]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
exec: Change RAMBlockIterFunc definition
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
e2eef170 90#endif
9fa3e853 91
20bccb82
PM
92#ifdef TARGET_PAGE_BITS_VARY
93int target_page_bits;
94bool target_page_bits_decided;
95#endif
96
f481ee2d
PB
97CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
98
6a00d601
FB
99/* current CPU in the current thread. It is only valid inside
100 cpu_exec() */
f240eb6f 101__thread CPUState *current_cpu;
2e70f6ef 102/* 0 = Do not count executed instructions.
bf20dc07 103 1 = Precise instruction counting.
2e70f6ef 104 2 = Adaptive rate instruction counting. */
5708fc66 105int use_icount;
6a00d601 106
a0be0c58
YZ
107uintptr_t qemu_host_page_size;
108intptr_t qemu_host_page_mask;
a0be0c58 109
20bccb82
PM
110bool set_preferred_target_page_bits(int bits)
111{
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
115 * a particular size.
116 */
117#ifdef TARGET_PAGE_BITS_VARY
118 assert(bits >= TARGET_PAGE_BITS_MIN);
119 if (target_page_bits == 0 || target_page_bits > bits) {
120 if (target_page_bits_decided) {
121 return false;
122 }
123 target_page_bits = bits;
124 }
125#endif
126 return true;
127}
128
e2eef170 129#if !defined(CONFIG_USER_ONLY)
4346ae3e 130
20bccb82
PM
131static void finalize_target_page_bits(void)
132{
133#ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits == 0) {
135 target_page_bits = TARGET_PAGE_BITS_MIN;
136 }
137 target_page_bits_decided = true;
138#endif
139}
140
1db8abb1
PB
141typedef struct PhysPageEntry PhysPageEntry;
142
143struct PhysPageEntry {
9736e55b 144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 145 uint32_t skip : 6;
9736e55b 146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 147 uint32_t ptr : 26;
1db8abb1
PB
148};
149
8b795765
MT
150#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
151
03f49957 152/* Size of the L2 (and L3, etc) page tables. */
57271d63 153#define ADDR_SPACE_BITS 64
03f49957 154
026736ce 155#define P_L2_BITS 9
03f49957
PB
156#define P_L2_SIZE (1 << P_L2_BITS)
157
158#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
159
160typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 161
53cb28cb 162typedef struct PhysPageMap {
79e2b9ae
PB
163 struct rcu_head rcu;
164
53cb28cb
MA
165 unsigned sections_nb;
166 unsigned sections_nb_alloc;
167 unsigned nodes_nb;
168 unsigned nodes_nb_alloc;
169 Node *nodes;
170 MemoryRegionSection *sections;
171} PhysPageMap;
172
1db8abb1 173struct AddressSpaceDispatch {
729633c2 174 MemoryRegionSection *mru_section;
1db8abb1
PB
175 /* This is a multi-level map on the physical address space.
176 * The bottom level has pointers to MemoryRegionSections.
177 */
178 PhysPageEntry phys_map;
53cb28cb 179 PhysPageMap map;
1db8abb1
PB
180};
181
90260c6c
JK
182#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
183typedef struct subpage_t {
184 MemoryRegion iomem;
16620684 185 FlatView *fv;
90260c6c 186 hwaddr base;
2615fabd 187 uint16_t sub_section[];
90260c6c
JK
188} subpage_t;
189
b41aac4f
LPF
190#define PHYS_SECTION_UNASSIGNED 0
191#define PHYS_SECTION_NOTDIRTY 1
192#define PHYS_SECTION_ROM 2
193#define PHYS_SECTION_WATCH 3
5312bd8b 194
e2eef170 195static void io_mem_init(void);
62152b8a 196static void memory_map_init(void);
09daed84 197static void tcg_commit(MemoryListener *listener);
e2eef170 198
1ec9b909 199static MemoryRegion io_mem_watch;
32857f4d
PM
200
201/**
202 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
203 * @cpu: the CPU whose AddressSpace this is
204 * @as: the AddressSpace itself
205 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
206 * @tcg_as_listener: listener for tracking changes to the AddressSpace
207 */
208struct CPUAddressSpace {
209 CPUState *cpu;
210 AddressSpace *as;
211 struct AddressSpaceDispatch *memory_dispatch;
212 MemoryListener tcg_as_listener;
213};
214
8deaf12c
GH
215struct DirtyBitmapSnapshot {
216 ram_addr_t start;
217 ram_addr_t end;
218 unsigned long dirty[];
219};
220
6658ffb8 221#endif
fd6ce8f6 222
6d9a1304 223#if !defined(CONFIG_USER_ONLY)
d6f2ea22 224
53cb28cb 225static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 226{
101420b8 227 static unsigned alloc_hint = 16;
53cb28cb 228 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 229 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
230 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
231 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 232 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 233 }
f7bf5461
AK
234}
235
db94604b 236static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
237{
238 unsigned i;
8b795765 239 uint32_t ret;
db94604b
PB
240 PhysPageEntry e;
241 PhysPageEntry *p;
f7bf5461 242
53cb28cb 243 ret = map->nodes_nb++;
db94604b 244 p = map->nodes[ret];
f7bf5461 245 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 246 assert(ret != map->nodes_nb_alloc);
db94604b
PB
247
248 e.skip = leaf ? 0 : 1;
249 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 250 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 251 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 252 }
f7bf5461 253 return ret;
d6f2ea22
AK
254}
255
53cb28cb
MA
256static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
257 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 258 int level)
f7bf5461
AK
259{
260 PhysPageEntry *p;
03f49957 261 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 262
9736e55b 263 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 264 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 265 }
db94604b 266 p = map->nodes[lp->ptr];
03f49957 267 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 268
03f49957 269 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 270 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 271 lp->skip = 0;
c19e8800 272 lp->ptr = leaf;
07f07b31
AK
273 *index += step;
274 *nb -= step;
2999097b 275 } else {
53cb28cb 276 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
277 }
278 ++lp;
f7bf5461
AK
279 }
280}
281
ac1970fb 282static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 283 hwaddr index, hwaddr nb,
2999097b 284 uint16_t leaf)
f7bf5461 285{
2999097b 286 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 287 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 288
53cb28cb 289 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
290}
291
b35ba30f
MT
292/* Compact a non leaf page entry. Simply detect that the entry has a single child,
293 * and update our entry so we can skip it and go directly to the destination.
294 */
efee678d 295static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
296{
297 unsigned valid_ptr = P_L2_SIZE;
298 int valid = 0;
299 PhysPageEntry *p;
300 int i;
301
302 if (lp->ptr == PHYS_MAP_NODE_NIL) {
303 return;
304 }
305
306 p = nodes[lp->ptr];
307 for (i = 0; i < P_L2_SIZE; i++) {
308 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
309 continue;
310 }
311
312 valid_ptr = i;
313 valid++;
314 if (p[i].skip) {
efee678d 315 phys_page_compact(&p[i], nodes);
b35ba30f
MT
316 }
317 }
318
319 /* We can only compress if there's only one child. */
320 if (valid != 1) {
321 return;
322 }
323
324 assert(valid_ptr < P_L2_SIZE);
325
326 /* Don't compress if it won't fit in the # of bits we have. */
327 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
328 return;
329 }
330
331 lp->ptr = p[valid_ptr].ptr;
332 if (!p[valid_ptr].skip) {
333 /* If our only child is a leaf, make this a leaf. */
334 /* By design, we should have made this node a leaf to begin with so we
335 * should never reach here.
336 * But since it's so simple to handle this, let's do it just in case we
337 * change this rule.
338 */
339 lp->skip = 0;
340 } else {
341 lp->skip += p[valid_ptr].skip;
342 }
343}
344
8629d3fc 345void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 346{
b35ba30f 347 if (d->phys_map.skip) {
efee678d 348 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
349 }
350}
351
29cb533d
FZ
352static inline bool section_covers_addr(const MemoryRegionSection *section,
353 hwaddr addr)
354{
355 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
356 * the section must cover the entire address space.
357 */
258dfaaa 358 return int128_gethi(section->size) ||
29cb533d 359 range_covers_byte(section->offset_within_address_space,
258dfaaa 360 int128_getlo(section->size), addr);
29cb533d
FZ
361}
362
003a0cf2 363static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 364{
003a0cf2
PX
365 PhysPageEntry lp = d->phys_map, *p;
366 Node *nodes = d->map.nodes;
367 MemoryRegionSection *sections = d->map.sections;
97115a8d 368 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 369 int i;
f1f6e3b8 370
9736e55b 371 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 372 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 373 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 374 }
9affd6fc 375 p = nodes[lp.ptr];
03f49957 376 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 377 }
b35ba30f 378
29cb533d 379 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
380 return &sections[lp.ptr];
381 } else {
382 return &sections[PHYS_SECTION_UNASSIGNED];
383 }
f3705d53
AK
384}
385
79e2b9ae 386/* Called from RCU critical section */
c7086b4a 387static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
388 hwaddr addr,
389 bool resolve_subpage)
9f029603 390{
729633c2 391 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
392 subpage_t *subpage;
393
07c114bb
PB
394 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
395 !section_covers_addr(section, addr)) {
003a0cf2 396 section = phys_page_find(d, addr);
07c114bb 397 atomic_set(&d->mru_section, section);
729633c2 398 }
90260c6c
JK
399 if (resolve_subpage && section->mr->subpage) {
400 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 401 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
402 }
403 return section;
9f029603
JK
404}
405
79e2b9ae 406/* Called from RCU critical section */
90260c6c 407static MemoryRegionSection *
c7086b4a 408address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 409 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
410{
411 MemoryRegionSection *section;
965eb2fc 412 MemoryRegion *mr;
a87f3954 413 Int128 diff;
149f54b5 414
c7086b4a 415 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
416 /* Compute offset within MemoryRegionSection */
417 addr -= section->offset_within_address_space;
418
419 /* Compute offset within MemoryRegion */
420 *xlat = addr + section->offset_within_region;
421
965eb2fc 422 mr = section->mr;
b242e0e0
PB
423
424 /* MMIO registers can be expected to perform full-width accesses based only
425 * on their address, without considering adjacent registers that could
426 * decode to completely different MemoryRegions. When such registers
427 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
428 * regions overlap wildly. For this reason we cannot clamp the accesses
429 * here.
430 *
431 * If the length is small (as is the case for address_space_ldl/stl),
432 * everything works fine. If the incoming length is large, however,
433 * the caller really has to do the clamping through memory_access_size.
434 */
965eb2fc 435 if (memory_region_is_ram(mr)) {
e4a511f8 436 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
437 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
438 }
149f54b5
PB
439 return section;
440}
90260c6c 441
a411c84b
PB
442/**
443 * address_space_translate_iommu - translate an address through an IOMMU
444 * memory region and then through the target address space.
445 *
446 * @iommu_mr: the IOMMU memory region that we start the translation from
447 * @addr: the address to be translated through the MMU
448 * @xlat: the translated address offset within the destination memory region.
449 * It cannot be %NULL.
450 * @plen_out: valid read/write length of the translated address. It
451 * cannot be %NULL.
452 * @page_mask_out: page mask for the translated address. This
453 * should only be meaningful for IOMMU translated
454 * addresses, since there may be huge pages that this bit
455 * would tell. It can be %NULL if we don't care about it.
456 * @is_write: whether the translation operation is for write
457 * @is_mmio: whether this can be MMIO, set true if it can
458 * @target_as: the address space targeted by the IOMMU
2f7b009c 459 * @attrs: transaction attributes
a411c84b
PB
460 *
461 * This function is called from RCU critical section. It is the common
462 * part of flatview_do_translate and address_space_translate_cached.
463 */
464static MemoryRegionSection address_space_translate_iommu(IOMMUMemoryRegion *iommu_mr,
465 hwaddr *xlat,
466 hwaddr *plen_out,
467 hwaddr *page_mask_out,
468 bool is_write,
469 bool is_mmio,
2f7b009c
PM
470 AddressSpace **target_as,
471 MemTxAttrs attrs)
a411c84b
PB
472{
473 MemoryRegionSection *section;
474 hwaddr page_mask = (hwaddr)-1;
475
476 do {
477 hwaddr addr = *xlat;
478 IOMMUMemoryRegionClass *imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
2c91bcf2
PM
479 int iommu_idx = 0;
480 IOMMUTLBEntry iotlb;
481
482 if (imrc->attrs_to_index) {
483 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
484 }
485
486 iotlb = imrc->translate(iommu_mr, addr, is_write ?
487 IOMMU_WO : IOMMU_RO, iommu_idx);
a411c84b
PB
488
489 if (!(iotlb.perm & (1 << is_write))) {
490 goto unassigned;
491 }
492
493 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
494 | (addr & iotlb.addr_mask));
495 page_mask &= iotlb.addr_mask;
496 *plen_out = MIN(*plen_out, (addr | iotlb.addr_mask) - addr + 1);
497 *target_as = iotlb.target_as;
498
499 section = address_space_translate_internal(
500 address_space_to_dispatch(iotlb.target_as), addr, xlat,
501 plen_out, is_mmio);
502
503 iommu_mr = memory_region_get_iommu(section->mr);
504 } while (unlikely(iommu_mr));
505
506 if (page_mask_out) {
507 *page_mask_out = page_mask;
508 }
509 return *section;
510
511unassigned:
512 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
513}
514
d5e5fafd
PX
515/**
516 * flatview_do_translate - translate an address in FlatView
517 *
518 * @fv: the flat view that we want to translate on
519 * @addr: the address to be translated in above address space
520 * @xlat: the translated address offset within memory region. It
521 * cannot be @NULL.
522 * @plen_out: valid read/write length of the translated address. It
523 * can be @NULL when we don't care about it.
524 * @page_mask_out: page mask for the translated address. This
525 * should only be meaningful for IOMMU translated
526 * addresses, since there may be huge pages that this bit
527 * would tell. It can be @NULL if we don't care about it.
528 * @is_write: whether the translation operation is for write
529 * @is_mmio: whether this can be MMIO, set true if it can
ad2804d9 530 * @target_as: the address space targeted by the IOMMU
49e14aa8 531 * @attrs: memory transaction attributes
d5e5fafd
PX
532 *
533 * This function is called from RCU critical section
534 */
16620684
AK
535static MemoryRegionSection flatview_do_translate(FlatView *fv,
536 hwaddr addr,
537 hwaddr *xlat,
d5e5fafd
PX
538 hwaddr *plen_out,
539 hwaddr *page_mask_out,
16620684
AK
540 bool is_write,
541 bool is_mmio,
49e14aa8
PM
542 AddressSpace **target_as,
543 MemTxAttrs attrs)
052c8fa9 544{
052c8fa9 545 MemoryRegionSection *section;
3df9d748 546 IOMMUMemoryRegion *iommu_mr;
d5e5fafd
PX
547 hwaddr plen = (hwaddr)(-1);
548
ad2804d9
PB
549 if (!plen_out) {
550 plen_out = &plen;
d5e5fafd 551 }
052c8fa9 552
a411c84b
PB
553 section = address_space_translate_internal(
554 flatview_to_dispatch(fv), addr, xlat,
555 plen_out, is_mmio);
052c8fa9 556
a411c84b
PB
557 iommu_mr = memory_region_get_iommu(section->mr);
558 if (unlikely(iommu_mr)) {
559 return address_space_translate_iommu(iommu_mr, xlat,
560 plen_out, page_mask_out,
561 is_write, is_mmio,
2f7b009c 562 target_as, attrs);
052c8fa9 563 }
d5e5fafd 564 if (page_mask_out) {
a411c84b
PB
565 /* Not behind an IOMMU, use default page size. */
566 *page_mask_out = ~TARGET_PAGE_MASK;
d5e5fafd
PX
567 }
568
a764040c 569 return *section;
052c8fa9
JW
570}
571
572/* Called from RCU critical section */
a764040c 573IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
7446eb07 574 bool is_write, MemTxAttrs attrs)
90260c6c 575{
a764040c 576 MemoryRegionSection section;
076a93d7 577 hwaddr xlat, page_mask;
30951157 578
076a93d7
PX
579 /*
580 * This can never be MMIO, and we don't really care about plen,
581 * but page mask.
582 */
583 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
49e14aa8
PM
584 NULL, &page_mask, is_write, false, &as,
585 attrs);
30951157 586
a764040c
PX
587 /* Illegal translation */
588 if (section.mr == &io_mem_unassigned) {
589 goto iotlb_fail;
590 }
30951157 591
a764040c
PX
592 /* Convert memory region offset into address space offset */
593 xlat += section.offset_within_address_space -
594 section.offset_within_region;
595
a764040c 596 return (IOMMUTLBEntry) {
e76bb18f 597 .target_as = as,
076a93d7
PX
598 .iova = addr & ~page_mask,
599 .translated_addr = xlat & ~page_mask,
600 .addr_mask = page_mask,
a764040c
PX
601 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
602 .perm = IOMMU_RW,
603 };
604
605iotlb_fail:
606 return (IOMMUTLBEntry) {0};
607}
608
609/* Called from RCU critical section */
16620684 610MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
efa99a2f
PM
611 hwaddr *plen, bool is_write,
612 MemTxAttrs attrs)
a764040c
PX
613{
614 MemoryRegion *mr;
615 MemoryRegionSection section;
16620684 616 AddressSpace *as = NULL;
a764040c
PX
617
618 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd 619 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
49e14aa8 620 is_write, true, &as, attrs);
a764040c
PX
621 mr = section.mr;
622
fe680d0d 623 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 624 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 625 *plen = MIN(page, *plen);
a87f3954
PB
626 }
627
30951157 628 return mr;
90260c6c
JK
629}
630
1f871c5e
PM
631typedef struct TCGIOMMUNotifier {
632 IOMMUNotifier n;
633 MemoryRegion *mr;
634 CPUState *cpu;
635 int iommu_idx;
636 bool active;
637} TCGIOMMUNotifier;
638
639static void tcg_iommu_unmap_notify(IOMMUNotifier *n, IOMMUTLBEntry *iotlb)
640{
641 TCGIOMMUNotifier *notifier = container_of(n, TCGIOMMUNotifier, n);
642
643 if (!notifier->active) {
644 return;
645 }
646 tlb_flush(notifier->cpu);
647 notifier->active = false;
648 /* We leave the notifier struct on the list to avoid reallocating it later.
649 * Generally the number of IOMMUs a CPU deals with will be small.
650 * In any case we can't unregister the iommu notifier from a notify
651 * callback.
652 */
653}
654
655static void tcg_register_iommu_notifier(CPUState *cpu,
656 IOMMUMemoryRegion *iommu_mr,
657 int iommu_idx)
658{
659 /* Make sure this CPU has an IOMMU notifier registered for this
660 * IOMMU/IOMMU index combination, so that we can flush its TLB
661 * when the IOMMU tells us the mappings we've cached have changed.
662 */
663 MemoryRegion *mr = MEMORY_REGION(iommu_mr);
664 TCGIOMMUNotifier *notifier;
665 int i;
666
667 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 668 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e
PM
669 if (notifier->mr == mr && notifier->iommu_idx == iommu_idx) {
670 break;
671 }
672 }
673 if (i == cpu->iommu_notifiers->len) {
674 /* Not found, add a new entry at the end of the array */
675 cpu->iommu_notifiers = g_array_set_size(cpu->iommu_notifiers, i + 1);
5601be3b
PM
676 notifier = g_new0(TCGIOMMUNotifier, 1);
677 g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i) = notifier;
1f871c5e
PM
678
679 notifier->mr = mr;
680 notifier->iommu_idx = iommu_idx;
681 notifier->cpu = cpu;
682 /* Rather than trying to register interest in the specific part
683 * of the iommu's address space that we've accessed and then
684 * expand it later as subsequent accesses touch more of it, we
685 * just register interest in the whole thing, on the assumption
686 * that iommu reconfiguration will be rare.
687 */
688 iommu_notifier_init(&notifier->n,
689 tcg_iommu_unmap_notify,
690 IOMMU_NOTIFIER_UNMAP,
691 0,
692 HWADDR_MAX,
693 iommu_idx);
694 memory_region_register_iommu_notifier(notifier->mr, &notifier->n);
695 }
696
697 if (!notifier->active) {
698 notifier->active = true;
699 }
700}
701
702static void tcg_iommu_free_notifier_list(CPUState *cpu)
703{
704 /* Destroy the CPU's notifier list */
705 int i;
706 TCGIOMMUNotifier *notifier;
707
708 for (i = 0; i < cpu->iommu_notifiers->len; i++) {
5601be3b 709 notifier = g_array_index(cpu->iommu_notifiers, TCGIOMMUNotifier *, i);
1f871c5e 710 memory_region_unregister_iommu_notifier(notifier->mr, &notifier->n);
5601be3b 711 g_free(notifier);
1f871c5e
PM
712 }
713 g_array_free(cpu->iommu_notifiers, true);
714}
715
79e2b9ae 716/* Called from RCU critical section */
90260c6c 717MemoryRegionSection *
d7898cda 718address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
1f871c5e
PM
719 hwaddr *xlat, hwaddr *plen,
720 MemTxAttrs attrs, int *prot)
90260c6c 721{
30951157 722 MemoryRegionSection *section;
1f871c5e
PM
723 IOMMUMemoryRegion *iommu_mr;
724 IOMMUMemoryRegionClass *imrc;
725 IOMMUTLBEntry iotlb;
726 int iommu_idx;
f35e44e7 727 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda 728
1f871c5e
PM
729 for (;;) {
730 section = address_space_translate_internal(d, addr, &addr, plen, false);
731
732 iommu_mr = memory_region_get_iommu(section->mr);
733 if (!iommu_mr) {
734 break;
735 }
736
737 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
738
739 iommu_idx = imrc->attrs_to_index(iommu_mr, attrs);
740 tcg_register_iommu_notifier(cpu, iommu_mr, iommu_idx);
741 /* We need all the permissions, so pass IOMMU_NONE so the IOMMU
742 * doesn't short-cut its translation table walk.
743 */
744 iotlb = imrc->translate(iommu_mr, addr, IOMMU_NONE, iommu_idx);
745 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
746 | (addr & iotlb.addr_mask));
747 /* Update the caller's prot bits to remove permissions the IOMMU
748 * is giving us a failure response for. If we get down to no
749 * permissions left at all we can give up now.
750 */
751 if (!(iotlb.perm & IOMMU_RO)) {
752 *prot &= ~(PAGE_READ | PAGE_EXEC);
753 }
754 if (!(iotlb.perm & IOMMU_WO)) {
755 *prot &= ~PAGE_WRITE;
756 }
757
758 if (!*prot) {
759 goto translate_fail;
760 }
761
762 d = flatview_to_dispatch(address_space_to_flatview(iotlb.target_as));
763 }
30951157 764
3df9d748 765 assert(!memory_region_is_iommu(section->mr));
1f871c5e 766 *xlat = addr;
30951157 767 return section;
1f871c5e
PM
768
769translate_fail:
770 return &d->map.sections[PHYS_SECTION_UNASSIGNED];
90260c6c 771}
5b6dd868 772#endif
fd6ce8f6 773
b170fce3 774#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
775
776static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 777{
259186a7 778 CPUState *cpu = opaque;
a513fe19 779
5b6dd868
BS
780 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
781 version_id is increased. */
259186a7 782 cpu->interrupt_request &= ~0x01;
d10eb08f 783 tlb_flush(cpu);
5b6dd868 784
15a356c4
PD
785 /* loadvm has just updated the content of RAM, bypassing the
786 * usual mechanisms that ensure we flush TBs for writes to
787 * memory we've translated code from. So we must flush all TBs,
788 * which will now be stale.
789 */
790 tb_flush(cpu);
791
5b6dd868 792 return 0;
a513fe19 793}
7501267e 794
6c3bff0e
PD
795static int cpu_common_pre_load(void *opaque)
796{
797 CPUState *cpu = opaque;
798
adee6424 799 cpu->exception_index = -1;
6c3bff0e
PD
800
801 return 0;
802}
803
804static bool cpu_common_exception_index_needed(void *opaque)
805{
806 CPUState *cpu = opaque;
807
adee6424 808 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
809}
810
811static const VMStateDescription vmstate_cpu_common_exception_index = {
812 .name = "cpu_common/exception_index",
813 .version_id = 1,
814 .minimum_version_id = 1,
5cd8cada 815 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
816 .fields = (VMStateField[]) {
817 VMSTATE_INT32(exception_index, CPUState),
818 VMSTATE_END_OF_LIST()
819 }
820};
821
bac05aa9
AS
822static bool cpu_common_crash_occurred_needed(void *opaque)
823{
824 CPUState *cpu = opaque;
825
826 return cpu->crash_occurred;
827}
828
829static const VMStateDescription vmstate_cpu_common_crash_occurred = {
830 .name = "cpu_common/crash_occurred",
831 .version_id = 1,
832 .minimum_version_id = 1,
833 .needed = cpu_common_crash_occurred_needed,
834 .fields = (VMStateField[]) {
835 VMSTATE_BOOL(crash_occurred, CPUState),
836 VMSTATE_END_OF_LIST()
837 }
838};
839
1a1562f5 840const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
841 .name = "cpu_common",
842 .version_id = 1,
843 .minimum_version_id = 1,
6c3bff0e 844 .pre_load = cpu_common_pre_load,
5b6dd868 845 .post_load = cpu_common_post_load,
35d08458 846 .fields = (VMStateField[]) {
259186a7
AF
847 VMSTATE_UINT32(halted, CPUState),
848 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 849 VMSTATE_END_OF_LIST()
6c3bff0e 850 },
5cd8cada
JQ
851 .subsections = (const VMStateDescription*[]) {
852 &vmstate_cpu_common_exception_index,
bac05aa9 853 &vmstate_cpu_common_crash_occurred,
5cd8cada 854 NULL
5b6dd868
BS
855 }
856};
1a1562f5 857
5b6dd868 858#endif
ea041c0e 859
38d8f5c8 860CPUState *qemu_get_cpu(int index)
ea041c0e 861{
bdc44640 862 CPUState *cpu;
ea041c0e 863
bdc44640 864 CPU_FOREACH(cpu) {
55e5c285 865 if (cpu->cpu_index == index) {
bdc44640 866 return cpu;
55e5c285 867 }
ea041c0e 868 }
5b6dd868 869
bdc44640 870 return NULL;
ea041c0e
FB
871}
872
09daed84 873#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
874void cpu_address_space_init(CPUState *cpu, int asidx,
875 const char *prefix, MemoryRegion *mr)
09daed84 876{
12ebc9a7 877 CPUAddressSpace *newas;
80ceb07a 878 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 879 char *as_name;
80ceb07a
PX
880
881 assert(mr);
87a621d8
PX
882 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
883 address_space_init(as, mr, as_name);
884 g_free(as_name);
12ebc9a7
PM
885
886 /* Target code should have set num_ases before calling us */
887 assert(asidx < cpu->num_ases);
888
56943e8c
PM
889 if (asidx == 0) {
890 /* address space 0 gets the convenience alias */
891 cpu->as = as;
892 }
893
12ebc9a7
PM
894 /* KVM cannot currently support multiple address spaces. */
895 assert(asidx == 0 || !kvm_enabled());
09daed84 896
12ebc9a7
PM
897 if (!cpu->cpu_ases) {
898 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 899 }
32857f4d 900
12ebc9a7
PM
901 newas = &cpu->cpu_ases[asidx];
902 newas->cpu = cpu;
903 newas->as = as;
56943e8c 904 if (tcg_enabled()) {
12ebc9a7
PM
905 newas->tcg_as_listener.commit = tcg_commit;
906 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 907 }
09daed84 908}
651a5bc0
PM
909
910AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
911{
912 /* Return the AddressSpace corresponding to the specified index */
913 return cpu->cpu_ases[asidx].as;
914}
09daed84
EI
915#endif
916
7bbc124e 917void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 918{
9dfeca7c
BR
919 CPUClass *cc = CPU_GET_CLASS(cpu);
920
267f685b 921 cpu_list_remove(cpu);
9dfeca7c
BR
922
923 if (cc->vmsd != NULL) {
924 vmstate_unregister(NULL, cc->vmsd, cpu);
925 }
926 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
927 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
928 }
1f871c5e
PM
929#ifndef CONFIG_USER_ONLY
930 tcg_iommu_free_notifier_list(cpu);
931#endif
1c59eb39
BR
932}
933
c7e002c5
FZ
934Property cpu_common_props[] = {
935#ifndef CONFIG_USER_ONLY
936 /* Create a memory property for softmmu CPU object,
937 * so users can wire up its memory. (This can't go in qom/cpu.c
938 * because that file is compiled only once for both user-mode
939 * and system builds.) The default if no link is set up is to use
940 * the system address space.
941 */
942 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
943 MemoryRegion *),
944#endif
945 DEFINE_PROP_END_OF_LIST(),
946};
947
39e329e3 948void cpu_exec_initfn(CPUState *cpu)
ea041c0e 949{
56943e8c 950 cpu->as = NULL;
12ebc9a7 951 cpu->num_ases = 0;
56943e8c 952
291135b5 953#ifndef CONFIG_USER_ONLY
291135b5 954 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
955 cpu->memory = system_memory;
956 object_ref(OBJECT(cpu->memory));
291135b5 957#endif
39e329e3
LV
958}
959
ce5b1bbf 960void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 961{
55c3ceef 962 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 963 static bool tcg_target_initialized;
291135b5 964
267f685b 965 cpu_list_add(cpu);
1bc7e522 966
2dda6354
EC
967 if (tcg_enabled() && !tcg_target_initialized) {
968 tcg_target_initialized = true;
55c3ceef
RH
969 cc->tcg_initialize();
970 }
5005e253 971 tlb_init(cpu);
55c3ceef 972
1bc7e522 973#ifndef CONFIG_USER_ONLY
e0d47944 974 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 975 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 976 }
b170fce3 977 if (cc->vmsd != NULL) {
741da0d3 978 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 979 }
1f871c5e 980
5601be3b 981 cpu->iommu_notifiers = g_array_new(false, true, sizeof(TCGIOMMUNotifier *));
741da0d3 982#endif
ea041c0e
FB
983}
984
2278b939
IM
985const char *parse_cpu_model(const char *cpu_model)
986{
987 ObjectClass *oc;
988 CPUClass *cc;
989 gchar **model_pieces;
990 const char *cpu_type;
991
992 model_pieces = g_strsplit(cpu_model, ",", 2);
993
994 oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
995 if (oc == NULL) {
996 error_report("unable to find CPU model '%s'", model_pieces[0]);
997 g_strfreev(model_pieces);
998 exit(EXIT_FAILURE);
999 }
1000
1001 cpu_type = object_class_get_name(oc);
1002 cc = CPU_CLASS(oc);
1003 cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
1004 g_strfreev(model_pieces);
1005 return cpu_type;
1006}
1007
c40d4792 1008#if defined(CONFIG_USER_ONLY)
8bca9a03 1009void tb_invalidate_phys_addr(target_ulong addr)
1e7855a5 1010{
406bc339 1011 mmap_lock();
8bca9a03 1012 tb_invalidate_phys_page_range(addr, addr + 1, 0);
406bc339
PK
1013 mmap_unlock();
1014}
8bca9a03
PB
1015
1016static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1017{
1018 tb_invalidate_phys_addr(pc);
1019}
406bc339 1020#else
8bca9a03
PB
1021void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
1022{
1023 ram_addr_t ram_addr;
1024 MemoryRegion *mr;
1025 hwaddr l = 1;
1026
c40d4792
PB
1027 if (!tcg_enabled()) {
1028 return;
1029 }
1030
8bca9a03
PB
1031 rcu_read_lock();
1032 mr = address_space_translate(as, addr, &addr, &l, false, attrs);
1033 if (!(memory_region_is_ram(mr)
1034 || memory_region_is_romd(mr))) {
1035 rcu_read_unlock();
1036 return;
1037 }
1038 ram_addr = memory_region_get_ram_addr(mr) + addr;
1039 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1040 rcu_read_unlock();
1041}
1042
406bc339
PK
1043static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1044{
1045 MemTxAttrs attrs;
1046 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
1047 int asidx = cpu_asidx_from_attrs(cpu, attrs);
1048 if (phys != -1) {
1049 /* Locks grabbed by tb_invalidate_phys_addr */
1050 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
c874dc4f 1051 phys | (pc & ~TARGET_PAGE_MASK), attrs);
406bc339 1052 }
1e7855a5 1053}
406bc339 1054#endif
d720b93d 1055
c527ee8f 1056#if defined(CONFIG_USER_ONLY)
75a34036 1057void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
1058
1059{
1060}
1061
3ee887e8
PM
1062int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
1063 int flags)
1064{
1065 return -ENOSYS;
1066}
1067
1068void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
1069{
1070}
1071
75a34036 1072int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
1073 int flags, CPUWatchpoint **watchpoint)
1074{
1075 return -ENOSYS;
1076}
1077#else
6658ffb8 1078/* Add a watchpoint. */
75a34036 1079int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1080 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1081{
c0ce998e 1082 CPUWatchpoint *wp;
6658ffb8 1083
05068c0d 1084 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 1085 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
1086 error_report("tried to set invalid watchpoint at %"
1087 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
1088 return -EINVAL;
1089 }
7267c094 1090 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1091
1092 wp->vaddr = addr;
05068c0d 1093 wp->len = len;
a1d1bb31
AL
1094 wp->flags = flags;
1095
2dc9f411 1096 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
1097 if (flags & BP_GDB) {
1098 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
1099 } else {
1100 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
1101 }
6658ffb8 1102
31b030d4 1103 tlb_flush_page(cpu, addr);
a1d1bb31
AL
1104
1105 if (watchpoint)
1106 *watchpoint = wp;
1107 return 0;
6658ffb8
PB
1108}
1109
a1d1bb31 1110/* Remove a specific watchpoint. */
75a34036 1111int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 1112 int flags)
6658ffb8 1113{
a1d1bb31 1114 CPUWatchpoint *wp;
6658ffb8 1115
ff4700b0 1116 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1117 if (addr == wp->vaddr && len == wp->len
6e140f28 1118 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 1119 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
1120 return 0;
1121 }
1122 }
a1d1bb31 1123 return -ENOENT;
6658ffb8
PB
1124}
1125
a1d1bb31 1126/* Remove a specific watchpoint by reference. */
75a34036 1127void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 1128{
ff4700b0 1129 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 1130
31b030d4 1131 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 1132
7267c094 1133 g_free(watchpoint);
a1d1bb31
AL
1134}
1135
1136/* Remove all matching watchpoints. */
75a34036 1137void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1138{
c0ce998e 1139 CPUWatchpoint *wp, *next;
a1d1bb31 1140
ff4700b0 1141 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
1142 if (wp->flags & mask) {
1143 cpu_watchpoint_remove_by_ref(cpu, wp);
1144 }
c0ce998e 1145 }
7d03f82f 1146}
05068c0d
PM
1147
1148/* Return true if this watchpoint address matches the specified
1149 * access (ie the address range covered by the watchpoint overlaps
1150 * partially or completely with the address range covered by the
1151 * access).
1152 */
1153static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
1154 vaddr addr,
1155 vaddr len)
1156{
1157 /* We know the lengths are non-zero, but a little caution is
1158 * required to avoid errors in the case where the range ends
1159 * exactly at the top of the address space and so addr + len
1160 * wraps round to zero.
1161 */
1162 vaddr wpend = wp->vaddr + wp->len - 1;
1163 vaddr addrend = addr + len - 1;
1164
1165 return !(addr > wpend || wp->vaddr > addrend);
1166}
1167
c527ee8f 1168#endif
7d03f82f 1169
a1d1bb31 1170/* Add a breakpoint. */
b3310ab3 1171int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 1172 CPUBreakpoint **breakpoint)
4c3a88a2 1173{
c0ce998e 1174 CPUBreakpoint *bp;
3b46e624 1175
7267c094 1176 bp = g_malloc(sizeof(*bp));
4c3a88a2 1177
a1d1bb31
AL
1178 bp->pc = pc;
1179 bp->flags = flags;
1180
2dc9f411 1181 /* keep all GDB-injected breakpoints in front */
00b941e5 1182 if (flags & BP_GDB) {
f0c3c505 1183 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 1184 } else {
f0c3c505 1185 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 1186 }
3b46e624 1187
f0c3c505 1188 breakpoint_invalidate(cpu, pc);
a1d1bb31 1189
00b941e5 1190 if (breakpoint) {
a1d1bb31 1191 *breakpoint = bp;
00b941e5 1192 }
4c3a88a2 1193 return 0;
4c3a88a2
FB
1194}
1195
a1d1bb31 1196/* Remove a specific breakpoint. */
b3310ab3 1197int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 1198{
a1d1bb31
AL
1199 CPUBreakpoint *bp;
1200
f0c3c505 1201 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 1202 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 1203 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
1204 return 0;
1205 }
7d03f82f 1206 }
a1d1bb31 1207 return -ENOENT;
7d03f82f
EI
1208}
1209
a1d1bb31 1210/* Remove a specific breakpoint by reference. */
b3310ab3 1211void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 1212{
f0c3c505
AF
1213 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
1214
1215 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 1216
7267c094 1217 g_free(breakpoint);
a1d1bb31
AL
1218}
1219
1220/* Remove all matching breakpoints. */
b3310ab3 1221void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1222{
c0ce998e 1223 CPUBreakpoint *bp, *next;
a1d1bb31 1224
f0c3c505 1225 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1226 if (bp->flags & mask) {
1227 cpu_breakpoint_remove_by_ref(cpu, bp);
1228 }
c0ce998e 1229 }
4c3a88a2
FB
1230}
1231
c33a346e
FB
1232/* enable or disable single step mode. EXCP_DEBUG is returned by the
1233 CPU loop after each instruction */
3825b28f 1234void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1235{
ed2803da
AF
1236 if (cpu->singlestep_enabled != enabled) {
1237 cpu->singlestep_enabled = enabled;
1238 if (kvm_enabled()) {
38e478ec 1239 kvm_update_guest_debug(cpu, 0);
ed2803da 1240 } else {
ccbb4d44 1241 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1242 /* XXX: only flush what is necessary */
bbd77c18 1243 tb_flush(cpu);
e22a25c9 1244 }
c33a346e 1245 }
c33a346e
FB
1246}
1247
a47dddd7 1248void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1249{
1250 va_list ap;
493ae1f0 1251 va_list ap2;
7501267e
FB
1252
1253 va_start(ap, fmt);
493ae1f0 1254 va_copy(ap2, ap);
7501267e
FB
1255 fprintf(stderr, "qemu: fatal: ");
1256 vfprintf(stderr, fmt, ap);
1257 fprintf(stderr, "\n");
878096ee 1258 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1259 if (qemu_log_separate()) {
1ee73216 1260 qemu_log_lock();
93fcfe39
AL
1261 qemu_log("qemu: fatal: ");
1262 qemu_log_vprintf(fmt, ap2);
1263 qemu_log("\n");
a0762859 1264 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1265 qemu_log_flush();
1ee73216 1266 qemu_log_unlock();
93fcfe39 1267 qemu_log_close();
924edcae 1268 }
493ae1f0 1269 va_end(ap2);
f9373291 1270 va_end(ap);
7615936e 1271 replay_finish();
fd052bf6
RV
1272#if defined(CONFIG_USER_ONLY)
1273 {
1274 struct sigaction act;
1275 sigfillset(&act.sa_mask);
1276 act.sa_handler = SIG_DFL;
8347c185 1277 act.sa_flags = 0;
fd052bf6
RV
1278 sigaction(SIGABRT, &act, NULL);
1279 }
1280#endif
7501267e
FB
1281 abort();
1282}
1283
0124311e 1284#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1285/* Called from RCU critical section */
041603fe
PB
1286static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1287{
1288 RAMBlock *block;
1289
43771539 1290 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1291 if (block && addr - block->offset < block->max_length) {
68851b98 1292 return block;
041603fe 1293 }
99e15582 1294 RAMBLOCK_FOREACH(block) {
9b8424d5 1295 if (addr - block->offset < block->max_length) {
041603fe
PB
1296 goto found;
1297 }
1298 }
1299
1300 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1301 abort();
1302
1303found:
43771539
PB
1304 /* It is safe to write mru_block outside the iothread lock. This
1305 * is what happens:
1306 *
1307 * mru_block = xxx
1308 * rcu_read_unlock()
1309 * xxx removed from list
1310 * rcu_read_lock()
1311 * read mru_block
1312 * mru_block = NULL;
1313 * call_rcu(reclaim_ramblock, xxx);
1314 * rcu_read_unlock()
1315 *
1316 * atomic_rcu_set is not needed here. The block was already published
1317 * when it was placed into the list. Here we're just making an extra
1318 * copy of the pointer.
1319 */
041603fe
PB
1320 ram_list.mru_block = block;
1321 return block;
1322}
1323
a2f4d5be 1324static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1325{
9a13565d 1326 CPUState *cpu;
041603fe 1327 ram_addr_t start1;
a2f4d5be
JQ
1328 RAMBlock *block;
1329 ram_addr_t end;
1330
f28d0dfd 1331 assert(tcg_enabled());
a2f4d5be
JQ
1332 end = TARGET_PAGE_ALIGN(start + length);
1333 start &= TARGET_PAGE_MASK;
d24981d3 1334
0dc3f44a 1335 rcu_read_lock();
041603fe
PB
1336 block = qemu_get_ram_block(start);
1337 assert(block == qemu_get_ram_block(end - 1));
1240be24 1338 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1339 CPU_FOREACH(cpu) {
1340 tlb_reset_dirty(cpu, start1, length);
1341 }
0dc3f44a 1342 rcu_read_unlock();
d24981d3
JQ
1343}
1344
5579c7f3 1345/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1346bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1347 ram_addr_t length,
1348 unsigned client)
1ccde1cb 1349{
5b82b703 1350 DirtyMemoryBlocks *blocks;
03eebc9e 1351 unsigned long end, page;
5b82b703 1352 bool dirty = false;
03eebc9e
SH
1353
1354 if (length == 0) {
1355 return false;
1356 }
f23db169 1357
03eebc9e
SH
1358 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1359 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1360
1361 rcu_read_lock();
1362
1363 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1364
1365 while (page < end) {
1366 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1367 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1368 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1369
1370 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1371 offset, num);
1372 page += num;
1373 }
1374
1375 rcu_read_unlock();
03eebc9e
SH
1376
1377 if (dirty && tcg_enabled()) {
a2f4d5be 1378 tlb_reset_dirty_range_all(start, length);
5579c7f3 1379 }
03eebc9e
SH
1380
1381 return dirty;
1ccde1cb
FB
1382}
1383
8deaf12c
GH
1384DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1385 (ram_addr_t start, ram_addr_t length, unsigned client)
1386{
1387 DirtyMemoryBlocks *blocks;
1388 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1389 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1390 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1391 DirtyBitmapSnapshot *snap;
1392 unsigned long page, end, dest;
1393
1394 snap = g_malloc0(sizeof(*snap) +
1395 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1396 snap->start = first;
1397 snap->end = last;
1398
1399 page = first >> TARGET_PAGE_BITS;
1400 end = last >> TARGET_PAGE_BITS;
1401 dest = 0;
1402
1403 rcu_read_lock();
1404
1405 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1406
1407 while (page < end) {
1408 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1409 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1410 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1411
1412 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1413 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1414 offset >>= BITS_PER_LEVEL;
1415
1416 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1417 blocks->blocks[idx] + offset,
1418 num);
1419 page += num;
1420 dest += num >> BITS_PER_LEVEL;
1421 }
1422
1423 rcu_read_unlock();
1424
1425 if (tcg_enabled()) {
1426 tlb_reset_dirty_range_all(start, length);
1427 }
1428
1429 return snap;
1430}
1431
1432bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1433 ram_addr_t start,
1434 ram_addr_t length)
1435{
1436 unsigned long page, end;
1437
1438 assert(start >= snap->start);
1439 assert(start + length <= snap->end);
1440
1441 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1442 page = (start - snap->start) >> TARGET_PAGE_BITS;
1443
1444 while (page < end) {
1445 if (test_bit(page, snap->dirty)) {
1446 return true;
1447 }
1448 page++;
1449 }
1450 return false;
1451}
1452
79e2b9ae 1453/* Called from RCU critical section */
bb0e627a 1454hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1455 MemoryRegionSection *section,
1456 target_ulong vaddr,
1457 hwaddr paddr, hwaddr xlat,
1458 int prot,
1459 target_ulong *address)
e5548617 1460{
a8170e5e 1461 hwaddr iotlb;
e5548617
BS
1462 CPUWatchpoint *wp;
1463
cc5bea60 1464 if (memory_region_is_ram(section->mr)) {
e5548617 1465 /* Normal RAM. */
e4e69794 1466 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1467 if (!section->readonly) {
b41aac4f 1468 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1469 } else {
b41aac4f 1470 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1471 }
1472 } else {
0b8e2c10
PM
1473 AddressSpaceDispatch *d;
1474
16620684 1475 d = flatview_to_dispatch(section->fv);
0b8e2c10 1476 iotlb = section - d->map.sections;
149f54b5 1477 iotlb += xlat;
e5548617
BS
1478 }
1479
1480 /* Make accesses to pages with watchpoints go via the
1481 watchpoint trap routines. */
ff4700b0 1482 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1483 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1484 /* Avoid trapping reads of pages with a write breakpoint. */
1485 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1486 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1487 *address |= TLB_MMIO;
1488 break;
1489 }
1490 }
1491 }
1492
1493 return iotlb;
1494}
9fa3e853
FB
1495#endif /* defined(CONFIG_USER_ONLY) */
1496
e2eef170 1497#if !defined(CONFIG_USER_ONLY)
8da3ff18 1498
c227f099 1499static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1500 uint16_t section);
16620684 1501static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1502
06329cce 1503static void *(*phys_mem_alloc)(size_t size, uint64_t *align, bool shared) =
a2b257d6 1504 qemu_anon_ram_alloc;
91138037
MA
1505
1506/*
1507 * Set a custom physical guest memory alloator.
1508 * Accelerators with unusual needs may need this. Hopefully, we can
1509 * get rid of it eventually.
1510 */
06329cce 1511void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align, bool shared))
91138037
MA
1512{
1513 phys_mem_alloc = alloc;
1514}
1515
53cb28cb
MA
1516static uint16_t phys_section_add(PhysPageMap *map,
1517 MemoryRegionSection *section)
5312bd8b 1518{
68f3f65b
PB
1519 /* The physical section number is ORed with a page-aligned
1520 * pointer to produce the iotlb entries. Thus it should
1521 * never overflow into the page-aligned value.
1522 */
53cb28cb 1523 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1524
53cb28cb
MA
1525 if (map->sections_nb == map->sections_nb_alloc) {
1526 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1527 map->sections = g_renew(MemoryRegionSection, map->sections,
1528 map->sections_nb_alloc);
5312bd8b 1529 }
53cb28cb 1530 map->sections[map->sections_nb] = *section;
dfde4e6e 1531 memory_region_ref(section->mr);
53cb28cb 1532 return map->sections_nb++;
5312bd8b
AK
1533}
1534
058bc4b5
PB
1535static void phys_section_destroy(MemoryRegion *mr)
1536{
55b4e80b
DS
1537 bool have_sub_page = mr->subpage;
1538
dfde4e6e
PB
1539 memory_region_unref(mr);
1540
55b4e80b 1541 if (have_sub_page) {
058bc4b5 1542 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1543 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1544 g_free(subpage);
1545 }
1546}
1547
6092666e 1548static void phys_sections_free(PhysPageMap *map)
5312bd8b 1549{
9affd6fc
PB
1550 while (map->sections_nb > 0) {
1551 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1552 phys_section_destroy(section->mr);
1553 }
9affd6fc
PB
1554 g_free(map->sections);
1555 g_free(map->nodes);
5312bd8b
AK
1556}
1557
9950322a 1558static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1559{
9950322a 1560 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1561 subpage_t *subpage;
a8170e5e 1562 hwaddr base = section->offset_within_address_space
0f0cb164 1563 & TARGET_PAGE_MASK;
003a0cf2 1564 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1565 MemoryRegionSection subsection = {
1566 .offset_within_address_space = base,
052e87b0 1567 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1568 };
a8170e5e 1569 hwaddr start, end;
0f0cb164 1570
f3705d53 1571 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1572
f3705d53 1573 if (!(existing->mr->subpage)) {
16620684
AK
1574 subpage = subpage_init(fv, base);
1575 subsection.fv = fv;
0f0cb164 1576 subsection.mr = &subpage->iomem;
ac1970fb 1577 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1578 phys_section_add(&d->map, &subsection));
0f0cb164 1579 } else {
f3705d53 1580 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1581 }
1582 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1583 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1584 subpage_register(subpage, start, end,
1585 phys_section_add(&d->map, section));
0f0cb164
AK
1586}
1587
1588
9950322a 1589static void register_multipage(FlatView *fv,
052e87b0 1590 MemoryRegionSection *section)
33417e70 1591{
9950322a 1592 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1593 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1594 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1595 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1596 TARGET_PAGE_BITS));
dd81124b 1597
733d5ef5
PB
1598 assert(num_pages);
1599 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1600}
1601
8629d3fc 1602void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1603{
99b9cc06 1604 MemoryRegionSection now = *section, remain = *section;
052e87b0 1605 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1606
733d5ef5
PB
1607 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1608 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1609 - now.offset_within_address_space;
1610
052e87b0 1611 now.size = int128_min(int128_make64(left), now.size);
9950322a 1612 register_subpage(fv, &now);
733d5ef5 1613 } else {
052e87b0 1614 now.size = int128_zero();
733d5ef5 1615 }
052e87b0
PB
1616 while (int128_ne(remain.size, now.size)) {
1617 remain.size = int128_sub(remain.size, now.size);
1618 remain.offset_within_address_space += int128_get64(now.size);
1619 remain.offset_within_region += int128_get64(now.size);
69b67646 1620 now = remain;
052e87b0 1621 if (int128_lt(remain.size, page_size)) {
9950322a 1622 register_subpage(fv, &now);
88266249 1623 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1624 now.size = page_size;
9950322a 1625 register_subpage(fv, &now);
69b67646 1626 } else {
052e87b0 1627 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1628 register_multipage(fv, &now);
69b67646 1629 }
0f0cb164
AK
1630 }
1631}
1632
62a2744c
SY
1633void qemu_flush_coalesced_mmio_buffer(void)
1634{
1635 if (kvm_enabled())
1636 kvm_flush_coalesced_mmio_buffer();
1637}
1638
b2a8658e
UD
1639void qemu_mutex_lock_ramlist(void)
1640{
1641 qemu_mutex_lock(&ram_list.mutex);
1642}
1643
1644void qemu_mutex_unlock_ramlist(void)
1645{
1646 qemu_mutex_unlock(&ram_list.mutex);
1647}
1648
be9b23c4
PX
1649void ram_block_dump(Monitor *mon)
1650{
1651 RAMBlock *block;
1652 char *psize;
1653
1654 rcu_read_lock();
1655 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1656 "Block Name", "PSize", "Offset", "Used", "Total");
1657 RAMBLOCK_FOREACH(block) {
1658 psize = size_to_str(block->page_size);
1659 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1660 " 0x%016" PRIx64 "\n", block->idstr, psize,
1661 (uint64_t)block->offset,
1662 (uint64_t)block->used_length,
1663 (uint64_t)block->max_length);
1664 g_free(psize);
1665 }
1666 rcu_read_unlock();
1667}
1668
9c607668
AK
1669#ifdef __linux__
1670/*
1671 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1672 * may or may not name the same files / on the same filesystem now as
1673 * when we actually open and map them. Iterate over the file
1674 * descriptors instead, and use qemu_fd_getpagesize().
1675 */
1676static int find_max_supported_pagesize(Object *obj, void *opaque)
1677{
9c607668
AK
1678 long *hpsize_min = opaque;
1679
1680 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
2b108085
DG
1681 long hpsize = host_memory_backend_pagesize(MEMORY_BACKEND(obj));
1682
0de6e2a3
DG
1683 if (hpsize < *hpsize_min) {
1684 *hpsize_min = hpsize;
9c607668
AK
1685 }
1686 }
1687
1688 return 0;
1689}
1690
1691long qemu_getrampagesize(void)
1692{
1693 long hpsize = LONG_MAX;
1694 long mainrampagesize;
1695 Object *memdev_root;
1696
0de6e2a3 1697 mainrampagesize = qemu_mempath_getpagesize(mem_path);
9c607668
AK
1698
1699 /* it's possible we have memory-backend objects with
1700 * hugepage-backed RAM. these may get mapped into system
1701 * address space via -numa parameters or memory hotplug
1702 * hooks. we want to take these into account, but we
1703 * also want to make sure these supported hugepage
1704 * sizes are applicable across the entire range of memory
1705 * we may boot from, so we take the min across all
1706 * backends, and assume normal pages in cases where a
1707 * backend isn't backed by hugepages.
1708 */
1709 memdev_root = object_resolve_path("/objects", NULL);
1710 if (memdev_root) {
1711 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1712 }
1713 if (hpsize == LONG_MAX) {
1714 /* No additional memory regions found ==> Report main RAM page size */
1715 return mainrampagesize;
1716 }
1717
1718 /* If NUMA is disabled or the NUMA nodes are not backed with a
1719 * memory-backend, then there is at least one node using "normal" RAM,
1720 * so if its page size is smaller we have got to report that size instead.
1721 */
1722 if (hpsize > mainrampagesize &&
1723 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1724 static bool warned;
1725 if (!warned) {
1726 error_report("Huge page support disabled (n/a for main memory).");
1727 warned = true;
1728 }
1729 return mainrampagesize;
1730 }
1731
1732 return hpsize;
1733}
1734#else
1735long qemu_getrampagesize(void)
1736{
1737 return getpagesize();
1738}
1739#endif
1740
d5dbde46 1741#ifdef CONFIG_POSIX
d6af99c9
HZ
1742static int64_t get_file_size(int fd)
1743{
1744 int64_t size = lseek(fd, 0, SEEK_END);
1745 if (size < 0) {
1746 return -errno;
1747 }
1748 return size;
1749}
1750
8d37b030
MAL
1751static int file_ram_open(const char *path,
1752 const char *region_name,
1753 bool *created,
1754 Error **errp)
c902760f
MT
1755{
1756 char *filename;
8ca761f6
PF
1757 char *sanitized_name;
1758 char *c;
5c3ece79 1759 int fd = -1;
c902760f 1760
8d37b030 1761 *created = false;
fd97fd44
MA
1762 for (;;) {
1763 fd = open(path, O_RDWR);
1764 if (fd >= 0) {
1765 /* @path names an existing file, use it */
1766 break;
8d31d6b6 1767 }
fd97fd44
MA
1768 if (errno == ENOENT) {
1769 /* @path names a file that doesn't exist, create it */
1770 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1771 if (fd >= 0) {
8d37b030 1772 *created = true;
fd97fd44
MA
1773 break;
1774 }
1775 } else if (errno == EISDIR) {
1776 /* @path names a directory, create a file there */
1777 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1778 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1779 for (c = sanitized_name; *c != '\0'; c++) {
1780 if (*c == '/') {
1781 *c = '_';
1782 }
1783 }
8ca761f6 1784
fd97fd44
MA
1785 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1786 sanitized_name);
1787 g_free(sanitized_name);
8d31d6b6 1788
fd97fd44
MA
1789 fd = mkstemp(filename);
1790 if (fd >= 0) {
1791 unlink(filename);
1792 g_free(filename);
1793 break;
1794 }
1795 g_free(filename);
8d31d6b6 1796 }
fd97fd44
MA
1797 if (errno != EEXIST && errno != EINTR) {
1798 error_setg_errno(errp, errno,
1799 "can't open backing store %s for guest RAM",
1800 path);
8d37b030 1801 return -1;
fd97fd44
MA
1802 }
1803 /*
1804 * Try again on EINTR and EEXIST. The latter happens when
1805 * something else creates the file between our two open().
1806 */
8d31d6b6 1807 }
c902760f 1808
8d37b030
MAL
1809 return fd;
1810}
1811
1812static void *file_ram_alloc(RAMBlock *block,
1813 ram_addr_t memory,
1814 int fd,
1815 bool truncate,
1816 Error **errp)
1817{
1818 void *area;
1819
863e9621 1820 block->page_size = qemu_fd_getpagesize(fd);
98376843
HZ
1821 if (block->mr->align % block->page_size) {
1822 error_setg(errp, "alignment 0x%" PRIx64
1823 " must be multiples of page size 0x%zx",
1824 block->mr->align, block->page_size);
1825 return NULL;
61362b71
DH
1826 } else if (block->mr->align && !is_power_of_2(block->mr->align)) {
1827 error_setg(errp, "alignment 0x%" PRIx64
1828 " must be a power of two", block->mr->align);
1829 return NULL;
98376843
HZ
1830 }
1831 block->mr->align = MAX(block->page_size, block->mr->align);
8360668e
HZ
1832#if defined(__s390x__)
1833 if (kvm_enabled()) {
1834 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1835 }
1836#endif
fd97fd44 1837
863e9621 1838 if (memory < block->page_size) {
fd97fd44 1839 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1840 "or larger than page size 0x%zx",
1841 memory, block->page_size);
8d37b030 1842 return NULL;
1775f111
HZ
1843 }
1844
863e9621 1845 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1846
1847 /*
1848 * ftruncate is not supported by hugetlbfs in older
1849 * hosts, so don't bother bailing out on errors.
1850 * If anything goes wrong with it under other filesystems,
1851 * mmap will fail.
d6af99c9
HZ
1852 *
1853 * Do not truncate the non-empty backend file to avoid corrupting
1854 * the existing data in the file. Disabling shrinking is not
1855 * enough. For example, the current vNVDIMM implementation stores
1856 * the guest NVDIMM labels at the end of the backend file. If the
1857 * backend file is later extended, QEMU will not be able to find
1858 * those labels. Therefore, extending the non-empty backend file
1859 * is disabled as well.
c902760f 1860 */
8d37b030 1861 if (truncate && ftruncate(fd, memory)) {
9742bf26 1862 perror("ftruncate");
7f56e740 1863 }
c902760f 1864
d2f39add
DD
1865 area = qemu_ram_mmap(fd, memory, block->mr->align,
1866 block->flags & RAM_SHARED);
c902760f 1867 if (area == MAP_FAILED) {
7f56e740 1868 error_setg_errno(errp, errno,
fd97fd44 1869 "unable to map backing store for guest RAM");
8d37b030 1870 return NULL;
c902760f 1871 }
ef36fa14
MT
1872
1873 if (mem_prealloc) {
1e356fc1 1874 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1875 if (errp && *errp) {
53adb9d4 1876 qemu_ram_munmap(fd, area, memory);
8d37b030 1877 return NULL;
056b68af 1878 }
ef36fa14
MT
1879 }
1880
04b16653 1881 block->fd = fd;
c902760f
MT
1882 return area;
1883}
1884#endif
1885
154cc9ea
DDAG
1886/* Allocate space within the ram_addr_t space that governs the
1887 * dirty bitmaps.
1888 * Called with the ramlist lock held.
1889 */
d17b5288 1890static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1891{
1892 RAMBlock *block, *next_block;
3e837b2c 1893 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1894
49cd9ac6
SH
1895 assert(size != 0); /* it would hand out same offset multiple times */
1896
0dc3f44a 1897 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1898 return 0;
0d53d9fe 1899 }
04b16653 1900
99e15582 1901 RAMBLOCK_FOREACH(block) {
154cc9ea 1902 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1903
801110ab
DDAG
1904 /* Align blocks to start on a 'long' in the bitmap
1905 * which makes the bitmap sync'ing take the fast path.
1906 */
154cc9ea 1907 candidate = block->offset + block->max_length;
801110ab 1908 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1909
154cc9ea
DDAG
1910 /* Search for the closest following block
1911 * and find the gap.
1912 */
99e15582 1913 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1914 if (next_block->offset >= candidate) {
04b16653
AW
1915 next = MIN(next, next_block->offset);
1916 }
1917 }
154cc9ea
DDAG
1918
1919 /* If it fits remember our place and remember the size
1920 * of gap, but keep going so that we might find a smaller
1921 * gap to fill so avoiding fragmentation.
1922 */
1923 if (next - candidate >= size && next - candidate < mingap) {
1924 offset = candidate;
1925 mingap = next - candidate;
04b16653 1926 }
154cc9ea
DDAG
1927
1928 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1929 }
3e837b2c
AW
1930
1931 if (offset == RAM_ADDR_MAX) {
1932 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1933 (uint64_t)size);
1934 abort();
1935 }
1936
154cc9ea
DDAG
1937 trace_find_ram_offset(size, offset);
1938
04b16653
AW
1939 return offset;
1940}
1941
c136180c 1942static unsigned long last_ram_page(void)
d17b5288
AW
1943{
1944 RAMBlock *block;
1945 ram_addr_t last = 0;
1946
0dc3f44a 1947 rcu_read_lock();
99e15582 1948 RAMBLOCK_FOREACH(block) {
62be4e3a 1949 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1950 }
0dc3f44a 1951 rcu_read_unlock();
b8c48993 1952 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1953}
1954
ddb97f1d
JB
1955static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1956{
1957 int ret;
ddb97f1d
JB
1958
1959 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1960 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1961 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1962 if (ret) {
1963 perror("qemu_madvise");
1964 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1965 "but dump_guest_core=off specified\n");
1966 }
1967 }
1968}
1969
422148d3
DDAG
1970const char *qemu_ram_get_idstr(RAMBlock *rb)
1971{
1972 return rb->idstr;
1973}
1974
754cb9c0
YK
1975void *qemu_ram_get_host_addr(RAMBlock *rb)
1976{
1977 return rb->host;
1978}
1979
1980ram_addr_t qemu_ram_get_offset(RAMBlock *rb)
1981{
1982 return rb->offset;
1983}
1984
1985ram_addr_t qemu_ram_get_used_length(RAMBlock *rb)
1986{
1987 return rb->used_length;
1988}
1989
463a4ac2
DDAG
1990bool qemu_ram_is_shared(RAMBlock *rb)
1991{
1992 return rb->flags & RAM_SHARED;
1993}
1994
2ce16640
DDAG
1995/* Note: Only set at the start of postcopy */
1996bool qemu_ram_is_uf_zeroable(RAMBlock *rb)
1997{
1998 return rb->flags & RAM_UF_ZEROPAGE;
1999}
2000
2001void qemu_ram_set_uf_zeroable(RAMBlock *rb)
2002{
2003 rb->flags |= RAM_UF_ZEROPAGE;
2004}
2005
b895de50
CLG
2006bool qemu_ram_is_migratable(RAMBlock *rb)
2007{
2008 return rb->flags & RAM_MIGRATABLE;
2009}
2010
2011void qemu_ram_set_migratable(RAMBlock *rb)
2012{
2013 rb->flags |= RAM_MIGRATABLE;
2014}
2015
2016void qemu_ram_unset_migratable(RAMBlock *rb)
2017{
2018 rb->flags &= ~RAM_MIGRATABLE;
2019}
2020
ae3a7047 2021/* Called with iothread lock held. */
fa53a0e5 2022void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 2023{
fa53a0e5 2024 RAMBlock *block;
20cfe881 2025
c5705a77
AK
2026 assert(new_block);
2027 assert(!new_block->idstr[0]);
84b89d78 2028
09e5ab63
AL
2029 if (dev) {
2030 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2031 if (id) {
2032 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2033 g_free(id);
84b89d78
CM
2034 }
2035 }
2036 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2037
ab0a9956 2038 rcu_read_lock();
99e15582 2039 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
2040 if (block != new_block &&
2041 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2042 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2043 new_block->idstr);
2044 abort();
2045 }
2046 }
0dc3f44a 2047 rcu_read_unlock();
c5705a77
AK
2048}
2049
ae3a7047 2050/* Called with iothread lock held. */
fa53a0e5 2051void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 2052{
ae3a7047
MD
2053 /* FIXME: arch_init.c assumes that this is not called throughout
2054 * migration. Ignore the problem since hot-unplug during migration
2055 * does not work anyway.
2056 */
20cfe881
HT
2057 if (block) {
2058 memset(block->idstr, 0, sizeof(block->idstr));
2059 }
2060}
2061
863e9621
DDAG
2062size_t qemu_ram_pagesize(RAMBlock *rb)
2063{
2064 return rb->page_size;
2065}
2066
67f11b5c
DDAG
2067/* Returns the largest size of page in use */
2068size_t qemu_ram_pagesize_largest(void)
2069{
2070 RAMBlock *block;
2071 size_t largest = 0;
2072
99e15582 2073 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
2074 largest = MAX(largest, qemu_ram_pagesize(block));
2075 }
2076
2077 return largest;
2078}
2079
8490fc78
LC
2080static int memory_try_enable_merging(void *addr, size_t len)
2081{
75cc7f01 2082 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
2083 /* disabled by the user */
2084 return 0;
2085 }
2086
2087 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2088}
2089
62be4e3a
MT
2090/* Only legal before guest might have detected the memory size: e.g. on
2091 * incoming migration, or right after reset.
2092 *
2093 * As memory core doesn't know how is memory accessed, it is up to
2094 * resize callback to update device state and/or add assertions to detect
2095 * misuse, if necessary.
2096 */
fa53a0e5 2097int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 2098{
62be4e3a
MT
2099 assert(block);
2100
4ed023ce 2101 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 2102
62be4e3a
MT
2103 if (block->used_length == newsize) {
2104 return 0;
2105 }
2106
2107 if (!(block->flags & RAM_RESIZEABLE)) {
2108 error_setg_errno(errp, EINVAL,
2109 "Length mismatch: %s: 0x" RAM_ADDR_FMT
2110 " in != 0x" RAM_ADDR_FMT, block->idstr,
2111 newsize, block->used_length);
2112 return -EINVAL;
2113 }
2114
2115 if (block->max_length < newsize) {
2116 error_setg_errno(errp, EINVAL,
2117 "Length too large: %s: 0x" RAM_ADDR_FMT
2118 " > 0x" RAM_ADDR_FMT, block->idstr,
2119 newsize, block->max_length);
2120 return -EINVAL;
2121 }
2122
2123 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
2124 block->used_length = newsize;
58d2707e
PB
2125 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
2126 DIRTY_CLIENTS_ALL);
62be4e3a
MT
2127 memory_region_set_size(block->mr, newsize);
2128 if (block->resized) {
2129 block->resized(block->idstr, newsize, block->host);
2130 }
2131 return 0;
2132}
2133
5b82b703
SH
2134/* Called with ram_list.mutex held */
2135static void dirty_memory_extend(ram_addr_t old_ram_size,
2136 ram_addr_t new_ram_size)
2137{
2138 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
2139 DIRTY_MEMORY_BLOCK_SIZE);
2140 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
2141 DIRTY_MEMORY_BLOCK_SIZE);
2142 int i;
2143
2144 /* Only need to extend if block count increased */
2145 if (new_num_blocks <= old_num_blocks) {
2146 return;
2147 }
2148
2149 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
2150 DirtyMemoryBlocks *old_blocks;
2151 DirtyMemoryBlocks *new_blocks;
2152 int j;
2153
2154 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
2155 new_blocks = g_malloc(sizeof(*new_blocks) +
2156 sizeof(new_blocks->blocks[0]) * new_num_blocks);
2157
2158 if (old_num_blocks) {
2159 memcpy(new_blocks->blocks, old_blocks->blocks,
2160 old_num_blocks * sizeof(old_blocks->blocks[0]));
2161 }
2162
2163 for (j = old_num_blocks; j < new_num_blocks; j++) {
2164 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
2165 }
2166
2167 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
2168
2169 if (old_blocks) {
2170 g_free_rcu(old_blocks, rcu);
2171 }
2172 }
2173}
2174
06329cce 2175static void ram_block_add(RAMBlock *new_block, Error **errp, bool shared)
c5705a77 2176{
e1c57ab8 2177 RAMBlock *block;
0d53d9fe 2178 RAMBlock *last_block = NULL;
2152f5ca 2179 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 2180 Error *err = NULL;
2152f5ca 2181
b8c48993 2182 old_ram_size = last_ram_page();
c5705a77 2183
b2a8658e 2184 qemu_mutex_lock_ramlist();
9b8424d5 2185 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
2186
2187 if (!new_block->host) {
2188 if (xen_enabled()) {
9b8424d5 2189 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
2190 new_block->mr, &err);
2191 if (err) {
2192 error_propagate(errp, err);
2193 qemu_mutex_unlock_ramlist();
39c350ee 2194 return;
37aa7a0e 2195 }
e1c57ab8 2196 } else {
9b8424d5 2197 new_block->host = phys_mem_alloc(new_block->max_length,
06329cce 2198 &new_block->mr->align, shared);
39228250 2199 if (!new_block->host) {
ef701d7b
HT
2200 error_setg_errno(errp, errno,
2201 "cannot set up guest memory '%s'",
2202 memory_region_name(new_block->mr));
2203 qemu_mutex_unlock_ramlist();
39c350ee 2204 return;
39228250 2205 }
9b8424d5 2206 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 2207 }
c902760f 2208 }
94a6b54f 2209
dd631697
LZ
2210 new_ram_size = MAX(old_ram_size,
2211 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
2212 if (new_ram_size > old_ram_size) {
5b82b703 2213 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 2214 }
0d53d9fe
MD
2215 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
2216 * QLIST (which has an RCU-friendly variant) does not have insertion at
2217 * tail, so save the last element in last_block.
2218 */
99e15582 2219 RAMBLOCK_FOREACH(block) {
0d53d9fe 2220 last_block = block;
9b8424d5 2221 if (block->max_length < new_block->max_length) {
abb26d63
PB
2222 break;
2223 }
2224 }
2225 if (block) {
0dc3f44a 2226 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 2227 } else if (last_block) {
0dc3f44a 2228 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 2229 } else { /* list is empty */
0dc3f44a 2230 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 2231 }
0d6d3c87 2232 ram_list.mru_block = NULL;
94a6b54f 2233
0dc3f44a
MD
2234 /* Write list before version */
2235 smp_wmb();
f798b07f 2236 ram_list.version++;
b2a8658e 2237 qemu_mutex_unlock_ramlist();
f798b07f 2238
9b8424d5 2239 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
2240 new_block->used_length,
2241 DIRTY_CLIENTS_ALL);
94a6b54f 2242
a904c911
PB
2243 if (new_block->host) {
2244 qemu_ram_setup_dump(new_block->host, new_block->max_length);
2245 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 2246 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 2247 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 2248 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 2249 }
94a6b54f 2250}
e9a1ab19 2251
d5dbde46 2252#ifdef CONFIG_POSIX
38b3362d 2253RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2254 uint32_t ram_flags, int fd,
38b3362d 2255 Error **errp)
e1c57ab8
PB
2256{
2257 RAMBlock *new_block;
ef701d7b 2258 Error *local_err = NULL;
8d37b030 2259 int64_t file_size;
e1c57ab8 2260
a4de8552
JH
2261 /* Just support these ram flags by now. */
2262 assert((ram_flags & ~(RAM_SHARED | RAM_PMEM)) == 0);
2263
e1c57ab8 2264 if (xen_enabled()) {
7f56e740 2265 error_setg(errp, "-mem-path not supported with Xen");
528f46af 2266 return NULL;
e1c57ab8
PB
2267 }
2268
e45e7ae2
MAL
2269 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2270 error_setg(errp,
2271 "host lacks kvm mmu notifiers, -mem-path unsupported");
2272 return NULL;
2273 }
2274
e1c57ab8
PB
2275 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2276 /*
2277 * file_ram_alloc() needs to allocate just like
2278 * phys_mem_alloc, but we haven't bothered to provide
2279 * a hook there.
2280 */
7f56e740
PB
2281 error_setg(errp,
2282 "-mem-path not supported with this accelerator");
528f46af 2283 return NULL;
e1c57ab8
PB
2284 }
2285
4ed023ce 2286 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2287 file_size = get_file_size(fd);
2288 if (file_size > 0 && file_size < size) {
2289 error_setg(errp, "backing store %s size 0x%" PRIx64
2290 " does not match 'size' option 0x" RAM_ADDR_FMT,
2291 mem_path, file_size, size);
8d37b030
MAL
2292 return NULL;
2293 }
2294
e1c57ab8
PB
2295 new_block = g_malloc0(sizeof(*new_block));
2296 new_block->mr = mr;
9b8424d5
MT
2297 new_block->used_length = size;
2298 new_block->max_length = size;
cbfc0171 2299 new_block->flags = ram_flags;
8d37b030 2300 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2301 if (!new_block->host) {
2302 g_free(new_block);
528f46af 2303 return NULL;
7f56e740
PB
2304 }
2305
cbfc0171 2306 ram_block_add(new_block, &local_err, ram_flags & RAM_SHARED);
ef701d7b
HT
2307 if (local_err) {
2308 g_free(new_block);
2309 error_propagate(errp, local_err);
528f46af 2310 return NULL;
ef701d7b 2311 }
528f46af 2312 return new_block;
38b3362d
MAL
2313
2314}
2315
2316
2317RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
cbfc0171 2318 uint32_t ram_flags, const char *mem_path,
38b3362d
MAL
2319 Error **errp)
2320{
2321 int fd;
2322 bool created;
2323 RAMBlock *block;
2324
2325 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2326 if (fd < 0) {
2327 return NULL;
2328 }
2329
cbfc0171 2330 block = qemu_ram_alloc_from_fd(size, mr, ram_flags, fd, errp);
38b3362d
MAL
2331 if (!block) {
2332 if (created) {
2333 unlink(mem_path);
2334 }
2335 close(fd);
2336 return NULL;
2337 }
2338
2339 return block;
e1c57ab8 2340}
0b183fc8 2341#endif
e1c57ab8 2342
62be4e3a 2343static
528f46af
FZ
2344RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2345 void (*resized)(const char*,
2346 uint64_t length,
2347 void *host),
06329cce 2348 void *host, bool resizeable, bool share,
528f46af 2349 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2350{
2351 RAMBlock *new_block;
ef701d7b 2352 Error *local_err = NULL;
e1c57ab8 2353
4ed023ce
DDAG
2354 size = HOST_PAGE_ALIGN(size);
2355 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2356 new_block = g_malloc0(sizeof(*new_block));
2357 new_block->mr = mr;
62be4e3a 2358 new_block->resized = resized;
9b8424d5
MT
2359 new_block->used_length = size;
2360 new_block->max_length = max_size;
62be4e3a 2361 assert(max_size >= size);
e1c57ab8 2362 new_block->fd = -1;
863e9621 2363 new_block->page_size = getpagesize();
e1c57ab8
PB
2364 new_block->host = host;
2365 if (host) {
7bd4f430 2366 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2367 }
62be4e3a
MT
2368 if (resizeable) {
2369 new_block->flags |= RAM_RESIZEABLE;
2370 }
06329cce 2371 ram_block_add(new_block, &local_err, share);
ef701d7b
HT
2372 if (local_err) {
2373 g_free(new_block);
2374 error_propagate(errp, local_err);
528f46af 2375 return NULL;
ef701d7b 2376 }
528f46af 2377 return new_block;
e1c57ab8
PB
2378}
2379
528f46af 2380RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2381 MemoryRegion *mr, Error **errp)
2382{
06329cce
MA
2383 return qemu_ram_alloc_internal(size, size, NULL, host, false,
2384 false, mr, errp);
62be4e3a
MT
2385}
2386
06329cce
MA
2387RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share,
2388 MemoryRegion *mr, Error **errp)
6977dfe6 2389{
06329cce
MA
2390 return qemu_ram_alloc_internal(size, size, NULL, NULL, false,
2391 share, mr, errp);
62be4e3a
MT
2392}
2393
528f46af 2394RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2395 void (*resized)(const char*,
2396 uint64_t length,
2397 void *host),
2398 MemoryRegion *mr, Error **errp)
2399{
06329cce
MA
2400 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true,
2401 false, mr, errp);
6977dfe6
YT
2402}
2403
43771539
PB
2404static void reclaim_ramblock(RAMBlock *block)
2405{
2406 if (block->flags & RAM_PREALLOC) {
2407 ;
2408 } else if (xen_enabled()) {
2409 xen_invalidate_map_cache_entry(block->host);
2410#ifndef _WIN32
2411 } else if (block->fd >= 0) {
53adb9d4 2412 qemu_ram_munmap(block->fd, block->host, block->max_length);
43771539
PB
2413 close(block->fd);
2414#endif
2415 } else {
2416 qemu_anon_ram_free(block->host, block->max_length);
2417 }
2418 g_free(block);
2419}
2420
f1060c55 2421void qemu_ram_free(RAMBlock *block)
e9a1ab19 2422{
85bc2a15
MAL
2423 if (!block) {
2424 return;
2425 }
2426
0987d735
PB
2427 if (block->host) {
2428 ram_block_notify_remove(block->host, block->max_length);
2429 }
2430
b2a8658e 2431 qemu_mutex_lock_ramlist();
f1060c55
FZ
2432 QLIST_REMOVE_RCU(block, next);
2433 ram_list.mru_block = NULL;
2434 /* Write list before version */
2435 smp_wmb();
2436 ram_list.version++;
2437 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2438 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2439}
2440
cd19cfa2
HY
2441#ifndef _WIN32
2442void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2443{
2444 RAMBlock *block;
2445 ram_addr_t offset;
2446 int flags;
2447 void *area, *vaddr;
2448
99e15582 2449 RAMBLOCK_FOREACH(block) {
cd19cfa2 2450 offset = addr - block->offset;
9b8424d5 2451 if (offset < block->max_length) {
1240be24 2452 vaddr = ramblock_ptr(block, offset);
7bd4f430 2453 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2454 ;
dfeaf2ab
MA
2455 } else if (xen_enabled()) {
2456 abort();
cd19cfa2
HY
2457 } else {
2458 flags = MAP_FIXED;
3435f395 2459 if (block->fd >= 0) {
dbcb8981
PB
2460 flags |= (block->flags & RAM_SHARED ?
2461 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2462 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2463 flags, block->fd, offset);
cd19cfa2 2464 } else {
2eb9fbaa
MA
2465 /*
2466 * Remap needs to match alloc. Accelerators that
2467 * set phys_mem_alloc never remap. If they did,
2468 * we'd need a remap hook here.
2469 */
2470 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2471
cd19cfa2
HY
2472 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2473 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2474 flags, -1, 0);
cd19cfa2
HY
2475 }
2476 if (area != vaddr) {
493d89bf
AF
2477 error_report("Could not remap addr: "
2478 RAM_ADDR_FMT "@" RAM_ADDR_FMT "",
2479 length, addr);
cd19cfa2
HY
2480 exit(1);
2481 }
8490fc78 2482 memory_try_enable_merging(vaddr, length);
ddb97f1d 2483 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2484 }
cd19cfa2
HY
2485 }
2486 }
2487}
2488#endif /* !_WIN32 */
2489
1b5ec234 2490/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2491 * This should not be used for general purpose DMA. Use address_space_map
2492 * or address_space_rw instead. For local memory (e.g. video ram) that the
2493 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2494 *
49b24afc 2495 * Called within RCU critical section.
1b5ec234 2496 */
0878d0e1 2497void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2498{
3655cb9c
GA
2499 RAMBlock *block = ram_block;
2500
2501 if (block == NULL) {
2502 block = qemu_get_ram_block(addr);
0878d0e1 2503 addr -= block->offset;
3655cb9c 2504 }
ae3a7047
MD
2505
2506 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2507 /* We need to check if the requested address is in the RAM
2508 * because we don't want to map the entire memory in QEMU.
2509 * In that case just map until the end of the page.
2510 */
2511 if (block->offset == 0) {
1ff7c598 2512 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2513 }
ae3a7047 2514
1ff7c598 2515 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2516 }
0878d0e1 2517 return ramblock_ptr(block, addr);
dc828ca1
PB
2518}
2519
0878d0e1 2520/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2521 * but takes a size argument.
0dc3f44a 2522 *
e81bcda5 2523 * Called within RCU critical section.
ae3a7047 2524 */
3655cb9c 2525static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2526 hwaddr *size, bool lock)
38bee5dc 2527{
3655cb9c 2528 RAMBlock *block = ram_block;
8ab934f9
SS
2529 if (*size == 0) {
2530 return NULL;
2531 }
e81bcda5 2532
3655cb9c
GA
2533 if (block == NULL) {
2534 block = qemu_get_ram_block(addr);
0878d0e1 2535 addr -= block->offset;
3655cb9c 2536 }
0878d0e1 2537 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2538
2539 if (xen_enabled() && block->host == NULL) {
2540 /* We need to check if the requested address is in the RAM
2541 * because we don't want to map the entire memory in QEMU.
2542 * In that case just map the requested area.
2543 */
2544 if (block->offset == 0) {
f5aa69bd 2545 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2546 }
2547
f5aa69bd 2548 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2549 }
e81bcda5 2550
0878d0e1 2551 return ramblock_ptr(block, addr);
38bee5dc
SS
2552}
2553
f90bb71b
DDAG
2554/* Return the offset of a hostpointer within a ramblock */
2555ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host)
2556{
2557 ram_addr_t res = (uint8_t *)host - (uint8_t *)rb->host;
2558 assert((uintptr_t)host >= (uintptr_t)rb->host);
2559 assert(res < rb->max_length);
2560
2561 return res;
2562}
2563
422148d3
DDAG
2564/*
2565 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2566 * in that RAMBlock.
2567 *
2568 * ptr: Host pointer to look up
2569 * round_offset: If true round the result offset down to a page boundary
2570 * *ram_addr: set to result ram_addr
2571 * *offset: set to result offset within the RAMBlock
2572 *
2573 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2574 *
2575 * By the time this function returns, the returned pointer is not protected
2576 * by RCU anymore. If the caller is not within an RCU critical section and
2577 * does not hold the iothread lock, it must have other means of protecting the
2578 * pointer, such as a reference to the region that includes the incoming
2579 * ram_addr_t.
2580 */
422148d3 2581RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2582 ram_addr_t *offset)
5579c7f3 2583{
94a6b54f
PB
2584 RAMBlock *block;
2585 uint8_t *host = ptr;
2586
868bb33f 2587 if (xen_enabled()) {
f615f396 2588 ram_addr_t ram_addr;
0dc3f44a 2589 rcu_read_lock();
f615f396
PB
2590 ram_addr = xen_ram_addr_from_mapcache(ptr);
2591 block = qemu_get_ram_block(ram_addr);
422148d3 2592 if (block) {
d6b6aec4 2593 *offset = ram_addr - block->offset;
422148d3 2594 }
0dc3f44a 2595 rcu_read_unlock();
422148d3 2596 return block;
712c2b41
SS
2597 }
2598
0dc3f44a
MD
2599 rcu_read_lock();
2600 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2601 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2602 goto found;
2603 }
2604
99e15582 2605 RAMBLOCK_FOREACH(block) {
432d268c
JN
2606 /* This case append when the block is not mapped. */
2607 if (block->host == NULL) {
2608 continue;
2609 }
9b8424d5 2610 if (host - block->host < block->max_length) {
23887b79 2611 goto found;
f471a17e 2612 }
94a6b54f 2613 }
432d268c 2614
0dc3f44a 2615 rcu_read_unlock();
1b5ec234 2616 return NULL;
23887b79
PB
2617
2618found:
422148d3
DDAG
2619 *offset = (host - block->host);
2620 if (round_offset) {
2621 *offset &= TARGET_PAGE_MASK;
2622 }
0dc3f44a 2623 rcu_read_unlock();
422148d3
DDAG
2624 return block;
2625}
2626
e3dd7493
DDAG
2627/*
2628 * Finds the named RAMBlock
2629 *
2630 * name: The name of RAMBlock to find
2631 *
2632 * Returns: RAMBlock (or NULL if not found)
2633 */
2634RAMBlock *qemu_ram_block_by_name(const char *name)
2635{
2636 RAMBlock *block;
2637
99e15582 2638 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2639 if (!strcmp(name, block->idstr)) {
2640 return block;
2641 }
2642 }
2643
2644 return NULL;
2645}
2646
422148d3
DDAG
2647/* Some of the softmmu routines need to translate from a host pointer
2648 (typically a TLB entry) back to a ram offset. */
07bdaa41 2649ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2650{
2651 RAMBlock *block;
f615f396 2652 ram_addr_t offset;
422148d3 2653
f615f396 2654 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2655 if (!block) {
07bdaa41 2656 return RAM_ADDR_INVALID;
422148d3
DDAG
2657 }
2658
07bdaa41 2659 return block->offset + offset;
e890261f 2660}
f471a17e 2661
27266271
PM
2662/* Called within RCU critical section. */
2663void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2664 CPUState *cpu,
2665 vaddr mem_vaddr,
2666 ram_addr_t ram_addr,
2667 unsigned size)
2668{
2669 ndi->cpu = cpu;
2670 ndi->ram_addr = ram_addr;
2671 ndi->mem_vaddr = mem_vaddr;
2672 ndi->size = size;
0ac20318 2673 ndi->pages = NULL;
ba051fb5 2674
5aa1ef71 2675 assert(tcg_enabled());
52159192 2676 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0ac20318
EC
2677 ndi->pages = page_collection_lock(ram_addr, ram_addr + size);
2678 tb_invalidate_phys_page_fast(ndi->pages, ram_addr, size);
3a7d929e 2679 }
27266271
PM
2680}
2681
2682/* Called within RCU critical section. */
2683void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2684{
0ac20318 2685 if (ndi->pages) {
f28d0dfd 2686 assert(tcg_enabled());
0ac20318
EC
2687 page_collection_unlock(ndi->pages);
2688 ndi->pages = NULL;
27266271
PM
2689 }
2690
2691 /* Set both VGA and migration bits for simplicity and to remove
2692 * the notdirty callback faster.
2693 */
2694 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2695 DIRTY_CLIENTS_NOCODE);
2696 /* we remove the notdirty callback only if the code has been
2697 flushed */
2698 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2699 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2700 }
2701}
2702
2703/* Called within RCU critical section. */
2704static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2705 uint64_t val, unsigned size)
2706{
2707 NotDirtyInfo ndi;
2708
2709 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2710 ram_addr, size);
2711
6d3ede54 2712 stn_p(qemu_map_ram_ptr(NULL, ram_addr), size, val);
27266271 2713 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2714}
2715
b018ddf6 2716static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2717 unsigned size, bool is_write,
2718 MemTxAttrs attrs)
b018ddf6
PB
2719{
2720 return is_write;
2721}
2722
0e0df1e2 2723static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2724 .write = notdirty_mem_write,
b018ddf6 2725 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2726 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2727 .valid = {
2728 .min_access_size = 1,
2729 .max_access_size = 8,
2730 .unaligned = false,
2731 },
2732 .impl = {
2733 .min_access_size = 1,
2734 .max_access_size = 8,
2735 .unaligned = false,
2736 },
1ccde1cb
FB
2737};
2738
0f459d16 2739/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2740static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2741{
93afeade 2742 CPUState *cpu = current_cpu;
568496c0 2743 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2744 target_ulong vaddr;
a1d1bb31 2745 CPUWatchpoint *wp;
0f459d16 2746
5aa1ef71 2747 assert(tcg_enabled());
ff4700b0 2748 if (cpu->watchpoint_hit) {
06d55cc1
AL
2749 /* We re-entered the check after replacing the TB. Now raise
2750 * the debug interrupt so that is will trigger after the
2751 * current instruction. */
93afeade 2752 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2753 return;
2754 }
93afeade 2755 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2756 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2757 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2758 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2759 && (wp->flags & flags)) {
08225676
PM
2760 if (flags == BP_MEM_READ) {
2761 wp->flags |= BP_WATCHPOINT_HIT_READ;
2762 } else {
2763 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2764 }
2765 wp->hitaddr = vaddr;
66b9b43c 2766 wp->hitattrs = attrs;
ff4700b0 2767 if (!cpu->watchpoint_hit) {
568496c0
SF
2768 if (wp->flags & BP_CPU &&
2769 !cc->debug_check_watchpoint(cpu, wp)) {
2770 wp->flags &= ~BP_WATCHPOINT_HIT;
2771 continue;
2772 }
ff4700b0 2773 cpu->watchpoint_hit = wp;
a5e99826 2774
0ac20318 2775 mmap_lock();
239c51a5 2776 tb_check_watchpoint(cpu);
6e140f28 2777 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2778 cpu->exception_index = EXCP_DEBUG;
0ac20318 2779 mmap_unlock();
5638d180 2780 cpu_loop_exit(cpu);
6e140f28 2781 } else {
9b990ee5
RH
2782 /* Force execution of one insn next time. */
2783 cpu->cflags_next_tb = 1 | curr_cflags();
0ac20318 2784 mmap_unlock();
6886b980 2785 cpu_loop_exit_noexc(cpu);
6e140f28 2786 }
06d55cc1 2787 }
6e140f28
AL
2788 } else {
2789 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2790 }
2791 }
2792}
2793
6658ffb8
PB
2794/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2795 so these check for a hit then pass through to the normal out-of-line
2796 phys routines. */
66b9b43c
PM
2797static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2798 unsigned size, MemTxAttrs attrs)
6658ffb8 2799{
66b9b43c
PM
2800 MemTxResult res;
2801 uint64_t data;
79ed0416
PM
2802 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2803 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2804
2805 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2806 switch (size) {
66b9b43c 2807 case 1:
79ed0416 2808 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2809 break;
2810 case 2:
79ed0416 2811 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2812 break;
2813 case 4:
79ed0416 2814 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2815 break;
306526b5
PB
2816 case 8:
2817 data = address_space_ldq(as, addr, attrs, &res);
2818 break;
1ec9b909
AK
2819 default: abort();
2820 }
66b9b43c
PM
2821 *pdata = data;
2822 return res;
6658ffb8
PB
2823}
2824
66b9b43c
PM
2825static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2826 uint64_t val, unsigned size,
2827 MemTxAttrs attrs)
6658ffb8 2828{
66b9b43c 2829 MemTxResult res;
79ed0416
PM
2830 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2831 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2832
2833 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2834 switch (size) {
67364150 2835 case 1:
79ed0416 2836 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2837 break;
2838 case 2:
79ed0416 2839 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2840 break;
2841 case 4:
79ed0416 2842 address_space_stl(as, addr, val, attrs, &res);
67364150 2843 break;
306526b5
PB
2844 case 8:
2845 address_space_stq(as, addr, val, attrs, &res);
2846 break;
1ec9b909
AK
2847 default: abort();
2848 }
66b9b43c 2849 return res;
6658ffb8
PB
2850}
2851
1ec9b909 2852static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2853 .read_with_attrs = watch_mem_read,
2854 .write_with_attrs = watch_mem_write,
1ec9b909 2855 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2856 .valid = {
2857 .min_access_size = 1,
2858 .max_access_size = 8,
2859 .unaligned = false,
2860 },
2861 .impl = {
2862 .min_access_size = 1,
2863 .max_access_size = 8,
2864 .unaligned = false,
2865 },
6658ffb8 2866};
6658ffb8 2867
b2a44fca 2868static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 2869 MemTxAttrs attrs, uint8_t *buf, hwaddr len);
16620684 2870static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7
LZ
2871 const uint8_t *buf, hwaddr len);
2872static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 2873 bool is_write, MemTxAttrs attrs);
16620684 2874
f25a49e0
PM
2875static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2876 unsigned len, MemTxAttrs attrs)
db7b5426 2877{
acc9d80b 2878 subpage_t *subpage = opaque;
ff6cff75 2879 uint8_t buf[8];
5c9eb028 2880 MemTxResult res;
791af8c8 2881
db7b5426 2882#if defined(DEBUG_SUBPAGE)
016e9d62 2883 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2884 subpage, len, addr);
db7b5426 2885#endif
16620684 2886 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2887 if (res) {
2888 return res;
f25a49e0 2889 }
6d3ede54
PM
2890 *data = ldn_p(buf, len);
2891 return MEMTX_OK;
db7b5426
BS
2892}
2893
f25a49e0
PM
2894static MemTxResult subpage_write(void *opaque, hwaddr addr,
2895 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2896{
acc9d80b 2897 subpage_t *subpage = opaque;
ff6cff75 2898 uint8_t buf[8];
acc9d80b 2899
db7b5426 2900#if defined(DEBUG_SUBPAGE)
016e9d62 2901 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2902 " value %"PRIx64"\n",
2903 __func__, subpage, len, addr, value);
db7b5426 2904#endif
6d3ede54 2905 stn_p(buf, len, value);
16620684 2906 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2907}
2908
c353e4cc 2909static bool subpage_accepts(void *opaque, hwaddr addr,
8372d383
PM
2910 unsigned len, bool is_write,
2911 MemTxAttrs attrs)
c353e4cc 2912{
acc9d80b 2913 subpage_t *subpage = opaque;
c353e4cc 2914#if defined(DEBUG_SUBPAGE)
016e9d62 2915 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2916 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2917#endif
2918
16620684 2919 return flatview_access_valid(subpage->fv, addr + subpage->base,
eace72b7 2920 len, is_write, attrs);
c353e4cc
PB
2921}
2922
70c68e44 2923static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2924 .read_with_attrs = subpage_read,
2925 .write_with_attrs = subpage_write,
ff6cff75
PB
2926 .impl.min_access_size = 1,
2927 .impl.max_access_size = 8,
2928 .valid.min_access_size = 1,
2929 .valid.max_access_size = 8,
c353e4cc 2930 .valid.accepts = subpage_accepts,
70c68e44 2931 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2932};
2933
c227f099 2934static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2935 uint16_t section)
db7b5426
BS
2936{
2937 int idx, eidx;
2938
2939 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2940 return -1;
2941 idx = SUBPAGE_IDX(start);
2942 eidx = SUBPAGE_IDX(end);
2943#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2944 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2945 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2946#endif
db7b5426 2947 for (; idx <= eidx; idx++) {
5312bd8b 2948 mmio->sub_section[idx] = section;
db7b5426
BS
2949 }
2950
2951 return 0;
2952}
2953
16620684 2954static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2955{
c227f099 2956 subpage_t *mmio;
db7b5426 2957
2615fabd 2958 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2959 mmio->fv = fv;
1eec614b 2960 mmio->base = base;
2c9b15ca 2961 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2962 NULL, TARGET_PAGE_SIZE);
b3b00c78 2963 mmio->iomem.subpage = true;
db7b5426 2964#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2965 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2966 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2967#endif
b41aac4f 2968 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2969
2970 return mmio;
2971}
2972
16620684 2973static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2974{
16620684 2975 assert(fv);
5312bd8b 2976 MemoryRegionSection section = {
16620684 2977 .fv = fv,
5312bd8b
AK
2978 .mr = mr,
2979 .offset_within_address_space = 0,
2980 .offset_within_region = 0,
052e87b0 2981 .size = int128_2_64(),
5312bd8b
AK
2982 };
2983
53cb28cb 2984 return phys_section_add(map, &section);
5312bd8b
AK
2985}
2986
8af36743
PM
2987static void readonly_mem_write(void *opaque, hwaddr addr,
2988 uint64_t val, unsigned size)
2989{
2990 /* Ignore any write to ROM. */
2991}
2992
2993static bool readonly_mem_accepts(void *opaque, hwaddr addr,
8372d383
PM
2994 unsigned size, bool is_write,
2995 MemTxAttrs attrs)
8af36743
PM
2996{
2997 return is_write;
2998}
2999
3000/* This will only be used for writes, because reads are special cased
3001 * to directly access the underlying host ram.
3002 */
3003static const MemoryRegionOps readonly_mem_ops = {
3004 .write = readonly_mem_write,
3005 .valid.accepts = readonly_mem_accepts,
3006 .endianness = DEVICE_NATIVE_ENDIAN,
3007 .valid = {
3008 .min_access_size = 1,
3009 .max_access_size = 8,
3010 .unaligned = false,
3011 },
3012 .impl = {
3013 .min_access_size = 1,
3014 .max_access_size = 8,
3015 .unaligned = false,
3016 },
3017};
3018
2d54f194
PM
3019MemoryRegionSection *iotlb_to_section(CPUState *cpu,
3020 hwaddr index, MemTxAttrs attrs)
aa102231 3021{
a54c87b6
PM
3022 int asidx = cpu_asidx_from_attrs(cpu, attrs);
3023 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 3024 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 3025 MemoryRegionSection *sections = d->map.sections;
9d82b5a7 3026
2d54f194 3027 return &sections[index & ~TARGET_PAGE_MASK];
aa102231
AK
3028}
3029
e9179ce1
AK
3030static void io_mem_init(void)
3031{
8af36743
PM
3032 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
3033 NULL, NULL, UINT64_MAX);
2c9b15ca 3034 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 3035 NULL, UINT64_MAX);
8d04fb55
JK
3036
3037 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
3038 * which can be called without the iothread mutex.
3039 */
2c9b15ca 3040 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 3041 NULL, UINT64_MAX);
8d04fb55
JK
3042 memory_region_clear_global_locking(&io_mem_notdirty);
3043
2c9b15ca 3044 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 3045 NULL, UINT64_MAX);
e9179ce1
AK
3046}
3047
8629d3fc 3048AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 3049{
53cb28cb
MA
3050 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
3051 uint16_t n;
3052
16620684 3053 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 3054 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 3055 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 3056 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 3057 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 3058 assert(n == PHYS_SECTION_ROM);
16620684 3059 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 3060 assert(n == PHYS_SECTION_WATCH);
00752703 3061
9736e55b 3062 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
3063
3064 return d;
00752703
PB
3065}
3066
66a6df1d 3067void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
3068{
3069 phys_sections_free(&d->map);
3070 g_free(d);
3071}
3072
1d71148e 3073static void tcg_commit(MemoryListener *listener)
50c1e149 3074{
32857f4d
PM
3075 CPUAddressSpace *cpuas;
3076 AddressSpaceDispatch *d;
117712c3 3077
f28d0dfd 3078 assert(tcg_enabled());
117712c3
AK
3079 /* since each CPU stores ram addresses in its TLB cache, we must
3080 reset the modified entries */
32857f4d
PM
3081 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
3082 cpu_reloading_memory_map();
3083 /* The CPU and TLB are protected by the iothread lock.
3084 * We reload the dispatch pointer now because cpu_reloading_memory_map()
3085 * may have split the RCU critical section.
3086 */
66a6df1d 3087 d = address_space_to_dispatch(cpuas->as);
f35e44e7 3088 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 3089 tlb_flush(cpuas->cpu);
50c1e149
AK
3090}
3091
62152b8a
AK
3092static void memory_map_init(void)
3093{
7267c094 3094 system_memory = g_malloc(sizeof(*system_memory));
03f49957 3095
57271d63 3096 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 3097 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 3098
7267c094 3099 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
3100 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
3101 65536);
7dca8043 3102 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
3103}
3104
3105MemoryRegion *get_system_memory(void)
3106{
3107 return system_memory;
3108}
3109
309cb471
AK
3110MemoryRegion *get_system_io(void)
3111{
3112 return system_io;
3113}
3114
e2eef170
PB
3115#endif /* !defined(CONFIG_USER_ONLY) */
3116
13eb76e0
FB
3117/* physical memory access (slow version, mainly for debug) */
3118#if defined(CONFIG_USER_ONLY)
f17ec444 3119int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3120 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3121{
0c249ff7
LZ
3122 int flags;
3123 target_ulong l, page;
53a5960a 3124 void * p;
13eb76e0
FB
3125
3126 while (len > 0) {
3127 page = addr & TARGET_PAGE_MASK;
3128 l = (page + TARGET_PAGE_SIZE) - addr;
3129 if (l > len)
3130 l = len;
3131 flags = page_get_flags(page);
3132 if (!(flags & PAGE_VALID))
a68fe89c 3133 return -1;
13eb76e0
FB
3134 if (is_write) {
3135 if (!(flags & PAGE_WRITE))
a68fe89c 3136 return -1;
579a97f7 3137 /* XXX: this code should not depend on lock_user */
72fb7daa 3138 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3139 return -1;
72fb7daa
AJ
3140 memcpy(p, buf, l);
3141 unlock_user(p, addr, l);
13eb76e0
FB
3142 } else {
3143 if (!(flags & PAGE_READ))
a68fe89c 3144 return -1;
579a97f7 3145 /* XXX: this code should not depend on lock_user */
72fb7daa 3146 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3147 return -1;
72fb7daa 3148 memcpy(buf, p, l);
5b257578 3149 unlock_user(p, addr, 0);
13eb76e0
FB
3150 }
3151 len -= l;
3152 buf += l;
3153 addr += l;
3154 }
a68fe89c 3155 return 0;
13eb76e0 3156}
8df1cd07 3157
13eb76e0 3158#else
51d7a9eb 3159
845b6214 3160static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 3161 hwaddr length)
51d7a9eb 3162{
e87f7778 3163 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
3164 addr += memory_region_get_ram_addr(mr);
3165
e87f7778
PB
3166 /* No early return if dirty_log_mask is or becomes 0, because
3167 * cpu_physical_memory_set_dirty_range will still call
3168 * xen_modified_memory.
3169 */
3170 if (dirty_log_mask) {
3171 dirty_log_mask =
3172 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
3173 }
3174 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 3175 assert(tcg_enabled());
e87f7778
PB
3176 tb_invalidate_phys_range(addr, addr + length);
3177 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 3178 }
e87f7778 3179 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
3180}
3181
047be4ed
SH
3182void memory_region_flush_rom_device(MemoryRegion *mr, hwaddr addr, hwaddr size)
3183{
3184 /*
3185 * In principle this function would work on other memory region types too,
3186 * but the ROM device use case is the only one where this operation is
3187 * necessary. Other memory regions should use the
3188 * address_space_read/write() APIs.
3189 */
3190 assert(memory_region_is_romd(mr));
3191
3192 invalidate_and_set_dirty(mr, addr, size);
3193}
3194
23326164 3195static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 3196{
e1622f4b 3197 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
3198
3199 /* Regions are assumed to support 1-4 byte accesses unless
3200 otherwise specified. */
23326164
RH
3201 if (access_size_max == 0) {
3202 access_size_max = 4;
3203 }
3204
3205 /* Bound the maximum access by the alignment of the address. */
3206 if (!mr->ops->impl.unaligned) {
3207 unsigned align_size_max = addr & -addr;
3208 if (align_size_max != 0 && align_size_max < access_size_max) {
3209 access_size_max = align_size_max;
3210 }
82f2563f 3211 }
23326164
RH
3212
3213 /* Don't attempt accesses larger than the maximum. */
3214 if (l > access_size_max) {
3215 l = access_size_max;
82f2563f 3216 }
6554f5c0 3217 l = pow2floor(l);
23326164
RH
3218
3219 return l;
82f2563f
PB
3220}
3221
4840f10e 3222static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 3223{
4840f10e
JK
3224 bool unlocked = !qemu_mutex_iothread_locked();
3225 bool release_lock = false;
3226
3227 if (unlocked && mr->global_locking) {
3228 qemu_mutex_lock_iothread();
3229 unlocked = false;
3230 release_lock = true;
3231 }
125b3806 3232 if (mr->flush_coalesced_mmio) {
4840f10e
JK
3233 if (unlocked) {
3234 qemu_mutex_lock_iothread();
3235 }
125b3806 3236 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
3237 if (unlocked) {
3238 qemu_mutex_unlock_iothread();
3239 }
125b3806 3240 }
4840f10e
JK
3241
3242 return release_lock;
125b3806
PB
3243}
3244
a203ac70 3245/* Called within RCU critical section. */
16620684
AK
3246static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
3247 MemTxAttrs attrs,
3248 const uint8_t *buf,
0c249ff7 3249 hwaddr len, hwaddr addr1,
16620684 3250 hwaddr l, MemoryRegion *mr)
13eb76e0 3251{
13eb76e0 3252 uint8_t *ptr;
791af8c8 3253 uint64_t val;
3b643495 3254 MemTxResult result = MEMTX_OK;
4840f10e 3255 bool release_lock = false;
3b46e624 3256
a203ac70 3257 for (;;) {
eb7eeb88
PB
3258 if (!memory_access_is_direct(mr, true)) {
3259 release_lock |= prepare_mmio_access(mr);
3260 l = memory_access_size(mr, l, addr1);
3261 /* XXX: could force current_cpu to NULL to avoid
3262 potential bugs */
6d3ede54
PM
3263 val = ldn_p(buf, l);
3264 result |= memory_region_dispatch_write(mr, addr1, val, l, attrs);
13eb76e0 3265 } else {
eb7eeb88 3266 /* RAM case */
f5aa69bd 3267 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3268 memcpy(ptr, buf, l);
3269 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3270 }
4840f10e
JK
3271
3272 if (release_lock) {
3273 qemu_mutex_unlock_iothread();
3274 release_lock = false;
3275 }
3276
13eb76e0
FB
3277 len -= l;
3278 buf += l;
3279 addr += l;
a203ac70
PB
3280
3281 if (!len) {
3282 break;
3283 }
3284
3285 l = len;
efa99a2f 3286 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
13eb76e0 3287 }
fd8aaa76 3288
3b643495 3289 return result;
13eb76e0 3290}
8df1cd07 3291
4c6ebbb3 3292/* Called from RCU critical section. */
16620684 3293static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3294 const uint8_t *buf, hwaddr len)
ac1970fb 3295{
eb7eeb88 3296 hwaddr l;
eb7eeb88
PB
3297 hwaddr addr1;
3298 MemoryRegion *mr;
3299 MemTxResult result = MEMTX_OK;
eb7eeb88 3300
4c6ebbb3 3301 l = len;
efa99a2f 3302 mr = flatview_translate(fv, addr, &addr1, &l, true, attrs);
4c6ebbb3
PB
3303 result = flatview_write_continue(fv, addr, attrs, buf, len,
3304 addr1, l, mr);
a203ac70
PB
3305
3306 return result;
3307}
3308
3309/* Called within RCU critical section. */
16620684
AK
3310MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3311 MemTxAttrs attrs, uint8_t *buf,
0c249ff7 3312 hwaddr len, hwaddr addr1, hwaddr l,
16620684 3313 MemoryRegion *mr)
a203ac70
PB
3314{
3315 uint8_t *ptr;
3316 uint64_t val;
3317 MemTxResult result = MEMTX_OK;
3318 bool release_lock = false;
eb7eeb88 3319
a203ac70 3320 for (;;) {
eb7eeb88
PB
3321 if (!memory_access_is_direct(mr, false)) {
3322 /* I/O case */
3323 release_lock |= prepare_mmio_access(mr);
3324 l = memory_access_size(mr, l, addr1);
6d3ede54
PM
3325 result |= memory_region_dispatch_read(mr, addr1, &val, l, attrs);
3326 stn_p(buf, l, val);
eb7eeb88
PB
3327 } else {
3328 /* RAM case */
f5aa69bd 3329 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3330 memcpy(buf, ptr, l);
3331 }
3332
3333 if (release_lock) {
3334 qemu_mutex_unlock_iothread();
3335 release_lock = false;
3336 }
3337
3338 len -= l;
3339 buf += l;
3340 addr += l;
a203ac70
PB
3341
3342 if (!len) {
3343 break;
3344 }
3345
3346 l = len;
efa99a2f 3347 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
a203ac70
PB
3348 }
3349
3350 return result;
3351}
3352
b2a44fca
PB
3353/* Called from RCU critical section. */
3354static MemTxResult flatview_read(FlatView *fv, hwaddr addr,
0c249ff7 3355 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
a203ac70
PB
3356{
3357 hwaddr l;
3358 hwaddr addr1;
3359 MemoryRegion *mr;
eb7eeb88 3360
b2a44fca 3361 l = len;
efa99a2f 3362 mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
b2a44fca
PB
3363 return flatview_read_continue(fv, addr, attrs, buf, len,
3364 addr1, l, mr);
ac1970fb
AK
3365}
3366
b2a44fca 3367MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
0c249ff7 3368 MemTxAttrs attrs, uint8_t *buf, hwaddr len)
b2a44fca
PB
3369{
3370 MemTxResult result = MEMTX_OK;
3371 FlatView *fv;
3372
3373 if (len > 0) {
3374 rcu_read_lock();
3375 fv = address_space_to_flatview(as);
3376 result = flatview_read(fv, addr, attrs, buf, len);
3377 rcu_read_unlock();
3378 }
3379
3380 return result;
3381}
3382
4c6ebbb3
PB
3383MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3384 MemTxAttrs attrs,
0c249ff7 3385 const uint8_t *buf, hwaddr len)
4c6ebbb3
PB
3386{
3387 MemTxResult result = MEMTX_OK;
3388 FlatView *fv;
3389
3390 if (len > 0) {
3391 rcu_read_lock();
3392 fv = address_space_to_flatview(as);
3393 result = flatview_write(fv, addr, attrs, buf, len);
3394 rcu_read_unlock();
3395 }
3396
3397 return result;
3398}
3399
db84fd97 3400MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
0c249ff7 3401 uint8_t *buf, hwaddr len, bool is_write)
db84fd97
PB
3402{
3403 if (is_write) {
3404 return address_space_write(as, addr, attrs, buf, len);
3405 } else {
3406 return address_space_read_full(as, addr, attrs, buf, len);
3407 }
3408}
3409
a8170e5e 3410void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
0c249ff7 3411 hwaddr len, int is_write)
ac1970fb 3412{
5c9eb028
PM
3413 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3414 buf, len, is_write);
ac1970fb
AK
3415}
3416
582b55a9
AG
3417enum write_rom_type {
3418 WRITE_DATA,
3419 FLUSH_CACHE,
3420};
3421
75693e14
PM
3422static inline MemTxResult address_space_write_rom_internal(AddressSpace *as,
3423 hwaddr addr,
3424 MemTxAttrs attrs,
3425 const uint8_t *buf,
0c249ff7 3426 hwaddr len,
75693e14 3427 enum write_rom_type type)
d0ecd2aa 3428{
149f54b5 3429 hwaddr l;
d0ecd2aa 3430 uint8_t *ptr;
149f54b5 3431 hwaddr addr1;
5c8a00ce 3432 MemoryRegion *mr;
3b46e624 3433
41063e1e 3434 rcu_read_lock();
d0ecd2aa 3435 while (len > 0) {
149f54b5 3436 l = len;
75693e14 3437 mr = address_space_translate(as, addr, &addr1, &l, true, attrs);
3b46e624 3438
5c8a00ce
PB
3439 if (!(memory_region_is_ram(mr) ||
3440 memory_region_is_romd(mr))) {
b242e0e0 3441 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3442 } else {
d0ecd2aa 3443 /* ROM/RAM case */
0878d0e1 3444 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3445 switch (type) {
3446 case WRITE_DATA:
3447 memcpy(ptr, buf, l);
845b6214 3448 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3449 break;
3450 case FLUSH_CACHE:
3451 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3452 break;
3453 }
d0ecd2aa
FB
3454 }
3455 len -= l;
3456 buf += l;
3457 addr += l;
3458 }
41063e1e 3459 rcu_read_unlock();
75693e14 3460 return MEMTX_OK;
d0ecd2aa
FB
3461}
3462
582b55a9 3463/* used for ROM loading : can write in RAM and ROM */
3c8133f9
PM
3464MemTxResult address_space_write_rom(AddressSpace *as, hwaddr addr,
3465 MemTxAttrs attrs,
0c249ff7 3466 const uint8_t *buf, hwaddr len)
582b55a9 3467{
3c8133f9
PM
3468 return address_space_write_rom_internal(as, addr, attrs,
3469 buf, len, WRITE_DATA);
582b55a9
AG
3470}
3471
0c249ff7 3472void cpu_flush_icache_range(hwaddr start, hwaddr len)
582b55a9
AG
3473{
3474 /*
3475 * This function should do the same thing as an icache flush that was
3476 * triggered from within the guest. For TCG we are always cache coherent,
3477 * so there is no need to flush anything. For KVM / Xen we need to flush
3478 * the host's instruction cache at least.
3479 */
3480 if (tcg_enabled()) {
3481 return;
3482 }
3483
75693e14
PM
3484 address_space_write_rom_internal(&address_space_memory,
3485 start, MEMTXATTRS_UNSPECIFIED,
3486 NULL, len, FLUSH_CACHE);
582b55a9
AG
3487}
3488
6d16c2f8 3489typedef struct {
d3e71559 3490 MemoryRegion *mr;
6d16c2f8 3491 void *buffer;
a8170e5e
AK
3492 hwaddr addr;
3493 hwaddr len;
c2cba0ff 3494 bool in_use;
6d16c2f8
AL
3495} BounceBuffer;
3496
3497static BounceBuffer bounce;
3498
ba223c29 3499typedef struct MapClient {
e95205e1 3500 QEMUBH *bh;
72cf2d4f 3501 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3502} MapClient;
3503
38e047b5 3504QemuMutex map_client_list_lock;
b58deb34 3505static QLIST_HEAD(, MapClient) map_client_list
72cf2d4f 3506 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3507
e95205e1
FZ
3508static void cpu_unregister_map_client_do(MapClient *client)
3509{
3510 QLIST_REMOVE(client, link);
3511 g_free(client);
3512}
3513
33b6c2ed
FZ
3514static void cpu_notify_map_clients_locked(void)
3515{
3516 MapClient *client;
3517
3518 while (!QLIST_EMPTY(&map_client_list)) {
3519 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3520 qemu_bh_schedule(client->bh);
3521 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3522 }
3523}
3524
e95205e1 3525void cpu_register_map_client(QEMUBH *bh)
ba223c29 3526{
7267c094 3527 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3528
38e047b5 3529 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3530 client->bh = bh;
72cf2d4f 3531 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3532 if (!atomic_read(&bounce.in_use)) {
3533 cpu_notify_map_clients_locked();
3534 }
38e047b5 3535 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3536}
3537
38e047b5 3538void cpu_exec_init_all(void)
ba223c29 3539{
38e047b5 3540 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3541 /* The data structures we set up here depend on knowing the page size,
3542 * so no more changes can be made after this point.
3543 * In an ideal world, nothing we did before we had finished the
3544 * machine setup would care about the target page size, and we could
3545 * do this much later, rather than requiring board models to state
3546 * up front what their requirements are.
3547 */
3548 finalize_target_page_bits();
38e047b5 3549 io_mem_init();
680a4783 3550 memory_map_init();
38e047b5 3551 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3552}
3553
e95205e1 3554void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3555{
3556 MapClient *client;
3557
e95205e1
FZ
3558 qemu_mutex_lock(&map_client_list_lock);
3559 QLIST_FOREACH(client, &map_client_list, link) {
3560 if (client->bh == bh) {
3561 cpu_unregister_map_client_do(client);
3562 break;
3563 }
ba223c29 3564 }
e95205e1 3565 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3566}
3567
3568static void cpu_notify_map_clients(void)
3569{
38e047b5 3570 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3571 cpu_notify_map_clients_locked();
38e047b5 3572 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3573}
3574
0c249ff7 3575static bool flatview_access_valid(FlatView *fv, hwaddr addr, hwaddr len,
eace72b7 3576 bool is_write, MemTxAttrs attrs)
51644ab7 3577{
5c8a00ce 3578 MemoryRegion *mr;
51644ab7
PB
3579 hwaddr l, xlat;
3580
3581 while (len > 0) {
3582 l = len;
efa99a2f 3583 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
5c8a00ce
PB
3584 if (!memory_access_is_direct(mr, is_write)) {
3585 l = memory_access_size(mr, l, addr);
eace72b7 3586 if (!memory_region_access_valid(mr, xlat, l, is_write, attrs)) {
51644ab7
PB
3587 return false;
3588 }
3589 }
3590
3591 len -= l;
3592 addr += l;
3593 }
3594 return true;
3595}
3596
16620684 3597bool address_space_access_valid(AddressSpace *as, hwaddr addr,
0c249ff7 3598 hwaddr len, bool is_write,
fddffa42 3599 MemTxAttrs attrs)
16620684 3600{
11e732a5
PB
3601 FlatView *fv;
3602 bool result;
3603
3604 rcu_read_lock();
3605 fv = address_space_to_flatview(as);
eace72b7 3606 result = flatview_access_valid(fv, addr, len, is_write, attrs);
11e732a5
PB
3607 rcu_read_unlock();
3608 return result;
16620684
AK
3609}
3610
715c31ec 3611static hwaddr
16620684 3612flatview_extend_translation(FlatView *fv, hwaddr addr,
53d0790d
PM
3613 hwaddr target_len,
3614 MemoryRegion *mr, hwaddr base, hwaddr len,
3615 bool is_write, MemTxAttrs attrs)
715c31ec
PB
3616{
3617 hwaddr done = 0;
3618 hwaddr xlat;
3619 MemoryRegion *this_mr;
3620
3621 for (;;) {
3622 target_len -= len;
3623 addr += len;
3624 done += len;
3625 if (target_len == 0) {
3626 return done;
3627 }
3628
3629 len = target_len;
16620684 3630 this_mr = flatview_translate(fv, addr, &xlat,
efa99a2f 3631 &len, is_write, attrs);
715c31ec
PB
3632 if (this_mr != mr || xlat != base + done) {
3633 return done;
3634 }
3635 }
3636}
3637
6d16c2f8
AL
3638/* Map a physical memory region into a host virtual address.
3639 * May map a subset of the requested range, given by and returned in *plen.
3640 * May return NULL if resources needed to perform the mapping are exhausted.
3641 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3642 * Use cpu_register_map_client() to know when retrying the map operation is
3643 * likely to succeed.
6d16c2f8 3644 */
ac1970fb 3645void *address_space_map(AddressSpace *as,
a8170e5e
AK
3646 hwaddr addr,
3647 hwaddr *plen,
f26404fb
PM
3648 bool is_write,
3649 MemTxAttrs attrs)
6d16c2f8 3650{
a8170e5e 3651 hwaddr len = *plen;
715c31ec
PB
3652 hwaddr l, xlat;
3653 MemoryRegion *mr;
e81bcda5 3654 void *ptr;
ad0c60fa 3655 FlatView *fv;
6d16c2f8 3656
e3127ae0
PB
3657 if (len == 0) {
3658 return NULL;
3659 }
38bee5dc 3660
e3127ae0 3661 l = len;
41063e1e 3662 rcu_read_lock();
ad0c60fa 3663 fv = address_space_to_flatview(as);
efa99a2f 3664 mr = flatview_translate(fv, addr, &xlat, &l, is_write, attrs);
41063e1e 3665
e3127ae0 3666 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3667 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3668 rcu_read_unlock();
e3127ae0 3669 return NULL;
6d16c2f8 3670 }
e85d9db5
KW
3671 /* Avoid unbounded allocations */
3672 l = MIN(l, TARGET_PAGE_SIZE);
3673 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3674 bounce.addr = addr;
3675 bounce.len = l;
d3e71559
PB
3676
3677 memory_region_ref(mr);
3678 bounce.mr = mr;
e3127ae0 3679 if (!is_write) {
16620684 3680 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3681 bounce.buffer, l);
8ab934f9 3682 }
6d16c2f8 3683
41063e1e 3684 rcu_read_unlock();
e3127ae0
PB
3685 *plen = l;
3686 return bounce.buffer;
3687 }
3688
e3127ae0 3689
d3e71559 3690 memory_region_ref(mr);
16620684 3691 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
53d0790d 3692 l, is_write, attrs);
f5aa69bd 3693 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3694 rcu_read_unlock();
3695
3696 return ptr;
6d16c2f8
AL
3697}
3698
ac1970fb 3699/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3700 * Will also mark the memory as dirty if is_write == 1. access_len gives
3701 * the amount of memory that was actually read or written by the caller.
3702 */
a8170e5e
AK
3703void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3704 int is_write, hwaddr access_len)
6d16c2f8
AL
3705{
3706 if (buffer != bounce.buffer) {
d3e71559
PB
3707 MemoryRegion *mr;
3708 ram_addr_t addr1;
3709
07bdaa41 3710 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3711 assert(mr != NULL);
6d16c2f8 3712 if (is_write) {
845b6214 3713 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3714 }
868bb33f 3715 if (xen_enabled()) {
e41d7c69 3716 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3717 }
d3e71559 3718 memory_region_unref(mr);
6d16c2f8
AL
3719 return;
3720 }
3721 if (is_write) {
5c9eb028
PM
3722 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3723 bounce.buffer, access_len);
6d16c2f8 3724 }
f8a83245 3725 qemu_vfree(bounce.buffer);
6d16c2f8 3726 bounce.buffer = NULL;
d3e71559 3727 memory_region_unref(bounce.mr);
c2cba0ff 3728 atomic_mb_set(&bounce.in_use, false);
ba223c29 3729 cpu_notify_map_clients();
6d16c2f8 3730}
d0ecd2aa 3731
a8170e5e
AK
3732void *cpu_physical_memory_map(hwaddr addr,
3733 hwaddr *plen,
ac1970fb
AK
3734 int is_write)
3735{
f26404fb
PM
3736 return address_space_map(&address_space_memory, addr, plen, is_write,
3737 MEMTXATTRS_UNSPECIFIED);
ac1970fb
AK
3738}
3739
a8170e5e
AK
3740void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3741 int is_write, hwaddr access_len)
ac1970fb
AK
3742{
3743 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3744}
3745
0ce265ff
PB
3746#define ARG1_DECL AddressSpace *as
3747#define ARG1 as
3748#define SUFFIX
3749#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
0ce265ff
PB
3750#define RCU_READ_LOCK(...) rcu_read_lock()
3751#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3752#include "memory_ldst.inc.c"
1e78bcc1 3753
1f4e496e
PB
3754int64_t address_space_cache_init(MemoryRegionCache *cache,
3755 AddressSpace *as,
3756 hwaddr addr,
3757 hwaddr len,
3758 bool is_write)
3759{
48564041
PB
3760 AddressSpaceDispatch *d;
3761 hwaddr l;
3762 MemoryRegion *mr;
3763
3764 assert(len > 0);
3765
3766 l = len;
3767 cache->fv = address_space_get_flatview(as);
3768 d = flatview_to_dispatch(cache->fv);
3769 cache->mrs = *address_space_translate_internal(d, addr, &cache->xlat, &l, true);
3770
3771 mr = cache->mrs.mr;
3772 memory_region_ref(mr);
3773 if (memory_access_is_direct(mr, is_write)) {
53d0790d
PM
3774 /* We don't care about the memory attributes here as we're only
3775 * doing this if we found actual RAM, which behaves the same
3776 * regardless of attributes; so UNSPECIFIED is fine.
3777 */
48564041 3778 l = flatview_extend_translation(cache->fv, addr, len, mr,
53d0790d
PM
3779 cache->xlat, l, is_write,
3780 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3781 cache->ptr = qemu_ram_ptr_length(mr->ram_block, cache->xlat, &l, true);
3782 } else {
3783 cache->ptr = NULL;
3784 }
3785
3786 cache->len = l;
3787 cache->is_write = is_write;
3788 return l;
1f4e496e
PB
3789}
3790
3791void address_space_cache_invalidate(MemoryRegionCache *cache,
3792 hwaddr addr,
3793 hwaddr access_len)
3794{
48564041
PB
3795 assert(cache->is_write);
3796 if (likely(cache->ptr)) {
3797 invalidate_and_set_dirty(cache->mrs.mr, addr + cache->xlat, access_len);
3798 }
1f4e496e
PB
3799}
3800
3801void address_space_cache_destroy(MemoryRegionCache *cache)
3802{
48564041
PB
3803 if (!cache->mrs.mr) {
3804 return;
3805 }
3806
3807 if (xen_enabled()) {
3808 xen_invalidate_map_cache_entry(cache->ptr);
3809 }
3810 memory_region_unref(cache->mrs.mr);
3811 flatview_unref(cache->fv);
3812 cache->mrs.mr = NULL;
3813 cache->fv = NULL;
3814}
3815
3816/* Called from RCU critical section. This function has the same
3817 * semantics as address_space_translate, but it only works on a
3818 * predefined range of a MemoryRegion that was mapped with
3819 * address_space_cache_init.
3820 */
3821static inline MemoryRegion *address_space_translate_cached(
3822 MemoryRegionCache *cache, hwaddr addr, hwaddr *xlat,
bc6b1cec 3823 hwaddr *plen, bool is_write, MemTxAttrs attrs)
48564041
PB
3824{
3825 MemoryRegionSection section;
3826 MemoryRegion *mr;
3827 IOMMUMemoryRegion *iommu_mr;
3828 AddressSpace *target_as;
3829
3830 assert(!cache->ptr);
3831 *xlat = addr + cache->xlat;
3832
3833 mr = cache->mrs.mr;
3834 iommu_mr = memory_region_get_iommu(mr);
3835 if (!iommu_mr) {
3836 /* MMIO region. */
3837 return mr;
3838 }
3839
3840 section = address_space_translate_iommu(iommu_mr, xlat, plen,
3841 NULL, is_write, true,
2f7b009c 3842 &target_as, attrs);
48564041
PB
3843 return section.mr;
3844}
3845
3846/* Called from RCU critical section. address_space_read_cached uses this
3847 * out of line function when the target is an MMIO or IOMMU region.
3848 */
3849void
3850address_space_read_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3851 void *buf, hwaddr len)
48564041
PB
3852{
3853 hwaddr addr1, l;
3854 MemoryRegion *mr;
3855
3856 l = len;
bc6b1cec
PM
3857 mr = address_space_translate_cached(cache, addr, &addr1, &l, false,
3858 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3859 flatview_read_continue(cache->fv,
3860 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3861 addr1, l, mr);
3862}
3863
3864/* Called from RCU critical section. address_space_write_cached uses this
3865 * out of line function when the target is an MMIO or IOMMU region.
3866 */
3867void
3868address_space_write_cached_slow(MemoryRegionCache *cache, hwaddr addr,
0c249ff7 3869 const void *buf, hwaddr len)
48564041
PB
3870{
3871 hwaddr addr1, l;
3872 MemoryRegion *mr;
3873
3874 l = len;
bc6b1cec
PM
3875 mr = address_space_translate_cached(cache, addr, &addr1, &l, true,
3876 MEMTXATTRS_UNSPECIFIED);
48564041
PB
3877 flatview_write_continue(cache->fv,
3878 addr, MEMTXATTRS_UNSPECIFIED, buf, len,
3879 addr1, l, mr);
1f4e496e
PB
3880}
3881
3882#define ARG1_DECL MemoryRegionCache *cache
3883#define ARG1 cache
48564041
PB
3884#define SUFFIX _cached_slow
3885#define TRANSLATE(...) address_space_translate_cached(cache, __VA_ARGS__)
48564041
PB
3886#define RCU_READ_LOCK() ((void)0)
3887#define RCU_READ_UNLOCK() ((void)0)
1f4e496e
PB
3888#include "memory_ldst.inc.c"
3889
5e2972fd 3890/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3891int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
0c249ff7 3892 uint8_t *buf, target_ulong len, int is_write)
13eb76e0 3893{
a8170e5e 3894 hwaddr phys_addr;
0c249ff7 3895 target_ulong l, page;
13eb76e0 3896
79ca7a1b 3897 cpu_synchronize_state(cpu);
13eb76e0 3898 while (len > 0) {
5232e4c7
PM
3899 int asidx;
3900 MemTxAttrs attrs;
3901
13eb76e0 3902 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3903 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3904 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3905 /* if no physical page mapped, return an error */
3906 if (phys_addr == -1)
3907 return -1;
3908 l = (page + TARGET_PAGE_SIZE) - addr;
3909 if (l > len)
3910 l = len;
5e2972fd 3911 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3912 if (is_write) {
3c8133f9 3913 address_space_write_rom(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3914 attrs, buf, l);
2e38847b 3915 } else {
5232e4c7 3916 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
ea7a5330 3917 attrs, buf, l, 0);
2e38847b 3918 }
13eb76e0
FB
3919 len -= l;
3920 buf += l;
3921 addr += l;
3922 }
3923 return 0;
3924}
038629a6
DDAG
3925
3926/*
3927 * Allows code that needs to deal with migration bitmaps etc to still be built
3928 * target independent.
3929 */
20afaed9 3930size_t qemu_target_page_size(void)
038629a6 3931{
20afaed9 3932 return TARGET_PAGE_SIZE;
038629a6
DDAG
3933}
3934
46d702b1
JQ
3935int qemu_target_page_bits(void)
3936{
3937 return TARGET_PAGE_BITS;
3938}
3939
3940int qemu_target_page_bits_min(void)
3941{
3942 return TARGET_PAGE_BITS_MIN;
3943}
a68fe89c 3944#endif
13eb76e0 3945
98ed8ecf 3946bool target_words_bigendian(void)
8e4a424b
BS
3947{
3948#if defined(TARGET_WORDS_BIGENDIAN)
3949 return true;
3950#else
3951 return false;
3952#endif
3953}
3954
76f35538 3955#ifndef CONFIG_USER_ONLY
a8170e5e 3956bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3957{
5c8a00ce 3958 MemoryRegion*mr;
149f54b5 3959 hwaddr l = 1;
41063e1e 3960 bool res;
76f35538 3961
41063e1e 3962 rcu_read_lock();
5c8a00ce 3963 mr = address_space_translate(&address_space_memory,
bc6b1cec
PM
3964 phys_addr, &phys_addr, &l, false,
3965 MEMTXATTRS_UNSPECIFIED);
76f35538 3966
41063e1e
PB
3967 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3968 rcu_read_unlock();
3969 return res;
76f35538 3970}
bd2fa51f 3971
e3807054 3972int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3973{
3974 RAMBlock *block;
e3807054 3975 int ret = 0;
bd2fa51f 3976
0dc3f44a 3977 rcu_read_lock();
99e15582 3978 RAMBLOCK_FOREACH(block) {
754cb9c0 3979 ret = func(block, opaque);
e3807054
DDAG
3980 if (ret) {
3981 break;
3982 }
bd2fa51f 3983 }
0dc3f44a 3984 rcu_read_unlock();
e3807054 3985 return ret;
bd2fa51f 3986}
d3a5038c 3987
b895de50
CLG
3988int qemu_ram_foreach_migratable_block(RAMBlockIterFunc func, void *opaque)
3989{
3990 RAMBlock *block;
3991 int ret = 0;
3992
3993 rcu_read_lock();
3994 RAMBLOCK_FOREACH(block) {
3995 if (!qemu_ram_is_migratable(block)) {
3996 continue;
3997 }
754cb9c0 3998 ret = func(block, opaque);
b895de50
CLG
3999 if (ret) {
4000 break;
4001 }
4002 }
4003 rcu_read_unlock();
4004 return ret;
4005}
4006
d3a5038c
DDAG
4007/*
4008 * Unmap pages of memory from start to start+length such that
4009 * they a) read as 0, b) Trigger whatever fault mechanism
4010 * the OS provides for postcopy.
4011 * The pages must be unmapped by the end of the function.
4012 * Returns: 0 on success, none-0 on failure
4013 *
4014 */
4015int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
4016{
4017 int ret = -1;
4018
4019 uint8_t *host_startaddr = rb->host + start;
4020
4021 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
4022 error_report("ram_block_discard_range: Unaligned start address: %p",
4023 host_startaddr);
4024 goto err;
4025 }
4026
4027 if ((start + length) <= rb->used_length) {
db144f70 4028 bool need_madvise, need_fallocate;
d3a5038c
DDAG
4029 uint8_t *host_endaddr = host_startaddr + length;
4030 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
4031 error_report("ram_block_discard_range: Unaligned end address: %p",
4032 host_endaddr);
4033 goto err;
4034 }
4035
4036 errno = ENOTSUP; /* If we are missing MADVISE etc */
4037
db144f70
DDAG
4038 /* The logic here is messy;
4039 * madvise DONTNEED fails for hugepages
4040 * fallocate works on hugepages and shmem
4041 */
4042 need_madvise = (rb->page_size == qemu_host_page_size);
4043 need_fallocate = rb->fd != -1;
4044 if (need_fallocate) {
4045 /* For a file, this causes the area of the file to be zero'd
4046 * if read, and for hugetlbfs also causes it to be unmapped
4047 * so a userfault will trigger.
e2fa71f5
DDAG
4048 */
4049#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
4050 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
4051 start, length);
db144f70
DDAG
4052 if (ret) {
4053 ret = -errno;
4054 error_report("ram_block_discard_range: Failed to fallocate "
4055 "%s:%" PRIx64 " +%zx (%d)",
4056 rb->idstr, start, length, ret);
4057 goto err;
4058 }
4059#else
4060 ret = -ENOSYS;
4061 error_report("ram_block_discard_range: fallocate not available/file"
4062 "%s:%" PRIx64 " +%zx (%d)",
4063 rb->idstr, start, length, ret);
4064 goto err;
e2fa71f5
DDAG
4065#endif
4066 }
db144f70
DDAG
4067 if (need_madvise) {
4068 /* For normal RAM this causes it to be unmapped,
4069 * for shared memory it causes the local mapping to disappear
4070 * and to fall back on the file contents (which we just
4071 * fallocate'd away).
4072 */
4073#if defined(CONFIG_MADVISE)
4074 ret = madvise(host_startaddr, length, MADV_DONTNEED);
4075 if (ret) {
4076 ret = -errno;
4077 error_report("ram_block_discard_range: Failed to discard range "
4078 "%s:%" PRIx64 " +%zx (%d)",
4079 rb->idstr, start, length, ret);
4080 goto err;
4081 }
4082#else
4083 ret = -ENOSYS;
4084 error_report("ram_block_discard_range: MADVISE not available"
d3a5038c
DDAG
4085 "%s:%" PRIx64 " +%zx (%d)",
4086 rb->idstr, start, length, ret);
db144f70
DDAG
4087 goto err;
4088#endif
d3a5038c 4089 }
db144f70
DDAG
4090 trace_ram_block_discard_range(rb->idstr, host_startaddr, length,
4091 need_madvise, need_fallocate, ret);
d3a5038c
DDAG
4092 } else {
4093 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
4094 "/%zx/" RAM_ADDR_FMT")",
4095 rb->idstr, start, length, rb->used_length);
4096 }
4097
4098err:
4099 return ret;
4100}
4101
a4de8552
JH
4102bool ramblock_is_pmem(RAMBlock *rb)
4103{
4104 return rb->flags & RAM_PMEM;
4105}
4106
ec3f8c99 4107#endif
a0be0c58
YZ
4108
4109void page_size_init(void)
4110{
4111 /* NOTE: we can always suppose that qemu_host_page_size >=
4112 TARGET_PAGE_SIZE */
a0be0c58
YZ
4113 if (qemu_host_page_size == 0) {
4114 qemu_host_page_size = qemu_real_host_page_size;
4115 }
4116 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
4117 qemu_host_page_size = TARGET_PAGE_SIZE;
4118 }
4119 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
4120}
5e8fd947
AK
4121
4122#if !defined(CONFIG_USER_ONLY)
4123
4124static void mtree_print_phys_entries(fprintf_function mon, void *f,
4125 int start, int end, int skip, int ptr)
4126{
4127 if (start == end - 1) {
4128 mon(f, "\t%3d ", start);
4129 } else {
4130 mon(f, "\t%3d..%-3d ", start, end - 1);
4131 }
4132 mon(f, " skip=%d ", skip);
4133 if (ptr == PHYS_MAP_NODE_NIL) {
4134 mon(f, " ptr=NIL");
4135 } else if (!skip) {
4136 mon(f, " ptr=#%d", ptr);
4137 } else {
4138 mon(f, " ptr=[%d]", ptr);
4139 }
4140 mon(f, "\n");
4141}
4142
4143#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
4144 int128_sub((size), int128_one())) : 0)
4145
4146void mtree_print_dispatch(fprintf_function mon, void *f,
4147 AddressSpaceDispatch *d, MemoryRegion *root)
4148{
4149 int i;
4150
4151 mon(f, " Dispatch\n");
4152 mon(f, " Physical sections\n");
4153
4154 for (i = 0; i < d->map.sections_nb; ++i) {
4155 MemoryRegionSection *s = d->map.sections + i;
4156 const char *names[] = { " [unassigned]", " [not dirty]",
4157 " [ROM]", " [watch]" };
4158
4159 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
4160 i,
4161 s->offset_within_address_space,
4162 s->offset_within_address_space + MR_SIZE(s->mr->size),
4163 s->mr->name ? s->mr->name : "(noname)",
4164 i < ARRAY_SIZE(names) ? names[i] : "",
4165 s->mr == root ? " [ROOT]" : "",
4166 s == d->mru_section ? " [MRU]" : "",
4167 s->mr->is_iommu ? " [iommu]" : "");
4168
4169 if (s->mr->alias) {
4170 mon(f, " alias=%s", s->mr->alias->name ?
4171 s->mr->alias->name : "noname");
4172 }
4173 mon(f, "\n");
4174 }
4175
4176 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
4177 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
4178 for (i = 0; i < d->map.nodes_nb; ++i) {
4179 int j, jprev;
4180 PhysPageEntry prev;
4181 Node *n = d->map.nodes + i;
4182
4183 mon(f, " [%d]\n", i);
4184
4185 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
4186 PhysPageEntry *pe = *n + j;
4187
4188 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
4189 continue;
4190 }
4191
4192 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4193
4194 jprev = j;
4195 prev = *pe;
4196 }
4197
4198 if (jprev != ARRAY_SIZE(*n)) {
4199 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
4200 }
4201 }
4202}
4203
4204#endif