]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kvm/vmx.c
KVM: MMU: fix check the reserved bits on the gpte of L2
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
e9bda3b3 30#include <linux/mod_devicetable.h>
229456fc 31#include <linux/ftrace_event.h>
5a0e3ad6 32#include <linux/slab.h>
cafd6659 33#include <linux/tboot.h>
5fdbf976 34#include "kvm_cache_regs.h"
35920a35 35#include "x86.h"
e495606d 36
6aa8b732 37#include <asm/io.h>
3b3be0d1 38#include <asm/desc.h>
13673a90 39#include <asm/vmx.h>
6210e37b 40#include <asm/virtext.h>
a0861c02 41#include <asm/mce.h>
2acf923e
DC
42#include <asm/i387.h>
43#include <asm/xcr.h>
d7cd9796 44#include <asm/perf_event.h>
8f536b76 45#include <asm/kexec.h>
6aa8b732 46
229456fc
MT
47#include "trace.h"
48
4ecac3fd 49#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
50#define __ex_clear(x, reg) \
51 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 52
6aa8b732
AK
53MODULE_AUTHOR("Qumranet");
54MODULE_LICENSE("GPL");
55
e9bda3b3
JT
56static const struct x86_cpu_id vmx_cpu_id[] = {
57 X86_FEATURE_MATCH(X86_FEATURE_VMX),
58 {}
59};
60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
61
476bc001 62static bool __read_mostly enable_vpid = 1;
736caefe 63module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 64
476bc001 65static bool __read_mostly flexpriority_enabled = 1;
736caefe 66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 67
476bc001 68static bool __read_mostly enable_ept = 1;
736caefe 69module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 70
476bc001 71static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
72module_param_named(unrestricted_guest,
73 enable_unrestricted_guest, bool, S_IRUGO);
74
83c3a331
XH
75static bool __read_mostly enable_ept_ad_bits = 1;
76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
77
a27685c3 78static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 80
476bc001 81static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
82module_param(vmm_exclusive, bool, S_IRUGO);
83
476bc001 84static bool __read_mostly fasteoi = 1;
58fbbf26
KT
85module_param(fasteoi, bool, S_IRUGO);
86
5a71785d 87static bool __read_mostly enable_apicv = 1;
01e439be 88module_param(enable_apicv, bool, S_IRUGO);
83d4c286 89
abc4fc58
AG
90static bool __read_mostly enable_shadow_vmcs = 1;
91module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
92/*
93 * If nested=1, nested virtualization is supported, i.e., guests may use
94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
95 * use VMX instructions.
96 */
476bc001 97static bool __read_mostly nested = 0;
801d3424
NHE
98module_param(nested, bool, S_IRUGO);
99
5037878e
GN
100#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
101#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
102#define KVM_VM_CR0_ALWAYS_ON \
103 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
104#define KVM_CR4_GUEST_OWNED_BITS \
105 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
106 | X86_CR4_OSXMMEXCPT)
107
cdc0e244
AK
108#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
109#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
110
78ac8b47
AK
111#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
112
4b8d54f9
ZE
113/*
114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
115 * ple_gap: upper bound on the amount of time between two successive
116 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 117 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
118 * ple_window: upper bound on the amount of time a guest is allowed to execute
119 * in a PAUSE loop. Tests indicate that most spinlocks are held for
120 * less than 2^12 cycles
121 * Time is measured based on a counter that runs at the same rate as the TSC,
122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
123 */
00c25bce 124#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
125#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
126static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
127module_param(ple_gap, int, S_IRUGO);
128
129static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
130module_param(ple_window, int, S_IRUGO);
131
83287ea4
AK
132extern const ulong vmx_return;
133
8bf00a52 134#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 135#define VMCS02_POOL_SIZE 1
61d2ef2c 136
a2fa3e9f
GH
137struct vmcs {
138 u32 revision_id;
139 u32 abort;
140 char data[0];
141};
142
d462b819
NHE
143/*
144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
146 * loaded on this CPU (so we can clear them if the CPU goes down).
147 */
148struct loaded_vmcs {
149 struct vmcs *vmcs;
150 int cpu;
151 int launched;
152 struct list_head loaded_vmcss_on_cpu_link;
153};
154
26bb0981
AK
155struct shared_msr_entry {
156 unsigned index;
157 u64 data;
d5696725 158 u64 mask;
26bb0981
AK
159};
160
a9d30f33
NHE
161/*
162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
169 * underlying hardware which will be used to run L2.
170 * This structure is packed to ensure that its layout is identical across
171 * machines (necessary for live migration).
172 * If there are changes in this struct, VMCS12_REVISION must be changed.
173 */
22bd0358 174typedef u64 natural_width;
a9d30f33
NHE
175struct __packed vmcs12 {
176 /* According to the Intel spec, a VMCS region must start with the
177 * following two fields. Then follow implementation-specific data.
178 */
179 u32 revision_id;
180 u32 abort;
22bd0358 181
27d6c865
NHE
182 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
183 u32 padding[7]; /* room for future expansion */
184
22bd0358
NHE
185 u64 io_bitmap_a;
186 u64 io_bitmap_b;
187 u64 msr_bitmap;
188 u64 vm_exit_msr_store_addr;
189 u64 vm_exit_msr_load_addr;
190 u64 vm_entry_msr_load_addr;
191 u64 tsc_offset;
192 u64 virtual_apic_page_addr;
193 u64 apic_access_addr;
194 u64 ept_pointer;
195 u64 guest_physical_address;
196 u64 vmcs_link_pointer;
197 u64 guest_ia32_debugctl;
198 u64 guest_ia32_pat;
199 u64 guest_ia32_efer;
200 u64 guest_ia32_perf_global_ctrl;
201 u64 guest_pdptr0;
202 u64 guest_pdptr1;
203 u64 guest_pdptr2;
204 u64 guest_pdptr3;
205 u64 host_ia32_pat;
206 u64 host_ia32_efer;
207 u64 host_ia32_perf_global_ctrl;
208 u64 padding64[8]; /* room for future expansion */
209 /*
210 * To allow migration of L1 (complete with its L2 guests) between
211 * machines of different natural widths (32 or 64 bit), we cannot have
212 * unsigned long fields with no explict size. We use u64 (aliased
213 * natural_width) instead. Luckily, x86 is little-endian.
214 */
215 natural_width cr0_guest_host_mask;
216 natural_width cr4_guest_host_mask;
217 natural_width cr0_read_shadow;
218 natural_width cr4_read_shadow;
219 natural_width cr3_target_value0;
220 natural_width cr3_target_value1;
221 natural_width cr3_target_value2;
222 natural_width cr3_target_value3;
223 natural_width exit_qualification;
224 natural_width guest_linear_address;
225 natural_width guest_cr0;
226 natural_width guest_cr3;
227 natural_width guest_cr4;
228 natural_width guest_es_base;
229 natural_width guest_cs_base;
230 natural_width guest_ss_base;
231 natural_width guest_ds_base;
232 natural_width guest_fs_base;
233 natural_width guest_gs_base;
234 natural_width guest_ldtr_base;
235 natural_width guest_tr_base;
236 natural_width guest_gdtr_base;
237 natural_width guest_idtr_base;
238 natural_width guest_dr7;
239 natural_width guest_rsp;
240 natural_width guest_rip;
241 natural_width guest_rflags;
242 natural_width guest_pending_dbg_exceptions;
243 natural_width guest_sysenter_esp;
244 natural_width guest_sysenter_eip;
245 natural_width host_cr0;
246 natural_width host_cr3;
247 natural_width host_cr4;
248 natural_width host_fs_base;
249 natural_width host_gs_base;
250 natural_width host_tr_base;
251 natural_width host_gdtr_base;
252 natural_width host_idtr_base;
253 natural_width host_ia32_sysenter_esp;
254 natural_width host_ia32_sysenter_eip;
255 natural_width host_rsp;
256 natural_width host_rip;
257 natural_width paddingl[8]; /* room for future expansion */
258 u32 pin_based_vm_exec_control;
259 u32 cpu_based_vm_exec_control;
260 u32 exception_bitmap;
261 u32 page_fault_error_code_mask;
262 u32 page_fault_error_code_match;
263 u32 cr3_target_count;
264 u32 vm_exit_controls;
265 u32 vm_exit_msr_store_count;
266 u32 vm_exit_msr_load_count;
267 u32 vm_entry_controls;
268 u32 vm_entry_msr_load_count;
269 u32 vm_entry_intr_info_field;
270 u32 vm_entry_exception_error_code;
271 u32 vm_entry_instruction_len;
272 u32 tpr_threshold;
273 u32 secondary_vm_exec_control;
274 u32 vm_instruction_error;
275 u32 vm_exit_reason;
276 u32 vm_exit_intr_info;
277 u32 vm_exit_intr_error_code;
278 u32 idt_vectoring_info_field;
279 u32 idt_vectoring_error_code;
280 u32 vm_exit_instruction_len;
281 u32 vmx_instruction_info;
282 u32 guest_es_limit;
283 u32 guest_cs_limit;
284 u32 guest_ss_limit;
285 u32 guest_ds_limit;
286 u32 guest_fs_limit;
287 u32 guest_gs_limit;
288 u32 guest_ldtr_limit;
289 u32 guest_tr_limit;
290 u32 guest_gdtr_limit;
291 u32 guest_idtr_limit;
292 u32 guest_es_ar_bytes;
293 u32 guest_cs_ar_bytes;
294 u32 guest_ss_ar_bytes;
295 u32 guest_ds_ar_bytes;
296 u32 guest_fs_ar_bytes;
297 u32 guest_gs_ar_bytes;
298 u32 guest_ldtr_ar_bytes;
299 u32 guest_tr_ar_bytes;
300 u32 guest_interruptibility_info;
301 u32 guest_activity_state;
302 u32 guest_sysenter_cs;
303 u32 host_ia32_sysenter_cs;
0238ea91
JK
304 u32 vmx_preemption_timer_value;
305 u32 padding32[7]; /* room for future expansion */
22bd0358
NHE
306 u16 virtual_processor_id;
307 u16 guest_es_selector;
308 u16 guest_cs_selector;
309 u16 guest_ss_selector;
310 u16 guest_ds_selector;
311 u16 guest_fs_selector;
312 u16 guest_gs_selector;
313 u16 guest_ldtr_selector;
314 u16 guest_tr_selector;
315 u16 host_es_selector;
316 u16 host_cs_selector;
317 u16 host_ss_selector;
318 u16 host_ds_selector;
319 u16 host_fs_selector;
320 u16 host_gs_selector;
321 u16 host_tr_selector;
a9d30f33
NHE
322};
323
324/*
325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
328 */
329#define VMCS12_REVISION 0x11e57ed0
330
331/*
332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
334 * current implementation, 4K are reserved to avoid future complications.
335 */
336#define VMCS12_SIZE 0x1000
337
ff2f6fe9
NHE
338/* Used to remember the last vmcs02 used for some recently used vmcs12s */
339struct vmcs02_list {
340 struct list_head list;
341 gpa_t vmptr;
342 struct loaded_vmcs vmcs02;
343};
344
ec378aee
NHE
345/*
346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
348 */
349struct nested_vmx {
350 /* Has the level1 guest done vmxon? */
351 bool vmxon;
a9d30f33
NHE
352
353 /* The guest-physical address of the current VMCS L1 keeps for L2 */
354 gpa_t current_vmptr;
355 /* The host-usable pointer to the above */
356 struct page *current_vmcs12_page;
357 struct vmcs12 *current_vmcs12;
8de48833 358 struct vmcs *current_shadow_vmcs;
012f83cb
AG
359 /*
360 * Indicates if the shadow vmcs must be updated with the
361 * data hold by vmcs12
362 */
363 bool sync_shadow_vmcs;
ff2f6fe9
NHE
364
365 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
366 struct list_head vmcs02_pool;
367 int vmcs02_num;
fe3ef05c 368 u64 vmcs01_tsc_offset;
644d711a
NHE
369 /* L2 must run next, and mustn't decide to exit to L1. */
370 bool nested_run_pending;
fe3ef05c
NHE
371 /*
372 * Guest pages referred to in vmcs02 with host-physical pointers, so
373 * we must keep them pinned while L2 runs.
374 */
375 struct page *apic_access_page;
b3897a49 376 u64 msr_ia32_feature_control;
ec378aee
NHE
377};
378
01e439be
YZ
379#define POSTED_INTR_ON 0
380/* Posted-Interrupt Descriptor */
381struct pi_desc {
382 u32 pir[8]; /* Posted interrupt requested */
383 u32 control; /* bit 0 of control is outstanding notification bit */
384 u32 rsvd[7];
385} __aligned(64);
386
a20ed54d
YZ
387static bool pi_test_and_set_on(struct pi_desc *pi_desc)
388{
389 return test_and_set_bit(POSTED_INTR_ON,
390 (unsigned long *)&pi_desc->control);
391}
392
393static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
394{
395 return test_and_clear_bit(POSTED_INTR_ON,
396 (unsigned long *)&pi_desc->control);
397}
398
399static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
400{
401 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
402}
403
a2fa3e9f 404struct vcpu_vmx {
fb3f0f51 405 struct kvm_vcpu vcpu;
313dbd49 406 unsigned long host_rsp;
29bd8a78 407 u8 fail;
69c73028 408 u8 cpl;
9d58b931 409 bool nmi_known_unmasked;
51aa01d1 410 u32 exit_intr_info;
1155f76a 411 u32 idt_vectoring_info;
6de12732 412 ulong rflags;
26bb0981 413 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
414 int nmsrs;
415 int save_nmsrs;
a547c6db 416 unsigned long host_idt_base;
a2fa3e9f 417#ifdef CONFIG_X86_64
44ea2b17
AK
418 u64 msr_host_kernel_gs_base;
419 u64 msr_guest_kernel_gs_base;
a2fa3e9f 420#endif
d462b819
NHE
421 /*
422 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
423 * non-nested (L1) guest, it always points to vmcs01. For a nested
424 * guest (L2), it points to a different VMCS.
425 */
426 struct loaded_vmcs vmcs01;
427 struct loaded_vmcs *loaded_vmcs;
428 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
429 struct msr_autoload {
430 unsigned nr;
431 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
432 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
433 } msr_autoload;
a2fa3e9f
GH
434 struct {
435 int loaded;
436 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
437#ifdef CONFIG_X86_64
438 u16 ds_sel, es_sel;
439#endif
152d3f2f
LV
440 int gs_ldt_reload_needed;
441 int fs_reload_needed;
d77c26fc 442 } host_state;
9c8cba37 443 struct {
7ffd92c5 444 int vm86_active;
78ac8b47 445 ulong save_rflags;
f5f7b2fe
AK
446 struct kvm_segment segs[8];
447 } rmode;
448 struct {
449 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
450 struct kvm_save_segment {
451 u16 selector;
452 unsigned long base;
453 u32 limit;
454 u32 ar;
f5f7b2fe 455 } seg[8];
2fb92db1 456 } segment_cache;
2384d2b3 457 int vpid;
04fa4d32 458 bool emulation_required;
3b86cd99
JK
459
460 /* Support for vnmi-less CPUs */
461 int soft_vnmi_blocked;
462 ktime_t entry_time;
463 s64 vnmi_blocked_time;
a0861c02 464 u32 exit_reason;
4e47c7a6
SY
465
466 bool rdtscp_enabled;
ec378aee 467
01e439be
YZ
468 /* Posted interrupt descriptor */
469 struct pi_desc pi_desc;
470
ec378aee
NHE
471 /* Support for a guest hypervisor (nested VMX) */
472 struct nested_vmx nested;
a2fa3e9f
GH
473};
474
2fb92db1
AK
475enum segment_cache_field {
476 SEG_FIELD_SEL = 0,
477 SEG_FIELD_BASE = 1,
478 SEG_FIELD_LIMIT = 2,
479 SEG_FIELD_AR = 3,
480
481 SEG_FIELD_NR = 4
482};
483
a2fa3e9f
GH
484static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
485{
fb3f0f51 486 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
487}
488
22bd0358
NHE
489#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
490#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
491#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
492 [number##_HIGH] = VMCS12_OFFSET(name)+4
493
4607c2d7
AG
494
495static const unsigned long shadow_read_only_fields[] = {
496 /*
497 * We do NOT shadow fields that are modified when L0
498 * traps and emulates any vmx instruction (e.g. VMPTRLD,
499 * VMXON...) executed by L1.
500 * For example, VM_INSTRUCTION_ERROR is read
501 * by L1 if a vmx instruction fails (part of the error path).
502 * Note the code assumes this logic. If for some reason
503 * we start shadowing these fields then we need to
504 * force a shadow sync when L0 emulates vmx instructions
505 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
506 * by nested_vmx_failValid)
507 */
508 VM_EXIT_REASON,
509 VM_EXIT_INTR_INFO,
510 VM_EXIT_INSTRUCTION_LEN,
511 IDT_VECTORING_INFO_FIELD,
512 IDT_VECTORING_ERROR_CODE,
513 VM_EXIT_INTR_ERROR_CODE,
514 EXIT_QUALIFICATION,
515 GUEST_LINEAR_ADDRESS,
516 GUEST_PHYSICAL_ADDRESS
517};
518static const int max_shadow_read_only_fields =
519 ARRAY_SIZE(shadow_read_only_fields);
520
521static const unsigned long shadow_read_write_fields[] = {
522 GUEST_RIP,
523 GUEST_RSP,
524 GUEST_CR0,
525 GUEST_CR3,
526 GUEST_CR4,
527 GUEST_INTERRUPTIBILITY_INFO,
528 GUEST_RFLAGS,
529 GUEST_CS_SELECTOR,
530 GUEST_CS_AR_BYTES,
531 GUEST_CS_LIMIT,
532 GUEST_CS_BASE,
533 GUEST_ES_BASE,
534 CR0_GUEST_HOST_MASK,
535 CR0_READ_SHADOW,
536 CR4_READ_SHADOW,
537 TSC_OFFSET,
538 EXCEPTION_BITMAP,
539 CPU_BASED_VM_EXEC_CONTROL,
540 VM_ENTRY_EXCEPTION_ERROR_CODE,
541 VM_ENTRY_INTR_INFO_FIELD,
542 VM_ENTRY_INSTRUCTION_LEN,
543 VM_ENTRY_EXCEPTION_ERROR_CODE,
544 HOST_FS_BASE,
545 HOST_GS_BASE,
546 HOST_FS_SELECTOR,
547 HOST_GS_SELECTOR
548};
549static const int max_shadow_read_write_fields =
550 ARRAY_SIZE(shadow_read_write_fields);
551
772e0318 552static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358
NHE
553 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
554 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
555 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
556 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
557 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
558 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
559 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
560 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
561 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
562 FIELD(HOST_ES_SELECTOR, host_es_selector),
563 FIELD(HOST_CS_SELECTOR, host_cs_selector),
564 FIELD(HOST_SS_SELECTOR, host_ss_selector),
565 FIELD(HOST_DS_SELECTOR, host_ds_selector),
566 FIELD(HOST_FS_SELECTOR, host_fs_selector),
567 FIELD(HOST_GS_SELECTOR, host_gs_selector),
568 FIELD(HOST_TR_SELECTOR, host_tr_selector),
569 FIELD64(IO_BITMAP_A, io_bitmap_a),
570 FIELD64(IO_BITMAP_B, io_bitmap_b),
571 FIELD64(MSR_BITMAP, msr_bitmap),
572 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
573 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
574 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
575 FIELD64(TSC_OFFSET, tsc_offset),
576 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
577 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
578 FIELD64(EPT_POINTER, ept_pointer),
579 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
580 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
581 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
582 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
583 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
584 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
585 FIELD64(GUEST_PDPTR0, guest_pdptr0),
586 FIELD64(GUEST_PDPTR1, guest_pdptr1),
587 FIELD64(GUEST_PDPTR2, guest_pdptr2),
588 FIELD64(GUEST_PDPTR3, guest_pdptr3),
589 FIELD64(HOST_IA32_PAT, host_ia32_pat),
590 FIELD64(HOST_IA32_EFER, host_ia32_efer),
591 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
592 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
593 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
594 FIELD(EXCEPTION_BITMAP, exception_bitmap),
595 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
596 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
597 FIELD(CR3_TARGET_COUNT, cr3_target_count),
598 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
599 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
600 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
601 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
602 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
603 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
604 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
605 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
606 FIELD(TPR_THRESHOLD, tpr_threshold),
607 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
608 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
609 FIELD(VM_EXIT_REASON, vm_exit_reason),
610 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
611 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
612 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
613 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
614 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
615 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
616 FIELD(GUEST_ES_LIMIT, guest_es_limit),
617 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
618 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
619 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
620 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
621 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
622 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
623 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
624 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
625 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
626 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
627 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
628 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
629 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
630 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
631 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
632 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
633 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
634 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
635 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
636 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
637 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 638 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
639 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
640 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
641 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
642 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
643 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
644 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
645 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
646 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
647 FIELD(EXIT_QUALIFICATION, exit_qualification),
648 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
649 FIELD(GUEST_CR0, guest_cr0),
650 FIELD(GUEST_CR3, guest_cr3),
651 FIELD(GUEST_CR4, guest_cr4),
652 FIELD(GUEST_ES_BASE, guest_es_base),
653 FIELD(GUEST_CS_BASE, guest_cs_base),
654 FIELD(GUEST_SS_BASE, guest_ss_base),
655 FIELD(GUEST_DS_BASE, guest_ds_base),
656 FIELD(GUEST_FS_BASE, guest_fs_base),
657 FIELD(GUEST_GS_BASE, guest_gs_base),
658 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
659 FIELD(GUEST_TR_BASE, guest_tr_base),
660 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
661 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
662 FIELD(GUEST_DR7, guest_dr7),
663 FIELD(GUEST_RSP, guest_rsp),
664 FIELD(GUEST_RIP, guest_rip),
665 FIELD(GUEST_RFLAGS, guest_rflags),
666 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
667 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
668 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
669 FIELD(HOST_CR0, host_cr0),
670 FIELD(HOST_CR3, host_cr3),
671 FIELD(HOST_CR4, host_cr4),
672 FIELD(HOST_FS_BASE, host_fs_base),
673 FIELD(HOST_GS_BASE, host_gs_base),
674 FIELD(HOST_TR_BASE, host_tr_base),
675 FIELD(HOST_GDTR_BASE, host_gdtr_base),
676 FIELD(HOST_IDTR_BASE, host_idtr_base),
677 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
678 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
679 FIELD(HOST_RSP, host_rsp),
680 FIELD(HOST_RIP, host_rip),
681};
682static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
683
684static inline short vmcs_field_to_offset(unsigned long field)
685{
686 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
687 return -1;
688 return vmcs_field_to_offset_table[field];
689}
690
a9d30f33
NHE
691static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
692{
693 return to_vmx(vcpu)->nested.current_vmcs12;
694}
695
696static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
697{
698 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
32cad84f 699 if (is_error_page(page))
a9d30f33 700 return NULL;
32cad84f 701
a9d30f33
NHE
702 return page;
703}
704
705static void nested_release_page(struct page *page)
706{
707 kvm_release_page_dirty(page);
708}
709
710static void nested_release_page_clean(struct page *page)
711{
712 kvm_release_page_clean(page);
713}
714
4e1096d2 715static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
716static void kvm_cpu_vmxon(u64 addr);
717static void kvm_cpu_vmxoff(void);
aff48baa 718static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 719static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
720static void vmx_set_segment(struct kvm_vcpu *vcpu,
721 struct kvm_segment *var, int seg);
722static void vmx_get_segment(struct kvm_vcpu *vcpu,
723 struct kvm_segment *var, int seg);
d99e4152
GN
724static bool guest_state_valid(struct kvm_vcpu *vcpu);
725static u32 vmx_segment_access_rights(struct kvm_segment *var);
a20ed54d 726static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
c3114420 727static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 728static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
75880a01 729
6aa8b732
AK
730static DEFINE_PER_CPU(struct vmcs *, vmxarea);
731static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
732/*
733 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
734 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
735 */
736static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 737static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 738
3e7c73e9
AK
739static unsigned long *vmx_io_bitmap_a;
740static unsigned long *vmx_io_bitmap_b;
5897297b
AK
741static unsigned long *vmx_msr_bitmap_legacy;
742static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
743static unsigned long *vmx_msr_bitmap_legacy_x2apic;
744static unsigned long *vmx_msr_bitmap_longmode_x2apic;
4607c2d7
AG
745static unsigned long *vmx_vmread_bitmap;
746static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 747
110312c8 748static bool cpu_has_load_ia32_efer;
8bf00a52 749static bool cpu_has_load_perf_global_ctrl;
110312c8 750
2384d2b3
SY
751static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
752static DEFINE_SPINLOCK(vmx_vpid_lock);
753
1c3d14fe 754static struct vmcs_config {
6aa8b732
AK
755 int size;
756 int order;
757 u32 revision_id;
1c3d14fe
YS
758 u32 pin_based_exec_ctrl;
759 u32 cpu_based_exec_ctrl;
f78e0e2e 760 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
761 u32 vmexit_ctrl;
762 u32 vmentry_ctrl;
763} vmcs_config;
6aa8b732 764
efff9e53 765static struct vmx_capability {
d56f546d
SY
766 u32 ept;
767 u32 vpid;
768} vmx_capability;
769
6aa8b732
AK
770#define VMX_SEGMENT_FIELD(seg) \
771 [VCPU_SREG_##seg] = { \
772 .selector = GUEST_##seg##_SELECTOR, \
773 .base = GUEST_##seg##_BASE, \
774 .limit = GUEST_##seg##_LIMIT, \
775 .ar_bytes = GUEST_##seg##_AR_BYTES, \
776 }
777
772e0318 778static const struct kvm_vmx_segment_field {
6aa8b732
AK
779 unsigned selector;
780 unsigned base;
781 unsigned limit;
782 unsigned ar_bytes;
783} kvm_vmx_segment_fields[] = {
784 VMX_SEGMENT_FIELD(CS),
785 VMX_SEGMENT_FIELD(DS),
786 VMX_SEGMENT_FIELD(ES),
787 VMX_SEGMENT_FIELD(FS),
788 VMX_SEGMENT_FIELD(GS),
789 VMX_SEGMENT_FIELD(SS),
790 VMX_SEGMENT_FIELD(TR),
791 VMX_SEGMENT_FIELD(LDTR),
792};
793
26bb0981
AK
794static u64 host_efer;
795
6de4f3ad
AK
796static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
797
4d56c8a7 798/*
8c06585d 799 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
800 * away by decrementing the array size.
801 */
6aa8b732 802static const u32 vmx_msr_index[] = {
05b3e0c2 803#ifdef CONFIG_X86_64
44ea2b17 804 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 805#endif
8c06585d 806 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 807};
9d8f549d 808#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 809
31299944 810static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
811{
812 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
813 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 814 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
815}
816
31299944 817static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
818{
819 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
820 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 821 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
822}
823
31299944 824static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
825{
826 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
827 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 828 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
829}
830
31299944 831static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
832{
833 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
834 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
835}
836
31299944 837static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
838{
839 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
840 INTR_INFO_VALID_MASK)) ==
841 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
842}
843
31299944 844static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 845{
04547156 846 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
847}
848
31299944 849static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 850{
04547156 851 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
852}
853
31299944 854static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 855{
04547156 856 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
857}
858
31299944 859static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 860{
04547156
SY
861 return vmcs_config.cpu_based_exec_ctrl &
862 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
863}
864
774ead3a 865static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 866{
04547156
SY
867 return vmcs_config.cpu_based_2nd_exec_ctrl &
868 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
869}
870
8d14695f
YZ
871static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
872{
873 return vmcs_config.cpu_based_2nd_exec_ctrl &
874 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
875}
876
83d4c286
YZ
877static inline bool cpu_has_vmx_apic_register_virt(void)
878{
879 return vmcs_config.cpu_based_2nd_exec_ctrl &
880 SECONDARY_EXEC_APIC_REGISTER_VIRT;
881}
882
c7c9c56c
YZ
883static inline bool cpu_has_vmx_virtual_intr_delivery(void)
884{
885 return vmcs_config.cpu_based_2nd_exec_ctrl &
886 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
887}
888
01e439be
YZ
889static inline bool cpu_has_vmx_posted_intr(void)
890{
891 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
892}
893
894static inline bool cpu_has_vmx_apicv(void)
895{
896 return cpu_has_vmx_apic_register_virt() &&
897 cpu_has_vmx_virtual_intr_delivery() &&
898 cpu_has_vmx_posted_intr();
899}
900
04547156
SY
901static inline bool cpu_has_vmx_flexpriority(void)
902{
903 return cpu_has_vmx_tpr_shadow() &&
904 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
905}
906
e799794e
MT
907static inline bool cpu_has_vmx_ept_execute_only(void)
908{
31299944 909 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
910}
911
912static inline bool cpu_has_vmx_eptp_uncacheable(void)
913{
31299944 914 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
915}
916
917static inline bool cpu_has_vmx_eptp_writeback(void)
918{
31299944 919 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
920}
921
922static inline bool cpu_has_vmx_ept_2m_page(void)
923{
31299944 924 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
925}
926
878403b7
SY
927static inline bool cpu_has_vmx_ept_1g_page(void)
928{
31299944 929 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
930}
931
4bc9b982
SY
932static inline bool cpu_has_vmx_ept_4levels(void)
933{
934 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
935}
936
83c3a331
XH
937static inline bool cpu_has_vmx_ept_ad_bits(void)
938{
939 return vmx_capability.ept & VMX_EPT_AD_BIT;
940}
941
31299944 942static inline bool cpu_has_vmx_invept_context(void)
d56f546d 943{
31299944 944 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
945}
946
31299944 947static inline bool cpu_has_vmx_invept_global(void)
d56f546d 948{
31299944 949 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
950}
951
518c8aee
GJ
952static inline bool cpu_has_vmx_invvpid_single(void)
953{
954 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
955}
956
b9d762fa
GJ
957static inline bool cpu_has_vmx_invvpid_global(void)
958{
959 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
960}
961
31299944 962static inline bool cpu_has_vmx_ept(void)
d56f546d 963{
04547156
SY
964 return vmcs_config.cpu_based_2nd_exec_ctrl &
965 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
966}
967
31299944 968static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
969{
970 return vmcs_config.cpu_based_2nd_exec_ctrl &
971 SECONDARY_EXEC_UNRESTRICTED_GUEST;
972}
973
31299944 974static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
975{
976 return vmcs_config.cpu_based_2nd_exec_ctrl &
977 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
978}
979
31299944 980static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 981{
6d3e435e 982 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
983}
984
31299944 985static inline bool cpu_has_vmx_vpid(void)
2384d2b3 986{
04547156
SY
987 return vmcs_config.cpu_based_2nd_exec_ctrl &
988 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
989}
990
31299944 991static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
992{
993 return vmcs_config.cpu_based_2nd_exec_ctrl &
994 SECONDARY_EXEC_RDTSCP;
995}
996
ad756a16
MJ
997static inline bool cpu_has_vmx_invpcid(void)
998{
999 return vmcs_config.cpu_based_2nd_exec_ctrl &
1000 SECONDARY_EXEC_ENABLE_INVPCID;
1001}
1002
31299944 1003static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1004{
1005 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1006}
1007
f5f48ee1
SY
1008static inline bool cpu_has_vmx_wbinvd_exit(void)
1009{
1010 return vmcs_config.cpu_based_2nd_exec_ctrl &
1011 SECONDARY_EXEC_WBINVD_EXITING;
1012}
1013
abc4fc58
AG
1014static inline bool cpu_has_vmx_shadow_vmcs(void)
1015{
1016 u64 vmx_msr;
1017 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1018 /* check if the cpu supports writing r/o exit information fields */
1019 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1020 return false;
1021
1022 return vmcs_config.cpu_based_2nd_exec_ctrl &
1023 SECONDARY_EXEC_SHADOW_VMCS;
1024}
1025
04547156
SY
1026static inline bool report_flexpriority(void)
1027{
1028 return flexpriority_enabled;
1029}
1030
fe3ef05c
NHE
1031static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1032{
1033 return vmcs12->cpu_based_vm_exec_control & bit;
1034}
1035
1036static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1037{
1038 return (vmcs12->cpu_based_vm_exec_control &
1039 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1040 (vmcs12->secondary_vm_exec_control & bit);
1041}
1042
644d711a
NHE
1043static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1044 struct kvm_vcpu *vcpu)
1045{
1046 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1047}
1048
1049static inline bool is_exception(u32 intr_info)
1050{
1051 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1052 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1053}
1054
1055static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
1056static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1057 struct vmcs12 *vmcs12,
1058 u32 reason, unsigned long qualification);
1059
8b9cf98c 1060static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1061{
1062 int i;
1063
a2fa3e9f 1064 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1065 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1066 return i;
1067 return -1;
1068}
1069
2384d2b3
SY
1070static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1071{
1072 struct {
1073 u64 vpid : 16;
1074 u64 rsvd : 48;
1075 u64 gva;
1076 } operand = { vpid, 0, gva };
1077
4ecac3fd 1078 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1079 /* CF==1 or ZF==1 --> rc = -1 */
1080 "; ja 1f ; ud2 ; 1:"
1081 : : "a"(&operand), "c"(ext) : "cc", "memory");
1082}
1083
1439442c
SY
1084static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1085{
1086 struct {
1087 u64 eptp, gpa;
1088 } operand = {eptp, gpa};
1089
4ecac3fd 1090 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1091 /* CF==1 or ZF==1 --> rc = -1 */
1092 "; ja 1f ; ud2 ; 1:\n"
1093 : : "a" (&operand), "c" (ext) : "cc", "memory");
1094}
1095
26bb0981 1096static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1097{
1098 int i;
1099
8b9cf98c 1100 i = __find_msr_index(vmx, msr);
a75beee6 1101 if (i >= 0)
a2fa3e9f 1102 return &vmx->guest_msrs[i];
8b6d44c7 1103 return NULL;
7725f0ba
AK
1104}
1105
6aa8b732
AK
1106static void vmcs_clear(struct vmcs *vmcs)
1107{
1108 u64 phys_addr = __pa(vmcs);
1109 u8 error;
1110
4ecac3fd 1111 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1112 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1113 : "cc", "memory");
1114 if (error)
1115 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1116 vmcs, phys_addr);
1117}
1118
d462b819
NHE
1119static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1120{
1121 vmcs_clear(loaded_vmcs->vmcs);
1122 loaded_vmcs->cpu = -1;
1123 loaded_vmcs->launched = 0;
1124}
1125
7725b894
DX
1126static void vmcs_load(struct vmcs *vmcs)
1127{
1128 u64 phys_addr = __pa(vmcs);
1129 u8 error;
1130
1131 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1132 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1133 : "cc", "memory");
1134 if (error)
2844d849 1135 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1136 vmcs, phys_addr);
1137}
1138
8f536b76
ZY
1139#ifdef CONFIG_KEXEC
1140/*
1141 * This bitmap is used to indicate whether the vmclear
1142 * operation is enabled on all cpus. All disabled by
1143 * default.
1144 */
1145static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1146
1147static inline void crash_enable_local_vmclear(int cpu)
1148{
1149 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1150}
1151
1152static inline void crash_disable_local_vmclear(int cpu)
1153{
1154 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1155}
1156
1157static inline int crash_local_vmclear_enabled(int cpu)
1158{
1159 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1160}
1161
1162static void crash_vmclear_local_loaded_vmcss(void)
1163{
1164 int cpu = raw_smp_processor_id();
1165 struct loaded_vmcs *v;
1166
1167 if (!crash_local_vmclear_enabled(cpu))
1168 return;
1169
1170 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1171 loaded_vmcss_on_cpu_link)
1172 vmcs_clear(v->vmcs);
1173}
1174#else
1175static inline void crash_enable_local_vmclear(int cpu) { }
1176static inline void crash_disable_local_vmclear(int cpu) { }
1177#endif /* CONFIG_KEXEC */
1178
d462b819 1179static void __loaded_vmcs_clear(void *arg)
6aa8b732 1180{
d462b819 1181 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1182 int cpu = raw_smp_processor_id();
6aa8b732 1183
d462b819
NHE
1184 if (loaded_vmcs->cpu != cpu)
1185 return; /* vcpu migration can race with cpu offline */
1186 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1187 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1188 crash_disable_local_vmclear(cpu);
d462b819 1189 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1190
1191 /*
1192 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1193 * is before setting loaded_vmcs->vcpu to -1 which is done in
1194 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1195 * then adds the vmcs into percpu list before it is deleted.
1196 */
1197 smp_wmb();
1198
d462b819 1199 loaded_vmcs_init(loaded_vmcs);
8f536b76 1200 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1201}
1202
d462b819 1203static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1204{
e6c7d321
XG
1205 int cpu = loaded_vmcs->cpu;
1206
1207 if (cpu != -1)
1208 smp_call_function_single(cpu,
1209 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1210}
1211
1760dd49 1212static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
1213{
1214 if (vmx->vpid == 0)
1215 return;
1216
518c8aee
GJ
1217 if (cpu_has_vmx_invvpid_single())
1218 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
1219}
1220
b9d762fa
GJ
1221static inline void vpid_sync_vcpu_global(void)
1222{
1223 if (cpu_has_vmx_invvpid_global())
1224 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1225}
1226
1227static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1228{
1229 if (cpu_has_vmx_invvpid_single())
1760dd49 1230 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1231 else
1232 vpid_sync_vcpu_global();
1233}
1234
1439442c
SY
1235static inline void ept_sync_global(void)
1236{
1237 if (cpu_has_vmx_invept_global())
1238 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1239}
1240
1241static inline void ept_sync_context(u64 eptp)
1242{
089d034e 1243 if (enable_ept) {
1439442c
SY
1244 if (cpu_has_vmx_invept_context())
1245 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1246 else
1247 ept_sync_global();
1248 }
1249}
1250
96304217 1251static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1252{
5e520e62 1253 unsigned long value;
6aa8b732 1254
5e520e62
AK
1255 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1256 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1257 return value;
1258}
1259
96304217 1260static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1261{
1262 return vmcs_readl(field);
1263}
1264
96304217 1265static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1266{
1267 return vmcs_readl(field);
1268}
1269
96304217 1270static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1271{
05b3e0c2 1272#ifdef CONFIG_X86_64
6aa8b732
AK
1273 return vmcs_readl(field);
1274#else
1275 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1276#endif
1277}
1278
e52de1b8
AK
1279static noinline void vmwrite_error(unsigned long field, unsigned long value)
1280{
1281 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1282 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1283 dump_stack();
1284}
1285
6aa8b732
AK
1286static void vmcs_writel(unsigned long field, unsigned long value)
1287{
1288 u8 error;
1289
4ecac3fd 1290 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1291 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1292 if (unlikely(error))
1293 vmwrite_error(field, value);
6aa8b732
AK
1294}
1295
1296static void vmcs_write16(unsigned long field, u16 value)
1297{
1298 vmcs_writel(field, value);
1299}
1300
1301static void vmcs_write32(unsigned long field, u32 value)
1302{
1303 vmcs_writel(field, value);
1304}
1305
1306static void vmcs_write64(unsigned long field, u64 value)
1307{
6aa8b732 1308 vmcs_writel(field, value);
7682f2d0 1309#ifndef CONFIG_X86_64
6aa8b732
AK
1310 asm volatile ("");
1311 vmcs_writel(field+1, value >> 32);
1312#endif
1313}
1314
2ab455cc
AL
1315static void vmcs_clear_bits(unsigned long field, u32 mask)
1316{
1317 vmcs_writel(field, vmcs_readl(field) & ~mask);
1318}
1319
1320static void vmcs_set_bits(unsigned long field, u32 mask)
1321{
1322 vmcs_writel(field, vmcs_readl(field) | mask);
1323}
1324
2fb92db1
AK
1325static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1326{
1327 vmx->segment_cache.bitmask = 0;
1328}
1329
1330static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1331 unsigned field)
1332{
1333 bool ret;
1334 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1335
1336 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1337 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1338 vmx->segment_cache.bitmask = 0;
1339 }
1340 ret = vmx->segment_cache.bitmask & mask;
1341 vmx->segment_cache.bitmask |= mask;
1342 return ret;
1343}
1344
1345static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1346{
1347 u16 *p = &vmx->segment_cache.seg[seg].selector;
1348
1349 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1350 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1351 return *p;
1352}
1353
1354static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1355{
1356 ulong *p = &vmx->segment_cache.seg[seg].base;
1357
1358 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1359 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1360 return *p;
1361}
1362
1363static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1364{
1365 u32 *p = &vmx->segment_cache.seg[seg].limit;
1366
1367 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1368 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1369 return *p;
1370}
1371
1372static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1373{
1374 u32 *p = &vmx->segment_cache.seg[seg].ar;
1375
1376 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1377 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1378 return *p;
1379}
1380
abd3f2d6
AK
1381static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1382{
1383 u32 eb;
1384
fd7373cc
JK
1385 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1386 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1387 if ((vcpu->guest_debug &
1388 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1389 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1390 eb |= 1u << BP_VECTOR;
7ffd92c5 1391 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1392 eb = ~0;
089d034e 1393 if (enable_ept)
1439442c 1394 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1395 if (vcpu->fpu_active)
1396 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1397
1398 /* When we are running a nested L2 guest and L1 specified for it a
1399 * certain exception bitmap, we must trap the same exceptions and pass
1400 * them to L1. When running L2, we will only handle the exceptions
1401 * specified above if L1 did not want them.
1402 */
1403 if (is_guest_mode(vcpu))
1404 eb |= get_vmcs12(vcpu)->exception_bitmap;
1405
abd3f2d6
AK
1406 vmcs_write32(EXCEPTION_BITMAP, eb);
1407}
1408
8bf00a52
GN
1409static void clear_atomic_switch_msr_special(unsigned long entry,
1410 unsigned long exit)
1411{
1412 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1413 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1414}
1415
61d2ef2c
AK
1416static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1417{
1418 unsigned i;
1419 struct msr_autoload *m = &vmx->msr_autoload;
1420
8bf00a52
GN
1421 switch (msr) {
1422 case MSR_EFER:
1423 if (cpu_has_load_ia32_efer) {
1424 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1425 VM_EXIT_LOAD_IA32_EFER);
1426 return;
1427 }
1428 break;
1429 case MSR_CORE_PERF_GLOBAL_CTRL:
1430 if (cpu_has_load_perf_global_ctrl) {
1431 clear_atomic_switch_msr_special(
1432 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1433 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1434 return;
1435 }
1436 break;
110312c8
AK
1437 }
1438
61d2ef2c
AK
1439 for (i = 0; i < m->nr; ++i)
1440 if (m->guest[i].index == msr)
1441 break;
1442
1443 if (i == m->nr)
1444 return;
1445 --m->nr;
1446 m->guest[i] = m->guest[m->nr];
1447 m->host[i] = m->host[m->nr];
1448 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1449 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1450}
1451
8bf00a52
GN
1452static void add_atomic_switch_msr_special(unsigned long entry,
1453 unsigned long exit, unsigned long guest_val_vmcs,
1454 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1455{
1456 vmcs_write64(guest_val_vmcs, guest_val);
1457 vmcs_write64(host_val_vmcs, host_val);
1458 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1459 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1460}
1461
61d2ef2c
AK
1462static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1463 u64 guest_val, u64 host_val)
1464{
1465 unsigned i;
1466 struct msr_autoload *m = &vmx->msr_autoload;
1467
8bf00a52
GN
1468 switch (msr) {
1469 case MSR_EFER:
1470 if (cpu_has_load_ia32_efer) {
1471 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1472 VM_EXIT_LOAD_IA32_EFER,
1473 GUEST_IA32_EFER,
1474 HOST_IA32_EFER,
1475 guest_val, host_val);
1476 return;
1477 }
1478 break;
1479 case MSR_CORE_PERF_GLOBAL_CTRL:
1480 if (cpu_has_load_perf_global_ctrl) {
1481 add_atomic_switch_msr_special(
1482 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1483 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1484 GUEST_IA32_PERF_GLOBAL_CTRL,
1485 HOST_IA32_PERF_GLOBAL_CTRL,
1486 guest_val, host_val);
1487 return;
1488 }
1489 break;
110312c8
AK
1490 }
1491
61d2ef2c
AK
1492 for (i = 0; i < m->nr; ++i)
1493 if (m->guest[i].index == msr)
1494 break;
1495
e7fc6f93
GN
1496 if (i == NR_AUTOLOAD_MSRS) {
1497 printk_once(KERN_WARNING"Not enough mst switch entries. "
1498 "Can't add msr %x\n", msr);
1499 return;
1500 } else if (i == m->nr) {
61d2ef2c
AK
1501 ++m->nr;
1502 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1503 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1504 }
1505
1506 m->guest[i].index = msr;
1507 m->guest[i].value = guest_val;
1508 m->host[i].index = msr;
1509 m->host[i].value = host_val;
1510}
1511
33ed6329
AK
1512static void reload_tss(void)
1513{
33ed6329
AK
1514 /*
1515 * VT restores TR but not its size. Useless.
1516 */
d359192f 1517 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1518 struct desc_struct *descs;
33ed6329 1519
d359192f 1520 descs = (void *)gdt->address;
33ed6329
AK
1521 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1522 load_TR_desc();
33ed6329
AK
1523}
1524
92c0d900 1525static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1526{
3a34a881 1527 u64 guest_efer;
51c6cf66
AK
1528 u64 ignore_bits;
1529
f6801dff 1530 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1531
51c6cf66 1532 /*
0fa06071 1533 * NX is emulated; LMA and LME handled by hardware; SCE meaningless
51c6cf66
AK
1534 * outside long mode
1535 */
1536 ignore_bits = EFER_NX | EFER_SCE;
1537#ifdef CONFIG_X86_64
1538 ignore_bits |= EFER_LMA | EFER_LME;
1539 /* SCE is meaningful only in long mode on Intel */
1540 if (guest_efer & EFER_LMA)
1541 ignore_bits &= ~(u64)EFER_SCE;
1542#endif
51c6cf66
AK
1543 guest_efer &= ~ignore_bits;
1544 guest_efer |= host_efer & ignore_bits;
26bb0981 1545 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1546 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1547
1548 clear_atomic_switch_msr(vmx, MSR_EFER);
1549 /* On ept, can't emulate nx, and must switch nx atomically */
1550 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1551 guest_efer = vmx->vcpu.arch.efer;
1552 if (!(guest_efer & EFER_LMA))
1553 guest_efer &= ~EFER_LME;
1554 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1555 return false;
1556 }
1557
26bb0981 1558 return true;
51c6cf66
AK
1559}
1560
2d49ec72
GN
1561static unsigned long segment_base(u16 selector)
1562{
d359192f 1563 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1564 struct desc_struct *d;
1565 unsigned long table_base;
1566 unsigned long v;
1567
1568 if (!(selector & ~3))
1569 return 0;
1570
d359192f 1571 table_base = gdt->address;
2d49ec72
GN
1572
1573 if (selector & 4) { /* from ldt */
1574 u16 ldt_selector = kvm_read_ldt();
1575
1576 if (!(ldt_selector & ~3))
1577 return 0;
1578
1579 table_base = segment_base(ldt_selector);
1580 }
1581 d = (struct desc_struct *)(table_base + (selector & ~7));
1582 v = get_desc_base(d);
1583#ifdef CONFIG_X86_64
1584 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1585 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1586#endif
1587 return v;
1588}
1589
1590static inline unsigned long kvm_read_tr_base(void)
1591{
1592 u16 tr;
1593 asm("str %0" : "=g"(tr));
1594 return segment_base(tr);
1595}
1596
04d2cc77 1597static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1598{
04d2cc77 1599 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1600 int i;
04d2cc77 1601
a2fa3e9f 1602 if (vmx->host_state.loaded)
33ed6329
AK
1603 return;
1604
a2fa3e9f 1605 vmx->host_state.loaded = 1;
33ed6329
AK
1606 /*
1607 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1608 * allow segment selectors with cpl > 0 or ti == 1.
1609 */
d6e88aec 1610 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1611 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1612 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1613 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1614 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1615 vmx->host_state.fs_reload_needed = 0;
1616 } else {
33ed6329 1617 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1618 vmx->host_state.fs_reload_needed = 1;
33ed6329 1619 }
9581d442 1620 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1621 if (!(vmx->host_state.gs_sel & 7))
1622 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1623 else {
1624 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1625 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1626 }
1627
b2da15ac
AK
1628#ifdef CONFIG_X86_64
1629 savesegment(ds, vmx->host_state.ds_sel);
1630 savesegment(es, vmx->host_state.es_sel);
1631#endif
1632
33ed6329
AK
1633#ifdef CONFIG_X86_64
1634 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1635 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1636#else
a2fa3e9f
GH
1637 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1638 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1639#endif
707c0874
AK
1640
1641#ifdef CONFIG_X86_64
c8770e7b
AK
1642 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1643 if (is_long_mode(&vmx->vcpu))
44ea2b17 1644 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1645#endif
26bb0981
AK
1646 for (i = 0; i < vmx->save_nmsrs; ++i)
1647 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1648 vmx->guest_msrs[i].data,
1649 vmx->guest_msrs[i].mask);
33ed6329
AK
1650}
1651
a9b21b62 1652static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1653{
a2fa3e9f 1654 if (!vmx->host_state.loaded)
33ed6329
AK
1655 return;
1656
e1beb1d3 1657 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1658 vmx->host_state.loaded = 0;
c8770e7b
AK
1659#ifdef CONFIG_X86_64
1660 if (is_long_mode(&vmx->vcpu))
1661 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1662#endif
152d3f2f 1663 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1664 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1665#ifdef CONFIG_X86_64
9581d442 1666 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1667#else
1668 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1669#endif
33ed6329 1670 }
0a77fe4c
AK
1671 if (vmx->host_state.fs_reload_needed)
1672 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
1673#ifdef CONFIG_X86_64
1674 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1675 loadsegment(ds, vmx->host_state.ds_sel);
1676 loadsegment(es, vmx->host_state.es_sel);
1677 }
b2da15ac 1678#endif
152d3f2f 1679 reload_tss();
44ea2b17 1680#ifdef CONFIG_X86_64
c8770e7b 1681 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1682#endif
b1a74bf8
SS
1683 /*
1684 * If the FPU is not active (through the host task or
1685 * the guest vcpu), then restore the cr0.TS bit.
1686 */
1687 if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1688 stts();
3444d7da 1689 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1690}
1691
a9b21b62
AK
1692static void vmx_load_host_state(struct vcpu_vmx *vmx)
1693{
1694 preempt_disable();
1695 __vmx_load_host_state(vmx);
1696 preempt_enable();
1697}
1698
6aa8b732
AK
1699/*
1700 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1701 * vcpu mutex is already taken.
1702 */
15ad7146 1703static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1704{
a2fa3e9f 1705 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1706 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1707
4610c9cc
DX
1708 if (!vmm_exclusive)
1709 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1710 else if (vmx->loaded_vmcs->cpu != cpu)
1711 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1712
d462b819
NHE
1713 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1714 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1715 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1716 }
1717
d462b819 1718 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1719 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1720 unsigned long sysenter_esp;
1721
a8eeb04a 1722 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1723 local_irq_disable();
8f536b76 1724 crash_disable_local_vmclear(cpu);
5a560f8b
XG
1725
1726 /*
1727 * Read loaded_vmcs->cpu should be before fetching
1728 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1729 * See the comments in __loaded_vmcs_clear().
1730 */
1731 smp_rmb();
1732
d462b819
NHE
1733 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1734 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 1735 crash_enable_local_vmclear(cpu);
92fe13be
DX
1736 local_irq_enable();
1737
6aa8b732
AK
1738 /*
1739 * Linux uses per-cpu TSS and GDT, so set these when switching
1740 * processors.
1741 */
d6e88aec 1742 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1743 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1744
1745 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1746 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1747 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1748 }
6aa8b732
AK
1749}
1750
1751static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1752{
a9b21b62 1753 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1754 if (!vmm_exclusive) {
d462b819
NHE
1755 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1756 vcpu->cpu = -1;
4610c9cc
DX
1757 kvm_cpu_vmxoff();
1758 }
6aa8b732
AK
1759}
1760
5fd86fcf
AK
1761static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1762{
81231c69
AK
1763 ulong cr0;
1764
5fd86fcf
AK
1765 if (vcpu->fpu_active)
1766 return;
1767 vcpu->fpu_active = 1;
81231c69
AK
1768 cr0 = vmcs_readl(GUEST_CR0);
1769 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1770 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1771 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1772 update_exception_bitmap(vcpu);
edcafe3c 1773 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1774 if (is_guest_mode(vcpu))
1775 vcpu->arch.cr0_guest_owned_bits &=
1776 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1777 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1778}
1779
edcafe3c
AK
1780static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1781
fe3ef05c
NHE
1782/*
1783 * Return the cr0 value that a nested guest would read. This is a combination
1784 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1785 * its hypervisor (cr0_read_shadow).
1786 */
1787static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1788{
1789 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1790 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1791}
1792static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1793{
1794 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1795 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1796}
1797
5fd86fcf
AK
1798static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1799{
36cf24e0
NHE
1800 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1801 * set this *before* calling this function.
1802 */
edcafe3c 1803 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1804 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1805 update_exception_bitmap(vcpu);
edcafe3c
AK
1806 vcpu->arch.cr0_guest_owned_bits = 0;
1807 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1808 if (is_guest_mode(vcpu)) {
1809 /*
1810 * L1's specified read shadow might not contain the TS bit,
1811 * so now that we turned on shadowing of this bit, we need to
1812 * set this bit of the shadow. Like in nested_vmx_run we need
1813 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1814 * up-to-date here because we just decached cr0.TS (and we'll
1815 * only update vmcs12->guest_cr0 on nested exit).
1816 */
1817 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1818 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1819 (vcpu->arch.cr0 & X86_CR0_TS);
1820 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1821 } else
1822 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1823}
1824
6aa8b732
AK
1825static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1826{
78ac8b47 1827 unsigned long rflags, save_rflags;
345dcaa8 1828
6de12732
AK
1829 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1830 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1831 rflags = vmcs_readl(GUEST_RFLAGS);
1832 if (to_vmx(vcpu)->rmode.vm86_active) {
1833 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1834 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1835 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1836 }
1837 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1838 }
6de12732 1839 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1840}
1841
1842static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1843{
6de12732
AK
1844 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1845 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1846 if (to_vmx(vcpu)->rmode.vm86_active) {
1847 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1848 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1849 }
6aa8b732
AK
1850 vmcs_writel(GUEST_RFLAGS, rflags);
1851}
1852
2809f5d2
GC
1853static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1854{
1855 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1856 int ret = 0;
1857
1858 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1859 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1860 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1861 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1862
1863 return ret & mask;
1864}
1865
1866static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1867{
1868 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1869 u32 interruptibility = interruptibility_old;
1870
1871 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1872
48005f64 1873 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1874 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1875 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1876 interruptibility |= GUEST_INTR_STATE_STI;
1877
1878 if ((interruptibility != interruptibility_old))
1879 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1880}
1881
6aa8b732
AK
1882static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1883{
1884 unsigned long rip;
6aa8b732 1885
5fdbf976 1886 rip = kvm_rip_read(vcpu);
6aa8b732 1887 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1888 kvm_rip_write(vcpu, rip);
6aa8b732 1889
2809f5d2
GC
1890 /* skipping an emulated instruction also counts */
1891 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1892}
1893
0b6ac343
NHE
1894/*
1895 * KVM wants to inject page-faults which it got to the guest. This function
1896 * checks whether in a nested guest, we need to inject them to L1 or L2.
1897 * This function assumes it is called with the exit reason in vmcs02 being
1898 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1899 * is running).
1900 */
1901static int nested_pf_handled(struct kvm_vcpu *vcpu)
1902{
1903 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1904
1905 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
95871901 1906 if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
0b6ac343
NHE
1907 return 0;
1908
1909 nested_vmx_vmexit(vcpu);
1910 return 1;
1911}
1912
298101da 1913static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1914 bool has_error_code, u32 error_code,
1915 bool reinject)
298101da 1916{
77ab6db0 1917 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1918 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1919
0b6ac343 1920 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
5a2892ce 1921 !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
0b6ac343
NHE
1922 return;
1923
8ab2d2e2 1924 if (has_error_code) {
77ab6db0 1925 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1926 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1927 }
77ab6db0 1928
7ffd92c5 1929 if (vmx->rmode.vm86_active) {
71f9833b
SH
1930 int inc_eip = 0;
1931 if (kvm_exception_is_soft(nr))
1932 inc_eip = vcpu->arch.event_exit_inst_len;
1933 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1934 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1935 return;
1936 }
1937
66fd3f7f
GN
1938 if (kvm_exception_is_soft(nr)) {
1939 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1940 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1941 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1942 } else
1943 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1944
1945 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
1946}
1947
4e47c7a6
SY
1948static bool vmx_rdtscp_supported(void)
1949{
1950 return cpu_has_vmx_rdtscp();
1951}
1952
ad756a16
MJ
1953static bool vmx_invpcid_supported(void)
1954{
1955 return cpu_has_vmx_invpcid() && enable_ept;
1956}
1957
a75beee6
ED
1958/*
1959 * Swap MSR entry in host/guest MSR entry array.
1960 */
8b9cf98c 1961static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1962{
26bb0981 1963 struct shared_msr_entry tmp;
a2fa3e9f
GH
1964
1965 tmp = vmx->guest_msrs[to];
1966 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1967 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1968}
1969
8d14695f
YZ
1970static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1971{
1972 unsigned long *msr_bitmap;
1973
1974 if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1975 if (is_long_mode(vcpu))
1976 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1977 else
1978 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1979 } else {
1980 if (is_long_mode(vcpu))
1981 msr_bitmap = vmx_msr_bitmap_longmode;
1982 else
1983 msr_bitmap = vmx_msr_bitmap_legacy;
1984 }
1985
1986 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1987}
1988
e38aea3e
AK
1989/*
1990 * Set up the vmcs to automatically save and restore system
1991 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1992 * mode, as fiddling with msrs is very expensive.
1993 */
8b9cf98c 1994static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1995{
26bb0981 1996 int save_nmsrs, index;
e38aea3e 1997
a75beee6
ED
1998 save_nmsrs = 0;
1999#ifdef CONFIG_X86_64
8b9cf98c 2000 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2001 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2002 if (index >= 0)
8b9cf98c
RR
2003 move_msr_up(vmx, index, save_nmsrs++);
2004 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2005 if (index >= 0)
8b9cf98c
RR
2006 move_msr_up(vmx, index, save_nmsrs++);
2007 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2008 if (index >= 0)
8b9cf98c 2009 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
2010 index = __find_msr_index(vmx, MSR_TSC_AUX);
2011 if (index >= 0 && vmx->rdtscp_enabled)
2012 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2013 /*
8c06585d 2014 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2015 * if efer.sce is enabled.
2016 */
8c06585d 2017 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2018 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2019 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2020 }
2021#endif
92c0d900
AK
2022 index = __find_msr_index(vmx, MSR_EFER);
2023 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2024 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2025
26bb0981 2026 vmx->save_nmsrs = save_nmsrs;
5897297b 2027
8d14695f
YZ
2028 if (cpu_has_vmx_msr_bitmap())
2029 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2030}
2031
6aa8b732
AK
2032/*
2033 * reads and returns guest's timestamp counter "register"
2034 * guest_tsc = host_tsc + tsc_offset -- 21.3
2035 */
2036static u64 guest_read_tsc(void)
2037{
2038 u64 host_tsc, tsc_offset;
2039
2040 rdtscll(host_tsc);
2041 tsc_offset = vmcs_read64(TSC_OFFSET);
2042 return host_tsc + tsc_offset;
2043}
2044
d5c1785d
NHE
2045/*
2046 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2047 * counter, even if a nested guest (L2) is currently running.
2048 */
886b470c 2049u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2050{
886b470c 2051 u64 tsc_offset;
d5c1785d 2052
d5c1785d
NHE
2053 tsc_offset = is_guest_mode(vcpu) ?
2054 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2055 vmcs_read64(TSC_OFFSET);
2056 return host_tsc + tsc_offset;
2057}
2058
4051b188 2059/*
cc578287
ZA
2060 * Engage any workarounds for mis-matched TSC rates. Currently limited to
2061 * software catchup for faster rates on slower CPUs.
4051b188 2062 */
cc578287 2063static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 2064{
cc578287
ZA
2065 if (!scale)
2066 return;
2067
2068 if (user_tsc_khz > tsc_khz) {
2069 vcpu->arch.tsc_catchup = 1;
2070 vcpu->arch.tsc_always_catchup = 1;
2071 } else
2072 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
2073}
2074
ba904635
WA
2075static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2076{
2077 return vmcs_read64(TSC_OFFSET);
2078}
2079
6aa8b732 2080/*
99e3e30a 2081 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2082 */
99e3e30a 2083static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2084{
27fc51b2 2085 if (is_guest_mode(vcpu)) {
7991825b 2086 /*
27fc51b2
NHE
2087 * We're here if L1 chose not to trap WRMSR to TSC. According
2088 * to the spec, this should set L1's TSC; The offset that L1
2089 * set for L2 remains unchanged, and still needs to be added
2090 * to the newly set TSC to get L2's TSC.
7991825b 2091 */
27fc51b2
NHE
2092 struct vmcs12 *vmcs12;
2093 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2094 /* recalculate vmcs02.TSC_OFFSET: */
2095 vmcs12 = get_vmcs12(vcpu);
2096 vmcs_write64(TSC_OFFSET, offset +
2097 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2098 vmcs12->tsc_offset : 0));
2099 } else {
489223ed
YY
2100 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2101 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2102 vmcs_write64(TSC_OFFSET, offset);
2103 }
6aa8b732
AK
2104}
2105
f1e2b260 2106static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
2107{
2108 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2109
e48672fa 2110 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2111 if (is_guest_mode(vcpu)) {
2112 /* Even when running L2, the adjustment needs to apply to L1 */
2113 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2114 } else
2115 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2116 offset + adjustment);
e48672fa
ZA
2117}
2118
857e4099
JR
2119static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2120{
2121 return target_tsc - native_read_tsc();
2122}
2123
801d3424
NHE
2124static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2125{
2126 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2127 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2128}
2129
2130/*
2131 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2132 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2133 * all guests if the "nested" module option is off, and can also be disabled
2134 * for a single guest by disabling its VMX cpuid bit.
2135 */
2136static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2137{
2138 return nested && guest_cpuid_has_vmx(vcpu);
2139}
2140
b87a51ae
NHE
2141/*
2142 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2143 * returned for the various VMX controls MSRs when nested VMX is enabled.
2144 * The same values should also be used to verify that vmcs12 control fields are
2145 * valid during nested entry from L1 to L2.
2146 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2147 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2148 * bit in the high half is on if the corresponding bit in the control field
2149 * may be on. See also vmx_control_verify().
2150 * TODO: allow these variables to be modified (downgraded) by module options
2151 * or other means.
2152 */
2153static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2154static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2155static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2156static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2157static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
c18911a2 2158static u32 nested_vmx_misc_low, nested_vmx_misc_high;
b87a51ae
NHE
2159static __init void nested_vmx_setup_ctls_msrs(void)
2160{
2161 /*
2162 * Note that as a general rule, the high half of the MSRs (bits in
2163 * the control fields which may be 1) should be initialized by the
2164 * intersection of the underlying hardware's MSR (i.e., features which
2165 * can be supported) and the list of features we want to expose -
2166 * because they are known to be properly supported in our code.
2167 * Also, usually, the low half of the MSRs (bits which must be 1) can
2168 * be set to 0, meaning that L1 may turn off any of these bits. The
2169 * reason is that if one of these bits is necessary, it will appear
2170 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2171 * fields of vmcs01 and vmcs02, will turn these bits off - and
2172 * nested_vmx_exit_handled() will not pass related exits to L1.
2173 * These rules have exceptions below.
2174 */
2175
2176 /* pin-based controls */
eabeaacc
JK
2177 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2178 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2179 /*
2180 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2181 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2182 */
eabeaacc
JK
2183 nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2184 nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
0238ea91
JK
2185 PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2186 PIN_BASED_VMX_PREEMPTION_TIMER;
eabeaacc 2187 nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae 2188
33fb20c3
JK
2189 /*
2190 * Exit controls
2191 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2192 * 17 must be 1.
2193 */
2194 nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b6f1250e 2195 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
2196#ifdef CONFIG_X86_64
2197 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2198#else
2199 nested_vmx_exit_ctls_high = 0;
2200#endif
33fb20c3 2201 nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2202
2203 /* entry controls */
2204 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2205 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
33fb20c3
JK
2206 /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2207 nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2208 nested_vmx_entry_ctls_high &=
2209 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
33fb20c3 2210 nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
2211
2212 /* cpu-based controls */
2213 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2214 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2215 nested_vmx_procbased_ctls_low = 0;
2216 nested_vmx_procbased_ctls_high &=
2217 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2218 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2219 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2220 CPU_BASED_CR3_STORE_EXITING |
2221#ifdef CONFIG_X86_64
2222 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2223#endif
2224 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2225 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
dbcb4e79 2226 CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
d6851fbe 2227 CPU_BASED_PAUSE_EXITING |
b87a51ae
NHE
2228 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2229 /*
2230 * We can allow some features even when not supported by the
2231 * hardware. For example, L1 can specify an MSR bitmap - and we
2232 * can use it to avoid exits to L1 - even when L0 runs L2
2233 * without MSR bitmaps.
2234 */
2235 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2236
2237 /* secondary cpu-based controls */
2238 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2239 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2240 nested_vmx_secondary_ctls_low = 0;
2241 nested_vmx_secondary_ctls_high &=
d6851fbe
JK
2242 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2243 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2
JK
2244
2245 /* miscellaneous data */
2246 rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
0238ea91
JK
2247 nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2248 VMX_MISC_SAVE_EFER_LMA;
c18911a2 2249 nested_vmx_misc_high = 0;
b87a51ae
NHE
2250}
2251
2252static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2253{
2254 /*
2255 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2256 */
2257 return ((control & high) | low) == control;
2258}
2259
2260static inline u64 vmx_control_msr(u32 low, u32 high)
2261{
2262 return low | ((u64)high << 32);
2263}
2264
2265/*
2266 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2267 * also let it use VMX-specific MSRs.
2268 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2269 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2270 * like all other MSRs).
2271 */
2272static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2273{
2274 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2275 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2276 /*
2277 * According to the spec, processors which do not support VMX
2278 * should throw a #GP(0) when VMX capability MSRs are read.
2279 */
2280 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2281 return 1;
2282 }
2283
2284 switch (msr_index) {
2285 case MSR_IA32_FEATURE_CONTROL:
b3897a49
NHE
2286 if (nested_vmx_allowed(vcpu)) {
2287 *pdata = to_vmx(vcpu)->nested.msr_ia32_feature_control;
2288 break;
2289 }
2290 return 0;
b87a51ae
NHE
2291 case MSR_IA32_VMX_BASIC:
2292 /*
2293 * This MSR reports some information about VMX support. We
2294 * should return information about the VMX we emulate for the
2295 * guest, and the VMCS structure we give it - not about the
2296 * VMX support of the underlying hardware.
2297 */
2298 *pdata = VMCS12_REVISION |
2299 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2300 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2301 break;
2302 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2303 case MSR_IA32_VMX_PINBASED_CTLS:
2304 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2305 nested_vmx_pinbased_ctls_high);
2306 break;
2307 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2308 case MSR_IA32_VMX_PROCBASED_CTLS:
2309 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2310 nested_vmx_procbased_ctls_high);
2311 break;
2312 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2313 case MSR_IA32_VMX_EXIT_CTLS:
2314 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2315 nested_vmx_exit_ctls_high);
2316 break;
2317 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2318 case MSR_IA32_VMX_ENTRY_CTLS:
2319 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2320 nested_vmx_entry_ctls_high);
2321 break;
2322 case MSR_IA32_VMX_MISC:
c18911a2
JK
2323 *pdata = vmx_control_msr(nested_vmx_misc_low,
2324 nested_vmx_misc_high);
b87a51ae
NHE
2325 break;
2326 /*
2327 * These MSRs specify bits which the guest must keep fixed (on or off)
2328 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2329 * We picked the standard core2 setting.
2330 */
2331#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2332#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2333 case MSR_IA32_VMX_CR0_FIXED0:
2334 *pdata = VMXON_CR0_ALWAYSON;
2335 break;
2336 case MSR_IA32_VMX_CR0_FIXED1:
2337 *pdata = -1ULL;
2338 break;
2339 case MSR_IA32_VMX_CR4_FIXED0:
2340 *pdata = VMXON_CR4_ALWAYSON;
2341 break;
2342 case MSR_IA32_VMX_CR4_FIXED1:
2343 *pdata = -1ULL;
2344 break;
2345 case MSR_IA32_VMX_VMCS_ENUM:
2346 *pdata = 0x1f;
2347 break;
2348 case MSR_IA32_VMX_PROCBASED_CTLS2:
2349 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2350 nested_vmx_secondary_ctls_high);
2351 break;
2352 case MSR_IA32_VMX_EPT_VPID_CAP:
2353 /* Currently, no nested ept or nested vpid */
2354 *pdata = 0;
2355 break;
2356 default:
2357 return 0;
2358 }
2359
2360 return 1;
2361}
2362
b3897a49 2363static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
b87a51ae 2364{
b3897a49
NHE
2365 u32 msr_index = msr_info->index;
2366 u64 data = msr_info->data;
2367 bool host_initialized = msr_info->host_initiated;
2368
b87a51ae
NHE
2369 if (!nested_vmx_allowed(vcpu))
2370 return 0;
2371
b3897a49
NHE
2372 if (msr_index == MSR_IA32_FEATURE_CONTROL) {
2373 if (!host_initialized &&
2374 to_vmx(vcpu)->nested.msr_ia32_feature_control
2375 & FEATURE_CONTROL_LOCKED)
2376 return 0;
2377 to_vmx(vcpu)->nested.msr_ia32_feature_control = data;
b87a51ae 2378 return 1;
b3897a49
NHE
2379 }
2380
b87a51ae
NHE
2381 /*
2382 * No need to treat VMX capability MSRs specially: If we don't handle
2383 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2384 */
2385 return 0;
2386}
2387
6aa8b732
AK
2388/*
2389 * Reads an msr value (of 'msr_index') into 'pdata'.
2390 * Returns 0 on success, non-0 otherwise.
2391 * Assumes vcpu_load() was already called.
2392 */
2393static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2394{
2395 u64 data;
26bb0981 2396 struct shared_msr_entry *msr;
6aa8b732
AK
2397
2398 if (!pdata) {
2399 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2400 return -EINVAL;
2401 }
2402
2403 switch (msr_index) {
05b3e0c2 2404#ifdef CONFIG_X86_64
6aa8b732
AK
2405 case MSR_FS_BASE:
2406 data = vmcs_readl(GUEST_FS_BASE);
2407 break;
2408 case MSR_GS_BASE:
2409 data = vmcs_readl(GUEST_GS_BASE);
2410 break;
44ea2b17
AK
2411 case MSR_KERNEL_GS_BASE:
2412 vmx_load_host_state(to_vmx(vcpu));
2413 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2414 break;
26bb0981 2415#endif
6aa8b732 2416 case MSR_EFER:
3bab1f5d 2417 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2418 case MSR_IA32_TSC:
6aa8b732
AK
2419 data = guest_read_tsc();
2420 break;
2421 case MSR_IA32_SYSENTER_CS:
2422 data = vmcs_read32(GUEST_SYSENTER_CS);
2423 break;
2424 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2425 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2426 break;
2427 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2428 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2429 break;
4e47c7a6
SY
2430 case MSR_TSC_AUX:
2431 if (!to_vmx(vcpu)->rdtscp_enabled)
2432 return 1;
2433 /* Otherwise falls through */
6aa8b732 2434 default:
b87a51ae
NHE
2435 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2436 return 0;
8b9cf98c 2437 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2438 if (msr) {
2439 data = msr->data;
2440 break;
6aa8b732 2441 }
3bab1f5d 2442 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2443 }
2444
2445 *pdata = data;
2446 return 0;
2447}
2448
2449/*
2450 * Writes msr value into into the appropriate "register".
2451 * Returns 0 on success, non-0 otherwise.
2452 * Assumes vcpu_load() was already called.
2453 */
8fe8ab46 2454static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2455{
a2fa3e9f 2456 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2457 struct shared_msr_entry *msr;
2cc51560 2458 int ret = 0;
8fe8ab46
WA
2459 u32 msr_index = msr_info->index;
2460 u64 data = msr_info->data;
2cc51560 2461
6aa8b732 2462 switch (msr_index) {
3bab1f5d 2463 case MSR_EFER:
8fe8ab46 2464 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2465 break;
16175a79 2466#ifdef CONFIG_X86_64
6aa8b732 2467 case MSR_FS_BASE:
2fb92db1 2468 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2469 vmcs_writel(GUEST_FS_BASE, data);
2470 break;
2471 case MSR_GS_BASE:
2fb92db1 2472 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2473 vmcs_writel(GUEST_GS_BASE, data);
2474 break;
44ea2b17
AK
2475 case MSR_KERNEL_GS_BASE:
2476 vmx_load_host_state(vmx);
2477 vmx->msr_guest_kernel_gs_base = data;
2478 break;
6aa8b732
AK
2479#endif
2480 case MSR_IA32_SYSENTER_CS:
2481 vmcs_write32(GUEST_SYSENTER_CS, data);
2482 break;
2483 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2484 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2485 break;
2486 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2487 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2488 break;
af24a4e4 2489 case MSR_IA32_TSC:
8fe8ab46 2490 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2491 break;
468d472f
SY
2492 case MSR_IA32_CR_PAT:
2493 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2494 vmcs_write64(GUEST_IA32_PAT, data);
2495 vcpu->arch.pat = data;
2496 break;
2497 }
8fe8ab46 2498 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2499 break;
ba904635
WA
2500 case MSR_IA32_TSC_ADJUST:
2501 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6
SY
2502 break;
2503 case MSR_TSC_AUX:
2504 if (!vmx->rdtscp_enabled)
2505 return 1;
2506 /* Check reserved bit, higher 32 bits should be zero */
2507 if ((data >> 32) != 0)
2508 return 1;
2509 /* Otherwise falls through */
6aa8b732 2510 default:
b3897a49 2511 if (vmx_set_vmx_msr(vcpu, msr_info))
b87a51ae 2512 break;
8b9cf98c 2513 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2514 if (msr) {
2515 msr->data = data;
2225fd56
AK
2516 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2517 preempt_disable();
9ee73970
AK
2518 kvm_set_shared_msr(msr->index, msr->data,
2519 msr->mask);
2225fd56
AK
2520 preempt_enable();
2521 }
3bab1f5d 2522 break;
6aa8b732 2523 }
8fe8ab46 2524 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
2525 }
2526
2cc51560 2527 return ret;
6aa8b732
AK
2528}
2529
5fdbf976 2530static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2531{
5fdbf976
MT
2532 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2533 switch (reg) {
2534 case VCPU_REGS_RSP:
2535 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2536 break;
2537 case VCPU_REGS_RIP:
2538 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2539 break;
6de4f3ad
AK
2540 case VCPU_EXREG_PDPTR:
2541 if (enable_ept)
2542 ept_save_pdptrs(vcpu);
2543 break;
5fdbf976
MT
2544 default:
2545 break;
2546 }
6aa8b732
AK
2547}
2548
6aa8b732
AK
2549static __init int cpu_has_kvm_support(void)
2550{
6210e37b 2551 return cpu_has_vmx();
6aa8b732
AK
2552}
2553
2554static __init int vmx_disabled_by_bios(void)
2555{
2556 u64 msr;
2557
2558 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2559 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2560 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2561 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2562 && tboot_enabled())
2563 return 1;
23f3e991 2564 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2565 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2566 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2567 && !tboot_enabled()) {
2568 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2569 "activate TXT before enabling KVM\n");
cafd6659 2570 return 1;
f9335afe 2571 }
23f3e991
JC
2572 /* launched w/o TXT and VMX disabled */
2573 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2574 && !tboot_enabled())
2575 return 1;
cafd6659
SW
2576 }
2577
2578 return 0;
6aa8b732
AK
2579}
2580
7725b894
DX
2581static void kvm_cpu_vmxon(u64 addr)
2582{
2583 asm volatile (ASM_VMX_VMXON_RAX
2584 : : "a"(&addr), "m"(addr)
2585 : "memory", "cc");
2586}
2587
10474ae8 2588static int hardware_enable(void *garbage)
6aa8b732
AK
2589{
2590 int cpu = raw_smp_processor_id();
2591 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2592 u64 old, test_bits;
6aa8b732 2593
10474ae8
AG
2594 if (read_cr4() & X86_CR4_VMXE)
2595 return -EBUSY;
2596
d462b819 2597 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76
ZY
2598
2599 /*
2600 * Now we can enable the vmclear operation in kdump
2601 * since the loaded_vmcss_on_cpu list on this cpu
2602 * has been initialized.
2603 *
2604 * Though the cpu is not in VMX operation now, there
2605 * is no problem to enable the vmclear operation
2606 * for the loaded_vmcss_on_cpu list is empty!
2607 */
2608 crash_enable_local_vmclear(cpu);
2609
6aa8b732 2610 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2611
2612 test_bits = FEATURE_CONTROL_LOCKED;
2613 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2614 if (tboot_enabled())
2615 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2616
2617 if ((old & test_bits) != test_bits) {
6aa8b732 2618 /* enable and lock */
cafd6659
SW
2619 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2620 }
66aee91a 2621 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2622
4610c9cc
DX
2623 if (vmm_exclusive) {
2624 kvm_cpu_vmxon(phys_addr);
2625 ept_sync_global();
2626 }
10474ae8 2627
357d1226 2628 native_store_gdt(&__get_cpu_var(host_gdt));
3444d7da 2629
10474ae8 2630 return 0;
6aa8b732
AK
2631}
2632
d462b819 2633static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2634{
2635 int cpu = raw_smp_processor_id();
d462b819 2636 struct loaded_vmcs *v, *n;
543e4243 2637
d462b819
NHE
2638 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2639 loaded_vmcss_on_cpu_link)
2640 __loaded_vmcs_clear(v);
543e4243
AK
2641}
2642
710ff4a8
EH
2643
2644/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2645 * tricks.
2646 */
2647static void kvm_cpu_vmxoff(void)
6aa8b732 2648{
4ecac3fd 2649 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2650}
2651
710ff4a8
EH
2652static void hardware_disable(void *garbage)
2653{
4610c9cc 2654 if (vmm_exclusive) {
d462b819 2655 vmclear_local_loaded_vmcss();
4610c9cc
DX
2656 kvm_cpu_vmxoff();
2657 }
7725b894 2658 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2659}
2660
1c3d14fe 2661static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2662 u32 msr, u32 *result)
1c3d14fe
YS
2663{
2664 u32 vmx_msr_low, vmx_msr_high;
2665 u32 ctl = ctl_min | ctl_opt;
2666
2667 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2668
2669 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2670 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2671
2672 /* Ensure minimum (required) set of control bits are supported. */
2673 if (ctl_min & ~ctl)
002c7f7c 2674 return -EIO;
1c3d14fe
YS
2675
2676 *result = ctl;
2677 return 0;
2678}
2679
110312c8
AK
2680static __init bool allow_1_setting(u32 msr, u32 ctl)
2681{
2682 u32 vmx_msr_low, vmx_msr_high;
2683
2684 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2685 return vmx_msr_high & ctl;
2686}
2687
002c7f7c 2688static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2689{
2690 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2691 u32 min, opt, min2, opt2;
1c3d14fe
YS
2692 u32 _pin_based_exec_control = 0;
2693 u32 _cpu_based_exec_control = 0;
f78e0e2e 2694 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2695 u32 _vmexit_control = 0;
2696 u32 _vmentry_control = 0;
2697
10166744 2698 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
2699#ifdef CONFIG_X86_64
2700 CPU_BASED_CR8_LOAD_EXITING |
2701 CPU_BASED_CR8_STORE_EXITING |
2702#endif
d56f546d
SY
2703 CPU_BASED_CR3_LOAD_EXITING |
2704 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2705 CPU_BASED_USE_IO_BITMAPS |
2706 CPU_BASED_MOV_DR_EXITING |
a7052897 2707 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2708 CPU_BASED_MWAIT_EXITING |
2709 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2710 CPU_BASED_INVLPG_EXITING |
2711 CPU_BASED_RDPMC_EXITING;
443381a8 2712
f78e0e2e 2713 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2714 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2715 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2716 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2717 &_cpu_based_exec_control) < 0)
002c7f7c 2718 return -EIO;
6e5d865c
YS
2719#ifdef CONFIG_X86_64
2720 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2721 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2722 ~CPU_BASED_CR8_STORE_EXITING;
2723#endif
f78e0e2e 2724 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2725 min2 = 0;
2726 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 2727 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 2728 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2729 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2730 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2731 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 2732 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 2733 SECONDARY_EXEC_RDTSCP |
83d4c286 2734 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 2735 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58
AG
2736 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2737 SECONDARY_EXEC_SHADOW_VMCS;
d56f546d
SY
2738 if (adjust_vmx_controls(min2, opt2,
2739 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2740 &_cpu_based_2nd_exec_control) < 0)
2741 return -EIO;
2742 }
2743#ifndef CONFIG_X86_64
2744 if (!(_cpu_based_2nd_exec_control &
2745 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2746 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2747#endif
83d4c286
YZ
2748
2749 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2750 _cpu_based_2nd_exec_control &= ~(
8d14695f 2751 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
2752 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2753 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 2754
d56f546d 2755 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2756 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2757 enabled */
5fff7d27
GN
2758 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2759 CPU_BASED_CR3_STORE_EXITING |
2760 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2761 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2762 vmx_capability.ept, vmx_capability.vpid);
2763 }
1c3d14fe
YS
2764
2765 min = 0;
2766#ifdef CONFIG_X86_64
2767 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2768#endif
a547c6db
YZ
2769 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2770 VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
2771 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2772 &_vmexit_control) < 0)
002c7f7c 2773 return -EIO;
1c3d14fe 2774
01e439be
YZ
2775 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2776 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2777 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2778 &_pin_based_exec_control) < 0)
2779 return -EIO;
2780
2781 if (!(_cpu_based_2nd_exec_control &
2782 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2783 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2784 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2785
468d472f
SY
2786 min = 0;
2787 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2788 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2789 &_vmentry_control) < 0)
002c7f7c 2790 return -EIO;
6aa8b732 2791
c68876fd 2792 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2793
2794 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2795 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2796 return -EIO;
1c3d14fe
YS
2797
2798#ifdef CONFIG_X86_64
2799 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2800 if (vmx_msr_high & (1u<<16))
002c7f7c 2801 return -EIO;
1c3d14fe
YS
2802#endif
2803
2804 /* Require Write-Back (WB) memory type for VMCS accesses. */
2805 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2806 return -EIO;
1c3d14fe 2807
002c7f7c
YS
2808 vmcs_conf->size = vmx_msr_high & 0x1fff;
2809 vmcs_conf->order = get_order(vmcs_config.size);
2810 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2811
002c7f7c
YS
2812 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2813 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2814 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2815 vmcs_conf->vmexit_ctrl = _vmexit_control;
2816 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2817
110312c8
AK
2818 cpu_has_load_ia32_efer =
2819 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2820 VM_ENTRY_LOAD_IA32_EFER)
2821 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2822 VM_EXIT_LOAD_IA32_EFER);
2823
8bf00a52
GN
2824 cpu_has_load_perf_global_ctrl =
2825 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2826 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2827 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2828 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2829
2830 /*
2831 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2832 * but due to arrata below it can't be used. Workaround is to use
2833 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2834 *
2835 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2836 *
2837 * AAK155 (model 26)
2838 * AAP115 (model 30)
2839 * AAT100 (model 37)
2840 * BC86,AAY89,BD102 (model 44)
2841 * BA97 (model 46)
2842 *
2843 */
2844 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2845 switch (boot_cpu_data.x86_model) {
2846 case 26:
2847 case 30:
2848 case 37:
2849 case 44:
2850 case 46:
2851 cpu_has_load_perf_global_ctrl = false;
2852 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2853 "does not work properly. Using workaround\n");
2854 break;
2855 default:
2856 break;
2857 }
2858 }
2859
1c3d14fe 2860 return 0;
c68876fd 2861}
6aa8b732
AK
2862
2863static struct vmcs *alloc_vmcs_cpu(int cpu)
2864{
2865 int node = cpu_to_node(cpu);
2866 struct page *pages;
2867 struct vmcs *vmcs;
2868
6484eb3e 2869 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2870 if (!pages)
2871 return NULL;
2872 vmcs = page_address(pages);
1c3d14fe
YS
2873 memset(vmcs, 0, vmcs_config.size);
2874 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2875 return vmcs;
2876}
2877
2878static struct vmcs *alloc_vmcs(void)
2879{
d3b2c338 2880 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2881}
2882
2883static void free_vmcs(struct vmcs *vmcs)
2884{
1c3d14fe 2885 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2886}
2887
d462b819
NHE
2888/*
2889 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2890 */
2891static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2892{
2893 if (!loaded_vmcs->vmcs)
2894 return;
2895 loaded_vmcs_clear(loaded_vmcs);
2896 free_vmcs(loaded_vmcs->vmcs);
2897 loaded_vmcs->vmcs = NULL;
2898}
2899
39959588 2900static void free_kvm_area(void)
6aa8b732
AK
2901{
2902 int cpu;
2903
3230bb47 2904 for_each_possible_cpu(cpu) {
6aa8b732 2905 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2906 per_cpu(vmxarea, cpu) = NULL;
2907 }
6aa8b732
AK
2908}
2909
6aa8b732
AK
2910static __init int alloc_kvm_area(void)
2911{
2912 int cpu;
2913
3230bb47 2914 for_each_possible_cpu(cpu) {
6aa8b732
AK
2915 struct vmcs *vmcs;
2916
2917 vmcs = alloc_vmcs_cpu(cpu);
2918 if (!vmcs) {
2919 free_kvm_area();
2920 return -ENOMEM;
2921 }
2922
2923 per_cpu(vmxarea, cpu) = vmcs;
2924 }
2925 return 0;
2926}
2927
2928static __init int hardware_setup(void)
2929{
002c7f7c
YS
2930 if (setup_vmcs_config(&vmcs_config) < 0)
2931 return -EIO;
50a37eb4
JR
2932
2933 if (boot_cpu_has(X86_FEATURE_NX))
2934 kvm_enable_efer_bits(EFER_NX);
2935
93ba03c2
SY
2936 if (!cpu_has_vmx_vpid())
2937 enable_vpid = 0;
abc4fc58
AG
2938 if (!cpu_has_vmx_shadow_vmcs())
2939 enable_shadow_vmcs = 0;
93ba03c2 2940
4bc9b982
SY
2941 if (!cpu_has_vmx_ept() ||
2942 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2943 enable_ept = 0;
3a624e29 2944 enable_unrestricted_guest = 0;
83c3a331 2945 enable_ept_ad_bits = 0;
3a624e29
NK
2946 }
2947
83c3a331
XH
2948 if (!cpu_has_vmx_ept_ad_bits())
2949 enable_ept_ad_bits = 0;
2950
3a624e29
NK
2951 if (!cpu_has_vmx_unrestricted_guest())
2952 enable_unrestricted_guest = 0;
93ba03c2
SY
2953
2954 if (!cpu_has_vmx_flexpriority())
2955 flexpriority_enabled = 0;
2956
95ba8273
GN
2957 if (!cpu_has_vmx_tpr_shadow())
2958 kvm_x86_ops->update_cr8_intercept = NULL;
2959
54dee993
MT
2960 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2961 kvm_disable_largepages();
2962
4b8d54f9
ZE
2963 if (!cpu_has_vmx_ple())
2964 ple_gap = 0;
2965
01e439be
YZ
2966 if (!cpu_has_vmx_apicv())
2967 enable_apicv = 0;
c7c9c56c 2968
01e439be 2969 if (enable_apicv)
c7c9c56c 2970 kvm_x86_ops->update_cr8_intercept = NULL;
a20ed54d 2971 else {
c7c9c56c 2972 kvm_x86_ops->hwapic_irr_update = NULL;
a20ed54d
YZ
2973 kvm_x86_ops->deliver_posted_interrupt = NULL;
2974 kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2975 }
83d4c286 2976
b87a51ae
NHE
2977 if (nested)
2978 nested_vmx_setup_ctls_msrs();
2979
6aa8b732
AK
2980 return alloc_kvm_area();
2981}
2982
2983static __exit void hardware_unsetup(void)
2984{
2985 free_kvm_area();
2986}
2987
14168786
GN
2988static bool emulation_required(struct kvm_vcpu *vcpu)
2989{
2990 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2991}
2992
91b0aa2c 2993static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 2994 struct kvm_segment *save)
6aa8b732 2995{
d99e4152
GN
2996 if (!emulate_invalid_guest_state) {
2997 /*
2998 * CS and SS RPL should be equal during guest entry according
2999 * to VMX spec, but in reality it is not always so. Since vcpu
3000 * is in the middle of the transition from real mode to
3001 * protected mode it is safe to assume that RPL 0 is a good
3002 * default value.
3003 */
3004 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3005 save->selector &= ~SELECTOR_RPL_MASK;
3006 save->dpl = save->selector & SELECTOR_RPL_MASK;
3007 save->s = 1;
6aa8b732 3008 }
d99e4152 3009 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3010}
3011
3012static void enter_pmode(struct kvm_vcpu *vcpu)
3013{
3014 unsigned long flags;
a89a8fb9 3015 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3016
d99e4152
GN
3017 /*
3018 * Update real mode segment cache. It may be not up-to-date if sement
3019 * register was written while vcpu was in a guest mode.
3020 */
3021 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3022 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3023 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3024 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3025 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3026 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3027
7ffd92c5 3028 vmx->rmode.vm86_active = 0;
6aa8b732 3029
2fb92db1
AK
3030 vmx_segment_cache_clear(vmx);
3031
f5f7b2fe 3032 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3033
3034 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3035 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3036 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3037 vmcs_writel(GUEST_RFLAGS, flags);
3038
66aee91a
RR
3039 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3040 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3041
3042 update_exception_bitmap(vcpu);
3043
91b0aa2c
GN
3044 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3045 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3046 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3047 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3048 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3049 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
1f3141e8
GN
3050
3051 /* CPL is always 0 when CPU enters protected mode */
3052 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3053 vmx->cpl = 0;
6aa8b732
AK
3054}
3055
f5f7b2fe 3056static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3057{
772e0318 3058 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3059 struct kvm_segment var = *save;
3060
3061 var.dpl = 0x3;
3062 if (seg == VCPU_SREG_CS)
3063 var.type = 0x3;
3064
3065 if (!emulate_invalid_guest_state) {
3066 var.selector = var.base >> 4;
3067 var.base = var.base & 0xffff0;
3068 var.limit = 0xffff;
3069 var.g = 0;
3070 var.db = 0;
3071 var.present = 1;
3072 var.s = 1;
3073 var.l = 0;
3074 var.unusable = 0;
3075 var.type = 0x3;
3076 var.avl = 0;
3077 if (save->base & 0xf)
3078 printk_once(KERN_WARNING "kvm: segment base is not "
3079 "paragraph aligned when entering "
3080 "protected mode (seg=%d)", seg);
3081 }
6aa8b732 3082
d99e4152
GN
3083 vmcs_write16(sf->selector, var.selector);
3084 vmcs_write32(sf->base, var.base);
3085 vmcs_write32(sf->limit, var.limit);
3086 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3087}
3088
3089static void enter_rmode(struct kvm_vcpu *vcpu)
3090{
3091 unsigned long flags;
a89a8fb9 3092 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3093
f5f7b2fe
AK
3094 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3095 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3096 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3097 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3098 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3099 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3100 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3101
7ffd92c5 3102 vmx->rmode.vm86_active = 1;
6aa8b732 3103
776e58ea
GN
3104 /*
3105 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3106 * vcpu. Warn the user that an update is overdue.
776e58ea 3107 */
4918c6ca 3108 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3109 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3110 "called before entering vcpu\n");
776e58ea 3111
2fb92db1
AK
3112 vmx_segment_cache_clear(vmx);
3113
4918c6ca 3114 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3115 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3116 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3117
3118 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3119 vmx->rmode.save_rflags = flags;
6aa8b732 3120
053de044 3121 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3122
3123 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3124 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3125 update_exception_bitmap(vcpu);
3126
d99e4152
GN
3127 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3128 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3129 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3130 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3131 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3132 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3133
8668a3c4 3134 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3135}
3136
401d10de
AS
3137static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3138{
3139 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3140 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3141
3142 if (!msr)
3143 return;
401d10de 3144
44ea2b17
AK
3145 /*
3146 * Force kernel_gs_base reloading before EFER changes, as control
3147 * of this msr depends on is_long_mode().
3148 */
3149 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3150 vcpu->arch.efer = efer;
401d10de
AS
3151 if (efer & EFER_LMA) {
3152 vmcs_write32(VM_ENTRY_CONTROLS,
3153 vmcs_read32(VM_ENTRY_CONTROLS) |
3154 VM_ENTRY_IA32E_MODE);
3155 msr->data = efer;
3156 } else {
3157 vmcs_write32(VM_ENTRY_CONTROLS,
3158 vmcs_read32(VM_ENTRY_CONTROLS) &
3159 ~VM_ENTRY_IA32E_MODE);
3160
3161 msr->data = efer & ~EFER_LME;
3162 }
3163 setup_msrs(vmx);
3164}
3165
05b3e0c2 3166#ifdef CONFIG_X86_64
6aa8b732
AK
3167
3168static void enter_lmode(struct kvm_vcpu *vcpu)
3169{
3170 u32 guest_tr_ar;
3171
2fb92db1
AK
3172 vmx_segment_cache_clear(to_vmx(vcpu));
3173
6aa8b732
AK
3174 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3175 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3176 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3177 __func__);
6aa8b732
AK
3178 vmcs_write32(GUEST_TR_AR_BYTES,
3179 (guest_tr_ar & ~AR_TYPE_MASK)
3180 | AR_TYPE_BUSY_64_TSS);
3181 }
da38f438 3182 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3183}
3184
3185static void exit_lmode(struct kvm_vcpu *vcpu)
3186{
6aa8b732
AK
3187 vmcs_write32(VM_ENTRY_CONTROLS,
3188 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 3189 & ~VM_ENTRY_IA32E_MODE);
da38f438 3190 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3191}
3192
3193#endif
3194
2384d2b3
SY
3195static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3196{
b9d762fa 3197 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
3198 if (enable_ept) {
3199 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3200 return;
4e1096d2 3201 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3202 }
2384d2b3
SY
3203}
3204
e8467fda
AK
3205static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3206{
3207 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3208
3209 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3210 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3211}
3212
aff48baa
AK
3213static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3214{
3215 if (enable_ept && is_paging(vcpu))
3216 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3217 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3218}
3219
25c4c276 3220static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3221{
fc78f519
AK
3222 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3223
3224 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3225 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3226}
3227
1439442c
SY
3228static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3229{
6de4f3ad
AK
3230 if (!test_bit(VCPU_EXREG_PDPTR,
3231 (unsigned long *)&vcpu->arch.regs_dirty))
3232 return;
3233
1439442c 3234 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3235 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3236 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3237 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3238 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
3239 }
3240}
3241
8f5d549f
AK
3242static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3243{
3244 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
3245 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3246 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3247 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3248 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3249 }
6de4f3ad
AK
3250
3251 __set_bit(VCPU_EXREG_PDPTR,
3252 (unsigned long *)&vcpu->arch.regs_avail);
3253 __set_bit(VCPU_EXREG_PDPTR,
3254 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3255}
3256
5e1746d6 3257static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3258
3259static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3260 unsigned long cr0,
3261 struct kvm_vcpu *vcpu)
3262{
5233dd51
MT
3263 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3264 vmx_decache_cr3(vcpu);
1439442c
SY
3265 if (!(cr0 & X86_CR0_PG)) {
3266 /* From paging/starting to nonpaging */
3267 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3268 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3269 (CPU_BASED_CR3_LOAD_EXITING |
3270 CPU_BASED_CR3_STORE_EXITING));
3271 vcpu->arch.cr0 = cr0;
fc78f519 3272 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3273 } else if (!is_paging(vcpu)) {
3274 /* From nonpaging to paging */
3275 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3276 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3277 ~(CPU_BASED_CR3_LOAD_EXITING |
3278 CPU_BASED_CR3_STORE_EXITING));
3279 vcpu->arch.cr0 = cr0;
fc78f519 3280 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3281 }
95eb84a7
SY
3282
3283 if (!(cr0 & X86_CR0_WP))
3284 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3285}
3286
6aa8b732
AK
3287static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3288{
7ffd92c5 3289 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3290 unsigned long hw_cr0;
3291
5037878e 3292 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3293 if (enable_unrestricted_guest)
5037878e 3294 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3295 else {
5037878e 3296 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3297
218e763f
GN
3298 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3299 enter_pmode(vcpu);
6aa8b732 3300
218e763f
GN
3301 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3302 enter_rmode(vcpu);
3303 }
6aa8b732 3304
05b3e0c2 3305#ifdef CONFIG_X86_64
f6801dff 3306 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3307 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3308 enter_lmode(vcpu);
707d92fa 3309 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3310 exit_lmode(vcpu);
3311 }
3312#endif
3313
089d034e 3314 if (enable_ept)
1439442c
SY
3315 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3316
02daab21 3317 if (!vcpu->fpu_active)
81231c69 3318 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3319
6aa8b732 3320 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3321 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3322 vcpu->arch.cr0 = cr0;
14168786
GN
3323
3324 /* depends on vcpu->arch.cr0 to be set to a new value */
3325 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3326}
3327
1439442c
SY
3328static u64 construct_eptp(unsigned long root_hpa)
3329{
3330 u64 eptp;
3331
3332 /* TODO write the value reading from MSR */
3333 eptp = VMX_EPT_DEFAULT_MT |
3334 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3335 if (enable_ept_ad_bits)
3336 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3337 eptp |= (root_hpa & PAGE_MASK);
3338
3339 return eptp;
3340}
3341
6aa8b732
AK
3342static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3343{
1439442c
SY
3344 unsigned long guest_cr3;
3345 u64 eptp;
3346
3347 guest_cr3 = cr3;
089d034e 3348 if (enable_ept) {
1439442c
SY
3349 eptp = construct_eptp(cr3);
3350 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3351 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3352 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3353 ept_load_pdptrs(vcpu);
1439442c
SY
3354 }
3355
2384d2b3 3356 vmx_flush_tlb(vcpu);
1439442c 3357 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3358}
3359
5e1746d6 3360static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3361{
7ffd92c5 3362 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3363 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3364
5e1746d6
NHE
3365 if (cr4 & X86_CR4_VMXE) {
3366 /*
3367 * To use VMXON (and later other VMX instructions), a guest
3368 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3369 * So basically the check on whether to allow nested VMX
3370 * is here.
3371 */
3372 if (!nested_vmx_allowed(vcpu))
3373 return 1;
1a0d74e6
JK
3374 }
3375 if (to_vmx(vcpu)->nested.vmxon &&
3376 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3377 return 1;
3378
ad312c7c 3379 vcpu->arch.cr4 = cr4;
bc23008b
AK
3380 if (enable_ept) {
3381 if (!is_paging(vcpu)) {
3382 hw_cr4 &= ~X86_CR4_PAE;
3383 hw_cr4 |= X86_CR4_PSE;
c08800a5
DX
3384 /*
3385 * SMEP is disabled if CPU is in non-paging mode in
3386 * hardware. However KVM always uses paging mode to
3387 * emulate guest non-paging mode with TDP.
3388 * To emulate this behavior, SMEP needs to be manually
3389 * disabled when guest switches to non-paging mode.
3390 */
3391 hw_cr4 &= ~X86_CR4_SMEP;
bc23008b
AK
3392 } else if (!(cr4 & X86_CR4_PAE)) {
3393 hw_cr4 &= ~X86_CR4_PAE;
3394 }
3395 }
1439442c
SY
3396
3397 vmcs_writel(CR4_READ_SHADOW, cr4);
3398 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3399 return 0;
6aa8b732
AK
3400}
3401
6aa8b732
AK
3402static void vmx_get_segment(struct kvm_vcpu *vcpu,
3403 struct kvm_segment *var, int seg)
3404{
a9179499 3405 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3406 u32 ar;
3407
c6ad1153 3408 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3409 *var = vmx->rmode.segs[seg];
a9179499 3410 if (seg == VCPU_SREG_TR
2fb92db1 3411 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3412 return;
1390a28b
AK
3413 var->base = vmx_read_guest_seg_base(vmx, seg);
3414 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3415 return;
a9179499 3416 }
2fb92db1
AK
3417 var->base = vmx_read_guest_seg_base(vmx, seg);
3418 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3419 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3420 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3421 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3422 var->type = ar & 15;
3423 var->s = (ar >> 4) & 1;
3424 var->dpl = (ar >> 5) & 3;
03617c18
GN
3425 /*
3426 * Some userspaces do not preserve unusable property. Since usable
3427 * segment has to be present according to VMX spec we can use present
3428 * property to amend userspace bug by making unusable segment always
3429 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3430 * segment as unusable.
3431 */
3432 var->present = !var->unusable;
6aa8b732
AK
3433 var->avl = (ar >> 12) & 1;
3434 var->l = (ar >> 13) & 1;
3435 var->db = (ar >> 14) & 1;
3436 var->g = (ar >> 15) & 1;
6aa8b732
AK
3437}
3438
a9179499
AK
3439static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3440{
a9179499
AK
3441 struct kvm_segment s;
3442
3443 if (to_vmx(vcpu)->rmode.vm86_active) {
3444 vmx_get_segment(vcpu, &s, seg);
3445 return s.base;
3446 }
2fb92db1 3447 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3448}
3449
b09408d0 3450static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3451{
b09408d0
MT
3452 struct vcpu_vmx *vmx = to_vmx(vcpu);
3453
3eeb3288 3454 if (!is_protmode(vcpu))
2e4d2653
IE
3455 return 0;
3456
f4c63e5d
AK
3457 if (!is_long_mode(vcpu)
3458 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3459 return 3;
3460
69c73028
AK
3461 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3462 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
b09408d0 3463 vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
69c73028 3464 }
d881e6f6
AK
3465
3466 return vmx->cpl;
69c73028
AK
3467}
3468
3469
653e3108 3470static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3471{
6aa8b732
AK
3472 u32 ar;
3473
f0495f9b 3474 if (var->unusable || !var->present)
6aa8b732
AK
3475 ar = 1 << 16;
3476 else {
3477 ar = var->type & 15;
3478 ar |= (var->s & 1) << 4;
3479 ar |= (var->dpl & 3) << 5;
3480 ar |= (var->present & 1) << 7;
3481 ar |= (var->avl & 1) << 12;
3482 ar |= (var->l & 1) << 13;
3483 ar |= (var->db & 1) << 14;
3484 ar |= (var->g & 1) << 15;
3485 }
653e3108
AK
3486
3487 return ar;
3488}
3489
3490static void vmx_set_segment(struct kvm_vcpu *vcpu,
3491 struct kvm_segment *var, int seg)
3492{
7ffd92c5 3493 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 3494 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 3495
2fb92db1 3496 vmx_segment_cache_clear(vmx);
2f143240
GN
3497 if (seg == VCPU_SREG_CS)
3498 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2fb92db1 3499
1ecd50a9
GN
3500 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3501 vmx->rmode.segs[seg] = *var;
3502 if (seg == VCPU_SREG_TR)
3503 vmcs_write16(sf->selector, var->selector);
3504 else if (var->s)
3505 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 3506 goto out;
653e3108 3507 }
1ecd50a9 3508
653e3108
AK
3509 vmcs_writel(sf->base, var->base);
3510 vmcs_write32(sf->limit, var->limit);
3511 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
3512
3513 /*
3514 * Fix the "Accessed" bit in AR field of segment registers for older
3515 * qemu binaries.
3516 * IA32 arch specifies that at the time of processor reset the
3517 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 3518 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
3519 * state vmexit when "unrestricted guest" mode is turned on.
3520 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3521 * tree. Newer qemu binaries with that qemu fix would not need this
3522 * kvm hack.
3523 */
3524 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 3525 var->type |= 0x1; /* Accessed */
3a624e29 3526
f924d66d 3527 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
3528
3529out:
14168786 3530 vmx->emulation_required |= emulation_required(vcpu);
6aa8b732
AK
3531}
3532
6aa8b732
AK
3533static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3534{
2fb92db1 3535 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3536
3537 *db = (ar >> 14) & 1;
3538 *l = (ar >> 13) & 1;
3539}
3540
89a27f4d 3541static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3542{
89a27f4d
GN
3543 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3544 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3545}
3546
89a27f4d 3547static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3548{
89a27f4d
GN
3549 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3550 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3551}
3552
89a27f4d 3553static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3554{
89a27f4d
GN
3555 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3556 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3557}
3558
89a27f4d 3559static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3560{
89a27f4d
GN
3561 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3562 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3563}
3564
648dfaa7
MG
3565static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3566{
3567 struct kvm_segment var;
3568 u32 ar;
3569
3570 vmx_get_segment(vcpu, &var, seg);
07f42f5f 3571 var.dpl = 0x3;
0647f4aa
GN
3572 if (seg == VCPU_SREG_CS)
3573 var.type = 0x3;
648dfaa7
MG
3574 ar = vmx_segment_access_rights(&var);
3575
3576 if (var.base != (var.selector << 4))
3577 return false;
89efbed0 3578 if (var.limit != 0xffff)
648dfaa7 3579 return false;
07f42f5f 3580 if (ar != 0xf3)
648dfaa7
MG
3581 return false;
3582
3583 return true;
3584}
3585
3586static bool code_segment_valid(struct kvm_vcpu *vcpu)
3587{
3588 struct kvm_segment cs;
3589 unsigned int cs_rpl;
3590
3591 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3592 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3593
1872a3f4
AK
3594 if (cs.unusable)
3595 return false;
648dfaa7
MG
3596 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3597 return false;
3598 if (!cs.s)
3599 return false;
1872a3f4 3600 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3601 if (cs.dpl > cs_rpl)
3602 return false;
1872a3f4 3603 } else {
648dfaa7
MG
3604 if (cs.dpl != cs_rpl)
3605 return false;
3606 }
3607 if (!cs.present)
3608 return false;
3609
3610 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3611 return true;
3612}
3613
3614static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3615{
3616 struct kvm_segment ss;
3617 unsigned int ss_rpl;
3618
3619 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3620 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3621
1872a3f4
AK
3622 if (ss.unusable)
3623 return true;
3624 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3625 return false;
3626 if (!ss.s)
3627 return false;
3628 if (ss.dpl != ss_rpl) /* DPL != RPL */
3629 return false;
3630 if (!ss.present)
3631 return false;
3632
3633 return true;
3634}
3635
3636static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3637{
3638 struct kvm_segment var;
3639 unsigned int rpl;
3640
3641 vmx_get_segment(vcpu, &var, seg);
3642 rpl = var.selector & SELECTOR_RPL_MASK;
3643
1872a3f4
AK
3644 if (var.unusable)
3645 return true;
648dfaa7
MG
3646 if (!var.s)
3647 return false;
3648 if (!var.present)
3649 return false;
3650 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3651 if (var.dpl < rpl) /* DPL < RPL */
3652 return false;
3653 }
3654
3655 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3656 * rights flags
3657 */
3658 return true;
3659}
3660
3661static bool tr_valid(struct kvm_vcpu *vcpu)
3662{
3663 struct kvm_segment tr;
3664
3665 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3666
1872a3f4
AK
3667 if (tr.unusable)
3668 return false;
648dfaa7
MG
3669 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3670 return false;
1872a3f4 3671 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3672 return false;
3673 if (!tr.present)
3674 return false;
3675
3676 return true;
3677}
3678
3679static bool ldtr_valid(struct kvm_vcpu *vcpu)
3680{
3681 struct kvm_segment ldtr;
3682
3683 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3684
1872a3f4
AK
3685 if (ldtr.unusable)
3686 return true;
648dfaa7
MG
3687 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3688 return false;
3689 if (ldtr.type != 2)
3690 return false;
3691 if (!ldtr.present)
3692 return false;
3693
3694 return true;
3695}
3696
3697static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3698{
3699 struct kvm_segment cs, ss;
3700
3701 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3702 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3703
3704 return ((cs.selector & SELECTOR_RPL_MASK) ==
3705 (ss.selector & SELECTOR_RPL_MASK));
3706}
3707
3708/*
3709 * Check if guest state is valid. Returns true if valid, false if
3710 * not.
3711 * We assume that registers are always usable
3712 */
3713static bool guest_state_valid(struct kvm_vcpu *vcpu)
3714{
c5e97c80
GN
3715 if (enable_unrestricted_guest)
3716 return true;
3717
648dfaa7 3718 /* real mode guest state checks */
f13882d8 3719 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
3720 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3721 return false;
3722 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3723 return false;
3724 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3725 return false;
3726 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3727 return false;
3728 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3729 return false;
3730 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3731 return false;
3732 } else {
3733 /* protected mode guest state checks */
3734 if (!cs_ss_rpl_check(vcpu))
3735 return false;
3736 if (!code_segment_valid(vcpu))
3737 return false;
3738 if (!stack_segment_valid(vcpu))
3739 return false;
3740 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3741 return false;
3742 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3743 return false;
3744 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3745 return false;
3746 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3747 return false;
3748 if (!tr_valid(vcpu))
3749 return false;
3750 if (!ldtr_valid(vcpu))
3751 return false;
3752 }
3753 /* TODO:
3754 * - Add checks on RIP
3755 * - Add checks on RFLAGS
3756 */
3757
3758 return true;
3759}
3760
d77c26fc 3761static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3762{
40dcaa9f 3763 gfn_t fn;
195aefde 3764 u16 data = 0;
40dcaa9f 3765 int r, idx, ret = 0;
6aa8b732 3766
40dcaa9f 3767 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 3768 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
3769 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3770 if (r < 0)
10589a46 3771 goto out;
195aefde 3772 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3773 r = kvm_write_guest_page(kvm, fn++, &data,
3774 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3775 if (r < 0)
10589a46 3776 goto out;
195aefde
IE
3777 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3778 if (r < 0)
10589a46 3779 goto out;
195aefde
IE
3780 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3781 if (r < 0)
10589a46 3782 goto out;
195aefde 3783 data = ~0;
10589a46
MT
3784 r = kvm_write_guest_page(kvm, fn, &data,
3785 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3786 sizeof(u8));
195aefde 3787 if (r < 0)
10589a46
MT
3788 goto out;
3789
3790 ret = 1;
3791out:
40dcaa9f 3792 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3793 return ret;
6aa8b732
AK
3794}
3795
b7ebfb05
SY
3796static int init_rmode_identity_map(struct kvm *kvm)
3797{
40dcaa9f 3798 int i, idx, r, ret;
b7ebfb05
SY
3799 pfn_t identity_map_pfn;
3800 u32 tmp;
3801
089d034e 3802 if (!enable_ept)
b7ebfb05
SY
3803 return 1;
3804 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3805 printk(KERN_ERR "EPT: identity-mapping pagetable "
3806 "haven't been allocated!\n");
3807 return 0;
3808 }
3809 if (likely(kvm->arch.ept_identity_pagetable_done))
3810 return 1;
3811 ret = 0;
b927a3ce 3812 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3813 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3814 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3815 if (r < 0)
3816 goto out;
3817 /* Set up identity-mapping pagetable for EPT in real mode */
3818 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3819 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3820 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3821 r = kvm_write_guest_page(kvm, identity_map_pfn,
3822 &tmp, i * sizeof(tmp), sizeof(tmp));
3823 if (r < 0)
3824 goto out;
3825 }
3826 kvm->arch.ept_identity_pagetable_done = true;
3827 ret = 1;
3828out:
40dcaa9f 3829 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3830 return ret;
3831}
3832
6aa8b732
AK
3833static void seg_setup(int seg)
3834{
772e0318 3835 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3836 unsigned int ar;
6aa8b732
AK
3837
3838 vmcs_write16(sf->selector, 0);
3839 vmcs_writel(sf->base, 0);
3840 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
3841 ar = 0x93;
3842 if (seg == VCPU_SREG_CS)
3843 ar |= 0x08; /* code segment */
3a624e29
NK
3844
3845 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3846}
3847
f78e0e2e
SY
3848static int alloc_apic_access_page(struct kvm *kvm)
3849{
4484141a 3850 struct page *page;
f78e0e2e
SY
3851 struct kvm_userspace_memory_region kvm_userspace_mem;
3852 int r = 0;
3853
79fac95e 3854 mutex_lock(&kvm->slots_lock);
bfc6d222 3855 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3856 goto out;
3857 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3858 kvm_userspace_mem.flags = 0;
3859 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3860 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3861 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
f78e0e2e
SY
3862 if (r)
3863 goto out;
72dc67a6 3864
4484141a
XG
3865 page = gfn_to_page(kvm, 0xfee00);
3866 if (is_error_page(page)) {
3867 r = -EFAULT;
3868 goto out;
3869 }
3870
3871 kvm->arch.apic_access_page = page;
f78e0e2e 3872out:
79fac95e 3873 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3874 return r;
3875}
3876
b7ebfb05
SY
3877static int alloc_identity_pagetable(struct kvm *kvm)
3878{
4484141a 3879 struct page *page;
b7ebfb05
SY
3880 struct kvm_userspace_memory_region kvm_userspace_mem;
3881 int r = 0;
3882
79fac95e 3883 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3884 if (kvm->arch.ept_identity_pagetable)
3885 goto out;
3886 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3887 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3888 kvm_userspace_mem.guest_phys_addr =
3889 kvm->arch.ept_identity_map_addr;
b7ebfb05 3890 kvm_userspace_mem.memory_size = PAGE_SIZE;
47ae31e2 3891 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
b7ebfb05
SY
3892 if (r)
3893 goto out;
3894
4484141a
XG
3895 page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3896 if (is_error_page(page)) {
3897 r = -EFAULT;
3898 goto out;
3899 }
3900
3901 kvm->arch.ept_identity_pagetable = page;
b7ebfb05 3902out:
79fac95e 3903 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3904 return r;
3905}
3906
2384d2b3
SY
3907static void allocate_vpid(struct vcpu_vmx *vmx)
3908{
3909 int vpid;
3910
3911 vmx->vpid = 0;
919818ab 3912 if (!enable_vpid)
2384d2b3
SY
3913 return;
3914 spin_lock(&vmx_vpid_lock);
3915 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3916 if (vpid < VMX_NR_VPIDS) {
3917 vmx->vpid = vpid;
3918 __set_bit(vpid, vmx_vpid_bitmap);
3919 }
3920 spin_unlock(&vmx_vpid_lock);
3921}
3922
cdbecfc3
LJ
3923static void free_vpid(struct vcpu_vmx *vmx)
3924{
3925 if (!enable_vpid)
3926 return;
3927 spin_lock(&vmx_vpid_lock);
3928 if (vmx->vpid != 0)
3929 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3930 spin_unlock(&vmx_vpid_lock);
3931}
3932
8d14695f
YZ
3933#define MSR_TYPE_R 1
3934#define MSR_TYPE_W 2
3935static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3936 u32 msr, int type)
25c5f225 3937{
3e7c73e9 3938 int f = sizeof(unsigned long);
25c5f225
SY
3939
3940 if (!cpu_has_vmx_msr_bitmap())
3941 return;
3942
3943 /*
3944 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3945 * have the write-low and read-high bitmap offsets the wrong way round.
3946 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3947 */
25c5f225 3948 if (msr <= 0x1fff) {
8d14695f
YZ
3949 if (type & MSR_TYPE_R)
3950 /* read-low */
3951 __clear_bit(msr, msr_bitmap + 0x000 / f);
3952
3953 if (type & MSR_TYPE_W)
3954 /* write-low */
3955 __clear_bit(msr, msr_bitmap + 0x800 / f);
3956
25c5f225
SY
3957 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3958 msr &= 0x1fff;
8d14695f
YZ
3959 if (type & MSR_TYPE_R)
3960 /* read-high */
3961 __clear_bit(msr, msr_bitmap + 0x400 / f);
3962
3963 if (type & MSR_TYPE_W)
3964 /* write-high */
3965 __clear_bit(msr, msr_bitmap + 0xc00 / f);
3966
3967 }
3968}
3969
3970static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3971 u32 msr, int type)
3972{
3973 int f = sizeof(unsigned long);
3974
3975 if (!cpu_has_vmx_msr_bitmap())
3976 return;
3977
3978 /*
3979 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3980 * have the write-low and read-high bitmap offsets the wrong way round.
3981 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3982 */
3983 if (msr <= 0x1fff) {
3984 if (type & MSR_TYPE_R)
3985 /* read-low */
3986 __set_bit(msr, msr_bitmap + 0x000 / f);
3987
3988 if (type & MSR_TYPE_W)
3989 /* write-low */
3990 __set_bit(msr, msr_bitmap + 0x800 / f);
3991
3992 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3993 msr &= 0x1fff;
3994 if (type & MSR_TYPE_R)
3995 /* read-high */
3996 __set_bit(msr, msr_bitmap + 0x400 / f);
3997
3998 if (type & MSR_TYPE_W)
3999 /* write-high */
4000 __set_bit(msr, msr_bitmap + 0xc00 / f);
4001
25c5f225 4002 }
25c5f225
SY
4003}
4004
5897297b
AK
4005static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4006{
4007 if (!longmode_only)
8d14695f
YZ
4008 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4009 msr, MSR_TYPE_R | MSR_TYPE_W);
4010 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4011 msr, MSR_TYPE_R | MSR_TYPE_W);
4012}
4013
4014static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4015{
4016 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4017 msr, MSR_TYPE_R);
4018 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4019 msr, MSR_TYPE_R);
4020}
4021
4022static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4023{
4024 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4025 msr, MSR_TYPE_R);
4026 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4027 msr, MSR_TYPE_R);
4028}
4029
4030static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4031{
4032 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4033 msr, MSR_TYPE_W);
4034 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4035 msr, MSR_TYPE_W);
5897297b
AK
4036}
4037
01e439be
YZ
4038static int vmx_vm_has_apicv(struct kvm *kvm)
4039{
4040 return enable_apicv && irqchip_in_kernel(kvm);
4041}
4042
a20ed54d
YZ
4043/*
4044 * Send interrupt to vcpu via posted interrupt way.
4045 * 1. If target vcpu is running(non-root mode), send posted interrupt
4046 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4047 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4048 * interrupt from PIR in next vmentry.
4049 */
4050static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4051{
4052 struct vcpu_vmx *vmx = to_vmx(vcpu);
4053 int r;
4054
4055 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4056 return;
4057
4058 r = pi_test_and_set_on(&vmx->pi_desc);
4059 kvm_make_request(KVM_REQ_EVENT, vcpu);
6ffbbbba 4060#ifdef CONFIG_SMP
a20ed54d
YZ
4061 if (!r && (vcpu->mode == IN_GUEST_MODE))
4062 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4063 POSTED_INTR_VECTOR);
4064 else
6ffbbbba 4065#endif
a20ed54d
YZ
4066 kvm_vcpu_kick(vcpu);
4067}
4068
4069static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4070{
4071 struct vcpu_vmx *vmx = to_vmx(vcpu);
4072
4073 if (!pi_test_and_clear_on(&vmx->pi_desc))
4074 return;
4075
4076 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4077}
4078
4079static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4080{
4081 return;
4082}
4083
a3a8ff8e
NHE
4084/*
4085 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4086 * will not change in the lifetime of the guest.
4087 * Note that host-state that does change is set elsewhere. E.g., host-state
4088 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4089 */
a547c6db 4090static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4091{
4092 u32 low32, high32;
4093 unsigned long tmpl;
4094 struct desc_ptr dt;
4095
b1a74bf8 4096 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4097 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
4098 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4099
4100 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4101#ifdef CONFIG_X86_64
4102 /*
4103 * Load null selectors, so we can avoid reloading them in
4104 * __vmx_load_host_state(), in case userspace uses the null selectors
4105 * too (the expected case).
4106 */
4107 vmcs_write16(HOST_DS_SELECTOR, 0);
4108 vmcs_write16(HOST_ES_SELECTOR, 0);
4109#else
a3a8ff8e
NHE
4110 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4111 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4112#endif
a3a8ff8e
NHE
4113 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4114 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4115
4116 native_store_idt(&dt);
4117 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4118 vmx->host_idt_base = dt.address;
a3a8ff8e 4119
83287ea4 4120 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4121
4122 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4123 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4124 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4125 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4126
4127 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4128 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4129 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4130 }
4131}
4132
bf8179a0
NHE
4133static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4134{
4135 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4136 if (enable_ept)
4137 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4138 if (is_guest_mode(&vmx->vcpu))
4139 vmx->vcpu.arch.cr4_guest_owned_bits &=
4140 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4141 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4142}
4143
01e439be
YZ
4144static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4145{
4146 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4147
4148 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4149 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4150 return pin_based_exec_ctrl;
4151}
4152
bf8179a0
NHE
4153static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4154{
4155 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4156 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4157 exec_control &= ~CPU_BASED_TPR_SHADOW;
4158#ifdef CONFIG_X86_64
4159 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4160 CPU_BASED_CR8_LOAD_EXITING;
4161#endif
4162 }
4163 if (!enable_ept)
4164 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4165 CPU_BASED_CR3_LOAD_EXITING |
4166 CPU_BASED_INVLPG_EXITING;
4167 return exec_control;
4168}
4169
4170static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4171{
4172 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4173 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4174 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4175 if (vmx->vpid == 0)
4176 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4177 if (!enable_ept) {
4178 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4179 enable_unrestricted_guest = 0;
ad756a16
MJ
4180 /* Enable INVPCID for non-ept guests may cause performance regression. */
4181 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4182 }
4183 if (!enable_unrestricted_guest)
4184 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4185 if (!ple_gap)
4186 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
c7c9c56c
YZ
4187 if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4188 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4189 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4190 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4191 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4192 (handle_vmptrld).
4193 We can NOT enable shadow_vmcs here because we don't have yet
4194 a current VMCS12
4195 */
4196 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
bf8179a0
NHE
4197 return exec_control;
4198}
4199
ce88decf
XG
4200static void ept_set_mmio_spte_mask(void)
4201{
4202 /*
4203 * EPT Misconfigurations can be generated if the value of bits 2:0
4204 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4205 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4206 * spte.
4207 */
885032b9 4208 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4209}
4210
6aa8b732
AK
4211/*
4212 * Sets up the vmcs for emulated real mode.
4213 */
8b9cf98c 4214static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4215{
2e4ce7f5 4216#ifdef CONFIG_X86_64
6aa8b732 4217 unsigned long a;
2e4ce7f5 4218#endif
6aa8b732 4219 int i;
6aa8b732 4220
6aa8b732 4221 /* I/O */
3e7c73e9
AK
4222 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4223 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4224
4607c2d7
AG
4225 if (enable_shadow_vmcs) {
4226 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4227 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4228 }
25c5f225 4229 if (cpu_has_vmx_msr_bitmap())
5897297b 4230 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4231
6aa8b732
AK
4232 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4233
6aa8b732 4234 /* Control */
01e439be 4235 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4236
bf8179a0 4237 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4238
83ff3b9d 4239 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
4240 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4241 vmx_secondary_exec_control(vmx));
83ff3b9d 4242 }
f78e0e2e 4243
01e439be 4244 if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
c7c9c56c
YZ
4245 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4246 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4247 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4248 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4249
4250 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be
YZ
4251
4252 vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4253 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4254 }
4255
4b8d54f9
ZE
4256 if (ple_gap) {
4257 vmcs_write32(PLE_GAP, ple_gap);
4258 vmcs_write32(PLE_WINDOW, ple_window);
4259 }
4260
c3707958
XG
4261 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4262 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4263 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4264
9581d442
AK
4265 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4266 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4267 vmx_set_constant_host_state(vmx);
05b3e0c2 4268#ifdef CONFIG_X86_64
6aa8b732
AK
4269 rdmsrl(MSR_FS_BASE, a);
4270 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4271 rdmsrl(MSR_GS_BASE, a);
4272 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4273#else
4274 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4275 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4276#endif
4277
2cc51560
ED
4278 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4279 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4280 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4281 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4282 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4283
468d472f 4284 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
4285 u32 msr_low, msr_high;
4286 u64 host_pat;
468d472f
SY
4287 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4288 host_pat = msr_low | ((u64) msr_high << 32);
4289 /* Write the default value follow host pat */
4290 vmcs_write64(GUEST_IA32_PAT, host_pat);
4291 /* Keep arch.pat sync with GUEST_IA32_PAT */
4292 vmx->vcpu.arch.pat = host_pat;
4293 }
4294
6aa8b732
AK
4295 for (i = 0; i < NR_VMX_MSR; ++i) {
4296 u32 index = vmx_msr_index[i];
4297 u32 data_low, data_high;
a2fa3e9f 4298 int j = vmx->nmsrs;
6aa8b732
AK
4299
4300 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4301 continue;
432bd6cb
AK
4302 if (wrmsr_safe(index, data_low, data_high) < 0)
4303 continue;
26bb0981
AK
4304 vmx->guest_msrs[j].index = i;
4305 vmx->guest_msrs[j].data = 0;
d5696725 4306 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4307 ++vmx->nmsrs;
6aa8b732 4308 }
6aa8b732 4309
1c3d14fe 4310 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4311
4312 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
4313 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4314
e00c8cf2 4315 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4316 set_cr4_guest_host_mask(vmx);
e00c8cf2
AK
4317
4318 return 0;
4319}
4320
57f252f2 4321static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
e00c8cf2
AK
4322{
4323 struct vcpu_vmx *vmx = to_vmx(vcpu);
4324 u64 msr;
e00c8cf2 4325
7ffd92c5 4326 vmx->rmode.vm86_active = 0;
e00c8cf2 4327
3b86cd99
JK
4328 vmx->soft_vnmi_blocked = 0;
4329
ad312c7c 4330 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 4331 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 4332 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 4333 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
4334 msr |= MSR_IA32_APICBASE_BSP;
4335 kvm_set_apic_base(&vmx->vcpu, msr);
4336
2fb92db1
AK
4337 vmx_segment_cache_clear(vmx);
4338
5706be0d 4339 seg_setup(VCPU_SREG_CS);
66450a21 4340 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
04b66839 4341 vmcs_write32(GUEST_CS_BASE, 0xffff0000);
e00c8cf2
AK
4342
4343 seg_setup(VCPU_SREG_DS);
4344 seg_setup(VCPU_SREG_ES);
4345 seg_setup(VCPU_SREG_FS);
4346 seg_setup(VCPU_SREG_GS);
4347 seg_setup(VCPU_SREG_SS);
4348
4349 vmcs_write16(GUEST_TR_SELECTOR, 0);
4350 vmcs_writel(GUEST_TR_BASE, 0);
4351 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4352 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4353
4354 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4355 vmcs_writel(GUEST_LDTR_BASE, 0);
4356 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4357 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4358
4359 vmcs_write32(GUEST_SYSENTER_CS, 0);
4360 vmcs_writel(GUEST_SYSENTER_ESP, 0);
4361 vmcs_writel(GUEST_SYSENTER_EIP, 0);
4362
4363 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 4364 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 4365
e00c8cf2
AK
4366 vmcs_writel(GUEST_GDTR_BASE, 0);
4367 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4368
4369 vmcs_writel(GUEST_IDTR_BASE, 0);
4370 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4371
443381a8 4372 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
4373 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4374 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4375
e00c8cf2
AK
4376 /* Special registers */
4377 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4378
4379 setup_msrs(vmx);
4380
6aa8b732
AK
4381 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
4382
f78e0e2e
SY
4383 if (cpu_has_vmx_tpr_shadow()) {
4384 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4385 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4386 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 4387 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
4388 vmcs_write32(TPR_THRESHOLD, 0);
4389 }
4390
4391 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4392 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 4393 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 4394
01e439be
YZ
4395 if (vmx_vm_has_apicv(vcpu->kvm))
4396 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4397
2384d2b3
SY
4398 if (vmx->vpid != 0)
4399 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4400
fa40052c 4401 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 4402 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 4403 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 4404 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
4405 vmx_fpu_activate(&vmx->vcpu);
4406 update_exception_bitmap(&vmx->vcpu);
6aa8b732 4407
b9d762fa 4408 vpid_sync_context(vmx);
6aa8b732
AK
4409}
4410
b6f1250e
NHE
4411/*
4412 * In nested virtualization, check if L1 asked to exit on external interrupts.
4413 * For most existing hypervisors, this will always return true.
4414 */
4415static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4416{
4417 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4418 PIN_BASED_EXT_INTR_MASK;
4419}
4420
ea8ceb83
JK
4421static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4422{
4423 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4424 PIN_BASED_NMI_EXITING;
4425}
4426
730dca42 4427static int enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4428{
4429 u32 cpu_based_vm_exec_control;
730dca42
JK
4430
4431 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
d6185f20
NHE
4432 /*
4433 * We get here if vmx_interrupt_allowed() said we can't
730dca42
JK
4434 * inject to L1 now because L2 must run. The caller will have
4435 * to make L2 exit right after entry, so we can inject to L1
4436 * more promptly.
b6f1250e 4437 */
730dca42 4438 return -EBUSY;
3b86cd99
JK
4439
4440 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4441 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4442 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
730dca42 4443 return 0;
3b86cd99
JK
4444}
4445
03b28f81 4446static int enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
4447{
4448 u32 cpu_based_vm_exec_control;
4449
03b28f81
JK
4450 if (!cpu_has_virtual_nmis())
4451 return enable_irq_window(vcpu);
4452
4453 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4454 return enable_irq_window(vcpu);
3b86cd99
JK
4455
4456 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4457 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4458 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
03b28f81 4459 return 0;
3b86cd99
JK
4460}
4461
66fd3f7f 4462static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 4463{
9c8cba37 4464 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
4465 uint32_t intr;
4466 int irq = vcpu->arch.interrupt.nr;
9c8cba37 4467
229456fc 4468 trace_kvm_inj_virq(irq);
2714d1d3 4469
fa89a817 4470 ++vcpu->stat.irq_injections;
7ffd92c5 4471 if (vmx->rmode.vm86_active) {
71f9833b
SH
4472 int inc_eip = 0;
4473 if (vcpu->arch.interrupt.soft)
4474 inc_eip = vcpu->arch.event_exit_inst_len;
4475 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4476 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4477 return;
4478 }
66fd3f7f
GN
4479 intr = irq | INTR_INFO_VALID_MASK;
4480 if (vcpu->arch.interrupt.soft) {
4481 intr |= INTR_TYPE_SOFT_INTR;
4482 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4483 vmx->vcpu.arch.event_exit_inst_len);
4484 } else
4485 intr |= INTR_TYPE_EXT_INTR;
4486 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
4487}
4488
f08864b4
SY
4489static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4490{
66a5a347
JK
4491 struct vcpu_vmx *vmx = to_vmx(vcpu);
4492
0b6ac343
NHE
4493 if (is_guest_mode(vcpu))
4494 return;
4495
3b86cd99
JK
4496 if (!cpu_has_virtual_nmis()) {
4497 /*
4498 * Tracking the NMI-blocked state in software is built upon
4499 * finding the next open IRQ window. This, in turn, depends on
4500 * well-behaving guests: They have to keep IRQs disabled at
4501 * least as long as the NMI handler runs. Otherwise we may
4502 * cause NMI nesting, maybe breaking the guest. But as this is
4503 * highly unlikely, we can live with the residual risk.
4504 */
4505 vmx->soft_vnmi_blocked = 1;
4506 vmx->vnmi_blocked_time = 0;
4507 }
4508
487b391d 4509 ++vcpu->stat.nmi_injections;
9d58b931 4510 vmx->nmi_known_unmasked = false;
7ffd92c5 4511 if (vmx->rmode.vm86_active) {
71f9833b 4512 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4513 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4514 return;
4515 }
f08864b4
SY
4516 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4517 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
4518}
4519
3cfc3092
JK
4520static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4521{
4522 if (!cpu_has_virtual_nmis())
4523 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4524 if (to_vmx(vcpu)->nmi_known_unmasked)
4525 return false;
c332c83a 4526 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4527}
4528
4529static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4530{
4531 struct vcpu_vmx *vmx = to_vmx(vcpu);
4532
4533 if (!cpu_has_virtual_nmis()) {
4534 if (vmx->soft_vnmi_blocked != masked) {
4535 vmx->soft_vnmi_blocked = masked;
4536 vmx->vnmi_blocked_time = 0;
4537 }
4538 } else {
9d58b931 4539 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4540 if (masked)
4541 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4542 GUEST_INTR_STATE_NMI);
4543 else
4544 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4545 GUEST_INTR_STATE_NMI);
4546 }
4547}
4548
2505dc9f
JK
4549static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4550{
ea8ceb83
JK
4551 if (is_guest_mode(vcpu)) {
4552 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4553
4554 if (to_vmx(vcpu)->nested.nested_run_pending)
4555 return 0;
4556 if (nested_exit_on_nmi(vcpu)) {
4557 nested_vmx_vmexit(vcpu);
4558 vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4559 vmcs12->vm_exit_intr_info = NMI_VECTOR |
4560 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4561 /*
4562 * The NMI-triggered VM exit counts as injection:
4563 * clear this one and block further NMIs.
4564 */
4565 vcpu->arch.nmi_pending = 0;
4566 vmx_set_nmi_mask(vcpu, true);
4567 return 0;
4568 }
4569 }
4570
2505dc9f
JK
4571 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4572 return 0;
4573
4574 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4575 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4576 | GUEST_INTR_STATE_NMI));
4577}
4578
78646121
GN
4579static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4580{
e8457c67 4581 if (is_guest_mode(vcpu)) {
51cfe38e 4582 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
e8457c67
JK
4583
4584 if (to_vmx(vcpu)->nested.nested_run_pending)
b6f1250e 4585 return 0;
e8457c67
JK
4586 if (nested_exit_on_intr(vcpu)) {
4587 nested_vmx_vmexit(vcpu);
4588 vmcs12->vm_exit_reason =
4589 EXIT_REASON_EXTERNAL_INTERRUPT;
4590 vmcs12->vm_exit_intr_info = 0;
4591 /*
4592 * fall through to normal code, but now in L1, not L2
4593 */
4594 }
b6f1250e
NHE
4595 }
4596
c4282df9
GN
4597 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4598 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4599 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4600}
4601
cbc94022
IE
4602static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4603{
4604 int ret;
4605 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4606 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4607 .guest_phys_addr = addr,
4608 .memory_size = PAGE_SIZE * 3,
4609 .flags = 0,
4610 };
4611
47ae31e2 4612 ret = kvm_set_memory_region(kvm, &tss_mem);
cbc94022
IE
4613 if (ret)
4614 return ret;
bfc6d222 4615 kvm->arch.tss_addr = addr;
93ea5388
GN
4616 if (!init_rmode_tss(kvm))
4617 return -ENOMEM;
4618
cbc94022
IE
4619 return 0;
4620}
4621
0ca1b4f4 4622static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 4623{
77ab6db0 4624 switch (vec) {
77ab6db0 4625 case BP_VECTOR:
c573cd22
JK
4626 /*
4627 * Update instruction length as we may reinject the exception
4628 * from user space while in guest debugging mode.
4629 */
4630 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4631 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 4632 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
4633 return false;
4634 /* fall through */
4635 case DB_VECTOR:
4636 if (vcpu->guest_debug &
4637 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4638 return false;
d0bfb940
JK
4639 /* fall through */
4640 case DE_VECTOR:
77ab6db0
JK
4641 case OF_VECTOR:
4642 case BR_VECTOR:
4643 case UD_VECTOR:
4644 case DF_VECTOR:
4645 case SS_VECTOR:
4646 case GP_VECTOR:
4647 case MF_VECTOR:
0ca1b4f4
GN
4648 return true;
4649 break;
77ab6db0 4650 }
0ca1b4f4
GN
4651 return false;
4652}
4653
4654static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4655 int vec, u32 err_code)
4656{
4657 /*
4658 * Instruction with address size override prefix opcode 0x67
4659 * Cause the #SS fault with 0 error code in VM86 mode.
4660 */
4661 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4662 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4663 if (vcpu->arch.halt_request) {
4664 vcpu->arch.halt_request = 0;
4665 return kvm_emulate_halt(vcpu);
4666 }
4667 return 1;
4668 }
4669 return 0;
4670 }
4671
4672 /*
4673 * Forward all other exceptions that are valid in real mode.
4674 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4675 * the required debugging infrastructure rework.
4676 */
4677 kvm_queue_exception(vcpu, vec);
4678 return 1;
6aa8b732
AK
4679}
4680
a0861c02
AK
4681/*
4682 * Trigger machine check on the host. We assume all the MSRs are already set up
4683 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4684 * We pass a fake environment to the machine check handler because we want
4685 * the guest to be always treated like user space, no matter what context
4686 * it used internally.
4687 */
4688static void kvm_machine_check(void)
4689{
4690#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4691 struct pt_regs regs = {
4692 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4693 .flags = X86_EFLAGS_IF,
4694 };
4695
4696 do_machine_check(&regs, 0);
4697#endif
4698}
4699
851ba692 4700static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4701{
4702 /* already handled by vcpu_run */
4703 return 1;
4704}
4705
851ba692 4706static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4707{
1155f76a 4708 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4709 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4710 u32 intr_info, ex_no, error_code;
42dbaa5a 4711 unsigned long cr2, rip, dr6;
6aa8b732
AK
4712 u32 vect_info;
4713 enum emulation_result er;
4714
1155f76a 4715 vect_info = vmx->idt_vectoring_info;
88786475 4716 intr_info = vmx->exit_intr_info;
6aa8b732 4717
a0861c02 4718 if (is_machine_check(intr_info))
851ba692 4719 return handle_machine_check(vcpu);
a0861c02 4720
e4a41889 4721 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4722 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4723
4724 if (is_no_device(intr_info)) {
5fd86fcf 4725 vmx_fpu_activate(vcpu);
2ab455cc
AL
4726 return 1;
4727 }
4728
7aa81cc0 4729 if (is_invalid_opcode(intr_info)) {
51d8b661 4730 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4731 if (er != EMULATE_DONE)
7ee5d940 4732 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4733 return 1;
4734 }
4735
6aa8b732 4736 error_code = 0;
2e11384c 4737 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 4738 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
4739
4740 /*
4741 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4742 * MMIO, it is better to report an internal error.
4743 * See the comments in vmx_handle_exit.
4744 */
4745 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4746 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4747 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4748 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4749 vcpu->run->internal.ndata = 2;
4750 vcpu->run->internal.data[0] = vect_info;
4751 vcpu->run->internal.data[1] = intr_info;
4752 return 0;
4753 }
4754
6aa8b732 4755 if (is_page_fault(intr_info)) {
1439442c 4756 /* EPT won't cause page fault directly */
cf3ace79 4757 BUG_ON(enable_ept);
6aa8b732 4758 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4759 trace_kvm_page_fault(cr2, error_code);
4760
3298b75c 4761 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4762 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4763 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4764 }
4765
d0bfb940 4766 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
4767
4768 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4769 return handle_rmode_exception(vcpu, ex_no, error_code);
4770
42dbaa5a
JK
4771 switch (ex_no) {
4772 case DB_VECTOR:
4773 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4774 if (!(vcpu->guest_debug &
4775 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4776 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4777 kvm_queue_exception(vcpu, DB_VECTOR);
4778 return 1;
4779 }
4780 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4781 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4782 /* fall through */
4783 case BP_VECTOR:
c573cd22
JK
4784 /*
4785 * Update instruction length as we may reinject #BP from
4786 * user space while in guest debugging mode. Reading it for
4787 * #DB as well causes no harm, it is not used in that case.
4788 */
4789 vmx->vcpu.arch.event_exit_inst_len =
4790 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4791 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4792 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4793 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4794 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4795 break;
4796 default:
d0bfb940
JK
4797 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4798 kvm_run->ex.exception = ex_no;
4799 kvm_run->ex.error_code = error_code;
42dbaa5a 4800 break;
6aa8b732 4801 }
6aa8b732
AK
4802 return 0;
4803}
4804
851ba692 4805static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4806{
1165f5fe 4807 ++vcpu->stat.irq_exits;
6aa8b732
AK
4808 return 1;
4809}
4810
851ba692 4811static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4812{
851ba692 4813 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4814 return 0;
4815}
6aa8b732 4816
851ba692 4817static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4818{
bfdaab09 4819 unsigned long exit_qualification;
34c33d16 4820 int size, in, string;
039576c0 4821 unsigned port;
6aa8b732 4822
bfdaab09 4823 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4824 string = (exit_qualification & 16) != 0;
cf8f70bf 4825 in = (exit_qualification & 8) != 0;
e70669ab 4826
cf8f70bf 4827 ++vcpu->stat.io_exits;
e70669ab 4828
cf8f70bf 4829 if (string || in)
51d8b661 4830 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4831
cf8f70bf
GN
4832 port = exit_qualification >> 16;
4833 size = (exit_qualification & 7) + 1;
e93f36bc 4834 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4835
4836 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4837}
4838
102d8325
IM
4839static void
4840vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4841{
4842 /*
4843 * Patch in the VMCALL instruction:
4844 */
4845 hypercall[0] = 0x0f;
4846 hypercall[1] = 0x01;
4847 hypercall[2] = 0xc1;
102d8325
IM
4848}
4849
0fa06071 4850/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
4851static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4852{
eeadf9e7 4853 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4854 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4855 unsigned long orig_val = val;
4856
eeadf9e7
NHE
4857 /*
4858 * We get here when L2 changed cr0 in a way that did not change
4859 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
4860 * but did change L0 shadowed bits. So we first calculate the
4861 * effective cr0 value that L1 would like to write into the
4862 * hardware. It consists of the L2-owned bits from the new
4863 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 4864 */
1a0d74e6
JK
4865 val = (val & ~vmcs12->cr0_guest_host_mask) |
4866 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4867
4868 /* TODO: will have to take unrestricted guest mode into
4869 * account */
4870 if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
eeadf9e7 4871 return 1;
1a0d74e6
JK
4872
4873 if (kvm_set_cr0(vcpu, val))
4874 return 1;
4875 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 4876 return 0;
1a0d74e6
JK
4877 } else {
4878 if (to_vmx(vcpu)->nested.vmxon &&
4879 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4880 return 1;
eeadf9e7 4881 return kvm_set_cr0(vcpu, val);
1a0d74e6 4882 }
eeadf9e7
NHE
4883}
4884
4885static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4886{
4887 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
4888 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4889 unsigned long orig_val = val;
4890
4891 /* analogously to handle_set_cr0 */
4892 val = (val & ~vmcs12->cr4_guest_host_mask) |
4893 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4894 if (kvm_set_cr4(vcpu, val))
eeadf9e7 4895 return 1;
1a0d74e6 4896 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
4897 return 0;
4898 } else
4899 return kvm_set_cr4(vcpu, val);
4900}
4901
4902/* called to set cr0 as approriate for clts instruction exit. */
4903static void handle_clts(struct kvm_vcpu *vcpu)
4904{
4905 if (is_guest_mode(vcpu)) {
4906 /*
4907 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4908 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4909 * just pretend it's off (also in arch.cr0 for fpu_activate).
4910 */
4911 vmcs_writel(CR0_READ_SHADOW,
4912 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4913 vcpu->arch.cr0 &= ~X86_CR0_TS;
4914 } else
4915 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4916}
4917
851ba692 4918static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4919{
229456fc 4920 unsigned long exit_qualification, val;
6aa8b732
AK
4921 int cr;
4922 int reg;
49a9b07e 4923 int err;
6aa8b732 4924
bfdaab09 4925 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4926 cr = exit_qualification & 15;
4927 reg = (exit_qualification >> 8) & 15;
4928 switch ((exit_qualification >> 4) & 3) {
4929 case 0: /* mov to cr */
229456fc
MT
4930 val = kvm_register_read(vcpu, reg);
4931 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4932 switch (cr) {
4933 case 0:
eeadf9e7 4934 err = handle_set_cr0(vcpu, val);
db8fcefa 4935 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4936 return 1;
4937 case 3:
2390218b 4938 err = kvm_set_cr3(vcpu, val);
db8fcefa 4939 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4940 return 1;
4941 case 4:
eeadf9e7 4942 err = handle_set_cr4(vcpu, val);
db8fcefa 4943 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4944 return 1;
0a5fff19
GN
4945 case 8: {
4946 u8 cr8_prev = kvm_get_cr8(vcpu);
4947 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4948 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4949 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4950 if (irqchip_in_kernel(vcpu->kvm))
4951 return 1;
4952 if (cr8_prev <= cr8)
4953 return 1;
851ba692 4954 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4955 return 0;
4956 }
4b8073e4 4957 }
6aa8b732 4958 break;
25c4c276 4959 case 2: /* clts */
eeadf9e7 4960 handle_clts(vcpu);
4d4ec087 4961 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4962 skip_emulated_instruction(vcpu);
6b52d186 4963 vmx_fpu_activate(vcpu);
25c4c276 4964 return 1;
6aa8b732
AK
4965 case 1: /*mov from cr*/
4966 switch (cr) {
4967 case 3:
9f8fe504
AK
4968 val = kvm_read_cr3(vcpu);
4969 kvm_register_write(vcpu, reg, val);
4970 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4971 skip_emulated_instruction(vcpu);
4972 return 1;
4973 case 8:
229456fc
MT
4974 val = kvm_get_cr8(vcpu);
4975 kvm_register_write(vcpu, reg, val);
4976 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4977 skip_emulated_instruction(vcpu);
4978 return 1;
4979 }
4980 break;
4981 case 3: /* lmsw */
a1f83a74 4982 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4983 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4984 kvm_lmsw(vcpu, val);
6aa8b732
AK
4985
4986 skip_emulated_instruction(vcpu);
4987 return 1;
4988 default:
4989 break;
4990 }
851ba692 4991 vcpu->run->exit_reason = 0;
a737f256 4992 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4993 (int)(exit_qualification >> 4) & 3, cr);
4994 return 0;
4995}
4996
851ba692 4997static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4998{
bfdaab09 4999 unsigned long exit_qualification;
6aa8b732
AK
5000 int dr, reg;
5001
f2483415 5002 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5003 if (!kvm_require_cpl(vcpu, 0))
5004 return 1;
42dbaa5a
JK
5005 dr = vmcs_readl(GUEST_DR7);
5006 if (dr & DR7_GD) {
5007 /*
5008 * As the vm-exit takes precedence over the debug trap, we
5009 * need to emulate the latter, either for the host or the
5010 * guest debugging itself.
5011 */
5012 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
5013 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5014 vcpu->run->debug.arch.dr7 = dr;
5015 vcpu->run->debug.arch.pc =
42dbaa5a
JK
5016 vmcs_readl(GUEST_CS_BASE) +
5017 vmcs_readl(GUEST_RIP);
851ba692
AK
5018 vcpu->run->debug.arch.exception = DB_VECTOR;
5019 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5020 return 0;
5021 } else {
5022 vcpu->arch.dr7 &= ~DR7_GD;
5023 vcpu->arch.dr6 |= DR6_BD;
5024 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
5025 kvm_queue_exception(vcpu, DB_VECTOR);
5026 return 1;
5027 }
5028 }
5029
bfdaab09 5030 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
5031 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5032 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5033 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
5034 unsigned long val;
5035 if (!kvm_get_dr(vcpu, dr, &val))
5036 kvm_register_write(vcpu, reg, val);
5037 } else
5038 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
5039 skip_emulated_instruction(vcpu);
5040 return 1;
5041}
5042
020df079
GN
5043static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5044{
5045 vmcs_writel(GUEST_DR7, val);
5046}
5047
851ba692 5048static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5049{
06465c5a
AK
5050 kvm_emulate_cpuid(vcpu);
5051 return 1;
6aa8b732
AK
5052}
5053
851ba692 5054static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5055{
ad312c7c 5056 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
5057 u64 data;
5058
5059 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 5060 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5061 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5062 return 1;
5063 }
5064
229456fc 5065 trace_kvm_msr_read(ecx, data);
2714d1d3 5066
6aa8b732 5067 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
5068 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5069 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
5070 skip_emulated_instruction(vcpu);
5071 return 1;
5072}
5073
851ba692 5074static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5075{
8fe8ab46 5076 struct msr_data msr;
ad312c7c
ZX
5077 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5078 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5079 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5080
8fe8ab46
WA
5081 msr.data = data;
5082 msr.index = ecx;
5083 msr.host_initiated = false;
5084 if (vmx_set_msr(vcpu, &msr) != 0) {
59200273 5085 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5086 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5087 return 1;
5088 }
5089
59200273 5090 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5091 skip_emulated_instruction(vcpu);
5092 return 1;
5093}
5094
851ba692 5095static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5096{
3842d135 5097 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5098 return 1;
5099}
5100
851ba692 5101static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5102{
85f455f7
ED
5103 u32 cpu_based_vm_exec_control;
5104
5105 /* clear pending irq */
5106 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5107 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5108 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5109
3842d135
AK
5110 kvm_make_request(KVM_REQ_EVENT, vcpu);
5111
a26bf12a 5112 ++vcpu->stat.irq_window_exits;
2714d1d3 5113
c1150d8c
DL
5114 /*
5115 * If the user space waits to inject interrupts, exit as soon as
5116 * possible
5117 */
8061823a 5118 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 5119 vcpu->run->request_interrupt_window &&
8061823a 5120 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 5121 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
5122 return 0;
5123 }
6aa8b732
AK
5124 return 1;
5125}
5126
851ba692 5127static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
5128{
5129 skip_emulated_instruction(vcpu);
d3bef15f 5130 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5131}
5132
851ba692 5133static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5134{
510043da 5135 skip_emulated_instruction(vcpu);
7aa81cc0
AL
5136 kvm_emulate_hypercall(vcpu);
5137 return 1;
c21415e8
IM
5138}
5139
ec25d5e6
GN
5140static int handle_invd(struct kvm_vcpu *vcpu)
5141{
51d8b661 5142 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5143}
5144
851ba692 5145static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5146{
f9c617f6 5147 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5148
5149 kvm_mmu_invlpg(vcpu, exit_qualification);
5150 skip_emulated_instruction(vcpu);
5151 return 1;
5152}
5153
fee84b07
AK
5154static int handle_rdpmc(struct kvm_vcpu *vcpu)
5155{
5156 int err;
5157
5158 err = kvm_rdpmc(vcpu);
5159 kvm_complete_insn_gp(vcpu, err);
5160
5161 return 1;
5162}
5163
851ba692 5164static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
5165{
5166 skip_emulated_instruction(vcpu);
f5f48ee1 5167 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5168 return 1;
5169}
5170
2acf923e
DC
5171static int handle_xsetbv(struct kvm_vcpu *vcpu)
5172{
5173 u64 new_bv = kvm_read_edx_eax(vcpu);
5174 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5175
5176 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5177 skip_emulated_instruction(vcpu);
5178 return 1;
5179}
5180
851ba692 5181static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5182{
58fbbf26
KT
5183 if (likely(fasteoi)) {
5184 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5185 int access_type, offset;
5186
5187 access_type = exit_qualification & APIC_ACCESS_TYPE;
5188 offset = exit_qualification & APIC_ACCESS_OFFSET;
5189 /*
5190 * Sane guest uses MOV to write EOI, with written value
5191 * not cared. So make a short-circuit here by avoiding
5192 * heavy instruction emulation.
5193 */
5194 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5195 (offset == APIC_EOI)) {
5196 kvm_lapic_set_eoi(vcpu);
5197 skip_emulated_instruction(vcpu);
5198 return 1;
5199 }
5200 }
51d8b661 5201 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5202}
5203
c7c9c56c
YZ
5204static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5205{
5206 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5207 int vector = exit_qualification & 0xff;
5208
5209 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5210 kvm_apic_set_eoi_accelerated(vcpu, vector);
5211 return 1;
5212}
5213
83d4c286
YZ
5214static int handle_apic_write(struct kvm_vcpu *vcpu)
5215{
5216 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5217 u32 offset = exit_qualification & 0xfff;
5218
5219 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5220 kvm_apic_write_nodecode(vcpu, offset);
5221 return 1;
5222}
5223
851ba692 5224static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5225{
60637aac 5226 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5227 unsigned long exit_qualification;
e269fb21
JK
5228 bool has_error_code = false;
5229 u32 error_code = 0;
37817f29 5230 u16 tss_selector;
7f3d35fd 5231 int reason, type, idt_v, idt_index;
64a7ec06
GN
5232
5233 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5234 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5235 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5236
5237 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5238
5239 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5240 if (reason == TASK_SWITCH_GATE && idt_v) {
5241 switch (type) {
5242 case INTR_TYPE_NMI_INTR:
5243 vcpu->arch.nmi_injected = false;
654f06fc 5244 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5245 break;
5246 case INTR_TYPE_EXT_INTR:
66fd3f7f 5247 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5248 kvm_clear_interrupt_queue(vcpu);
5249 break;
5250 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5251 if (vmx->idt_vectoring_info &
5252 VECTORING_INFO_DELIVER_CODE_MASK) {
5253 has_error_code = true;
5254 error_code =
5255 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5256 }
5257 /* fall through */
64a7ec06
GN
5258 case INTR_TYPE_SOFT_EXCEPTION:
5259 kvm_clear_exception_queue(vcpu);
5260 break;
5261 default:
5262 break;
5263 }
60637aac 5264 }
37817f29
IE
5265 tss_selector = exit_qualification;
5266
64a7ec06
GN
5267 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5268 type != INTR_TYPE_EXT_INTR &&
5269 type != INTR_TYPE_NMI_INTR))
5270 skip_emulated_instruction(vcpu);
5271
7f3d35fd
KW
5272 if (kvm_task_switch(vcpu, tss_selector,
5273 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5274 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5275 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5276 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5277 vcpu->run->internal.ndata = 0;
42dbaa5a 5278 return 0;
acb54517 5279 }
42dbaa5a
JK
5280
5281 /* clear all local breakpoint enable flags */
5282 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5283
5284 /*
5285 * TODO: What about debug traps on tss switch?
5286 * Are we supposed to inject them and update dr6?
5287 */
5288
5289 return 1;
37817f29
IE
5290}
5291
851ba692 5292static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5293{
f9c617f6 5294 unsigned long exit_qualification;
1439442c 5295 gpa_t gpa;
4f5982a5 5296 u32 error_code;
1439442c 5297 int gla_validity;
1439442c 5298
f9c617f6 5299 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5300
1439442c
SY
5301 gla_validity = (exit_qualification >> 7) & 0x3;
5302 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5303 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5304 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5305 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5306 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5307 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5308 (long unsigned int)exit_qualification);
851ba692
AK
5309 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5310 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5311 return 0;
1439442c
SY
5312 }
5313
5314 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5315 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5316
5317 /* It is a write fault? */
5318 error_code = exit_qualification & (1U << 1);
5319 /* ept page table is present? */
5320 error_code |= (exit_qualification >> 3) & 0x1;
5321
5322 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
5323}
5324
68f89400
MT
5325static u64 ept_rsvd_mask(u64 spte, int level)
5326{
5327 int i;
5328 u64 mask = 0;
5329
5330 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5331 mask |= (1ULL << i);
5332
5333 if (level > 2)
5334 /* bits 7:3 reserved */
5335 mask |= 0xf8;
5336 else if (level == 2) {
5337 if (spte & (1ULL << 7))
5338 /* 2MB ref, bits 20:12 reserved */
5339 mask |= 0x1ff000;
5340 else
5341 /* bits 6:3 reserved */
5342 mask |= 0x78;
5343 }
5344
5345 return mask;
5346}
5347
5348static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5349 int level)
5350{
5351 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5352
5353 /* 010b (write-only) */
5354 WARN_ON((spte & 0x7) == 0x2);
5355
5356 /* 110b (write/execute) */
5357 WARN_ON((spte & 0x7) == 0x6);
5358
5359 /* 100b (execute-only) and value not supported by logical processor */
5360 if (!cpu_has_vmx_ept_execute_only())
5361 WARN_ON((spte & 0x7) == 0x4);
5362
5363 /* not 000b */
5364 if ((spte & 0x7)) {
5365 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5366
5367 if (rsvd_bits != 0) {
5368 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5369 __func__, rsvd_bits);
5370 WARN_ON(1);
5371 }
5372
5373 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5374 u64 ept_mem_type = (spte & 0x38) >> 3;
5375
5376 if (ept_mem_type == 2 || ept_mem_type == 3 ||
5377 ept_mem_type == 7) {
5378 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5379 __func__, ept_mem_type);
5380 WARN_ON(1);
5381 }
5382 }
5383 }
5384}
5385
851ba692 5386static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
5387{
5388 u64 sptes[4];
ce88decf 5389 int nr_sptes, i, ret;
68f89400
MT
5390 gpa_t gpa;
5391
5392 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5393
ce88decf 5394 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
b37fbea6 5395 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
5396 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5397 EMULATE_DONE;
f8f55942
XG
5398
5399 if (unlikely(ret == RET_MMIO_PF_INVALID))
5400 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
5401
b37fbea6 5402 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
5403 return 1;
5404
5405 /* It is the real ept misconfig */
68f89400
MT
5406 printk(KERN_ERR "EPT: Misconfiguration.\n");
5407 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5408
5409 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5410
5411 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5412 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5413
851ba692
AK
5414 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5415 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
5416
5417 return 0;
5418}
5419
851ba692 5420static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
5421{
5422 u32 cpu_based_vm_exec_control;
5423
5424 /* clear pending NMI */
5425 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5426 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5427 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5428 ++vcpu->stat.nmi_window_exits;
3842d135 5429 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
5430
5431 return 1;
5432}
5433
80ced186 5434static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 5435{
8b3079a5
AK
5436 struct vcpu_vmx *vmx = to_vmx(vcpu);
5437 enum emulation_result err = EMULATE_DONE;
80ced186 5438 int ret = 1;
49e9d557
AK
5439 u32 cpu_exec_ctrl;
5440 bool intr_window_requested;
b8405c18 5441 unsigned count = 130;
49e9d557
AK
5442
5443 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5444 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 5445
b8405c18 5446 while (!guest_state_valid(vcpu) && count-- != 0) {
bdea48e3 5447 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
5448 return handle_interrupt_window(&vmx->vcpu);
5449
de87dcdd
AK
5450 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5451 return 1;
5452
991eebf9 5453 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 5454
ac0a48c3 5455 if (err == EMULATE_USER_EXIT) {
80ced186
MG
5456 ret = 0;
5457 goto out;
5458 }
1d5a4d9b 5459
de5f70e0
AK
5460 if (err != EMULATE_DONE) {
5461 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5462 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5463 vcpu->run->internal.ndata = 0;
6d77dbfc 5464 return 0;
de5f70e0 5465 }
ea953ef0 5466
8d76c49e
GN
5467 if (vcpu->arch.halt_request) {
5468 vcpu->arch.halt_request = 0;
5469 ret = kvm_emulate_halt(vcpu);
5470 goto out;
5471 }
5472
ea953ef0 5473 if (signal_pending(current))
80ced186 5474 goto out;
ea953ef0
MG
5475 if (need_resched())
5476 schedule();
5477 }
5478
14168786 5479 vmx->emulation_required = emulation_required(vcpu);
80ced186
MG
5480out:
5481 return ret;
ea953ef0
MG
5482}
5483
4b8d54f9
ZE
5484/*
5485 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5486 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5487 */
9fb41ba8 5488static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
5489{
5490 skip_emulated_instruction(vcpu);
5491 kvm_vcpu_on_spin(vcpu);
5492
5493 return 1;
5494}
5495
59708670
SY
5496static int handle_invalid_op(struct kvm_vcpu *vcpu)
5497{
5498 kvm_queue_exception(vcpu, UD_VECTOR);
5499 return 1;
5500}
5501
ff2f6fe9
NHE
5502/*
5503 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5504 * We could reuse a single VMCS for all the L2 guests, but we also want the
5505 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5506 * allows keeping them loaded on the processor, and in the future will allow
5507 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5508 * every entry if they never change.
5509 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5510 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5511 *
5512 * The following functions allocate and free a vmcs02 in this pool.
5513 */
5514
5515/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5516static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5517{
5518 struct vmcs02_list *item;
5519 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5520 if (item->vmptr == vmx->nested.current_vmptr) {
5521 list_move(&item->list, &vmx->nested.vmcs02_pool);
5522 return &item->vmcs02;
5523 }
5524
5525 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5526 /* Recycle the least recently used VMCS. */
5527 item = list_entry(vmx->nested.vmcs02_pool.prev,
5528 struct vmcs02_list, list);
5529 item->vmptr = vmx->nested.current_vmptr;
5530 list_move(&item->list, &vmx->nested.vmcs02_pool);
5531 return &item->vmcs02;
5532 }
5533
5534 /* Create a new VMCS */
0fa24ce3 5535 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
5536 if (!item)
5537 return NULL;
5538 item->vmcs02.vmcs = alloc_vmcs();
5539 if (!item->vmcs02.vmcs) {
5540 kfree(item);
5541 return NULL;
5542 }
5543 loaded_vmcs_init(&item->vmcs02);
5544 item->vmptr = vmx->nested.current_vmptr;
5545 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5546 vmx->nested.vmcs02_num++;
5547 return &item->vmcs02;
5548}
5549
5550/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5551static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5552{
5553 struct vmcs02_list *item;
5554 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5555 if (item->vmptr == vmptr) {
5556 free_loaded_vmcs(&item->vmcs02);
5557 list_del(&item->list);
5558 kfree(item);
5559 vmx->nested.vmcs02_num--;
5560 return;
5561 }
5562}
5563
5564/*
5565 * Free all VMCSs saved for this vcpu, except the one pointed by
5566 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5567 * currently used, if running L2), and vmcs01 when running L2.
5568 */
5569static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5570{
5571 struct vmcs02_list *item, *n;
5572 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5573 if (vmx->loaded_vmcs != &item->vmcs02)
5574 free_loaded_vmcs(&item->vmcs02);
5575 list_del(&item->list);
5576 kfree(item);
5577 }
5578 vmx->nested.vmcs02_num = 0;
5579
5580 if (vmx->loaded_vmcs != &vmx->vmcs01)
5581 free_loaded_vmcs(&vmx->vmcs01);
5582}
5583
0658fbaa
ACL
5584/*
5585 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5586 * set the success or error code of an emulated VMX instruction, as specified
5587 * by Vol 2B, VMX Instruction Reference, "Conventions".
5588 */
5589static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5590{
5591 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5592 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5593 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5594}
5595
5596static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5597{
5598 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5599 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5600 X86_EFLAGS_SF | X86_EFLAGS_OF))
5601 | X86_EFLAGS_CF);
5602}
5603
145c28dd 5604static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
5605 u32 vm_instruction_error)
5606{
5607 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5608 /*
5609 * failValid writes the error number to the current VMCS, which
5610 * can't be done there isn't a current VMCS.
5611 */
5612 nested_vmx_failInvalid(vcpu);
5613 return;
5614 }
5615 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5616 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5617 X86_EFLAGS_SF | X86_EFLAGS_OF))
5618 | X86_EFLAGS_ZF);
5619 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5620 /*
5621 * We don't need to force a shadow sync because
5622 * VM_INSTRUCTION_ERROR is not shadowed
5623 */
5624}
145c28dd 5625
ec378aee
NHE
5626/*
5627 * Emulate the VMXON instruction.
5628 * Currently, we just remember that VMX is active, and do not save or even
5629 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5630 * do not currently need to store anything in that guest-allocated memory
5631 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5632 * argument is different from the VMXON pointer (which the spec says they do).
5633 */
5634static int handle_vmon(struct kvm_vcpu *vcpu)
5635{
5636 struct kvm_segment cs;
5637 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 5638 struct vmcs *shadow_vmcs;
b3897a49
NHE
5639 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
5640 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
5641
5642 /* The Intel VMX Instruction Reference lists a bunch of bits that
5643 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5644 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5645 * Otherwise, we should fail with #UD. We test these now:
5646 */
5647 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5648 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5649 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5650 kvm_queue_exception(vcpu, UD_VECTOR);
5651 return 1;
5652 }
5653
5654 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5655 if (is_long_mode(vcpu) && !cs.l) {
5656 kvm_queue_exception(vcpu, UD_VECTOR);
5657 return 1;
5658 }
5659
5660 if (vmx_get_cpl(vcpu)) {
5661 kvm_inject_gp(vcpu, 0);
5662 return 1;
5663 }
145c28dd
AG
5664 if (vmx->nested.vmxon) {
5665 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5666 skip_emulated_instruction(vcpu);
5667 return 1;
5668 }
b3897a49
NHE
5669
5670 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5671 != VMXON_NEEDED_FEATURES) {
5672 kvm_inject_gp(vcpu, 0);
5673 return 1;
5674 }
5675
8de48833
AG
5676 if (enable_shadow_vmcs) {
5677 shadow_vmcs = alloc_vmcs();
5678 if (!shadow_vmcs)
5679 return -ENOMEM;
5680 /* mark vmcs as shadow */
5681 shadow_vmcs->revision_id |= (1u << 31);
5682 /* init shadow vmcs */
5683 vmcs_clear(shadow_vmcs);
5684 vmx->nested.current_shadow_vmcs = shadow_vmcs;
5685 }
ec378aee 5686
ff2f6fe9
NHE
5687 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5688 vmx->nested.vmcs02_num = 0;
5689
ec378aee
NHE
5690 vmx->nested.vmxon = true;
5691
5692 skip_emulated_instruction(vcpu);
a25eb114 5693 nested_vmx_succeed(vcpu);
ec378aee
NHE
5694 return 1;
5695}
5696
5697/*
5698 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5699 * for running VMX instructions (except VMXON, whose prerequisites are
5700 * slightly different). It also specifies what exception to inject otherwise.
5701 */
5702static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5703{
5704 struct kvm_segment cs;
5705 struct vcpu_vmx *vmx = to_vmx(vcpu);
5706
5707 if (!vmx->nested.vmxon) {
5708 kvm_queue_exception(vcpu, UD_VECTOR);
5709 return 0;
5710 }
5711
5712 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5713 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5714 (is_long_mode(vcpu) && !cs.l)) {
5715 kvm_queue_exception(vcpu, UD_VECTOR);
5716 return 0;
5717 }
5718
5719 if (vmx_get_cpl(vcpu)) {
5720 kvm_inject_gp(vcpu, 0);
5721 return 0;
5722 }
5723
5724 return 1;
5725}
5726
e7953d7f
AG
5727static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5728{
8a1b9dd0 5729 u32 exec_control;
012f83cb
AG
5730 if (enable_shadow_vmcs) {
5731 if (vmx->nested.current_vmcs12 != NULL) {
5732 /* copy to memory all shadowed fields in case
5733 they were modified */
5734 copy_shadow_to_vmcs12(vmx);
5735 vmx->nested.sync_shadow_vmcs = false;
8a1b9dd0
AG
5736 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5737 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5738 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5739 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb
AG
5740 }
5741 }
e7953d7f
AG
5742 kunmap(vmx->nested.current_vmcs12_page);
5743 nested_release_page(vmx->nested.current_vmcs12_page);
5744}
5745
ec378aee
NHE
5746/*
5747 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5748 * just stops using VMX.
5749 */
5750static void free_nested(struct vcpu_vmx *vmx)
5751{
5752 if (!vmx->nested.vmxon)
5753 return;
5754 vmx->nested.vmxon = false;
a9d30f33 5755 if (vmx->nested.current_vmptr != -1ull) {
e7953d7f 5756 nested_release_vmcs12(vmx);
a9d30f33
NHE
5757 vmx->nested.current_vmptr = -1ull;
5758 vmx->nested.current_vmcs12 = NULL;
5759 }
e7953d7f
AG
5760 if (enable_shadow_vmcs)
5761 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
5762 /* Unpin physical memory we referred to in current vmcs02 */
5763 if (vmx->nested.apic_access_page) {
5764 nested_release_page(vmx->nested.apic_access_page);
5765 vmx->nested.apic_access_page = 0;
5766 }
ff2f6fe9
NHE
5767
5768 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5769}
5770
5771/* Emulate the VMXOFF instruction */
5772static int handle_vmoff(struct kvm_vcpu *vcpu)
5773{
5774 if (!nested_vmx_check_permission(vcpu))
5775 return 1;
5776 free_nested(to_vmx(vcpu));
5777 skip_emulated_instruction(vcpu);
a25eb114 5778 nested_vmx_succeed(vcpu);
ec378aee
NHE
5779 return 1;
5780}
5781
064aea77
NHE
5782/*
5783 * Decode the memory-address operand of a vmx instruction, as recorded on an
5784 * exit caused by such an instruction (run by a guest hypervisor).
5785 * On success, returns 0. When the operand is invalid, returns 1 and throws
5786 * #UD or #GP.
5787 */
5788static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5789 unsigned long exit_qualification,
5790 u32 vmx_instruction_info, gva_t *ret)
5791{
5792 /*
5793 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5794 * Execution", on an exit, vmx_instruction_info holds most of the
5795 * addressing components of the operand. Only the displacement part
5796 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5797 * For how an actual address is calculated from all these components,
5798 * refer to Vol. 1, "Operand Addressing".
5799 */
5800 int scaling = vmx_instruction_info & 3;
5801 int addr_size = (vmx_instruction_info >> 7) & 7;
5802 bool is_reg = vmx_instruction_info & (1u << 10);
5803 int seg_reg = (vmx_instruction_info >> 15) & 7;
5804 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5805 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5806 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5807 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5808
5809 if (is_reg) {
5810 kvm_queue_exception(vcpu, UD_VECTOR);
5811 return 1;
5812 }
5813
5814 /* Addr = segment_base + offset */
5815 /* offset = base + [index * scale] + displacement */
5816 *ret = vmx_get_segment_base(vcpu, seg_reg);
5817 if (base_is_valid)
5818 *ret += kvm_register_read(vcpu, base_reg);
5819 if (index_is_valid)
5820 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5821 *ret += exit_qualification; /* holds the displacement */
5822
5823 if (addr_size == 1) /* 32 bit */
5824 *ret &= 0xffffffff;
5825
5826 /*
5827 * TODO: throw #GP (and return 1) in various cases that the VM*
5828 * instructions require it - e.g., offset beyond segment limit,
5829 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5830 * address, and so on. Currently these are not checked.
5831 */
5832 return 0;
5833}
5834
27d6c865
NHE
5835/* Emulate the VMCLEAR instruction */
5836static int handle_vmclear(struct kvm_vcpu *vcpu)
5837{
5838 struct vcpu_vmx *vmx = to_vmx(vcpu);
5839 gva_t gva;
5840 gpa_t vmptr;
5841 struct vmcs12 *vmcs12;
5842 struct page *page;
5843 struct x86_exception e;
5844
5845 if (!nested_vmx_check_permission(vcpu))
5846 return 1;
5847
5848 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5849 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5850 return 1;
5851
5852 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5853 sizeof(vmptr), &e)) {
5854 kvm_inject_page_fault(vcpu, &e);
5855 return 1;
5856 }
5857
5858 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5859 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5860 skip_emulated_instruction(vcpu);
5861 return 1;
5862 }
5863
5864 if (vmptr == vmx->nested.current_vmptr) {
e7953d7f 5865 nested_release_vmcs12(vmx);
27d6c865
NHE
5866 vmx->nested.current_vmptr = -1ull;
5867 vmx->nested.current_vmcs12 = NULL;
5868 }
5869
5870 page = nested_get_page(vcpu, vmptr);
5871 if (page == NULL) {
5872 /*
5873 * For accurate processor emulation, VMCLEAR beyond available
5874 * physical memory should do nothing at all. However, it is
5875 * possible that a nested vmx bug, not a guest hypervisor bug,
5876 * resulted in this case, so let's shut down before doing any
5877 * more damage:
5878 */
5879 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5880 return 1;
5881 }
5882 vmcs12 = kmap(page);
5883 vmcs12->launch_state = 0;
5884 kunmap(page);
5885 nested_release_page(page);
5886
5887 nested_free_vmcs02(vmx, vmptr);
5888
5889 skip_emulated_instruction(vcpu);
5890 nested_vmx_succeed(vcpu);
5891 return 1;
5892}
5893
cd232ad0
NHE
5894static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5895
5896/* Emulate the VMLAUNCH instruction */
5897static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5898{
5899 return nested_vmx_run(vcpu, true);
5900}
5901
5902/* Emulate the VMRESUME instruction */
5903static int handle_vmresume(struct kvm_vcpu *vcpu)
5904{
5905
5906 return nested_vmx_run(vcpu, false);
5907}
5908
49f705c5
NHE
5909enum vmcs_field_type {
5910 VMCS_FIELD_TYPE_U16 = 0,
5911 VMCS_FIELD_TYPE_U64 = 1,
5912 VMCS_FIELD_TYPE_U32 = 2,
5913 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5914};
5915
5916static inline int vmcs_field_type(unsigned long field)
5917{
5918 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5919 return VMCS_FIELD_TYPE_U32;
5920 return (field >> 13) & 0x3 ;
5921}
5922
5923static inline int vmcs_field_readonly(unsigned long field)
5924{
5925 return (((field >> 10) & 0x3) == 1);
5926}
5927
5928/*
5929 * Read a vmcs12 field. Since these can have varying lengths and we return
5930 * one type, we chose the biggest type (u64) and zero-extend the return value
5931 * to that size. Note that the caller, handle_vmread, might need to use only
5932 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5933 * 64-bit fields are to be returned).
5934 */
5935static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5936 unsigned long field, u64 *ret)
5937{
5938 short offset = vmcs_field_to_offset(field);
5939 char *p;
5940
5941 if (offset < 0)
5942 return 0;
5943
5944 p = ((char *)(get_vmcs12(vcpu))) + offset;
5945
5946 switch (vmcs_field_type(field)) {
5947 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5948 *ret = *((natural_width *)p);
5949 return 1;
5950 case VMCS_FIELD_TYPE_U16:
5951 *ret = *((u16 *)p);
5952 return 1;
5953 case VMCS_FIELD_TYPE_U32:
5954 *ret = *((u32 *)p);
5955 return 1;
5956 case VMCS_FIELD_TYPE_U64:
5957 *ret = *((u64 *)p);
5958 return 1;
5959 default:
5960 return 0; /* can never happen. */
5961 }
5962}
5963
20b97fea
AG
5964
5965static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5966 unsigned long field, u64 field_value){
5967 short offset = vmcs_field_to_offset(field);
5968 char *p = ((char *) get_vmcs12(vcpu)) + offset;
5969 if (offset < 0)
5970 return false;
5971
5972 switch (vmcs_field_type(field)) {
5973 case VMCS_FIELD_TYPE_U16:
5974 *(u16 *)p = field_value;
5975 return true;
5976 case VMCS_FIELD_TYPE_U32:
5977 *(u32 *)p = field_value;
5978 return true;
5979 case VMCS_FIELD_TYPE_U64:
5980 *(u64 *)p = field_value;
5981 return true;
5982 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5983 *(natural_width *)p = field_value;
5984 return true;
5985 default:
5986 return false; /* can never happen. */
5987 }
5988
5989}
5990
16f5b903
AG
5991static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
5992{
5993 int i;
5994 unsigned long field;
5995 u64 field_value;
5996 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
5997 const unsigned long *fields = shadow_read_write_fields;
5998 const int num_fields = max_shadow_read_write_fields;
16f5b903
AG
5999
6000 vmcs_load(shadow_vmcs);
6001
6002 for (i = 0; i < num_fields; i++) {
6003 field = fields[i];
6004 switch (vmcs_field_type(field)) {
6005 case VMCS_FIELD_TYPE_U16:
6006 field_value = vmcs_read16(field);
6007 break;
6008 case VMCS_FIELD_TYPE_U32:
6009 field_value = vmcs_read32(field);
6010 break;
6011 case VMCS_FIELD_TYPE_U64:
6012 field_value = vmcs_read64(field);
6013 break;
6014 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6015 field_value = vmcs_readl(field);
6016 break;
6017 }
6018 vmcs12_write_any(&vmx->vcpu, field, field_value);
6019 }
6020
6021 vmcs_clear(shadow_vmcs);
6022 vmcs_load(vmx->loaded_vmcs->vmcs);
6023}
6024
c3114420
AG
6025static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
6026{
c2bae893
MK
6027 const unsigned long *fields[] = {
6028 shadow_read_write_fields,
6029 shadow_read_only_fields
c3114420 6030 };
c2bae893 6031 const int max_fields[] = {
c3114420
AG
6032 max_shadow_read_write_fields,
6033 max_shadow_read_only_fields
6034 };
6035 int i, q;
6036 unsigned long field;
6037 u64 field_value = 0;
6038 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6039
6040 vmcs_load(shadow_vmcs);
6041
c2bae893 6042 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
6043 for (i = 0; i < max_fields[q]; i++) {
6044 field = fields[q][i];
6045 vmcs12_read_any(&vmx->vcpu, field, &field_value);
6046
6047 switch (vmcs_field_type(field)) {
6048 case VMCS_FIELD_TYPE_U16:
6049 vmcs_write16(field, (u16)field_value);
6050 break;
6051 case VMCS_FIELD_TYPE_U32:
6052 vmcs_write32(field, (u32)field_value);
6053 break;
6054 case VMCS_FIELD_TYPE_U64:
6055 vmcs_write64(field, (u64)field_value);
6056 break;
6057 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6058 vmcs_writel(field, (long)field_value);
6059 break;
6060 }
6061 }
6062 }
6063
6064 vmcs_clear(shadow_vmcs);
6065 vmcs_load(vmx->loaded_vmcs->vmcs);
6066}
6067
49f705c5
NHE
6068/*
6069 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6070 * used before) all generate the same failure when it is missing.
6071 */
6072static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6073{
6074 struct vcpu_vmx *vmx = to_vmx(vcpu);
6075 if (vmx->nested.current_vmptr == -1ull) {
6076 nested_vmx_failInvalid(vcpu);
6077 skip_emulated_instruction(vcpu);
6078 return 0;
6079 }
6080 return 1;
6081}
6082
6083static int handle_vmread(struct kvm_vcpu *vcpu)
6084{
6085 unsigned long field;
6086 u64 field_value;
6087 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6088 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6089 gva_t gva = 0;
6090
6091 if (!nested_vmx_check_permission(vcpu) ||
6092 !nested_vmx_check_vmcs12(vcpu))
6093 return 1;
6094
6095 /* Decode instruction info and find the field to read */
6096 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6097 /* Read the field, zero-extended to a u64 field_value */
6098 if (!vmcs12_read_any(vcpu, field, &field_value)) {
6099 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6100 skip_emulated_instruction(vcpu);
6101 return 1;
6102 }
6103 /*
6104 * Now copy part of this value to register or memory, as requested.
6105 * Note that the number of bits actually copied is 32 or 64 depending
6106 * on the guest's mode (32 or 64 bit), not on the given field's length.
6107 */
6108 if (vmx_instruction_info & (1u << 10)) {
6109 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6110 field_value);
6111 } else {
6112 if (get_vmx_mem_address(vcpu, exit_qualification,
6113 vmx_instruction_info, &gva))
6114 return 1;
6115 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6116 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6117 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6118 }
6119
6120 nested_vmx_succeed(vcpu);
6121 skip_emulated_instruction(vcpu);
6122 return 1;
6123}
6124
6125
6126static int handle_vmwrite(struct kvm_vcpu *vcpu)
6127{
6128 unsigned long field;
6129 gva_t gva;
6130 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6131 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
6132 /* The value to write might be 32 or 64 bits, depending on L1's long
6133 * mode, and eventually we need to write that into a field of several
6134 * possible lengths. The code below first zero-extends the value to 64
6135 * bit (field_value), and then copies only the approriate number of
6136 * bits into the vmcs12 field.
6137 */
6138 u64 field_value = 0;
6139 struct x86_exception e;
6140
6141 if (!nested_vmx_check_permission(vcpu) ||
6142 !nested_vmx_check_vmcs12(vcpu))
6143 return 1;
6144
6145 if (vmx_instruction_info & (1u << 10))
6146 field_value = kvm_register_read(vcpu,
6147 (((vmx_instruction_info) >> 3) & 0xf));
6148 else {
6149 if (get_vmx_mem_address(vcpu, exit_qualification,
6150 vmx_instruction_info, &gva))
6151 return 1;
6152 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6153 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6154 kvm_inject_page_fault(vcpu, &e);
6155 return 1;
6156 }
6157 }
6158
6159
6160 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6161 if (vmcs_field_readonly(field)) {
6162 nested_vmx_failValid(vcpu,
6163 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6164 skip_emulated_instruction(vcpu);
6165 return 1;
6166 }
6167
20b97fea 6168 if (!vmcs12_write_any(vcpu, field, field_value)) {
49f705c5
NHE
6169 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6170 skip_emulated_instruction(vcpu);
6171 return 1;
6172 }
6173
6174 nested_vmx_succeed(vcpu);
6175 skip_emulated_instruction(vcpu);
6176 return 1;
6177}
6178
63846663
NHE
6179/* Emulate the VMPTRLD instruction */
6180static int handle_vmptrld(struct kvm_vcpu *vcpu)
6181{
6182 struct vcpu_vmx *vmx = to_vmx(vcpu);
6183 gva_t gva;
6184 gpa_t vmptr;
6185 struct x86_exception e;
8a1b9dd0 6186 u32 exec_control;
63846663
NHE
6187
6188 if (!nested_vmx_check_permission(vcpu))
6189 return 1;
6190
6191 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6192 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6193 return 1;
6194
6195 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6196 sizeof(vmptr), &e)) {
6197 kvm_inject_page_fault(vcpu, &e);
6198 return 1;
6199 }
6200
6201 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6202 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6203 skip_emulated_instruction(vcpu);
6204 return 1;
6205 }
6206
6207 if (vmx->nested.current_vmptr != vmptr) {
6208 struct vmcs12 *new_vmcs12;
6209 struct page *page;
6210 page = nested_get_page(vcpu, vmptr);
6211 if (page == NULL) {
6212 nested_vmx_failInvalid(vcpu);
6213 skip_emulated_instruction(vcpu);
6214 return 1;
6215 }
6216 new_vmcs12 = kmap(page);
6217 if (new_vmcs12->revision_id != VMCS12_REVISION) {
6218 kunmap(page);
6219 nested_release_page_clean(page);
6220 nested_vmx_failValid(vcpu,
6221 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6222 skip_emulated_instruction(vcpu);
6223 return 1;
6224 }
e7953d7f
AG
6225 if (vmx->nested.current_vmptr != -1ull)
6226 nested_release_vmcs12(vmx);
63846663
NHE
6227
6228 vmx->nested.current_vmptr = vmptr;
6229 vmx->nested.current_vmcs12 = new_vmcs12;
6230 vmx->nested.current_vmcs12_page = page;
012f83cb 6231 if (enable_shadow_vmcs) {
8a1b9dd0
AG
6232 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6233 exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6234 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6235 vmcs_write64(VMCS_LINK_POINTER,
6236 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
6237 vmx->nested.sync_shadow_vmcs = true;
6238 }
63846663
NHE
6239 }
6240
6241 nested_vmx_succeed(vcpu);
6242 skip_emulated_instruction(vcpu);
6243 return 1;
6244}
6245
6a4d7550
NHE
6246/* Emulate the VMPTRST instruction */
6247static int handle_vmptrst(struct kvm_vcpu *vcpu)
6248{
6249 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6250 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6251 gva_t vmcs_gva;
6252 struct x86_exception e;
6253
6254 if (!nested_vmx_check_permission(vcpu))
6255 return 1;
6256
6257 if (get_vmx_mem_address(vcpu, exit_qualification,
6258 vmx_instruction_info, &vmcs_gva))
6259 return 1;
6260 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6261 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6262 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6263 sizeof(u64), &e)) {
6264 kvm_inject_page_fault(vcpu, &e);
6265 return 1;
6266 }
6267 nested_vmx_succeed(vcpu);
6268 skip_emulated_instruction(vcpu);
6269 return 1;
6270}
6271
6aa8b732
AK
6272/*
6273 * The exit handlers return 1 if the exit was handled fully and guest execution
6274 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
6275 * to be done to userspace and return 0.
6276 */
772e0318 6277static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
6278 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
6279 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 6280 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 6281 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 6282 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
6283 [EXIT_REASON_CR_ACCESS] = handle_cr,
6284 [EXIT_REASON_DR_ACCESS] = handle_dr,
6285 [EXIT_REASON_CPUID] = handle_cpuid,
6286 [EXIT_REASON_MSR_READ] = handle_rdmsr,
6287 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
6288 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
6289 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 6290 [EXIT_REASON_INVD] = handle_invd,
a7052897 6291 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 6292 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 6293 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 6294 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 6295 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 6296 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 6297 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 6298 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 6299 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 6300 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
6301 [EXIT_REASON_VMOFF] = handle_vmoff,
6302 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
6303 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
6304 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 6305 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 6306 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 6307 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 6308 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 6309 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 6310 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
6311 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
6312 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 6313 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
6314 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
6315 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
6316};
6317
6318static const int kvm_vmx_max_exit_handlers =
50a3485c 6319 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 6320
908a7bdd
JK
6321static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6322 struct vmcs12 *vmcs12)
6323{
6324 unsigned long exit_qualification;
6325 gpa_t bitmap, last_bitmap;
6326 unsigned int port;
6327 int size;
6328 u8 b;
6329
6330 if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6331 return 1;
6332
6333 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6334 return 0;
6335
6336 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6337
6338 port = exit_qualification >> 16;
6339 size = (exit_qualification & 7) + 1;
6340
6341 last_bitmap = (gpa_t)-1;
6342 b = -1;
6343
6344 while (size > 0) {
6345 if (port < 0x8000)
6346 bitmap = vmcs12->io_bitmap_a;
6347 else if (port < 0x10000)
6348 bitmap = vmcs12->io_bitmap_b;
6349 else
6350 return 1;
6351 bitmap += (port & 0x7fff) / 8;
6352
6353 if (last_bitmap != bitmap)
6354 if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6355 return 1;
6356 if (b & (1 << (port & 7)))
6357 return 1;
6358
6359 port++;
6360 size--;
6361 last_bitmap = bitmap;
6362 }
6363
6364 return 0;
6365}
6366
644d711a
NHE
6367/*
6368 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6369 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6370 * disinterest in the current event (read or write a specific MSR) by using an
6371 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6372 */
6373static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6374 struct vmcs12 *vmcs12, u32 exit_reason)
6375{
6376 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6377 gpa_t bitmap;
6378
cbd29cb6 6379 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
644d711a
NHE
6380 return 1;
6381
6382 /*
6383 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6384 * for the four combinations of read/write and low/high MSR numbers.
6385 * First we need to figure out which of the four to use:
6386 */
6387 bitmap = vmcs12->msr_bitmap;
6388 if (exit_reason == EXIT_REASON_MSR_WRITE)
6389 bitmap += 2048;
6390 if (msr_index >= 0xc0000000) {
6391 msr_index -= 0xc0000000;
6392 bitmap += 1024;
6393 }
6394
6395 /* Then read the msr_index'th bit from this bitmap: */
6396 if (msr_index < 1024*8) {
6397 unsigned char b;
bd31a7f5
JK
6398 if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6399 return 1;
644d711a
NHE
6400 return 1 & (b >> (msr_index & 7));
6401 } else
6402 return 1; /* let L1 handle the wrong parameter */
6403}
6404
6405/*
6406 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6407 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6408 * intercept (via guest_host_mask etc.) the current event.
6409 */
6410static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6411 struct vmcs12 *vmcs12)
6412{
6413 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6414 int cr = exit_qualification & 15;
6415 int reg = (exit_qualification >> 8) & 15;
6416 unsigned long val = kvm_register_read(vcpu, reg);
6417
6418 switch ((exit_qualification >> 4) & 3) {
6419 case 0: /* mov to cr */
6420 switch (cr) {
6421 case 0:
6422 if (vmcs12->cr0_guest_host_mask &
6423 (val ^ vmcs12->cr0_read_shadow))
6424 return 1;
6425 break;
6426 case 3:
6427 if ((vmcs12->cr3_target_count >= 1 &&
6428 vmcs12->cr3_target_value0 == val) ||
6429 (vmcs12->cr3_target_count >= 2 &&
6430 vmcs12->cr3_target_value1 == val) ||
6431 (vmcs12->cr3_target_count >= 3 &&
6432 vmcs12->cr3_target_value2 == val) ||
6433 (vmcs12->cr3_target_count >= 4 &&
6434 vmcs12->cr3_target_value3 == val))
6435 return 0;
6436 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6437 return 1;
6438 break;
6439 case 4:
6440 if (vmcs12->cr4_guest_host_mask &
6441 (vmcs12->cr4_read_shadow ^ val))
6442 return 1;
6443 break;
6444 case 8:
6445 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6446 return 1;
6447 break;
6448 }
6449 break;
6450 case 2: /* clts */
6451 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6452 (vmcs12->cr0_read_shadow & X86_CR0_TS))
6453 return 1;
6454 break;
6455 case 1: /* mov from cr */
6456 switch (cr) {
6457 case 3:
6458 if (vmcs12->cpu_based_vm_exec_control &
6459 CPU_BASED_CR3_STORE_EXITING)
6460 return 1;
6461 break;
6462 case 8:
6463 if (vmcs12->cpu_based_vm_exec_control &
6464 CPU_BASED_CR8_STORE_EXITING)
6465 return 1;
6466 break;
6467 }
6468 break;
6469 case 3: /* lmsw */
6470 /*
6471 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6472 * cr0. Other attempted changes are ignored, with no exit.
6473 */
6474 if (vmcs12->cr0_guest_host_mask & 0xe &
6475 (val ^ vmcs12->cr0_read_shadow))
6476 return 1;
6477 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6478 !(vmcs12->cr0_read_shadow & 0x1) &&
6479 (val & 0x1))
6480 return 1;
6481 break;
6482 }
6483 return 0;
6484}
6485
6486/*
6487 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6488 * should handle it ourselves in L0 (and then continue L2). Only call this
6489 * when in is_guest_mode (L2).
6490 */
6491static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6492{
644d711a
NHE
6493 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6494 struct vcpu_vmx *vmx = to_vmx(vcpu);
6495 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 6496 u32 exit_reason = vmx->exit_reason;
644d711a
NHE
6497
6498 if (vmx->nested.nested_run_pending)
6499 return 0;
6500
6501 if (unlikely(vmx->fail)) {
bd80158a
JK
6502 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6503 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
6504 return 1;
6505 }
6506
6507 switch (exit_reason) {
6508 case EXIT_REASON_EXCEPTION_NMI:
6509 if (!is_exception(intr_info))
6510 return 0;
6511 else if (is_page_fault(intr_info))
6512 return enable_ept;
6513 return vmcs12->exception_bitmap &
6514 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6515 case EXIT_REASON_EXTERNAL_INTERRUPT:
6516 return 0;
6517 case EXIT_REASON_TRIPLE_FAULT:
6518 return 1;
6519 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 6520 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 6521 case EXIT_REASON_NMI_WINDOW:
3b656cf7 6522 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a
NHE
6523 case EXIT_REASON_TASK_SWITCH:
6524 return 1;
6525 case EXIT_REASON_CPUID:
6526 return 1;
6527 case EXIT_REASON_HLT:
6528 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6529 case EXIT_REASON_INVD:
6530 return 1;
6531 case EXIT_REASON_INVLPG:
6532 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6533 case EXIT_REASON_RDPMC:
6534 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6535 case EXIT_REASON_RDTSC:
6536 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6537 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6538 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6539 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6540 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6541 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6542 /*
6543 * VMX instructions trap unconditionally. This allows L1 to
6544 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6545 */
6546 return 1;
6547 case EXIT_REASON_CR_ACCESS:
6548 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6549 case EXIT_REASON_DR_ACCESS:
6550 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6551 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 6552 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
6553 case EXIT_REASON_MSR_READ:
6554 case EXIT_REASON_MSR_WRITE:
6555 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6556 case EXIT_REASON_INVALID_STATE:
6557 return 1;
6558 case EXIT_REASON_MWAIT_INSTRUCTION:
6559 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6560 case EXIT_REASON_MONITOR_INSTRUCTION:
6561 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6562 case EXIT_REASON_PAUSE_INSTRUCTION:
6563 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6564 nested_cpu_has2(vmcs12,
6565 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6566 case EXIT_REASON_MCE_DURING_VMENTRY:
6567 return 0;
6568 case EXIT_REASON_TPR_BELOW_THRESHOLD:
6569 return 1;
6570 case EXIT_REASON_APIC_ACCESS:
6571 return nested_cpu_has2(vmcs12,
6572 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6573 case EXIT_REASON_EPT_VIOLATION:
6574 case EXIT_REASON_EPT_MISCONFIG:
6575 return 0;
0238ea91
JK
6576 case EXIT_REASON_PREEMPTION_TIMER:
6577 return vmcs12->pin_based_vm_exec_control &
6578 PIN_BASED_VMX_PREEMPTION_TIMER;
644d711a
NHE
6579 case EXIT_REASON_WBINVD:
6580 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6581 case EXIT_REASON_XSETBV:
6582 return 1;
6583 default:
6584 return 1;
6585 }
6586}
6587
586f9607
AK
6588static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6589{
6590 *info1 = vmcs_readl(EXIT_QUALIFICATION);
6591 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6592}
6593
6aa8b732
AK
6594/*
6595 * The guest has exited. See if we can fix it or if we need userspace
6596 * assistance.
6597 */
851ba692 6598static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 6599{
29bd8a78 6600 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 6601 u32 exit_reason = vmx->exit_reason;
1155f76a 6602 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 6603
80ced186 6604 /* If guest state is invalid, start emulating */
14168786 6605 if (vmx->emulation_required)
80ced186 6606 return handle_invalid_guest_state(vcpu);
1d5a4d9b 6607
b6f1250e
NHE
6608 /*
6609 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6610 * we did not inject a still-pending event to L1 now because of
6611 * nested_run_pending, we need to re-enable this bit.
6612 */
6613 if (vmx->nested.nested_run_pending)
6614 kvm_make_request(KVM_REQ_EVENT, vcpu);
6615
509c75ea
NHE
6616 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6617 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
6618 vmx->nested.nested_run_pending = 1;
6619 else
6620 vmx->nested.nested_run_pending = 0;
6621
6622 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6623 nested_vmx_vmexit(vcpu);
6624 return 1;
6625 }
6626
5120702e
MG
6627 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6628 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6629 vcpu->run->fail_entry.hardware_entry_failure_reason
6630 = exit_reason;
6631 return 0;
6632 }
6633
29bd8a78 6634 if (unlikely(vmx->fail)) {
851ba692
AK
6635 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6636 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
6637 = vmcs_read32(VM_INSTRUCTION_ERROR);
6638 return 0;
6639 }
6aa8b732 6640
b9bf6882
XG
6641 /*
6642 * Note:
6643 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6644 * delivery event since it indicates guest is accessing MMIO.
6645 * The vm-exit can be triggered again after return to guest that
6646 * will cause infinite loop.
6647 */
d77c26fc 6648 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 6649 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 6650 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
6651 exit_reason != EXIT_REASON_TASK_SWITCH)) {
6652 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6653 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6654 vcpu->run->internal.ndata = 2;
6655 vcpu->run->internal.data[0] = vectoring_info;
6656 vcpu->run->internal.data[1] = exit_reason;
6657 return 0;
6658 }
3b86cd99 6659
644d711a
NHE
6660 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6661 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6662 get_vmcs12(vcpu), vcpu)))) {
c4282df9 6663 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 6664 vmx->soft_vnmi_blocked = 0;
3b86cd99 6665 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 6666 vcpu->arch.nmi_pending) {
3b86cd99
JK
6667 /*
6668 * This CPU don't support us in finding the end of an
6669 * NMI-blocked window if the guest runs with IRQs
6670 * disabled. So we pull the trigger after 1 s of
6671 * futile waiting, but inform the user about this.
6672 */
6673 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6674 "state on VCPU %d after 1 s timeout\n",
6675 __func__, vcpu->vcpu_id);
6676 vmx->soft_vnmi_blocked = 0;
3b86cd99 6677 }
3b86cd99
JK
6678 }
6679
6aa8b732
AK
6680 if (exit_reason < kvm_vmx_max_exit_handlers
6681 && kvm_vmx_exit_handlers[exit_reason])
851ba692 6682 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 6683 else {
851ba692
AK
6684 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6685 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
6686 }
6687 return 0;
6688}
6689
95ba8273 6690static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 6691{
95ba8273 6692 if (irr == -1 || tpr < irr) {
6e5d865c
YS
6693 vmcs_write32(TPR_THRESHOLD, 0);
6694 return;
6695 }
6696
95ba8273 6697 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
6698}
6699
8d14695f
YZ
6700static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6701{
6702 u32 sec_exec_control;
6703
6704 /*
6705 * There is not point to enable virtualize x2apic without enable
6706 * apicv
6707 */
c7c9c56c
YZ
6708 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6709 !vmx_vm_has_apicv(vcpu->kvm))
8d14695f
YZ
6710 return;
6711
6712 if (!vm_need_tpr_shadow(vcpu->kvm))
6713 return;
6714
6715 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6716
6717 if (set) {
6718 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6719 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6720 } else {
6721 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6722 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6723 }
6724 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6725
6726 vmx_set_msr_bitmap(vcpu);
6727}
6728
c7c9c56c
YZ
6729static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6730{
6731 u16 status;
6732 u8 old;
6733
6734 if (!vmx_vm_has_apicv(kvm))
6735 return;
6736
6737 if (isr == -1)
6738 isr = 0;
6739
6740 status = vmcs_read16(GUEST_INTR_STATUS);
6741 old = status >> 8;
6742 if (isr != old) {
6743 status &= 0xff;
6744 status |= isr << 8;
6745 vmcs_write16(GUEST_INTR_STATUS, status);
6746 }
6747}
6748
6749static void vmx_set_rvi(int vector)
6750{
6751 u16 status;
6752 u8 old;
6753
6754 status = vmcs_read16(GUEST_INTR_STATUS);
6755 old = (u8)status & 0xff;
6756 if ((u8)vector != old) {
6757 status &= ~0xff;
6758 status |= (u8)vector;
6759 vmcs_write16(GUEST_INTR_STATUS, status);
6760 }
6761}
6762
6763static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6764{
6765 if (max_irr == -1)
6766 return;
6767
6768 vmx_set_rvi(max_irr);
6769}
6770
6771static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6772{
3d81bc7e
YZ
6773 if (!vmx_vm_has_apicv(vcpu->kvm))
6774 return;
6775
c7c9c56c
YZ
6776 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6777 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6778 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6779 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6780}
6781
51aa01d1 6782static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 6783{
00eba012
AK
6784 u32 exit_intr_info;
6785
6786 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6787 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6788 return;
6789
c5ca8e57 6790 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 6791 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
6792
6793 /* Handle machine checks before interrupts are enabled */
00eba012 6794 if (is_machine_check(exit_intr_info))
a0861c02
AK
6795 kvm_machine_check();
6796
20f65983 6797 /* We need to handle NMIs before interrupts are enabled */
00eba012 6798 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
6799 (exit_intr_info & INTR_INFO_VALID_MASK)) {
6800 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 6801 asm("int $2");
ff9d07a0
ZY
6802 kvm_after_handle_nmi(&vmx->vcpu);
6803 }
51aa01d1 6804}
20f65983 6805
a547c6db
YZ
6806static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6807{
6808 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6809
6810 /*
6811 * If external interrupt exists, IF bit is set in rflags/eflags on the
6812 * interrupt stack frame, and interrupt will be enabled on a return
6813 * from interrupt handler.
6814 */
6815 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6816 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6817 unsigned int vector;
6818 unsigned long entry;
6819 gate_desc *desc;
6820 struct vcpu_vmx *vmx = to_vmx(vcpu);
6821#ifdef CONFIG_X86_64
6822 unsigned long tmp;
6823#endif
6824
6825 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6826 desc = (gate_desc *)vmx->host_idt_base + vector;
6827 entry = gate_offset(*desc);
6828 asm volatile(
6829#ifdef CONFIG_X86_64
6830 "mov %%" _ASM_SP ", %[sp]\n\t"
6831 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6832 "push $%c[ss]\n\t"
6833 "push %[sp]\n\t"
6834#endif
6835 "pushf\n\t"
6836 "orl $0x200, (%%" _ASM_SP ")\n\t"
6837 __ASM_SIZE(push) " $%c[cs]\n\t"
6838 "call *%[entry]\n\t"
6839 :
6840#ifdef CONFIG_X86_64
6841 [sp]"=&r"(tmp)
6842#endif
6843 :
6844 [entry]"r"(entry),
6845 [ss]"i"(__KERNEL_DS),
6846 [cs]"i"(__KERNEL_CS)
6847 );
6848 } else
6849 local_irq_enable();
6850}
6851
51aa01d1
AK
6852static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6853{
c5ca8e57 6854 u32 exit_intr_info;
51aa01d1
AK
6855 bool unblock_nmi;
6856 u8 vector;
6857 bool idtv_info_valid;
6858
6859 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 6860
cf393f75 6861 if (cpu_has_virtual_nmis()) {
9d58b931
AK
6862 if (vmx->nmi_known_unmasked)
6863 return;
c5ca8e57
AK
6864 /*
6865 * Can't use vmx->exit_intr_info since we're not sure what
6866 * the exit reason is.
6867 */
6868 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
6869 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6870 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6871 /*
7b4a25cb 6872 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
6873 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6874 * a guest IRET fault.
7b4a25cb
GN
6875 * SDM 3: 23.2.2 (September 2008)
6876 * Bit 12 is undefined in any of the following cases:
6877 * If the VM exit sets the valid bit in the IDT-vectoring
6878 * information field.
6879 * If the VM exit is due to a double fault.
cf393f75 6880 */
7b4a25cb
GN
6881 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6882 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
6883 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6884 GUEST_INTR_STATE_NMI);
9d58b931
AK
6885 else
6886 vmx->nmi_known_unmasked =
6887 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6888 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
6889 } else if (unlikely(vmx->soft_vnmi_blocked))
6890 vmx->vnmi_blocked_time +=
6891 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
6892}
6893
3ab66e8a 6894static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
6895 u32 idt_vectoring_info,
6896 int instr_len_field,
6897 int error_code_field)
51aa01d1 6898{
51aa01d1
AK
6899 u8 vector;
6900 int type;
6901 bool idtv_info_valid;
6902
6903 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6904
3ab66e8a
JK
6905 vcpu->arch.nmi_injected = false;
6906 kvm_clear_exception_queue(vcpu);
6907 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
6908
6909 if (!idtv_info_valid)
6910 return;
6911
3ab66e8a 6912 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 6913
668f612f
AK
6914 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6915 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6916
64a7ec06 6917 switch (type) {
37b96e98 6918 case INTR_TYPE_NMI_INTR:
3ab66e8a 6919 vcpu->arch.nmi_injected = true;
668f612f 6920 /*
7b4a25cb 6921 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6922 * Clear bit "block by NMI" before VM entry if a NMI
6923 * delivery faulted.
668f612f 6924 */
3ab66e8a 6925 vmx_set_nmi_mask(vcpu, false);
37b96e98 6926 break;
37b96e98 6927 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 6928 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
6929 /* fall through */
6930 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6931 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6932 u32 err = vmcs_read32(error_code_field);
3ab66e8a 6933 kvm_queue_exception_e(vcpu, vector, err);
35920a35 6934 } else
3ab66e8a 6935 kvm_queue_exception(vcpu, vector);
37b96e98 6936 break;
66fd3f7f 6937 case INTR_TYPE_SOFT_INTR:
3ab66e8a 6938 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 6939 /* fall through */
37b96e98 6940 case INTR_TYPE_EXT_INTR:
3ab66e8a 6941 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6942 break;
6943 default:
6944 break;
f7d9238f 6945 }
cf393f75
AK
6946}
6947
83422e17
AK
6948static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6949{
3ab66e8a 6950 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
6951 VM_EXIT_INSTRUCTION_LEN,
6952 IDT_VECTORING_ERROR_CODE);
6953}
6954
b463a6f7
AK
6955static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6956{
3ab66e8a 6957 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
6958 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6959 VM_ENTRY_INSTRUCTION_LEN,
6960 VM_ENTRY_EXCEPTION_ERROR_CODE);
6961
6962 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6963}
6964
d7cd9796
GN
6965static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6966{
6967 int i, nr_msrs;
6968 struct perf_guest_switch_msr *msrs;
6969
6970 msrs = perf_guest_get_msrs(&nr_msrs);
6971
6972 if (!msrs)
6973 return;
6974
6975 for (i = 0; i < nr_msrs; i++)
6976 if (msrs[i].host == msrs[i].guest)
6977 clear_atomic_switch_msr(vmx, msrs[i].msr);
6978 else
6979 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6980 msrs[i].host);
6981}
6982
a3b5ba49 6983static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6984{
a2fa3e9f 6985 struct vcpu_vmx *vmx = to_vmx(vcpu);
2a7921b7 6986 unsigned long debugctlmsr;
104f226b
AK
6987
6988 /* Record the guest's net vcpu time for enforced NMI injections. */
6989 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6990 vmx->entry_time = ktime_get();
6991
6992 /* Don't enter VMX if guest state is invalid, let the exit handler
6993 start emulation until we arrive back to a valid state */
14168786 6994 if (vmx->emulation_required)
104f226b
AK
6995 return;
6996
012f83cb
AG
6997 if (vmx->nested.sync_shadow_vmcs) {
6998 copy_vmcs12_to_shadow(vmx);
6999 vmx->nested.sync_shadow_vmcs = false;
7000 }
7001
104f226b
AK
7002 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
7003 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
7004 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
7005 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
7006
7007 /* When single-stepping over STI and MOV SS, we must clear the
7008 * corresponding interruptibility bits in the guest state. Otherwise
7009 * vmentry fails as it then expects bit 14 (BS) in pending debug
7010 * exceptions being set, but that's not correct for the guest debugging
7011 * case. */
7012 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7013 vmx_set_interrupt_shadow(vcpu, 0);
7014
d7cd9796 7015 atomic_switch_perf_msrs(vmx);
2a7921b7 7016 debugctlmsr = get_debugctlmsr();
d7cd9796 7017
d462b819 7018 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 7019 asm(
6aa8b732 7020 /* Store host registers */
b188c81f
AK
7021 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
7022 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
7023 "push %%" _ASM_CX " \n\t"
7024 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 7025 "je 1f \n\t"
b188c81f 7026 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 7027 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 7028 "1: \n\t"
d3edefc0 7029 /* Reload cr2 if changed */
b188c81f
AK
7030 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
7031 "mov %%cr2, %%" _ASM_DX " \n\t"
7032 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 7033 "je 2f \n\t"
b188c81f 7034 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 7035 "2: \n\t"
6aa8b732 7036 /* Check if vmlaunch of vmresume is needed */
e08aa78a 7037 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 7038 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
7039 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7040 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7041 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7042 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7043 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7044 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 7045#ifdef CONFIG_X86_64
e08aa78a
AK
7046 "mov %c[r8](%0), %%r8 \n\t"
7047 "mov %c[r9](%0), %%r9 \n\t"
7048 "mov %c[r10](%0), %%r10 \n\t"
7049 "mov %c[r11](%0), %%r11 \n\t"
7050 "mov %c[r12](%0), %%r12 \n\t"
7051 "mov %c[r13](%0), %%r13 \n\t"
7052 "mov %c[r14](%0), %%r14 \n\t"
7053 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 7054#endif
b188c81f 7055 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 7056
6aa8b732 7057 /* Enter guest mode */
83287ea4 7058 "jne 1f \n\t"
4ecac3fd 7059 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
7060 "jmp 2f \n\t"
7061 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7062 "2: "
6aa8b732 7063 /* Save guest registers, load host registers, keep flags */
b188c81f 7064 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 7065 "pop %0 \n\t"
b188c81f
AK
7066 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7067 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7068 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7069 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7070 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7071 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7072 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 7073#ifdef CONFIG_X86_64
e08aa78a
AK
7074 "mov %%r8, %c[r8](%0) \n\t"
7075 "mov %%r9, %c[r9](%0) \n\t"
7076 "mov %%r10, %c[r10](%0) \n\t"
7077 "mov %%r11, %c[r11](%0) \n\t"
7078 "mov %%r12, %c[r12](%0) \n\t"
7079 "mov %%r13, %c[r13](%0) \n\t"
7080 "mov %%r14, %c[r14](%0) \n\t"
7081 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 7082#endif
b188c81f
AK
7083 "mov %%cr2, %%" _ASM_AX " \n\t"
7084 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 7085
b188c81f 7086 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 7087 "setbe %c[fail](%0) \n\t"
83287ea4
AK
7088 ".pushsection .rodata \n\t"
7089 ".global vmx_return \n\t"
7090 "vmx_return: " _ASM_PTR " 2b \n\t"
7091 ".popsection"
e08aa78a 7092 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 7093 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 7094 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 7095 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
7096 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7097 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7098 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7099 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7100 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7101 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7102 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 7103#ifdef CONFIG_X86_64
ad312c7c
ZX
7104 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7105 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7106 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7107 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7108 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7109 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7110 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7111 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 7112#endif
40712fae
AK
7113 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7114 [wordsize]"i"(sizeof(ulong))
c2036300
LV
7115 : "cc", "memory"
7116#ifdef CONFIG_X86_64
b188c81f 7117 , "rax", "rbx", "rdi", "rsi"
c2036300 7118 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
7119#else
7120 , "eax", "ebx", "edi", "esi"
c2036300
LV
7121#endif
7122 );
6aa8b732 7123
2a7921b7
GN
7124 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7125 if (debugctlmsr)
7126 update_debugctlmsr(debugctlmsr);
7127
aa67f609
AK
7128#ifndef CONFIG_X86_64
7129 /*
7130 * The sysexit path does not restore ds/es, so we must set them to
7131 * a reasonable value ourselves.
7132 *
7133 * We can't defer this to vmx_load_host_state() since that function
7134 * may be executed in interrupt context, which saves and restore segments
7135 * around it, nullifying its effect.
7136 */
7137 loadsegment(ds, __USER_DS);
7138 loadsegment(es, __USER_DS);
7139#endif
7140
6de4f3ad 7141 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 7142 | (1 << VCPU_EXREG_RFLAGS)
69c73028 7143 | (1 << VCPU_EXREG_CPL)
aff48baa 7144 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 7145 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 7146 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
7147 vcpu->arch.regs_dirty = 0;
7148
1155f76a
AK
7149 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7150
d462b819 7151 vmx->loaded_vmcs->launched = 1;
1b6269db 7152
51aa01d1 7153 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 7154 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
7155
7156 vmx_complete_atomic_exit(vmx);
7157 vmx_recover_nmi_blocking(vmx);
cf393f75 7158 vmx_complete_interrupts(vmx);
6aa8b732
AK
7159}
7160
6aa8b732
AK
7161static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7162{
fb3f0f51
RR
7163 struct vcpu_vmx *vmx = to_vmx(vcpu);
7164
cdbecfc3 7165 free_vpid(vmx);
ec378aee 7166 free_nested(vmx);
d462b819 7167 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
7168 kfree(vmx->guest_msrs);
7169 kvm_vcpu_uninit(vcpu);
a4770347 7170 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
7171}
7172
fb3f0f51 7173static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 7174{
fb3f0f51 7175 int err;
c16f862d 7176 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 7177 int cpu;
6aa8b732 7178
a2fa3e9f 7179 if (!vmx)
fb3f0f51
RR
7180 return ERR_PTR(-ENOMEM);
7181
2384d2b3
SY
7182 allocate_vpid(vmx);
7183
fb3f0f51
RR
7184 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7185 if (err)
7186 goto free_vcpu;
965b58a5 7187
a2fa3e9f 7188 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 7189 err = -ENOMEM;
fb3f0f51 7190 if (!vmx->guest_msrs) {
fb3f0f51
RR
7191 goto uninit_vcpu;
7192 }
965b58a5 7193
d462b819
NHE
7194 vmx->loaded_vmcs = &vmx->vmcs01;
7195 vmx->loaded_vmcs->vmcs = alloc_vmcs();
7196 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 7197 goto free_msrs;
d462b819
NHE
7198 if (!vmm_exclusive)
7199 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7200 loaded_vmcs_init(vmx->loaded_vmcs);
7201 if (!vmm_exclusive)
7202 kvm_cpu_vmxoff();
a2fa3e9f 7203
15ad7146
AK
7204 cpu = get_cpu();
7205 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 7206 vmx->vcpu.cpu = cpu;
8b9cf98c 7207 err = vmx_vcpu_setup(vmx);
fb3f0f51 7208 vmx_vcpu_put(&vmx->vcpu);
15ad7146 7209 put_cpu();
fb3f0f51
RR
7210 if (err)
7211 goto free_vmcs;
a63cb560 7212 if (vm_need_virtualize_apic_accesses(kvm)) {
be6d05cf
JK
7213 err = alloc_apic_access_page(kvm);
7214 if (err)
5e4a0b3c 7215 goto free_vmcs;
a63cb560 7216 }
fb3f0f51 7217
b927a3ce
SY
7218 if (enable_ept) {
7219 if (!kvm->arch.ept_identity_map_addr)
7220 kvm->arch.ept_identity_map_addr =
7221 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 7222 err = -ENOMEM;
b7ebfb05
SY
7223 if (alloc_identity_pagetable(kvm) != 0)
7224 goto free_vmcs;
93ea5388
GN
7225 if (!init_rmode_identity_map(kvm))
7226 goto free_vmcs;
b927a3ce 7227 }
b7ebfb05 7228
a9d30f33
NHE
7229 vmx->nested.current_vmptr = -1ull;
7230 vmx->nested.current_vmcs12 = NULL;
7231
fb3f0f51
RR
7232 return &vmx->vcpu;
7233
7234free_vmcs:
5f3fbc34 7235 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 7236free_msrs:
fb3f0f51
RR
7237 kfree(vmx->guest_msrs);
7238uninit_vcpu:
7239 kvm_vcpu_uninit(&vmx->vcpu);
7240free_vcpu:
cdbecfc3 7241 free_vpid(vmx);
a4770347 7242 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 7243 return ERR_PTR(err);
6aa8b732
AK
7244}
7245
002c7f7c
YS
7246static void __init vmx_check_processor_compat(void *rtn)
7247{
7248 struct vmcs_config vmcs_conf;
7249
7250 *(int *)rtn = 0;
7251 if (setup_vmcs_config(&vmcs_conf) < 0)
7252 *(int *)rtn = -EIO;
7253 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7254 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7255 smp_processor_id());
7256 *(int *)rtn = -EIO;
7257 }
7258}
7259
67253af5
SY
7260static int get_ept_level(void)
7261{
7262 return VMX_EPT_DEFAULT_GAW + 1;
7263}
7264
4b12f0de 7265static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 7266{
4b12f0de
SY
7267 u64 ret;
7268
522c68c4
SY
7269 /* For VT-d and EPT combination
7270 * 1. MMIO: always map as UC
7271 * 2. EPT with VT-d:
7272 * a. VT-d without snooping control feature: can't guarantee the
7273 * result, try to trust guest.
7274 * b. VT-d with snooping control feature: snooping control feature of
7275 * VT-d engine can guarantee the cache correctness. Just set it
7276 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 7277 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
7278 * consistent with host MTRR
7279 */
4b12f0de
SY
7280 if (is_mmio)
7281 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
7282 else if (vcpu->kvm->arch.iommu_domain &&
7283 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7284 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7285 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 7286 else
522c68c4 7287 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 7288 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
7289
7290 return ret;
64d4d521
SY
7291}
7292
17cc3935 7293static int vmx_get_lpage_level(void)
344f414f 7294{
878403b7
SY
7295 if (enable_ept && !cpu_has_vmx_ept_1g_page())
7296 return PT_DIRECTORY_LEVEL;
7297 else
7298 /* For shadow and EPT supported 1GB page */
7299 return PT_PDPE_LEVEL;
344f414f
JR
7300}
7301
0e851880
SY
7302static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7303{
4e47c7a6
SY
7304 struct kvm_cpuid_entry2 *best;
7305 struct vcpu_vmx *vmx = to_vmx(vcpu);
7306 u32 exec_control;
7307
7308 vmx->rdtscp_enabled = false;
7309 if (vmx_rdtscp_supported()) {
7310 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7311 if (exec_control & SECONDARY_EXEC_RDTSCP) {
7312 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7313 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7314 vmx->rdtscp_enabled = true;
7315 else {
7316 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7317 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7318 exec_control);
7319 }
7320 }
7321 }
ad756a16 7322
ad756a16
MJ
7323 /* Exposing INVPCID only when PCID is exposed */
7324 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7325 if (vmx_invpcid_supported() &&
4f977045 7326 best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
ad756a16 7327 guest_cpuid_has_pcid(vcpu)) {
29282fde 7328 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
ad756a16
MJ
7329 exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7330 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7331 exec_control);
7332 } else {
29282fde
TI
7333 if (cpu_has_secondary_exec_ctrls()) {
7334 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7335 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7336 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7337 exec_control);
7338 }
ad756a16 7339 if (best)
4f977045 7340 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 7341 }
0e851880
SY
7342}
7343
d4330ef2
JR
7344static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7345{
7b8050f5
NHE
7346 if (func == 1 && nested)
7347 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
7348}
7349
fe3ef05c
NHE
7350/*
7351 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7352 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7353 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7354 * guest in a way that will both be appropriate to L1's requests, and our
7355 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7356 * function also has additional necessary side-effects, like setting various
7357 * vcpu->arch fields.
7358 */
7359static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7360{
7361 struct vcpu_vmx *vmx = to_vmx(vcpu);
7362 u32 exec_control;
7363
7364 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7365 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7366 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7367 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7368 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7369 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7370 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7371 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7372 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7373 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7374 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7375 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7376 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7377 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7378 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7379 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7380 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7381 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7382 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7383 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7384 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7385 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7386 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7387 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7388 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7389 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7390 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7391 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7392 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7393 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7394 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7395 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7396 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7397 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7398 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7399 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7400
7401 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7402 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7403 vmcs12->vm_entry_intr_info_field);
7404 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7405 vmcs12->vm_entry_exception_error_code);
7406 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7407 vmcs12->vm_entry_instruction_len);
7408 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7409 vmcs12->guest_interruptibility_info);
fe3ef05c 7410 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
503cd0c5 7411 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
63fbf59f 7412 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
7413 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7414 vmcs12->guest_pending_dbg_exceptions);
7415 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7416 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7417
7418 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7419
7420 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7421 (vmcs_config.pin_based_exec_ctrl |
7422 vmcs12->pin_based_vm_exec_control));
7423
0238ea91
JK
7424 if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7425 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7426 vmcs12->vmx_preemption_timer_value);
7427
fe3ef05c
NHE
7428 /*
7429 * Whether page-faults are trapped is determined by a combination of
7430 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7431 * If enable_ept, L0 doesn't care about page faults and we should
7432 * set all of these to L1's desires. However, if !enable_ept, L0 does
7433 * care about (at least some) page faults, and because it is not easy
7434 * (if at all possible?) to merge L0 and L1's desires, we simply ask
7435 * to exit on each and every L2 page fault. This is done by setting
7436 * MASK=MATCH=0 and (see below) EB.PF=1.
7437 * Note that below we don't need special code to set EB.PF beyond the
7438 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7439 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7440 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7441 *
7442 * A problem with this approach (when !enable_ept) is that L1 may be
7443 * injected with more page faults than it asked for. This could have
7444 * caused problems, but in practice existing hypervisors don't care.
7445 * To fix this, we will need to emulate the PFEC checking (on the L1
7446 * page tables), using walk_addr(), when injecting PFs to L1.
7447 */
7448 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7449 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7450 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7451 enable_ept ? vmcs12->page_fault_error_code_match : 0);
7452
7453 if (cpu_has_secondary_exec_ctrls()) {
7454 u32 exec_control = vmx_secondary_exec_control(vmx);
7455 if (!vmx->rdtscp_enabled)
7456 exec_control &= ~SECONDARY_EXEC_RDTSCP;
7457 /* Take the following fields only from vmcs12 */
7458 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7459 if (nested_cpu_has(vmcs12,
7460 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7461 exec_control |= vmcs12->secondary_vm_exec_control;
7462
7463 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7464 /*
7465 * Translate L1 physical address to host physical
7466 * address for vmcs02. Keep the page pinned, so this
7467 * physical address remains valid. We keep a reference
7468 * to it so we can release it later.
7469 */
7470 if (vmx->nested.apic_access_page) /* shouldn't happen */
7471 nested_release_page(vmx->nested.apic_access_page);
7472 vmx->nested.apic_access_page =
7473 nested_get_page(vcpu, vmcs12->apic_access_addr);
7474 /*
7475 * If translation failed, no matter: This feature asks
7476 * to exit when accessing the given address, and if it
7477 * can never be accessed, this feature won't do
7478 * anything anyway.
7479 */
7480 if (!vmx->nested.apic_access_page)
7481 exec_control &=
7482 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7483 else
7484 vmcs_write64(APIC_ACCESS_ADDR,
7485 page_to_phys(vmx->nested.apic_access_page));
7486 }
7487
7488 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7489 }
7490
7491
7492 /*
7493 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7494 * Some constant fields are set here by vmx_set_constant_host_state().
7495 * Other fields are different per CPU, and will be set later when
7496 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7497 */
a547c6db 7498 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
7499
7500 /*
7501 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7502 * entry, but only if the current (host) sp changed from the value
7503 * we wrote last (vmx->host_rsp). This cache is no longer relevant
7504 * if we switch vmcs, and rather than hold a separate cache per vmcs,
7505 * here we just force the write to happen on entry.
7506 */
7507 vmx->host_rsp = 0;
7508
7509 exec_control = vmx_exec_control(vmx); /* L0's desires */
7510 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7511 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7512 exec_control &= ~CPU_BASED_TPR_SHADOW;
7513 exec_control |= vmcs12->cpu_based_vm_exec_control;
7514 /*
7515 * Merging of IO and MSR bitmaps not currently supported.
7516 * Rather, exit every time.
7517 */
7518 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7519 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7520 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7521
7522 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7523
7524 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7525 * bitwise-or of what L1 wants to trap for L2, and what we want to
7526 * trap. Note that CR0.TS also needs updating - we do this later.
7527 */
7528 update_exception_bitmap(vcpu);
7529 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7530 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7531
7532 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7533 vmcs_write32(VM_EXIT_CONTROLS,
7534 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7535 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7536 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7537
7538 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7539 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7540 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7541 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7542
7543
7544 set_cr4_guest_host_mask(vmx);
7545
27fc51b2
NHE
7546 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7547 vmcs_write64(TSC_OFFSET,
7548 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7549 else
7550 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
7551
7552 if (enable_vpid) {
7553 /*
7554 * Trivially support vpid by letting L2s share their parent
7555 * L1's vpid. TODO: move to a more elaborate solution, giving
7556 * each L2 its own vpid and exposing the vpid feature to L1.
7557 */
7558 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7559 vmx_flush_tlb(vcpu);
7560 }
7561
7562 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7563 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 7564 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
7565 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7566 else
7567 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7568 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7569 vmx_set_efer(vcpu, vcpu->arch.efer);
7570
7571 /*
7572 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7573 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7574 * The CR0_READ_SHADOW is what L2 should have expected to read given
7575 * the specifications by L1; It's not enough to take
7576 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7577 * have more bits than L1 expected.
7578 */
7579 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7580 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7581
7582 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7583 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7584
7585 /* shadow page tables on either EPT or shadow page tables */
7586 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7587 kvm_mmu_reset_context(vcpu);
7588
7589 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7590 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7591}
7592
cd232ad0
NHE
7593/*
7594 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7595 * for running an L2 nested guest.
7596 */
7597static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7598{
7599 struct vmcs12 *vmcs12;
7600 struct vcpu_vmx *vmx = to_vmx(vcpu);
7601 int cpu;
7602 struct loaded_vmcs *vmcs02;
384bb783 7603 bool ia32e;
cd232ad0
NHE
7604
7605 if (!nested_vmx_check_permission(vcpu) ||
7606 !nested_vmx_check_vmcs12(vcpu))
7607 return 1;
7608
7609 skip_emulated_instruction(vcpu);
7610 vmcs12 = get_vmcs12(vcpu);
7611
012f83cb
AG
7612 if (enable_shadow_vmcs)
7613 copy_shadow_to_vmcs12(vmx);
7614
7c177938
NHE
7615 /*
7616 * The nested entry process starts with enforcing various prerequisites
7617 * on vmcs12 as required by the Intel SDM, and act appropriately when
7618 * they fail: As the SDM explains, some conditions should cause the
7619 * instruction to fail, while others will cause the instruction to seem
7620 * to succeed, but return an EXIT_REASON_INVALID_STATE.
7621 * To speed up the normal (success) code path, we should avoid checking
7622 * for misconfigurations which will anyway be caught by the processor
7623 * when using the merged vmcs02.
7624 */
7625 if (vmcs12->launch_state == launch) {
7626 nested_vmx_failValid(vcpu,
7627 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7628 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7629 return 1;
7630 }
7631
26539bd0
PB
7632 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7633 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7634 return 1;
7635 }
7636
7c177938
NHE
7637 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7638 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7639 /*TODO: Also verify bits beyond physical address width are 0*/
7640 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7641 return 1;
7642 }
7643
7644 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7645 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7646 /*TODO: Also verify bits beyond physical address width are 0*/
7647 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7648 return 1;
7649 }
7650
7651 if (vmcs12->vm_entry_msr_load_count > 0 ||
7652 vmcs12->vm_exit_msr_load_count > 0 ||
7653 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
7654 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7655 __func__);
7c177938
NHE
7656 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7657 return 1;
7658 }
7659
7660 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7661 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7662 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7663 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7664 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7665 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7666 !vmx_control_verify(vmcs12->vm_exit_controls,
7667 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7668 !vmx_control_verify(vmcs12->vm_entry_controls,
7669 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7670 {
7671 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7672 return 1;
7673 }
7674
7675 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7676 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7677 nested_vmx_failValid(vcpu,
7678 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7679 return 1;
7680 }
7681
7682 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7683 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7684 nested_vmx_entry_failure(vcpu, vmcs12,
7685 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7686 return 1;
7687 }
7688 if (vmcs12->vmcs_link_pointer != -1ull) {
7689 nested_vmx_entry_failure(vcpu, vmcs12,
7690 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7691 return 1;
7692 }
7693
384bb783 7694 /*
cb0c8cda 7695 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
7696 * are performed on the field for the IA32_EFER MSR:
7697 * - Bits reserved in the IA32_EFER MSR must be 0.
7698 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7699 * the IA-32e mode guest VM-exit control. It must also be identical
7700 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7701 * CR0.PG) is 1.
7702 */
7703 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7704 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7705 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7706 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7707 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7708 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7709 nested_vmx_entry_failure(vcpu, vmcs12,
7710 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7711 return 1;
7712 }
7713 }
7714
7715 /*
7716 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7717 * IA32_EFER MSR must be 0 in the field for that register. In addition,
7718 * the values of the LMA and LME bits in the field must each be that of
7719 * the host address-space size VM-exit control.
7720 */
7721 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7722 ia32e = (vmcs12->vm_exit_controls &
7723 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7724 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7725 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7726 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7727 nested_vmx_entry_failure(vcpu, vmcs12,
7728 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7729 return 1;
7730 }
7731 }
7732
7c177938
NHE
7733 /*
7734 * We're finally done with prerequisite checking, and can start with
7735 * the nested entry.
7736 */
7737
cd232ad0
NHE
7738 vmcs02 = nested_get_current_vmcs02(vmx);
7739 if (!vmcs02)
7740 return -ENOMEM;
7741
7742 enter_guest_mode(vcpu);
7743
7744 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7745
7746 cpu = get_cpu();
7747 vmx->loaded_vmcs = vmcs02;
7748 vmx_vcpu_put(vcpu);
7749 vmx_vcpu_load(vcpu, cpu);
7750 vcpu->cpu = cpu;
7751 put_cpu();
7752
36c3cc42
JK
7753 vmx_segment_cache_clear(vmx);
7754
cd232ad0
NHE
7755 vmcs12->launch_state = 1;
7756
7757 prepare_vmcs02(vcpu, vmcs12);
7758
7759 /*
7760 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7761 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7762 * returned as far as L1 is concerned. It will only return (and set
7763 * the success flag) when L2 exits (see nested_vmx_vmexit()).
7764 */
7765 return 1;
7766}
7767
4704d0be
NHE
7768/*
7769 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7770 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7771 * This function returns the new value we should put in vmcs12.guest_cr0.
7772 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7773 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7774 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7775 * didn't trap the bit, because if L1 did, so would L0).
7776 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7777 * been modified by L2, and L1 knows it. So just leave the old value of
7778 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7779 * isn't relevant, because if L0 traps this bit it can set it to anything.
7780 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7781 * changed these bits, and therefore they need to be updated, but L0
7782 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7783 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7784 */
7785static inline unsigned long
7786vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7787{
7788 return
7789 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7790 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7791 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7792 vcpu->arch.cr0_guest_owned_bits));
7793}
7794
7795static inline unsigned long
7796vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7797{
7798 return
7799 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7800 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7801 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7802 vcpu->arch.cr4_guest_owned_bits));
7803}
7804
5f3d5799
JK
7805static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7806 struct vmcs12 *vmcs12)
7807{
7808 u32 idt_vectoring;
7809 unsigned int nr;
7810
7811 if (vcpu->arch.exception.pending) {
7812 nr = vcpu->arch.exception.nr;
7813 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7814
7815 if (kvm_exception_is_soft(nr)) {
7816 vmcs12->vm_exit_instruction_len =
7817 vcpu->arch.event_exit_inst_len;
7818 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7819 } else
7820 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7821
7822 if (vcpu->arch.exception.has_error_code) {
7823 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7824 vmcs12->idt_vectoring_error_code =
7825 vcpu->arch.exception.error_code;
7826 }
7827
7828 vmcs12->idt_vectoring_info_field = idt_vectoring;
7829 } else if (vcpu->arch.nmi_pending) {
7830 vmcs12->idt_vectoring_info_field =
7831 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7832 } else if (vcpu->arch.interrupt.pending) {
7833 nr = vcpu->arch.interrupt.nr;
7834 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7835
7836 if (vcpu->arch.interrupt.soft) {
7837 idt_vectoring |= INTR_TYPE_SOFT_INTR;
7838 vmcs12->vm_entry_instruction_len =
7839 vcpu->arch.event_exit_inst_len;
7840 } else
7841 idt_vectoring |= INTR_TYPE_EXT_INTR;
7842
7843 vmcs12->idt_vectoring_info_field = idt_vectoring;
7844 }
7845}
7846
4704d0be
NHE
7847/*
7848 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7849 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7850 * and this function updates it to reflect the changes to the guest state while
7851 * L2 was running (and perhaps made some exits which were handled directly by L0
7852 * without going back to L1), and to reflect the exit reason.
7853 * Note that we do not have to copy here all VMCS fields, just those that
7854 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7855 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7856 * which already writes to vmcs12 directly.
7857 */
733568f9 7858static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be
NHE
7859{
7860 /* update guest state fields: */
7861 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7862 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7863
7864 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7865 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7866 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7867 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7868
7869 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7870 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7871 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7872 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7873 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7874 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7875 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7876 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7877 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7878 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7879 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7880 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7881 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7882 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7883 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7884 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7885 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7886 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7887 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7888 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7889 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7890 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7891 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7892 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7893 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7894 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7895 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7896 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7897 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7898 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7899 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7900 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7901 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7902 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7903 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7904 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7905
4704d0be
NHE
7906 vmcs12->guest_interruptibility_info =
7907 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7908 vmcs12->guest_pending_dbg_exceptions =
7909 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7910
c18911a2
JK
7911 vmcs12->vm_entry_controls =
7912 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
7913 (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
7914
4704d0be
NHE
7915 /* TODO: These cannot have changed unless we have MSR bitmaps and
7916 * the relevant bit asks not to trap the change */
7917 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
b8c07d55 7918 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be
NHE
7919 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7920 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7921 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7922 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7923
7924 /* update exit information fields: */
7925
957c897e 7926 vmcs12->vm_exit_reason = to_vmx(vcpu)->exit_reason;
4704d0be
NHE
7927 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7928
7929 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
c0d1c770
JK
7930 if ((vmcs12->vm_exit_intr_info &
7931 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
7932 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
7933 vmcs12->vm_exit_intr_error_code =
7934 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 7935 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
7936 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7937 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7938
5f3d5799
JK
7939 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7940 /* vm_entry_intr_info_field is cleared on exit. Emulate this
7941 * instead of reading the real value. */
4704d0be 7942 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
7943
7944 /*
7945 * Transfer the event that L0 or L1 may wanted to inject into
7946 * L2 to IDT_VECTORING_INFO_FIELD.
7947 */
7948 vmcs12_save_pending_event(vcpu, vmcs12);
7949 }
7950
7951 /*
7952 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
7953 * preserved above and would only end up incorrectly in L1.
7954 */
7955 vcpu->arch.nmi_injected = false;
7956 kvm_clear_exception_queue(vcpu);
7957 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
7958}
7959
7960/*
7961 * A part of what we need to when the nested L2 guest exits and we want to
7962 * run its L1 parent, is to reset L1's guest state to the host state specified
7963 * in vmcs12.
7964 * This function is to be called not only on normal nested exit, but also on
7965 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7966 * Failures During or After Loading Guest State").
7967 * This function should be called when the active VMCS is L1's (vmcs01).
7968 */
733568f9
JK
7969static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7970 struct vmcs12 *vmcs12)
4704d0be 7971{
21feb4eb
ACL
7972 struct kvm_segment seg;
7973
4704d0be
NHE
7974 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7975 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 7976 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
7977 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7978 else
7979 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7980 vmx_set_efer(vcpu, vcpu->arch.efer);
7981
7982 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7983 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 7984 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
7985 /*
7986 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7987 * actually changed, because it depends on the current state of
7988 * fpu_active (which may have changed).
7989 * Note that vmx_set_cr0 refers to efer set above.
7990 */
7991 kvm_set_cr0(vcpu, vmcs12->host_cr0);
7992 /*
7993 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7994 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7995 * but we also need to update cr0_guest_host_mask and exception_bitmap.
7996 */
7997 update_exception_bitmap(vcpu);
7998 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7999 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
8000
8001 /*
8002 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
8003 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
8004 */
8005 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8006 kvm_set_cr4(vcpu, vmcs12->host_cr4);
8007
8008 /* shadow page tables on either EPT or shadow page tables */
8009 kvm_set_cr3(vcpu, vmcs12->host_cr3);
8010 kvm_mmu_reset_context(vcpu);
8011
8012 if (enable_vpid) {
8013 /*
8014 * Trivially support vpid by letting L2s share their parent
8015 * L1's vpid. TODO: move to a more elaborate solution, giving
8016 * each L2 its own vpid and exposing the vpid feature to L1.
8017 */
8018 vmx_flush_tlb(vcpu);
8019 }
8020
8021
8022 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
8023 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
8024 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
8025 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
8026 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be
NHE
8027
8028 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
8029 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8030 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8031 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8032 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 8033
21feb4eb
ACL
8034 /* Set L1 segment info according to Intel SDM
8035 27.5.2 Loading Host Segment and Descriptor-Table Registers */
8036 seg = (struct kvm_segment) {
8037 .base = 0,
8038 .limit = 0xFFFFFFFF,
8039 .selector = vmcs12->host_cs_selector,
8040 .type = 11,
8041 .present = 1,
8042 .s = 1,
8043 .g = 1
8044 };
8045 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
8046 seg.l = 1;
8047 else
8048 seg.db = 1;
8049 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
8050 seg = (struct kvm_segment) {
8051 .base = 0,
8052 .limit = 0xFFFFFFFF,
8053 .type = 3,
8054 .present = 1,
8055 .s = 1,
8056 .db = 1,
8057 .g = 1
8058 };
8059 seg.selector = vmcs12->host_ds_selector;
8060 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
8061 seg.selector = vmcs12->host_es_selector;
8062 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
8063 seg.selector = vmcs12->host_ss_selector;
8064 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
8065 seg.selector = vmcs12->host_fs_selector;
8066 seg.base = vmcs12->host_fs_base;
8067 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
8068 seg.selector = vmcs12->host_gs_selector;
8069 seg.base = vmcs12->host_gs_base;
8070 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
8071 seg = (struct kvm_segment) {
205befd9 8072 .base = vmcs12->host_tr_base,
21feb4eb
ACL
8073 .limit = 0x67,
8074 .selector = vmcs12->host_tr_selector,
8075 .type = 11,
8076 .present = 1
8077 };
8078 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
8079
503cd0c5
JK
8080 kvm_set_dr(vcpu, 7, 0x400);
8081 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4704d0be
NHE
8082}
8083
8084/*
8085 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8086 * and modify vmcs12 to make it see what it would expect to see there if
8087 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8088 */
8089static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8090{
8091 struct vcpu_vmx *vmx = to_vmx(vcpu);
8092 int cpu;
8093 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8094
5f3d5799
JK
8095 /* trying to cancel vmlaunch/vmresume is a bug */
8096 WARN_ON_ONCE(vmx->nested.nested_run_pending);
8097
4704d0be
NHE
8098 leave_guest_mode(vcpu);
8099 prepare_vmcs12(vcpu, vmcs12);
8100
8101 cpu = get_cpu();
8102 vmx->loaded_vmcs = &vmx->vmcs01;
8103 vmx_vcpu_put(vcpu);
8104 vmx_vcpu_load(vcpu, cpu);
8105 vcpu->cpu = cpu;
8106 put_cpu();
8107
36c3cc42
JK
8108 vmx_segment_cache_clear(vmx);
8109
4704d0be
NHE
8110 /* if no vmcs02 cache requested, remove the one we used */
8111 if (VMCS02_POOL_SIZE == 0)
8112 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8113
8114 load_vmcs12_host_state(vcpu, vmcs12);
8115
27fc51b2 8116 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
8117 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8118
8119 /* This is needed for same reason as it was needed in prepare_vmcs02 */
8120 vmx->host_rsp = 0;
8121
8122 /* Unpin physical memory we referred to in vmcs02 */
8123 if (vmx->nested.apic_access_page) {
8124 nested_release_page(vmx->nested.apic_access_page);
8125 vmx->nested.apic_access_page = 0;
8126 }
8127
8128 /*
8129 * Exiting from L2 to L1, we're now back to L1 which thinks it just
8130 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8131 * success or failure flag accordingly.
8132 */
8133 if (unlikely(vmx->fail)) {
8134 vmx->fail = 0;
8135 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8136 } else
8137 nested_vmx_succeed(vcpu);
012f83cb
AG
8138 if (enable_shadow_vmcs)
8139 vmx->nested.sync_shadow_vmcs = true;
4704d0be
NHE
8140}
8141
7c177938
NHE
8142/*
8143 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8144 * 23.7 "VM-entry failures during or after loading guest state" (this also
8145 * lists the acceptable exit-reason and exit-qualification parameters).
8146 * It should only be called before L2 actually succeeded to run, and when
8147 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8148 */
8149static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8150 struct vmcs12 *vmcs12,
8151 u32 reason, unsigned long qualification)
8152{
8153 load_vmcs12_host_state(vcpu, vmcs12);
8154 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8155 vmcs12->exit_qualification = qualification;
8156 nested_vmx_succeed(vcpu);
012f83cb
AG
8157 if (enable_shadow_vmcs)
8158 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
8159}
8160
8a76d7f2
JR
8161static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8162 struct x86_instruction_info *info,
8163 enum x86_intercept_stage stage)
8164{
8165 return X86EMUL_CONTINUE;
8166}
8167
cbdd1bea 8168static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
8169 .cpu_has_kvm_support = cpu_has_kvm_support,
8170 .disabled_by_bios = vmx_disabled_by_bios,
8171 .hardware_setup = hardware_setup,
8172 .hardware_unsetup = hardware_unsetup,
002c7f7c 8173 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
8174 .hardware_enable = hardware_enable,
8175 .hardware_disable = hardware_disable,
04547156 8176 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
8177
8178 .vcpu_create = vmx_create_vcpu,
8179 .vcpu_free = vmx_free_vcpu,
04d2cc77 8180 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 8181
04d2cc77 8182 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
8183 .vcpu_load = vmx_vcpu_load,
8184 .vcpu_put = vmx_vcpu_put,
8185
c8639010 8186 .update_db_bp_intercept = update_exception_bitmap,
6aa8b732
AK
8187 .get_msr = vmx_get_msr,
8188 .set_msr = vmx_set_msr,
8189 .get_segment_base = vmx_get_segment_base,
8190 .get_segment = vmx_get_segment,
8191 .set_segment = vmx_set_segment,
2e4d2653 8192 .get_cpl = vmx_get_cpl,
6aa8b732 8193 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 8194 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 8195 .decache_cr3 = vmx_decache_cr3,
25c4c276 8196 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 8197 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
8198 .set_cr3 = vmx_set_cr3,
8199 .set_cr4 = vmx_set_cr4,
6aa8b732 8200 .set_efer = vmx_set_efer,
6aa8b732
AK
8201 .get_idt = vmx_get_idt,
8202 .set_idt = vmx_set_idt,
8203 .get_gdt = vmx_get_gdt,
8204 .set_gdt = vmx_set_gdt,
020df079 8205 .set_dr7 = vmx_set_dr7,
5fdbf976 8206 .cache_reg = vmx_cache_reg,
6aa8b732
AK
8207 .get_rflags = vmx_get_rflags,
8208 .set_rflags = vmx_set_rflags,
ebcbab4c 8209 .fpu_activate = vmx_fpu_activate,
02daab21 8210 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
8211
8212 .tlb_flush = vmx_flush_tlb,
6aa8b732 8213
6aa8b732 8214 .run = vmx_vcpu_run,
6062d012 8215 .handle_exit = vmx_handle_exit,
6aa8b732 8216 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
8217 .set_interrupt_shadow = vmx_set_interrupt_shadow,
8218 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 8219 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 8220 .set_irq = vmx_inject_irq,
95ba8273 8221 .set_nmi = vmx_inject_nmi,
298101da 8222 .queue_exception = vmx_queue_exception,
b463a6f7 8223 .cancel_injection = vmx_cancel_injection,
78646121 8224 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 8225 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
8226 .get_nmi_mask = vmx_get_nmi_mask,
8227 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
8228 .enable_nmi_window = enable_nmi_window,
8229 .enable_irq_window = enable_irq_window,
8230 .update_cr8_intercept = update_cr8_intercept,
8d14695f 8231 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
c7c9c56c
YZ
8232 .vm_has_apicv = vmx_vm_has_apicv,
8233 .load_eoi_exitmap = vmx_load_eoi_exitmap,
8234 .hwapic_irr_update = vmx_hwapic_irr_update,
8235 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
8236 .sync_pir_to_irr = vmx_sync_pir_to_irr,
8237 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 8238
cbc94022 8239 .set_tss_addr = vmx_set_tss_addr,
67253af5 8240 .get_tdp_level = get_ept_level,
4b12f0de 8241 .get_mt_mask = vmx_get_mt_mask,
229456fc 8242
586f9607 8243 .get_exit_info = vmx_get_exit_info,
586f9607 8244
17cc3935 8245 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
8246
8247 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
8248
8249 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 8250 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
8251
8252 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
8253
8254 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 8255
4051b188 8256 .set_tsc_khz = vmx_set_tsc_khz,
ba904635 8257 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 8258 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 8259 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 8260 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 8261 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
8262
8263 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
8264
8265 .check_intercept = vmx_check_intercept,
a547c6db 8266 .handle_external_intr = vmx_handle_external_intr,
6aa8b732
AK
8267};
8268
8269static int __init vmx_init(void)
8270{
8d14695f 8271 int r, i, msr;
26bb0981
AK
8272
8273 rdmsrl_safe(MSR_EFER, &host_efer);
8274
8275 for (i = 0; i < NR_VMX_MSR; ++i)
8276 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 8277
3e7c73e9 8278 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
8279 if (!vmx_io_bitmap_a)
8280 return -ENOMEM;
8281
2106a548
GC
8282 r = -ENOMEM;
8283
3e7c73e9 8284 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8285 if (!vmx_io_bitmap_b)
fdef3ad1 8286 goto out;
fdef3ad1 8287
5897297b 8288 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8289 if (!vmx_msr_bitmap_legacy)
25c5f225 8290 goto out1;
2106a548 8291
8d14695f
YZ
8292 vmx_msr_bitmap_legacy_x2apic =
8293 (unsigned long *)__get_free_page(GFP_KERNEL);
8294 if (!vmx_msr_bitmap_legacy_x2apic)
8295 goto out2;
25c5f225 8296
5897297b 8297 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
2106a548 8298 if (!vmx_msr_bitmap_longmode)
8d14695f 8299 goto out3;
2106a548 8300
8d14695f
YZ
8301 vmx_msr_bitmap_longmode_x2apic =
8302 (unsigned long *)__get_free_page(GFP_KERNEL);
8303 if (!vmx_msr_bitmap_longmode_x2apic)
8304 goto out4;
4607c2d7
AG
8305 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8306 if (!vmx_vmread_bitmap)
8307 goto out5;
8308
8309 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8310 if (!vmx_vmwrite_bitmap)
8311 goto out6;
8312
8313 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8314 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8315 /* shadowed read/write fields */
8316 for (i = 0; i < max_shadow_read_write_fields; i++) {
8317 clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8318 clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8319 }
8320 /* shadowed read only fields */
8321 for (i = 0; i < max_shadow_read_only_fields; i++)
8322 clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
5897297b 8323
fdef3ad1
HQ
8324 /*
8325 * Allow direct access to the PC debug port (it is often used for I/O
8326 * delays, but the vmexits simply slow things down).
8327 */
3e7c73e9
AK
8328 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8329 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 8330
3e7c73e9 8331 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 8332
5897297b
AK
8333 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8334 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 8335
2384d2b3
SY
8336 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8337
0ee75bea
AK
8338 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8339 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 8340 if (r)
4607c2d7 8341 goto out7;
25c5f225 8342
8f536b76
ZY
8343#ifdef CONFIG_KEXEC
8344 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8345 crash_vmclear_local_loaded_vmcss);
8346#endif
8347
5897297b
AK
8348 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8349 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8350 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8351 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8352 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8353 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8d14695f
YZ
8354 memcpy(vmx_msr_bitmap_legacy_x2apic,
8355 vmx_msr_bitmap_legacy, PAGE_SIZE);
8356 memcpy(vmx_msr_bitmap_longmode_x2apic,
8357 vmx_msr_bitmap_longmode, PAGE_SIZE);
8358
01e439be 8359 if (enable_apicv) {
8d14695f
YZ
8360 for (msr = 0x800; msr <= 0x8ff; msr++)
8361 vmx_disable_intercept_msr_read_x2apic(msr);
8362
8363 /* According SDM, in x2apic mode, the whole id reg is used.
8364 * But in KVM, it only use the highest eight bits. Need to
8365 * intercept it */
8366 vmx_enable_intercept_msr_read_x2apic(0x802);
8367 /* TMCCT */
8368 vmx_enable_intercept_msr_read_x2apic(0x839);
8369 /* TPR */
8370 vmx_disable_intercept_msr_write_x2apic(0x808);
c7c9c56c
YZ
8371 /* EOI */
8372 vmx_disable_intercept_msr_write_x2apic(0x80b);
8373 /* SELF-IPI */
8374 vmx_disable_intercept_msr_write_x2apic(0x83f);
8d14695f 8375 }
fdef3ad1 8376
089d034e 8377 if (enable_ept) {
3f6d8c8a
XH
8378 kvm_mmu_set_mask_ptes(0ull,
8379 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8380 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8381 0ull, VMX_EPT_EXECUTABLE_MASK);
ce88decf 8382 ept_set_mmio_spte_mask();
5fdbcb9d
SY
8383 kvm_enable_tdp();
8384 } else
8385 kvm_disable_tdp();
1439442c 8386
fdef3ad1
HQ
8387 return 0;
8388
4607c2d7
AG
8389out7:
8390 free_page((unsigned long)vmx_vmwrite_bitmap);
8391out6:
8392 free_page((unsigned long)vmx_vmread_bitmap);
458f212e
YZ
8393out5:
8394 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8d14695f 8395out4:
5897297b 8396 free_page((unsigned long)vmx_msr_bitmap_longmode);
8d14695f
YZ
8397out3:
8398 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
25c5f225 8399out2:
5897297b 8400 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 8401out1:
3e7c73e9 8402 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 8403out:
3e7c73e9 8404 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 8405 return r;
6aa8b732
AK
8406}
8407
8408static void __exit vmx_exit(void)
8409{
8d14695f
YZ
8410 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8411 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
5897297b
AK
8412 free_page((unsigned long)vmx_msr_bitmap_legacy);
8413 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
8414 free_page((unsigned long)vmx_io_bitmap_b);
8415 free_page((unsigned long)vmx_io_bitmap_a);
4607c2d7
AG
8416 free_page((unsigned long)vmx_vmwrite_bitmap);
8417 free_page((unsigned long)vmx_vmread_bitmap);
fdef3ad1 8418
8f536b76
ZY
8419#ifdef CONFIG_KEXEC
8420 rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8421 synchronize_rcu();
8422#endif
8423
cb498ea2 8424 kvm_exit();
6aa8b732
AK
8425}
8426
8427module_init(vmx_init)
8428module_exit(vmx_exit)