]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
Avoid libaio for usermode
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
29e922b6 41#include "qemu-timer.h"
53a5960a
PB
42#if defined(CONFIG_USER_ONLY)
43#include <qemu.h>
fd052bf6 44#include <signal.h>
f01576f1
JL
45#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46#include <sys/param.h>
47#if __FreeBSD_version >= 700104
48#define HAVE_KINFO_GETVMMAP
49#define sigqueue sigqueue_freebsd /* avoid redefinition */
50#include <sys/time.h>
51#include <sys/proc.h>
52#include <machine/profile.h>
53#define _KERNEL
54#include <sys/user.h>
55#undef _KERNEL
56#undef sigqueue
57#include <libutil.h>
58#endif
59#endif
53a5960a 60#endif
54936004 61
fd6ce8f6 62//#define DEBUG_TB_INVALIDATE
66e85a21 63//#define DEBUG_FLUSH
9fa3e853 64//#define DEBUG_TLB
67d3b957 65//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
66
67/* make various TB consistency checks */
5fafdf24
TS
68//#define DEBUG_TB_CHECK
69//#define DEBUG_TLB_CHECK
fd6ce8f6 70
1196be37 71//#define DEBUG_IOPORT
db7b5426 72//#define DEBUG_SUBPAGE
1196be37 73
99773bd4
PB
74#if !defined(CONFIG_USER_ONLY)
75/* TB consistency checks only implemented for usermode emulation. */
76#undef DEBUG_TB_CHECK
77#endif
78
9fa3e853
FB
79#define SMC_BITMAP_USE_THRESHOLD 10
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102 85/* any access to the tbs or the page table must use this lock */
c227f099 86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
c227f099
AL
118 ram_addr_t offset;
119 ram_addr_t length;
94a6b54f
PB
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f 126 of this variable will break. */
c227f099 127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
41c1b1c9 154/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
155 while in user mode we want it to be based on virtual addresses. */
156#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
157#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
159#else
5cd2c5b6 160# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 161#endif
bedb69ea 162#else
5cd2c5b6 163# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 164#endif
54936004 165
5cd2c5b6
RH
166/* Size of the L2 (and L3, etc) page tables. */
167#define L2_BITS 10
54936004
FB
168#define L2_SIZE (1 << L2_BITS)
169
5cd2c5b6
RH
170/* The bits remaining after N lower levels of page tables. */
171#define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173#define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
175
176/* Size of the L1 page table. Avoid silly small sizes. */
177#if P_L1_BITS_REM < 4
178#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
179#else
180#define P_L1_BITS P_L1_BITS_REM
181#endif
182
183#if V_L1_BITS_REM < 4
184#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
185#else
186#define V_L1_BITS V_L1_BITS_REM
187#endif
188
189#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
191
192#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
194
83fb7adf
FB
195unsigned long qemu_real_host_page_size;
196unsigned long qemu_host_page_bits;
197unsigned long qemu_host_page_size;
198unsigned long qemu_host_page_mask;
54936004 199
5cd2c5b6
RH
200/* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202static void *l1_map[V_L1_SIZE];
54936004 203
e2eef170 204#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
205typedef struct PhysPageDesc {
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset;
208 ram_addr_t region_offset;
209} PhysPageDesc;
210
5cd2c5b6
RH
211/* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213static void *l1_phys_map[P_L1_SIZE];
6d9a1304 214
e2eef170
PB
215static void io_mem_init(void);
216
33417e70 217/* io memory support */
33417e70
FB
218CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
219CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 220void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 221static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
222static int io_mem_watch;
223#endif
33417e70 224
34865134 225/* log support */
1e8b27ca
JR
226#ifdef WIN32
227static const char *logfilename = "qemu.log";
228#else
d9b630fd 229static const char *logfilename = "/tmp/qemu.log";
1e8b27ca 230#endif
34865134
FB
231FILE *logfile;
232int loglevel;
e735b91c 233static int log_append = 0;
34865134 234
e3db7226 235/* statistics */
b3755a91 236#if !defined(CONFIG_USER_ONLY)
e3db7226 237static int tlb_flush_count;
b3755a91 238#endif
e3db7226
FB
239static int tb_flush_count;
240static int tb_phys_invalidate_count;
241
7cb69cae
FB
242#ifdef _WIN32
243static void map_exec(void *addr, long size)
244{
245 DWORD old_protect;
246 VirtualProtect(addr, size,
247 PAGE_EXECUTE_READWRITE, &old_protect);
248
249}
250#else
251static void map_exec(void *addr, long size)
252{
4369415f 253 unsigned long start, end, page_size;
7cb69cae 254
4369415f 255 page_size = getpagesize();
7cb69cae 256 start = (unsigned long)addr;
4369415f 257 start &= ~(page_size - 1);
7cb69cae
FB
258
259 end = (unsigned long)addr + size;
4369415f
FB
260 end += page_size - 1;
261 end &= ~(page_size - 1);
7cb69cae
FB
262
263 mprotect((void *)start, end - start,
264 PROT_READ | PROT_WRITE | PROT_EXEC);
265}
266#endif
267
b346ff46 268static void page_init(void)
54936004 269{
83fb7adf 270 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 271 TARGET_PAGE_SIZE */
c2b48b69
AL
272#ifdef _WIN32
273 {
274 SYSTEM_INFO system_info;
275
276 GetSystemInfo(&system_info);
277 qemu_real_host_page_size = system_info.dwPageSize;
278 }
279#else
280 qemu_real_host_page_size = getpagesize();
281#endif
83fb7adf
FB
282 if (qemu_host_page_size == 0)
283 qemu_host_page_size = qemu_real_host_page_size;
284 if (qemu_host_page_size < TARGET_PAGE_SIZE)
285 qemu_host_page_size = TARGET_PAGE_SIZE;
286 qemu_host_page_bits = 0;
287 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
288 qemu_host_page_bits++;
289 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b
AZ
290
291#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
292 {
f01576f1
JL
293#ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry *freep;
295 int i, cnt;
296
297 freep = kinfo_getvmmap(getpid(), &cnt);
298 if (freep) {
299 mmap_lock();
300 for (i = 0; i < cnt; i++) {
301 unsigned long startaddr, endaddr;
302
303 startaddr = freep[i].kve_start;
304 endaddr = freep[i].kve_end;
305 if (h2g_valid(startaddr)) {
306 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
307
308 if (h2g_valid(endaddr)) {
309 endaddr = h2g(endaddr);
fd436907 310 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
311 } else {
312#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
313 endaddr = ~0ul;
fd436907 314 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
315#endif
316 }
317 }
318 }
319 free(freep);
320 mmap_unlock();
321 }
322#else
50a9569b 323 FILE *f;
50a9569b 324
0776590d 325 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 326
fd436907
AJ
327#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f = fopen("/compat/linux/proc/self/maps", "r");
329#else
50a9569b 330 f = fopen("/proc/self/maps", "r");
fd436907 331#endif
50a9569b 332 if (f) {
5cd2c5b6
RH
333 mmap_lock();
334
50a9569b 335 do {
5cd2c5b6
RH
336 unsigned long startaddr, endaddr;
337 int n;
338
339 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
340
341 if (n == 2 && h2g_valid(startaddr)) {
342 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
343
344 if (h2g_valid(endaddr)) {
345 endaddr = h2g(endaddr);
346 } else {
347 endaddr = ~0ul;
348 }
349 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
350 }
351 } while (!feof(f));
5cd2c5b6 352
50a9569b 353 fclose(f);
5cd2c5b6 354 mmap_unlock();
50a9569b 355 }
f01576f1 356#endif
50a9569b
AZ
357 }
358#endif
54936004
FB
359}
360
41c1b1c9 361static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 362{
41c1b1c9
PB
363 PageDesc *pd;
364 void **lp;
365 int i;
366
5cd2c5b6
RH
367#if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
373
374 unsigned long reserve[2 * (V_L1_SHIFT / L2_BITS)];
375 int reserve_idx = 0;
376
377# define ALLOC(P, SIZE) \
378 do { \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
384 reserve_idx += 2; \
385 } \
386 } while (0)
387#else
388# define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
17e2377a 390#endif
434929bf 391
5cd2c5b6
RH
392 /* Level 1. Always allocated. */
393 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
394
395 /* Level 2..N-1. */
396 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
397 void **p = *lp;
398
399 if (p == NULL) {
400 if (!alloc) {
401 return NULL;
402 }
403 ALLOC(p, sizeof(void *) * L2_SIZE);
404 *lp = p;
17e2377a 405 }
5cd2c5b6
RH
406
407 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
408 }
409
410 pd = *lp;
411 if (pd == NULL) {
412 if (!alloc) {
413 return NULL;
414 }
415 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
416 *lp = pd;
54936004 417 }
5cd2c5b6
RH
418
419#undef ALLOC
420#if defined(CONFIG_USER_ONLY)
421 for (i = 0; i < reserve_idx; i += 2) {
422 unsigned long addr = reserve[i];
423 unsigned long len = reserve[i + 1];
424
425 page_set_flags(addr & TARGET_PAGE_MASK,
426 TARGET_PAGE_ALIGN(addr + len),
427 PAGE_RESERVED);
428 }
429#endif
430
431 return pd + (index & (L2_SIZE - 1));
54936004
FB
432}
433
41c1b1c9 434static inline PageDesc *page_find(tb_page_addr_t index)
54936004 435{
5cd2c5b6 436 return page_find_alloc(index, 0);
fd6ce8f6
FB
437}
438
6d9a1304 439#if !defined(CONFIG_USER_ONLY)
c227f099 440static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 441{
e3f4e2a4 442 PhysPageDesc *pd;
5cd2c5b6
RH
443 void **lp;
444 int i;
92e873b9 445
5cd2c5b6
RH
446 /* Level 1. Always allocated. */
447 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
108c49b8 448
5cd2c5b6
RH
449 /* Level 2..N-1. */
450 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
451 void **p = *lp;
452 if (p == NULL) {
453 if (!alloc) {
454 return NULL;
455 }
456 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
457 }
458 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
108c49b8 459 }
5cd2c5b6 460
e3f4e2a4 461 pd = *lp;
5cd2c5b6 462 if (pd == NULL) {
e3f4e2a4 463 int i;
5cd2c5b6
RH
464
465 if (!alloc) {
108c49b8 466 return NULL;
5cd2c5b6
RH
467 }
468
469 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
470
67c4d23c 471 for (i = 0; i < L2_SIZE; i++) {
5cd2c5b6
RH
472 pd[i].phys_offset = IO_MEM_UNASSIGNED;
473 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
67c4d23c 474 }
92e873b9 475 }
5cd2c5b6
RH
476
477 return pd + (index & (L2_SIZE - 1));
92e873b9
FB
478}
479
c227f099 480static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 481{
108c49b8 482 return phys_page_find_alloc(index, 0);
92e873b9
FB
483}
484
c227f099
AL
485static void tlb_protect_code(ram_addr_t ram_addr);
486static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 487 target_ulong vaddr);
c8a706fe
PB
488#define mmap_lock() do { } while(0)
489#define mmap_unlock() do { } while(0)
9fa3e853 490#endif
fd6ce8f6 491
4369415f
FB
492#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
493
494#if defined(CONFIG_USER_ONLY)
ccbb4d44 495/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
496 user mode. It will change when a dedicated libc will be used */
497#define USE_STATIC_CODE_GEN_BUFFER
498#endif
499
500#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
501static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
502 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
503#endif
504
8fcd3692 505static void code_gen_alloc(unsigned long tb_size)
26a5f13b 506{
4369415f
FB
507#ifdef USE_STATIC_CODE_GEN_BUFFER
508 code_gen_buffer = static_code_gen_buffer;
509 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
510 map_exec(code_gen_buffer, code_gen_buffer_size);
511#else
26a5f13b
FB
512 code_gen_buffer_size = tb_size;
513 if (code_gen_buffer_size == 0) {
4369415f
FB
514#if defined(CONFIG_USER_ONLY)
515 /* in user mode, phys_ram_size is not meaningful */
516 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
517#else
ccbb4d44 518 /* XXX: needs adjustments */
94a6b54f 519 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 520#endif
26a5f13b
FB
521 }
522 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
523 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
524 /* The code gen buffer location may have constraints depending on
525 the host cpu and OS */
526#if defined(__linux__)
527 {
528 int flags;
141ac468
BS
529 void *start = NULL;
530
26a5f13b
FB
531 flags = MAP_PRIVATE | MAP_ANONYMOUS;
532#if defined(__x86_64__)
533 flags |= MAP_32BIT;
534 /* Cannot map more than that */
535 if (code_gen_buffer_size > (800 * 1024 * 1024))
536 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
537#elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
539 flags |= MAP_FIXED;
540 start = (void *) 0x60000000UL;
541 if (code_gen_buffer_size > (512 * 1024 * 1024))
542 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 543#elif defined(__arm__)
63d41246 544 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
545 flags |= MAP_FIXED;
546 start = (void *) 0x01000000UL;
547 if (code_gen_buffer_size > 16 * 1024 * 1024)
548 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 549#endif
141ac468
BS
550 code_gen_buffer = mmap(start, code_gen_buffer_size,
551 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
552 flags, -1, 0);
553 if (code_gen_buffer == MAP_FAILED) {
554 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
555 exit(1);
556 }
557 }
a167ba50 558#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
06e67a82
AL
559 {
560 int flags;
561 void *addr = NULL;
562 flags = MAP_PRIVATE | MAP_ANONYMOUS;
563#if defined(__x86_64__)
564 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
565 * 0x40000000 is free */
566 flags |= MAP_FIXED;
567 addr = (void *)0x40000000;
568 /* Cannot map more than that */
569 if (code_gen_buffer_size > (800 * 1024 * 1024))
570 code_gen_buffer_size = (800 * 1024 * 1024);
571#endif
572 code_gen_buffer = mmap(addr, code_gen_buffer_size,
573 PROT_WRITE | PROT_READ | PROT_EXEC,
574 flags, -1, 0);
575 if (code_gen_buffer == MAP_FAILED) {
576 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
577 exit(1);
578 }
579 }
26a5f13b
FB
580#else
581 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
582 map_exec(code_gen_buffer, code_gen_buffer_size);
583#endif
4369415f 584#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
585 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
586 code_gen_buffer_max_size = code_gen_buffer_size -
587 code_gen_max_block_size();
588 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
589 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
590}
591
592/* Must be called before using the QEMU cpus. 'tb_size' is the size
593 (in bytes) allocated to the translation buffer. Zero means default
594 size. */
595void cpu_exec_init_all(unsigned long tb_size)
596{
26a5f13b
FB
597 cpu_gen_init();
598 code_gen_alloc(tb_size);
599 code_gen_ptr = code_gen_buffer;
4369415f 600 page_init();
e2eef170 601#if !defined(CONFIG_USER_ONLY)
26a5f13b 602 io_mem_init();
e2eef170 603#endif
26a5f13b
FB
604}
605
9656f324
PB
606#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
607
e59fb374 608static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7
JQ
609{
610 CPUState *env = opaque;
9656f324 611
3098dba0
AJ
612 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
613 version_id is increased. */
614 env->interrupt_request &= ~0x01;
9656f324
PB
615 tlb_flush(env, 1);
616
617 return 0;
618}
e7f4eff7
JQ
619
620static const VMStateDescription vmstate_cpu_common = {
621 .name = "cpu_common",
622 .version_id = 1,
623 .minimum_version_id = 1,
624 .minimum_version_id_old = 1,
e7f4eff7
JQ
625 .post_load = cpu_common_post_load,
626 .fields = (VMStateField []) {
627 VMSTATE_UINT32(halted, CPUState),
628 VMSTATE_UINT32(interrupt_request, CPUState),
629 VMSTATE_END_OF_LIST()
630 }
631};
9656f324
PB
632#endif
633
950f1472
GC
634CPUState *qemu_get_cpu(int cpu)
635{
636 CPUState *env = first_cpu;
637
638 while (env) {
639 if (env->cpu_index == cpu)
640 break;
641 env = env->next_cpu;
642 }
643
644 return env;
645}
646
6a00d601 647void cpu_exec_init(CPUState *env)
fd6ce8f6 648{
6a00d601
FB
649 CPUState **penv;
650 int cpu_index;
651
c2764719
PB
652#if defined(CONFIG_USER_ONLY)
653 cpu_list_lock();
654#endif
6a00d601
FB
655 env->next_cpu = NULL;
656 penv = &first_cpu;
657 cpu_index = 0;
658 while (*penv != NULL) {
1e9fa730 659 penv = &(*penv)->next_cpu;
6a00d601
FB
660 cpu_index++;
661 }
662 env->cpu_index = cpu_index;
268a362c 663 env->numa_node = 0;
72cf2d4f
BS
664 QTAILQ_INIT(&env->breakpoints);
665 QTAILQ_INIT(&env->watchpoints);
6a00d601 666 *penv = env;
c2764719
PB
667#if defined(CONFIG_USER_ONLY)
668 cpu_list_unlock();
669#endif
b3c7724c 670#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
e7f4eff7 671 vmstate_register(cpu_index, &vmstate_cpu_common, env);
b3c7724c
PB
672 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
673 cpu_save, cpu_load, env);
674#endif
fd6ce8f6
FB
675}
676
9fa3e853
FB
677static inline void invalidate_page_bitmap(PageDesc *p)
678{
679 if (p->code_bitmap) {
59817ccb 680 qemu_free(p->code_bitmap);
9fa3e853
FB
681 p->code_bitmap = NULL;
682 }
683 p->code_write_count = 0;
684}
685
5cd2c5b6
RH
686/* Set to NULL all the 'first_tb' fields in all PageDescs. */
687
688static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 689{
5cd2c5b6 690 int i;
fd6ce8f6 691
5cd2c5b6
RH
692 if (*lp == NULL) {
693 return;
694 }
695 if (level == 0) {
696 PageDesc *pd = *lp;
7296abac 697 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
698 pd[i].first_tb = NULL;
699 invalidate_page_bitmap(pd + i);
fd6ce8f6 700 }
5cd2c5b6
RH
701 } else {
702 void **pp = *lp;
7296abac 703 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
704 page_flush_tb_1 (level - 1, pp + i);
705 }
706 }
707}
708
709static void page_flush_tb(void)
710{
711 int i;
712 for (i = 0; i < V_L1_SIZE; i++) {
713 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
714 }
715}
716
717/* flush all the translation blocks */
d4e8164f 718/* XXX: tb_flush is currently not thread safe */
6a00d601 719void tb_flush(CPUState *env1)
fd6ce8f6 720{
6a00d601 721 CPUState *env;
0124311e 722#if defined(DEBUG_FLUSH)
ab3d1727
BS
723 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
724 (unsigned long)(code_gen_ptr - code_gen_buffer),
725 nb_tbs, nb_tbs > 0 ?
726 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 727#endif
26a5f13b 728 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
729 cpu_abort(env1, "Internal error: code buffer overflow\n");
730
fd6ce8f6 731 nb_tbs = 0;
3b46e624 732
6a00d601
FB
733 for(env = first_cpu; env != NULL; env = env->next_cpu) {
734 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
735 }
9fa3e853 736
8a8a608f 737 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 738 page_flush_tb();
9fa3e853 739
fd6ce8f6 740 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
741 /* XXX: flush processor icache at this point if cache flush is
742 expensive */
e3db7226 743 tb_flush_count++;
fd6ce8f6
FB
744}
745
746#ifdef DEBUG_TB_CHECK
747
bc98a7ef 748static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
749{
750 TranslationBlock *tb;
751 int i;
752 address &= TARGET_PAGE_MASK;
99773bd4
PB
753 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
754 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
755 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
756 address >= tb->pc + tb->size)) {
0bf9e31a
BS
757 printf("ERROR invalidate: address=" TARGET_FMT_lx
758 " PC=%08lx size=%04x\n",
99773bd4 759 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
760 }
761 }
762 }
763}
764
765/* verify that all the pages have correct rights for code */
766static void tb_page_check(void)
767{
768 TranslationBlock *tb;
769 int i, flags1, flags2;
3b46e624 770
99773bd4
PB
771 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
772 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
773 flags1 = page_get_flags(tb->pc);
774 flags2 = page_get_flags(tb->pc + tb->size - 1);
775 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
776 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 777 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
778 }
779 }
780 }
781}
782
783#endif
784
785/* invalidate one TB */
786static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
787 int next_offset)
788{
789 TranslationBlock *tb1;
790 for(;;) {
791 tb1 = *ptb;
792 if (tb1 == tb) {
793 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
794 break;
795 }
796 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
797 }
798}
799
9fa3e853
FB
800static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
801{
802 TranslationBlock *tb1;
803 unsigned int n1;
804
805 for(;;) {
806 tb1 = *ptb;
807 n1 = (long)tb1 & 3;
808 tb1 = (TranslationBlock *)((long)tb1 & ~3);
809 if (tb1 == tb) {
810 *ptb = tb1->page_next[n1];
811 break;
812 }
813 ptb = &tb1->page_next[n1];
814 }
815}
816
d4e8164f
FB
817static inline void tb_jmp_remove(TranslationBlock *tb, int n)
818{
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843}
844
845/* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847static inline void tb_reset_jump(TranslationBlock *tb, int n)
848{
849 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
850}
851
41c1b1c9 852void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 853{
6a00d601 854 CPUState *env;
8a40a180 855 PageDesc *p;
d4e8164f 856 unsigned int h, n1;
41c1b1c9 857 tb_page_addr_t phys_pc;
8a40a180 858 TranslationBlock *tb1, *tb2;
3b46e624 859
8a40a180
FB
860 /* remove the TB from the hash list */
861 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
862 h = tb_phys_hash_func(phys_pc);
5fafdf24 863 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
864 offsetof(TranslationBlock, phys_hash_next));
865
866 /* remove the TB from the page list */
867 if (tb->page_addr[0] != page_addr) {
868 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
869 tb_page_remove(&p->first_tb, tb);
870 invalidate_page_bitmap(p);
871 }
872 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
873 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
874 tb_page_remove(&p->first_tb, tb);
875 invalidate_page_bitmap(p);
876 }
877
36bdbe54 878 tb_invalidated_flag = 1;
59817ccb 879
fd6ce8f6 880 /* remove the TB from the hash list */
8a40a180 881 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
882 for(env = first_cpu; env != NULL; env = env->next_cpu) {
883 if (env->tb_jmp_cache[h] == tb)
884 env->tb_jmp_cache[h] = NULL;
885 }
d4e8164f
FB
886
887 /* suppress this TB from the two jump lists */
888 tb_jmp_remove(tb, 0);
889 tb_jmp_remove(tb, 1);
890
891 /* suppress any remaining jumps to this TB */
892 tb1 = tb->jmp_first;
893 for(;;) {
894 n1 = (long)tb1 & 3;
895 if (n1 == 2)
896 break;
897 tb1 = (TranslationBlock *)((long)tb1 & ~3);
898 tb2 = tb1->jmp_next[n1];
899 tb_reset_jump(tb1, n1);
900 tb1->jmp_next[n1] = NULL;
901 tb1 = tb2;
902 }
903 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 904
e3db7226 905 tb_phys_invalidate_count++;
9fa3e853
FB
906}
907
908static inline void set_bits(uint8_t *tab, int start, int len)
909{
910 int end, mask, end1;
911
912 end = start + len;
913 tab += start >> 3;
914 mask = 0xff << (start & 7);
915 if ((start & ~7) == (end & ~7)) {
916 if (start < end) {
917 mask &= ~(0xff << (end & 7));
918 *tab |= mask;
919 }
920 } else {
921 *tab++ |= mask;
922 start = (start + 8) & ~7;
923 end1 = end & ~7;
924 while (start < end1) {
925 *tab++ = 0xff;
926 start += 8;
927 }
928 if (start < end) {
929 mask = ~(0xff << (end & 7));
930 *tab |= mask;
931 }
932 }
933}
934
935static void build_page_bitmap(PageDesc *p)
936{
937 int n, tb_start, tb_end;
938 TranslationBlock *tb;
3b46e624 939
b2a7081a 940 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
941
942 tb = p->first_tb;
943 while (tb != NULL) {
944 n = (long)tb & 3;
945 tb = (TranslationBlock *)((long)tb & ~3);
946 /* NOTE: this is subtle as a TB may span two physical pages */
947 if (n == 0) {
948 /* NOTE: tb_end may be after the end of the page, but
949 it is not a problem */
950 tb_start = tb->pc & ~TARGET_PAGE_MASK;
951 tb_end = tb_start + tb->size;
952 if (tb_end > TARGET_PAGE_SIZE)
953 tb_end = TARGET_PAGE_SIZE;
954 } else {
955 tb_start = 0;
956 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
957 }
958 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
959 tb = tb->page_next[n];
960 }
961}
962
2e70f6ef
PB
963TranslationBlock *tb_gen_code(CPUState *env,
964 target_ulong pc, target_ulong cs_base,
965 int flags, int cflags)
d720b93d
FB
966{
967 TranslationBlock *tb;
968 uint8_t *tc_ptr;
41c1b1c9
PB
969 tb_page_addr_t phys_pc, phys_page2;
970 target_ulong virt_page2;
d720b93d
FB
971 int code_gen_size;
972
41c1b1c9 973 phys_pc = get_page_addr_code(env, pc);
c27004ec 974 tb = tb_alloc(pc);
d720b93d
FB
975 if (!tb) {
976 /* flush must be done */
977 tb_flush(env);
978 /* cannot fail at this point */
c27004ec 979 tb = tb_alloc(pc);
2e70f6ef
PB
980 /* Don't forget to invalidate previous TB info. */
981 tb_invalidated_flag = 1;
d720b93d
FB
982 }
983 tc_ptr = code_gen_ptr;
984 tb->tc_ptr = tc_ptr;
985 tb->cs_base = cs_base;
986 tb->flags = flags;
987 tb->cflags = cflags;
d07bde88 988 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 989 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 990
d720b93d 991 /* check next page if needed */
c27004ec 992 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 993 phys_page2 = -1;
c27004ec 994 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 995 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 996 }
41c1b1c9 997 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 998 return tb;
d720b93d 999}
3b46e624 1000
9fa3e853
FB
1001/* invalidate all TBs which intersect with the target physical page
1002 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
1003 the same physical page. 'is_cpu_write_access' should be true if called
1004 from a real cpu write access: the virtual CPU will exit the current
1005 TB if code is modified inside this TB. */
41c1b1c9 1006void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1007 int is_cpu_write_access)
1008{
6b917547 1009 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 1010 CPUState *env = cpu_single_env;
41c1b1c9 1011 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1012 PageDesc *p;
1013 int n;
1014#ifdef TARGET_HAS_PRECISE_SMC
1015 int current_tb_not_found = is_cpu_write_access;
1016 TranslationBlock *current_tb = NULL;
1017 int current_tb_modified = 0;
1018 target_ulong current_pc = 0;
1019 target_ulong current_cs_base = 0;
1020 int current_flags = 0;
1021#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1022
1023 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1024 if (!p)
9fa3e853 1025 return;
5fafdf24 1026 if (!p->code_bitmap &&
d720b93d
FB
1027 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1028 is_cpu_write_access) {
9fa3e853
FB
1029 /* build code bitmap */
1030 build_page_bitmap(p);
1031 }
1032
1033 /* we remove all the TBs in the range [start, end[ */
1034 /* XXX: see if in some cases it could be faster to invalidate all the code */
1035 tb = p->first_tb;
1036 while (tb != NULL) {
1037 n = (long)tb & 3;
1038 tb = (TranslationBlock *)((long)tb & ~3);
1039 tb_next = tb->page_next[n];
1040 /* NOTE: this is subtle as a TB may span two physical pages */
1041 if (n == 0) {
1042 /* NOTE: tb_end may be after the end of the page, but
1043 it is not a problem */
1044 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1045 tb_end = tb_start + tb->size;
1046 } else {
1047 tb_start = tb->page_addr[1];
1048 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1049 }
1050 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1051#ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb_not_found) {
1053 current_tb_not_found = 0;
1054 current_tb = NULL;
2e70f6ef 1055 if (env->mem_io_pc) {
d720b93d 1056 /* now we have a real cpu fault */
2e70f6ef 1057 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1058 }
1059 }
1060 if (current_tb == tb &&
2e70f6ef 1061 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
3b46e624 1067
d720b93d 1068 current_tb_modified = 1;
5fafdf24 1069 cpu_restore_state(current_tb, env,
2e70f6ef 1070 env->mem_io_pc, NULL);
6b917547
AL
1071 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1072 &current_flags);
d720b93d
FB
1073 }
1074#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1075 /* we need to do that to handle the case where a signal
1076 occurs while doing tb_phys_invalidate() */
1077 saved_tb = NULL;
1078 if (env) {
1079 saved_tb = env->current_tb;
1080 env->current_tb = NULL;
1081 }
9fa3e853 1082 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1083 if (env) {
1084 env->current_tb = saved_tb;
1085 if (env->interrupt_request && env->current_tb)
1086 cpu_interrupt(env, env->interrupt_request);
1087 }
9fa3e853
FB
1088 }
1089 tb = tb_next;
1090 }
1091#if !defined(CONFIG_USER_ONLY)
1092 /* if no code remaining, no need to continue to use slow writes */
1093 if (!p->first_tb) {
1094 invalidate_page_bitmap(p);
d720b93d 1095 if (is_cpu_write_access) {
2e70f6ef 1096 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1097 }
1098 }
1099#endif
1100#ifdef TARGET_HAS_PRECISE_SMC
1101 if (current_tb_modified) {
1102 /* we generate a block containing just the instruction
1103 modifying the memory. It will ensure that it cannot modify
1104 itself */
ea1c1802 1105 env->current_tb = NULL;
2e70f6ef 1106 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1107 cpu_resume_from_signal(env, NULL);
9fa3e853 1108 }
fd6ce8f6 1109#endif
9fa3e853 1110}
fd6ce8f6 1111
9fa3e853 1112/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1113static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1114{
1115 PageDesc *p;
1116 int offset, b;
59817ccb 1117#if 0
a4193c8a 1118 if (1) {
93fcfe39
AL
1119 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1120 cpu_single_env->mem_io_vaddr, len,
1121 cpu_single_env->eip,
1122 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1123 }
1124#endif
9fa3e853 1125 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1126 if (!p)
9fa3e853
FB
1127 return;
1128 if (p->code_bitmap) {
1129 offset = start & ~TARGET_PAGE_MASK;
1130 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1131 if (b & ((1 << len) - 1))
1132 goto do_invalidate;
1133 } else {
1134 do_invalidate:
d720b93d 1135 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1136 }
1137}
1138
9fa3e853 1139#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1140static void tb_invalidate_phys_page(tb_page_addr_t addr,
d720b93d 1141 unsigned long pc, void *puc)
9fa3e853 1142{
6b917547 1143 TranslationBlock *tb;
9fa3e853 1144 PageDesc *p;
6b917547 1145 int n;
d720b93d 1146#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1147 TranslationBlock *current_tb = NULL;
d720b93d 1148 CPUState *env = cpu_single_env;
6b917547
AL
1149 int current_tb_modified = 0;
1150 target_ulong current_pc = 0;
1151 target_ulong current_cs_base = 0;
1152 int current_flags = 0;
d720b93d 1153#endif
9fa3e853
FB
1154
1155 addr &= TARGET_PAGE_MASK;
1156 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1157 if (!p)
9fa3e853
FB
1158 return;
1159 tb = p->first_tb;
d720b93d
FB
1160#ifdef TARGET_HAS_PRECISE_SMC
1161 if (tb && pc != 0) {
1162 current_tb = tb_find_pc(pc);
1163 }
1164#endif
9fa3e853
FB
1165 while (tb != NULL) {
1166 n = (long)tb & 3;
1167 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1168#ifdef TARGET_HAS_PRECISE_SMC
1169 if (current_tb == tb &&
2e70f6ef 1170 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1171 /* If we are modifying the current TB, we must stop
1172 its execution. We could be more precise by checking
1173 that the modification is after the current PC, but it
1174 would require a specialized function to partially
1175 restore the CPU state */
3b46e624 1176
d720b93d
FB
1177 current_tb_modified = 1;
1178 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1179 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1180 &current_flags);
d720b93d
FB
1181 }
1182#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1183 tb_phys_invalidate(tb, addr);
1184 tb = tb->page_next[n];
1185 }
fd6ce8f6 1186 p->first_tb = NULL;
d720b93d
FB
1187#ifdef TARGET_HAS_PRECISE_SMC
1188 if (current_tb_modified) {
1189 /* we generate a block containing just the instruction
1190 modifying the memory. It will ensure that it cannot modify
1191 itself */
ea1c1802 1192 env->current_tb = NULL;
2e70f6ef 1193 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1194 cpu_resume_from_signal(env, puc);
1195 }
1196#endif
fd6ce8f6 1197}
9fa3e853 1198#endif
fd6ce8f6
FB
1199
1200/* add the tb in the target page and protect it if necessary */
5fafdf24 1201static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1202 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1203{
1204 PageDesc *p;
9fa3e853
FB
1205 TranslationBlock *last_first_tb;
1206
1207 tb->page_addr[n] = page_addr;
5cd2c5b6 1208 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853
FB
1209 tb->page_next[n] = p->first_tb;
1210 last_first_tb = p->first_tb;
1211 p->first_tb = (TranslationBlock *)((long)tb | n);
1212 invalidate_page_bitmap(p);
fd6ce8f6 1213
107db443 1214#if defined(TARGET_HAS_SMC) || 1
d720b93d 1215
9fa3e853 1216#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1217 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1218 target_ulong addr;
1219 PageDesc *p2;
9fa3e853
FB
1220 int prot;
1221
fd6ce8f6
FB
1222 /* force the host page as non writable (writes will have a
1223 page fault + mprotect overhead) */
53a5960a 1224 page_addr &= qemu_host_page_mask;
fd6ce8f6 1225 prot = 0;
53a5960a
PB
1226 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1227 addr += TARGET_PAGE_SIZE) {
1228
1229 p2 = page_find (addr >> TARGET_PAGE_BITS);
1230 if (!p2)
1231 continue;
1232 prot |= p2->flags;
1233 p2->flags &= ~PAGE_WRITE;
53a5960a 1234 }
5fafdf24 1235 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1236 (prot & PAGE_BITS) & ~PAGE_WRITE);
1237#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1238 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1239 page_addr);
fd6ce8f6 1240#endif
fd6ce8f6 1241 }
9fa3e853
FB
1242#else
1243 /* if some code is already present, then the pages are already
1244 protected. So we handle the case where only the first TB is
1245 allocated in a physical page */
1246 if (!last_first_tb) {
6a00d601 1247 tlb_protect_code(page_addr);
9fa3e853
FB
1248 }
1249#endif
d720b93d
FB
1250
1251#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1252}
1253
1254/* Allocate a new translation block. Flush the translation buffer if
1255 too many translation blocks or too much generated code. */
c27004ec 1256TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1257{
1258 TranslationBlock *tb;
fd6ce8f6 1259
26a5f13b
FB
1260 if (nb_tbs >= code_gen_max_blocks ||
1261 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1262 return NULL;
fd6ce8f6
FB
1263 tb = &tbs[nb_tbs++];
1264 tb->pc = pc;
b448f2f3 1265 tb->cflags = 0;
d4e8164f
FB
1266 return tb;
1267}
1268
2e70f6ef
PB
1269void tb_free(TranslationBlock *tb)
1270{
bf20dc07 1271 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1272 Ignore the hard cases and just back up if this TB happens to
1273 be the last one generated. */
1274 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1275 code_gen_ptr = tb->tc_ptr;
1276 nb_tbs--;
1277 }
1278}
1279
9fa3e853
FB
1280/* add a new TB and link it to the physical page tables. phys_page2 is
1281 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1282void tb_link_page(TranslationBlock *tb,
1283 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1284{
9fa3e853
FB
1285 unsigned int h;
1286 TranslationBlock **ptb;
1287
c8a706fe
PB
1288 /* Grab the mmap lock to stop another thread invalidating this TB
1289 before we are done. */
1290 mmap_lock();
9fa3e853
FB
1291 /* add in the physical hash table */
1292 h = tb_phys_hash_func(phys_pc);
1293 ptb = &tb_phys_hash[h];
1294 tb->phys_hash_next = *ptb;
1295 *ptb = tb;
fd6ce8f6
FB
1296
1297 /* add in the page list */
9fa3e853
FB
1298 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1299 if (phys_page2 != -1)
1300 tb_alloc_page(tb, 1, phys_page2);
1301 else
1302 tb->page_addr[1] = -1;
9fa3e853 1303
d4e8164f
FB
1304 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1305 tb->jmp_next[0] = NULL;
1306 tb->jmp_next[1] = NULL;
1307
1308 /* init original jump addresses */
1309 if (tb->tb_next_offset[0] != 0xffff)
1310 tb_reset_jump(tb, 0);
1311 if (tb->tb_next_offset[1] != 0xffff)
1312 tb_reset_jump(tb, 1);
8a40a180
FB
1313
1314#ifdef DEBUG_TB_CHECK
1315 tb_page_check();
1316#endif
c8a706fe 1317 mmap_unlock();
fd6ce8f6
FB
1318}
1319
9fa3e853
FB
1320/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1321 tb[1].tc_ptr. Return NULL if not found */
1322TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1323{
9fa3e853
FB
1324 int m_min, m_max, m;
1325 unsigned long v;
1326 TranslationBlock *tb;
a513fe19
FB
1327
1328 if (nb_tbs <= 0)
1329 return NULL;
1330 if (tc_ptr < (unsigned long)code_gen_buffer ||
1331 tc_ptr >= (unsigned long)code_gen_ptr)
1332 return NULL;
1333 /* binary search (cf Knuth) */
1334 m_min = 0;
1335 m_max = nb_tbs - 1;
1336 while (m_min <= m_max) {
1337 m = (m_min + m_max) >> 1;
1338 tb = &tbs[m];
1339 v = (unsigned long)tb->tc_ptr;
1340 if (v == tc_ptr)
1341 return tb;
1342 else if (tc_ptr < v) {
1343 m_max = m - 1;
1344 } else {
1345 m_min = m + 1;
1346 }
5fafdf24 1347 }
a513fe19
FB
1348 return &tbs[m_max];
1349}
7501267e 1350
ea041c0e
FB
1351static void tb_reset_jump_recursive(TranslationBlock *tb);
1352
1353static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1354{
1355 TranslationBlock *tb1, *tb_next, **ptb;
1356 unsigned int n1;
1357
1358 tb1 = tb->jmp_next[n];
1359 if (tb1 != NULL) {
1360 /* find head of list */
1361 for(;;) {
1362 n1 = (long)tb1 & 3;
1363 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1364 if (n1 == 2)
1365 break;
1366 tb1 = tb1->jmp_next[n1];
1367 }
1368 /* we are now sure now that tb jumps to tb1 */
1369 tb_next = tb1;
1370
1371 /* remove tb from the jmp_first list */
1372 ptb = &tb_next->jmp_first;
1373 for(;;) {
1374 tb1 = *ptb;
1375 n1 = (long)tb1 & 3;
1376 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1377 if (n1 == n && tb1 == tb)
1378 break;
1379 ptb = &tb1->jmp_next[n1];
1380 }
1381 *ptb = tb->jmp_next[n];
1382 tb->jmp_next[n] = NULL;
3b46e624 1383
ea041c0e
FB
1384 /* suppress the jump to next tb in generated code */
1385 tb_reset_jump(tb, n);
1386
0124311e 1387 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1388 tb_reset_jump_recursive(tb_next);
1389 }
1390}
1391
1392static void tb_reset_jump_recursive(TranslationBlock *tb)
1393{
1394 tb_reset_jump_recursive2(tb, 0);
1395 tb_reset_jump_recursive2(tb, 1);
1396}
1397
1fddef4b 1398#if defined(TARGET_HAS_ICE)
94df27fd
PB
1399#if defined(CONFIG_USER_ONLY)
1400static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1401{
1402 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1403}
1404#else
d720b93d
FB
1405static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1406{
c227f099 1407 target_phys_addr_t addr;
9b3c35e0 1408 target_ulong pd;
c227f099 1409 ram_addr_t ram_addr;
c2f07f81 1410 PhysPageDesc *p;
d720b93d 1411
c2f07f81
PB
1412 addr = cpu_get_phys_page_debug(env, pc);
1413 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1414 if (!p) {
1415 pd = IO_MEM_UNASSIGNED;
1416 } else {
1417 pd = p->phys_offset;
1418 }
1419 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1420 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1421}
c27004ec 1422#endif
94df27fd 1423#endif /* TARGET_HAS_ICE */
d720b93d 1424
c527ee8f
PB
1425#if defined(CONFIG_USER_ONLY)
1426void cpu_watchpoint_remove_all(CPUState *env, int mask)
1427
1428{
1429}
1430
1431int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1432 int flags, CPUWatchpoint **watchpoint)
1433{
1434 return -ENOSYS;
1435}
1436#else
6658ffb8 1437/* Add a watchpoint. */
a1d1bb31
AL
1438int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1439 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1440{
b4051334 1441 target_ulong len_mask = ~(len - 1);
c0ce998e 1442 CPUWatchpoint *wp;
6658ffb8 1443
b4051334
AL
1444 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1445 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1446 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1447 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1448 return -EINVAL;
1449 }
a1d1bb31 1450 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1451
1452 wp->vaddr = addr;
b4051334 1453 wp->len_mask = len_mask;
a1d1bb31
AL
1454 wp->flags = flags;
1455
2dc9f411 1456 /* keep all GDB-injected watchpoints in front */
c0ce998e 1457 if (flags & BP_GDB)
72cf2d4f 1458 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1459 else
72cf2d4f 1460 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1461
6658ffb8 1462 tlb_flush_page(env, addr);
a1d1bb31
AL
1463
1464 if (watchpoint)
1465 *watchpoint = wp;
1466 return 0;
6658ffb8
PB
1467}
1468
a1d1bb31
AL
1469/* Remove a specific watchpoint. */
1470int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1471 int flags)
6658ffb8 1472{
b4051334 1473 target_ulong len_mask = ~(len - 1);
a1d1bb31 1474 CPUWatchpoint *wp;
6658ffb8 1475
72cf2d4f 1476 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1477 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1478 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1479 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1480 return 0;
1481 }
1482 }
a1d1bb31 1483 return -ENOENT;
6658ffb8
PB
1484}
1485
a1d1bb31
AL
1486/* Remove a specific watchpoint by reference. */
1487void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1488{
72cf2d4f 1489 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1490
a1d1bb31
AL
1491 tlb_flush_page(env, watchpoint->vaddr);
1492
1493 qemu_free(watchpoint);
1494}
1495
1496/* Remove all matching watchpoints. */
1497void cpu_watchpoint_remove_all(CPUState *env, int mask)
1498{
c0ce998e 1499 CPUWatchpoint *wp, *next;
a1d1bb31 1500
72cf2d4f 1501 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1502 if (wp->flags & mask)
1503 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1504 }
7d03f82f 1505}
c527ee8f 1506#endif
7d03f82f 1507
a1d1bb31
AL
1508/* Add a breakpoint. */
1509int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1510 CPUBreakpoint **breakpoint)
4c3a88a2 1511{
1fddef4b 1512#if defined(TARGET_HAS_ICE)
c0ce998e 1513 CPUBreakpoint *bp;
3b46e624 1514
a1d1bb31 1515 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1516
a1d1bb31
AL
1517 bp->pc = pc;
1518 bp->flags = flags;
1519
2dc9f411 1520 /* keep all GDB-injected breakpoints in front */
c0ce998e 1521 if (flags & BP_GDB)
72cf2d4f 1522 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1523 else
72cf2d4f 1524 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1525
d720b93d 1526 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1527
1528 if (breakpoint)
1529 *breakpoint = bp;
4c3a88a2
FB
1530 return 0;
1531#else
a1d1bb31 1532 return -ENOSYS;
4c3a88a2
FB
1533#endif
1534}
1535
a1d1bb31
AL
1536/* Remove a specific breakpoint. */
1537int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1538{
7d03f82f 1539#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1540 CPUBreakpoint *bp;
1541
72cf2d4f 1542 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1543 if (bp->pc == pc && bp->flags == flags) {
1544 cpu_breakpoint_remove_by_ref(env, bp);
1545 return 0;
1546 }
7d03f82f 1547 }
a1d1bb31
AL
1548 return -ENOENT;
1549#else
1550 return -ENOSYS;
7d03f82f
EI
1551#endif
1552}
1553
a1d1bb31
AL
1554/* Remove a specific breakpoint by reference. */
1555void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1556{
1fddef4b 1557#if defined(TARGET_HAS_ICE)
72cf2d4f 1558 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1559
a1d1bb31
AL
1560 breakpoint_invalidate(env, breakpoint->pc);
1561
1562 qemu_free(breakpoint);
1563#endif
1564}
1565
1566/* Remove all matching breakpoints. */
1567void cpu_breakpoint_remove_all(CPUState *env, int mask)
1568{
1569#if defined(TARGET_HAS_ICE)
c0ce998e 1570 CPUBreakpoint *bp, *next;
a1d1bb31 1571
72cf2d4f 1572 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1573 if (bp->flags & mask)
1574 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1575 }
4c3a88a2
FB
1576#endif
1577}
1578
c33a346e
FB
1579/* enable or disable single step mode. EXCP_DEBUG is returned by the
1580 CPU loop after each instruction */
1581void cpu_single_step(CPUState *env, int enabled)
1582{
1fddef4b 1583#if defined(TARGET_HAS_ICE)
c33a346e
FB
1584 if (env->singlestep_enabled != enabled) {
1585 env->singlestep_enabled = enabled;
e22a25c9
AL
1586 if (kvm_enabled())
1587 kvm_update_guest_debug(env, 0);
1588 else {
ccbb4d44 1589 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1590 /* XXX: only flush what is necessary */
1591 tb_flush(env);
1592 }
c33a346e
FB
1593 }
1594#endif
1595}
1596
34865134
FB
1597/* enable or disable low levels log */
1598void cpu_set_log(int log_flags)
1599{
1600 loglevel = log_flags;
1601 if (loglevel && !logfile) {
11fcfab4 1602 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1603 if (!logfile) {
1604 perror(logfilename);
1605 _exit(1);
1606 }
9fa3e853
FB
1607#if !defined(CONFIG_SOFTMMU)
1608 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1609 {
b55266b5 1610 static char logfile_buf[4096];
9fa3e853
FB
1611 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1612 }
bf65f53f
FN
1613#elif !defined(_WIN32)
1614 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1615 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1616#endif
e735b91c
PB
1617 log_append = 1;
1618 }
1619 if (!loglevel && logfile) {
1620 fclose(logfile);
1621 logfile = NULL;
34865134
FB
1622 }
1623}
1624
1625void cpu_set_log_filename(const char *filename)
1626{
1627 logfilename = strdup(filename);
e735b91c
PB
1628 if (logfile) {
1629 fclose(logfile);
1630 logfile = NULL;
1631 }
1632 cpu_set_log(loglevel);
34865134 1633}
c33a346e 1634
3098dba0 1635static void cpu_unlink_tb(CPUState *env)
ea041c0e 1636{
3098dba0
AJ
1637 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1638 problem and hope the cpu will stop of its own accord. For userspace
1639 emulation this often isn't actually as bad as it sounds. Often
1640 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1641 TranslationBlock *tb;
c227f099 1642 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1643
cab1b4bd 1644 spin_lock(&interrupt_lock);
3098dba0
AJ
1645 tb = env->current_tb;
1646 /* if the cpu is currently executing code, we must unlink it and
1647 all the potentially executing TB */
f76cfe56 1648 if (tb) {
3098dba0
AJ
1649 env->current_tb = NULL;
1650 tb_reset_jump_recursive(tb);
be214e6c 1651 }
cab1b4bd 1652 spin_unlock(&interrupt_lock);
3098dba0
AJ
1653}
1654
1655/* mask must never be zero, except for A20 change call */
1656void cpu_interrupt(CPUState *env, int mask)
1657{
1658 int old_mask;
be214e6c 1659
2e70f6ef 1660 old_mask = env->interrupt_request;
68a79315 1661 env->interrupt_request |= mask;
3098dba0 1662
8edac960
AL
1663#ifndef CONFIG_USER_ONLY
1664 /*
1665 * If called from iothread context, wake the target cpu in
1666 * case its halted.
1667 */
1668 if (!qemu_cpu_self(env)) {
1669 qemu_cpu_kick(env);
1670 return;
1671 }
1672#endif
1673
2e70f6ef 1674 if (use_icount) {
266910c4 1675 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1676#ifndef CONFIG_USER_ONLY
2e70f6ef 1677 if (!can_do_io(env)
be214e6c 1678 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1679 cpu_abort(env, "Raised interrupt while not in I/O function");
1680 }
1681#endif
1682 } else {
3098dba0 1683 cpu_unlink_tb(env);
ea041c0e
FB
1684 }
1685}
1686
b54ad049
FB
1687void cpu_reset_interrupt(CPUState *env, int mask)
1688{
1689 env->interrupt_request &= ~mask;
1690}
1691
3098dba0
AJ
1692void cpu_exit(CPUState *env)
1693{
1694 env->exit_request = 1;
1695 cpu_unlink_tb(env);
1696}
1697
c7cd6a37 1698const CPULogItem cpu_log_items[] = {
5fafdf24 1699 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1700 "show generated host assembly code for each compiled TB" },
1701 { CPU_LOG_TB_IN_ASM, "in_asm",
1702 "show target assembly code for each compiled TB" },
5fafdf24 1703 { CPU_LOG_TB_OP, "op",
57fec1fe 1704 "show micro ops for each compiled TB" },
f193c797 1705 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1706 "show micro ops "
1707#ifdef TARGET_I386
1708 "before eflags optimization and "
f193c797 1709#endif
e01a1157 1710 "after liveness analysis" },
f193c797
FB
1711 { CPU_LOG_INT, "int",
1712 "show interrupts/exceptions in short format" },
1713 { CPU_LOG_EXEC, "exec",
1714 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1715 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1716 "show CPU state before block translation" },
f193c797
FB
1717#ifdef TARGET_I386
1718 { CPU_LOG_PCALL, "pcall",
1719 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1720 { CPU_LOG_RESET, "cpu_reset",
1721 "show CPU state before CPU resets" },
f193c797 1722#endif
8e3a9fd2 1723#ifdef DEBUG_IOPORT
fd872598
FB
1724 { CPU_LOG_IOPORT, "ioport",
1725 "show all i/o ports accesses" },
8e3a9fd2 1726#endif
f193c797
FB
1727 { 0, NULL, NULL },
1728};
1729
f6f3fbca
MT
1730#ifndef CONFIG_USER_ONLY
1731static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1732 = QLIST_HEAD_INITIALIZER(memory_client_list);
1733
1734static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1735 ram_addr_t size,
1736 ram_addr_t phys_offset)
1737{
1738 CPUPhysMemoryClient *client;
1739 QLIST_FOREACH(client, &memory_client_list, list) {
1740 client->set_memory(client, start_addr, size, phys_offset);
1741 }
1742}
1743
1744static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1745 target_phys_addr_t end)
1746{
1747 CPUPhysMemoryClient *client;
1748 QLIST_FOREACH(client, &memory_client_list, list) {
1749 int r = client->sync_dirty_bitmap(client, start, end);
1750 if (r < 0)
1751 return r;
1752 }
1753 return 0;
1754}
1755
1756static int cpu_notify_migration_log(int enable)
1757{
1758 CPUPhysMemoryClient *client;
1759 QLIST_FOREACH(client, &memory_client_list, list) {
1760 int r = client->migration_log(client, enable);
1761 if (r < 0)
1762 return r;
1763 }
1764 return 0;
1765}
1766
5cd2c5b6
RH
1767static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1768 int level, void **lp)
f6f3fbca 1769{
5cd2c5b6 1770 int i;
f6f3fbca 1771
5cd2c5b6
RH
1772 if (*lp == NULL) {
1773 return;
1774 }
1775 if (level == 0) {
1776 PhysPageDesc *pd = *lp;
7296abac 1777 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1778 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1779 client->set_memory(client, pd[i].region_offset,
1780 TARGET_PAGE_SIZE, pd[i].phys_offset);
f6f3fbca 1781 }
5cd2c5b6
RH
1782 }
1783 } else {
1784 void **pp = *lp;
7296abac 1785 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6 1786 phys_page_for_each_1(client, level - 1, pp + i);
f6f3fbca
MT
1787 }
1788 }
1789}
1790
1791static void phys_page_for_each(CPUPhysMemoryClient *client)
1792{
5cd2c5b6
RH
1793 int i;
1794 for (i = 0; i < P_L1_SIZE; ++i) {
1795 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1796 l1_phys_map + 1);
f6f3fbca 1797 }
f6f3fbca
MT
1798}
1799
1800void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1801{
1802 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1803 phys_page_for_each(client);
1804}
1805
1806void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1807{
1808 QLIST_REMOVE(client, list);
1809}
1810#endif
1811
f193c797
FB
1812static int cmp1(const char *s1, int n, const char *s2)
1813{
1814 if (strlen(s2) != n)
1815 return 0;
1816 return memcmp(s1, s2, n) == 0;
1817}
3b46e624 1818
f193c797
FB
1819/* takes a comma separated list of log masks. Return 0 if error. */
1820int cpu_str_to_log_mask(const char *str)
1821{
c7cd6a37 1822 const CPULogItem *item;
f193c797
FB
1823 int mask;
1824 const char *p, *p1;
1825
1826 p = str;
1827 mask = 0;
1828 for(;;) {
1829 p1 = strchr(p, ',');
1830 if (!p1)
1831 p1 = p + strlen(p);
8e3a9fd2
FB
1832 if(cmp1(p,p1-p,"all")) {
1833 for(item = cpu_log_items; item->mask != 0; item++) {
1834 mask |= item->mask;
1835 }
1836 } else {
f193c797
FB
1837 for(item = cpu_log_items; item->mask != 0; item++) {
1838 if (cmp1(p, p1 - p, item->name))
1839 goto found;
1840 }
1841 return 0;
8e3a9fd2 1842 }
f193c797
FB
1843 found:
1844 mask |= item->mask;
1845 if (*p1 != ',')
1846 break;
1847 p = p1 + 1;
1848 }
1849 return mask;
1850}
ea041c0e 1851
7501267e
FB
1852void cpu_abort(CPUState *env, const char *fmt, ...)
1853{
1854 va_list ap;
493ae1f0 1855 va_list ap2;
7501267e
FB
1856
1857 va_start(ap, fmt);
493ae1f0 1858 va_copy(ap2, ap);
7501267e
FB
1859 fprintf(stderr, "qemu: fatal: ");
1860 vfprintf(stderr, fmt, ap);
1861 fprintf(stderr, "\n");
1862#ifdef TARGET_I386
7fe48483
FB
1863 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1864#else
1865 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1866#endif
93fcfe39
AL
1867 if (qemu_log_enabled()) {
1868 qemu_log("qemu: fatal: ");
1869 qemu_log_vprintf(fmt, ap2);
1870 qemu_log("\n");
f9373291 1871#ifdef TARGET_I386
93fcfe39 1872 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1873#else
93fcfe39 1874 log_cpu_state(env, 0);
f9373291 1875#endif
31b1a7b4 1876 qemu_log_flush();
93fcfe39 1877 qemu_log_close();
924edcae 1878 }
493ae1f0 1879 va_end(ap2);
f9373291 1880 va_end(ap);
fd052bf6
RV
1881#if defined(CONFIG_USER_ONLY)
1882 {
1883 struct sigaction act;
1884 sigfillset(&act.sa_mask);
1885 act.sa_handler = SIG_DFL;
1886 sigaction(SIGABRT, &act, NULL);
1887 }
1888#endif
7501267e
FB
1889 abort();
1890}
1891
c5be9f08
TS
1892CPUState *cpu_copy(CPUState *env)
1893{
01ba9816 1894 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1895 CPUState *next_cpu = new_env->next_cpu;
1896 int cpu_index = new_env->cpu_index;
5a38f081
AL
1897#if defined(TARGET_HAS_ICE)
1898 CPUBreakpoint *bp;
1899 CPUWatchpoint *wp;
1900#endif
1901
c5be9f08 1902 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1903
1904 /* Preserve chaining and index. */
c5be9f08
TS
1905 new_env->next_cpu = next_cpu;
1906 new_env->cpu_index = cpu_index;
5a38f081
AL
1907
1908 /* Clone all break/watchpoints.
1909 Note: Once we support ptrace with hw-debug register access, make sure
1910 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1911 QTAILQ_INIT(&env->breakpoints);
1912 QTAILQ_INIT(&env->watchpoints);
5a38f081 1913#if defined(TARGET_HAS_ICE)
72cf2d4f 1914 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1915 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1916 }
72cf2d4f 1917 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1918 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1919 wp->flags, NULL);
1920 }
1921#endif
1922
c5be9f08
TS
1923 return new_env;
1924}
1925
0124311e
FB
1926#if !defined(CONFIG_USER_ONLY)
1927
5c751e99
EI
1928static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1929{
1930 unsigned int i;
1931
1932 /* Discard jump cache entries for any tb which might potentially
1933 overlap the flushed page. */
1934 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1935 memset (&env->tb_jmp_cache[i], 0,
1936 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1937
1938 i = tb_jmp_cache_hash_page(addr);
1939 memset (&env->tb_jmp_cache[i], 0,
1940 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1941}
1942
08738984
IK
1943static CPUTLBEntry s_cputlb_empty_entry = {
1944 .addr_read = -1,
1945 .addr_write = -1,
1946 .addr_code = -1,
1947 .addend = -1,
1948};
1949
ee8b7021
FB
1950/* NOTE: if flush_global is true, also flush global entries (not
1951 implemented yet) */
1952void tlb_flush(CPUState *env, int flush_global)
33417e70 1953{
33417e70 1954 int i;
0124311e 1955
9fa3e853
FB
1956#if defined(DEBUG_TLB)
1957 printf("tlb_flush:\n");
1958#endif
0124311e
FB
1959 /* must reset current TB so that interrupts cannot modify the
1960 links while we are modifying them */
1961 env->current_tb = NULL;
1962
33417e70 1963 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1964 int mmu_idx;
1965 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1966 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1967 }
33417e70 1968 }
9fa3e853 1969
8a40a180 1970 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1971
d4c430a8
PB
1972 env->tlb_flush_addr = -1;
1973 env->tlb_flush_mask = 0;
e3db7226 1974 tlb_flush_count++;
33417e70
FB
1975}
1976
274da6b2 1977static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1978{
5fafdf24 1979 if (addr == (tlb_entry->addr_read &
84b7b8e7 1980 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1981 addr == (tlb_entry->addr_write &
84b7b8e7 1982 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1983 addr == (tlb_entry->addr_code &
84b7b8e7 1984 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1985 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1986 }
61382a50
FB
1987}
1988
2e12669a 1989void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1990{
8a40a180 1991 int i;
cfde4bd9 1992 int mmu_idx;
0124311e 1993
9fa3e853 1994#if defined(DEBUG_TLB)
108c49b8 1995 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1996#endif
d4c430a8
PB
1997 /* Check if we need to flush due to large pages. */
1998 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1999#if defined(DEBUG_TLB)
2000 printf("tlb_flush_page: forced full flush ("
2001 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
2002 env->tlb_flush_addr, env->tlb_flush_mask);
2003#endif
2004 tlb_flush(env, 1);
2005 return;
2006 }
0124311e
FB
2007 /* must reset current TB so that interrupts cannot modify the
2008 links while we are modifying them */
2009 env->current_tb = NULL;
61382a50
FB
2010
2011 addr &= TARGET_PAGE_MASK;
2012 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2013 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2014 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 2015
5c751e99 2016 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
2017}
2018
9fa3e853
FB
2019/* update the TLBs so that writes to code in the virtual page 'addr'
2020 can be detected */
c227f099 2021static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 2022{
5fafdf24 2023 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
2024 ram_addr + TARGET_PAGE_SIZE,
2025 CODE_DIRTY_FLAG);
9fa3e853
FB
2026}
2027
9fa3e853 2028/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 2029 tested for self modifying code */
c227f099 2030static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 2031 target_ulong vaddr)
9fa3e853 2032{
f7c11b53 2033 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
1ccde1cb
FB
2034}
2035
5fafdf24 2036static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
2037 unsigned long start, unsigned long length)
2038{
2039 unsigned long addr;
84b7b8e7
FB
2040 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2041 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 2042 if ((addr - start) < length) {
0f459d16 2043 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
2044 }
2045 }
2046}
2047
5579c7f3 2048/* Note: start and end must be within the same ram block. */
c227f099 2049void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 2050 int dirty_flags)
1ccde1cb
FB
2051{
2052 CPUState *env;
4f2ac237 2053 unsigned long length, start1;
f7c11b53 2054 int i;
1ccde1cb
FB
2055
2056 start &= TARGET_PAGE_MASK;
2057 end = TARGET_PAGE_ALIGN(end);
2058
2059 length = end - start;
2060 if (length == 0)
2061 return;
f7c11b53 2062 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 2063
1ccde1cb
FB
2064 /* we modify the TLB cache so that the dirty bit will be set again
2065 when accessing the range */
5579c7f3
PB
2066 start1 = (unsigned long)qemu_get_ram_ptr(start);
2067 /* Chek that we don't span multiple blocks - this breaks the
2068 address comparisons below. */
2069 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
2070 != (end - 1) - start) {
2071 abort();
2072 }
2073
6a00d601 2074 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
2075 int mmu_idx;
2076 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2077 for(i = 0; i < CPU_TLB_SIZE; i++)
2078 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2079 start1, length);
2080 }
6a00d601 2081 }
1ccde1cb
FB
2082}
2083
74576198
AL
2084int cpu_physical_memory_set_dirty_tracking(int enable)
2085{
f6f3fbca 2086 int ret = 0;
74576198 2087 in_migration = enable;
f6f3fbca
MT
2088 ret = cpu_notify_migration_log(!!enable);
2089 return ret;
74576198
AL
2090}
2091
2092int cpu_physical_memory_get_dirty_tracking(void)
2093{
2094 return in_migration;
2095}
2096
c227f099
AL
2097int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2098 target_phys_addr_t end_addr)
2bec46dc 2099{
7b8f3b78 2100 int ret;
151f7749 2101
f6f3fbca 2102 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
151f7749 2103 return ret;
2bec46dc
AL
2104}
2105
3a7d929e
FB
2106static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2107{
c227f099 2108 ram_addr_t ram_addr;
5579c7f3 2109 void *p;
3a7d929e 2110
84b7b8e7 2111 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
2112 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2113 + tlb_entry->addend);
2114 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 2115 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 2116 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
2117 }
2118 }
2119}
2120
2121/* update the TLB according to the current state of the dirty bits */
2122void cpu_tlb_update_dirty(CPUState *env)
2123{
2124 int i;
cfde4bd9
IY
2125 int mmu_idx;
2126 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2127 for(i = 0; i < CPU_TLB_SIZE; i++)
2128 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2129 }
3a7d929e
FB
2130}
2131
0f459d16 2132static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 2133{
0f459d16
PB
2134 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2135 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
2136}
2137
0f459d16
PB
2138/* update the TLB corresponding to virtual page vaddr
2139 so that it is no longer dirty */
2140static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 2141{
1ccde1cb 2142 int i;
cfde4bd9 2143 int mmu_idx;
1ccde1cb 2144
0f459d16 2145 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 2146 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
2147 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2148 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
2149}
2150
d4c430a8
PB
2151/* Our TLB does not support large pages, so remember the area covered by
2152 large pages and trigger a full TLB flush if these are invalidated. */
2153static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2154 target_ulong size)
2155{
2156 target_ulong mask = ~(size - 1);
2157
2158 if (env->tlb_flush_addr == (target_ulong)-1) {
2159 env->tlb_flush_addr = vaddr & mask;
2160 env->tlb_flush_mask = mask;
2161 return;
2162 }
2163 /* Extend the existing region to include the new page.
2164 This is a compromise between unnecessary flushes and the cost
2165 of maintaining a full variable size TLB. */
2166 mask &= env->tlb_flush_mask;
2167 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2168 mask <<= 1;
2169 }
2170 env->tlb_flush_addr &= mask;
2171 env->tlb_flush_mask = mask;
2172}
2173
2174/* Add a new TLB entry. At most one entry for a given virtual address
2175 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2176 supplied size is only used by tlb_flush_page. */
2177void tlb_set_page(CPUState *env, target_ulong vaddr,
2178 target_phys_addr_t paddr, int prot,
2179 int mmu_idx, target_ulong size)
9fa3e853 2180{
92e873b9 2181 PhysPageDesc *p;
4f2ac237 2182 unsigned long pd;
9fa3e853 2183 unsigned int index;
4f2ac237 2184 target_ulong address;
0f459d16 2185 target_ulong code_address;
355b1943 2186 unsigned long addend;
84b7b8e7 2187 CPUTLBEntry *te;
a1d1bb31 2188 CPUWatchpoint *wp;
c227f099 2189 target_phys_addr_t iotlb;
9fa3e853 2190
d4c430a8
PB
2191 assert(size >= TARGET_PAGE_SIZE);
2192 if (size != TARGET_PAGE_SIZE) {
2193 tlb_add_large_page(env, vaddr, size);
2194 }
92e873b9 2195 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
2196 if (!p) {
2197 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
2198 } else {
2199 pd = p->phys_offset;
9fa3e853
FB
2200 }
2201#if defined(DEBUG_TLB)
6ebbf390
JM
2202 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2203 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
2204#endif
2205
0f459d16
PB
2206 address = vaddr;
2207 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2208 /* IO memory case (romd handled later) */
2209 address |= TLB_MMIO;
2210 }
5579c7f3 2211 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
2212 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2213 /* Normal RAM. */
2214 iotlb = pd & TARGET_PAGE_MASK;
2215 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2216 iotlb |= IO_MEM_NOTDIRTY;
2217 else
2218 iotlb |= IO_MEM_ROM;
2219 } else {
ccbb4d44 2220 /* IO handlers are currently passed a physical address.
0f459d16
PB
2221 It would be nice to pass an offset from the base address
2222 of that region. This would avoid having to special case RAM,
2223 and avoid full address decoding in every device.
2224 We can't use the high bits of pd for this because
2225 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
2226 iotlb = (pd & ~TARGET_PAGE_MASK);
2227 if (p) {
8da3ff18
PB
2228 iotlb += p->region_offset;
2229 } else {
2230 iotlb += paddr;
2231 }
0f459d16
PB
2232 }
2233
2234 code_address = address;
2235 /* Make accesses to pages with watchpoints go via the
2236 watchpoint trap routines. */
72cf2d4f 2237 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2238 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2239 iotlb = io_mem_watch + paddr;
2240 /* TODO: The memory case can be optimized by not trapping
2241 reads of pages with a write breakpoint. */
2242 address |= TLB_MMIO;
6658ffb8 2243 }
0f459d16 2244 }
d79acba4 2245
0f459d16
PB
2246 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2247 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2248 te = &env->tlb_table[mmu_idx][index];
2249 te->addend = addend - vaddr;
2250 if (prot & PAGE_READ) {
2251 te->addr_read = address;
2252 } else {
2253 te->addr_read = -1;
2254 }
5c751e99 2255
0f459d16
PB
2256 if (prot & PAGE_EXEC) {
2257 te->addr_code = code_address;
2258 } else {
2259 te->addr_code = -1;
2260 }
2261 if (prot & PAGE_WRITE) {
2262 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2263 (pd & IO_MEM_ROMD)) {
2264 /* Write access calls the I/O callback. */
2265 te->addr_write = address | TLB_MMIO;
2266 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2267 !cpu_physical_memory_is_dirty(pd)) {
2268 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2269 } else {
0f459d16 2270 te->addr_write = address;
9fa3e853 2271 }
0f459d16
PB
2272 } else {
2273 te->addr_write = -1;
9fa3e853 2274 }
9fa3e853
FB
2275}
2276
0124311e
FB
2277#else
2278
ee8b7021 2279void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2280{
2281}
2282
2e12669a 2283void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2284{
2285}
2286
edf8e2af
MW
2287/*
2288 * Walks guest process memory "regions" one by one
2289 * and calls callback function 'fn' for each region.
2290 */
5cd2c5b6
RH
2291
2292struct walk_memory_regions_data
2293{
2294 walk_memory_regions_fn fn;
2295 void *priv;
2296 unsigned long start;
2297 int prot;
2298};
2299
2300static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 2301 abi_ulong end, int new_prot)
5cd2c5b6
RH
2302{
2303 if (data->start != -1ul) {
2304 int rc = data->fn(data->priv, data->start, end, data->prot);
2305 if (rc != 0) {
2306 return rc;
2307 }
2308 }
2309
2310 data->start = (new_prot ? end : -1ul);
2311 data->prot = new_prot;
2312
2313 return 0;
2314}
2315
2316static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 2317 abi_ulong base, int level, void **lp)
5cd2c5b6 2318{
b480d9b7 2319 abi_ulong pa;
5cd2c5b6
RH
2320 int i, rc;
2321
2322 if (*lp == NULL) {
2323 return walk_memory_regions_end(data, base, 0);
2324 }
2325
2326 if (level == 0) {
2327 PageDesc *pd = *lp;
7296abac 2328 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
2329 int prot = pd[i].flags;
2330
2331 pa = base | (i << TARGET_PAGE_BITS);
2332 if (prot != data->prot) {
2333 rc = walk_memory_regions_end(data, pa, prot);
2334 if (rc != 0) {
2335 return rc;
9fa3e853 2336 }
9fa3e853 2337 }
5cd2c5b6
RH
2338 }
2339 } else {
2340 void **pp = *lp;
7296abac 2341 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
2342 pa = base | ((abi_ulong)i <<
2343 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
2344 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2345 if (rc != 0) {
2346 return rc;
2347 }
2348 }
2349 }
2350
2351 return 0;
2352}
2353
2354int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2355{
2356 struct walk_memory_regions_data data;
2357 unsigned long i;
2358
2359 data.fn = fn;
2360 data.priv = priv;
2361 data.start = -1ul;
2362 data.prot = 0;
2363
2364 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 2365 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
2366 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2367 if (rc != 0) {
2368 return rc;
9fa3e853 2369 }
33417e70 2370 }
5cd2c5b6
RH
2371
2372 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
2373}
2374
b480d9b7
PB
2375static int dump_region(void *priv, abi_ulong start,
2376 abi_ulong end, unsigned long prot)
edf8e2af
MW
2377{
2378 FILE *f = (FILE *)priv;
2379
b480d9b7
PB
2380 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2381 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2382 start, end, end - start,
2383 ((prot & PAGE_READ) ? 'r' : '-'),
2384 ((prot & PAGE_WRITE) ? 'w' : '-'),
2385 ((prot & PAGE_EXEC) ? 'x' : '-'));
2386
2387 return (0);
2388}
2389
2390/* dump memory mappings */
2391void page_dump(FILE *f)
2392{
2393 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2394 "start", "end", "size", "prot");
2395 walk_memory_regions(f, dump_region);
33417e70
FB
2396}
2397
53a5960a 2398int page_get_flags(target_ulong address)
33417e70 2399{
9fa3e853
FB
2400 PageDesc *p;
2401
2402 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2403 if (!p)
9fa3e853
FB
2404 return 0;
2405 return p->flags;
2406}
2407
376a7909
RH
2408/* Modify the flags of a page and invalidate the code if necessary.
2409 The flag PAGE_WRITE_ORG is positioned automatically depending
2410 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2411void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2412{
376a7909
RH
2413 target_ulong addr, len;
2414
2415 /* This function should never be called with addresses outside the
2416 guest address space. If this assert fires, it probably indicates
2417 a missing call to h2g_valid. */
b480d9b7
PB
2418#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2419 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2420#endif
2421 assert(start < end);
9fa3e853
FB
2422
2423 start = start & TARGET_PAGE_MASK;
2424 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2425
2426 if (flags & PAGE_WRITE) {
9fa3e853 2427 flags |= PAGE_WRITE_ORG;
376a7909
RH
2428 }
2429
2430 for (addr = start, len = end - start;
2431 len != 0;
2432 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2433 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2434
2435 /* If the write protection bit is set, then we invalidate
2436 the code inside. */
5fafdf24 2437 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2438 (flags & PAGE_WRITE) &&
2439 p->first_tb) {
d720b93d 2440 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2441 }
2442 p->flags = flags;
2443 }
33417e70
FB
2444}
2445
3d97b40b
TS
2446int page_check_range(target_ulong start, target_ulong len, int flags)
2447{
2448 PageDesc *p;
2449 target_ulong end;
2450 target_ulong addr;
2451
376a7909
RH
2452 /* This function should never be called with addresses outside the
2453 guest address space. If this assert fires, it probably indicates
2454 a missing call to h2g_valid. */
338e9e6c
BS
2455#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2456 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2457#endif
2458
2459 if (start + len - 1 < start) {
2460 /* We've wrapped around. */
55f280c9 2461 return -1;
376a7909 2462 }
55f280c9 2463
3d97b40b
TS
2464 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2465 start = start & TARGET_PAGE_MASK;
2466
376a7909
RH
2467 for (addr = start, len = end - start;
2468 len != 0;
2469 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2470 p = page_find(addr >> TARGET_PAGE_BITS);
2471 if( !p )
2472 return -1;
2473 if( !(p->flags & PAGE_VALID) )
2474 return -1;
2475
dae3270c 2476 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2477 return -1;
dae3270c
FB
2478 if (flags & PAGE_WRITE) {
2479 if (!(p->flags & PAGE_WRITE_ORG))
2480 return -1;
2481 /* unprotect the page if it was put read-only because it
2482 contains translated code */
2483 if (!(p->flags & PAGE_WRITE)) {
2484 if (!page_unprotect(addr, 0, NULL))
2485 return -1;
2486 }
2487 return 0;
2488 }
3d97b40b
TS
2489 }
2490 return 0;
2491}
2492
9fa3e853 2493/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2494 page. Return TRUE if the fault was successfully handled. */
53a5960a 2495int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853 2496{
45d679d6
AJ
2497 unsigned int prot;
2498 PageDesc *p;
53a5960a 2499 target_ulong host_start, host_end, addr;
9fa3e853 2500
c8a706fe
PB
2501 /* Technically this isn't safe inside a signal handler. However we
2502 know this only ever happens in a synchronous SEGV handler, so in
2503 practice it seems to be ok. */
2504 mmap_lock();
2505
45d679d6
AJ
2506 p = page_find(address >> TARGET_PAGE_BITS);
2507 if (!p) {
c8a706fe 2508 mmap_unlock();
9fa3e853 2509 return 0;
c8a706fe 2510 }
45d679d6 2511
9fa3e853
FB
2512 /* if the page was really writable, then we change its
2513 protection back to writable */
45d679d6
AJ
2514 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2515 host_start = address & qemu_host_page_mask;
2516 host_end = host_start + qemu_host_page_size;
2517
2518 prot = 0;
2519 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2520 p = page_find(addr >> TARGET_PAGE_BITS);
2521 p->flags |= PAGE_WRITE;
2522 prot |= p->flags;
2523
9fa3e853
FB
2524 /* and since the content will be modified, we must invalidate
2525 the corresponding translated code. */
45d679d6 2526 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2527#ifdef DEBUG_TB_CHECK
45d679d6 2528 tb_invalidate_check(addr);
9fa3e853 2529#endif
9fa3e853 2530 }
45d679d6
AJ
2531 mprotect((void *)g2h(host_start), qemu_host_page_size,
2532 prot & PAGE_BITS);
2533
2534 mmap_unlock();
2535 return 1;
9fa3e853 2536 }
c8a706fe 2537 mmap_unlock();
9fa3e853
FB
2538 return 0;
2539}
2540
6a00d601
FB
2541static inline void tlb_set_dirty(CPUState *env,
2542 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2543{
2544}
9fa3e853
FB
2545#endif /* defined(CONFIG_USER_ONLY) */
2546
e2eef170 2547#if !defined(CONFIG_USER_ONLY)
8da3ff18 2548
c04b2b78
PB
2549#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2550typedef struct subpage_t {
2551 target_phys_addr_t base;
f6405247
RH
2552 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2553 ram_addr_t region_offset[TARGET_PAGE_SIZE];
c04b2b78
PB
2554} subpage_t;
2555
c227f099
AL
2556static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2557 ram_addr_t memory, ram_addr_t region_offset);
f6405247
RH
2558static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2559 ram_addr_t orig_memory,
2560 ram_addr_t region_offset);
db7b5426
BS
2561#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2562 need_subpage) \
2563 do { \
2564 if (addr > start_addr) \
2565 start_addr2 = 0; \
2566 else { \
2567 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2568 if (start_addr2 > 0) \
2569 need_subpage = 1; \
2570 } \
2571 \
49e9fba2 2572 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2573 end_addr2 = TARGET_PAGE_SIZE - 1; \
2574 else { \
2575 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2576 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2577 need_subpage = 1; \
2578 } \
2579 } while (0)
2580
8f2498f9
MT
2581/* register physical memory.
2582 For RAM, 'size' must be a multiple of the target page size.
2583 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2584 io memory page. The address used when calling the IO function is
2585 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2586 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2587 before calculating this offset. This should not be a problem unless
2588 the low bits of start_addr and region_offset differ. */
c227f099
AL
2589void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2590 ram_addr_t size,
2591 ram_addr_t phys_offset,
2592 ram_addr_t region_offset)
33417e70 2593{
c227f099 2594 target_phys_addr_t addr, end_addr;
92e873b9 2595 PhysPageDesc *p;
9d42037b 2596 CPUState *env;
c227f099 2597 ram_addr_t orig_size = size;
f6405247 2598 subpage_t *subpage;
33417e70 2599
f6f3fbca
MT
2600 cpu_notify_set_memory(start_addr, size, phys_offset);
2601
67c4d23c
PB
2602 if (phys_offset == IO_MEM_UNASSIGNED) {
2603 region_offset = start_addr;
2604 }
8da3ff18 2605 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2606 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
c227f099 2607 end_addr = start_addr + (target_phys_addr_t)size;
49e9fba2 2608 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2609 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2610 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
c227f099
AL
2611 ram_addr_t orig_memory = p->phys_offset;
2612 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2613 int need_subpage = 0;
2614
2615 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2616 need_subpage);
f6405247 2617 if (need_subpage) {
db7b5426
BS
2618 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2619 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2620 &p->phys_offset, orig_memory,
2621 p->region_offset);
db7b5426
BS
2622 } else {
2623 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2624 >> IO_MEM_SHIFT];
2625 }
8da3ff18
PB
2626 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2627 region_offset);
2628 p->region_offset = 0;
db7b5426
BS
2629 } else {
2630 p->phys_offset = phys_offset;
2631 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2632 (phys_offset & IO_MEM_ROMD))
2633 phys_offset += TARGET_PAGE_SIZE;
2634 }
2635 } else {
2636 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2637 p->phys_offset = phys_offset;
8da3ff18 2638 p->region_offset = region_offset;
db7b5426 2639 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2640 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2641 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2642 } else {
c227f099 2643 target_phys_addr_t start_addr2, end_addr2;
db7b5426
BS
2644 int need_subpage = 0;
2645
2646 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2647 end_addr2, need_subpage);
2648
f6405247 2649 if (need_subpage) {
db7b5426 2650 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2651 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2652 addr & TARGET_PAGE_MASK);
db7b5426 2653 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2654 phys_offset, region_offset);
2655 p->region_offset = 0;
db7b5426
BS
2656 }
2657 }
2658 }
8da3ff18 2659 region_offset += TARGET_PAGE_SIZE;
33417e70 2660 }
3b46e624 2661
9d42037b
FB
2662 /* since each CPU stores ram addresses in its TLB cache, we must
2663 reset the modified entries */
2664 /* XXX: slow ! */
2665 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2666 tlb_flush(env, 1);
2667 }
33417e70
FB
2668}
2669
ba863458 2670/* XXX: temporary until new memory mapping API */
c227f099 2671ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2672{
2673 PhysPageDesc *p;
2674
2675 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2676 if (!p)
2677 return IO_MEM_UNASSIGNED;
2678 return p->phys_offset;
2679}
2680
c227f099 2681void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2682{
2683 if (kvm_enabled())
2684 kvm_coalesce_mmio_region(addr, size);
2685}
2686
c227f099 2687void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2688{
2689 if (kvm_enabled())
2690 kvm_uncoalesce_mmio_region(addr, size);
2691}
2692
62a2744c
SY
2693void qemu_flush_coalesced_mmio_buffer(void)
2694{
2695 if (kvm_enabled())
2696 kvm_flush_coalesced_mmio_buffer();
2697}
2698
c902760f
MT
2699#if defined(__linux__) && !defined(TARGET_S390X)
2700
2701#include <sys/vfs.h>
2702
2703#define HUGETLBFS_MAGIC 0x958458f6
2704
2705static long gethugepagesize(const char *path)
2706{
2707 struct statfs fs;
2708 int ret;
2709
2710 do {
2711 ret = statfs(path, &fs);
2712 } while (ret != 0 && errno == EINTR);
2713
2714 if (ret != 0) {
6adc0549 2715 perror(path);
c902760f
MT
2716 return 0;
2717 }
2718
2719 if (fs.f_type != HUGETLBFS_MAGIC)
2720 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2721
2722 return fs.f_bsize;
2723}
2724
2725static void *file_ram_alloc(ram_addr_t memory, const char *path)
2726{
2727 char *filename;
2728 void *area;
2729 int fd;
2730#ifdef MAP_POPULATE
2731 int flags;
2732#endif
2733 unsigned long hpagesize;
2734
2735 hpagesize = gethugepagesize(path);
2736 if (!hpagesize) {
2737 return NULL;
2738 }
2739
2740 if (memory < hpagesize) {
2741 return NULL;
2742 }
2743
2744 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2745 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2746 return NULL;
2747 }
2748
2749 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2750 return NULL;
2751 }
2752
2753 fd = mkstemp(filename);
2754 if (fd < 0) {
6adc0549 2755 perror("unable to create backing store for hugepages");
c902760f
MT
2756 free(filename);
2757 return NULL;
2758 }
2759 unlink(filename);
2760 free(filename);
2761
2762 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2763
2764 /*
2765 * ftruncate is not supported by hugetlbfs in older
2766 * hosts, so don't bother bailing out on errors.
2767 * If anything goes wrong with it under other filesystems,
2768 * mmap will fail.
2769 */
2770 if (ftruncate(fd, memory))
2771 perror("ftruncate");
2772
2773#ifdef MAP_POPULATE
2774 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2775 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2776 * to sidestep this quirk.
2777 */
2778 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2779 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2780#else
2781 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2782#endif
2783 if (area == MAP_FAILED) {
2784 perror("file_ram_alloc: can't mmap RAM pages");
2785 close(fd);
2786 return (NULL);
2787 }
2788 return area;
2789}
2790#endif
2791
c227f099 2792ram_addr_t qemu_ram_alloc(ram_addr_t size)
94a6b54f
PB
2793{
2794 RAMBlock *new_block;
2795
94a6b54f
PB
2796 size = TARGET_PAGE_ALIGN(size);
2797 new_block = qemu_malloc(sizeof(*new_block));
2798
c902760f
MT
2799 if (mem_path) {
2800#if defined (__linux__) && !defined(TARGET_S390X)
2801 new_block->host = file_ram_alloc(size, mem_path);
2802 if (!new_block->host)
2803 exit(1);
2804#else
2805 fprintf(stderr, "-mem-path option unsupported\n");
2806 exit(1);
2807#endif
2808 } else {
6b02494d 2809#if defined(TARGET_S390X) && defined(CONFIG_KVM)
c902760f
MT
2810 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2811 new_block->host = mmap((void*)0x1000000, size,
2812 PROT_EXEC|PROT_READ|PROT_WRITE,
2813 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
6b02494d 2814#else
c902760f 2815 new_block->host = qemu_vmalloc(size);
6b02494d 2816#endif
ccb167e9 2817#ifdef MADV_MERGEABLE
c902760f 2818 madvise(new_block->host, size, MADV_MERGEABLE);
ccb167e9 2819#endif
c902760f 2820 }
94a6b54f
PB
2821 new_block->offset = last_ram_offset;
2822 new_block->length = size;
2823
2824 new_block->next = ram_blocks;
2825 ram_blocks = new_block;
2826
2827 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2828 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2829 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2830 0xff, size >> TARGET_PAGE_BITS);
2831
2832 last_ram_offset += size;
2833
6f0437e8
JK
2834 if (kvm_enabled())
2835 kvm_setup_guest_memory(new_block->host, size);
2836
94a6b54f
PB
2837 return new_block->offset;
2838}
e9a1ab19 2839
c227f099 2840void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2841{
94a6b54f 2842 /* TODO: implement this. */
e9a1ab19
FB
2843}
2844
dc828ca1 2845/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2846 With the exception of the softmmu code in this file, this should
2847 only be used for local memory (e.g. video ram) that the device owns,
2848 and knows it isn't going to access beyond the end of the block.
2849
2850 It should not be used for general purpose DMA.
2851 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2852 */
c227f099 2853void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2854{
94a6b54f
PB
2855 RAMBlock *prev;
2856 RAMBlock **prevp;
2857 RAMBlock *block;
2858
94a6b54f
PB
2859 prev = NULL;
2860 prevp = &ram_blocks;
2861 block = ram_blocks;
2862 while (block && (block->offset > addr
2863 || block->offset + block->length <= addr)) {
2864 if (prev)
2865 prevp = &prev->next;
2866 prev = block;
2867 block = block->next;
2868 }
2869 if (!block) {
2870 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2871 abort();
2872 }
2873 /* Move this entry to to start of the list. */
2874 if (prev) {
2875 prev->next = block->next;
2876 block->next = *prevp;
2877 *prevp = block;
2878 }
2879 return block->host + (addr - block->offset);
dc828ca1
PB
2880}
2881
5579c7f3
PB
2882/* Some of the softmmu routines need to translate from a host pointer
2883 (typically a TLB entry) back to a ram offset. */
c227f099 2884ram_addr_t qemu_ram_addr_from_host(void *ptr)
5579c7f3 2885{
94a6b54f
PB
2886 RAMBlock *block;
2887 uint8_t *host = ptr;
2888
94a6b54f
PB
2889 block = ram_blocks;
2890 while (block && (block->host > host
2891 || block->host + block->length <= host)) {
94a6b54f
PB
2892 block = block->next;
2893 }
2894 if (!block) {
2895 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2896 abort();
2897 }
2898 return block->offset + (host - block->host);
5579c7f3
PB
2899}
2900
c227f099 2901static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2902{
67d3b957 2903#ifdef DEBUG_UNASSIGNED
ab3d1727 2904 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2905#endif
faed1c2a 2906#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2907 do_unassigned_access(addr, 0, 0, 0, 1);
2908#endif
2909 return 0;
2910}
2911
c227f099 2912static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2913{
2914#ifdef DEBUG_UNASSIGNED
2915 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2916#endif
faed1c2a 2917#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2918 do_unassigned_access(addr, 0, 0, 0, 2);
2919#endif
2920 return 0;
2921}
2922
c227f099 2923static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
e18231a3
BS
2924{
2925#ifdef DEBUG_UNASSIGNED
2926 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2927#endif
faed1c2a 2928#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2929 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2930#endif
33417e70
FB
2931 return 0;
2932}
2933
c227f099 2934static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2935{
67d3b957 2936#ifdef DEBUG_UNASSIGNED
ab3d1727 2937 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2938#endif
faed1c2a 2939#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2940 do_unassigned_access(addr, 1, 0, 0, 1);
2941#endif
2942}
2943
c227f099 2944static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2945{
2946#ifdef DEBUG_UNASSIGNED
2947 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2948#endif
faed1c2a 2949#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2950 do_unassigned_access(addr, 1, 0, 0, 2);
2951#endif
2952}
2953
c227f099 2954static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
e18231a3
BS
2955{
2956#ifdef DEBUG_UNASSIGNED
2957 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2958#endif
faed1c2a 2959#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2960 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2961#endif
33417e70
FB
2962}
2963
d60efc6b 2964static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2965 unassigned_mem_readb,
e18231a3
BS
2966 unassigned_mem_readw,
2967 unassigned_mem_readl,
33417e70
FB
2968};
2969
d60efc6b 2970static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2971 unassigned_mem_writeb,
e18231a3
BS
2972 unassigned_mem_writew,
2973 unassigned_mem_writel,
33417e70
FB
2974};
2975
c227f099 2976static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2977 uint32_t val)
9fa3e853 2978{
3a7d929e 2979 int dirty_flags;
f7c11b53 2980 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2981 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2982#if !defined(CONFIG_USER_ONLY)
3a7d929e 2983 tb_invalidate_phys_page_fast(ram_addr, 1);
f7c11b53 2984 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2985#endif
3a7d929e 2986 }
5579c7f3 2987 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 2988 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2989 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2990 /* we remove the notdirty callback only if the code has been
2991 flushed */
2992 if (dirty_flags == 0xff)
2e70f6ef 2993 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2994}
2995
c227f099 2996static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
0f459d16 2997 uint32_t val)
9fa3e853 2998{
3a7d929e 2999 int dirty_flags;
f7c11b53 3000 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3001 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3002#if !defined(CONFIG_USER_ONLY)
3a7d929e 3003 tb_invalidate_phys_page_fast(ram_addr, 2);
f7c11b53 3004 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3005#endif
3a7d929e 3006 }
5579c7f3 3007 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3008 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3009 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3010 /* we remove the notdirty callback only if the code has been
3011 flushed */
3012 if (dirty_flags == 0xff)
2e70f6ef 3013 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3014}
3015
c227f099 3016static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
0f459d16 3017 uint32_t val)
9fa3e853 3018{
3a7d929e 3019 int dirty_flags;
f7c11b53 3020 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 3021 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 3022#if !defined(CONFIG_USER_ONLY)
3a7d929e 3023 tb_invalidate_phys_page_fast(ram_addr, 4);
f7c11b53 3024 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 3025#endif
3a7d929e 3026 }
5579c7f3 3027 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169 3028 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 3029 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
3030 /* we remove the notdirty callback only if the code has been
3031 flushed */
3032 if (dirty_flags == 0xff)
2e70f6ef 3033 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
3034}
3035
d60efc6b 3036static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
3037 NULL, /* never used */
3038 NULL, /* never used */
3039 NULL, /* never used */
3040};
3041
d60efc6b 3042static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
3043 notdirty_mem_writeb,
3044 notdirty_mem_writew,
3045 notdirty_mem_writel,
3046};
3047
0f459d16 3048/* Generate a debug exception if a watchpoint has been hit. */
b4051334 3049static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
3050{
3051 CPUState *env = cpu_single_env;
06d55cc1
AL
3052 target_ulong pc, cs_base;
3053 TranslationBlock *tb;
0f459d16 3054 target_ulong vaddr;
a1d1bb31 3055 CPUWatchpoint *wp;
06d55cc1 3056 int cpu_flags;
0f459d16 3057
06d55cc1
AL
3058 if (env->watchpoint_hit) {
3059 /* We re-entered the check after replacing the TB. Now raise
3060 * the debug interrupt so that is will trigger after the
3061 * current instruction. */
3062 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3063 return;
3064 }
2e70f6ef 3065 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 3066 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
3067 if ((vaddr == (wp->vaddr & len_mask) ||
3068 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
3069 wp->flags |= BP_WATCHPOINT_HIT;
3070 if (!env->watchpoint_hit) {
3071 env->watchpoint_hit = wp;
3072 tb = tb_find_pc(env->mem_io_pc);
3073 if (!tb) {
3074 cpu_abort(env, "check_watchpoint: could not find TB for "
3075 "pc=%p", (void *)env->mem_io_pc);
3076 }
3077 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3078 tb_phys_invalidate(tb, -1);
3079 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3080 env->exception_index = EXCP_DEBUG;
3081 } else {
3082 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3083 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3084 }
3085 cpu_resume_from_signal(env, NULL);
06d55cc1 3086 }
6e140f28
AL
3087 } else {
3088 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
3089 }
3090 }
3091}
3092
6658ffb8
PB
3093/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3094 so these check for a hit then pass through to the normal out-of-line
3095 phys routines. */
c227f099 3096static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
6658ffb8 3097{
b4051334 3098 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
3099 return ldub_phys(addr);
3100}
3101
c227f099 3102static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
6658ffb8 3103{
b4051334 3104 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
3105 return lduw_phys(addr);
3106}
3107
c227f099 3108static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
6658ffb8 3109{
b4051334 3110 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
3111 return ldl_phys(addr);
3112}
3113
c227f099 3114static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3115 uint32_t val)
3116{
b4051334 3117 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
3118 stb_phys(addr, val);
3119}
3120
c227f099 3121static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3122 uint32_t val)
3123{
b4051334 3124 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
3125 stw_phys(addr, val);
3126}
3127
c227f099 3128static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
6658ffb8
PB
3129 uint32_t val)
3130{
b4051334 3131 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
3132 stl_phys(addr, val);
3133}
3134
d60efc6b 3135static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
3136 watch_mem_readb,
3137 watch_mem_readw,
3138 watch_mem_readl,
3139};
3140
d60efc6b 3141static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
3142 watch_mem_writeb,
3143 watch_mem_writew,
3144 watch_mem_writel,
3145};
6658ffb8 3146
f6405247
RH
3147static inline uint32_t subpage_readlen (subpage_t *mmio,
3148 target_phys_addr_t addr,
3149 unsigned int len)
db7b5426 3150{
f6405247 3151 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426
BS
3152#if defined(DEBUG_SUBPAGE)
3153 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3154 mmio, len, addr, idx);
3155#endif
db7b5426 3156
f6405247
RH
3157 addr += mmio->region_offset[idx];
3158 idx = mmio->sub_io_index[idx];
3159 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
db7b5426
BS
3160}
3161
c227f099 3162static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
f6405247 3163 uint32_t value, unsigned int len)
db7b5426 3164{
f6405247 3165 unsigned int idx = SUBPAGE_IDX(addr);
db7b5426 3166#if defined(DEBUG_SUBPAGE)
f6405247
RH
3167 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3168 __func__, mmio, len, addr, idx, value);
db7b5426 3169#endif
f6405247
RH
3170
3171 addr += mmio->region_offset[idx];
3172 idx = mmio->sub_io_index[idx];
3173 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
db7b5426
BS
3174}
3175
c227f099 3176static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
db7b5426 3177{
db7b5426
BS
3178 return subpage_readlen(opaque, addr, 0);
3179}
3180
c227f099 3181static void subpage_writeb (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3182 uint32_t value)
3183{
db7b5426
BS
3184 subpage_writelen(opaque, addr, value, 0);
3185}
3186
c227f099 3187static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
db7b5426 3188{
db7b5426
BS
3189 return subpage_readlen(opaque, addr, 1);
3190}
3191
c227f099 3192static void subpage_writew (void *opaque, target_phys_addr_t addr,
db7b5426
BS
3193 uint32_t value)
3194{
db7b5426
BS
3195 subpage_writelen(opaque, addr, value, 1);
3196}
3197
c227f099 3198static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
db7b5426 3199{
db7b5426
BS
3200 return subpage_readlen(opaque, addr, 2);
3201}
3202
f6405247
RH
3203static void subpage_writel (void *opaque, target_phys_addr_t addr,
3204 uint32_t value)
db7b5426 3205{
db7b5426
BS
3206 subpage_writelen(opaque, addr, value, 2);
3207}
3208
d60efc6b 3209static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
3210 &subpage_readb,
3211 &subpage_readw,
3212 &subpage_readl,
3213};
3214
d60efc6b 3215static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
3216 &subpage_writeb,
3217 &subpage_writew,
3218 &subpage_writel,
3219};
3220
c227f099
AL
3221static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3222 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
3223{
3224 int idx, eidx;
3225
3226 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3227 return -1;
3228 idx = SUBPAGE_IDX(start);
3229 eidx = SUBPAGE_IDX(end);
3230#if defined(DEBUG_SUBPAGE)
0bf9e31a 3231 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3232 mmio, start, end, idx, eidx, memory);
3233#endif
f6405247 3234 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
db7b5426 3235 for (; idx <= eidx; idx++) {
f6405247
RH
3236 mmio->sub_io_index[idx] = memory;
3237 mmio->region_offset[idx] = region_offset;
db7b5426
BS
3238 }
3239
3240 return 0;
3241}
3242
f6405247
RH
3243static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3244 ram_addr_t orig_memory,
3245 ram_addr_t region_offset)
db7b5426 3246{
c227f099 3247 subpage_t *mmio;
db7b5426
BS
3248 int subpage_memory;
3249
c227f099 3250 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
3251
3252 mmio->base = base;
1eed09cb 3253 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 3254#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3255 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3256 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3257#endif
1eec614b 3258 *phys = subpage_memory | IO_MEM_SUBPAGE;
f6405247 3259 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
db7b5426
BS
3260
3261 return mmio;
3262}
3263
88715657
AL
3264static int get_free_io_mem_idx(void)
3265{
3266 int i;
3267
3268 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3269 if (!io_mem_used[i]) {
3270 io_mem_used[i] = 1;
3271 return i;
3272 }
c6703b47 3273 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
88715657
AL
3274 return -1;
3275}
3276
33417e70
FB
3277/* mem_read and mem_write are arrays of functions containing the
3278 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 3279 2). Functions can be omitted with a NULL function pointer.
3ee89922 3280 If io_index is non zero, the corresponding io zone is
4254fab8
BS
3281 modified. If it is zero, a new io zone is allocated. The return
3282 value can be used with cpu_register_physical_memory(). (-1) is
3283 returned if error. */
1eed09cb 3284static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
3285 CPUReadMemoryFunc * const *mem_read,
3286 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 3287 void *opaque)
33417e70 3288{
33417e70 3289 if (io_index <= 0) {
88715657
AL
3290 io_index = get_free_io_mem_idx();
3291 if (io_index == -1)
3292 return io_index;
33417e70 3293 } else {
1eed09cb 3294 io_index >>= IO_MEM_SHIFT;
33417e70
FB
3295 if (io_index >= IO_MEM_NB_ENTRIES)
3296 return -1;
3297 }
b5ff1b31 3298
f6405247
RH
3299 memcpy(io_mem_read[io_index], mem_read, 3 * sizeof(CPUReadMemoryFunc*));
3300 memcpy(io_mem_write[io_index], mem_write, 3 * sizeof(CPUWriteMemoryFunc*));
a4193c8a 3301 io_mem_opaque[io_index] = opaque;
f6405247
RH
3302
3303 return (io_index << IO_MEM_SHIFT);
33417e70 3304}
61382a50 3305
d60efc6b
BS
3306int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3307 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
3308 void *opaque)
3309{
3310 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
3311}
3312
88715657
AL
3313void cpu_unregister_io_memory(int io_table_address)
3314{
3315 int i;
3316 int io_index = io_table_address >> IO_MEM_SHIFT;
3317
3318 for (i=0;i < 3; i++) {
3319 io_mem_read[io_index][i] = unassigned_mem_read[i];
3320 io_mem_write[io_index][i] = unassigned_mem_write[i];
3321 }
3322 io_mem_opaque[io_index] = NULL;
3323 io_mem_used[io_index] = 0;
3324}
3325
e9179ce1
AK
3326static void io_mem_init(void)
3327{
3328 int i;
3329
3330 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
3331 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
3332 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
3333 for (i=0; i<5; i++)
3334 io_mem_used[i] = 1;
3335
3336 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3337 watch_mem_write, NULL);
e9179ce1
AK
3338}
3339
e2eef170
PB
3340#endif /* !defined(CONFIG_USER_ONLY) */
3341
13eb76e0
FB
3342/* physical memory access (slow version, mainly for debug) */
3343#if defined(CONFIG_USER_ONLY)
a68fe89c
PB
3344int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3345 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3346{
3347 int l, flags;
3348 target_ulong page;
53a5960a 3349 void * p;
13eb76e0
FB
3350
3351 while (len > 0) {
3352 page = addr & TARGET_PAGE_MASK;
3353 l = (page + TARGET_PAGE_SIZE) - addr;
3354 if (l > len)
3355 l = len;
3356 flags = page_get_flags(page);
3357 if (!(flags & PAGE_VALID))
a68fe89c 3358 return -1;
13eb76e0
FB
3359 if (is_write) {
3360 if (!(flags & PAGE_WRITE))
a68fe89c 3361 return -1;
579a97f7 3362 /* XXX: this code should not depend on lock_user */
72fb7daa 3363 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3364 return -1;
72fb7daa
AJ
3365 memcpy(p, buf, l);
3366 unlock_user(p, addr, l);
13eb76e0
FB
3367 } else {
3368 if (!(flags & PAGE_READ))
a68fe89c 3369 return -1;
579a97f7 3370 /* XXX: this code should not depend on lock_user */
72fb7daa 3371 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3372 return -1;
72fb7daa 3373 memcpy(buf, p, l);
5b257578 3374 unlock_user(p, addr, 0);
13eb76e0
FB
3375 }
3376 len -= l;
3377 buf += l;
3378 addr += l;
3379 }
a68fe89c 3380 return 0;
13eb76e0 3381}
8df1cd07 3382
13eb76e0 3383#else
c227f099 3384void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3385 int len, int is_write)
3386{
3387 int l, io_index;
3388 uint8_t *ptr;
3389 uint32_t val;
c227f099 3390 target_phys_addr_t page;
2e12669a 3391 unsigned long pd;
92e873b9 3392 PhysPageDesc *p;
3b46e624 3393
13eb76e0
FB
3394 while (len > 0) {
3395 page = addr & TARGET_PAGE_MASK;
3396 l = (page + TARGET_PAGE_SIZE) - addr;
3397 if (l > len)
3398 l = len;
92e873b9 3399 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3400 if (!p) {
3401 pd = IO_MEM_UNASSIGNED;
3402 } else {
3403 pd = p->phys_offset;
3404 }
3b46e624 3405
13eb76e0 3406 if (is_write) {
3a7d929e 3407 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
c227f099 3408 target_phys_addr_t addr1 = addr;
13eb76e0 3409 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3410 if (p)
6c2934db 3411 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3412 /* XXX: could force cpu_single_env to NULL to avoid
3413 potential bugs */
6c2934db 3414 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3415 /* 32 bit write access */
c27004ec 3416 val = ldl_p(buf);
6c2934db 3417 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3418 l = 4;
6c2934db 3419 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3420 /* 16 bit write access */
c27004ec 3421 val = lduw_p(buf);
6c2934db 3422 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3423 l = 2;
3424 } else {
1c213d19 3425 /* 8 bit write access */
c27004ec 3426 val = ldub_p(buf);
6c2934db 3427 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3428 l = 1;
3429 }
3430 } else {
b448f2f3
FB
3431 unsigned long addr1;
3432 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3433 /* RAM case */
5579c7f3 3434 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3435 memcpy(ptr, buf, l);
3a7d929e
FB
3436 if (!cpu_physical_memory_is_dirty(addr1)) {
3437 /* invalidate code */
3438 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3439 /* set dirty bit */
f7c11b53
YT
3440 cpu_physical_memory_set_dirty_flags(
3441 addr1, (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3442 }
13eb76e0
FB
3443 }
3444 } else {
5fafdf24 3445 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3446 !(pd & IO_MEM_ROMD)) {
c227f099 3447 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3448 /* I/O case */
3449 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3450 if (p)
6c2934db
AJ
3451 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3452 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3453 /* 32 bit read access */
6c2934db 3454 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3455 stl_p(buf, val);
13eb76e0 3456 l = 4;
6c2934db 3457 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3458 /* 16 bit read access */
6c2934db 3459 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3460 stw_p(buf, val);
13eb76e0
FB
3461 l = 2;
3462 } else {
1c213d19 3463 /* 8 bit read access */
6c2934db 3464 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3465 stb_p(buf, val);
13eb76e0
FB
3466 l = 1;
3467 }
3468 } else {
3469 /* RAM case */
5579c7f3 3470 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3471 (addr & ~TARGET_PAGE_MASK);
3472 memcpy(buf, ptr, l);
3473 }
3474 }
3475 len -= l;
3476 buf += l;
3477 addr += l;
3478 }
3479}
8df1cd07 3480
d0ecd2aa 3481/* used for ROM loading : can write in RAM and ROM */
c227f099 3482void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3483 const uint8_t *buf, int len)
3484{
3485 int l;
3486 uint8_t *ptr;
c227f099 3487 target_phys_addr_t page;
d0ecd2aa
FB
3488 unsigned long pd;
3489 PhysPageDesc *p;
3b46e624 3490
d0ecd2aa
FB
3491 while (len > 0) {
3492 page = addr & TARGET_PAGE_MASK;
3493 l = (page + TARGET_PAGE_SIZE) - addr;
3494 if (l > len)
3495 l = len;
3496 p = phys_page_find(page >> TARGET_PAGE_BITS);
3497 if (!p) {
3498 pd = IO_MEM_UNASSIGNED;
3499 } else {
3500 pd = p->phys_offset;
3501 }
3b46e624 3502
d0ecd2aa 3503 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3504 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3505 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3506 /* do nothing */
3507 } else {
3508 unsigned long addr1;
3509 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3510 /* ROM/RAM case */
5579c7f3 3511 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3512 memcpy(ptr, buf, l);
3513 }
3514 len -= l;
3515 buf += l;
3516 addr += l;
3517 }
3518}
3519
6d16c2f8
AL
3520typedef struct {
3521 void *buffer;
c227f099
AL
3522 target_phys_addr_t addr;
3523 target_phys_addr_t len;
6d16c2f8
AL
3524} BounceBuffer;
3525
3526static BounceBuffer bounce;
3527
ba223c29
AL
3528typedef struct MapClient {
3529 void *opaque;
3530 void (*callback)(void *opaque);
72cf2d4f 3531 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3532} MapClient;
3533
72cf2d4f
BS
3534static QLIST_HEAD(map_client_list, MapClient) map_client_list
3535 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3536
3537void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3538{
3539 MapClient *client = qemu_malloc(sizeof(*client));
3540
3541 client->opaque = opaque;
3542 client->callback = callback;
72cf2d4f 3543 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3544 return client;
3545}
3546
3547void cpu_unregister_map_client(void *_client)
3548{
3549 MapClient *client = (MapClient *)_client;
3550
72cf2d4f 3551 QLIST_REMOVE(client, link);
34d5e948 3552 qemu_free(client);
ba223c29
AL
3553}
3554
3555static void cpu_notify_map_clients(void)
3556{
3557 MapClient *client;
3558
72cf2d4f
BS
3559 while (!QLIST_EMPTY(&map_client_list)) {
3560 client = QLIST_FIRST(&map_client_list);
ba223c29 3561 client->callback(client->opaque);
34d5e948 3562 cpu_unregister_map_client(client);
ba223c29
AL
3563 }
3564}
3565
6d16c2f8
AL
3566/* Map a physical memory region into a host virtual address.
3567 * May map a subset of the requested range, given by and returned in *plen.
3568 * May return NULL if resources needed to perform the mapping are exhausted.
3569 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3570 * Use cpu_register_map_client() to know when retrying the map operation is
3571 * likely to succeed.
6d16c2f8 3572 */
c227f099
AL
3573void *cpu_physical_memory_map(target_phys_addr_t addr,
3574 target_phys_addr_t *plen,
6d16c2f8
AL
3575 int is_write)
3576{
c227f099
AL
3577 target_phys_addr_t len = *plen;
3578 target_phys_addr_t done = 0;
6d16c2f8
AL
3579 int l;
3580 uint8_t *ret = NULL;
3581 uint8_t *ptr;
c227f099 3582 target_phys_addr_t page;
6d16c2f8
AL
3583 unsigned long pd;
3584 PhysPageDesc *p;
3585 unsigned long addr1;
3586
3587 while (len > 0) {
3588 page = addr & TARGET_PAGE_MASK;
3589 l = (page + TARGET_PAGE_SIZE) - addr;
3590 if (l > len)
3591 l = len;
3592 p = phys_page_find(page >> TARGET_PAGE_BITS);
3593 if (!p) {
3594 pd = IO_MEM_UNASSIGNED;
3595 } else {
3596 pd = p->phys_offset;
3597 }
3598
3599 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3600 if (done || bounce.buffer) {
3601 break;
3602 }
3603 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3604 bounce.addr = addr;
3605 bounce.len = l;
3606 if (!is_write) {
3607 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3608 }
3609 ptr = bounce.buffer;
3610 } else {
3611 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3612 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3613 }
3614 if (!done) {
3615 ret = ptr;
3616 } else if (ret + done != ptr) {
3617 break;
3618 }
3619
3620 len -= l;
3621 addr += l;
3622 done += l;
3623 }
3624 *plen = done;
3625 return ret;
3626}
3627
3628/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3629 * Will also mark the memory as dirty if is_write == 1. access_len gives
3630 * the amount of memory that was actually read or written by the caller.
3631 */
c227f099
AL
3632void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3633 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3634{
3635 if (buffer != bounce.buffer) {
3636 if (is_write) {
c227f099 3637 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3638 while (access_len) {
3639 unsigned l;
3640 l = TARGET_PAGE_SIZE;
3641 if (l > access_len)
3642 l = access_len;
3643 if (!cpu_physical_memory_is_dirty(addr1)) {
3644 /* invalidate code */
3645 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3646 /* set dirty bit */
f7c11b53
YT
3647 cpu_physical_memory_set_dirty_flags(
3648 addr1, (0xff & ~CODE_DIRTY_FLAG));
6d16c2f8
AL
3649 }
3650 addr1 += l;
3651 access_len -= l;
3652 }
3653 }
3654 return;
3655 }
3656 if (is_write) {
3657 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3658 }
f8a83245 3659 qemu_vfree(bounce.buffer);
6d16c2f8 3660 bounce.buffer = NULL;
ba223c29 3661 cpu_notify_map_clients();
6d16c2f8 3662}
d0ecd2aa 3663
8df1cd07 3664/* warning: addr must be aligned */
c227f099 3665uint32_t ldl_phys(target_phys_addr_t addr)
8df1cd07
FB
3666{
3667 int io_index;
3668 uint8_t *ptr;
3669 uint32_t val;
3670 unsigned long pd;
3671 PhysPageDesc *p;
3672
3673 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3674 if (!p) {
3675 pd = IO_MEM_UNASSIGNED;
3676 } else {
3677 pd = p->phys_offset;
3678 }
3b46e624 3679
5fafdf24 3680 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3681 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3682 /* I/O case */
3683 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3684 if (p)
3685 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3686 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3687 } else {
3688 /* RAM case */
5579c7f3 3689 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3690 (addr & ~TARGET_PAGE_MASK);
3691 val = ldl_p(ptr);
3692 }
3693 return val;
3694}
3695
84b7b8e7 3696/* warning: addr must be aligned */
c227f099 3697uint64_t ldq_phys(target_phys_addr_t addr)
84b7b8e7
FB
3698{
3699 int io_index;
3700 uint8_t *ptr;
3701 uint64_t val;
3702 unsigned long pd;
3703 PhysPageDesc *p;
3704
3705 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3706 if (!p) {
3707 pd = IO_MEM_UNASSIGNED;
3708 } else {
3709 pd = p->phys_offset;
3710 }
3b46e624 3711
2a4188a3
FB
3712 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3713 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3714 /* I/O case */
3715 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3716 if (p)
3717 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3718#ifdef TARGET_WORDS_BIGENDIAN
3719 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3720 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3721#else
3722 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3723 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3724#endif
3725 } else {
3726 /* RAM case */
5579c7f3 3727 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3728 (addr & ~TARGET_PAGE_MASK);
3729 val = ldq_p(ptr);
3730 }
3731 return val;
3732}
3733
aab33094 3734/* XXX: optimize */
c227f099 3735uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3736{
3737 uint8_t val;
3738 cpu_physical_memory_read(addr, &val, 1);
3739 return val;
3740}
3741
3742/* XXX: optimize */
c227f099 3743uint32_t lduw_phys(target_phys_addr_t addr)
aab33094
FB
3744{
3745 uint16_t val;
3746 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3747 return tswap16(val);
3748}
3749
8df1cd07
FB
3750/* warning: addr must be aligned. The ram page is not masked as dirty
3751 and the code inside is not invalidated. It is useful if the dirty
3752 bits are used to track modified PTEs */
c227f099 3753void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3754{
3755 int io_index;
3756 uint8_t *ptr;
3757 unsigned long pd;
3758 PhysPageDesc *p;
3759
3760 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3761 if (!p) {
3762 pd = IO_MEM_UNASSIGNED;
3763 } else {
3764 pd = p->phys_offset;
3765 }
3b46e624 3766
3a7d929e 3767 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3768 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3769 if (p)
3770 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3771 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3772 } else {
74576198 3773 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3774 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3775 stl_p(ptr, val);
74576198
AL
3776
3777 if (unlikely(in_migration)) {
3778 if (!cpu_physical_memory_is_dirty(addr1)) {
3779 /* invalidate code */
3780 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3781 /* set dirty bit */
f7c11b53
YT
3782 cpu_physical_memory_set_dirty_flags(
3783 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3784 }
3785 }
8df1cd07
FB
3786 }
3787}
3788
c227f099 3789void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef
JM
3790{
3791 int io_index;
3792 uint8_t *ptr;
3793 unsigned long pd;
3794 PhysPageDesc *p;
3795
3796 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3797 if (!p) {
3798 pd = IO_MEM_UNASSIGNED;
3799 } else {
3800 pd = p->phys_offset;
3801 }
3b46e624 3802
bc98a7ef
JM
3803 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3804 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3805 if (p)
3806 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3807#ifdef TARGET_WORDS_BIGENDIAN
3808 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3809 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3810#else
3811 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3812 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3813#endif
3814 } else {
5579c7f3 3815 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3816 (addr & ~TARGET_PAGE_MASK);
3817 stq_p(ptr, val);
3818 }
3819}
3820
8df1cd07 3821/* warning: addr must be aligned */
c227f099 3822void stl_phys(target_phys_addr_t addr, uint32_t val)
8df1cd07
FB
3823{
3824 int io_index;
3825 uint8_t *ptr;
3826 unsigned long pd;
3827 PhysPageDesc *p;
3828
3829 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3830 if (!p) {
3831 pd = IO_MEM_UNASSIGNED;
3832 } else {
3833 pd = p->phys_offset;
3834 }
3b46e624 3835
3a7d929e 3836 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3837 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3838 if (p)
3839 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3840 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3841 } else {
3842 unsigned long addr1;
3843 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3844 /* RAM case */
5579c7f3 3845 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3846 stl_p(ptr, val);
3a7d929e
FB
3847 if (!cpu_physical_memory_is_dirty(addr1)) {
3848 /* invalidate code */
3849 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3850 /* set dirty bit */
f7c11b53
YT
3851 cpu_physical_memory_set_dirty_flags(addr1,
3852 (0xff & ~CODE_DIRTY_FLAG));
3a7d929e 3853 }
8df1cd07
FB
3854 }
3855}
3856
aab33094 3857/* XXX: optimize */
c227f099 3858void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3859{
3860 uint8_t v = val;
3861 cpu_physical_memory_write(addr, &v, 1);
3862}
3863
3864/* XXX: optimize */
c227f099 3865void stw_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3866{
3867 uint16_t v = tswap16(val);
3868 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3869}
3870
3871/* XXX: optimize */
c227f099 3872void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
3873{
3874 val = tswap64(val);
3875 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3876}
3877
5e2972fd 3878/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3879int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3880 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3881{
3882 int l;
c227f099 3883 target_phys_addr_t phys_addr;
9b3c35e0 3884 target_ulong page;
13eb76e0
FB
3885
3886 while (len > 0) {
3887 page = addr & TARGET_PAGE_MASK;
3888 phys_addr = cpu_get_phys_page_debug(env, page);
3889 /* if no physical page mapped, return an error */
3890 if (phys_addr == -1)
3891 return -1;
3892 l = (page + TARGET_PAGE_SIZE) - addr;
3893 if (l > len)
3894 l = len;
5e2972fd 3895 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
3896 if (is_write)
3897 cpu_physical_memory_write_rom(phys_addr, buf, l);
3898 else
5e2972fd 3899 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3900 len -= l;
3901 buf += l;
3902 addr += l;
3903 }
3904 return 0;
3905}
a68fe89c 3906#endif
13eb76e0 3907
2e70f6ef
PB
3908/* in deterministic execution mode, instructions doing device I/Os
3909 must be at the end of the TB */
3910void cpu_io_recompile(CPUState *env, void *retaddr)
3911{
3912 TranslationBlock *tb;
3913 uint32_t n, cflags;
3914 target_ulong pc, cs_base;
3915 uint64_t flags;
3916
3917 tb = tb_find_pc((unsigned long)retaddr);
3918 if (!tb) {
3919 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3920 retaddr);
3921 }
3922 n = env->icount_decr.u16.low + tb->icount;
3923 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3924 /* Calculate how many instructions had been executed before the fault
bf20dc07 3925 occurred. */
2e70f6ef
PB
3926 n = n - env->icount_decr.u16.low;
3927 /* Generate a new TB ending on the I/O insn. */
3928 n++;
3929 /* On MIPS and SH, delay slot instructions can only be restarted if
3930 they were already the first instruction in the TB. If this is not
bf20dc07 3931 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3932 branch. */
3933#if defined(TARGET_MIPS)
3934 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3935 env->active_tc.PC -= 4;
3936 env->icount_decr.u16.low++;
3937 env->hflags &= ~MIPS_HFLAG_BMASK;
3938 }
3939#elif defined(TARGET_SH4)
3940 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3941 && n > 1) {
3942 env->pc -= 2;
3943 env->icount_decr.u16.low++;
3944 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3945 }
3946#endif
3947 /* This should never happen. */
3948 if (n > CF_COUNT_MASK)
3949 cpu_abort(env, "TB too big during recompile");
3950
3951 cflags = n | CF_LAST_IO;
3952 pc = tb->pc;
3953 cs_base = tb->cs_base;
3954 flags = tb->flags;
3955 tb_phys_invalidate(tb, -1);
3956 /* FIXME: In theory this could raise an exception. In practice
3957 we have already translated the block once so it's probably ok. */
3958 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3959 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3960 the first in the TB) then we end up generating a whole new TB and
3961 repeating the fault, which is horribly inefficient.
3962 Better would be to execute just this insn uncached, or generate a
3963 second new TB. */
3964 cpu_resume_from_signal(env, NULL);
3965}
3966
b3755a91
PB
3967#if !defined(CONFIG_USER_ONLY)
3968
e3db7226
FB
3969void dump_exec_info(FILE *f,
3970 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3971{
3972 int i, target_code_size, max_target_code_size;
3973 int direct_jmp_count, direct_jmp2_count, cross_page;
3974 TranslationBlock *tb;
3b46e624 3975
e3db7226
FB
3976 target_code_size = 0;
3977 max_target_code_size = 0;
3978 cross_page = 0;
3979 direct_jmp_count = 0;
3980 direct_jmp2_count = 0;
3981 for(i = 0; i < nb_tbs; i++) {
3982 tb = &tbs[i];
3983 target_code_size += tb->size;
3984 if (tb->size > max_target_code_size)
3985 max_target_code_size = tb->size;
3986 if (tb->page_addr[1] != -1)
3987 cross_page++;
3988 if (tb->tb_next_offset[0] != 0xffff) {
3989 direct_jmp_count++;
3990 if (tb->tb_next_offset[1] != 0xffff) {
3991 direct_jmp2_count++;
3992 }
3993 }
3994 }
3995 /* XXX: avoid using doubles ? */
57fec1fe 3996 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3997 cpu_fprintf(f, "gen code size %ld/%ld\n",
3998 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3999 cpu_fprintf(f, "TB count %d/%d\n",
4000 nb_tbs, code_gen_max_blocks);
5fafdf24 4001 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4002 nb_tbs ? target_code_size / nb_tbs : 0,
4003 max_target_code_size);
5fafdf24 4004 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4005 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4006 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4007 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4008 cross_page,
e3db7226
FB
4009 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4010 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4011 direct_jmp_count,
e3db7226
FB
4012 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4013 direct_jmp2_count,
4014 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4015 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4016 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4017 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4018 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4019 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4020}
4021
61382a50
FB
4022#define MMUSUFFIX _cmmu
4023#define GETPC() NULL
4024#define env cpu_single_env
b769d8fe 4025#define SOFTMMU_CODE_ACCESS
61382a50
FB
4026
4027#define SHIFT 0
4028#include "softmmu_template.h"
4029
4030#define SHIFT 1
4031#include "softmmu_template.h"
4032
4033#define SHIFT 2
4034#include "softmmu_template.h"
4035
4036#define SHIFT 3
4037#include "softmmu_template.h"
4038
4039#undef env
4040
4041#endif