]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - arch/x86/kernel/process.c
Merge branch 'for-next' of git://git.samba.org/sfrench/cifs-2.6
[mirror_ubuntu-artful-kernel.git] / arch / x86 / kernel / process.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
61c4628b
SS
3#include <linux/errno.h>
4#include <linux/kernel.h>
5#include <linux/mm.h>
6#include <linux/smp.h>
389d1fb1 7#include <linux/prctl.h>
61c4628b
SS
8#include <linux/slab.h>
9#include <linux/sched.h>
186f4360
PG
10#include <linux/init.h>
11#include <linux/export.h>
7f424a8b 12#include <linux/pm.h>
162a688e 13#include <linux/tick.h>
9d62dcdf 14#include <linux/random.h>
7c68af6e 15#include <linux/user-return-notifier.h>
814e2c84
AI
16#include <linux/dmi.h>
17#include <linux/utsname.h>
90e24014
RW
18#include <linux/stackprotector.h>
19#include <linux/tick.h>
20#include <linux/cpuidle.h>
61613521 21#include <trace/events/power.h>
24f1e32c 22#include <linux/hw_breakpoint.h>
93789b32 23#include <asm/cpu.h>
d3ec5cae 24#include <asm/apic.h>
2c1b284e 25#include <asm/syscalls.h>
389d1fb1 26#include <asm/uaccess.h>
b253149b 27#include <asm/mwait.h>
78f7f1e5 28#include <asm/fpu/internal.h>
66cb5917 29#include <asm/debugreg.h>
90e24014 30#include <asm/nmi.h>
375074cc 31#include <asm/tlbflush.h>
8838eb6c 32#include <asm/mce.h>
9fda6a06 33#include <asm/vm86.h>
7b32aead 34#include <asm/switch_to.h>
90e24014 35
45046892
TG
36/*
37 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
38 * no more per-task TSS's. The TSS size is kept cacheline-aligned
39 * so they are allowed to end up in the .data..cacheline_aligned
40 * section. Since TSS's are completely CPU-local, we want them
41 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
42 */
d0a0de21
AL
43__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
44 .x86_tss = {
d9e05cc5 45 .sp0 = TOP_OF_INIT_STACK,
d0a0de21
AL
46#ifdef CONFIG_X86_32
47 .ss0 = __KERNEL_DS,
48 .ss1 = __KERNEL_CS,
49 .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
50#endif
51 },
52#ifdef CONFIG_X86_32
53 /*
54 * Note that the .io_bitmap member must be extra-big. This is because
55 * the CPU will access an additional byte beyond the end of the IO
56 * permission bitmap. The extra byte must be all 1 bits, and must
57 * be within the limit.
58 */
59 .io_bitmap = { [0 ... IO_BITMAP_LONGS] = ~0 },
60#endif
2a41aa4f
AL
61#ifdef CONFIG_X86_32
62 .SYSENTER_stack_canary = STACK_END_MAGIC,
63#endif
d0a0de21 64};
de71ad2c 65EXPORT_PER_CPU_SYMBOL(cpu_tss);
45046892 66
55ccf3fe
SS
67/*
68 * this gets called so that we can store lazy state into memory and copy the
69 * current task into the new thread.
70 */
61c4628b
SS
71int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
72{
5aaeb5c0 73 memcpy(dst, src, arch_task_struct_size);
2459ee86
AL
74#ifdef CONFIG_VM86
75 dst->thread.vm86 = NULL;
76#endif
f1853505 77
c69e098b 78 return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
61c4628b 79}
7f424a8b 80
389d1fb1
JF
81/*
82 * Free current thread data structures etc..
83 */
e6464694 84void exit_thread(struct task_struct *tsk)
389d1fb1 85{
e6464694 86 struct thread_struct *t = &tsk->thread;
250981e6 87 unsigned long *bp = t->io_bitmap_ptr;
ca6787ba 88 struct fpu *fpu = &t->fpu;
389d1fb1 89
250981e6 90 if (bp) {
24933b82 91 struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
389d1fb1 92
389d1fb1
JF
93 t->io_bitmap_ptr = NULL;
94 clear_thread_flag(TIF_IO_BITMAP);
95 /*
96 * Careful, clear this in the TSS too:
97 */
98 memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
99 t->io_bitmap_max = 0;
100 put_cpu();
250981e6 101 kfree(bp);
389d1fb1 102 }
1dcc8d7b 103
9fda6a06
BG
104 free_vm86(t);
105
50338615 106 fpu__drop(fpu);
389d1fb1
JF
107}
108
109void flush_thread(void)
110{
111 struct task_struct *tsk = current;
112
24f1e32c 113 flush_ptrace_hw_breakpoint(tsk);
389d1fb1 114 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
110d7f75 115
04c8e01d 116 fpu__clear(&tsk->thread.fpu);
389d1fb1
JF
117}
118
119static void hard_disable_TSC(void)
120{
375074cc 121 cr4_set_bits(X86_CR4_TSD);
389d1fb1
JF
122}
123
124void disable_TSC(void)
125{
126 preempt_disable();
127 if (!test_and_set_thread_flag(TIF_NOTSC))
128 /*
129 * Must flip the CPU state synchronously with
130 * TIF_NOTSC in the current running context.
131 */
132 hard_disable_TSC();
133 preempt_enable();
134}
135
136static void hard_enable_TSC(void)
137{
375074cc 138 cr4_clear_bits(X86_CR4_TSD);
389d1fb1
JF
139}
140
141static void enable_TSC(void)
142{
143 preempt_disable();
144 if (test_and_clear_thread_flag(TIF_NOTSC))
145 /*
146 * Must flip the CPU state synchronously with
147 * TIF_NOTSC in the current running context.
148 */
149 hard_enable_TSC();
150 preempt_enable();
151}
152
153int get_tsc_mode(unsigned long adr)
154{
155 unsigned int val;
156
157 if (test_thread_flag(TIF_NOTSC))
158 val = PR_TSC_SIGSEGV;
159 else
160 val = PR_TSC_ENABLE;
161
162 return put_user(val, (unsigned int __user *)adr);
163}
164
165int set_tsc_mode(unsigned int val)
166{
167 if (val == PR_TSC_SIGSEGV)
168 disable_TSC();
169 else if (val == PR_TSC_ENABLE)
170 enable_TSC();
171 else
172 return -EINVAL;
173
174 return 0;
175}
176
177void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
178 struct tss_struct *tss)
179{
180 struct thread_struct *prev, *next;
181
182 prev = &prev_p->thread;
183 next = &next_p->thread;
184
ea8e61b7
PZ
185 if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
186 test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
187 unsigned long debugctl = get_debugctlmsr();
188
189 debugctl &= ~DEBUGCTLMSR_BTF;
190 if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
191 debugctl |= DEBUGCTLMSR_BTF;
192
193 update_debugctlmsr(debugctl);
194 }
389d1fb1 195
389d1fb1
JF
196 if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
197 test_tsk_thread_flag(next_p, TIF_NOTSC)) {
198 /* prev and next are different */
199 if (test_tsk_thread_flag(next_p, TIF_NOTSC))
200 hard_disable_TSC();
201 else
202 hard_enable_TSC();
203 }
204
205 if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
206 /*
207 * Copy the relevant range of the IO bitmap.
208 * Normally this is 128 bytes or less:
209 */
210 memcpy(tss->io_bitmap, next->io_bitmap_ptr,
211 max(prev->io_bitmap_max, next->io_bitmap_max));
212 } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
213 /*
214 * Clear any possible leftover bits:
215 */
216 memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
217 }
7c68af6e 218 propagate_user_return_notify(prev_p, next_p);
389d1fb1
JF
219}
220
00dba564
TG
221/*
222 * Idle related variables and functions
223 */
d1896049 224unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
00dba564
TG
225EXPORT_SYMBOL(boot_option_idle_override);
226
a476bda3 227static void (*x86_idle)(void);
00dba564 228
90e24014
RW
229#ifndef CONFIG_SMP
230static inline void play_dead(void)
231{
232 BUG();
233}
234#endif
235
7d1a9417
TG
236void arch_cpu_idle_enter(void)
237{
6a369583 238 tsc_verify_tsc_adjust(false);
7d1a9417 239 local_touch_nmi();
7d1a9417 240}
90e24014 241
7d1a9417
TG
242void arch_cpu_idle_dead(void)
243{
244 play_dead();
245}
90e24014 246
7d1a9417
TG
247/*
248 * Called from the generic idle code.
249 */
250void arch_cpu_idle(void)
251{
16f8b05a 252 x86_idle();
90e24014
RW
253}
254
00dba564 255/*
7d1a9417 256 * We use this if we don't have any better idle routine..
00dba564 257 */
6727ad9e 258void __cpuidle default_idle(void)
00dba564 259{
4d0e42cc 260 trace_cpu_idle_rcuidle(1, smp_processor_id());
7d1a9417 261 safe_halt();
4d0e42cc 262 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
00dba564 263}
60b8b1de 264#ifdef CONFIG_APM_MODULE
00dba564
TG
265EXPORT_SYMBOL(default_idle);
266#endif
267
6a377ddc
LB
268#ifdef CONFIG_XEN
269bool xen_set_default_idle(void)
e5fd47bf 270{
a476bda3 271 bool ret = !!x86_idle;
e5fd47bf 272
a476bda3 273 x86_idle = default_idle;
e5fd47bf
KRW
274
275 return ret;
276}
6a377ddc 277#endif
d3ec5cae
IV
278void stop_this_cpu(void *dummy)
279{
280 local_irq_disable();
281 /*
282 * Remove this CPU:
283 */
4f062896 284 set_cpu_online(smp_processor_id(), false);
d3ec5cae 285 disable_local_APIC();
8838eb6c 286 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
d3ec5cae 287
27be4570
LB
288 for (;;)
289 halt();
7f424a8b
PZ
290}
291
aa276e1c 292/*
07c94a38
BP
293 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
294 * states (local apic timer and TSC stop).
aa276e1c 295 */
02c68a02 296static void amd_e400_idle(void)
aa276e1c 297{
07c94a38
BP
298 /*
299 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
300 * gets set after static_cpu_has() places have been converted via
301 * alternatives.
302 */
303 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
304 default_idle();
305 return;
aa276e1c
TG
306 }
307
07c94a38 308 tick_broadcast_enter();
aa276e1c 309
07c94a38 310 default_idle();
0beefa20 311
07c94a38
BP
312 /*
313 * The switch back from broadcast mode needs to be called with
314 * interrupts disabled.
315 */
316 local_irq_disable();
317 tick_broadcast_exit();
318 local_irq_enable();
aa276e1c
TG
319}
320
b253149b
LB
321/*
322 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
323 * We can't rely on cpuidle installing MWAIT, because it will not load
324 * on systems that support only C1 -- so the boot default must be MWAIT.
325 *
326 * Some AMD machines are the opposite, they depend on using HALT.
327 *
328 * So for default C1, which is used during boot until cpuidle loads,
329 * use MWAIT-C1 on Intel HW that has it, else use HALT.
330 */
331static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
332{
333 if (c->x86_vendor != X86_VENDOR_INTEL)
334 return 0;
335
08e237fa 336 if (!cpu_has(c, X86_FEATURE_MWAIT) || static_cpu_has_bug(X86_BUG_MONITOR))
b253149b
LB
337 return 0;
338
339 return 1;
340}
341
342/*
0fb0328d
HR
343 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
344 * with interrupts enabled and no flags, which is backwards compatible with the
345 * original MWAIT implementation.
b253149b 346 */
6727ad9e 347static __cpuidle void mwait_idle(void)
b253149b 348{
f8e617f4 349 if (!current_set_polling_and_test()) {
e43d0189 350 trace_cpu_idle_rcuidle(1, smp_processor_id());
f8e617f4 351 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
ca59809f 352 mb(); /* quirk */
b253149b 353 clflush((void *)&current_thread_info()->flags);
ca59809f 354 mb(); /* quirk */
f8e617f4 355 }
b253149b
LB
356
357 __monitor((void *)&current_thread_info()->flags, 0, 0);
b253149b
LB
358 if (!need_resched())
359 __sti_mwait(0, 0);
360 else
361 local_irq_enable();
e43d0189 362 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
f8e617f4 363 } else {
b253149b 364 local_irq_enable();
f8e617f4
MG
365 }
366 __current_clr_polling();
b253149b
LB
367}
368
148f9bb8 369void select_idle_routine(const struct cpuinfo_x86 *c)
7f424a8b 370{
3e5095d1 371#ifdef CONFIG_SMP
7d1a9417 372 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
c767a54b 373 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
7f424a8b 374#endif
7d1a9417 375 if (x86_idle || boot_option_idle_override == IDLE_POLL)
6ddd2a27
TG
376 return;
377
3344ed30 378 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
c767a54b 379 pr_info("using AMD E400 aware idle routine\n");
a476bda3 380 x86_idle = amd_e400_idle;
b253149b
LB
381 } else if (prefer_mwait_c1_over_halt(c)) {
382 pr_info("using mwait in idle threads\n");
383 x86_idle = mwait_idle;
6ddd2a27 384 } else
a476bda3 385 x86_idle = default_idle;
7f424a8b
PZ
386}
387
07c94a38 388void amd_e400_c1e_apic_setup(void)
30e1e6d1 389{
07c94a38
BP
390 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
391 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
392 local_irq_disable();
393 tick_broadcast_force();
394 local_irq_enable();
395 }
30e1e6d1
RR
396}
397
e7ff3a47
TG
398void __init arch_post_acpi_subsys_init(void)
399{
400 u32 lo, hi;
401
402 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
403 return;
404
405 /*
406 * AMD E400 detection needs to happen after ACPI has been enabled. If
407 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
408 * MSR_K8_INT_PENDING_MSG.
409 */
410 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
411 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
412 return;
413
414 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
415
416 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
417 mark_tsc_unstable("TSC halt in AMD C1E");
418 pr_info("System has AMD C1E enabled\n");
419}
420
7f424a8b
PZ
421static int __init idle_setup(char *str)
422{
ab6bc3e3
CG
423 if (!str)
424 return -EINVAL;
425
7f424a8b 426 if (!strcmp(str, "poll")) {
c767a54b 427 pr_info("using polling idle threads\n");
d1896049 428 boot_option_idle_override = IDLE_POLL;
7d1a9417 429 cpu_idle_poll_ctrl(true);
d1896049 430 } else if (!strcmp(str, "halt")) {
c1e3b377
ZY
431 /*
432 * When the boot option of idle=halt is added, halt is
433 * forced to be used for CPU idle. In such case CPU C2/C3
434 * won't be used again.
435 * To continue to load the CPU idle driver, don't touch
436 * the boot_option_idle_override.
437 */
a476bda3 438 x86_idle = default_idle;
d1896049 439 boot_option_idle_override = IDLE_HALT;
da5e09a1
ZY
440 } else if (!strcmp(str, "nomwait")) {
441 /*
442 * If the boot option of "idle=nomwait" is added,
443 * it means that mwait will be disabled for CPU C2/C3
444 * states. In such case it won't touch the variable
445 * of boot_option_idle_override.
446 */
d1896049 447 boot_option_idle_override = IDLE_NOMWAIT;
c1e3b377 448 } else
7f424a8b
PZ
449 return -1;
450
7f424a8b
PZ
451 return 0;
452}
453early_param("idle", idle_setup);
454
9d62dcdf
AW
455unsigned long arch_align_stack(unsigned long sp)
456{
457 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
458 sp -= get_random_int() % 8192;
459 return sp & ~0xf;
460}
461
462unsigned long arch_randomize_brk(struct mm_struct *mm)
463{
9c6f0902 464 return randomize_page(mm->brk, 0x02000000);
9d62dcdf
AW
465}
466
ffcb043b
BG
467/*
468 * Return saved PC of a blocked thread.
469 * What is this good for? it will be always the scheduler or ret_from_fork.
470 */
471unsigned long thread_saved_pc(struct task_struct *tsk)
472{
473 struct inactive_task_frame *frame =
474 (struct inactive_task_frame *) READ_ONCE(tsk->thread.sp);
475 return READ_ONCE_NOCHECK(frame->ret_addr);
476}
477
7ba78053
TG
478/*
479 * Called from fs/proc with a reference on @p to find the function
480 * which called into schedule(). This needs to be done carefully
481 * because the task might wake up and we might look at a stack
482 * changing under us.
483 */
484unsigned long get_wchan(struct task_struct *p)
485{
74327a3e 486 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
7ba78053
TG
487 int count = 0;
488
489 if (!p || p == current || p->state == TASK_RUNNING)
490 return 0;
491
74327a3e
AL
492 if (!try_get_task_stack(p))
493 return 0;
494
7ba78053
TG
495 start = (unsigned long)task_stack_page(p);
496 if (!start)
74327a3e 497 goto out;
7ba78053
TG
498
499 /*
500 * Layout of the stack page:
501 *
502 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
503 * PADDING
504 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
505 * stack
15f4eae7 506 * ----------- bottom = start
7ba78053
TG
507 *
508 * The tasks stack pointer points at the location where the
509 * framepointer is stored. The data on the stack is:
510 * ... IP FP ... IP FP
511 *
512 * We need to read FP and IP, so we need to adjust the upper
513 * bound by another unsigned long.
514 */
515 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
516 top -= 2 * sizeof(unsigned long);
15f4eae7 517 bottom = start;
7ba78053
TG
518
519 sp = READ_ONCE(p->thread.sp);
520 if (sp < bottom || sp > top)
74327a3e 521 goto out;
7ba78053 522
7b32aead 523 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
7ba78053
TG
524 do {
525 if (fp < bottom || fp > top)
74327a3e 526 goto out;
f7d27c35 527 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
74327a3e
AL
528 if (!in_sched_functions(ip)) {
529 ret = ip;
530 goto out;
531 }
f7d27c35 532 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
7ba78053 533 } while (count++ < 16 && p->state != TASK_RUNNING);
74327a3e
AL
534
535out:
536 put_task_stack(p);
537 return ret;
7ba78053 538}