]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Fix ARC stats for embedded blkptrs
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
3ec34e55 23 * Copyright (c) 2018, Joyent, Inc.
c3bd3fb4 24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
36da08ef 25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
3ec34e55 26 * Copyright 2017 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29/*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 62 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 66 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74/*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
2aa34383 80 * uses method 1, while the internal ARC algorithms for
d3cc8b15 81 * adjusting the cache use method 2. We therefore provide two
34dc7c2f 82 * types of locks: 1) the hash table lock array, and 2) the
2aa34383 83 * ARC list locks.
34dc7c2f 84 *
5c839890
BC
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
2aa34383 96 * Each ARC state also has a mutex which is used to protect the
34dc7c2f 97 * buffer list associated with the state. When attempting to
2aa34383 98 * obtain a hash table lock while holding an ARC list lock you
34dc7c2f
BB
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
ab26409d
BB
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
34dc7c2f
BB
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
b9541d6b 113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
34dc7c2f
BB
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
d3c2ae1c
GW
122/*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
2aa34383 138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
a6255b7f 139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
2aa34383
DK
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
a6255b7f
DQ
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
2aa34383
DK
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
a6255b7f 146 * compressed ARC functionality is disabled, the b_pabd will point to an
2aa34383
DK
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
d3c2ae1c
GW
156 * "overhead_size" kstat.
157 *
2aa34383
DK
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
d3c2ae1c 165 *
2aa34383
DK
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
d3c2ae1c 171 *
2aa34383
DK
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
a6255b7f 185 * | b_pabd +-+ |b_next +---->+-----------+
2aa34383
DK
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
d3c2ae1c
GW
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
2aa34383
DK
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
a6255b7f
DQ
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
2aa34383
DK
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
d3c2ae1c
GW
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
2aa34383
DK
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
d3c2ae1c
GW
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
a6255b7f 227 * | b_pabd +-+ |---------| |b_next +-->NULL
d3c2ae1c
GW
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
a6255b7f 241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
d3c2ae1c 242 * since the physical block is about to be rewritten. The new data contents
2aa34383
DK
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
a6255b7f 246 * a newly allocated b_pabd. Writes are always done into buffers which have
2aa34383
DK
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
d3c2ae1c 251 *
a6255b7f
DQ
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
2aa34383 254 * that when compressed ARC is enabled that the L2ARC blocks are identical
d3c2ae1c
GW
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
2aa34383 258 * ARC is disabled, then the L2ARC's block must be transformed to look
d3c2ae1c
GW
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
b5256303
TC
261 *
262 * The L1ARC has a slightly different system for storing encrypted data.
263 * Raw (encrypted + possibly compressed) data has a few subtle differences from
264 * data that is just compressed. The biggest difference is that it is not
265 * possible to decrypt encrypted data (or visa versa) if the keys aren't loaded.
266 * The other difference is that encryption cannot be treated as a suggestion.
267 * If a caller would prefer compressed data, but they actually wind up with
268 * uncompressed data the worst thing that could happen is there might be a
269 * performance hit. If the caller requests encrypted data, however, we must be
270 * sure they actually get it or else secret information could be leaked. Raw
271 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
272 * may have both an encrypted version and a decrypted version of its data at
273 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
274 * copied out of this header. To avoid complications with b_pabd, raw buffers
275 * cannot be shared.
d3c2ae1c
GW
276 */
277
34dc7c2f
BB
278#include <sys/spa.h>
279#include <sys/zio.h>
d3c2ae1c 280#include <sys/spa_impl.h>
3a17a7a9 281#include <sys/zio_compress.h>
d3c2ae1c 282#include <sys/zio_checksum.h>
34dc7c2f
BB
283#include <sys/zfs_context.h>
284#include <sys/arc.h>
36da08ef 285#include <sys/refcount.h>
b128c09f 286#include <sys/vdev.h>
9babb374 287#include <sys/vdev_impl.h>
e8b96c60 288#include <sys/dsl_pool.h>
a6255b7f 289#include <sys/zio_checksum.h>
ca0bf58d 290#include <sys/multilist.h>
a6255b7f 291#include <sys/abd.h>
b5256303
TC
292#include <sys/zil.h>
293#include <sys/fm/fs/zfs.h>
34dc7c2f 294#ifdef _KERNEL
93ce2b4c 295#include <sys/shrinker.h>
34dc7c2f 296#include <sys/vmsystm.h>
ab26409d 297#include <sys/zpl.h>
e9a77290 298#include <linux/page_compat.h>
34dc7c2f
BB
299#endif
300#include <sys/callb.h>
301#include <sys/kstat.h>
3ec34e55 302#include <sys/zthr.h>
428870ff 303#include <zfs_fletcher.h>
59ec819a 304#include <sys/arc_impl.h>
49ee64e5 305#include <sys/trace_arc.h>
37fb3e43
PD
306#include <sys/aggsum.h>
307#include <sys/cityhash.h>
34dc7c2f 308
498877ba
MA
309#ifndef _KERNEL
310/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
311boolean_t arc_watch = B_FALSE;
312#endif
313
3ec34e55
BL
314/*
315 * This thread's job is to keep enough free memory in the system, by
316 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
317 * arc_available_memory().
318 */
319static zthr_t *arc_reap_zthr;
320
321/*
322 * This thread's job is to keep arc_size under arc_c, by calling
323 * arc_adjust(), which improves arc_is_overflowing().
324 */
325static zthr_t *arc_adjust_zthr;
326
327static kmutex_t arc_adjust_lock;
328static kcondvar_t arc_adjust_waiters_cv;
329static boolean_t arc_adjust_needed = B_FALSE;
ca0bf58d 330
e8b96c60 331/*
ca0bf58d
PS
332 * The number of headers to evict in arc_evict_state_impl() before
333 * dropping the sublist lock and evicting from another sublist. A lower
334 * value means we're more likely to evict the "correct" header (i.e. the
335 * oldest header in the arc state), but comes with higher overhead
336 * (i.e. more invocations of arc_evict_state_impl()).
337 */
338int zfs_arc_evict_batch_limit = 10;
339
34dc7c2f 340/* number of seconds before growing cache again */
3ec34e55
BL
341static int arc_grow_retry = 5;
342
343/*
344 * Minimum time between calls to arc_kmem_reap_soon().
345 */
346int arc_kmem_cache_reap_retry_ms = 1000;
34dc7c2f 347
a6255b7f 348/* shift of arc_c for calculating overflow limit in arc_get_data_impl */
3ec34e55 349int zfs_arc_overflow_shift = 8;
62422785 350
728d6ae9 351/* shift of arc_c for calculating both min and max arc_p */
3ec34e55 352int arc_p_min_shift = 4;
728d6ae9 353
d164b209 354/* log2(fraction of arc to reclaim) */
3ec34e55 355static int arc_shrink_shift = 7;
d164b209 356
03b60eee
DB
357/* percent of pagecache to reclaim arc to */
358#ifdef _KERNEL
3ec34e55 359static uint_t zfs_arc_pc_percent = 0;
03b60eee
DB
360#endif
361
34dc7c2f 362/*
ca67b33a
MA
363 * log2(fraction of ARC which must be free to allow growing).
364 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
365 * when reading a new block into the ARC, we will evict an equal-sized block
366 * from the ARC.
367 *
368 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
369 * we will still not allow it to grow.
34dc7c2f 370 */
ca67b33a 371int arc_no_grow_shift = 5;
bce45ec9 372
49ddb315 373
ca0bf58d
PS
374/*
375 * minimum lifespan of a prefetch block in clock ticks
376 * (initialized in arc_init())
377 */
d4a72f23
TC
378static int arc_min_prefetch_ms;
379static int arc_min_prescient_prefetch_ms;
ca0bf58d 380
e8b96c60
MA
381/*
382 * If this percent of memory is free, don't throttle.
383 */
384int arc_lotsfree_percent = 10;
385
3ec34e55
BL
386/*
387 * hdr_recl() uses this to determine if the arc is up and running.
388 */
389static boolean_t arc_initialized;
34dc7c2f 390
b128c09f
BB
391/*
392 * The arc has filled available memory and has now warmed up.
393 */
394static boolean_t arc_warm;
395
d3c2ae1c
GW
396/*
397 * log2 fraction of the zio arena to keep free.
398 */
399int arc_zio_arena_free_shift = 2;
400
34dc7c2f
BB
401/*
402 * These tunables are for performance analysis.
403 */
c28b2279
BB
404unsigned long zfs_arc_max = 0;
405unsigned long zfs_arc_min = 0;
406unsigned long zfs_arc_meta_limit = 0;
ca0bf58d 407unsigned long zfs_arc_meta_min = 0;
25458cbe
TC
408unsigned long zfs_arc_dnode_limit = 0;
409unsigned long zfs_arc_dnode_reduce_percent = 10;
ca67b33a
MA
410int zfs_arc_grow_retry = 0;
411int zfs_arc_shrink_shift = 0;
728d6ae9 412int zfs_arc_p_min_shift = 0;
ca67b33a 413int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
34dc7c2f 414
dae3e9ea
DB
415/*
416 * ARC dirty data constraints for arc_tempreserve_space() throttle.
417 */
418unsigned long zfs_arc_dirty_limit_percent = 50; /* total dirty data limit */
419unsigned long zfs_arc_anon_limit_percent = 25; /* anon block dirty limit */
420unsigned long zfs_arc_pool_dirty_percent = 20; /* each pool's anon allowance */
421
422/*
423 * Enable or disable compressed arc buffers.
424 */
d3c2ae1c
GW
425int zfs_compressed_arc_enabled = B_TRUE;
426
9907cc1c
G
427/*
428 * ARC will evict meta buffers that exceed arc_meta_limit. This
429 * tunable make arc_meta_limit adjustable for different workloads.
430 */
431unsigned long zfs_arc_meta_limit_percent = 75;
432
433/*
434 * Percentage that can be consumed by dnodes of ARC meta buffers.
435 */
436unsigned long zfs_arc_dnode_limit_percent = 10;
437
bc888666 438/*
ca67b33a 439 * These tunables are Linux specific
bc888666 440 */
11f552fa 441unsigned long zfs_arc_sys_free = 0;
d4a72f23
TC
442int zfs_arc_min_prefetch_ms = 0;
443int zfs_arc_min_prescient_prefetch_ms = 0;
ca67b33a
MA
444int zfs_arc_p_dampener_disable = 1;
445int zfs_arc_meta_prune = 10000;
446int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
447int zfs_arc_meta_adjust_restarts = 4096;
7e8bddd0 448int zfs_arc_lotsfree_percent = 10;
bc888666 449
34dc7c2f
BB
450/* The 6 states: */
451static arc_state_t ARC_anon;
452static arc_state_t ARC_mru;
453static arc_state_t ARC_mru_ghost;
454static arc_state_t ARC_mfu;
455static arc_state_t ARC_mfu_ghost;
456static arc_state_t ARC_l2c_only;
457
458typedef struct arc_stats {
459 kstat_named_t arcstat_hits;
460 kstat_named_t arcstat_misses;
461 kstat_named_t arcstat_demand_data_hits;
462 kstat_named_t arcstat_demand_data_misses;
463 kstat_named_t arcstat_demand_metadata_hits;
464 kstat_named_t arcstat_demand_metadata_misses;
465 kstat_named_t arcstat_prefetch_data_hits;
466 kstat_named_t arcstat_prefetch_data_misses;
467 kstat_named_t arcstat_prefetch_metadata_hits;
468 kstat_named_t arcstat_prefetch_metadata_misses;
469 kstat_named_t arcstat_mru_hits;
470 kstat_named_t arcstat_mru_ghost_hits;
471 kstat_named_t arcstat_mfu_hits;
472 kstat_named_t arcstat_mfu_ghost_hits;
473 kstat_named_t arcstat_deleted;
e49f1e20
WA
474 /*
475 * Number of buffers that could not be evicted because the hash lock
476 * was held by another thread. The lock may not necessarily be held
477 * by something using the same buffer, since hash locks are shared
478 * by multiple buffers.
479 */
34dc7c2f 480 kstat_named_t arcstat_mutex_miss;
0873bb63
BB
481 /*
482 * Number of buffers skipped when updating the access state due to the
483 * header having already been released after acquiring the hash lock.
484 */
485 kstat_named_t arcstat_access_skip;
e49f1e20
WA
486 /*
487 * Number of buffers skipped because they have I/O in progress, are
0873bb63 488 * indirect prefetch buffers that have not lived long enough, or are
e49f1e20
WA
489 * not from the spa we're trying to evict from.
490 */
34dc7c2f 491 kstat_named_t arcstat_evict_skip;
ca0bf58d
PS
492 /*
493 * Number of times arc_evict_state() was unable to evict enough
494 * buffers to reach its target amount.
495 */
496 kstat_named_t arcstat_evict_not_enough;
428870ff
BB
497 kstat_named_t arcstat_evict_l2_cached;
498 kstat_named_t arcstat_evict_l2_eligible;
499 kstat_named_t arcstat_evict_l2_ineligible;
ca0bf58d 500 kstat_named_t arcstat_evict_l2_skip;
34dc7c2f
BB
501 kstat_named_t arcstat_hash_elements;
502 kstat_named_t arcstat_hash_elements_max;
503 kstat_named_t arcstat_hash_collisions;
504 kstat_named_t arcstat_hash_chains;
505 kstat_named_t arcstat_hash_chain_max;
506 kstat_named_t arcstat_p;
507 kstat_named_t arcstat_c;
508 kstat_named_t arcstat_c_min;
509 kstat_named_t arcstat_c_max;
37fb3e43 510 /* Not updated directly; only synced in arc_kstat_update. */
34dc7c2f 511 kstat_named_t arcstat_size;
d3c2ae1c 512 /*
a6255b7f 513 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
d3c2ae1c
GW
514 * Note that the compressed bytes may match the uncompressed bytes
515 * if the block is either not compressed or compressed arc is disabled.
516 */
517 kstat_named_t arcstat_compressed_size;
518 /*
a6255b7f 519 * Uncompressed size of the data stored in b_pabd. If compressed
d3c2ae1c
GW
520 * arc is disabled then this value will be identical to the stat
521 * above.
522 */
523 kstat_named_t arcstat_uncompressed_size;
524 /*
525 * Number of bytes stored in all the arc_buf_t's. This is classified
526 * as "overhead" since this data is typically short-lived and will
527 * be evicted from the arc when it becomes unreferenced unless the
528 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
529 * values have been set (see comment in dbuf.c for more information).
530 */
531 kstat_named_t arcstat_overhead_size;
500445c0
PS
532 /*
533 * Number of bytes consumed by internal ARC structures necessary
534 * for tracking purposes; these structures are not actually
535 * backed by ARC buffers. This includes arc_buf_hdr_t structures
536 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
537 * caches), and arc_buf_t structures (allocated via arc_buf_t
538 * cache).
37fb3e43 539 * Not updated directly; only synced in arc_kstat_update.
500445c0 540 */
34dc7c2f 541 kstat_named_t arcstat_hdr_size;
500445c0
PS
542 /*
543 * Number of bytes consumed by ARC buffers of type equal to
544 * ARC_BUFC_DATA. This is generally consumed by buffers backing
545 * on disk user data (e.g. plain file contents).
37fb3e43 546 * Not updated directly; only synced in arc_kstat_update.
500445c0 547 */
d164b209 548 kstat_named_t arcstat_data_size;
500445c0
PS
549 /*
550 * Number of bytes consumed by ARC buffers of type equal to
551 * ARC_BUFC_METADATA. This is generally consumed by buffers
552 * backing on disk data that is used for internal ZFS
553 * structures (e.g. ZAP, dnode, indirect blocks, etc).
37fb3e43 554 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
555 */
556 kstat_named_t arcstat_metadata_size;
557 /*
25458cbe 558 * Number of bytes consumed by dmu_buf_impl_t objects.
37fb3e43 559 * Not updated directly; only synced in arc_kstat_update.
500445c0 560 */
25458cbe
TC
561 kstat_named_t arcstat_dbuf_size;
562 /*
563 * Number of bytes consumed by dnode_t objects.
37fb3e43 564 * Not updated directly; only synced in arc_kstat_update.
25458cbe
TC
565 */
566 kstat_named_t arcstat_dnode_size;
567 /*
568 * Number of bytes consumed by bonus buffers.
37fb3e43 569 * Not updated directly; only synced in arc_kstat_update.
25458cbe
TC
570 */
571 kstat_named_t arcstat_bonus_size;
500445c0
PS
572 /*
573 * Total number of bytes consumed by ARC buffers residing in the
574 * arc_anon state. This includes *all* buffers in the arc_anon
575 * state; e.g. data, metadata, evictable, and unevictable buffers
576 * are all included in this value.
37fb3e43 577 * Not updated directly; only synced in arc_kstat_update.
500445c0 578 */
13be560d 579 kstat_named_t arcstat_anon_size;
500445c0
PS
580 /*
581 * Number of bytes consumed by ARC buffers that meet the
582 * following criteria: backing buffers of type ARC_BUFC_DATA,
583 * residing in the arc_anon state, and are eligible for eviction
584 * (e.g. have no outstanding holds on the buffer).
37fb3e43 585 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
586 */
587 kstat_named_t arcstat_anon_evictable_data;
588 /*
589 * Number of bytes consumed by ARC buffers that meet the
590 * following criteria: backing buffers of type ARC_BUFC_METADATA,
591 * residing in the arc_anon state, and are eligible for eviction
592 * (e.g. have no outstanding holds on the buffer).
37fb3e43 593 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
594 */
595 kstat_named_t arcstat_anon_evictable_metadata;
596 /*
597 * Total number of bytes consumed by ARC buffers residing in the
598 * arc_mru state. This includes *all* buffers in the arc_mru
599 * state; e.g. data, metadata, evictable, and unevictable buffers
600 * are all included in this value.
37fb3e43 601 * Not updated directly; only synced in arc_kstat_update.
500445c0 602 */
13be560d 603 kstat_named_t arcstat_mru_size;
500445c0
PS
604 /*
605 * Number of bytes consumed by ARC buffers that meet the
606 * following criteria: backing buffers of type ARC_BUFC_DATA,
607 * residing in the arc_mru state, and are eligible for eviction
608 * (e.g. have no outstanding holds on the buffer).
37fb3e43 609 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
610 */
611 kstat_named_t arcstat_mru_evictable_data;
612 /*
613 * Number of bytes consumed by ARC buffers that meet the
614 * following criteria: backing buffers of type ARC_BUFC_METADATA,
615 * residing in the arc_mru state, and are eligible for eviction
616 * (e.g. have no outstanding holds on the buffer).
37fb3e43 617 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
618 */
619 kstat_named_t arcstat_mru_evictable_metadata;
620 /*
621 * Total number of bytes that *would have been* consumed by ARC
622 * buffers in the arc_mru_ghost state. The key thing to note
623 * here, is the fact that this size doesn't actually indicate
624 * RAM consumption. The ghost lists only consist of headers and
625 * don't actually have ARC buffers linked off of these headers.
626 * Thus, *if* the headers had associated ARC buffers, these
627 * buffers *would have* consumed this number of bytes.
37fb3e43 628 * Not updated directly; only synced in arc_kstat_update.
500445c0 629 */
13be560d 630 kstat_named_t arcstat_mru_ghost_size;
500445c0
PS
631 /*
632 * Number of bytes that *would have been* consumed by ARC
633 * buffers that are eligible for eviction, of type
634 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
37fb3e43 635 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
636 */
637 kstat_named_t arcstat_mru_ghost_evictable_data;
638 /*
639 * Number of bytes that *would have been* consumed by ARC
640 * buffers that are eligible for eviction, of type
641 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
37fb3e43 642 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
643 */
644 kstat_named_t arcstat_mru_ghost_evictable_metadata;
645 /*
646 * Total number of bytes consumed by ARC buffers residing in the
647 * arc_mfu state. This includes *all* buffers in the arc_mfu
648 * state; e.g. data, metadata, evictable, and unevictable buffers
649 * are all included in this value.
37fb3e43 650 * Not updated directly; only synced in arc_kstat_update.
500445c0 651 */
13be560d 652 kstat_named_t arcstat_mfu_size;
500445c0
PS
653 /*
654 * Number of bytes consumed by ARC buffers that are eligible for
655 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
656 * state.
37fb3e43 657 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
658 */
659 kstat_named_t arcstat_mfu_evictable_data;
660 /*
661 * Number of bytes consumed by ARC buffers that are eligible for
662 * eviction, of type ARC_BUFC_METADATA, and reside in the
663 * arc_mfu state.
37fb3e43 664 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
665 */
666 kstat_named_t arcstat_mfu_evictable_metadata;
667 /*
668 * Total number of bytes that *would have been* consumed by ARC
669 * buffers in the arc_mfu_ghost state. See the comment above
670 * arcstat_mru_ghost_size for more details.
37fb3e43 671 * Not updated directly; only synced in arc_kstat_update.
500445c0 672 */
13be560d 673 kstat_named_t arcstat_mfu_ghost_size;
500445c0
PS
674 /*
675 * Number of bytes that *would have been* consumed by ARC
676 * buffers that are eligible for eviction, of type
677 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
37fb3e43 678 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
679 */
680 kstat_named_t arcstat_mfu_ghost_evictable_data;
681 /*
682 * Number of bytes that *would have been* consumed by ARC
683 * buffers that are eligible for eviction, of type
684 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
37fb3e43 685 * Not updated directly; only synced in arc_kstat_update.
500445c0
PS
686 */
687 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
34dc7c2f
BB
688 kstat_named_t arcstat_l2_hits;
689 kstat_named_t arcstat_l2_misses;
690 kstat_named_t arcstat_l2_feeds;
691 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
692 kstat_named_t arcstat_l2_read_bytes;
693 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
694 kstat_named_t arcstat_l2_writes_sent;
695 kstat_named_t arcstat_l2_writes_done;
696 kstat_named_t arcstat_l2_writes_error;
ca0bf58d 697 kstat_named_t arcstat_l2_writes_lock_retry;
34dc7c2f
BB
698 kstat_named_t arcstat_l2_evict_lock_retry;
699 kstat_named_t arcstat_l2_evict_reading;
b9541d6b 700 kstat_named_t arcstat_l2_evict_l1cached;
34dc7c2f
BB
701 kstat_named_t arcstat_l2_free_on_write;
702 kstat_named_t arcstat_l2_abort_lowmem;
703 kstat_named_t arcstat_l2_cksum_bad;
704 kstat_named_t arcstat_l2_io_error;
01850391
AG
705 kstat_named_t arcstat_l2_lsize;
706 kstat_named_t arcstat_l2_psize;
37fb3e43 707 /* Not updated directly; only synced in arc_kstat_update. */
34dc7c2f
BB
708 kstat_named_t arcstat_l2_hdr_size;
709 kstat_named_t arcstat_memory_throttle_count;
7cb67b45
BB
710 kstat_named_t arcstat_memory_direct_count;
711 kstat_named_t arcstat_memory_indirect_count;
70f02287
BB
712 kstat_named_t arcstat_memory_all_bytes;
713 kstat_named_t arcstat_memory_free_bytes;
714 kstat_named_t arcstat_memory_available_bytes;
1834f2d8
BB
715 kstat_named_t arcstat_no_grow;
716 kstat_named_t arcstat_tempreserve;
717 kstat_named_t arcstat_loaned_bytes;
ab26409d 718 kstat_named_t arcstat_prune;
37fb3e43 719 /* Not updated directly; only synced in arc_kstat_update. */
1834f2d8
BB
720 kstat_named_t arcstat_meta_used;
721 kstat_named_t arcstat_meta_limit;
25458cbe 722 kstat_named_t arcstat_dnode_limit;
1834f2d8 723 kstat_named_t arcstat_meta_max;
ca0bf58d 724 kstat_named_t arcstat_meta_min;
a8b2e306 725 kstat_named_t arcstat_async_upgrade_sync;
7f60329a 726 kstat_named_t arcstat_demand_hit_predictive_prefetch;
d4a72f23 727 kstat_named_t arcstat_demand_hit_prescient_prefetch;
11f552fa
BB
728 kstat_named_t arcstat_need_free;
729 kstat_named_t arcstat_sys_free;
b5256303 730 kstat_named_t arcstat_raw_size;
34dc7c2f
BB
731} arc_stats_t;
732
733static arc_stats_t arc_stats = {
734 { "hits", KSTAT_DATA_UINT64 },
735 { "misses", KSTAT_DATA_UINT64 },
736 { "demand_data_hits", KSTAT_DATA_UINT64 },
737 { "demand_data_misses", KSTAT_DATA_UINT64 },
738 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
739 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
740 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
741 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
742 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
743 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
744 { "mru_hits", KSTAT_DATA_UINT64 },
745 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
746 { "mfu_hits", KSTAT_DATA_UINT64 },
747 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
748 { "deleted", KSTAT_DATA_UINT64 },
34dc7c2f 749 { "mutex_miss", KSTAT_DATA_UINT64 },
0873bb63 750 { "access_skip", KSTAT_DATA_UINT64 },
34dc7c2f 751 { "evict_skip", KSTAT_DATA_UINT64 },
ca0bf58d 752 { "evict_not_enough", KSTAT_DATA_UINT64 },
428870ff
BB
753 { "evict_l2_cached", KSTAT_DATA_UINT64 },
754 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
755 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
ca0bf58d 756 { "evict_l2_skip", KSTAT_DATA_UINT64 },
34dc7c2f
BB
757 { "hash_elements", KSTAT_DATA_UINT64 },
758 { "hash_elements_max", KSTAT_DATA_UINT64 },
759 { "hash_collisions", KSTAT_DATA_UINT64 },
760 { "hash_chains", KSTAT_DATA_UINT64 },
761 { "hash_chain_max", KSTAT_DATA_UINT64 },
762 { "p", KSTAT_DATA_UINT64 },
763 { "c", KSTAT_DATA_UINT64 },
764 { "c_min", KSTAT_DATA_UINT64 },
765 { "c_max", KSTAT_DATA_UINT64 },
766 { "size", KSTAT_DATA_UINT64 },
d3c2ae1c
GW
767 { "compressed_size", KSTAT_DATA_UINT64 },
768 { "uncompressed_size", KSTAT_DATA_UINT64 },
769 { "overhead_size", KSTAT_DATA_UINT64 },
34dc7c2f 770 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 771 { "data_size", KSTAT_DATA_UINT64 },
500445c0 772 { "metadata_size", KSTAT_DATA_UINT64 },
25458cbe
TC
773 { "dbuf_size", KSTAT_DATA_UINT64 },
774 { "dnode_size", KSTAT_DATA_UINT64 },
775 { "bonus_size", KSTAT_DATA_UINT64 },
13be560d 776 { "anon_size", KSTAT_DATA_UINT64 },
500445c0
PS
777 { "anon_evictable_data", KSTAT_DATA_UINT64 },
778 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 779 { "mru_size", KSTAT_DATA_UINT64 },
500445c0
PS
780 { "mru_evictable_data", KSTAT_DATA_UINT64 },
781 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 782 { "mru_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
783 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
784 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 785 { "mfu_size", KSTAT_DATA_UINT64 },
500445c0
PS
786 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
787 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
13be560d 788 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
500445c0
PS
789 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
790 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
791 { "l2_hits", KSTAT_DATA_UINT64 },
792 { "l2_misses", KSTAT_DATA_UINT64 },
793 { "l2_feeds", KSTAT_DATA_UINT64 },
794 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
795 { "l2_read_bytes", KSTAT_DATA_UINT64 },
796 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
797 { "l2_writes_sent", KSTAT_DATA_UINT64 },
798 { "l2_writes_done", KSTAT_DATA_UINT64 },
799 { "l2_writes_error", KSTAT_DATA_UINT64 },
ca0bf58d 800 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
34dc7c2f
BB
801 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
802 { "l2_evict_reading", KSTAT_DATA_UINT64 },
b9541d6b 803 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
34dc7c2f
BB
804 { "l2_free_on_write", KSTAT_DATA_UINT64 },
805 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
806 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
807 { "l2_io_error", KSTAT_DATA_UINT64 },
808 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 809 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 810 { "l2_hdr_size", KSTAT_DATA_UINT64 },
1834f2d8 811 { "memory_throttle_count", KSTAT_DATA_UINT64 },
7cb67b45
BB
812 { "memory_direct_count", KSTAT_DATA_UINT64 },
813 { "memory_indirect_count", KSTAT_DATA_UINT64 },
70f02287
BB
814 { "memory_all_bytes", KSTAT_DATA_UINT64 },
815 { "memory_free_bytes", KSTAT_DATA_UINT64 },
816 { "memory_available_bytes", KSTAT_DATA_INT64 },
1834f2d8
BB
817 { "arc_no_grow", KSTAT_DATA_UINT64 },
818 { "arc_tempreserve", KSTAT_DATA_UINT64 },
819 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 820 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
821 { "arc_meta_used", KSTAT_DATA_UINT64 },
822 { "arc_meta_limit", KSTAT_DATA_UINT64 },
25458cbe 823 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
1834f2d8 824 { "arc_meta_max", KSTAT_DATA_UINT64 },
11f552fa 825 { "arc_meta_min", KSTAT_DATA_UINT64 },
a8b2e306 826 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
7f60329a 827 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
d4a72f23 828 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
11f552fa 829 { "arc_need_free", KSTAT_DATA_UINT64 },
b5256303
TC
830 { "arc_sys_free", KSTAT_DATA_UINT64 },
831 { "arc_raw_size", KSTAT_DATA_UINT64 }
34dc7c2f
BB
832};
833
834#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
835
836#define ARCSTAT_INCR(stat, val) \
d3cc8b15 837 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 838
428870ff 839#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
840#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
841
842#define ARCSTAT_MAX(stat, val) { \
843 uint64_t m; \
844 while ((val) > (m = arc_stats.stat.value.ui64) && \
845 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
846 continue; \
847}
848
849#define ARCSTAT_MAXSTAT(stat) \
850 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
851
852/*
853 * We define a macro to allow ARC hits/misses to be easily broken down by
854 * two separate conditions, giving a total of four different subtypes for
855 * each of hits and misses (so eight statistics total).
856 */
857#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
858 if (cond1) { \
859 if (cond2) { \
860 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
861 } else { \
862 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
863 } \
864 } else { \
865 if (cond2) { \
866 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
867 } else { \
868 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
869 } \
870 }
871
872kstat_t *arc_ksp;
428870ff 873static arc_state_t *arc_anon;
34dc7c2f
BB
874static arc_state_t *arc_mru;
875static arc_state_t *arc_mru_ghost;
876static arc_state_t *arc_mfu;
877static arc_state_t *arc_mfu_ghost;
878static arc_state_t *arc_l2c_only;
879
880/*
881 * There are several ARC variables that are critical to export as kstats --
882 * but we don't want to have to grovel around in the kstat whenever we wish to
883 * manipulate them. For these variables, we therefore define them to be in
884 * terms of the statistic variable. This assures that we are not introducing
885 * the possibility of inconsistency by having shadow copies of the variables,
886 * while still allowing the code to be readable.
887 */
34dc7c2f
BB
888#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
889#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
890#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
891#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
d3c2ae1c 892#define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
1834f2d8
BB
893#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
894#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133 895#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
25458cbe 896#define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
ca0bf58d 897#define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
23c0a133 898#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
11f552fa
BB
899#define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
900#define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
34dc7c2f 901
b5256303
TC
902/* size of all b_rabd's in entire arc */
903#define arc_raw_size ARCSTAT(arcstat_raw_size)
d3c2ae1c
GW
904/* compressed size of entire arc */
905#define arc_compressed_size ARCSTAT(arcstat_compressed_size)
906/* uncompressed size of entire arc */
907#define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
908/* number of bytes in the arc from arc_buf_t's */
909#define arc_overhead_size ARCSTAT(arcstat_overhead_size)
3a17a7a9 910
37fb3e43
PD
911/*
912 * There are also some ARC variables that we want to export, but that are
913 * updated so often that having the canonical representation be the statistic
914 * variable causes a performance bottleneck. We want to use aggsum_t's for these
915 * instead, but still be able to export the kstat in the same way as before.
916 * The solution is to always use the aggsum version, except in the kstat update
917 * callback.
918 */
919aggsum_t arc_size;
920aggsum_t arc_meta_used;
921aggsum_t astat_data_size;
922aggsum_t astat_metadata_size;
923aggsum_t astat_dbuf_size;
924aggsum_t astat_dnode_size;
925aggsum_t astat_bonus_size;
926aggsum_t astat_hdr_size;
927aggsum_t astat_l2_hdr_size;
928
3ec34e55 929static hrtime_t arc_growtime;
ab26409d
BB
930static list_t arc_prune_list;
931static kmutex_t arc_prune_mtx;
f6046738 932static taskq_t *arc_prune_taskq;
428870ff 933
34dc7c2f
BB
934#define GHOST_STATE(state) \
935 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
936 (state) == arc_l2c_only)
937
2a432414
GW
938#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
939#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
940#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
941#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
d4a72f23
TC
942#define HDR_PRESCIENT_PREFETCH(hdr) \
943 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
d3c2ae1c
GW
944#define HDR_COMPRESSION_ENABLED(hdr) \
945 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
b9541d6b 946
2a432414
GW
947#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
948#define HDR_L2_READING(hdr) \
d3c2ae1c
GW
949 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
950 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
2a432414
GW
951#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
952#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
953#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
b5256303
TC
954#define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
955#define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
d3c2ae1c 956#define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
34dc7c2f 957
b9541d6b 958#define HDR_ISTYPE_METADATA(hdr) \
d3c2ae1c 959 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
b9541d6b
CW
960#define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
961
962#define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
963#define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
b5256303
TC
964#define HDR_HAS_RABD(hdr) \
965 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
966 (hdr)->b_crypt_hdr.b_rabd != NULL)
967#define HDR_ENCRYPTED(hdr) \
968 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
969#define HDR_AUTHENTICATED(hdr) \
970 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
b9541d6b 971
d3c2ae1c
GW
972/* For storing compression mode in b_flags */
973#define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
974
975#define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
976 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
977#define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
978 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
979
980#define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
524b4217
DK
981#define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
982#define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
b5256303 983#define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
d3c2ae1c 984
34dc7c2f
BB
985/*
986 * Other sizes
987 */
988
b5256303
TC
989#define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
990#define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
b9541d6b 991#define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
34dc7c2f
BB
992
993/*
994 * Hash table routines
995 */
996
00b46022
BB
997#define HT_LOCK_ALIGN 64
998#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
999
1000struct ht_lock {
1001 kmutex_t ht_lock;
1002#ifdef _KERNEL
00b46022 1003 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
1004#endif
1005};
1006
b31d8ea7 1007#define BUF_LOCKS 8192
34dc7c2f
BB
1008typedef struct buf_hash_table {
1009 uint64_t ht_mask;
1010 arc_buf_hdr_t **ht_table;
1011 struct ht_lock ht_locks[BUF_LOCKS];
1012} buf_hash_table_t;
1013
1014static buf_hash_table_t buf_hash_table;
1015
1016#define BUF_HASH_INDEX(spa, dva, birth) \
1017 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
1018#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
1019#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
1020#define HDR_LOCK(hdr) \
1021 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
1022
1023uint64_t zfs_crc64_table[256];
1024
1025/*
1026 * Level 2 ARC
1027 */
1028
1029#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9 1030#define L2ARC_HEADROOM 2 /* num of writes */
8a09d5fd 1031
3a17a7a9
SK
1032/*
1033 * If we discover during ARC scan any buffers to be compressed, we boost
1034 * our headroom for the next scanning cycle by this percentage multiple.
1035 */
1036#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
1037#define L2ARC_FEED_SECS 1 /* caching interval secs */
1038#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f 1039
4aafab91
G
1040/*
1041 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
1042 * and each of the state has two types: data and metadata.
1043 */
1044#define L2ARC_FEED_TYPES 4
1045
34dc7c2f
BB
1046#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
1047#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
1048
d3cc8b15 1049/* L2ARC Performance Tunables */
abd8610c
BB
1050unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
1051unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
1052unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 1053unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
1054unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
1055unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
1056int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
1057int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 1058int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
1059
1060/*
1061 * L2ARC Internals
1062 */
34dc7c2f
BB
1063static list_t L2ARC_dev_list; /* device list */
1064static list_t *l2arc_dev_list; /* device list pointer */
1065static kmutex_t l2arc_dev_mtx; /* device list mutex */
1066static l2arc_dev_t *l2arc_dev_last; /* last device used */
34dc7c2f
BB
1067static list_t L2ARC_free_on_write; /* free after write buf list */
1068static list_t *l2arc_free_on_write; /* free after write list ptr */
1069static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
1070static uint64_t l2arc_ndev; /* number of devices */
1071
1072typedef struct l2arc_read_callback {
2aa34383 1073 arc_buf_hdr_t *l2rcb_hdr; /* read header */
3a17a7a9 1074 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 1075 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9 1076 int l2rcb_flags; /* original flags */
82710e99 1077 abd_t *l2rcb_abd; /* temporary buffer */
34dc7c2f
BB
1078} l2arc_read_callback_t;
1079
34dc7c2f
BB
1080typedef struct l2arc_data_free {
1081 /* protected by l2arc_free_on_write_mtx */
a6255b7f 1082 abd_t *l2df_abd;
34dc7c2f 1083 size_t l2df_size;
d3c2ae1c 1084 arc_buf_contents_t l2df_type;
34dc7c2f
BB
1085 list_node_t l2df_list_node;
1086} l2arc_data_free_t;
1087
b5256303
TC
1088typedef enum arc_fill_flags {
1089 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
1090 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
1091 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
1092 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
1093 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
1094} arc_fill_flags_t;
1095
34dc7c2f
BB
1096static kmutex_t l2arc_feed_thr_lock;
1097static kcondvar_t l2arc_feed_thr_cv;
1098static uint8_t l2arc_thread_exit;
1099
a6255b7f 1100static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
d3c2ae1c 1101static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
a6255b7f
DQ
1102static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
1103static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
d3c2ae1c 1104static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
a6255b7f 1105static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
b5256303
TC
1106static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
1107static void arc_hdr_alloc_abd(arc_buf_hdr_t *, boolean_t);
2a432414 1108static void arc_access(arc_buf_hdr_t *, kmutex_t *);
ca0bf58d 1109static boolean_t arc_is_overflowing(void);
2a432414 1110static void arc_buf_watch(arc_buf_t *);
ca67b33a 1111static void arc_tuning_update(void);
25458cbe 1112static void arc_prune_async(int64_t);
9edb3695 1113static uint64_t arc_all_memory(void);
2a432414 1114
b9541d6b
CW
1115static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1116static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
d3c2ae1c
GW
1117static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1118static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
b9541d6b 1119
2a432414
GW
1120static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1121static void l2arc_read_done(zio_t *);
34dc7c2f 1122
37fb3e43
PD
1123
1124/*
1125 * We use Cityhash for this. It's fast, and has good hash properties without
1126 * requiring any large static buffers.
1127 */
34dc7c2f 1128static uint64_t
d164b209 1129buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 1130{
37fb3e43 1131 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
34dc7c2f
BB
1132}
1133
d3c2ae1c
GW
1134#define HDR_EMPTY(hdr) \
1135 ((hdr)->b_dva.dva_word[0] == 0 && \
1136 (hdr)->b_dva.dva_word[1] == 0)
34dc7c2f 1137
d3c2ae1c
GW
1138#define HDR_EQUAL(spa, dva, birth, hdr) \
1139 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1140 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1141 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
34dc7c2f 1142
428870ff
BB
1143static void
1144buf_discard_identity(arc_buf_hdr_t *hdr)
1145{
1146 hdr->b_dva.dva_word[0] = 0;
1147 hdr->b_dva.dva_word[1] = 0;
1148 hdr->b_birth = 0;
428870ff
BB
1149}
1150
34dc7c2f 1151static arc_buf_hdr_t *
9b67f605 1152buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 1153{
9b67f605
MA
1154 const dva_t *dva = BP_IDENTITY(bp);
1155 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
1156 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1157 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1158 arc_buf_hdr_t *hdr;
34dc7c2f
BB
1159
1160 mutex_enter(hash_lock);
2a432414
GW
1161 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1162 hdr = hdr->b_hash_next) {
d3c2ae1c 1163 if (HDR_EQUAL(spa, dva, birth, hdr)) {
34dc7c2f 1164 *lockp = hash_lock;
2a432414 1165 return (hdr);
34dc7c2f
BB
1166 }
1167 }
1168 mutex_exit(hash_lock);
1169 *lockp = NULL;
1170 return (NULL);
1171}
1172
1173/*
1174 * Insert an entry into the hash table. If there is already an element
1175 * equal to elem in the hash table, then the already existing element
1176 * will be returned and the new element will not be inserted.
1177 * Otherwise returns NULL.
b9541d6b 1178 * If lockp == NULL, the caller is assumed to already hold the hash lock.
34dc7c2f
BB
1179 */
1180static arc_buf_hdr_t *
2a432414 1181buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
34dc7c2f 1182{
2a432414 1183 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f 1184 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
2a432414 1185 arc_buf_hdr_t *fhdr;
34dc7c2f
BB
1186 uint32_t i;
1187
2a432414
GW
1188 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1189 ASSERT(hdr->b_birth != 0);
1190 ASSERT(!HDR_IN_HASH_TABLE(hdr));
b9541d6b
CW
1191
1192 if (lockp != NULL) {
1193 *lockp = hash_lock;
1194 mutex_enter(hash_lock);
1195 } else {
1196 ASSERT(MUTEX_HELD(hash_lock));
1197 }
1198
2a432414
GW
1199 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1200 fhdr = fhdr->b_hash_next, i++) {
d3c2ae1c 1201 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
2a432414 1202 return (fhdr);
34dc7c2f
BB
1203 }
1204
2a432414
GW
1205 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1206 buf_hash_table.ht_table[idx] = hdr;
d3c2ae1c 1207 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1208
1209 /* collect some hash table performance data */
1210 if (i > 0) {
1211 ARCSTAT_BUMP(arcstat_hash_collisions);
1212 if (i == 1)
1213 ARCSTAT_BUMP(arcstat_hash_chains);
1214
1215 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1216 }
1217
1218 ARCSTAT_BUMP(arcstat_hash_elements);
1219 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1220
1221 return (NULL);
1222}
1223
1224static void
2a432414 1225buf_hash_remove(arc_buf_hdr_t *hdr)
34dc7c2f 1226{
2a432414
GW
1227 arc_buf_hdr_t *fhdr, **hdrp;
1228 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
34dc7c2f
BB
1229
1230 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
2a432414 1231 ASSERT(HDR_IN_HASH_TABLE(hdr));
34dc7c2f 1232
2a432414
GW
1233 hdrp = &buf_hash_table.ht_table[idx];
1234 while ((fhdr = *hdrp) != hdr) {
d3c2ae1c 1235 ASSERT3P(fhdr, !=, NULL);
2a432414 1236 hdrp = &fhdr->b_hash_next;
34dc7c2f 1237 }
2a432414
GW
1238 *hdrp = hdr->b_hash_next;
1239 hdr->b_hash_next = NULL;
d3c2ae1c 1240 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
34dc7c2f
BB
1241
1242 /* collect some hash table performance data */
1243 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1244
1245 if (buf_hash_table.ht_table[idx] &&
1246 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1247 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1248}
1249
1250/*
1251 * Global data structures and functions for the buf kmem cache.
1252 */
b5256303 1253
b9541d6b 1254static kmem_cache_t *hdr_full_cache;
b5256303 1255static kmem_cache_t *hdr_full_crypt_cache;
b9541d6b 1256static kmem_cache_t *hdr_l2only_cache;
34dc7c2f
BB
1257static kmem_cache_t *buf_cache;
1258
1259static void
1260buf_fini(void)
1261{
1262 int i;
1263
93ce2b4c 1264#if defined(_KERNEL)
d1d7e268
MK
1265 /*
1266 * Large allocations which do not require contiguous pages
1267 * should be using vmem_free() in the linux kernel\
1268 */
00b46022
BB
1269 vmem_free(buf_hash_table.ht_table,
1270 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1271#else
34dc7c2f
BB
1272 kmem_free(buf_hash_table.ht_table,
1273 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 1274#endif
34dc7c2f
BB
1275 for (i = 0; i < BUF_LOCKS; i++)
1276 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
b9541d6b 1277 kmem_cache_destroy(hdr_full_cache);
b5256303 1278 kmem_cache_destroy(hdr_full_crypt_cache);
b9541d6b 1279 kmem_cache_destroy(hdr_l2only_cache);
34dc7c2f
BB
1280 kmem_cache_destroy(buf_cache);
1281}
1282
1283/*
1284 * Constructor callback - called when the cache is empty
1285 * and a new buf is requested.
1286 */
1287/* ARGSUSED */
1288static int
b9541d6b
CW
1289hdr_full_cons(void *vbuf, void *unused, int kmflag)
1290{
1291 arc_buf_hdr_t *hdr = vbuf;
1292
1293 bzero(hdr, HDR_FULL_SIZE);
ae76f45c 1294 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
b9541d6b 1295 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
424fd7c3 1296 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
b9541d6b
CW
1297 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1298 list_link_init(&hdr->b_l1hdr.b_arc_node);
1299 list_link_init(&hdr->b_l2hdr.b_l2node);
ca0bf58d 1300 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
b9541d6b
CW
1301 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1302
1303 return (0);
1304}
1305
b5256303
TC
1306/* ARGSUSED */
1307static int
1308hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1309{
1310 arc_buf_hdr_t *hdr = vbuf;
1311
1312 hdr_full_cons(vbuf, unused, kmflag);
1313 bzero(&hdr->b_crypt_hdr, sizeof (hdr->b_crypt_hdr));
1314 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1315
1316 return (0);
1317}
1318
b9541d6b
CW
1319/* ARGSUSED */
1320static int
1321hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
34dc7c2f 1322{
2a432414
GW
1323 arc_buf_hdr_t *hdr = vbuf;
1324
b9541d6b
CW
1325 bzero(hdr, HDR_L2ONLY_SIZE);
1326 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 1327
34dc7c2f
BB
1328 return (0);
1329}
1330
b128c09f
BB
1331/* ARGSUSED */
1332static int
1333buf_cons(void *vbuf, void *unused, int kmflag)
1334{
1335 arc_buf_t *buf = vbuf;
1336
1337 bzero(buf, sizeof (arc_buf_t));
428870ff 1338 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
1339 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1340
b128c09f
BB
1341 return (0);
1342}
1343
34dc7c2f
BB
1344/*
1345 * Destructor callback - called when a cached buf is
1346 * no longer required.
1347 */
1348/* ARGSUSED */
1349static void
b9541d6b 1350hdr_full_dest(void *vbuf, void *unused)
34dc7c2f 1351{
2a432414 1352 arc_buf_hdr_t *hdr = vbuf;
34dc7c2f 1353
d3c2ae1c 1354 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1355 cv_destroy(&hdr->b_l1hdr.b_cv);
424fd7c3 1356 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
b9541d6b 1357 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
ca0bf58d 1358 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b
CW
1359 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1360}
1361
b5256303
TC
1362/* ARGSUSED */
1363static void
1364hdr_full_crypt_dest(void *vbuf, void *unused)
1365{
1366 arc_buf_hdr_t *hdr = vbuf;
1367
1368 hdr_full_dest(vbuf, unused);
1369 arc_space_return(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1370}
1371
b9541d6b
CW
1372/* ARGSUSED */
1373static void
1374hdr_l2only_dest(void *vbuf, void *unused)
1375{
1376 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1377
d3c2ae1c 1378 ASSERT(HDR_EMPTY(hdr));
b9541d6b 1379 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
1380}
1381
b128c09f
BB
1382/* ARGSUSED */
1383static void
1384buf_dest(void *vbuf, void *unused)
1385{
1386 arc_buf_t *buf = vbuf;
1387
428870ff 1388 mutex_destroy(&buf->b_evict_lock);
d164b209 1389 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
1390}
1391
8c8af9d8
BB
1392/*
1393 * Reclaim callback -- invoked when memory is low.
1394 */
1395/* ARGSUSED */
1396static void
1397hdr_recl(void *unused)
1398{
1399 dprintf("hdr_recl called\n");
1400 /*
1401 * umem calls the reclaim func when we destroy the buf cache,
1402 * which is after we do arc_fini().
1403 */
3ec34e55
BL
1404 if (arc_initialized)
1405 zthr_wakeup(arc_reap_zthr);
8c8af9d8
BB
1406}
1407
34dc7c2f
BB
1408static void
1409buf_init(void)
1410{
2db28197 1411 uint64_t *ct = NULL;
34dc7c2f
BB
1412 uint64_t hsize = 1ULL << 12;
1413 int i, j;
1414
1415 /*
1416 * The hash table is big enough to fill all of physical memory
49ddb315
MA
1417 * with an average block size of zfs_arc_average_blocksize (default 8K).
1418 * By default, the table will take up
1419 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 1420 */
9edb3695 1421 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
34dc7c2f
BB
1422 hsize <<= 1;
1423retry:
1424 buf_hash_table.ht_mask = hsize - 1;
93ce2b4c 1425#if defined(_KERNEL)
d1d7e268
MK
1426 /*
1427 * Large allocations which do not require contiguous pages
1428 * should be using vmem_alloc() in the linux kernel
1429 */
00b46022
BB
1430 buf_hash_table.ht_table =
1431 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1432#else
34dc7c2f
BB
1433 buf_hash_table.ht_table =
1434 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 1435#endif
34dc7c2f
BB
1436 if (buf_hash_table.ht_table == NULL) {
1437 ASSERT(hsize > (1ULL << 8));
1438 hsize >>= 1;
1439 goto retry;
1440 }
1441
b9541d6b 1442 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
8c8af9d8 1443 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
b5256303
TC
1444 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1445 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1446 hdr_recl, NULL, NULL, 0);
b9541d6b 1447 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
8c8af9d8 1448 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
b9541d6b 1449 NULL, NULL, 0);
34dc7c2f 1450 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 1451 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
34dc7c2f
BB
1452
1453 for (i = 0; i < 256; i++)
1454 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1455 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1456
1457 for (i = 0; i < BUF_LOCKS; i++) {
1458 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
40d06e3c 1459 NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
1460 }
1461}
1462
d3c2ae1c 1463#define ARC_MINTIME (hz>>4) /* 62 ms */
ca0bf58d 1464
2aa34383
DK
1465/*
1466 * This is the size that the buf occupies in memory. If the buf is compressed,
1467 * it will correspond to the compressed size. You should use this method of
1468 * getting the buf size unless you explicitly need the logical size.
1469 */
1470uint64_t
1471arc_buf_size(arc_buf_t *buf)
1472{
1473 return (ARC_BUF_COMPRESSED(buf) ?
1474 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1475}
1476
1477uint64_t
1478arc_buf_lsize(arc_buf_t *buf)
1479{
1480 return (HDR_GET_LSIZE(buf->b_hdr));
1481}
1482
b5256303
TC
1483/*
1484 * This function will return B_TRUE if the buffer is encrypted in memory.
1485 * This buffer can be decrypted by calling arc_untransform().
1486 */
1487boolean_t
1488arc_is_encrypted(arc_buf_t *buf)
1489{
1490 return (ARC_BUF_ENCRYPTED(buf) != 0);
1491}
1492
1493/*
1494 * Returns B_TRUE if the buffer represents data that has not had its MAC
1495 * verified yet.
1496 */
1497boolean_t
1498arc_is_unauthenticated(arc_buf_t *buf)
1499{
1500 return (HDR_NOAUTH(buf->b_hdr) != 0);
1501}
1502
1503void
1504arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1505 uint8_t *iv, uint8_t *mac)
1506{
1507 arc_buf_hdr_t *hdr = buf->b_hdr;
1508
1509 ASSERT(HDR_PROTECTED(hdr));
1510
1511 bcopy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
1512 bcopy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
1513 bcopy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
1514 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1515 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1516}
1517
1518/*
1519 * Indicates how this buffer is compressed in memory. If it is not compressed
1520 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1521 * arc_untransform() as long as it is also unencrypted.
1522 */
2aa34383
DK
1523enum zio_compress
1524arc_get_compression(arc_buf_t *buf)
1525{
1526 return (ARC_BUF_COMPRESSED(buf) ?
1527 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1528}
1529
b5256303
TC
1530/*
1531 * Return the compression algorithm used to store this data in the ARC. If ARC
1532 * compression is enabled or this is an encrypted block, this will be the same
1533 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1534 */
1535static inline enum zio_compress
1536arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1537{
1538 return (HDR_COMPRESSION_ENABLED(hdr) ?
1539 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1540}
1541
d3c2ae1c
GW
1542static inline boolean_t
1543arc_buf_is_shared(arc_buf_t *buf)
1544{
1545 boolean_t shared = (buf->b_data != NULL &&
a6255b7f
DQ
1546 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1547 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1548 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
d3c2ae1c 1549 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
2aa34383
DK
1550 IMPLY(shared, ARC_BUF_SHARED(buf));
1551 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
524b4217
DK
1552
1553 /*
1554 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1555 * already being shared" requirement prevents us from doing that.
1556 */
1557
d3c2ae1c
GW
1558 return (shared);
1559}
ca0bf58d 1560
a7004725
DK
1561/*
1562 * Free the checksum associated with this header. If there is no checksum, this
1563 * is a no-op.
1564 */
d3c2ae1c
GW
1565static inline void
1566arc_cksum_free(arc_buf_hdr_t *hdr)
1567{
1568 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303 1569
d3c2ae1c
GW
1570 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1571 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1572 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1573 hdr->b_l1hdr.b_freeze_cksum = NULL;
b9541d6b 1574 }
d3c2ae1c 1575 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
b9541d6b
CW
1576}
1577
a7004725
DK
1578/*
1579 * Return true iff at least one of the bufs on hdr is not compressed.
b5256303 1580 * Encrypted buffers count as compressed.
a7004725
DK
1581 */
1582static boolean_t
1583arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1584{
149ce888
TC
1585 ASSERT(hdr->b_l1hdr.b_state == arc_anon ||
1586 MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1587
a7004725
DK
1588 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1589 if (!ARC_BUF_COMPRESSED(b)) {
1590 return (B_TRUE);
1591 }
1592 }
1593 return (B_FALSE);
1594}
1595
1596
524b4217
DK
1597/*
1598 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1599 * matches the checksum that is stored in the hdr. If there is no checksum,
1600 * or if the buf is compressed, this is a no-op.
1601 */
34dc7c2f
BB
1602static void
1603arc_cksum_verify(arc_buf_t *buf)
1604{
d3c2ae1c 1605 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f
BB
1606 zio_cksum_t zc;
1607
1608 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1609 return;
1610
149ce888 1611 if (ARC_BUF_COMPRESSED(buf))
524b4217 1612 return;
524b4217 1613
d3c2ae1c
GW
1614 ASSERT(HDR_HAS_L1HDR(hdr));
1615
1616 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
149ce888 1617
d3c2ae1c
GW
1618 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1619 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1620 return;
1621 }
2aa34383 1622
3c67d83a 1623 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
d3c2ae1c 1624 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
34dc7c2f 1625 panic("buffer modified while frozen!");
d3c2ae1c 1626 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1627}
1628
b5256303
TC
1629/*
1630 * This function makes the assumption that data stored in the L2ARC
1631 * will be transformed exactly as it is in the main pool. Because of
1632 * this we can verify the checksum against the reading process's bp.
1633 */
d3c2ae1c
GW
1634static boolean_t
1635arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
34dc7c2f 1636{
d3c2ae1c
GW
1637 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1638 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
34dc7c2f 1639
d3c2ae1c
GW
1640 /*
1641 * Block pointers always store the checksum for the logical data.
1642 * If the block pointer has the gang bit set, then the checksum
1643 * it represents is for the reconstituted data and not for an
1644 * individual gang member. The zio pipeline, however, must be able to
1645 * determine the checksum of each of the gang constituents so it
1646 * treats the checksum comparison differently than what we need
1647 * for l2arc blocks. This prevents us from using the
1648 * zio_checksum_error() interface directly. Instead we must call the
1649 * zio_checksum_error_impl() so that we can ensure the checksum is
1650 * generated using the correct checksum algorithm and accounts for the
1651 * logical I/O size and not just a gang fragment.
1652 */
b5256303 1653 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
a6255b7f 1654 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
d3c2ae1c 1655 zio->io_offset, NULL) == 0);
34dc7c2f
BB
1656}
1657
524b4217
DK
1658/*
1659 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1660 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1661 * isn't modified later on. If buf is compressed or there is already a checksum
1662 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1663 */
34dc7c2f 1664static void
d3c2ae1c 1665arc_cksum_compute(arc_buf_t *buf)
34dc7c2f 1666{
d3c2ae1c
GW
1667 arc_buf_hdr_t *hdr = buf->b_hdr;
1668
1669 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
34dc7c2f
BB
1670 return;
1671
d3c2ae1c 1672 ASSERT(HDR_HAS_L1HDR(hdr));
2aa34383 1673
b9541d6b 1674 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
149ce888 1675 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 1676 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
34dc7c2f
BB
1677 return;
1678 }
2aa34383 1679
b5256303 1680 ASSERT(!ARC_BUF_ENCRYPTED(buf));
2aa34383 1681 ASSERT(!ARC_BUF_COMPRESSED(buf));
d3c2ae1c
GW
1682 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1683 KM_SLEEP);
3c67d83a 1684 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
d3c2ae1c
GW
1685 hdr->b_l1hdr.b_freeze_cksum);
1686 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
498877ba
MA
1687 arc_buf_watch(buf);
1688}
1689
1690#ifndef _KERNEL
1691void
1692arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1693{
02730c33 1694 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
498877ba
MA
1695}
1696#endif
1697
1698/* ARGSUSED */
1699static void
1700arc_buf_unwatch(arc_buf_t *buf)
1701{
1702#ifndef _KERNEL
1703 if (arc_watch) {
a7004725 1704 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
498877ba
MA
1705 PROT_READ | PROT_WRITE));
1706 }
1707#endif
1708}
1709
1710/* ARGSUSED */
1711static void
1712arc_buf_watch(arc_buf_t *buf)
1713{
1714#ifndef _KERNEL
1715 if (arc_watch)
2aa34383 1716 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
d3c2ae1c 1717 PROT_READ));
498877ba 1718#endif
34dc7c2f
BB
1719}
1720
b9541d6b
CW
1721static arc_buf_contents_t
1722arc_buf_type(arc_buf_hdr_t *hdr)
1723{
d3c2ae1c 1724 arc_buf_contents_t type;
b9541d6b 1725 if (HDR_ISTYPE_METADATA(hdr)) {
d3c2ae1c 1726 type = ARC_BUFC_METADATA;
b9541d6b 1727 } else {
d3c2ae1c 1728 type = ARC_BUFC_DATA;
b9541d6b 1729 }
d3c2ae1c
GW
1730 VERIFY3U(hdr->b_type, ==, type);
1731 return (type);
b9541d6b
CW
1732}
1733
2aa34383
DK
1734boolean_t
1735arc_is_metadata(arc_buf_t *buf)
1736{
1737 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1738}
1739
b9541d6b
CW
1740static uint32_t
1741arc_bufc_to_flags(arc_buf_contents_t type)
1742{
1743 switch (type) {
1744 case ARC_BUFC_DATA:
1745 /* metadata field is 0 if buffer contains normal data */
1746 return (0);
1747 case ARC_BUFC_METADATA:
1748 return (ARC_FLAG_BUFC_METADATA);
1749 default:
1750 break;
1751 }
1752 panic("undefined ARC buffer type!");
1753 return ((uint32_t)-1);
1754}
1755
34dc7c2f
BB
1756void
1757arc_buf_thaw(arc_buf_t *buf)
1758{
d3c2ae1c
GW
1759 arc_buf_hdr_t *hdr = buf->b_hdr;
1760
2aa34383
DK
1761 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1762 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1763
524b4217 1764 arc_cksum_verify(buf);
34dc7c2f 1765
2aa34383 1766 /*
149ce888 1767 * Compressed buffers do not manipulate the b_freeze_cksum.
2aa34383 1768 */
149ce888 1769 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1770 return;
2aa34383 1771
d3c2ae1c
GW
1772 ASSERT(HDR_HAS_L1HDR(hdr));
1773 arc_cksum_free(hdr);
498877ba 1774 arc_buf_unwatch(buf);
34dc7c2f
BB
1775}
1776
1777void
1778arc_buf_freeze(arc_buf_t *buf)
1779{
1780 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1781 return;
1782
149ce888 1783 if (ARC_BUF_COMPRESSED(buf))
2aa34383 1784 return;
428870ff 1785
149ce888 1786 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
d3c2ae1c 1787 arc_cksum_compute(buf);
34dc7c2f
BB
1788}
1789
d3c2ae1c
GW
1790/*
1791 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1792 * the following functions should be used to ensure that the flags are
1793 * updated in a thread-safe way. When manipulating the flags either
1794 * the hash_lock must be held or the hdr must be undiscoverable. This
1795 * ensures that we're not racing with any other threads when updating
1796 * the flags.
1797 */
1798static inline void
1799arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1800{
1801 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1802 hdr->b_flags |= flags;
1803}
1804
1805static inline void
1806arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1807{
1808 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1809 hdr->b_flags &= ~flags;
1810}
1811
1812/*
1813 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1814 * done in a special way since we have to clear and set bits
1815 * at the same time. Consumers that wish to set the compression bits
1816 * must use this function to ensure that the flags are updated in
1817 * thread-safe manner.
1818 */
1819static void
1820arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1821{
1822 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1823
1824 /*
1825 * Holes and embedded blocks will always have a psize = 0 so
1826 * we ignore the compression of the blkptr and set the
d3c2ae1c
GW
1827 * want to uncompress them. Mark them as uncompressed.
1828 */
1829 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1830 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c 1831 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
d3c2ae1c
GW
1832 } else {
1833 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
d3c2ae1c
GW
1834 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1835 }
b5256303
TC
1836
1837 HDR_SET_COMPRESS(hdr, cmp);
1838 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
d3c2ae1c
GW
1839}
1840
524b4217
DK
1841/*
1842 * Looks for another buf on the same hdr which has the data decompressed, copies
1843 * from it, and returns true. If no such buf exists, returns false.
1844 */
1845static boolean_t
1846arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1847{
1848 arc_buf_hdr_t *hdr = buf->b_hdr;
524b4217
DK
1849 boolean_t copied = B_FALSE;
1850
1851 ASSERT(HDR_HAS_L1HDR(hdr));
1852 ASSERT3P(buf->b_data, !=, NULL);
1853 ASSERT(!ARC_BUF_COMPRESSED(buf));
1854
a7004725 1855 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
524b4217
DK
1856 from = from->b_next) {
1857 /* can't use our own data buffer */
1858 if (from == buf) {
1859 continue;
1860 }
1861
1862 if (!ARC_BUF_COMPRESSED(from)) {
1863 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1864 copied = B_TRUE;
1865 break;
1866 }
1867 }
1868
1869 /*
1870 * There were no decompressed bufs, so there should not be a
1871 * checksum on the hdr either.
1872 */
1873 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1874
1875 return (copied);
1876}
1877
b5256303
TC
1878/*
1879 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1880 */
1881static uint64_t
1882arc_hdr_size(arc_buf_hdr_t *hdr)
1883{
1884 uint64_t size;
1885
1886 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1887 HDR_GET_PSIZE(hdr) > 0) {
1888 size = HDR_GET_PSIZE(hdr);
1889 } else {
1890 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1891 size = HDR_GET_LSIZE(hdr);
1892 }
1893 return (size);
1894}
1895
1896static int
1897arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1898{
1899 int ret;
1900 uint64_t csize;
1901 uint64_t lsize = HDR_GET_LSIZE(hdr);
1902 uint64_t psize = HDR_GET_PSIZE(hdr);
1903 void *tmpbuf = NULL;
1904 abd_t *abd = hdr->b_l1hdr.b_pabd;
1905
149ce888 1906 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
b5256303
TC
1907 ASSERT(HDR_AUTHENTICATED(hdr));
1908 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1909
1910 /*
1911 * The MAC is calculated on the compressed data that is stored on disk.
1912 * However, if compressed arc is disabled we will only have the
1913 * decompressed data available to us now. Compress it into a temporary
1914 * abd so we can verify the MAC. The performance overhead of this will
1915 * be relatively low, since most objects in an encrypted objset will
1916 * be encrypted (instead of authenticated) anyway.
1917 */
1918 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1919 !HDR_COMPRESSION_ENABLED(hdr)) {
1920 tmpbuf = zio_buf_alloc(lsize);
1921 abd = abd_get_from_buf(tmpbuf, lsize);
1922 abd_take_ownership_of_buf(abd, B_TRUE);
1923
1924 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1925 hdr->b_l1hdr.b_pabd, tmpbuf, lsize);
1926 ASSERT3U(csize, <=, psize);
1927 abd_zero_off(abd, csize, psize - csize);
1928 }
1929
1930 /*
1931 * Authentication is best effort. We authenticate whenever the key is
1932 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1933 */
1934 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1935 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1936 ASSERT3U(lsize, ==, psize);
1937 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1938 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1939 } else {
1940 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1941 hdr->b_crypt_hdr.b_mac);
1942 }
1943
1944 if (ret == 0)
1945 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1946 else if (ret != ENOENT)
1947 goto error;
1948
1949 if (tmpbuf != NULL)
1950 abd_free(abd);
1951
1952 return (0);
1953
1954error:
1955 if (tmpbuf != NULL)
1956 abd_free(abd);
1957
1958 return (ret);
1959}
1960
1961/*
1962 * This function will take a header that only has raw encrypted data in
1963 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1964 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1965 * also decompress the data.
1966 */
1967static int
be9a5c35 1968arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
b5256303
TC
1969{
1970 int ret;
b5256303
TC
1971 abd_t *cabd = NULL;
1972 void *tmp = NULL;
1973 boolean_t no_crypt = B_FALSE;
1974 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1975
149ce888 1976 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
b5256303
TC
1977 ASSERT(HDR_ENCRYPTED(hdr));
1978
1979 arc_hdr_alloc_abd(hdr, B_FALSE);
1980
be9a5c35
TC
1981 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1982 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1983 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
b5256303
TC
1984 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1985 if (ret != 0)
1986 goto error;
1987
1988 if (no_crypt) {
1989 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1990 HDR_GET_PSIZE(hdr));
1991 }
1992
1993 /*
1994 * If this header has disabled arc compression but the b_pabd is
1995 * compressed after decrypting it, we need to decompress the newly
1996 * decrypted data.
1997 */
1998 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1999 !HDR_COMPRESSION_ENABLED(hdr)) {
2000 /*
2001 * We want to make sure that we are correctly honoring the
2002 * zfs_abd_scatter_enabled setting, so we allocate an abd here
2003 * and then loan a buffer from it, rather than allocating a
2004 * linear buffer and wrapping it in an abd later.
2005 */
2006 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2007 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
2008
2009 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2010 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
2011 HDR_GET_LSIZE(hdr));
2012 if (ret != 0) {
2013 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
2014 goto error;
2015 }
2016
2017 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
2018 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2019 arc_hdr_size(hdr), hdr);
2020 hdr->b_l1hdr.b_pabd = cabd;
2021 }
2022
b5256303
TC
2023 return (0);
2024
2025error:
2026 arc_hdr_free_abd(hdr, B_FALSE);
b5256303
TC
2027 if (cabd != NULL)
2028 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
2029
2030 return (ret);
2031}
2032
2033/*
2034 * This function is called during arc_buf_fill() to prepare the header's
2035 * abd plaintext pointer for use. This involves authenticated protected
2036 * data and decrypting encrypted data into the plaintext abd.
2037 */
2038static int
2039arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
be9a5c35 2040 const zbookmark_phys_t *zb, boolean_t noauth)
b5256303
TC
2041{
2042 int ret;
2043
2044 ASSERT(HDR_PROTECTED(hdr));
2045
2046 if (hash_lock != NULL)
2047 mutex_enter(hash_lock);
2048
2049 if (HDR_NOAUTH(hdr) && !noauth) {
2050 /*
2051 * The caller requested authenticated data but our data has
2052 * not been authenticated yet. Verify the MAC now if we can.
2053 */
be9a5c35 2054 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
b5256303
TC
2055 if (ret != 0)
2056 goto error;
2057 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
2058 /*
2059 * If we only have the encrypted version of the data, but the
2060 * unencrypted version was requested we take this opportunity
2061 * to store the decrypted version in the header for future use.
2062 */
be9a5c35 2063 ret = arc_hdr_decrypt(hdr, spa, zb);
b5256303
TC
2064 if (ret != 0)
2065 goto error;
2066 }
2067
2068 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2069
2070 if (hash_lock != NULL)
2071 mutex_exit(hash_lock);
2072
2073 return (0);
2074
2075error:
2076 if (hash_lock != NULL)
2077 mutex_exit(hash_lock);
2078
2079 return (ret);
2080}
2081
2082/*
2083 * This function is used by the dbuf code to decrypt bonus buffers in place.
2084 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
2085 * block, so we use the hash lock here to protect against concurrent calls to
2086 * arc_buf_fill().
2087 */
2088static void
2089arc_buf_untransform_in_place(arc_buf_t *buf, kmutex_t *hash_lock)
2090{
2091 arc_buf_hdr_t *hdr = buf->b_hdr;
2092
2093 ASSERT(HDR_ENCRYPTED(hdr));
2094 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
149ce888 2095 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
b5256303
TC
2096 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2097
2098 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
2099 arc_buf_size(buf));
2100 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2101 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2102 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2103}
2104
524b4217
DK
2105/*
2106 * Given a buf that has a data buffer attached to it, this function will
2107 * efficiently fill the buf with data of the specified compression setting from
2108 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2109 * are already sharing a data buf, no copy is performed.
2110 *
2111 * If the buf is marked as compressed but uncompressed data was requested, this
2112 * will allocate a new data buffer for the buf, remove that flag, and fill the
2113 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2114 * uncompressed data, and (since we haven't added support for it yet) if you
2115 * want compressed data your buf must already be marked as compressed and have
2116 * the correct-sized data buffer.
2117 */
2118static int
be9a5c35
TC
2119arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2120 arc_fill_flags_t flags)
d3c2ae1c 2121{
b5256303 2122 int error = 0;
d3c2ae1c 2123 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
2124 boolean_t hdr_compressed =
2125 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2126 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2127 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
d3c2ae1c 2128 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
b5256303 2129 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
d3c2ae1c 2130
524b4217 2131 ASSERT3P(buf->b_data, !=, NULL);
b5256303 2132 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
524b4217 2133 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
b5256303
TC
2134 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2135 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2136 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2137 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2138
2139 /*
2140 * If the caller wanted encrypted data we just need to copy it from
2141 * b_rabd and potentially byteswap it. We won't be able to do any
2142 * further transforms on it.
2143 */
2144 if (encrypted) {
2145 ASSERT(HDR_HAS_RABD(hdr));
2146 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2147 HDR_GET_PSIZE(hdr));
2148 goto byteswap;
2149 }
2150
2151 /*
69830602
TC
2152 * Adjust encrypted and authenticated headers to accomodate
2153 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2154 * allowed to fail decryption due to keys not being loaded
2155 * without being marked as an IO error.
b5256303
TC
2156 */
2157 if (HDR_PROTECTED(hdr)) {
2158 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
be9a5c35 2159 zb, !!(flags & ARC_FILL_NOAUTH));
69830602
TC
2160 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2161 return (error);
2162 } else if (error != 0) {
e7504d7a
TC
2163 if (hash_lock != NULL)
2164 mutex_enter(hash_lock);
2c24b5b1 2165 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2166 if (hash_lock != NULL)
2167 mutex_exit(hash_lock);
b5256303 2168 return (error);
2c24b5b1 2169 }
b5256303
TC
2170 }
2171
2172 /*
2173 * There is a special case here for dnode blocks which are
2174 * decrypting their bonus buffers. These blocks may request to
2175 * be decrypted in-place. This is necessary because there may
2176 * be many dnodes pointing into this buffer and there is
2177 * currently no method to synchronize replacing the backing
2178 * b_data buffer and updating all of the pointers. Here we use
2179 * the hash lock to ensure there are no races. If the need
2180 * arises for other types to be decrypted in-place, they must
2181 * add handling here as well.
2182 */
2183 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2184 ASSERT(!hdr_compressed);
2185 ASSERT(!compressed);
2186 ASSERT(!encrypted);
2187
2188 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2189 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2190
2191 if (hash_lock != NULL)
2192 mutex_enter(hash_lock);
2193 arc_buf_untransform_in_place(buf, hash_lock);
2194 if (hash_lock != NULL)
2195 mutex_exit(hash_lock);
2196
2197 /* Compute the hdr's checksum if necessary */
2198 arc_cksum_compute(buf);
2199 }
2200
2201 return (0);
2202 }
524b4217
DK
2203
2204 if (hdr_compressed == compressed) {
2aa34383 2205 if (!arc_buf_is_shared(buf)) {
a6255b7f 2206 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
524b4217 2207 arc_buf_size(buf));
2aa34383 2208 }
d3c2ae1c 2209 } else {
524b4217
DK
2210 ASSERT(hdr_compressed);
2211 ASSERT(!compressed);
d3c2ae1c 2212 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
2aa34383
DK
2213
2214 /*
524b4217
DK
2215 * If the buf is sharing its data with the hdr, unlink it and
2216 * allocate a new data buffer for the buf.
2aa34383 2217 */
524b4217
DK
2218 if (arc_buf_is_shared(buf)) {
2219 ASSERT(ARC_BUF_COMPRESSED(buf));
2220
2221 /* We need to give the buf it's own b_data */
2222 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2aa34383
DK
2223 buf->b_data =
2224 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2225 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2226
524b4217 2227 /* Previously overhead was 0; just add new overhead */
2aa34383 2228 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
524b4217
DK
2229 } else if (ARC_BUF_COMPRESSED(buf)) {
2230 /* We need to reallocate the buf's b_data */
2231 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2232 buf);
2233 buf->b_data =
2234 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2235
2236 /* We increased the size of b_data; update overhead */
2237 ARCSTAT_INCR(arcstat_overhead_size,
2238 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2aa34383
DK
2239 }
2240
524b4217
DK
2241 /*
2242 * Regardless of the buf's previous compression settings, it
2243 * should not be compressed at the end of this function.
2244 */
2245 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2246
2247 /*
2248 * Try copying the data from another buf which already has a
2249 * decompressed version. If that's not possible, it's time to
2250 * bite the bullet and decompress the data from the hdr.
2251 */
2252 if (arc_buf_try_copy_decompressed_data(buf)) {
2253 /* Skip byteswapping and checksumming (already done) */
2254 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
2255 return (0);
2256 } else {
b5256303 2257 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
a6255b7f 2258 hdr->b_l1hdr.b_pabd, buf->b_data,
524b4217
DK
2259 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2260
2261 /*
2262 * Absent hardware errors or software bugs, this should
2263 * be impossible, but log it anyway so we can debug it.
2264 */
2265 if (error != 0) {
2266 zfs_dbgmsg(
2267 "hdr %p, compress %d, psize %d, lsize %d",
b5256303 2268 hdr, arc_hdr_get_compress(hdr),
524b4217 2269 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
e7504d7a
TC
2270 if (hash_lock != NULL)
2271 mutex_enter(hash_lock);
2c24b5b1 2272 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
e7504d7a
TC
2273 if (hash_lock != NULL)
2274 mutex_exit(hash_lock);
524b4217
DK
2275 return (SET_ERROR(EIO));
2276 }
d3c2ae1c
GW
2277 }
2278 }
524b4217 2279
b5256303 2280byteswap:
524b4217 2281 /* Byteswap the buf's data if necessary */
d3c2ae1c
GW
2282 if (bswap != DMU_BSWAP_NUMFUNCS) {
2283 ASSERT(!HDR_SHARED_DATA(hdr));
2284 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2285 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2286 }
524b4217
DK
2287
2288 /* Compute the hdr's checksum if necessary */
d3c2ae1c 2289 arc_cksum_compute(buf);
524b4217 2290
d3c2ae1c
GW
2291 return (0);
2292}
2293
2294/*
b5256303
TC
2295 * If this function is being called to decrypt an encrypted buffer or verify an
2296 * authenticated one, the key must be loaded and a mapping must be made
2297 * available in the keystore via spa_keystore_create_mapping() or one of its
2298 * callers.
d3c2ae1c 2299 */
b5256303 2300int
a2c2ed1b
TC
2301arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2302 boolean_t in_place)
d3c2ae1c 2303{
a2c2ed1b 2304 int ret;
b5256303 2305 arc_fill_flags_t flags = 0;
d3c2ae1c 2306
b5256303
TC
2307 if (in_place)
2308 flags |= ARC_FILL_IN_PLACE;
2309
be9a5c35 2310 ret = arc_buf_fill(buf, spa, zb, flags);
a2c2ed1b
TC
2311 if (ret == ECKSUM) {
2312 /*
2313 * Convert authentication and decryption errors to EIO
2314 * (and generate an ereport) before leaving the ARC.
2315 */
2316 ret = SET_ERROR(EIO);
be9a5c35 2317 spa_log_error(spa, zb);
a2c2ed1b
TC
2318 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2319 spa, NULL, zb, NULL, 0, 0);
2320 }
2321
2322 return (ret);
d3c2ae1c
GW
2323}
2324
2325/*
2326 * Increment the amount of evictable space in the arc_state_t's refcount.
2327 * We account for the space used by the hdr and the arc buf individually
2328 * so that we can add and remove them from the refcount individually.
2329 */
34dc7c2f 2330static void
d3c2ae1c
GW
2331arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2332{
2333 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2334
2335 ASSERT(HDR_HAS_L1HDR(hdr));
2336
2337 if (GHOST_STATE(state)) {
2338 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2339 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2340 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2341 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2342 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2343 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2344 return;
2345 }
2346
2347 ASSERT(!GHOST_STATE(state));
a6255b7f 2348 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2349 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c
GW
2350 arc_hdr_size(hdr), hdr);
2351 }
b5256303 2352 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2353 (void) zfs_refcount_add_many(&state->arcs_esize[type],
b5256303
TC
2354 HDR_GET_PSIZE(hdr), hdr);
2355 }
2356
1c27024e
DB
2357 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2358 buf = buf->b_next) {
2aa34383 2359 if (arc_buf_is_shared(buf))
d3c2ae1c 2360 continue;
424fd7c3 2361 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2aa34383 2362 arc_buf_size(buf), buf);
d3c2ae1c
GW
2363 }
2364}
2365
2366/*
2367 * Decrement the amount of evictable space in the arc_state_t's refcount.
2368 * We account for the space used by the hdr and the arc buf individually
2369 * so that we can add and remove them from the refcount individually.
2370 */
2371static void
2aa34383 2372arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
d3c2ae1c
GW
2373{
2374 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c
GW
2375
2376 ASSERT(HDR_HAS_L1HDR(hdr));
2377
2378 if (GHOST_STATE(state)) {
2379 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2380 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
a6255b7f 2381 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2382 ASSERT(!HDR_HAS_RABD(hdr));
424fd7c3 2383 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2384 HDR_GET_LSIZE(hdr), hdr);
d3c2ae1c
GW
2385 return;
2386 }
2387
2388 ASSERT(!GHOST_STATE(state));
a6255b7f 2389 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2390 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
2391 arc_hdr_size(hdr), hdr);
2392 }
b5256303 2393 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2394 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
b5256303
TC
2395 HDR_GET_PSIZE(hdr), hdr);
2396 }
2397
1c27024e
DB
2398 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2399 buf = buf->b_next) {
2aa34383 2400 if (arc_buf_is_shared(buf))
d3c2ae1c 2401 continue;
424fd7c3 2402 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2aa34383 2403 arc_buf_size(buf), buf);
d3c2ae1c
GW
2404 }
2405}
2406
2407/*
2408 * Add a reference to this hdr indicating that someone is actively
2409 * referencing that memory. When the refcount transitions from 0 to 1,
2410 * we remove it from the respective arc_state_t list to indicate that
2411 * it is not evictable.
2412 */
2413static void
2414add_reference(arc_buf_hdr_t *hdr, void *tag)
34dc7c2f 2415{
b9541d6b
CW
2416 arc_state_t *state;
2417
2418 ASSERT(HDR_HAS_L1HDR(hdr));
d3c2ae1c
GW
2419 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
2420 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
424fd7c3 2421 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
2422 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2423 }
34dc7c2f 2424
b9541d6b
CW
2425 state = hdr->b_l1hdr.b_state;
2426
c13060e4 2427 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
b9541d6b
CW
2428 (state != arc_anon)) {
2429 /* We don't use the L2-only state list. */
2430 if (state != arc_l2c_only) {
64fc7762 2431 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
d3c2ae1c 2432 hdr);
2aa34383 2433 arc_evictable_space_decrement(hdr, state);
34dc7c2f 2434 }
b128c09f 2435 /* remove the prefetch flag if we get a reference */
d3c2ae1c 2436 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
2437 }
2438}
2439
d3c2ae1c
GW
2440/*
2441 * Remove a reference from this hdr. When the reference transitions from
2442 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2443 * list making it eligible for eviction.
2444 */
34dc7c2f 2445static int
2a432414 2446remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
34dc7c2f
BB
2447{
2448 int cnt;
b9541d6b 2449 arc_state_t *state = hdr->b_l1hdr.b_state;
34dc7c2f 2450
b9541d6b 2451 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f
BB
2452 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
2453 ASSERT(!GHOST_STATE(state));
2454
b9541d6b
CW
2455 /*
2456 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2457 * check to prevent usage of the arc_l2c_only list.
2458 */
424fd7c3 2459 if (((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
34dc7c2f 2460 (state != arc_anon)) {
64fc7762 2461 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
d3c2ae1c
GW
2462 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2463 arc_evictable_space_increment(hdr, state);
34dc7c2f
BB
2464 }
2465 return (cnt);
2466}
2467
e0b0ca98
BB
2468/*
2469 * Returns detailed information about a specific arc buffer. When the
2470 * state_index argument is set the function will calculate the arc header
2471 * list position for its arc state. Since this requires a linear traversal
2472 * callers are strongly encourage not to do this. However, it can be helpful
2473 * for targeted analysis so the functionality is provided.
2474 */
2475void
2476arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2477{
2478 arc_buf_hdr_t *hdr = ab->b_hdr;
b9541d6b
CW
2479 l1arc_buf_hdr_t *l1hdr = NULL;
2480 l2arc_buf_hdr_t *l2hdr = NULL;
2481 arc_state_t *state = NULL;
2482
8887c7d7
TC
2483 memset(abi, 0, sizeof (arc_buf_info_t));
2484
2485 if (hdr == NULL)
2486 return;
2487
2488 abi->abi_flags = hdr->b_flags;
2489
b9541d6b
CW
2490 if (HDR_HAS_L1HDR(hdr)) {
2491 l1hdr = &hdr->b_l1hdr;
2492 state = l1hdr->b_state;
2493 }
2494 if (HDR_HAS_L2HDR(hdr))
2495 l2hdr = &hdr->b_l2hdr;
e0b0ca98 2496
b9541d6b 2497 if (l1hdr) {
d3c2ae1c 2498 abi->abi_bufcnt = l1hdr->b_bufcnt;
b9541d6b
CW
2499 abi->abi_access = l1hdr->b_arc_access;
2500 abi->abi_mru_hits = l1hdr->b_mru_hits;
2501 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2502 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2503 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
424fd7c3 2504 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
b9541d6b
CW
2505 }
2506
2507 if (l2hdr) {
2508 abi->abi_l2arc_dattr = l2hdr->b_daddr;
b9541d6b
CW
2509 abi->abi_l2arc_hits = l2hdr->b_hits;
2510 }
2511
e0b0ca98 2512 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
b9541d6b 2513 abi->abi_state_contents = arc_buf_type(hdr);
d3c2ae1c 2514 abi->abi_size = arc_hdr_size(hdr);
e0b0ca98
BB
2515}
2516
34dc7c2f 2517/*
ca0bf58d 2518 * Move the supplied buffer to the indicated state. The hash lock
34dc7c2f
BB
2519 * for the buffer must be held by the caller.
2520 */
2521static void
2a432414
GW
2522arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2523 kmutex_t *hash_lock)
34dc7c2f 2524{
b9541d6b
CW
2525 arc_state_t *old_state;
2526 int64_t refcnt;
d3c2ae1c
GW
2527 uint32_t bufcnt;
2528 boolean_t update_old, update_new;
b9541d6b
CW
2529 arc_buf_contents_t buftype = arc_buf_type(hdr);
2530
2531 /*
2532 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2533 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2534 * L1 hdr doesn't always exist when we change state to arc_anon before
2535 * destroying a header, in which case reallocating to add the L1 hdr is
2536 * pointless.
2537 */
2538 if (HDR_HAS_L1HDR(hdr)) {
2539 old_state = hdr->b_l1hdr.b_state;
424fd7c3 2540 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
d3c2ae1c 2541 bufcnt = hdr->b_l1hdr.b_bufcnt;
b5256303
TC
2542 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2543 HDR_HAS_RABD(hdr));
b9541d6b
CW
2544 } else {
2545 old_state = arc_l2c_only;
2546 refcnt = 0;
d3c2ae1c
GW
2547 bufcnt = 0;
2548 update_old = B_FALSE;
b9541d6b 2549 }
d3c2ae1c 2550 update_new = update_old;
34dc7c2f
BB
2551
2552 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 2553 ASSERT3P(new_state, !=, old_state);
d3c2ae1c
GW
2554 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2555 ASSERT(old_state != arc_anon || bufcnt <= 1);
34dc7c2f
BB
2556
2557 /*
2558 * If this buffer is evictable, transfer it from the
2559 * old state list to the new state list.
2560 */
2561 if (refcnt == 0) {
b9541d6b 2562 if (old_state != arc_anon && old_state != arc_l2c_only) {
b9541d6b 2563 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2564 multilist_remove(old_state->arcs_list[buftype], hdr);
34dc7c2f 2565
d3c2ae1c
GW
2566 if (GHOST_STATE(old_state)) {
2567 ASSERT0(bufcnt);
2568 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2569 update_old = B_TRUE;
34dc7c2f 2570 }
2aa34383 2571 arc_evictable_space_decrement(hdr, old_state);
34dc7c2f 2572 }
b9541d6b 2573 if (new_state != arc_anon && new_state != arc_l2c_only) {
b9541d6b
CW
2574 /*
2575 * An L1 header always exists here, since if we're
2576 * moving to some L1-cached state (i.e. not l2c_only or
2577 * anonymous), we realloc the header to add an L1hdr
2578 * beforehand.
2579 */
2580 ASSERT(HDR_HAS_L1HDR(hdr));
64fc7762 2581 multilist_insert(new_state->arcs_list[buftype], hdr);
34dc7c2f 2582
34dc7c2f 2583 if (GHOST_STATE(new_state)) {
d3c2ae1c
GW
2584 ASSERT0(bufcnt);
2585 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2586 update_new = B_TRUE;
34dc7c2f 2587 }
d3c2ae1c 2588 arc_evictable_space_increment(hdr, new_state);
34dc7c2f
BB
2589 }
2590 }
2591
d3c2ae1c 2592 ASSERT(!HDR_EMPTY(hdr));
2a432414
GW
2593 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2594 buf_hash_remove(hdr);
34dc7c2f 2595
b9541d6b 2596 /* adjust state sizes (ignore arc_l2c_only) */
36da08ef 2597
d3c2ae1c 2598 if (update_new && new_state != arc_l2c_only) {
36da08ef
PS
2599 ASSERT(HDR_HAS_L1HDR(hdr));
2600 if (GHOST_STATE(new_state)) {
d3c2ae1c 2601 ASSERT0(bufcnt);
36da08ef
PS
2602
2603 /*
d3c2ae1c 2604 * When moving a header to a ghost state, we first
36da08ef 2605 * remove all arc buffers. Thus, we'll have a
d3c2ae1c 2606 * bufcnt of zero, and no arc buffer to use for
36da08ef
PS
2607 * the reference. As a result, we use the arc
2608 * header pointer for the reference.
2609 */
424fd7c3 2610 (void) zfs_refcount_add_many(&new_state->arcs_size,
d3c2ae1c 2611 HDR_GET_LSIZE(hdr), hdr);
a6255b7f 2612 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2613 ASSERT(!HDR_HAS_RABD(hdr));
36da08ef 2614 } else {
d3c2ae1c 2615 uint32_t buffers = 0;
36da08ef
PS
2616
2617 /*
2618 * Each individual buffer holds a unique reference,
2619 * thus we must remove each of these references one
2620 * at a time.
2621 */
1c27024e 2622 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2623 buf = buf->b_next) {
d3c2ae1c
GW
2624 ASSERT3U(bufcnt, !=, 0);
2625 buffers++;
2626
2627 /*
2628 * When the arc_buf_t is sharing the data
2629 * block with the hdr, the owner of the
2630 * reference belongs to the hdr. Only
2631 * add to the refcount if the arc_buf_t is
2632 * not shared.
2633 */
2aa34383 2634 if (arc_buf_is_shared(buf))
d3c2ae1c 2635 continue;
d3c2ae1c 2636
424fd7c3
TS
2637 (void) zfs_refcount_add_many(
2638 &new_state->arcs_size,
2aa34383 2639 arc_buf_size(buf), buf);
d3c2ae1c
GW
2640 }
2641 ASSERT3U(bufcnt, ==, buffers);
2642
a6255b7f 2643 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3
TS
2644 (void) zfs_refcount_add_many(
2645 &new_state->arcs_size,
d3c2ae1c 2646 arc_hdr_size(hdr), hdr);
b5256303
TC
2647 }
2648
2649 if (HDR_HAS_RABD(hdr)) {
424fd7c3
TS
2650 (void) zfs_refcount_add_many(
2651 &new_state->arcs_size,
b5256303 2652 HDR_GET_PSIZE(hdr), hdr);
36da08ef
PS
2653 }
2654 }
2655 }
2656
d3c2ae1c 2657 if (update_old && old_state != arc_l2c_only) {
36da08ef
PS
2658 ASSERT(HDR_HAS_L1HDR(hdr));
2659 if (GHOST_STATE(old_state)) {
d3c2ae1c 2660 ASSERT0(bufcnt);
a6255b7f 2661 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 2662 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c 2663
36da08ef
PS
2664 /*
2665 * When moving a header off of a ghost state,
d3c2ae1c
GW
2666 * the header will not contain any arc buffers.
2667 * We use the arc header pointer for the reference
2668 * which is exactly what we did when we put the
2669 * header on the ghost state.
36da08ef
PS
2670 */
2671
424fd7c3 2672 (void) zfs_refcount_remove_many(&old_state->arcs_size,
d3c2ae1c 2673 HDR_GET_LSIZE(hdr), hdr);
36da08ef 2674 } else {
d3c2ae1c 2675 uint32_t buffers = 0;
36da08ef
PS
2676
2677 /*
2678 * Each individual buffer holds a unique reference,
2679 * thus we must remove each of these references one
2680 * at a time.
2681 */
1c27024e 2682 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
36da08ef 2683 buf = buf->b_next) {
d3c2ae1c
GW
2684 ASSERT3U(bufcnt, !=, 0);
2685 buffers++;
2686
2687 /*
2688 * When the arc_buf_t is sharing the data
2689 * block with the hdr, the owner of the
2690 * reference belongs to the hdr. Only
2691 * add to the refcount if the arc_buf_t is
2692 * not shared.
2693 */
2aa34383 2694 if (arc_buf_is_shared(buf))
d3c2ae1c 2695 continue;
d3c2ae1c 2696
424fd7c3 2697 (void) zfs_refcount_remove_many(
2aa34383 2698 &old_state->arcs_size, arc_buf_size(buf),
d3c2ae1c 2699 buf);
36da08ef 2700 }
d3c2ae1c 2701 ASSERT3U(bufcnt, ==, buffers);
b5256303
TC
2702 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2703 HDR_HAS_RABD(hdr));
2704
2705 if (hdr->b_l1hdr.b_pabd != NULL) {
424fd7c3 2706 (void) zfs_refcount_remove_many(
b5256303
TC
2707 &old_state->arcs_size, arc_hdr_size(hdr),
2708 hdr);
2709 }
2710
2711 if (HDR_HAS_RABD(hdr)) {
424fd7c3 2712 (void) zfs_refcount_remove_many(
b5256303
TC
2713 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2714 hdr);
2715 }
36da08ef 2716 }
34dc7c2f 2717 }
36da08ef 2718
b9541d6b
CW
2719 if (HDR_HAS_L1HDR(hdr))
2720 hdr->b_l1hdr.b_state = new_state;
34dc7c2f 2721
b9541d6b
CW
2722 /*
2723 * L2 headers should never be on the L2 state list since they don't
2724 * have L1 headers allocated.
2725 */
64fc7762
MA
2726 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2727 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
34dc7c2f
BB
2728}
2729
2730void
d164b209 2731arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 2732{
d164b209
BB
2733 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2734
2735 switch (type) {
e75c13c3
BB
2736 default:
2737 break;
d164b209 2738 case ARC_SPACE_DATA:
37fb3e43 2739 aggsum_add(&astat_data_size, space);
d164b209 2740 break;
cc7f677c 2741 case ARC_SPACE_META:
37fb3e43 2742 aggsum_add(&astat_metadata_size, space);
cc7f677c 2743 break;
25458cbe 2744 case ARC_SPACE_BONUS:
37fb3e43 2745 aggsum_add(&astat_bonus_size, space);
25458cbe
TC
2746 break;
2747 case ARC_SPACE_DNODE:
37fb3e43 2748 aggsum_add(&astat_dnode_size, space);
25458cbe
TC
2749 break;
2750 case ARC_SPACE_DBUF:
37fb3e43 2751 aggsum_add(&astat_dbuf_size, space);
d164b209
BB
2752 break;
2753 case ARC_SPACE_HDRS:
37fb3e43 2754 aggsum_add(&astat_hdr_size, space);
d164b209
BB
2755 break;
2756 case ARC_SPACE_L2HDRS:
37fb3e43 2757 aggsum_add(&astat_l2_hdr_size, space);
d164b209
BB
2758 break;
2759 }
2760
500445c0 2761 if (type != ARC_SPACE_DATA)
37fb3e43 2762 aggsum_add(&arc_meta_used, space);
cc7f677c 2763
37fb3e43 2764 aggsum_add(&arc_size, space);
34dc7c2f
BB
2765}
2766
2767void
d164b209 2768arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 2769{
d164b209
BB
2770 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2771
2772 switch (type) {
e75c13c3
BB
2773 default:
2774 break;
d164b209 2775 case ARC_SPACE_DATA:
37fb3e43 2776 aggsum_add(&astat_data_size, -space);
d164b209 2777 break;
cc7f677c 2778 case ARC_SPACE_META:
37fb3e43 2779 aggsum_add(&astat_metadata_size, -space);
cc7f677c 2780 break;
25458cbe 2781 case ARC_SPACE_BONUS:
37fb3e43 2782 aggsum_add(&astat_bonus_size, -space);
25458cbe
TC
2783 break;
2784 case ARC_SPACE_DNODE:
37fb3e43 2785 aggsum_add(&astat_dnode_size, -space);
25458cbe
TC
2786 break;
2787 case ARC_SPACE_DBUF:
37fb3e43 2788 aggsum_add(&astat_dbuf_size, -space);
d164b209
BB
2789 break;
2790 case ARC_SPACE_HDRS:
37fb3e43 2791 aggsum_add(&astat_hdr_size, -space);
d164b209
BB
2792 break;
2793 case ARC_SPACE_L2HDRS:
37fb3e43 2794 aggsum_add(&astat_l2_hdr_size, -space);
d164b209
BB
2795 break;
2796 }
2797
cc7f677c 2798 if (type != ARC_SPACE_DATA) {
37fb3e43
PD
2799 ASSERT(aggsum_compare(&arc_meta_used, space) >= 0);
2800 /*
2801 * We use the upper bound here rather than the precise value
2802 * because the arc_meta_max value doesn't need to be
2803 * precise. It's only consumed by humans via arcstats.
2804 */
2805 if (arc_meta_max < aggsum_upper_bound(&arc_meta_used))
2806 arc_meta_max = aggsum_upper_bound(&arc_meta_used);
2807 aggsum_add(&arc_meta_used, -space);
cc7f677c
PS
2808 }
2809
37fb3e43
PD
2810 ASSERT(aggsum_compare(&arc_size, space) >= 0);
2811 aggsum_add(&arc_size, -space);
34dc7c2f
BB
2812}
2813
d3c2ae1c 2814/*
524b4217 2815 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
a6255b7f 2816 * with the hdr's b_pabd.
d3c2ae1c 2817 */
524b4217
DK
2818static boolean_t
2819arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2820{
524b4217
DK
2821 /*
2822 * The criteria for sharing a hdr's data are:
b5256303
TC
2823 * 1. the buffer is not encrypted
2824 * 2. the hdr's compression matches the buf's compression
2825 * 3. the hdr doesn't need to be byteswapped
2826 * 4. the hdr isn't already being shared
2827 * 5. the buf is either compressed or it is the last buf in the hdr list
524b4217 2828 *
b5256303 2829 * Criterion #5 maintains the invariant that shared uncompressed
524b4217
DK
2830 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2831 * might ask, "if a compressed buf is allocated first, won't that be the
2832 * last thing in the list?", but in that case it's impossible to create
2833 * a shared uncompressed buf anyway (because the hdr must be compressed
2834 * to have the compressed buf). You might also think that #3 is
2835 * sufficient to make this guarantee, however it's possible
2836 * (specifically in the rare L2ARC write race mentioned in
2837 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2838 * is sharable, but wasn't at the time of its allocation. Rather than
2839 * allow a new shared uncompressed buf to be created and then shuffle
2840 * the list around to make it the last element, this simply disallows
2841 * sharing if the new buf isn't the first to be added.
2842 */
2843 ASSERT3P(buf->b_hdr, ==, hdr);
b5256303
TC
2844 boolean_t hdr_compressed =
2845 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
a7004725 2846 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
b5256303
TC
2847 return (!ARC_BUF_ENCRYPTED(buf) &&
2848 buf_compressed == hdr_compressed &&
524b4217
DK
2849 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2850 !HDR_SHARED_DATA(hdr) &&
2851 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2852}
2853
2854/*
2855 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2856 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2857 * copy was made successfully, or an error code otherwise.
2858 */
2859static int
be9a5c35
TC
2860arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2861 void *tag, boolean_t encrypted, boolean_t compressed, boolean_t noauth,
524b4217 2862 boolean_t fill, arc_buf_t **ret)
34dc7c2f 2863{
34dc7c2f 2864 arc_buf_t *buf;
b5256303 2865 arc_fill_flags_t flags = ARC_FILL_LOCKED;
34dc7c2f 2866
d3c2ae1c
GW
2867 ASSERT(HDR_HAS_L1HDR(hdr));
2868 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2869 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2870 hdr->b_type == ARC_BUFC_METADATA);
524b4217
DK
2871 ASSERT3P(ret, !=, NULL);
2872 ASSERT3P(*ret, ==, NULL);
b5256303 2873 IMPLY(encrypted, compressed);
d3c2ae1c 2874
b9541d6b
CW
2875 hdr->b_l1hdr.b_mru_hits = 0;
2876 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2877 hdr->b_l1hdr.b_mfu_hits = 0;
2878 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2879 hdr->b_l1hdr.b_l2_hits = 0;
2880
524b4217 2881 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
34dc7c2f
BB
2882 buf->b_hdr = hdr;
2883 buf->b_data = NULL;
2aa34383 2884 buf->b_next = hdr->b_l1hdr.b_buf;
524b4217 2885 buf->b_flags = 0;
b9541d6b 2886
d3c2ae1c
GW
2887 add_reference(hdr, tag);
2888
2889 /*
2890 * We're about to change the hdr's b_flags. We must either
2891 * hold the hash_lock or be undiscoverable.
2892 */
2893 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2894
2895 /*
524b4217 2896 * Only honor requests for compressed bufs if the hdr is actually
b5256303
TC
2897 * compressed. This must be overriden if the buffer is encrypted since
2898 * encrypted buffers cannot be decompressed.
524b4217 2899 */
b5256303
TC
2900 if (encrypted) {
2901 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2902 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2903 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2904 } else if (compressed &&
2905 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
524b4217 2906 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
2907 flags |= ARC_FILL_COMPRESSED;
2908 }
2909
2910 if (noauth) {
2911 ASSERT0(encrypted);
2912 flags |= ARC_FILL_NOAUTH;
2913 }
524b4217 2914
524b4217
DK
2915 /*
2916 * If the hdr's data can be shared then we share the data buffer and
2917 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2aa34383 2918 * allocate a new buffer to store the buf's data.
524b4217 2919 *
a6255b7f
DQ
2920 * There are two additional restrictions here because we're sharing
2921 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2922 * actively involved in an L2ARC write, because if this buf is used by
2923 * an arc_write() then the hdr's data buffer will be released when the
524b4217 2924 * write completes, even though the L2ARC write might still be using it.
a6255b7f
DQ
2925 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2926 * need to be ABD-aware.
d3c2ae1c 2927 */
a7004725 2928 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
b5256303 2929 hdr->b_l1hdr.b_pabd != NULL && abd_is_linear(hdr->b_l1hdr.b_pabd);
524b4217
DK
2930
2931 /* Set up b_data and sharing */
2932 if (can_share) {
a6255b7f 2933 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
524b4217 2934 buf->b_flags |= ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
2935 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2936 } else {
524b4217
DK
2937 buf->b_data =
2938 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2939 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
d3c2ae1c
GW
2940 }
2941 VERIFY3P(buf->b_data, !=, NULL);
b9541d6b
CW
2942
2943 hdr->b_l1hdr.b_buf = buf;
d3c2ae1c 2944 hdr->b_l1hdr.b_bufcnt += 1;
b5256303
TC
2945 if (encrypted)
2946 hdr->b_crypt_hdr.b_ebufcnt += 1;
b9541d6b 2947
524b4217
DK
2948 /*
2949 * If the user wants the data from the hdr, we need to either copy or
2950 * decompress the data.
2951 */
2952 if (fill) {
be9a5c35
TC
2953 ASSERT3P(zb, !=, NULL);
2954 return (arc_buf_fill(buf, spa, zb, flags));
524b4217 2955 }
d3c2ae1c 2956
524b4217 2957 return (0);
34dc7c2f
BB
2958}
2959
9babb374
BB
2960static char *arc_onloan_tag = "onloan";
2961
a7004725
DK
2962static inline void
2963arc_loaned_bytes_update(int64_t delta)
2964{
2965 atomic_add_64(&arc_loaned_bytes, delta);
2966
2967 /* assert that it did not wrap around */
2968 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2969}
2970
9babb374
BB
2971/*
2972 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2973 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2974 * buffers must be returned to the arc before they can be used by the DMU or
2975 * freed.
2976 */
2977arc_buf_t *
2aa34383 2978arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
9babb374 2979{
2aa34383
DK
2980 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2981 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
9babb374 2982
5152a740 2983 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2984
9babb374
BB
2985 return (buf);
2986}
2987
2aa34383
DK
2988arc_buf_t *
2989arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2990 enum zio_compress compression_type)
2991{
2992 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2993 psize, lsize, compression_type);
2994
5152a740 2995 arc_loaned_bytes_update(arc_buf_size(buf));
a7004725 2996
2aa34383
DK
2997 return (buf);
2998}
2999
b5256303
TC
3000arc_buf_t *
3001arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
3002 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3003 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3004 enum zio_compress compression_type)
3005{
3006 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
3007 byteorder, salt, iv, mac, ot, psize, lsize, compression_type);
3008
3009 atomic_add_64(&arc_loaned_bytes, psize);
3010 return (buf);
3011}
3012
2aa34383 3013
9babb374
BB
3014/*
3015 * Return a loaned arc buffer to the arc.
3016 */
3017void
3018arc_return_buf(arc_buf_t *buf, void *tag)
3019{
3020 arc_buf_hdr_t *hdr = buf->b_hdr;
3021
d3c2ae1c 3022 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 3023 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 3024 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
424fd7c3 3025 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
9babb374 3026
a7004725 3027 arc_loaned_bytes_update(-arc_buf_size(buf));
9babb374
BB
3028}
3029
428870ff
BB
3030/* Detach an arc_buf from a dbuf (tag) */
3031void
3032arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
3033{
b9541d6b 3034 arc_buf_hdr_t *hdr = buf->b_hdr;
428870ff 3035
d3c2ae1c 3036 ASSERT3P(buf->b_data, !=, NULL);
b9541d6b 3037 ASSERT(HDR_HAS_L1HDR(hdr));
c13060e4 3038 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
424fd7c3 3039 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
428870ff 3040
a7004725 3041 arc_loaned_bytes_update(arc_buf_size(buf));
428870ff
BB
3042}
3043
d3c2ae1c 3044static void
a6255b7f 3045l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
34dc7c2f 3046{
d3c2ae1c 3047 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
34dc7c2f 3048
a6255b7f 3049 df->l2df_abd = abd;
d3c2ae1c
GW
3050 df->l2df_size = size;
3051 df->l2df_type = type;
3052 mutex_enter(&l2arc_free_on_write_mtx);
3053 list_insert_head(l2arc_free_on_write, df);
3054 mutex_exit(&l2arc_free_on_write_mtx);
3055}
428870ff 3056
d3c2ae1c 3057static void
b5256303 3058arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c
GW
3059{
3060 arc_state_t *state = hdr->b_l1hdr.b_state;
3061 arc_buf_contents_t type = arc_buf_type(hdr);
b5256303 3062 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
1eb5bfa3 3063
d3c2ae1c
GW
3064 /* protected by hash lock, if in the hash table */
3065 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 3066 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
3067 ASSERT(state != arc_anon && state != arc_l2c_only);
3068
424fd7c3 3069 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c 3070 size, hdr);
1eb5bfa3 3071 }
424fd7c3 3072 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
423e7b62
AG
3073 if (type == ARC_BUFC_METADATA) {
3074 arc_space_return(size, ARC_SPACE_META);
3075 } else {
3076 ASSERT(type == ARC_BUFC_DATA);
3077 arc_space_return(size, ARC_SPACE_DATA);
3078 }
d3c2ae1c 3079
b5256303
TC
3080 if (free_rdata) {
3081 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
3082 } else {
3083 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
3084 }
34dc7c2f
BB
3085}
3086
d3c2ae1c
GW
3087/*
3088 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
3089 * data buffer, we transfer the refcount ownership to the hdr and update
3090 * the appropriate kstats.
3091 */
3092static void
3093arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
34dc7c2f 3094{
524b4217 3095 ASSERT(arc_can_share(hdr, buf));
a6255b7f 3096 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3097 ASSERT(!ARC_BUF_ENCRYPTED(buf));
d3c2ae1c 3098 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
34dc7c2f
BB
3099
3100 /*
d3c2ae1c
GW
3101 * Start sharing the data buffer. We transfer the
3102 * refcount ownership to the hdr since it always owns
3103 * the refcount whenever an arc_buf_t is shared.
34dc7c2f 3104 */
d7e4b30a
BB
3105 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3106 arc_hdr_size(hdr), buf, hdr);
a6255b7f
DQ
3107 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3108 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3109 HDR_ISTYPE_METADATA(hdr));
d3c2ae1c 3110 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
524b4217 3111 buf->b_flags |= ARC_BUF_FLAG_SHARED;
34dc7c2f 3112
d3c2ae1c
GW
3113 /*
3114 * Since we've transferred ownership to the hdr we need
3115 * to increment its compressed and uncompressed kstats and
3116 * decrement the overhead size.
3117 */
3118 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3119 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2aa34383 3120 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
34dc7c2f
BB
3121}
3122
ca0bf58d 3123static void
d3c2ae1c 3124arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
ca0bf58d 3125{
d3c2ae1c 3126 ASSERT(arc_buf_is_shared(buf));
a6255b7f 3127 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
d3c2ae1c 3128 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
ca0bf58d 3129
d3c2ae1c
GW
3130 /*
3131 * We are no longer sharing this buffer so we need
3132 * to transfer its ownership to the rightful owner.
3133 */
d7e4b30a
BB
3134 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3135 arc_hdr_size(hdr), hdr, buf);
d3c2ae1c 3136 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
a6255b7f
DQ
3137 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3138 abd_put(hdr->b_l1hdr.b_pabd);
3139 hdr->b_l1hdr.b_pabd = NULL;
524b4217 3140 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
d3c2ae1c
GW
3141
3142 /*
3143 * Since the buffer is no longer shared between
3144 * the arc buf and the hdr, count it as overhead.
3145 */
3146 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3147 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2aa34383 3148 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
ca0bf58d
PS
3149}
3150
34dc7c2f 3151/*
2aa34383
DK
3152 * Remove an arc_buf_t from the hdr's buf list and return the last
3153 * arc_buf_t on the list. If no buffers remain on the list then return
3154 * NULL.
3155 */
3156static arc_buf_t *
3157arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3158{
2aa34383
DK
3159 ASSERT(HDR_HAS_L1HDR(hdr));
3160 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3161
a7004725
DK
3162 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3163 arc_buf_t *lastbuf = NULL;
3164
2aa34383
DK
3165 /*
3166 * Remove the buf from the hdr list and locate the last
3167 * remaining buffer on the list.
3168 */
3169 while (*bufp != NULL) {
3170 if (*bufp == buf)
3171 *bufp = buf->b_next;
3172
3173 /*
3174 * If we've removed a buffer in the middle of
3175 * the list then update the lastbuf and update
3176 * bufp.
3177 */
3178 if (*bufp != NULL) {
3179 lastbuf = *bufp;
3180 bufp = &(*bufp)->b_next;
3181 }
3182 }
3183 buf->b_next = NULL;
3184 ASSERT3P(lastbuf, !=, buf);
3185 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3186 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3187 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3188
3189 return (lastbuf);
3190}
3191
3192/*
3193 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
3194 * list and free it.
34dc7c2f
BB
3195 */
3196static void
2aa34383 3197arc_buf_destroy_impl(arc_buf_t *buf)
34dc7c2f 3198{
498877ba 3199 arc_buf_hdr_t *hdr = buf->b_hdr;
ca0bf58d
PS
3200
3201 /*
524b4217
DK
3202 * Free up the data associated with the buf but only if we're not
3203 * sharing this with the hdr. If we are sharing it with the hdr, the
3204 * hdr is responsible for doing the free.
ca0bf58d 3205 */
d3c2ae1c
GW
3206 if (buf->b_data != NULL) {
3207 /*
3208 * We're about to change the hdr's b_flags. We must either
3209 * hold the hash_lock or be undiscoverable.
3210 */
3211 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
3212
524b4217 3213 arc_cksum_verify(buf);
d3c2ae1c
GW
3214 arc_buf_unwatch(buf);
3215
2aa34383 3216 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
3217 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3218 } else {
2aa34383 3219 uint64_t size = arc_buf_size(buf);
d3c2ae1c
GW
3220 arc_free_data_buf(hdr, buf->b_data, size, buf);
3221 ARCSTAT_INCR(arcstat_overhead_size, -size);
3222 }
3223 buf->b_data = NULL;
3224
3225 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3226 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303 3227
da5d4697 3228 if (ARC_BUF_ENCRYPTED(buf)) {
b5256303
TC
3229 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3230
da5d4697
D
3231 /*
3232 * If we have no more encrypted buffers and we've
3233 * already gotten a copy of the decrypted data we can
3234 * free b_rabd to save some space.
3235 */
3236 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3237 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3238 !HDR_IO_IN_PROGRESS(hdr)) {
3239 arc_hdr_free_abd(hdr, B_TRUE);
3240 }
440a3eb9 3241 }
d3c2ae1c
GW
3242 }
3243
a7004725 3244 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 3245
524b4217 3246 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2aa34383 3247 /*
524b4217 3248 * If the current arc_buf_t is sharing its data buffer with the
a6255b7f 3249 * hdr, then reassign the hdr's b_pabd to share it with the new
524b4217
DK
3250 * buffer at the end of the list. The shared buffer is always
3251 * the last one on the hdr's buffer list.
3252 *
3253 * There is an equivalent case for compressed bufs, but since
3254 * they aren't guaranteed to be the last buf in the list and
3255 * that is an exceedingly rare case, we just allow that space be
b5256303
TC
3256 * wasted temporarily. We must also be careful not to share
3257 * encrypted buffers, since they cannot be shared.
2aa34383 3258 */
b5256303 3259 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
524b4217 3260 /* Only one buf can be shared at once */
2aa34383 3261 VERIFY(!arc_buf_is_shared(lastbuf));
524b4217
DK
3262 /* hdr is uncompressed so can't have compressed buf */
3263 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
d3c2ae1c 3264
a6255b7f 3265 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 3266 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 3267
2aa34383
DK
3268 /*
3269 * We must setup a new shared block between the
3270 * last buffer and the hdr. The data would have
3271 * been allocated by the arc buf so we need to transfer
3272 * ownership to the hdr since it's now being shared.
3273 */
3274 arc_share_buf(hdr, lastbuf);
3275 }
3276 } else if (HDR_SHARED_DATA(hdr)) {
d3c2ae1c 3277 /*
2aa34383
DK
3278 * Uncompressed shared buffers are always at the end
3279 * of the list. Compressed buffers don't have the
3280 * same requirements. This makes it hard to
3281 * simply assert that the lastbuf is shared so
3282 * we rely on the hdr's compression flags to determine
3283 * if we have a compressed, shared buffer.
d3c2ae1c 3284 */
2aa34383
DK
3285 ASSERT3P(lastbuf, !=, NULL);
3286 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 3287 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
ca0bf58d
PS
3288 }
3289
a7004725
DK
3290 /*
3291 * Free the checksum if we're removing the last uncompressed buf from
3292 * this hdr.
3293 */
3294 if (!arc_hdr_has_uncompressed_buf(hdr)) {
d3c2ae1c 3295 arc_cksum_free(hdr);
a7004725 3296 }
d3c2ae1c
GW
3297
3298 /* clean up the buf */
3299 buf->b_hdr = NULL;
3300 kmem_cache_free(buf_cache, buf);
3301}
3302
3303static void
b5256303 3304arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, boolean_t alloc_rdata)
d3c2ae1c 3305{
b5256303
TC
3306 uint64_t size;
3307
d3c2ae1c
GW
3308 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3309 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3310 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3311 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
d3c2ae1c 3312
b5256303
TC
3313 if (alloc_rdata) {
3314 size = HDR_GET_PSIZE(hdr);
3315 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3316 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr);
3317 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3318 ARCSTAT_INCR(arcstat_raw_size, size);
3319 } else {
3320 size = arc_hdr_size(hdr);
3321 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3322 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr);
3323 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3324 }
3325
3326 ARCSTAT_INCR(arcstat_compressed_size, size);
d3c2ae1c
GW
3327 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3328}
3329
3330static void
b5256303 3331arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
d3c2ae1c 3332{
b5256303
TC
3333 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3334
d3c2ae1c 3335 ASSERT(HDR_HAS_L1HDR(hdr));
b5256303
TC
3336 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3337 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
d3c2ae1c 3338
ca0bf58d 3339 /*
d3c2ae1c
GW
3340 * If the hdr is currently being written to the l2arc then
3341 * we defer freeing the data by adding it to the l2arc_free_on_write
3342 * list. The l2arc will free the data once it's finished
3343 * writing it to the l2arc device.
ca0bf58d 3344 */
d3c2ae1c 3345 if (HDR_L2_WRITING(hdr)) {
b5256303 3346 arc_hdr_free_on_write(hdr, free_rdata);
d3c2ae1c 3347 ARCSTAT_BUMP(arcstat_l2_free_on_write);
b5256303
TC
3348 } else if (free_rdata) {
3349 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
d3c2ae1c 3350 } else {
b5256303 3351 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
ca0bf58d
PS
3352 }
3353
b5256303
TC
3354 if (free_rdata) {
3355 hdr->b_crypt_hdr.b_rabd = NULL;
3356 ARCSTAT_INCR(arcstat_raw_size, -size);
3357 } else {
3358 hdr->b_l1hdr.b_pabd = NULL;
3359 }
3360
3361 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3362 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3363
3364 ARCSTAT_INCR(arcstat_compressed_size, -size);
d3c2ae1c
GW
3365 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3366}
3367
3368static arc_buf_hdr_t *
3369arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
b5256303
TC
3370 boolean_t protected, enum zio_compress compression_type,
3371 arc_buf_contents_t type, boolean_t alloc_rdata)
d3c2ae1c
GW
3372{
3373 arc_buf_hdr_t *hdr;
3374
d3c2ae1c 3375 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
b5256303
TC
3376 if (protected) {
3377 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3378 } else {
3379 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3380 }
d3c2ae1c 3381
d3c2ae1c
GW
3382 ASSERT(HDR_EMPTY(hdr));
3383 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3384 HDR_SET_PSIZE(hdr, psize);
3385 HDR_SET_LSIZE(hdr, lsize);
3386 hdr->b_spa = spa;
3387 hdr->b_type = type;
3388 hdr->b_flags = 0;
3389 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2aa34383 3390 arc_hdr_set_compress(hdr, compression_type);
b5256303
TC
3391 if (protected)
3392 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
ca0bf58d 3393
d3c2ae1c
GW
3394 hdr->b_l1hdr.b_state = arc_anon;
3395 hdr->b_l1hdr.b_arc_access = 0;
3396 hdr->b_l1hdr.b_bufcnt = 0;
3397 hdr->b_l1hdr.b_buf = NULL;
ca0bf58d 3398
d3c2ae1c
GW
3399 /*
3400 * Allocate the hdr's buffer. This will contain either
3401 * the compressed or uncompressed data depending on the block
3402 * it references and compressed arc enablement.
3403 */
b5256303 3404 arc_hdr_alloc_abd(hdr, alloc_rdata);
424fd7c3 3405 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
ca0bf58d 3406
d3c2ae1c 3407 return (hdr);
ca0bf58d
PS
3408}
3409
bd089c54 3410/*
d3c2ae1c
GW
3411 * Transition between the two allocation states for the arc_buf_hdr struct.
3412 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3413 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3414 * version is used when a cache buffer is only in the L2ARC in order to reduce
3415 * memory usage.
bd089c54 3416 */
d3c2ae1c
GW
3417static arc_buf_hdr_t *
3418arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
34dc7c2f 3419{
1c27024e
DB
3420 ASSERT(HDR_HAS_L2HDR(hdr));
3421
d3c2ae1c
GW
3422 arc_buf_hdr_t *nhdr;
3423 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
34dc7c2f 3424
d3c2ae1c
GW
3425 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3426 (old == hdr_l2only_cache && new == hdr_full_cache));
34dc7c2f 3427
b5256303
TC
3428 /*
3429 * if the caller wanted a new full header and the header is to be
3430 * encrypted we will actually allocate the header from the full crypt
3431 * cache instead. The same applies to freeing from the old cache.
3432 */
3433 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3434 new = hdr_full_crypt_cache;
3435 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3436 old = hdr_full_crypt_cache;
3437
d3c2ae1c 3438 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
428870ff 3439
d3c2ae1c
GW
3440 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3441 buf_hash_remove(hdr);
ca0bf58d 3442
d3c2ae1c 3443 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
34dc7c2f 3444
b5256303 3445 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
d3c2ae1c
GW
3446 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3447 /*
3448 * arc_access and arc_change_state need to be aware that a
3449 * header has just come out of L2ARC, so we set its state to
3450 * l2c_only even though it's about to change.
3451 */
3452 nhdr->b_l1hdr.b_state = arc_l2c_only;
34dc7c2f 3453
d3c2ae1c 3454 /* Verify previous threads set to NULL before freeing */
a6255b7f 3455 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3456 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3457 } else {
3458 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3459 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3460 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
36da08ef 3461
d3c2ae1c
GW
3462 /*
3463 * If we've reached here, We must have been called from
3464 * arc_evict_hdr(), as such we should have already been
3465 * removed from any ghost list we were previously on
3466 * (which protects us from racing with arc_evict_state),
3467 * thus no locking is needed during this check.
3468 */
3469 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1eb5bfa3
GW
3470
3471 /*
d3c2ae1c
GW
3472 * A buffer must not be moved into the arc_l2c_only
3473 * state if it's not finished being written out to the
a6255b7f 3474 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
d3c2ae1c 3475 * might try to be accessed, even though it was removed.
1eb5bfa3 3476 */
d3c2ae1c 3477 VERIFY(!HDR_L2_WRITING(hdr));
a6255b7f 3478 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 3479 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
3480
3481 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
34dc7c2f 3482 }
d3c2ae1c
GW
3483 /*
3484 * The header has been reallocated so we need to re-insert it into any
3485 * lists it was on.
3486 */
3487 (void) buf_hash_insert(nhdr, NULL);
34dc7c2f 3488
d3c2ae1c 3489 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
34dc7c2f 3490
d3c2ae1c
GW
3491 mutex_enter(&dev->l2ad_mtx);
3492
3493 /*
3494 * We must place the realloc'ed header back into the list at
3495 * the same spot. Otherwise, if it's placed earlier in the list,
3496 * l2arc_write_buffers() could find it during the function's
3497 * write phase, and try to write it out to the l2arc.
3498 */
3499 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3500 list_remove(&dev->l2ad_buflist, hdr);
34dc7c2f 3501
d3c2ae1c 3502 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 3503
d3c2ae1c
GW
3504 /*
3505 * Since we're using the pointer address as the tag when
3506 * incrementing and decrementing the l2ad_alloc refcount, we
3507 * must remove the old pointer (that we're about to destroy) and
3508 * add the new pointer to the refcount. Otherwise we'd remove
3509 * the wrong pointer address when calling arc_hdr_destroy() later.
3510 */
3511
424fd7c3
TS
3512 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3513 arc_hdr_size(hdr), hdr);
3514 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3515 arc_hdr_size(nhdr), nhdr);
d3c2ae1c
GW
3516
3517 buf_discard_identity(hdr);
3518 kmem_cache_free(old, hdr);
3519
3520 return (nhdr);
3521}
3522
b5256303
TC
3523/*
3524 * This function allows an L1 header to be reallocated as a crypt
3525 * header and vice versa. If we are going to a crypt header, the
3526 * new fields will be zeroed out.
3527 */
3528static arc_buf_hdr_t *
3529arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3530{
3531 arc_buf_hdr_t *nhdr;
3532 arc_buf_t *buf;
3533 kmem_cache_t *ncache, *ocache;
b7ddeaef 3534 unsigned nsize, osize;
b5256303 3535
b7ddeaef
TC
3536 /*
3537 * This function requires that hdr is in the arc_anon state.
3538 * Therefore it won't have any L2ARC data for us to worry
3539 * about copying.
3540 */
b5256303 3541 ASSERT(HDR_HAS_L1HDR(hdr));
b7ddeaef 3542 ASSERT(!HDR_HAS_L2HDR(hdr));
b5256303
TC
3543 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3544 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3545 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b7ddeaef
TC
3546 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3547 ASSERT3P(hdr->b_hash_next, ==, NULL);
b5256303
TC
3548
3549 if (need_crypt) {
3550 ncache = hdr_full_crypt_cache;
b7ddeaef 3551 nsize = sizeof (hdr->b_crypt_hdr);
b5256303 3552 ocache = hdr_full_cache;
b7ddeaef 3553 osize = HDR_FULL_SIZE;
b5256303
TC
3554 } else {
3555 ncache = hdr_full_cache;
b7ddeaef 3556 nsize = HDR_FULL_SIZE;
b5256303 3557 ocache = hdr_full_crypt_cache;
b7ddeaef 3558 osize = sizeof (hdr->b_crypt_hdr);
b5256303
TC
3559 }
3560
3561 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
b7ddeaef
TC
3562
3563 /*
3564 * Copy all members that aren't locks or condvars to the new header.
3565 * No lists are pointing to us (as we asserted above), so we don't
3566 * need to worry about the list nodes.
3567 */
3568 nhdr->b_dva = hdr->b_dva;
3569 nhdr->b_birth = hdr->b_birth;
3570 nhdr->b_type = hdr->b_type;
3571 nhdr->b_flags = hdr->b_flags;
3572 nhdr->b_psize = hdr->b_psize;
3573 nhdr->b_lsize = hdr->b_lsize;
3574 nhdr->b_spa = hdr->b_spa;
b5256303
TC
3575 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3576 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3577 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3578 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3579 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3580 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3581 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3582 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3583 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3584 nhdr->b_l1hdr.b_l2_hits = hdr->b_l1hdr.b_l2_hits;
3585 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3586 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
b5256303
TC
3587
3588 /*
c13060e4 3589 * This zfs_refcount_add() exists only to ensure that the individual
b5256303
TC
3590 * arc buffers always point to a header that is referenced, avoiding
3591 * a small race condition that could trigger ASSERTs.
3592 */
c13060e4 3593 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
b7ddeaef 3594 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
b5256303
TC
3595 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
3596 mutex_enter(&buf->b_evict_lock);
3597 buf->b_hdr = nhdr;
3598 mutex_exit(&buf->b_evict_lock);
3599 }
3600
424fd7c3
TS
3601 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3602 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3603 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
b5256303
TC
3604
3605 if (need_crypt) {
3606 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3607 } else {
3608 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3609 }
3610
b7ddeaef
TC
3611 /* unset all members of the original hdr */
3612 bzero(&hdr->b_dva, sizeof (dva_t));
3613 hdr->b_birth = 0;
3614 hdr->b_type = ARC_BUFC_INVALID;
3615 hdr->b_flags = 0;
3616 hdr->b_psize = 0;
3617 hdr->b_lsize = 0;
3618 hdr->b_spa = 0;
3619 hdr->b_l1hdr.b_freeze_cksum = NULL;
3620 hdr->b_l1hdr.b_buf = NULL;
3621 hdr->b_l1hdr.b_bufcnt = 0;
3622 hdr->b_l1hdr.b_byteswap = 0;
3623 hdr->b_l1hdr.b_state = NULL;
3624 hdr->b_l1hdr.b_arc_access = 0;
3625 hdr->b_l1hdr.b_mru_hits = 0;
3626 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3627 hdr->b_l1hdr.b_mfu_hits = 0;
3628 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3629 hdr->b_l1hdr.b_l2_hits = 0;
3630 hdr->b_l1hdr.b_acb = NULL;
3631 hdr->b_l1hdr.b_pabd = NULL;
3632
3633 if (ocache == hdr_full_crypt_cache) {
3634 ASSERT(!HDR_HAS_RABD(hdr));
3635 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3636 hdr->b_crypt_hdr.b_ebufcnt = 0;
3637 hdr->b_crypt_hdr.b_dsobj = 0;
3638 bzero(hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3639 bzero(hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3640 bzero(hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3641 }
3642
b5256303
TC
3643 buf_discard_identity(hdr);
3644 kmem_cache_free(ocache, hdr);
3645
3646 return (nhdr);
3647}
3648
3649/*
3650 * This function is used by the send / receive code to convert a newly
3651 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3652 * is also used to allow the root objset block to be uupdated without altering
3653 * its embedded MACs. Both block types will always be uncompressed so we do not
3654 * have to worry about compression type or psize.
3655 */
3656void
3657arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3658 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3659 const uint8_t *mac)
3660{
3661 arc_buf_hdr_t *hdr = buf->b_hdr;
3662
3663 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3664 ASSERT(HDR_HAS_L1HDR(hdr));
3665 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3666
3667 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3668 if (!HDR_PROTECTED(hdr))
3669 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3670 hdr->b_crypt_hdr.b_dsobj = dsobj;
3671 hdr->b_crypt_hdr.b_ot = ot;
3672 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3673 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3674 if (!arc_hdr_has_uncompressed_buf(hdr))
3675 arc_cksum_free(hdr);
3676
3677 if (salt != NULL)
3678 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3679 if (iv != NULL)
3680 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3681 if (mac != NULL)
3682 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3683}
3684
d3c2ae1c
GW
3685/*
3686 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3687 * The buf is returned thawed since we expect the consumer to modify it.
3688 */
3689arc_buf_t *
2aa34383 3690arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
d3c2ae1c 3691{
d3c2ae1c 3692 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
b5256303 3693 B_FALSE, ZIO_COMPRESS_OFF, type, B_FALSE);
d3c2ae1c 3694 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2aa34383 3695
a7004725 3696 arc_buf_t *buf = NULL;
be9a5c35 3697 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
b5256303 3698 B_FALSE, B_FALSE, &buf));
d3c2ae1c 3699 arc_buf_thaw(buf);
2aa34383
DK
3700
3701 return (buf);
3702}
3703
3704/*
3705 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3706 * for bufs containing metadata.
3707 */
3708arc_buf_t *
3709arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
3710 enum zio_compress compression_type)
3711{
2aa34383
DK
3712 ASSERT3U(lsize, >, 0);
3713 ASSERT3U(lsize, >=, psize);
b5256303
TC
3714 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3715 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
2aa34383 3716
a7004725 3717 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
b5256303 3718 B_FALSE, compression_type, ARC_BUFC_DATA, B_FALSE);
2aa34383
DK
3719 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3720
a7004725 3721 arc_buf_t *buf = NULL;
be9a5c35 3722 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
b5256303 3723 B_TRUE, B_FALSE, B_FALSE, &buf));
2aa34383
DK
3724 arc_buf_thaw(buf);
3725 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3726
a6255b7f
DQ
3727 if (!arc_buf_is_shared(buf)) {
3728 /*
3729 * To ensure that the hdr has the correct data in it if we call
b5256303 3730 * arc_untransform() on this buf before it's been written to
a6255b7f
DQ
3731 * disk, it's easiest if we just set up sharing between the
3732 * buf and the hdr.
3733 */
3734 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
b5256303 3735 arc_hdr_free_abd(hdr, B_FALSE);
a6255b7f
DQ
3736 arc_share_buf(hdr, buf);
3737 }
3738
d3c2ae1c 3739 return (buf);
34dc7c2f
BB
3740}
3741
b5256303
TC
3742arc_buf_t *
3743arc_alloc_raw_buf(spa_t *spa, void *tag, uint64_t dsobj, boolean_t byteorder,
3744 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
3745 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3746 enum zio_compress compression_type)
3747{
3748 arc_buf_hdr_t *hdr;
3749 arc_buf_t *buf;
3750 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3751 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3752
3753 ASSERT3U(lsize, >, 0);
3754 ASSERT3U(lsize, >=, psize);
3755 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3756 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3757
3758 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3759 compression_type, type, B_TRUE);
3760 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
3761
3762 hdr->b_crypt_hdr.b_dsobj = dsobj;
3763 hdr->b_crypt_hdr.b_ot = ot;
3764 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3765 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3766 bcopy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
3767 bcopy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
3768 bcopy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
3769
3770 /*
3771 * This buffer will be considered encrypted even if the ot is not an
3772 * encrypted type. It will become authenticated instead in
3773 * arc_write_ready().
3774 */
3775 buf = NULL;
be9a5c35 3776 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
b5256303
TC
3777 B_FALSE, B_FALSE, &buf));
3778 arc_buf_thaw(buf);
3779 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3780
3781 return (buf);
3782}
3783
d962d5da
PS
3784static void
3785arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3786{
3787 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3788 l2arc_dev_t *dev = l2hdr->b_dev;
7558997d
SD
3789 uint64_t psize = HDR_GET_PSIZE(hdr);
3790 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
d962d5da
PS
3791
3792 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3793 ASSERT(HDR_HAS_L2HDR(hdr));
3794
3795 list_remove(&dev->l2ad_buflist, hdr);
3796
01850391
AG
3797 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3798 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
d962d5da 3799
7558997d 3800 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
d962d5da 3801
7558997d
SD
3802 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3803 hdr);
d3c2ae1c 3804 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
d962d5da
PS
3805}
3806
34dc7c2f
BB
3807static void
3808arc_hdr_destroy(arc_buf_hdr_t *hdr)
3809{
b9541d6b
CW
3810 if (HDR_HAS_L1HDR(hdr)) {
3811 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
d3c2ae1c 3812 hdr->b_l1hdr.b_bufcnt > 0);
424fd7c3 3813 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
b9541d6b
CW
3814 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3815 }
34dc7c2f 3816 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
3817 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3818
d3c2ae1c
GW
3819 if (!HDR_EMPTY(hdr))
3820 buf_discard_identity(hdr);
3821
b9541d6b 3822 if (HDR_HAS_L2HDR(hdr)) {
d962d5da
PS
3823 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3824 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
428870ff 3825
d962d5da
PS
3826 if (!buflist_held)
3827 mutex_enter(&dev->l2ad_mtx);
b9541d6b 3828
ca0bf58d 3829 /*
d962d5da
PS
3830 * Even though we checked this conditional above, we
3831 * need to check this again now that we have the
3832 * l2ad_mtx. This is because we could be racing with
3833 * another thread calling l2arc_evict() which might have
3834 * destroyed this header's L2 portion as we were waiting
3835 * to acquire the l2ad_mtx. If that happens, we don't
3836 * want to re-destroy the header's L2 portion.
ca0bf58d 3837 */
d962d5da
PS
3838 if (HDR_HAS_L2HDR(hdr))
3839 arc_hdr_l2hdr_destroy(hdr);
428870ff
BB
3840
3841 if (!buflist_held)
d962d5da 3842 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
3843 }
3844
d3c2ae1c
GW
3845 if (HDR_HAS_L1HDR(hdr)) {
3846 arc_cksum_free(hdr);
b9541d6b 3847
d3c2ae1c 3848 while (hdr->b_l1hdr.b_buf != NULL)
2aa34383 3849 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
34dc7c2f 3850
b5256303
TC
3851 if (hdr->b_l1hdr.b_pabd != NULL) {
3852 arc_hdr_free_abd(hdr, B_FALSE);
3853 }
3854
440a3eb9 3855 if (HDR_HAS_RABD(hdr))
b5256303 3856 arc_hdr_free_abd(hdr, B_TRUE);
b9541d6b
CW
3857 }
3858
34dc7c2f 3859 ASSERT3P(hdr->b_hash_next, ==, NULL);
b9541d6b 3860 if (HDR_HAS_L1HDR(hdr)) {
ca0bf58d 3861 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
b9541d6b 3862 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b5256303
TC
3863
3864 if (!HDR_PROTECTED(hdr)) {
3865 kmem_cache_free(hdr_full_cache, hdr);
3866 } else {
3867 kmem_cache_free(hdr_full_crypt_cache, hdr);
3868 }
b9541d6b
CW
3869 } else {
3870 kmem_cache_free(hdr_l2only_cache, hdr);
3871 }
34dc7c2f
BB
3872}
3873
3874void
d3c2ae1c 3875arc_buf_destroy(arc_buf_t *buf, void* tag)
34dc7c2f
BB
3876{
3877 arc_buf_hdr_t *hdr = buf->b_hdr;
96c080cb 3878 kmutex_t *hash_lock = HDR_LOCK(hdr);
34dc7c2f 3879
b9541d6b 3880 if (hdr->b_l1hdr.b_state == arc_anon) {
d3c2ae1c
GW
3881 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3882 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3883 VERIFY0(remove_reference(hdr, NULL, tag));
3884 arc_hdr_destroy(hdr);
3885 return;
34dc7c2f
BB
3886 }
3887
3888 mutex_enter(hash_lock);
d3c2ae1c
GW
3889 ASSERT3P(hdr, ==, buf->b_hdr);
3890 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
428870ff 3891 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
d3c2ae1c
GW
3892 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3893 ASSERT3P(buf->b_data, !=, NULL);
34dc7c2f
BB
3894
3895 (void) remove_reference(hdr, hash_lock, tag);
2aa34383 3896 arc_buf_destroy_impl(buf);
34dc7c2f 3897 mutex_exit(hash_lock);
34dc7c2f
BB
3898}
3899
34dc7c2f 3900/*
ca0bf58d
PS
3901 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3902 * state of the header is dependent on its state prior to entering this
3903 * function. The following transitions are possible:
34dc7c2f 3904 *
ca0bf58d
PS
3905 * - arc_mru -> arc_mru_ghost
3906 * - arc_mfu -> arc_mfu_ghost
3907 * - arc_mru_ghost -> arc_l2c_only
3908 * - arc_mru_ghost -> deleted
3909 * - arc_mfu_ghost -> arc_l2c_only
3910 * - arc_mfu_ghost -> deleted
34dc7c2f 3911 */
ca0bf58d
PS
3912static int64_t
3913arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 3914{
ca0bf58d
PS
3915 arc_state_t *evicted_state, *state;
3916 int64_t bytes_evicted = 0;
d4a72f23
TC
3917 int min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3918 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
34dc7c2f 3919
ca0bf58d
PS
3920 ASSERT(MUTEX_HELD(hash_lock));
3921 ASSERT(HDR_HAS_L1HDR(hdr));
e8b96c60 3922
ca0bf58d
PS
3923 state = hdr->b_l1hdr.b_state;
3924 if (GHOST_STATE(state)) {
3925 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c 3926 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
e8b96c60
MA
3927
3928 /*
ca0bf58d 3929 * l2arc_write_buffers() relies on a header's L1 portion
a6255b7f 3930 * (i.e. its b_pabd field) during it's write phase.
ca0bf58d
PS
3931 * Thus, we cannot push a header onto the arc_l2c_only
3932 * state (removing its L1 piece) until the header is
3933 * done being written to the l2arc.
e8b96c60 3934 */
ca0bf58d
PS
3935 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3936 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3937 return (bytes_evicted);
e8b96c60
MA
3938 }
3939
ca0bf58d 3940 ARCSTAT_BUMP(arcstat_deleted);
d3c2ae1c 3941 bytes_evicted += HDR_GET_LSIZE(hdr);
428870ff 3942
ca0bf58d 3943 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
428870ff 3944
ca0bf58d 3945 if (HDR_HAS_L2HDR(hdr)) {
a6255b7f 3946 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
b5256303 3947 ASSERT(!HDR_HAS_RABD(hdr));
ca0bf58d
PS
3948 /*
3949 * This buffer is cached on the 2nd Level ARC;
3950 * don't destroy the header.
3951 */
3952 arc_change_state(arc_l2c_only, hdr, hash_lock);
3953 /*
3954 * dropping from L1+L2 cached to L2-only,
3955 * realloc to remove the L1 header.
3956 */
3957 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3958 hdr_l2only_cache);
34dc7c2f 3959 } else {
ca0bf58d
PS
3960 arc_change_state(arc_anon, hdr, hash_lock);
3961 arc_hdr_destroy(hdr);
34dc7c2f 3962 }
ca0bf58d 3963 return (bytes_evicted);
34dc7c2f
BB
3964 }
3965
ca0bf58d
PS
3966 ASSERT(state == arc_mru || state == arc_mfu);
3967 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
34dc7c2f 3968
ca0bf58d
PS
3969 /* prefetch buffers have a minimum lifespan */
3970 if (HDR_IO_IN_PROGRESS(hdr) ||
3971 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
2b84817f
TC
3972 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3973 MSEC_TO_TICK(min_lifetime))) {
ca0bf58d
PS
3974 ARCSTAT_BUMP(arcstat_evict_skip);
3975 return (bytes_evicted);
da8ccd0e
PS
3976 }
3977
424fd7c3 3978 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
ca0bf58d
PS
3979 while (hdr->b_l1hdr.b_buf) {
3980 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3981 if (!mutex_tryenter(&buf->b_evict_lock)) {
3982 ARCSTAT_BUMP(arcstat_mutex_miss);
3983 break;
3984 }
3985 if (buf->b_data != NULL)
d3c2ae1c
GW
3986 bytes_evicted += HDR_GET_LSIZE(hdr);
3987 mutex_exit(&buf->b_evict_lock);
2aa34383 3988 arc_buf_destroy_impl(buf);
ca0bf58d 3989 }
34dc7c2f 3990
ca0bf58d 3991 if (HDR_HAS_L2HDR(hdr)) {
d3c2ae1c 3992 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
ca0bf58d 3993 } else {
d3c2ae1c
GW
3994 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3995 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3996 HDR_GET_LSIZE(hdr));
3997 } else {
3998 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3999 HDR_GET_LSIZE(hdr));
4000 }
ca0bf58d 4001 }
34dc7c2f 4002
d3c2ae1c
GW
4003 if (hdr->b_l1hdr.b_bufcnt == 0) {
4004 arc_cksum_free(hdr);
4005
4006 bytes_evicted += arc_hdr_size(hdr);
4007
4008 /*
4009 * If this hdr is being evicted and has a compressed
4010 * buffer then we discard it here before we change states.
4011 * This ensures that the accounting is updated correctly
a6255b7f 4012 * in arc_free_data_impl().
d3c2ae1c 4013 */
b5256303
TC
4014 if (hdr->b_l1hdr.b_pabd != NULL)
4015 arc_hdr_free_abd(hdr, B_FALSE);
4016
4017 if (HDR_HAS_RABD(hdr))
4018 arc_hdr_free_abd(hdr, B_TRUE);
d3c2ae1c 4019
ca0bf58d
PS
4020 arc_change_state(evicted_state, hdr, hash_lock);
4021 ASSERT(HDR_IN_HASH_TABLE(hdr));
d3c2ae1c 4022 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
ca0bf58d
PS
4023 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4024 }
34dc7c2f 4025
ca0bf58d 4026 return (bytes_evicted);
34dc7c2f
BB
4027}
4028
ca0bf58d
PS
4029static uint64_t
4030arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4031 uint64_t spa, int64_t bytes)
34dc7c2f 4032{
ca0bf58d
PS
4033 multilist_sublist_t *mls;
4034 uint64_t bytes_evicted = 0;
4035 arc_buf_hdr_t *hdr;
34dc7c2f 4036 kmutex_t *hash_lock;
ca0bf58d 4037 int evict_count = 0;
34dc7c2f 4038
ca0bf58d 4039 ASSERT3P(marker, !=, NULL);
96c080cb 4040 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
4041
4042 mls = multilist_sublist_lock(ml, idx);
572e2857 4043
ca0bf58d
PS
4044 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
4045 hdr = multilist_sublist_prev(mls, marker)) {
4046 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
4047 (evict_count >= zfs_arc_evict_batch_limit))
4048 break;
4049
4050 /*
4051 * To keep our iteration location, move the marker
4052 * forward. Since we're not holding hdr's hash lock, we
4053 * must be very careful and not remove 'hdr' from the
4054 * sublist. Otherwise, other consumers might mistake the
4055 * 'hdr' as not being on a sublist when they call the
4056 * multilist_link_active() function (they all rely on
4057 * the hash lock protecting concurrent insertions and
4058 * removals). multilist_sublist_move_forward() was
4059 * specifically implemented to ensure this is the case
4060 * (only 'marker' will be removed and re-inserted).
4061 */
4062 multilist_sublist_move_forward(mls, marker);
4063
4064 /*
4065 * The only case where the b_spa field should ever be
4066 * zero, is the marker headers inserted by
4067 * arc_evict_state(). It's possible for multiple threads
4068 * to be calling arc_evict_state() concurrently (e.g.
4069 * dsl_pool_close() and zio_inject_fault()), so we must
4070 * skip any markers we see from these other threads.
4071 */
2a432414 4072 if (hdr->b_spa == 0)
572e2857
BB
4073 continue;
4074
ca0bf58d
PS
4075 /* we're only interested in evicting buffers of a certain spa */
4076 if (spa != 0 && hdr->b_spa != spa) {
4077 ARCSTAT_BUMP(arcstat_evict_skip);
428870ff 4078 continue;
ca0bf58d
PS
4079 }
4080
4081 hash_lock = HDR_LOCK(hdr);
e8b96c60
MA
4082
4083 /*
ca0bf58d
PS
4084 * We aren't calling this function from any code path
4085 * that would already be holding a hash lock, so we're
4086 * asserting on this assumption to be defensive in case
4087 * this ever changes. Without this check, it would be
4088 * possible to incorrectly increment arcstat_mutex_miss
4089 * below (e.g. if the code changed such that we called
4090 * this function with a hash lock held).
e8b96c60 4091 */
ca0bf58d
PS
4092 ASSERT(!MUTEX_HELD(hash_lock));
4093
34dc7c2f 4094 if (mutex_tryenter(hash_lock)) {
ca0bf58d
PS
4095 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
4096 mutex_exit(hash_lock);
34dc7c2f 4097
ca0bf58d 4098 bytes_evicted += evicted;
34dc7c2f 4099
572e2857 4100 /*
ca0bf58d
PS
4101 * If evicted is zero, arc_evict_hdr() must have
4102 * decided to skip this header, don't increment
4103 * evict_count in this case.
572e2857 4104 */
ca0bf58d
PS
4105 if (evicted != 0)
4106 evict_count++;
4107
4108 /*
4109 * If arc_size isn't overflowing, signal any
4110 * threads that might happen to be waiting.
4111 *
4112 * For each header evicted, we wake up a single
4113 * thread. If we used cv_broadcast, we could
4114 * wake up "too many" threads causing arc_size
4115 * to significantly overflow arc_c; since
a6255b7f 4116 * arc_get_data_impl() doesn't check for overflow
ca0bf58d
PS
4117 * when it's woken up (it doesn't because it's
4118 * possible for the ARC to be overflowing while
4119 * full of un-evictable buffers, and the
4120 * function should proceed in this case).
4121 *
4122 * If threads are left sleeping, due to not
3ec34e55
BL
4123 * using cv_broadcast here, they will be woken
4124 * up via cv_broadcast in arc_adjust_cb() just
4125 * before arc_adjust_zthr sleeps.
ca0bf58d 4126 */
3ec34e55 4127 mutex_enter(&arc_adjust_lock);
ca0bf58d 4128 if (!arc_is_overflowing())
3ec34e55
BL
4129 cv_signal(&arc_adjust_waiters_cv);
4130 mutex_exit(&arc_adjust_lock);
e8b96c60 4131 } else {
ca0bf58d 4132 ARCSTAT_BUMP(arcstat_mutex_miss);
e8b96c60 4133 }
34dc7c2f 4134 }
34dc7c2f 4135
ca0bf58d 4136 multilist_sublist_unlock(mls);
34dc7c2f 4137
ca0bf58d 4138 return (bytes_evicted);
34dc7c2f
BB
4139}
4140
ca0bf58d
PS
4141/*
4142 * Evict buffers from the given arc state, until we've removed the
4143 * specified number of bytes. Move the removed buffers to the
4144 * appropriate evict state.
4145 *
4146 * This function makes a "best effort". It skips over any buffers
4147 * it can't get a hash_lock on, and so, may not catch all candidates.
4148 * It may also return without evicting as much space as requested.
4149 *
4150 * If bytes is specified using the special value ARC_EVICT_ALL, this
4151 * will evict all available (i.e. unlocked and evictable) buffers from
4152 * the given arc state; which is used by arc_flush().
4153 */
4154static uint64_t
4155arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
4156 arc_buf_contents_t type)
34dc7c2f 4157{
ca0bf58d 4158 uint64_t total_evicted = 0;
64fc7762 4159 multilist_t *ml = state->arcs_list[type];
ca0bf58d
PS
4160 int num_sublists;
4161 arc_buf_hdr_t **markers;
ca0bf58d 4162
96c080cb 4163 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
ca0bf58d
PS
4164
4165 num_sublists = multilist_get_num_sublists(ml);
d164b209
BB
4166
4167 /*
ca0bf58d
PS
4168 * If we've tried to evict from each sublist, made some
4169 * progress, but still have not hit the target number of bytes
4170 * to evict, we want to keep trying. The markers allow us to
4171 * pick up where we left off for each individual sublist, rather
4172 * than starting from the tail each time.
d164b209 4173 */
ca0bf58d 4174 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
1c27024e 4175 for (int i = 0; i < num_sublists; i++) {
ca0bf58d 4176 multilist_sublist_t *mls;
34dc7c2f 4177
ca0bf58d
PS
4178 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4179
4180 /*
4181 * A b_spa of 0 is used to indicate that this header is
4182 * a marker. This fact is used in arc_adjust_type() and
4183 * arc_evict_state_impl().
4184 */
4185 markers[i]->b_spa = 0;
34dc7c2f 4186
ca0bf58d
PS
4187 mls = multilist_sublist_lock(ml, i);
4188 multilist_sublist_insert_tail(mls, markers[i]);
4189 multilist_sublist_unlock(mls);
34dc7c2f
BB
4190 }
4191
d164b209 4192 /*
ca0bf58d
PS
4193 * While we haven't hit our target number of bytes to evict, or
4194 * we're evicting all available buffers.
d164b209 4195 */
ca0bf58d 4196 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
25458cbe
TC
4197 int sublist_idx = multilist_get_random_index(ml);
4198 uint64_t scan_evicted = 0;
4199
4200 /*
4201 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4202 * Request that 10% of the LRUs be scanned by the superblock
4203 * shrinker.
4204 */
37fb3e43
PD
4205 if (type == ARC_BUFC_DATA && aggsum_compare(&astat_dnode_size,
4206 arc_dnode_limit) > 0) {
4207 arc_prune_async((aggsum_upper_bound(&astat_dnode_size) -
4208 arc_dnode_limit) / sizeof (dnode_t) /
4209 zfs_arc_dnode_reduce_percent);
4210 }
25458cbe 4211
ca0bf58d
PS
4212 /*
4213 * Start eviction using a randomly selected sublist,
4214 * this is to try and evenly balance eviction across all
4215 * sublists. Always starting at the same sublist
4216 * (e.g. index 0) would cause evictions to favor certain
4217 * sublists over others.
4218 */
1c27024e 4219 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4220 uint64_t bytes_remaining;
4221 uint64_t bytes_evicted;
d164b209 4222
ca0bf58d
PS
4223 if (bytes == ARC_EVICT_ALL)
4224 bytes_remaining = ARC_EVICT_ALL;
4225 else if (total_evicted < bytes)
4226 bytes_remaining = bytes - total_evicted;
4227 else
4228 break;
34dc7c2f 4229
ca0bf58d
PS
4230 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4231 markers[sublist_idx], spa, bytes_remaining);
4232
4233 scan_evicted += bytes_evicted;
4234 total_evicted += bytes_evicted;
4235
4236 /* we've reached the end, wrap to the beginning */
4237 if (++sublist_idx >= num_sublists)
4238 sublist_idx = 0;
4239 }
4240
4241 /*
4242 * If we didn't evict anything during this scan, we have
4243 * no reason to believe we'll evict more during another
4244 * scan, so break the loop.
4245 */
4246 if (scan_evicted == 0) {
4247 /* This isn't possible, let's make that obvious */
4248 ASSERT3S(bytes, !=, 0);
34dc7c2f 4249
ca0bf58d
PS
4250 /*
4251 * When bytes is ARC_EVICT_ALL, the only way to
4252 * break the loop is when scan_evicted is zero.
4253 * In that case, we actually have evicted enough,
4254 * so we don't want to increment the kstat.
4255 */
4256 if (bytes != ARC_EVICT_ALL) {
4257 ASSERT3S(total_evicted, <, bytes);
4258 ARCSTAT_BUMP(arcstat_evict_not_enough);
4259 }
d164b209 4260
ca0bf58d
PS
4261 break;
4262 }
d164b209 4263 }
34dc7c2f 4264
1c27024e 4265 for (int i = 0; i < num_sublists; i++) {
ca0bf58d
PS
4266 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4267 multilist_sublist_remove(mls, markers[i]);
4268 multilist_sublist_unlock(mls);
34dc7c2f 4269
ca0bf58d 4270 kmem_cache_free(hdr_full_cache, markers[i]);
34dc7c2f 4271 }
ca0bf58d
PS
4272 kmem_free(markers, sizeof (*markers) * num_sublists);
4273
4274 return (total_evicted);
4275}
4276
4277/*
4278 * Flush all "evictable" data of the given type from the arc state
4279 * specified. This will not evict any "active" buffers (i.e. referenced).
4280 *
d3c2ae1c 4281 * When 'retry' is set to B_FALSE, the function will make a single pass
ca0bf58d
PS
4282 * over the state and evict any buffers that it can. Since it doesn't
4283 * continually retry the eviction, it might end up leaving some buffers
4284 * in the ARC due to lock misses.
4285 *
d3c2ae1c 4286 * When 'retry' is set to B_TRUE, the function will continually retry the
ca0bf58d
PS
4287 * eviction until *all* evictable buffers have been removed from the
4288 * state. As a result, if concurrent insertions into the state are
4289 * allowed (e.g. if the ARC isn't shutting down), this function might
4290 * wind up in an infinite loop, continually trying to evict buffers.
4291 */
4292static uint64_t
4293arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4294 boolean_t retry)
4295{
4296 uint64_t evicted = 0;
4297
424fd7c3 4298 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
ca0bf58d
PS
4299 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4300
4301 if (!retry)
4302 break;
4303 }
4304
4305 return (evicted);
34dc7c2f
BB
4306}
4307
ab26409d 4308/*
ef5b2e10
BB
4309 * Helper function for arc_prune_async() it is responsible for safely
4310 * handling the execution of a registered arc_prune_func_t.
ab26409d
BB
4311 */
4312static void
f6046738 4313arc_prune_task(void *ptr)
ab26409d 4314{
f6046738
BB
4315 arc_prune_t *ap = (arc_prune_t *)ptr;
4316 arc_prune_func_t *func = ap->p_pfunc;
ab26409d 4317
f6046738
BB
4318 if (func != NULL)
4319 func(ap->p_adjust, ap->p_private);
ab26409d 4320
424fd7c3 4321 zfs_refcount_remove(&ap->p_refcnt, func);
f6046738 4322}
ab26409d 4323
f6046738
BB
4324/*
4325 * Notify registered consumers they must drop holds on a portion of the ARC
4326 * buffered they reference. This provides a mechanism to ensure the ARC can
4327 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
4328 * is analogous to dnlc_reduce_cache() but more generic.
4329 *
ef5b2e10 4330 * This operation is performed asynchronously so it may be safely called
ca67b33a 4331 * in the context of the arc_reclaim_thread(). A reference is taken here
f6046738
BB
4332 * for each registered arc_prune_t and the arc_prune_task() is responsible
4333 * for releasing it once the registered arc_prune_func_t has completed.
4334 */
4335static void
4336arc_prune_async(int64_t adjust)
4337{
4338 arc_prune_t *ap;
ab26409d 4339
f6046738
BB
4340 mutex_enter(&arc_prune_mtx);
4341 for (ap = list_head(&arc_prune_list); ap != NULL;
4342 ap = list_next(&arc_prune_list, ap)) {
ab26409d 4343
424fd7c3 4344 if (zfs_refcount_count(&ap->p_refcnt) >= 2)
f6046738 4345 continue;
ab26409d 4346
c13060e4 4347 zfs_refcount_add(&ap->p_refcnt, ap->p_pfunc);
f6046738 4348 ap->p_adjust = adjust;
b60eac3d 4349 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
48d3eb40 4350 ap, TQ_SLEEP) == TASKQID_INVALID) {
424fd7c3 4351 zfs_refcount_remove(&ap->p_refcnt, ap->p_pfunc);
b60eac3d 4352 continue;
4353 }
f6046738 4354 ARCSTAT_BUMP(arcstat_prune);
ab26409d 4355 }
ab26409d
BB
4356 mutex_exit(&arc_prune_mtx);
4357}
4358
ca0bf58d
PS
4359/*
4360 * Evict the specified number of bytes from the state specified,
4361 * restricting eviction to the spa and type given. This function
4362 * prevents us from trying to evict more from a state's list than
4363 * is "evictable", and to skip evicting altogether when passed a
4364 * negative value for "bytes". In contrast, arc_evict_state() will
4365 * evict everything it can, when passed a negative value for "bytes".
4366 */
4367static uint64_t
4368arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4369 arc_buf_contents_t type)
4370{
4371 int64_t delta;
4372
424fd7c3
TS
4373 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4374 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4375 bytes);
ca0bf58d
PS
4376 return (arc_evict_state(state, spa, delta, type));
4377 }
4378
4379 return (0);
4380}
4381
4382/*
4383 * The goal of this function is to evict enough meta data buffers from the
4384 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4385 * more complicated than it appears because it is common for data buffers
4386 * to have holds on meta data buffers. In addition, dnode meta data buffers
4387 * will be held by the dnodes in the block preventing them from being freed.
4388 * This means we can't simply traverse the ARC and expect to always find
4389 * enough unheld meta data buffer to release.
4390 *
4391 * Therefore, this function has been updated to make alternating passes
4392 * over the ARC releasing data buffers and then newly unheld meta data
37fb3e43 4393 * buffers. This ensures forward progress is maintained and meta_used
ca0bf58d
PS
4394 * will decrease. Normally this is sufficient, but if required the ARC
4395 * will call the registered prune callbacks causing dentry and inodes to
4396 * be dropped from the VFS cache. This will make dnode meta data buffers
4397 * available for reclaim.
4398 */
4399static uint64_t
37fb3e43 4400arc_adjust_meta_balanced(uint64_t meta_used)
ca0bf58d 4401{
25e2ab16
TC
4402 int64_t delta, prune = 0, adjustmnt;
4403 uint64_t total_evicted = 0;
ca0bf58d 4404 arc_buf_contents_t type = ARC_BUFC_DATA;
ca67b33a 4405 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
ca0bf58d
PS
4406
4407restart:
4408 /*
4409 * This slightly differs than the way we evict from the mru in
4410 * arc_adjust because we don't have a "target" value (i.e. no
4411 * "meta" arc_p). As a result, I think we can completely
4412 * cannibalize the metadata in the MRU before we evict the
4413 * metadata from the MFU. I think we probably need to implement a
4414 * "metadata arc_p" value to do this properly.
4415 */
37fb3e43 4416 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4417
424fd7c3
TS
4418 if (adjustmnt > 0 &&
4419 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4420 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
d3c2ae1c 4421 adjustmnt);
ca0bf58d
PS
4422 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
4423 adjustmnt -= delta;
4424 }
4425
4426 /*
4427 * We can't afford to recalculate adjustmnt here. If we do,
4428 * new metadata buffers can sneak into the MRU or ANON lists,
4429 * thus penalize the MFU metadata. Although the fudge factor is
4430 * small, it has been empirically shown to be significant for
4431 * certain workloads (e.g. creating many empty directories). As
4432 * such, we use the original calculation for adjustmnt, and
4433 * simply decrement the amount of data evicted from the MRU.
4434 */
4435
424fd7c3
TS
4436 if (adjustmnt > 0 &&
4437 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4438 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
d3c2ae1c 4439 adjustmnt);
ca0bf58d
PS
4440 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
4441 }
4442
37fb3e43 4443 adjustmnt = meta_used - arc_meta_limit;
ca0bf58d 4444
d3c2ae1c 4445 if (adjustmnt > 0 &&
424fd7c3 4446 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4447 delta = MIN(adjustmnt,
424fd7c3 4448 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
ca0bf58d
PS
4449 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
4450 adjustmnt -= delta;
4451 }
4452
d3c2ae1c 4453 if (adjustmnt > 0 &&
424fd7c3 4454 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
ca0bf58d 4455 delta = MIN(adjustmnt,
424fd7c3 4456 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
ca0bf58d
PS
4457 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
4458 }
4459
4460 /*
4461 * If after attempting to make the requested adjustment to the ARC
4462 * the meta limit is still being exceeded then request that the
4463 * higher layers drop some cached objects which have holds on ARC
4464 * meta buffers. Requests to the upper layers will be made with
4465 * increasingly large scan sizes until the ARC is below the limit.
4466 */
37fb3e43 4467 if (meta_used > arc_meta_limit) {
ca0bf58d
PS
4468 if (type == ARC_BUFC_DATA) {
4469 type = ARC_BUFC_METADATA;
4470 } else {
4471 type = ARC_BUFC_DATA;
4472
4473 if (zfs_arc_meta_prune) {
4474 prune += zfs_arc_meta_prune;
f6046738 4475 arc_prune_async(prune);
ca0bf58d
PS
4476 }
4477 }
4478
4479 if (restarts > 0) {
4480 restarts--;
4481 goto restart;
4482 }
4483 }
4484 return (total_evicted);
4485}
4486
f6046738
BB
4487/*
4488 * Evict metadata buffers from the cache, such that arc_meta_used is
4489 * capped by the arc_meta_limit tunable.
4490 */
4491static uint64_t
37fb3e43 4492arc_adjust_meta_only(uint64_t meta_used)
f6046738
BB
4493{
4494 uint64_t total_evicted = 0;
4495 int64_t target;
4496
4497 /*
4498 * If we're over the meta limit, we want to evict enough
4499 * metadata to get back under the meta limit. We don't want to
4500 * evict so much that we drop the MRU below arc_p, though. If
4501 * we're over the meta limit more than we're over arc_p, we
4502 * evict some from the MRU here, and some from the MFU below.
4503 */
37fb3e43 4504 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3
TS
4505 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4506 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
f6046738
BB
4507
4508 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4509
4510 /*
4511 * Similar to the above, we want to evict enough bytes to get us
4512 * below the meta limit, but not so much as to drop us below the
2aa34383 4513 * space allotted to the MFU (which is defined as arc_c - arc_p).
f6046738 4514 */
37fb3e43 4515 target = MIN((int64_t)(meta_used - arc_meta_limit),
424fd7c3 4516 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
37fb3e43 4517 (arc_c - arc_p)));
f6046738
BB
4518
4519 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4520
4521 return (total_evicted);
4522}
4523
4524static uint64_t
37fb3e43 4525arc_adjust_meta(uint64_t meta_used)
f6046738
BB
4526{
4527 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
37fb3e43 4528 return (arc_adjust_meta_only(meta_used));
f6046738 4529 else
37fb3e43 4530 return (arc_adjust_meta_balanced(meta_used));
f6046738
BB
4531}
4532
ca0bf58d
PS
4533/*
4534 * Return the type of the oldest buffer in the given arc state
4535 *
4536 * This function will select a random sublist of type ARC_BUFC_DATA and
4537 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4538 * is compared, and the type which contains the "older" buffer will be
4539 * returned.
4540 */
4541static arc_buf_contents_t
4542arc_adjust_type(arc_state_t *state)
4543{
64fc7762
MA
4544 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
4545 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
ca0bf58d
PS
4546 int data_idx = multilist_get_random_index(data_ml);
4547 int meta_idx = multilist_get_random_index(meta_ml);
4548 multilist_sublist_t *data_mls;
4549 multilist_sublist_t *meta_mls;
4550 arc_buf_contents_t type;
4551 arc_buf_hdr_t *data_hdr;
4552 arc_buf_hdr_t *meta_hdr;
4553
4554 /*
4555 * We keep the sublist lock until we're finished, to prevent
4556 * the headers from being destroyed via arc_evict_state().
4557 */
4558 data_mls = multilist_sublist_lock(data_ml, data_idx);
4559 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4560
4561 /*
4562 * These two loops are to ensure we skip any markers that
4563 * might be at the tail of the lists due to arc_evict_state().
4564 */
4565
4566 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4567 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4568 if (data_hdr->b_spa != 0)
4569 break;
4570 }
4571
4572 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4573 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4574 if (meta_hdr->b_spa != 0)
4575 break;
4576 }
4577
4578 if (data_hdr == NULL && meta_hdr == NULL) {
4579 type = ARC_BUFC_DATA;
4580 } else if (data_hdr == NULL) {
4581 ASSERT3P(meta_hdr, !=, NULL);
4582 type = ARC_BUFC_METADATA;
4583 } else if (meta_hdr == NULL) {
4584 ASSERT3P(data_hdr, !=, NULL);
4585 type = ARC_BUFC_DATA;
4586 } else {
4587 ASSERT3P(data_hdr, !=, NULL);
4588 ASSERT3P(meta_hdr, !=, NULL);
4589
4590 /* The headers can't be on the sublist without an L1 header */
4591 ASSERT(HDR_HAS_L1HDR(data_hdr));
4592 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4593
4594 if (data_hdr->b_l1hdr.b_arc_access <
4595 meta_hdr->b_l1hdr.b_arc_access) {
4596 type = ARC_BUFC_DATA;
4597 } else {
4598 type = ARC_BUFC_METADATA;
4599 }
4600 }
4601
4602 multilist_sublist_unlock(meta_mls);
4603 multilist_sublist_unlock(data_mls);
4604
4605 return (type);
4606}
4607
4608/*
4609 * Evict buffers from the cache, such that arc_size is capped by arc_c.
4610 */
4611static uint64_t
4612arc_adjust(void)
4613{
4614 uint64_t total_evicted = 0;
4615 uint64_t bytes;
4616 int64_t target;
37fb3e43
PD
4617 uint64_t asize = aggsum_value(&arc_size);
4618 uint64_t ameta = aggsum_value(&arc_meta_used);
ca0bf58d
PS
4619
4620 /*
4621 * If we're over arc_meta_limit, we want to correct that before
4622 * potentially evicting data buffers below.
4623 */
37fb3e43 4624 total_evicted += arc_adjust_meta(ameta);
ca0bf58d
PS
4625
4626 /*
4627 * Adjust MRU size
4628 *
4629 * If we're over the target cache size, we want to evict enough
4630 * from the list to get back to our target size. We don't want
4631 * to evict too much from the MRU, such that it drops below
4632 * arc_p. So, if we're over our target cache size more than
4633 * the MRU is over arc_p, we'll evict enough to get back to
4634 * arc_p here, and then evict more from the MFU below.
4635 */
37fb3e43 4636 target = MIN((int64_t)(asize - arc_c),
424fd7c3
TS
4637 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4638 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
ca0bf58d
PS
4639
4640 /*
4641 * If we're below arc_meta_min, always prefer to evict data.
4642 * Otherwise, try to satisfy the requested number of bytes to
4643 * evict from the type which contains older buffers; in an
4644 * effort to keep newer buffers in the cache regardless of their
4645 * type. If we cannot satisfy the number of bytes from this
4646 * type, spill over into the next type.
4647 */
4648 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
37fb3e43 4649 ameta > arc_meta_min) {
ca0bf58d
PS
4650 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4651 total_evicted += bytes;
4652
4653 /*
4654 * If we couldn't evict our target number of bytes from
4655 * metadata, we try to get the rest from data.
4656 */
4657 target -= bytes;
4658
4659 total_evicted +=
4660 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4661 } else {
4662 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4663 total_evicted += bytes;
4664
4665 /*
4666 * If we couldn't evict our target number of bytes from
4667 * data, we try to get the rest from metadata.
4668 */
4669 target -= bytes;
4670
4671 total_evicted +=
4672 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4673 }
4674
0405eeea
RE
4675 /*
4676 * Re-sum ARC stats after the first round of evictions.
4677 */
4678 asize = aggsum_value(&arc_size);
4679 ameta = aggsum_value(&arc_meta_used);
4680
4681
ca0bf58d
PS
4682 /*
4683 * Adjust MFU size
4684 *
4685 * Now that we've tried to evict enough from the MRU to get its
4686 * size back to arc_p, if we're still above the target cache
4687 * size, we evict the rest from the MFU.
4688 */
37fb3e43 4689 target = asize - arc_c;
ca0bf58d 4690
a7b10a93 4691 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
37fb3e43 4692 ameta > arc_meta_min) {
ca0bf58d
PS
4693 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4694 total_evicted += bytes;
4695
4696 /*
4697 * If we couldn't evict our target number of bytes from
4698 * metadata, we try to get the rest from data.
4699 */
4700 target -= bytes;
4701
4702 total_evicted +=
4703 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4704 } else {
4705 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4706 total_evicted += bytes;
4707
4708 /*
4709 * If we couldn't evict our target number of bytes from
4710 * data, we try to get the rest from data.
4711 */
4712 target -= bytes;
4713
4714 total_evicted +=
4715 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4716 }
4717
4718 /*
4719 * Adjust ghost lists
4720 *
4721 * In addition to the above, the ARC also defines target values
4722 * for the ghost lists. The sum of the mru list and mru ghost
4723 * list should never exceed the target size of the cache, and
4724 * the sum of the mru list, mfu list, mru ghost list, and mfu
4725 * ghost list should never exceed twice the target size of the
4726 * cache. The following logic enforces these limits on the ghost
4727 * caches, and evicts from them as needed.
4728 */
424fd7c3
TS
4729 target = zfs_refcount_count(&arc_mru->arcs_size) +
4730 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
ca0bf58d
PS
4731
4732 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4733 total_evicted += bytes;
4734
4735 target -= bytes;
4736
4737 total_evicted +=
4738 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4739
4740 /*
4741 * We assume the sum of the mru list and mfu list is less than
4742 * or equal to arc_c (we enforced this above), which means we
4743 * can use the simpler of the two equations below:
4744 *
4745 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4746 * mru ghost + mfu ghost <= arc_c
4747 */
424fd7c3
TS
4748 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4749 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
ca0bf58d
PS
4750
4751 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4752 total_evicted += bytes;
4753
4754 target -= bytes;
4755
4756 total_evicted +=
4757 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4758
4759 return (total_evicted);
4760}
4761
ca0bf58d
PS
4762void
4763arc_flush(spa_t *spa, boolean_t retry)
ab26409d 4764{
ca0bf58d 4765 uint64_t guid = 0;
94520ca4 4766
bc888666 4767 /*
d3c2ae1c 4768 * If retry is B_TRUE, a spa must not be specified since we have
ca0bf58d
PS
4769 * no good way to determine if all of a spa's buffers have been
4770 * evicted from an arc state.
bc888666 4771 */
ca0bf58d 4772 ASSERT(!retry || spa == 0);
d164b209 4773
b9541d6b 4774 if (spa != NULL)
3541dc6d 4775 guid = spa_load_guid(spa);
d164b209 4776
ca0bf58d
PS
4777 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4778 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4779
4780 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4781 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4782
4783 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4784 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f 4785
ca0bf58d
PS
4786 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4787 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
34dc7c2f
BB
4788}
4789
3ec34e55
BL
4790static void
4791arc_reduce_target_size(int64_t to_free)
34dc7c2f 4792{
37fb3e43 4793 uint64_t asize = aggsum_value(&arc_size);
1b8951b3 4794 uint64_t c = arc_c;
34dc7c2f 4795
1b8951b3
TC
4796 if (c > to_free && c - to_free > arc_c_min) {
4797 arc_c = c - to_free;
ca67b33a 4798 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
37fb3e43
PD
4799 if (asize < arc_c)
4800 arc_c = MAX(asize, arc_c_min);
34dc7c2f
BB
4801 if (arc_p > arc_c)
4802 arc_p = (arc_c >> 1);
4803 ASSERT(arc_c >= arc_c_min);
4804 ASSERT((int64_t)arc_p >= 0);
1b8951b3
TC
4805 } else {
4806 arc_c = arc_c_min;
34dc7c2f
BB
4807 }
4808
3ec34e55
BL
4809 if (asize > arc_c) {
4810 /* See comment in arc_adjust_cb_check() on why lock+flag */
4811 mutex_enter(&arc_adjust_lock);
4812 arc_adjust_needed = B_TRUE;
4813 mutex_exit(&arc_adjust_lock);
4814 zthr_wakeup(arc_adjust_zthr);
4815 }
34dc7c2f 4816}
9edb3695
BB
4817/*
4818 * Return maximum amount of memory that we could possibly use. Reduced
4819 * to half of all memory in user space which is primarily used for testing.
4820 */
4821static uint64_t
4822arc_all_memory(void)
4823{
4824#ifdef _KERNEL
70f02287 4825#ifdef CONFIG_HIGHMEM
031cea17 4826 return (ptob(zfs_totalram_pages - totalhigh_pages));
70f02287 4827#else
031cea17 4828 return (ptob(zfs_totalram_pages));
70f02287 4829#endif /* CONFIG_HIGHMEM */
9edb3695
BB
4830#else
4831 return (ptob(physmem) / 2);
70f02287 4832#endif /* _KERNEL */
9edb3695
BB
4833}
4834
70f02287
BB
4835/*
4836 * Return the amount of memory that is considered free. In user space
4837 * which is primarily used for testing we pretend that free memory ranges
4838 * from 0-20% of all memory.
4839 */
787acae0
GDN
4840static uint64_t
4841arc_free_memory(void)
4842{
70f02287
BB
4843#ifdef _KERNEL
4844#ifdef CONFIG_HIGHMEM
4845 struct sysinfo si;
4846 si_meminfo(&si);
4847 return (ptob(si.freeram - si.freehigh));
4848#else
70f02287 4849 return (ptob(nr_free_pages() +
e9a77290 4850 nr_inactive_file_pages() +
4851 nr_inactive_anon_pages() +
4852 nr_slab_reclaimable_pages()));
4853
70f02287
BB
4854#endif /* CONFIG_HIGHMEM */
4855#else
4856 return (spa_get_random(arc_all_memory() * 20 / 100));
4857#endif /* _KERNEL */
787acae0 4858}
787acae0 4859
ca67b33a
MA
4860typedef enum free_memory_reason_t {
4861 FMR_UNKNOWN,
4862 FMR_NEEDFREE,
4863 FMR_LOTSFREE,
4864 FMR_SWAPFS_MINFREE,
4865 FMR_PAGES_PP_MAXIMUM,
4866 FMR_HEAP_ARENA,
4867 FMR_ZIO_ARENA,
4868} free_memory_reason_t;
4869
4870int64_t last_free_memory;
4871free_memory_reason_t last_free_reason;
4872
4873#ifdef _KERNEL
ca67b33a
MA
4874/*
4875 * Additional reserve of pages for pp_reserve.
4876 */
4877int64_t arc_pages_pp_reserve = 64;
4878
4879/*
4880 * Additional reserve of pages for swapfs.
4881 */
4882int64_t arc_swapfs_reserve = 64;
ca67b33a
MA
4883#endif /* _KERNEL */
4884
4885/*
4886 * Return the amount of memory that can be consumed before reclaim will be
4887 * needed. Positive if there is sufficient free memory, negative indicates
4888 * the amount of memory that needs to be freed up.
4889 */
4890static int64_t
4891arc_available_memory(void)
4892{
4893 int64_t lowest = INT64_MAX;
4894 free_memory_reason_t r = FMR_UNKNOWN;
ca67b33a 4895#ifdef _KERNEL
ca67b33a 4896 int64_t n;
11f552fa 4897#ifdef __linux__
70f02287
BB
4898#ifdef freemem
4899#undef freemem
4900#endif
11f552fa
BB
4901 pgcnt_t needfree = btop(arc_need_free);
4902 pgcnt_t lotsfree = btop(arc_sys_free);
4903 pgcnt_t desfree = 0;
70f02287 4904 pgcnt_t freemem = btop(arc_free_memory());
9edb3695
BB
4905#endif
4906
ca67b33a
MA
4907 if (needfree > 0) {
4908 n = PAGESIZE * (-needfree);
4909 if (n < lowest) {
4910 lowest = n;
4911 r = FMR_NEEDFREE;
4912 }
4913 }
4914
4915 /*
4916 * check that we're out of range of the pageout scanner. It starts to
4917 * schedule paging if freemem is less than lotsfree and needfree.
4918 * lotsfree is the high-water mark for pageout, and needfree is the
4919 * number of needed free pages. We add extra pages here to make sure
4920 * the scanner doesn't start up while we're freeing memory.
4921 */
70f02287 4922 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
ca67b33a
MA
4923 if (n < lowest) {
4924 lowest = n;
4925 r = FMR_LOTSFREE;
4926 }
4927
11f552fa 4928#ifndef __linux__
ca67b33a
MA
4929 /*
4930 * check to make sure that swapfs has enough space so that anon
4931 * reservations can still succeed. anon_resvmem() checks that the
4932 * availrmem is greater than swapfs_minfree, and the number of reserved
4933 * swap pages. We also add a bit of extra here just to prevent
4934 * circumstances from getting really dire.
4935 */
4936 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4937 desfree - arc_swapfs_reserve);
4938 if (n < lowest) {
4939 lowest = n;
4940 r = FMR_SWAPFS_MINFREE;
4941 }
4942
ca67b33a
MA
4943 /*
4944 * Check that we have enough availrmem that memory locking (e.g., via
4945 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4946 * stores the number of pages that cannot be locked; when availrmem
4947 * drops below pages_pp_maximum, page locking mechanisms such as
4948 * page_pp_lock() will fail.)
4949 */
4950 n = PAGESIZE * (availrmem - pages_pp_maximum -
4951 arc_pages_pp_reserve);
4952 if (n < lowest) {
4953 lowest = n;
4954 r = FMR_PAGES_PP_MAXIMUM;
4955 }
11f552fa 4956#endif
ca67b33a 4957
70f02287 4958#if defined(_ILP32)
ca67b33a 4959 /*
70f02287 4960 * If we're on a 32-bit platform, it's possible that we'll exhaust the
ca67b33a
MA
4961 * kernel heap space before we ever run out of available physical
4962 * memory. Most checks of the size of the heap_area compare against
4963 * tune.t_minarmem, which is the minimum available real memory that we
4964 * can have in the system. However, this is generally fixed at 25 pages
4965 * which is so low that it's useless. In this comparison, we seek to
4966 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4967 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4968 * free)
4969 */
4970 n = vmem_size(heap_arena, VMEM_FREE) -
4971 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4972 if (n < lowest) {
4973 lowest = n;
4974 r = FMR_HEAP_ARENA;
4975 }
4976#endif
4977
4978 /*
4979 * If zio data pages are being allocated out of a separate heap segment,
4980 * then enforce that the size of available vmem for this arena remains
d3c2ae1c 4981 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
ca67b33a 4982 *
d3c2ae1c
GW
4983 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4984 * memory (in the zio_arena) free, which can avoid memory
4985 * fragmentation issues.
ca67b33a
MA
4986 */
4987 if (zio_arena != NULL) {
9edb3695
BB
4988 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4989 (vmem_size(zio_arena, VMEM_ALLOC) >>
4990 arc_zio_arena_free_shift);
ca67b33a
MA
4991 if (n < lowest) {
4992 lowest = n;
4993 r = FMR_ZIO_ARENA;
4994 }
4995 }
11f552fa 4996#else /* _KERNEL */
ca67b33a
MA
4997 /* Every 100 calls, free a small amount */
4998 if (spa_get_random(100) == 0)
4999 lowest = -1024;
11f552fa 5000#endif /* _KERNEL */
ca67b33a
MA
5001
5002 last_free_memory = lowest;
5003 last_free_reason = r;
5004
5005 return (lowest);
5006}
5007
5008/*
5009 * Determine if the system is under memory pressure and is asking
d3c2ae1c 5010 * to reclaim memory. A return value of B_TRUE indicates that the system
ca67b33a
MA
5011 * is under memory pressure and that the arc should adjust accordingly.
5012 */
5013static boolean_t
5014arc_reclaim_needed(void)
5015{
5016 return (arc_available_memory() < 0);
5017}
5018
34dc7c2f 5019static void
3ec34e55 5020arc_kmem_reap_soon(void)
34dc7c2f
BB
5021{
5022 size_t i;
5023 kmem_cache_t *prev_cache = NULL;
5024 kmem_cache_t *prev_data_cache = NULL;
5025 extern kmem_cache_t *zio_buf_cache[];
5026 extern kmem_cache_t *zio_data_buf_cache[];
669dedb3 5027 extern kmem_cache_t *range_seg_cache;
34dc7c2f 5028
70f02287 5029#ifdef _KERNEL
37fb3e43
PD
5030 if ((aggsum_compare(&arc_meta_used, arc_meta_limit) >= 0) &&
5031 zfs_arc_meta_prune) {
f6046738
BB
5032 /*
5033 * We are exceeding our meta-data cache limit.
5034 * Prune some entries to release holds on meta-data.
5035 */
ef5b2e10 5036 arc_prune_async(zfs_arc_meta_prune);
f6046738 5037 }
70f02287
BB
5038#if defined(_ILP32)
5039 /*
5040 * Reclaim unused memory from all kmem caches.
5041 */
5042 kmem_reap();
5043#endif
5044#endif
f6046738 5045
34dc7c2f 5046 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
70f02287 5047#if defined(_ILP32)
d0c614ec 5048 /* reach upper limit of cache size on 32-bit */
5049 if (zio_buf_cache[i] == NULL)
5050 break;
5051#endif
34dc7c2f
BB
5052 if (zio_buf_cache[i] != prev_cache) {
5053 prev_cache = zio_buf_cache[i];
5054 kmem_cache_reap_now(zio_buf_cache[i]);
5055 }
5056 if (zio_data_buf_cache[i] != prev_data_cache) {
5057 prev_data_cache = zio_data_buf_cache[i];
5058 kmem_cache_reap_now(zio_data_buf_cache[i]);
5059 }
5060 }
ca0bf58d 5061 kmem_cache_reap_now(buf_cache);
b9541d6b
CW
5062 kmem_cache_reap_now(hdr_full_cache);
5063 kmem_cache_reap_now(hdr_l2only_cache);
669dedb3 5064 kmem_cache_reap_now(range_seg_cache);
ca67b33a
MA
5065
5066 if (zio_arena != NULL) {
5067 /*
5068 * Ask the vmem arena to reclaim unused memory from its
5069 * quantum caches.
5070 */
5071 vmem_qcache_reap(zio_arena);
5072 }
34dc7c2f
BB
5073}
5074
3ec34e55
BL
5075/* ARGSUSED */
5076static boolean_t
5077arc_adjust_cb_check(void *arg, zthr_t *zthr)
5078{
5079 /*
5080 * This is necessary in order to keep the kstat information
5081 * up to date for tools that display kstat data such as the
5082 * mdb ::arc dcmd and the Linux crash utility. These tools
5083 * typically do not call kstat's update function, but simply
5084 * dump out stats from the most recent update. Without
5085 * this call, these commands may show stale stats for the
5086 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
5087 * with this change, the data might be up to 1 second
5088 * out of date(the arc_adjust_zthr has a maximum sleep
5089 * time of 1 second); but that should suffice. The
5090 * arc_state_t structures can be queried directly if more
5091 * accurate information is needed.
5092 */
5093 if (arc_ksp != NULL)
5094 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
5095
5096 /*
5097 * We have to rely on arc_get_data_impl() to tell us when to adjust,
5098 * rather than checking if we are overflowing here, so that we are
5099 * sure to not leave arc_get_data_impl() waiting on
5100 * arc_adjust_waiters_cv. If we have become "not overflowing" since
5101 * arc_get_data_impl() checked, we need to wake it up. We could
5102 * broadcast the CV here, but arc_get_data_impl() may have not yet
5103 * gone to sleep. We would need to use a mutex to ensure that this
5104 * function doesn't broadcast until arc_get_data_impl() has gone to
5105 * sleep (e.g. the arc_adjust_lock). However, the lock ordering of
5106 * such a lock would necessarily be incorrect with respect to the
5107 * zthr_lock, which is held before this function is called, and is
5108 * held by arc_get_data_impl() when it calls zthr_wakeup().
5109 */
5110 return (arc_adjust_needed);
5111}
5112
302f753f 5113/*
3ec34e55
BL
5114 * Keep arc_size under arc_c by running arc_adjust which evicts data
5115 * from the ARC.
302f753f 5116 */
867959b5 5117/* ARGSUSED */
61c3391a 5118static void
3ec34e55 5119arc_adjust_cb(void *arg, zthr_t *zthr)
34dc7c2f 5120{
3ec34e55
BL
5121 uint64_t evicted = 0;
5122 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5123
3ec34e55
BL
5124 /* Evict from cache */
5125 evicted = arc_adjust();
34dc7c2f 5126
3ec34e55
BL
5127 /*
5128 * If evicted is zero, we couldn't evict anything
5129 * via arc_adjust(). This could be due to hash lock
5130 * collisions, but more likely due to the majority of
5131 * arc buffers being unevictable. Therefore, even if
5132 * arc_size is above arc_c, another pass is unlikely to
5133 * be helpful and could potentially cause us to enter an
5134 * infinite loop. Additionally, zthr_iscancelled() is
5135 * checked here so that if the arc is shutting down, the
5136 * broadcast will wake any remaining arc adjust waiters.
5137 */
5138 mutex_enter(&arc_adjust_lock);
5139 arc_adjust_needed = !zthr_iscancelled(arc_adjust_zthr) &&
5140 evicted > 0 && aggsum_compare(&arc_size, arc_c) > 0;
5141 if (!arc_adjust_needed) {
d3c2ae1c 5142 /*
3ec34e55
BL
5143 * We're either no longer overflowing, or we
5144 * can't evict anything more, so we should wake
5145 * arc_get_data_impl() sooner.
d3c2ae1c 5146 */
3ec34e55
BL
5147 cv_broadcast(&arc_adjust_waiters_cv);
5148 arc_need_free = 0;
5149 }
5150 mutex_exit(&arc_adjust_lock);
5151 spl_fstrans_unmark(cookie);
3ec34e55
BL
5152}
5153
5154/* ARGSUSED */
5155static boolean_t
5156arc_reap_cb_check(void *arg, zthr_t *zthr)
5157{
5158 int64_t free_memory = arc_available_memory();
5159
5160 /*
5161 * If a kmem reap is already active, don't schedule more. We must
5162 * check for this because kmem_cache_reap_soon() won't actually
5163 * block on the cache being reaped (this is to prevent callers from
5164 * becoming implicitly blocked by a system-wide kmem reap -- which,
5165 * on a system with many, many full magazines, can take minutes).
5166 */
5167 if (!kmem_cache_reap_active() && free_memory < 0) {
34dc7c2f 5168
3ec34e55
BL
5169 arc_no_grow = B_TRUE;
5170 arc_warm = B_TRUE;
0a252dae 5171 /*
3ec34e55
BL
5172 * Wait at least zfs_grow_retry (default 5) seconds
5173 * before considering growing.
0a252dae 5174 */
3ec34e55
BL
5175 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
5176 return (B_TRUE);
5177 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5178 arc_no_grow = B_TRUE;
5179 } else if (gethrtime() >= arc_growtime) {
5180 arc_no_grow = B_FALSE;
5181 }
0a252dae 5182
3ec34e55
BL
5183 return (B_FALSE);
5184}
34dc7c2f 5185
3ec34e55
BL
5186/*
5187 * Keep enough free memory in the system by reaping the ARC's kmem
5188 * caches. To cause more slabs to be reapable, we may reduce the
5189 * target size of the cache (arc_c), causing the arc_adjust_cb()
5190 * to free more buffers.
5191 */
5192/* ARGSUSED */
61c3391a 5193static void
3ec34e55
BL
5194arc_reap_cb(void *arg, zthr_t *zthr)
5195{
5196 int64_t free_memory;
5197 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 5198
3ec34e55
BL
5199 /*
5200 * Kick off asynchronous kmem_reap()'s of all our caches.
5201 */
5202 arc_kmem_reap_soon();
6a8f9b6b 5203
3ec34e55
BL
5204 /*
5205 * Wait at least arc_kmem_cache_reap_retry_ms between
5206 * arc_kmem_reap_soon() calls. Without this check it is possible to
5207 * end up in a situation where we spend lots of time reaping
5208 * caches, while we're near arc_c_min. Waiting here also gives the
5209 * subsequent free memory check a chance of finding that the
5210 * asynchronous reap has already freed enough memory, and we don't
5211 * need to call arc_reduce_target_size().
5212 */
5213 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
34dc7c2f 5214
3ec34e55
BL
5215 /*
5216 * Reduce the target size as needed to maintain the amount of free
5217 * memory in the system at a fraction of the arc_size (1/128th by
5218 * default). If oversubscribed (free_memory < 0) then reduce the
5219 * target arc_size by the deficit amount plus the fractional
5220 * amount. If free memory is positive but less then the fractional
5221 * amount, reduce by what is needed to hit the fractional amount.
5222 */
5223 free_memory = arc_available_memory();
34dc7c2f 5224
3ec34e55
BL
5225 int64_t to_free =
5226 (arc_c >> arc_shrink_shift) - free_memory;
5227 if (to_free > 0) {
ca67b33a 5228#ifdef _KERNEL
3ec34e55 5229 to_free = MAX(to_free, arc_need_free);
ca67b33a 5230#endif
3ec34e55 5231 arc_reduce_target_size(to_free);
ca0bf58d 5232 }
ca0bf58d 5233 spl_fstrans_unmark(cookie);
ca0bf58d
PS
5234}
5235
7cb67b45
BB
5236#ifdef _KERNEL
5237/*
302f753f
BB
5238 * Determine the amount of memory eligible for eviction contained in the
5239 * ARC. All clean data reported by the ghost lists can always be safely
5240 * evicted. Due to arc_c_min, the same does not hold for all clean data
5241 * contained by the regular mru and mfu lists.
5242 *
5243 * In the case of the regular mru and mfu lists, we need to report as
5244 * much clean data as possible, such that evicting that same reported
5245 * data will not bring arc_size below arc_c_min. Thus, in certain
5246 * circumstances, the total amount of clean data in the mru and mfu
5247 * lists might not actually be evictable.
5248 *
5249 * The following two distinct cases are accounted for:
5250 *
5251 * 1. The sum of the amount of dirty data contained by both the mru and
5252 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5253 * is greater than or equal to arc_c_min.
5254 * (i.e. amount of dirty data >= arc_c_min)
5255 *
5256 * This is the easy case; all clean data contained by the mru and mfu
5257 * lists is evictable. Evicting all clean data can only drop arc_size
5258 * to the amount of dirty data, which is greater than arc_c_min.
5259 *
5260 * 2. The sum of the amount of dirty data contained by both the mru and
5261 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5262 * is less than arc_c_min.
5263 * (i.e. arc_c_min > amount of dirty data)
5264 *
5265 * 2.1. arc_size is greater than or equal arc_c_min.
5266 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5267 *
5268 * In this case, not all clean data from the regular mru and mfu
5269 * lists is actually evictable; we must leave enough clean data
5270 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5271 * evictable data from the two lists combined, is exactly the
5272 * difference between arc_size and arc_c_min.
5273 *
5274 * 2.2. arc_size is less than arc_c_min
5275 * (i.e. arc_c_min > arc_size > amount of dirty data)
5276 *
5277 * In this case, none of the data contained in the mru and mfu
5278 * lists is evictable, even if it's clean. Since arc_size is
5279 * already below arc_c_min, evicting any more would only
5280 * increase this negative difference.
7cb67b45 5281 */
302f753f 5282static uint64_t
4ea3f864
GM
5283arc_evictable_memory(void)
5284{
37fb3e43 5285 int64_t asize = aggsum_value(&arc_size);
302f753f 5286 uint64_t arc_clean =
424fd7c3
TS
5287 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
5288 zfs_refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
5289 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
5290 zfs_refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
37fb3e43 5291 uint64_t arc_dirty = MAX((int64_t)asize - (int64_t)arc_clean, 0);
302f753f 5292
03b60eee
DB
5293 /*
5294 * Scale reported evictable memory in proportion to page cache, cap
5295 * at specified min/max.
5296 */
e9a77290 5297 uint64_t min = (ptob(nr_file_pages()) / 100) * zfs_arc_pc_percent;
03b60eee
DB
5298 min = MAX(arc_c_min, MIN(arc_c_max, min));
5299
5300 if (arc_dirty >= min)
9b50146d 5301 return (arc_clean);
302f753f 5302
37fb3e43 5303 return (MAX((int64_t)asize - (int64_t)min, 0));
302f753f
BB
5304}
5305
ed6e9cc2
TC
5306/*
5307 * If sc->nr_to_scan is zero, the caller is requesting a query of the
5308 * number of objects which can potentially be freed. If it is nonzero,
5309 * the request is to free that many objects.
5310 *
5311 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
5312 * in struct shrinker and also require the shrinker to return the number
5313 * of objects freed.
5314 *
5315 * Older kernels require the shrinker to return the number of freeable
5316 * objects following the freeing of nr_to_free.
5317 */
5318static spl_shrinker_t
7e7baeca 5319__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 5320{
ed6e9cc2 5321 int64_t pages;
7cb67b45 5322
302f753f
BB
5323 /* The arc is considered warm once reclaim has occurred */
5324 if (unlikely(arc_warm == B_FALSE))
5325 arc_warm = B_TRUE;
7cb67b45 5326
302f753f 5327 /* Return the potential number of reclaimable pages */
ed6e9cc2 5328 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
5329 if (sc->nr_to_scan == 0)
5330 return (pages);
3fd70ee6
BB
5331
5332 /* Not allowed to perform filesystem reclaim */
7e7baeca 5333 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 5334 return (SHRINK_STOP);
3fd70ee6 5335
7cb67b45 5336 /* Reclaim in progress */
3ec34e55 5337 if (mutex_tryenter(&arc_adjust_lock) == 0) {
b855550c 5338 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
2e91c2fb 5339 return (0);
b855550c 5340 }
7cb67b45 5341
3ec34e55 5342 mutex_exit(&arc_adjust_lock);
ca0bf58d 5343
302f753f
BB
5344 /*
5345 * Evict the requested number of pages by shrinking arc_c the
44813aef 5346 * requested amount.
302f753f
BB
5347 */
5348 if (pages > 0) {
3ec34e55 5349 arc_reduce_target_size(ptob(sc->nr_to_scan));
44813aef 5350 if (current_is_kswapd())
3ec34e55 5351 arc_kmem_reap_soon();
ed6e9cc2 5352#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4149bf49
DB
5353 pages = MAX((int64_t)pages -
5354 (int64_t)btop(arc_evictable_memory()), 0);
ed6e9cc2 5355#else
1e3cb67b 5356 pages = btop(arc_evictable_memory());
ed6e9cc2 5357#endif
1a31dcf5
DB
5358 /*
5359 * We've shrunk what we can, wake up threads.
5360 */
3ec34e55 5361 cv_broadcast(&arc_adjust_waiters_cv);
44813aef 5362 } else
ed6e9cc2 5363 pages = SHRINK_STOP;
302f753f
BB
5364
5365 /*
5366 * When direct reclaim is observed it usually indicates a rapid
5367 * increase in memory pressure. This occurs because the kswapd
5368 * threads were unable to asynchronously keep enough free memory
5369 * available. In this case set arc_no_grow to briefly pause arc
5370 * growth to avoid compounding the memory pressure.
5371 */
7cb67b45 5372 if (current_is_kswapd()) {
302f753f 5373 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 5374 } else {
302f753f 5375 arc_no_grow = B_TRUE;
3ec34e55 5376 arc_kmem_reap_soon();
302f753f 5377 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
5378 }
5379
1e3cb67b 5380 return (pages);
7cb67b45 5381}
7e7baeca 5382SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
5383
5384SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
5385#endif /* _KERNEL */
5386
34dc7c2f
BB
5387/*
5388 * Adapt arc info given the number of bytes we are trying to add and
4e33ba4c 5389 * the state that we are coming from. This function is only called
34dc7c2f
BB
5390 * when we are adding new content to the cache.
5391 */
5392static void
5393arc_adapt(int bytes, arc_state_t *state)
5394{
5395 int mult;
728d6ae9 5396 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
424fd7c3
TS
5397 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5398 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
34dc7c2f
BB
5399
5400 if (state == arc_l2c_only)
5401 return;
5402
5403 ASSERT(bytes > 0);
5404 /*
5405 * Adapt the target size of the MRU list:
5406 * - if we just hit in the MRU ghost list, then increase
5407 * the target size of the MRU list.
5408 * - if we just hit in the MFU ghost list, then increase
5409 * the target size of the MFU list by decreasing the
5410 * target size of the MRU list.
5411 */
5412 if (state == arc_mru_ghost) {
36da08ef 5413 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
62422785
PS
5414 if (!zfs_arc_p_dampener_disable)
5415 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 5416
728d6ae9 5417 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
34dc7c2f 5418 } else if (state == arc_mfu_ghost) {
d164b209
BB
5419 uint64_t delta;
5420
36da08ef 5421 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
62422785
PS
5422 if (!zfs_arc_p_dampener_disable)
5423 mult = MIN(mult, 10);
34dc7c2f 5424
d164b209 5425 delta = MIN(bytes * mult, arc_p);
728d6ae9 5426 arc_p = MAX(arc_p_min, arc_p - delta);
34dc7c2f
BB
5427 }
5428 ASSERT((int64_t)arc_p >= 0);
5429
3ec34e55
BL
5430 /*
5431 * Wake reap thread if we do not have any available memory
5432 */
ca67b33a 5433 if (arc_reclaim_needed()) {
3ec34e55 5434 zthr_wakeup(arc_reap_zthr);
ca67b33a
MA
5435 return;
5436 }
5437
34dc7c2f
BB
5438 if (arc_no_grow)
5439 return;
5440
5441 if (arc_c >= arc_c_max)
5442 return;
5443
5444 /*
5445 * If we're within (2 * maxblocksize) bytes of the target
5446 * cache size, increment the target cache size
5447 */
935434ef 5448 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
37fb3e43
PD
5449 if (aggsum_compare(&arc_size, arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) >=
5450 0) {
34dc7c2f
BB
5451 atomic_add_64(&arc_c, (int64_t)bytes);
5452 if (arc_c > arc_c_max)
5453 arc_c = arc_c_max;
5454 else if (state == arc_anon)
5455 atomic_add_64(&arc_p, (int64_t)bytes);
5456 if (arc_p > arc_c)
5457 arc_p = arc_c;
5458 }
5459 ASSERT((int64_t)arc_p >= 0);
5460}
5461
5462/*
ca0bf58d
PS
5463 * Check if arc_size has grown past our upper threshold, determined by
5464 * zfs_arc_overflow_shift.
34dc7c2f 5465 */
ca0bf58d
PS
5466static boolean_t
5467arc_is_overflowing(void)
34dc7c2f 5468{
ca0bf58d
PS
5469 /* Always allow at least one block of overflow */
5470 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5471 arc_c >> zfs_arc_overflow_shift);
34dc7c2f 5472
37fb3e43
PD
5473 /*
5474 * We just compare the lower bound here for performance reasons. Our
5475 * primary goals are to make sure that the arc never grows without
5476 * bound, and that it can reach its maximum size. This check
5477 * accomplishes both goals. The maximum amount we could run over by is
5478 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5479 * in the ARC. In practice, that's in the tens of MB, which is low
5480 * enough to be safe.
5481 */
5482 return (aggsum_lower_bound(&arc_size) >= arc_c + overflow);
34dc7c2f
BB
5483}
5484
a6255b7f
DQ
5485static abd_t *
5486arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5487{
5488 arc_buf_contents_t type = arc_buf_type(hdr);
5489
5490 arc_get_data_impl(hdr, size, tag);
5491 if (type == ARC_BUFC_METADATA) {
5492 return (abd_alloc(size, B_TRUE));
5493 } else {
5494 ASSERT(type == ARC_BUFC_DATA);
5495 return (abd_alloc(size, B_FALSE));
5496 }
5497}
5498
5499static void *
5500arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
5501{
5502 arc_buf_contents_t type = arc_buf_type(hdr);
5503
5504 arc_get_data_impl(hdr, size, tag);
5505 if (type == ARC_BUFC_METADATA) {
5506 return (zio_buf_alloc(size));
5507 } else {
5508 ASSERT(type == ARC_BUFC_DATA);
5509 return (zio_data_buf_alloc(size));
5510 }
5511}
5512
34dc7c2f 5513/*
d3c2ae1c
GW
5514 * Allocate a block and return it to the caller. If we are hitting the
5515 * hard limit for the cache size, we must sleep, waiting for the eviction
5516 * thread to catch up. If we're past the target size but below the hard
5517 * limit, we'll only signal the reclaim thread and continue on.
34dc7c2f 5518 */
a6255b7f
DQ
5519static void
5520arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
34dc7c2f 5521{
a6255b7f
DQ
5522 arc_state_t *state = hdr->b_l1hdr.b_state;
5523 arc_buf_contents_t type = arc_buf_type(hdr);
34dc7c2f
BB
5524
5525 arc_adapt(size, state);
5526
5527 /*
ca0bf58d
PS
5528 * If arc_size is currently overflowing, and has grown past our
5529 * upper limit, we must be adding data faster than the evict
5530 * thread can evict. Thus, to ensure we don't compound the
5531 * problem by adding more data and forcing arc_size to grow even
5532 * further past it's target size, we halt and wait for the
5533 * eviction thread to catch up.
5534 *
5535 * It's also possible that the reclaim thread is unable to evict
5536 * enough buffers to get arc_size below the overflow limit (e.g.
5537 * due to buffers being un-evictable, or hash lock collisions).
5538 * In this case, we want to proceed regardless if we're
5539 * overflowing; thus we don't use a while loop here.
34dc7c2f 5540 */
ca0bf58d 5541 if (arc_is_overflowing()) {
3ec34e55 5542 mutex_enter(&arc_adjust_lock);
ca0bf58d
PS
5543
5544 /*
5545 * Now that we've acquired the lock, we may no longer be
5546 * over the overflow limit, lets check.
5547 *
5548 * We're ignoring the case of spurious wake ups. If that
5549 * were to happen, it'd let this thread consume an ARC
5550 * buffer before it should have (i.e. before we're under
5551 * the overflow limit and were signalled by the reclaim
5552 * thread). As long as that is a rare occurrence, it
5553 * shouldn't cause any harm.
5554 */
5555 if (arc_is_overflowing()) {
3ec34e55
BL
5556 arc_adjust_needed = B_TRUE;
5557 zthr_wakeup(arc_adjust_zthr);
5558 (void) cv_wait(&arc_adjust_waiters_cv,
5559 &arc_adjust_lock);
34dc7c2f 5560 }
3ec34e55 5561 mutex_exit(&arc_adjust_lock);
34dc7c2f 5562 }
ab26409d 5563
d3c2ae1c 5564 VERIFY3U(hdr->b_type, ==, type);
da8ccd0e 5565 if (type == ARC_BUFC_METADATA) {
ca0bf58d
PS
5566 arc_space_consume(size, ARC_SPACE_META);
5567 } else {
ca0bf58d 5568 arc_space_consume(size, ARC_SPACE_DATA);
da8ccd0e
PS
5569 }
5570
34dc7c2f
BB
5571 /*
5572 * Update the state size. Note that ghost states have a
5573 * "ghost size" and so don't need to be updated.
5574 */
d3c2ae1c 5575 if (!GHOST_STATE(state)) {
34dc7c2f 5576
424fd7c3 5577 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
ca0bf58d
PS
5578
5579 /*
5580 * If this is reached via arc_read, the link is
5581 * protected by the hash lock. If reached via
5582 * arc_buf_alloc, the header should not be accessed by
5583 * any other thread. And, if reached via arc_read_done,
5584 * the hash lock will protect it if it's found in the
5585 * hash table; otherwise no other thread should be
5586 * trying to [add|remove]_reference it.
5587 */
5588 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3
TS
5589 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5590 (void) zfs_refcount_add_many(&state->arcs_esize[type],
d3c2ae1c 5591 size, tag);
34dc7c2f 5592 }
d3c2ae1c 5593
34dc7c2f
BB
5594 /*
5595 * If we are growing the cache, and we are adding anonymous
5596 * data, and we have outgrown arc_p, update arc_p
5597 */
37fb3e43
PD
5598 if (aggsum_compare(&arc_size, arc_c) < 0 &&
5599 hdr->b_l1hdr.b_state == arc_anon &&
424fd7c3
TS
5600 (zfs_refcount_count(&arc_anon->arcs_size) +
5601 zfs_refcount_count(&arc_mru->arcs_size) > arc_p))
34dc7c2f
BB
5602 arc_p = MIN(arc_c, arc_p + size);
5603 }
a6255b7f
DQ
5604}
5605
5606static void
5607arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
5608{
5609 arc_free_data_impl(hdr, size, tag);
5610 abd_free(abd);
5611}
5612
5613static void
5614arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
5615{
5616 arc_buf_contents_t type = arc_buf_type(hdr);
5617
5618 arc_free_data_impl(hdr, size, tag);
5619 if (type == ARC_BUFC_METADATA) {
5620 zio_buf_free(buf, size);
5621 } else {
5622 ASSERT(type == ARC_BUFC_DATA);
5623 zio_data_buf_free(buf, size);
5624 }
d3c2ae1c
GW
5625}
5626
5627/*
5628 * Free the arc data buffer.
5629 */
5630static void
a6255b7f 5631arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
d3c2ae1c
GW
5632{
5633 arc_state_t *state = hdr->b_l1hdr.b_state;
5634 arc_buf_contents_t type = arc_buf_type(hdr);
5635
5636 /* protected by hash lock, if in the hash table */
5637 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
424fd7c3 5638 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
5639 ASSERT(state != arc_anon && state != arc_l2c_only);
5640
424fd7c3 5641 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
d3c2ae1c
GW
5642 size, tag);
5643 }
424fd7c3 5644 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
d3c2ae1c
GW
5645
5646 VERIFY3U(hdr->b_type, ==, type);
5647 if (type == ARC_BUFC_METADATA) {
d3c2ae1c
GW
5648 arc_space_return(size, ARC_SPACE_META);
5649 } else {
5650 ASSERT(type == ARC_BUFC_DATA);
d3c2ae1c
GW
5651 arc_space_return(size, ARC_SPACE_DATA);
5652 }
34dc7c2f
BB
5653}
5654
5655/*
5656 * This routine is called whenever a buffer is accessed.
5657 * NOTE: the hash lock is dropped in this function.
5658 */
5659static void
2a432414 5660arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
34dc7c2f 5661{
428870ff
BB
5662 clock_t now;
5663
34dc7c2f 5664 ASSERT(MUTEX_HELD(hash_lock));
b9541d6b 5665 ASSERT(HDR_HAS_L1HDR(hdr));
34dc7c2f 5666
b9541d6b 5667 if (hdr->b_l1hdr.b_state == arc_anon) {
34dc7c2f
BB
5668 /*
5669 * This buffer is not in the cache, and does not
5670 * appear in our "ghost" list. Add the new buffer
5671 * to the MRU state.
5672 */
5673
b9541d6b
CW
5674 ASSERT0(hdr->b_l1hdr.b_arc_access);
5675 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5676 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5677 arc_change_state(arc_mru, hdr, hash_lock);
34dc7c2f 5678
b9541d6b 5679 } else if (hdr->b_l1hdr.b_state == arc_mru) {
428870ff
BB
5680 now = ddi_get_lbolt();
5681
34dc7c2f
BB
5682 /*
5683 * If this buffer is here because of a prefetch, then either:
5684 * - clear the flag if this is a "referencing" read
5685 * (any subsequent access will bump this into the MFU state).
5686 * or
5687 * - move the buffer to the head of the list if this is
5688 * another prefetch (to make it less likely to be evicted).
5689 */
d4a72f23 5690 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
424fd7c3 5691 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
ca0bf58d
PS
5692 /* link protected by hash lock */
5693 ASSERT(multilist_link_active(
b9541d6b 5694 &hdr->b_l1hdr.b_arc_node));
34dc7c2f 5695 } else {
d4a72f23
TC
5696 arc_hdr_clear_flags(hdr,
5697 ARC_FLAG_PREFETCH |
5698 ARC_FLAG_PRESCIENT_PREFETCH);
b9541d6b 5699 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f
BB
5700 ARCSTAT_BUMP(arcstat_mru_hits);
5701 }
b9541d6b 5702 hdr->b_l1hdr.b_arc_access = now;
34dc7c2f
BB
5703 return;
5704 }
5705
5706 /*
5707 * This buffer has been "accessed" only once so far,
5708 * but it is still in the cache. Move it to the MFU
5709 * state.
5710 */
b9541d6b
CW
5711 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5712 ARC_MINTIME)) {
34dc7c2f
BB
5713 /*
5714 * More than 125ms have passed since we
5715 * instantiated this buffer. Move it to the
5716 * most frequently used state.
5717 */
b9541d6b 5718 hdr->b_l1hdr.b_arc_access = now;
2a432414
GW
5719 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5720 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5721 }
b9541d6b 5722 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
34dc7c2f 5723 ARCSTAT_BUMP(arcstat_mru_hits);
b9541d6b 5724 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
34dc7c2f
BB
5725 arc_state_t *new_state;
5726 /*
5727 * This buffer has been "accessed" recently, but
5728 * was evicted from the cache. Move it to the
5729 * MFU state.
5730 */
5731
d4a72f23 5732 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f 5733 new_state = arc_mru;
424fd7c3 5734 if (zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) > 0) {
d4a72f23
TC
5735 arc_hdr_clear_flags(hdr,
5736 ARC_FLAG_PREFETCH |
5737 ARC_FLAG_PRESCIENT_PREFETCH);
5738 }
2a432414 5739 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5740 } else {
5741 new_state = arc_mfu;
2a432414 5742 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
5743 }
5744
b9541d6b 5745 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414 5746 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5747
b9541d6b 5748 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
34dc7c2f 5749 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
b9541d6b 5750 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
34dc7c2f
BB
5751 /*
5752 * This buffer has been accessed more than once and is
5753 * still in the cache. Keep it in the MFU state.
5754 *
5755 * NOTE: an add_reference() that occurred when we did
5756 * the arc_read() will have kicked this off the list.
5757 * If it was a prefetch, we will explicitly move it to
5758 * the head of the list now.
5759 */
d4a72f23 5760
b9541d6b 5761 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
34dc7c2f 5762 ARCSTAT_BUMP(arcstat_mfu_hits);
b9541d6b
CW
5763 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
5764 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
34dc7c2f
BB
5765 arc_state_t *new_state = arc_mfu;
5766 /*
5767 * This buffer has been accessed more than once but has
5768 * been evicted from the cache. Move it back to the
5769 * MFU state.
5770 */
5771
d4a72f23 5772 if (HDR_PREFETCH(hdr) || HDR_PRESCIENT_PREFETCH(hdr)) {
34dc7c2f
BB
5773 /*
5774 * This is a prefetch access...
5775 * move this block back to the MRU state.
5776 */
34dc7c2f
BB
5777 new_state = arc_mru;
5778 }
5779
b9541d6b 5780 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5781 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5782 arc_change_state(new_state, hdr, hash_lock);
34dc7c2f 5783
b9541d6b 5784 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
34dc7c2f 5785 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
b9541d6b 5786 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
34dc7c2f
BB
5787 /*
5788 * This buffer is on the 2nd Level ARC.
5789 */
5790
b9541d6b 5791 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
2a432414
GW
5792 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5793 arc_change_state(arc_mfu, hdr, hash_lock);
34dc7c2f 5794 } else {
b9541d6b
CW
5795 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5796 hdr->b_l1hdr.b_state);
34dc7c2f
BB
5797 }
5798}
5799
0873bb63
BB
5800/*
5801 * This routine is called by dbuf_hold() to update the arc_access() state
5802 * which otherwise would be skipped for entries in the dbuf cache.
5803 */
5804void
5805arc_buf_access(arc_buf_t *buf)
5806{
5807 mutex_enter(&buf->b_evict_lock);
5808 arc_buf_hdr_t *hdr = buf->b_hdr;
5809
5810 /*
5811 * Avoid taking the hash_lock when possible as an optimization.
5812 * The header must be checked again under the hash_lock in order
5813 * to handle the case where it is concurrently being released.
5814 */
5815 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5816 mutex_exit(&buf->b_evict_lock);
5817 return;
5818 }
5819
5820 kmutex_t *hash_lock = HDR_LOCK(hdr);
5821 mutex_enter(hash_lock);
5822
5823 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5824 mutex_exit(hash_lock);
5825 mutex_exit(&buf->b_evict_lock);
5826 ARCSTAT_BUMP(arcstat_access_skip);
5827 return;
5828 }
5829
5830 mutex_exit(&buf->b_evict_lock);
5831
5832 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5833 hdr->b_l1hdr.b_state == arc_mfu);
5834
5835 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5836 arc_access(hdr, hash_lock);
5837 mutex_exit(hash_lock);
5838
5839 ARCSTAT_BUMP(arcstat_hits);
5840 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr) && !HDR_PRESCIENT_PREFETCH(hdr),
5841 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5842}
5843
b5256303 5844/* a generic arc_read_done_func_t which you can use */
34dc7c2f
BB
5845/* ARGSUSED */
5846void
d4a72f23
TC
5847arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5848 arc_buf_t *buf, void *arg)
34dc7c2f 5849{
d4a72f23
TC
5850 if (buf == NULL)
5851 return;
5852
5853 bcopy(buf->b_data, arg, arc_buf_size(buf));
d3c2ae1c 5854 arc_buf_destroy(buf, arg);
34dc7c2f
BB
5855}
5856
b5256303 5857/* a generic arc_read_done_func_t */
d4a72f23 5858/* ARGSUSED */
34dc7c2f 5859void
d4a72f23
TC
5860arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5861 arc_buf_t *buf, void *arg)
34dc7c2f
BB
5862{
5863 arc_buf_t **bufp = arg;
d4a72f23
TC
5864
5865 if (buf == NULL) {
c3bd3fb4 5866 ASSERT(zio == NULL || zio->io_error != 0);
34dc7c2f
BB
5867 *bufp = NULL;
5868 } else {
c3bd3fb4 5869 ASSERT(zio == NULL || zio->io_error == 0);
34dc7c2f 5870 *bufp = buf;
c3bd3fb4 5871 ASSERT(buf->b_data != NULL);
34dc7c2f
BB
5872 }
5873}
5874
d3c2ae1c
GW
5875static void
5876arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5877{
5878 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5879 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
b5256303 5880 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
d3c2ae1c
GW
5881 } else {
5882 if (HDR_COMPRESSION_ENABLED(hdr)) {
b5256303 5883 ASSERT3U(arc_hdr_get_compress(hdr), ==,
d3c2ae1c
GW
5884 BP_GET_COMPRESS(bp));
5885 }
5886 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5887 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
b5256303 5888 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
d3c2ae1c
GW
5889 }
5890}
5891
34dc7c2f
BB
5892static void
5893arc_read_done(zio_t *zio)
5894{
b5256303 5895 blkptr_t *bp = zio->io_bp;
d3c2ae1c 5896 arc_buf_hdr_t *hdr = zio->io_private;
9b67f605 5897 kmutex_t *hash_lock = NULL;
524b4217
DK
5898 arc_callback_t *callback_list;
5899 arc_callback_t *acb;
2aa34383 5900 boolean_t freeable = B_FALSE;
a7004725 5901
34dc7c2f
BB
5902 /*
5903 * The hdr was inserted into hash-table and removed from lists
5904 * prior to starting I/O. We should find this header, since
5905 * it's in the hash table, and it should be legit since it's
5906 * not possible to evict it during the I/O. The only possible
5907 * reason for it not to be found is if we were freed during the
5908 * read.
5909 */
9b67f605 5910 if (HDR_IN_HASH_TABLE(hdr)) {
31df97cd
DB
5911 arc_buf_hdr_t *found;
5912
9b67f605
MA
5913 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5914 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5915 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5916 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5917 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5918
31df97cd 5919 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
9b67f605 5920
d3c2ae1c 5921 ASSERT((found == hdr &&
9b67f605
MA
5922 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5923 (found == hdr && HDR_L2_READING(hdr)));
d3c2ae1c
GW
5924 ASSERT3P(hash_lock, !=, NULL);
5925 }
5926
b5256303
TC
5927 if (BP_IS_PROTECTED(bp)) {
5928 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5929 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5930 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5931 hdr->b_crypt_hdr.b_iv);
5932
5933 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5934 void *tmpbuf;
5935
5936 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5937 sizeof (zil_chain_t));
5938 zio_crypt_decode_mac_zil(tmpbuf,
5939 hdr->b_crypt_hdr.b_mac);
5940 abd_return_buf(zio->io_abd, tmpbuf,
5941 sizeof (zil_chain_t));
5942 } else {
5943 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
5944 }
5945 }
5946
d4a72f23 5947 if (zio->io_error == 0) {
d3c2ae1c
GW
5948 /* byteswap if necessary */
5949 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5950 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5951 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5952 } else {
5953 hdr->b_l1hdr.b_byteswap =
5954 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5955 }
5956 } else {
5957 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5958 }
9b67f605 5959 }
34dc7c2f 5960
d3c2ae1c 5961 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
b9541d6b 5962 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
d3c2ae1c 5963 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f 5964
b9541d6b 5965 callback_list = hdr->b_l1hdr.b_acb;
d3c2ae1c 5966 ASSERT3P(callback_list, !=, NULL);
34dc7c2f 5967
d4a72f23
TC
5968 if (hash_lock && zio->io_error == 0 &&
5969 hdr->b_l1hdr.b_state == arc_anon) {
428870ff
BB
5970 /*
5971 * Only call arc_access on anonymous buffers. This is because
5972 * if we've issued an I/O for an evicted buffer, we've already
5973 * called arc_access (to prevent any simultaneous readers from
5974 * getting confused).
5975 */
5976 arc_access(hdr, hash_lock);
5977 }
5978
524b4217
DK
5979 /*
5980 * If a read request has a callback (i.e. acb_done is not NULL), then we
5981 * make a buf containing the data according to the parameters which were
5982 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5983 * aren't needlessly decompressing the data multiple times.
5984 */
a7004725 5985 int callback_cnt = 0;
2aa34383
DK
5986 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5987 if (!acb->acb_done)
5988 continue;
5989
2aa34383 5990 callback_cnt++;
524b4217 5991
d4a72f23
TC
5992 if (zio->io_error != 0)
5993 continue;
5994
b5256303 5995 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
be9a5c35 5996 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
d4a72f23 5997 acb->acb_compressed, acb->acb_noauth, B_TRUE,
440a3eb9 5998 &acb->acb_buf);
b5256303
TC
5999
6000 /*
440a3eb9 6001 * Assert non-speculative zios didn't fail because an
b5256303
TC
6002 * encryption key wasn't loaded
6003 */
a2c2ed1b 6004 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 6005 error != EACCES);
b5256303
TC
6006
6007 /*
6008 * If we failed to decrypt, report an error now (as the zio
6009 * layer would have done if it had done the transforms).
6010 */
6011 if (error == ECKSUM) {
6012 ASSERT(BP_IS_PROTECTED(bp));
6013 error = SET_ERROR(EIO);
b5256303 6014 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
be9a5c35 6015 spa_log_error(zio->io_spa, &acb->acb_zb);
b5256303 6016 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
be9a5c35 6017 zio->io_spa, NULL, &acb->acb_zb, zio, 0, 0);
b5256303
TC
6018 }
6019 }
6020
c3bd3fb4
TC
6021 if (error != 0) {
6022 /*
6023 * Decompression or decryption failed. Set
6024 * io_error so that when we call acb_done
6025 * (below), we will indicate that the read
6026 * failed. Note that in the unusual case
6027 * where one callback is compressed and another
6028 * uncompressed, we will mark all of them
6029 * as failed, even though the uncompressed
6030 * one can't actually fail. In this case,
6031 * the hdr will not be anonymous, because
6032 * if there are multiple callbacks, it's
6033 * because multiple threads found the same
6034 * arc buf in the hash table.
6035 */
524b4217 6036 zio->io_error = error;
c3bd3fb4 6037 }
34dc7c2f 6038 }
c3bd3fb4
TC
6039
6040 /*
6041 * If there are multiple callbacks, we must have the hash lock,
6042 * because the only way for multiple threads to find this hdr is
6043 * in the hash table. This ensures that if there are multiple
6044 * callbacks, the hdr is not anonymous. If it were anonymous,
6045 * we couldn't use arc_buf_destroy() in the error case below.
6046 */
6047 ASSERT(callback_cnt < 2 || hash_lock != NULL);
6048
b9541d6b 6049 hdr->b_l1hdr.b_acb = NULL;
d3c2ae1c 6050 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
440a3eb9 6051 if (callback_cnt == 0)
b5256303 6052 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
34dc7c2f 6053
424fd7c3 6054 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
b9541d6b 6055 callback_list != NULL);
34dc7c2f 6056
d4a72f23 6057 if (zio->io_error == 0) {
d3c2ae1c
GW
6058 arc_hdr_verify(hdr, zio->io_bp);
6059 } else {
6060 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
b9541d6b 6061 if (hdr->b_l1hdr.b_state != arc_anon)
34dc7c2f
BB
6062 arc_change_state(arc_anon, hdr, hash_lock);
6063 if (HDR_IN_HASH_TABLE(hdr))
6064 buf_hash_remove(hdr);
424fd7c3 6065 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
6066 }
6067
6068 /*
6069 * Broadcast before we drop the hash_lock to avoid the possibility
6070 * that the hdr (and hence the cv) might be freed before we get to
6071 * the cv_broadcast().
6072 */
b9541d6b 6073 cv_broadcast(&hdr->b_l1hdr.b_cv);
34dc7c2f 6074
b9541d6b 6075 if (hash_lock != NULL) {
34dc7c2f
BB
6076 mutex_exit(hash_lock);
6077 } else {
6078 /*
6079 * This block was freed while we waited for the read to
6080 * complete. It has been removed from the hash table and
6081 * moved to the anonymous state (so that it won't show up
6082 * in the cache).
6083 */
b9541d6b 6084 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
424fd7c3 6085 freeable = zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
34dc7c2f
BB
6086 }
6087
6088 /* execute each callback and free its structure */
6089 while ((acb = callback_list) != NULL) {
c3bd3fb4
TC
6090 if (acb->acb_done != NULL) {
6091 if (zio->io_error != 0 && acb->acb_buf != NULL) {
6092 /*
6093 * If arc_buf_alloc_impl() fails during
6094 * decompression, the buf will still be
6095 * allocated, and needs to be freed here.
6096 */
6097 arc_buf_destroy(acb->acb_buf,
6098 acb->acb_private);
6099 acb->acb_buf = NULL;
6100 }
d4a72f23
TC
6101 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
6102 acb->acb_buf, acb->acb_private);
b5256303 6103 }
34dc7c2f
BB
6104
6105 if (acb->acb_zio_dummy != NULL) {
6106 acb->acb_zio_dummy->io_error = zio->io_error;
6107 zio_nowait(acb->acb_zio_dummy);
6108 }
6109
6110 callback_list = acb->acb_next;
6111 kmem_free(acb, sizeof (arc_callback_t));
6112 }
6113
6114 if (freeable)
6115 arc_hdr_destroy(hdr);
6116}
6117
6118/*
5c839890 6119 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
6120 * cache. If the block is found in the cache, invoke the provided
6121 * callback immediately and return. Note that the `zio' parameter
6122 * in the callback will be NULL in this case, since no IO was
6123 * required. If the block is not in the cache pass the read request
6124 * on to the spa with a substitute callback function, so that the
6125 * requested block will be added to the cache.
6126 *
6127 * If a read request arrives for a block that has a read in-progress,
6128 * either wait for the in-progress read to complete (and return the
6129 * results); or, if this is a read with a "done" func, add a record
6130 * to the read to invoke the "done" func when the read completes,
6131 * and return; or just return.
6132 *
6133 * arc_read_done() will invoke all the requested "done" functions
6134 * for readers of this block.
6135 */
6136int
b5256303
TC
6137arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
6138 arc_read_done_func_t *done, void *private, zio_priority_t priority,
6139 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
34dc7c2f 6140{
9b67f605 6141 arc_buf_hdr_t *hdr = NULL;
9b67f605 6142 kmutex_t *hash_lock = NULL;
34dc7c2f 6143 zio_t *rzio;
3541dc6d 6144 uint64_t guid = spa_load_guid(spa);
b5256303
TC
6145 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
6146 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
6147 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
6148 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
6149 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
0902c457 6150 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
1421c891 6151 int rc = 0;
34dc7c2f 6152
0902c457 6153 ASSERT(!embedded_bp ||
9b67f605
MA
6154 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
6155
34dc7c2f 6156top:
0902c457 6157 if (!embedded_bp) {
9b67f605
MA
6158 /*
6159 * Embedded BP's have no DVA and require no I/O to "read".
6160 * Create an anonymous arc buf to back it.
6161 */
6162 hdr = buf_hash_find(guid, bp, &hash_lock);
6163 }
6164
b5256303
TC
6165 /*
6166 * Determine if we have an L1 cache hit or a cache miss. For simplicity
6167 * we maintain encrypted data seperately from compressed / uncompressed
6168 * data. If the user is requesting raw encrypted data and we don't have
6169 * that in the header we will read from disk to guarantee that we can
6170 * get it even if the encryption keys aren't loaded.
6171 */
6172 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
6173 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
d3c2ae1c 6174 arc_buf_t *buf = NULL;
2a432414 6175 *arc_flags |= ARC_FLAG_CACHED;
34dc7c2f
BB
6176
6177 if (HDR_IO_IN_PROGRESS(hdr)) {
a8b2e306 6178 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
34dc7c2f 6179
a8b2e306 6180 ASSERT3P(head_zio, !=, NULL);
7f60329a
MA
6181 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
6182 priority == ZIO_PRIORITY_SYNC_READ) {
6183 /*
a8b2e306
TC
6184 * This is a sync read that needs to wait for
6185 * an in-flight async read. Request that the
6186 * zio have its priority upgraded.
7f60329a 6187 */
a8b2e306
TC
6188 zio_change_priority(head_zio, priority);
6189 DTRACE_PROBE1(arc__async__upgrade__sync,
7f60329a 6190 arc_buf_hdr_t *, hdr);
a8b2e306 6191 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
7f60329a
MA
6192 }
6193 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
d3c2ae1c
GW
6194 arc_hdr_clear_flags(hdr,
6195 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a
MA
6196 }
6197
2a432414 6198 if (*arc_flags & ARC_FLAG_WAIT) {
b9541d6b 6199 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
34dc7c2f
BB
6200 mutex_exit(hash_lock);
6201 goto top;
6202 }
2a432414 6203 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6204
6205 if (done) {
7f60329a 6206 arc_callback_t *acb = NULL;
34dc7c2f
BB
6207
6208 acb = kmem_zalloc(sizeof (arc_callback_t),
79c76d5b 6209 KM_SLEEP);
34dc7c2f
BB
6210 acb->acb_done = done;
6211 acb->acb_private = private;
a7004725 6212 acb->acb_compressed = compressed_read;
440a3eb9
TC
6213 acb->acb_encrypted = encrypted_read;
6214 acb->acb_noauth = noauth_read;
be9a5c35 6215 acb->acb_zb = *zb;
34dc7c2f
BB
6216 if (pio != NULL)
6217 acb->acb_zio_dummy = zio_null(pio,
d164b209 6218 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f 6219
d3c2ae1c 6220 ASSERT3P(acb->acb_done, !=, NULL);
a8b2e306 6221 acb->acb_zio_head = head_zio;
b9541d6b
CW
6222 acb->acb_next = hdr->b_l1hdr.b_acb;
6223 hdr->b_l1hdr.b_acb = acb;
34dc7c2f 6224 mutex_exit(hash_lock);
1421c891 6225 goto out;
34dc7c2f
BB
6226 }
6227 mutex_exit(hash_lock);
1421c891 6228 goto out;
34dc7c2f
BB
6229 }
6230
b9541d6b
CW
6231 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6232 hdr->b_l1hdr.b_state == arc_mfu);
34dc7c2f
BB
6233
6234 if (done) {
7f60329a
MA
6235 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
6236 /*
6237 * This is a demand read which does not have to
6238 * wait for i/o because we did a predictive
6239 * prefetch i/o for it, which has completed.
6240 */
6241 DTRACE_PROBE1(
6242 arc__demand__hit__predictive__prefetch,
6243 arc_buf_hdr_t *, hdr);
6244 ARCSTAT_BUMP(
6245 arcstat_demand_hit_predictive_prefetch);
d3c2ae1c
GW
6246 arc_hdr_clear_flags(hdr,
6247 ARC_FLAG_PREDICTIVE_PREFETCH);
7f60329a 6248 }
d4a72f23
TC
6249
6250 if (hdr->b_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
6251 ARCSTAT_BUMP(
6252 arcstat_demand_hit_prescient_prefetch);
6253 arc_hdr_clear_flags(hdr,
6254 ARC_FLAG_PRESCIENT_PREFETCH);
6255 }
6256
0902c457 6257 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
d3c2ae1c 6258
524b4217 6259 /* Get a buf with the desired data in it. */
be9a5c35
TC
6260 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6261 encrypted_read, compressed_read, noauth_read,
6262 B_TRUE, &buf);
a2c2ed1b
TC
6263 if (rc == ECKSUM) {
6264 /*
6265 * Convert authentication and decryption errors
be9a5c35
TC
6266 * to EIO (and generate an ereport if needed)
6267 * before leaving the ARC.
a2c2ed1b
TC
6268 */
6269 rc = SET_ERROR(EIO);
be9a5c35
TC
6270 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6271 spa_log_error(spa, zb);
6272 zfs_ereport_post(
6273 FM_EREPORT_ZFS_AUTHENTICATION,
6274 spa, NULL, zb, NULL, 0, 0);
6275 }
a2c2ed1b 6276 }
d4a72f23 6277 if (rc != 0) {
2c24b5b1
TC
6278 (void) remove_reference(hdr, hash_lock,
6279 private);
6280 arc_buf_destroy_impl(buf);
d4a72f23
TC
6281 buf = NULL;
6282 }
6283
a2c2ed1b
TC
6284 /* assert any errors weren't due to unloaded keys */
6285 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
be9a5c35 6286 rc != EACCES);
2a432414 6287 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
424fd7c3 6288 zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
d3c2ae1c 6289 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
34dc7c2f
BB
6290 }
6291 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6292 arc_access(hdr, hash_lock);
d4a72f23
TC
6293 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6294 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
2a432414 6295 if (*arc_flags & ARC_FLAG_L2CACHE)
d3c2ae1c 6296 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
34dc7c2f
BB
6297 mutex_exit(hash_lock);
6298 ARCSTAT_BUMP(arcstat_hits);
b9541d6b
CW
6299 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6300 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
34dc7c2f
BB
6301 data, metadata, hits);
6302
6303 if (done)
d4a72f23 6304 done(NULL, zb, bp, buf, private);
34dc7c2f 6305 } else {
d3c2ae1c
GW
6306 uint64_t lsize = BP_GET_LSIZE(bp);
6307 uint64_t psize = BP_GET_PSIZE(bp);
9b67f605 6308 arc_callback_t *acb;
b128c09f 6309 vdev_t *vd = NULL;
a117a6d6 6310 uint64_t addr = 0;
d164b209 6311 boolean_t devw = B_FALSE;
d3c2ae1c 6312 uint64_t size;
440a3eb9 6313 abd_t *hdr_abd;
34dc7c2f 6314
5f6d0b6f
BB
6315 /*
6316 * Gracefully handle a damaged logical block size as a
1cdb86cb 6317 * checksum error.
5f6d0b6f 6318 */
d3c2ae1c 6319 if (lsize > spa_maxblocksize(spa)) {
1cdb86cb 6320 rc = SET_ERROR(ECKSUM);
5f6d0b6f
BB
6321 goto out;
6322 }
6323
34dc7c2f 6324 if (hdr == NULL) {
0902c457
TC
6325 /*
6326 * This block is not in the cache or it has
6327 * embedded data.
6328 */
9b67f605 6329 arc_buf_hdr_t *exists = NULL;
34dc7c2f 6330 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
d3c2ae1c 6331 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
b5256303
TC
6332 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), type,
6333 encrypted_read);
d3c2ae1c 6334
0902c457 6335 if (!embedded_bp) {
9b67f605
MA
6336 hdr->b_dva = *BP_IDENTITY(bp);
6337 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
9b67f605
MA
6338 exists = buf_hash_insert(hdr, &hash_lock);
6339 }
6340 if (exists != NULL) {
34dc7c2f
BB
6341 /* somebody beat us to the hash insert */
6342 mutex_exit(hash_lock);
428870ff 6343 buf_discard_identity(hdr);
d3c2ae1c 6344 arc_hdr_destroy(hdr);
34dc7c2f
BB
6345 goto top; /* restart the IO request */
6346 }
34dc7c2f 6347 } else {
b9541d6b 6348 /*
b5256303
TC
6349 * This block is in the ghost cache or encrypted data
6350 * was requested and we didn't have it. If it was
6351 * L2-only (and thus didn't have an L1 hdr),
6352 * we realloc the header to add an L1 hdr.
b9541d6b
CW
6353 */
6354 if (!HDR_HAS_L1HDR(hdr)) {
6355 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6356 hdr_full_cache);
6357 }
6358
b5256303
TC
6359 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6360 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6361 ASSERT(!HDR_HAS_RABD(hdr));
6362 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
424fd7c3
TS
6363 ASSERT0(zfs_refcount_count(
6364 &hdr->b_l1hdr.b_refcnt));
b5256303
TC
6365 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6366 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6367 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6368 /*
6369 * If this header already had an IO in progress
6370 * and we are performing another IO to fetch
6371 * encrypted data we must wait until the first
6372 * IO completes so as not to confuse
6373 * arc_read_done(). This should be very rare
6374 * and so the performance impact shouldn't
6375 * matter.
6376 */
6377 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6378 mutex_exit(hash_lock);
6379 goto top;
6380 }
34dc7c2f 6381
7f60329a 6382 /*
d3c2ae1c 6383 * This is a delicate dance that we play here.
b5256303
TC
6384 * This hdr might be in the ghost list so we access
6385 * it to move it out of the ghost list before we
d3c2ae1c
GW
6386 * initiate the read. If it's a prefetch then
6387 * it won't have a callback so we'll remove the
6388 * reference that arc_buf_alloc_impl() created. We
6389 * do this after we've called arc_access() to
6390 * avoid hitting an assert in remove_reference().
7f60329a 6391 */
428870ff 6392 arc_access(hdr, hash_lock);
b5256303 6393 arc_hdr_alloc_abd(hdr, encrypted_read);
d3c2ae1c 6394 }
d3c2ae1c 6395
b5256303
TC
6396 if (encrypted_read) {
6397 ASSERT(HDR_HAS_RABD(hdr));
6398 size = HDR_GET_PSIZE(hdr);
6399 hdr_abd = hdr->b_crypt_hdr.b_rabd;
d3c2ae1c 6400 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
6401 } else {
6402 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6403 size = arc_hdr_size(hdr);
6404 hdr_abd = hdr->b_l1hdr.b_pabd;
6405
6406 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6407 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6408 }
6409
6410 /*
6411 * For authenticated bp's, we do not ask the ZIO layer
6412 * to authenticate them since this will cause the entire
6413 * IO to fail if the key isn't loaded. Instead, we
6414 * defer authentication until arc_buf_fill(), which will
6415 * verify the data when the key is available.
6416 */
6417 if (BP_IS_AUTHENTICATED(bp))
6418 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
34dc7c2f
BB
6419 }
6420
b5256303 6421 if (*arc_flags & ARC_FLAG_PREFETCH &&
424fd7c3 6422 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))
d3c2ae1c 6423 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
d4a72f23
TC
6424 if (*arc_flags & ARC_FLAG_PRESCIENT_PREFETCH)
6425 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
d3c2ae1c
GW
6426 if (*arc_flags & ARC_FLAG_L2CACHE)
6427 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
b5256303
TC
6428 if (BP_IS_AUTHENTICATED(bp))
6429 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
d3c2ae1c
GW
6430 if (BP_GET_LEVEL(bp) > 0)
6431 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
7f60329a 6432 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
d3c2ae1c 6433 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
b9541d6b 6434 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
428870ff 6435
79c76d5b 6436 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
34dc7c2f
BB
6437 acb->acb_done = done;
6438 acb->acb_private = private;
2aa34383 6439 acb->acb_compressed = compressed_read;
b5256303
TC
6440 acb->acb_encrypted = encrypted_read;
6441 acb->acb_noauth = noauth_read;
be9a5c35 6442 acb->acb_zb = *zb;
34dc7c2f 6443
d3c2ae1c 6444 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
b9541d6b 6445 hdr->b_l1hdr.b_acb = acb;
d3c2ae1c 6446 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f 6447
b9541d6b
CW
6448 if (HDR_HAS_L2HDR(hdr) &&
6449 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6450 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6451 addr = hdr->b_l2hdr.b_daddr;
b128c09f 6452 /*
a1d477c2 6453 * Lock out L2ARC device removal.
b128c09f
BB
6454 */
6455 if (vdev_is_dead(vd) ||
6456 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6457 vd = NULL;
6458 }
6459
a8b2e306
TC
6460 /*
6461 * We count both async reads and scrub IOs as asynchronous so
6462 * that both can be upgraded in the event of a cache hit while
6463 * the read IO is still in-flight.
6464 */
6465 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6466 priority == ZIO_PRIORITY_SCRUB)
d3c2ae1c
GW
6467 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6468 else
6469 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6470
e49f1e20 6471 /*
0902c457
TC
6472 * At this point, we have a level 1 cache miss or a blkptr
6473 * with embedded data. Try again in L2ARC if possible.
e49f1e20 6474 */
d3c2ae1c
GW
6475 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6476
0902c457
TC
6477 /*
6478 * Skip ARC stat bump for block pointers with embedded
6479 * data. The data are read from the blkptr itself via
6480 * decode_embedded_bp_compressed().
6481 */
6482 if (!embedded_bp) {
6483 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6484 blkptr_t *, bp, uint64_t, lsize,
6485 zbookmark_phys_t *, zb);
6486 ARCSTAT_BUMP(arcstat_misses);
6487 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
6488 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6489 metadata, misses);
6490 }
34dc7c2f 6491
d164b209 6492 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
6493 /*
6494 * Read from the L2ARC if the following are true:
b128c09f
BB
6495 * 1. The L2ARC vdev was previously cached.
6496 * 2. This buffer still has L2ARC metadata.
6497 * 3. This buffer isn't currently writing to the L2ARC.
6498 * 4. The L2ARC entry wasn't evicted, which may
6499 * also have invalidated the vdev.
d164b209 6500 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 6501 */
b9541d6b 6502 if (HDR_HAS_L2HDR(hdr) &&
d164b209
BB
6503 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6504 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f 6505 l2arc_read_callback_t *cb;
82710e99
GDN
6506 abd_t *abd;
6507 uint64_t asize;
34dc7c2f
BB
6508
6509 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6510 ARCSTAT_BUMP(arcstat_l2_hits);
b9541d6b 6511 atomic_inc_32(&hdr->b_l2hdr.b_hits);
34dc7c2f 6512
34dc7c2f 6513 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
79c76d5b 6514 KM_SLEEP);
d3c2ae1c 6515 cb->l2rcb_hdr = hdr;
34dc7c2f
BB
6516 cb->l2rcb_bp = *bp;
6517 cb->l2rcb_zb = *zb;
b128c09f 6518 cb->l2rcb_flags = zio_flags;
34dc7c2f 6519
82710e99
GDN
6520 asize = vdev_psize_to_asize(vd, size);
6521 if (asize != size) {
6522 abd = abd_alloc_for_io(asize,
6523 HDR_ISTYPE_METADATA(hdr));
6524 cb->l2rcb_abd = abd;
6525 } else {
b5256303 6526 abd = hdr_abd;
82710e99
GDN
6527 }
6528
a117a6d6 6529 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
82710e99 6530 addr + asize <= vd->vdev_psize -
a117a6d6
GW
6531 VDEV_LABEL_END_SIZE);
6532
34dc7c2f 6533 /*
b128c09f
BB
6534 * l2arc read. The SCL_L2ARC lock will be
6535 * released by l2arc_read_done().
3a17a7a9
SK
6536 * Issue a null zio if the underlying buffer
6537 * was squashed to zero size by compression.
34dc7c2f 6538 */
b5256303 6539 ASSERT3U(arc_hdr_get_compress(hdr), !=,
d3c2ae1c
GW
6540 ZIO_COMPRESS_EMPTY);
6541 rzio = zio_read_phys(pio, vd, addr,
82710e99 6542 asize, abd,
d3c2ae1c
GW
6543 ZIO_CHECKSUM_OFF,
6544 l2arc_read_done, cb, priority,
6545 zio_flags | ZIO_FLAG_DONT_CACHE |
6546 ZIO_FLAG_CANFAIL |
6547 ZIO_FLAG_DONT_PROPAGATE |
6548 ZIO_FLAG_DONT_RETRY, B_FALSE);
a8b2e306
TC
6549 acb->acb_zio_head = rzio;
6550
6551 if (hash_lock != NULL)
6552 mutex_exit(hash_lock);
d3c2ae1c 6553
34dc7c2f
BB
6554 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6555 zio_t *, rzio);
b5256303
TC
6556 ARCSTAT_INCR(arcstat_l2_read_bytes,
6557 HDR_GET_PSIZE(hdr));
34dc7c2f 6558
2a432414 6559 if (*arc_flags & ARC_FLAG_NOWAIT) {
b128c09f 6560 zio_nowait(rzio);
1421c891 6561 goto out;
b128c09f 6562 }
34dc7c2f 6563
2a432414 6564 ASSERT(*arc_flags & ARC_FLAG_WAIT);
b128c09f 6565 if (zio_wait(rzio) == 0)
1421c891 6566 goto out;
b128c09f
BB
6567
6568 /* l2arc read error; goto zio_read() */
a8b2e306
TC
6569 if (hash_lock != NULL)
6570 mutex_enter(hash_lock);
34dc7c2f
BB
6571 } else {
6572 DTRACE_PROBE1(l2arc__miss,
6573 arc_buf_hdr_t *, hdr);
6574 ARCSTAT_BUMP(arcstat_l2_misses);
6575 if (HDR_L2_WRITING(hdr))
6576 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 6577 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 6578 }
d164b209
BB
6579 } else {
6580 if (vd != NULL)
6581 spa_config_exit(spa, SCL_L2ARC, vd);
0902c457
TC
6582 /*
6583 * Skip ARC stat bump for block pointers with
6584 * embedded data. The data are read from the blkptr
6585 * itself via decode_embedded_bp_compressed().
6586 */
6587 if (l2arc_ndev != 0 && !embedded_bp) {
d164b209
BB
6588 DTRACE_PROBE1(l2arc__miss,
6589 arc_buf_hdr_t *, hdr);
6590 ARCSTAT_BUMP(arcstat_l2_misses);
6591 }
34dc7c2f 6592 }
34dc7c2f 6593
b5256303 6594 rzio = zio_read(pio, spa, bp, hdr_abd, size,
d3c2ae1c 6595 arc_read_done, hdr, priority, zio_flags, zb);
a8b2e306
TC
6596 acb->acb_zio_head = rzio;
6597
6598 if (hash_lock != NULL)
6599 mutex_exit(hash_lock);
34dc7c2f 6600
2a432414 6601 if (*arc_flags & ARC_FLAG_WAIT) {
1421c891
PS
6602 rc = zio_wait(rzio);
6603 goto out;
6604 }
34dc7c2f 6605
2a432414 6606 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
34dc7c2f
BB
6607 zio_nowait(rzio);
6608 }
1421c891
PS
6609
6610out:
157ef7f6 6611 /* embedded bps don't actually go to disk */
0902c457 6612 if (!embedded_bp)
157ef7f6 6613 spa_read_history_add(spa, zb, *arc_flags);
1421c891 6614 return (rc);
34dc7c2f
BB
6615}
6616
ab26409d
BB
6617arc_prune_t *
6618arc_add_prune_callback(arc_prune_func_t *func, void *private)
6619{
6620 arc_prune_t *p;
6621
d1d7e268 6622 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
6623 p->p_pfunc = func;
6624 p->p_private = private;
6625 list_link_init(&p->p_node);
424fd7c3 6626 zfs_refcount_create(&p->p_refcnt);
ab26409d
BB
6627
6628 mutex_enter(&arc_prune_mtx);
c13060e4 6629 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
ab26409d
BB
6630 list_insert_head(&arc_prune_list, p);
6631 mutex_exit(&arc_prune_mtx);
6632
6633 return (p);
6634}
6635
6636void
6637arc_remove_prune_callback(arc_prune_t *p)
6638{
4442f60d 6639 boolean_t wait = B_FALSE;
ab26409d
BB
6640 mutex_enter(&arc_prune_mtx);
6641 list_remove(&arc_prune_list, p);
424fd7c3 6642 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
4442f60d 6643 wait = B_TRUE;
ab26409d 6644 mutex_exit(&arc_prune_mtx);
4442f60d
CC
6645
6646 /* wait for arc_prune_task to finish */
6647 if (wait)
6648 taskq_wait_outstanding(arc_prune_taskq, 0);
424fd7c3
TS
6649 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6650 zfs_refcount_destroy(&p->p_refcnt);
4442f60d 6651 kmem_free(p, sizeof (*p));
ab26409d
BB
6652}
6653
df4474f9
MA
6654/*
6655 * Notify the arc that a block was freed, and thus will never be used again.
6656 */
6657void
6658arc_freed(spa_t *spa, const blkptr_t *bp)
6659{
6660 arc_buf_hdr_t *hdr;
6661 kmutex_t *hash_lock;
6662 uint64_t guid = spa_load_guid(spa);
6663
9b67f605
MA
6664 ASSERT(!BP_IS_EMBEDDED(bp));
6665
6666 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
6667 if (hdr == NULL)
6668 return;
df4474f9 6669
d3c2ae1c
GW
6670 /*
6671 * We might be trying to free a block that is still doing I/O
6672 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6673 * dmu_sync-ed block). If this block is being prefetched, then it
6674 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6675 * until the I/O completes. A block may also have a reference if it is
6676 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6677 * have written the new block to its final resting place on disk but
6678 * without the dedup flag set. This would have left the hdr in the MRU
6679 * state and discoverable. When the txg finally syncs it detects that
6680 * the block was overridden in open context and issues an override I/O.
6681 * Since this is a dedup block, the override I/O will determine if the
6682 * block is already in the DDT. If so, then it will replace the io_bp
6683 * with the bp from the DDT and allow the I/O to finish. When the I/O
6684 * reaches the done callback, dbuf_write_override_done, it will
6685 * check to see if the io_bp and io_bp_override are identical.
6686 * If they are not, then it indicates that the bp was replaced with
6687 * the bp in the DDT and the override bp is freed. This allows
6688 * us to arrive here with a reference on a block that is being
6689 * freed. So if we have an I/O in progress, or a reference to
6690 * this hdr, then we don't destroy the hdr.
6691 */
6692 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
424fd7c3 6693 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
d3c2ae1c
GW
6694 arc_change_state(arc_anon, hdr, hash_lock);
6695 arc_hdr_destroy(hdr);
df4474f9 6696 mutex_exit(hash_lock);
bd089c54 6697 } else {
d3c2ae1c 6698 mutex_exit(hash_lock);
34dc7c2f 6699 }
34dc7c2f 6700
34dc7c2f
BB
6701}
6702
6703/*
e49f1e20
WA
6704 * Release this buffer from the cache, making it an anonymous buffer. This
6705 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 6706 * If the buffer has more than one reference, we must make
b128c09f 6707 * a new hdr for the buffer.
34dc7c2f
BB
6708 */
6709void
6710arc_release(arc_buf_t *buf, void *tag)
6711{
b9541d6b 6712 arc_buf_hdr_t *hdr = buf->b_hdr;
34dc7c2f 6713
428870ff 6714 /*
ca0bf58d 6715 * It would be nice to assert that if its DMU metadata (level >
428870ff
BB
6716 * 0 || it's the dnode file), then it must be syncing context.
6717 * But we don't know that information at this level.
6718 */
6719
6720 mutex_enter(&buf->b_evict_lock);
b128c09f 6721
ca0bf58d
PS
6722 ASSERT(HDR_HAS_L1HDR(hdr));
6723
b9541d6b
CW
6724 /*
6725 * We don't grab the hash lock prior to this check, because if
6726 * the buffer's header is in the arc_anon state, it won't be
6727 * linked into the hash table.
6728 */
6729 if (hdr->b_l1hdr.b_state == arc_anon) {
6730 mutex_exit(&buf->b_evict_lock);
6731 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6732 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6733 ASSERT(!HDR_HAS_L2HDR(hdr));
d3c2ae1c 6734 ASSERT(HDR_EMPTY(hdr));
34dc7c2f 6735
d3c2ae1c 6736 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
424fd7c3 6737 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
b9541d6b
CW
6738 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
6739
b9541d6b 6740 hdr->b_l1hdr.b_arc_access = 0;
d3c2ae1c
GW
6741
6742 /*
6743 * If the buf is being overridden then it may already
6744 * have a hdr that is not empty.
6745 */
6746 buf_discard_identity(hdr);
b9541d6b
CW
6747 arc_buf_thaw(buf);
6748
6749 return;
34dc7c2f
BB
6750 }
6751
1c27024e 6752 kmutex_t *hash_lock = HDR_LOCK(hdr);
b9541d6b
CW
6753 mutex_enter(hash_lock);
6754
6755 /*
6756 * This assignment is only valid as long as the hash_lock is
6757 * held, we must be careful not to reference state or the
6758 * b_state field after dropping the lock.
6759 */
1c27024e 6760 arc_state_t *state = hdr->b_l1hdr.b_state;
b9541d6b
CW
6761 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6762 ASSERT3P(state, !=, arc_anon);
6763
6764 /* this buffer is not on any list */
424fd7c3 6765 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
b9541d6b
CW
6766
6767 if (HDR_HAS_L2HDR(hdr)) {
b9541d6b 6768 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
ca0bf58d
PS
6769
6770 /*
d962d5da
PS
6771 * We have to recheck this conditional again now that
6772 * we're holding the l2ad_mtx to prevent a race with
6773 * another thread which might be concurrently calling
6774 * l2arc_evict(). In that case, l2arc_evict() might have
6775 * destroyed the header's L2 portion as we were waiting
6776 * to acquire the l2ad_mtx.
ca0bf58d 6777 */
d962d5da
PS
6778 if (HDR_HAS_L2HDR(hdr))
6779 arc_hdr_l2hdr_destroy(hdr);
ca0bf58d 6780
b9541d6b 6781 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
b128c09f
BB
6782 }
6783
34dc7c2f
BB
6784 /*
6785 * Do we have more than one buf?
6786 */
d3c2ae1c 6787 if (hdr->b_l1hdr.b_bufcnt > 1) {
34dc7c2f 6788 arc_buf_hdr_t *nhdr;
d164b209 6789 uint64_t spa = hdr->b_spa;
d3c2ae1c
GW
6790 uint64_t psize = HDR_GET_PSIZE(hdr);
6791 uint64_t lsize = HDR_GET_LSIZE(hdr);
b5256303
TC
6792 boolean_t protected = HDR_PROTECTED(hdr);
6793 enum zio_compress compress = arc_hdr_get_compress(hdr);
b9541d6b 6794 arc_buf_contents_t type = arc_buf_type(hdr);
d3c2ae1c 6795 VERIFY3U(hdr->b_type, ==, type);
34dc7c2f 6796
b9541d6b 6797 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
d3c2ae1c
GW
6798 (void) remove_reference(hdr, hash_lock, tag);
6799
524b4217 6800 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
d3c2ae1c 6801 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
524b4217
DK
6802 ASSERT(ARC_BUF_LAST(buf));
6803 }
d3c2ae1c 6804
34dc7c2f 6805 /*
428870ff 6806 * Pull the data off of this hdr and attach it to
d3c2ae1c
GW
6807 * a new anonymous hdr. Also find the last buffer
6808 * in the hdr's buffer list.
34dc7c2f 6809 */
a7004725 6810 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
d3c2ae1c 6811 ASSERT3P(lastbuf, !=, NULL);
34dc7c2f 6812
d3c2ae1c
GW
6813 /*
6814 * If the current arc_buf_t and the hdr are sharing their data
524b4217 6815 * buffer, then we must stop sharing that block.
d3c2ae1c
GW
6816 */
6817 if (arc_buf_is_shared(buf)) {
6818 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
d3c2ae1c
GW
6819 VERIFY(!arc_buf_is_shared(lastbuf));
6820
6821 /*
6822 * First, sever the block sharing relationship between
a7004725 6823 * buf and the arc_buf_hdr_t.
d3c2ae1c
GW
6824 */
6825 arc_unshare_buf(hdr, buf);
2aa34383
DK
6826
6827 /*
a6255b7f 6828 * Now we need to recreate the hdr's b_pabd. Since we
524b4217 6829 * have lastbuf handy, we try to share with it, but if
a6255b7f 6830 * we can't then we allocate a new b_pabd and copy the
524b4217 6831 * data from buf into it.
2aa34383 6832 */
524b4217
DK
6833 if (arc_can_share(hdr, lastbuf)) {
6834 arc_share_buf(hdr, lastbuf);
6835 } else {
b5256303 6836 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
6837 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6838 buf->b_data, psize);
2aa34383 6839 }
d3c2ae1c
GW
6840 VERIFY3P(lastbuf->b_data, !=, NULL);
6841 } else if (HDR_SHARED_DATA(hdr)) {
2aa34383
DK
6842 /*
6843 * Uncompressed shared buffers are always at the end
6844 * of the list. Compressed buffers don't have the
6845 * same requirements. This makes it hard to
6846 * simply assert that the lastbuf is shared so
6847 * we rely on the hdr's compression flags to determine
6848 * if we have a compressed, shared buffer.
6849 */
6850 ASSERT(arc_buf_is_shared(lastbuf) ||
b5256303 6851 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2aa34383 6852 ASSERT(!ARC_BUF_SHARED(buf));
d3c2ae1c 6853 }
b5256303
TC
6854
6855 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
b9541d6b 6856 ASSERT3P(state, !=, arc_l2c_only);
36da08ef 6857
424fd7c3 6858 (void) zfs_refcount_remove_many(&state->arcs_size,
2aa34383 6859 arc_buf_size(buf), buf);
36da08ef 6860
424fd7c3 6861 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
b9541d6b 6862 ASSERT3P(state, !=, arc_l2c_only);
424fd7c3
TS
6863 (void) zfs_refcount_remove_many(
6864 &state->arcs_esize[type],
2aa34383 6865 arc_buf_size(buf), buf);
34dc7c2f 6866 }
1eb5bfa3 6867
d3c2ae1c 6868 hdr->b_l1hdr.b_bufcnt -= 1;
b5256303
TC
6869 if (ARC_BUF_ENCRYPTED(buf))
6870 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6871
34dc7c2f 6872 arc_cksum_verify(buf);
498877ba 6873 arc_buf_unwatch(buf);
34dc7c2f 6874
f486f584
TC
6875 /* if this is the last uncompressed buf free the checksum */
6876 if (!arc_hdr_has_uncompressed_buf(hdr))
6877 arc_cksum_free(hdr);
6878
34dc7c2f
BB
6879 mutex_exit(hash_lock);
6880
d3c2ae1c 6881 /*
a6255b7f 6882 * Allocate a new hdr. The new hdr will contain a b_pabd
d3c2ae1c
GW
6883 * buffer which will be freed in arc_write().
6884 */
b5256303
TC
6885 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6886 compress, type, HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6887 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6888 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
424fd7c3 6889 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
d3c2ae1c
GW
6890 VERIFY3U(nhdr->b_type, ==, type);
6891 ASSERT(!HDR_SHARED_DATA(nhdr));
b9541d6b 6892
d3c2ae1c
GW
6893 nhdr->b_l1hdr.b_buf = buf;
6894 nhdr->b_l1hdr.b_bufcnt = 1;
b5256303
TC
6895 if (ARC_BUF_ENCRYPTED(buf))
6896 nhdr->b_crypt_hdr.b_ebufcnt = 1;
b9541d6b
CW
6897 nhdr->b_l1hdr.b_mru_hits = 0;
6898 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
6899 nhdr->b_l1hdr.b_mfu_hits = 0;
6900 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
6901 nhdr->b_l1hdr.b_l2_hits = 0;
c13060e4 6902 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
34dc7c2f 6903 buf->b_hdr = nhdr;
d3c2ae1c 6904
428870ff 6905 mutex_exit(&buf->b_evict_lock);
424fd7c3 6906 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
5e8ff256 6907 arc_buf_size(buf), buf);
34dc7c2f 6908 } else {
428870ff 6909 mutex_exit(&buf->b_evict_lock);
424fd7c3 6910 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
ca0bf58d
PS
6911 /* protected by hash lock, or hdr is on arc_anon */
6912 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
34dc7c2f 6913 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
b9541d6b
CW
6914 hdr->b_l1hdr.b_mru_hits = 0;
6915 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6916 hdr->b_l1hdr.b_mfu_hits = 0;
6917 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6918 hdr->b_l1hdr.b_l2_hits = 0;
6919 arc_change_state(arc_anon, hdr, hash_lock);
6920 hdr->b_l1hdr.b_arc_access = 0;
34dc7c2f 6921
b5256303 6922 mutex_exit(hash_lock);
428870ff 6923 buf_discard_identity(hdr);
34dc7c2f
BB
6924 arc_buf_thaw(buf);
6925 }
34dc7c2f
BB
6926}
6927
6928int
6929arc_released(arc_buf_t *buf)
6930{
b128c09f
BB
6931 int released;
6932
428870ff 6933 mutex_enter(&buf->b_evict_lock);
b9541d6b
CW
6934 released = (buf->b_data != NULL &&
6935 buf->b_hdr->b_l1hdr.b_state == arc_anon);
428870ff 6936 mutex_exit(&buf->b_evict_lock);
b128c09f 6937 return (released);
34dc7c2f
BB
6938}
6939
34dc7c2f
BB
6940#ifdef ZFS_DEBUG
6941int
6942arc_referenced(arc_buf_t *buf)
6943{
b128c09f
BB
6944 int referenced;
6945
428870ff 6946 mutex_enter(&buf->b_evict_lock);
424fd7c3 6947 referenced = (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
428870ff 6948 mutex_exit(&buf->b_evict_lock);
b128c09f 6949 return (referenced);
34dc7c2f
BB
6950}
6951#endif
6952
6953static void
6954arc_write_ready(zio_t *zio)
6955{
6956 arc_write_callback_t *callback = zio->io_private;
6957 arc_buf_t *buf = callback->awcb_buf;
6958 arc_buf_hdr_t *hdr = buf->b_hdr;
b5256303
TC
6959 blkptr_t *bp = zio->io_bp;
6960 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
a6255b7f 6961 fstrans_cookie_t cookie = spl_fstrans_mark();
34dc7c2f 6962
b9541d6b 6963 ASSERT(HDR_HAS_L1HDR(hdr));
424fd7c3 6964 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
d3c2ae1c 6965 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
b128c09f 6966
34dc7c2f 6967 /*
d3c2ae1c
GW
6968 * If we're reexecuting this zio because the pool suspended, then
6969 * cleanup any state that was previously set the first time the
2aa34383 6970 * callback was invoked.
34dc7c2f 6971 */
d3c2ae1c
GW
6972 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6973 arc_cksum_free(hdr);
6974 arc_buf_unwatch(buf);
a6255b7f 6975 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c 6976 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
6977 arc_unshare_buf(hdr, buf);
6978 } else {
b5256303 6979 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c 6980 }
34dc7c2f 6981 }
b5256303
TC
6982
6983 if (HDR_HAS_RABD(hdr))
6984 arc_hdr_free_abd(hdr, B_TRUE);
34dc7c2f 6985 }
a6255b7f 6986 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
b5256303 6987 ASSERT(!HDR_HAS_RABD(hdr));
d3c2ae1c
GW
6988 ASSERT(!HDR_SHARED_DATA(hdr));
6989 ASSERT(!arc_buf_is_shared(buf));
6990
6991 callback->awcb_ready(zio, buf, callback->awcb_private);
6992
6993 if (HDR_IO_IN_PROGRESS(hdr))
6994 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6995
d3c2ae1c
GW
6996 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6997
b5256303
TC
6998 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6999 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
7000
7001 if (BP_IS_PROTECTED(bp)) {
7002 /* ZIL blocks are written through zio_rewrite */
7003 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
7004 ASSERT(HDR_PROTECTED(hdr));
7005
ae76f45c
TC
7006 if (BP_SHOULD_BYTESWAP(bp)) {
7007 if (BP_GET_LEVEL(bp) > 0) {
7008 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
7009 } else {
7010 hdr->b_l1hdr.b_byteswap =
7011 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
7012 }
7013 } else {
7014 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
7015 }
7016
b5256303
TC
7017 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
7018 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
7019 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
7020 hdr->b_crypt_hdr.b_iv);
7021 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
7022 }
7023
7024 /*
7025 * If this block was written for raw encryption but the zio layer
7026 * ended up only authenticating it, adjust the buffer flags now.
7027 */
7028 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
7029 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
7030 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
7031 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
7032 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b1d21733
TC
7033 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
7034 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
7035 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
b5256303
TC
7036 }
7037
7038 /* this must be done after the buffer flags are adjusted */
7039 arc_cksum_compute(buf);
7040
1c27024e 7041 enum zio_compress compress;
b5256303 7042 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
d3c2ae1c
GW
7043 compress = ZIO_COMPRESS_OFF;
7044 } else {
b5256303
TC
7045 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
7046 compress = BP_GET_COMPRESS(bp);
d3c2ae1c
GW
7047 }
7048 HDR_SET_PSIZE(hdr, psize);
7049 arc_hdr_set_compress(hdr, compress);
7050
4807c0ba
TC
7051 if (zio->io_error != 0 || psize == 0)
7052 goto out;
7053
d3c2ae1c 7054 /*
b5256303
TC
7055 * Fill the hdr with data. If the buffer is encrypted we have no choice
7056 * but to copy the data into b_radb. If the hdr is compressed, the data
7057 * we want is available from the zio, otherwise we can take it from
7058 * the buf.
a6255b7f
DQ
7059 *
7060 * We might be able to share the buf's data with the hdr here. However,
7061 * doing so would cause the ARC to be full of linear ABDs if we write a
7062 * lot of shareable data. As a compromise, we check whether scattered
7063 * ABDs are allowed, and assume that if they are then the user wants
7064 * the ARC to be primarily filled with them regardless of the data being
7065 * written. Therefore, if they're allowed then we allocate one and copy
7066 * the data into it; otherwise, we share the data directly if we can.
d3c2ae1c 7067 */
b5256303 7068 if (ARC_BUF_ENCRYPTED(buf)) {
4807c0ba 7069 ASSERT3U(psize, >, 0);
b5256303
TC
7070 ASSERT(ARC_BUF_COMPRESSED(buf));
7071 arc_hdr_alloc_abd(hdr, B_TRUE);
7072 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
7073 } else if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
a6255b7f
DQ
7074 /*
7075 * Ideally, we would always copy the io_abd into b_pabd, but the
7076 * user may have disabled compressed ARC, thus we must check the
7077 * hdr's compression setting rather than the io_bp's.
7078 */
b5256303 7079 if (BP_IS_ENCRYPTED(bp)) {
a6255b7f 7080 ASSERT3U(psize, >, 0);
b5256303
TC
7081 arc_hdr_alloc_abd(hdr, B_TRUE);
7082 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
7083 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
7084 !ARC_BUF_COMPRESSED(buf)) {
7085 ASSERT3U(psize, >, 0);
7086 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
7087 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
7088 } else {
7089 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
b5256303 7090 arc_hdr_alloc_abd(hdr, B_FALSE);
a6255b7f
DQ
7091 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
7092 arc_buf_size(buf));
7093 }
d3c2ae1c 7094 } else {
a6255b7f 7095 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
2aa34383 7096 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
d3c2ae1c 7097 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
d3c2ae1c 7098
d3c2ae1c 7099 arc_share_buf(hdr, buf);
d3c2ae1c 7100 }
a6255b7f 7101
4807c0ba 7102out:
b5256303 7103 arc_hdr_verify(hdr, bp);
a6255b7f 7104 spl_fstrans_unmark(cookie);
34dc7c2f
BB
7105}
7106
bc77ba73
PD
7107static void
7108arc_write_children_ready(zio_t *zio)
7109{
7110 arc_write_callback_t *callback = zio->io_private;
7111 arc_buf_t *buf = callback->awcb_buf;
7112
7113 callback->awcb_children_ready(zio, buf, callback->awcb_private);
7114}
7115
e8b96c60
MA
7116/*
7117 * The SPA calls this callback for each physical write that happens on behalf
7118 * of a logical write. See the comment in dbuf_write_physdone() for details.
7119 */
7120static void
7121arc_write_physdone(zio_t *zio)
7122{
7123 arc_write_callback_t *cb = zio->io_private;
7124 if (cb->awcb_physdone != NULL)
7125 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
7126}
7127
34dc7c2f
BB
7128static void
7129arc_write_done(zio_t *zio)
7130{
7131 arc_write_callback_t *callback = zio->io_private;
7132 arc_buf_t *buf = callback->awcb_buf;
7133 arc_buf_hdr_t *hdr = buf->b_hdr;
7134
d3c2ae1c 7135 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
428870ff
BB
7136
7137 if (zio->io_error == 0) {
d3c2ae1c
GW
7138 arc_hdr_verify(hdr, zio->io_bp);
7139
9b67f605 7140 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
7141 buf_discard_identity(hdr);
7142 } else {
7143 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
7144 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
b0bc7a84 7145 }
428870ff 7146 } else {
d3c2ae1c 7147 ASSERT(HDR_EMPTY(hdr));
428870ff 7148 }
34dc7c2f 7149
34dc7c2f 7150 /*
9b67f605
MA
7151 * If the block to be written was all-zero or compressed enough to be
7152 * embedded in the BP, no write was performed so there will be no
7153 * dva/birth/checksum. The buffer must therefore remain anonymous
7154 * (and uncached).
34dc7c2f 7155 */
d3c2ae1c 7156 if (!HDR_EMPTY(hdr)) {
34dc7c2f
BB
7157 arc_buf_hdr_t *exists;
7158 kmutex_t *hash_lock;
7159
524b4217 7160 ASSERT3U(zio->io_error, ==, 0);
428870ff 7161
34dc7c2f
BB
7162 arc_cksum_verify(buf);
7163
7164 exists = buf_hash_insert(hdr, &hash_lock);
b9541d6b 7165 if (exists != NULL) {
34dc7c2f
BB
7166 /*
7167 * This can only happen if we overwrite for
7168 * sync-to-convergence, because we remove
7169 * buffers from the hash table when we arc_free().
7170 */
428870ff
BB
7171 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
7172 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7173 panic("bad overwrite, hdr=%p exists=%p",
7174 (void *)hdr, (void *)exists);
424fd7c3 7175 ASSERT(zfs_refcount_is_zero(
b9541d6b 7176 &exists->b_l1hdr.b_refcnt));
428870ff
BB
7177 arc_change_state(arc_anon, exists, hash_lock);
7178 mutex_exit(hash_lock);
7179 arc_hdr_destroy(exists);
7180 exists = buf_hash_insert(hdr, &hash_lock);
7181 ASSERT3P(exists, ==, NULL);
03c6040b
GW
7182 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7183 /* nopwrite */
7184 ASSERT(zio->io_prop.zp_nopwrite);
7185 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7186 panic("bad nopwrite, hdr=%p exists=%p",
7187 (void *)hdr, (void *)exists);
428870ff
BB
7188 } else {
7189 /* Dedup */
d3c2ae1c 7190 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
b9541d6b 7191 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
428870ff
BB
7192 ASSERT(BP_GET_DEDUP(zio->io_bp));
7193 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
7194 }
34dc7c2f 7195 }
d3c2ae1c 7196 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
b128c09f 7197 /* if it's not anon, we are doing a scrub */
b9541d6b 7198 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
b128c09f 7199 arc_access(hdr, hash_lock);
34dc7c2f 7200 mutex_exit(hash_lock);
34dc7c2f 7201 } else {
d3c2ae1c 7202 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
34dc7c2f
BB
7203 }
7204
424fd7c3 7205 ASSERT(!zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
428870ff 7206 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f 7207
a6255b7f 7208 abd_put(zio->io_abd);
34dc7c2f
BB
7209 kmem_free(callback, sizeof (arc_write_callback_t));
7210}
7211
7212zio_t *
428870ff 7213arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
d3c2ae1c 7214 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
b5256303
TC
7215 const zio_prop_t *zp, arc_write_done_func_t *ready,
7216 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7217 arc_write_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 7218 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
7219{
7220 arc_buf_hdr_t *hdr = buf->b_hdr;
7221 arc_write_callback_t *callback;
b128c09f 7222 zio_t *zio;
82644107 7223 zio_prop_t localprop = *zp;
34dc7c2f 7224
d3c2ae1c
GW
7225 ASSERT3P(ready, !=, NULL);
7226 ASSERT3P(done, !=, NULL);
34dc7c2f 7227 ASSERT(!HDR_IO_ERROR(hdr));
b9541d6b 7228 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
d3c2ae1c
GW
7229 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7230 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
b128c09f 7231 if (l2arc)
d3c2ae1c 7232 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
82644107 7233
b5256303
TC
7234 if (ARC_BUF_ENCRYPTED(buf)) {
7235 ASSERT(ARC_BUF_COMPRESSED(buf));
7236 localprop.zp_encrypt = B_TRUE;
7237 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7238 localprop.zp_byteorder =
7239 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7240 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7241 bcopy(hdr->b_crypt_hdr.b_salt, localprop.zp_salt,
7242 ZIO_DATA_SALT_LEN);
7243 bcopy(hdr->b_crypt_hdr.b_iv, localprop.zp_iv,
7244 ZIO_DATA_IV_LEN);
7245 bcopy(hdr->b_crypt_hdr.b_mac, localprop.zp_mac,
7246 ZIO_DATA_MAC_LEN);
7247 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7248 localprop.zp_nopwrite = B_FALSE;
7249 localprop.zp_copies =
7250 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7251 }
2aa34383 7252 zio_flags |= ZIO_FLAG_RAW;
b5256303
TC
7253 } else if (ARC_BUF_COMPRESSED(buf)) {
7254 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7255 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7256 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
2aa34383 7257 }
79c76d5b 7258 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
34dc7c2f 7259 callback->awcb_ready = ready;
bc77ba73 7260 callback->awcb_children_ready = children_ready;
e8b96c60 7261 callback->awcb_physdone = physdone;
34dc7c2f
BB
7262 callback->awcb_done = done;
7263 callback->awcb_private = private;
7264 callback->awcb_buf = buf;
b128c09f 7265
d3c2ae1c 7266 /*
a6255b7f 7267 * The hdr's b_pabd is now stale, free it now. A new data block
d3c2ae1c
GW
7268 * will be allocated when the zio pipeline calls arc_write_ready().
7269 */
a6255b7f 7270 if (hdr->b_l1hdr.b_pabd != NULL) {
d3c2ae1c
GW
7271 /*
7272 * If the buf is currently sharing the data block with
7273 * the hdr then we need to break that relationship here.
7274 * The hdr will remain with a NULL data pointer and the
7275 * buf will take sole ownership of the block.
7276 */
7277 if (arc_buf_is_shared(buf)) {
d3c2ae1c
GW
7278 arc_unshare_buf(hdr, buf);
7279 } else {
b5256303 7280 arc_hdr_free_abd(hdr, B_FALSE);
d3c2ae1c
GW
7281 }
7282 VERIFY3P(buf->b_data, !=, NULL);
d3c2ae1c 7283 }
b5256303
TC
7284
7285 if (HDR_HAS_RABD(hdr))
7286 arc_hdr_free_abd(hdr, B_TRUE);
7287
71a24c3c
TC
7288 if (!(zio_flags & ZIO_FLAG_RAW))
7289 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
b5256303 7290
d3c2ae1c 7291 ASSERT(!arc_buf_is_shared(buf));
a6255b7f 7292 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
d3c2ae1c 7293
a6255b7f
DQ
7294 zio = zio_write(pio, spa, txg, bp,
7295 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
82644107 7296 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
bc77ba73
PD
7297 (children_ready != NULL) ? arc_write_children_ready : NULL,
7298 arc_write_physdone, arc_write_done, callback,
e8b96c60 7299 priority, zio_flags, zb);
34dc7c2f
BB
7300
7301 return (zio);
7302}
7303
34dc7c2f 7304static int
dae3e9ea 7305arc_memory_throttle(spa_t *spa, uint64_t reserve, uint64_t txg)
34dc7c2f
BB
7306{
7307#ifdef _KERNEL
70f02287 7308 uint64_t available_memory = arc_free_memory();
0c5493d4 7309
70f02287 7310#if defined(_ILP32)
9edb3695
BB
7311 available_memory =
7312 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
7313#endif
7314
7315 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
ca67b33a
MA
7316 return (0);
7317
dae3e9ea
DB
7318 if (txg > spa->spa_lowmem_last_txg) {
7319 spa->spa_lowmem_last_txg = txg;
7320 spa->spa_lowmem_page_load = 0;
7e8bddd0 7321 }
7e8bddd0
BB
7322 /*
7323 * If we are in pageout, we know that memory is already tight,
7324 * the arc is already going to be evicting, so we just want to
7325 * continue to let page writes occur as quickly as possible.
7326 */
7327 if (current_is_kswapd()) {
dae3e9ea
DB
7328 if (spa->spa_lowmem_page_load >
7329 MAX(arc_sys_free / 4, available_memory) / 4) {
7e8bddd0
BB
7330 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
7331 return (SET_ERROR(ERESTART));
7332 }
7333 /* Note: reserve is inflated, so we deflate */
dae3e9ea 7334 atomic_add_64(&spa->spa_lowmem_page_load, reserve / 8);
7e8bddd0 7335 return (0);
dae3e9ea 7336 } else if (spa->spa_lowmem_page_load > 0 && arc_reclaim_needed()) {
ca67b33a 7337 /* memory is low, delay before restarting */
34dc7c2f 7338 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 7339 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 7340 return (SET_ERROR(EAGAIN));
34dc7c2f 7341 }
dae3e9ea
DB
7342 spa->spa_lowmem_page_load = 0;
7343#endif /* _KERNEL */
34dc7c2f
BB
7344 return (0);
7345}
7346
7347void
7348arc_tempreserve_clear(uint64_t reserve)
7349{
7350 atomic_add_64(&arc_tempreserve, -reserve);
7351 ASSERT((int64_t)arc_tempreserve >= 0);
7352}
7353
7354int
dae3e9ea 7355arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
34dc7c2f
BB
7356{
7357 int error;
9babb374 7358 uint64_t anon_size;
34dc7c2f 7359
1b8951b3
TC
7360 if (!arc_no_grow &&
7361 reserve > arc_c/4 &&
7362 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
34dc7c2f 7363 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
7364
7365 /*
7366 * Throttle when the calculated memory footprint for the TXG
7367 * exceeds the target ARC size.
7368 */
570827e1
BB
7369 if (reserve > arc_c) {
7370 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 7371 return (SET_ERROR(ERESTART));
570827e1 7372 }
34dc7c2f 7373
9babb374
BB
7374 /*
7375 * Don't count loaned bufs as in flight dirty data to prevent long
7376 * network delays from blocking transactions that are ready to be
7377 * assigned to a txg.
7378 */
a7004725
DK
7379
7380 /* assert that it has not wrapped around */
7381 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7382
424fd7c3 7383 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
36da08ef 7384 arc_loaned_bytes), 0);
9babb374 7385
34dc7c2f
BB
7386 /*
7387 * Writes will, almost always, require additional memory allocations
d3cc8b15 7388 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
7389 * make sure that there is sufficient available memory for this.
7390 */
dae3e9ea 7391 error = arc_memory_throttle(spa, reserve, txg);
e8b96c60 7392 if (error != 0)
34dc7c2f
BB
7393 return (error);
7394
7395 /*
7396 * Throttle writes when the amount of dirty data in the cache
7397 * gets too large. We try to keep the cache less than half full
7398 * of dirty blocks so that our sync times don't grow too large.
dae3e9ea
DB
7399 *
7400 * In the case of one pool being built on another pool, we want
7401 * to make sure we don't end up throttling the lower (backing)
7402 * pool when the upper pool is the majority contributor to dirty
7403 * data. To insure we make forward progress during throttling, we
7404 * also check the current pool's net dirty data and only throttle
7405 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7406 * data in the cache.
7407 *
34dc7c2f
BB
7408 * Note: if two requests come in concurrently, we might let them
7409 * both succeed, when one of them should fail. Not a huge deal.
7410 */
dae3e9ea
DB
7411 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7412 uint64_t spa_dirty_anon = spa_dirty_data(spa);
9babb374 7413
dae3e9ea
DB
7414 if (total_dirty > arc_c * zfs_arc_dirty_limit_percent / 100 &&
7415 anon_size > arc_c * zfs_arc_anon_limit_percent / 100 &&
7416 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
2fd92c3d 7417#ifdef ZFS_DEBUG
424fd7c3
TS
7418 uint64_t meta_esize = zfs_refcount_count(
7419 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
d3c2ae1c 7420 uint64_t data_esize =
424fd7c3 7421 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
34dc7c2f
BB
7422 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7423 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
d3c2ae1c
GW
7424 arc_tempreserve >> 10, meta_esize >> 10,
7425 data_esize >> 10, reserve >> 10, arc_c >> 10);
2fd92c3d 7426#endif
570827e1 7427 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 7428 return (SET_ERROR(ERESTART));
34dc7c2f
BB
7429 }
7430 atomic_add_64(&arc_tempreserve, reserve);
7431 return (0);
7432}
7433
13be560d
BB
7434static void
7435arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7436 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7437{
424fd7c3 7438 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
d3c2ae1c 7439 evict_data->value.ui64 =
424fd7c3 7440 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
d3c2ae1c 7441 evict_metadata->value.ui64 =
424fd7c3 7442 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
13be560d
BB
7443}
7444
7445static int
7446arc_kstat_update(kstat_t *ksp, int rw)
7447{
7448 arc_stats_t *as = ksp->ks_data;
7449
7450 if (rw == KSTAT_WRITE) {
ecb2b7dc 7451 return (SET_ERROR(EACCES));
13be560d
BB
7452 } else {
7453 arc_kstat_update_state(arc_anon,
7454 &as->arcstat_anon_size,
500445c0
PS
7455 &as->arcstat_anon_evictable_data,
7456 &as->arcstat_anon_evictable_metadata);
13be560d
BB
7457 arc_kstat_update_state(arc_mru,
7458 &as->arcstat_mru_size,
500445c0
PS
7459 &as->arcstat_mru_evictable_data,
7460 &as->arcstat_mru_evictable_metadata);
13be560d
BB
7461 arc_kstat_update_state(arc_mru_ghost,
7462 &as->arcstat_mru_ghost_size,
500445c0
PS
7463 &as->arcstat_mru_ghost_evictable_data,
7464 &as->arcstat_mru_ghost_evictable_metadata);
13be560d
BB
7465 arc_kstat_update_state(arc_mfu,
7466 &as->arcstat_mfu_size,
500445c0
PS
7467 &as->arcstat_mfu_evictable_data,
7468 &as->arcstat_mfu_evictable_metadata);
fc41c640 7469 arc_kstat_update_state(arc_mfu_ghost,
13be560d 7470 &as->arcstat_mfu_ghost_size,
500445c0
PS
7471 &as->arcstat_mfu_ghost_evictable_data,
7472 &as->arcstat_mfu_ghost_evictable_metadata);
70f02287 7473
37fb3e43
PD
7474 ARCSTAT(arcstat_size) = aggsum_value(&arc_size);
7475 ARCSTAT(arcstat_meta_used) = aggsum_value(&arc_meta_used);
7476 ARCSTAT(arcstat_data_size) = aggsum_value(&astat_data_size);
7477 ARCSTAT(arcstat_metadata_size) =
7478 aggsum_value(&astat_metadata_size);
7479 ARCSTAT(arcstat_hdr_size) = aggsum_value(&astat_hdr_size);
7480 ARCSTAT(arcstat_l2_hdr_size) = aggsum_value(&astat_l2_hdr_size);
7481 ARCSTAT(arcstat_dbuf_size) = aggsum_value(&astat_dbuf_size);
7482 ARCSTAT(arcstat_dnode_size) = aggsum_value(&astat_dnode_size);
7483 ARCSTAT(arcstat_bonus_size) = aggsum_value(&astat_bonus_size);
7484
70f02287
BB
7485 as->arcstat_memory_all_bytes.value.ui64 =
7486 arc_all_memory();
7487 as->arcstat_memory_free_bytes.value.ui64 =
7488 arc_free_memory();
7489 as->arcstat_memory_available_bytes.value.i64 =
7490 arc_available_memory();
13be560d
BB
7491 }
7492
7493 return (0);
7494}
7495
ca0bf58d
PS
7496/*
7497 * This function *must* return indices evenly distributed between all
7498 * sublists of the multilist. This is needed due to how the ARC eviction
7499 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7500 * distributed between all sublists and uses this assumption when
7501 * deciding which sublist to evict from and how much to evict from it.
7502 */
7503unsigned int
7504arc_state_multilist_index_func(multilist_t *ml, void *obj)
7505{
7506 arc_buf_hdr_t *hdr = obj;
7507
7508 /*
7509 * We rely on b_dva to generate evenly distributed index
7510 * numbers using buf_hash below. So, as an added precaution,
7511 * let's make sure we never add empty buffers to the arc lists.
7512 */
d3c2ae1c 7513 ASSERT(!HDR_EMPTY(hdr));
ca0bf58d
PS
7514
7515 /*
7516 * The assumption here, is the hash value for a given
7517 * arc_buf_hdr_t will remain constant throughout its lifetime
7518 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7519 * Thus, we don't need to store the header's sublist index
7520 * on insertion, as this index can be recalculated on removal.
7521 *
7522 * Also, the low order bits of the hash value are thought to be
7523 * distributed evenly. Otherwise, in the case that the multilist
7524 * has a power of two number of sublists, each sublists' usage
7525 * would not be evenly distributed.
7526 */
7527 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7528 multilist_get_num_sublists(ml));
7529}
7530
ca67b33a
MA
7531/*
7532 * Called during module initialization and periodically thereafter to
7533 * apply reasonable changes to the exposed performance tunings. Non-zero
7534 * zfs_* values which differ from the currently set values will be applied.
7535 */
7536static void
7537arc_tuning_update(void)
7538{
b8a97fb1 7539 uint64_t allmem = arc_all_memory();
7540 unsigned long limit;
9edb3695 7541
ca67b33a
MA
7542 /* Valid range: 64M - <all physical memory> */
7543 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7403d074 7544 (zfs_arc_max >= 64 << 20) && (zfs_arc_max < allmem) &&
ca67b33a
MA
7545 (zfs_arc_max > arc_c_min)) {
7546 arc_c_max = zfs_arc_max;
7547 arc_c = arc_c_max;
7548 arc_p = (arc_c >> 1);
b8a97fb1 7549 if (arc_meta_limit > arc_c_max)
7550 arc_meta_limit = arc_c_max;
7551 if (arc_dnode_limit > arc_meta_limit)
7552 arc_dnode_limit = arc_meta_limit;
ca67b33a
MA
7553 }
7554
7555 /* Valid range: 32M - <arc_c_max> */
7556 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7557 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7558 (zfs_arc_min <= arc_c_max)) {
7559 arc_c_min = zfs_arc_min;
7560 arc_c = MAX(arc_c, arc_c_min);
7561 }
7562
7563 /* Valid range: 16M - <arc_c_max> */
7564 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7565 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7566 (zfs_arc_meta_min <= arc_c_max)) {
7567 arc_meta_min = zfs_arc_meta_min;
b8a97fb1 7568 if (arc_meta_limit < arc_meta_min)
7569 arc_meta_limit = arc_meta_min;
7570 if (arc_dnode_limit < arc_meta_min)
7571 arc_dnode_limit = arc_meta_min;
ca67b33a
MA
7572 }
7573
7574 /* Valid range: <arc_meta_min> - <arc_c_max> */
b8a97fb1 7575 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7576 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7577 if ((limit != arc_meta_limit) &&
7578 (limit >= arc_meta_min) &&
7579 (limit <= arc_c_max))
7580 arc_meta_limit = limit;
7581
7582 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7583 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7584 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7585 if ((limit != arc_dnode_limit) &&
7586 (limit >= arc_meta_min) &&
7587 (limit <= arc_meta_limit))
7588 arc_dnode_limit = limit;
25458cbe 7589
ca67b33a
MA
7590 /* Valid range: 1 - N */
7591 if (zfs_arc_grow_retry)
7592 arc_grow_retry = zfs_arc_grow_retry;
7593
7594 /* Valid range: 1 - N */
7595 if (zfs_arc_shrink_shift) {
7596 arc_shrink_shift = zfs_arc_shrink_shift;
7597 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7598 }
7599
728d6ae9
BB
7600 /* Valid range: 1 - N */
7601 if (zfs_arc_p_min_shift)
7602 arc_p_min_shift = zfs_arc_p_min_shift;
7603
d4a72f23
TC
7604 /* Valid range: 1 - N ms */
7605 if (zfs_arc_min_prefetch_ms)
7606 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7607
7608 /* Valid range: 1 - N ms */
7609 if (zfs_arc_min_prescient_prefetch_ms) {
7610 arc_min_prescient_prefetch_ms =
7611 zfs_arc_min_prescient_prefetch_ms;
7612 }
11f552fa 7613
7e8bddd0
BB
7614 /* Valid range: 0 - 100 */
7615 if ((zfs_arc_lotsfree_percent >= 0) &&
7616 (zfs_arc_lotsfree_percent <= 100))
7617 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7618
11f552fa
BB
7619 /* Valid range: 0 - <all physical memory> */
7620 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
9edb3695 7621 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
7e8bddd0 7622
ca67b33a
MA
7623}
7624
d3c2ae1c
GW
7625static void
7626arc_state_init(void)
7627{
7628 arc_anon = &ARC_anon;
7629 arc_mru = &ARC_mru;
7630 arc_mru_ghost = &ARC_mru_ghost;
7631 arc_mfu = &ARC_mfu;
7632 arc_mfu_ghost = &ARC_mfu_ghost;
7633 arc_l2c_only = &ARC_l2c_only;
7634
64fc7762
MA
7635 arc_mru->arcs_list[ARC_BUFC_METADATA] =
7636 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7637 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7638 arc_state_multilist_index_func);
64fc7762
MA
7639 arc_mru->arcs_list[ARC_BUFC_DATA] =
7640 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7641 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7642 arc_state_multilist_index_func);
64fc7762
MA
7643 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
7644 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7645 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7646 arc_state_multilist_index_func);
64fc7762
MA
7647 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
7648 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7649 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7650 arc_state_multilist_index_func);
64fc7762
MA
7651 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
7652 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7653 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7654 arc_state_multilist_index_func);
64fc7762
MA
7655 arc_mfu->arcs_list[ARC_BUFC_DATA] =
7656 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7657 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7658 arc_state_multilist_index_func);
64fc7762
MA
7659 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
7660 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7661 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7662 arc_state_multilist_index_func);
64fc7762
MA
7663 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
7664 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7665 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7666 arc_state_multilist_index_func);
64fc7762
MA
7667 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
7668 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7669 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7670 arc_state_multilist_index_func);
64fc7762
MA
7671 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
7672 multilist_create(sizeof (arc_buf_hdr_t),
d3c2ae1c 7673 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
c30e58c4 7674 arc_state_multilist_index_func);
d3c2ae1c 7675
424fd7c3
TS
7676 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7677 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7678 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7679 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7680 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7681 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7682 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7683 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7684 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7685 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7686 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7687 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7688
7689 zfs_refcount_create(&arc_anon->arcs_size);
7690 zfs_refcount_create(&arc_mru->arcs_size);
7691 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7692 zfs_refcount_create(&arc_mfu->arcs_size);
7693 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7694 zfs_refcount_create(&arc_l2c_only->arcs_size);
d3c2ae1c 7695
37fb3e43
PD
7696 aggsum_init(&arc_meta_used, 0);
7697 aggsum_init(&arc_size, 0);
7698 aggsum_init(&astat_data_size, 0);
7699 aggsum_init(&astat_metadata_size, 0);
7700 aggsum_init(&astat_hdr_size, 0);
7701 aggsum_init(&astat_l2_hdr_size, 0);
7702 aggsum_init(&astat_bonus_size, 0);
7703 aggsum_init(&astat_dnode_size, 0);
7704 aggsum_init(&astat_dbuf_size, 0);
7705
d3c2ae1c
GW
7706 arc_anon->arcs_state = ARC_STATE_ANON;
7707 arc_mru->arcs_state = ARC_STATE_MRU;
7708 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7709 arc_mfu->arcs_state = ARC_STATE_MFU;
7710 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7711 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7712}
7713
7714static void
7715arc_state_fini(void)
7716{
424fd7c3
TS
7717 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7718 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7719 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7720 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7721 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7722 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7723 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7724 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7725 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7726 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7727 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7728 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7729
7730 zfs_refcount_destroy(&arc_anon->arcs_size);
7731 zfs_refcount_destroy(&arc_mru->arcs_size);
7732 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7733 zfs_refcount_destroy(&arc_mfu->arcs_size);
7734 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7735 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
d3c2ae1c 7736
64fc7762
MA
7737 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
7738 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7739 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7740 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7741 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
7742 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7743 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
7744 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7745 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7746 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
37fb3e43
PD
7747
7748 aggsum_fini(&arc_meta_used);
7749 aggsum_fini(&arc_size);
7750 aggsum_fini(&astat_data_size);
7751 aggsum_fini(&astat_metadata_size);
7752 aggsum_fini(&astat_hdr_size);
7753 aggsum_fini(&astat_l2_hdr_size);
7754 aggsum_fini(&astat_bonus_size);
7755 aggsum_fini(&astat_dnode_size);
7756 aggsum_fini(&astat_dbuf_size);
d3c2ae1c
GW
7757}
7758
7759uint64_t
e71cade6 7760arc_target_bytes(void)
d3c2ae1c 7761{
e71cade6 7762 return (arc_c);
d3c2ae1c
GW
7763}
7764
34dc7c2f
BB
7765void
7766arc_init(void)
7767{
9edb3695 7768 uint64_t percent, allmem = arc_all_memory();
3ec34e55
BL
7769 mutex_init(&arc_adjust_lock, NULL, MUTEX_DEFAULT, NULL);
7770 cv_init(&arc_adjust_waiters_cv, NULL, CV_DEFAULT, NULL);
ca0bf58d 7771
2b84817f
TC
7772 arc_min_prefetch_ms = 1000;
7773 arc_min_prescient_prefetch_ms = 6000;
34dc7c2f 7774
34dc7c2f 7775#ifdef _KERNEL
7cb67b45
BB
7776 /*
7777 * Register a shrinker to support synchronous (direct) memory
7778 * reclaim from the arc. This is done to prevent kswapd from
7779 * swapping out pages when it is preferable to shrink the arc.
7780 */
7781 spl_register_shrinker(&arc_shrinker);
11f552fa
BB
7782
7783 /* Set to 1/64 of all memory or a minimum of 512K */
9edb3695 7784 arc_sys_free = MAX(allmem / 64, (512 * 1024));
11f552fa 7785 arc_need_free = 0;
34dc7c2f
BB
7786#endif
7787
0a1f8cd9
TC
7788 /* Set max to 1/2 of all memory */
7789 arc_c_max = allmem / 2;
7790
4ce3c45a
BB
7791#ifdef _KERNEL
7792 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
7793 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7794#else
ab5cbbd1
BB
7795 /*
7796 * In userland, there's only the memory pressure that we artificially
7797 * create (see arc_available_memory()). Don't let arc_c get too
7798 * small, because it can cause transactions to be larger than
7799 * arc_c, causing arc_tempreserve_space() to fail.
7800 */
0a1f8cd9 7801 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
ab5cbbd1
BB
7802#endif
7803
34dc7c2f
BB
7804 arc_c = arc_c_max;
7805 arc_p = (arc_c >> 1);
7806
ca67b33a
MA
7807 /* Set min to 1/2 of arc_c_min */
7808 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
7809 /* Initialize maximum observed usage to zero */
1834f2d8 7810 arc_meta_max = 0;
9907cc1c
G
7811 /*
7812 * Set arc_meta_limit to a percent of arc_c_max with a floor of
7813 * arc_meta_min, and a ceiling of arc_c_max.
7814 */
7815 percent = MIN(zfs_arc_meta_limit_percent, 100);
7816 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
7817 percent = MIN(zfs_arc_dnode_limit_percent, 100);
7818 arc_dnode_limit = (percent * arc_meta_limit) / 100;
34dc7c2f 7819
ca67b33a
MA
7820 /* Apply user specified tunings */
7821 arc_tuning_update();
c52fca13 7822
34dc7c2f
BB
7823 /* if kmem_flags are set, lets try to use less memory */
7824 if (kmem_debugging())
7825 arc_c = arc_c / 2;
7826 if (arc_c < arc_c_min)
7827 arc_c = arc_c_min;
7828
d3c2ae1c 7829 arc_state_init();
3ec34e55
BL
7830
7831 /*
7832 * The arc must be "uninitialized", so that hdr_recl() (which is
7833 * registered by buf_init()) will not access arc_reap_zthr before
7834 * it is created.
7835 */
7836 ASSERT(!arc_initialized);
34dc7c2f
BB
7837 buf_init();
7838
ab26409d
BB
7839 list_create(&arc_prune_list, sizeof (arc_prune_t),
7840 offsetof(arc_prune_t, p_node));
ab26409d 7841 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 7842
1229323d 7843 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
aa9af22c 7844 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
f6046738 7845
34dc7c2f
BB
7846 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
7847 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
7848
7849 if (arc_ksp != NULL) {
7850 arc_ksp->ks_data = &arc_stats;
13be560d 7851 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
7852 kstat_install(arc_ksp);
7853 }
7854
3ec34e55
BL
7855 arc_adjust_zthr = zthr_create(arc_adjust_cb_check,
7856 arc_adjust_cb, NULL);
7857 arc_reap_zthr = zthr_create_timer(arc_reap_cb_check,
7858 arc_reap_cb, NULL, SEC2NSEC(1));
34dc7c2f 7859
3ec34e55 7860 arc_initialized = B_TRUE;
b128c09f 7861 arc_warm = B_FALSE;
34dc7c2f 7862
e8b96c60
MA
7863 /*
7864 * Calculate maximum amount of dirty data per pool.
7865 *
7866 * If it has been set by a module parameter, take that.
7867 * Otherwise, use a percentage of physical memory defined by
7868 * zfs_dirty_data_max_percent (default 10%) with a cap at
e99932f7 7869 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
e8b96c60
MA
7870 */
7871 if (zfs_dirty_data_max_max == 0)
e99932f7
BB
7872 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
7873 allmem * zfs_dirty_data_max_max_percent / 100);
e8b96c60
MA
7874
7875 if (zfs_dirty_data_max == 0) {
9edb3695 7876 zfs_dirty_data_max = allmem *
e8b96c60
MA
7877 zfs_dirty_data_max_percent / 100;
7878 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
7879 zfs_dirty_data_max_max);
7880 }
34dc7c2f
BB
7881}
7882
7883void
7884arc_fini(void)
7885{
ab26409d
BB
7886 arc_prune_t *p;
7887
7cb67b45
BB
7888#ifdef _KERNEL
7889 spl_unregister_shrinker(&arc_shrinker);
7890#endif /* _KERNEL */
7891
d3c2ae1c
GW
7892 /* Use B_TRUE to ensure *all* buffers are evicted */
7893 arc_flush(NULL, B_TRUE);
34dc7c2f 7894
3ec34e55 7895 arc_initialized = B_FALSE;
34dc7c2f
BB
7896
7897 if (arc_ksp != NULL) {
7898 kstat_delete(arc_ksp);
7899 arc_ksp = NULL;
7900 }
7901
f6046738
BB
7902 taskq_wait(arc_prune_taskq);
7903 taskq_destroy(arc_prune_taskq);
7904
ab26409d
BB
7905 mutex_enter(&arc_prune_mtx);
7906 while ((p = list_head(&arc_prune_list)) != NULL) {
7907 list_remove(&arc_prune_list, p);
424fd7c3
TS
7908 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
7909 zfs_refcount_destroy(&p->p_refcnt);
ab26409d
BB
7910 kmem_free(p, sizeof (*p));
7911 }
7912 mutex_exit(&arc_prune_mtx);
7913
7914 list_destroy(&arc_prune_list);
7915 mutex_destroy(&arc_prune_mtx);
3ec34e55
BL
7916 (void) zthr_cancel(arc_adjust_zthr);
7917 zthr_destroy(arc_adjust_zthr);
7918
7919 (void) zthr_cancel(arc_reap_zthr);
7920 zthr_destroy(arc_reap_zthr);
7921
7922 mutex_destroy(&arc_adjust_lock);
7923 cv_destroy(&arc_adjust_waiters_cv);
ca0bf58d 7924
ae3d8491
PD
7925 /*
7926 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7927 * trigger the release of kmem magazines, which can callback to
7928 * arc_space_return() which accesses aggsums freed in act_state_fini().
7929 */
34dc7c2f 7930 buf_fini();
ae3d8491 7931 arc_state_fini();
9babb374 7932
b9541d6b 7933 ASSERT0(arc_loaned_bytes);
34dc7c2f
BB
7934}
7935
7936/*
7937 * Level 2 ARC
7938 *
7939 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7940 * It uses dedicated storage devices to hold cached data, which are populated
7941 * using large infrequent writes. The main role of this cache is to boost
7942 * the performance of random read workloads. The intended L2ARC devices
7943 * include short-stroked disks, solid state disks, and other media with
7944 * substantially faster read latency than disk.
7945 *
7946 * +-----------------------+
7947 * | ARC |
7948 * +-----------------------+
7949 * | ^ ^
7950 * | | |
7951 * l2arc_feed_thread() arc_read()
7952 * | | |
7953 * | l2arc read |
7954 * V | |
7955 * +---------------+ |
7956 * | L2ARC | |
7957 * +---------------+ |
7958 * | ^ |
7959 * l2arc_write() | |
7960 * | | |
7961 * V | |
7962 * +-------+ +-------+
7963 * | vdev | | vdev |
7964 * | cache | | cache |
7965 * +-------+ +-------+
7966 * +=========+ .-----.
7967 * : L2ARC : |-_____-|
7968 * : devices : | Disks |
7969 * +=========+ `-_____-'
7970 *
7971 * Read requests are satisfied from the following sources, in order:
7972 *
7973 * 1) ARC
7974 * 2) vdev cache of L2ARC devices
7975 * 3) L2ARC devices
7976 * 4) vdev cache of disks
7977 * 5) disks
7978 *
7979 * Some L2ARC device types exhibit extremely slow write performance.
7980 * To accommodate for this there are some significant differences between
7981 * the L2ARC and traditional cache design:
7982 *
7983 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7984 * the ARC behave as usual, freeing buffers and placing headers on ghost
7985 * lists. The ARC does not send buffers to the L2ARC during eviction as
7986 * this would add inflated write latencies for all ARC memory pressure.
7987 *
7988 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7989 * It does this by periodically scanning buffers from the eviction-end of
7990 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
7991 * not already there. It scans until a headroom of buffers is satisfied,
7992 * which itself is a buffer for ARC eviction. If a compressible buffer is
7993 * found during scanning and selected for writing to an L2ARC device, we
7994 * temporarily boost scanning headroom during the next scan cycle to make
7995 * sure we adapt to compression effects (which might significantly reduce
7996 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
7997 * l2arc_feed_thread(), illustrated below; example sizes are included to
7998 * provide a better sense of ratio than this diagram:
7999 *
8000 * head --> tail
8001 * +---------------------+----------+
8002 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8003 * +---------------------+----------+ | o L2ARC eligible
8004 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8005 * +---------------------+----------+ |
8006 * 15.9 Gbytes ^ 32 Mbytes |
8007 * headroom |
8008 * l2arc_feed_thread()
8009 * |
8010 * l2arc write hand <--[oooo]--'
8011 * | 8 Mbyte
8012 * | write max
8013 * V
8014 * +==============================+
8015 * L2ARC dev |####|#|###|###| |####| ... |
8016 * +==============================+
8017 * 32 Gbytes
8018 *
8019 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8020 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8021 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8022 * safe to say that this is an uncommon case, since buffers at the end of
8023 * the ARC lists have moved there due to inactivity.
8024 *
8025 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8026 * then the L2ARC simply misses copying some buffers. This serves as a
8027 * pressure valve to prevent heavy read workloads from both stalling the ARC
8028 * with waits and clogging the L2ARC with writes. This also helps prevent
8029 * the potential for the L2ARC to churn if it attempts to cache content too
8030 * quickly, such as during backups of the entire pool.
8031 *
b128c09f
BB
8032 * 5. After system boot and before the ARC has filled main memory, there are
8033 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8034 * lists can remain mostly static. Instead of searching from tail of these
8035 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8036 * for eligible buffers, greatly increasing its chance of finding them.
8037 *
8038 * The L2ARC device write speed is also boosted during this time so that
8039 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8040 * there are no L2ARC reads, and no fear of degrading read performance
8041 * through increased writes.
8042 *
8043 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
8044 * the vdev queue can aggregate them into larger and fewer writes. Each
8045 * device is written to in a rotor fashion, sweeping writes through
8046 * available space then repeating.
8047 *
b128c09f 8048 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
8049 * write buffers back to disk based storage.
8050 *
b128c09f 8051 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
8052 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8053 *
8054 * The performance of the L2ARC can be tweaked by a number of tunables, which
8055 * may be necessary for different workloads:
8056 *
8057 * l2arc_write_max max write bytes per interval
b128c09f 8058 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f
BB
8059 * l2arc_noprefetch skip caching prefetched buffers
8060 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
8061 * l2arc_headroom_boost when we find compressed buffers during ARC
8062 * scanning, we multiply headroom by this
8063 * percentage factor for the next scan cycle,
8064 * since more compressed buffers are likely to
8065 * be present
34dc7c2f
BB
8066 * l2arc_feed_secs seconds between L2ARC writing
8067 *
8068 * Tunables may be removed or added as future performance improvements are
8069 * integrated, and also may become zpool properties.
d164b209
BB
8070 *
8071 * There are three key functions that control how the L2ARC warms up:
8072 *
8073 * l2arc_write_eligible() check if a buffer is eligible to cache
8074 * l2arc_write_size() calculate how much to write
8075 * l2arc_write_interval() calculate sleep delay between writes
8076 *
8077 * These three functions determine what to write, how much, and how quickly
8078 * to send writes.
34dc7c2f
BB
8079 */
8080
d164b209 8081static boolean_t
2a432414 8082l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
d164b209
BB
8083{
8084 /*
8085 * A buffer is *not* eligible for the L2ARC if it:
8086 * 1. belongs to a different spa.
428870ff
BB
8087 * 2. is already cached on the L2ARC.
8088 * 3. has an I/O in progress (it may be an incomplete read).
8089 * 4. is flagged not eligible (zfs property).
d164b209 8090 */
b9541d6b 8091 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
2a432414 8092 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
d164b209
BB
8093 return (B_FALSE);
8094
8095 return (B_TRUE);
8096}
8097
8098static uint64_t
3a17a7a9 8099l2arc_write_size(void)
d164b209
BB
8100{
8101 uint64_t size;
8102
3a17a7a9
SK
8103 /*
8104 * Make sure our globals have meaningful values in case the user
8105 * altered them.
8106 */
8107 size = l2arc_write_max;
8108 if (size == 0) {
8109 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8110 "be greater than zero, resetting it to the default (%d)",
8111 L2ARC_WRITE_SIZE);
8112 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8113 }
d164b209
BB
8114
8115 if (arc_warm == B_FALSE)
3a17a7a9 8116 size += l2arc_write_boost;
d164b209
BB
8117
8118 return (size);
8119
8120}
8121
8122static clock_t
8123l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8124{
428870ff 8125 clock_t interval, next, now;
d164b209
BB
8126
8127 /*
8128 * If the ARC lists are busy, increase our write rate; if the
8129 * lists are stale, idle back. This is achieved by checking
8130 * how much we previously wrote - if it was more than half of
8131 * what we wanted, schedule the next write much sooner.
8132 */
8133 if (l2arc_feed_again && wrote > (wanted / 2))
8134 interval = (hz * l2arc_feed_min_ms) / 1000;
8135 else
8136 interval = hz * l2arc_feed_secs;
8137
428870ff
BB
8138 now = ddi_get_lbolt();
8139 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
8140
8141 return (next);
8142}
8143
34dc7c2f
BB
8144/*
8145 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 8146 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
8147 */
8148static l2arc_dev_t *
8149l2arc_dev_get_next(void)
8150{
b128c09f 8151 l2arc_dev_t *first, *next = NULL;
34dc7c2f 8152
b128c09f
BB
8153 /*
8154 * Lock out the removal of spas (spa_namespace_lock), then removal
8155 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8156 * both locks will be dropped and a spa config lock held instead.
8157 */
8158 mutex_enter(&spa_namespace_lock);
8159 mutex_enter(&l2arc_dev_mtx);
8160
8161 /* if there are no vdevs, there is nothing to do */
8162 if (l2arc_ndev == 0)
8163 goto out;
8164
8165 first = NULL;
8166 next = l2arc_dev_last;
8167 do {
8168 /* loop around the list looking for a non-faulted vdev */
8169 if (next == NULL) {
34dc7c2f 8170 next = list_head(l2arc_dev_list);
b128c09f
BB
8171 } else {
8172 next = list_next(l2arc_dev_list, next);
8173 if (next == NULL)
8174 next = list_head(l2arc_dev_list);
8175 }
8176
8177 /* if we have come back to the start, bail out */
8178 if (first == NULL)
8179 first = next;
8180 else if (next == first)
8181 break;
8182
8183 } while (vdev_is_dead(next->l2ad_vdev));
8184
8185 /* if we were unable to find any usable vdevs, return NULL */
8186 if (vdev_is_dead(next->l2ad_vdev))
8187 next = NULL;
34dc7c2f
BB
8188
8189 l2arc_dev_last = next;
8190
b128c09f
BB
8191out:
8192 mutex_exit(&l2arc_dev_mtx);
8193
8194 /*
8195 * Grab the config lock to prevent the 'next' device from being
8196 * removed while we are writing to it.
8197 */
8198 if (next != NULL)
8199 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8200 mutex_exit(&spa_namespace_lock);
8201
34dc7c2f
BB
8202 return (next);
8203}
8204
b128c09f
BB
8205/*
8206 * Free buffers that were tagged for destruction.
8207 */
8208static void
0bc8fd78 8209l2arc_do_free_on_write(void)
b128c09f
BB
8210{
8211 list_t *buflist;
8212 l2arc_data_free_t *df, *df_prev;
8213
8214 mutex_enter(&l2arc_free_on_write_mtx);
8215 buflist = l2arc_free_on_write;
8216
8217 for (df = list_tail(buflist); df; df = df_prev) {
8218 df_prev = list_prev(buflist, df);
a6255b7f
DQ
8219 ASSERT3P(df->l2df_abd, !=, NULL);
8220 abd_free(df->l2df_abd);
b128c09f
BB
8221 list_remove(buflist, df);
8222 kmem_free(df, sizeof (l2arc_data_free_t));
8223 }
8224
8225 mutex_exit(&l2arc_free_on_write_mtx);
8226}
8227
34dc7c2f
BB
8228/*
8229 * A write to a cache device has completed. Update all headers to allow
8230 * reads from these buffers to begin.
8231 */
8232static void
8233l2arc_write_done(zio_t *zio)
8234{
8235 l2arc_write_callback_t *cb;
8236 l2arc_dev_t *dev;
8237 list_t *buflist;
2a432414 8238 arc_buf_hdr_t *head, *hdr, *hdr_prev;
34dc7c2f 8239 kmutex_t *hash_lock;
3bec585e 8240 int64_t bytes_dropped = 0;
34dc7c2f
BB
8241
8242 cb = zio->io_private;
d3c2ae1c 8243 ASSERT3P(cb, !=, NULL);
34dc7c2f 8244 dev = cb->l2wcb_dev;
d3c2ae1c 8245 ASSERT3P(dev, !=, NULL);
34dc7c2f 8246 head = cb->l2wcb_head;
d3c2ae1c 8247 ASSERT3P(head, !=, NULL);
b9541d6b 8248 buflist = &dev->l2ad_buflist;
d3c2ae1c 8249 ASSERT3P(buflist, !=, NULL);
34dc7c2f
BB
8250 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8251 l2arc_write_callback_t *, cb);
8252
8253 if (zio->io_error != 0)
8254 ARCSTAT_BUMP(arcstat_l2_writes_error);
8255
34dc7c2f
BB
8256 /*
8257 * All writes completed, or an error was hit.
8258 */
ca0bf58d
PS
8259top:
8260 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8261 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8262 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8263
2a432414 8264 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8265
8266 /*
8267 * We cannot use mutex_enter or else we can deadlock
8268 * with l2arc_write_buffers (due to swapping the order
8269 * the hash lock and l2ad_mtx are taken).
8270 */
34dc7c2f
BB
8271 if (!mutex_tryenter(hash_lock)) {
8272 /*
ca0bf58d
PS
8273 * Missed the hash lock. We must retry so we
8274 * don't leave the ARC_FLAG_L2_WRITING bit set.
34dc7c2f 8275 */
ca0bf58d
PS
8276 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8277
8278 /*
8279 * We don't want to rescan the headers we've
8280 * already marked as having been written out, so
8281 * we reinsert the head node so we can pick up
8282 * where we left off.
8283 */
8284 list_remove(buflist, head);
8285 list_insert_after(buflist, hdr, head);
8286
8287 mutex_exit(&dev->l2ad_mtx);
8288
8289 /*
8290 * We wait for the hash lock to become available
8291 * to try and prevent busy waiting, and increase
8292 * the chance we'll be able to acquire the lock
8293 * the next time around.
8294 */
8295 mutex_enter(hash_lock);
8296 mutex_exit(hash_lock);
8297 goto top;
34dc7c2f
BB
8298 }
8299
b9541d6b 8300 /*
ca0bf58d
PS
8301 * We could not have been moved into the arc_l2c_only
8302 * state while in-flight due to our ARC_FLAG_L2_WRITING
8303 * bit being set. Let's just ensure that's being enforced.
8304 */
8305 ASSERT(HDR_HAS_L1HDR(hdr));
8306
8a09d5fd
BB
8307 /*
8308 * Skipped - drop L2ARC entry and mark the header as no
8309 * longer L2 eligibile.
8310 */
d3c2ae1c 8311 if (zio->io_error != 0) {
34dc7c2f 8312 /*
b128c09f 8313 * Error - drop L2ARC entry.
34dc7c2f 8314 */
2a432414 8315 list_remove(buflist, hdr);
d3c2ae1c 8316 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
b9541d6b 8317
7558997d
SD
8318 uint64_t psize = HDR_GET_PSIZE(hdr);
8319 ARCSTAT_INCR(arcstat_l2_psize, -psize);
01850391 8320 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
d962d5da 8321
7558997d
SD
8322 bytes_dropped +=
8323 vdev_psize_to_asize(dev->l2ad_vdev, psize);
424fd7c3 8324 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
d3c2ae1c 8325 arc_hdr_size(hdr), hdr);
34dc7c2f
BB
8326 }
8327
8328 /*
ca0bf58d
PS
8329 * Allow ARC to begin reads and ghost list evictions to
8330 * this L2ARC entry.
34dc7c2f 8331 */
d3c2ae1c 8332 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
34dc7c2f
BB
8333
8334 mutex_exit(hash_lock);
8335 }
8336
8337 atomic_inc_64(&l2arc_writes_done);
8338 list_remove(buflist, head);
b9541d6b
CW
8339 ASSERT(!HDR_HAS_L1HDR(head));
8340 kmem_cache_free(hdr_l2only_cache, head);
8341 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 8342
3bec585e
SK
8343 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8344
b128c09f 8345 l2arc_do_free_on_write();
34dc7c2f
BB
8346
8347 kmem_free(cb, sizeof (l2arc_write_callback_t));
8348}
8349
b5256303
TC
8350static int
8351l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8352{
8353 int ret;
8354 spa_t *spa = zio->io_spa;
8355 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8356 blkptr_t *bp = zio->io_bp;
b5256303
TC
8357 uint8_t salt[ZIO_DATA_SALT_LEN];
8358 uint8_t iv[ZIO_DATA_IV_LEN];
8359 uint8_t mac[ZIO_DATA_MAC_LEN];
8360 boolean_t no_crypt = B_FALSE;
8361
8362 /*
8363 * ZIL data is never be written to the L2ARC, so we don't need
8364 * special handling for its unique MAC storage.
8365 */
8366 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8367 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
440a3eb9 8368 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
b5256303 8369
440a3eb9
TC
8370 /*
8371 * If the data was encrypted, decrypt it now. Note that
8372 * we must check the bp here and not the hdr, since the
8373 * hdr does not have its encryption parameters updated
8374 * until arc_read_done().
8375 */
8376 if (BP_IS_ENCRYPTED(bp)) {
be9a5c35 8377 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
b5256303
TC
8378
8379 zio_crypt_decode_params_bp(bp, salt, iv);
8380 zio_crypt_decode_mac_bp(bp, mac);
8381
be9a5c35
TC
8382 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8383 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8384 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8385 hdr->b_l1hdr.b_pabd, &no_crypt);
b5256303
TC
8386 if (ret != 0) {
8387 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
b5256303
TC
8388 goto error;
8389 }
8390
b5256303
TC
8391 /*
8392 * If we actually performed decryption, replace b_pabd
8393 * with the decrypted data. Otherwise we can just throw
8394 * our decryption buffer away.
8395 */
8396 if (!no_crypt) {
8397 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8398 arc_hdr_size(hdr), hdr);
8399 hdr->b_l1hdr.b_pabd = eabd;
8400 zio->io_abd = eabd;
8401 } else {
8402 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8403 }
8404 }
8405
8406 /*
8407 * If the L2ARC block was compressed, but ARC compression
8408 * is disabled we decompress the data into a new buffer and
8409 * replace the existing data.
8410 */
8411 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8412 !HDR_COMPRESSION_ENABLED(hdr)) {
8413 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
8414 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8415
8416 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8417 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8418 HDR_GET_LSIZE(hdr));
8419 if (ret != 0) {
8420 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8421 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8422 goto error;
8423 }
8424
8425 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8426 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8427 arc_hdr_size(hdr), hdr);
8428 hdr->b_l1hdr.b_pabd = cabd;
8429 zio->io_abd = cabd;
8430 zio->io_size = HDR_GET_LSIZE(hdr);
8431 }
8432
8433 return (0);
8434
8435error:
8436 return (ret);
8437}
8438
8439
34dc7c2f
BB
8440/*
8441 * A read to a cache device completed. Validate buffer contents before
8442 * handing over to the regular ARC routines.
8443 */
8444static void
8445l2arc_read_done(zio_t *zio)
8446{
b5256303 8447 int tfm_error = 0;
b405837a 8448 l2arc_read_callback_t *cb = zio->io_private;
34dc7c2f 8449 arc_buf_hdr_t *hdr;
34dc7c2f 8450 kmutex_t *hash_lock;
b405837a
TC
8451 boolean_t valid_cksum;
8452 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8453 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
b128c09f 8454
d3c2ae1c 8455 ASSERT3P(zio->io_vd, !=, NULL);
b128c09f
BB
8456 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8457
8458 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f 8459
d3c2ae1c
GW
8460 ASSERT3P(cb, !=, NULL);
8461 hdr = cb->l2rcb_hdr;
8462 ASSERT3P(hdr, !=, NULL);
34dc7c2f 8463
d3c2ae1c 8464 hash_lock = HDR_LOCK(hdr);
34dc7c2f 8465 mutex_enter(hash_lock);
428870ff 8466 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 8467
82710e99
GDN
8468 /*
8469 * If the data was read into a temporary buffer,
8470 * move it and free the buffer.
8471 */
8472 if (cb->l2rcb_abd != NULL) {
8473 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8474 if (zio->io_error == 0) {
b405837a
TC
8475 if (using_rdata) {
8476 abd_copy(hdr->b_crypt_hdr.b_rabd,
8477 cb->l2rcb_abd, arc_hdr_size(hdr));
8478 } else {
8479 abd_copy(hdr->b_l1hdr.b_pabd,
8480 cb->l2rcb_abd, arc_hdr_size(hdr));
8481 }
82710e99
GDN
8482 }
8483
8484 /*
8485 * The following must be done regardless of whether
8486 * there was an error:
8487 * - free the temporary buffer
8488 * - point zio to the real ARC buffer
8489 * - set zio size accordingly
8490 * These are required because zio is either re-used for
8491 * an I/O of the block in the case of the error
8492 * or the zio is passed to arc_read_done() and it
8493 * needs real data.
8494 */
8495 abd_free(cb->l2rcb_abd);
8496 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
440a3eb9 8497
b405837a 8498 if (using_rdata) {
440a3eb9
TC
8499 ASSERT(HDR_HAS_RABD(hdr));
8500 zio->io_abd = zio->io_orig_abd =
8501 hdr->b_crypt_hdr.b_rabd;
8502 } else {
8503 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8504 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8505 }
82710e99
GDN
8506 }
8507
a6255b7f 8508 ASSERT3P(zio->io_abd, !=, NULL);
3a17a7a9 8509
34dc7c2f
BB
8510 /*
8511 * Check this survived the L2ARC journey.
8512 */
b5256303
TC
8513 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8514 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
d3c2ae1c
GW
8515 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8516 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8517
8518 valid_cksum = arc_cksum_is_equal(hdr, zio);
b5256303
TC
8519
8520 /*
8521 * b_rabd will always match the data as it exists on disk if it is
8522 * being used. Therefore if we are reading into b_rabd we do not
8523 * attempt to untransform the data.
8524 */
8525 if (valid_cksum && !using_rdata)
8526 tfm_error = l2arc_untransform(zio, cb);
8527
8528 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8529 !HDR_L2_EVICTED(hdr)) {
34dc7c2f 8530 mutex_exit(hash_lock);
d3c2ae1c 8531 zio->io_private = hdr;
34dc7c2f
BB
8532 arc_read_done(zio);
8533 } else {
8534 mutex_exit(hash_lock);
8535 /*
8536 * Buffer didn't survive caching. Increment stats and
8537 * reissue to the original storage device.
8538 */
b128c09f 8539 if (zio->io_error != 0) {
34dc7c2f 8540 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 8541 } else {
2e528b49 8542 zio->io_error = SET_ERROR(EIO);
b128c09f 8543 }
b5256303 8544 if (!valid_cksum || tfm_error != 0)
34dc7c2f
BB
8545 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
8546
34dc7c2f 8547 /*
b128c09f
BB
8548 * If there's no waiter, issue an async i/o to the primary
8549 * storage now. If there *is* a waiter, the caller must
8550 * issue the i/o in a context where it's OK to block.
34dc7c2f 8551 */
d164b209
BB
8552 if (zio->io_waiter == NULL) {
8553 zio_t *pio = zio_unique_parent(zio);
b5256303
TC
8554 void *abd = (using_rdata) ?
8555 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
d164b209
BB
8556
8557 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
8558
d3c2ae1c 8559 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
b5256303 8560 abd, zio->io_size, arc_read_done,
d3c2ae1c
GW
8561 hdr, zio->io_priority, cb->l2rcb_flags,
8562 &cb->l2rcb_zb));
d164b209 8563 }
34dc7c2f
BB
8564 }
8565
8566 kmem_free(cb, sizeof (l2arc_read_callback_t));
8567}
8568
8569/*
8570 * This is the list priority from which the L2ARC will search for pages to
8571 * cache. This is used within loops (0..3) to cycle through lists in the
8572 * desired order. This order can have a significant effect on cache
8573 * performance.
8574 *
8575 * Currently the metadata lists are hit first, MFU then MRU, followed by
8576 * the data lists. This function returns a locked list, and also returns
8577 * the lock pointer.
8578 */
ca0bf58d
PS
8579static multilist_sublist_t *
8580l2arc_sublist_lock(int list_num)
34dc7c2f 8581{
ca0bf58d
PS
8582 multilist_t *ml = NULL;
8583 unsigned int idx;
34dc7c2f 8584
4aafab91 8585 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
34dc7c2f
BB
8586
8587 switch (list_num) {
8588 case 0:
64fc7762 8589 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8590 break;
8591 case 1:
64fc7762 8592 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
34dc7c2f
BB
8593 break;
8594 case 2:
64fc7762 8595 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
34dc7c2f
BB
8596 break;
8597 case 3:
64fc7762 8598 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
34dc7c2f 8599 break;
4aafab91
G
8600 default:
8601 return (NULL);
34dc7c2f
BB
8602 }
8603
ca0bf58d
PS
8604 /*
8605 * Return a randomly-selected sublist. This is acceptable
8606 * because the caller feeds only a little bit of data for each
8607 * call (8MB). Subsequent calls will result in different
8608 * sublists being selected.
8609 */
8610 idx = multilist_get_random_index(ml);
8611 return (multilist_sublist_lock(ml, idx));
34dc7c2f
BB
8612}
8613
8614/*
8615 * Evict buffers from the device write hand to the distance specified in
8616 * bytes. This distance may span populated buffers, it may span nothing.
8617 * This is clearing a region on the L2ARC device ready for writing.
8618 * If the 'all' boolean is set, every buffer is evicted.
8619 */
8620static void
8621l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
8622{
8623 list_t *buflist;
2a432414 8624 arc_buf_hdr_t *hdr, *hdr_prev;
34dc7c2f
BB
8625 kmutex_t *hash_lock;
8626 uint64_t taddr;
8627
b9541d6b 8628 buflist = &dev->l2ad_buflist;
34dc7c2f
BB
8629
8630 if (!all && dev->l2ad_first) {
8631 /*
8632 * This is the first sweep through the device. There is
8633 * nothing to evict.
8634 */
8635 return;
8636 }
8637
b128c09f 8638 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
8639 /*
8640 * When nearing the end of the device, evict to the end
8641 * before the device write hand jumps to the start.
8642 */
8643 taddr = dev->l2ad_end;
8644 } else {
8645 taddr = dev->l2ad_hand + distance;
8646 }
8647 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
8648 uint64_t, taddr, boolean_t, all);
8649
8650top:
b9541d6b 8651 mutex_enter(&dev->l2ad_mtx);
2a432414
GW
8652 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
8653 hdr_prev = list_prev(buflist, hdr);
34dc7c2f 8654
2a432414 8655 hash_lock = HDR_LOCK(hdr);
ca0bf58d
PS
8656
8657 /*
8658 * We cannot use mutex_enter or else we can deadlock
8659 * with l2arc_write_buffers (due to swapping the order
8660 * the hash lock and l2ad_mtx are taken).
8661 */
34dc7c2f
BB
8662 if (!mutex_tryenter(hash_lock)) {
8663 /*
8664 * Missed the hash lock. Retry.
8665 */
8666 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
b9541d6b 8667 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
8668 mutex_enter(hash_lock);
8669 mutex_exit(hash_lock);
8670 goto top;
8671 }
8672
f06f53fa
AG
8673 /*
8674 * A header can't be on this list if it doesn't have L2 header.
8675 */
8676 ASSERT(HDR_HAS_L2HDR(hdr));
34dc7c2f 8677
f06f53fa
AG
8678 /* Ensure this header has finished being written. */
8679 ASSERT(!HDR_L2_WRITING(hdr));
8680 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
8681
8682 if (!all && (hdr->b_l2hdr.b_daddr >= taddr ||
b9541d6b 8683 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
34dc7c2f
BB
8684 /*
8685 * We've evicted to the target address,
8686 * or the end of the device.
8687 */
8688 mutex_exit(hash_lock);
8689 break;
8690 }
8691
b9541d6b 8692 if (!HDR_HAS_L1HDR(hdr)) {
2a432414 8693 ASSERT(!HDR_L2_READING(hdr));
34dc7c2f
BB
8694 /*
8695 * This doesn't exist in the ARC. Destroy.
8696 * arc_hdr_destroy() will call list_remove()
01850391 8697 * and decrement arcstat_l2_lsize.
34dc7c2f 8698 */
2a432414
GW
8699 arc_change_state(arc_anon, hdr, hash_lock);
8700 arc_hdr_destroy(hdr);
34dc7c2f 8701 } else {
b9541d6b
CW
8702 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
8703 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
b128c09f
BB
8704 /*
8705 * Invalidate issued or about to be issued
8706 * reads, since we may be about to write
8707 * over this location.
8708 */
2a432414 8709 if (HDR_L2_READING(hdr)) {
b128c09f 8710 ARCSTAT_BUMP(arcstat_l2_evict_reading);
d3c2ae1c 8711 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
b128c09f
BB
8712 }
8713
d962d5da 8714 arc_hdr_l2hdr_destroy(hdr);
34dc7c2f
BB
8715 }
8716 mutex_exit(hash_lock);
8717 }
b9541d6b 8718 mutex_exit(&dev->l2ad_mtx);
34dc7c2f
BB
8719}
8720
b5256303
TC
8721/*
8722 * Handle any abd transforms that might be required for writing to the L2ARC.
8723 * If successful, this function will always return an abd with the data
8724 * transformed as it is on disk in a new abd of asize bytes.
8725 */
8726static int
8727l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
8728 abd_t **abd_out)
8729{
8730 int ret;
8731 void *tmp = NULL;
8732 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
8733 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
8734 uint64_t psize = HDR_GET_PSIZE(hdr);
8735 uint64_t size = arc_hdr_size(hdr);
8736 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
8737 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
8738 dsl_crypto_key_t *dck = NULL;
8739 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
4807c0ba 8740 boolean_t no_crypt = B_FALSE;
b5256303
TC
8741
8742 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8743 !HDR_COMPRESSION_ENABLED(hdr)) ||
8744 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
8745 ASSERT3U(psize, <=, asize);
8746
8747 /*
8748 * If this data simply needs its own buffer, we simply allocate it
8749 * and copy the data. This may be done to elimiate a depedency on a
8750 * shared buffer or to reallocate the buffer to match asize.
8751 */
4807c0ba 8752 if (HDR_HAS_RABD(hdr) && asize != psize) {
10adee27 8753 ASSERT3U(asize, >=, psize);
4807c0ba 8754 to_write = abd_alloc_for_io(asize, ismd);
10adee27
TC
8755 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
8756 if (psize != asize)
8757 abd_zero_off(to_write, psize, asize - psize);
4807c0ba
TC
8758 goto out;
8759 }
8760
b5256303
TC
8761 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
8762 !HDR_ENCRYPTED(hdr)) {
8763 ASSERT3U(size, ==, psize);
8764 to_write = abd_alloc_for_io(asize, ismd);
8765 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
8766 if (size != asize)
8767 abd_zero_off(to_write, size, asize - size);
8768 goto out;
8769 }
8770
8771 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
8772 cabd = abd_alloc_for_io(asize, ismd);
8773 tmp = abd_borrow_buf(cabd, asize);
8774
8775 psize = zio_compress_data(compress, to_write, tmp, size);
8776 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
8777 if (psize < asize)
8778 bzero((char *)tmp + psize, asize - psize);
8779 psize = HDR_GET_PSIZE(hdr);
8780 abd_return_buf_copy(cabd, tmp, asize);
8781 to_write = cabd;
8782 }
8783
8784 if (HDR_ENCRYPTED(hdr)) {
8785 eabd = abd_alloc_for_io(asize, ismd);
8786
8787 /*
8788 * If the dataset was disowned before the buffer
8789 * made it to this point, the key to re-encrypt
8790 * it won't be available. In this case we simply
8791 * won't write the buffer to the L2ARC.
8792 */
8793 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
8794 FTAG, &dck);
8795 if (ret != 0)
8796 goto error;
8797
8798 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
be9a5c35
TC
8799 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
8800 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
8801 &no_crypt);
b5256303
TC
8802 if (ret != 0)
8803 goto error;
8804
4807c0ba
TC
8805 if (no_crypt)
8806 abd_copy(eabd, to_write, psize);
b5256303
TC
8807
8808 if (psize != asize)
8809 abd_zero_off(eabd, psize, asize - psize);
8810
8811 /* assert that the MAC we got here matches the one we saved */
8812 ASSERT0(bcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
8813 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8814
8815 if (to_write == cabd)
8816 abd_free(cabd);
8817
8818 to_write = eabd;
8819 }
8820
8821out:
8822 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
8823 *abd_out = to_write;
8824 return (0);
8825
8826error:
8827 if (dck != NULL)
8828 spa_keystore_dsl_key_rele(spa, dck, FTAG);
8829 if (cabd != NULL)
8830 abd_free(cabd);
8831 if (eabd != NULL)
8832 abd_free(eabd);
8833
8834 *abd_out = NULL;
8835 return (ret);
8836}
8837
34dc7c2f
BB
8838/*
8839 * Find and write ARC buffers to the L2ARC device.
8840 *
2a432414 8841 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
34dc7c2f 8842 * for reading until they have completed writing.
3a17a7a9
SK
8843 * The headroom_boost is an in-out parameter used to maintain headroom boost
8844 * state between calls to this function.
8845 *
8846 * Returns the number of bytes actually written (which may be smaller than
8847 * the delta by which the device hand has changed due to alignment).
34dc7c2f 8848 */
d164b209 8849static uint64_t
d3c2ae1c 8850l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
34dc7c2f 8851{
2a432414 8852 arc_buf_hdr_t *hdr, *hdr_prev, *head;
01850391 8853 uint64_t write_asize, write_psize, write_lsize, headroom;
3a17a7a9 8854 boolean_t full;
34dc7c2f
BB
8855 l2arc_write_callback_t *cb;
8856 zio_t *pio, *wzio;
3541dc6d 8857 uint64_t guid = spa_load_guid(spa);
34dc7c2f 8858
d3c2ae1c 8859 ASSERT3P(dev->l2ad_vdev, !=, NULL);
3a17a7a9 8860
34dc7c2f 8861 pio = NULL;
01850391 8862 write_lsize = write_asize = write_psize = 0;
34dc7c2f 8863 full = B_FALSE;
b9541d6b 8864 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
d3c2ae1c 8865 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
3a17a7a9 8866
34dc7c2f
BB
8867 /*
8868 * Copy buffers for L2ARC writing.
8869 */
1c27024e 8870 for (int try = 0; try < L2ARC_FEED_TYPES; try++) {
ca0bf58d 8871 multilist_sublist_t *mls = l2arc_sublist_lock(try);
3a17a7a9
SK
8872 uint64_t passed_sz = 0;
8873
4aafab91
G
8874 VERIFY3P(mls, !=, NULL);
8875
b128c09f
BB
8876 /*
8877 * L2ARC fast warmup.
8878 *
8879 * Until the ARC is warm and starts to evict, read from the
8880 * head of the ARC lists rather than the tail.
8881 */
b128c09f 8882 if (arc_warm == B_FALSE)
ca0bf58d 8883 hdr = multilist_sublist_head(mls);
b128c09f 8884 else
ca0bf58d 8885 hdr = multilist_sublist_tail(mls);
b128c09f 8886
3a17a7a9 8887 headroom = target_sz * l2arc_headroom;
d3c2ae1c 8888 if (zfs_compressed_arc_enabled)
3a17a7a9
SK
8889 headroom = (headroom * l2arc_headroom_boost) / 100;
8890
2a432414 8891 for (; hdr; hdr = hdr_prev) {
3a17a7a9 8892 kmutex_t *hash_lock;
b5256303 8893 abd_t *to_write = NULL;
3a17a7a9 8894
b128c09f 8895 if (arc_warm == B_FALSE)
ca0bf58d 8896 hdr_prev = multilist_sublist_next(mls, hdr);
b128c09f 8897 else
ca0bf58d 8898 hdr_prev = multilist_sublist_prev(mls, hdr);
34dc7c2f 8899
2a432414 8900 hash_lock = HDR_LOCK(hdr);
3a17a7a9 8901 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
8902 /*
8903 * Skip this buffer rather than waiting.
8904 */
8905 continue;
8906 }
8907
d3c2ae1c 8908 passed_sz += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
8909 if (passed_sz > headroom) {
8910 /*
8911 * Searched too far.
8912 */
8913 mutex_exit(hash_lock);
8914 break;
8915 }
8916
2a432414 8917 if (!l2arc_write_eligible(guid, hdr)) {
34dc7c2f
BB
8918 mutex_exit(hash_lock);
8919 continue;
8920 }
8921
01850391
AG
8922 /*
8923 * We rely on the L1 portion of the header below, so
8924 * it's invalid for this header to have been evicted out
8925 * of the ghost cache, prior to being written out. The
8926 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8927 */
8928 ASSERT(HDR_HAS_L1HDR(hdr));
8929
8930 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
01850391 8931 ASSERT3U(arc_hdr_size(hdr), >, 0);
b5256303
TC
8932 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8933 HDR_HAS_RABD(hdr));
8934 uint64_t psize = HDR_GET_PSIZE(hdr);
01850391
AG
8935 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
8936 psize);
8937
8938 if ((write_asize + asize) > target_sz) {
34dc7c2f
BB
8939 full = B_TRUE;
8940 mutex_exit(hash_lock);
8941 break;
8942 }
8943
b5256303
TC
8944 /*
8945 * We rely on the L1 portion of the header below, so
8946 * it's invalid for this header to have been evicted out
8947 * of the ghost cache, prior to being written out. The
8948 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
8949 */
8950 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
8951 ASSERT(HDR_HAS_L1HDR(hdr));
8952
8953 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
8954 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
8955 HDR_HAS_RABD(hdr));
8956 ASSERT3U(arc_hdr_size(hdr), >, 0);
8957
8958 /*
8959 * If this header has b_rabd, we can use this since it
8960 * must always match the data exactly as it exists on
8961 * disk. Otherwise, the L2ARC can normally use the
8962 * hdr's data, but if we're sharing data between the
8963 * hdr and one of its bufs, L2ARC needs its own copy of
8964 * the data so that the ZIO below can't race with the
8965 * buf consumer. To ensure that this copy will be
8966 * available for the lifetime of the ZIO and be cleaned
8967 * up afterwards, we add it to the l2arc_free_on_write
8968 * queue. If we need to apply any transforms to the
8969 * data (compression, encryption) we will also need the
8970 * extra buffer.
8971 */
8972 if (HDR_HAS_RABD(hdr) && psize == asize) {
8973 to_write = hdr->b_crypt_hdr.b_rabd;
8974 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
8975 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
8976 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
8977 psize == asize) {
8978 to_write = hdr->b_l1hdr.b_pabd;
8979 } else {
8980 int ret;
8981 arc_buf_contents_t type = arc_buf_type(hdr);
8982
8983 ret = l2arc_apply_transforms(spa, hdr, asize,
8984 &to_write);
8985 if (ret != 0) {
8986 arc_hdr_clear_flags(hdr,
8987 ARC_FLAG_L2_WRITING);
8988 mutex_exit(hash_lock);
8989 continue;
8990 }
8991
8992 l2arc_free_abd_on_write(to_write, asize, type);
8993 }
8994
34dc7c2f
BB
8995 if (pio == NULL) {
8996 /*
8997 * Insert a dummy header on the buflist so
8998 * l2arc_write_done() can find where the
8999 * write buffers begin without searching.
9000 */
ca0bf58d 9001 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9002 list_insert_head(&dev->l2ad_buflist, head);
ca0bf58d 9003 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9004
96c080cb
BB
9005 cb = kmem_alloc(
9006 sizeof (l2arc_write_callback_t), KM_SLEEP);
34dc7c2f
BB
9007 cb->l2wcb_dev = dev;
9008 cb->l2wcb_head = head;
9009 pio = zio_root(spa, l2arc_write_done, cb,
9010 ZIO_FLAG_CANFAIL);
9011 }
9012
b9541d6b 9013 hdr->b_l2hdr.b_dev = dev;
b9541d6b 9014 hdr->b_l2hdr.b_hits = 0;
3a17a7a9 9015
d3c2ae1c 9016 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
b5256303 9017 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
3a17a7a9 9018
ca0bf58d 9019 mutex_enter(&dev->l2ad_mtx);
b9541d6b 9020 list_insert_head(&dev->l2ad_buflist, hdr);
ca0bf58d 9021 mutex_exit(&dev->l2ad_mtx);
34dc7c2f 9022
424fd7c3 9023 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
b5256303 9024 arc_hdr_size(hdr), hdr);
3a17a7a9 9025
34dc7c2f 9026 wzio = zio_write_phys(pio, dev->l2ad_vdev,
82710e99 9027 hdr->b_l2hdr.b_daddr, asize, to_write,
d3c2ae1c
GW
9028 ZIO_CHECKSUM_OFF, NULL, hdr,
9029 ZIO_PRIORITY_ASYNC_WRITE,
34dc7c2f
BB
9030 ZIO_FLAG_CANFAIL, B_FALSE);
9031
01850391 9032 write_lsize += HDR_GET_LSIZE(hdr);
34dc7c2f
BB
9033 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9034 zio_t *, wzio);
d962d5da 9035
01850391
AG
9036 write_psize += psize;
9037 write_asize += asize;
d3c2ae1c 9038 dev->l2ad_hand += asize;
7558997d 9039 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
d3c2ae1c
GW
9040
9041 mutex_exit(hash_lock);
9042
9043 (void) zio_nowait(wzio);
34dc7c2f 9044 }
d3c2ae1c
GW
9045
9046 multilist_sublist_unlock(mls);
9047
9048 if (full == B_TRUE)
9049 break;
34dc7c2f 9050 }
34dc7c2f 9051
d3c2ae1c
GW
9052 /* No buffers selected for writing? */
9053 if (pio == NULL) {
01850391 9054 ASSERT0(write_lsize);
d3c2ae1c
GW
9055 ASSERT(!HDR_HAS_L1HDR(head));
9056 kmem_cache_free(hdr_l2only_cache, head);
9057 return (0);
9058 }
34dc7c2f 9059
3a17a7a9 9060 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 9061 ARCSTAT_BUMP(arcstat_l2_writes_sent);
01850391
AG
9062 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9063 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
9064 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
34dc7c2f
BB
9065
9066 /*
9067 * Bump device hand to the device start if it is approaching the end.
9068 * l2arc_evict() will already have evicted ahead for this case.
9069 */
b128c09f 9070 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f 9071 dev->l2ad_hand = dev->l2ad_start;
34dc7c2f
BB
9072 dev->l2ad_first = B_FALSE;
9073 }
9074
d164b209 9075 dev->l2ad_writing = B_TRUE;
34dc7c2f 9076 (void) zio_wait(pio);
d164b209
BB
9077 dev->l2ad_writing = B_FALSE;
9078
3a17a7a9
SK
9079 return (write_asize);
9080}
9081
34dc7c2f
BB
9082/*
9083 * This thread feeds the L2ARC at regular intervals. This is the beating
9084 * heart of the L2ARC.
9085 */
867959b5 9086/* ARGSUSED */
34dc7c2f 9087static void
c25b8f99 9088l2arc_feed_thread(void *unused)
34dc7c2f
BB
9089{
9090 callb_cpr_t cpr;
9091 l2arc_dev_t *dev;
9092 spa_t *spa;
d164b209 9093 uint64_t size, wrote;
428870ff 9094 clock_t begin, next = ddi_get_lbolt();
40d06e3c 9095 fstrans_cookie_t cookie;
34dc7c2f
BB
9096
9097 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9098
9099 mutex_enter(&l2arc_feed_thr_lock);
9100
40d06e3c 9101 cookie = spl_fstrans_mark();
34dc7c2f 9102 while (l2arc_thread_exit == 0) {
34dc7c2f 9103 CALLB_CPR_SAFE_BEGIN(&cpr);
b64ccd6c 9104 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
5b63b3eb 9105 &l2arc_feed_thr_lock, next);
34dc7c2f 9106 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 9107 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
9108
9109 /*
b128c09f 9110 * Quick check for L2ARC devices.
34dc7c2f
BB
9111 */
9112 mutex_enter(&l2arc_dev_mtx);
9113 if (l2arc_ndev == 0) {
9114 mutex_exit(&l2arc_dev_mtx);
9115 continue;
9116 }
b128c09f 9117 mutex_exit(&l2arc_dev_mtx);
428870ff 9118 begin = ddi_get_lbolt();
34dc7c2f
BB
9119
9120 /*
b128c09f
BB
9121 * This selects the next l2arc device to write to, and in
9122 * doing so the next spa to feed from: dev->l2ad_spa. This
9123 * will return NULL if there are now no l2arc devices or if
9124 * they are all faulted.
9125 *
9126 * If a device is returned, its spa's config lock is also
9127 * held to prevent device removal. l2arc_dev_get_next()
9128 * will grab and release l2arc_dev_mtx.
34dc7c2f 9129 */
b128c09f 9130 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 9131 continue;
b128c09f
BB
9132
9133 spa = dev->l2ad_spa;
d3c2ae1c 9134 ASSERT3P(spa, !=, NULL);
34dc7c2f 9135
572e2857
BB
9136 /*
9137 * If the pool is read-only then force the feed thread to
9138 * sleep a little longer.
9139 */
9140 if (!spa_writeable(spa)) {
9141 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9142 spa_config_exit(spa, SCL_L2ARC, dev);
9143 continue;
9144 }
9145
34dc7c2f 9146 /*
b128c09f 9147 * Avoid contributing to memory pressure.
34dc7c2f 9148 */
ca67b33a 9149 if (arc_reclaim_needed()) {
b128c09f
BB
9150 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9151 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
9152 continue;
9153 }
b128c09f 9154
34dc7c2f
BB
9155 ARCSTAT_BUMP(arcstat_l2_feeds);
9156
3a17a7a9 9157 size = l2arc_write_size();
b128c09f 9158
34dc7c2f
BB
9159 /*
9160 * Evict L2ARC buffers that will be overwritten.
9161 */
b128c09f 9162 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
9163
9164 /*
9165 * Write ARC buffers.
9166 */
d3c2ae1c 9167 wrote = l2arc_write_buffers(spa, dev, size);
d164b209
BB
9168
9169 /*
9170 * Calculate interval between writes.
9171 */
9172 next = l2arc_write_interval(begin, size, wrote);
b128c09f 9173 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f 9174 }
40d06e3c 9175 spl_fstrans_unmark(cookie);
34dc7c2f
BB
9176
9177 l2arc_thread_exit = 0;
9178 cv_broadcast(&l2arc_feed_thr_cv);
9179 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9180 thread_exit();
9181}
9182
b128c09f
BB
9183boolean_t
9184l2arc_vdev_present(vdev_t *vd)
9185{
9186 l2arc_dev_t *dev;
9187
9188 mutex_enter(&l2arc_dev_mtx);
9189 for (dev = list_head(l2arc_dev_list); dev != NULL;
9190 dev = list_next(l2arc_dev_list, dev)) {
9191 if (dev->l2ad_vdev == vd)
9192 break;
9193 }
9194 mutex_exit(&l2arc_dev_mtx);
9195
9196 return (dev != NULL);
9197}
9198
34dc7c2f
BB
9199/*
9200 * Add a vdev for use by the L2ARC. By this point the spa has already
9201 * validated the vdev and opened it.
9202 */
9203void
9babb374 9204l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
9205{
9206 l2arc_dev_t *adddev;
9207
b128c09f
BB
9208 ASSERT(!l2arc_vdev_present(vd));
9209
34dc7c2f
BB
9210 /*
9211 * Create a new l2arc device entry.
9212 */
9213 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9214 adddev->l2ad_spa = spa;
9215 adddev->l2ad_vdev = vd;
9babb374
BB
9216 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
9217 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f 9218 adddev->l2ad_hand = adddev->l2ad_start;
34dc7c2f 9219 adddev->l2ad_first = B_TRUE;
d164b209 9220 adddev->l2ad_writing = B_FALSE;
98f72a53 9221 list_link_init(&adddev->l2ad_node);
34dc7c2f 9222
b9541d6b 9223 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9224 /*
9225 * This is a list of all ARC buffers that are still valid on the
9226 * device.
9227 */
b9541d6b
CW
9228 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
9229 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
34dc7c2f 9230
428870ff 9231 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
424fd7c3 9232 zfs_refcount_create(&adddev->l2ad_alloc);
34dc7c2f
BB
9233
9234 /*
9235 * Add device to global list
9236 */
9237 mutex_enter(&l2arc_dev_mtx);
9238 list_insert_head(l2arc_dev_list, adddev);
9239 atomic_inc_64(&l2arc_ndev);
9240 mutex_exit(&l2arc_dev_mtx);
9241}
9242
9243/*
9244 * Remove a vdev from the L2ARC.
9245 */
9246void
9247l2arc_remove_vdev(vdev_t *vd)
9248{
9249 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
9250
34dc7c2f
BB
9251 /*
9252 * Find the device by vdev
9253 */
9254 mutex_enter(&l2arc_dev_mtx);
9255 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
9256 nextdev = list_next(l2arc_dev_list, dev);
9257 if (vd == dev->l2ad_vdev) {
9258 remdev = dev;
9259 break;
9260 }
9261 }
d3c2ae1c 9262 ASSERT3P(remdev, !=, NULL);
34dc7c2f
BB
9263
9264 /*
9265 * Remove device from global list
9266 */
9267 list_remove(l2arc_dev_list, remdev);
9268 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
9269 atomic_dec_64(&l2arc_ndev);
9270 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
9271
9272 /*
9273 * Clear all buflists and ARC references. L2ARC device flush.
9274 */
9275 l2arc_evict(remdev, 0, B_TRUE);
b9541d6b
CW
9276 list_destroy(&remdev->l2ad_buflist);
9277 mutex_destroy(&remdev->l2ad_mtx);
424fd7c3 9278 zfs_refcount_destroy(&remdev->l2ad_alloc);
34dc7c2f 9279 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
9280}
9281
9282void
b128c09f 9283l2arc_init(void)
34dc7c2f
BB
9284{
9285 l2arc_thread_exit = 0;
9286 l2arc_ndev = 0;
9287 l2arc_writes_sent = 0;
9288 l2arc_writes_done = 0;
9289
9290 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
9291 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
9292 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
9293 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
9294
9295 l2arc_dev_list = &L2ARC_dev_list;
9296 l2arc_free_on_write = &L2ARC_free_on_write;
9297 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
9298 offsetof(l2arc_dev_t, l2ad_node));
9299 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
9300 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
9301}
9302
9303void
b128c09f 9304l2arc_fini(void)
34dc7c2f 9305{
b128c09f
BB
9306 /*
9307 * This is called from dmu_fini(), which is called from spa_fini();
9308 * Because of this, we can assume that all l2arc devices have
9309 * already been removed when the pools themselves were removed.
9310 */
9311
9312 l2arc_do_free_on_write();
34dc7c2f
BB
9313
9314 mutex_destroy(&l2arc_feed_thr_lock);
9315 cv_destroy(&l2arc_feed_thr_cv);
9316 mutex_destroy(&l2arc_dev_mtx);
34dc7c2f
BB
9317 mutex_destroy(&l2arc_free_on_write_mtx);
9318
9319 list_destroy(l2arc_dev_list);
9320 list_destroy(l2arc_free_on_write);
9321}
b128c09f
BB
9322
9323void
9324l2arc_start(void)
9325{
fb5f0bc8 9326 if (!(spa_mode_global & FWRITE))
b128c09f
BB
9327 return;
9328
9329 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
1229323d 9330 TS_RUN, defclsyspri);
b128c09f
BB
9331}
9332
9333void
9334l2arc_stop(void)
9335{
fb5f0bc8 9336 if (!(spa_mode_global & FWRITE))
b128c09f
BB
9337 return;
9338
9339 mutex_enter(&l2arc_feed_thr_lock);
9340 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
9341 l2arc_thread_exit = 1;
9342 while (l2arc_thread_exit != 0)
9343 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
9344 mutex_exit(&l2arc_feed_thr_lock);
9345}
c28b2279 9346
93ce2b4c 9347#if defined(_KERNEL)
0f699108
AZ
9348EXPORT_SYMBOL(arc_buf_size);
9349EXPORT_SYMBOL(arc_write);
c28b2279 9350EXPORT_SYMBOL(arc_read);
e0b0ca98 9351EXPORT_SYMBOL(arc_buf_info);
c28b2279 9352EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
9353EXPORT_SYMBOL(arc_add_prune_callback);
9354EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 9355
02730c33 9356/* BEGIN CSTYLED */
bce45ec9 9357module_param(zfs_arc_min, ulong, 0644);
c409e464 9358MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 9359
bce45ec9 9360module_param(zfs_arc_max, ulong, 0644);
c409e464 9361MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 9362
bce45ec9 9363module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 9364MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 9365
9907cc1c
G
9366module_param(zfs_arc_meta_limit_percent, ulong, 0644);
9367MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
9368 "Percent of arc size for arc meta limit");
9369
ca0bf58d
PS
9370module_param(zfs_arc_meta_min, ulong, 0644);
9371MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
9372
bce45ec9 9373module_param(zfs_arc_meta_prune, int, 0644);
2cbb06b5 9374MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
c409e464 9375
ca67b33a 9376module_param(zfs_arc_meta_adjust_restarts, int, 0644);
bc888666
BB
9377MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
9378 "Limit number of restarts in arc_adjust_meta");
9379
f6046738
BB
9380module_param(zfs_arc_meta_strategy, int, 0644);
9381MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
9382
bce45ec9 9383module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
9384MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
9385
62422785
PS
9386module_param(zfs_arc_p_dampener_disable, int, 0644);
9387MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
9388
bce45ec9 9389module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
9390MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
9391
03b60eee
DB
9392module_param(zfs_arc_pc_percent, uint, 0644);
9393MODULE_PARM_DESC(zfs_arc_pc_percent,
9394 "Percent of pagecache to reclaim arc to");
9395
728d6ae9
BB
9396module_param(zfs_arc_p_min_shift, int, 0644);
9397MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
9398
49ddb315
MA
9399module_param(zfs_arc_average_blocksize, int, 0444);
9400MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
9401
d3c2ae1c 9402module_param(zfs_compressed_arc_enabled, int, 0644);
544596c5 9403MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
d3c2ae1c 9404
d4a72f23
TC
9405module_param(zfs_arc_min_prefetch_ms, int, 0644);
9406MODULE_PARM_DESC(zfs_arc_min_prefetch_ms, "Min life of prefetch block in ms");
9407
9408module_param(zfs_arc_min_prescient_prefetch_ms, int, 0644);
9409MODULE_PARM_DESC(zfs_arc_min_prescient_prefetch_ms,
9410 "Min life of prescient prefetched block in ms");
bce45ec9
BB
9411
9412module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
9413MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
9414
bce45ec9 9415module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
9416MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
9417
bce45ec9 9418module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
9419MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
9420
3a17a7a9
SK
9421module_param(l2arc_headroom_boost, ulong, 0644);
9422MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
9423
bce45ec9 9424module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
9425MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
9426
bce45ec9 9427module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
9428MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
9429
bce45ec9 9430module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
9431MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
9432
bce45ec9 9433module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
9434MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
9435
bce45ec9 9436module_param(l2arc_norw, int, 0644);
abd8610c
BB
9437MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
9438
7e8bddd0
BB
9439module_param(zfs_arc_lotsfree_percent, int, 0644);
9440MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
9441 "System free memory I/O throttle in bytes");
9442
11f552fa
BB
9443module_param(zfs_arc_sys_free, ulong, 0644);
9444MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
9445
25458cbe
TC
9446module_param(zfs_arc_dnode_limit, ulong, 0644);
9447MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
9448
9907cc1c
G
9449module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
9450MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
9451 "Percent of ARC meta buffers for dnodes");
9452
25458cbe
TC
9453module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
9454MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
9455 "Percentage of excess dnodes to try to unpin");
02730c33 9456/* END CSTYLED */
c28b2279 9457#endif