]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: fix comments that got messed up during code move
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
c96fd3d4 88int sysctl_tcp_frto __read_mostly = 2;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
009a2e3e 107#define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
1da177e4
LT
108
109#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
110#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
111#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
112#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 113#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 114
4dc2665e
IJ
115#define IsSackFrto() (sysctl_tcp_frto == 0x2)
116
1da177e4 117#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 118#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 119
e905a9ed 120/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 121 * real world.
e905a9ed 122 */
40efc6fa
SH
123static void tcp_measure_rcv_mss(struct sock *sk,
124 const struct sk_buff *skb)
1da177e4 125{
463c84b9 126 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 127 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 128 unsigned int len;
1da177e4 129
e905a9ed 130 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
131
132 /* skb->len may jitter because of SACKs, even if peer
133 * sends good full-sized frames.
134 */
ff9b5e0f 135 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
136 if (len >= icsk->icsk_ack.rcv_mss) {
137 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
138 } else {
139 /* Otherwise, we make more careful check taking into account,
140 * that SACKs block is variable.
141 *
142 * "len" is invariant segment length, including TCP header.
143 */
9c70220b 144 len += skb->data - skb_transport_header(skb);
1da177e4
LT
145 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
146 /* If PSH is not set, packet should be
147 * full sized, provided peer TCP is not badly broken.
148 * This observation (if it is correct 8)) allows
149 * to handle super-low mtu links fairly.
150 */
151 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 152 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
153 /* Subtract also invariant (if peer is RFC compliant),
154 * tcp header plus fixed timestamp option length.
155 * Resulting "len" is MSS free of SACK jitter.
156 */
463c84b9
ACM
157 len -= tcp_sk(sk)->tcp_header_len;
158 icsk->icsk_ack.last_seg_size = len;
1da177e4 159 if (len == lss) {
463c84b9 160 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
161 return;
162 }
163 }
1ef9696c
AK
164 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 166 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
167 }
168}
169
463c84b9 170static void tcp_incr_quickack(struct sock *sk)
1da177e4 171{
463c84b9
ACM
172 struct inet_connection_sock *icsk = inet_csk(sk);
173 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
174
175 if (quickacks==0)
176 quickacks=2;
463c84b9
ACM
177 if (quickacks > icsk->icsk_ack.quick)
178 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
179}
180
463c84b9 181void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 182{
463c84b9
ACM
183 struct inet_connection_sock *icsk = inet_csk(sk);
184 tcp_incr_quickack(sk);
185 icsk->icsk_ack.pingpong = 0;
186 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
187}
188
189/* Send ACKs quickly, if "quick" count is not exhausted
190 * and the session is not interactive.
191 */
192
463c84b9 193static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 194{
463c84b9
ACM
195 const struct inet_connection_sock *icsk = inet_csk(sk);
196 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
197}
198
bdf1ee5d
IJ
199static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
200{
201 if (tp->ecn_flags&TCP_ECN_OK)
202 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203}
204
205static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
206{
207 if (tcp_hdr(skb)->cwr)
208 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209}
210
211static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
212{
213 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214}
215
216static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
217{
218 if (tp->ecn_flags&TCP_ECN_OK) {
219 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
220 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
221 /* Funny extension: if ECT is not set on a segment,
222 * it is surely retransmit. It is not in ECN RFC,
223 * but Linux follows this rule. */
224 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
225 tcp_enter_quickack_mode((struct sock *)tp);
226 }
227}
228
229static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
230{
231 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
232 tp->ecn_flags &= ~TCP_ECN_OK;
233}
234
235static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
236{
237 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
238 tp->ecn_flags &= ~TCP_ECN_OK;
239}
240
241static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
242{
243 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
244 return 1;
245 return 0;
246}
247
1da177e4
LT
248/* Buffer size and advertised window tuning.
249 *
250 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 */
252
253static void tcp_fixup_sndbuf(struct sock *sk)
254{
255 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
256 sizeof(struct sk_buff);
257
258 if (sk->sk_sndbuf < 3 * sndmem)
259 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260}
261
262/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
263 *
264 * All tcp_full_space() is split to two parts: "network" buffer, allocated
265 * forward and advertised in receiver window (tp->rcv_wnd) and
266 * "application buffer", required to isolate scheduling/application
267 * latencies from network.
268 * window_clamp is maximal advertised window. It can be less than
269 * tcp_full_space(), in this case tcp_full_space() - window_clamp
270 * is reserved for "application" buffer. The less window_clamp is
271 * the smoother our behaviour from viewpoint of network, but the lower
272 * throughput and the higher sensitivity of the connection to losses. 8)
273 *
274 * rcv_ssthresh is more strict window_clamp used at "slow start"
275 * phase to predict further behaviour of this connection.
276 * It is used for two goals:
277 * - to enforce header prediction at sender, even when application
278 * requires some significant "application buffer". It is check #1.
279 * - to prevent pruning of receive queue because of misprediction
280 * of receiver window. Check #2.
281 *
282 * The scheme does not work when sender sends good segments opening
caa20d9a 283 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
284 * in common situations. Otherwise, we have to rely on queue collapsing.
285 */
286
287/* Slow part of check#2. */
9e412ba7 288static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 289{
9e412ba7 290 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
291 /* Optimize this! */
292 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 293 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
294
295 while (tp->rcv_ssthresh <= window) {
296 if (truesize <= skb->len)
463c84b9 297 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
298
299 truesize >>= 1;
300 window >>= 1;
301 }
302 return 0;
303}
304
9e412ba7 305static void tcp_grow_window(struct sock *sk,
40efc6fa 306 struct sk_buff *skb)
1da177e4 307{
9e412ba7
IJ
308 struct tcp_sock *tp = tcp_sk(sk);
309
1da177e4
LT
310 /* Check #1 */
311 if (tp->rcv_ssthresh < tp->window_clamp &&
312 (int)tp->rcv_ssthresh < tcp_space(sk) &&
313 !tcp_memory_pressure) {
314 int incr;
315
316 /* Check #2. Increase window, if skb with such overhead
317 * will fit to rcvbuf in future.
318 */
319 if (tcp_win_from_space(skb->truesize) <= skb->len)
320 incr = 2*tp->advmss;
321 else
9e412ba7 322 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
323
324 if (incr) {
325 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 326 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
327 }
328 }
329}
330
331/* 3. Tuning rcvbuf, when connection enters established state. */
332
333static void tcp_fixup_rcvbuf(struct sock *sk)
334{
335 struct tcp_sock *tp = tcp_sk(sk);
336 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
337
338 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 339 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
340 * (was 3; 4 is minimum to allow fast retransmit to work.)
341 */
342 while (tcp_win_from_space(rcvmem) < tp->advmss)
343 rcvmem += 128;
344 if (sk->sk_rcvbuf < 4 * rcvmem)
345 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346}
347
caa20d9a 348/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
349 * established state.
350 */
351static void tcp_init_buffer_space(struct sock *sk)
352{
353 struct tcp_sock *tp = tcp_sk(sk);
354 int maxwin;
355
356 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
357 tcp_fixup_rcvbuf(sk);
358 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
359 tcp_fixup_sndbuf(sk);
360
361 tp->rcvq_space.space = tp->rcv_wnd;
362
363 maxwin = tcp_full_space(sk);
364
365 if (tp->window_clamp >= maxwin) {
366 tp->window_clamp = maxwin;
367
368 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
369 tp->window_clamp = max(maxwin -
370 (maxwin >> sysctl_tcp_app_win),
371 4 * tp->advmss);
372 }
373
374 /* Force reservation of one segment. */
375 if (sysctl_tcp_app_win &&
376 tp->window_clamp > 2 * tp->advmss &&
377 tp->window_clamp + tp->advmss > maxwin)
378 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
379
380 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
381 tp->snd_cwnd_stamp = tcp_time_stamp;
382}
383
1da177e4 384/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 385static void tcp_clamp_window(struct sock *sk)
1da177e4 386{
9e412ba7 387 struct tcp_sock *tp = tcp_sk(sk);
6687e988 388 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 389
6687e988 390 icsk->icsk_ack.quick = 0;
1da177e4 391
326f36e9
JH
392 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
393 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
394 !tcp_memory_pressure &&
395 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
396 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
397 sysctl_tcp_rmem[2]);
1da177e4 398 }
326f36e9 399 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 400 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
401}
402
40efc6fa
SH
403
404/* Initialize RCV_MSS value.
405 * RCV_MSS is an our guess about MSS used by the peer.
406 * We haven't any direct information about the MSS.
407 * It's better to underestimate the RCV_MSS rather than overestimate.
408 * Overestimations make us ACKing less frequently than needed.
409 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
410 */
411void tcp_initialize_rcv_mss(struct sock *sk)
412{
413 struct tcp_sock *tp = tcp_sk(sk);
414 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
415
416 hint = min(hint, tp->rcv_wnd/2);
417 hint = min(hint, TCP_MIN_RCVMSS);
418 hint = max(hint, TCP_MIN_MSS);
419
420 inet_csk(sk)->icsk_ack.rcv_mss = hint;
421}
422
1da177e4
LT
423/* Receiver "autotuning" code.
424 *
425 * The algorithm for RTT estimation w/o timestamps is based on
426 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
427 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
428 *
429 * More detail on this code can be found at
430 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
431 * though this reference is out of date. A new paper
432 * is pending.
433 */
434static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
435{
436 u32 new_sample = tp->rcv_rtt_est.rtt;
437 long m = sample;
438
439 if (m == 0)
440 m = 1;
441
442 if (new_sample != 0) {
443 /* If we sample in larger samples in the non-timestamp
444 * case, we could grossly overestimate the RTT especially
445 * with chatty applications or bulk transfer apps which
446 * are stalled on filesystem I/O.
447 *
448 * Also, since we are only going for a minimum in the
31f34269 449 * non-timestamp case, we do not smooth things out
caa20d9a 450 * else with timestamps disabled convergence takes too
1da177e4
LT
451 * long.
452 */
453 if (!win_dep) {
454 m -= (new_sample >> 3);
455 new_sample += m;
456 } else if (m < new_sample)
457 new_sample = m << 3;
458 } else {
caa20d9a 459 /* No previous measure. */
1da177e4
LT
460 new_sample = m << 3;
461 }
462
463 if (tp->rcv_rtt_est.rtt != new_sample)
464 tp->rcv_rtt_est.rtt = new_sample;
465}
466
467static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
468{
469 if (tp->rcv_rtt_est.time == 0)
470 goto new_measure;
471 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
472 return;
473 tcp_rcv_rtt_update(tp,
474 jiffies - tp->rcv_rtt_est.time,
475 1);
476
477new_measure:
478 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
479 tp->rcv_rtt_est.time = tcp_time_stamp;
480}
481
463c84b9 482static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 483{
463c84b9 484 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
485 if (tp->rx_opt.rcv_tsecr &&
486 (TCP_SKB_CB(skb)->end_seq -
463c84b9 487 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
488 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
489}
490
491/*
492 * This function should be called every time data is copied to user space.
493 * It calculates the appropriate TCP receive buffer space.
494 */
495void tcp_rcv_space_adjust(struct sock *sk)
496{
497 struct tcp_sock *tp = tcp_sk(sk);
498 int time;
499 int space;
e905a9ed 500
1da177e4
LT
501 if (tp->rcvq_space.time == 0)
502 goto new_measure;
e905a9ed 503
1da177e4
LT
504 time = tcp_time_stamp - tp->rcvq_space.time;
505 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
506 tp->rcv_rtt_est.rtt == 0)
507 return;
e905a9ed 508
1da177e4
LT
509 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
510
511 space = max(tp->rcvq_space.space, space);
512
513 if (tp->rcvq_space.space != space) {
514 int rcvmem;
515
516 tp->rcvq_space.space = space;
517
6fcf9412
JH
518 if (sysctl_tcp_moderate_rcvbuf &&
519 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
520 int new_clamp = space;
521
522 /* Receive space grows, normalize in order to
523 * take into account packet headers and sk_buff
524 * structure overhead.
525 */
526 space /= tp->advmss;
527 if (!space)
528 space = 1;
529 rcvmem = (tp->advmss + MAX_TCP_HEADER +
530 16 + sizeof(struct sk_buff));
531 while (tcp_win_from_space(rcvmem) < tp->advmss)
532 rcvmem += 128;
533 space *= rcvmem;
534 space = min(space, sysctl_tcp_rmem[2]);
535 if (space > sk->sk_rcvbuf) {
536 sk->sk_rcvbuf = space;
537
538 /* Make the window clamp follow along. */
539 tp->window_clamp = new_clamp;
540 }
541 }
542 }
e905a9ed 543
1da177e4
LT
544new_measure:
545 tp->rcvq_space.seq = tp->copied_seq;
546 tp->rcvq_space.time = tcp_time_stamp;
547}
548
549/* There is something which you must keep in mind when you analyze the
550 * behavior of the tp->ato delayed ack timeout interval. When a
551 * connection starts up, we want to ack as quickly as possible. The
552 * problem is that "good" TCP's do slow start at the beginning of data
553 * transmission. The means that until we send the first few ACK's the
554 * sender will sit on his end and only queue most of his data, because
555 * he can only send snd_cwnd unacked packets at any given time. For
556 * each ACK we send, he increments snd_cwnd and transmits more of his
557 * queue. -DaveM
558 */
9e412ba7 559static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 560{
9e412ba7 561 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 562 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
563 u32 now;
564
463c84b9 565 inet_csk_schedule_ack(sk);
1da177e4 566
463c84b9 567 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
568
569 tcp_rcv_rtt_measure(tp);
e905a9ed 570
1da177e4
LT
571 now = tcp_time_stamp;
572
463c84b9 573 if (!icsk->icsk_ack.ato) {
1da177e4
LT
574 /* The _first_ data packet received, initialize
575 * delayed ACK engine.
576 */
463c84b9
ACM
577 tcp_incr_quickack(sk);
578 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 579 } else {
463c84b9 580 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
581
582 if (m <= TCP_ATO_MIN/2) {
583 /* The fastest case is the first. */
463c84b9
ACM
584 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
585 } else if (m < icsk->icsk_ack.ato) {
586 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
587 if (icsk->icsk_ack.ato > icsk->icsk_rto)
588 icsk->icsk_ack.ato = icsk->icsk_rto;
589 } else if (m > icsk->icsk_rto) {
caa20d9a 590 /* Too long gap. Apparently sender failed to
1da177e4
LT
591 * restart window, so that we send ACKs quickly.
592 */
463c84b9 593 tcp_incr_quickack(sk);
1da177e4
LT
594 sk_stream_mem_reclaim(sk);
595 }
596 }
463c84b9 597 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
598
599 TCP_ECN_check_ce(tp, skb);
600
601 if (skb->len >= 128)
9e412ba7 602 tcp_grow_window(sk, skb);
1da177e4
LT
603}
604
05bb1fad
DM
605static u32 tcp_rto_min(struct sock *sk)
606{
607 struct dst_entry *dst = __sk_dst_get(sk);
608 u32 rto_min = TCP_RTO_MIN;
609
5c127c58 610 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
611 rto_min = dst->metrics[RTAX_RTO_MIN-1];
612 return rto_min;
613}
614
1da177e4
LT
615/* Called to compute a smoothed rtt estimate. The data fed to this
616 * routine either comes from timestamps, or from segments that were
617 * known _not_ to have been retransmitted [see Karn/Partridge
618 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
619 * piece by Van Jacobson.
620 * NOTE: the next three routines used to be one big routine.
621 * To save cycles in the RFC 1323 implementation it was better to break
622 * it up into three procedures. -- erics
623 */
2d2abbab 624static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 625{
6687e988 626 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
627 long m = mrtt; /* RTT */
628
1da177e4
LT
629 /* The following amusing code comes from Jacobson's
630 * article in SIGCOMM '88. Note that rtt and mdev
631 * are scaled versions of rtt and mean deviation.
e905a9ed 632 * This is designed to be as fast as possible
1da177e4
LT
633 * m stands for "measurement".
634 *
635 * On a 1990 paper the rto value is changed to:
636 * RTO = rtt + 4 * mdev
637 *
638 * Funny. This algorithm seems to be very broken.
639 * These formulae increase RTO, when it should be decreased, increase
31f34269 640 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
641 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
642 * does not matter how to _calculate_ it. Seems, it was trap
643 * that VJ failed to avoid. 8)
644 */
2de979bd 645 if (m == 0)
1da177e4
LT
646 m = 1;
647 if (tp->srtt != 0) {
648 m -= (tp->srtt >> 3); /* m is now error in rtt est */
649 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
650 if (m < 0) {
651 m = -m; /* m is now abs(error) */
652 m -= (tp->mdev >> 2); /* similar update on mdev */
653 /* This is similar to one of Eifel findings.
654 * Eifel blocks mdev updates when rtt decreases.
655 * This solution is a bit different: we use finer gain
656 * for mdev in this case (alpha*beta).
657 * Like Eifel it also prevents growth of rto,
658 * but also it limits too fast rto decreases,
659 * happening in pure Eifel.
660 */
661 if (m > 0)
662 m >>= 3;
663 } else {
664 m -= (tp->mdev >> 2); /* similar update on mdev */
665 }
666 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
667 if (tp->mdev > tp->mdev_max) {
668 tp->mdev_max = tp->mdev;
669 if (tp->mdev_max > tp->rttvar)
670 tp->rttvar = tp->mdev_max;
671 }
672 if (after(tp->snd_una, tp->rtt_seq)) {
673 if (tp->mdev_max < tp->rttvar)
674 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
675 tp->rtt_seq = tp->snd_nxt;
05bb1fad 676 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
677 }
678 } else {
679 /* no previous measure. */
680 tp->srtt = m<<3; /* take the measured time to be rtt */
681 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 682 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
683 tp->rtt_seq = tp->snd_nxt;
684 }
1da177e4
LT
685}
686
687/* Calculate rto without backoff. This is the second half of Van Jacobson's
688 * routine referred to above.
689 */
463c84b9 690static inline void tcp_set_rto(struct sock *sk)
1da177e4 691{
463c84b9 692 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
693 /* Old crap is replaced with new one. 8)
694 *
695 * More seriously:
696 * 1. If rtt variance happened to be less 50msec, it is hallucination.
697 * It cannot be less due to utterly erratic ACK generation made
698 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
699 * to do with delayed acks, because at cwnd>2 true delack timeout
700 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 701 * ACKs in some circumstances.
1da177e4 702 */
463c84b9 703 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
704
705 /* 2. Fixups made earlier cannot be right.
706 * If we do not estimate RTO correctly without them,
707 * all the algo is pure shit and should be replaced
caa20d9a 708 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
709 */
710}
711
712/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
713 * guarantees that rto is higher.
714 */
463c84b9 715static inline void tcp_bound_rto(struct sock *sk)
1da177e4 716{
463c84b9
ACM
717 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
718 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
719}
720
721/* Save metrics learned by this TCP session.
722 This function is called only, when TCP finishes successfully
723 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
724 */
725void tcp_update_metrics(struct sock *sk)
726{
727 struct tcp_sock *tp = tcp_sk(sk);
728 struct dst_entry *dst = __sk_dst_get(sk);
729
730 if (sysctl_tcp_nometrics_save)
731 return;
732
733 dst_confirm(dst);
734
735 if (dst && (dst->flags&DST_HOST)) {
6687e988 736 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
737 int m;
738
6687e988 739 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
740 /* This session failed to estimate rtt. Why?
741 * Probably, no packets returned in time.
742 * Reset our results.
743 */
744 if (!(dst_metric_locked(dst, RTAX_RTT)))
745 dst->metrics[RTAX_RTT-1] = 0;
746 return;
747 }
748
749 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
750
751 /* If newly calculated rtt larger than stored one,
752 * store new one. Otherwise, use EWMA. Remember,
753 * rtt overestimation is always better than underestimation.
754 */
755 if (!(dst_metric_locked(dst, RTAX_RTT))) {
756 if (m <= 0)
757 dst->metrics[RTAX_RTT-1] = tp->srtt;
758 else
759 dst->metrics[RTAX_RTT-1] -= (m>>3);
760 }
761
762 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
763 if (m < 0)
764 m = -m;
765
766 /* Scale deviation to rttvar fixed point */
767 m >>= 1;
768 if (m < tp->mdev)
769 m = tp->mdev;
770
771 if (m >= dst_metric(dst, RTAX_RTTVAR))
772 dst->metrics[RTAX_RTTVAR-1] = m;
773 else
774 dst->metrics[RTAX_RTTVAR-1] -=
775 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
776 }
777
778 if (tp->snd_ssthresh >= 0xFFFF) {
779 /* Slow start still did not finish. */
780 if (dst_metric(dst, RTAX_SSTHRESH) &&
781 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
782 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
783 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
784 if (!dst_metric_locked(dst, RTAX_CWND) &&
785 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
786 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
787 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 788 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
789 /* Cong. avoidance phase, cwnd is reliable. */
790 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] =
792 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
793 if (!dst_metric_locked(dst, RTAX_CWND))
794 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
795 } else {
796 /* Else slow start did not finish, cwnd is non-sense,
797 ssthresh may be also invalid.
798 */
799 if (!dst_metric_locked(dst, RTAX_CWND))
800 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
801 if (dst->metrics[RTAX_SSTHRESH-1] &&
802 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
803 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
804 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
805 }
806
807 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
808 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
809 tp->reordering != sysctl_tcp_reordering)
810 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
811 }
812 }
813}
814
26722873
DM
815/* Numbers are taken from RFC3390.
816 *
817 * John Heffner states:
818 *
819 * The RFC specifies a window of no more than 4380 bytes
820 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
821 * is a bit misleading because they use a clamp at 4380 bytes
822 * rather than use a multiplier in the relevant range.
823 */
1da177e4
LT
824__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
825{
826 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
827
828 if (!cwnd) {
c1b4a7e6 829 if (tp->mss_cache > 1460)
1da177e4
LT
830 cwnd = 2;
831 else
c1b4a7e6 832 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
833 }
834 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
835}
836
40efc6fa 837/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 838void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
839{
840 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 841 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
842
843 tp->prior_ssthresh = 0;
844 tp->bytes_acked = 0;
e01f9d77 845 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 846 tp->undo_marker = 0;
3cfe3baa
IJ
847 if (set_ssthresh)
848 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
849 tp->snd_cwnd = min(tp->snd_cwnd,
850 tcp_packets_in_flight(tp) + 1U);
851 tp->snd_cwnd_cnt = 0;
852 tp->high_seq = tp->snd_nxt;
853 tp->snd_cwnd_stamp = tcp_time_stamp;
854 TCP_ECN_queue_cwr(tp);
855
856 tcp_set_ca_state(sk, TCP_CA_CWR);
857 }
858}
859
e60402d0
IJ
860/*
861 * Packet counting of FACK is based on in-order assumptions, therefore TCP
862 * disables it when reordering is detected
863 */
864static void tcp_disable_fack(struct tcp_sock *tp)
865{
866 tp->rx_opt.sack_ok &= ~2;
867}
868
869/* Take a notice that peer is sending DSACKs */
870static void tcp_dsack_seen(struct tcp_sock *tp)
871{
872 tp->rx_opt.sack_ok |= 4;
873}
874
1da177e4
LT
875/* Initialize metrics on socket. */
876
877static void tcp_init_metrics(struct sock *sk)
878{
879 struct tcp_sock *tp = tcp_sk(sk);
880 struct dst_entry *dst = __sk_dst_get(sk);
881
882 if (dst == NULL)
883 goto reset;
884
885 dst_confirm(dst);
886
887 if (dst_metric_locked(dst, RTAX_CWND))
888 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
889 if (dst_metric(dst, RTAX_SSTHRESH)) {
890 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
891 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
892 tp->snd_ssthresh = tp->snd_cwnd_clamp;
893 }
894 if (dst_metric(dst, RTAX_REORDERING) &&
895 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 896 tcp_disable_fack(tp);
1da177e4
LT
897 tp->reordering = dst_metric(dst, RTAX_REORDERING);
898 }
899
900 if (dst_metric(dst, RTAX_RTT) == 0)
901 goto reset;
902
903 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
904 goto reset;
905
906 /* Initial rtt is determined from SYN,SYN-ACK.
907 * The segment is small and rtt may appear much
908 * less than real one. Use per-dst memory
909 * to make it more realistic.
910 *
911 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 912 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
913 * packets force peer to delay ACKs and calculation is correct too.
914 * The algorithm is adaptive and, provided we follow specs, it
915 * NEVER underestimate RTT. BUT! If peer tries to make some clever
916 * tricks sort of "quick acks" for time long enough to decrease RTT
917 * to low value, and then abruptly stops to do it and starts to delay
918 * ACKs, wait for troubles.
919 */
920 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
921 tp->srtt = dst_metric(dst, RTAX_RTT);
922 tp->rtt_seq = tp->snd_nxt;
923 }
924 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
925 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
926 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
927 }
463c84b9
ACM
928 tcp_set_rto(sk);
929 tcp_bound_rto(sk);
930 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
931 goto reset;
932 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
933 tp->snd_cwnd_stamp = tcp_time_stamp;
934 return;
935
936reset:
937 /* Play conservative. If timestamps are not
938 * supported, TCP will fail to recalculate correct
939 * rtt, if initial rto is too small. FORGET ALL AND RESET!
940 */
941 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
942 tp->srtt = 0;
943 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 944 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
945 }
946}
947
6687e988
ACM
948static void tcp_update_reordering(struct sock *sk, const int metric,
949 const int ts)
1da177e4 950{
6687e988 951 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
952 if (metric > tp->reordering) {
953 tp->reordering = min(TCP_MAX_REORDERING, metric);
954
955 /* This exciting event is worth to be remembered. 8) */
956 if (ts)
957 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 958 else if (tcp_is_reno(tp))
1da177e4 959 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 960 else if (tcp_is_fack(tp))
1da177e4
LT
961 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
962 else
963 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
964#if FASTRETRANS_DEBUG > 1
965 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 966 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
967 tp->reordering,
968 tp->fackets_out,
969 tp->sacked_out,
970 tp->undo_marker ? tp->undo_retrans : 0);
971#endif
e60402d0 972 tcp_disable_fack(tp);
1da177e4
LT
973 }
974}
975
976/* This procedure tags the retransmission queue when SACKs arrive.
977 *
978 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
979 * Packets in queue with these bits set are counted in variables
980 * sacked_out, retrans_out and lost_out, correspondingly.
981 *
982 * Valid combinations are:
983 * Tag InFlight Description
984 * 0 1 - orig segment is in flight.
985 * S 0 - nothing flies, orig reached receiver.
986 * L 0 - nothing flies, orig lost by net.
987 * R 2 - both orig and retransmit are in flight.
988 * L|R 1 - orig is lost, retransmit is in flight.
989 * S|R 1 - orig reached receiver, retrans is still in flight.
990 * (L|S|R is logically valid, it could occur when L|R is sacked,
991 * but it is equivalent to plain S and code short-curcuits it to S.
992 * L|S is logically invalid, it would mean -1 packet in flight 8))
993 *
994 * These 6 states form finite state machine, controlled by the following events:
995 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
996 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
997 * 3. Loss detection event of one of three flavors:
998 * A. Scoreboard estimator decided the packet is lost.
999 * A'. Reno "three dupacks" marks head of queue lost.
1000 * A''. Its FACK modfication, head until snd.fack is lost.
1001 * B. SACK arrives sacking data transmitted after never retransmitted
1002 * hole was sent out.
1003 * C. SACK arrives sacking SND.NXT at the moment, when the
1004 * segment was retransmitted.
1005 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1006 *
1007 * It is pleasant to note, that state diagram turns out to be commutative,
1008 * so that we are allowed not to be bothered by order of our actions,
1009 * when multiple events arrive simultaneously. (see the function below).
1010 *
1011 * Reordering detection.
1012 * --------------------
1013 * Reordering metric is maximal distance, which a packet can be displaced
1014 * in packet stream. With SACKs we can estimate it:
1015 *
1016 * 1. SACK fills old hole and the corresponding segment was not
1017 * ever retransmitted -> reordering. Alas, we cannot use it
1018 * when segment was retransmitted.
1019 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1020 * for retransmitted and already SACKed segment -> reordering..
1021 * Both of these heuristics are not used in Loss state, when we cannot
1022 * account for retransmits accurately.
5b3c9882
IJ
1023 *
1024 * SACK block validation.
1025 * ----------------------
1026 *
1027 * SACK block range validation checks that the received SACK block fits to
1028 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1029 * Note that SND.UNA is not included to the range though being valid because
1030 * it means that the receiver is rather inconsistent with itself (reports
1031 * SACK reneging when it should advance SND.UNA).
1032 *
1033 * Implements also blockage to start_seq wrap-around. Problem lies in the
1034 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1035 * there's no guarantee that it will be before snd_nxt (n). The problem
1036 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1037 * wrap (s_w):
1038 *
1039 * <- outs wnd -> <- wrapzone ->
1040 * u e n u_w e_w s n_w
1041 * | | | | | | |
1042 * |<------------+------+----- TCP seqno space --------------+---------->|
1043 * ...-- <2^31 ->| |<--------...
1044 * ...---- >2^31 ------>| |<--------...
1045 *
1046 * Current code wouldn't be vulnerable but it's better still to discard such
1047 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1048 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1049 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1050 * equal to the ideal case (infinite seqno space without wrap caused issues).
1051 *
1052 * With D-SACK the lower bound is extended to cover sequence space below
1053 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1054 * again, DSACK block must not to go across snd_una (for the same reason as
1055 * for the normal SACK blocks, explained above). But there all simplicity
1056 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1057 * fully below undo_marker they do not affect behavior in anyway and can
1058 * therefore be safely ignored. In rare cases (which are more or less
1059 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1060 * fragmentation and packet reordering past skb's retransmission. To consider
1061 * them correctly, the acceptable range must be extended even more though
1062 * the exact amount is rather hard to quantify. However, tp->max_window can
1063 * be used as an exaggerated estimate.
1da177e4 1064 */
5b3c9882
IJ
1065static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1066 u32 start_seq, u32 end_seq)
1067{
1068 /* Too far in future, or reversed (interpretation is ambiguous) */
1069 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1070 return 0;
1071
1072 /* Nasty start_seq wrap-around check (see comments above) */
1073 if (!before(start_seq, tp->snd_nxt))
1074 return 0;
1075
1076 /* In outstanding window? ...This is valid exit for DSACKs too.
1077 * start_seq == snd_una is non-sensical (see comments above)
1078 */
1079 if (after(start_seq, tp->snd_una))
1080 return 1;
1081
1082 if (!is_dsack || !tp->undo_marker)
1083 return 0;
1084
1085 /* ...Then it's D-SACK, and must reside below snd_una completely */
1086 if (!after(end_seq, tp->snd_una))
1087 return 0;
1088
1089 if (!before(start_seq, tp->undo_marker))
1090 return 1;
1091
1092 /* Too old */
1093 if (!after(end_seq, tp->undo_marker))
1094 return 0;
1095
1096 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1097 * start_seq < undo_marker and end_seq >= undo_marker.
1098 */
1099 return !before(start_seq, end_seq - tp->max_window);
1100}
1101
1102
d06e021d
DM
1103static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1104 struct tcp_sack_block_wire *sp, int num_sacks,
1105 u32 prior_snd_una)
1106{
1107 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1108 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1109 int dup_sack = 0;
1110
1111 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1112 dup_sack = 1;
e60402d0 1113 tcp_dsack_seen(tp);
d06e021d
DM
1114 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1115 } else if (num_sacks > 1) {
1116 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1117 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1118
1119 if (!after(end_seq_0, end_seq_1) &&
1120 !before(start_seq_0, start_seq_1)) {
1121 dup_sack = 1;
e60402d0 1122 tcp_dsack_seen(tp);
d06e021d
DM
1123 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1124 }
1125 }
1126
1127 /* D-SACK for already forgotten data... Do dumb counting. */
1128 if (dup_sack &&
1129 !after(end_seq_0, prior_snd_una) &&
1130 after(end_seq_0, tp->undo_marker))
1131 tp->undo_retrans--;
1132
1133 return dup_sack;
1134}
1135
1da177e4
LT
1136static int
1137tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1138{
6687e988 1139 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1140 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1141 unsigned char *ptr = (skb_transport_header(ack_skb) +
1142 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1143 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1144 struct sk_buff *cached_skb;
1da177e4
LT
1145 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1146 int reord = tp->packets_out;
1147 int prior_fackets;
1148 u32 lost_retrans = 0;
1149 int flag = 0;
7769f406 1150 int found_dup_sack = 0;
fda03fbb 1151 int cached_fack_count;
1da177e4 1152 int i;
fda03fbb 1153 int first_sack_index;
1da177e4 1154
d738cd8f 1155 if (!tp->sacked_out) {
1da177e4 1156 tp->fackets_out = 0;
d738cd8f
IJ
1157 tp->highest_sack = tp->snd_una;
1158 }
1da177e4
LT
1159 prior_fackets = tp->fackets_out;
1160
d06e021d
DM
1161 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1162 num_sacks, prior_snd_una);
1163 if (found_dup_sack)
49ff4bb4 1164 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1165
1166 /* Eliminate too old ACKs, but take into
1167 * account more or less fresh ones, they can
1168 * contain valid SACK info.
1169 */
1170 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1171 return 0;
1172
6a438bbe
SH
1173 /* SACK fastpath:
1174 * if the only SACK change is the increase of the end_seq of
1175 * the first block then only apply that SACK block
1176 * and use retrans queue hinting otherwise slowpath */
1177 flag = 1;
6f74651a
BE
1178 for (i = 0; i < num_sacks; i++) {
1179 __be32 start_seq = sp[i].start_seq;
1180 __be32 end_seq = sp[i].end_seq;
6a438bbe 1181
6f74651a 1182 if (i == 0) {
6a438bbe
SH
1183 if (tp->recv_sack_cache[i].start_seq != start_seq)
1184 flag = 0;
1185 } else {
1186 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1187 (tp->recv_sack_cache[i].end_seq != end_seq))
1188 flag = 0;
1189 }
1190 tp->recv_sack_cache[i].start_seq = start_seq;
1191 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1192 }
8a3c3a97
BE
1193 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1194 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1195 tp->recv_sack_cache[i].start_seq = 0;
1196 tp->recv_sack_cache[i].end_seq = 0;
1197 }
6a438bbe 1198
fda03fbb 1199 first_sack_index = 0;
6a438bbe
SH
1200 if (flag)
1201 num_sacks = 1;
1202 else {
1203 int j;
1204 tp->fastpath_skb_hint = NULL;
1205
1206 /* order SACK blocks to allow in order walk of the retrans queue */
1207 for (i = num_sacks-1; i > 0; i--) {
1208 for (j = 0; j < i; j++){
1209 if (after(ntohl(sp[j].start_seq),
1210 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1211 struct tcp_sack_block_wire tmp;
1212
1213 tmp = sp[j];
1214 sp[j] = sp[j+1];
1215 sp[j+1] = tmp;
fda03fbb
BE
1216
1217 /* Track where the first SACK block goes to */
1218 if (j == first_sack_index)
1219 first_sack_index = j+1;
6a438bbe
SH
1220 }
1221
1222 }
1223 }
1224 }
1225
1226 /* clear flag as used for different purpose in following code */
1227 flag = 0;
1228
fda03fbb
BE
1229 /* Use SACK fastpath hint if valid */
1230 cached_skb = tp->fastpath_skb_hint;
1231 cached_fack_count = tp->fastpath_cnt_hint;
1232 if (!cached_skb) {
fe067e8a 1233 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1234 cached_fack_count = 0;
1235 }
1236
6a438bbe
SH
1237 for (i=0; i<num_sacks; i++, sp++) {
1238 struct sk_buff *skb;
1239 __u32 start_seq = ntohl(sp->start_seq);
1240 __u32 end_seq = ntohl(sp->end_seq);
1241 int fack_count;
7769f406 1242 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1243
18f02545
IJ
1244 if (!tcp_is_sackblock_valid(tp, dup_sack, start_seq, end_seq)) {
1245 if (dup_sack) {
1246 if (!tp->undo_marker)
1247 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDNOUNDO);
1248 else
1249 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKIGNOREDOLD);
93e68020
IJ
1250 } else {
1251 /* Don't count olds caused by ACK reordering */
1252 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1253 !after(end_seq, tp->snd_una))
1254 continue;
18f02545 1255 NET_INC_STATS_BH(LINUX_MIB_TCPSACKDISCARD);
93e68020 1256 }
5b3c9882 1257 continue;
18f02545 1258 }
5b3c9882 1259
fda03fbb
BE
1260 skb = cached_skb;
1261 fack_count = cached_fack_count;
1da177e4
LT
1262
1263 /* Event "B" in the comment above. */
1264 if (after(end_seq, tp->high_seq))
1265 flag |= FLAG_DATA_LOST;
1266
fe067e8a 1267 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1268 int in_sack, pcount;
1269 u8 sacked;
1da177e4 1270
fe067e8a
DM
1271 if (skb == tcp_send_head(sk))
1272 break;
1273
fda03fbb
BE
1274 cached_skb = skb;
1275 cached_fack_count = fack_count;
1276 if (i == first_sack_index) {
1277 tp->fastpath_skb_hint = skb;
1278 tp->fastpath_cnt_hint = fack_count;
1279 }
6a438bbe 1280
1da177e4
LT
1281 /* The retransmission queue is always in order, so
1282 * we can short-circuit the walk early.
1283 */
6475be16 1284 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1285 break;
1286
3c05d92e
HX
1287 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1288 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1289
6475be16
DM
1290 pcount = tcp_skb_pcount(skb);
1291
3c05d92e
HX
1292 if (pcount > 1 && !in_sack &&
1293 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1294 unsigned int pkt_len;
1295
3c05d92e
HX
1296 in_sack = !after(start_seq,
1297 TCP_SKB_CB(skb)->seq);
1298
1299 if (!in_sack)
6475be16
DM
1300 pkt_len = (start_seq -
1301 TCP_SKB_CB(skb)->seq);
1302 else
1303 pkt_len = (end_seq -
1304 TCP_SKB_CB(skb)->seq);
7967168c 1305 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1306 break;
1307 pcount = tcp_skb_pcount(skb);
1308 }
1309
1310 fack_count += pcount;
1da177e4 1311
6475be16
DM
1312 sacked = TCP_SKB_CB(skb)->sacked;
1313
1da177e4
LT
1314 /* Account D-SACK for retransmitted packet. */
1315 if ((dup_sack && in_sack) &&
1316 (sacked & TCPCB_RETRANS) &&
1317 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1318 tp->undo_retrans--;
1319
1320 /* The frame is ACKed. */
1321 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1322 if (sacked&TCPCB_RETRANS) {
1323 if ((dup_sack && in_sack) &&
1324 (sacked&TCPCB_SACKED_ACKED))
1325 reord = min(fack_count, reord);
1326 } else {
1327 /* If it was in a hole, we detected reordering. */
1328 if (fack_count < prior_fackets &&
1329 !(sacked&TCPCB_SACKED_ACKED))
1330 reord = min(fack_count, reord);
1331 }
1332
1333 /* Nothing to do; acked frame is about to be dropped. */
1334 continue;
1335 }
1336
1337 if ((sacked&TCPCB_SACKED_RETRANS) &&
1338 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1339 (!lost_retrans || after(end_seq, lost_retrans)))
1340 lost_retrans = end_seq;
1341
1342 if (!in_sack)
1343 continue;
1344
1345 if (!(sacked&TCPCB_SACKED_ACKED)) {
1346 if (sacked & TCPCB_SACKED_RETRANS) {
1347 /* If the segment is not tagged as lost,
1348 * we do not clear RETRANS, believing
1349 * that retransmission is still in flight.
1350 */
1351 if (sacked & TCPCB_LOST) {
1352 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1353 tp->lost_out -= tcp_skb_pcount(skb);
1354 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1355
1356 /* clear lost hint */
1357 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1358 }
1359 } else {
1360 /* New sack for not retransmitted frame,
1361 * which was in hole. It is reordering.
1362 */
1363 if (!(sacked & TCPCB_RETRANS) &&
1364 fack_count < prior_fackets)
1365 reord = min(fack_count, reord);
1366
1367 if (sacked & TCPCB_LOST) {
1368 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1369 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1370
1371 /* clear lost hint */
1372 tp->retransmit_skb_hint = NULL;
1da177e4 1373 }
4dc2665e
IJ
1374 /* SACK enhanced F-RTO detection.
1375 * Set flag if and only if non-rexmitted
1376 * segments below frto_highmark are
1377 * SACKed (RFC4138; Appendix B).
1378 * Clearing correct due to in-order walk
1379 */
1380 if (after(end_seq, tp->frto_highmark)) {
1381 flag &= ~FLAG_ONLY_ORIG_SACKED;
1382 } else {
1383 if (!(sacked & TCPCB_RETRANS))
1384 flag |= FLAG_ONLY_ORIG_SACKED;
1385 }
1da177e4
LT
1386 }
1387
1388 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1389 flag |= FLAG_DATA_SACKED;
1390 tp->sacked_out += tcp_skb_pcount(skb);
1391
1392 if (fack_count > tp->fackets_out)
1393 tp->fackets_out = fack_count;
d738cd8f
IJ
1394
1395 if (after(TCP_SKB_CB(skb)->seq,
1396 tp->highest_sack))
1397 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1398 } else {
1399 if (dup_sack && (sacked&TCPCB_RETRANS))
1400 reord = min(fack_count, reord);
1401 }
1402
1403 /* D-SACK. We can detect redundant retransmission
1404 * in S|R and plain R frames and clear it.
1405 * undo_retrans is decreased above, L|R frames
1406 * are accounted above as well.
1407 */
1408 if (dup_sack &&
1409 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1410 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1411 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1412 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1413 }
1414 }
1415 }
1416
1417 /* Check for lost retransmit. This superb idea is
1418 * borrowed from "ratehalving". Event "C".
1419 * Later note: FACK people cheated me again 8),
1420 * we have to account for reordering! Ugly,
1421 * but should help.
1422 */
6687e988 1423 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1424 struct sk_buff *skb;
1425
fe067e8a
DM
1426 tcp_for_write_queue(skb, sk) {
1427 if (skb == tcp_send_head(sk))
1428 break;
1da177e4
LT
1429 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1430 break;
1431 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1432 continue;
1433 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1434 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
e60402d0 1435 (tcp_is_fack(tp) ||
1da177e4
LT
1436 !before(lost_retrans,
1437 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1438 tp->mss_cache))) {
1da177e4
LT
1439 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1440 tp->retrans_out -= tcp_skb_pcount(skb);
1441
6a438bbe
SH
1442 /* clear lost hint */
1443 tp->retransmit_skb_hint = NULL;
1444
1da177e4
LT
1445 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1446 tp->lost_out += tcp_skb_pcount(skb);
1447 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1448 flag |= FLAG_DATA_SACKED;
1449 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1450 }
1451 }
1452 }
1453 }
1454
86426c22
IJ
1455 tcp_verify_left_out(tp);
1456
288035f9 1457 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1458 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1459 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1460
1461#if FASTRETRANS_DEBUG > 0
1462 BUG_TRAP((int)tp->sacked_out >= 0);
1463 BUG_TRAP((int)tp->lost_out >= 0);
1464 BUG_TRAP((int)tp->retrans_out >= 0);
1465 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1466#endif
1467 return flag;
1468}
1469
95eacd27
IJ
1470/* If we receive more dupacks than we expected counting segments
1471 * in assumption of absent reordering, interpret this as reordering.
1472 * The only another reason could be bug in receiver TCP.
30935cf4 1473 */
4ddf6676
IJ
1474static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1475{
1476 struct tcp_sock *tp = tcp_sk(sk);
1477 u32 holes;
1478
1479 holes = max(tp->lost_out, 1U);
1480 holes = min(holes, tp->packets_out);
1481
1482 if ((tp->sacked_out + holes) > tp->packets_out) {
1483 tp->sacked_out = tp->packets_out - holes;
1484 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1485 }
1486}
1487
1488/* Emulate SACKs for SACKless connection: account for a new dupack. */
1489
1490static void tcp_add_reno_sack(struct sock *sk)
1491{
1492 struct tcp_sock *tp = tcp_sk(sk);
1493 tp->sacked_out++;
1494 tcp_check_reno_reordering(sk, 0);
005903bc 1495 tcp_verify_left_out(tp);
4ddf6676
IJ
1496}
1497
1498/* Account for ACK, ACKing some data in Reno Recovery phase. */
1499
1500static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1501{
1502 struct tcp_sock *tp = tcp_sk(sk);
1503
1504 if (acked > 0) {
1505 /* One ACK acked hole. The rest eat duplicate ACKs. */
1506 if (acked-1 >= tp->sacked_out)
1507 tp->sacked_out = 0;
1508 else
1509 tp->sacked_out -= acked-1;
1510 }
1511 tcp_check_reno_reordering(sk, acked);
005903bc 1512 tcp_verify_left_out(tp);
4ddf6676
IJ
1513}
1514
1515static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1516{
1517 tp->sacked_out = 0;
4ddf6676
IJ
1518}
1519
95eacd27
IJ
1520/* F-RTO can only be used if TCP has never retransmitted anything other than
1521 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1522 */
46d0de4e 1523int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1524{
1525 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1526 struct sk_buff *skb;
1527
575ee714 1528 if (!sysctl_tcp_frto)
46d0de4e 1529 return 0;
bdaae17d 1530
4dc2665e
IJ
1531 if (IsSackFrto())
1532 return 1;
1533
46d0de4e
IJ
1534 /* Avoid expensive walking of rexmit queue if possible */
1535 if (tp->retrans_out > 1)
1536 return 0;
1537
fe067e8a
DM
1538 skb = tcp_write_queue_head(sk);
1539 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1540 tcp_for_write_queue_from(skb, sk) {
1541 if (skb == tcp_send_head(sk))
1542 break;
46d0de4e
IJ
1543 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1544 return 0;
1545 /* Short-circuit when first non-SACKed skb has been checked */
1546 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1547 break;
1548 }
1549 return 1;
bdaae17d
IJ
1550}
1551
30935cf4
IJ
1552/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1553 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1554 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1555 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1556 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1557 * bits are handled if the Loss state is really to be entered (in
1558 * tcp_enter_frto_loss).
7487c48c
IJ
1559 *
1560 * Do like tcp_enter_loss() would; when RTO expires the second time it
1561 * does:
1562 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1563 */
1564void tcp_enter_frto(struct sock *sk)
1565{
6687e988 1566 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1567 struct tcp_sock *tp = tcp_sk(sk);
1568 struct sk_buff *skb;
1569
7487c48c 1570 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1571 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1572 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1573 !icsk->icsk_retransmits)) {
6687e988 1574 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1575 /* Our state is too optimistic in ssthresh() call because cwnd
1576 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1577 * recovery has not yet completed. Pattern would be this: RTO,
1578 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1579 * up here twice).
1580 * RFC4138 should be more specific on what to do, even though
1581 * RTO is quite unlikely to occur after the first Cumulative ACK
1582 * due to back-off and complexity of triggering events ...
1583 */
1584 if (tp->frto_counter) {
1585 u32 stored_cwnd;
1586 stored_cwnd = tp->snd_cwnd;
1587 tp->snd_cwnd = 2;
1588 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1589 tp->snd_cwnd = stored_cwnd;
1590 } else {
1591 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1592 }
1593 /* ... in theory, cong.control module could do "any tricks" in
1594 * ssthresh(), which means that ca_state, lost bits and lost_out
1595 * counter would have to be faked before the call occurs. We
1596 * consider that too expensive, unlikely and hacky, so modules
1597 * using these in ssthresh() must deal these incompatibility
1598 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1599 */
6687e988 1600 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1601 }
1602
1da177e4
LT
1603 tp->undo_marker = tp->snd_una;
1604 tp->undo_retrans = 0;
1605
fe067e8a 1606 skb = tcp_write_queue_head(sk);
009a2e3e
IJ
1607 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1608 tp->undo_marker = 0;
d1a54c6a 1609 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1610 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1611 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1612 }
005903bc 1613 tcp_verify_left_out(tp);
1da177e4 1614
4dc2665e
IJ
1615 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1616 * The last condition is necessary at least in tp->frto_counter case.
1617 */
1618 if (IsSackFrto() && (tp->frto_counter ||
1619 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1620 after(tp->high_seq, tp->snd_una)) {
1621 tp->frto_highmark = tp->high_seq;
1622 } else {
1623 tp->frto_highmark = tp->snd_nxt;
1624 }
7b0eb22b
IJ
1625 tcp_set_ca_state(sk, TCP_CA_Disorder);
1626 tp->high_seq = tp->snd_nxt;
7487c48c 1627 tp->frto_counter = 1;
1da177e4
LT
1628}
1629
1630/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1631 * which indicates that we should follow the traditional RTO recovery,
1632 * i.e. mark everything lost and do go-back-N retransmission.
1633 */
d1a54c6a 1634static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1635{
1636 struct tcp_sock *tp = tcp_sk(sk);
1637 struct sk_buff *skb;
1da177e4 1638
1da177e4 1639 tp->lost_out = 0;
d1a54c6a 1640 tp->retrans_out = 0;
e60402d0 1641 if (tcp_is_reno(tp))
9bff40fd 1642 tcp_reset_reno_sack(tp);
1da177e4 1643
fe067e8a
DM
1644 tcp_for_write_queue(skb, sk) {
1645 if (skb == tcp_send_head(sk))
1646 break;
d1a54c6a
IJ
1647 /*
1648 * Count the retransmission made on RTO correctly (only when
1649 * waiting for the first ACK and did not get it)...
1650 */
1651 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1652 /* For some reason this R-bit might get cleared? */
1653 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1654 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1655 /* ...enter this if branch just for the first segment */
1656 flag |= FLAG_DATA_ACKED;
1657 } else {
009a2e3e
IJ
1658 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
1659 tp->undo_marker = 0;
d1a54c6a
IJ
1660 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1661 }
1da177e4 1662
9bff40fd
IJ
1663 /* Don't lost mark skbs that were fwd transmitted after RTO */
1664 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1665 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1666 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1667 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1668 }
1669 }
005903bc 1670 tcp_verify_left_out(tp);
1da177e4 1671
95c4922b 1672 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1673 tp->snd_cwnd_cnt = 0;
1674 tp->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
1675 tp->frto_counter = 0;
1676
1677 tp->reordering = min_t(unsigned int, tp->reordering,
1678 sysctl_tcp_reordering);
6687e988 1679 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1680 tp->high_seq = tp->frto_highmark;
1681 TCP_ECN_queue_cwr(tp);
6a438bbe 1682
b7689205 1683 tcp_clear_retrans_hints_partial(tp);
1da177e4
LT
1684}
1685
1686void tcp_clear_retrans(struct tcp_sock *tp)
1687{
1da177e4
LT
1688 tp->retrans_out = 0;
1689
1690 tp->fackets_out = 0;
1691 tp->sacked_out = 0;
1692 tp->lost_out = 0;
1693
1694 tp->undo_marker = 0;
1695 tp->undo_retrans = 0;
1696}
1697
1698/* Enter Loss state. If "how" is not zero, forget all SACK information
1699 * and reset tags completely, otherwise preserve SACKs. If receiver
1700 * dropped its ofo queue, we will know this due to reneging detection.
1701 */
1702void tcp_enter_loss(struct sock *sk, int how)
1703{
6687e988 1704 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1705 struct tcp_sock *tp = tcp_sk(sk);
1706 struct sk_buff *skb;
1707 int cnt = 0;
1708
1709 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1710 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1711 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1712 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1713 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1714 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1715 }
1716 tp->snd_cwnd = 1;
1717 tp->snd_cwnd_cnt = 0;
1718 tp->snd_cwnd_stamp = tcp_time_stamp;
1719
9772efb9 1720 tp->bytes_acked = 0;
1da177e4
LT
1721 tcp_clear_retrans(tp);
1722
b7689205
IJ
1723 if (!how) {
1724 /* Push undo marker, if it was plain RTO and nothing
1725 * was retransmitted. */
1da177e4 1726 tp->undo_marker = tp->snd_una;
b7689205
IJ
1727 tcp_clear_retrans_hints_partial(tp);
1728 } else {
1729 tcp_clear_all_retrans_hints(tp);
1730 }
1da177e4 1731
fe067e8a
DM
1732 tcp_for_write_queue(skb, sk) {
1733 if (skb == tcp_send_head(sk))
1734 break;
1da177e4
LT
1735 cnt += tcp_skb_pcount(skb);
1736 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1737 tp->undo_marker = 0;
1738 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1739 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1740 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1741 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1742 tp->lost_out += tcp_skb_pcount(skb);
1743 } else {
1744 tp->sacked_out += tcp_skb_pcount(skb);
1745 tp->fackets_out = cnt;
1746 }
1747 }
005903bc 1748 tcp_verify_left_out(tp);
1da177e4
LT
1749
1750 tp->reordering = min_t(unsigned int, tp->reordering,
1751 sysctl_tcp_reordering);
6687e988 1752 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1753 tp->high_seq = tp->snd_nxt;
1754 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1755 /* Abort FRTO algorithm if one is in progress */
1756 tp->frto_counter = 0;
1da177e4
LT
1757}
1758
463c84b9 1759static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1760{
1761 struct sk_buff *skb;
1762
1763 /* If ACK arrived pointing to a remembered SACK,
1764 * it means that our remembered SACKs do not reflect
1765 * real state of receiver i.e.
1766 * receiver _host_ is heavily congested (or buggy).
1767 * Do processing similar to RTO timeout.
1768 */
fe067e8a 1769 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1770 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1771 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1772 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1773
1774 tcp_enter_loss(sk, 1);
6687e988 1775 icsk->icsk_retransmits++;
fe067e8a 1776 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1777 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1778 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1779 return 1;
1780 }
1781 return 0;
1782}
1783
1784static inline int tcp_fackets_out(struct tcp_sock *tp)
1785{
e60402d0 1786 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1787}
1788
463c84b9 1789static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1790{
463c84b9 1791 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1792}
1793
9e412ba7 1794static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1795{
9e412ba7
IJ
1796 struct tcp_sock *tp = tcp_sk(sk);
1797
1da177e4 1798 return tp->packets_out &&
fe067e8a 1799 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1800}
1801
1802/* Linux NewReno/SACK/FACK/ECN state machine.
1803 * --------------------------------------
1804 *
1805 * "Open" Normal state, no dubious events, fast path.
1806 * "Disorder" In all the respects it is "Open",
1807 * but requires a bit more attention. It is entered when
1808 * we see some SACKs or dupacks. It is split of "Open"
1809 * mainly to move some processing from fast path to slow one.
1810 * "CWR" CWND was reduced due to some Congestion Notification event.
1811 * It can be ECN, ICMP source quench, local device congestion.
1812 * "Recovery" CWND was reduced, we are fast-retransmitting.
1813 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1814 *
1815 * tcp_fastretrans_alert() is entered:
1816 * - each incoming ACK, if state is not "Open"
1817 * - when arrived ACK is unusual, namely:
1818 * * SACK
1819 * * Duplicate ACK.
1820 * * ECN ECE.
1821 *
1822 * Counting packets in flight is pretty simple.
1823 *
1824 * in_flight = packets_out - left_out + retrans_out
1825 *
1826 * packets_out is SND.NXT-SND.UNA counted in packets.
1827 *
1828 * retrans_out is number of retransmitted segments.
1829 *
1830 * left_out is number of segments left network, but not ACKed yet.
1831 *
1832 * left_out = sacked_out + lost_out
1833 *
1834 * sacked_out: Packets, which arrived to receiver out of order
1835 * and hence not ACKed. With SACKs this number is simply
1836 * amount of SACKed data. Even without SACKs
1837 * it is easy to give pretty reliable estimate of this number,
1838 * counting duplicate ACKs.
1839 *
1840 * lost_out: Packets lost by network. TCP has no explicit
1841 * "loss notification" feedback from network (for now).
1842 * It means that this number can be only _guessed_.
1843 * Actually, it is the heuristics to predict lossage that
1844 * distinguishes different algorithms.
1845 *
1846 * F.e. after RTO, when all the queue is considered as lost,
1847 * lost_out = packets_out and in_flight = retrans_out.
1848 *
1849 * Essentially, we have now two algorithms counting
1850 * lost packets.
1851 *
1852 * FACK: It is the simplest heuristics. As soon as we decided
1853 * that something is lost, we decide that _all_ not SACKed
1854 * packets until the most forward SACK are lost. I.e.
1855 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1856 * It is absolutely correct estimate, if network does not reorder
1857 * packets. And it loses any connection to reality when reordering
1858 * takes place. We use FACK by default until reordering
1859 * is suspected on the path to this destination.
1860 *
1861 * NewReno: when Recovery is entered, we assume that one segment
1862 * is lost (classic Reno). While we are in Recovery and
1863 * a partial ACK arrives, we assume that one more packet
1864 * is lost (NewReno). This heuristics are the same in NewReno
1865 * and SACK.
1866 *
1867 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1868 * deflation etc. CWND is real congestion window, never inflated, changes
1869 * only according to classic VJ rules.
1870 *
1871 * Really tricky (and requiring careful tuning) part of algorithm
1872 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1873 * The first determines the moment _when_ we should reduce CWND and,
1874 * hence, slow down forward transmission. In fact, it determines the moment
1875 * when we decide that hole is caused by loss, rather than by a reorder.
1876 *
1877 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1878 * holes, caused by lost packets.
1879 *
1880 * And the most logically complicated part of algorithm is undo
1881 * heuristics. We detect false retransmits due to both too early
1882 * fast retransmit (reordering) and underestimated RTO, analyzing
1883 * timestamps and D-SACKs. When we detect that some segments were
1884 * retransmitted by mistake and CWND reduction was wrong, we undo
1885 * window reduction and abort recovery phase. This logic is hidden
1886 * inside several functions named tcp_try_undo_<something>.
1887 */
1888
1889/* This function decides, when we should leave Disordered state
1890 * and enter Recovery phase, reducing congestion window.
1891 *
1892 * Main question: may we further continue forward transmission
1893 * with the same cwnd?
1894 */
9e412ba7 1895static int tcp_time_to_recover(struct sock *sk)
1da177e4 1896{
9e412ba7 1897 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1898 __u32 packets_out;
1899
52c63f1e
IJ
1900 /* Do not perform any recovery during FRTO algorithm */
1901 if (tp->frto_counter)
1902 return 0;
1903
1da177e4
LT
1904 /* Trick#1: The loss is proven. */
1905 if (tp->lost_out)
1906 return 1;
1907
1908 /* Not-A-Trick#2 : Classic rule... */
1909 if (tcp_fackets_out(tp) > tp->reordering)
1910 return 1;
1911
1912 /* Trick#3 : when we use RFC2988 timer restart, fast
1913 * retransmit can be triggered by timeout of queue head.
1914 */
9e412ba7 1915 if (tcp_head_timedout(sk))
1da177e4
LT
1916 return 1;
1917
1918 /* Trick#4: It is still not OK... But will it be useful to delay
1919 * recovery more?
1920 */
1921 packets_out = tp->packets_out;
1922 if (packets_out <= tp->reordering &&
1923 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1924 !tcp_may_send_now(sk)) {
1da177e4
LT
1925 /* We have nothing to send. This connection is limited
1926 * either by receiver window or by application.
1927 */
1928 return 1;
1929 }
1930
1931 return 0;
1932}
1933
d8f4f223
IJ
1934/* RFC: This is from the original, I doubt that this is necessary at all:
1935 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1936 * retransmitted past LOST markings in the first place? I'm not fully sure
1937 * about undo and end of connection cases, which can cause R without L?
1938 */
1939static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1940 struct sk_buff *skb)
1941{
1942 if ((tp->retransmit_skb_hint != NULL) &&
1943 before(TCP_SKB_CB(skb)->seq,
1944 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1945 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1946}
1947
1da177e4 1948/* Mark head of queue up as lost. */
9e412ba7 1949static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1950 int packets, u32 high_seq)
1951{
9e412ba7 1952 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1953 struct sk_buff *skb;
6a438bbe 1954 int cnt;
1da177e4 1955
6a438bbe
SH
1956 BUG_TRAP(packets <= tp->packets_out);
1957 if (tp->lost_skb_hint) {
1958 skb = tp->lost_skb_hint;
1959 cnt = tp->lost_cnt_hint;
1960 } else {
fe067e8a 1961 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1962 cnt = 0;
1963 }
1da177e4 1964
fe067e8a
DM
1965 tcp_for_write_queue_from(skb, sk) {
1966 if (skb == tcp_send_head(sk))
1967 break;
6a438bbe
SH
1968 /* TODO: do this better */
1969 /* this is not the most efficient way to do this... */
1970 tp->lost_skb_hint = skb;
1971 tp->lost_cnt_hint = cnt;
1972 cnt += tcp_skb_pcount(skb);
1973 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1974 break;
1975 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1976 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1977 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1978 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1979 }
1980 }
005903bc 1981 tcp_verify_left_out(tp);
1da177e4
LT
1982}
1983
1984/* Account newly detected lost packet(s) */
1985
9e412ba7 1986static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1987{
9e412ba7
IJ
1988 struct tcp_sock *tp = tcp_sk(sk);
1989
e60402d0 1990 if (tcp_is_fack(tp)) {
1da177e4
LT
1991 int lost = tp->fackets_out - tp->reordering;
1992 if (lost <= 0)
1993 lost = 1;
9e412ba7 1994 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 1995 } else {
9e412ba7 1996 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
1997 }
1998
1999 /* New heuristics: it is possible only after we switched
2000 * to restart timer each time when something is ACKed.
2001 * Hence, we can detect timed out packets during fast
2002 * retransmit without falling to slow start.
2003 */
e60402d0 2004 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
2005 struct sk_buff *skb;
2006
6a438bbe 2007 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 2008 : tcp_write_queue_head(sk);
6a438bbe 2009
fe067e8a
DM
2010 tcp_for_write_queue_from(skb, sk) {
2011 if (skb == tcp_send_head(sk))
2012 break;
6a438bbe
SH
2013 if (!tcp_skb_timedout(sk, skb))
2014 break;
2015
2016 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
2017 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2018 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 2019 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
2020 }
2021 }
6a438bbe
SH
2022
2023 tp->scoreboard_skb_hint = skb;
2024
005903bc 2025 tcp_verify_left_out(tp);
1da177e4
LT
2026 }
2027}
2028
2029/* CWND moderation, preventing bursts due to too big ACKs
2030 * in dubious situations.
2031 */
2032static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2033{
2034 tp->snd_cwnd = min(tp->snd_cwnd,
2035 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
2036 tp->snd_cwnd_stamp = tcp_time_stamp;
2037}
2038
72dc5b92
SH
2039/* Lower bound on congestion window is slow start threshold
2040 * unless congestion avoidance choice decides to overide it.
2041 */
2042static inline u32 tcp_cwnd_min(const struct sock *sk)
2043{
2044 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2045
2046 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2047}
2048
1da177e4 2049/* Decrease cwnd each second ack. */
1e757f99 2050static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 2051{
6687e988 2052 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2053 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 2054
49ff4bb4 2055 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 2056 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
2057 tp->snd_cwnd_cnt = decr&1;
2058 decr >>= 1;
1da177e4 2059
1e757f99
IJ
2060 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2061 tp->snd_cwnd -= decr;
1da177e4 2062
1e757f99
IJ
2063 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
2064 tp->snd_cwnd_stamp = tcp_time_stamp;
2065 }
1da177e4
LT
2066}
2067
2068/* Nothing was retransmitted or returned timestamp is less
2069 * than timestamp of the first retransmission.
2070 */
2071static inline int tcp_packet_delayed(struct tcp_sock *tp)
2072{
2073 return !tp->retrans_stamp ||
2074 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2075 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
2076}
2077
2078/* Undo procedures. */
2079
2080#if FASTRETRANS_DEBUG > 1
9e412ba7 2081static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 2082{
9e412ba7 2083 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2084 struct inet_sock *inet = inet_sk(sk);
9e412ba7 2085
1da177e4
LT
2086 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
2087 msg,
2088 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 2089 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
2090 tp->snd_ssthresh, tp->prior_ssthresh,
2091 tp->packets_out);
2092}
2093#else
2094#define DBGUNDO(x...) do { } while (0)
2095#endif
2096
6687e988 2097static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 2098{
6687e988
ACM
2099 struct tcp_sock *tp = tcp_sk(sk);
2100
1da177e4 2101 if (tp->prior_ssthresh) {
6687e988
ACM
2102 const struct inet_connection_sock *icsk = inet_csk(sk);
2103
2104 if (icsk->icsk_ca_ops->undo_cwnd)
2105 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2106 else
2107 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2108
2109 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2110 tp->snd_ssthresh = tp->prior_ssthresh;
2111 TCP_ECN_withdraw_cwr(tp);
2112 }
2113 } else {
2114 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2115 }
2116 tcp_moderate_cwnd(tp);
2117 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2118
2119 /* There is something screwy going on with the retrans hints after
2120 an undo */
5af4ec23 2121 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2122}
2123
2124static inline int tcp_may_undo(struct tcp_sock *tp)
2125{
2126 return tp->undo_marker &&
2127 (!tp->undo_retrans || tcp_packet_delayed(tp));
2128}
2129
2130/* People celebrate: "We love our President!" */
9e412ba7 2131static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2132{
9e412ba7
IJ
2133 struct tcp_sock *tp = tcp_sk(sk);
2134
1da177e4
LT
2135 if (tcp_may_undo(tp)) {
2136 /* Happy end! We did not retransmit anything
2137 * or our original transmission succeeded.
2138 */
9e412ba7 2139 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2140 tcp_undo_cwr(sk, 1);
2141 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2142 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2143 else
2144 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2145 tp->undo_marker = 0;
2146 }
e60402d0 2147 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2148 /* Hold old state until something *above* high_seq
2149 * is ACKed. For Reno it is MUST to prevent false
2150 * fast retransmits (RFC2582). SACK TCP is safe. */
2151 tcp_moderate_cwnd(tp);
2152 return 1;
2153 }
6687e988 2154 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2155 return 0;
2156}
2157
2158/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2159static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2160{
9e412ba7
IJ
2161 struct tcp_sock *tp = tcp_sk(sk);
2162
1da177e4 2163 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2164 DBGUNDO(sk, "D-SACK");
6687e988 2165 tcp_undo_cwr(sk, 1);
1da177e4
LT
2166 tp->undo_marker = 0;
2167 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2168 }
2169}
2170
2171/* Undo during fast recovery after partial ACK. */
2172
9e412ba7 2173static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2174{
9e412ba7 2175 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2176 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2177 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2178
2179 if (tcp_may_undo(tp)) {
2180 /* Plain luck! Hole if filled with delayed
2181 * packet, rather than with a retransmit.
2182 */
2183 if (tp->retrans_out == 0)
2184 tp->retrans_stamp = 0;
2185
6687e988 2186 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2187
9e412ba7 2188 DBGUNDO(sk, "Hoe");
6687e988 2189 tcp_undo_cwr(sk, 0);
1da177e4
LT
2190 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2191
2192 /* So... Do not make Hoe's retransmit yet.
2193 * If the first packet was delayed, the rest
2194 * ones are most probably delayed as well.
2195 */
2196 failed = 0;
2197 }
2198 return failed;
2199}
2200
2201/* Undo during loss recovery after partial ACK. */
9e412ba7 2202static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2203{
9e412ba7
IJ
2204 struct tcp_sock *tp = tcp_sk(sk);
2205
1da177e4
LT
2206 if (tcp_may_undo(tp)) {
2207 struct sk_buff *skb;
fe067e8a
DM
2208 tcp_for_write_queue(skb, sk) {
2209 if (skb == tcp_send_head(sk))
2210 break;
1da177e4
LT
2211 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2212 }
6a438bbe 2213
5af4ec23 2214 tcp_clear_all_retrans_hints(tp);
6a438bbe 2215
9e412ba7 2216 DBGUNDO(sk, "partial loss");
1da177e4 2217 tp->lost_out = 0;
6687e988 2218 tcp_undo_cwr(sk, 1);
1da177e4 2219 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2220 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2221 tp->undo_marker = 0;
e60402d0 2222 if (tcp_is_sack(tp))
6687e988 2223 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2224 return 1;
2225 }
2226 return 0;
2227}
2228
6687e988 2229static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2230{
6687e988 2231 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2232 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2233 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2234 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2235}
2236
9e412ba7 2237static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2238{
9e412ba7
IJ
2239 struct tcp_sock *tp = tcp_sk(sk);
2240
86426c22
IJ
2241 tcp_verify_left_out(tp);
2242
1da177e4
LT
2243 if (tp->retrans_out == 0)
2244 tp->retrans_stamp = 0;
2245
2246 if (flag&FLAG_ECE)
3cfe3baa 2247 tcp_enter_cwr(sk, 1);
1da177e4 2248
6687e988 2249 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2250 int state = TCP_CA_Open;
2251
d02596e3 2252 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2253 state = TCP_CA_Disorder;
2254
6687e988
ACM
2255 if (inet_csk(sk)->icsk_ca_state != state) {
2256 tcp_set_ca_state(sk, state);
1da177e4
LT
2257 tp->high_seq = tp->snd_nxt;
2258 }
2259 tcp_moderate_cwnd(tp);
2260 } else {
1e757f99 2261 tcp_cwnd_down(sk, flag);
1da177e4
LT
2262 }
2263}
2264
5d424d5a
JH
2265static void tcp_mtup_probe_failed(struct sock *sk)
2266{
2267 struct inet_connection_sock *icsk = inet_csk(sk);
2268
2269 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2270 icsk->icsk_mtup.probe_size = 0;
2271}
2272
2273static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2274{
2275 struct tcp_sock *tp = tcp_sk(sk);
2276 struct inet_connection_sock *icsk = inet_csk(sk);
2277
2278 /* FIXME: breaks with very large cwnd */
2279 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2280 tp->snd_cwnd = tp->snd_cwnd *
2281 tcp_mss_to_mtu(sk, tp->mss_cache) /
2282 icsk->icsk_mtup.probe_size;
2283 tp->snd_cwnd_cnt = 0;
2284 tp->snd_cwnd_stamp = tcp_time_stamp;
2285 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2286
2287 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2288 icsk->icsk_mtup.probe_size = 0;
2289 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2290}
2291
2292
1da177e4
LT
2293/* Process an event, which can update packets-in-flight not trivially.
2294 * Main goal of this function is to calculate new estimate for left_out,
2295 * taking into account both packets sitting in receiver's buffer and
2296 * packets lost by network.
2297 *
2298 * Besides that it does CWND reduction, when packet loss is detected
2299 * and changes state of machine.
2300 *
2301 * It does _not_ decide what to send, it is made in function
2302 * tcp_xmit_retransmit_queue().
2303 */
2304static void
1b6d427b 2305tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2306{
6687e988 2307 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2308 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2309 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2310 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2311 (tp->fackets_out > tp->reordering));
1da177e4
LT
2312
2313 /* Some technical things:
2314 * 1. Reno does not count dupacks (sacked_out) automatically. */
2315 if (!tp->packets_out)
2316 tp->sacked_out = 0;
91fed7a1
IJ
2317
2318 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
1da177e4
LT
2319 tp->fackets_out = 0;
2320
e905a9ed 2321 /* Now state machine starts.
1da177e4
LT
2322 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2323 if (flag&FLAG_ECE)
2324 tp->prior_ssthresh = 0;
2325
2326 /* B. In all the states check for reneging SACKs. */
463c84b9 2327 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2328 return;
2329
2330 /* C. Process data loss notification, provided it is valid. */
2331 if ((flag&FLAG_DATA_LOST) &&
2332 before(tp->snd_una, tp->high_seq) &&
6687e988 2333 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2334 tp->fackets_out > tp->reordering) {
9e412ba7 2335 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2336 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2337 }
2338
005903bc
IJ
2339 /* D. Check consistency of the current state. */
2340 tcp_verify_left_out(tp);
1da177e4
LT
2341
2342 /* E. Check state exit conditions. State can be terminated
2343 * when high_seq is ACKed. */
6687e988 2344 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2345 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2346 tp->retrans_stamp = 0;
2347 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2348 switch (icsk->icsk_ca_state) {
1da177e4 2349 case TCP_CA_Loss:
6687e988 2350 icsk->icsk_retransmits = 0;
9e412ba7 2351 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2352 return;
2353 break;
2354
2355 case TCP_CA_CWR:
2356 /* CWR is to be held something *above* high_seq
2357 * is ACKed for CWR bit to reach receiver. */
2358 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2359 tcp_complete_cwr(sk);
2360 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2361 }
2362 break;
2363
2364 case TCP_CA_Disorder:
9e412ba7 2365 tcp_try_undo_dsack(sk);
1da177e4
LT
2366 if (!tp->undo_marker ||
2367 /* For SACK case do not Open to allow to undo
2368 * catching for all duplicate ACKs. */
e60402d0 2369 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2370 tp->undo_marker = 0;
6687e988 2371 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2372 }
2373 break;
2374
2375 case TCP_CA_Recovery:
e60402d0 2376 if (tcp_is_reno(tp))
1da177e4 2377 tcp_reset_reno_sack(tp);
9e412ba7 2378 if (tcp_try_undo_recovery(sk))
1da177e4 2379 return;
6687e988 2380 tcp_complete_cwr(sk);
1da177e4
LT
2381 break;
2382 }
2383 }
2384
2385 /* F. Process state. */
6687e988 2386 switch (icsk->icsk_ca_state) {
1da177e4 2387 case TCP_CA_Recovery:
2e605294 2388 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2389 if (tcp_is_reno(tp) && is_dupack)
6687e988 2390 tcp_add_reno_sack(sk);
1b6d427b
IJ
2391 } else
2392 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2393 break;
2394 case TCP_CA_Loss:
2395 if (flag&FLAG_DATA_ACKED)
6687e988 2396 icsk->icsk_retransmits = 0;
9e412ba7 2397 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2398 tcp_moderate_cwnd(tp);
2399 tcp_xmit_retransmit_queue(sk);
2400 return;
2401 }
6687e988 2402 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2403 return;
2404 /* Loss is undone; fall through to processing in Open state. */
2405 default:
e60402d0 2406 if (tcp_is_reno(tp)) {
2e605294 2407 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2408 tcp_reset_reno_sack(tp);
2409 if (is_dupack)
6687e988 2410 tcp_add_reno_sack(sk);
1da177e4
LT
2411 }
2412
6687e988 2413 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2414 tcp_try_undo_dsack(sk);
1da177e4 2415
9e412ba7
IJ
2416 if (!tcp_time_to_recover(sk)) {
2417 tcp_try_to_open(sk, flag);
1da177e4
LT
2418 return;
2419 }
2420
5d424d5a
JH
2421 /* MTU probe failure: don't reduce cwnd */
2422 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2423 icsk->icsk_mtup.probe_size &&
0e7b1368 2424 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2425 tcp_mtup_probe_failed(sk);
2426 /* Restores the reduction we did in tcp_mtup_probe() */
2427 tp->snd_cwnd++;
2428 tcp_simple_retransmit(sk);
2429 return;
2430 }
2431
1da177e4
LT
2432 /* Otherwise enter Recovery state */
2433
e60402d0 2434 if (tcp_is_reno(tp))
1da177e4
LT
2435 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2436 else
2437 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2438
2439 tp->high_seq = tp->snd_nxt;
2440 tp->prior_ssthresh = 0;
2441 tp->undo_marker = tp->snd_una;
2442 tp->undo_retrans = tp->retrans_out;
2443
6687e988 2444 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2445 if (!(flag&FLAG_ECE))
6687e988
ACM
2446 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2447 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2448 TCP_ECN_queue_cwr(tp);
2449 }
2450
9772efb9 2451 tp->bytes_acked = 0;
1da177e4 2452 tp->snd_cwnd_cnt = 0;
6687e988 2453 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2454 }
2455
2e605294 2456 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2457 tcp_update_scoreboard(sk);
1e757f99 2458 tcp_cwnd_down(sk, flag);
1da177e4
LT
2459 tcp_xmit_retransmit_queue(sk);
2460}
2461
2462/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2463 * with this code. (Supersedes RFC1323)
1da177e4 2464 */
2d2abbab 2465static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2466{
1da177e4
LT
2467 /* RTTM Rule: A TSecr value received in a segment is used to
2468 * update the averaged RTT measurement only if the segment
2469 * acknowledges some new data, i.e., only if it advances the
2470 * left edge of the send window.
2471 *
2472 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2473 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2474 *
2475 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2476 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2477 * samples are accepted even from very old segments: f.e., when rtt=1
2478 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2479 * answer arrives rto becomes 120 seconds! If at least one of segments
2480 * in window is lost... Voila. --ANK (010210)
2481 */
463c84b9
ACM
2482 struct tcp_sock *tp = tcp_sk(sk);
2483 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2484 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2485 tcp_set_rto(sk);
2486 inet_csk(sk)->icsk_backoff = 0;
2487 tcp_bound_rto(sk);
1da177e4
LT
2488}
2489
2d2abbab 2490static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2491{
2492 /* We don't have a timestamp. Can only use
2493 * packets that are not retransmitted to determine
2494 * rtt estimates. Also, we must not reset the
2495 * backoff for rto until we get a non-retransmitted
2496 * packet. This allows us to deal with a situation
2497 * where the network delay has increased suddenly.
2498 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2499 */
2500
2501 if (flag & FLAG_RETRANS_DATA_ACKED)
2502 return;
2503
2d2abbab 2504 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2505 tcp_set_rto(sk);
2506 inet_csk(sk)->icsk_backoff = 0;
2507 tcp_bound_rto(sk);
1da177e4
LT
2508}
2509
463c84b9 2510static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2511 const s32 seq_rtt)
1da177e4 2512{
463c84b9 2513 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2514 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2515 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2516 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2517 else if (seq_rtt >= 0)
2d2abbab 2518 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2519}
2520
16751347 2521static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2522 u32 in_flight, int good)
1da177e4 2523{
6687e988 2524 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2525 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2526 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2527}
2528
1da177e4
LT
2529/* Restart timer after forward progress on connection.
2530 * RFC2988 recommends to restart timer to now+rto.
2531 */
6728e7dc 2532static void tcp_rearm_rto(struct sock *sk)
1da177e4 2533{
9e412ba7
IJ
2534 struct tcp_sock *tp = tcp_sk(sk);
2535
1da177e4 2536 if (!tp->packets_out) {
463c84b9 2537 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2538 } else {
3f421baa 2539 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2540 }
2541}
2542
7c46a03e 2543/* If we get here, the whole TSO packet has not been acked. */
13fcf850 2544static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
1da177e4
LT
2545{
2546 struct tcp_sock *tp = tcp_sk(sk);
7c46a03e 2547 u32 packets_acked;
1da177e4 2548
7c46a03e 2549 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
1da177e4
LT
2550
2551 packets_acked = tcp_skb_pcount(skb);
7c46a03e 2552 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
1da177e4
LT
2553 return 0;
2554 packets_acked -= tcp_skb_pcount(skb);
2555
2556 if (packets_acked) {
1da177e4 2557 BUG_ON(tcp_skb_pcount(skb) == 0);
7c46a03e 2558 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
1da177e4
LT
2559 }
2560
13fcf850 2561 return packets_acked;
1da177e4
LT
2562}
2563
7c46a03e
IJ
2564/* Remove acknowledged frames from the retransmission queue. If our packet
2565 * is before the ack sequence we can discard it as it's confirmed to have
2566 * arrived at the other end.
2567 */
2568static int tcp_clean_rtx_queue(struct sock *sk, s32 *seq_rtt_p)
1da177e4
LT
2569{
2570 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2571 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2572 struct sk_buff *skb;
7c46a03e 2573 u32 now = tcp_time_stamp;
13fcf850 2574 int fully_acked = 1;
7c46a03e 2575 int flag = 0;
6418204f 2576 int prior_packets = tp->packets_out;
7c46a03e 2577 s32 seq_rtt = -1;
b9ce204f 2578 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2579
7c46a03e 2580 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
e905a9ed 2581 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
13fcf850
IJ
2582 u32 end_seq;
2583 u32 packets_acked;
7c46a03e 2584 u8 sacked = scb->sacked;
1da177e4 2585
1da177e4 2586 if (after(scb->end_seq, tp->snd_una)) {
13fcf850
IJ
2587 if (tcp_skb_pcount(skb) == 1 ||
2588 !after(tp->snd_una, scb->seq))
2589 break;
2590
2591 packets_acked = tcp_tso_acked(sk, skb);
2592 if (!packets_acked)
2593 break;
2594
2595 fully_acked = 0;
2596 end_seq = tp->snd_una;
2597 } else {
2598 packets_acked = tcp_skb_pcount(skb);
2599 end_seq = scb->end_seq;
1da177e4
LT
2600 }
2601
5d424d5a 2602 /* MTU probing checks */
7c46a03e
IJ
2603 if (fully_acked && icsk->icsk_mtup.probe_size &&
2604 !after(tp->mtu_probe.probe_seq_end, scb->end_seq)) {
2605 tcp_mtup_probe_success(sk, skb);
5d424d5a
JH
2606 }
2607
1da177e4
LT
2608 if (sacked) {
2609 if (sacked & TCPCB_RETRANS) {
2de979bd 2610 if (sacked & TCPCB_SACKED_RETRANS)
13fcf850 2611 tp->retrans_out -= packets_acked;
7c46a03e 2612 flag |= FLAG_RETRANS_DATA_ACKED;
1da177e4 2613 seq_rtt = -1;
009a2e3e
IJ
2614 if ((flag & FLAG_DATA_ACKED) ||
2615 (packets_acked > 1))
2616 flag |= FLAG_NONHEAD_RETRANS_ACKED;
2d2abbab 2617 } else if (seq_rtt < 0) {
1da177e4 2618 seq_rtt = now - scb->when;
13fcf850
IJ
2619 if (fully_acked)
2620 last_ackt = skb->tstamp;
a61bbcf2 2621 }
7c46a03e 2622
1da177e4 2623 if (sacked & TCPCB_SACKED_ACKED)
13fcf850 2624 tp->sacked_out -= packets_acked;
1da177e4 2625 if (sacked & TCPCB_LOST)
13fcf850 2626 tp->lost_out -= packets_acked;
7c46a03e
IJ
2627
2628 if ((sacked & TCPCB_URG) && tp->urg_mode &&
2629 !before(end_seq, tp->snd_up))
2630 tp->urg_mode = 0;
2d2abbab 2631 } else if (seq_rtt < 0) {
1da177e4 2632 seq_rtt = now - scb->when;
13fcf850
IJ
2633 if (fully_acked)
2634 last_ackt = skb->tstamp;
2d2abbab 2635 }
13fcf850
IJ
2636 tp->packets_out -= packets_acked;
2637
009a2e3e
IJ
2638 /* Initial outgoing SYN's get put onto the write_queue
2639 * just like anything else we transmit. It is not
2640 * true data, and if we misinform our callers that
2641 * this ACK acks real data, we will erroneously exit
2642 * connection startup slow start one packet too
2643 * quickly. This is severely frowned upon behavior.
2644 */
2645 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2646 flag |= FLAG_DATA_ACKED;
2647 } else {
2648 flag |= FLAG_SYN_ACKED;
2649 tp->retrans_stamp = 0;
2650 }
2651
13fcf850
IJ
2652 if (!fully_acked)
2653 break;
2654
fe067e8a 2655 tcp_unlink_write_queue(skb, sk);
1da177e4 2656 sk_stream_free_skb(sk, skb);
5af4ec23 2657 tcp_clear_all_retrans_hints(tp);
1da177e4
LT
2658 }
2659
7c46a03e 2660 if (flag & FLAG_ACKED) {
6418204f 2661 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2662 const struct tcp_congestion_ops *ca_ops
2663 = inet_csk(sk)->icsk_ca_ops;
2664
7c46a03e 2665 tcp_ack_update_rtt(sk, flag, seq_rtt);
6728e7dc 2666 tcp_rearm_rto(sk);
317a76f9 2667
91fed7a1 2668 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
13fcf850
IJ
2669 /* hint's skb might be NULL but we don't need to care */
2670 tp->fastpath_cnt_hint -= min_t(u32, pkts_acked,
2671 tp->fastpath_cnt_hint);
e60402d0 2672 if (tcp_is_reno(tp))
1b6d427b
IJ
2673 tcp_remove_reno_sacks(sk, pkts_acked);
2674
30cfd0ba
SH
2675 if (ca_ops->pkts_acked) {
2676 s32 rtt_us = -1;
2677
2678 /* Is the ACK triggering packet unambiguous? */
7c46a03e 2679 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
30cfd0ba
SH
2680 /* High resolution needed and available? */
2681 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2682 !ktime_equal(last_ackt,
2683 net_invalid_timestamp()))
2684 rtt_us = ktime_us_delta(ktime_get_real(),
2685 last_ackt);
2686 else if (seq_rtt > 0)
2687 rtt_us = jiffies_to_usecs(seq_rtt);
2688 }
b9ce204f 2689
30cfd0ba
SH
2690 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2691 }
1da177e4
LT
2692 }
2693
2694#if FASTRETRANS_DEBUG > 0
2695 BUG_TRAP((int)tp->sacked_out >= 0);
2696 BUG_TRAP((int)tp->lost_out >= 0);
2697 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2698 if (!tp->packets_out && tcp_is_sack(tp)) {
6687e988 2699 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2700 if (tp->lost_out) {
2701 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2702 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2703 tp->lost_out = 0;
2704 }
2705 if (tp->sacked_out) {
2706 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2707 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2708 tp->sacked_out = 0;
2709 }
2710 if (tp->retrans_out) {
2711 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2712 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2713 tp->retrans_out = 0;
2714 }
2715 }
2716#endif
2717 *seq_rtt_p = seq_rtt;
7c46a03e 2718 return flag;
1da177e4
LT
2719}
2720
2721static void tcp_ack_probe(struct sock *sk)
2722{
463c84b9
ACM
2723 const struct tcp_sock *tp = tcp_sk(sk);
2724 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2725
2726 /* Was it a usable window open? */
2727
fe067e8a 2728 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2729 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2730 icsk->icsk_backoff = 0;
2731 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2732 /* Socket must be waked up by subsequent tcp_data_snd_check().
2733 * This function is not for random using!
2734 */
2735 } else {
463c84b9 2736 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2737 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2738 TCP_RTO_MAX);
1da177e4
LT
2739 }
2740}
2741
6687e988 2742static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2743{
2744 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2745 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2746}
2747
6687e988 2748static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2749{
6687e988 2750 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2751 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2752 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2753}
2754
2755/* Check that window update is acceptable.
2756 * The function assumes that snd_una<=ack<=snd_next.
2757 */
463c84b9
ACM
2758static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2759 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2760{
2761 return (after(ack, tp->snd_una) ||
2762 after(ack_seq, tp->snd_wl1) ||
2763 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2764}
2765
2766/* Update our send window.
2767 *
2768 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2769 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2770 */
9e412ba7
IJ
2771static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2772 u32 ack_seq)
1da177e4 2773{
9e412ba7 2774 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2775 int flag = 0;
aa8223c7 2776 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2777
aa8223c7 2778 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2779 nwin <<= tp->rx_opt.snd_wscale;
2780
2781 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2782 flag |= FLAG_WIN_UPDATE;
2783 tcp_update_wl(tp, ack, ack_seq);
2784
2785 if (tp->snd_wnd != nwin) {
2786 tp->snd_wnd = nwin;
2787
2788 /* Note, it is the only place, where
2789 * fast path is recovered for sending TCP.
2790 */
2ad41065 2791 tp->pred_flags = 0;
9e412ba7 2792 tcp_fast_path_check(sk);
1da177e4
LT
2793
2794 if (nwin > tp->max_window) {
2795 tp->max_window = nwin;
d83d8461 2796 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2797 }
2798 }
2799 }
2800
2801 tp->snd_una = ack;
2802
2803 return flag;
2804}
2805
9ead9a1d
IJ
2806/* A very conservative spurious RTO response algorithm: reduce cwnd and
2807 * continue in congestion avoidance.
2808 */
2809static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2810{
2811 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2812 tp->snd_cwnd_cnt = 0;
46323655 2813 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2814 tcp_moderate_cwnd(tp);
2815}
2816
3cfe3baa
IJ
2817/* A conservative spurious RTO response algorithm: reduce cwnd using
2818 * rate halving and continue in congestion avoidance.
2819 */
2820static void tcp_ratehalving_spur_to_response(struct sock *sk)
2821{
3cfe3baa 2822 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2823}
2824
e317f6f6 2825static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2826{
e317f6f6
IJ
2827 if (flag&FLAG_ECE)
2828 tcp_ratehalving_spur_to_response(sk);
2829 else
2830 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2831}
2832
30935cf4
IJ
2833/* F-RTO spurious RTO detection algorithm (RFC4138)
2834 *
6408d206
IJ
2835 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2836 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2837 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2838 * On First ACK, send two new segments out.
2839 * On Second ACK, RTO was likely spurious. Do spurious response (response
2840 * algorithm is not part of the F-RTO detection algorithm
2841 * given in RFC4138 but can be selected separately).
2842 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2843 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2844 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2845 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2846 *
2847 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2848 * original window even after we transmit two new data segments.
2849 *
4dc2665e
IJ
2850 * SACK version:
2851 * on first step, wait until first cumulative ACK arrives, then move to
2852 * the second step. In second step, the next ACK decides.
2853 *
30935cf4
IJ
2854 * F-RTO is implemented (mainly) in four functions:
2855 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2856 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2857 * called when tcp_use_frto() showed green light
2858 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2859 * - tcp_enter_frto_loss() is called if there is not enough evidence
2860 * to prove that the RTO is indeed spurious. It transfers the control
2861 * from F-RTO to the conventional RTO recovery
2862 */
2e605294 2863static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2864{
2865 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2866
005903bc 2867 tcp_verify_left_out(tp);
e905a9ed 2868
7487c48c
IJ
2869 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2870 if (flag&FLAG_DATA_ACKED)
2871 inet_csk(sk)->icsk_retransmits = 0;
2872
009a2e3e
IJ
2873 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
2874 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
2875 tp->undo_marker = 0;
2876
95c4922b 2877 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2878 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2879 return 1;
95c4922b
IJ
2880 }
2881
e60402d0 2882 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2883 /* RFC4138 shortcoming in step 2; should also have case c):
2884 * ACK isn't duplicate nor advances window, e.g., opposite dir
2885 * data, winupdate
2886 */
2e605294 2887 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2888 return 1;
2889
2890 if (!(flag&FLAG_DATA_ACKED)) {
2891 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2892 flag);
2893 return 1;
2894 }
2895 } else {
2896 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2897 /* Prevent sending of new data. */
2898 tp->snd_cwnd = min(tp->snd_cwnd,
2899 tcp_packets_in_flight(tp));
2900 return 1;
2901 }
6408d206 2902
d551e454 2903 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2904 (!(flag&FLAG_FORWARD_PROGRESS) ||
2905 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2906 /* RFC4138 shortcoming (see comment above) */
2907 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2908 return 1;
2909
2910 tcp_enter_frto_loss(sk, 3, flag);
2911 return 1;
2912 }
1da177e4
LT
2913 }
2914
2915 if (tp->frto_counter == 1) {
575ee714
IJ
2916 /* Sending of the next skb must be allowed or no FRTO */
2917 if (!tcp_send_head(sk) ||
2918 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2919 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2920 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2921 flag);
575ee714
IJ
2922 return 1;
2923 }
2924
1da177e4 2925 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2926 tp->frto_counter = 2;
7c9a4a5b 2927 return 1;
d551e454 2928 } else {
3cfe3baa
IJ
2929 switch (sysctl_tcp_frto_response) {
2930 case 2:
e317f6f6 2931 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2932 break;
2933 case 1:
2934 tcp_conservative_spur_to_response(tp);
2935 break;
2936 default:
2937 tcp_ratehalving_spur_to_response(sk);
2938 break;
3ff50b79 2939 }
94d0ea77 2940 tp->frto_counter = 0;
009a2e3e 2941 tp->undo_marker = 0;
912d8f0b 2942 NET_INC_STATS_BH(LINUX_MIB_TCPSPURIOUSRTOS);
1da177e4 2943 }
7c9a4a5b 2944 return 0;
1da177e4
LT
2945}
2946
1da177e4
LT
2947/* This routine deals with incoming acks, but not outgoing ones. */
2948static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2949{
6687e988 2950 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2951 struct tcp_sock *tp = tcp_sk(sk);
2952 u32 prior_snd_una = tp->snd_una;
2953 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2954 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2955 u32 prior_in_flight;
2956 s32 seq_rtt;
2957 int prior_packets;
7c9a4a5b 2958 int frto_cwnd = 0;
1da177e4
LT
2959
2960 /* If the ack is newer than sent or older than previous acks
2961 * then we can probably ignore it.
2962 */
2963 if (after(ack, tp->snd_nxt))
2964 goto uninteresting_ack;
2965
2966 if (before(ack, prior_snd_una))
2967 goto old_ack;
2968
2e605294
IJ
2969 if (after(ack, prior_snd_una))
2970 flag |= FLAG_SND_UNA_ADVANCED;
2971
3fdf3f0c
DO
2972 if (sysctl_tcp_abc) {
2973 if (icsk->icsk_ca_state < TCP_CA_CWR)
2974 tp->bytes_acked += ack - prior_snd_una;
2975 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2976 /* we assume just one segment left network */
2977 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2978 }
9772efb9 2979
1da177e4
LT
2980 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2981 /* Window is constant, pure forward advance.
2982 * No more checks are required.
2983 * Note, we use the fact that SND.UNA>=SND.WL2.
2984 */
2985 tcp_update_wl(tp, ack, ack_seq);
2986 tp->snd_una = ack;
1da177e4
LT
2987 flag |= FLAG_WIN_UPDATE;
2988
6687e988 2989 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2990
1da177e4
LT
2991 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2992 } else {
2993 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2994 flag |= FLAG_DATA;
2995 else
2996 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2997
9e412ba7 2998 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
2999
3000 if (TCP_SKB_CB(skb)->sacked)
3001 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3002
aa8223c7 3003 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
3004 flag |= FLAG_ECE;
3005
6687e988 3006 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
3007 }
3008
3009 /* We passed data and got it acked, remove any soft error
3010 * log. Something worked...
3011 */
3012 sk->sk_err_soft = 0;
3013 tp->rcv_tstamp = tcp_time_stamp;
3014 prior_packets = tp->packets_out;
3015 if (!prior_packets)
3016 goto no_queue;
3017
3018 prior_in_flight = tcp_packets_in_flight(tp);
3019
3020 /* See if we can take anything off of the retransmit queue. */
2d2abbab 3021 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
3022
3023 if (tp->frto_counter)
2e605294 3024 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 3025
6687e988 3026 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 3027 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
3028 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3029 tcp_may_raise_cwnd(sk, flag))
16751347 3030 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 3031 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 3032 } else {
7c9a4a5b 3033 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 3034 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
3035 }
3036
3037 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
3038 dst_confirm(sk->sk_dst_cache);
3039
3040 return 1;
3041
3042no_queue:
6687e988 3043 icsk->icsk_probes_out = 0;
1da177e4
LT
3044
3045 /* If this ack opens up a zero window, clear backoff. It was
3046 * being used to time the probes, and is probably far higher than
3047 * it needs to be for normal retransmission.
3048 */
fe067e8a 3049 if (tcp_send_head(sk))
1da177e4
LT
3050 tcp_ack_probe(sk);
3051 return 1;
3052
3053old_ack:
3054 if (TCP_SKB_CB(skb)->sacked)
3055 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3056
3057uninteresting_ack:
3058 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3059 return 0;
3060}
3061
3062
3063/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3064 * But, this can also be called on packets in the established flow when
3065 * the fast version below fails.
3066 */
3067void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
3068{
3069 unsigned char *ptr;
aa8223c7 3070 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3071 int length=(th->doff*4)-sizeof(struct tcphdr);
3072
3073 ptr = (unsigned char *)(th + 1);
3074 opt_rx->saw_tstamp = 0;
3075
2de979bd 3076 while (length > 0) {
e905a9ed 3077 int opcode=*ptr++;
1da177e4
LT
3078 int opsize;
3079
3080 switch (opcode) {
3081 case TCPOPT_EOL:
3082 return;
3083 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3084 length--;
3085 continue;
3086 default:
3087 opsize=*ptr++;
3088 if (opsize < 2) /* "silly options" */
3089 return;
3090 if (opsize > length)
3091 return; /* don't parse partial options */
2de979bd 3092 switch (opcode) {
1da177e4 3093 case TCPOPT_MSS:
2de979bd 3094 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3095 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3096 if (in_mss) {
3097 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3098 in_mss = opt_rx->user_mss;
3099 opt_rx->mss_clamp = in_mss;
3100 }
3101 }
3102 break;
3103 case TCPOPT_WINDOW:
2de979bd 3104 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3105 if (sysctl_tcp_window_scaling) {
3106 __u8 snd_wscale = *(__u8 *) ptr;
3107 opt_rx->wscale_ok = 1;
3108 if (snd_wscale > 14) {
2de979bd 3109 if (net_ratelimit())
1da177e4
LT
3110 printk(KERN_INFO "tcp_parse_options: Illegal window "
3111 "scaling value %d >14 received.\n",
3112 snd_wscale);
3113 snd_wscale = 14;
3114 }
3115 opt_rx->snd_wscale = snd_wscale;
3116 }
3117 break;
3118 case TCPOPT_TIMESTAMP:
2de979bd 3119 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3120 if ((estab && opt_rx->tstamp_ok) ||
3121 (!estab && sysctl_tcp_timestamps)) {
3122 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3123 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3124 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3125 }
3126 }
3127 break;
3128 case TCPOPT_SACK_PERM:
2de979bd 3129 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3130 if (sysctl_tcp_sack) {
3131 opt_rx->sack_ok = 1;
3132 tcp_sack_reset(opt_rx);
3133 }
3134 }
3135 break;
3136
3137 case TCPOPT_SACK:
2de979bd 3138 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3139 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3140 opt_rx->sack_ok) {
3141 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3142 }
d7ea5b91 3143 break;
cfb6eeb4
YH
3144#ifdef CONFIG_TCP_MD5SIG
3145 case TCPOPT_MD5SIG:
3146 /*
3147 * The MD5 Hash has already been
3148 * checked (see tcp_v{4,6}_do_rcv()).
3149 */
3150 break;
3151#endif
3ff50b79
SH
3152 }
3153
e905a9ed
YH
3154 ptr+=opsize-2;
3155 length-=opsize;
3ff50b79 3156 }
1da177e4
LT
3157 }
3158}
3159
3160/* Fast parse options. This hopes to only see timestamps.
3161 * If it is wrong it falls back on tcp_parse_options().
3162 */
40efc6fa
SH
3163static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3164 struct tcp_sock *tp)
1da177e4
LT
3165{
3166 if (th->doff == sizeof(struct tcphdr)>>2) {
3167 tp->rx_opt.saw_tstamp = 0;
3168 return 0;
3169 } else if (tp->rx_opt.tstamp_ok &&
3170 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3171 __be32 *ptr = (__be32 *)(th + 1);
3172 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3173 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3174 tp->rx_opt.saw_tstamp = 1;
3175 ++ptr;
3176 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3177 ++ptr;
3178 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3179 return 1;
3180 }
3181 }
3182 tcp_parse_options(skb, &tp->rx_opt, 1);
3183 return 1;
3184}
3185
3186static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3187{
3188 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3189 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3190}
3191
3192static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3193{
3194 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3195 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3196 * extra check below makes sure this can only happen
3197 * for pure ACK frames. -DaveM
3198 *
3199 * Not only, also it occurs for expired timestamps.
3200 */
3201
2de979bd 3202 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3203 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3204 tcp_store_ts_recent(tp);
3205 }
3206}
3207
3208/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3209 *
3210 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3211 * it can pass through stack. So, the following predicate verifies that
3212 * this segment is not used for anything but congestion avoidance or
3213 * fast retransmit. Moreover, we even are able to eliminate most of such
3214 * second order effects, if we apply some small "replay" window (~RTO)
3215 * to timestamp space.
3216 *
3217 * All these measures still do not guarantee that we reject wrapped ACKs
3218 * on networks with high bandwidth, when sequence space is recycled fastly,
3219 * but it guarantees that such events will be very rare and do not affect
3220 * connection seriously. This doesn't look nice, but alas, PAWS is really
3221 * buggy extension.
3222 *
3223 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3224 * states that events when retransmit arrives after original data are rare.
3225 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3226 * the biggest problem on large power networks even with minor reordering.
3227 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3228 * up to bandwidth of 18Gigabit/sec. 8) ]
3229 */
3230
463c84b9 3231static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3232{
463c84b9 3233 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3234 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3235 u32 seq = TCP_SKB_CB(skb)->seq;
3236 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3237
3238 return (/* 1. Pure ACK with correct sequence number. */
3239 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3240
3241 /* 2. ... and duplicate ACK. */
3242 ack == tp->snd_una &&
3243
3244 /* 3. ... and does not update window. */
3245 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3246
3247 /* 4. ... and sits in replay window. */
463c84b9 3248 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3249}
3250
463c84b9 3251static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3252{
463c84b9 3253 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3254 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3255 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3256 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3257}
3258
3259/* Check segment sequence number for validity.
3260 *
3261 * Segment controls are considered valid, if the segment
3262 * fits to the window after truncation to the window. Acceptability
3263 * of data (and SYN, FIN, of course) is checked separately.
3264 * See tcp_data_queue(), for example.
3265 *
3266 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3267 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3268 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3269 * (borrowed from freebsd)
3270 */
3271
3272static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3273{
3274 return !before(end_seq, tp->rcv_wup) &&
3275 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3276}
3277
3278/* When we get a reset we do this. */
3279static void tcp_reset(struct sock *sk)
3280{
3281 /* We want the right error as BSD sees it (and indeed as we do). */
3282 switch (sk->sk_state) {
3283 case TCP_SYN_SENT:
3284 sk->sk_err = ECONNREFUSED;
3285 break;
3286 case TCP_CLOSE_WAIT:
3287 sk->sk_err = EPIPE;
3288 break;
3289 case TCP_CLOSE:
3290 return;
3291 default:
3292 sk->sk_err = ECONNRESET;
3293 }
3294
3295 if (!sock_flag(sk, SOCK_DEAD))
3296 sk->sk_error_report(sk);
3297
3298 tcp_done(sk);
3299}
3300
3301/*
3302 * Process the FIN bit. This now behaves as it is supposed to work
3303 * and the FIN takes effect when it is validly part of sequence
3304 * space. Not before when we get holes.
3305 *
3306 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3307 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3308 * TIME-WAIT)
3309 *
3310 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3311 * close and we go into CLOSING (and later onto TIME-WAIT)
3312 *
3313 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3314 */
3315static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3316{
3317 struct tcp_sock *tp = tcp_sk(sk);
3318
463c84b9 3319 inet_csk_schedule_ack(sk);
1da177e4
LT
3320
3321 sk->sk_shutdown |= RCV_SHUTDOWN;
3322 sock_set_flag(sk, SOCK_DONE);
3323
3324 switch (sk->sk_state) {
3325 case TCP_SYN_RECV:
3326 case TCP_ESTABLISHED:
3327 /* Move to CLOSE_WAIT */
3328 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3329 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3330 break;
3331
3332 case TCP_CLOSE_WAIT:
3333 case TCP_CLOSING:
3334 /* Received a retransmission of the FIN, do
3335 * nothing.
3336 */
3337 break;
3338 case TCP_LAST_ACK:
3339 /* RFC793: Remain in the LAST-ACK state. */
3340 break;
3341
3342 case TCP_FIN_WAIT1:
3343 /* This case occurs when a simultaneous close
3344 * happens, we must ack the received FIN and
3345 * enter the CLOSING state.
3346 */
3347 tcp_send_ack(sk);
3348 tcp_set_state(sk, TCP_CLOSING);
3349 break;
3350 case TCP_FIN_WAIT2:
3351 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3352 tcp_send_ack(sk);
3353 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3354 break;
3355 default:
3356 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3357 * cases we should never reach this piece of code.
3358 */
3359 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3360 __FUNCTION__, sk->sk_state);
3361 break;
3ff50b79 3362 }
1da177e4
LT
3363
3364 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3365 * Probably, we should reset in this case. For now drop them.
3366 */
3367 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3368 if (tcp_is_sack(tp))
1da177e4
LT
3369 tcp_sack_reset(&tp->rx_opt);
3370 sk_stream_mem_reclaim(sk);
3371
3372 if (!sock_flag(sk, SOCK_DEAD)) {
3373 sk->sk_state_change(sk);
3374
3375 /* Do not send POLL_HUP for half duplex close. */
3376 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3377 sk->sk_state == TCP_CLOSE)
3378 sk_wake_async(sk, 1, POLL_HUP);
3379 else
3380 sk_wake_async(sk, 1, POLL_IN);
3381 }
3382}
3383
40efc6fa 3384static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3385{
3386 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3387 if (before(seq, sp->start_seq))
3388 sp->start_seq = seq;
3389 if (after(end_seq, sp->end_seq))
3390 sp->end_seq = end_seq;
3391 return 1;
3392 }
3393 return 0;
3394}
3395
40efc6fa 3396static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3397{
e60402d0 3398 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3399 if (before(seq, tp->rcv_nxt))
3400 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3401 else
3402 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3403
3404 tp->rx_opt.dsack = 1;
3405 tp->duplicate_sack[0].start_seq = seq;
3406 tp->duplicate_sack[0].end_seq = end_seq;
3407 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3408 }
3409}
3410
40efc6fa 3411static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3412{
3413 if (!tp->rx_opt.dsack)
3414 tcp_dsack_set(tp, seq, end_seq);
3415 else
3416 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3417}
3418
3419static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3420{
3421 struct tcp_sock *tp = tcp_sk(sk);
3422
3423 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3424 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3425 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3426 tcp_enter_quickack_mode(sk);
1da177e4 3427
e60402d0 3428 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3429 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3430
3431 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3432 end_seq = tp->rcv_nxt;
3433 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3434 }
3435 }
3436
3437 tcp_send_ack(sk);
3438}
3439
3440/* These routines update the SACK block as out-of-order packets arrive or
3441 * in-order packets close up the sequence space.
3442 */
3443static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3444{
3445 int this_sack;
3446 struct tcp_sack_block *sp = &tp->selective_acks[0];
3447 struct tcp_sack_block *swalk = sp+1;
3448
3449 /* See if the recent change to the first SACK eats into
3450 * or hits the sequence space of other SACK blocks, if so coalesce.
3451 */
3452 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3453 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3454 int i;
3455
3456 /* Zap SWALK, by moving every further SACK up by one slot.
3457 * Decrease num_sacks.
3458 */
3459 tp->rx_opt.num_sacks--;
3460 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3461 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3462 sp[i] = sp[i+1];
3463 continue;
3464 }
3465 this_sack++, swalk++;
3466 }
3467}
3468
40efc6fa 3469static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3470{
3471 __u32 tmp;
3472
3473 tmp = sack1->start_seq;
3474 sack1->start_seq = sack2->start_seq;
3475 sack2->start_seq = tmp;
3476
3477 tmp = sack1->end_seq;
3478 sack1->end_seq = sack2->end_seq;
3479 sack2->end_seq = tmp;
3480}
3481
3482static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3483{
3484 struct tcp_sock *tp = tcp_sk(sk);
3485 struct tcp_sack_block *sp = &tp->selective_acks[0];
3486 int cur_sacks = tp->rx_opt.num_sacks;
3487 int this_sack;
3488
3489 if (!cur_sacks)
3490 goto new_sack;
3491
3492 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3493 if (tcp_sack_extend(sp, seq, end_seq)) {
3494 /* Rotate this_sack to the first one. */
3495 for (; this_sack>0; this_sack--, sp--)
3496 tcp_sack_swap(sp, sp-1);
3497 if (cur_sacks > 1)
3498 tcp_sack_maybe_coalesce(tp);
3499 return;
3500 }
3501 }
3502
3503 /* Could not find an adjacent existing SACK, build a new one,
3504 * put it at the front, and shift everyone else down. We
3505 * always know there is at least one SACK present already here.
3506 *
3507 * If the sack array is full, forget about the last one.
3508 */
3509 if (this_sack >= 4) {
3510 this_sack--;
3511 tp->rx_opt.num_sacks--;
3512 sp--;
3513 }
2de979bd 3514 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3515 *sp = *(sp-1);
3516
3517new_sack:
3518 /* Build the new head SACK, and we're done. */
3519 sp->start_seq = seq;
3520 sp->end_seq = end_seq;
3521 tp->rx_opt.num_sacks++;
3522 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3523}
3524
3525/* RCV.NXT advances, some SACKs should be eaten. */
3526
3527static void tcp_sack_remove(struct tcp_sock *tp)
3528{
3529 struct tcp_sack_block *sp = &tp->selective_acks[0];
3530 int num_sacks = tp->rx_opt.num_sacks;
3531 int this_sack;
3532
3533 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3534 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3535 tp->rx_opt.num_sacks = 0;
3536 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3537 return;
3538 }
3539
2de979bd 3540 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3541 /* Check if the start of the sack is covered by RCV.NXT. */
3542 if (!before(tp->rcv_nxt, sp->start_seq)) {
3543 int i;
3544
3545 /* RCV.NXT must cover all the block! */
3546 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3547
3548 /* Zap this SACK, by moving forward any other SACKS. */
3549 for (i=this_sack+1; i < num_sacks; i++)
3550 tp->selective_acks[i-1] = tp->selective_acks[i];
3551 num_sacks--;
3552 continue;
3553 }
3554 this_sack++;
3555 sp++;
3556 }
3557 if (num_sacks != tp->rx_opt.num_sacks) {
3558 tp->rx_opt.num_sacks = num_sacks;
3559 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3560 }
3561}
3562
3563/* This one checks to see if we can put data from the
3564 * out_of_order queue into the receive_queue.
3565 */
3566static void tcp_ofo_queue(struct sock *sk)
3567{
3568 struct tcp_sock *tp = tcp_sk(sk);
3569 __u32 dsack_high = tp->rcv_nxt;
3570 struct sk_buff *skb;
3571
3572 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3573 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3574 break;
3575
3576 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3577 __u32 dsack = dsack_high;
3578 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3579 dsack_high = TCP_SKB_CB(skb)->end_seq;
3580 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3581 }
3582
3583 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3584 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3585 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3586 __kfree_skb(skb);
3587 continue;
3588 }
3589 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3590 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3591 TCP_SKB_CB(skb)->end_seq);
3592
8728b834 3593 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3594 __skb_queue_tail(&sk->sk_receive_queue, skb);
3595 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3596 if (tcp_hdr(skb)->fin)
3597 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3598 }
3599}
3600
3601static int tcp_prune_queue(struct sock *sk);
3602
3603static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3604{
aa8223c7 3605 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3606 struct tcp_sock *tp = tcp_sk(sk);
3607 int eaten = -1;
3608
3609 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3610 goto drop;
3611
1da177e4
LT
3612 __skb_pull(skb, th->doff*4);
3613
3614 TCP_ECN_accept_cwr(tp, skb);
3615
3616 if (tp->rx_opt.dsack) {
3617 tp->rx_opt.dsack = 0;
3618 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3619 4 - tp->rx_opt.tstamp_ok);
3620 }
3621
3622 /* Queue data for delivery to the user.
3623 * Packets in sequence go to the receive queue.
3624 * Out of sequence packets to the out_of_order_queue.
3625 */
3626 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3627 if (tcp_receive_window(tp) == 0)
3628 goto out_of_window;
3629
3630 /* Ok. In sequence. In window. */
3631 if (tp->ucopy.task == current &&
3632 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3633 sock_owned_by_user(sk) && !tp->urg_data) {
3634 int chunk = min_t(unsigned int, skb->len,
3635 tp->ucopy.len);
3636
3637 __set_current_state(TASK_RUNNING);
3638
3639 local_bh_enable();
3640 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3641 tp->ucopy.len -= chunk;
3642 tp->copied_seq += chunk;
3643 eaten = (chunk == skb->len && !th->fin);
3644 tcp_rcv_space_adjust(sk);
3645 }
3646 local_bh_disable();
3647 }
3648
3649 if (eaten <= 0) {
3650queue_and_out:
3651 if (eaten < 0 &&
3652 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3653 !sk_stream_rmem_schedule(sk, skb))) {
3654 if (tcp_prune_queue(sk) < 0 ||
3655 !sk_stream_rmem_schedule(sk, skb))
3656 goto drop;
3657 }
3658 sk_stream_set_owner_r(skb, sk);
3659 __skb_queue_tail(&sk->sk_receive_queue, skb);
3660 }
3661 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3662 if (skb->len)
9e412ba7 3663 tcp_event_data_recv(sk, skb);
2de979bd 3664 if (th->fin)
1da177e4
LT
3665 tcp_fin(skb, sk, th);
3666
b03efcfb 3667 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3668 tcp_ofo_queue(sk);
3669
3670 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3671 * gap in queue is filled.
3672 */
b03efcfb 3673 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3674 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3675 }
3676
3677 if (tp->rx_opt.num_sacks)
3678 tcp_sack_remove(tp);
3679
9e412ba7 3680 tcp_fast_path_check(sk);
1da177e4
LT
3681
3682 if (eaten > 0)
3683 __kfree_skb(skb);
3684 else if (!sock_flag(sk, SOCK_DEAD))
3685 sk->sk_data_ready(sk, 0);
3686 return;
3687 }
3688
3689 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3690 /* A retransmit, 2nd most common case. Force an immediate ack. */
3691 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3692 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3693
3694out_of_window:
463c84b9
ACM
3695 tcp_enter_quickack_mode(sk);
3696 inet_csk_schedule_ack(sk);
1da177e4
LT
3697drop:
3698 __kfree_skb(skb);
3699 return;
3700 }
3701
3702 /* Out of window. F.e. zero window probe. */
3703 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3704 goto out_of_window;
3705
463c84b9 3706 tcp_enter_quickack_mode(sk);
1da177e4
LT
3707
3708 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3709 /* Partial packet, seq < rcv_next < end_seq */
3710 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3711 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3712 TCP_SKB_CB(skb)->end_seq);
3713
3714 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3715
1da177e4
LT
3716 /* If window is closed, drop tail of packet. But after
3717 * remembering D-SACK for its head made in previous line.
3718 */
3719 if (!tcp_receive_window(tp))
3720 goto out_of_window;
3721 goto queue_and_out;
3722 }
3723
3724 TCP_ECN_check_ce(tp, skb);
3725
3726 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3727 !sk_stream_rmem_schedule(sk, skb)) {
3728 if (tcp_prune_queue(sk) < 0 ||
3729 !sk_stream_rmem_schedule(sk, skb))
3730 goto drop;
3731 }
3732
3733 /* Disable header prediction. */
3734 tp->pred_flags = 0;
463c84b9 3735 inet_csk_schedule_ack(sk);
1da177e4
LT
3736
3737 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3738 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3739
3740 sk_stream_set_owner_r(skb, sk);
3741
3742 if (!skb_peek(&tp->out_of_order_queue)) {
3743 /* Initial out of order segment, build 1 SACK. */
e60402d0 3744 if (tcp_is_sack(tp)) {
1da177e4
LT
3745 tp->rx_opt.num_sacks = 1;
3746 tp->rx_opt.dsack = 0;
3747 tp->rx_opt.eff_sacks = 1;
3748 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3749 tp->selective_acks[0].end_seq =
3750 TCP_SKB_CB(skb)->end_seq;
3751 }
3752 __skb_queue_head(&tp->out_of_order_queue,skb);
3753 } else {
3754 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3755 u32 seq = TCP_SKB_CB(skb)->seq;
3756 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3757
3758 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3759 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3760
3761 if (!tp->rx_opt.num_sacks ||
3762 tp->selective_acks[0].end_seq != seq)
3763 goto add_sack;
3764
3765 /* Common case: data arrive in order after hole. */
3766 tp->selective_acks[0].end_seq = end_seq;
3767 return;
3768 }
3769
3770 /* Find place to insert this segment. */
3771 do {
3772 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3773 break;
3774 } while ((skb1 = skb1->prev) !=
3775 (struct sk_buff*)&tp->out_of_order_queue);
3776
3777 /* Do skb overlap to previous one? */
3778 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3779 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3780 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3781 /* All the bits are present. Drop. */
3782 __kfree_skb(skb);
3783 tcp_dsack_set(tp, seq, end_seq);
3784 goto add_sack;
3785 }
3786 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3787 /* Partial overlap. */
3788 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3789 } else {
3790 skb1 = skb1->prev;
3791 }
3792 }
3793 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3794
1da177e4
LT
3795 /* And clean segments covered by new one as whole. */
3796 while ((skb1 = skb->next) !=
3797 (struct sk_buff*)&tp->out_of_order_queue &&
3798 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3799 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3800 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3801 break;
3802 }
8728b834 3803 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3804 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3805 __kfree_skb(skb1);
3806 }
3807
3808add_sack:
e60402d0 3809 if (tcp_is_sack(tp))
1da177e4
LT
3810 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3811 }
3812}
3813
3814/* Collapse contiguous sequence of skbs head..tail with
3815 * sequence numbers start..end.
3816 * Segments with FIN/SYN are not collapsed (only because this
3817 * simplifies code)
3818 */
3819static void
8728b834
DM
3820tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3821 struct sk_buff *head, struct sk_buff *tail,
3822 u32 start, u32 end)
1da177e4
LT
3823{
3824 struct sk_buff *skb;
3825
caa20d9a 3826 /* First, check that queue is collapsible and find
1da177e4
LT
3827 * the point where collapsing can be useful. */
3828 for (skb = head; skb != tail; ) {
3829 /* No new bits? It is possible on ofo queue. */
3830 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3831 struct sk_buff *next = skb->next;
8728b834 3832 __skb_unlink(skb, list);
1da177e4
LT
3833 __kfree_skb(skb);
3834 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3835 skb = next;
3836 continue;
3837 }
3838
3839 /* The first skb to collapse is:
3840 * - not SYN/FIN and
3841 * - bloated or contains data before "start" or
3842 * overlaps to the next one.
3843 */
aa8223c7 3844 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3845 (tcp_win_from_space(skb->truesize) > skb->len ||
3846 before(TCP_SKB_CB(skb)->seq, start) ||
3847 (skb->next != tail &&
3848 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3849 break;
3850
3851 /* Decided to skip this, advance start seq. */
3852 start = TCP_SKB_CB(skb)->end_seq;
3853 skb = skb->next;
3854 }
aa8223c7 3855 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3856 return;
3857
3858 while (before(start, end)) {
3859 struct sk_buff *nskb;
3860 int header = skb_headroom(skb);
3861 int copy = SKB_MAX_ORDER(header, 0);
3862
3863 /* Too big header? This can happen with IPv6. */
3864 if (copy < 0)
3865 return;
3866 if (end-start < copy)
3867 copy = end-start;
3868 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3869 if (!nskb)
3870 return;
c51957da 3871
98e399f8 3872 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3873 skb_set_network_header(nskb, (skb_network_header(skb) -
3874 skb->head));
3875 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3876 skb->head));
1da177e4
LT
3877 skb_reserve(nskb, header);
3878 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3879 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3880 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3881 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3882 sk_stream_set_owner_r(nskb, sk);
3883
3884 /* Copy data, releasing collapsed skbs. */
3885 while (copy > 0) {
3886 int offset = start - TCP_SKB_CB(skb)->seq;
3887 int size = TCP_SKB_CB(skb)->end_seq - start;
3888
09a62660 3889 BUG_ON(offset < 0);
1da177e4
LT
3890 if (size > 0) {
3891 size = min(copy, size);
3892 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3893 BUG();
3894 TCP_SKB_CB(nskb)->end_seq += size;
3895 copy -= size;
3896 start += size;
3897 }
3898 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3899 struct sk_buff *next = skb->next;
8728b834 3900 __skb_unlink(skb, list);
1da177e4
LT
3901 __kfree_skb(skb);
3902 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3903 skb = next;
aa8223c7
ACM
3904 if (skb == tail ||
3905 tcp_hdr(skb)->syn ||
3906 tcp_hdr(skb)->fin)
1da177e4
LT
3907 return;
3908 }
3909 }
3910 }
3911}
3912
3913/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3914 * and tcp_collapse() them until all the queue is collapsed.
3915 */
3916static void tcp_collapse_ofo_queue(struct sock *sk)
3917{
3918 struct tcp_sock *tp = tcp_sk(sk);
3919 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3920 struct sk_buff *head;
3921 u32 start, end;
3922
3923 if (skb == NULL)
3924 return;
3925
3926 start = TCP_SKB_CB(skb)->seq;
3927 end = TCP_SKB_CB(skb)->end_seq;
3928 head = skb;
3929
3930 for (;;) {
3931 skb = skb->next;
3932
3933 /* Segment is terminated when we see gap or when
3934 * we are at the end of all the queue. */
3935 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3936 after(TCP_SKB_CB(skb)->seq, end) ||
3937 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3938 tcp_collapse(sk, &tp->out_of_order_queue,
3939 head, skb, start, end);
1da177e4
LT
3940 head = skb;
3941 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3942 break;
3943 /* Start new segment */
3944 start = TCP_SKB_CB(skb)->seq;
3945 end = TCP_SKB_CB(skb)->end_seq;
3946 } else {
3947 if (before(TCP_SKB_CB(skb)->seq, start))
3948 start = TCP_SKB_CB(skb)->seq;
3949 if (after(TCP_SKB_CB(skb)->end_seq, end))
3950 end = TCP_SKB_CB(skb)->end_seq;
3951 }
3952 }
3953}
3954
3955/* Reduce allocated memory if we can, trying to get
3956 * the socket within its memory limits again.
3957 *
3958 * Return less than zero if we should start dropping frames
3959 * until the socket owning process reads some of the data
3960 * to stabilize the situation.
3961 */
3962static int tcp_prune_queue(struct sock *sk)
3963{
e905a9ed 3964 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3965
3966 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3967
3968 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3969
3970 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3971 tcp_clamp_window(sk);
1da177e4
LT
3972 else if (tcp_memory_pressure)
3973 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3974
3975 tcp_collapse_ofo_queue(sk);
8728b834
DM
3976 tcp_collapse(sk, &sk->sk_receive_queue,
3977 sk->sk_receive_queue.next,
1da177e4
LT
3978 (struct sk_buff*)&sk->sk_receive_queue,
3979 tp->copied_seq, tp->rcv_nxt);
3980 sk_stream_mem_reclaim(sk);
3981
3982 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3983 return 0;
3984
3985 /* Collapsing did not help, destructive actions follow.
3986 * This must not ever occur. */
3987
3988 /* First, purge the out_of_order queue. */
b03efcfb
DM
3989 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3990 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3991 __skb_queue_purge(&tp->out_of_order_queue);
3992
3993 /* Reset SACK state. A conforming SACK implementation will
3994 * do the same at a timeout based retransmit. When a connection
3995 * is in a sad state like this, we care only about integrity
3996 * of the connection not performance.
3997 */
e60402d0 3998 if (tcp_is_sack(tp))
1da177e4
LT
3999 tcp_sack_reset(&tp->rx_opt);
4000 sk_stream_mem_reclaim(sk);
4001 }
4002
4003 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4004 return 0;
4005
4006 /* If we are really being abused, tell the caller to silently
4007 * drop receive data on the floor. It will get retransmitted
4008 * and hopefully then we'll have sufficient space.
4009 */
4010 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
4011
4012 /* Massive buffer overcommit. */
4013 tp->pred_flags = 0;
4014 return -1;
4015}
4016
4017
4018/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4019 * As additional protections, we do not touch cwnd in retransmission phases,
4020 * and if application hit its sndbuf limit recently.
4021 */
4022void tcp_cwnd_application_limited(struct sock *sk)
4023{
4024 struct tcp_sock *tp = tcp_sk(sk);
4025
6687e988 4026 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
4027 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4028 /* Limited by application or receiver window. */
d254bcdb
IJ
4029 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4030 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 4031 if (win_used < tp->snd_cwnd) {
6687e988 4032 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
4033 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4034 }
4035 tp->snd_cwnd_used = 0;
4036 }
4037 tp->snd_cwnd_stamp = tcp_time_stamp;
4038}
4039
9e412ba7 4040static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 4041{
9e412ba7
IJ
4042 struct tcp_sock *tp = tcp_sk(sk);
4043
0d9901df
DM
4044 /* If the user specified a specific send buffer setting, do
4045 * not modify it.
4046 */
4047 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4048 return 0;
4049
4050 /* If we are under global TCP memory pressure, do not expand. */
4051 if (tcp_memory_pressure)
4052 return 0;
4053
4054 /* If we are under soft global TCP memory pressure, do not expand. */
4055 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4056 return 0;
4057
4058 /* If we filled the congestion window, do not expand. */
4059 if (tp->packets_out >= tp->snd_cwnd)
4060 return 0;
4061
4062 return 1;
4063}
1da177e4
LT
4064
4065/* When incoming ACK allowed to free some skb from write_queue,
4066 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4067 * on the exit from tcp input handler.
4068 *
4069 * PROBLEM: sndbuf expansion does not work well with largesend.
4070 */
4071static void tcp_new_space(struct sock *sk)
4072{
4073 struct tcp_sock *tp = tcp_sk(sk);
4074
9e412ba7 4075 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 4076 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
4077 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
4078 demanded = max_t(unsigned int, tp->snd_cwnd,
4079 tp->reordering + 1);
4080 sndmem *= 2*demanded;
4081 if (sndmem > sk->sk_sndbuf)
4082 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4083 tp->snd_cwnd_stamp = tcp_time_stamp;
4084 }
4085
4086 sk->sk_write_space(sk);
4087}
4088
40efc6fa 4089static void tcp_check_space(struct sock *sk)
1da177e4
LT
4090{
4091 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4092 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4093 if (sk->sk_socket &&
4094 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4095 tcp_new_space(sk);
4096 }
4097}
4098
9e412ba7 4099static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4100{
9e412ba7 4101 tcp_push_pending_frames(sk);
1da177e4
LT
4102 tcp_check_space(sk);
4103}
4104
4105/*
4106 * Check if sending an ack is needed.
4107 */
4108static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4109{
4110 struct tcp_sock *tp = tcp_sk(sk);
4111
4112 /* More than one full frame received... */
463c84b9 4113 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4114 /* ... and right edge of window advances far enough.
4115 * (tcp_recvmsg() will send ACK otherwise). Or...
4116 */
4117 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4118 /* We ACK each frame or... */
463c84b9 4119 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4120 /* We have out of order data. */
4121 (ofo_possible &&
4122 skb_peek(&tp->out_of_order_queue))) {
4123 /* Then ack it now */
4124 tcp_send_ack(sk);
4125 } else {
4126 /* Else, send delayed ack. */
4127 tcp_send_delayed_ack(sk);
4128 }
4129}
4130
40efc6fa 4131static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4132{
463c84b9 4133 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4134 /* We sent a data segment already. */
4135 return;
4136 }
4137 __tcp_ack_snd_check(sk, 1);
4138}
4139
4140/*
4141 * This routine is only called when we have urgent data
caa20d9a 4142 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4143 * moved inline now as tcp_urg is only called from one
4144 * place. We handle URGent data wrong. We have to - as
4145 * BSD still doesn't use the correction from RFC961.
4146 * For 1003.1g we should support a new option TCP_STDURG to permit
4147 * either form (or just set the sysctl tcp_stdurg).
4148 */
e905a9ed 4149
1da177e4
LT
4150static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4151{
4152 struct tcp_sock *tp = tcp_sk(sk);
4153 u32 ptr = ntohs(th->urg_ptr);
4154
4155 if (ptr && !sysctl_tcp_stdurg)
4156 ptr--;
4157 ptr += ntohl(th->seq);
4158
4159 /* Ignore urgent data that we've already seen and read. */
4160 if (after(tp->copied_seq, ptr))
4161 return;
4162
4163 /* Do not replay urg ptr.
4164 *
4165 * NOTE: interesting situation not covered by specs.
4166 * Misbehaving sender may send urg ptr, pointing to segment,
4167 * which we already have in ofo queue. We are not able to fetch
4168 * such data and will stay in TCP_URG_NOTYET until will be eaten
4169 * by recvmsg(). Seems, we are not obliged to handle such wicked
4170 * situations. But it is worth to think about possibility of some
4171 * DoSes using some hypothetical application level deadlock.
4172 */
4173 if (before(ptr, tp->rcv_nxt))
4174 return;
4175
4176 /* Do we already have a newer (or duplicate) urgent pointer? */
4177 if (tp->urg_data && !after(ptr, tp->urg_seq))
4178 return;
4179
4180 /* Tell the world about our new urgent pointer. */
4181 sk_send_sigurg(sk);
4182
4183 /* We may be adding urgent data when the last byte read was
4184 * urgent. To do this requires some care. We cannot just ignore
4185 * tp->copied_seq since we would read the last urgent byte again
4186 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4187 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4188 *
4189 * NOTE. Double Dutch. Rendering to plain English: author of comment
4190 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4191 * and expect that both A and B disappear from stream. This is _wrong_.
4192 * Though this happens in BSD with high probability, this is occasional.
4193 * Any application relying on this is buggy. Note also, that fix "works"
4194 * only in this artificial test. Insert some normal data between A and B and we will
4195 * decline of BSD again. Verdict: it is better to remove to trap
4196 * buggy users.
4197 */
4198 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4199 !sock_flag(sk, SOCK_URGINLINE) &&
4200 tp->copied_seq != tp->rcv_nxt) {
4201 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4202 tp->copied_seq++;
4203 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4204 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4205 __kfree_skb(skb);
4206 }
4207 }
4208
4209 tp->urg_data = TCP_URG_NOTYET;
4210 tp->urg_seq = ptr;
4211
4212 /* Disable header prediction. */
4213 tp->pred_flags = 0;
4214}
4215
4216/* This is the 'fast' part of urgent handling. */
4217static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4218{
4219 struct tcp_sock *tp = tcp_sk(sk);
4220
4221 /* Check if we get a new urgent pointer - normally not. */
4222 if (th->urg)
4223 tcp_check_urg(sk,th);
4224
4225 /* Do we wait for any urgent data? - normally not... */
4226 if (tp->urg_data == TCP_URG_NOTYET) {
4227 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4228 th->syn;
4229
e905a9ed 4230 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4231 if (ptr < skb->len) {
4232 u8 tmp;
4233 if (skb_copy_bits(skb, ptr, &tmp, 1))
4234 BUG();
4235 tp->urg_data = TCP_URG_VALID | tmp;
4236 if (!sock_flag(sk, SOCK_DEAD))
4237 sk->sk_data_ready(sk, 0);
4238 }
4239 }
4240}
4241
4242static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4243{
4244 struct tcp_sock *tp = tcp_sk(sk);
4245 int chunk = skb->len - hlen;
4246 int err;
4247
4248 local_bh_enable();
60476372 4249 if (skb_csum_unnecessary(skb))
1da177e4
LT
4250 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4251 else
4252 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4253 tp->ucopy.iov);
4254
4255 if (!err) {
4256 tp->ucopy.len -= chunk;
4257 tp->copied_seq += chunk;
4258 tcp_rcv_space_adjust(sk);
4259 }
4260
4261 local_bh_disable();
4262 return err;
4263}
4264
b51655b9 4265static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4266{
b51655b9 4267 __sum16 result;
1da177e4
LT
4268
4269 if (sock_owned_by_user(sk)) {
4270 local_bh_enable();
4271 result = __tcp_checksum_complete(skb);
4272 local_bh_disable();
4273 } else {
4274 result = __tcp_checksum_complete(skb);
4275 }
4276 return result;
4277}
4278
40efc6fa 4279static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4280{
60476372 4281 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4282 __tcp_checksum_complete_user(sk, skb);
4283}
4284
1a2449a8
CL
4285#ifdef CONFIG_NET_DMA
4286static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4287{
4288 struct tcp_sock *tp = tcp_sk(sk);
4289 int chunk = skb->len - hlen;
4290 int dma_cookie;
4291 int copied_early = 0;
4292
4293 if (tp->ucopy.wakeup)
e905a9ed 4294 return 0;
1a2449a8
CL
4295
4296 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4297 tp->ucopy.dma_chan = get_softnet_dma();
4298
60476372 4299 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4300
4301 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4302 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4303
4304 if (dma_cookie < 0)
4305 goto out;
4306
4307 tp->ucopy.dma_cookie = dma_cookie;
4308 copied_early = 1;
4309
4310 tp->ucopy.len -= chunk;
4311 tp->copied_seq += chunk;
4312 tcp_rcv_space_adjust(sk);
4313
4314 if ((tp->ucopy.len == 0) ||
aa8223c7 4315 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4316 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4317 tp->ucopy.wakeup = 1;
4318 sk->sk_data_ready(sk, 0);
4319 }
4320 } else if (chunk > 0) {
4321 tp->ucopy.wakeup = 1;
4322 sk->sk_data_ready(sk, 0);
4323 }
4324out:
4325 return copied_early;
4326}
4327#endif /* CONFIG_NET_DMA */
4328
1da177e4 4329/*
e905a9ed 4330 * TCP receive function for the ESTABLISHED state.
1da177e4 4331 *
e905a9ed 4332 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4333 * disabled when:
4334 * - A zero window was announced from us - zero window probing
e905a9ed 4335 * is only handled properly in the slow path.
1da177e4
LT
4336 * - Out of order segments arrived.
4337 * - Urgent data is expected.
4338 * - There is no buffer space left
4339 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4340 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4341 * - Data is sent in both directions. Fast path only supports pure senders
4342 * or pure receivers (this means either the sequence number or the ack
4343 * value must stay constant)
4344 * - Unexpected TCP option.
4345 *
e905a9ed 4346 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4347 * receive procedure patterned after RFC793 to handle all cases.
4348 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4349 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4350 * tcp_data_queue when everything is OK.
4351 */
4352int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4353 struct tcphdr *th, unsigned len)
4354{
4355 struct tcp_sock *tp = tcp_sk(sk);
4356
4357 /*
4358 * Header prediction.
e905a9ed 4359 * The code loosely follows the one in the famous
1da177e4 4360 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4361 *
4362 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4363 * on a device interrupt, to call tcp_recv function
4364 * on the receive process context and checksum and copy
4365 * the buffer to user space. smart...
4366 *
e905a9ed 4367 * Our current scheme is not silly either but we take the
1da177e4
LT
4368 * extra cost of the net_bh soft interrupt processing...
4369 * We do checksum and copy also but from device to kernel.
4370 */
4371
4372 tp->rx_opt.saw_tstamp = 0;
4373
4374 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4375 * if header_prediction is to be made
1da177e4
LT
4376 * 'S' will always be tp->tcp_header_len >> 2
4377 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4378 * turn it off (when there are holes in the receive
1da177e4
LT
4379 * space for instance)
4380 * PSH flag is ignored.
4381 */
4382
4383 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4384 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4385 int tcp_header_len = tp->tcp_header_len;
4386
4387 /* Timestamp header prediction: tcp_header_len
4388 * is automatically equal to th->doff*4 due to pred_flags
4389 * match.
4390 */
4391
4392 /* Check timestamp */
4393 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4394 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4395
4396 /* No? Slow path! */
4f3608b7 4397 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4398 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4399 goto slow_path;
4400
4401 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4402 ++ptr;
1da177e4
LT
4403 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4404 ++ptr;
4405 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4406
4407 /* If PAWS failed, check it more carefully in slow path */
4408 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4409 goto slow_path;
4410
4411 /* DO NOT update ts_recent here, if checksum fails
4412 * and timestamp was corrupted part, it will result
4413 * in a hung connection since we will drop all
4414 * future packets due to the PAWS test.
4415 */
4416 }
4417
4418 if (len <= tcp_header_len) {
4419 /* Bulk data transfer: sender */
4420 if (len == tcp_header_len) {
4421 /* Predicted packet is in window by definition.
4422 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4423 * Hence, check seq<=rcv_wup reduces to:
4424 */
4425 if (tcp_header_len ==
4426 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4427 tp->rcv_nxt == tp->rcv_wup)
4428 tcp_store_ts_recent(tp);
4429
1da177e4
LT
4430 /* We know that such packets are checksummed
4431 * on entry.
4432 */
4433 tcp_ack(sk, skb, 0);
e905a9ed 4434 __kfree_skb(skb);
9e412ba7 4435 tcp_data_snd_check(sk);
1da177e4
LT
4436 return 0;
4437 } else { /* Header too small */
4438 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4439 goto discard;
4440 }
4441 } else {
4442 int eaten = 0;
1a2449a8 4443 int copied_early = 0;
1da177e4 4444
1a2449a8
CL
4445 if (tp->copied_seq == tp->rcv_nxt &&
4446 len - tcp_header_len <= tp->ucopy.len) {
4447#ifdef CONFIG_NET_DMA
4448 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4449 copied_early = 1;
4450 eaten = 1;
4451 }
4452#endif
4453 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4454 __set_current_state(TASK_RUNNING);
1da177e4 4455
1a2449a8
CL
4456 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4457 eaten = 1;
4458 }
4459 if (eaten) {
1da177e4
LT
4460 /* Predicted packet is in window by definition.
4461 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4462 * Hence, check seq<=rcv_wup reduces to:
4463 */
4464 if (tcp_header_len ==
4465 (sizeof(struct tcphdr) +
4466 TCPOLEN_TSTAMP_ALIGNED) &&
4467 tp->rcv_nxt == tp->rcv_wup)
4468 tcp_store_ts_recent(tp);
4469
463c84b9 4470 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4471
4472 __skb_pull(skb, tcp_header_len);
4473 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4474 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4475 }
1a2449a8
CL
4476 if (copied_early)
4477 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4478 }
4479 if (!eaten) {
4480 if (tcp_checksum_complete_user(sk, skb))
4481 goto csum_error;
4482
4483 /* Predicted packet is in window by definition.
4484 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4485 * Hence, check seq<=rcv_wup reduces to:
4486 */
4487 if (tcp_header_len ==
4488 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4489 tp->rcv_nxt == tp->rcv_wup)
4490 tcp_store_ts_recent(tp);
4491
463c84b9 4492 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4493
4494 if ((int)skb->truesize > sk->sk_forward_alloc)
4495 goto step5;
4496
4497 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4498
4499 /* Bulk data transfer: receiver */
4500 __skb_pull(skb,tcp_header_len);
4501 __skb_queue_tail(&sk->sk_receive_queue, skb);
4502 sk_stream_set_owner_r(skb, sk);
4503 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4504 }
4505
9e412ba7 4506 tcp_event_data_recv(sk, skb);
1da177e4
LT
4507
4508 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4509 /* Well, only one small jumplet in fast path... */
4510 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4511 tcp_data_snd_check(sk);
463c84b9 4512 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4513 goto no_ack;
4514 }
4515
31432412 4516 __tcp_ack_snd_check(sk, 0);
1da177e4 4517no_ack:
1a2449a8
CL
4518#ifdef CONFIG_NET_DMA
4519 if (copied_early)
4520 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4521 else
4522#endif
1da177e4
LT
4523 if (eaten)
4524 __kfree_skb(skb);
4525 else
4526 sk->sk_data_ready(sk, 0);
4527 return 0;
4528 }
4529 }
4530
4531slow_path:
4532 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4533 goto csum_error;
4534
4535 /*
4536 * RFC1323: H1. Apply PAWS check first.
4537 */
4538 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4539 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4540 if (!th->rst) {
4541 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4542 tcp_send_dupack(sk, skb);
4543 goto discard;
4544 }
4545 /* Resets are accepted even if PAWS failed.
4546
4547 ts_recent update must be made after we are sure
4548 that the packet is in window.
4549 */
4550 }
4551
4552 /*
4553 * Standard slow path.
4554 */
4555
4556 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4557 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4558 * (RST) segments are validated by checking their SEQ-fields."
4559 * And page 69: "If an incoming segment is not acceptable,
4560 * an acknowledgment should be sent in reply (unless the RST bit
4561 * is set, if so drop the segment and return)".
4562 */
4563 if (!th->rst)
4564 tcp_send_dupack(sk, skb);
4565 goto discard;
4566 }
4567
2de979bd 4568 if (th->rst) {
1da177e4
LT
4569 tcp_reset(sk);
4570 goto discard;
4571 }
4572
4573 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4574
4575 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4576 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4577 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4578 tcp_reset(sk);
4579 return 1;
4580 }
4581
4582step5:
2de979bd 4583 if (th->ack)
1da177e4
LT
4584 tcp_ack(sk, skb, FLAG_SLOWPATH);
4585
463c84b9 4586 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4587
4588 /* Process urgent data. */
4589 tcp_urg(sk, skb, th);
4590
4591 /* step 7: process the segment text */
4592 tcp_data_queue(sk, skb);
4593
9e412ba7 4594 tcp_data_snd_check(sk);
1da177e4
LT
4595 tcp_ack_snd_check(sk);
4596 return 0;
4597
4598csum_error:
4599 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4600
4601discard:
4602 __kfree_skb(skb);
4603 return 0;
4604}
4605
4606static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4607 struct tcphdr *th, unsigned len)
4608{
4609 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4610 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4611 int saved_clamp = tp->rx_opt.mss_clamp;
4612
4613 tcp_parse_options(skb, &tp->rx_opt, 0);
4614
4615 if (th->ack) {
4616 /* rfc793:
4617 * "If the state is SYN-SENT then
4618 * first check the ACK bit
4619 * If the ACK bit is set
4620 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4621 * a reset (unless the RST bit is set, if so drop
4622 * the segment and return)"
4623 *
4624 * We do not send data with SYN, so that RFC-correct
4625 * test reduces to:
4626 */
4627 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4628 goto reset_and_undo;
4629
4630 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4631 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4632 tcp_time_stamp)) {
4633 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4634 goto reset_and_undo;
4635 }
4636
4637 /* Now ACK is acceptable.
4638 *
4639 * "If the RST bit is set
4640 * If the ACK was acceptable then signal the user "error:
4641 * connection reset", drop the segment, enter CLOSED state,
4642 * delete TCB, and return."
4643 */
4644
4645 if (th->rst) {
4646 tcp_reset(sk);
4647 goto discard;
4648 }
4649
4650 /* rfc793:
4651 * "fifth, if neither of the SYN or RST bits is set then
4652 * drop the segment and return."
4653 *
4654 * See note below!
4655 * --ANK(990513)
4656 */
4657 if (!th->syn)
4658 goto discard_and_undo;
4659
4660 /* rfc793:
4661 * "If the SYN bit is on ...
4662 * are acceptable then ...
4663 * (our SYN has been ACKed), change the connection
4664 * state to ESTABLISHED..."
4665 */
4666
4667 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4668
4669 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4670 tcp_ack(sk, skb, FLAG_SLOWPATH);
4671
4672 /* Ok.. it's good. Set up sequence numbers and
4673 * move to established.
4674 */
4675 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4676 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4677
4678 /* RFC1323: The window in SYN & SYN/ACK segments is
4679 * never scaled.
4680 */
4681 tp->snd_wnd = ntohs(th->window);
4682 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4683
4684 if (!tp->rx_opt.wscale_ok) {
4685 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4686 tp->window_clamp = min(tp->window_clamp, 65535U);
4687 }
4688
4689 if (tp->rx_opt.saw_tstamp) {
4690 tp->rx_opt.tstamp_ok = 1;
4691 tp->tcp_header_len =
4692 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4693 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4694 tcp_store_ts_recent(tp);
4695 } else {
4696 tp->tcp_header_len = sizeof(struct tcphdr);
4697 }
4698
e60402d0
IJ
4699 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4700 tcp_enable_fack(tp);
1da177e4 4701
5d424d5a 4702 tcp_mtup_init(sk);
d83d8461 4703 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4704 tcp_initialize_rcv_mss(sk);
4705
4706 /* Remember, tcp_poll() does not lock socket!
4707 * Change state from SYN-SENT only after copied_seq
4708 * is initialized. */
4709 tp->copied_seq = tp->rcv_nxt;
e16aa207 4710 smp_mb();
1da177e4
LT
4711 tcp_set_state(sk, TCP_ESTABLISHED);
4712
6b877699
VY
4713 security_inet_conn_established(sk, skb);
4714
1da177e4 4715 /* Make sure socket is routed, for correct metrics. */
8292a17a 4716 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4717
4718 tcp_init_metrics(sk);
4719
6687e988 4720 tcp_init_congestion_control(sk);
317a76f9 4721
1da177e4
LT
4722 /* Prevent spurious tcp_cwnd_restart() on first data
4723 * packet.
4724 */
4725 tp->lsndtime = tcp_time_stamp;
4726
4727 tcp_init_buffer_space(sk);
4728
4729 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4730 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4731
4732 if (!tp->rx_opt.snd_wscale)
4733 __tcp_fast_path_on(tp, tp->snd_wnd);
4734 else
4735 tp->pred_flags = 0;
4736
4737 if (!sock_flag(sk, SOCK_DEAD)) {
4738 sk->sk_state_change(sk);
4739 sk_wake_async(sk, 0, POLL_OUT);
4740 }
4741
295f7324
ACM
4742 if (sk->sk_write_pending ||
4743 icsk->icsk_accept_queue.rskq_defer_accept ||
4744 icsk->icsk_ack.pingpong) {
1da177e4
LT
4745 /* Save one ACK. Data will be ready after
4746 * several ticks, if write_pending is set.
4747 *
4748 * It may be deleted, but with this feature tcpdumps
4749 * look so _wonderfully_ clever, that I was not able
4750 * to stand against the temptation 8) --ANK
4751 */
463c84b9 4752 inet_csk_schedule_ack(sk);
295f7324
ACM
4753 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4754 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4755 tcp_incr_quickack(sk);
4756 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4757 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4758 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4759
4760discard:
4761 __kfree_skb(skb);
4762 return 0;
4763 } else {
4764 tcp_send_ack(sk);
4765 }
4766 return -1;
4767 }
4768
4769 /* No ACK in the segment */
4770
4771 if (th->rst) {
4772 /* rfc793:
4773 * "If the RST bit is set
4774 *
4775 * Otherwise (no ACK) drop the segment and return."
4776 */
4777
4778 goto discard_and_undo;
4779 }
4780
4781 /* PAWS check. */
4782 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4783 goto discard_and_undo;
4784
4785 if (th->syn) {
4786 /* We see SYN without ACK. It is attempt of
4787 * simultaneous connect with crossed SYNs.
4788 * Particularly, it can be connect to self.
4789 */
4790 tcp_set_state(sk, TCP_SYN_RECV);
4791
4792 if (tp->rx_opt.saw_tstamp) {
4793 tp->rx_opt.tstamp_ok = 1;
4794 tcp_store_ts_recent(tp);
4795 tp->tcp_header_len =
4796 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4797 } else {
4798 tp->tcp_header_len = sizeof(struct tcphdr);
4799 }
4800
4801 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4802 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4803
4804 /* RFC1323: The window in SYN & SYN/ACK segments is
4805 * never scaled.
4806 */
4807 tp->snd_wnd = ntohs(th->window);
4808 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4809 tp->max_window = tp->snd_wnd;
4810
4811 TCP_ECN_rcv_syn(tp, th);
1da177e4 4812
5d424d5a 4813 tcp_mtup_init(sk);
d83d8461 4814 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4815 tcp_initialize_rcv_mss(sk);
4816
4817
4818 tcp_send_synack(sk);
4819#if 0
4820 /* Note, we could accept data and URG from this segment.
4821 * There are no obstacles to make this.
4822 *
4823 * However, if we ignore data in ACKless segments sometimes,
4824 * we have no reasons to accept it sometimes.
4825 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4826 * is not flawless. So, discard packet for sanity.
4827 * Uncomment this return to process the data.
4828 */
4829 return -1;
4830#else
4831 goto discard;
4832#endif
4833 }
4834 /* "fifth, if neither of the SYN or RST bits is set then
4835 * drop the segment and return."
4836 */
4837
4838discard_and_undo:
4839 tcp_clear_options(&tp->rx_opt);
4840 tp->rx_opt.mss_clamp = saved_clamp;
4841 goto discard;
4842
4843reset_and_undo:
4844 tcp_clear_options(&tp->rx_opt);
4845 tp->rx_opt.mss_clamp = saved_clamp;
4846 return 1;
4847}
4848
4849
4850/*
4851 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4852 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4853 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4854 * address independent.
4855 */
e905a9ed 4856
1da177e4
LT
4857int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4858 struct tcphdr *th, unsigned len)
4859{
4860 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4861 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4862 int queued = 0;
4863
4864 tp->rx_opt.saw_tstamp = 0;
4865
4866 switch (sk->sk_state) {
4867 case TCP_CLOSE:
4868 goto discard;
4869
4870 case TCP_LISTEN:
2de979bd 4871 if (th->ack)
1da177e4
LT
4872 return 1;
4873
2de979bd 4874 if (th->rst)
1da177e4
LT
4875 goto discard;
4876
2de979bd 4877 if (th->syn) {
8292a17a 4878 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4879 return 1;
4880
e905a9ed
YH
4881 /* Now we have several options: In theory there is
4882 * nothing else in the frame. KA9Q has an option to
1da177e4 4883 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4884 * syn up to the [to be] advertised window and
4885 * Solaris 2.1 gives you a protocol error. For now
4886 * we just ignore it, that fits the spec precisely
1da177e4
LT
4887 * and avoids incompatibilities. It would be nice in
4888 * future to drop through and process the data.
4889 *
e905a9ed 4890 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4891 * queue this data.
4892 * But, this leaves one open to an easy denial of
e905a9ed 4893 * service attack, and SYN cookies can't defend
1da177e4 4894 * against this problem. So, we drop the data
fb7e2399
MN
4895 * in the interest of security over speed unless
4896 * it's still in use.
1da177e4 4897 */
fb7e2399
MN
4898 kfree_skb(skb);
4899 return 0;
1da177e4
LT
4900 }
4901 goto discard;
4902
4903 case TCP_SYN_SENT:
1da177e4
LT
4904 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4905 if (queued >= 0)
4906 return queued;
4907
4908 /* Do step6 onward by hand. */
4909 tcp_urg(sk, skb, th);
4910 __kfree_skb(skb);
9e412ba7 4911 tcp_data_snd_check(sk);
1da177e4
LT
4912 return 0;
4913 }
4914
4915 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4916 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4917 if (!th->rst) {
4918 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4919 tcp_send_dupack(sk, skb);
4920 goto discard;
4921 }
4922 /* Reset is accepted even if it did not pass PAWS. */
4923 }
4924
4925 /* step 1: check sequence number */
4926 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4927 if (!th->rst)
4928 tcp_send_dupack(sk, skb);
4929 goto discard;
4930 }
4931
4932 /* step 2: check RST bit */
2de979bd 4933 if (th->rst) {
1da177e4
LT
4934 tcp_reset(sk);
4935 goto discard;
4936 }
4937
4938 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4939
4940 /* step 3: check security and precedence [ignored] */
4941
4942 /* step 4:
4943 *
4944 * Check for a SYN in window.
4945 */
4946 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4947 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4948 tcp_reset(sk);
4949 return 1;
4950 }
4951
4952 /* step 5: check the ACK field */
4953 if (th->ack) {
4954 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4955
2de979bd 4956 switch (sk->sk_state) {
1da177e4
LT
4957 case TCP_SYN_RECV:
4958 if (acceptable) {
4959 tp->copied_seq = tp->rcv_nxt;
e16aa207 4960 smp_mb();
1da177e4
LT
4961 tcp_set_state(sk, TCP_ESTABLISHED);
4962 sk->sk_state_change(sk);
4963
4964 /* Note, that this wakeup is only for marginal
4965 * crossed SYN case. Passively open sockets
4966 * are not waked up, because sk->sk_sleep ==
4967 * NULL and sk->sk_socket == NULL.
4968 */
4969 if (sk->sk_socket) {
4970 sk_wake_async(sk,0,POLL_OUT);
4971 }
4972
4973 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4974 tp->snd_wnd = ntohs(th->window) <<
4975 tp->rx_opt.snd_wscale;
4976 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4977 TCP_SKB_CB(skb)->seq);
4978
4979 /* tcp_ack considers this ACK as duplicate
4980 * and does not calculate rtt.
4981 * Fix it at least with timestamps.
4982 */
4983 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4984 !tp->srtt)
2d2abbab 4985 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4986
4987 if (tp->rx_opt.tstamp_ok)
4988 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4989
4990 /* Make sure socket is routed, for
4991 * correct metrics.
4992 */
8292a17a 4993 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4994
4995 tcp_init_metrics(sk);
4996
6687e988 4997 tcp_init_congestion_control(sk);
317a76f9 4998
1da177e4
LT
4999 /* Prevent spurious tcp_cwnd_restart() on
5000 * first data packet.
5001 */
5002 tp->lsndtime = tcp_time_stamp;
5003
5d424d5a 5004 tcp_mtup_init(sk);
1da177e4
LT
5005 tcp_initialize_rcv_mss(sk);
5006 tcp_init_buffer_space(sk);
5007 tcp_fast_path_on(tp);
5008 } else {
5009 return 1;
5010 }
5011 break;
5012
5013 case TCP_FIN_WAIT1:
5014 if (tp->snd_una == tp->write_seq) {
5015 tcp_set_state(sk, TCP_FIN_WAIT2);
5016 sk->sk_shutdown |= SEND_SHUTDOWN;
5017 dst_confirm(sk->sk_dst_cache);
5018
5019 if (!sock_flag(sk, SOCK_DEAD))
5020 /* Wake up lingering close() */
5021 sk->sk_state_change(sk);
5022 else {
5023 int tmo;
5024
5025 if (tp->linger2 < 0 ||
5026 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5027 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5028 tcp_done(sk);
5029 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5030 return 1;
5031 }
5032
463c84b9 5033 tmo = tcp_fin_time(sk);
1da177e4 5034 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 5035 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
5036 } else if (th->fin || sock_owned_by_user(sk)) {
5037 /* Bad case. We could lose such FIN otherwise.
5038 * It is not a big problem, but it looks confusing
5039 * and not so rare event. We still can lose it now,
5040 * if it spins in bh_lock_sock(), but it is really
5041 * marginal case.
5042 */
463c84b9 5043 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
5044 } else {
5045 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5046 goto discard;
5047 }
5048 }
5049 }
5050 break;
5051
5052 case TCP_CLOSING:
5053 if (tp->snd_una == tp->write_seq) {
5054 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5055 goto discard;
5056 }
5057 break;
5058
5059 case TCP_LAST_ACK:
5060 if (tp->snd_una == tp->write_seq) {
5061 tcp_update_metrics(sk);
5062 tcp_done(sk);
5063 goto discard;
5064 }
5065 break;
5066 }
5067 } else
5068 goto discard;
5069
5070 /* step 6: check the URG bit */
5071 tcp_urg(sk, skb, th);
5072
5073 /* step 7: process the segment text */
5074 switch (sk->sk_state) {
5075 case TCP_CLOSE_WAIT:
5076 case TCP_CLOSING:
5077 case TCP_LAST_ACK:
5078 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5079 break;
5080 case TCP_FIN_WAIT1:
5081 case TCP_FIN_WAIT2:
5082 /* RFC 793 says to queue data in these states,
e905a9ed 5083 * RFC 1122 says we MUST send a reset.
1da177e4
LT
5084 * BSD 4.4 also does reset.
5085 */
5086 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5087 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5088 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5089 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
5090 tcp_reset(sk);
5091 return 1;
5092 }
5093 }
5094 /* Fall through */
e905a9ed 5095 case TCP_ESTABLISHED:
1da177e4
LT
5096 tcp_data_queue(sk, skb);
5097 queued = 1;
5098 break;
5099 }
5100
5101 /* tcp_data could move socket to TIME-WAIT */
5102 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5103 tcp_data_snd_check(sk);
1da177e4
LT
5104 tcp_ack_snd_check(sk);
5105 }
5106
e905a9ed 5107 if (!queued) {
1da177e4
LT
5108discard:
5109 __kfree_skb(skb);
5110 }
5111 return 0;
5112}
5113
5114EXPORT_SYMBOL(sysctl_tcp_ecn);
5115EXPORT_SYMBOL(sysctl_tcp_reordering);
5116EXPORT_SYMBOL(tcp_parse_options);
5117EXPORT_SYMBOL(tcp_rcv_established);
5118EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5119EXPORT_SYMBOL(tcp_initialize_rcv_mss);