-print.h"
53a5960a 42#if defined(CONFIG_USER_ONLY)
a9c94277 43#include "qemu.h"
432d268c 44#else /* !CONFIG_USER_ONLY */
741da0d3 45#include "exec/memory.h"
df43d49c 46#include "exec/ioport.h"
741da0d3 47#include "sysemu/dma.h"
b58c5c2d 48#include "sysemu/hostmem.h"
79ca7a1b 49#include "sysemu/hw_accel.h"
741da0d3 50#include "exec/address-spaces.h"
9c17d615 51#include "sysemu/xen-mapcache.h"
0ab8ed18 52#include "trace-root.h"
d3a5038c 53
e2fa71f5 54#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
55#include <linux/falloc.h>
56#endif
57
53a5960a 58#endif
0dc3f44a 59#include "qemu/rcu_queue.h"
4840f10e 60#include "qemu/main-loop.h"
5b6dd868 61#include "translate-all.h"
7615936e 62#include "sysemu/replay.h"
0cac1b66 63
022c62cb 64#include "exec/memory-internal.h"
220c3ebd 65#include "exec/ram_addr.h"
508127e2 66#include "exec/log.h"
67d95c15 67
9dfeca7c
BR
68#include "migration/vmstate.h"
69
b35ba30f 70#include "qemu/range.h"
794e8f30
MT
71#ifndef _WIN32
72#include "qemu/mmap-alloc.h"
73#endif
b35ba30f 74
be9b23c4
PX
75#include "monitor/monitor.h"
76
db7b5426 77//#define DEBUG_SUBPAGE
1196be37 78
e2eef170 79#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
80/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
81 * are protected by the ramlist lock.
82 */
0d53d9fe 83RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
84
85static MemoryRegion *system_memory;
309cb471 86static MemoryRegion *system_io;
62152b8a 87
f6790af6
AK
88AddressSpace address_space_io;
89AddressSpace address_space_memory;
2673a5da 90
acc9d80b 91static MemoryRegion io_mem_unassigned;
e2eef170 92#endif
9fa3e853 93
20bccb82
PM
94#ifdef TARGET_PAGE_BITS_VARY
95int target_page_bits;
96bool target_page_bits_decided;
97#endif
98
f481ee2d
PB
99CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
100
6a00d601
FB
101/* current CPU in the current thread. It is only valid inside
102 cpu_exec() */
f240eb6f 103__thread CPUState *current_cpu;
2e70f6ef 104/* 0 = Do not count executed instructions.
bf20dc07 105 1 = Precise instruction counting.
2e70f6ef 106 2 = Adaptive rate instruction counting. */
5708fc66 107int use_icount;
6a00d601 108
a0be0c58
YZ
109uintptr_t qemu_host_page_size;
110intptr_t qemu_host_page_mask;
a0be0c58 111
20bccb82
PM
112bool set_preferred_target_page_bits(int bits)
113{
114 /* The target page size is the lowest common denominator for all
115 * the CPUs in the system, so we can only make it smaller, never
116 * larger. And we can't make it smaller once we've committed to
117 * a particular size.
118 */
119#ifdef TARGET_PAGE_BITS_VARY
120 assert(bits >= TARGET_PAGE_BITS_MIN);
121 if (target_page_bits == 0 || target_page_bits > bits) {
122 if (target_page_bits_decided) {
123 return false;
124 }
125 target_page_bits = bits;
126 }
127#endif
128 return true;
129}
130
e2eef170 131#if !defined(CONFIG_USER_ONLY)
4346ae3e 132
20bccb82
PM
133static void finalize_target_page_bits(void)
134{
135#ifdef TARGET_PAGE_BITS_VARY
136 if (target_page_bits == 0) {
137 target_page_bits = TARGET_PAGE_BITS_MIN;
138 }
139 target_page_bits_decided = true;
140#endif
141}
142
1db8abb1
PB
143typedef struct PhysPageEntry PhysPageEntry;
144
145struct PhysPageEntry {
9736e55b 146 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 147 uint32_t skip : 6;
9736e55b 148 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 149 uint32_t ptr : 26;
1db8abb1
PB
150};
151
8b795765
MT
152#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
153
03f49957 154/* Size of the L2 (and L3, etc) page tables. */
57271d63 155#define ADDR_SPACE_BITS 64
03f49957 156
026736ce 157#define P_L2_BITS 9
03f49957
PB
158#define P_L2_SIZE (1 << P_L2_BITS)
159
160#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
161
162typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 163
53cb28cb 164typedef struct PhysPageMap {
79e2b9ae
PB
165 struct rcu_head rcu;
166
53cb28cb
MA
167 unsigned sections_nb;
168 unsigned sections_nb_alloc;
169 unsigned nodes_nb;
170 unsigned nodes_nb_alloc;
171 Node *nodes;
172 MemoryRegionSection *sections;
173} PhysPageMap;
174
1db8abb1 175struct AddressSpaceDispatch {
729633c2 176 MemoryRegionSection *mru_section;
1db8abb1
PB
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
179 */
180 PhysPageEntry phys_map;
53cb28cb 181 PhysPageMap map;
1db8abb1
PB
182};
183
90260c6c
JK
184#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
185typedef struct subpage_t {
186 MemoryRegion iomem;
16620684 187 FlatView *fv;
90260c6c 188 hwaddr base;
2615fabd 189 uint16_t sub_section[];
90260c6c
JK
190} subpage_t;
191
b41aac4f 192#define PHYS_SECTION_UNASSIGNED 0
5312bd8b 193
e2eef170 194static void io_mem_init(void);
62152b8a 195static void memory_map_init(void);
9458a9a1 196static void tcg_log_global_after_sync(MemoryListener *listener);
09daed84 197static void tcg_commit(MemoryListener *listener);
e2eef170 198
32857f4d
PM
199/**
200 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
201 * @cpu: the CPU whose AddressSpace this is
202 * @as: the AddressSpace itself
203 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
204 * @tcg_as_listener: listener for tracking changes to the AddressSpace
205 */
206struct CPUAddressSpace {
207 CPUState *cpu;
208 AddressSpace *as;
209 struct AddressSpaceDispatch *memory_dispatch;
210 MemoryListener tcg_as_listener;
211};
212
8deaf12c
GH
213struct DirtyBitmapSnapshot {
214 ram_addr_t start;
215 ram_addr_t end;
216 unsigned long dirty[];
217};
218
6658ffb8 219#endif
fd6ce8f6 220
6d9a1304 221#if !defined(CONFIG_USER_ONLY)
d6f2ea22 222
53cb28cb 223static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 224{
101420b8 225 static unsigned alloc_hint = 16;
53cb28cb 226 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
c95cfd04 227 map->nodes_nb_alloc = MAX(alloc_hint, map->nodes_nb + nodes);
53cb28cb 228 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 229 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 230 }
f7bf5461
AK
231}
232
db94604b 233static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
234{
235 unsigned i;
8b795765 236 uint32_t ret;
db94604b
PB
237 PhysPageEntry e;
238 PhysPageEntry *p;
f7bf5461 239
53cb28cb 240 ret = map->nodes_nb++;
db94604b 241 p = map->nodes[ret];
f7bf5461 242 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 243 assert(ret != map->nodes_nb_alloc);
db94604b
PB
244
245 e.skip = leaf ? 0 : 1;
246 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 247 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 248 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 249 }
f7bf5461 250 return ret;
d6f2ea22
AK
251}
252
53cb28cb 253static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
56b15076 254 hwaddr *index, uint64_t *nb, uint16_t leaf,
2999097b 255 int level)
f7bf5461
AK
256{
257 PhysPageEntry *p;
03f49957 258 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 259
9736e55b 260 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 261 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 262 }
db94604b 263 p = map->nodes[lp->ptr];
03f49957 264 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 265
03f49957 266 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 267 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 268 lp->skip = 0;
c19e8800 269 lp->ptr = leaf;
07f07b31
AK
270 *index += step;
271 *nb -= step;
2999097b 272 } else {
53cb28cb 273 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
274 }
275 ++lp;
f7bf5461
AK
276 }
277}
278
ac1970fb 279static void phys_page_set(AddressSpaceDispatch *d,
56b15076 280 hwaddr index, uint64_t nb,
2999097b 281 uint16_t leaf)
f7bf5461 282{
2999097b 283 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 284 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 285
53cb28cb 286 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
287}
288
b35ba30f
MT
289/* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
291 */
efee678d 292static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
293{
294 unsigned valid_ptr = P_L2_SIZE;
295 int valid = 0;
296 PhysPageEntry *p;
297 int i;
298
299 if (lp->ptr == PHYS_MAP_NODE_NIL) {
300 return;
301 }
302
303 p = nodes[lp->ptr];
304 for (i = 0; i < P_L2_SIZE; i++) {
305 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
306 continue;
307 }
308
309 valid_ptr = i;
310 valid++;
311 if (p[i].skip) {
efee678d 312 phys_page_compact(&p[i], nodes);
b35ba30f
MT
313 }
314 }
315
316 /* We can only compress if there's only one child. */
317 if (valid != 1) {
318 return;
319 }
320
321 assert(valid_ptr < P_L2_SIZE);
322
323 /* Don't compress if it won't fit in the # of bits we have. */
526ca236
WY
324 if (P_L2_LEVELS >= (1 << 6) &&
325 lp->skip + p[valid_ptr].skip >= (1 << 6)) {
b35ba30f
MT
326 return;
327 }
328
329 lp->ptr = p[valid_ptr].ptr;
330 if (!p[valid_ptr].skip) {
331 /* If our only child is a leaf, make this a leaf. */
332 /* By design, we should have made this node a leaf to begin with so we
333 * should never reach here.
334 * But since it's so simple to handle this, let's do it just in case we
335 * change this rule.
336 */
337 lp->skip = 0;
338 } else {
339 lp->skip += p[valid_ptr].skip;
340 }
341}
342
8629d3fc 343void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 344{
b35ba30f 345 if (d->phys_map.skip) {
efee678d 346 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
347 }
348}
349
29cb533d
FZ
350static inline bool section_covers_addr(const MemoryRegionSection *section,
351 hwaddr addr)
352{
353 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
354 * the section must cover the entire address space.
355 */
258dfaaa 356 return int128_gethi(section->size) ||
29cb533d 357 range_covers_byte(section->offset_within_address_space,
258dfaaa 358 int128_getlo(section->size), addr);
29cb533d
FZ
359}
360
003a0cf2 361static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 362{
003a0cf2
PX
363 PhysPageEntry lp = d->phys_map, *p;
364 Node *nodes = d->map.nodes;
365 MemoryRegionSection *sections = d->map.sections;
97115a8d 366 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 367 int i;
f1f6e3b8 368
9736e55b 369 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 370 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 371 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 372 }
9affd6fc 373 p = nodes[lp.ptr];
03f49957 374 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 375 }
b35ba30f 376
29cb533d 377 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
378 return &sections[lp.ptr];
379 } else {
380 return &sections[PHYS_SECTION_UNASSIGNED];
381 }
f3705d53
AK
382}
383
79e2b9ae 384/* Called from RCU critical section */
c7086b4a 385static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
386 hwaddr addr,
387 bool resolve_subpage)
9f029603 388{
729633c2 389 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
390 subpage_t *subpage;
391
07c114bb
PB
392 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
393 !section_covers_addr(section, addr)) {
003a0cf2 394 section = phys_page_find(d, addr);
07c114bb 395 atomic_set(&d->mru_section, section);
729633c2 396 }
90260c6c
JK
397 if (resolve_subpage && section->mr->subpage) {
398 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 399 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
400 }
401 return section;
9f029603
JK
402}
403
79e2b9ae 404/* Called from RCU critical section */
90260c6c 405static MemoryRegionSection *
c7086b4a 406address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 407 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
408{
409 MemoryRegionSection *section;
965eb2fc 410 MemoryRegion *mr;
a87f3954 411 Int128 diff;
149f54b5 412
c7086b4a 413 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
414 /* Compute offset within MemoryRegionSection */
415 addr -= section->offset_within_address_space;
416
417 /* Compute offset within MemoryRegion */
418 *xlat = addr + section->offset_within_region;
419
965eb2fc 420 mr = section->mr;
b242e0e0
PB
421
422 /* MMIO registers can be expected to perform full-width accesses based only
423 * on their address, without considering adjacent registers that could
424 * decode to completely different MemoryRegions. When such registers
425 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
426 * regions overlap wildly. For this reason we cannot clamp the accesses
427 * here.
428 *
429 * If the length is small (as is the case for address_space_ldl/stl),
430 * everything works fine. If the incoming length is large, however,
431 * the caller really has to do the clamping through memory_access_size.
432 */
965eb2fc 433 if (memory_region_is_ram(mr)) {
e4a511f8 434 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
435 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
436 }
149f54b5
PB
437 return section;
438}
90260c6c 439
a411c84b
PB
440/**
441 * address_space_translate_iommu - translate an address through an IOMMU
442 * memory region and then through the target address space.
443 *
444 * @iommu_mr: the IOMMU memory region that we start the translation from
445 * @addr: the address to be translated through the MMU
446 * @xlat: the translated address offset within the destination memory region.
447 * It cannot be %NULL.
448 * @plen_out: valid read/write length of the translated address. It
449 * cannot be %NULL.
450 * @page_mask_out: page mask for the translated address. This
451 * should only be meaningful for IOMMU translated
452 * addresses, since there may be huge pages that this bit
453 * would tell. It can be %NULL if we don't care about it.
454 * @is_write: whether the translation operation is for write
455 * @is_mmio: whether this can be MMIO, set true if it can
456 * @target_as: the address space targeted by the IOMMU
2f7b009c 457 * @attrs: transaction attributes
a411c84b
PB
458 *
459 * This function is called from RCU critical section. It is the common
460 * part of flatview_do_translate and address_space_translate_cached.
461 */
462static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
463 hwaddr *xlat,
464 hwaddr *plen_out,
465 hwaddr *page_mask_out,
466 bool is_write,
467 bool is_mmio,
2f7b009c
PM
468 AddressSpace **target_as,
469 MemTxAttrs attrs)
a411c84b
PB
470{
471 MemoryRegionSection *section;
472 hwaddr page_mask = (hwaddr)-1;
473
474 do {
475 hwaddr addr = *xlat;
476 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
477 int iommu_idx = 0;
478 IOMMUTLBEntry iotlb;
479
480 if (imrc->attrs_to_index) {
481 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
482 }
483
484 iotlb = imrc->translate(iommu_mr, addr, is_write ?
485 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
486
487 if (!(iotlb.perm & (1 << is_write))) {
488 goto unassigned;
489 }
490
491 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
492 | (addr & iotlb.addr_mask));
493 page_mask &= iotlb.addr_mask;
494 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
495 *target_as = iotlb.target_as;
496
497 section = address_space_translate_internal(
498 address_space_to_dispatch(iotlb.target_as), addr, xlat,
499 plen_out, is_mmio);
500
501 iommu_mr = memory_region_get_iommu(section->mr);
502 } while (unlikely(iommu_mr));
503
504 if (page_mask_out) {
505 *page_mask_out = page_mask;
506 }
507 return *section;
508
509unassigned:
510 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
511}
512
d5e5fafd
PX
513/**
514 * flatview_do_translate - translate an address in FlatView
515 *
516 * @fv: the flat view that we want to translate on
517 * @addr: the address to be translated in above address space
518 * @xlat: the translated address offset within memory region. It
519 * cannot be @NULL.
520 * @plen_out: valid read/write length of the translated address. It
521 * can be @NULL when we don't care about it.
522 * @page_mask_out: page mask for the translated address. This
523 * should only be meaningful for IOMMU translated
524 * addresses, since there may be huge pages that this bit
525 * would tell. It can be @NULL if we don't care about it.
526 * @is_write: whether the translation operation is for write
527 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 528 * @target_as: the address space targeted by the IOMMU
49e14aa8 529 * @attrs: memory transaction attributes
d5e5fafd
PX
530 *
531 * This function is called from RCU critical section
532 */
16620684
AK
533static MemoryRegionSection flatview_do_translate(FlatView *fv,
534 hwaddr addr,
535 hwaddr *xlat,
d5e5fafd
PX
536 hwaddr *plen_out,
537 hwaddr *page_mask_out,
16620684
AK
538 bool is_write,
539 bool is_mmio,
49e14aa8
PM
540 AddressSpace **target_as,
541 MemTxAttrs attrs)
052c8fa9 542{
052c8fa9 543 MemoryRegionSection *section;
3df9d748 544 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
545 hwaddr plen = (hwaddr)(-1);
546
ad2804d9
PB
547 if (!plen_out) {
548 plen_out = &plen;
d5e5fafd 549 }
052c8fa9 550
a411c84b
PB
551 section = address_space_translate_internal(
552 flatview_to_dispatch(fv), addr, xlat,
553 plen_out, is_mmio);
052c8fa9 554
a411c84b
PB
555 iommu_mr = memory_region_get_iommu(section->mr);
556 if (unlikely(iommu_mr)) {
557 return address_space_translate_iommu(iommu_mr, xlat,
558 plen_out, page_mask_out,
559 is_write, is_mmio,
2f7b009c 560 target_as, attrs);
052c8fa9 561 }
d5e5fafd 562 if (page_mask_out) {
a411c84b
PB
563 /* Not behind an IOMMU, use default page size. */
564 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
565 }
566
a764040c 567 return *section;
052c8fa9
JW
568}
569
570/* Called from RCU critical section */
a764040c 571IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 572 bool is_write, MemTxAttrs attrs)
90260c6c 573{
a764040c 574 MemoryRegionSection section;
076a93d7 575 hwaddr xlat, page_mask;
30951157 576
076a93d7
PX
577 /*
578 * This can never be MMIO, and we don't really care about plen,
579 * but page mask.
580 */
581 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
582 NULL, &page_mask, is_write, false, &as,
583 attrs);
30951157 584
a764040c
PX
585 /* Illegal translation */
586 if (section.mr == &io_mem_unassigned) {
587 goto iotlb_fail;
588 }
30951157 589
a764040c
PX
590 /* Convert memory region offset into address space offset */
591 xlat += section.offset_within_address_space -
592 section.offset_within_region;
593
a764040c 594 return (IOMMUTLBEntry) {
e76bb18f 595 .target_as = as,
076a93d7
PX
596 .iova = addr & ~page_mask,
597 .translated_addr = xlat & ~page_mask,
598 .addr_mask = page_mask,
a764040c
PX
599 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
600 .perm = IOMMU_RW,
601 };
602
603iotlb_fail:
604 return (IOMMUTLBEntry) {0};
605}
606
607/* Called from RCU critical section */
16620684 608MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
609 hwaddr *plen, bool is_write,
610 MemTxAttrs attrs)
a764040c
PX
611{
612 MemoryRegion *mr;
613 MemoryRegionSection section;
16620684 614 AddressSpace *as = NULL;
a764040c
PX
615
616 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 617 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 618 is_write, true, &as, attrs);
a764040c
PX
619 mr = section.mr;
620
fe680d0d 621 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 622 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 623 *plen = MIN(page, *plen);
a87f3954
PB
624 }
625
30951157 626 return mr;
90260c6c
JK
627}
628
1f871c5e
PM
629typedef struct TCGIOMMUNotifier {
630 IOMMUNotifier n;
631 MemoryRegion *mr;
632 CPUState *cpu;
633 int iommu_idx;
634 bool active;
635} TCGIOMMUNotifier;
636
637static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
638{
639 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
640
641 if (!notifier->active) {
642 return;
643 }
644 tlb_flush(notifier->cpu);
645 notifier->active = false;
646 /* We leave the notifier struct on the list to avoid reallocating it later.
647 * Generally the number of IOMMUs a CPU deals with will be small.
648 * In any case we can't unregister the iommu notifier from a notify
649 * callback.
650 */
651}
652
653static void tcg_register_iommu_notifier(CPUState *cpu,
654 IOMMUMemoryRegion *iommu_mr,
655 int iommu_idx)
656{
657 /* Make sure this CPU has an IOMMU notifier registered for this
658 * IOMMU/IOMMU index combination, so that we can flush its TLB
659 * when the IOMMU tells us the mappings we've cached have changed.
660 */
661 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
662 TCGIOMMUNotifier *notifier;
549d4005
EA
663 Error *err = NULL;
664 int i, ret;
1f871c5e
PM
665
666 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 667 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
668 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
669 break;
670 }
671 }
672 if (i == cpu->iommu_notifiers->len) {
673 /* Not found, add a new entry at the end of the array */
674 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
675 notifier = g_new0(TCGIOMMUNotifier, 1);
676 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
677
678 notifier->mr = mr;
679 notifier->iommu_idx = iommu_idx;
680 notifier->cpu = cpu;
681 /* Rather than trying to register interest in the specific part
682 * of the iommu's address space that we've accessed and then
683 * expand it later as subsequent accesses touch more of it, we
684 * just register interest in the whole thing, on the assumption
685 * that iommu reconfiguration will be rare.
686 */
687 iommu_notifier_init(&notifier->n,
688 tcg_iommu_unmap_notify,
689 IOMMU_NOTIFIER_UNMAP,
690 0,
691 HWADDR_MAX,
692 iommu_idx);
549d4005
EA
693 ret = memory_region_register_iommu_notifier(notifier->mr, &notifier->n,
694 &err);
695 if (ret) {
696 error_report_err(err);
697 exit(1);
698 }
1f871c5e
PM
699 }
700
701 if (!notifier->active) {
702 notifier->active = true;
703 }
704}
705
706static void tcg_iommu_free_notifier_list(CPUState *cpu)
707{
708 /* Destroy the CPU's notifier list */
709 int i;
710 TCGIOMMUNotifier *notifier;
711
712 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 713 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 714 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 715 g_free(notifier);
1f871c5e
PM
716 }
717 g_array_free(cpu->iommu_notifiers, true);
718}
719
79e2b9ae 720/* Called from RCU critical section */
90260c6c 721MemoryRegionSection *
d7898cda 722address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
723 hwaddr *xlat, hwaddr *plen,
724 MemTxAttrs attrs, int *prot)
90260c6c 725{
30951157 726 MemoryRegionSection *section;
1f871c5e
PM
727 IOMMUMemoryRegion *iommu_mr;
728 IOMMUMemoryRegionClass *imrc;
729 IOMMUTLBEntry iotlb;
730 int iommu_idx;
f35e44e7 731 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 732
1f871c5e
PM
733 for (;;) {
734 section = address_space_translate_internal(d, addr, &addr, plen, false);
735
736 iommu_mr = memory_region_get_iommu(section->mr);
737 if (!iommu_mr) {
738 break;
739 }
740
741 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
742
743 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
744 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
745 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
746 * doesn't short-cut its translation table walk.
747 */
748 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
749 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
750 | (addr & iotlb.addr_mask));
751 /* Update the caller's prot bits to remove permissions the IOMMU
752 * is giving us a failure response for. If we get down to no
753 * permissions left at all we can give up now.
754 */
755 if (!(iotlb.perm & IOMMU_RO)) {
756 *prot &= ~(PAGE_READ | PAGE_EXEC);
757 }
758 if (!(iotlb.perm & IOMMU_WO)) {
759 *prot &= ~PAGE_WRITE;
760 }
761
762 if (!*prot) {
763 goto translate_fail;
764 }
765
766 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
767 }
30951157 768
3df9d748 769 assert(!memory_region_is_iommu(section->mr));
1f871c5e 770 *xlat = addr;
30951157 771 return section;
1f871c5e
PM
772
773translate_fail:
774 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 775}
5b6dd868 776#endif
fd6ce8f6 777
b170fce3 778#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
779
780static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 781{
259186a7 782 CPUState *cpu = opaque;
a513fe19 783
5b6dd868
BS
784 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
785 version_id is increased. */
259186a7 786 cpu->interrupt_request &= ~0x01;
d10eb08f 787 tlb_flush(cpu);
5b6dd868 788
15a356c4
PD
789 /* loadvm has just updated the content of RAM, bypassing the
790 * usual mechanisms that ensure we flush TBs for writes to
791 * memory we've translated code from. So we must flush all TBs,
792 * which will now be stale.
793 */
794 tb_flush(cpu);
795
5b6dd868 796 return 0;
a513fe19 797}
7501267e 798
6c3bff0e
PD
799static int cpu_common_pre_load(void *opaque)
800{
801 CPUState *cpu = opaque;
802
adee6424 803 cpu->exception_index = -1;
6c3bff0e
PD
804
805 return 0;
806}
807
808static bool cpu_common_exception_index_needed(void *opaque)
809{
810 CPUState *cpu = opaque;
811
adee6424 812 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
813}
814
815static const VMStateDescription vmstate_cpu_common_exception_index = {
816 .name = "cpu_common/exception_index",
817 .version_id = 1,
818 .minimum_version_id = 1,
5cd8cada 819 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
820 .fields = (VMStateField[]) {
821 VMSTATE_INT32(exception_index, CPUState),
822 VMSTATE_END_OF_LIST()
823 }
824};
825
bac05aa9
AS
826static bool cpu_common_crash_occurred_needed(void *opaque)
827{
828 CPUState *cpu = opaque;
829
830 return cpu->crash_occurred;
831}
832
833static const VMStateDescription vmstate_cpu_common_crash_occurred = {
834 .name = "cpu_common/crash_occurred",
835 .version_id = 1,
836 .minimum_version_id = 1,
837 .needed = cpu_common_crash_occurred_needed,
838 .fields = (VMStateField[]) {
839 VMSTATE_BOOL(crash_occurred, CPUState),
840 VMSTATE_END_OF_LIST()
841 }
842};
843
1a1562f5 844const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
845 .name = "cpu_common",
846 .version_id = 1,
847 .minimum_version_id = 1,
6c3bff0e 848 .pre_load = cpu_common_pre_load,
5b6dd868 849 .post_load = cpu_common_post_load,
35d08458 850 .fields = (VMStateField[]) {
259186a7
AF
851 VMSTATE_UINT32(halted, CPUState),
852 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 853 VMSTATE_END_OF_LIST()
6c3bff0e 854 },
5cd8cada
JQ
855 .subsections = (const VMStateDescription*[]) {
856 &vmstate_cpu_common_exception_index,
bac05aa9 857 &vmstate_cpu_common_crash_occurred,
5cd8cada 858 NULL
5b6dd868
BS
859 }
860};
1a1562f5 861
5b6dd868 862#endif
ea041c0e 863
38d8f5c8 864CPUState *qemu_get_cpu(int index)
ea041c0e 865{
bdc44640 866 CPUState *cpu;
ea041c0e 867
bdc44640 868 CPU_FOREACH(cpu) {
55e5c285 869 if (cpu->cpu_index == index) {
bdc44640 870 return cpu;
55e5c285 871 }
ea041c0e 872 }
5b6dd868 873
bdc44640 874 return NULL;
ea041c0e
FB
875}
876
09daed84 877#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
878void cpu_address_space_init(CPUState *cpu, int asidx,
879 const char *prefix, MemoryRegion *mr)
09daed84 880{
12ebc9a7 881 CPUAddressSpace *newas;
80ceb07a 882 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 883 char *as_name;
80ceb07a
PX
884
885 assert(mr);
87a621d8
PX
886 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
887 address_space_init(as, mr, as_name);
888 g_free(as_name);
12ebc9a7
PM
889
890 /* Target code should have set num_ases before calling us */
891 assert(asidx < cpu->num_ases);
892
56943e8c
PM
893 if (asidx == 0) {
894 /* address space 0 gets the convenience alias */
895 cpu->as = as;
896 }
897
12ebc9a7
PM
898 /* KVM cannot currently support multiple address spaces. */
899 assert(asidx == 0 || !kvm_enabled());
09daed84 900
12ebc9a7
PM
901 if (!cpu->cpu_ases) {
902 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 903 }
32857f4d 904
12ebc9a7
PM
905 newas = &cpu->cpu_ases[asidx];
906 newas->cpu = cpu;
907 newas->as = as;
56943e8c 908 if (tcg_enabled()) {
9458a9a1 909 newas->tcg_as_listener.log_global_after_sync = tcg_log_global_after_sync;
12ebc9a7
PM
910 newas->tcg_as_listener.commit = tcg_commit;
911 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 912 }
09daed84 913}
651a5bc0
PM
914
915AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
916{
917 /* Return the AddressSpace corresponding to the specified index */
918 return cpu->cpu_ases[asidx].as;
919}
09daed84
EI
920#endif
921
7bbc124e 922void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 923{
9dfeca7c
BR
924 CPUClass *cc = CPU_GET_CLASS(cpu);
925
267f685b 926 cpu_list_remove(cpu);
9dfeca7c
BR
927
928 if (cc->vmsd != NULL) {
929 vmstate_unregister(NULL, cc->vmsd, cpu);
930 }
931 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
932 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
933 }
1f871c5e
PM
934#ifndef CONFIG_USER_ONLY
935 tcg_iommu_free_notifier_list(cpu);
936#endif
1c59eb39
BR
937}
938
c7e002c5
FZ
939Property cpu_common_props[] = {
940#ifndef CONFIG_USER_ONLY
941 /* Create a memory property for softmmu CPU object,
2e5b09fd 942 * so users can wire up its memory. (This can't go in hw/core/cpu.c
c7e002c5
FZ
943 * because that file is compiled only once for both user-mode
944 * and system builds.) The default if no link is set up is to use
945 * the system address space.
946 */
947 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
948 MemoryRegion *),
949#endif
950 DEFINE_PROP_END_OF_LIST(),
951};
952
39e329e3 953void cpu_exec_initfn(CPUState *cpu)
ea041c0e 954{
56943e8c 955 cpu->as = NULL;
12ebc9a7 956 cpu->num_ases = 0;
56943e8c 957
291135b5 958#ifndef CONFIG_USER_ONLY
291135b5 959 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
960 cpu->memory = system_memory;
961 object_ref(OBJECT(cpu->memory));
291135b5 962#endif
39e329e3
LV
963}
964
ce5b1bbf 965void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 966{
55c3ceef 967 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 968 static bool tcg_target_initialized;
291135b5 969
267f685b 970 cpu_list_add(cpu);
1bc7e522 971
2dda6354
EC
972 if (tcg_enabled() && !tcg_target_initialized) {
973 tcg_target_initialized = true;
55c3ceef
RH
974 cc->tcg_initialize();
975 }
5005e253 976 tlb_init(cpu);
55c3ceef 977
1bc7e522 978#ifndef CONFIG_USER_ONLY
e0d47944 979 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 980 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 981 }
b170fce3 982 if (cc->vmsd != NULL) {
741da0d3 983 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 984 }
1f871c5e 985
5601be3b 986 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 987#endif
ea041c0e
FB
988}
989
c1c8cfe5 990const char *parse_cpu_option(const char *cpu_option)
2278b939
IM
991{
992 ObjectClass *oc;
993 CPUClass *cc;
994 gchar **model_pieces;
995 const char *cpu_type;
996
c1c8cfe5 997 model_pieces = g_strsplit(cpu_option, ",", 2);
5b863f3e
EH
998 if (!model_pieces[0]) {
999 error_report("-cpu option cannot be empty");
1000 exit(1);
1001 }
2278b939
IM
1002
1003 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
1004 if (oc == NULL) {
1005 error_report("unable to find CPU model '%s'", model_pieces[0]);
1006 g_strfreev(model_pieces);
1007 exit(EXIT_FAILURE);
1008 }
1009
1010 cpu_type = object_class_get_name(oc);
1011 cc = CPU_CLASS(oc);
1012 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1013 g_strfreev(model_pieces);
1014 return cpu_type;
1015}
1016
c40d4792 1017#if defined(CONFIG_USER_ONLY)
8bca9a03 1018void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1019{
406bc339 1020 mmap_lock();
ce9f5e27 1021 tb_invalidate_phys_page_range(addr, addr + 1);
406bc339
PK
1022 mmap_unlock();
1023}
8bca9a03
PB
1024
1025static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1026{
1027 tb_invalidate_phys_addr(pc);
1028}
406bc339 1029#else
8bca9a03
PB
1030void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1031{
1032 ram_addr_t ram_addr;
1033 MemoryRegion *mr;
1034 hwaddr l = 1;
1035
c40d4792
PB
1036 if (!tcg_enabled()) {
1037 return;
1038 }
1039
694ea274 1040 RCU_READ_LOCK_GUARD();
8bca9a03
PB
1041 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1042 if (!(memory_region_is_ram(mr)
1043 || memory_region_is_romd(mr))) {
8bca9a03
PB
1044 return;
1045 }
1046 ram_addr = memory_region_get_ram_addr(mr) + addr;
ce9f5e27 1047 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
8bca9a03
PB
1048}
1049
406bc339
PK
1050static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1051{
1052 MemTxAttrs attrs;
1053 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1054 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1055 if (phys != -1) {
1056 /* Locks grabbed by tb_invalidate_phys_addr */
1057 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1058 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1059 }
1e7855a5 1060}
406bc339 1061#endif
d720b93d 1062
74841f04 1063#ifndef CONFIG_USER_ONLY
6658ffb8 1064/* Add a watchpoint. */
75a34036 1065int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1066 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1067{
c0ce998e 1068 CPUWatchpoint *wp;
6658ffb8 1069
05068c0d 1070 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1071 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1072 error_report("tried to set invalid watchpoint at %"
1073 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1074 return -EINVAL;
1075 }
7267c094 1076 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1077
1078 wp->vaddr = addr;
05068c0d 1079 wp->len = len;
a1d1bb31
AL
1080 wp->flags = flags;
1081
2dc9f411 1082 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1083 if (flags & BP_GDB) {
1084 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1085 } else {
1086 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1087 }
6658ffb8 1088
31b030d4 1089 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1090
1091 if (watchpoint)
1092 *watchpoint = wp;
1093 return 0;
6658ffb8
PB
1094}
1095
a1d1bb31 1096/* Remove a specific watchpoint. */
75a34036 1097int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1098 int flags)
6658ffb8 1099{
a1d1bb31 1100 CPUWatchpoint *wp;
6658ffb8 1101
ff4700b0 1102 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1103 if (addr == wp->vaddr && len == wp->len
6e140f28 1104 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1105 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1106 return 0;
1107 }
1108 }
a1d1bb31 1109 return -ENOENT;
6658ffb8
PB
1110}
1111
a1d1bb31 1112/* Remove a specific watchpoint by reference. */
75a34036 1113void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1114{
ff4700b0 1115 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1116
31b030d4 1117 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1118
7267c094 1119 g_free(watchpoint);
a1d1bb31
AL
1120}
1121
1122/* Remove all matching watchpoints. */
75a34036 1123void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1124{
c0ce998e 1125 CPUWatchpoint *wp, *next;
a1d1bb31 1126
ff4700b0 1127 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1128 if (wp->flags & mask) {
1129 cpu_watchpoint_remove_by_ref(cpu, wp);
1130 }
c0ce998e 1131 }
7d03f82f 1132}
05068c0d
PM
1133
1134/* Return true if this watchpoint address matches the specified
1135 * access (ie the address range covered by the watchpoint overlaps
1136 * partially or completely with the address range covered by the
1137 * access).
1138 */
56ad8b00
RH
1139static inline bool watchpoint_address_matches(CPUWatchpoint *wp,
1140 vaddr addr, vaddr len)
05068c0d
PM
1141{
1142 /* We know the lengths are non-zero, but a little caution is
1143 * required to avoid errors in the case where the range ends
1144 * exactly at the top of the address space and so addr + len
1145 * wraps round to zero.
1146 */
1147 vaddr wpend = wp->vaddr + wp->len - 1;
1148 vaddr addrend = addr + len - 1;
1149
1150 return !(addr > wpend || wp->vaddr > addrend);
1151}
1152
56ad8b00
RH
1153/* Return flags for watchpoints that match addr + prot. */
1154int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len)
1155{
1156 CPUWatchpoint *wp;
1157 int ret = 0;
1158
1159 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
1160 if (watchpoint_address_matches(wp, addr, TARGET_PAGE_SIZE)) {
1161 ret |= wp->flags;
1162 }
1163 }
1164 return ret;
1165}
74841f04 1166#endif /* !CONFIG_USER_ONLY */
7d03f82f 1167
a1d1bb31 1168/* Add a breakpoint. */
b3310ab3 1169int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1170 CPUBreakpoint **breakpoint)
4c3a88a2 1171{
c0ce998e 1172 CPUBreakpoint *bp;
3b46e624 1173
7267c094 1174 bp = g_malloc(sizeof(*bp));
4c3a88a2 1175
a1d1bb31
AL
1176 bp->pc = pc;
1177 bp->flags = flags;
1178
2dc9f411 1179 /* keep all GDB-injected breakpoints in front */
00b941e5 1180 if (flags & BP_GDB) {
f0c3c505 1181 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1182 } else {
f0c3c505 1183 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1184 }
3b46e624 1185
f0c3c505 1186 breakpoint_invalidate(cpu, pc);
a1d1bb31 1187
00b941e5 1188 if (breakpoint) {
a1d1bb31 1189 *breakpoint = bp;
00b941e5 1190 }
4c3a88a2 1191 return 0;
4c3a88a2
FB
1192}
1193
a1d1bb31 1194/* Remove a specific breakpoint. */
b3310ab3 1195int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1196{
a1d1bb31
AL
1197 CPUBreakpoint *bp;
1198
f0c3c505 1199 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1200 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1201 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1202 return 0;
1203 }
7d03f82f 1204 }
a1d1bb31 1205 return -ENOENT;
7d03f82f
EI
1206}
1207
a1d1bb31 1208/* Remove a specific breakpoint by reference. */
b3310ab3 1209void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1210{
f0c3c505
AF
1211 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1212
1213 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1214
7267c094 1215 g_free(breakpoint);
a1d1bb31
AL
1216}
1217
1218/* Remove all matching breakpoints. */
b3310ab3 1219void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1220{
c0ce998e 1221 CPUBreakpoint *bp, *next;
a1d1bb31 1222
f0c3c505 1223 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1224 if (bp->flags & mask) {
1225 cpu_breakpoint_remove_by_ref(cpu, bp);
1226 }
c0ce998e 1227 }
4c3a88a2
FB
1228}
1229
c33a346e
FB
1230/* enable or disable single step mode. EXCP_DEBUG is returned by the
1231 CPU loop after each instruction */
3825b28f 1232void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1233{
ed2803da
AF
1234 if (cpu->singlestep_enabled != enabled) {
1235 cpu->singlestep_enabled = enabled;
1236 if (kvm_enabled()) {
38e478ec 1237 kvm_update_guest_debug(cpu, 0);
ed2803da 1238 } else {
ccbb4d44 1239 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1240 /* XXX: only flush what is necessary */
bbd77c18 1241 tb_flush(cpu);
e22a25c9 1242 }
c33a346e 1243 }
c33a346e
FB
1244}
1245
a47dddd7 1246void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1247{
1248 va_list ap;
493ae1f0 1249 va_list ap2;
7501267e
FB
1250
1251 va_start(ap, fmt);
493ae1f0 1252 va_copy(ap2, ap);
7501267e
FB
1253 fprintf(stderr, "qemu: fatal: ");
1254 vfprintf(stderr, fmt, ap);
1255 fprintf(stderr, "\n");
90c84c56 1256 cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1257 if (qemu_log_separate()) {
1ee73216 1258 qemu_log_lock();
93fcfe39
AL
1259 qemu_log("qemu: fatal: ");
1260 qemu_log_vprintf(fmt, ap2);
1261 qemu_log("\n");
a0762859 1262 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1263 qemu_log_flush();
1ee73216 1264 qemu_log_unlock();
93fcfe39 1265 qemu_log_close();
924edcae 1266 }
493ae1f0 1267 va_end(ap2);
f9373291 1268 va_end(ap);
7615936e 1269 replay_finish();
fd052bf6
RV
1270#if defined(CONFIG_USER_ONLY)
1271 {
1272 struct sigaction act;
1273 sigfillset(&act.sa_mask);
1274 act.sa_handler = SIG_DFL;
8347c185 1275 act.sa_flags = 0;
fd052bf6
RV
1276 sigaction(SIGABRT, &act, NULL);
1277 }
1278#endif
7501267e
FB
1279 abort();
1280}
1281
0124311e 1282#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1283/* Called from RCU critical section */
041603fe
PB
1284static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1285{
1286 RAMBlock *block;
1287
43771539 1288 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1289 if (block && addr - block->offset < block->max_length) {
68851b98 1290 return block;
041603fe 1291 }
99e15582 1292 RAMBLOCK_FOREACH(block) {
9b8424d5 1293 if (addr - block->offset < block->max_length) {
041603fe
PB
1294 goto found;
1295 }
1296 }
1297
1298 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1299 abort();
1300
1301found:
43771539
PB
1302 /* It is safe to write mru_block outside the iothread lock. This
1303 * is what happens:
1304 *
1305 * mru_block = xxx
1306 * rcu_read_unlock()
1307 * xxx removed from list
1308 * rcu_read_lock()
1309 * read mru_block
1310 * mru_block = NULL;
1311 * call_rcu(reclaim_ramblock, xxx);
1312 * rcu_read_unlock()
1313 *
1314 * atomic_rcu_set is not needed here. The block was already published
1315 * when it was placed into the list. Here we're just making an extra
1316 * copy of the pointer.
1317 */
041603fe
PB
1318 ram_list.mru_block = block;
1319 return block;
1320}
1321
a2f4d5be 1322static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1323{
9a13565d 1324 CPUState *cpu;
041603fe 1325 ram_addr_t start1;
a2f4d5be
JQ
1326 RAMBlock *block;
1327 ram_addr_t end;
1328
f28d0dfd 1329 assert(tcg_enabled());
a2f4d5be
JQ
1330 end = TARGET_PAGE_ALIGN(start + length);
1331 start &= TARGET_PAGE_MASK;
d24981d3 1332
694ea274 1333 RCU_READ_LOCK_GUARD();
041603fe
PB
1334 block = qemu_get_ram_block(start);
1335 assert(block == qemu_get_ram_block(end - 1));
1240be24 1336 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1337 CPU_FOREACH(cpu) {
1338 tlb_reset_dirty(cpu, start1, length);
1339 }
d24981d3
JQ
1340}
1341
5579c7f3 1342/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1343bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1344 ram_addr_t length,
1345 unsigned client)
1ccde1cb 1346{
5b82b703 1347 DirtyMemoryBlocks *blocks;
03eebc9e 1348 unsigned long end, page;
5b82b703 1349 bool dirty = false;
077874e0
PX
1350 RAMBlock *ramblock;
1351 uint64_t mr_offset, mr_size;
03eebc9e
SH
1352
1353 if (length == 0) {
1354 return false;
1355 }
f23db169 1356
03eebc9e
SH
1357 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1358 page = start >> TARGET_PAGE_BITS;
5b82b703 1359
694ea274
DDAG
1360 WITH_RCU_READ_LOCK_GUARD() {
1361 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1362 ramblock = qemu_get_ram_block(start);
1363 /* Range sanity check on the ramblock */
1364 assert(start >= ramblock->offset &&
1365 start + length <= ramblock->offset + ramblock->used_length);
5b82b703 1366
694ea274
DDAG
1367 while (page < end) {
1368 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1369 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1370 unsigned long num = MIN(end - page,
1371 DIRTY_MEMORY_BLOCK_SIZE - offset);
5b82b703 1372
694ea274
DDAG
1373 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1374 offset, num);
1375 page += num;
1376 }
5b82b703 1377
694ea274
DDAG
1378 mr_offset = (ram_addr_t)(page << TARGET_PAGE_BITS) - ramblock->offset;
1379 mr_size = (end - page) << TARGET_PAGE_BITS;
1380 memory_region_clear_dirty_bitmap(ramblock->mr, mr_offset, mr_size);
5b82b703
SH
1381 }
1382
03eebc9e 1383 if (dirty && tcg_enabled()) {
a2f4d5be 1384 tlb_reset_dirty_range_all(start, length);
5579c7f3 1385 }
03eebc9e
SH
1386
1387 return dirty;
1ccde1cb
FB
1388}
1389
8deaf12c 1390DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
5dea4079 1391 (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client)
8deaf12c
GH
1392{
1393 DirtyMemoryBlocks *blocks;
5dea4079 1394 ram_addr_t start = memory_region_get_ram_addr(mr) + offset;
8deaf12c
GH
1395 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1396 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1397 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1398 DirtyBitmapSnapshot *snap;
1399 unsigned long page, end, dest;
1400
1401 snap = g_malloc0(sizeof(*snap) +
1402 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1403 snap->start = first;
1404 snap->end = last;
1405
1406 page = first >> TARGET_PAGE_BITS;
1407 end = last >> TARGET_PAGE_BITS;
1408 dest = 0;
1409
694ea274
DDAG
1410 WITH_RCU_READ_LOCK_GUARD() {
1411 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
8deaf12c 1412
694ea274
DDAG
1413 while (page < end) {
1414 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1415 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1416 unsigned long num = MIN(end - page,
1417 DIRTY_MEMORY_BLOCK_SIZE - offset);
8deaf12c 1418
694ea274
DDAG
1419 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1420 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1421 offset >>= BITS_PER_LEVEL;
8deaf12c 1422
694ea274
DDAG
1423 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1424 blocks->blocks[idx] + offset,
1425 num);
1426 page += num;
1427 dest += num >> BITS_PER_LEVEL;
1428 }
8deaf12c
GH
1429 }
1430
8deaf12c
GH
1431 if (tcg_enabled()) {
1432 tlb_reset_dirty_range_all(start, length);
1433 }
1434
077874e0
PX
1435 memory_region_clear_dirty_bitmap(mr, offset, length);
1436
8deaf12c
GH
1437 return snap;
1438}
1439
1440bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1441 ram_addr_t start,
1442 ram_addr_t length)
1443{
1444 unsigned long page, end;
1445
1446 assert(start >= snap->start);
1447 assert(start + length <= snap->end);
1448
1449 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1450 page = (start - snap->start) >> TARGET_PAGE_BITS;
1451
1452 while (page < end) {
1453 if (test_bit(page, snap->dirty)) {
1454 return true;
1455 }
1456 page++;
1457 }
1458 return false;
1459}
1460
79e2b9ae 1461/* Called from RCU critical section */
bb0e627a 1462hwaddr memory_region_section_get_iotlb(CPUState *cpu,
8f5db641 1463 MemoryRegionSection *section)
e5548617 1464{
8f5db641
RH
1465 AddressSpaceDispatch *d = flatview_to_dispatch(section->fv);
1466 return section - d->map.sections;
e5548617 1467}
9fa3e853
FB
1468#endif /* defined(CONFIG_USER_ONLY) */
1469
e2eef170 1470#if !defined(CONFIG_USER_ONLY)
8da3ff18 1471
b797ab1a
WY
1472static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
1473 uint16_t section);
16620684 1474static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1475
06329cce 1476static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1477 qemu_anon_ram_alloc;
91138037
MA
1478
1479/*
1480 * Set a custom physical guest memory alloator.
1481 * Accelerators with unusual needs may need this. Hopefully, we can
1482 * get rid of it eventually.
1483 */
06329cce 1484void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1485{
1486 phys_mem_alloc = alloc;
1487}
1488
53cb28cb
MA
1489static uint16_t phys_section_add(PhysPageMap *map,
1490 MemoryRegionSection *section)
5312bd8b 1491{
68f3f65b
PB
1492 /* The physical section number is ORed with a page-aligned
1493 * pointer to produce the iotlb entries. Thus it should
1494 * never overflow into the page-aligned value.
1495 */
53cb28cb 1496 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1497
53cb28cb
MA
1498 if (map->sections_nb == map->sections_nb_alloc) {
1499 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1500 map->sections = g_renew(MemoryRegionSection, map->sections,
1501 map->sections_nb_alloc);
5312bd8b 1502 }
53cb28cb 1503 map->sections[map->sections_nb] = *section;
dfde4e6e 1504 memory_region_ref(section->mr);
53cb28cb 1505 return map->sections_nb++;
5312bd8b
AK
1506}
1507
058bc4b5
PB
1508static void phys_section_destroy(MemoryRegion *mr)
1509{
55b4e80b
DS
1510 bool have_sub_page = mr->subpage;
1511
dfde4e6e
PB
1512 memory_region_unref(mr);
1513
55b4e80b 1514 if (have_sub_page) {
058bc4b5 1515 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1516 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1517 g_free(subpage);
1518 }
1519}
1520
6092666e 1521static void phys_sections_free(PhysPageMap *map)
5312bd8b 1522{
9affd6fc
PB
1523 while (map->sections_nb > 0) {
1524 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1525 phys_section_destroy(section->mr);
1526 }
9affd6fc
PB
1527 g_free(map->sections);
1528 g_free(map->nodes);
5312bd8b
AK
1529}
1530
9950322a 1531static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1532{
9950322a 1533 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1534 subpage_t *subpage;
a8170e5e 1535 hwaddr base = section->offset_within_address_space
0f0cb164 1536 & TARGET_PAGE_MASK;
003a0cf2 1537 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1538 MemoryRegionSection subsection = {
1539 .offset_within_address_space = base,
052e87b0 1540 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1541 };
a8170e5e 1542 hwaddr start, end;
0f0cb164 1543
f3705d53 1544 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1545
f3705d53 1546 if (!(existing->mr->subpage)) {
16620684
AK
1547 subpage = subpage_init(fv, base);
1548 subsection.fv = fv;
0f0cb164 1549 subsection.mr = &subpage->iomem;
ac1970fb 1550 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1551 phys_section_add(&d->map, &subsection));
0f0cb164 1552 } else {
f3705d53 1553 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1554 }
1555 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1556 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1557 subpage_register(subpage, start, end,
1558 phys_section_add(&d->map, section));
0f0cb164
AK
1559}
1560
1561
9950322a 1562static void register_multipage(FlatView *fv,
052e87b0 1563 MemoryRegionSection *section)
33417e70 1564{
9950322a 1565 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1566 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1567 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1568 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1569 TARGET_PAGE_BITS));
dd81124b 1570
733d5ef5
PB
1571 assert(num_pages);
1572 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1573}
1574
494d1997
WY
1575/*
1576 * The range in *section* may look like this:
1577 *
1578 * |s|PPPPPPP|s|
1579 *
1580 * where s stands for subpage and P for page.
1581 */
8629d3fc 1582void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1583{
494d1997 1584 MemoryRegionSection remain = *section;
052e87b0 1585 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1586
494d1997
WY
1587 /* register first subpage */
1588 if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
1589 uint64_t left = TARGET_PAGE_ALIGN(remain.offset_within_address_space)
1590 - remain.offset_within_address_space;
733d5ef5 1591
494d1997 1592 MemoryRegionSection now = remain;
052e87b0 1593 now.size = int128_min(int128_make64(left), now.size);
9950322a 1594 register_subpage(fv, &now);
494d1997
WY
1595 if (int128_eq(remain.size, now.size)) {
1596 return;
1597 }
052e87b0
PB
1598 remain.size = int128_sub(remain.size, now.size);
1599 remain.offset_within_address_space += int128_get64(now.size);
1600 remain.offset_within_region += int128_get64(now.size);
494d1997
WY
1601 }
1602
1603 /* register whole pages */
1604 if (int128_ge(remain.size, page_size)) {
1605 MemoryRegionSection now = remain;
1606 now.size = int128_and(now.size, int128_neg(page_size));
1607 register_multipage(fv, &now);
1608 if (int128_eq(remain.size, now.size)) {
1609 return;
69b67646 1610 }
494d1997
WY
1611 remain.size = int128_sub(remain.size, now.size);
1612 remain.offset_within_address_space += int128_get64(now.size);
1613 remain.offset_within_region += int128_get64(now.size);
0f0cb164 1614 }
494d1997
WY
1615
1616 /* register last subpage */
1617 register_subpage(fv, &remain);
0f0cb164
AK
1618}
1619
62a2744c
SY
1620void qemu_flush_coalesced_mmio_buffer(void)
1621{
1622 if (kvm_enabled())
1623 kvm_flush_coalesced_mmio_buffer();
1624}
1625
b2a8658e
UD
1626void qemu_mutex_lock_ramlist(void)
1627{
1628 qemu_mutex_lock(&ram_list.mutex);
1629}
1630
1631void qemu_mutex_unlock_ramlist(void)
1632{
1633 qemu_mutex_unlock(&ram_list.mutex);
1634}
1635
be9b23c4
PX
1636void ram_block_dump(Monitor *mon)
1637{
1638 RAMBlock *block;
1639 char *psize;
1640
694ea274 1641 RCU_READ_LOCK_GUARD();
be9b23c4
PX
1642 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1643 "Block Name", "PSize", "Offset", "Used", "Total");
1644 RAMBLOCK_FOREACH(block) {
1645 psize = size_to_str(block->page_size);
1646 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1647 " 0x%016" PRIx64 "\n", block->idstr, psize,
1648 (uint64_t)block->offset,
1649 (uint64_t)block->used_length,
1650 (uint64_t)block->max_length);
1651 g_free(psize);
1652 }
be9b23c4
PX
1653}
1654
9c607668
AK
1655#ifdef __linux__
1656/*
1657 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1658 * may or may not name the same files / on the same filesystem now as
1659 * when we actually open and map them. Iterate over the file
1660 * descriptors instead, and use qemu_fd_getpagesize().
1661 */
905b7ee4 1662static int find_min_backend_pagesize(Object *obj, void *opaque)
9c607668 1663{
9c607668
AK
1664 long *hpsize_min = opaque;
1665
1666 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
7d5489e6
DG
1667 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1668 long hpsize = host_memory_backend_pagesize(backend);
2b108085 1669
7d5489e6 1670 if (host_memory_backend_is_mapped(backend) && (hpsize < *hpsize_min)) {
0de6e2a3 1671 *hpsize_min = hpsize;
9c607668
AK
1672 }
1673 }
1674
1675 return 0;
1676}
1677
905b7ee4
DH
1678static int find_max_backend_pagesize(Object *obj, void *opaque)
1679{
1680 long *hpsize_max = opaque;
1681
1682 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1683 HostMemoryBackend *backend = MEMORY_BACKEND(obj);
1684 long hpsize = host_memory_backend_pagesize(backend);
1685
1686 if (host_memory_backend_is_mapped(backend) && (hpsize > *hpsize_max)) {
1687 *hpsize_max = hpsize;
1688 }
1689 }
1690
1691 return 0;
1692}
1693
1694/*
1695 * TODO: We assume right now that all mapped host memory backends are
1696 * used as RAM, however some might be used for different purposes.
1697 */
1698long qemu_minrampagesize(void)
9c607668
AK
1699{
1700 long hpsize = LONG_MAX;
1701 long mainrampagesize;
1702 Object *memdev_root;
aa570207 1703 MachineState *ms = MACHINE(qdev_get_machine());
9c607668 1704
0de6e2a3 1705 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1706
1707 /* it's possible we have memory-backend objects with
1708 * hugepage-backed RAM. these may get mapped into system
1709 * address space via -numa parameters or memory hotplug
1710 * hooks. we want to take these into account, but we
1711 * also want to make sure these supported hugepage
1712 * sizes are applicable across the entire range of memory
1713 * we may boot from, so we take the min across all
1714 * backends, and assume normal pages in cases where a
1715 * backend isn't backed by hugepages.
1716 */
1717 memdev_root = object_resolve_path("/objects", NULL);
1718 if (memdev_root) {
905b7ee4 1719 object_child_foreach(memdev_root, find_min_backend_pagesize, &hpsize);
9c607668
AK
1720 }
1721 if (hpsize == LONG_MAX) {
1722 /* No additional memory regions found ==> Report main RAM page size */
1723 return mainrampagesize;
1724 }
1725
1726 /* If NUMA is disabled or the NUMA nodes are not backed with a
1727 * memory-backend, then there is at least one node using "normal" RAM,
1728 * so if its page size is smaller we have got to report that size instead.
1729 */
1730 if (hpsize > mainrampagesize &&
aa570207
TX
1731 (ms->numa_state == NULL ||
1732 ms->numa_state->num_nodes == 0 ||
7e721e7b 1733 ms->numa_state->nodes[0].node_memdev == NULL)) {
9c607668
AK
1734 static bool warned;
1735 if (!warned) {
1736 error_report("Huge page support disabled (n/a for main memory).");
1737 warned = true;
1738 }
1739 return mainrampagesize;
1740 }
1741
1742 return hpsize;
1743}
905b7ee4
DH
1744
1745long qemu_maxrampagesize(void)
1746{
1747 long pagesize = qemu_mempath_getpagesize(mem_path);
1748 Object *memdev_root = object_resolve_path("/objects", NULL);
1749
1750 if (memdev_root) {
1751 object_child_foreach(memdev_root, find_max_backend_pagesize,
1752 &pagesize);
1753 }
1754 return pagesize;
1755}
9c607668 1756#else
905b7ee4
DH
1757long qemu_minrampagesize(void)
1758{
1759 return getpagesize();
1760}
1761long qemu_maxrampagesize(void)
9c607668
AK
1762{
1763 return getpagesize();
1764}
1765#endif
1766
d5dbde46 1767#ifdef CONFIG_POSIX
d6af99c9
HZ
1768static int64_t get_file_size(int fd)
1769{
72d41eb4
SH
1770 int64_t size;
1771#if defined(__linux__)
1772 struct stat st;
1773
1774 if (fstat(fd, &st) < 0) {
1775 return -errno;
1776 }
1777
1778 /* Special handling for devdax character devices */
1779 if (S_ISCHR(st.st_mode)) {
1780 g_autofree char *subsystem_path = NULL;
1781 g_autofree char *subsystem = NULL;
1782
1783 subsystem_path = g_strdup_printf("/sys/dev/char/%d:%d/subsystem",
1784 major(st.st_rdev), minor(st.st_rdev));
1785 subsystem = g_file_read_link(subsystem_path, NULL);
1786
1787 if (subsystem && g_str_has_suffix(subsystem, "/dax")) {
1788 g_autofree char *size_path = NULL;
1789 g_autofree char *size_str = NULL;
1790
1791 size_path = g_strdup_printf("/sys/dev/char/%d:%d/size",
1792 major(st.st_rdev), minor(st.st_rdev));
1793
1794 if (g_file_get_contents(size_path, &size_str, NULL, NULL)) {
1795 return g_ascii_strtoll(size_str, NULL, 0);
1796 }
1797 }
1798 }
1799#endif /* defined(__linux__) */
1800
1801 /* st.st_size may be zero for special files yet lseek(2) works */
1802 size = lseek(fd, 0, SEEK_END);
d6af99c9
HZ
1803 if (size < 0) {
1804 return -errno;
1805 }
1806 return size;
1807}
1808
8d37b030
MAL
1809static int file_ram_open(const char *path,
1810 const char *region_name,
1811 bool *created,
1812 Error **errp)
c902760f
MT
1813{
1814 char *filename;
8ca761f6
PF
1815 char *sanitized_name;
1816 char *c;
5c3ece79 1817 int fd = -1;
c902760f 1818
8d37b030 1819 *created = false;
fd97fd44
MA
1820 for (;;) {
1821 fd = open(path, O_RDWR);
1822 if (fd >= 0) {
1823 /* @path names an existing file, use it */
1824 break;
8d31d6b6 1825 }
fd97fd44
MA
1826 if (errno == ENOENT) {
1827 /* @path names a file that doesn't exist, create it */
1828 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1829 if (fd >= 0) {
8d37b030 1830 *created = true;
fd97fd44
MA
1831 break;
1832 }
1833 } else if (errno == EISDIR) {
1834 /* @path names a directory, create a file there */
1835 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1836 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1837 for (c = sanitized_name; *c != '\0'; c++) {
1838 if (*c == '/') {
1839 *c = '_';
1840 }
1841 }
8ca761f6 1842
fd97fd44
MA
1843 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1844 sanitized_name);
1845 g_free(sanitized_name);
8d31d6b6 1846
fd97fd44
MA
1847 fd = mkstemp(filename);
1848 if (fd >= 0) {
1849 unlink(filename);
1850 g_free(filename);
1851 break;
1852 }
1853 g_free(filename);
8d31d6b6 1854 }
fd97fd44
MA
1855 if (errno != EEXIST && errno != EINTR) {
1856 error_setg_errno(errp, errno,
1857 "can't open backing store %s for guest RAM",
1858 path);
8d37b030 1859 return -1;
fd97fd44
MA
1860 }
1861 /*
1862 * Try again on EINTR and EEXIST. The latter happens when
1863 * something else creates the file between our two open().
1864 */
8d31d6b6 1865 }
c902760f 1866
8d37b030
MAL
1867 return fd;
1868}
1869
1870static void *file_ram_alloc(RAMBlock *block,
1871 ram_addr_t memory,
1872 int fd,
1873 bool truncate,
1874 Error **errp)
1875{
5cc8767d 1876 MachineState *ms = MACHINE(qdev_get_machine());
8d37b030
MAL
1877 void *area;
1878
863e9621 1879 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1880 if (block->mr->align % block->page_size) {
1881 error_setg(errp, "alignment 0x%" PRIx64
1882 " must be multiples of page size 0x%zx",
1883 block->mr->align, block->page_size);
1884 return NULL;
61362b71
DH
1885 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1886 error_setg(errp, "alignment 0x%" PRIx64
1887 " must be a power of two", block->mr->align);
1888 return NULL;
98376843
HZ
1889 }
1890 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1891#if defined(__s390x__)
1892 if (kvm_enabled()) {
1893 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1894 }
1895#endif
fd97fd44 1896
863e9621 1897 if (memory < block->page_size) {
fd97fd44 1898 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1899 "or larger than page size 0x%zx",
1900 memory, block->page_size);
8d37b030 1901 return NULL;
1775f111
HZ
1902 }
1903
863e9621 1904 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1905
1906 /*
1907 * ftruncate is not supported by hugetlbfs in older
1908 * hosts, so don't bother bailing out on errors.
1909 * If anything goes wrong with it under other filesystems,
1910 * mmap will fail.
d6af99c9
HZ
1911 *
1912 * Do not truncate the non-empty backend file to avoid corrupting
1913 * the existing data in the file. Disabling shrinking is not
1914 * enough. For example, the current vNVDIMM implementation stores
1915 * the guest NVDIMM labels at the end of the backend file. If the
1916 * backend file is later extended, QEMU will not be able to find
1917 * those labels. Therefore, extending the non-empty backend file
1918 * is disabled as well.
c902760f 1919 */
8d37b030 1920 if (truncate && ftruncate(fd, memory)) {
9742bf26 1921 perror("ftruncate");
7f56e740 1922 }
c902760f 1923
d2f39add 1924 area = qemu_ram_mmap(fd, memory, block->mr->align,
2ac0f162 1925 block->flags & RAM_SHARED, block->flags & RAM_PMEM);
c902760f 1926 if (area == MAP_FAILED) {
7f56e740 1927 error_setg_errno(errp, errno,
fd97fd44 1928 "unable to map backing store for guest RAM");
8d37b030 1929 return NULL;
c902760f 1930 }
ef36fa14
MT
1931
1932 if (mem_prealloc) {
5cc8767d 1933 os_mem_prealloc(fd, area, memory, ms->smp.cpus, errp);
056b68af 1934 if (errp && *errp) {
53adb9d4 1935 qemu_ram_munmap(fd, area, memory);
8d37b030 1936 return NULL;
056b68af 1937 }
ef36fa14
MT
1938 }
1939
04b16653 1940 block->fd = fd;
c902760f
MT
1941 return area;
1942}
1943#endif
1944
154cc9ea
DDAG
1945/* Allocate space within the ram_addr_t space that governs the
1946 * dirty bitmaps.
1947 * Called with the ramlist lock held.
1948 */
d17b5288 1949static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1950{
1951 RAMBlock *block, *next_block;
3e837b2c 1952 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1953
49cd9ac6
SH
1954 assert(size != 0); /* it would hand out same offset multiple times */
1955
0dc3f44a 1956 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1957 return 0;
0d53d9fe 1958 }
04b16653 1959
99e15582 1960 RAMBLOCK_FOREACH(block) {
154cc9ea 1961 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1962
801110ab
DDAG
1963 /* Align blocks to start on a 'long' in the bitmap
1964 * which makes the bitmap sync'ing take the fast path.
1965 */
154cc9ea 1966 candidate = block->offset + block->max_length;
801110ab 1967 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1968
154cc9ea
DDAG
1969 /* Search for the closest following block
1970 * and find the gap.
1971 */
99e15582 1972 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1973 if (next_block->offset >= candidate) {
04b16653
AW
1974 next = MIN(next, next_block->offset);
1975 }
1976 }
154cc9ea
DDAG
1977
1978 /* If it fits remember our place and remember the size
1979 * of gap, but keep going so that we might find a smaller
1980 * gap to fill so avoiding fragmentation.
1981 */
1982 if (next - candidate >= size && next - candidate < mingap) {
1983 offset = candidate;
1984 mingap = next - candidate;
04b16653 1985 }
154cc9ea
DDAG
1986
1987 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1988 }
3e837b2c
AW
1989
1990 if (offset == RAM_ADDR_MAX) {
1991 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1992 (uint64_t)size);
1993 abort();
1994 }
1995
154cc9ea
DDAG
1996 trace_find_ram_offset(size, offset);
1997
04b16653
AW
1998 return offset;
1999}
2000
c136180c 2001static unsigned long last_ram_page(void)
d17b5288
AW
2002{
2003 RAMBlock *block;
2004 ram_addr_t last = 0;
2005
694ea274 2006 RCU_READ_LOCK_GUARD();
99e15582 2007 RAMBLOCK_FOREACH(block) {
62be4e3a 2008 last = MAX(last, block->offset + block->max_length);
0d53d9fe 2009 }
b8c48993 2010 return last >> TARGET_PAGE_BITS;
d17b5288
AW
2011}
2012
ddb97f1d
JB
2013static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2014{
2015 int ret;
ddb97f1d
JB
2016
2017 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 2018 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
2019 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2020 if (ret) {
2021 perror("qemu_madvise");
2022 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2023 "but dump_guest_core=off specified\n");
2024 }
2025 }
2026}
2027
422148d3
DDAG
2028const char *qemu_ram_get_idstr(RAMBlock *rb)
2029{
2030 return rb->idstr;
2031}
2032
754cb9c0
YK
2033void *qemu_ram_get_host_addr(RAMBlock *rb)
2034{
2035 return rb->host;
2036}
2037
2038ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
2039{
2040 return rb->offset;
2041}
2042
2043ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
2044{
2045 return rb->used_length;
2046}
2047
463a4ac2
DDAG
2048bool qemu_ram_is_shared(RAMBlock *rb)
2049{
2050 return rb->flags & RAM_SHARED;
2051}
2052
2ce16640
DDAG
2053/* Note: Only set at the start of postcopy */
2054bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
2055{
2056 return rb->flags & RAM_UF_ZEROPAGE;
2057}
2058
2059void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2060{
2061 rb->flags |= RAM_UF_ZEROPAGE;
2062}
2063
b895de50
CLG
2064bool qemu_ram_is_migratable(RAMBlock *rb)
2065{
2066 return rb->flags & RAM_MIGRATABLE;
2067}
2068
2069void qemu_ram_set_migratable(RAMBlock *rb)
2070{
2071 rb->flags |= RAM_MIGRATABLE;
2072}
2073
2074void qemu_ram_unset_migratable(RAMBlock *rb)
2075{
2076 rb->flags &= ~RAM_MIGRATABLE;
2077}
2078
ae3a7047 2079/* Called with iothread lock held. */
fa53a0e5 2080void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2081{
fa53a0e5 2082 RAMBlock *block;
20cfe881 2083
c5705a77
AK
2084 assert(new_block);
2085 assert(!new_block->idstr[0]);
84b89d78 2086
09e5ab63
AL
2087 if (dev) {
2088 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2089 if (id) {
2090 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2091 g_free(id);
84b89d78
CM
2092 }
2093 }
2094 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2095
694ea274 2096 RCU_READ_LOCK_GUARD();
99e15582 2097 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2098 if (block != new_block &&
2099 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2100 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2101 new_block->idstr);
2102 abort();
2103 }
2104 }
c5705a77
AK
2105}
2106
ae3a7047 2107/* Called with iothread lock held. */
fa53a0e5 2108void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2109{
ae3a7047
MD
2110 /* FIXME: arch_init.c assumes that this is not called throughout
2111 * migration. Ignore the problem since hot-unplug during migration
2112 * does not work anyway.
2113 */
20cfe881
HT
2114 if (block) {
2115 memset(block->idstr, 0, sizeof(block->idstr));
2116 }
2117}
2118
863e9621
DDAG
2119size_t qemu_ram_pagesize(RAMBlock *rb)
2120{
2121 return rb->page_size;
2122}
2123
67f11b5c
DDAG
2124/* Returns the largest size of page in use */
2125size_t qemu_ram_pagesize_largest(void)
2126{
2127 RAMBlock *block;
2128 size_t largest = 0;
2129
99e15582 2130 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2131 largest = MAX(largest, qemu_ram_pagesize(block));
2132 }
2133
2134 return largest;
2135}
2136
8490fc78
LC
2137static int memory_try_enable_merging(void *addr, size_t len)
2138{
75cc7f01 2139 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2140 /* disabled by the user */
2141 return 0;
2142 }
2143
2144 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2145}
2146
62be4e3a
MT
2147/* Only legal before guest might have detected the memory size: e.g. on
2148 * incoming migration, or right after reset.
2149 *
2150 * As memory core doesn't know how is memory accessed, it is up to
2151 * resize callback to update device state and/or add assertions to detect
2152 * misuse, if necessary.
2153 */
fa53a0e5 2154int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2155{
62be4e3a
MT
2156 assert(block);
2157
4ed023ce 2158 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2159
62be4e3a
MT
2160 if (block->used_length == newsize) {
2161 return 0;
2162 }
2163
2164 if (!(block->flags & RAM_RESIZEABLE)) {
2165 error_setg_errno(errp, EINVAL,
2166 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2167 " in != 0x" RAM_ADDR_FMT, block->idstr,
2168 newsize, block->used_length);
2169 return -EINVAL;
2170 }
2171
2172 if (block->max_length < newsize) {
2173 error_setg_errno(errp, EINVAL,
2174 "Length too large: %s: 0x" RAM_ADDR_FMT
2175 " > 0x" RAM_ADDR_FMT, block->idstr,
2176 newsize, block->max_length);
2177 return -EINVAL;
2178 }
2179
2180 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2181 block->used_length = newsize;
58d2707e
PB
2182 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2183 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2184 memory_region_set_size(block->mr, newsize);
2185 if (block->resized) {
2186 block->resized(block->idstr, newsize, block->host);
2187 }
2188 return 0;
2189}
2190
5b82b703
SH
2191/* Called with ram_list.mutex held */
2192static void dirty_memory_extend(ram_addr_t old_ram_size,
2193 ram_addr_t new_ram_size)
2194{
2195 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2196 DIRTY_MEMORY_BLOCK_SIZE);
2197 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2198 DIRTY_MEMORY_BLOCK_SIZE);
2199 int i;
2200
2201 /* Only need to extend if block count increased */
2202 if (new_num_blocks <= old_num_blocks) {
2203 return;
2204 }
2205
2206 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2207 DirtyMemoryBlocks *old_blocks;
2208 DirtyMemoryBlocks *new_blocks;
2209 int j;
2210
2211 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2212 new_blocks = g_malloc(sizeof(*new_blocks) +
2213 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2214
2215 if (old_num_blocks) {
2216 memcpy(new_blocks->blocks, old_blocks->blocks,
2217 old_num_blocks * sizeof(old_blocks->blocks[0]));
2218 }
2219
2220 for (j = old_num_blocks; j < new_num_blocks; j++) {
2221 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2222 }
2223
2224 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2225
2226 if (old_blocks) {
2227 g_free_rcu(old_blocks, rcu);
2228 }
2229 }
2230}
2231
06329cce 2232static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2233{
e1c57ab8 2234 RAMBlock *block;
0d53d9fe 2235 RAMBlock *last_block = NULL;
2152f5ca 2236 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2237 Error *err = NULL;
2152f5ca 2238
b8c48993 2239 old_ram_size = last_ram_page();
c5705a77 2240
b2a8658e 2241 qemu_mutex_lock_ramlist();
9b8424d5 2242 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2243
2244 if (!new_block->host) {
2245 if (xen_enabled()) {
9b8424d5 2246 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2247 new_block->mr, &err);
2248 if (err) {
2249 error_propagate(errp, err);
2250 qemu_mutex_unlock_ramlist();
39c350ee 2251 return;
37aa7a0e 2252 }
e1c57ab8 2253 } else {
9b8424d5 2254 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2255 &new_block->mr->align, shared);
39228250 2256 if (!new_block->host) {
ef701d7b
HT
2257 error_setg_errno(errp, errno,
2258 "cannot set up guest memory '%s'",
2259 memory_region_name(new_block->mr));
2260 qemu_mutex_unlock_ramlist();
39c350ee 2261 return;
39228250 2262 }
9b8424d5 2263 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2264 }
c902760f 2265 }
94a6b54f 2266
dd631697
LZ
2267 new_ram_size = MAX(old_ram_size,
2268 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2269 if (new_ram_size > old_ram_size) {
5b82b703 2270 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2271 }
0d53d9fe
MD
2272 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2273 * QLIST (which has an RCU-friendly variant) does not have insertion at
2274 * tail, so save the last element in last_block.
2275 */
99e15582 2276 RAMBLOCK_FOREACH(block) {
0d53d9fe 2277 last_block = block;
9b8424d5 2278 if (block->max_length < new_block->max_length) {
abb26d63
PB
2279 break;
2280 }
2281 }
2282 if (block) {
0dc3f44a 2283 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2284 } else if (last_block) {
0dc3f44a 2285 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2286 } else { /* list is empty */
0dc3f44a 2287 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2288 }
0d6d3c87 2289 ram_list.mru_block = NULL;
94a6b54f 2290
0dc3f44a
MD
2291 /* Write list before version */
2292 smp_wmb();
f798b07f 2293 ram_list.version++;
b2a8658e 2294 qemu_mutex_unlock_ramlist();
f798b07f 2295
9b8424d5 2296 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2297 new_block->used_length,
2298 DIRTY_CLIENTS_ALL);
94a6b54f 2299
a904c911
PB
2300 if (new_block->host) {
2301 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2302 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2303 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2304 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2305 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2306 }
94a6b54f 2307}
e9a1ab19 2308
d5dbde46 2309#ifdef CONFIG_POSIX
38b3362d 2310RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2311 uint32_t ram_flags, int fd,
38b3362d 2312 Error **errp)
e1c57ab8
PB
2313{
2314 RAMBlock *new_block;
ef701d7b 2315 Error *local_err = NULL;
8d37b030 2316 int64_t file_size;
e1c57ab8 2317
a4de8552
JH
2318 /* Just support these ram flags by now. */
2319 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2320
e1c57ab8 2321 if (xen_enabled()) {
7f56e740 2322 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2323 return NULL;
e1c57ab8
PB
2324 }
2325
e45e7ae2
MAL
2326 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2327 error_setg(errp,
2328 "host lacks kvm mmu notifiers, -mem-path unsupported");
2329 return NULL;
2330 }
2331
e1c57ab8
PB
2332 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2333 /*
2334 * file_ram_alloc() needs to allocate just like
2335 * phys_mem_alloc, but we haven't bothered to provide
2336 * a hook there.
2337 */
7f56e740
PB
2338 error_setg(errp,
2339 "-mem-path not supported with this accelerator");
528f46af 2340 return NULL;
e1c57ab8
PB
2341 }
2342
4ed023ce 2343 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2344 file_size = get_file_size(fd);
2345 if (file_size > 0 && file_size < size) {
2346 error_setg(errp, "backing store %s size 0x%" PRIx64
2347 " does not match 'size' option 0x" RAM_ADDR_FMT,
2348 mem_path, file_size, size);
8d37b030
MAL
2349 return NULL;
2350 }
2351
e1c57ab8
PB
2352 new_block = g_malloc0(sizeof(*new_block));
2353 new_block->mr = mr;
9b8424d5
MT
2354 new_block->used_length = size;
2355 new_block->max_length = size;
cbfc0171 2356 new_block->flags = ram_flags;
8d37b030 2357 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2358 if (!new_block->host) {
2359 g_free(new_block);
528f46af 2360 return NULL;
7f56e740
PB
2361 }
2362
cbfc0171 2363 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2364 if (local_err) {
2365 g_free(new_block);
2366 error_propagate(errp, local_err);
528f46af 2367 return NULL;
ef701d7b 2368 }
528f46af 2369 return new_block;
38b3362d
MAL
2370
2371}
2372
2373
2374RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2375 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2376 Error **errp)
2377{
2378 int fd;
2379 bool created;
2380 RAMBlock *block;
2381
2382 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2383 if (fd < 0) {
2384 return NULL;
2385 }
2386
cbfc0171 2387 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2388 if (!block) {
2389 if (created) {
2390 unlink(mem_path);
2391 }
2392 close(fd);
2393 return NULL;
2394 }
2395
2396 return block;
e1c57ab8 2397}
0b183fc8 2398#endif
e1c57ab8 2399
62be4e3a 2400static
528f46af
FZ
2401RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2402 void (*resized)(const char*,
2403 uint64_t length,
2404 void *host),
06329cce 2405 void *host, bool resizeable, bool share,
528f46af 2406 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2407{
2408 RAMBlock *new_block;
ef701d7b 2409 Error *local_err = NULL;
e1c57ab8 2410
4ed023ce
DDAG
2411 size = HOST_PAGE_ALIGN(size);
2412 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2413 new_block = g_malloc0(sizeof(*new_block));
2414 new_block->mr = mr;
62be4e3a 2415 new_block->resized = resized;
9b8424d5
MT
2416 new_block->used_length = size;
2417 new_block->max_length = max_size;
62be4e3a 2418 assert(max_size >= size);
e1c57ab8 2419 new_block->fd = -1;
863e9621 2420 new_block->page_size = getpagesize();
e1c57ab8
PB
2421 new_block->host = host;
2422 if (host) {
7bd4f430 2423 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2424 }
62be4e3a
MT
2425 if (resizeable) {
2426 new_block->flags |= RAM_RESIZEABLE;
2427 }
06329cce 2428 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2429 if (local_err) {
2430 g_free(new_block);
2431 error_propagate(errp, local_err);
528f46af 2432 return NULL;
ef701d7b 2433 }
528f46af 2434 return new_block;
e1c57ab8
PB
2435}
2436
528f46af 2437RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2438 MemoryRegion *mr, Error **errp)
2439{
06329cce
MA
2440 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2441 false, mr, errp);
62be4e3a
MT
2442}
2443
06329cce
MA
2444RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2445 MemoryRegion *mr, Error **errp)
6977dfe6 2446{
06329cce
MA
2447 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2448 share, mr, errp);
62be4e3a
MT
2449}
2450
528f46af 2451RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2452 void (*resized)(const char*,
2453 uint64_t length,
2454 void *host),
2455 MemoryRegion *mr, Error **errp)
2456{
06329cce
MA
2457 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2458 false, mr, errp);
6977dfe6
YT
2459}
2460
43771539
PB
2461static void reclaim_ramblock(RAMBlock *block)
2462{
2463 if (block->flags & RAM_PREALLOC) {
2464 ;
2465 } else if (xen_enabled()) {
2466 xen_invalidate_map_cache_entry(block->host);
2467#ifndef _WIN32
2468 } else if (block->fd >= 0) {
53adb9d4 2469 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2470 close(block->fd);
2471#endif
2472 } else {
2473 qemu_anon_ram_free(block->host, block->max_length);
2474 }
2475 g_free(block);
2476}
2477
f1060c55 2478void qemu_ram_free(RAMBlock *block)
e9a1ab19 2479{
85bc2a15
MAL
2480 if (!block) {
2481 return;
2482 }
2483
0987d735
PB
2484 if (block->host) {
2485 ram_block_notify_remove(block->host, block->max_length);
2486 }
2487
b2a8658e 2488 qemu_mutex_lock_ramlist();
f1060c55
FZ
2489 QLIST_REMOVE_RCU(block, next);
2490 ram_list.mru_block = NULL;
2491 /* Write list before version */
2492 smp_wmb();
2493 ram_list.version++;
2494 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2495 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2496}
2497
cd19cfa2
HY
2498#ifndef _WIN32
2499void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2500{
2501 RAMBlock *block;
2502 ram_addr_t offset;
2503 int flags;
2504 void *area, *vaddr;
2505
99e15582 2506 RAMBLOCK_FOREACH(block) {
cd19cfa2 2507 offset = addr - block->offset;
9b8424d5 2508 if (offset < block->max_length) {
1240be24 2509 vaddr = ramblock_ptr(block, offset);
7bd4f430 2510 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2511 ;
dfeaf2ab
MA
2512 } else if (xen_enabled()) {
2513 abort();
cd19cfa2
HY
2514 } else {
2515 flags = MAP_FIXED;
3435f395 2516 if (block->fd >= 0) {
dbcb8981
PB
2517 flags |= (block->flags & RAM_SHARED ?
2518 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2519 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2520 flags, block->fd, offset);
cd19cfa2 2521 } else {
2eb9fbaa
MA
2522 /*
2523 * Remap needs to match alloc. Accelerators that
2524 * set phys_mem_alloc never remap. If they did,
2525 * we'd need a remap hook here.
2526 */
2527 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2528
cd19cfa2
HY
2529 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2530 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2531 flags, -1, 0);
cd19cfa2
HY
2532 }
2533 if (area != vaddr) {
493d89bf
AF
2534 error_report("Could not remap addr: "
2535 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2536 length, addr);
cd19cfa2
HY
2537 exit(1);
2538 }
8490fc78 2539 memory_try_enable_merging(vaddr, length);
ddb97f1d 2540 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2541 }
cd19cfa2
HY
2542 }
2543 }
2544}
2545#endif /* !_WIN32 */
2546
1b5ec234 2547/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2548 * This should not be used for general purpose DMA. Use address_space_map
2549 * or address_space_rw instead. For local memory (e.g. video ram) that the
2550 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2551 *
49b24afc 2552 * Called within RCU critical section.
1b5ec234 2553 */
0878d0e1 2554void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2555{
3655cb9c
GA
2556 RAMBlock *block = ram_block;
2557
2558 if (block == NULL) {
2559 block = qemu_get_ram_block(addr);
0878d0e1 2560 addr -= block->offset;
3655cb9c 2561 }
ae3a7047
MD
2562
2563 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2564 /* We need to check if the requested address is in the RAM
2565 * because we don't want to map the entire memory in QEMU.
2566 * In that case just map until the end of the page.
2567 */
2568 if (block->offset == 0) {
1ff7c598 2569 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2570 }
ae3a7047 2571
1ff7c598 2572 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2573 }
0878d0e1 2574 return ramblock_ptr(block, addr);
dc828ca1
PB
2575}
2576
0878d0e1 2577/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2578 * but takes a size argument.
0dc3f44a 2579 *
e81bcda5 2580 * Called within RCU critical section.
ae3a7047 2581 */
3655cb9c 2582static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2583 hwaddr *size, bool lock)
38bee5dc 2584{
3655cb9c 2585 RAMBlock *block = ram_block;
8ab934f9
SS
2586 if (*size == 0) {
2587 return NULL;
2588 }
e81bcda5 2589
3655cb9c
GA
2590 if (block == NULL) {
2591 block = qemu_get_ram_block(addr);
0878d0e1 2592 addr -= block->offset;
3655cb9c 2593 }
0878d0e1 2594 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2595
2596 if (xen_enabled() && block->host == NULL) {
2597 /* We need to check if the requested address is in the RAM
2598 * because we don't want to map the entire memory in QEMU.
2599 * In that case just map the requested area.
2600 */
2601 if (block->offset == 0) {
f5aa69bd 2602 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2603 }
2604
f5aa69bd 2605 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2606 }
e81bcda5 2607
0878d0e1 2608 return ramblock_ptr(block, addr);
38bee5dc
SS
2609}
2610
f90bb71b
DDAG
2611/* Return the offset of a hostpointer within a ramblock */
2612ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2613{
2614 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2615 assert((uintptr_t)host >= (uintptr_t)rb->host);
2616 assert(res < rb->max_length);
2617
2618 return res;
2619}
2620
422148d3
DDAG
2621/*
2622 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2623 * in that RAMBlock.
2624 *
2625 * ptr: Host pointer to look up
2626 * round_offset: If true round the result offset down to a page boundary
2627 * *ram_addr: set to result ram_addr
2628 * *offset: set to result offset within the RAMBlock
2629 *
2630 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2631 *
2632 * By the time this function returns, the returned pointer is not protected
2633 * by RCU anymore. If the caller is not within an RCU critical section and
2634 * does not hold the iothread lock, it must have other means of protecting the
2635 * pointer, such as a reference to the region that includes the incoming
2636 * ram_addr_t.
2637 */
422148d3 2638RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2639 ram_addr_t *offset)
5579c7f3 2640{
94a6b54f
PB
2641 RAMBlock *block;
2642 uint8_t *host = ptr;
2643
868bb33f 2644 if (xen_enabled()) {
f615f396 2645 ram_addr_t ram_addr;
694ea274 2646 RCU_READ_LOCK_GUARD();
f615f396
PB
2647 ram_addr = xen_ram_addr_from_mapcache(ptr);
2648 block = qemu_get_ram_block(ram_addr);
422148d3 2649 if (block) {
d6b6aec4 2650 *offset = ram_addr - block->offset;
422148d3 2651 }
422148d3 2652 return block;
712c2b41
SS
2653 }
2654
694ea274 2655 RCU_READ_LOCK_GUARD();
0dc3f44a 2656 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2657 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2658 goto found;
2659 }
2660
99e15582 2661 RAMBLOCK_FOREACH(block) {
432d268c
JN
2662 /* This case append when the block is not mapped. */
2663 if (block->host == NULL) {
2664 continue;
2665 }
9b8424d5 2666 if (host - block->host < block->max_length) {
23887b79 2667 goto found;
f471a17e 2668 }
94a6b54f 2669 }
432d268c 2670
1b5ec234 2671 return NULL;
23887b79
PB
2672
2673found:
422148d3
DDAG
2674 *offset = (host - block->host);
2675 if (round_offset) {
2676 *offset &= TARGET_PAGE_MASK;
2677 }
422148d3
DDAG
2678 return block;
2679}
2680
e3dd7493
DDAG
2681/*
2682 * Finds the named RAMBlock
2683 *
2684 * name: The name of RAMBlock to find
2685 *
2686 * Returns: RAMBlock (or NULL if not found)
2687 */
2688RAMBlock *qemu_ram_block_by_name(const char *name)
2689{
2690 RAMBlock *block;
2691
99e15582 2692 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2693 if (!strcmp(name, block->idstr)) {
2694 return block;
2695 }
2696 }
2697
2698 return NULL;
2699}
2700
422148d3
DDAG
2701/* Some of the softmmu routines need to translate from a host pointer
2702 (typically a TLB entry) back to a ram offset. */
07bdaa41 2703ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2704{
2705 RAMBlock *block;
f615f396 2706 ram_addr_t offset;
422148d3 2707
f615f396 2708 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2709 if (!block) {
07bdaa41 2710 return RAM_ADDR_INVALID;
422148d3
DDAG
2711 }
2712
07bdaa41 2713 return block->offset + offset;
e890261f 2714}
f471a17e 2715
0f459d16 2716/* Generate a debug exception if a watchpoint has been hit. */
0026348b
DH
2717void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
2718 MemTxAttrs attrs, int flags, uintptr_t ra)
0f459d16 2719{
568496c0 2720 CPUClass *cc = CPU_GET_CLASS(cpu);
a1d1bb31 2721 CPUWatchpoint *wp;
0f459d16 2722
5aa1ef71 2723 assert(tcg_enabled());
ff4700b0 2724 if (cpu->watchpoint_hit) {
50b107c5
RH
2725 /*
2726 * We re-entered the check after replacing the TB.
2727 * Now raise the debug interrupt so that it will
2728 * trigger after the current instruction.
2729 */
2730 qemu_mutex_lock_iothread();
93afeade 2731 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
50b107c5 2732 qemu_mutex_unlock_iothread();
06d55cc1
AL
2733 return;
2734 }
0026348b
DH
2735
2736 addr = cc->adjust_watchpoint_address(cpu, addr, len);
ff4700b0 2737 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
56ad8b00 2738 if (watchpoint_address_matches(wp, addr, len)
05068c0d 2739 && (wp->flags & flags)) {
08225676
PM
2740 if (flags == BP_MEM_READ) {
2741 wp->flags |= BP_WATCHPOINT_HIT_READ;
2742 } else {
2743 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2744 }
0026348b 2745 wp->hitaddr = MAX(addr, wp->vaddr);
66b9b43c 2746 wp->hitattrs = attrs;
ff4700b0 2747 if (!cpu->watchpoint_hit) {
568496c0
SF
2748 if (wp->flags & BP_CPU &&
2749 !cc->debug_check_watchpoint(cpu, wp)) {
2750 wp->flags &= ~BP_WATCHPOINT_HIT;
2751 continue;
2752 }
ff4700b0 2753 cpu->watchpoint_hit = wp;
a5e99826 2754
0ac20318 2755 mmap_lock();
ae57db63 2756 tb_check_watchpoint(cpu, ra);
6e140f28 2757 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2758 cpu->exception_index = EXCP_DEBUG;
0ac20318 2759 mmap_unlock();
0026348b 2760 cpu_loop_exit_restore(cpu, ra);
6e140f28 2761 } else {
9b990ee5
RH
2762 /* Force execution of one insn next time. */
2763 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2764 mmap_unlock();
0026348b
DH
2765 if (ra) {
2766 cpu_restore_state(cpu, ra, true);
2767 }
6886b980 2768 cpu_loop_exit_noexc(cpu);
6e140f28 2769 }
06d55cc1 2770 }
6e140f28
AL
2771 } else {
2772 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2773 }
2774 }
2775}
2776
b2a44fca 2777static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2778 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2779static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2780 const uint8_t *buf, hwaddr len);
2781static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2782 bool is_write, MemTxAttrs attrs);
16620684 2783
f25a49e0
PM
2784static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2785 unsigned len, MemTxAttrs attrs)
db7b5426 2786{
acc9d80b 2787 subpage_t *subpage = opaque;
ff6cff75 2788 uint8_t buf[8];
5c9eb028 2789 MemTxResult res;
791af8c8 2790
db7b5426 2791#if defined(DEBUG_SUBPAGE)
016e9d62 2792 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2793 subpage, len, addr);
db7b5426 2794#endif
16620684 2795 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2796 if (res) {
2797 return res;
f25a49e0 2798 }
6d3ede54
PM
2799 *data = ldn_p(buf, len);
2800 return MEMTX_OK;
db7b5426
BS
2801}
2802
f25a49e0
PM
2803static MemTxResult subpage_write(void *opaque, hwaddr addr,
2804 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2805{
acc9d80b 2806 subpage_t *subpage = opaque;
ff6cff75 2807 uint8_t buf[8];
acc9d80b 2808
db7b5426 2809#if defined(DEBUG_SUBPAGE)
016e9d62 2810 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2811 " value %"PRIx64"\n",
2812 __func__, subpage, len, addr, value);
db7b5426 2813#endif
6d3ede54 2814 stn_p(buf, len, value);
16620684 2815 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2816}
2817
c353e4cc 2818static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2819 unsigned len, bool is_write,
2820 MemTxAttrs attrs)
c353e4cc 2821{
acc9d80b 2822 subpage_t *subpage = opaque;
c353e4cc 2823#if defined(DEBUG_SUBPAGE)
016e9d62 2824 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2825 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2826#endif
2827
16620684 2828 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2829 len, is_write, attrs);
c353e4cc
PB
2830}
2831
70c68e44 2832static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2833 .read_with_attrs = subpage_read,
2834 .write_with_attrs = subpage_write,
ff6cff75
PB
2835 .impl.min_access_size = 1,
2836 .impl.max_access_size = 8,
2837 .valid.min_access_size = 1,
2838 .valid.max_access_size = 8,
c353e4cc 2839 .valid.accepts = subpage_accepts,
70c68e44 2840 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2841};
2842
b797ab1a
WY
2843static int subpage_register(subpage_t *mmio, uint32_t start, uint32_t end,
2844 uint16_t section)
db7b5426
BS
2845{
2846 int idx, eidx;
2847
2848 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2849 return -1;
2850 idx = SUBPAGE_IDX(start);
2851 eidx = SUBPAGE_IDX(end);
2852#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2853 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2854 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2855#endif
db7b5426 2856 for (; idx <= eidx; idx++) {
5312bd8b 2857 mmio->sub_section[idx] = section;
db7b5426
BS
2858 }
2859
2860 return 0;
2861}
2862
16620684 2863static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2864{
c227f099 2865 subpage_t *mmio;
db7b5426 2866
b797ab1a 2867 /* mmio->sub_section is set to PHYS_SECTION_UNASSIGNED with g_malloc0 */
2615fabd 2868 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2869 mmio->fv = fv;
1eec614b 2870 mmio->base = base;
2c9b15ca 2871 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2872 NULL, TARGET_PAGE_SIZE);
b3b00c78 2873 mmio->iomem.subpage = true;
db7b5426 2874#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2875 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2876 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2877#endif
db7b5426
BS
2878
2879 return mmio;
2880}
2881
16620684 2882static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2883{
16620684 2884 assert(fv);
5312bd8b 2885 MemoryRegionSection section = {
16620684 2886 .fv = fv,
5312bd8b
AK
2887 .mr = mr,
2888 .offset_within_address_space = 0,
2889 .offset_within_region = 0,
052e87b0 2890 .size = int128_2_64(),
5312bd8b
AK
2891 };
2892
53cb28cb 2893 return phys_section_add(map, &section);
5312bd8b
AK
2894}
2895
2d54f194
PM
2896MemoryRegionSection *iotlb_to_section(CPUState *cpu,
2897 hwaddr index, MemTxAttrs attrs)
aa102231 2898{
a54c87b6
PM
2899 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2900 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2901 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2902 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 2903
2d54f194 2904 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
2905}
2906
e9179ce1
AK
2907static void io_mem_init(void)
2908{
2c9b15ca 2909 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2910 NULL, UINT64_MAX);
e9179ce1
AK
2911}
2912
8629d3fc 2913AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2914{
53cb28cb
MA
2915 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2916 uint16_t n;
2917
16620684 2918 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2919 assert(n == PHYS_SECTION_UNASSIGNED);
00752703 2920
9736e55b 2921 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2922
2923 return d;
00752703
PB
2924}
2925
66a6df1d 2926void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2927{
2928 phys_sections_free(&d->map);
2929 g_free(d);
2930}
2931
9458a9a1
PB
2932static void do_nothing(CPUState *cpu, run_on_cpu_data d)
2933{
2934}
2935
2936static void tcg_log_global_after_sync(MemoryListener *listener)
2937{
2938 CPUAddressSpace *cpuas;
2939
2940 /* Wait for the CPU to end the current TB. This avoids the following
2941 * incorrect race:
2942 *
2943 * vCPU migration
2944 * ---------------------- -------------------------
2945 * TLB check -> slow path
2946 * notdirty_mem_write
2947 * write to RAM
2948 * mark dirty
2949 * clear dirty flag
2950 * TLB check -> fast path
2951 * read memory
2952 * write to RAM
2953 *
2954 * by pushing the migration thread's memory read after the vCPU thread has
2955 * written the memory.
2956 */
86cf9e15
PD
2957 if (replay_mode == REPLAY_MODE_NONE) {
2958 /*
2959 * VGA can make calls to this function while updating the screen.
2960 * In record/replay mode this causes a deadlock, because
2961 * run_on_cpu waits for rr mutex. Therefore no races are possible
2962 * in this case and no need for making run_on_cpu when
2963 * record/replay is not enabled.
2964 */
2965 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2966 run_on_cpu(cpuas->cpu, do_nothing, RUN_ON_CPU_NULL);
2967 }
9458a9a1
PB
2968}
2969
1d71148e 2970static void tcg_commit(MemoryListener *listener)
50c1e149 2971{
32857f4d
PM
2972 CPUAddressSpace *cpuas;
2973 AddressSpaceDispatch *d;
117712c3 2974
f28d0dfd 2975 assert(tcg_enabled());
117712c3
AK
2976 /* since each CPU stores ram addresses in its TLB cache, we must
2977 reset the modified entries */
32857f4d
PM
2978 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2979 cpu_reloading_memory_map();
2980 /* The CPU and TLB are protected by the iothread lock.
2981 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2982 * may have split the RCU critical section.
2983 */
66a6df1d 2984 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2985 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2986 tlb_flush(cpuas->cpu);
50c1e149
AK
2987}
2988
62152b8a
AK
2989static void memory_map_init(void)
2990{
7267c094 2991 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2992
57271d63 2993 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2994 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2995
7267c094 2996 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2997 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2998 65536);
7dca8043 2999 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3000}
3001
3002MemoryRegion *get_system_memory(void)
3003{
3004 return system_memory;
3005}
3006
309cb471
AK
3007MemoryRegion *get_system_io(void)
3008{
3009 return system_io;
3010}
3011
e2eef170
PB
3012#endif /* !defined(CONFIG_USER_ONLY) */
3013
13eb76e0
FB
3014/* physical memory access (slow version, mainly for debug) */
3015#if defined(CONFIG_USER_ONLY)
f17ec444 3016int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3017 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3018{
0c249ff7
LZ
3019 int flags;
3020 target_ulong l, page;
53a5960a 3021 void * p;
13eb76e0
FB
3022
3023 while (len > 0) {
3024 page = addr & TARGET_PAGE_MASK;
3025 l = (page + TARGET_PAGE_SIZE) - addr;
3026 if (l > len)
3027 l = len;
3028 flags = page_get_flags(page);
3029 if (!(flags & PAGE_VALID))
a68fe89c 3030 return -1;
13eb76e0
FB
3031 if (is_write) {
3032 if (!(flags & PAGE_WRITE))
a68fe89c 3033 return -1;
579a97f7 3034 /* XXX: this code should not depend on lock_user */
72fb7daa 3035 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3036 return -1;
72fb7daa
AJ
3037 memcpy(p, buf, l);
3038 unlock_user(p, addr, l);
13eb76e0
FB
3039 } else {
3040 if (!(flags & PAGE_READ))
a68fe89c 3041 return -1;
579a97f7 3042 /* XXX: this code should not depend on lock_user */
72fb7daa 3043 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3044 return -1;
72fb7daa 3045 memcpy(buf, p, l);
5b257578 3046 unlock_user(p, addr, 0);
13eb76e0
FB
3047 }
3048 len -= l;
3049 buf += l;
3050 addr += l;
3051 }
a68fe89c 3052 return 0;
13eb76e0 3053}
8df1cd07 3054
13eb76e0 3055#else
51d7a9eb 3056
845b6214 3057static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3058 hwaddr length)
51d7a9eb 3059{
e87f7778 3060 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3061 addr += memory_region_get_ram_addr(mr);
3062
e87f7778
PB
3063 /* No early return if dirty_log_mask is or becomes 0, because
3064 * cpu_physical_memory_set_dirty_range will still call
3065 * xen_modified_memory.
3066 */
3067 if (dirty_log_mask) {
3068 dirty_log_mask =
3069 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3070 }
3071 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3072 assert(tcg_enabled());
e87f7778
PB
3073 tb_invalidate_phys_range(addr, addr + length);
3074 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3075 }
e87f7778 3076 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3077}
3078
047be4ed
SH
3079void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3080{
3081 /*
3082 * In principle this function would work on other memory region types too,
3083 * but the ROM device use case is the only one where this operation is
3084 * necessary. Other memory regions should use the
3085 * address_space_read/write() APIs.
3086 */
3087 assert(memory_region_is_romd(mr));
3088
3089 invalidate_and_set_dirty(mr, addr, size);
3090}
3091
23326164 3092static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3093{
e1622f4b 3094 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3095
3096 /* Regions are assumed to support 1-4 byte accesses unless
3097 otherwise specified. */
23326164
RH
3098 if (access_size_max == 0) {
3099 access_size_max = 4;
3100 }
3101
3102 /* Bound the maximum access by the alignment of the address. */
3103 if (!mr->ops->impl.unaligned) {
3104 unsigned align_size_max = addr & -addr;
3105 if (align_size_max != 0 && align_size_max < access_size_max) {
3106 access_size_max = align_size_max;
3107 }
82f2563f 3108 }
23326164
RH
3109
3110 /* Don't attempt accesses larger than the maximum. */
3111 if (l > access_size_max) {
3112 l = access_size_max;
82f2563f 3113 }
6554f5c0 3114 l = pow2floor(l);
23326164
RH
3115
3116 return l;
82f2563f
PB
3117}
3118
4840f10e 3119static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3120{
4840f10e
JK
3121 bool unlocked = !qemu_mutex_iothread_locked();
3122 bool release_lock = false;
3123
3124 if (unlocked && mr->global_locking) {
3125 qemu_mutex_lock_iothread();
3126 unlocked = false;
3127 release_lock = true;
3128 }
125b3806 3129 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3130 if (unlocked) {
3131 qemu_mutex_lock_iothread();
3132 }
125b3806 3133 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3134 if (unlocked) {
3135 qemu_mutex_unlock_iothread();
3136 }
125b3806 3137 }
4840f10e
JK
3138
3139 return release_lock;
125b3806
PB
3140}
3141
a203ac70 3142/* Called within RCU critical section. */
16620684
AK
3143static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3144 MemTxAttrs attrs,
3145 const uint8_t *buf,
0c249ff7 3146 hwaddr len, hwaddr addr1,
16620684 3147 hwaddr l, MemoryRegion *mr)
13eb76e0 3148{
13eb76e0 3149 uint8_t *ptr;
791af8c8 3150 uint64_t val;
3b643495 3151 MemTxResult result = MEMTX_OK;
4840f10e 3152 bool release_lock = false;
3b46e624 3153
a203ac70 3154 for (;;) {
eb7eeb88
PB
3155 if (!memory_access_is_direct(mr, true)) {
3156 release_lock |= prepare_mmio_access(mr);
3157 l = memory_access_size(mr, l, addr1);
3158 /* XXX: could force current_cpu to NULL to avoid
3159 potential bugs */
9bf825bf 3160 val = ldn_he_p(buf, l);
3d9e7c3e 3161 result |= memory_region_dispatch_write(mr, addr1, val,
9bf825bf 3162 size_memop(l), attrs);
13eb76e0 3163 } else {
eb7eeb88 3164 /* RAM case */
f5aa69bd 3165 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3166 memcpy(ptr, buf, l);
3167 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3168 }
4840f10e
JK
3169
3170 if (release_lock) {
3171 qemu_mutex_unlock_iothread();
3172 release_lock = false;
3173 }
3174
13eb76e0
FB
3175 len -= l;
3176 buf += l;
3177 addr += l;
a203ac70
PB
3178
3179 if (!len) {
3180 break;
3181 }
3182
3183 l = len;
efa99a2f 3184 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3185 }
fd8aaa76 3186
3b643495 3187 return result;
13eb76e0 3188}
8df1cd07 3189
4c6ebbb3 3190/* Called from RCU critical section. */
16620684 3191static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3192 const uint8_t *buf, hwaddr len)
ac1970fb 3193{
eb7eeb88 3194 hwaddr l;
eb7eeb88
PB
3195 hwaddr addr1;
3196 MemoryRegion *mr;
3197 MemTxResult result = MEMTX_OK;
eb7eeb88 3198
4c6ebbb3 3199 l = len;
efa99a2f 3200 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3201 result = flatview_write_continue(fv, addr, attrs, buf, len,
3202 addr1, l, mr);
a203ac70
PB
3203
3204 return result;
3205}
3206
3207/* Called within RCU critical section. */
16620684
AK
3208MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3209 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3210 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3211 MemoryRegion *mr)
a203ac70
PB
3212{
3213 uint8_t *ptr;
3214 uint64_t val;
3215 MemTxResult result = MEMTX_OK;
3216 bool release_lock = false;
eb7eeb88 3217
a203ac70 3218 for (;;) {
eb7eeb88
PB
3219 if (!memory_access_is_direct(mr, false)) {
3220 /* I/O case */
3221 release_lock |= prepare_mmio_access(mr);
3222 l = memory_access_size(mr, l, addr1);
3d9e7c3e 3223 result |= memory_region_dispatch_read(mr, addr1, &val,
9bf825bf
TN
3224 size_memop(l), attrs);
3225 stn_he_p(buf, l, val);
eb7eeb88
PB
3226 } else {
3227 /* RAM case */
f5aa69bd 3228 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3229 memcpy(buf, ptr, l);
3230 }
3231
3232 if (release_lock) {
3233 qemu_mutex_unlock_iothread();
3234 release_lock = false;
3235 }
3236
3237 len -= l;
3238 buf += l;
3239 addr += l;
a203ac70
PB
3240
3241 if (!len) {
3242 break;
3243 }
3244
3245 l = len;
efa99a2f 3246 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3247 }
3248
3249 return result;
3250}
3251
b2a44fca
PB
3252/* Called from RCU critical section. */
3253static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3254 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3255{
3256 hwaddr l;
3257 hwaddr addr1;
3258 MemoryRegion *mr;
eb7eeb88 3259
b2a44fca 3260 l = len;
efa99a2f 3261 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3262 return flatview_read_continue(fv, addr, attrs, buf, len,
3263 addr1, l, mr);
ac1970fb
AK
3264}
3265
b2a44fca 3266MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3267 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3268{
3269 MemTxResult result = MEMTX_OK;
3270 FlatView *fv;
3271
3272 if (len > 0) {
694ea274 3273 RCU_READ_LOCK_GUARD();
b2a44fca
PB
3274 fv = address_space_to_flatview(as);
3275 result = flatview_read(fv, addr, attrs, buf, len);
b2a44fca
PB
3276 }
3277
3278 return result;
3279}
3280
4c6ebbb3
PB
3281MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3282 MemTxAttrs attrs,
0c249ff7 3283 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3284{
3285 MemTxResult result = MEMTX_OK;
3286 FlatView *fv;
3287
3288 if (len > 0) {
694ea274 3289 RCU_READ_LOCK_GUARD();
4c6ebbb3
PB
3290 fv = address_space_to_flatview(as);
3291 result = flatview_write(fv, addr, attrs, buf, len);
4c6ebbb3
PB
3292 }
3293
3294 return result;
3295}
3296
db84fd97 3297MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3298 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3299{
3300 if (is_write) {
3301 return address_space_write(as, addr, attrs, buf, len);
3302 } else {
3303 return address_space_read_full(as, addr, attrs, buf, len);
3304 }
3305}
3306
a8170e5e 3307void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3308 hwaddr len, int is_write)
ac1970fb 3309{
5c9eb028
PM
3310 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3311 buf, len, is_write);
ac1970fb
AK
3312}
3313
582b55a9
AG
3314enum write_rom_type {
3315 WRITE_DATA,
3316 FLUSH_CACHE,
3317};
3318
75693e14
PM
3319static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3320 hwaddr addr,
3321 MemTxAttrs attrs,
3322 const uint8_t *buf,
0c249ff7 3323 hwaddr len,
75693e14 3324 enum write_rom_type type)
d0ecd2aa 3325{
149f54b5 3326 hwaddr l;
d0ecd2aa 3327 uint8_t *ptr;
149f54b5 3328 hwaddr addr1;
5c8a00ce 3329 MemoryRegion *mr;
3b46e624 3330
694ea274 3331 RCU_READ_LOCK_GUARD();
d0ecd2aa 3332 while (len > 0) {
149f54b5 3333 l = len;
75693e14 3334 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3335
5c8a00ce
PB
3336 if (!(memory_region_is_ram(mr) ||
3337 memory_region_is_romd(mr))) {
b242e0e0 3338 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3339 } else {
d0ecd2aa 3340 /* ROM/RAM case */
0878d0e1 3341 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3342 switch (type) {
3343 case WRITE_DATA:
3344 memcpy(ptr, buf, l);
845b6214 3345 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3346 break;
3347 case FLUSH_CACHE:
3348 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3349 break;
3350 }
d0ecd2aa
FB
3351 }
3352 len -= l;
3353 buf += l;
3354 addr += l;
3355 }
75693e14 3356 return MEMTX_OK;
d0ecd2aa
FB
3357}
3358
582b55a9 3359/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3360MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3361 MemTxAttrs attrs,
0c249ff7 3362 const uint8_t *buf, hwaddr len)
582b55a9 3363{
3c8133f9
PM
3364 return address_space_write_rom_internal(as, addr, attrs,
3365 buf, len, WRITE_DATA);
582b55a9
AG
3366}
3367
0c249ff7 3368void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3369{
3370 /*
3371 * This function should do the same thing as an icache flush that was
3372 * triggered from within the guest. For TCG we are always cache coherent,
3373 * so there is no need to flush anything. For KVM / Xen we need to flush
3374 * the host's instruction cache at least.
3375 */
3376 if (tcg_enabled()) {
3377 return;
3378 }
3379
75693e14
PM
3380 address_space_write_rom_internal(&address_space_memory,
3381 start, MEMTXATTRS_UNSPECIFIED,
3382 NULL, len, FLUSH_CACHE);
582b55a9
AG
3383}
3384
6d16c2f8 3385typedef struct {
d3e71559 3386 MemoryRegion *mr;
6d16c2f8 3387 void *buffer;
a8170e5e
AK
3388 hwaddr addr;
3389 hwaddr len;
c2cba0ff 3390 bool in_use;
6d16c2f8
AL
3391} BounceBuffer;
3392
3393static BounceBuffer bounce;
3394
ba223c29 3395typedef struct MapClient {
e95205e1 3396 QEMUBH *bh;
72cf2d4f 3397 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3398} MapClient;
3399
38e047b5 3400QemuMutex map_client_list_lock;
b58deb34 3401static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3402 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3403
e95205e1
FZ
3404static void cpu_unregister_map_client_do(MapClient *client)
3405{
3406 QLIST_REMOVE(client, link);
3407 g_free(client);
3408}
3409
33b6c2ed
FZ
3410static void cpu_notify_map_clients_locked(void)
3411{
3412 MapClient *client;
3413
3414 while (!QLIST_EMPTY(&map_client_list)) {
3415 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3416 qemu_bh_schedule(client->bh);
3417 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3418 }
3419}
3420
e95205e1 3421void cpu_register_map_client(QEMUBH *bh)
ba223c29 3422{
7267c094 3423 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3424
38e047b5 3425 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3426 client->bh = bh;
72cf2d4f 3427 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3428 if (!atomic_read(&bounce.in_use)) {
3429 cpu_notify_map_clients_locked();
3430 }
38e047b5 3431 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3432}
3433
38e047b5 3434void cpu_exec_init_all(void)
ba223c29 3435{
38e047b5 3436 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3437 /* The data structures we set up here depend on knowing the page size,
3438 * so no more changes can be made after this point.
3439 * In an ideal world, nothing we did before we had finished the
3440 * machine setup would care about the target page size, and we could
3441 * do this much later, rather than requiring board models to state
3442 * up front what their requirements are.
3443 */
3444 finalize_target_page_bits();
38e047b5 3445 io_mem_init();
680a4783 3446 memory_map_init();
38e047b5 3447 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3448}
3449
e95205e1 3450void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3451{
3452 MapClient *client;
3453
e95205e1
FZ
3454 qemu_mutex_lock(&map_client_list_lock);
3455 QLIST_FOREACH(client, &map_client_list, link) {
3456 if (client->bh == bh) {
3457 cpu_unregister_map_client_do(client);
3458 break;
3459 }
ba223c29 3460 }
e95205e1 3461 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3462}
3463
3464static void cpu_notify_map_clients(void)
3465{
38e047b5 3466 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3467 cpu_notify_map_clients_locked();
38e047b5 3468 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3469}
3470
0c249ff7 3471static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3472 bool is_write, MemTxAttrs attrs)
51644ab7 3473{
5c8a00ce 3474 MemoryRegion *mr;
51644ab7
PB
3475 hwaddr l, xlat;
3476
3477 while (len > 0) {
3478 l = len;
efa99a2f 3479 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3480 if (!memory_access_is_direct(mr, is_write)) {
3481 l = memory_access_size(mr, l, addr);
eace72b7 3482 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3483 return false;
3484 }
3485 }
3486
3487 len -= l;
3488 addr += l;
3489 }
3490 return true;
3491}
3492
16620684 3493bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3494 hwaddr len, bool is_write,
fddffa42 3495 MemTxAttrs attrs)
16620684 3496{
11e732a5
PB
3497 FlatView *fv;
3498 bool result;
3499
694ea274 3500 RCU_READ_LOCK_GUARD();
11e732a5 3501 fv = address_space_to_flatview(as);
eace72b7 3502 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5 3503 return result;
16620684
AK
3504}
3505
715c31ec 3506static hwaddr
16620684 3507flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3508 hwaddr target_len,
3509 MemoryRegion *mr, hwaddr base, hwaddr len,
3510 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3511{
3512 hwaddr done = 0;
3513 hwaddr xlat;
3514 MemoryRegion *this_mr;
3515
3516 for (;;) {
3517 target_len -= len;
3518 addr += len;
3519 done += len;
3520 if (target_len == 0) {
3521 return done;
3522 }
3523
3524 len = target_len;
16620684 3525 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3526 &len, is_write, attrs);
715c31ec
PB
3527 if (this_mr != mr || xlat != base + done) {
3528 return done;
3529 }
3530 }
3531}
3532
6d16c2f8
AL
3533/* Map a physical memory region into a host virtual address.
3534 * May map a subset of the requested range, given by and returned in *plen.
3535 * May return NULL if resources needed to perform the mapping are exhausted.
3536 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3537 * Use cpu_register_map_client() to know when retrying the map operation is
3538 * likely to succeed.
6d16c2f8 3539 */
ac1970fb 3540void *address_space_map(AddressSpace *as,
a8170e5e
AK
3541 hwaddr addr,
3542 hwaddr *plen,
f26404fb
PM
3543 bool is_write,
3544 MemTxAttrs attrs)
6d16c2f8 3545{
a8170e5e 3546 hwaddr len = *plen;
715c31ec
PB
3547 hwaddr l, xlat;
3548 MemoryRegion *mr;
e81bcda5 3549 void *ptr;
ad0c60fa 3550 FlatView *fv;
6d16c2f8 3551
e3127ae0
PB
3552 if (len == 0) {
3553 return NULL;
3554 }
38bee5dc 3555
e3127ae0 3556 l = len;
694ea274 3557 RCU_READ_LOCK_GUARD();
ad0c60fa 3558 fv = address_space_to_flatview(as);
efa99a2f 3559 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3560
e3127ae0 3561 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3562 if (atomic_xchg(&bounce.in_use, true)) {
e3127ae0 3563 return NULL;
6d16c2f8 3564 }
e85d9db5
KW
3565 /* Avoid unbounded allocations */
3566 l = MIN(l, TARGET_PAGE_SIZE);
3567 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3568 bounce.addr = addr;
3569 bounce.len = l;
d3e71559
PB
3570
3571 memory_region_ref(mr);
3572 bounce.mr = mr;
e3127ae0 3573 if (!is_write) {
16620684 3574 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3575 bounce.buffer, l);
8ab934f9 3576 }
6d16c2f8 3577
e3127ae0
PB
3578 *plen = l;
3579 return bounce.buffer;
3580 }
3581
e3127ae0 3582
d3e71559 3583 memory_region_ref(mr);
16620684 3584 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3585 l, is_write, attrs);
f5aa69bd 3586 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3587
3588 return ptr;
6d16c2f8
AL
3589}
3590
ac1970fb 3591/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3592 * Will also mark the memory as dirty if is_write == 1. access_len gives
3593 * the amount of memory that was actually read or written by the caller.
3594 */
a8170e5e
AK
3595void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3596 int is_write, hwaddr access_len)
6d16c2f8
AL
3597{
3598 if (buffer != bounce.buffer) {
d3e71559
PB
3599 MemoryRegion *mr;
3600 ram_addr_t addr1;
3601
07bdaa41 3602 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3603 assert(mr != NULL);
6d16c2f8 3604 if (is_write) {
845b6214 3605 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3606 }
868bb33f 3607 if (xen_enabled()) {
e41d7c69 3608 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3609 }
d3e71559 3610 memory_region_unref(mr);
6d16c2f8
AL
3611 return;
3612 }
3613 if (is_write) {
5c9eb028
PM
3614 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3615 bounce.buffer, access_len);
6d16c2f8 3616 }
f8a83245 3617 qemu_vfree(bounce.buffer);
6d16c2f8 3618 bounce.buffer = NULL;
d3e71559 3619 memory_region_unref(bounce.mr);
c2cba0ff 3620 atomic_mb_set(&bounce.in_use, false);
ba223c29 3621 cpu_notify_map_clients();
6d16c2f8 3622}
d0ecd2aa 3623
a8170e5e
AK
3624void *cpu_physical_memory_map(hwaddr addr,
3625 hwaddr *plen,
ac1970fb
AK
3626 int is_write)
3627{
f26404fb
PM
3628 return address_space_map(&address_space_memory, addr, plen, is_write,
3629 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3630}
3631
a8170e5e
AK
3632void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3633 int is_write, hwaddr access_len)
ac1970fb
AK
3634{
3635 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3636}
3637
0ce265ff
PB
3638#define ARG1_DECL AddressSpace *as
3639#define ARG1 as
3640#define SUFFIX
3641#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3642#define RCU_READ_LOCK(...) rcu_read_lock()
3643#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3644#include "memory_ldst.inc.c"
1e78bcc1 3645
1f4e496e
PB
3646int64_t address_space_cache_init(MemoryRegionCache *cache,
3647 AddressSpace *as,
3648 hwaddr addr,
3649 hwaddr len,
3650 bool is_write)
3651{
48564041
PB
3652 AddressSpaceDispatch *d;
3653 hwaddr l;
3654 MemoryRegion *mr;
3655
3656 assert(len > 0);
3657
3658 l = len;
3659 cache->fv = address_space_get_flatview(as);
3660 d = flatview_to_dispatch(cache->fv);
3661 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3662
3663 mr = cache->mrs.mr;
3664 memory_region_ref(mr);
3665 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3666 /* We don't care about the memory attributes here as we're only
3667 * doing this if we found actual RAM, which behaves the same
3668 * regardless of attributes; so UNSPECIFIED is fine.
3669 */
48564041 3670 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3671 cache->xlat, l, is_write,
3672 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3673 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3674 } else {
3675 cache->ptr = NULL;
3676 }
3677
3678 cache->len = l;
3679 cache->is_write = is_write;
3680 return l;
1f4e496e
PB
3681}
3682
3683void address_space_cache_invalidate(MemoryRegionCache *cache,
3684 hwaddr addr,
3685 hwaddr access_len)
3686{
48564041
PB
3687 assert(cache->is_write);
3688 if (likely(cache->ptr)) {
3689 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3690 }
1f4e496e
PB
3691}
3692
3693void address_space_cache_destroy(MemoryRegionCache *cache)
3694{
48564041
PB
3695 if (!cache->mrs.mr) {
3696 return;
3697 }
3698
3699 if (xen_enabled()) {
3700 xen_invalidate_map_cache_entry(cache->ptr);
3701 }
3702 memory_region_unref(cache->mrs.mr);
3703 flatview_unref(cache->fv);
3704 cache->mrs.mr = NULL;
3705 cache->fv = NULL;
3706}
3707
3708/* Called from RCU critical section. This function has the same
3709 * semantics as address_space_translate, but it only works on a
3710 * predefined range of a MemoryRegion that was mapped with
3711 * address_space_cache_init.
3712 */
3713static inline MemoryRegion *address_space_translate_cached(
3714 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3715 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3716{
3717 MemoryRegionSection section;
3718 MemoryRegion *mr;
3719 IOMMUMemoryRegion *iommu_mr;
3720 AddressSpace *target_as;
3721
3722 assert(!cache->ptr);
3723 *xlat = addr + cache->xlat;
3724
3725 mr = cache->mrs.mr;
3726 iommu_mr = memory_region_get_iommu(mr);
3727 if (!iommu_mr) {
3728 /* MMIO region. */
3729 return mr;
3730 }
3731
3732 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3733 NULL, is_write, true,
2f7b009c 3734 &target_as, attrs);
48564041
PB
3735 return section.mr;
3736}
3737
3738/* Called from RCU critical section. address_space_read_cached uses this
3739 * out of line function when the target is an MMIO or IOMMU region.
3740 */
3741void
3742address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3743 void *buf, hwaddr len)
48564041
PB
3744{
3745 hwaddr addr1, l;
3746 MemoryRegion *mr;
3747
3748 l = len;
bc6b1cec
PM
3749 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3750 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3751 flatview_read_continue(cache->fv,
3752 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3753 addr1, l, mr);
3754}
3755
3756/* Called from RCU critical section. address_space_write_cached uses this
3757 * out of line function when the target is an MMIO or IOMMU region.
3758 */
3759void
3760address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3761 const void *buf, hwaddr len)
48564041
PB
3762{
3763 hwaddr addr1, l;
3764 MemoryRegion *mr;
3765
3766 l = len;
bc6b1cec
PM
3767 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3768 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3769 flatview_write_continue(cache->fv,
3770 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3771 addr1, l, mr);
1f4e496e
PB
3772}
3773
3774#define ARG1_DECL MemoryRegionCache *cache
3775#define ARG1 cache
48564041
PB
3776#define SUFFIX _cached_slow
3777#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3778#define RCU_READ_LOCK() ((void)0)
3779#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3780#include "memory_ldst.inc.c"
3781
5e2972fd 3782/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3783int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3784 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3785{
a8170e5e 3786 hwaddr phys_addr;
0c249ff7 3787 target_ulong l, page;
13eb76e0 3788
79ca7a1b 3789 cpu_synchronize_state(cpu);
13eb76e0 3790 while (len > 0) {
5232e4c7
PM
3791 int asidx;
3792 MemTxAttrs attrs;
3793
13eb76e0 3794 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3795 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3796 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3797 /* if no physical page mapped, return an error */
3798 if (phys_addr == -1)
3799 return -1;
3800 l = (page + TARGET_PAGE_SIZE) - addr;
3801 if (l > len)
3802 l = len;
5e2972fd 3803 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3804 if (is_write) {
3c8133f9 3805 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3806 attrs, buf, l);
2e38847b 3807 } else {
5232e4c7 3808 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3809 attrs, buf, l, 0);
2e38847b 3810 }
13eb76e0
FB
3811 len -= l;
3812 buf += l;
3813 addr += l;
3814 }
3815 return 0;
3816}
038629a6
DDAG
3817
3818/*
3819 * Allows code that needs to deal with migration bitmaps etc to still be built
3820 * target independent.
3821 */
20afaed9 3822size_t qemu_target_page_size(void)
038629a6 3823{
20afaed9 3824 return TARGET_PAGE_SIZE;
038629a6
DDAG
3825}
3826
46d702b1
JQ
3827int qemu_target_page_bits(void)
3828{
3829 return TARGET_PAGE_BITS;
3830}
3831
3832int qemu_target_page_bits_min(void)
3833{
3834 return TARGET_PAGE_BITS_MIN;
3835}
a68fe89c 3836#endif
13eb76e0 3837
98ed8ecf 3838bool target_words_bigendian(void)
8e4a424b
BS
3839{
3840#if defined(TARGET_WORDS_BIGENDIAN)
3841 return true;
3842#else
3843 return false;
3844#endif
3845}
3846
76f35538 3847#ifndef CONFIG_USER_ONLY
a8170e5e 3848bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3849{
5c8a00ce 3850 MemoryRegion*mr;
149f54b5 3851 hwaddr l = 1;
41063e1e 3852 bool res;
76f35538 3853
694ea274 3854 RCU_READ_LOCK_GUARD();
5c8a00ce 3855 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3856 phys_addr, &phys_addr, &l, false,
3857 MEMTXATTRS_UNSPECIFIED);
76f35538 3858
41063e1e 3859 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
41063e1e 3860 return res;
76f35538 3861}
bd2fa51f 3862
e3807054 3863int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3864{
3865 RAMBlock *block;
e3807054 3866 int ret = 0;
bd2fa51f 3867
694ea274 3868 RCU_READ_LOCK_GUARD();
99e15582 3869 RAMBLOCK_FOREACH(block) {
754cb9c0 3870 ret = func(block, opaque);
e3807054
DDAG
3871 if (ret) {
3872 break;
3873 }
bd2fa51f 3874 }
e3807054 3875 return ret;
bd2fa51f 3876}
d3a5038c
DDAG
3877
3878/*
3879 * Unmap pages of memory from start to start+length such that
3880 * they a) read as 0, b) Trigger whatever fault mechanism
3881 * the OS provides for postcopy.
3882 * The pages must be unmapped by the end of the function.
3883 * Returns: 0 on success, none-0 on failure
3884 *
3885 */
3886int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3887{
3888 int ret = -1;
3889
3890 uint8_t *host_startaddr = rb->host + start;
3891
3892 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3893 error_report("ram_block_discard_range: Unaligned start address: %p",
3894 host_startaddr);
3895 goto err;
3896 }
3897
3898 if ((start + length) <= rb->used_length) {
db144f70 3899 bool need_madvise, need_fallocate;
d3a5038c
DDAG
3900 uint8_t *host_endaddr = host_startaddr + length;
3901 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3902 error_report("ram_block_discard_range: Unaligned end address: %p",
3903 host_endaddr);
3904 goto err;
3905 }
3906
3907 errno = ENOTSUP; /* If we are missing MADVISE etc */
3908
db144f70
DDAG
3909 /* The logic here is messy;
3910 * madvise DONTNEED fails for hugepages
3911 * fallocate works on hugepages and shmem
3912 */
3913 need_madvise = (rb->page_size == qemu_host_page_size);
3914 need_fallocate = rb->fd != -1;
3915 if (need_fallocate) {
3916 /* For a file, this causes the area of the file to be zero'd
3917 * if read, and for hugetlbfs also causes it to be unmapped
3918 * so a userfault will trigger.
e2fa71f5
DDAG
3919 */
3920#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3921 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3922 start, length);
db144f70
DDAG
3923 if (ret) {
3924 ret = -errno;
3925 error_report("ram_block_discard_range: Failed to fallocate "
3926 "%s:%" PRIx64 " +%zx (%d)",
3927 rb->idstr, start, length, ret);
3928 goto err;
3929 }
3930#else
3931 ret = -ENOSYS;
3932 error_report("ram_block_discard_range: fallocate not available/file"
3933 "%s:%" PRIx64 " +%zx (%d)",
3934 rb->idstr, start, length, ret);
3935 goto err;
e2fa71f5
DDAG
3936#endif
3937 }
db144f70
DDAG
3938 if (need_madvise) {
3939 /* For normal RAM this causes it to be unmapped,
3940 * for shared memory it causes the local mapping to disappear
3941 * and to fall back on the file contents (which we just
3942 * fallocate'd away).
3943 */
3944#if defined(CONFIG_MADVISE)
3945 ret = madvise(host_startaddr, length, MADV_DONTNEED);
3946 if (ret) {
3947 ret = -errno;
3948 error_report("ram_block_discard_range: Failed to discard range "
3949 "%s:%" PRIx64 " +%zx (%d)",
3950 rb->idstr, start, length, ret);
3951 goto err;
3952 }
3953#else
3954 ret = -ENOSYS;
3955 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
3956 "%s:%" PRIx64 " +%zx (%d)",
3957 rb->idstr, start, length, ret);
db144f70
DDAG
3958 goto err;
3959#endif
d3a5038c 3960 }
db144f70
DDAG
3961 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
3962 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
3963 } else {
3964 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3965 "/%zx/" RAM_ADDR_FMT")",
3966 rb->idstr, start, length, rb->used_length);
3967 }
3968
3969err:
3970 return ret;
3971}
3972
a4de8552
JH
3973bool ramblock_is_pmem(RAMBlock *rb)
3974{
3975 return rb->flags & RAM_PMEM;
3976}
3977
ec3f8c99 3978#endif
a0be0c58
YZ
3979
3980void page_size_init(void)
3981{
3982 /* NOTE: we can always suppose that qemu_host_page_size >=
3983 TARGET_PAGE_SIZE */
a0be0c58
YZ
3984 if (qemu_host_page_size == 0) {
3985 qemu_host_page_size = qemu_real_host_page_size;
3986 }
3987 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3988 qemu_host_page_size = TARGET_PAGE_SIZE;
3989 }
3990 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3991}
5e8fd947
AK
3992
3993#if !defined(CONFIG_USER_ONLY)
3994
b6b71cb5 3995static void mtree_print_phys_entries(int start, int end, int skip, int ptr)
5e8fd947
AK
3996{
3997 if (start == end - 1) {
b6b71cb5 3998 qemu_printf("\t%3d ", start);
5e8fd947 3999 } else {
b6b71cb5 4000 qemu_printf("\t%3d..%-3d ", start, end - 1);
5e8fd947 4001 }
b6b71cb5 4002 qemu_printf(" skip=%d ", skip);
5e8fd947 4003 if (ptr == PHYS_MAP_NODE_NIL) {
b6b71cb5 4004 qemu_printf(" ptr=NIL");
5e8fd947 4005 } else if (!skip) {
b6b71cb5 4006 qemu_printf(" ptr=#%d", ptr);
5e8fd947 4007 } else {
b6b71cb5 4008 qemu_printf(" ptr=[%d]", ptr);
5e8fd947 4009 }
b6b71cb5 4010 qemu_printf("\n");
5e8fd947
AK
4011}
4012
4013#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4014 int128_sub((size), int128_one())) : 0)
4015
b6b71cb5 4016void mtree_print_dispatch(AddressSpaceDispatch *d, MemoryRegion *root)
5e8fd947
AK
4017{
4018 int i;
4019
b6b71cb5
MA
4020 qemu_printf(" Dispatch\n");
4021 qemu_printf(" Physical sections\n");
5e8fd947
AK
4022
4023 for (i = 0; i < d->map.sections_nb; ++i) {
4024 MemoryRegionSection *s = d->map.sections + i;
4025 const char *names[] = { " [unassigned]", " [not dirty]",
4026 " [ROM]", " [watch]" };
4027
b6b71cb5
MA
4028 qemu_printf(" #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx
4029 " %s%s%s%s%s",
5e8fd947
AK
4030 i,
4031 s->offset_within_address_space,
4032 s->offset_within_address_space + MR_SIZE(s->mr->size),
4033 s->mr->name ? s->mr->name : "(noname)",
4034 i < ARRAY_SIZE(names) ? names[i] : "",
4035 s->mr == root ? " [ROOT]" : "",
4036 s == d->mru_section ? " [MRU]" : "",
4037 s->mr->is_iommu ? " [iommu]" : "");
4038
4039 if (s->mr->alias) {
b6b71cb5 4040 qemu_printf(" alias=%s", s->mr->alias->name ?
5e8fd947
AK
4041 s->mr->alias->name : "noname");
4042 }
b6b71cb5 4043 qemu_printf("\n");
5e8fd947
AK
4044 }
4045
b6b71cb5 4046 qemu_printf(" Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
5e8fd947
AK
4047 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4048 for (i = 0; i < d->map.nodes_nb; ++i) {
4049 int j, jprev;
4050 PhysPageEntry prev;
4051 Node *n = d->map.nodes + i;
4052
b6b71cb5 4053 qemu_printf(" [%d]\n", i);
5e8fd947
AK
4054
4055 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4056 PhysPageEntry *pe = *n + j;
4057
4058 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4059 continue;
4060 }
4061
b6b71cb5 4062 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4063
4064 jprev = j;
4065 prev = *pe;
4066 }
4067
4068 if (jprev != ARRAY_SIZE(*n)) {
b6b71cb5 4069 mtree_print_phys_entries(jprev, j, prev.skip, prev.ptr);
5e8fd947
AK
4070 }
4071 }
4072}
4073
4074#endif