]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
expand the call of dentry_lru_del() in dentry_kill()
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
f6041567 40#include <linux/list_lru.h>
07f3f05c 41#include "internal.h"
b2dba1af 42#include "mount.h"
1da177e4 43
789680d1
NP
44/*
45 * Usage:
873feea0
NP
46 * dcache->d_inode->i_lock protects:
47 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
48 * dcache_hash_bucket lock protects:
49 * - the dcache hash table
50 * s_anon bl list spinlock protects:
51 * - the s_anon list (see __d_drop)
19156840 52 * dentry->d_sb->s_dentry_lru_lock protects:
23044507
NP
53 * - the dcache lru lists and counters
54 * d_lock protects:
55 * - d_flags
56 * - d_name
57 * - d_lru
b7ab39f6 58 * - d_count
da502956 59 * - d_unhashed()
2fd6b7f5
NP
60 * - d_parent and d_subdirs
61 * - childrens' d_child and d_parent
b23fb0a6 62 * - d_alias, d_inode
789680d1
NP
63 *
64 * Ordering:
873feea0 65 * dentry->d_inode->i_lock
b5c84bf6 66 * dentry->d_lock
19156840 67 * dentry->d_sb->s_dentry_lru_lock
ceb5bdc2
NP
68 * dcache_hash_bucket lock
69 * s_anon lock
789680d1 70 *
da502956
NP
71 * If there is an ancestor relationship:
72 * dentry->d_parent->...->d_parent->d_lock
73 * ...
74 * dentry->d_parent->d_lock
75 * dentry->d_lock
76 *
77 * If no ancestor relationship:
789680d1
NP
78 * if (dentry1 < dentry2)
79 * dentry1->d_lock
80 * dentry2->d_lock
81 */
fa3536cc 82int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
83EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
482db906
AV
109 hash = hash + (hash >> d_hash_shift);
110 return dentry_hashtable + (hash & d_hash_mask);
ceb5bdc2
NP
111}
112
1da177e4
LT
113/* Statistics gathering. */
114struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
116};
117
3942c07c 118static DEFINE_PER_CPU(long, nr_dentry);
62d36c77 119static DEFINE_PER_CPU(long, nr_dentry_unused);
312d3ca8
CH
120
121#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
62d36c77
DC
122
123/*
124 * Here we resort to our own counters instead of using generic per-cpu counters
125 * for consistency with what the vfs inode code does. We are expected to harvest
126 * better code and performance by having our own specialized counters.
127 *
128 * Please note that the loop is done over all possible CPUs, not over all online
129 * CPUs. The reason for this is that we don't want to play games with CPUs going
130 * on and off. If one of them goes off, we will just keep their counters.
131 *
132 * glommer: See cffbc8a for details, and if you ever intend to change this,
133 * please update all vfs counters to match.
134 */
3942c07c 135static long get_nr_dentry(void)
3e880fb5
NP
136{
137 int i;
3942c07c 138 long sum = 0;
3e880fb5
NP
139 for_each_possible_cpu(i)
140 sum += per_cpu(nr_dentry, i);
141 return sum < 0 ? 0 : sum;
142}
143
62d36c77
DC
144static long get_nr_dentry_unused(void)
145{
146 int i;
147 long sum = 0;
148 for_each_possible_cpu(i)
149 sum += per_cpu(nr_dentry_unused, i);
150 return sum < 0 ? 0 : sum;
151}
152
312d3ca8
CH
153int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
154 size_t *lenp, loff_t *ppos)
155{
3e880fb5 156 dentry_stat.nr_dentry = get_nr_dentry();
62d36c77 157 dentry_stat.nr_unused = get_nr_dentry_unused();
3942c07c 158 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
312d3ca8
CH
159}
160#endif
161
5483f18e
LT
162/*
163 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
164 * The strings are both count bytes long, and count is non-zero.
165 */
e419b4cc
LT
166#ifdef CONFIG_DCACHE_WORD_ACCESS
167
168#include <asm/word-at-a-time.h>
169/*
170 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
171 * aligned allocation for this particular component. We don't
172 * strictly need the load_unaligned_zeropad() safety, but it
173 * doesn't hurt either.
174 *
175 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
176 * need the careful unaligned handling.
177 */
94753db5 178static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 179{
bfcfaa77 180 unsigned long a,b,mask;
bfcfaa77
LT
181
182 for (;;) {
12f8ad4b 183 a = *(unsigned long *)cs;
e419b4cc 184 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
185 if (tcount < sizeof(unsigned long))
186 break;
187 if (unlikely(a != b))
188 return 1;
189 cs += sizeof(unsigned long);
190 ct += sizeof(unsigned long);
191 tcount -= sizeof(unsigned long);
192 if (!tcount)
193 return 0;
194 }
a5c21dce 195 mask = bytemask_from_count(tcount);
bfcfaa77 196 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
197}
198
bfcfaa77 199#else
e419b4cc 200
94753db5 201static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 202{
5483f18e
LT
203 do {
204 if (*cs != *ct)
205 return 1;
206 cs++;
207 ct++;
208 tcount--;
209 } while (tcount);
210 return 0;
211}
212
e419b4cc
LT
213#endif
214
94753db5
LT
215static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
216{
6326c71f 217 const unsigned char *cs;
94753db5
LT
218 /*
219 * Be careful about RCU walk racing with rename:
220 * use ACCESS_ONCE to fetch the name pointer.
221 *
222 * NOTE! Even if a rename will mean that the length
223 * was not loaded atomically, we don't care. The
224 * RCU walk will check the sequence count eventually,
225 * and catch it. And we won't overrun the buffer,
226 * because we're reading the name pointer atomically,
227 * and a dentry name is guaranteed to be properly
228 * terminated with a NUL byte.
229 *
230 * End result: even if 'len' is wrong, we'll exit
231 * early because the data cannot match (there can
232 * be no NUL in the ct/tcount data)
233 */
6326c71f
LT
234 cs = ACCESS_ONCE(dentry->d_name.name);
235 smp_read_barrier_depends();
236 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
237}
238
9c82ab9c 239static void __d_free(struct rcu_head *head)
1da177e4 240{
9c82ab9c
CH
241 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
242
b3d9b7a3 243 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
244 if (dname_external(dentry))
245 kfree(dentry->d_name.name);
246 kmem_cache_free(dentry_cache, dentry);
247}
248
b4f0354e
AV
249static void dentry_free(struct dentry *dentry)
250{
251 /* if dentry was never visible to RCU, immediate free is OK */
252 if (!(dentry->d_flags & DCACHE_RCUACCESS))
253 __d_free(&dentry->d_u.d_rcu);
254 else
255 call_rcu(&dentry->d_u.d_rcu, __d_free);
256}
257
31e6b01f
NP
258/**
259 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 260 * @dentry: the target dentry
31e6b01f
NP
261 * After this call, in-progress rcu-walk path lookup will fail. This
262 * should be called after unhashing, and after changing d_inode (if
263 * the dentry has not already been unhashed).
264 */
265static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
266{
267 assert_spin_locked(&dentry->d_lock);
268 /* Go through a barrier */
269 write_seqcount_barrier(&dentry->d_seq);
270}
271
1da177e4
LT
272/*
273 * Release the dentry's inode, using the filesystem
31e6b01f
NP
274 * d_iput() operation if defined. Dentry has no refcount
275 * and is unhashed.
1da177e4 276 */
858119e1 277static void dentry_iput(struct dentry * dentry)
31f3e0b3 278 __releases(dentry->d_lock)
873feea0 279 __releases(dentry->d_inode->i_lock)
1da177e4
LT
280{
281 struct inode *inode = dentry->d_inode;
282 if (inode) {
283 dentry->d_inode = NULL;
b3d9b7a3 284 hlist_del_init(&dentry->d_alias);
1da177e4 285 spin_unlock(&dentry->d_lock);
873feea0 286 spin_unlock(&inode->i_lock);
f805fbda
LT
287 if (!inode->i_nlink)
288 fsnotify_inoderemove(inode);
1da177e4
LT
289 if (dentry->d_op && dentry->d_op->d_iput)
290 dentry->d_op->d_iput(dentry, inode);
291 else
292 iput(inode);
293 } else {
294 spin_unlock(&dentry->d_lock);
1da177e4
LT
295 }
296}
297
31e6b01f
NP
298/*
299 * Release the dentry's inode, using the filesystem
300 * d_iput() operation if defined. dentry remains in-use.
301 */
302static void dentry_unlink_inode(struct dentry * dentry)
303 __releases(dentry->d_lock)
873feea0 304 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
305{
306 struct inode *inode = dentry->d_inode;
b18825a7 307 __d_clear_type(dentry);
31e6b01f 308 dentry->d_inode = NULL;
b3d9b7a3 309 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
310 dentry_rcuwalk_barrier(dentry);
311 spin_unlock(&dentry->d_lock);
873feea0 312 spin_unlock(&inode->i_lock);
31e6b01f
NP
313 if (!inode->i_nlink)
314 fsnotify_inoderemove(inode);
315 if (dentry->d_op && dentry->d_op->d_iput)
316 dentry->d_op->d_iput(dentry, inode);
317 else
318 iput(inode);
319}
320
89dc77bc
LT
321/*
322 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
323 * is in use - which includes both the "real" per-superblock
324 * LRU list _and_ the DCACHE_SHRINK_LIST use.
325 *
326 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
327 * on the shrink list (ie not on the superblock LRU list).
328 *
329 * The per-cpu "nr_dentry_unused" counters are updated with
330 * the DCACHE_LRU_LIST bit.
331 *
332 * These helper functions make sure we always follow the
333 * rules. d_lock must be held by the caller.
334 */
335#define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
336static void d_lru_add(struct dentry *dentry)
337{
338 D_FLAG_VERIFY(dentry, 0);
339 dentry->d_flags |= DCACHE_LRU_LIST;
340 this_cpu_inc(nr_dentry_unused);
341 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
342}
343
344static void d_lru_del(struct dentry *dentry)
345{
346 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
347 dentry->d_flags &= ~DCACHE_LRU_LIST;
348 this_cpu_dec(nr_dentry_unused);
349 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
350}
351
352static void d_shrink_del(struct dentry *dentry)
353{
354 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
355 list_del_init(&dentry->d_lru);
356 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
357 this_cpu_dec(nr_dentry_unused);
358}
359
360static void d_shrink_add(struct dentry *dentry, struct list_head *list)
361{
362 D_FLAG_VERIFY(dentry, 0);
363 list_add(&dentry->d_lru, list);
364 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366}
367
368/*
369 * These can only be called under the global LRU lock, ie during the
370 * callback for freeing the LRU list. "isolate" removes it from the
371 * LRU lists entirely, while shrink_move moves it to the indicated
372 * private list.
373 */
374static void d_lru_isolate(struct dentry *dentry)
375{
376 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
377 dentry->d_flags &= ~DCACHE_LRU_LIST;
378 this_cpu_dec(nr_dentry_unused);
379 list_del_init(&dentry->d_lru);
380}
381
382static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
383{
384 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
385 dentry->d_flags |= DCACHE_SHRINK_LIST;
386 list_move_tail(&dentry->d_lru, list);
387}
388
da3bbdd4 389/*
f6041567 390 * dentry_lru_(add|del)_list) must be called with d_lock held.
da3bbdd4
KM
391 */
392static void dentry_lru_add(struct dentry *dentry)
393{
89dc77bc
LT
394 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
395 d_lru_add(dentry);
da3bbdd4
KM
396}
397
f0023bc6
SW
398/*
399 * Remove a dentry with references from the LRU.
dd1f6b2e
DC
400 *
401 * If we are on the shrink list, then we can get to try_prune_one_dentry() and
402 * lose our last reference through the parent walk. In this case, we need to
403 * remove ourselves from the shrink list, not the LRU.
f0023bc6 404 */
da3bbdd4
KM
405static void dentry_lru_del(struct dentry *dentry)
406{
89dc77bc
LT
407 if (dentry->d_flags & DCACHE_LRU_LIST) {
408 if (dentry->d_flags & DCACHE_SHRINK_LIST)
409 return d_shrink_del(dentry);
410 d_lru_del(dentry);
da3bbdd4 411 }
da3bbdd4
KM
412}
413
789680d1
NP
414/**
415 * d_drop - drop a dentry
416 * @dentry: dentry to drop
417 *
418 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
419 * be found through a VFS lookup any more. Note that this is different from
420 * deleting the dentry - d_delete will try to mark the dentry negative if
421 * possible, giving a successful _negative_ lookup, while d_drop will
422 * just make the cache lookup fail.
423 *
424 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
425 * reason (NFS timeouts or autofs deletes).
426 *
427 * __d_drop requires dentry->d_lock.
428 */
429void __d_drop(struct dentry *dentry)
430{
dea3667b 431 if (!d_unhashed(dentry)) {
b61625d2 432 struct hlist_bl_head *b;
7632e465
BF
433 /*
434 * Hashed dentries are normally on the dentry hashtable,
435 * with the exception of those newly allocated by
436 * d_obtain_alias, which are always IS_ROOT:
437 */
438 if (unlikely(IS_ROOT(dentry)))
b61625d2
AV
439 b = &dentry->d_sb->s_anon;
440 else
441 b = d_hash(dentry->d_parent, dentry->d_name.hash);
442
443 hlist_bl_lock(b);
444 __hlist_bl_del(&dentry->d_hash);
445 dentry->d_hash.pprev = NULL;
446 hlist_bl_unlock(b);
dea3667b 447 dentry_rcuwalk_barrier(dentry);
789680d1
NP
448 }
449}
450EXPORT_SYMBOL(__d_drop);
451
452void d_drop(struct dentry *dentry)
453{
789680d1
NP
454 spin_lock(&dentry->d_lock);
455 __d_drop(dentry);
456 spin_unlock(&dentry->d_lock);
789680d1
NP
457}
458EXPORT_SYMBOL(d_drop);
459
77812a1e
NP
460/*
461 * Finish off a dentry we've decided to kill.
462 * dentry->d_lock must be held, returns with it unlocked.
463 * If ref is non-zero, then decrement the refcount too.
464 * Returns dentry requiring refcount drop, or NULL if we're done.
465 */
358eec18 466static struct dentry *
dd1f6b2e 467dentry_kill(struct dentry *dentry, int unlock_on_failure)
77812a1e
NP
468 __releases(dentry->d_lock)
469{
873feea0 470 struct inode *inode;
77812a1e
NP
471 struct dentry *parent;
472
873feea0
NP
473 inode = dentry->d_inode;
474 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e 475relock:
dd1f6b2e
DC
476 if (unlock_on_failure) {
477 spin_unlock(&dentry->d_lock);
478 cpu_relax();
479 }
77812a1e
NP
480 return dentry; /* try again with same dentry */
481 }
482 if (IS_ROOT(dentry))
483 parent = NULL;
484 else
485 parent = dentry->d_parent;
486 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
487 if (inode)
488 spin_unlock(&inode->i_lock);
77812a1e
NP
489 goto relock;
490 }
31e6b01f 491
0d98439e
LT
492 /*
493 * The dentry is now unrecoverably dead to the world.
494 */
495 lockref_mark_dead(&dentry->d_lockref);
496
f0023bc6 497 /*
f0023bc6
SW
498 * inform the fs via d_prune that this dentry is about to be
499 * unhashed and destroyed.
500 */
590fb51f 501 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
61572bb1
YZ
502 dentry->d_op->d_prune(dentry);
503
01b60351
AV
504 if (dentry->d_flags & DCACHE_LRU_LIST) {
505 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
506 d_lru_del(dentry);
507 else
508 d_shrink_del(dentry);
509 }
77812a1e
NP
510 /* if it was on the hash then remove it */
511 __d_drop(dentry);
03b3b889
AV
512 list_del(&dentry->d_u.d_child);
513 /*
514 * Inform d_walk() that we are no longer attached to the
515 * dentry tree
516 */
517 dentry->d_flags |= DCACHE_DENTRY_KILLED;
518 if (parent)
519 spin_unlock(&parent->d_lock);
520 dentry_iput(dentry);
521 /*
522 * dentry_iput drops the locks, at which point nobody (except
523 * transient RCU lookups) can reach this dentry.
524 */
525 BUG_ON((int)dentry->d_lockref.count > 0);
526 this_cpu_dec(nr_dentry);
527 if (dentry->d_op && dentry->d_op->d_release)
528 dentry->d_op->d_release(dentry);
529
b4f0354e 530 dentry_free(dentry);
03b3b889 531 return parent;
77812a1e
NP
532}
533
1da177e4
LT
534/*
535 * This is dput
536 *
537 * This is complicated by the fact that we do not want to put
538 * dentries that are no longer on any hash chain on the unused
539 * list: we'd much rather just get rid of them immediately.
540 *
541 * However, that implies that we have to traverse the dentry
542 * tree upwards to the parents which might _also_ now be
543 * scheduled for deletion (it may have been only waiting for
544 * its last child to go away).
545 *
546 * This tail recursion is done by hand as we don't want to depend
547 * on the compiler to always get this right (gcc generally doesn't).
548 * Real recursion would eat up our stack space.
549 */
550
551/*
552 * dput - release a dentry
553 * @dentry: dentry to release
554 *
555 * Release a dentry. This will drop the usage count and if appropriate
556 * call the dentry unlink method as well as removing it from the queues and
557 * releasing its resources. If the parent dentries were scheduled for release
558 * they too may now get deleted.
1da177e4 559 */
1da177e4
LT
560void dput(struct dentry *dentry)
561{
8aab6a27 562 if (unlikely(!dentry))
1da177e4
LT
563 return;
564
565repeat:
98474236 566 if (lockref_put_or_lock(&dentry->d_lockref))
1da177e4 567 return;
1da177e4 568
8aab6a27
LT
569 /* Unreachable? Get rid of it */
570 if (unlikely(d_unhashed(dentry)))
571 goto kill_it;
572
573 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
1da177e4 574 if (dentry->d_op->d_delete(dentry))
61f3dee4 575 goto kill_it;
1da177e4 576 }
265ac902 577
358eec18
LT
578 if (!(dentry->d_flags & DCACHE_REFERENCED))
579 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 580 dentry_lru_add(dentry);
265ac902 581
98474236 582 dentry->d_lockref.count--;
61f3dee4 583 spin_unlock(&dentry->d_lock);
1da177e4
LT
584 return;
585
d52b9086 586kill_it:
dd1f6b2e 587 dentry = dentry_kill(dentry, 1);
d52b9086
MS
588 if (dentry)
589 goto repeat;
1da177e4 590}
ec4f8605 591EXPORT_SYMBOL(dput);
1da177e4
LT
592
593/**
594 * d_invalidate - invalidate a dentry
595 * @dentry: dentry to invalidate
596 *
597 * Try to invalidate the dentry if it turns out to be
598 * possible. If there are other dentries that can be
599 * reached through this one we can't delete it and we
600 * return -EBUSY. On success we return 0.
601 *
602 * no dcache lock.
603 */
604
605int d_invalidate(struct dentry * dentry)
606{
607 /*
608 * If it's already been dropped, return OK.
609 */
da502956 610 spin_lock(&dentry->d_lock);
1da177e4 611 if (d_unhashed(dentry)) {
da502956 612 spin_unlock(&dentry->d_lock);
1da177e4
LT
613 return 0;
614 }
615 /*
616 * Check whether to do a partial shrink_dcache
617 * to get rid of unused child entries.
618 */
619 if (!list_empty(&dentry->d_subdirs)) {
da502956 620 spin_unlock(&dentry->d_lock);
1da177e4 621 shrink_dcache_parent(dentry);
da502956 622 spin_lock(&dentry->d_lock);
1da177e4
LT
623 }
624
625 /*
626 * Somebody else still using it?
627 *
628 * If it's a directory, we can't drop it
629 * for fear of somebody re-populating it
630 * with children (even though dropping it
631 * would make it unreachable from the root,
632 * we might still populate it if it was a
633 * working directory or similar).
50e69630
AV
634 * We also need to leave mountpoints alone,
635 * directory or not.
1da177e4 636 */
98474236 637 if (dentry->d_lockref.count > 1 && dentry->d_inode) {
50e69630 638 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 639 spin_unlock(&dentry->d_lock);
1da177e4
LT
640 return -EBUSY;
641 }
642 }
643
644 __d_drop(dentry);
645 spin_unlock(&dentry->d_lock);
1da177e4
LT
646 return 0;
647}
ec4f8605 648EXPORT_SYMBOL(d_invalidate);
1da177e4 649
b5c84bf6 650/* This must be called with d_lock held */
dc0474be 651static inline void __dget_dlock(struct dentry *dentry)
23044507 652{
98474236 653 dentry->d_lockref.count++;
23044507
NP
654}
655
dc0474be 656static inline void __dget(struct dentry *dentry)
1da177e4 657{
98474236 658 lockref_get(&dentry->d_lockref);
1da177e4
LT
659}
660
b7ab39f6
NP
661struct dentry *dget_parent(struct dentry *dentry)
662{
df3d0bbc 663 int gotref;
b7ab39f6
NP
664 struct dentry *ret;
665
df3d0bbc
WL
666 /*
667 * Do optimistic parent lookup without any
668 * locking.
669 */
670 rcu_read_lock();
671 ret = ACCESS_ONCE(dentry->d_parent);
672 gotref = lockref_get_not_zero(&ret->d_lockref);
673 rcu_read_unlock();
674 if (likely(gotref)) {
675 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
676 return ret;
677 dput(ret);
678 }
679
b7ab39f6 680repeat:
a734eb45
NP
681 /*
682 * Don't need rcu_dereference because we re-check it was correct under
683 * the lock.
684 */
685 rcu_read_lock();
b7ab39f6 686 ret = dentry->d_parent;
a734eb45
NP
687 spin_lock(&ret->d_lock);
688 if (unlikely(ret != dentry->d_parent)) {
689 spin_unlock(&ret->d_lock);
690 rcu_read_unlock();
b7ab39f6
NP
691 goto repeat;
692 }
a734eb45 693 rcu_read_unlock();
98474236
WL
694 BUG_ON(!ret->d_lockref.count);
695 ret->d_lockref.count++;
b7ab39f6 696 spin_unlock(&ret->d_lock);
b7ab39f6
NP
697 return ret;
698}
699EXPORT_SYMBOL(dget_parent);
700
1da177e4
LT
701/**
702 * d_find_alias - grab a hashed alias of inode
703 * @inode: inode in question
32ba9c3f
LT
704 * @want_discon: flag, used by d_splice_alias, to request
705 * that only a DISCONNECTED alias be returned.
1da177e4
LT
706 *
707 * If inode has a hashed alias, or is a directory and has any alias,
708 * acquire the reference to alias and return it. Otherwise return NULL.
709 * Notice that if inode is a directory there can be only one alias and
710 * it can be unhashed only if it has no children, or if it is the root
711 * of a filesystem.
712 *
21c0d8fd 713 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
714 * any other hashed alias over that one unless @want_discon is set,
715 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 716 */
32ba9c3f 717static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 718{
da502956 719 struct dentry *alias, *discon_alias;
1da177e4 720
da502956
NP
721again:
722 discon_alias = NULL;
b67bfe0d 723 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 724 spin_lock(&alias->d_lock);
1da177e4 725 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 726 if (IS_ROOT(alias) &&
da502956 727 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 728 discon_alias = alias;
32ba9c3f 729 } else if (!want_discon) {
dc0474be 730 __dget_dlock(alias);
da502956
NP
731 spin_unlock(&alias->d_lock);
732 return alias;
733 }
734 }
735 spin_unlock(&alias->d_lock);
736 }
737 if (discon_alias) {
738 alias = discon_alias;
739 spin_lock(&alias->d_lock);
740 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
741 if (IS_ROOT(alias) &&
742 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 743 __dget_dlock(alias);
da502956 744 spin_unlock(&alias->d_lock);
1da177e4
LT
745 return alias;
746 }
747 }
da502956
NP
748 spin_unlock(&alias->d_lock);
749 goto again;
1da177e4 750 }
da502956 751 return NULL;
1da177e4
LT
752}
753
da502956 754struct dentry *d_find_alias(struct inode *inode)
1da177e4 755{
214fda1f
DH
756 struct dentry *de = NULL;
757
b3d9b7a3 758 if (!hlist_empty(&inode->i_dentry)) {
873feea0 759 spin_lock(&inode->i_lock);
32ba9c3f 760 de = __d_find_alias(inode, 0);
873feea0 761 spin_unlock(&inode->i_lock);
214fda1f 762 }
1da177e4
LT
763 return de;
764}
ec4f8605 765EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
766
767/*
768 * Try to kill dentries associated with this inode.
769 * WARNING: you must own a reference to inode.
770 */
771void d_prune_aliases(struct inode *inode)
772{
0cdca3f9 773 struct dentry *dentry;
1da177e4 774restart:
873feea0 775 spin_lock(&inode->i_lock);
b67bfe0d 776 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 777 spin_lock(&dentry->d_lock);
98474236 778 if (!dentry->d_lockref.count) {
590fb51f
YZ
779 /*
780 * inform the fs via d_prune that this dentry
781 * is about to be unhashed and destroyed.
782 */
783 if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
784 !d_unhashed(dentry))
785 dentry->d_op->d_prune(dentry);
786
dc0474be 787 __dget_dlock(dentry);
1da177e4
LT
788 __d_drop(dentry);
789 spin_unlock(&dentry->d_lock);
873feea0 790 spin_unlock(&inode->i_lock);
1da177e4
LT
791 dput(dentry);
792 goto restart;
793 }
794 spin_unlock(&dentry->d_lock);
795 }
873feea0 796 spin_unlock(&inode->i_lock);
1da177e4 797}
ec4f8605 798EXPORT_SYMBOL(d_prune_aliases);
1da177e4 799
3049cfe2 800static void shrink_dentry_list(struct list_head *list)
1da177e4 801{
5c47e6d0 802 struct dentry *dentry, *parent;
da3bbdd4 803
ec33679d
NP
804 rcu_read_lock();
805 for (;;) {
ec33679d
NP
806 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
807 if (&dentry->d_lru == list)
808 break; /* empty */
89dc77bc
LT
809
810 /*
811 * Get the dentry lock, and re-verify that the dentry is
812 * this on the shrinking list. If it is, we know that
813 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
814 */
ec33679d
NP
815 spin_lock(&dentry->d_lock);
816 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
817 spin_unlock(&dentry->d_lock);
23044507
NP
818 continue;
819 }
820
dd1f6b2e
DC
821 /*
822 * The dispose list is isolated and dentries are not accounted
823 * to the LRU here, so we can simply remove it from the list
824 * here regardless of whether it is referenced or not.
825 */
89dc77bc 826 d_shrink_del(dentry);
dd1f6b2e 827
1da177e4
LT
828 /*
829 * We found an inuse dentry which was not removed from
dd1f6b2e 830 * the LRU because of laziness during lookup. Do not free it.
1da177e4 831 */
98474236 832 if (dentry->d_lockref.count) {
da3bbdd4 833 spin_unlock(&dentry->d_lock);
1da177e4
LT
834 continue;
835 }
ec33679d 836 rcu_read_unlock();
77812a1e 837
5c47e6d0 838 parent = dentry_kill(dentry, 0);
89dc77bc 839 /*
5c47e6d0 840 * If dentry_kill returns NULL, we have nothing more to do.
89dc77bc 841 */
5c47e6d0
AV
842 if (!parent) {
843 rcu_read_lock();
844 continue;
845 }
846 if (unlikely(parent == dentry)) {
847 /*
848 * trylocks have failed and d_lock has been held the
849 * whole time, so it could not have been added to any
850 * other lists. Just add it back to the shrink list.
851 */
852 rcu_read_lock();
89dc77bc 853 d_shrink_add(dentry, list);
dd1f6b2e 854 spin_unlock(&dentry->d_lock);
5c47e6d0 855 continue;
dd1f6b2e 856 }
5c47e6d0
AV
857 /*
858 * We need to prune ancestors too. This is necessary to prevent
859 * quadratic behavior of shrink_dcache_parent(), but is also
860 * expected to be beneficial in reducing dentry cache
861 * fragmentation.
862 */
863 dentry = parent;
864 while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
865 dentry = dentry_kill(dentry, 1);
866 rcu_read_lock();
da3bbdd4 867 }
ec33679d 868 rcu_read_unlock();
3049cfe2
CH
869}
870
f6041567
DC
871static enum lru_status
872dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
873{
874 struct list_head *freeable = arg;
875 struct dentry *dentry = container_of(item, struct dentry, d_lru);
876
877
878 /*
879 * we are inverting the lru lock/dentry->d_lock here,
880 * so use a trylock. If we fail to get the lock, just skip
881 * it
882 */
883 if (!spin_trylock(&dentry->d_lock))
884 return LRU_SKIP;
885
886 /*
887 * Referenced dentries are still in use. If they have active
888 * counts, just remove them from the LRU. Otherwise give them
889 * another pass through the LRU.
890 */
891 if (dentry->d_lockref.count) {
89dc77bc 892 d_lru_isolate(dentry);
f6041567
DC
893 spin_unlock(&dentry->d_lock);
894 return LRU_REMOVED;
895 }
896
897 if (dentry->d_flags & DCACHE_REFERENCED) {
898 dentry->d_flags &= ~DCACHE_REFERENCED;
899 spin_unlock(&dentry->d_lock);
900
901 /*
902 * The list move itself will be made by the common LRU code. At
903 * this point, we've dropped the dentry->d_lock but keep the
904 * lru lock. This is safe to do, since every list movement is
905 * protected by the lru lock even if both locks are held.
906 *
907 * This is guaranteed by the fact that all LRU management
908 * functions are intermediated by the LRU API calls like
909 * list_lru_add and list_lru_del. List movement in this file
910 * only ever occur through this functions or through callbacks
911 * like this one, that are called from the LRU API.
912 *
913 * The only exceptions to this are functions like
914 * shrink_dentry_list, and code that first checks for the
915 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
916 * operating only with stack provided lists after they are
917 * properly isolated from the main list. It is thus, always a
918 * local access.
919 */
920 return LRU_ROTATE;
921 }
922
89dc77bc 923 d_lru_shrink_move(dentry, freeable);
f6041567
DC
924 spin_unlock(&dentry->d_lock);
925
926 return LRU_REMOVED;
927}
928
3049cfe2 929/**
b48f03b3
DC
930 * prune_dcache_sb - shrink the dcache
931 * @sb: superblock
f6041567 932 * @nr_to_scan : number of entries to try to free
9b17c623 933 * @nid: which node to scan for freeable entities
b48f03b3 934 *
f6041567 935 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
b48f03b3
DC
936 * done when we need more memory an called from the superblock shrinker
937 * function.
3049cfe2 938 *
b48f03b3
DC
939 * This function may fail to free any resources if all the dentries are in
940 * use.
3049cfe2 941 */
9b17c623
DC
942long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
943 int nid)
3049cfe2 944{
f6041567
DC
945 LIST_HEAD(dispose);
946 long freed;
3049cfe2 947
9b17c623
DC
948 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
949 &dispose, &nr_to_scan);
f6041567 950 shrink_dentry_list(&dispose);
0a234c6d 951 return freed;
da3bbdd4 952}
23044507 953
4e717f5c
GC
954static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
955 spinlock_t *lru_lock, void *arg)
dd1f6b2e 956{
4e717f5c
GC
957 struct list_head *freeable = arg;
958 struct dentry *dentry = container_of(item, struct dentry, d_lru);
dd1f6b2e 959
4e717f5c
GC
960 /*
961 * we are inverting the lru lock/dentry->d_lock here,
962 * so use a trylock. If we fail to get the lock, just skip
963 * it
964 */
965 if (!spin_trylock(&dentry->d_lock))
966 return LRU_SKIP;
967
89dc77bc 968 d_lru_shrink_move(dentry, freeable);
4e717f5c 969 spin_unlock(&dentry->d_lock);
ec33679d 970
4e717f5c 971 return LRU_REMOVED;
da3bbdd4
KM
972}
973
4e717f5c 974
1da177e4
LT
975/**
976 * shrink_dcache_sb - shrink dcache for a superblock
977 * @sb: superblock
978 *
3049cfe2
CH
979 * Shrink the dcache for the specified super block. This is used to free
980 * the dcache before unmounting a file system.
1da177e4 981 */
3049cfe2 982void shrink_dcache_sb(struct super_block *sb)
1da177e4 983{
4e717f5c
GC
984 long freed;
985
986 do {
987 LIST_HEAD(dispose);
988
989 freed = list_lru_walk(&sb->s_dentry_lru,
990 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
3049cfe2 991
4e717f5c
GC
992 this_cpu_sub(nr_dentry_unused, freed);
993 shrink_dentry_list(&dispose);
994 } while (freed > 0);
1da177e4 995}
ec4f8605 996EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 997
db14fc3a
MS
998/**
999 * enum d_walk_ret - action to talke during tree walk
1000 * @D_WALK_CONTINUE: contrinue walk
1001 * @D_WALK_QUIT: quit walk
1002 * @D_WALK_NORETRY: quit when retry is needed
1003 * @D_WALK_SKIP: skip this dentry and its children
1004 */
1005enum d_walk_ret {
1006 D_WALK_CONTINUE,
1007 D_WALK_QUIT,
1008 D_WALK_NORETRY,
1009 D_WALK_SKIP,
1010};
c826cb7d 1011
1da177e4 1012/**
db14fc3a
MS
1013 * d_walk - walk the dentry tree
1014 * @parent: start of walk
1015 * @data: data passed to @enter() and @finish()
1016 * @enter: callback when first entering the dentry
1017 * @finish: callback when successfully finished the walk
1da177e4 1018 *
db14fc3a 1019 * The @enter() and @finish() callbacks are called with d_lock held.
1da177e4 1020 */
db14fc3a
MS
1021static void d_walk(struct dentry *parent, void *data,
1022 enum d_walk_ret (*enter)(void *, struct dentry *),
1023 void (*finish)(void *))
1da177e4 1024{
949854d0 1025 struct dentry *this_parent;
1da177e4 1026 struct list_head *next;
48f5ec21 1027 unsigned seq = 0;
db14fc3a
MS
1028 enum d_walk_ret ret;
1029 bool retry = true;
949854d0 1030
58db63d0 1031again:
48f5ec21 1032 read_seqbegin_or_lock(&rename_lock, &seq);
58db63d0 1033 this_parent = parent;
2fd6b7f5 1034 spin_lock(&this_parent->d_lock);
db14fc3a
MS
1035
1036 ret = enter(data, this_parent);
1037 switch (ret) {
1038 case D_WALK_CONTINUE:
1039 break;
1040 case D_WALK_QUIT:
1041 case D_WALK_SKIP:
1042 goto out_unlock;
1043 case D_WALK_NORETRY:
1044 retry = false;
1045 break;
1046 }
1da177e4
LT
1047repeat:
1048 next = this_parent->d_subdirs.next;
1049resume:
1050 while (next != &this_parent->d_subdirs) {
1051 struct list_head *tmp = next;
5160ee6f 1052 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1053 next = tmp->next;
2fd6b7f5
NP
1054
1055 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
db14fc3a
MS
1056
1057 ret = enter(data, dentry);
1058 switch (ret) {
1059 case D_WALK_CONTINUE:
1060 break;
1061 case D_WALK_QUIT:
2fd6b7f5 1062 spin_unlock(&dentry->d_lock);
db14fc3a
MS
1063 goto out_unlock;
1064 case D_WALK_NORETRY:
1065 retry = false;
1066 break;
1067 case D_WALK_SKIP:
1068 spin_unlock(&dentry->d_lock);
1069 continue;
2fd6b7f5 1070 }
db14fc3a 1071
1da177e4 1072 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1073 spin_unlock(&this_parent->d_lock);
1074 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1075 this_parent = dentry;
2fd6b7f5 1076 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1077 goto repeat;
1078 }
2fd6b7f5 1079 spin_unlock(&dentry->d_lock);
1da177e4
LT
1080 }
1081 /*
1082 * All done at this level ... ascend and resume the search.
1083 */
1084 if (this_parent != parent) {
c826cb7d 1085 struct dentry *child = this_parent;
31dec132
AV
1086 this_parent = child->d_parent;
1087
1088 rcu_read_lock();
1089 spin_unlock(&child->d_lock);
1090 spin_lock(&this_parent->d_lock);
1091
1092 /*
1093 * might go back up the wrong parent if we have had a rename
1094 * or deletion
1095 */
1096 if (this_parent != child->d_parent ||
1097 (child->d_flags & DCACHE_DENTRY_KILLED) ||
1098 need_seqretry(&rename_lock, seq)) {
1099 spin_unlock(&this_parent->d_lock);
1100 rcu_read_unlock();
949854d0 1101 goto rename_retry;
31dec132
AV
1102 }
1103 rcu_read_unlock();
949854d0 1104 next = child->d_u.d_child.next;
1da177e4
LT
1105 goto resume;
1106 }
48f5ec21 1107 if (need_seqretry(&rename_lock, seq)) {
db14fc3a 1108 spin_unlock(&this_parent->d_lock);
949854d0 1109 goto rename_retry;
db14fc3a
MS
1110 }
1111 if (finish)
1112 finish(data);
1113
1114out_unlock:
1115 spin_unlock(&this_parent->d_lock);
48f5ec21 1116 done_seqretry(&rename_lock, seq);
db14fc3a 1117 return;
58db63d0
NP
1118
1119rename_retry:
db14fc3a
MS
1120 if (!retry)
1121 return;
48f5ec21 1122 seq = 1;
58db63d0 1123 goto again;
1da177e4 1124}
db14fc3a
MS
1125
1126/*
1127 * Search for at least 1 mount point in the dentry's subdirs.
1128 * We descend to the next level whenever the d_subdirs
1129 * list is non-empty and continue searching.
1130 */
1131
db14fc3a
MS
1132static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1133{
1134 int *ret = data;
1135 if (d_mountpoint(dentry)) {
1136 *ret = 1;
1137 return D_WALK_QUIT;
1138 }
1139 return D_WALK_CONTINUE;
1140}
1141
69c88dc7
RD
1142/**
1143 * have_submounts - check for mounts over a dentry
1144 * @parent: dentry to check.
1145 *
1146 * Return true if the parent or its subdirectories contain
1147 * a mount point
1148 */
db14fc3a
MS
1149int have_submounts(struct dentry *parent)
1150{
1151 int ret = 0;
1152
1153 d_walk(parent, &ret, check_mount, NULL);
1154
1155 return ret;
1156}
ec4f8605 1157EXPORT_SYMBOL(have_submounts);
1da177e4 1158
eed81007
MS
1159/*
1160 * Called by mount code to set a mountpoint and check if the mountpoint is
1161 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1162 * subtree can become unreachable).
1163 *
1164 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For
1165 * this reason take rename_lock and d_lock on dentry and ancestors.
1166 */
1167int d_set_mounted(struct dentry *dentry)
1168{
1169 struct dentry *p;
1170 int ret = -ENOENT;
1171 write_seqlock(&rename_lock);
1172 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1173 /* Need exclusion wrt. check_submounts_and_drop() */
1174 spin_lock(&p->d_lock);
1175 if (unlikely(d_unhashed(p))) {
1176 spin_unlock(&p->d_lock);
1177 goto out;
1178 }
1179 spin_unlock(&p->d_lock);
1180 }
1181 spin_lock(&dentry->d_lock);
1182 if (!d_unlinked(dentry)) {
1183 dentry->d_flags |= DCACHE_MOUNTED;
1184 ret = 0;
1185 }
1186 spin_unlock(&dentry->d_lock);
1187out:
1188 write_sequnlock(&rename_lock);
1189 return ret;
1190}
1191
1da177e4 1192/*
fd517909 1193 * Search the dentry child list of the specified parent,
1da177e4
LT
1194 * and move any unused dentries to the end of the unused
1195 * list for prune_dcache(). We descend to the next level
1196 * whenever the d_subdirs list is non-empty and continue
1197 * searching.
1198 *
1199 * It returns zero iff there are no unused children,
1200 * otherwise it returns the number of children moved to
1201 * the end of the unused list. This may not be the total
1202 * number of unused children, because select_parent can
1203 * drop the lock and return early due to latency
1204 * constraints.
1205 */
1da177e4 1206
db14fc3a
MS
1207struct select_data {
1208 struct dentry *start;
1209 struct list_head dispose;
1210 int found;
1211};
23044507 1212
db14fc3a
MS
1213static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1214{
1215 struct select_data *data = _data;
1216 enum d_walk_ret ret = D_WALK_CONTINUE;
1da177e4 1217
db14fc3a
MS
1218 if (data->start == dentry)
1219 goto out;
2fd6b7f5 1220
1da177e4 1221 /*
db14fc3a
MS
1222 * move only zero ref count dentries to the dispose list.
1223 *
1224 * Those which are presently on the shrink list, being processed
1225 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1226 * loop in shrink_dcache_parent() might not make any progress
1227 * and loop forever.
1da177e4 1228 */
db14fc3a
MS
1229 if (dentry->d_lockref.count) {
1230 dentry_lru_del(dentry);
1231 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
89dc77bc
LT
1232 /*
1233 * We can't use d_lru_shrink_move() because we
1234 * need to get the global LRU lock and do the
05a8252b 1235 * LRU accounting.
89dc77bc
LT
1236 */
1237 d_lru_del(dentry);
1238 d_shrink_add(dentry, &data->dispose);
db14fc3a
MS
1239 data->found++;
1240 ret = D_WALK_NORETRY;
1da177e4 1241 }
db14fc3a
MS
1242 /*
1243 * We can return to the caller if we have found some (this
1244 * ensures forward progress). We'll be coming back to find
1245 * the rest.
1246 */
1247 if (data->found && need_resched())
1248 ret = D_WALK_QUIT;
1da177e4 1249out:
db14fc3a 1250 return ret;
1da177e4
LT
1251}
1252
1253/**
1254 * shrink_dcache_parent - prune dcache
1255 * @parent: parent of entries to prune
1256 *
1257 * Prune the dcache to remove unused children of the parent dentry.
1258 */
db14fc3a 1259void shrink_dcache_parent(struct dentry *parent)
1da177e4 1260{
db14fc3a
MS
1261 for (;;) {
1262 struct select_data data;
1da177e4 1263
db14fc3a
MS
1264 INIT_LIST_HEAD(&data.dispose);
1265 data.start = parent;
1266 data.found = 0;
1267
1268 d_walk(parent, &data, select_collect, NULL);
1269 if (!data.found)
1270 break;
1271
1272 shrink_dentry_list(&data.dispose);
421348f1
GT
1273 cond_resched();
1274 }
1da177e4 1275}
ec4f8605 1276EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1277
42c32608
AV
1278static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1279{
1280 struct select_data *data = _data;
1281 enum d_walk_ret ret = D_WALK_CONTINUE;
1282
1283 if (dentry->d_lockref.count) {
1284 dentry_lru_del(dentry);
1285 if (likely(!list_empty(&dentry->d_subdirs)))
1286 goto out;
1287 if (dentry == data->start && dentry->d_lockref.count == 1)
1288 goto out;
1289 printk(KERN_ERR
1290 "BUG: Dentry %p{i=%lx,n=%s}"
1291 " still in use (%d)"
1292 " [unmount of %s %s]\n",
1293 dentry,
1294 dentry->d_inode ?
1295 dentry->d_inode->i_ino : 0UL,
1296 dentry->d_name.name,
1297 dentry->d_lockref.count,
1298 dentry->d_sb->s_type->name,
1299 dentry->d_sb->s_id);
1300 BUG();
1301 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1302 /*
1303 * We can't use d_lru_shrink_move() because we
1304 * need to get the global LRU lock and do the
1305 * LRU accounting.
1306 */
1307 if (dentry->d_flags & DCACHE_LRU_LIST)
1308 d_lru_del(dentry);
1309 d_shrink_add(dentry, &data->dispose);
1310 data->found++;
1311 ret = D_WALK_NORETRY;
1312 }
1313out:
1314 if (data->found && need_resched())
1315 ret = D_WALK_QUIT;
1316 return ret;
1317}
1318
1319/*
1320 * destroy the dentries attached to a superblock on unmounting
1321 */
1322void shrink_dcache_for_umount(struct super_block *sb)
1323{
1324 struct dentry *dentry;
1325
1326 if (down_read_trylock(&sb->s_umount))
1327 BUG();
1328
1329 dentry = sb->s_root;
1330 sb->s_root = NULL;
1331 for (;;) {
1332 struct select_data data;
1333
1334 INIT_LIST_HEAD(&data.dispose);
1335 data.start = dentry;
1336 data.found = 0;
1337
1338 d_walk(dentry, &data, umount_collect, NULL);
1339 if (!data.found)
1340 break;
1341
1342 shrink_dentry_list(&data.dispose);
1343 cond_resched();
1344 }
1345 d_drop(dentry);
1346 dput(dentry);
1347
1348 while (!hlist_bl_empty(&sb->s_anon)) {
1349 struct select_data data;
1350 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1351
1352 INIT_LIST_HEAD(&data.dispose);
1353 data.start = NULL;
1354 data.found = 0;
1355
1356 d_walk(dentry, &data, umount_collect, NULL);
1357 if (data.found)
1358 shrink_dentry_list(&data.dispose);
1359 cond_resched();
1360 }
1361}
1362
848ac114
MS
1363static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1364{
1365 struct select_data *data = _data;
1366
1367 if (d_mountpoint(dentry)) {
1368 data->found = -EBUSY;
1369 return D_WALK_QUIT;
1370 }
1371
1372 return select_collect(_data, dentry);
1373}
1374
1375static void check_and_drop(void *_data)
1376{
1377 struct select_data *data = _data;
1378
1379 if (d_mountpoint(data->start))
1380 data->found = -EBUSY;
1381 if (!data->found)
1382 __d_drop(data->start);
1383}
1384
1385/**
1386 * check_submounts_and_drop - prune dcache, check for submounts and drop
1387 *
1388 * All done as a single atomic operation relative to has_unlinked_ancestor().
1389 * Returns 0 if successfully unhashed @parent. If there were submounts then
1390 * return -EBUSY.
1391 *
1392 * @dentry: dentry to prune and drop
1393 */
1394int check_submounts_and_drop(struct dentry *dentry)
1395{
1396 int ret = 0;
1397
1398 /* Negative dentries can be dropped without further checks */
1399 if (!dentry->d_inode) {
1400 d_drop(dentry);
1401 goto out;
1402 }
1403
1404 for (;;) {
1405 struct select_data data;
1406
1407 INIT_LIST_HEAD(&data.dispose);
1408 data.start = dentry;
1409 data.found = 0;
1410
1411 d_walk(dentry, &data, check_and_collect, check_and_drop);
1412 ret = data.found;
1413
1414 if (!list_empty(&data.dispose))
1415 shrink_dentry_list(&data.dispose);
1416
1417 if (ret <= 0)
1418 break;
1419
1420 cond_resched();
1421 }
1422
1423out:
1424 return ret;
1425}
1426EXPORT_SYMBOL(check_submounts_and_drop);
1427
1da177e4 1428/**
a4464dbc
AV
1429 * __d_alloc - allocate a dcache entry
1430 * @sb: filesystem it will belong to
1da177e4
LT
1431 * @name: qstr of the name
1432 *
1433 * Allocates a dentry. It returns %NULL if there is insufficient memory
1434 * available. On a success the dentry is returned. The name passed in is
1435 * copied and the copy passed in may be reused after this call.
1436 */
1437
a4464dbc 1438struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1439{
1440 struct dentry *dentry;
1441 char *dname;
1442
e12ba74d 1443 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1444 if (!dentry)
1445 return NULL;
1446
6326c71f
LT
1447 /*
1448 * We guarantee that the inline name is always NUL-terminated.
1449 * This way the memcpy() done by the name switching in rename
1450 * will still always have a NUL at the end, even if we might
1451 * be overwriting an internal NUL character
1452 */
1453 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1454 if (name->len > DNAME_INLINE_LEN-1) {
1455 dname = kmalloc(name->len + 1, GFP_KERNEL);
1456 if (!dname) {
1457 kmem_cache_free(dentry_cache, dentry);
1458 return NULL;
1459 }
1460 } else {
1461 dname = dentry->d_iname;
1462 }
1da177e4
LT
1463
1464 dentry->d_name.len = name->len;
1465 dentry->d_name.hash = name->hash;
1466 memcpy(dname, name->name, name->len);
1467 dname[name->len] = 0;
1468
6326c71f
LT
1469 /* Make sure we always see the terminating NUL character */
1470 smp_wmb();
1471 dentry->d_name.name = dname;
1472
98474236 1473 dentry->d_lockref.count = 1;
dea3667b 1474 dentry->d_flags = 0;
1da177e4 1475 spin_lock_init(&dentry->d_lock);
31e6b01f 1476 seqcount_init(&dentry->d_seq);
1da177e4 1477 dentry->d_inode = NULL;
a4464dbc
AV
1478 dentry->d_parent = dentry;
1479 dentry->d_sb = sb;
1da177e4
LT
1480 dentry->d_op = NULL;
1481 dentry->d_fsdata = NULL;
ceb5bdc2 1482 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1483 INIT_LIST_HEAD(&dentry->d_lru);
1484 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1485 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1486 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1487 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1488
3e880fb5 1489 this_cpu_inc(nr_dentry);
312d3ca8 1490
1da177e4
LT
1491 return dentry;
1492}
a4464dbc
AV
1493
1494/**
1495 * d_alloc - allocate a dcache entry
1496 * @parent: parent of entry to allocate
1497 * @name: qstr of the name
1498 *
1499 * Allocates a dentry. It returns %NULL if there is insufficient memory
1500 * available. On a success the dentry is returned. The name passed in is
1501 * copied and the copy passed in may be reused after this call.
1502 */
1503struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1504{
1505 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1506 if (!dentry)
1507 return NULL;
1508
1509 spin_lock(&parent->d_lock);
1510 /*
1511 * don't need child lock because it is not subject
1512 * to concurrency here
1513 */
1514 __dget_dlock(parent);
1515 dentry->d_parent = parent;
1516 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1517 spin_unlock(&parent->d_lock);
1518
1519 return dentry;
1520}
ec4f8605 1521EXPORT_SYMBOL(d_alloc);
1da177e4 1522
e1a24bb0
BF
1523/**
1524 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1525 * @sb: the superblock
1526 * @name: qstr of the name
1527 *
1528 * For a filesystem that just pins its dentries in memory and never
1529 * performs lookups at all, return an unhashed IS_ROOT dentry.
1530 */
4b936885
NP
1531struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1532{
e1a24bb0 1533 return __d_alloc(sb, name);
4b936885
NP
1534}
1535EXPORT_SYMBOL(d_alloc_pseudo);
1536
1da177e4
LT
1537struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1538{
1539 struct qstr q;
1540
1541 q.name = name;
1542 q.len = strlen(name);
1543 q.hash = full_name_hash(q.name, q.len);
1544 return d_alloc(parent, &q);
1545}
ef26ca97 1546EXPORT_SYMBOL(d_alloc_name);
1da177e4 1547
fb045adb
NP
1548void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1549{
6f7f7caa
LT
1550 WARN_ON_ONCE(dentry->d_op);
1551 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1552 DCACHE_OP_COMPARE |
1553 DCACHE_OP_REVALIDATE |
ecf3d1f1 1554 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1555 DCACHE_OP_DELETE ));
1556 dentry->d_op = op;
1557 if (!op)
1558 return;
1559 if (op->d_hash)
1560 dentry->d_flags |= DCACHE_OP_HASH;
1561 if (op->d_compare)
1562 dentry->d_flags |= DCACHE_OP_COMPARE;
1563 if (op->d_revalidate)
1564 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1565 if (op->d_weak_revalidate)
1566 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1567 if (op->d_delete)
1568 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1569 if (op->d_prune)
1570 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1571
1572}
1573EXPORT_SYMBOL(d_set_d_op);
1574
b18825a7
DH
1575static unsigned d_flags_for_inode(struct inode *inode)
1576{
1577 unsigned add_flags = DCACHE_FILE_TYPE;
1578
1579 if (!inode)
1580 return DCACHE_MISS_TYPE;
1581
1582 if (S_ISDIR(inode->i_mode)) {
1583 add_flags = DCACHE_DIRECTORY_TYPE;
1584 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1585 if (unlikely(!inode->i_op->lookup))
1586 add_flags = DCACHE_AUTODIR_TYPE;
1587 else
1588 inode->i_opflags |= IOP_LOOKUP;
1589 }
1590 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1591 if (unlikely(inode->i_op->follow_link))
1592 add_flags = DCACHE_SYMLINK_TYPE;
1593 else
1594 inode->i_opflags |= IOP_NOFOLLOW;
1595 }
1596
1597 if (unlikely(IS_AUTOMOUNT(inode)))
1598 add_flags |= DCACHE_NEED_AUTOMOUNT;
1599 return add_flags;
1600}
1601
360da900
OH
1602static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1603{
b18825a7
DH
1604 unsigned add_flags = d_flags_for_inode(inode);
1605
b23fb0a6 1606 spin_lock(&dentry->d_lock);
22213318 1607 __d_set_type(dentry, add_flags);
b18825a7 1608 if (inode)
b3d9b7a3 1609 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
360da900 1610 dentry->d_inode = inode;
31e6b01f 1611 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1612 spin_unlock(&dentry->d_lock);
360da900
OH
1613 fsnotify_d_instantiate(dentry, inode);
1614}
1615
1da177e4
LT
1616/**
1617 * d_instantiate - fill in inode information for a dentry
1618 * @entry: dentry to complete
1619 * @inode: inode to attach to this dentry
1620 *
1621 * Fill in inode information in the entry.
1622 *
1623 * This turns negative dentries into productive full members
1624 * of society.
1625 *
1626 * NOTE! This assumes that the inode count has been incremented
1627 * (or otherwise set) by the caller to indicate that it is now
1628 * in use by the dcache.
1629 */
1630
1631void d_instantiate(struct dentry *entry, struct inode * inode)
1632{
b3d9b7a3 1633 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1634 if (inode)
1635 spin_lock(&inode->i_lock);
360da900 1636 __d_instantiate(entry, inode);
873feea0
NP
1637 if (inode)
1638 spin_unlock(&inode->i_lock);
1da177e4
LT
1639 security_d_instantiate(entry, inode);
1640}
ec4f8605 1641EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1642
1643/**
1644 * d_instantiate_unique - instantiate a non-aliased dentry
1645 * @entry: dentry to instantiate
1646 * @inode: inode to attach to this dentry
1647 *
1648 * Fill in inode information in the entry. On success, it returns NULL.
1649 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1650 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1651 *
1652 * Note that in order to avoid conflicts with rename() etc, the caller
1653 * had better be holding the parent directory semaphore.
e866cfa9
OD
1654 *
1655 * This also assumes that the inode count has been incremented
1656 * (or otherwise set) by the caller to indicate that it is now
1657 * in use by the dcache.
1da177e4 1658 */
770bfad8
DH
1659static struct dentry *__d_instantiate_unique(struct dentry *entry,
1660 struct inode *inode)
1da177e4
LT
1661{
1662 struct dentry *alias;
1663 int len = entry->d_name.len;
1664 const char *name = entry->d_name.name;
1665 unsigned int hash = entry->d_name.hash;
1666
770bfad8 1667 if (!inode) {
360da900 1668 __d_instantiate(entry, NULL);
770bfad8
DH
1669 return NULL;
1670 }
1671
b67bfe0d 1672 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1673 /*
1674 * Don't need alias->d_lock here, because aliases with
1675 * d_parent == entry->d_parent are not subject to name or
1676 * parent changes, because the parent inode i_mutex is held.
1677 */
12f8ad4b 1678 if (alias->d_name.hash != hash)
1da177e4
LT
1679 continue;
1680 if (alias->d_parent != entry->d_parent)
1681 continue;
ee983e89
LT
1682 if (alias->d_name.len != len)
1683 continue;
12f8ad4b 1684 if (dentry_cmp(alias, name, len))
1da177e4 1685 continue;
dc0474be 1686 __dget(alias);
1da177e4
LT
1687 return alias;
1688 }
770bfad8 1689
360da900 1690 __d_instantiate(entry, inode);
1da177e4
LT
1691 return NULL;
1692}
770bfad8
DH
1693
1694struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1695{
1696 struct dentry *result;
1697
b3d9b7a3 1698 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1699
873feea0
NP
1700 if (inode)
1701 spin_lock(&inode->i_lock);
770bfad8 1702 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1703 if (inode)
1704 spin_unlock(&inode->i_lock);
770bfad8
DH
1705
1706 if (!result) {
1707 security_d_instantiate(entry, inode);
1708 return NULL;
1709 }
1710
1711 BUG_ON(!d_unhashed(result));
1712 iput(inode);
1713 return result;
1714}
1715
1da177e4
LT
1716EXPORT_SYMBOL(d_instantiate_unique);
1717
b70a80e7
MS
1718/**
1719 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1720 * @entry: dentry to complete
1721 * @inode: inode to attach to this dentry
1722 *
1723 * Fill in inode information in the entry. If a directory alias is found, then
1724 * return an error (and drop inode). Together with d_materialise_unique() this
1725 * guarantees that a directory inode may never have more than one alias.
1726 */
1727int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1728{
1729 BUG_ON(!hlist_unhashed(&entry->d_alias));
1730
1731 spin_lock(&inode->i_lock);
1732 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1733 spin_unlock(&inode->i_lock);
1734 iput(inode);
1735 return -EBUSY;
1736 }
1737 __d_instantiate(entry, inode);
1738 spin_unlock(&inode->i_lock);
1739 security_d_instantiate(entry, inode);
1740
1741 return 0;
1742}
1743EXPORT_SYMBOL(d_instantiate_no_diralias);
1744
adc0e91a
AV
1745struct dentry *d_make_root(struct inode *root_inode)
1746{
1747 struct dentry *res = NULL;
1748
1749 if (root_inode) {
26fe5750 1750 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1751
1752 res = __d_alloc(root_inode->i_sb, &name);
1753 if (res)
1754 d_instantiate(res, root_inode);
1755 else
1756 iput(root_inode);
1757 }
1758 return res;
1759}
1760EXPORT_SYMBOL(d_make_root);
1761
d891eedb
BF
1762static struct dentry * __d_find_any_alias(struct inode *inode)
1763{
1764 struct dentry *alias;
1765
b3d9b7a3 1766 if (hlist_empty(&inode->i_dentry))
d891eedb 1767 return NULL;
b3d9b7a3 1768 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1769 __dget(alias);
1770 return alias;
1771}
1772
46f72b34
SW
1773/**
1774 * d_find_any_alias - find any alias for a given inode
1775 * @inode: inode to find an alias for
1776 *
1777 * If any aliases exist for the given inode, take and return a
1778 * reference for one of them. If no aliases exist, return %NULL.
1779 */
1780struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1781{
1782 struct dentry *de;
1783
1784 spin_lock(&inode->i_lock);
1785 de = __d_find_any_alias(inode);
1786 spin_unlock(&inode->i_lock);
1787 return de;
1788}
46f72b34 1789EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1790
4ea3ada2
CH
1791/**
1792 * d_obtain_alias - find or allocate a dentry for a given inode
1793 * @inode: inode to allocate the dentry for
1794 *
1795 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1796 * similar open by handle operations. The returned dentry may be anonymous,
1797 * or may have a full name (if the inode was already in the cache).
1798 *
1799 * When called on a directory inode, we must ensure that the inode only ever
1800 * has one dentry. If a dentry is found, that is returned instead of
1801 * allocating a new one.
1802 *
1803 * On successful return, the reference to the inode has been transferred
44003728
CH
1804 * to the dentry. In case of an error the reference on the inode is released.
1805 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1806 * be passed in and will be the error will be propagate to the return value,
1807 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1808 */
1809struct dentry *d_obtain_alias(struct inode *inode)
1810{
b911a6bd 1811 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1812 struct dentry *tmp;
1813 struct dentry *res;
b18825a7 1814 unsigned add_flags;
4ea3ada2
CH
1815
1816 if (!inode)
44003728 1817 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1818 if (IS_ERR(inode))
1819 return ERR_CAST(inode);
1820
d891eedb 1821 res = d_find_any_alias(inode);
9308a612
CH
1822 if (res)
1823 goto out_iput;
1824
a4464dbc 1825 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1826 if (!tmp) {
1827 res = ERR_PTR(-ENOMEM);
1828 goto out_iput;
4ea3ada2 1829 }
b5c84bf6 1830
873feea0 1831 spin_lock(&inode->i_lock);
d891eedb 1832 res = __d_find_any_alias(inode);
9308a612 1833 if (res) {
873feea0 1834 spin_unlock(&inode->i_lock);
9308a612
CH
1835 dput(tmp);
1836 goto out_iput;
1837 }
1838
1839 /* attach a disconnected dentry */
b18825a7
DH
1840 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1841
9308a612 1842 spin_lock(&tmp->d_lock);
9308a612 1843 tmp->d_inode = inode;
b18825a7 1844 tmp->d_flags |= add_flags;
b3d9b7a3 1845 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1846 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1847 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1848 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1849 spin_unlock(&tmp->d_lock);
873feea0 1850 spin_unlock(&inode->i_lock);
24ff6663 1851 security_d_instantiate(tmp, inode);
9308a612 1852
9308a612
CH
1853 return tmp;
1854
1855 out_iput:
24ff6663
JB
1856 if (res && !IS_ERR(res))
1857 security_d_instantiate(res, inode);
9308a612
CH
1858 iput(inode);
1859 return res;
4ea3ada2 1860}
adc48720 1861EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1862
1863/**
1864 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1865 * @inode: the inode which may have a disconnected dentry
1866 * @dentry: a negative dentry which we want to point to the inode.
1867 *
1868 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1869 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1870 * and return it, else simply d_add the inode to the dentry and return NULL.
1871 *
1872 * This is needed in the lookup routine of any filesystem that is exportable
1873 * (via knfsd) so that we can build dcache paths to directories effectively.
1874 *
1875 * If a dentry was found and moved, then it is returned. Otherwise NULL
1876 * is returned. This matches the expected return value of ->lookup.
1877 *
6d4ade98
SW
1878 * Cluster filesystems may call this function with a negative, hashed dentry.
1879 * In that case, we know that the inode will be a regular file, and also this
1880 * will only occur during atomic_open. So we need to check for the dentry
1881 * being already hashed only in the final case.
1da177e4
LT
1882 */
1883struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1884{
1885 struct dentry *new = NULL;
1886
a9049376
AV
1887 if (IS_ERR(inode))
1888 return ERR_CAST(inode);
1889
21c0d8fd 1890 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1891 spin_lock(&inode->i_lock);
32ba9c3f 1892 new = __d_find_alias(inode, 1);
1da177e4 1893 if (new) {
32ba9c3f 1894 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1895 spin_unlock(&inode->i_lock);
1da177e4 1896 security_d_instantiate(new, inode);
1da177e4
LT
1897 d_move(new, dentry);
1898 iput(inode);
1899 } else {
873feea0 1900 /* already taking inode->i_lock, so d_add() by hand */
360da900 1901 __d_instantiate(dentry, inode);
873feea0 1902 spin_unlock(&inode->i_lock);
1da177e4
LT
1903 security_d_instantiate(dentry, inode);
1904 d_rehash(dentry);
1905 }
6d4ade98
SW
1906 } else {
1907 d_instantiate(dentry, inode);
1908 if (d_unhashed(dentry))
1909 d_rehash(dentry);
1910 }
1da177e4
LT
1911 return new;
1912}
ec4f8605 1913EXPORT_SYMBOL(d_splice_alias);
1da177e4 1914
9403540c
BN
1915/**
1916 * d_add_ci - lookup or allocate new dentry with case-exact name
1917 * @inode: the inode case-insensitive lookup has found
1918 * @dentry: the negative dentry that was passed to the parent's lookup func
1919 * @name: the case-exact name to be associated with the returned dentry
1920 *
1921 * This is to avoid filling the dcache with case-insensitive names to the
1922 * same inode, only the actual correct case is stored in the dcache for
1923 * case-insensitive filesystems.
1924 *
1925 * For a case-insensitive lookup match and if the the case-exact dentry
1926 * already exists in in the dcache, use it and return it.
1927 *
1928 * If no entry exists with the exact case name, allocate new dentry with
1929 * the exact case, and return the spliced entry.
1930 */
e45b590b 1931struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1932 struct qstr *name)
1933{
9403540c
BN
1934 struct dentry *found;
1935 struct dentry *new;
1936
b6520c81
CH
1937 /*
1938 * First check if a dentry matching the name already exists,
1939 * if not go ahead and create it now.
1940 */
9403540c 1941 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1942 if (unlikely(IS_ERR(found)))
1943 goto err_out;
9403540c
BN
1944 if (!found) {
1945 new = d_alloc(dentry->d_parent, name);
1946 if (!new) {
4f522a24 1947 found = ERR_PTR(-ENOMEM);
9403540c
BN
1948 goto err_out;
1949 }
b6520c81 1950
9403540c
BN
1951 found = d_splice_alias(inode, new);
1952 if (found) {
1953 dput(new);
1954 return found;
1955 }
1956 return new;
1957 }
b6520c81
CH
1958
1959 /*
1960 * If a matching dentry exists, and it's not negative use it.
1961 *
1962 * Decrement the reference count to balance the iget() done
1963 * earlier on.
1964 */
9403540c
BN
1965 if (found->d_inode) {
1966 if (unlikely(found->d_inode != inode)) {
1967 /* This can't happen because bad inodes are unhashed. */
1968 BUG_ON(!is_bad_inode(inode));
1969 BUG_ON(!is_bad_inode(found->d_inode));
1970 }
9403540c
BN
1971 iput(inode);
1972 return found;
1973 }
b6520c81 1974
9403540c 1975 /*
9403540c 1976 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1977 * already has a dentry.
9403540c 1978 */
4513d899
AV
1979 new = d_splice_alias(inode, found);
1980 if (new) {
1981 dput(found);
1982 found = new;
9403540c 1983 }
4513d899 1984 return found;
9403540c
BN
1985
1986err_out:
1987 iput(inode);
4f522a24 1988 return found;
9403540c 1989}
ec4f8605 1990EXPORT_SYMBOL(d_add_ci);
1da177e4 1991
12f8ad4b
LT
1992/*
1993 * Do the slow-case of the dentry name compare.
1994 *
1995 * Unlike the dentry_cmp() function, we need to atomically
da53be12 1996 * load the name and length information, so that the
12f8ad4b
LT
1997 * filesystem can rely on them, and can use the 'name' and
1998 * 'len' information without worrying about walking off the
1999 * end of memory etc.
2000 *
2001 * Thus the read_seqcount_retry() and the "duplicate" info
2002 * in arguments (the low-level filesystem should not look
2003 * at the dentry inode or name contents directly, since
2004 * rename can change them while we're in RCU mode).
2005 */
2006enum slow_d_compare {
2007 D_COMP_OK,
2008 D_COMP_NOMATCH,
2009 D_COMP_SEQRETRY,
2010};
2011
2012static noinline enum slow_d_compare slow_dentry_cmp(
2013 const struct dentry *parent,
12f8ad4b
LT
2014 struct dentry *dentry,
2015 unsigned int seq,
2016 const struct qstr *name)
2017{
2018 int tlen = dentry->d_name.len;
2019 const char *tname = dentry->d_name.name;
12f8ad4b
LT
2020
2021 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2022 cpu_relax();
2023 return D_COMP_SEQRETRY;
2024 }
da53be12 2025 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
12f8ad4b
LT
2026 return D_COMP_NOMATCH;
2027 return D_COMP_OK;
2028}
2029
31e6b01f
NP
2030/**
2031 * __d_lookup_rcu - search for a dentry (racy, store-free)
2032 * @parent: parent dentry
2033 * @name: qstr of name we wish to find
1f1e6e52 2034 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
2035 * Returns: dentry, or NULL
2036 *
2037 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2038 * resolution (store-free path walking) design described in
2039 * Documentation/filesystems/path-lookup.txt.
2040 *
2041 * This is not to be used outside core vfs.
2042 *
2043 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2044 * held, and rcu_read_lock held. The returned dentry must not be stored into
2045 * without taking d_lock and checking d_seq sequence count against @seq
2046 * returned here.
2047 *
15570086 2048 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
31e6b01f
NP
2049 * function.
2050 *
2051 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2052 * the returned dentry, so long as its parent's seqlock is checked after the
2053 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2054 * is formed, giving integrity down the path walk.
12f8ad4b
LT
2055 *
2056 * NOTE! The caller *has* to check the resulting dentry against the sequence
2057 * number we've returned before using any of the resulting dentry state!
31e6b01f 2058 */
8966be90
LT
2059struct dentry *__d_lookup_rcu(const struct dentry *parent,
2060 const struct qstr *name,
da53be12 2061 unsigned *seqp)
31e6b01f 2062{
26fe5750 2063 u64 hashlen = name->hash_len;
31e6b01f 2064 const unsigned char *str = name->name;
26fe5750 2065 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 2066 struct hlist_bl_node *node;
31e6b01f
NP
2067 struct dentry *dentry;
2068
2069 /*
2070 * Note: There is significant duplication with __d_lookup_rcu which is
2071 * required to prevent single threaded performance regressions
2072 * especially on architectures where smp_rmb (in seqcounts) are costly.
2073 * Keep the two functions in sync.
2074 */
2075
2076 /*
2077 * The hash list is protected using RCU.
2078 *
2079 * Carefully use d_seq when comparing a candidate dentry, to avoid
2080 * races with d_move().
2081 *
2082 * It is possible that concurrent renames can mess up our list
2083 * walk here and result in missing our dentry, resulting in the
2084 * false-negative result. d_lookup() protects against concurrent
2085 * renames using rename_lock seqlock.
2086 *
b0a4bb83 2087 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 2088 */
b07ad996 2089 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 2090 unsigned seq;
31e6b01f 2091
31e6b01f 2092seqretry:
12f8ad4b
LT
2093 /*
2094 * The dentry sequence count protects us from concurrent
da53be12 2095 * renames, and thus protects parent and name fields.
12f8ad4b
LT
2096 *
2097 * The caller must perform a seqcount check in order
da53be12 2098 * to do anything useful with the returned dentry.
12f8ad4b
LT
2099 *
2100 * NOTE! We do a "raw" seqcount_begin here. That means that
2101 * we don't wait for the sequence count to stabilize if it
2102 * is in the middle of a sequence change. If we do the slow
2103 * dentry compare, we will do seqretries until it is stable,
2104 * and if we end up with a successful lookup, we actually
2105 * want to exit RCU lookup anyway.
2106 */
2107 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
2108 if (dentry->d_parent != parent)
2109 continue;
2e321806
LT
2110 if (d_unhashed(dentry))
2111 continue;
12f8ad4b 2112
830c0f0e 2113 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
2114 if (dentry->d_name.hash != hashlen_hash(hashlen))
2115 continue;
da53be12
LT
2116 *seqp = seq;
2117 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
12f8ad4b
LT
2118 case D_COMP_OK:
2119 return dentry;
2120 case D_COMP_NOMATCH:
31e6b01f 2121 continue;
12f8ad4b
LT
2122 default:
2123 goto seqretry;
2124 }
31e6b01f 2125 }
12f8ad4b 2126
26fe5750 2127 if (dentry->d_name.hash_len != hashlen)
ee983e89 2128 continue;
da53be12 2129 *seqp = seq;
26fe5750 2130 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 2131 return dentry;
31e6b01f
NP
2132 }
2133 return NULL;
2134}
2135
1da177e4
LT
2136/**
2137 * d_lookup - search for a dentry
2138 * @parent: parent dentry
2139 * @name: qstr of name we wish to find
b04f784e 2140 * Returns: dentry, or NULL
1da177e4 2141 *
b04f784e
NP
2142 * d_lookup searches the children of the parent dentry for the name in
2143 * question. If the dentry is found its reference count is incremented and the
2144 * dentry is returned. The caller must use dput to free the entry when it has
2145 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 2146 */
da2d8455 2147struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 2148{
31e6b01f 2149 struct dentry *dentry;
949854d0 2150 unsigned seq;
1da177e4
LT
2151
2152 do {
2153 seq = read_seqbegin(&rename_lock);
2154 dentry = __d_lookup(parent, name);
2155 if (dentry)
2156 break;
2157 } while (read_seqretry(&rename_lock, seq));
2158 return dentry;
2159}
ec4f8605 2160EXPORT_SYMBOL(d_lookup);
1da177e4 2161
31e6b01f 2162/**
b04f784e
NP
2163 * __d_lookup - search for a dentry (racy)
2164 * @parent: parent dentry
2165 * @name: qstr of name we wish to find
2166 * Returns: dentry, or NULL
2167 *
2168 * __d_lookup is like d_lookup, however it may (rarely) return a
2169 * false-negative result due to unrelated rename activity.
2170 *
2171 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2172 * however it must be used carefully, eg. with a following d_lookup in
2173 * the case of failure.
2174 *
2175 * __d_lookup callers must be commented.
2176 */
a713ca2a 2177struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
2178{
2179 unsigned int len = name->len;
2180 unsigned int hash = name->hash;
2181 const unsigned char *str = name->name;
b07ad996 2182 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 2183 struct hlist_bl_node *node;
31e6b01f 2184 struct dentry *found = NULL;
665a7583 2185 struct dentry *dentry;
1da177e4 2186
31e6b01f
NP
2187 /*
2188 * Note: There is significant duplication with __d_lookup_rcu which is
2189 * required to prevent single threaded performance regressions
2190 * especially on architectures where smp_rmb (in seqcounts) are costly.
2191 * Keep the two functions in sync.
2192 */
2193
b04f784e
NP
2194 /*
2195 * The hash list is protected using RCU.
2196 *
2197 * Take d_lock when comparing a candidate dentry, to avoid races
2198 * with d_move().
2199 *
2200 * It is possible that concurrent renames can mess up our list
2201 * walk here and result in missing our dentry, resulting in the
2202 * false-negative result. d_lookup() protects against concurrent
2203 * renames using rename_lock seqlock.
2204 *
b0a4bb83 2205 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 2206 */
1da177e4
LT
2207 rcu_read_lock();
2208
b07ad996 2209 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 2210
1da177e4
LT
2211 if (dentry->d_name.hash != hash)
2212 continue;
1da177e4
LT
2213
2214 spin_lock(&dentry->d_lock);
1da177e4
LT
2215 if (dentry->d_parent != parent)
2216 goto next;
d0185c08
LT
2217 if (d_unhashed(dentry))
2218 goto next;
2219
1da177e4
LT
2220 /*
2221 * It is safe to compare names since d_move() cannot
2222 * change the qstr (protected by d_lock).
2223 */
fb045adb 2224 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
2225 int tlen = dentry->d_name.len;
2226 const char *tname = dentry->d_name.name;
da53be12 2227 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
1da177e4
LT
2228 goto next;
2229 } else {
ee983e89
LT
2230 if (dentry->d_name.len != len)
2231 goto next;
12f8ad4b 2232 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2233 goto next;
2234 }
2235
98474236 2236 dentry->d_lockref.count++;
d0185c08 2237 found = dentry;
1da177e4
LT
2238 spin_unlock(&dentry->d_lock);
2239 break;
2240next:
2241 spin_unlock(&dentry->d_lock);
2242 }
2243 rcu_read_unlock();
2244
2245 return found;
2246}
2247
3e7e241f
EB
2248/**
2249 * d_hash_and_lookup - hash the qstr then search for a dentry
2250 * @dir: Directory to search in
2251 * @name: qstr of name we wish to find
2252 *
4f522a24 2253 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
2254 */
2255struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2256{
3e7e241f
EB
2257 /*
2258 * Check for a fs-specific hash function. Note that we must
2259 * calculate the standard hash first, as the d_op->d_hash()
2260 * routine may choose to leave the hash value unchanged.
2261 */
2262 name->hash = full_name_hash(name->name, name->len);
fb045adb 2263 if (dir->d_flags & DCACHE_OP_HASH) {
da53be12 2264 int err = dir->d_op->d_hash(dir, name);
4f522a24
AV
2265 if (unlikely(err < 0))
2266 return ERR_PTR(err);
3e7e241f 2267 }
4f522a24 2268 return d_lookup(dir, name);
3e7e241f 2269}
4f522a24 2270EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2271
1da177e4 2272/**
786a5e15 2273 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2274 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2275 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2276 *
2277 * An insecure source has sent us a dentry, here we verify it and dget() it.
2278 * This is used by ncpfs in its readdir implementation.
2279 * Zero is returned in the dentry is invalid.
786a5e15
NP
2280 *
2281 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2282 */
d3a23e16 2283int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2284{
786a5e15 2285 struct dentry *child;
d3a23e16 2286
2fd6b7f5 2287 spin_lock(&dparent->d_lock);
786a5e15
NP
2288 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2289 if (dentry == child) {
2fd6b7f5 2290 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2291 __dget_dlock(dentry);
2fd6b7f5
NP
2292 spin_unlock(&dentry->d_lock);
2293 spin_unlock(&dparent->d_lock);
1da177e4
LT
2294 return 1;
2295 }
2296 }
2fd6b7f5 2297 spin_unlock(&dparent->d_lock);
786a5e15 2298
1da177e4
LT
2299 return 0;
2300}
ec4f8605 2301EXPORT_SYMBOL(d_validate);
1da177e4
LT
2302
2303/*
2304 * When a file is deleted, we have two options:
2305 * - turn this dentry into a negative dentry
2306 * - unhash this dentry and free it.
2307 *
2308 * Usually, we want to just turn this into
2309 * a negative dentry, but if anybody else is
2310 * currently using the dentry or the inode
2311 * we can't do that and we fall back on removing
2312 * it from the hash queues and waiting for
2313 * it to be deleted later when it has no users
2314 */
2315
2316/**
2317 * d_delete - delete a dentry
2318 * @dentry: The dentry to delete
2319 *
2320 * Turn the dentry into a negative dentry if possible, otherwise
2321 * remove it from the hash queues so it can be deleted later
2322 */
2323
2324void d_delete(struct dentry * dentry)
2325{
873feea0 2326 struct inode *inode;
7a91bf7f 2327 int isdir = 0;
1da177e4
LT
2328 /*
2329 * Are we the only user?
2330 */
357f8e65 2331again:
1da177e4 2332 spin_lock(&dentry->d_lock);
873feea0
NP
2333 inode = dentry->d_inode;
2334 isdir = S_ISDIR(inode->i_mode);
98474236 2335 if (dentry->d_lockref.count == 1) {
1fe0c023 2336 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2337 spin_unlock(&dentry->d_lock);
2338 cpu_relax();
2339 goto again;
2340 }
13e3c5e5 2341 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2342 dentry_unlink_inode(dentry);
7a91bf7f 2343 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2344 return;
2345 }
2346
2347 if (!d_unhashed(dentry))
2348 __d_drop(dentry);
2349
2350 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2351
2352 fsnotify_nameremove(dentry, isdir);
1da177e4 2353}
ec4f8605 2354EXPORT_SYMBOL(d_delete);
1da177e4 2355
b07ad996 2356static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2357{
ceb5bdc2 2358 BUG_ON(!d_unhashed(entry));
1879fd6a 2359 hlist_bl_lock(b);
dea3667b 2360 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2361 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2362 hlist_bl_unlock(b);
1da177e4
LT
2363}
2364
770bfad8
DH
2365static void _d_rehash(struct dentry * entry)
2366{
2367 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2368}
2369
1da177e4
LT
2370/**
2371 * d_rehash - add an entry back to the hash
2372 * @entry: dentry to add to the hash
2373 *
2374 * Adds a dentry to the hash according to its name.
2375 */
2376
2377void d_rehash(struct dentry * entry)
2378{
1da177e4 2379 spin_lock(&entry->d_lock);
770bfad8 2380 _d_rehash(entry);
1da177e4 2381 spin_unlock(&entry->d_lock);
1da177e4 2382}
ec4f8605 2383EXPORT_SYMBOL(d_rehash);
1da177e4 2384
fb2d5b86
NP
2385/**
2386 * dentry_update_name_case - update case insensitive dentry with a new name
2387 * @dentry: dentry to be updated
2388 * @name: new name
2389 *
2390 * Update a case insensitive dentry with new case of name.
2391 *
2392 * dentry must have been returned by d_lookup with name @name. Old and new
2393 * name lengths must match (ie. no d_compare which allows mismatched name
2394 * lengths).
2395 *
2396 * Parent inode i_mutex must be held over d_lookup and into this call (to
2397 * keep renames and concurrent inserts, and readdir(2) away).
2398 */
2399void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2400{
7ebfa57f 2401 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2402 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2403
fb2d5b86 2404 spin_lock(&dentry->d_lock);
31e6b01f 2405 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2406 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2407 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2408 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2409}
2410EXPORT_SYMBOL(dentry_update_name_case);
2411
1da177e4
LT
2412static void switch_names(struct dentry *dentry, struct dentry *target)
2413{
2414 if (dname_external(target)) {
2415 if (dname_external(dentry)) {
2416 /*
2417 * Both external: swap the pointers
2418 */
9a8d5bb4 2419 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2420 } else {
2421 /*
2422 * dentry:internal, target:external. Steal target's
2423 * storage and make target internal.
2424 */
321bcf92
BF
2425 memcpy(target->d_iname, dentry->d_name.name,
2426 dentry->d_name.len + 1);
1da177e4
LT
2427 dentry->d_name.name = target->d_name.name;
2428 target->d_name.name = target->d_iname;
2429 }
2430 } else {
2431 if (dname_external(dentry)) {
2432 /*
2433 * dentry:external, target:internal. Give dentry's
2434 * storage to target and make dentry internal
2435 */
2436 memcpy(dentry->d_iname, target->d_name.name,
2437 target->d_name.len + 1);
2438 target->d_name.name = dentry->d_name.name;
2439 dentry->d_name.name = dentry->d_iname;
2440 } else {
2441 /*
da1ce067 2442 * Both are internal.
1da177e4 2443 */
da1ce067
MS
2444 unsigned int i;
2445 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2446 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2447 swap(((long *) &dentry->d_iname)[i],
2448 ((long *) &target->d_iname)[i]);
2449 }
1da177e4
LT
2450 }
2451 }
9a8d5bb4 2452 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2453}
2454
2fd6b7f5
NP
2455static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2456{
2457 /*
2458 * XXXX: do we really need to take target->d_lock?
2459 */
2460 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2461 spin_lock(&target->d_parent->d_lock);
2462 else {
2463 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2464 spin_lock(&dentry->d_parent->d_lock);
2465 spin_lock_nested(&target->d_parent->d_lock,
2466 DENTRY_D_LOCK_NESTED);
2467 } else {
2468 spin_lock(&target->d_parent->d_lock);
2469 spin_lock_nested(&dentry->d_parent->d_lock,
2470 DENTRY_D_LOCK_NESTED);
2471 }
2472 }
2473 if (target < dentry) {
2474 spin_lock_nested(&target->d_lock, 2);
2475 spin_lock_nested(&dentry->d_lock, 3);
2476 } else {
2477 spin_lock_nested(&dentry->d_lock, 2);
2478 spin_lock_nested(&target->d_lock, 3);
2479 }
2480}
2481
2482static void dentry_unlock_parents_for_move(struct dentry *dentry,
2483 struct dentry *target)
2484{
2485 if (target->d_parent != dentry->d_parent)
2486 spin_unlock(&dentry->d_parent->d_lock);
2487 if (target->d_parent != target)
2488 spin_unlock(&target->d_parent->d_lock);
2489}
2490
1da177e4 2491/*
2fd6b7f5
NP
2492 * When switching names, the actual string doesn't strictly have to
2493 * be preserved in the target - because we're dropping the target
2494 * anyway. As such, we can just do a simple memcpy() to copy over
2495 * the new name before we switch.
2496 *
2497 * Note that we have to be a lot more careful about getting the hash
2498 * switched - we have to switch the hash value properly even if it
2499 * then no longer matches the actual (corrupted) string of the target.
2500 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2501 */
9eaef27b 2502/*
18367501 2503 * __d_move - move a dentry
1da177e4
LT
2504 * @dentry: entry to move
2505 * @target: new dentry
da1ce067 2506 * @exchange: exchange the two dentries
1da177e4
LT
2507 *
2508 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2509 * dcache entries should not be moved in this way. Caller must hold
2510 * rename_lock, the i_mutex of the source and target directories,
2511 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2512 */
da1ce067
MS
2513static void __d_move(struct dentry *dentry, struct dentry *target,
2514 bool exchange)
1da177e4 2515{
1da177e4
LT
2516 if (!dentry->d_inode)
2517 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2518
2fd6b7f5
NP
2519 BUG_ON(d_ancestor(dentry, target));
2520 BUG_ON(d_ancestor(target, dentry));
2521
2fd6b7f5 2522 dentry_lock_for_move(dentry, target);
1da177e4 2523
31e6b01f 2524 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2525 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2526
ceb5bdc2
NP
2527 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2528
2529 /*
2530 * Move the dentry to the target hash queue. Don't bother checking
2531 * for the same hash queue because of how unlikely it is.
2532 */
2533 __d_drop(dentry);
789680d1 2534 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4 2535
da1ce067
MS
2536 /*
2537 * Unhash the target (d_delete() is not usable here). If exchanging
2538 * the two dentries, then rehash onto the other's hash queue.
2539 */
1da177e4 2540 __d_drop(target);
da1ce067
MS
2541 if (exchange) {
2542 __d_rehash(target,
2543 d_hash(dentry->d_parent, dentry->d_name.hash));
2544 }
1da177e4 2545
5160ee6f
ED
2546 list_del(&dentry->d_u.d_child);
2547 list_del(&target->d_u.d_child);
1da177e4
LT
2548
2549 /* Switch the names.. */
2550 switch_names(dentry, target);
9a8d5bb4 2551 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2552
2553 /* ... and switch the parents */
2554 if (IS_ROOT(dentry)) {
2555 dentry->d_parent = target->d_parent;
2556 target->d_parent = target;
5160ee6f 2557 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2558 } else {
9a8d5bb4 2559 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2560
2561 /* And add them back to the (new) parent lists */
5160ee6f 2562 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2563 }
2564
5160ee6f 2565 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2566
31e6b01f
NP
2567 write_seqcount_end(&target->d_seq);
2568 write_seqcount_end(&dentry->d_seq);
2569
2fd6b7f5 2570 dentry_unlock_parents_for_move(dentry, target);
da1ce067
MS
2571 if (exchange)
2572 fsnotify_d_move(target);
1da177e4 2573 spin_unlock(&target->d_lock);
c32ccd87 2574 fsnotify_d_move(dentry);
1da177e4 2575 spin_unlock(&dentry->d_lock);
18367501
AV
2576}
2577
2578/*
2579 * d_move - move a dentry
2580 * @dentry: entry to move
2581 * @target: new dentry
2582 *
2583 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2584 * dcache entries should not be moved in this way. See the locking
2585 * requirements for __d_move.
18367501
AV
2586 */
2587void d_move(struct dentry *dentry, struct dentry *target)
2588{
2589 write_seqlock(&rename_lock);
da1ce067 2590 __d_move(dentry, target, false);
1da177e4 2591 write_sequnlock(&rename_lock);
9eaef27b 2592}
ec4f8605 2593EXPORT_SYMBOL(d_move);
1da177e4 2594
da1ce067
MS
2595/*
2596 * d_exchange - exchange two dentries
2597 * @dentry1: first dentry
2598 * @dentry2: second dentry
2599 */
2600void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2601{
2602 write_seqlock(&rename_lock);
2603
2604 WARN_ON(!dentry1->d_inode);
2605 WARN_ON(!dentry2->d_inode);
2606 WARN_ON(IS_ROOT(dentry1));
2607 WARN_ON(IS_ROOT(dentry2));
2608
2609 __d_move(dentry1, dentry2, true);
2610
2611 write_sequnlock(&rename_lock);
2612}
2613
e2761a11
OH
2614/**
2615 * d_ancestor - search for an ancestor
2616 * @p1: ancestor dentry
2617 * @p2: child dentry
2618 *
2619 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2620 * an ancestor of p2, else NULL.
9eaef27b 2621 */
e2761a11 2622struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2623{
2624 struct dentry *p;
2625
871c0067 2626 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2627 if (p->d_parent == p1)
e2761a11 2628 return p;
9eaef27b 2629 }
e2761a11 2630 return NULL;
9eaef27b
TM
2631}
2632
2633/*
2634 * This helper attempts to cope with remotely renamed directories
2635 *
2636 * It assumes that the caller is already holding
18367501 2637 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2638 *
2639 * Note: If ever the locking in lock_rename() changes, then please
2640 * remember to update this too...
9eaef27b 2641 */
873feea0
NP
2642static struct dentry *__d_unalias(struct inode *inode,
2643 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2644{
2645 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2646 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2647
2648 /* If alias and dentry share a parent, then no extra locks required */
2649 if (alias->d_parent == dentry->d_parent)
2650 goto out_unalias;
2651
9eaef27b 2652 /* See lock_rename() */
9eaef27b
TM
2653 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2654 goto out_err;
2655 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2656 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2657 goto out_err;
2658 m2 = &alias->d_parent->d_inode->i_mutex;
2659out_unalias:
ee3efa91 2660 if (likely(!d_mountpoint(alias))) {
da1ce067 2661 __d_move(alias, dentry, false);
ee3efa91
AV
2662 ret = alias;
2663 }
9eaef27b 2664out_err:
873feea0 2665 spin_unlock(&inode->i_lock);
9eaef27b
TM
2666 if (m2)
2667 mutex_unlock(m2);
2668 if (m1)
2669 mutex_unlock(m1);
2670 return ret;
2671}
2672
770bfad8
DH
2673/*
2674 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2675 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2676 * returns with anon->d_lock held!
770bfad8
DH
2677 */
2678static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2679{
740da42e 2680 struct dentry *dparent;
770bfad8 2681
2fd6b7f5 2682 dentry_lock_for_move(anon, dentry);
770bfad8 2683
31e6b01f 2684 write_seqcount_begin(&dentry->d_seq);
1ca7d67c 2685 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
31e6b01f 2686
770bfad8 2687 dparent = dentry->d_parent;
770bfad8 2688
2fd6b7f5
NP
2689 switch_names(dentry, anon);
2690 swap(dentry->d_name.hash, anon->d_name.hash);
2691
740da42e
AV
2692 dentry->d_parent = dentry;
2693 list_del_init(&dentry->d_u.d_child);
2694 anon->d_parent = dparent;
9ed53b12 2695 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2696
31e6b01f
NP
2697 write_seqcount_end(&dentry->d_seq);
2698 write_seqcount_end(&anon->d_seq);
2699
2fd6b7f5
NP
2700 dentry_unlock_parents_for_move(anon, dentry);
2701 spin_unlock(&dentry->d_lock);
2702
2703 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2704}
2705
2706/**
2707 * d_materialise_unique - introduce an inode into the tree
2708 * @dentry: candidate dentry
2709 * @inode: inode to bind to the dentry, to which aliases may be attached
2710 *
2711 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2712 * root directory alias in its place if there is one. Caller must hold the
2713 * i_mutex of the parent directory.
770bfad8
DH
2714 */
2715struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2716{
9eaef27b 2717 struct dentry *actual;
770bfad8
DH
2718
2719 BUG_ON(!d_unhashed(dentry));
2720
770bfad8
DH
2721 if (!inode) {
2722 actual = dentry;
360da900 2723 __d_instantiate(dentry, NULL);
357f8e65
NP
2724 d_rehash(actual);
2725 goto out_nolock;
770bfad8
DH
2726 }
2727
873feea0 2728 spin_lock(&inode->i_lock);
357f8e65 2729
9eaef27b
TM
2730 if (S_ISDIR(inode->i_mode)) {
2731 struct dentry *alias;
2732
2733 /* Does an aliased dentry already exist? */
32ba9c3f 2734 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2735 if (alias) {
2736 actual = alias;
18367501
AV
2737 write_seqlock(&rename_lock);
2738
2739 if (d_ancestor(alias, dentry)) {
2740 /* Check for loops */
2741 actual = ERR_PTR(-ELOOP);
b18dafc8 2742 spin_unlock(&inode->i_lock);
18367501
AV
2743 } else if (IS_ROOT(alias)) {
2744 /* Is this an anonymous mountpoint that we
2745 * could splice into our tree? */
9eaef27b 2746 __d_materialise_dentry(dentry, alias);
18367501 2747 write_sequnlock(&rename_lock);
9eaef27b
TM
2748 __d_drop(alias);
2749 goto found;
18367501
AV
2750 } else {
2751 /* Nope, but we must(!) avoid directory
b18dafc8 2752 * aliasing. This drops inode->i_lock */
18367501 2753 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2754 }
18367501 2755 write_sequnlock(&rename_lock);
dd179946
DH
2756 if (IS_ERR(actual)) {
2757 if (PTR_ERR(actual) == -ELOOP)
2758 pr_warn_ratelimited(
2759 "VFS: Lookup of '%s' in %s %s"
2760 " would have caused loop\n",
2761 dentry->d_name.name,
2762 inode->i_sb->s_type->name,
2763 inode->i_sb->s_id);
9eaef27b 2764 dput(alias);
dd179946 2765 }
9eaef27b
TM
2766 goto out_nolock;
2767 }
770bfad8
DH
2768 }
2769
2770 /* Add a unique reference */
2771 actual = __d_instantiate_unique(dentry, inode);
2772 if (!actual)
2773 actual = dentry;
357f8e65
NP
2774 else
2775 BUG_ON(!d_unhashed(actual));
770bfad8 2776
770bfad8
DH
2777 spin_lock(&actual->d_lock);
2778found:
2779 _d_rehash(actual);
2780 spin_unlock(&actual->d_lock);
873feea0 2781 spin_unlock(&inode->i_lock);
9eaef27b 2782out_nolock:
770bfad8
DH
2783 if (actual == dentry) {
2784 security_d_instantiate(dentry, inode);
2785 return NULL;
2786 }
2787
2788 iput(inode);
2789 return actual;
770bfad8 2790}
ec4f8605 2791EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2792
cdd16d02 2793static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2794{
2795 *buflen -= namelen;
2796 if (*buflen < 0)
2797 return -ENAMETOOLONG;
2798 *buffer -= namelen;
2799 memcpy(*buffer, str, namelen);
2800 return 0;
2801}
2802
232d2d60
WL
2803/**
2804 * prepend_name - prepend a pathname in front of current buffer pointer
18129977
WL
2805 * @buffer: buffer pointer
2806 * @buflen: allocated length of the buffer
2807 * @name: name string and length qstr structure
232d2d60
WL
2808 *
2809 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2810 * make sure that either the old or the new name pointer and length are
2811 * fetched. However, there may be mismatch between length and pointer.
2812 * The length cannot be trusted, we need to copy it byte-by-byte until
2813 * the length is reached or a null byte is found. It also prepends "/" at
2814 * the beginning of the name. The sequence number check at the caller will
2815 * retry it again when a d_move() does happen. So any garbage in the buffer
2816 * due to mismatched pointer and length will be discarded.
2817 */
cdd16d02
MS
2818static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2819{
232d2d60
WL
2820 const char *dname = ACCESS_ONCE(name->name);
2821 u32 dlen = ACCESS_ONCE(name->len);
2822 char *p;
2823
232d2d60 2824 *buflen -= dlen + 1;
e825196d
AV
2825 if (*buflen < 0)
2826 return -ENAMETOOLONG;
232d2d60
WL
2827 p = *buffer -= dlen + 1;
2828 *p++ = '/';
2829 while (dlen--) {
2830 char c = *dname++;
2831 if (!c)
2832 break;
2833 *p++ = c;
2834 }
2835 return 0;
cdd16d02
MS
2836}
2837
1da177e4 2838/**
208898c1 2839 * prepend_path - Prepend path string to a buffer
9d1bc601 2840 * @path: the dentry/vfsmount to report
02125a82 2841 * @root: root vfsmnt/dentry
f2eb6575
MS
2842 * @buffer: pointer to the end of the buffer
2843 * @buflen: pointer to buffer length
552ce544 2844 *
18129977
WL
2845 * The function will first try to write out the pathname without taking any
2846 * lock other than the RCU read lock to make sure that dentries won't go away.
2847 * It only checks the sequence number of the global rename_lock as any change
2848 * in the dentry's d_seq will be preceded by changes in the rename_lock
2849 * sequence number. If the sequence number had been changed, it will restart
2850 * the whole pathname back-tracing sequence again by taking the rename_lock.
2851 * In this case, there is no need to take the RCU read lock as the recursive
2852 * parent pointer references will keep the dentry chain alive as long as no
2853 * rename operation is performed.
1da177e4 2854 */
02125a82
AV
2855static int prepend_path(const struct path *path,
2856 const struct path *root,
f2eb6575 2857 char **buffer, int *buflen)
1da177e4 2858{
ede4cebc
AV
2859 struct dentry *dentry;
2860 struct vfsmount *vfsmnt;
2861 struct mount *mnt;
f2eb6575 2862 int error = 0;
48a066e7 2863 unsigned seq, m_seq = 0;
232d2d60
WL
2864 char *bptr;
2865 int blen;
6092d048 2866
48f5ec21 2867 rcu_read_lock();
48a066e7
AV
2868restart_mnt:
2869 read_seqbegin_or_lock(&mount_lock, &m_seq);
2870 seq = 0;
4ec6c2ae 2871 rcu_read_lock();
232d2d60
WL
2872restart:
2873 bptr = *buffer;
2874 blen = *buflen;
48a066e7 2875 error = 0;
ede4cebc
AV
2876 dentry = path->dentry;
2877 vfsmnt = path->mnt;
2878 mnt = real_mount(vfsmnt);
232d2d60 2879 read_seqbegin_or_lock(&rename_lock, &seq);
f2eb6575 2880 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2881 struct dentry * parent;
2882
1da177e4 2883 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
48a066e7 2884 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
552ce544 2885 /* Global root? */
48a066e7
AV
2886 if (mnt != parent) {
2887 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2888 mnt = parent;
232d2d60
WL
2889 vfsmnt = &mnt->mnt;
2890 continue;
2891 }
2892 /*
2893 * Filesystems needing to implement special "root names"
2894 * should do so with ->d_dname()
2895 */
2896 if (IS_ROOT(dentry) &&
2897 (dentry->d_name.len != 1 ||
2898 dentry->d_name.name[0] != '/')) {
2899 WARN(1, "Root dentry has weird name <%.*s>\n",
2900 (int) dentry->d_name.len,
2901 dentry->d_name.name);
2902 }
2903 if (!error)
2904 error = is_mounted(vfsmnt) ? 1 : 2;
2905 break;
1da177e4
LT
2906 }
2907 parent = dentry->d_parent;
2908 prefetch(parent);
232d2d60 2909 error = prepend_name(&bptr, &blen, &dentry->d_name);
f2eb6575
MS
2910 if (error)
2911 break;
2912
1da177e4
LT
2913 dentry = parent;
2914 }
48f5ec21
AV
2915 if (!(seq & 1))
2916 rcu_read_unlock();
2917 if (need_seqretry(&rename_lock, seq)) {
2918 seq = 1;
232d2d60 2919 goto restart;
48f5ec21
AV
2920 }
2921 done_seqretry(&rename_lock, seq);
4ec6c2ae
LZ
2922
2923 if (!(m_seq & 1))
2924 rcu_read_unlock();
48a066e7
AV
2925 if (need_seqretry(&mount_lock, m_seq)) {
2926 m_seq = 1;
2927 goto restart_mnt;
2928 }
2929 done_seqretry(&mount_lock, m_seq);
1da177e4 2930
232d2d60
WL
2931 if (error >= 0 && bptr == *buffer) {
2932 if (--blen < 0)
2933 error = -ENAMETOOLONG;
2934 else
2935 *--bptr = '/';
2936 }
2937 *buffer = bptr;
2938 *buflen = blen;
7ea600b5 2939 return error;
f2eb6575 2940}
be285c71 2941
f2eb6575
MS
2942/**
2943 * __d_path - return the path of a dentry
2944 * @path: the dentry/vfsmount to report
02125a82 2945 * @root: root vfsmnt/dentry
cd956a1c 2946 * @buf: buffer to return value in
f2eb6575
MS
2947 * @buflen: buffer length
2948 *
ffd1f4ed 2949 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2950 *
2951 * Returns a pointer into the buffer or an error code if the
2952 * path was too long.
2953 *
be148247 2954 * "buflen" should be positive.
f2eb6575 2955 *
02125a82 2956 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2957 */
02125a82
AV
2958char *__d_path(const struct path *path,
2959 const struct path *root,
f2eb6575
MS
2960 char *buf, int buflen)
2961{
2962 char *res = buf + buflen;
2963 int error;
2964
2965 prepend(&res, &buflen, "\0", 1);
f2eb6575 2966 error = prepend_path(path, root, &res, &buflen);
be148247 2967
02125a82
AV
2968 if (error < 0)
2969 return ERR_PTR(error);
2970 if (error > 0)
2971 return NULL;
2972 return res;
2973}
2974
2975char *d_absolute_path(const struct path *path,
2976 char *buf, int buflen)
2977{
2978 struct path root = {};
2979 char *res = buf + buflen;
2980 int error;
2981
2982 prepend(&res, &buflen, "\0", 1);
02125a82 2983 error = prepend_path(path, &root, &res, &buflen);
02125a82
AV
2984
2985 if (error > 1)
2986 error = -EINVAL;
2987 if (error < 0)
f2eb6575 2988 return ERR_PTR(error);
f2eb6575 2989 return res;
1da177e4
LT
2990}
2991
ffd1f4ed
MS
2992/*
2993 * same as __d_path but appends "(deleted)" for unlinked files.
2994 */
02125a82
AV
2995static int path_with_deleted(const struct path *path,
2996 const struct path *root,
2997 char **buf, int *buflen)
ffd1f4ed
MS
2998{
2999 prepend(buf, buflen, "\0", 1);
3000 if (d_unlinked(path->dentry)) {
3001 int error = prepend(buf, buflen, " (deleted)", 10);
3002 if (error)
3003 return error;
3004 }
3005
3006 return prepend_path(path, root, buf, buflen);
3007}
3008
8df9d1a4
MS
3009static int prepend_unreachable(char **buffer, int *buflen)
3010{
3011 return prepend(buffer, buflen, "(unreachable)", 13);
3012}
3013
68f0d9d9
LT
3014static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3015{
3016 unsigned seq;
3017
3018 do {
3019 seq = read_seqcount_begin(&fs->seq);
3020 *root = fs->root;
3021 } while (read_seqcount_retry(&fs->seq, seq));
3022}
3023
a03a8a70
JB
3024/**
3025 * d_path - return the path of a dentry
cf28b486 3026 * @path: path to report
a03a8a70
JB
3027 * @buf: buffer to return value in
3028 * @buflen: buffer length
3029 *
3030 * Convert a dentry into an ASCII path name. If the entry has been deleted
3031 * the string " (deleted)" is appended. Note that this is ambiguous.
3032 *
52afeefb
AV
3033 * Returns a pointer into the buffer or an error code if the path was
3034 * too long. Note: Callers should use the returned pointer, not the passed
3035 * in buffer, to use the name! The implementation often starts at an offset
3036 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 3037 *
31f3e0b3 3038 * "buflen" should be positive.
a03a8a70 3039 */
20d4fdc1 3040char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 3041{
ffd1f4ed 3042 char *res = buf + buflen;
6ac08c39 3043 struct path root;
ffd1f4ed 3044 int error;
1da177e4 3045
c23fbb6b
ED
3046 /*
3047 * We have various synthetic filesystems that never get mounted. On
3048 * these filesystems dentries are never used for lookup purposes, and
3049 * thus don't need to be hashed. They also don't need a name until a
3050 * user wants to identify the object in /proc/pid/fd/. The little hack
3051 * below allows us to generate a name for these objects on demand:
f48cfddc
EB
3052 *
3053 * Some pseudo inodes are mountable. When they are mounted
3054 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3055 * and instead have d_path return the mounted path.
c23fbb6b 3056 */
f48cfddc
EB
3057 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3058 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 3059 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 3060
68f0d9d9
LT
3061 rcu_read_lock();
3062 get_fs_root_rcu(current->fs, &root);
02125a82 3063 error = path_with_deleted(path, &root, &res, &buflen);
68f0d9d9
LT
3064 rcu_read_unlock();
3065
02125a82 3066 if (error < 0)
ffd1f4ed 3067 res = ERR_PTR(error);
1da177e4
LT
3068 return res;
3069}
ec4f8605 3070EXPORT_SYMBOL(d_path);
1da177e4 3071
c23fbb6b
ED
3072/*
3073 * Helper function for dentry_operations.d_dname() members
3074 */
3075char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3076 const char *fmt, ...)
3077{
3078 va_list args;
3079 char temp[64];
3080 int sz;
3081
3082 va_start(args, fmt);
3083 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3084 va_end(args);
3085
3086 if (sz > sizeof(temp) || sz > buflen)
3087 return ERR_PTR(-ENAMETOOLONG);
3088
3089 buffer += buflen - sz;
3090 return memcpy(buffer, temp, sz);
3091}
3092
118b2302
AV
3093char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3094{
3095 char *end = buffer + buflen;
3096 /* these dentries are never renamed, so d_lock is not needed */
3097 if (prepend(&end, &buflen, " (deleted)", 11) ||
232d2d60 3098 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
118b2302
AV
3099 prepend(&end, &buflen, "/", 1))
3100 end = ERR_PTR(-ENAMETOOLONG);
232d2d60 3101 return end;
118b2302 3102}
31bbe16f 3103EXPORT_SYMBOL(simple_dname);
118b2302 3104
6092d048
RP
3105/*
3106 * Write full pathname from the root of the filesystem into the buffer.
3107 */
f6500801 3108static char *__dentry_path(struct dentry *d, char *buf, int buflen)
6092d048 3109{
f6500801 3110 struct dentry *dentry;
232d2d60
WL
3111 char *end, *retval;
3112 int len, seq = 0;
3113 int error = 0;
6092d048 3114
f6500801
AV
3115 if (buflen < 2)
3116 goto Elong;
3117
48f5ec21 3118 rcu_read_lock();
232d2d60 3119restart:
f6500801 3120 dentry = d;
232d2d60
WL
3121 end = buf + buflen;
3122 len = buflen;
3123 prepend(&end, &len, "\0", 1);
6092d048
RP
3124 /* Get '/' right */
3125 retval = end-1;
3126 *retval = '/';
232d2d60 3127 read_seqbegin_or_lock(&rename_lock, &seq);
cdd16d02
MS
3128 while (!IS_ROOT(dentry)) {
3129 struct dentry *parent = dentry->d_parent;
6092d048 3130
6092d048 3131 prefetch(parent);
232d2d60
WL
3132 error = prepend_name(&end, &len, &dentry->d_name);
3133 if (error)
3134 break;
6092d048
RP
3135
3136 retval = end;
3137 dentry = parent;
3138 }
48f5ec21
AV
3139 if (!(seq & 1))
3140 rcu_read_unlock();
3141 if (need_seqretry(&rename_lock, seq)) {
3142 seq = 1;
232d2d60 3143 goto restart;
48f5ec21
AV
3144 }
3145 done_seqretry(&rename_lock, seq);
232d2d60
WL
3146 if (error)
3147 goto Elong;
c103135c
AV
3148 return retval;
3149Elong:
3150 return ERR_PTR(-ENAMETOOLONG);
3151}
ec2447c2
NP
3152
3153char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3154{
232d2d60 3155 return __dentry_path(dentry, buf, buflen);
ec2447c2
NP
3156}
3157EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
3158
3159char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3160{
3161 char *p = NULL;
3162 char *retval;
3163
c103135c
AV
3164 if (d_unlinked(dentry)) {
3165 p = buf + buflen;
3166 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3167 goto Elong;
3168 buflen++;
3169 }
3170 retval = __dentry_path(dentry, buf, buflen);
c103135c
AV
3171 if (!IS_ERR(retval) && p)
3172 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
3173 return retval;
3174Elong:
6092d048
RP
3175 return ERR_PTR(-ENAMETOOLONG);
3176}
3177
8b19e341
LT
3178static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3179 struct path *pwd)
5762482f 3180{
8b19e341
LT
3181 unsigned seq;
3182
3183 do {
3184 seq = read_seqcount_begin(&fs->seq);
3185 *root = fs->root;
3186 *pwd = fs->pwd;
3187 } while (read_seqcount_retry(&fs->seq, seq));
5762482f
LT
3188}
3189
1da177e4
LT
3190/*
3191 * NOTE! The user-level library version returns a
3192 * character pointer. The kernel system call just
3193 * returns the length of the buffer filled (which
3194 * includes the ending '\0' character), or a negative
3195 * error value. So libc would do something like
3196 *
3197 * char *getcwd(char * buf, size_t size)
3198 * {
3199 * int retval;
3200 *
3201 * retval = sys_getcwd(buf, size);
3202 * if (retval >= 0)
3203 * return buf;
3204 * errno = -retval;
3205 * return NULL;
3206 * }
3207 */
3cdad428 3208SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 3209{
552ce544 3210 int error;
6ac08c39 3211 struct path pwd, root;
3272c544 3212 char *page = __getname();
1da177e4
LT
3213
3214 if (!page)
3215 return -ENOMEM;
3216
8b19e341
LT
3217 rcu_read_lock();
3218 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
1da177e4 3219
552ce544 3220 error = -ENOENT;
f3da392e 3221 if (!d_unlinked(pwd.dentry)) {
552ce544 3222 unsigned long len;
3272c544
LT
3223 char *cwd = page + PATH_MAX;
3224 int buflen = PATH_MAX;
1da177e4 3225
8df9d1a4 3226 prepend(&cwd, &buflen, "\0", 1);
02125a82 3227 error = prepend_path(&pwd, &root, &cwd, &buflen);
ff812d72 3228 rcu_read_unlock();
552ce544 3229
02125a82 3230 if (error < 0)
552ce544
LT
3231 goto out;
3232
8df9d1a4 3233 /* Unreachable from current root */
02125a82 3234 if (error > 0) {
8df9d1a4
MS
3235 error = prepend_unreachable(&cwd, &buflen);
3236 if (error)
3237 goto out;
3238 }
3239
552ce544 3240 error = -ERANGE;
3272c544 3241 len = PATH_MAX + page - cwd;
552ce544
LT
3242 if (len <= size) {
3243 error = len;
3244 if (copy_to_user(buf, cwd, len))
3245 error = -EFAULT;
3246 }
949854d0 3247 } else {
ff812d72 3248 rcu_read_unlock();
949854d0 3249 }
1da177e4
LT
3250
3251out:
3272c544 3252 __putname(page);
1da177e4
LT
3253 return error;
3254}
3255
3256/*
3257 * Test whether new_dentry is a subdirectory of old_dentry.
3258 *
3259 * Trivially implemented using the dcache structure
3260 */
3261
3262/**
3263 * is_subdir - is new dentry a subdirectory of old_dentry
3264 * @new_dentry: new dentry
3265 * @old_dentry: old dentry
3266 *
3267 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3268 * Returns 0 otherwise.
3269 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3270 */
3271
e2761a11 3272int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
3273{
3274 int result;
949854d0 3275 unsigned seq;
1da177e4 3276
e2761a11
OH
3277 if (new_dentry == old_dentry)
3278 return 1;
3279
e2761a11 3280 do {
1da177e4 3281 /* for restarting inner loop in case of seq retry */
1da177e4 3282 seq = read_seqbegin(&rename_lock);
949854d0
NP
3283 /*
3284 * Need rcu_readlock to protect against the d_parent trashing
3285 * due to d_move
3286 */
3287 rcu_read_lock();
e2761a11 3288 if (d_ancestor(old_dentry, new_dentry))
1da177e4 3289 result = 1;
e2761a11
OH
3290 else
3291 result = 0;
949854d0 3292 rcu_read_unlock();
1da177e4 3293 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
3294
3295 return result;
3296}
3297
db14fc3a 3298static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
1da177e4 3299{
db14fc3a
MS
3300 struct dentry *root = data;
3301 if (dentry != root) {
3302 if (d_unhashed(dentry) || !dentry->d_inode)
3303 return D_WALK_SKIP;
1da177e4 3304
01ddc4ed
MS
3305 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3306 dentry->d_flags |= DCACHE_GENOCIDE;
3307 dentry->d_lockref.count--;
3308 }
1da177e4 3309 }
db14fc3a
MS
3310 return D_WALK_CONTINUE;
3311}
58db63d0 3312
db14fc3a
MS
3313void d_genocide(struct dentry *parent)
3314{
3315 d_walk(parent, parent, d_genocide_kill, NULL);
1da177e4
LT
3316}
3317
60545d0d 3318void d_tmpfile(struct dentry *dentry, struct inode *inode)
1da177e4 3319{
60545d0d
AV
3320 inode_dec_link_count(inode);
3321 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3322 !hlist_unhashed(&dentry->d_alias) ||
3323 !d_unlinked(dentry));
3324 spin_lock(&dentry->d_parent->d_lock);
3325 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3326 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3327 (unsigned long long)inode->i_ino);
3328 spin_unlock(&dentry->d_lock);
3329 spin_unlock(&dentry->d_parent->d_lock);
3330 d_instantiate(dentry, inode);
1da177e4 3331}
60545d0d 3332EXPORT_SYMBOL(d_tmpfile);
1da177e4
LT
3333
3334static __initdata unsigned long dhash_entries;
3335static int __init set_dhash_entries(char *str)
3336{
3337 if (!str)
3338 return 0;
3339 dhash_entries = simple_strtoul(str, &str, 0);
3340 return 1;
3341}
3342__setup("dhash_entries=", set_dhash_entries);
3343
3344static void __init dcache_init_early(void)
3345{
074b8517 3346 unsigned int loop;
1da177e4
LT
3347
3348 /* If hashes are distributed across NUMA nodes, defer
3349 * hash allocation until vmalloc space is available.
3350 */
3351 if (hashdist)
3352 return;
3353
3354 dentry_hashtable =
3355 alloc_large_system_hash("Dentry cache",
b07ad996 3356 sizeof(struct hlist_bl_head),
1da177e4
LT
3357 dhash_entries,
3358 13,
3359 HASH_EARLY,
3360 &d_hash_shift,
3361 &d_hash_mask,
31fe62b9 3362 0,
1da177e4
LT
3363 0);
3364
074b8517 3365 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3366 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3367}
3368
74bf17cf 3369static void __init dcache_init(void)
1da177e4 3370{
074b8517 3371 unsigned int loop;
1da177e4
LT
3372
3373 /*
3374 * A constructor could be added for stable state like the lists,
3375 * but it is probably not worth it because of the cache nature
3376 * of the dcache.
3377 */
0a31bd5f
CL
3378 dentry_cache = KMEM_CACHE(dentry,
3379 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3380
3381 /* Hash may have been set up in dcache_init_early */
3382 if (!hashdist)
3383 return;
3384
3385 dentry_hashtable =
3386 alloc_large_system_hash("Dentry cache",
b07ad996 3387 sizeof(struct hlist_bl_head),
1da177e4
LT
3388 dhash_entries,
3389 13,
3390 0,
3391 &d_hash_shift,
3392 &d_hash_mask,
31fe62b9 3393 0,
1da177e4
LT
3394 0);
3395
074b8517 3396 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3397 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3398}
3399
3400/* SLAB cache for __getname() consumers */
e18b890b 3401struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3402EXPORT_SYMBOL(names_cachep);
1da177e4 3403
1da177e4
LT
3404EXPORT_SYMBOL(d_genocide);
3405
1da177e4
LT
3406void __init vfs_caches_init_early(void)
3407{
3408 dcache_init_early();
3409 inode_init_early();
3410}
3411
3412void __init vfs_caches_init(unsigned long mempages)
3413{
3414 unsigned long reserve;
3415
3416 /* Base hash sizes on available memory, with a reserve equal to
3417 150% of current kernel size */
3418
3419 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3420 mempages -= reserve;
3421
3422 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3423 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3424
74bf17cf
DC
3425 dcache_init();
3426 inode_init();
1da177e4 3427 files_init(mempages);
74bf17cf 3428 mnt_init();
1da177e4
LT
3429 bdev_cache_init();
3430 chrdev_init();
3431}